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Abstract

The Large Hadron Collider (LHC) is the world’s highest energy particle collider,
which has already delivered data for numerous physical discoveries. To continue
this quest for discovering new physics, the Compact Linear Collider (CLIC) and
the Future Circular Collider (FCC) aim to push the boundaries of fundamental
physics at high collision energies. However, as their power, size, and complexity
increases, so does the risk of failures and their associated downtime.

Fault prediction is a way to minimize downtime by fixing faults in scheduled
maintenance intervals before they occur. In the LHC, such fault prediction
methods have been supporting system experts to decrease downtime since its
start in 2008/9. There are many different scenarios of faults. Each of them occurs
rarely, which is why the predictions cannot be validated by statistical tests alone.
Nonetheless, the methods work reliably as their predictions are based on known
fault indicators which are validated by experts. To use Machine Learning (ML)
methods for fault prediction, the same approach is required: Predictions must
be interpreted and validated by experts.

Demonstrating the predictive capabilities of ML, this thesis presents three
approaches for interpretable fault prediction. Firstly, a novel autoencoder-based
method for explaining fault predictions to system experts is proposed. A survey
of 73 potential users confirms its effectiveness when compared to two other
popular methods.

This explanation method is then used to interpret ML-based breakdown
predictions in radio frequency cavities. The interpretation reveals that a pattern
in the emitted electrons following an initial breakdown is closely related to the
probability of another breakdown occurring shortly thereafter. This explanation
is consistent with the findings of recent research.

Secondly, non-negative matrix factorization, a ML method that is designed
to be interpretable, is used to detect normal and abnormal behavior in the
LHC main dipole magnets. Five dipole magnets with abnormal behavior are
identified, of which one was confirmed to be damaged.

Thirdly, a hybrid method is proposed, that allows experts to rely on their
existing tools and still benefit from non-interpretable ML. The method is tested
to predict faults in a protection system of the LHC main dipole magnets. The
method captured 113 out of 116 faults, while only 99 out of 116 faults were
captured with the existing tool.

The presented approaches demonstrate the strength of interpretable ML for
contributing to reliable operation of next-generation particle accelerators. Its
applicability extends to numerous other collider components, including radio
frequency cavities and dipole magnets in the FCC.
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Chapter 1

Introduction

1.1 Energy Frontier Colliders: Opportunities
and Challenges

Accelerators for particle physics are designed for the validation and extension
of physical models by analyzing particle collisions. These colliders aim to push
the boundaries of higher collision energy, necessary for this purpose.

Accelerators for particle physics are designed for the validation and extension
of physical models by analyzing particle collisions. Among accelerators for
particle physics, colliders aim to push the boundaries of higher collision energy,
necessary for this purpose.

The Large Hadron Collider (LHC) is the world’s current energy frontier
collider, colliding two proton beams with an energy of 13.6 TeV [1]. The energy
stored in both beams is equivalent to that of a 400-ton TGV train traveling at
150 km/h [2]. Possible next-generation energy frontier colliders at CERN, the
European Organization for Nuclear Research, are the Compact Linear Collider
(CLIC), and the Future Circular Collider (FCC). CLIC will collide electrons
and positrons with collision energies up to 3 TeV [3]. FCC will be built in two
steps: Initially aiming for electron-position collisions with up to 350 GeV [4],
followed by proton-proton collisions up to 100 TeV [5].

To validate and extend the physical models thoroughly, not only a high
energy is required, but also a high integrated luminosity. This term is equivalent
to the total number of collisions accumulated over time in a particle accelerator.
The higher the integrated luminosity, the more statistics are available to validate
and extend the physical models. In CERN’s next-generation colliders, a crucial
factor to reach high integrated luminosity is the time the accelerator is fully
operational and available for colliding particle beams. This time is referred to as
availability. In case the machine has to be switched off during operation due to a
hardware fault, the downtime for repairs negatively impacts the availability. The
downtime should be reduced to a minimum, to reach high integrated luminosity.

Fault prediction enables fault prevention, by repairing the faulty components
in scheduled maintenance intervals. This reduces machine downtime during
operation and increases machine availability.

One challenge for fault prediction methods is that there are many different
scenarios of faults, where each of them only occurs rarely. This leads to an

3



4 CHAPTER 1. INTRODUCTION

insufficient number of data to test the methods extensively and ensure their
reliability. Nonetheless, existing fault prediction methods used at CERN [6], [7]
still work reliable. This is because they monitor known fault indicators, validated
by system experts.

In recent projects, also the ability of Machine Learning (ML) to detect
non-linear relationships in large amount of data has been useful for fault
prediction [8], [9]. At CERN, more and more data is being recorded, making the
use of ML-based fault prediction increasingly promising. Nonetheless, to ensure
that faults can still be predicted reliable, ML is required to be interpretable.
Then it is possible to find the fault indicator on the basis of which the prediction
is made, and validate that it is a true fault precursor and not a bias.

This thesis investigates methods for interpretable fault prediction in energy
frontier colliders with ML. The effectiveness of the methods is demonstrated by
two case studies on predicting faults in two cruicial collider components: the
CLIC Radio Frequency (RF) cavities and the LHC main dipole magnets. The
applicability of the methods extends to numerous components of next-generation
particle colliders, including RF cavities and dipole magnets in FCC.

1.2 Research Questions and Contributions

In the following, three research questions (RQs) are presented, which will be
answered as part of the contribution of this thesis. While the first research
question addresses limitations for interpreting ML-based fault predictions, the
other two focus on challenges for predicting faults in CLIC RF cavities and LHC
main dipole magnets.

RQ1: How can system experts best interpret machine learning models
to obtain reliable fault predictions?

The success of machine learning models frequently relies on the use of complex
non-linear functions. These functions make it difficult to identify the indicator
on the basis of which the prediction is made [10], [11]. Therefore, system
experts cannot determine whether the prediction is reliable or based on a bias.
One tool for explaining the ML predictions to humans is Explainable Artificial
Intelligence (XAI). This tool can also be used for fault prediction. Studies
show, however, that explanations from different XAI methods are perceived
differently based on the domain they are used in [12]. Since existing XAI tools
have not been tested for fault prediction, the question is which XAI methods
to use and whether existing approaches can be further improved.

Research Contribution: Within this thesis, a novel XAI method for
explaining fault predictions to system experts is proposed. To evaluate the
effectiveness of the method, 73 individuals from CERN and TU-Graz were asked
to identify faults in data, using the fault explanations from the proposed method
and two other XAI methods. With the proposed method, people were able to
predict 79.3% of the faults, while with the other two methods only 73.8% and
67.2% of faults were predicted. The explanations are therefore understood 5.5%
and 12.1% better. For CERN system experts, the customized explanations will
help them better understand and validate the results of ML. This paves the



1.2. RESEARCH QUESTIONS AND CONTRIBUTIONS 5

way for employing ML-based fault prediction, which will enhance the rate of
predicted faults over time.

In the following use cases for predicting faults in CLIC RF cavities and in
LHC superconducting dipole magnets, the focus on interpreting ML-based fault
predictions remains. Among other methods, the proposed XAI method is used
to make fault predictions for energy frontier colliders more reliable.

RQ2: Can data measured at CLIC RF cavities provide insights on
breakdown prediction?

RF cavities accelerate the particles using an oscillating electric field. A major
constraint to reaching a high accelerating gradient are RF cavity breakdowns.
During a breakdown, deformations or contaminations on the cavity surface can
cause local field enhancement, leading to electrical arcs and damage to the
cavity. Prior to the arc formation, electrons are emitted, which are measured
by sensors on the outside of the RF cavities. In a test stand of CLIC RF
cavities, the maximal number of emitted electrons is monitored by a threshold
to detect breakdowns. The question is if the temporal change of emissions
before a breakdown could be used to predicted them at an earlier stage. The
data gathered at the CLIC RF cavity test stand, could provide information
about this.

Research Contribution: With the data gathered at the CLIC RF cavity
test stand, breakdowns are predicted in the preceding pulse. Depending on
the type of breakdown, an accuracy of up to 89.7% is achieved. This means
that in 89.7% of these cases, the negative consequences of a breakdown could
have been mitigated, by suitable adjustment of the electromagnetic field in
the RF cavity. The interpretation of the ML models with XAI shows that
a pattern in the emitted electrons following an initial breakdown is closely
related to the probability of another breakdown occurring shortly thereafter.
These observations are consistent with recent research on the emergence of
breakdowns [13], [14].

RQ3: How can the data measured at the LHC main dipole magnets
provide insights about their normal and abnormal behavior?

The LHC main dipole magnets bend the charged particles with a magnetic
field along the trajectory of the accelerator. To reach the nominal field of 8.0 T
and a current of 11.85 kA, each magnet is cooled down to 1.9 K with superfluid
helium. A fault in a cooled down component, can lead to a downtime of up
to three months, as the components have to be warmed up for repair and
subsequently cooled down again in a sophisticated procedure. In this regard,
there exist several threshold based fault prediction methods [15] and physical
models that accurately simulate the circuit behavior of the main dipoles [16].
With the existing data of the main dipole magnets, ML could provide additional
insights into their normal and abnormal behavior. These insights would further
improve existing fault prediction methods and physical models.

Research Contribution: Within this thesis, normal and abnormal
frequency patterns are identified in the voltage measured at the dipole magnets.
The characteristics and possible origins of these patterns are analyzed, to
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improve the existing physical models. The patterns measured at four dipole
magnets are identified to be an indicator of a fault. One of these magnets
already failed, providing information about the method’s reliability. The results
lead to the scheduling of additional measurements. If a fault cannot be excluded
during these measurements, the magnets could be replaced in one of the next
maintenance stops of the LHC.

Furthermore, faults are predicted in the resistive strips inside the magnets.
These Quench Heaters (QHs) protect the superconducting magnet coils in case
of a resistive transition, also called quench. An existing Quench Heater Discharge
Analysis (QHDA) tool already ensures that faults in the QHs do not cause
a fault in the magnet. This tool is extended with novel hybrid method. The
hybrid method allows experts to rely on their existing tool and benefit from
fault predictions with ML. In a test, this method is able to capture 113 out of
116 faults, while only 99 out of 116 faults are captured with the existing QHDA
tool. In the tree-year period in which the test data was recorded, therefore, the
risk of a fault in a magnet could have been reduced in 12.3% of all QH faults.

1.3 Outline

The thesis consists of two parts. Part I provides a summary of all publications
and states the three main contributions of this thesis. An introduction to
accelerators and their challenges is given in Section 2. The machine learning
methods, used for fault prediction in the applications of this thesis, are
introduced in Section 3. The methods for interpreting ML are described in
Section 4. Section 5 summarizes the work of predicting breakdowns in CLIC RF
cavities and Section 6 shows the detection of normal and abnormal behavior in
the LHC main dipole magnets. Finally, the thesis summarizes the contributions,
states open questions, and elaborates on possible future work. In Part II, the
publications of the thesis are included.



Chapter 2

Accelerators

Particle accelerators use a beam of charged particles for a variety of applications,
some of which are described below. Medical applications use the beam to sterilize
medical devices [17], diagnose and destroy cancer cells [18], for particle beam
radiography [19], and to produce of Positron Emission Tomography (PET)
tracers [20]. In industry, the beam is projected onto a target material to
make it more durable [21] or to enhance certain of its properties [22]. Particle
accelerators are also used in security applications to scan cargo [23] or for
environmental research to study pollutants [24]. For particle physics, the beam
is accelerated and brought to collision with a fixed target or with another
counter-rotating beam to experimentally validate and extend physical models.

This chapter introduces three energy frontier colliders for particle physics at
CERN: LHC, CLIC, and FCC. It is structured as follows: Section 2.1 gives
an overview of the history and functionality of the colliders. The number
of their RF cavities and superconducting dipole magnets are discussed to
emphasize the scale of these projects. Section 2.2 presents a literature review of
existing availability studies. These studies show, that additional innovations are
necessary to meet the availability targets of CLIC, and FCC. Fault prediction
is a compelling solution.

7



8 CHAPTER 2. ACCELERATORS

2.1 Energy Frontier Colliders at CERN

CERN is the European Organization for Nuclear Research with currently 23
member states, located in the west of Switzerland at the border to France.
It provides essential infrastructure and equipment for fundamental research in
particle physics to over 12200 scientists of 110 nationalities [25]. At the heart
of CERN lies the LHC, where the discovery of the Higgs boson was achieved in
2012 [26]. To further contribute to the scientific understanding, the European
Strategy for Particle Physics proposes the construction of particle colliders
with a larger energy reach [27]. Therefore, the feasibility of two candidates for
next-generation accelerators is investigated: CLIC and FCC. A map with the
planned locations and the sizes of these accelerators are shown, together with
the existing LHC, in Fig. 2.1.

Figure 2.1: The geographical location and size of the LHC, the CLIC and the FCC [28]. While
the LHC is in operation since 2008. CLIC, and FCC are potential next-generation colliders.
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2.1.1 Large Hadron Collider (LHC)

In the early 1980s, it was proposed to build a particle accelerator with sufficient
beam energy to discover the Higgs boson. The project was approved in December
1994 and the construction of the LHC began in October 1995. Upon completion
in September 2008, the LHC faced one year of downtime, due to a fault in
a main superconducting dipole circuit [29]. The first operational run began
in November 2009 and continued successfully until February 2013. After that,
technical upgrades and maintenance work were carried out within the first Long
Shutdown (LS), which lasted until 2015 [30]. More upgrades and maintenance
work took place during LS2 from 2019-2021 [31] and are planned for LS3 in
2026-2028 [32]. In LS3, the High Luminosity LHC (HL-LHC) upgrade will
significantly improve the technical performance [33], [34].

The LHC consists of a 27 km long ring in which two proton or heavy
ion beams circulate on opposite trajectories. Current beam energy can be up
to 6.8 TeV, which corresponds to a velocity close to the speed of light. To
obtain this velocity, the beams are first pre-accelerated trough various injectors.
Each injector contributes increasingly more energy to the beam until it is
injected into the LHC at an energy of 450 GeV. CERN’s accelerator and
experimental complex is illustrated in Fig. 2.2. The yellow dots represent the
four LHC interaction regions at which the two beams collide. At these points,
the particles created during the collisions are analyzed by highly specialized
detector arrangements [35].

Figure 2.2: Overview of the CERN accelerator complex [36].

The beams are accelerated by an oscillating electric field in the RF cavities
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and steered along their circular path by magnetic fields from magnets. This can
be expressed in terms of the Lorenz force [37]

F⃗ = q(E⃗ + v⃗ × B⃗), (2.1)

where q is the electrical charge of the particles, E⃗ is the electric field, v⃗ is
the velocity of the particles, and B⃗ is the magnetic field. In the LHC, 1232
superconducting dipole magnets provide the bending force, each with a nominal
magnetic field of 8.3 T [1]. To reach this field, each magnet is cooled down to
1.9 K with superfluid helium.

The accelerating force is given by eight superconducting RF cavities per
beam. Each cavity provides an 400 MHz accelerating gradient of 5.3 MV/m [38],
defined as the maximum voltage gained by a relativistic particle while passing
the cavity, divided by the length of the accelerating gap [39]. With this gradient,
protons are currently accelerated from 450 GeV to 6.8 TeV within a 20 minutes
period. This period is referred to as ramp-up, during which the magnetic field
of the main dipole magnets is gradually increased with the beam intensity. +

2.1.2 Compact Linear Collider (CLIC)

CLIC is one of the candidates for the next generation of CERN’s energy
frontier colliders. The proposal to implement the electron-positron collider was
published in December 2018 [3]. The implementation is foreseen in three stages,
in which the accelerator is continuously being extended from a length of 11 km
to 29 km and 50 km to reach a collision energy of 380 GeV, 1.5 TeV and
3 TeV, respectively. In the project implementation plan, it is mentioned that
collisions could begin by 2035 if the project is approved and launched by
2026 [3, p. 193]. The data from these collisions would permit the analysis of the
Higgs boson’s interactions with other particles and with itself. The precision of
these measurements would be significantly higher than those of proton–proton
collisions in the LHC [40]. Each of the upgrades to the 1.5 TeV and 3 TeV stage
would take approximately 4 years.

Particles in CLIC are accelerated along a linear trajectory, without the
need for bending magnets. Due to this linear trajectory, particles can only
be accelerated once by each RF cavity. Already for the 380 GeV stage 21630
RF cavities would be required [41]. These cavities would be normal conducting
and provide a pulsed accelerating gradient of 70 to 100 MV/m oscillating at
12 GHz [42].

2.1.3 Future Circular Collider (FCC)

Another candidate for a next-generation collider is the FCC. The conceptual
design report was published in 2018, stating the intention to study Higgs
boson’s interactions, dark matter, antimatter, and the overall understanding
of universe’s fundamental forces and constituents [43]. As part of the FCC
project, a ∼91 km long tunnel is equipped with two particle accelerators.
Initially an electron-positron collider is build, allowing collision energies larger
than 350 GeV (FCC-ee) [4]. Then a proton and heavy ion collider with up to
100 TeV (FCC-hh) [5] is constructed. If the design report is approved by 2030,
the construction of the FCC-ee is foreseen to start in the mid 2030s. This would
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allow collisions from 2045 to 2060. Construction of the FCC-hh then begins,
with collisions foreseen in the 2070s.

Technical Requirements

An electron has ∼ 1800 times lower rest mass m0 than a proton. Therefore, a
lower magnetic field is required to overcome the relativistic centrifugal force

Fc =
γm0v

2

ρ
, (2.2)

where γ = 1√
1−(v2/c2)

, c is the speed of light, and ρ is the bending radius [44].

In the FCC-ee, 2900 normal conducting dipole magnets with a magnetic field
of 14.1–56.6 mT are foreseen [4].

However, when charged particles are bent by magnetic fields at relativistic
speeds they emit photons. This synchrotron radiation results in an energy loss
of

∆E =
e2

3ϵ0(m0c2)4
E4

ρ
(2.3)

per turn [45]. Here, e is the elementary electric charge, ϵ0 the vacuum
permittivity, and E the energy of the circulating particles. The influence
of the mass is ∆E ∼ m−4

0 , which is why circular electron accelerators
require continuously high RF acceleration to compensate for the loss of
energy due to synchrotron radiation. Therefore, the FCC-ee will use up
to 1352 superconducting RF cavities per beam. Each cavity is providing a
continuous wave oscillating gradient of up to 20.1 MV/m at 400-800 MHz, based
on the mode of operation [46, slide 20].

The FCC-hh, requires higher bending forces, and potentially 4668
superconducting dipole magnets with a magnetic field strength of up to 16 T.
This is accompanied by 24 superconducting RF cavities per beam with an
accelerating gradient of 5.3 MV/m oscillating at 400 MHz. These RF cavities
are similar to the ones used in the LHC [5]. To serve as an injector chain for
the FCC-hh, the existing accelerator complex of the LHC (see Fig. 2.2) will be
modified [47].

2.2 Availability Requirements

Availability is a crucial performance measure for accelerator engineering. It
refers to the proportion of time in which the collider is ready to deliver beam
for physics experiments during planned operation [48]. Planned operation Top is
the time at which the machine is expected to be fully functional in accordance
with the operational schedule. This time is used to process the beam (e.g.
ramp-up) [49] and for collisions with a stable beam. Planned shutdowns and
commissioning periods are generally excluded from Top. However, downtime
due to unplanned maintenance and repairs negatively affects availability.

The target availability is the minimal availability that is required to achieve
the defined physics objective of a particle accelerator. This objective depends on
the number of collisions and is typically given as the integrated luminosity Lint

in inverse femtobarn (fb-1). For particle accelerators with a constant potential
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number of collisions per seconds L, the target availability is derived by:

A =
Lint

L× Top
. (2.4)

L is also referred to as the nominal luminosity of the collider and is typically
given in cm-2s-1 (1 fb-1=1039 cm-2s-1). In this section, the target availability of
CLIC, and FCC is assessed, and compared to the observed availability of the
LHC from 2016 to 2018.

Fig. 2.3 shows the overall availability of the LHC from 2016 to 2018 for
operation with protons. In total, the LHC was ready to deliver beam for physics
for 353 out of 459 days, which corresponds to an availability of ∼77%. Excluding
the processing of the beam, a stable beam was then delivered on 218 days [50].
The right-hand side of Fig. 2.3 shows how the 106 days of downtime are
distributed among the subsystems of LHC. The injector complex caused the
highest downtime with 22.2% (23.5 days) followed by the cryogenics with 13.1%
(13.9 days) and the electrical network with 10.5% (11.1 days). RF cavities belong
to the radio frequency system, which caused 3.8% (4.0 days) of the downtime.
Superconducting magnets are part of the magnet circuit system with a downtime
of 3.0% (3.2 days).

Figure 2.3: Availability of the LHC and its subsystems [51].

Using Eq. (2.4), the availability targets of CLIC, and FCC can be estimated:

1. CLIC: In this accelerator 185 days of operation are foreseen per year.
Based on the three implementation stages 380 Gev, 1.5 TeV, and 3 TeV, a
yearly annual integrated luminosity of 180 fb-1, 444 fb-1, and 720 fb-1 at a
constant luminosity of 1.5 cm-2s-1, 3.7 cm-2s-1, and 6 cm-2s-1 is planned [52,
Tab. 6]. In all three stages, this requires an availability of ACLIC = 75%.

2. FCC-ee: 185 days of FCC-ee operation are dedicated to physics operation
at a nominal luminosity of up to L = 200 × 1034 cm-2s-1. The goal is to
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Accelerator
Observed/Target

Availability
# Main

Dipole Magnets
# RF

Cavities

LHC 77% 1232* 16*
CLIC 75% 0 21630
FCC-ee 80% 2900 1352*
FCC-hh 70% 4668* 48*

Table 2.1: Overview of observed or target availability in CERN energy frontier colliders. The
number of main dipole magnets or RF cavities is marked by a ’*’ if the components are
superconducting. For CLIC the number of RF cavities of the 380 GeV stage are stated.

have an integrated luminosity of up to Lint = 24 ab-1 (= 24× 1042cm−2)
per year and detector [4, p. 379]. The luminosity is essentially constant as
electrons and positrons are injected ”on top” of a circulating beam. Using
Eq. (2.4) this requires a target availability of 75%. Due to an additional
margin, the design report states a target availability of AFCC-ee = 80% [4,
p. 377].

3. FCC-hh: Per day of operation dedicated to physics, the FCC-hh aims
to reach an integrated luminosity of up to Lint = 8 fb-1, with a peak
luminosity of up to L = 3× 1035 cm-2s-1. 160 days of operation dedicated
to physics are foreseen [52, Tab. 1]. Luminosity in the FCC-hh is however
not constant, which is why L has to be integrated over time. This is
further described in the design report, showing a target availability of
AFCC-hh = 70% [5, p. 778].

Table 2.1 summarizes the availability of the LHC from 2016 to 2018 and the
target availability of CERN’s next generation particle accelerators. In addition,
this table shows the number of main dipole magnets and the number of RF
cavities. If the components are superconducting, the number is marked with
a ’*’. Faults in such components, can lead to a downtime of up to three months,
as the components have to be warmed up for repair and subsequently cooled
down again in a sophisticated procedure.

One can generally assume that downtime increases with the number of
components in a system [51]. The order of magnitude more components
combined with the ambitious technological objectives means that availability
assurance in the future colliders is unlikely to be easier than in the LHC. Taking
this into account, the feasibility of the stated target availabilities is discussed in
more detail below.

1. CLIC: The CLIC implementation plan validates the stated target
availability by comparisons to availabilities in the Free Electron Laser
(FEL) linear accelerators and light sources of the latest generation [3,
p. 15]. CLIC RF cavity breakdowns pose a potential risk to achieve the
target availability, as they can lead to spurious interlocks and hardware
failures [3, p. 34]. Due to the substantial quantity of cavities (see Tab. 2.1),
the impact on the downtime can be significant.

2. FCC-ee: Similarly to the LHC and contrary to CLIC, the FCC-ee RF
cavities are superconducting. Due to the high number of superconducting
RF cavities, a recent study projected the LHC RF availability onto



14 CHAPTER 2. ACCELERATORS

the FCC-ee case, assuming availability and repair time is preserved.
This identified dramatic shortfalls in availability for two of the FCC-ee
operational modes [51].

3. FCC-hh: Like the LHC, the FCC-hh uses superconducting dipole magnets
and RF cavities. Since the FCC-hh requires more than three times the
amount of these components, as first approximation three times the
downtime can be expected. Here it is assumed that the magnets in the
LHC and the FCC-hh behave the same and that the downtime scales
proportional. The downtime of the entire FCC-hh injector chain has to be
considered in addition. If the LHC is used as an injector, its downtime of
106 days between 2016 and 2018, would certainly not be acceptable.

Additional innovations are required to meet the availability targets of
CERN’s next-generation accelerators. One possibility is to increase the
reliability of the subsystems by extending the technological limits of their
hardware components [53] or through installing redundancies. For example, the
Super Proton Synchrotron (SPS) has been equipped with 1280 Solid State Power
Amplifiers (SSPAs), for powering its RF cavities. The system carries on running,
even if individual SSPAs stop working, which improves the availability of the
SPS’s RF system [54].

Another possibility is to decrease the repair time of faulty components.
This can be achieved through modular designs for quick replacement and by
optimizing the response time after a fault occurs. CERN further investigates
several solutions for robot maintenance that allow components to be replaced
during operation without downtime [55].

Fault prediction seeks to avoid downtime entirely by replacing components
before they fail. This solution is considered one of the most promising to improve
the availability in FCC-ee RF cavities [51]. In particular data-driven techniques
are rapidly improving as sensors, data acquisition and storage becomes cheaper
and more prevalent. The FCC-hh design report proposes data-driven fault
prediction to overcome the availability challenge in the superconducting dipole
magnets [5, p. 874]. Also in the CLIC implementation plan, data-driven
fault prediction is proposed to reduce the downtime caused by RF cavity
breakdowns [3, p. 35]. The next chapter discusses data-driven fault prediction
in detail.



Chapter 3

Data-Driven Fault
Prediction

Fault prediction can generally be achieved with physical models or data-driven
models. Physical models aim to model the underlying physical processes of
a system and its faults. If these physical processes are known, the system’s
operating behavior can be simulated and compared with actual behavior. In
case there is evidence of a fault process, the exact cause of the fault can be
determined, and the impact of corrective actions can be simulated. The CERN
project Simulation of Transient Effects in Accelerator Magnets (STEAM) aims
to generate such physical models based on the known physical processes of the
superconducting magnets and their circuits [16]. When the physical processes
are not known, it is possible to learn from past system behavior with data-driven
models. Such methods are used in this thesis.

This chapter provides the mathematical notation of fault prediction data
in Section 3.1, followed by an overview of data-driven models in Section 3.2.
The latter section describes the categories of data-driven modeling and reviews
models applied in the field of CLIC RF cavities and LHC main dipole magnets.
For each category, a model relevant to this thesis is explained in detail
with an example. The example demonstrates the prediction capabilities, the
required system knowledge, and the interpretability of each model. Section 3.3
summarizes these characteristics. The foundation provided in this chapter
should enable the reader to comprehend the terminology, requirements, and
limitations of the algorithms used in the Chapters 4, 5, and 6.

3.1 Mathematical Notation

Definition 3.1.1 (Time-Series Signal). A time-series signal x = {x1, ..., xT } is
an ordered set of T real-valued data points xt ∈ R, where t = 1, ..., T . These
time-series signals x are vectors, represented as bold lower case letters. Data
point xt are scalars denoted as non-bold lower case letters.

Definition 3.1.2 (Event). Multiple time-series signals from different sensors,
recorded at the same time, are referred to as an event X = {x1, ...,xM}. Such an
event consists of M time-series signals, xm, where m = 1, ...,M . The resulting
matrix is represented with a bold upper-case letter X.

15
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Definition 3.1.3 (Features). A feature is a characteristic property of an event.
It is denoted with a ”*”, as a scalar x∗. A set of F features yields a vector
x∗ = {x1, ..., xF }, where f = 1, ..., F . The process of calculating a feature is
known as representation learning.

Definition 3.1.4 (Dataset). A dataset defines a set of N events recorded at
different points in time. If the system’s fault behavior is known, a label yn can
be assigned to the event Xn or to its features x∗

n, for n = 1, ..., N . For fault
prediction, there are two classes yn ∈ [−1, 1]: Faulty events are labeled with
yn = −1, while healthy events are labeled as yn = 1.

An artificially created dataset is shown in Fig. 3.1. This dataset is intended
to show the typical structure of data for fault prediction and helps to explain the
algorithms in the next section. The values of the data points are exemplary for
measurements in the CLIC RF cavities or LHC main dipole magnets and could
correspond, to the field-emitted current or the magnet voltage. The dataset
consists of N = 50 healthy events (Fig. 3.1a) and N = 50 faulty events
(Fig. 3.1b). In each event, there is M = 1 time-series signal, with T = 120
data points. The next section will discuss how to distinguish these events in
more detail.

(a) yn = 1 (b) yn = −1.

Figure 3.1: Artificially created dataset to explain data-driven modeling. Blue time-series
signals on the left show healthy events, while brown time-series signals on the right show
events indicating faults.

3.2 Data-driven Models

Data-driven fault prediction aims to predict the label of an event, defined as
ŷn. The prediction should be generally applicable, even for events that are not
included in the dataset. The generalization allows to automatically analyze large
amounts of data for faults. The prediction is derived in two steps:

1. Representation Learning: In the context of fault prediction, features
represent characteristic properties of a faulty event. When sufficient expert
knowledge of the fault indicators are available, the features x∗

n can be
directly calculated from an event Xn. If this is not the case, the model
has to learn the feature from the dataset.
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2. Inference and Decision: The process of distinguish a healthy event from a
faulty event consists of two steps. The first step is referred to as inference,
where the probability p(ŷn = −1|x∗

n) of an event indicating a fault is
derived. In the second decision step, a threshold is set on this probability
to define whether the event is predicted as healthy (ŷn = 1) or faulty
(ŷn = −1). The choice of this decision boundary impacts the risk of
an event being misclassified as faulty (at a low threshold) or healthy
(at a high threshold). Based on the system knowledge available, this
decision boundary is manually chosen or learned from existing data. If the
labels yn are known, the derivation is called supervised learning, otherwise
unsupervised learning.

Machine learning is a collective term, generally used for data-driven methods
in which parameters are optimized automatically. In this work, the methods are
divided into six categories, shown in Fig. 3.2. The methods are sorted descending
by the required system knowledge. Green boxes represent manual calculations
which require system knowledge, and red boxes show automatically performed
calculations which require more data and complex models. In the following
subsections, the modeling methods in this figure are explained in more detail.

Sy
st

em
Kn

ow
le

dg
e

Features Learned Labels Learned

Features Known

Features Known Distribution
Known

Features Known Labels Known
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Representation
Learning
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Decission

Statistical
Models

Rule Based
Threshold

Supervised Deep
Learning

Classic
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Unsupervised
Deep Learning

Classic
Unsupervised ML

Figure 3.2: Overview of different data-driven methods for fault prediction. Green boxes
represent manually performed calculations, while red boxes indicate automatically performed
calculations.

3.2.1 Rule Based Thresholds

When the effect of a fault on the data is known, a simple threshold on a feature
is sufficient for fault prediction. Both the feature and the threshold are chosen
manually. In a CLIC test stand, such a threshold is applied to detect breakdowns
based on the minimal value of the field emitted current [6]. Also in the LHC,
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thresholds on the voltage measured in the superconducting magnets are used
to detect quenches [7]. In these two applications, the thresholds are derived
by experts, based on years of experience and a detailed understanding of the
systems.

In addition to the system knowledge, data can support the experts to
determine the threshold. In the artificially created dataset from Fig. 3.1, two
features are indicating faults: The mean value x∗

2 of the time-series signal in the
range t = [50, 70], and the mean value x∗

1 of the remaining data points. For each
time-series signal in Fig. 3.1, these features are calculated and shown in Fig. 3.3a.
Blue dots represent healthy events, and the brown dots represent faulty events.
The black threshold on x∗

2 is selected, such that the ratio of correctly predicted
events to all events, is maximal. This ratio is referred to as accuracy and plotted
as a function of a threshold on x∗

2 in Fig. 3.3b. Noticeably, the accuracy is highest
with a threshold at x∗

2 = 6.5 with 78%. The prediction with this threshold is
visualized in Fig. 3.3a. The brown area marks faulty events. Brown dots in the
blue area are not predicted correctly.

(a) (b)

Figure 3.3: Example of fault prediction with rule based thresholds. In (a) the brown area
marks events indicating faults. Brown dots in the blue area are not recognized as faults. In
(b) the threshold is selected, such that the accuracy to identify the event label is maximal.

This method is easy to interpret: The higher x∗
2 the more likely the event

is faulty. The closer x∗
2 is to the threshold, the higher the uncertainty of the

prediction. The method, can however only be applied if the exact features,
indicating a fault are known. In addition, the prediction accuracy can be further
improved with more complex thresholds, as the following subsection will show.

3.2.2 Statistical Models

Statistical models infer the probability p(yn = −1|x∗
n) based on the distribution

of features and select a threshold accordingly. This is how fault indicators in the
field emitted current of CLIC RF cavities are identified [14]. In latest research,
such thresholds are used to evaluate the LHC particle losses during a beam
dump [56].

In more detail, the prior knowledge and class-conditional densities are
required to infer p(yn = −1|x∗

n). The prior knowledge refers to the probability
of a healthy event p(yn = 1) and a faulty event p(yn = −1). This probability
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can be derived from the data by taking the ratio of healthy or faulty events
to all events. The class-conditional densities correspond to the distribution
of the features for healthy and faulty events denoted as p(x∗

n|yn = 1) and
p(x∗

n|yn = −1), respectively. These densities can be calculated with maximum
likelihood estimation [57]. The desired probability p(yn = −1|x∗

n) is referred to
as posterior probability and can be derived with the Bayes theorem [58]:

p(yn = −1|x∗
n) =

p(x∗
n|yn = −1)p(yn = −1)

p(x∗
n)

, (3.1)

where the denominator is calculated by p(x∗
n) = p(x∗

n|yn = 1)p(yn = 1) +
p(x∗

n|yn = −1)p(yn = −1).
In the following, p(yn = −1|x∗

n) is inferred for the artificially created dataset
in Fig. 3.1. Both p(yn = 1) and p(yn = −1) are 0.5, as the number of
healthy events is equal to the number of faulty events. The class-conditional
densities are calculated with maximum likelihood estimation [57], assuming
Gaussian distributions. The resulting standard deviations of these distributions
are marked by the dashed ellipses of Fig. 3.4. Thus, all terms in Eq. (3.1) are
available and p(yn = −1|x∗

n) is inferred. The black continuous line in Fig. 3.4
shows the decision boundary, for p(yn = −1|x∗

n) = 0.5. With this decision
boundary, 87% of all events are correctly classified.

Figure 3.4: Example of fault prediction with a statistical model. The brown area marks events
in which the probability of a fault is higher than no fault, while the blue area denotes a lower
probability. The dashed ellipses represent the standard deviations of data with and without
faults.

The advantage of this approach is that the probability p(yn = −1|x∗
n) is

determined and the accuracy is 9% higher compared to the rule based threshold.
The probability helps system experts evaluate the confidence of the prediction.
The class-conditional densities further show the features indicating a fault which
makes the method interpretable. Estimating these densities for large datasets is
computationally intensive. For small datasets, outliers in the data and changes
in the system can significantly influence the results.

3.2.3 Classic Supervised Machine Learning

In classic supervised ML methods, the process of optimizing the decision
boundary from section 3.2.1 is further extended. The methods vary from
optimizing simple linear to complex non-linear decision boundaries [58].
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Important algorithms used in this work are k-nearest neighbors [59], random
forest [60] or Support Vector Machine (SVM) [61]. These algorithms are also
used to detect faulty beam position monitors in the LHC [62] and at the
Jefferson Laboratory [8] to detect faults in RF cavities. Specifically, in k-nearest
neighbors, an event is classified by the majority class of its closest neighbors,
typically measured using Euclidean distance. Random forests are ensembles of
multiple decision trees, each of which applies multiple rule-based thresholds (see
Section 3.2.1).

SVMs are used in both Chapters 5 and 6 of this thesis, and are therefore
explained in more detail below. In an SVM the decision boundary is defined as:

f(x∗
n) = wTϕ(x∗

n) + b, (3.2)

where w are the weight parameters, b is the bias parameter and ϕ(·) is a fixed
feature space transformation. The feature space transformation allows modeling
a non-linear decision boundary and corresponds to ϕ(x∗

n) = x∗
n for the linear

case. The most common non-linear feature space transformation is the radial
basis function. It is measured between two events x∗

n and x∗′
n :

ϕ(x∗
n)

Tϕ(x∗′
n ) = exp

(
−||x

∗
n − x∗′

n ||2
2σ2

)
. (3.3)

The parameter σ is referred to as hyperparameter, as it has to be manually
chosen and is not automatically optimized by the algorithm. Support vectors,
which give the method its name, are used for scaling w and b. They refer to
events with the smallest perpendicular distance, i.e. the margin, to the decision
boundary.

The optimization of w and b is performed by solving:

argmin
w

(
1

2
||w||2 + C

N∑

n=1

ξn) (3.4)

subject to: yn(w
Tx∗

n + b) ≥ 1− ξn, n = 1, ..., N

ξn ≥ 0,

where ξn is referred to as slack variable, necessary to enable optimization, even
if the dataset labels cannot be perfectly separated into yn = 1 and yn = −1
events. The hyperparameter C determines the importance of wrong predictions
against the distance to the decision boundary. In general, a higher C leads to
increased non-linearity of the decision boundary.

In Fig. 3.5 this method is used to predict faults in the artificially created
dataset. Fig. 3.5a shows the prediction with a linear feature space transformation
ϕ(x∗

n) = x∗
n and C = 1. This leads to a linear decision boundary, visualized by

the black continuous line, predicting 89% of events correctly. The dashed lines
represent the margin to the decision boundary defined by the support vectors.
Fig. 3.5b shows the prediction of faults with an SVM using a radial basis function
as a feature space transformation with σ = 2 and C = 1. The black continuous
line indicates the non-linear decision boundary, and the dashed lines the margin.
An accuracy of 92% is achieved.

This example shows that SVMs offer an opportunity to further improve
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(a) (b)

Figure 3.5: Example of fault prediction with SVM. In (a) a linear feature space transformation
is used, in (b) a radial basis function. The black continuous line represents the decision
boundary, and the black dashed lines show the margin.

the accuracy of fault prediction, compared to the previously described models.
For the linear decision boundary, the weights w indicate which features are
important for prediction. Important features can be validated by experts to
ensure that the prediction is not based on bias. For the non-linear decision
boundary in Fig. 3.5b it is not directly possible to understand which features
are important for the prediction. Thus, the indicators on which the prediction
is based cannot be validated without using additional interpretation methods.

3.2.4 Supervised Deep Learning

Deep Learning (DL) is a subfield of ML, which simulates the behavior of neurons
in brain cells [63]. These neurons are sequentially chained together, resulting
in a deep structure, which give the method its name. The deep structure
allows learning data representation when the features indicating a fault are
unknown. In the LHC quench heaters, such models have been investigated to
detect faults [15]. At SLAC National Laboratory DL is used to predict beam
properties [64].

A neuron represents a linear decision boundary, similar to Eq. (3.2). Instead
of a feature space transformation ϕ(·), however, an activation function σ(·) is
used to create nonlinearity. The output of a neuron is therefore derived by:

f(Xn) = σ (W⊺Xn + b) , (3.5)

where W is the weight parameter, b is the bias parameter. The input of σ(·)
is referred to as the activation a of the neuron. Typical activation functions
include the sigmoid function given by σ(a) = 1

1+e−a and the Rectified Linear
Unit (ReLU) expressed as h(a) = max(0, a). The selection of an activation
function is influenced by various factors, such as the convergence speed [63].

The standard deep learning model is the Neural Network (NN), in which
neurons are grouped together in layers. In each layer, the output of the previous
layer is used as an input. In a L-layered NN, the output is therefore given as

f(Xn) = fL(fL−1(...f1(Xn)...)). (3.6)
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Note that in Eq. (3.6) the time-series signals Xn are used as an input. The
output of each layer, represent features x∗

n. In each layer, their calculation
becomes more non-linear, and the distinction between healthy and faulty
becomes easier. If a sigmoid activation is used in the last layer with one neuron,
the output finally corresponds to p(yn = −1|Xn), and faulty events can be
determined with a simple threshold. The weights are then optimized to minimize
the binary cross-entropy

L(yn, ŷn) = yn log(ŷn) + (1− yn) log(1− ŷn), (3.7)

where yn = −1 is substituted with yn = 0

To show an example, faults in the artificially created dataset are predicted
with a five-layer NN. The used network consists of three layers with 50 neurons,
followed by one layer with two neurons and one neuron in the last layer. All
layers use a ReLU activation function, except for the last layer, where a sigmoid
activation function is used. With this model, an accuracy of 100% is achieved.
Fig. 3.6 shows an example of the output x∗

1 and x∗
2 of the two neurons of

the fourth layer. These features are transformed in a succession of non-linear
layers, which explains the difference to features in the plots before. One can see
that the healthy and the faulty events can be separated by the black decision
boundary, set at p(yn = −1|Xn) = 0.5. The upper dashed line represents,
p(yn = −1|Xn) > 0.9 while the lower dashed line shows p(yn = −1|Xn) > 0.1.
It can be seen that most of the events are not between the two dashed lines,
and are therefore predicted with high confidence.

Figure 3.6: Example of fault prediction with an NN, where x∗
1 and x∗

2 are generated
automatically. Events in the brown area are predicted as faults. The decision boundary
indicates where the probability of a fault is higher than no fault. Events below the dashed line
in the brown area are predicted as faults with 90% accuracy. Events above the dashed line in
the blue area are predicted as no faults with 90% accuracy.

The achieved accuracy is 22% higher than the rule based threshold, 13%
higher than the statistical model, and at least 8% higher than the SVM based
fault prediction. This demonstrates the good fault prediction capabilities of deep
learning. However, the prediction cannot be interpreted. In the example above,
it is not clear which characteristic in the time-series signal x∗

1 and x∗
2 represent.

Therefore, the indicators on the basis of which the prediction is obtained cannot
be identified and validated by experts.
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3.2.5 Classic Unsupervised Machine Learning

When no labels are available, the decision boundary is derived based on distinct
features in the time-series signals. The representation learning task and the
inference and decision task are then usually performed with separate methods,
described in this subsection.

Representation Learning

Depending on the application, different unsupervised representation learning
methods are used. In the LHC, Principal Component Analysis (PCA) is
used to learn characteristic beam properties [65]. PCA successively transforms
the data into orthogonal coordinate systems while aiming to preserve its
variance [58]. At Daresbury Laboratory t-distributed Stochastic Neighbour
Embedding (t-SNE) is used [66] to derive properties of time-series signals
measured at the RF cavities. t-SNE aims to reconstruct the distribution of
events in a lower dimensional space, by iteratively comparing the events in
pairs [67]. In Chapter 6 Non-negative Matrix Factorization (NMF) is used for
unsupervised representation learning and is therefore described in more detail
below.

NMF decomposes the data as a linear combination of non-negative
components [68]. The decomposed components are additive and are therefore
easy to understand by humans. The input data of NMF is a two-dimensional
matrix V with non-negative entries vn,t for n = 1, .., N and t = 1, .., T . This
matrix is decomposed into a N×K matrix W and a K×T matrix H such that:

V ≈WH. (3.8)

Here, W represents the components and H their weights. The parameter K
defines the number of components. All elements wi,k and hk,j of the matrices W
and H are constrained to be non-negative. To find the values of W and H, both
matrices are randomly initialized and optimized iteratively. In each iteration,
the distance measure d(·) between the input vn,t and the reconstructed input

v̂n,t =
∑K

k wn,khk,t is minimized:

d(vn,t, v̂n,t) = ∥vn,t − v̂n,t∥2. (3.9)

Further initialization methods and distance measures are described in detail in
Chapter 6.

To apply this method, the artificially created dataset with dimensions
RN×M×T is transformed into a two-dimensional matrix V ∈ RNM×T . Two
components W are extracted, visible in Fig. 3.7. They are summed to
reconstruct the time-series signals in Fig. 3.1. Component two in Fig. 3.7a is
used to model the period t = [50, 70], and component one in Fig. 3.7b models
the remaining data points. NMF can therefore reproduce the characteristics of
the features in section 3.2.1, without labels or system knowledge. There, the
mean value of the time-series signal in the range t = [50, 70] was assigned to x∗

2,
and the mean value of the remaining data points to x∗

1. The weights H of the
components, are used to predict faults.



24 CHAPTER 3. DATA-DRIVEN FAULT PREDICTION

(a) (b)

Figure 3.7: The NMF components (a) and (b) extracted from the artificially created dataset.
These components can be added together to reconstruct the events from the artificially created
datasets.

Inference and Decision

In this step different methods are used dependent on the application. In the
LHC, PCA features representing beam properties, are used to predict beam
instabilities with isolation forest [65]. Isolation forest estimates the distribution
of features and predicts events with features outside this distribution as
faults [69]. At Daresbury Laboratory the features derived from t-SNE showing
attributes of time-series signals from RF cavities are used to identify RF
breakdowns with Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [66]. DBSCAN identifies groups of events that are densely connected
to each other, by measuring the distance between the features of all events [70].
In Chapter 4 a method called k-Means is applied, and therefore explained in
more detail below.

k-Means [71] aims to assign N events to K groups defined as S =
{S1, ..., SK}. This is achieved, by randomly choosing a prototype µk for each
group Sk, where k = 1, ...,K. Each event Xn is assigned to the nearest µk based
on the Euclidean distance:

Sk = {Xn : ||Xn − µk||2 ≤ ||Xn − µj ||2 ∀j, 1 ≤ j ≤ k} (3.10)

The prototypes are then updated by the mean of all events in the group:

µk =
1

|Sk|
∑

Xn∈Sk

Xn, (3.11)

where |Sk| is the number of events in Sk. The steps from Eq. (3.10) and Eq. (3.11)
are repeated until µk remains constant.

In Fig. 3.8 the previously extracted NMF component weights h1 and h2

are visualized. By multiplying the NMF components in Fig. 3.7 with h1 and
h2, each time-series signal in Fig. 3.1 can be reconstructed. One can see that
the distribution of learned features h1 and h2 is similar to the distribution of
manually chosen features x∗

1 and x∗
2 in Fig. 3.3a. This demonstrates the good

performance of NMF.
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The assignment of the events to a healthy and faulty group with k-Means is
shown in Fig. 3.8. Events in the blue are assigned to the healthy group, events
in the brown area to the faulty group. The large white circles show the k-Means
prototype of each group, while the black line shows the decision boundary, where
the distance from both prototypes is equal. 80% of all events are labeled correctly
with this decision boundary.

Even if the accuracy is 20% lower than with the NN, this example shows that
data-driven fault prediction is also possible if neither the features nor the labels
of a dataset are available. The NMF representations are easy to understand and
similar to the manually calculated features. Also, the k-Means prototypes are
interpretable, as they show the mean of each group.

Figure 3.8: The weights h1 and h2 of the two NMF components for each event are grouped
into healthy and faulty events with k-Means. Events in the blue area are considered to be
healthy, events in the red area as faulty.

3.2.6 Unsupervised Deep Learning

Deep learning also allows for deriving non-linear representations, indicating a
fault, even if no labels are available. The most frequently used model for this
task is the Autoencoder (AE). Such an AE is used at Jefferson Laboratory to
derive representations for fault prediction in CLIC cavities [66], [72]. At the
Argonne National Laboratory, AEs are used to identify precursors of faults in
magnets [73]. The method presented in Chapter 4, is also based on an AE.

An AE is an NN and therefore consists of sequentially interconnected neurons
(Eq. (3.6)). As no labels are available the binary cross-entropy in Eq. (3.7)
cannot be used to optimize the weights of the neurons. Instead, an AE aims to
reconstruct the input Xn with the mean squared error:

L(Xn, X̂n) = ||Xn − X̂n||2 (3.12)

The number of neurons in the output layer matches the size of the input Xn.
The outputs of an intermediate layer, which typically has fewer neurons than
the output layer, are then used as representations x∗

n. The layers up to this
intermediate layer are referred to as encoder, while the subsequent layers are
the decoder.

An AE with three layers and 2, 50, and 120 neurons, is used to calculate the
representations of the artificially created dataset. No activation function is used
in any layer, leading to a linear function f(·) of the AE. The output x∗

1 and x∗
2
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of the first layer is shown in Fig. 3.9, where each dot shows an event colored in
blue (healthy) and brown (faulty). The events are assigned to a group of healthy
(brown area) and a group of faulty events (brown area) with k-Means. 6 brown
dots are in the blue area and 12 brown dots are in the blue area, which means
that 82% of events are correctly predicted.

Figure 3.9: The output x∗
1 and x∗

2 of the first AE layer grouped into healthy and faulty events
with k-Means. Events in the blue area are predicted healthy, events in the brown area as
faulty.

Similar to NMF, the decoder of the AE allows reconstructing the time-series
signals. As shown in Fig. 3.10, the two extracted k-Means prototypes can be
reconstructed. These prototypes are representative of healthy events (Fig. 3.10a)
and faulty events (Fig. 3.10b). This shows the feature indicating a fault: At
t = [50, 70] healthy events have a downward spike, while faulty events have
an upward spike. Potentially also non-linear representations can be derived
with non-linear activation functions, resulting in an increased flexibility of this
method compared to NMF.

(a) (b)

Figure 3.10: The two k-Means prototypes in (a) and (b) reconstructed with the AE. The first
component is representative of a healthy, while the second is representative of a faulty signal.
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Model Accuracy
Interpretable

Results

Rule Based Thresholds 78% ✓
Statistical Model 87% ✓
SVM - linear 89% ✓
SVM - non-linear 92% ✗
NN 100% ✗
NMF/k-Means 80% ✓
AE /k-Means 82% ✓

Table 3.1: Summary of the characteristics of data-driven models applied on the artificially
created dataset.

3.3 Summary of Data-driven Models

Table 3.1 gives a summary of all models applied to the artificially created
dataset in the previous section. For each model, it is stated whether the result
is interpretable. The accuracy is highest for complex supervised models: the
non-linear SVM, and the NN. However, both methods are not interpretable, so
the indicator on the basis of which the prediction is made cannot be determined.
Therefore, a bias in the prediction cannot be excluded, and the reliability of the
method cannot be assured. The next chapter will show how these models can
still be interpreted with additional explanation methods.
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Chapter 4

Interpreting Fault
Predictions

As shown in the last chapter, supervised ML methods can predict faults
accurately, but often lack interpretability. In fault prediction interpretability
is beneficial to allow system experts to validate the results in the common case
of few faults in the data. This chapter describes how to interpret supervised ML
methods with Explainable Artificial Intelligence (XAI).

Existing XAI methods are developed to explain image or text predictions
to non-experts [12], [74]–[76]. Those methods can also be used to explain fault
predictions to system experts, as shown in Section 4.1. However, it is unclear
which method is best suited for this application. Hence, Section 4.2 aims to
answer RQ1: ”How can system experts best interpret machine learning models
to obtain reliable fault predictions?”. This section summarizes the result from
Paper 5: A novel XAI method for interpreting ML-based fault prediction tested
on system experts.

4.1 Review of XAI Methods

Fig. 4.1 shows three different types of explanations, based on an event of the
artificially created dataset in Fig. 3.1. Here, the goal is to explain why the event
in Fig. 4.1a is predicted as faulty. In Fig. 4.1b, the negative spike is highlighted in
pink, to show the area relevant for the prediction. This interpretation is referred
to as relevance-based explanation. In contrast, the concept-based explanations
show an event similar to the input that contain the characteristic concept of
a faulty event: the negative spike. This event is chosen from the dataset and
referred to as example explanations (Fig. 4.1c), or artificially generated and
referred to as prototype explanation (Fig. 4.1d).

The above example explains the prediction of one specific event. This
explanation is not suited for a different event, and is therefore referred to as
local explanation. Explanations that are valid across all model predictions, are
referred to as global explanations. Both types are discussed in more detail below.
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(a) (b)

(c) (d)

Figure 4.1: Different explanations to interpret a fault prediction from the artificially created
dataset in Fig. 3.1. The goal is to explain why the raw data sample in (a) is predicted as faulty.
In (b) relevance-based explanations highlight important parts, in (c) example explanations
show similar events that are also faulty, and in (d) prototype explanations show an artificial
event capturing the most important information.

Relevance-based Explanations

In a linear SVM (see Section 3.2.3), the weights w of the linear decision
boundary g(x∗

n) = wTx∗
n + b indicate which features are important for

prediction. A non-linear decision boundary f(x∗
n) = wTϕ(x∗

n) + b cannot
be interpreted directly like this. Instead, the commonly used relevance-based
methods LIME [75], Layer-Wise Relevance Propagation [77], and DeepLIFT [78]
derive a local linear model g(x∗

n) behaves similar to f(x∗
n) for one event x

∗
n. For

this event, the importance of the input for the prediction of the non-linear model
is reflected in the weights of the local linear model.

Other commonly used relevance-based methods are saliency maps [79] or
Grad-CAM++ [80]. These methods examine how the output behaves in response
to a change in the input. If a change in a data point of the input influences the
output, then it is relevant.

All these methods involve stochastic processes that can lead to varying
results. With cooperative game theory [81] the above methods can be improved
to obtain unique relevance values, referred to as SHapley Additive exPlanations
(SHAP) values [76].
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All these methods create local explanations, only valid for one specific
event. To derive global methods, the relevant data points of several events are
statistically evaluated [82], [83].

Concept-based Example Explanations

This method provides events that are similar to the event to explain, and
is therefore also referred to as Explanation-By-Example (EBE). For fault
prediction, EBE shows an example event where a fault already occurred. To
find the example, the activations of the last layer in an NN are considered [12],
[74], [84]. Events with similar activations share common properties that are
important for the prediction (see Fig. 3.6). To explain a faulty event, another
event with similar activations is therefore used as a local example. This similarity
is frequently measured with the Euclidean distance [74], [84] or the cosine
similarity [12]. Global explanations are derived, by grouping the activations
with k-Means into a healthy and a faulty group (see Section 3.2.5). Events with
similar activations to the prototype of the faulty group, are global examples for
faulty events. The same principle is applied to explain healthy events.

Concept-based Prototype Explanations

Concept-based prototype methods aim to generate an artificial event, similar to
the event to explain. For fault prediction, this artificial event aims to distill the
main properties of a fault. In Fig. 4.1d this property is the negative spike.

Generating an artificial event is possible with an AE, discussed in
Section 3.2.6. Concept-based prototype methods therefore frequently rely on
AEs [85], [86]. This AE is part of the NN and aims to reconstruct the activations
of the last layer. The reconstructions are used as local explanations. If the
activations are grouped into healthy and faulty, as in concept-based example
method, the prototypes can be reconstructed for each class. The reconstructed
prototypes are global explanations. Since the AE is part of the network, the
approach is referred to as Model-Specific Prototype (MSP) method. This has
the disadvantage, that the method cannot be used if the model structure is
unknown.

For both concept-based methods, a combination with relevance-based
explanations is possible [83]. For this purpose, important parts are shown in
the example [87]–[89] or prototype [90]. As these important parts frequently
represent shapes in the time-series signal, they are referred to as shaplets. In
Chapter 5 these shaplets are used to explain the fault predictions of CLIC RF
cavities.

A recent study shows that users prefer concept-based explanations for
time-series predictions [12]. This makes these explanations useful for fault
prediction, where time-series data are commonly used. However, there are
no studies testing concept-based explanations for system experts. In the next
section, a proposal to address this limitation is discussed.
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4.2 Research Contribution 1

In the context of this research contribution, a novel XAI model is proposed for
explaining any fault prediction model with concept-based prototypes. This XAI
model is compared to two other concept-based XAI methods in a human-user
study. The results are presented in detail in Paper 5 and summarized below.

Model

The proposed XAI model is based on an AE, similar to other methods. As it can
explain unknown black box models, it is referred to as Model-Agnostic Prototype
(MAP) method. Fig. 4.2 shows the structure of the MAP method. The input
Xn is reconstructed with an encoder g(·) and a decoder h(·). The reconstructed
input X̂n is then used as an input for the black box model f(·), which makes
class predictions. To obtain explanations, the output of the encoder is assigned
to one of K groups with k-Means. Subsequently, the decoder reconstructs the
k-Means prototypes ck, where k = 1, ...,K. These reconstructed prototypes are
used as concept-based explanations for the prediction of the black box model.

Figure 4.2: Model architecture of the MAP explainer. Given a trained black box model, an
AE is fitted to reconstruct the input data and to recreate the output of the black box model.
The prototypes are derived from the output of the encoder and are optimized to differ from
each other.

The optimization of the AE weights is performed by minimizing three
different losses. To reconstruct the input X̂n as accurately as possible, the
mean-squared-error is used:

R(g, h,Xn) =
1

N

N∑

n=1

(Xn − h (g(Xn)))
2
. (4.1)

The label ŷ = f (h (g(Xn))) should reconstruct the output of the
black box model f(Xn). The prediction accuracy is measured by the
categorical-cross-entropy loss:

C(g, h, f,Xn) = −
N∑

n=1

(
argmax

ŷ
f(Xn)

)
logf (h (g(Xn))) . (4.2)
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A similarity loss ensures that the derived prototypes are differing from each
other:

S(C) =

∑
i ̸=j c

T
i cj

K(K − 1)
. (4.3)

This similarity loss, is penalizing non-orthogonality between two different
prototypes ci, cj ∈ C, where C = {c1, ..., cK} [91]. Overall, the weighted sum
of all three losses,

L(g, h,Xn) = R(g, h,Xn) + λCC(g, h, f,Xn) + λSS(C), (4.4)

is optimized. The weights λC and λS are hyperparameters. To evaluate
the effectiveness of this method, the MAP model is compared to a
concept-based EBE [12] method and a concept-based MSP method [86]. These
two methods are chosen because they are commonly used for concept-based
explanations (see Section 4.1). The architectures of all three methods are
discussed in detail in Paper 5.

Data

Eleven dataset from the University of California Riverside (UCR) archive [92]
are compared in a quantitative analysis. Two datasets are additionally evaluated
with a user study, which will be summarized in this section. Specifically, those
datasets are:

1. ECG200: The ECG200 [92], [93] dataset contains data of electrical
activity measured during one heartbeat. Specifically, the last part of a
heart beat is shown in the signal (see Fig. 4.3), starting after the peak
point R. The characteristic properties of a normal heart beat (healthy
event) compared to an ischemic heart beat (faulty event) are the high
peak point R and the limited recovery time from its minimum S to T. The
scaled reconstruction of the ground truth is shown in Fig. 4.3 together
with the characteristic points R, S, T, and U.

2. Artificial Dataset: Furthermore, an artificial dataset is created, which
aims to reconstruct time-series signals from machine sensors in a noisy
environment. Four basic time-series shapes represent the ground truth
signals shown in Fig. 4.4. Multiplicative and additive noise with an
amplitude of 0 to 1.1, which is drawn from an uniform distribution, is
added to these ground truth signals.

Results

Fig. 4.3 and Fig. 4.4 show explanations generated with the EBE, the MSP,
and our MAP method for the ECG200 and the artificial dataset, respectively.
For each method, one survey is created1. As part of the survey, two global
explanations per class were shown to a group of participants. Afterwards, this
group had to predict the label of 15 randomly drawn events from each dataset.
The ratio of correctly predicted events is used as a performance measure.

1EBE: https://forms.gle/J3EAnAqN99mpw6P39
MPS: https://forms.gle/rsRzHcXyurPi6LQA9
MAP: https://forms.gle/tSZRXbuZUraKW7cz8

https://forms.gle/J3EAnAqN99mpw6P39
https://forms.gle/rsRzHcXyurPi6LQA9
https://forms.gle/tSZRXbuZUraKW7cz8
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Ground truth EBE MSP MAP (ours)
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Figure 4.3: Ground truth and explanation of the ECG200 [93] dataset, showing the latter
part of a heart beat, starting before the peak R. For both healthy and faulty events, two
explanations are extracted with the EBE, MSP, and our MAP method.
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Figure 4.4: Explanations of artificially created dataset with two explanations for both healthy
and faulty events, extracted with the EBE, MSP, and our MAP method. The ground truth
signal shows the four shapes within the dataset, to which multiplicative and additive noise
with an amplitude of 0 to 1.1, drawn from a uniform distribution, is added.

The surveys were distributed within our research community, collecting
2190 valid answers from 73 students and research staff from CERN and Graz
University of Technology. The results differentiate between two categories of
participants: At the beginning of the survey, participants who indicated prior
ML knowledge are categorized as typical ML developers. Participants without
prior ML knowledge were classified as ML users.

The study was evaluated based on the principle of binomial proportion [94].
Table 4.1 shows the results in the form p̂ ± z

√
(p̂(1− p̂))/n. The first term p̂

shows the proportion of success in the binomial trial, which indicates how many
of the 30 events were on average correctly predicted by each participant. The
latter term z

√
(p̂(1− p̂))/n, indicates the uncertainty of the result. z is the 1− α

2
quantile of a standard normal distribution, where α is the target error rate. For
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Participants Method ECG200 [%] Artificial data [%] Total [%]
EBE 65.6 ± 6.7 79.0 ± 5.7 72.3 ± 4.4

Developer MSP 64.4 ± 8.1 74.1 ± 7.4 69.3 ± 5.5
MAP (ours) 74.8 ± 5.2 84.8 ± 4.3 79.8 ± 3.4
EBE 71.3 ± 7.3 80.0 ± 6.4 75.7 ± 4.9

User MSP 64.3 ± 6.5 67.6 ± 6.3 66.0 ± 4.5
MAP (ours) 77.8 ± 7.0 78.5 ± 6.9 78.1 ± 5.0
EBE 68.1 ± 4.1 79.4 ± 3.1 73.8 ± 2.4

All participants MSP 64.3 ± 4.0 70.1 ± 3.2 67.2 ± 2.4
MAP (ours) 75.8 ± 3.6 82.7 ± 2.9 79.3 ± 2.2

Table 4.1: Results of 73 participants predicting a total of 2190 events with explanations
generated by EBE, MSP or our MAP method. The proportion of success is indicated alongside
the 95% confidence level.

the chosen 95% confidence level, the target error rate is α = 0.05.
Evaluating the answers of all participants from both datasets, our MAP

method achieves a leading 79.3% success rate, compared to 73.8% of EBE and
67.2% of MSP. The MAP confidence intervals are not overlapping with those
of the EBE or the MSP method, confirming the statistical significance of the
results.

These results demonstrate that prototype explanations are preferred by
the participants across the two datasets. Prototypes contain only the essential
properties, which help the participants to focus on the relevant details, allowing
an average success rate of 79.3% with MAP explanations. If prototypes are too
different to the ground truth, as is the case with the chosen MSP method for
both dataset, participants are misled and their success rate drops on average
by 12.1%. In the artificially created dataset, users reached a 1.5% higher
accuracy with EBE compared to our MAP method. This shows that when the
prototype is too abstract compared to the real data, users of ML methods prefer
examples over prototypes. Developers do not have this problem. Similar to other
surveys [12], [76], this points out that explanations are perceived differently by
the target groups. It is therefore important to take into account the target
audience when using XAI methods.
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Chapter 5

Case Study 1: CLIC Radio
Frequency Cavities

Breakdowns are a key limitation for reaching a high accelerating gradient in
CLIC RF cavities. They reduce the availability of the cavities, as the operation
is interrupted after a breakdown, and degrade the linearly accelerated beam,
rendering it lost on that pulse. Furthermore, they damage the cavity surface as
shown in the microscopic image in Fig. 5.1. In this image, the remaining crater
of molten copper after a breakdown is visible. A high number of craters can
negatively impact a cavity’s performance and can lead to the replacement of
the cavity (see Section 7.5.3 of [95]). Replacing a cavity increases the downtime
of the accelerator and is associated with high costs. A CLIC RF cavity costs
approximately 75-95 kCHF [41].

Figure 5.1: Crater of molten copper that forms after a breakdown [96].

Existing methods aim to monitor breakdowns, to detect and mitigate their
negative effects. These methods are discussed in Chapter 5.1. Breakdown
prediction could fully prevent the negative effects. Therefore, in Chapter 5.2
the question ”Can data measured at CLIC RF cavities provide insights on
breakdown prediction?” is answered by showing selected results from Papers 2,
4, and 3. This chapter summarizes the second research contribution of this thesis.

37
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5.1 RF Cavity Breakdowns

RF cavity breakdowns emerge from surface deformations or contaminations that
result in the local enhancement of the surface electric field. The increased electric
field cause electron emissions, which can lead to a plasma that is referred to
as breakdown. Existing methods for breakdown detection monitor the current
emitted from RF cavities. Depending on how frequently breakdowns occur, the
gradient in the cavity is then reduced accordingly [97].

In the CERN XBOX2 test stand for CLIC RF cavities, the same principle
is applied. The electron emissions are measured upstream and downstream of
the cavity with sensors known as Faraday Cups (FC). If emissions exceed a
threshold, the operation is stopped for a few seconds.

Fig. 5.2 shows an example of the emissions measured in the downstream
FC of the XBOX2 test stand during a RF pulse without (a) and with (b) a
breakdown. The emissions are shown relative to the maximum resolution of the
Analog to Digital Converter (ADC) in the FC. In the faulty RF pulse, emissions
are clearly higher, and reach the ADC saturation after around 1.25 µs. At the
XBOX2 test stand, a breakdown is detected if emissions reach 81.3% of the
ADC saturation. With this threshold, the events in Fig. 5.2a and Fig. 5.2b can
be clearly separated from each other.

(a) (b)

Figure 5.2: Two examples of a FC signal without (a) and with (b) a breakdown. Emissions
are shown relative to the maximal resolution of the analog to digital converter in the FC.

Breakdowns usually occur in groups. The edges of a breakdown crater
(see Fig. 5.1) represent surface deformations that increase the probability of
another breakdown shortly thereafter [98]–[100]. To avoid that these follow-up
breakdowns lead to even more craters and breakdowns [95, Fig. 7.31], the
gradient is slowly increased after the primary breakdown in the XBOX2
test stand [95], [101]. Similarly, in the accelerators LINAC4 [102, slide 6]
and CLARA [103, p. 61] the occurrence of multiple follow-up breakdowns is
prevented through an automatic recovery procedure, that temporarily decreases
the gradient in the cavity depending on the rate of breakdowns.

Breakdown prediction would allow preventing plasma formation by stopping
operation beforehand, or by powering an additional spare cavity. The data
measured at the XBOX2 test stand could provide additional insight into
achieving this goal. This is further discussed in the next section.
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5.2 Research Contribution 2

The analysis of the data measured at the XBOX2 is published in three papers.
Paper 2 establishes the approach for ML-based breakdown prediction in RF
cavities. Paper 4 applies this approach on two different XBOX2 datasets
and evaluates the prediction performance of various ML methods. To further
improve this prediction performance, Paper 3 discusses methods for artificially
augmenting XBOX2 data. In this chapter, selected results of these publications
are presented, summarizing the second research contribution.

Data

Every pulse at 50 Hz, the electron emissions in the cavity (see Fig. 5.2) and the
power amplitude of the waves traveling to the cavity (see Fig. 3 in Paper 4) are
recorded. These data form an event Xd, and consist of time-series signals that
are 2 µs long with up to 3200 data points. Although every pulse is monitored,
not every event is stored due to the limited data storage of the experimental
setup. Instead, recordings of one RF pulse are stored every minute. In addition,
in the event of a breakdown, the recordings of the current and the two previous
RF pulses are stored.

Prediction

The goal of this work is to predict, given an event Xd, whether a breakdown will
occur in the next pulse in 20 ms. For this purpose, the events that are stored
every minute and the events one pulse before a breakdown are used. The former
are labeled as healthy (yd = 1) if no breakdown occurs in 20 ms, the latter are
labeled faulty (yd = −1) if a breakdown occurs in 20 ms.

Unlike the events in Fig. 5.2, the difference between healthy and faulty
events is not evident, and they cannot be distinguished with a simple threshold.
Therefore, the supervised ML and DL models from Chapter 3 are used. Their
exact choice of hyperparameters is discussed in Paper 4.

The prediction performance of the models is evaluated with the Area under
the Receiver operating characteristics curve (AR) [104]. This score evaluates
the model capabilities to infer p(ŷd|Xd), independent of the threshold chosen
in the decision step (see Fig. 3.2). For this purpose, the correctly predicted
faulty events are calculated as a function of the incorrectly predicted faulty
events for all possible thresholds. An AR score close to 100% indicates a clear
discrimination between healthy and faulty events, while a score near 50% shows
that the model selects the label randomly.

To assess the model performance, leave-one-out-cross-validation is
used [105]. This means that the dataset is divided into five groups, where each
group contains events with similar operational parameters. A model is then
alternately trained on four groups and validated on the remaining group. Once
each group has been validated, the average ARµ and the standard deviation ARσ

of each validation is reported. After fine-tuning each model’s hyperparameters,
the model is trained on all five groups and evaluated on an additional test
group, which was not used before. The prediction performance of the test group
is reported as ARt.

Tab. 5.1 shows the best results reported in Paper 4 for predicting primary
and follow-up breakdowns 20 ms in advance. As primary breakdowns are



40 CHAPTER 5. CASE STUDY 1: CLIC RADIO FREQUENCY CAVITIES

generally considered stochastic [106], the models’ performance of ARµ = 56.6%
is still slightly better than the expected 50 %. Nonetheless, the performance of
ARµ = 89.7% for predicting follow-up breakdowns is much higher. Intuitively,
this means that in 89.7% of all cases, the model correctly ranks a faulty event
as more probable to be faulty than healthy. According to this performance, the
prediction of breakdowns 20 ms in advance is possible for follow-up breakdowns,
but challenging for primary breakdowns.

The question is on which indicator the follow-up breakdown prediction is
based and if this indicator is reliable. Tab. 5.1 already provide insights to this
question. The relatively high standard deviation of ARσ = 8.1% shows that the
performance varies in the validation groups. This implies that the fault indicator
used by the model is not equally prominent in all groups. Nevertheless, the model
manages to generalize well, as ARt = 91.1% is higher than ARµ = 89.7%. It
shows that the fault indicator is also present in the test group.

Table 5.1: Best AR scores for predicting RF cavity breakdowns.

ARµ ARσ ARt

Primary Breakdowns 56.6% 8.3% 54.0%
Follow-up Breakdowns 89.7% 8.1% 91.1%

Interpretation

To gain further insights, the fault indicator itself is investigated with the XAI
methods from Chapter 4. Specifically, the relevant time-series signal and its data
points are evaluated with SHAP values [76]. Furthermore, two concept-based
prototypes, representative of healthy and faulty events, are extracted with the
method presented in Chapter 4. 1

SHAP values show, that electron emissions in the cavity are more relevant to
the prediction than the power amplitude of the waves traveling to the cavity (see
Fig. 15 (a) of Paper 4). The reason why these emissions are important are shown
in Fig. 5.3. In this figure, a prototype of a healthy signal is shown in blue, and
a prototype of a faulty signal is shown in brown. For better comparability, both
prototypes are standardized by subtracting them with the mean and dividing
them by the standard deviation afterward. The data points of the prototypes
which are relevant for predicting faulty events are highlighted in purple.

While the blue and the brown prototypes in Fig. 5.3 cannot be distinguished
as easily as the signals in Fig. 5.2, they vary in several areas. The brown
time-series signal is generally more noisy, has higher amplitude in the interval
[1.25; 1.5], but lower amplitude in the interval [1.55; 1.9] compared to the blue
signal. Only the first interval within [1.25; 1.5] is marked in purple, and therefore
relevant for the prediction. In this interval, the brown signal shows fluctuations
at 1.2 µs and at 1.4 µs, which are especially purple. These fluctuations appear
to be the fault indicators for the prediction.

In a recent thesis, the identified interval [1.25; 1.5] was studied in detail [107].
As the RF pulse enters the individual subsections of the RF cavity, they emit
electrons until the end of the RF pulse. These emissions form the main negative

1In Paper 4 concept-based examples are used, as the presented concept-based prototype
method has been developed retrospectively.
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spike in the interval [1.25; 1.5] independent of healthy and faulty events. The
thesis also shows, that fluctuations in the dark current signal may be associated
with an increased probability of follow-up breakdowns in the next pulse, i.e.
faulty events. The same phenomenon is observed in Fig. 5.3. The brown signal,
representative of faulty events, shows fluctuations at 1.2 µs and at 1.4 µs.
These fault indicators therefore are compatible with previous observations. The
prediction appears to rely on true fault indicators rather than a bias.

Figure 5.3: Interpretation follow-up breakdown prediction with XAI. The blue time-series
signal represents the concept-based prototype explanation of a healthy event. The brown
time-series signal represents a concept-based prototype explanation of a faulty event, in which
a breakdown occurred in the next pulse 20 ms later. In addition, the purple area marks the
region which is relevant to the model for the prediction.
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Chapter 6

Case Study 2: LHC Main
Dipole Magnets

Due to the high nominal energy of 1.1 GJ stored in each of the eight LHC
superconducting dipole circuits, faults in superconducting components can have
severe consequences [29]. These consequences can be seen in Fig. 6.1, which
shows a hole burnt in the coil of a superconducting dipole magnet caused by an
intermittent short circuit. Such a fault can lead to significant LHC downtime
of up to three months, as the circuit has to be warmed up for repair and
subsequently cooled down again in a sophisticated procedure. On top of the
downtime, material costs account to around 1 MCHF for a LHC main dipole
magnet [108].

Figure 6.1: A hole burnt into the coil of a LHC superconducting dipole magnet after an
intermittent short circuit show the potential negative consequences of a fault.

System experts therefore closely monitor the behavior of superconducting
components, as described in Section 6.1. ML-based fault prediction could further
help the experts to detect anomalies and automate this monitoring process. In
this regard, Chapter 6.2 shows selected results from Paper 6 and 1 to answer the
question ”How can the data measured at the LHC main dipole magnets provide
insights about their normal and abnormal behavior?”. These results represent
the third research contribution of this thesis.

43
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6.1 Fault Protection in LHC Main Dipole
Magnets

The resistive transition in a superconducting magnet, also called quench, is
accompanied by local heating in the superconducting cables and high voltage
transients in the magnet. The magnets and their protection systems are designed
to withstand a quench, but in rare cases faults may still occur. To understand
possible faults and how the magnets are protected against them, the LHC main
dipole circuits and its quench protection systems are explained in this section.

Fig. 6.2 shows a schematic view of a main dipole circuit with its 154 magnets,
each represented by a magnet inductance LM [109]. For this analysis, the
magnets are counted either along their physical position from P1 to P154 or
clockwise along the electrical connection from E1 to E154. The Current Leads
(CL) ensure the electrical connection between the cold superconducting part of
the circuit and the warm, normal conducting parts of the circuit.

P154
E1

EE1

P3
E79CL CL

P2
E77

CL

P153
E154

P4
E76

PC

EE2

P1
E78

CL

QDS Quench Detection System

QDS

QDS

QDS QDS
P151
E153

QDS

P152
E2

QDS

CB

Figure 6.2: Schematic view of the main dipole circuit, including the Power Converter (PC),
the Crowbar (CB) and the CL. The QDS triggers a FPA, which deactivates the PC and
activates the energy extraction systems. Furthermore, it triggers the discharge of the QHs
in the respective magnet, if a quench is detected. The two Energy Extraction Systems EE1

and EE2 consist of a Switch SEE, and an Energy Extraction Resistance REE. The circuit is
grounded at the center of the resistor REE in the EE2 system. The magnet with inductance
LM and the by-pass Diode D with a Parallel Resistance RP are in a liquid helium cryostat.
Magnets are labeled by their Physical position (P) from the left to the right. The Electrical
positions (E) are counted clockwise along the electrical connection starting from the PC. The
numbering shown here is representing the circuits in sectors 12, 34, 56, and 78. In sectors 23,
45, 67, and 81 the electrical labels change, as the PC is on the left side of the circuit.

In case of a quench or other powering failures in the circuits, a system of
protection elements is in place to safely dissipate the energy in the quenched
magnets and extract the remaining energy of the circuit [110]. This process is
referred to as a Fast Power Abort (FPA) event. The quench protection elements
include a Quench Detection System (QDS), which detects the voltage increase
due to a quench and triggers the appropriate protection actions [111], [112].
Upon the detection of a quench in a dipole magnet, the Power Converter (PC)
is switched off and the current I by-passes the PC via the Crowbar (CB). Also,
the Quench Heaters (QHs) of this magnet are activated. QHs are resistive strips
attached to the outer surface of each magnet coil [113]. Upon activation, they
heat up and cause the majority of the magnet coils to get normal-conducting
in a few tens of milliseconds [15]. This ensures protection by distributing the
magnet’s stored energy uniformly over the quenched magnet windings [114].
The by-pass Diode D diverts current from the quenched magnet. This restricts
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the quenching magnet to only absorb its stored magnetic energy, not the energy
of the entire circuit. The Parallel Resistance RP installed across each magnet,
smoothens transient voltages during this process [115]. To avoid the circuit’s
energy to solely discharge in the diode of the quenched magnet, the switches SEE

in both Energy Extraction (EE) systems are sequentially activated [116]. They
direct the circuit current towards the Resistances REE, which extracts the
circuit’s energy within around 300 s.

The voltages UM measured over the 154 magnets during a single FPA event
are shown in Fig. 6.3. These voltage transients contain information about the
behavior of the electrical circuit and its components [117].

Figure 6.3: Voltages UM across the 154 main dipole magnets of sector 78 following a quench
in the magnet with the electrical position 141 on 31.03.2021 with its different phases: a) the
FPA is triggered at 0 s, the QHs for magnet 141 are activated, and the PC is deactivated; b)
after around 0.03 s the by-pass diode of the quenched magnet becomes conductive; c) the first
Energy Extraction system EE1 is activated about 0.1 s after the FPA trigger; d) the second
Energy Extraction system EE2 is activated approximately 0.5 s after the first one. The blue
curve shows the voltage across the quenched magnet, while the remaining curves represent
the voltages across the other 153 magnets of the circuit.

Fig. 6.4 shows schematically how the resistive strips of the QHs are mounted
on the outside of a magnet coil. This figure shows the two High Field (HF) QHs
and the two Low Field (LF) QHs for one of the two coils in a dipole magnet.
The LF QHs remain electrically floating and serve as redundancy if the HF QHs
fail. The QH circuit is powered by a capacitor bank which discharges it’s energy
of 2.86 kJ into two resistive QH strips connected in series within ∼ 300 ms. The
voltage and the current measured during this discharge are shown in Fig. 6.5.
Due to the current flow in the QH strips, they heat up and their resistance
increases, resulting in a pseudo-exponential decay.[15]

To avoid faults in the LHC superconducting dipole magnets and their
protection systems, they are extensively tested during Hardware Commissioning
(HWC) and after each extended technical stop, before operation continues [118].
In addition, an annual maintenance period offers time to conduct measurements
on hardware components with abnormal behavior [119] and replace them if
necessary. To determine which components exhibit such abnormal behavior,
the data acquired during operation and HWC are carefully evaluated by
system experts. A dedicated LHC signal monitoring tool [120], simplifies the
evaluation process through automatic data acquisition and threshold based fault
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Figure 6.4: Cross-section of a magnet coil with two HF and two LF QHs attached to the outer
surface [15].

(a) (b)

Figure 6.5: Voltage and the current measured at two resistive QH strips in the quenched
magnet after a FPA event on 31.03.2021. The discharge is around 300 ms long and begins as
soon as the FPA is triggered and the QHs are activated at 0 s.

prediction. Physical models further allow the experts to compare the data to
simulations [109], [121] that replicate the normal and abnormal behavior of
the magnet. In the next section, two new methods are presented which further
support the experts in their data analysis.

6.2 Research Contribution 3

In the context of this research contribution, the frequency spectra of the voltages
UM measured at the main dipole magnets (see Fig. 6.3) are analyzed with
unsupervised ML, as presented in Section 3.2.5. The results are presented in
detail in Paper 6 and are summarized in Section 6.2.1. Furthermore, a method
is presented to improve a current threshold based fault prediction method for
QHs with supervised ML, as described in Section 3.2.3. The findings are shown
in detail in Paper 1 and summarized in Section 6.2.2.

6.2.1 Anomaly Detection in the Main Dipole Magnets

With the current analysis tools used by experts, the frequencies occurring in
the magnet voltage during the flat plateaus [0.2; 0.575] and [0.7; 1.075] seconds
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after the triggering of the FPA (see Fig. 6.3) cannot be reconstructed. Therefore,
these plateaus are investigated in more detail in this analysis. This is done
by determining the frequency spectra V in the plateaus via a Fast Fourier
Transformation (FFT), an efficient algorithm for computing the discrete Fourier
transform [122]. If these frequencies are displayed for each magnet at which the
voltage is measured and sorted by its electrical position, a Frequency Position
Map (FPM) is derived. Such a FPM is shown in Fig. 6.6 for the magnet
voltage in the plateau at [0.2; 0.575] seconds, visible in the magnified view
of Fig. 6.3. During this event, a quench occurred at the electrical position 141
(white solid arrow in Fig. 6.6). The electrical positions 14 and 15 are the physical
circuit neighbors of the quenched magnet (white empty arrow in Fig. 6.6). The
brighter the color in the plot, the higher the amplitude of the frequency at the
given electrical position. Different spectral components originate from various
positions. These spectral components are examined in more detail below.

Figure 6.6: FPM of the frequencies occurring in the voltage signal, measured [0.2; 0.575]
seconds after the triggering of the FPA of sector 78 on 31.03.2021. The solid white arrow
marks the quenched magnet, while the empty arrow marks its physical neighbors.

Spectral Components

With the NMF presented in Section 3.2.5, the frequency spectra V are
decomposed into spectral components W with weights H. In total, K = 7
spectral components are identified. In Fig. 6.7, these spectral components are
multiplied with the weights of the FPA event on 31.03.2021, to reconstruct
the input FPM in Fig. 6.7a. A bright color represents a high amplitude. The
maximum amplitude is 10x V, where x is given in the caption of each figure.
For better visibility, the frequency range is restricted to 0-220 Hz. The figures
show the spectral components with amplitudes at (b) 3 Hz, (c) 6 Hz, (d) 20 Hz,
(e) 66 Hz, (f) 150 Hz, and (g) 478 Hz. The last spectral component shows a (h)
broadband spectrum.

Based on a statistical analysis of the weightsH, the physical processes behind
each of the spectral components W are identified and summarized below using
the example shown in Fig. 6.7:

• Spectral component one (SC1) is visible in Fig. 6.7b in the bright
horizontal frequency band at 3 Hz. At positions 15 and 141, which are the
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physical and electrical neighbors of the quenched magnet, the spots are
particularly bright. The physical process causing these high amplitudes are
electromagnetic perturbations. They are induced by the quenched magnet
to its physical and electrical neighbors. The remaining bright spots do not
originate from a physical process, but are numerical artifacts introduced
by the FFT.

• Spectral component two (SC2) is visible in Fig. 6.7c by two bright
points at 6 Hz at the electrical positions around 15 and 141. Again, this
spectral component represents electromagnetic perturbations induced by
the quenched magnet.

• Spectral component three (SC3), illustrated in Fig. 6.7d, shows a similar
pattern to SC2 and can be attributed to electromagnetic perturbations.
In addition, SC3 is affected by the voltage waves traveling along the chain
of magnets as governed by the magnet impedance [121].

• Spectral component four (SC4) is visible in Fig. 6.7e and shows a bright
spot at 66 Hz and 184 Hz. The spots are the brightest at the magnet
positions 14 and 15, which are the physical neighbors of the quenched
magnet. From there, the oscillation is propagating along the electrical
direction. While the exact physical process of SC4 remains elusive, it is
expected that it is triggered by a quench.

• Spectral component five (SC5) appears as a double horizontal band at
150 Hz around the electrical position 77 in Fig. 6.7f. The bright spots of
the band occur at exactly the same input of each measurement unit. SC5
only occurs in FPA events in sectors 12, 45, 67, 78, and 81.

• Spectral component six (SC6) is visible at 107 Hz and 220 Hz as spots
originating from the electrical positions 1 and 154 of Fig. 6.7g. The
magnets at these electrical positions are installed close to the power
converters of the circuit. The amplitude of SC6 decreases with increasing
distance from the power converter in sector 78. In addition, SC6 has high
amplitudes at 260 Hz, 370 Hz, and 478 Hz, not visible in Fig. 6.7g due
to the restricted range of the frequency axis. During the EE plateaus the
PC is deactivated, indicating that SC6 originates from passive hardware
components in the PC in sector 78.

• Spectral component seven (SC7), illustrated in Fig. 6.7h, shows one
vertical line with high amplitude at the electrical positions 14 and 15 and
one line with low amplitude at the electrical positions around 140 and
142. Both lines have interruptions at frequencies already reconstructed
by other spectral components. These vertical lines indicate a broadband
spectrum in magnets physically close to the quench. In the time domain,
this broadband spectrum corresponds to a spike. In the QH discharge
signals in Fig. 6.5, such spikes are used as indicators for intermittent short
circuits in the resistive strips of the QHs [15]. Hence, SC7 might also be a
critical indicator of an intermittent short circuit in the magnet.
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Anomaly Detection

The described spectral components allow reconstructing normal FPA events
with low reconstruction loss. If the reconstruction of a FPA event is not possible
with a low loss, it is an abnormal FPA event. Across different hyperparameter
combinations, four FPA events show a particular high reconstruction loss. The
magnets that quenched during these FPA events are indicated with the LHC
specific identifiers #2038, #1225, #1146, and #1291.

When considering the spectral components of these FPA events, also the
amplitude of SC7 at the quenched magnet stands out. Only the FPA event with
a quench in magnet #1146 is close to the average SC7 amplitude of 1 mV.
For the FPA events where the magnets #2038, #1225, and #1291 quenched,
the amplitudes of this spectral component are 240 mV, 80 mV, and 210 mV,
respectively. These amplitudes are more than 80 times higher than the average,
while they are not substantially elevated in normal events. It is inferred that
a high SC7 in the quenched magnet is a strong indicator for identifying an
anomaly. Based on this indicator, one additional FPA event was found that also
showed an elevated SC7 amplitude of 1200 mV in the quenched magnet #2421,
which is also referred to as an anomaly.

One of the four quenched magnets, with a significantly increased SC7
amplitude during a FPA event, has developed an intermittent short circuit
during the FPA event on 25.04.2021. As such an intermittent short circuit
is a critical event (see Fig. 6.1), the other three magnets #1225, #1291, and
#2421 are also treated as potentially critical and will be checked by transient
voltage measurement. If an intermittent short circuit cannot be excluded during
the transient voltage measurement, these magnets could be replaced in one of
the next maintenance stops of the LHC. In any case, the electronics of the
measurement units of these magnets should be exchanged in order to exclude
measurement errors.

Transient measurements will also be performed on the magnet #1146 as the
amplitude of SC1 in the electrical and physical neighbors is particularly high
in this event (1500 mV). These measurements will provide further information
about electromagnetic perturbations.

Tab. 6.1 summarizes the five discussed anomalies, where the quenched
magnet is stated in the first column. The second column shows the affected
circuit and the date of the related FPA event. The last column summarizes main
findings of the FPA event and states the recommended maintenance actions.
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Table 6.1: List of detected anomalies with recommended maintenance actions in the remarks
column.

Quenched
Magnet

Abnormal
FPA Event

Remarks

#2038
Sector 78
25.04.2021

High SC7 in #2038 (240 mV)
Exchanged on 25.04.2021

due to intermittent short circuit

#1225
Sector 45
12.05.2021

High SC7 in #1225 (80 mV)
Additional measurements
Hardware replacements

#1146
Sector 34
06.05.2021

High SC1 (1500 mV)
Additional measurements

#1291
Sector 12
14.05.2021

High SC7 in #1291 (210 mV)
Additional measurements
Hardware replacements

#2421
Sector 34
20.04.2021

High SC7 in #2421 (1200 mV)
Additional measurements
Hardware replacements

6.2.2 Fault Prediction in Quench Heaters

The prediction of QH faults is crucial for a timely activation of the spare LF QHs
to ensure continuous magnet protection. However, a QH fault can also damage
the magnet itself. Therefore, the time-series signals Xn shown in Fig. 6.5, are
monitored with a Quench Heater Discharge Analysis (QHDA) tool.

The approach with the QHDA tool is shown in Fig. 6.8. Four features x⋆
n

are calculated with a function ϕf (·). These features are [15]:

1. Steady state voltage level: The voltage values at the start and end of the
QH discharge in Fig. 6.5b are used.

2. Characteristic time of the pseudo-exponential decay: The characteristic
time of the pseudo-exponential decay is determined from the voltage and
the current signals during the QH discharge.

3. Steady state resistance level: The resistance of the QH strips is determined
from the voltage and current signals after the activation of the QH
discharge.

4. Signal comparison: The signals and the features 1. to 3. are compared with
the sample-wise L1-norm to reference discharges of the corresponding QH
circuit.

With the features xn, the tool then predicts a label healthy (ŷn = 1) or
faulty (ŷn = −1) for the event with a threshold function g(·). System experts
set these thresholds, and check faulty predictions manually. The true label is
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indicated by yn. When the prediction is false negative (ŷn = −1, yn = 1), ϕf (·)
and g(·) are adjusted.

In case of a true negative prediction (ŷn = yn = −1), the cause of the
fault is investigated in detail. A fault can occur in the form of a short circuit
between QH strip to magnet coil, QH strip to ground, and QH strip to magnet
coil and ground. In the first two scenarios, the activation of the spare LF QHs
is often sufficient. However, in the latter case, the operation must be stopped
immediately, and the magnet has to be replaced in a long and tedious process.

ϕf (Xn)

Feature
Engineering

g(x⋆
n)

Threshold
Prediction

yn ← ŷn

Expert
Verification

false
negative

Manual
adjustment

Xn x⋆
n ŷn yn = −1

Figure 6.8: Approach with the QHDA: The calculation of the features is followed by a threshold
based fault prediction. This prediction is checked by system experts to find faulty QHs with
label yn = −1.

Healthy predictions are not checked by experts. Therefore, a false positive
prediction (ŷn = 1, yn = −1) only emerges if other protection systems are
triggered or if damage occurs. To minimize the number of false positive
predictions, the QHDA tool is extended with ML to derive a hybrid fault
prediction.

Hybrid Fault Prediction

The approach with the hybrid fault prediction is shown in Fig. 6.9. Both the
QHDA tool and the SVM use the same features x⋆

n as input. In the QHDA tool,
the thresholds of g(·) are set by experts, while the SVM optimizes the decision
boundary h(·) as described in Section 3.2.3. The output ŷthbn of the QHDA tool

ϕf (Xn)

Feature
Engineering

g(x⋆
n)

Threshold
Prediction

∧ yn ← ŷn

Expert
Verification

yn
h(x⋆

n)

argmin
w

( 12 ||w||2 + C
∑N

n=1 ξn)

•

w, b

ŷsvmn

Xn x⋆
n ŷthbn ŷn yn = −1

Support Vector Machine

Figure 6.9: Approach with the hybrid fault prediction: The QHDA and the SVM use the same
features x⋆

n to jointly predict the label ŷn. The SVM learns from the past decisions of the
expert, by optimizing the parameter w in the decision boundary h(xn).
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is connected with the output ŷsvmn of the SVM, such that

ŷn =

{
1 if ŷthbn = 1 ∧ ŷsvmn = 1

−1 otherwise.
(6.1)

Once the experts have validated the prediction, the label yn of the event
is added to the dataset and the SVM parameters w and b are recalculated
by optimizing argmin

w
( 12 ||w||2 + C

∑N
n=1 ξn), as described in Eq. (3.4). The

adjustment of g(·), carried out manually in the previous approach, therefore
takes place automatically.

The approach is validated with 3130 healthy and 116 faulty events, recorded
during the whole second operational run of the LHC between 2015 and 2018. The
prediction results are compared to the approach with the QHDA tool in Tab. 6.2.
The True Positive (TP) rate indicates the ratio of correctly predicted healthy
events, while the False Positive (FP) rate indicates the ratio of false healthy
predictions. Although the SVM FP rate of 13.1% is similar to the QHDA tool
FP rate of 14.7%, the combination of the two prediction models yields a FP rate
of 2.4%. This corresponds to 14 additional events that are correctly predicted
as faults. The TP rate of the hybrid model is 1% lower compared to the QHDA
model, which corresponds to around 31 events. Therefore, experts would have
checked 45 additional QH discharge events. For 14 events, they would have taken
additional maintenance actions to minimize the risk of a short to ground of a
QH strip to the magnet coil and the ground.

Table 6.2: True Positive (TP) rate and False Positive (FP) rate of the fault prediction in QHs
during the second operational run of the LHC.

Method TP rate FP rate

QHDA tool 99.9% 14.7%
SVM model 99.1% 13.1%
Hybrid approach 98.9% 2.4%
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Chapter 7

Conclusion

Machine Learning (ML) based fault prediction offers an opportunity to meet
the ambitious availability targets of CERN’s energy frontier colliders. However,
the limited number of faults of a single type makes it challenging to validate the
results with statistical tests to ensure that the predictions are reliable. In this
thesis, three approaches were successfully studied to overcome this limitation.
Those approaches are based on hybrid models, Explainable Artificial Intelligence
(XAI), and interpretable ML models, summarized below.

Hybrid Models

Existing tools for fault prediction can be further improved with ML. This was
shown with a hybrid model, which connects the prediction of the existing
Quench Heater Discharge Analysis (QHDA) tool and a non-linear Support
Vector Machine (SVM) with a logical OR. The method was tested on data
of the second operational run of the Large Hadron Collider (LHC). In this time
period, the risk of an intermittent short circuit in a magnet via the faulty quench
heaters was reduced by 12.3%.

Explainable Artificial Intelligence

XAI allows identifying the fault indicator of ML predictions to validate
their credibility. A novel model-agnostic XAI method for explaining fault
predictions to system experts was presented. The autoencoder method
generates concept-based prototype explanations for pre-trained supervised ML
models. In a test, the explanations of this method helped 73 system experts to
identify fault indicators at least 5.5% better than two similar XAI methods.

This XAI method was then applied to interpret follow-up breakdown
predictions in Radio Frequency (RF) cavities of the Compact Linear Collider
(CLIC). With ML-based breakdown prediction, the negative consequences of
a follow-up breakdown could have been mitigated in 89.7% of all cases. The
XAI method revealed the likely source of this prediction: Fluctuations in the
electron emissions after an initial breakdown increase the probability of another
breakdown occurring shortly after.
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Interpretable Models

With the interpretable method Non-negative Matrix Factorization (NMF), the
voltages measured across the 1232 superconducting dipole magnets in the
eight LHC main dipole circuits were analyzed to understand the normal and
abnormal behavior of the circuits. This allowed the extraction of seven spectral
components that define normal behavior, occurring in the measured voltages
during a Fast Power Abort (FPA) event. Analyzing the spectral components’
distribution and propagation across the circuit and across FPA events provided
a deeper understanding of the mutual interaction of hardware components
and allowed identifying the potential physical processes causing the spectral
components.

Five additional magnets with abnormal behavior during FPA events were
detected, using the reconstruction loss of NMF and the amplitude of a single
spectral component, which was emphasized in all outliers. One of these magnets
was replaced after a short circuit was detected on 25.04.2021 following a FPA
event. This is a strong indication for the validity of the method. Similarly to
the replaced magnet, three of the four remaining magnets showed an elevated
amplitude in one spectral component during their quench, which was more
than 80 times higher than normal. The three magnets could be replaced in one
of the next maintenance stops of the LHC to prevent up to three months of
unplanned LHC downtime.

Overall, it has been demonstrated that interpretable ML is a powerful tool to
identify faults in a highly complex and specialized system like the LHC, avoiding
long and expensive downtime of this unique facility. Applying these methods on
a large scale in future energy frontier colliders is essential to achieve their very
high and ambitions availability targets.
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THE PROTECTION SYSTEMS OF THE LHC

C. Obermair∗1, M. Maciejewski, Z. Charifoulline, A. Apollonio, A. Verweij
CERN, Geneva, Switzerland

F. Pernkopf, Graz University of Technology, Graz, Austria
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Abstract
The Large Hadron Collider (LHC) is the world’s largest

particle accelerator and uses a complex set of sophisticated
and highly reliable machine protection systems to ensure
a safe operation with high availability for particle physics
production. The data gathered during several years of suc-
cessful operation allow the use of data-driven methods to
assist experts in finding anomalies in the behavior of those
protection systems. In this paper, we derive a model that
can extend the existing signal monitoring applications for
the LHC protection systems with machine learning. Our
hybrid model combines an existing threshold-based system
with a Support Vector Machine (SVM) by using signals,
manually validated by experts. Even with a limited amount
of data, the SVM learns to integrate the expert knowledge
and contributes to a better classification of safety critical
signals. Using this approach, we analyze historical signals
of quench heaters, which are an important part of the quench
protection system for superconducting magnets. Particularly,
it is possible to incorporate expert decisions into the classi-
fication process and to improve the failure detection rate of
the existing quench heater discharge analysis tool.

INTRODUCTION
The early detection of faulty components contributes sig-

nificantly to increasing machine availability and, thus, the
LHC’s physics potential expressed in terms of integrated
luminosity. To protect the highly critical systems the ma-
chine protection system ensures safe operation of accelerator
equipment (e.g. the superconducting magnets) and protects
it from damage [1]. If the system fails it can result in an
LHC downtime in the order of three months. Therefore, it
requires consistent supervision of the components through
signal monitoring and regular hardware commissioning tests.
The quench protection system is part of the machine protec-
tion system and the Quench Heaters (QHs) are an essential
part of it. The purpose of the QHs is to expand the quenching
region of a superconductor, in order to enlarge the area of
energy dissipation and, thus, reduce the potentially danger-
ous hot spot temperatures in the superconducting material.
All of the 1232 LHC main dipole magnets are equipped with
eight QH circuits. During magnet operation four out of the
eight QH circuits are ready to be operated in case of a mag-
net quench. The other four QH circuits provide redundancy,
in case of a fault in one of the other four circuits.
∗ christoph.obermair@cern.ch

Existing signal monitoring applications are based on the
calculation of characteristic features representing a signal,
which are compared to fixed thresholds. These thresholds
give a clear answer whether the signal is healthy or faulty.
This approach is particularly effective because experts can
incorporate their knowledge about the behavior of a com-
ponent’s degradation into the analysis process. The quench
heater discharge analysis tool [2] is one application which
makes use of this, but several other components of the LHC
machine protection system use the same approach [3–5].

Since the first commissioning of the LHC in 2008, the
amount of system supervision data is growing and alternative
signal monitoring approaches such as machine learning are
currently gaining attention [6]. Several efforts have been
made in the past to show the potential of machine learning
for LHC protection systems, e.g. to observe anomalous
behaviors of LHC superconducting magnets [7]. Another
approach [2] used a feed forward neural network to analyze
quench heater discharges. However, the lack of “faulty”
signals often prevents machine learning models to reach the
necessary reliability to replace existing analysis tools [2].

In other fields of research [8–10] it is common to build
ensembles of different classifiers in order to make use of
the so called wisdom of the crowd [11], which allows clas-
sifiers to contribute to a better overall classification result
(e.g. XGBoost [12]). However, a hybrid approach which
combines the advantages of existing LHC signal monitoring
applications with the advantages of machine learning mod-
els has not been considered yet. Thus, the objective of this
work was to develop an approach that allows LHC signal
monitoring applications to benefit from the growing amount
of historical data.

The paper is structured as follows: First the concept of
threshold-based signal monitoring applications is explained
and the workflow of the hybrid classification approach is
derived. Subsequently, the existing analysis of past quench
heater discharges is presented and the results of the new
hybrid classification approach are discussed. Finally, the
strengths and limitations of the approach are discussed and
the conclusion is presented.

DEVELOPMENT OF THE MODEL
Typically, an LHC signal monitoring application pro-

cesses windows of 𝐶 multivariate discrete signals. Those
data batches are represented by 𝑍𝑑 ∈ ℝ𝑁×𝐶, where 𝑁 is the
amount of samples and 𝑑 ∈ [1, ..., 𝐷] is the window index.
Depending on the use case, such a batch can either have a
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fixed or variable length and the beginning is either defined
by a specific event, like a quench, or a manually chosen
event, like a particular state of operation represented by the
so-called beam mode.

Threshold-Based Classification
The workflow of a threshold-based signal monitoring ap-

proach is summarized in Fig. 1. Formally this means, that
out of each signal batch matrix 𝑍𝑑 a function 𝜙𝑓 calculates
𝐹 features 𝑥𝑑 ∈ ℝ𝐹.With those features 𝑥𝑑, the application
then assigns a label “healthy” (𝑦𝑑 = 1) or “faulty” (𝑦𝑑 = −1)
to each batch with a threshold function:

𝑔(𝑥𝑑) =
⎧{
⎨{⎩

1 if ̌𝑘 < 𝑥𝑑 < ̂𝑘
−1 otherwise,

(1)

in which ̌𝑘 is the minimum threshold vector and ̂𝑘 is the
maximum threshold vector, both determined by experts.

𝜙𝑓(𝑍𝑑)

Feature
Engineering

𝑔(𝑥𝑑)

Threshold
Classification

𝑦⋆
𝑑 ← 𝑦𝑑

Expert
Verification

false
negative

Manual
adjustment

𝑍𝑑 𝑥𝑑 𝑦𝑑 𝑦⋆
𝑑 = −1

Figure 1: Workflow of a threshold-based signal monitoring
approach. First the features are calculated, then a threshold
is set to assign a label to the signal. This label is validated
by experts in the last step.

In case the signal condition is identified as “faulty”, ex-
perts have to verify this result. Consequently, if the experts
decide that the prediction of the classification algorithm was
true negative (𝑦⋆

𝑑 = −1), they can initiate further actions, like
a hardware inspection. However, if the experts decide that
the automatic signal classification does not reflect the actual
condition of a component (false negative), the machine op-
eration continues as usual. Furthermore, the experts could
then adjust the classification algorithm and/or the thresholds,
such that this specific “faulty” classification does not occur
in the future. However, due to the high amount of signals,
experts often only get notified in case of a “faulty” classifica-
tion. This means they can only intervene if the classification
was false negative. A false positive label, which is a “faulty”
signal labeled as “healthy”, only emerges if other protection
systems are triggered or if damage occurs.

Machine Learning Based Classification
During classification with machine learning models the

parameters of a threshold function are optimized such that
the best classification on a given input data set is reached.
Common classification algorithms include logistic regres-
sion, random forest, neural networks, and SVMs [13]. We
use the latter as it is especially suited for handling data sets
with limited amount of samples and high dimensions.

The workflow of a machine learning based classification
is similar to the threshold-based classification, but the thresh-

old function is defined by the separation hyperplane:
ℎ(𝑥𝑑) = 𝑤T𝜙(𝑥𝑑) + 𝑏, (2)

where 𝑤 contains the weight parameters, 𝑏 is the bias pa-
rameter and 𝜙(𝑥𝑑) is a fixed feature space transformation.
Those parameters are determined by solving the following
optimization problem, using training data, i.e.

arg min𝑤 (1
2 ||𝑤||2 + 𝐶

𝐷
∑
𝑑=1

𝜉𝑑) (3)

subject to: 𝑦⋆
𝑑(𝑤T𝑥𝑑 + 𝑏) ≥ 1 − 𝜉𝑑, 𝑑 = 1, ..., 𝐷

𝜉𝑑 ≥ 0,
where 𝜉𝑑 is a slack variable for soft classification which
handles misclassified data samples or anomalies in the data
set, and 𝐶 is a parameter that determines the importance of
the outliers. Furthermore, the radial basis function is chosen
as a kernel 𝜙(𝑥𝑑)T𝜙(𝑥′

𝑑) [13].

Hybrid Classification
The hybrid classification extends the threshold-based sig-

nal monitoring with machine learning, such that the amount
of false negative classified labels is minimized and less man-
ual adjustments by experts are necessary. The workflow of
the hybrid classification approach is shown in Fig. 2. For
systems with a high repetition rate it is important to make
threshold adjustments automatically. In the hybrid classifi-
cation approach this adjustment is handled by an SVM.

𝜙𝑓(𝑍𝑑)

Feature
Engineering

𝑔(𝑥𝑑)

Threshold
Classification

∧ 𝑦⋆
𝑑 ← 𝑦𝑑

Expert
Verification

𝑦⋆
𝑑

ℎ(𝑥𝑑)

arg min𝑤 (1
2 ||𝑤||2 + 𝐶 ∑𝐷

𝑑=1 𝜉𝑑)

•

𝑤, 𝑏

𝑦svm
𝑑

𝑍𝑑 𝑥𝑑 𝑦tbc
𝑑 𝑦𝑑 𝑦⋆

𝑑 = −1

Support Vector Machine

Figure 2: Hybrid classification approach. Similarly to the
threshold based approach, first the features are calculated,
then a label is assigned to the signal, which is consequently
checked by experts. The SVM learns from the past decisions
of the expert, by optimizing the parameter 𝑤 in the separation
hyperplane ℎ(𝑥𝑑).

Specifically, an SVM performs the continuous threshold
adjustment, while the threshold-based signal monitoring ap-
plication operates with fixed thresholds from experts. In the
initial phase, the available historical data is used to determine
the parameters 𝑤 and 𝑏 of the SVM separation hyperplane
ℎ(𝑥𝑑). For each new batch 𝑑, the threshold-based classifi-
cation provides 𝑦tbc

𝑑 and the SVM classification determines
𝑦svm

𝑑 from 𝑥𝑑. The output 𝑦𝑑 is then determined by combin-
ing both outputs with a logical AND, i.e,

𝑦𝑑 =
⎧{
⎨{⎩

1 if 𝑦tbc
𝑑 = 1 ∧ 𝑦svm

𝑑 = 1
−1 otherwise,

(4)
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which is verified by experts. Once the experts have evaluated
the condition of the component, the corresponding label is
added to the training set and the SVM parameters 𝑤 and
𝑏 are recalculated. Accordingly, the new label is used as
feedback for future decisions of the SVM.

APPLICATION OF THE MODEL
In this section the previously applied hybrid model is ap-

plied to the classification of QH breakdowns in the main
dipoles of the LHC. The QH discharges are currently ana-
lyzed by the Quench Heater Discharge Analysis (QHDA)
tool, which groups QH discharges into “healthy” and “faulty”
with a threshold-based classification system. An extensive
analysis takes place following each quench event before the
main dipole can be powered again. In case of a quench in
one of the main dipoles, the experts have several hours to
check a “faulty” classification of a QH discharge before the
magnets can be powered again, which is why a false negative
classification (damage predicted while no damage) has a lim-
ited impact on the availability of the LHC. A false positive
classification (no damage predicted while damage) has to be
avoided by all means.

The QHDA tool validates the QH discharges using the
following features [2]:

1. Steady state voltage level: The initial and final val-
ues of the voltage are used.
2. Characteristic time of the pseudo-exponential de-
cay: The characteristic time of the pseudo-exponential
decay is determined from the voltage and the current
signals during the QH discharge.
3. Steady state resistance level: The initial resistance
of the QH strip is determined from the voltage and
current signals.
4. Signal comparison: The signals and the above fea-
tures are compared sample-wise to the reference dis-
charge of the corresponding QH circuit.

Some failures and precursors of failures in the QH circuits
are difficult to detect with a threshold based method because
they might correlate with other characteristics, which are not
verified or which are sensitive to case by case variations. For
example the initial resistance of the QH strip is calculated
from the voltage and current signals at the start of the QH
discharge. Due to the properties of the QH circuit there can
be a switch-on delay, oscillations, and noise in both signals,
which can cause variation in the calculated initial resistance
from discharge to discharge.

Therefore, it was studied, whether a hybrid classification
could identify such correlations and if it can consequently
decrease the amount of false positive classifications.

RESULTS
The QHDA is implemented into an environment called

LABView. As machine learning algorithms are commonly
implemented in python, the features of the QHDA tool were
reimplemented in the environment of the “LHC Signal Mon-
itoring Project” [14] to recreate the discussed approaches.

The values of the fixed thresholds have been set by experts
and the hyperparameters of the SVM have been optimized
using training data. The hybrid approach is implemented as
stated before, i.e. combining the threshold-based (TB) clas-
sification with the SVM classification. The data-set contains
stored discharges from 2014 to 2018. 3130 QH discharges
have been labeled as “healthy” and come from 1230 main
dipole magnets. 116 discharges were labeled as “faulty” and
come from 68 different dipole magnets. This data-set was
labeled by experts, who classified each discharge, marking
even small deviations as “faulty”.

Table 1 compares the different methods by their perfor-
mance. The true positive (TP) rate is the fraction of correctly
identified “healthy” discharges relative to the total amount
of “healthy” discharges. On the other hand the false positive
(FP) rate defines the amount of falsely labeled “healthy” dis-
charges relative to all “faulty” labeled discharges. The TB
model indicates the rebuilt QHDA tool in python.

Table 1: Results of Different Performance Measures

Method TP rate FP rate
QHDA model 0.999 0.147
TB model (rebuilt QHDA) 0.993 0.078
SVM model 0.991 0.131
Hybrid model 0.989 0.024

From Table 1 it can be seen, that the TB model differs
from the QHDA, due to slight variations in the calculation
methods, but they both have a relatively good TP rate and
a relatively bad FP rate. The hybrid model demonstrates
a significantly improved FP rate, while it shows a small
degradation in the TP rate. The FP rate of 14.7% for QHDA
does not mean that 14.7% of the recorded discharges caused
damage to the QHs or the magnets, but indicates the fraction
of cases, which required further investigations by an expert.
Consequently, experts were only missing 2.4% of the cases,
which the hybrid model classified as “faulty”. This shows
that machine learning improves the identification of cases,
which experts need to investigate compared to simpler TB
algorithms. Furthermore, ML with an SVM will remember
previous expert decisions.

CONCLUSION
In this paper a promising concept for complementing tra-

ditional threshold-based LHC signal monitoring tools with
machine learning is presented, illustrated by the example
of QH signal analysis. This is achieved by building an en-
semble of the existing signal monitoring application and an
SVM, which is trained on historical data. The conducted
analysis showed that this hybrid classification approach re-
duced the FP rate of the existing QHDA tool from 14.7% to
2.4%. Furthermore, the new approach allows the automatic
incorporation of expert decisions into the classification pro-
cess.

Overall, it has been demonstrated that even a limited
amount of historical data can be beneficial for signal moni-
toring applications through the support of machine learning.
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W. Wuensch, N. Catalan-Lasheras, L. Felsberger
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1also at Graz University of Technology, Graz, Austria

Abstract
Radio Frequency (RF) breakdowns are one of the most

prevalent limits in RF cavities for particle accelerators. Dur-
ing a breakdown, field enhancement associated with small
deformations on the cavity surface results in electrical arcs.
Such arcs degrade a passing beam and if they occur fre-
quently, they can cause irreparable damage to the RF cavity
surface. In this paper, we propose a machine learning ap-
proach to predict the occurrence of breakdowns in CERN’s
Compact LInear Collider (CLIC) accelerating structures.
We discuss state-of-the-art algorithms for data exploration
with unsupervised machine learning, breakdown prediction
with supervised machine learning, and result validation
with Explainable-Artificial Intelligence (Explainable AI).
By interpreting the model parameters of various approaches,
we go further in addressing opportunities to elucidate the
physics of a breakdown and improve accelerator reliability
and operation.

INTRODUCTION
The novel RF cavities of CERN’s Compact LInear Col-

lider (CLIC) are designed for high gradient operation at
∼100 MV/m [1]. Even though RF cavities are operated in
vacuum, local field emissions can cause arcs and breakdowns
of the electric field in the cavity which have a negative ef-
fect on the cavity surface material. The frequency of these
arcs, described by the breakdown rate, is the main limitation
to increase the electric field in an RF cavity during con-
ditioning and operation. While historically RF structures
have been conditioned in a manual way by machine oper-
ators, an automated conditioning algorithm is in place at
the CLIC test stand to gradually increase the field gradient
while maintaining a pre-defined target breakdown rate [2].
These conditioning efforts set the limit to the gradient due
to field emission, caused by the geometrical defects of the
surfaces and the RF power flow, to reduce the likelihood of
a breakdown [3, 4]. Given the limited understanding of the
origin and evolution of RF breakdowns, current optimiza-
tion algorithms aim for a progressive recovery of operating
conditions by a temporary limitation of the RF power af-
ter a breakdown, but do not avoid breakdowns in the first
place. Recently, data-driven machine learning algorithms
have been deployed successfully for incorporating sequential
dynamics [5, 6] using the large amount of experimental data
available. Ongoing efforts already try to predict breakdowns

∗ christoph.obermair@cern.ch

in the RF power source output of CERN’s LINAC 4 [7], or
to classify superconducting RF faults at Jefferson Labora-
tory [8].

This paper gives an overview of several data-driven meth-
ods for RF breakdown analysis, specifically suited to the
properties of the measurement data of the CLIC XBOX-2
test stand at CERN. The paper provides an introduction, com-
parison, and hands-on experience of existing data-driven
modeling approaches to non-machine learning experts. It
provides RF physicists and engineers with machine learn-
ing based tools, which allow to gain insights in observing
abnormal behaviours. Finally, first results of these methods
applied to the CLIC XBOX-2 test stand data are presented.

The paper is structured as follows. First, the properties
of the CLIC XBOX-2 test stand and its historical data are
described. Consecutively, a broad overview of existing ma-
chine learning algorithms, suitable for breakdown prediction
in the test stand, is given. Finally, their strengths and the
limitations are discussed, first results are presented and an
outlook is given.

TEST STAND SETUP
The CERN XBOX-2 test stand is part of the CLIC e+e-

collider research program for high gradient acceleration in
high gradient structures. It is one of three high power test
stands at CERN and its primary objective is to study the
RF breakdown phenomenon. A low level radio frequency
generator creates a 1.5 µs long, 12 GHz phase-modulated
pulse. This pulse is amplified by a klystron and a pulse com-
pressor and is then transferred through a copper wave guide
to the RF cavity [9]. A diagram of the high-power portion of
the test stand layout is provided in Fig. 1. The RF cavity is
represented as Device Under Test (DUT). The signals from
the upstream and downstream Faraday cups, which measure
the dark current in the structure, are symbolized by the blue
arrows labelled DC UP and DC DOWN.

METHODOLOGIES
In order to give a hands-on overview, in this paper, the

choice of an algorithm is governed by the chronological
order of the data processing, i.e. transformation, exploration,
modeling, and explanation of RF cavity specific data.

Existing open-source libraries are used instead of hand-
crafted methods in all processing steps, because the engi-
neering and the maintenance of customized methods is time
consuming. For the labeled measurement data from the
XBOX-2 test stand, dedicated toolboxes are used for feature
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Figure 1: Schematic layout of CERN’s Xbox-2 test stand.
The red and green arrows show the reflected and forward
RF signals, respectively, which are sampled via directional
couplers.

calculation [10], time series classification [11], and interpre-
tation of model predictions [12].

Transformation
The sensor data from the XBOX-2 high power tests is

divided into so-called trend data and event data. While the
trend data contains single scalar features (e.g. temperatures),
the event data contains time series signals, generally sampled
with a frequency of 1.6 GHz. In total there are 90 GB of data
available from a period of six months of XBOX-2 operation
in 2018. These data do not only contain runs in which the
operational setting was stable, but also commissioning data
with variable operational settings. Thus, it is crucial to
initially clean the data, create fast queries, memory efficient
storage and file formats with diverse usability. Figure 2
shows the condition summary of the data, where the runs
with stable operational settings are highlighted in yellow and
the cumulative number of breakdowns is shown in red. The
plot further shows the input power in blue, and the pulse
width of the input signal in green.

Figure 2: Condition summary of available data. The yellow
area represents the runs during which the operational settings
were kept stable.

A breakdown results in a burst of current in the cavity,
which can be detected by the Faraday cups next to the struc-
ture. Therefore, for each event data signal, a label healthy
(𝑦 = 1) and breakdown (𝑦 = 0) is assigned by the XBOX-2
experts by setting a threshold on the DC (Faraday cup) sig-
nals and the reflected signals. However, as the DC signals
are the most reliable filter for structure breakdowns, the RF

signals accounting for the reflected power in the structures
are not considered for breakdown prediction. Specifically,
this means a signal is considered a breakdown, if one of the
DC time series signals goes below -0.05 A. In addition, a
label is considered a so-called follow-up breakdown, if there
has already been a breakdown within less than a minute
from its occurrence. After filtering out the test stand com-
missioning data, where most of the breakdowns occurred,
124,448 healthy events and 479 breakdown events, out of
which 250 are follow-up breakdowns, remained for further
analysis. This class imbalance is tackled by only taking a
sub-set of healthy signals and by assigning class weights to
the breakdown events during optimization of the algorithm
and during computation of the performance measure.

Merging and synchronizing the trend data with the event
data is a critical data transformation step. Due to its high
sampling frequency, an event data signal with up to 3200
sample points is stored every minute. Exceptions are break-
down events, where the prior two event data signals are
stored each time a pulse is injected into the RF cavity. The
scalar values of the trend data take up much less space, and
are therefore stored every second. During merging of event
data and trend data, causality is ensured by always taking
the closest information in the past, not in the future.

Exploration

During the exploration phase the goal is to get a quick ini-
tial understanding of the data and to validate the transforma-
tion step, i.e. if the preceding data cleaning was successful.
If there are still outlier signals, which are fundamentally dif-
ferent from the other signals, they have to be understood and,
if applicable, neglected. Ideally, a 2D-representation should
be found for each event in the high dimensional data, without
losing any information due to the dimension reduction. This
allows to see correlations and clusters within the representa-
tions in one glance. Several unsupervised machine learning
methods aim to determine low-dimensional representations
from the high dimensional data, including but not limited to
principle component analysis [13], stochastic neighbor em-
beddings [14], and representation learning methods based
on neural networks [14–16].

An example is shown in Fig. 3, where the XBOX-2 trend
data is transformed into a two dimensional space with 2D-
tSNE [14]. 2D-tSNE transforms pairs of data points to joint
probabilities, where close points have high probabilities and
points which are far apart have low probabilities. Conse-
quently, the Kullback-Leibler divergence within the joint
probabilities of the low-dimensional representations and the
high-dimensional data is minimized iteratively. While the
axes lose their physical meaning during the dimension reduc-
tion, one can clearly see clusters of breakdowns and healthy
signals in the left plot and the nine different stable runs in
the right plot of Fig. 3. Neither the information of the label,
nor the information of the runs were given to the algorithm
during training.
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Figure 3: 2D-tSNE of XBOX-2 trend data during stable
operation. The algorithm was able to distinguish between
healthy and breakdown signals (left) and between stable runs
(right). No information about the labels was given to the
algorithm.

Modeling
We propose two supervised machine learning stages. First,

the behaviour of the trend data over time is investigated. This
means that a window, covering a certain time-span of data,
is moved over the data-set. For each window a prediction
is made if a breakdown will occur in a certain time period.
In this step, no shuffling of time series data is allowed due
to the sequential dependency. Recurrent neural networks,
like long short-term memory networks [17], are especially
suited to process this temporally dynamic behavior due to
their recurrent neuron connections. The model is trained
with several rounds of leave-one-out cross-validation. One
round of cross-validation involves splitting the data-set into
a training, validation and test set, based on the given runs.
This process is repeated until each run was used as training,
validation and test set. In a second stage, it is assumed that
only the signals before a breakdown are essential to predict
the breakdown. Therefore, the signals from the event data
are taken and treated independently with their own label
breakdown in the next pulse. This has the advantage that
convolutional neural networks can be used to classify the
time-series signals [18]. Additionally, the data-set is shuffled,
and the signals are randomly split into training, validation,
and test sets.

Explanation
To increase the reliability of a system, understanding why

the prediction was made, i.e. looking for a precursor, is often
more important than the prediction itself. Especially when
designing upgrades of existing systems, a deep understand-
ing of the root cause of the failures can be an invaluable asset.
As data-driven models are often black-boxes, explainable-AI
does not only help the user to better interpret the behaviours
of the models, but it also helps to build trust in the prediction,
to validate the results, and to find possible errors within the
earlier data processing steps. One can either explore each
prediction separately to gain trust in a prediction (instance
wise explanation) [19–22], or investigate all predictions to
gain trust in a model (population wise explanation) [23].
Both approaches are applicable for explaining predictions
of RF cavity breakdowns.

RESULTS & CONCLUSION
Table 1 shows the results of the trained supervised models.

The balanced accuracy is used for taking into account the
strong class imbalance. It is calculated by averaging the
fraction of correctly categorization breakdowns and healthy
signals.

Table 1: Balanced Accuracy of Classifying and Predicting
Breakdowns With XBOX-2 Data. The Separation Indicates
Different Results on Breakdowns / Follow-up Breakdowns

Classification
of Breakdowns

Prediction
of Breakdowns

Trend Data 100% 91%

Event Data 100% 65% / 98%

The classification step is required for the validation of the
algorithms applied on the trend and event data. The balanced
accuracy of 100% for trend and event data in the classifica-
tion shows the successful validation of the algorithms.

The models achieved a balanced accuracy of 91% for
predicting breakdowns in the next pulse using trend data.
Here, explainable-AI showed that the models made deci-
sions mainly by using the vacuum signals. After further
investigation, it was found that a rise in the vacuum pressure
mostly occurred just before a breakdown and not only after
a breakdown, as generally assumed. This rise in vacuum
pressure might be due to small breakdowns happening just
before a major breakdown. Further experiments in the test
stand are ongoing to validate this result and exclude any
artefacts due to signal timing in the experimental setup.

By using the time-series signals of the event data, a bal-
anced accuracy of 65% was achieved for predicting break-
downs, and 98% for predicting follow-up breakdowns. Here,
explainable-AI indicates precursors in multiple ways, point-
ing to the most important part of each measurement, or
indicating the three most similar events present in the rest
of the data set.

Using this method, an additional precursor has been iden-
tified. Faraday cup signals with a small spike, which occurs
relatively late in the signal but does not reach the breakdown
threshold, often leads to consecutive breakdowns in the next
pulse. Following further validations of these results, an oper-
ational tool for breakdown reduction based on the described
machine learning methods will be developed.
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Abstract
One of the primary limitations on the achievable accel-

erating gradient in normal-conducting accelerator cavities
is the occurrence of vacuum arcs, also known as RF break-
downs. A recent study on experimental data from the CLIC
XBOX2 test stand at CERN proposes the use of supervised
machine learning methods for predicting RF breakdowns.
As RF breakdowns occur relatively infrequently during op-
eration, the majority of the data was instead comprised of
non-breakdown pulses. This phenomenon is known in the
field of machine learning as class imbalance and is prob-
lematic for the training of the models. This paper proposes
the use of data augmentation methods to generate synthetic
data to counteract this problem. Different data augmentation
methods like random transformations and pattern mixing
are applied to the experimental data from the XBOX2 test
stand, and their efficiency is compared.

INTRODUCTION
The RF cavities of the Compact LInear Collider (CLIC)

are designed to operate at a gradient of ∼100 MV/m [1].
One of the primary limitations on the achievable gradient
in normal conducting RF cavities is the occurrence of RF
breakdowns, which can degrade a passing beam and poten-
tially result in damage to the cavity surface [2–4]. In order
to minimize the impact of breakdowns during the cavity
commissioning and operation, CERN’s CLIC test stands [5]
employ an automatic conditioning algorithm [6, 7]. The al-
gorithm monitors how frequently breakdowns occur during
operation and dynamically adjusts the gradient based on a
preset breakdown-rate threshold [8]. In this approach, the
handling of breakdowns is therefore purely reactive, thus
breakdowns cannot be prevented beforehand.

In a recent study, a deep learning approach was proposed
with the goal of (1) performing data-driven breakdown in-
vestigation and (2) studying the possibility of adopting a
predictive conditioning algorithm. The study was based on
historical data of the CERN XBOX2 test stand, consisting
of 124 505 healthy RF pulses and 479 breakdown events [9].

Previously, it has been noted that breakdowns occur pre-
dominantly in groups as opposed to isolated, single events.
This observation has led to the classification of breakdown
events as either primary breakdowns, which are purely
stochastic, and followup breakdowns, which are thought
to be a consequence of the previous breakdown [10]. Using
the XBOX2 data, neural networks were able to predict the

∗ holger.severin.bovbjerg@cern.ch

occurrence of followup breakdowns. However, the predic-
tion accuracy varied depending on different data used for the
prediction, e.g. for different adopted parameters for cavity
powering. This variation indicates that the models were not
able to generalize well to unseen data [11]. Specifically, the
bad generalization is due to the low number of breakdown
events compared to the number of healthy events, i.e. the
so-called high class imbalance. We therefore investigated
the use of time series data augmentation methods for im-
proving the generalization capabilities of CLIC breakdown
prediction. The basic principle of these methods involves
generating synthetic patterns that resemble real data to better
represent the underlying distribution of the underrepresented
class in the data set. This is an established practice for image
recognition tasks [11–13] and is also used for speech and
audio [14, 15].

The paper is structured as follows: first, a summary of the
prior work is given, including a description of the data and
model used in our study. Next, an overview of the augmen-
tation methods used in this paper is presented. Finally, the
conducted experiments are described, and their results are
discussed.

PRIOR WORK
This section summarizes the prior work which this work

builds upon, including a description of the data set used in
the study, and a description of the RF breakdown prediction
models used.

XBOX2 Data Set
The XBOX2 test stand is one of three experiments used

to test the prototype 12GHz RF components for the CLIC
project at CERN. Fundamentally, the test stand is composed
of a 50 MW klystron, pulse compressor, and high-power RF
load. A more detailed description of the setup is available
elsewhere [7, 9].

In 2018 this test stand produced 90 GB of data during an
operational period of six months, consisting of so-called
trend and event data [9]. The trend data contains 30 different
scalar values such as temperatures and pressures measured at
different locations in the test-stand. The event data consists
of time-series measurements of the RF signals at different
locations in the waveguide network and the current detected
by two Faraday cups. A summary of the data is given in
Fig. 1. Here, two features of the forward travelling wave
signal F2 (see fig. 2), namely the maximum (blue) and the
pulse width (green), are shown with respect to the RF cavity
pulses. Additionally, the cumulative breakdown count (red)
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Figure 1: Overview of the conditioning period, of all data
analyzed [9]. It shows the maximum of the power amplitude
of the forward travelling wave signal F2 (blue), its pulse
width (green), and the cumulative breakdown count (red).

is plotted. The yellow area represents the periods with con-
stant operational settings used for further analysis, leading
to a total of 479 breakdowns and 124 505 healthy RF pulses,
as not every pulse is stored. Given the previously observed
probabilistic behavior of breakdowns, the data is further
divided into 229 primary and 250 followup breakdowns.
Primary breakdowns were defined as not having occurred
within 3000 pulses of the previous breakdown, correspond-
ing to one minute of operation in the test stand, which has a
pulse repetition rate of 50 Hz.

Modelling of RF Breakdowns
In [9], a number of neural network architectures were

investigated to predict breakdowns using trend data and event
data. These two experiments were further split into the
prediction of primary breakdowns and followup breakdowns.
Formally, the prediction of breakdowns is defined as finding
a model 𝑓 (·) that uses the observed data x𝑖 to predict the
label (healthy or breakdown) of the next time stamp 𝑦𝑖+1,
where 𝑖 is the current time step.

The model performance is measured using the Area under
the Receiver operating characteristics curve (AR) [16]. This
score is defined as the probability that a model will classify
a randomly selected breakdown event as more likely to be
a breakdown than a randomly selected healthy event. An
AR score of 100% means that the model is able to perfectly
predict the class labels, and a score of 0% corresponds to a
classifier which predicts all labels wrong.

Primary breakdowns proved to be difficult to predict with
available event data, whereas it was possible to predict fol-
lowup breakdowns with an AR score of up to 89.7% ± 8.1%.
We aim at further improving the Fully Convolutional Net-
work (FCN), achieving this result, with data augmentation.

DATA AUGMENTATION
The XBOX2 data consist of a number of time series, there-

fore we focus on time series augmentation methods, which
can generally be divided into four categories: random trans-
formations, pattern mixing, generative models and decompo-
sition models [11]. In this study, we only consider random
transformation methods and pattern mixing. We do not

consider generative models due to the computational cost
and their high number of parameters. Furthermore, due to
the non-periodic nature of the XBOX2 data, decomposition
models are deemed inapplicable. Illustrations of all applied
methods are seen in Figure 2.

Random Transformation
Random transformation methods apply different types of

transformations to the data, in order to generate new syn-
thetic samples. Random transformation methods assume that
the transformations are representative of the data character-
istics [11], i.e. they can be introduced without changing the
fundamental nature of the signals. Typically, augmentation
methods alter the values, the time steps or the frequencies
in a signal, i.e. transformations take place in the magnitude,
time, or frequency domain. In the case of the XBOX2 data,
frequency transformations are not applicable, as the data is
not periodic.

A simple random transformation method in the magnitude
domain is noise addition, also known as jittering. Here,
a noise vector 𝜶 is sampled from a zero mean Gaussian
∼ N(0, 𝜎2), which is then added to a data sample x to
generate a synthetic sample x′ such that x′ = x + 𝜶. Adding
noise has been shown to improve generalization of neural
networks [17].

Another similar strategy, known as magnitude scaling
[18], scales the data sample by a Gaussian scaling vector
𝜷 ∼ N(1, 𝜎2), such that x′ = x · 𝜷. A more advanced
version of this approach is known as magnitude warping
[18]. Here the scaling vector is based on interpolation from
a cubic spline 𝑆 with 𝑘 knots, with the knots being drawn
from a Gaussian ∼ N(1, 𝜎2).

Random transformation methods that act in the time do-
main include warping and slicing methods. Window slicing
generates new samples by only selecting a certain percent-
age 𝑊 of the available samples, and interpolating back to
the original number of samples. Warping in time involves
perturbing the individual data point of a sample in time.
Given a warping function 𝜏, defined by a cubic spline 𝑆 with
𝑘 knots drawn from a Gaussian distribution ∼ N(1, 𝜎2),
a new sample is found as x′ = 𝑥𝜏 (1) , . . . , 𝑥𝜏 (𝑡 ) , . . . , 𝑥𝜏 (𝑇 ) ,
with 𝑇 being the sample length.

Pattern Mixing
Pattern mixing techniques seek to generate synthetic sam-

ples by mixing features of multiple data samples. In its
simplest form, pattern mixing takes the mean between two
or more signals of the same class. However, this method
might remove distinguishing features from the signal, due
to smoothening from the mean operator.

A popular method for pattern mixing is known as Syn-
thetic Minority Oversampling Technique (SMOTE) [19].
The SMOTE method takes a sample of the minority class x
and randomly selects a 𝑘-nearest neighbor xNN. The abso-
lute difference between them is then found and scaled by a
random scalar 𝜆 ∼ U(0, 1), and the new sample is found as
x′ = x + 𝜆 |x − xNN |.
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Figure 2: Illustration of augmentation techniques applied to
a forward travelling wave signal F2 from the XBOX2 data
set.

EXPERIMENTS

To test whether data augmentation is beneficial for the
prediction of RF breakdowns, a series of simulation experi-
ments have been carried out. For each of the selected data
augmentation methods, we train the FCN model following
the approach of [9]. Each augmentation method includes
a number of hyperparameters, which we choose based on
recommended values from literature [11].

In all our data augmentation methods, we oversample
the minority class and take only 2.5% of healthy events,
i.e. 3113 events, similarly to prior work [9]. Considering
the whole data set, we augment 3113 healthy and all 250
followup breakdowns, to acquire 3113 healthy and 3113
followup breakdowns. Data augmentation aims to remove
the class imbalance, making class weighting used in previous
work [9], not always necessary. The best results of each
method are summarized in Table 1. Methods with class
weighting are marked with (*).

To fairly assess the model performance with data augmen-
tation, a train on synthetic test on real paradigm is used.
This means that the models are trained on a training set con-
taining synthetic data, however, the validation and test set
is kept untouched. In this manner, the performance using
data augmentation can directly be compared to the baseline
model trained without data augmentation.

The periods of stable operation are used for 𝑘-fold cross-
validation. This means that one group is set aside as a vali-
dation set, using the rest for training. Each stable operation
is used as a validation set once. The mean AR score is then
reported as AR𝜇 with standard deviation AR𝜎 . After fine-
tuning manual model parameters, the model is finally trained

Table 1: Best AR Scores for Various Implemented Augmen-
tation Methods

Augmentation AR𝜇 [%] AR𝜎 [%] ARt [%]

None∗ 89.7 8.1 91.1
Jitter 90.0 2.9 84.2
Magnitude Scaling 89.4 5.1 87.6
Magnitude Warp 90.4 4.9 86.0
Time Warp 90.8 4.6 84.6
Window Slicing∗ 89.4 5.0 90.4
SMOTE∗ 91.0 5.2 89.8

on both training and validation set, and tested on an unseen
stable operation period with a performance ARt.

RESULTS & DISCUSSION
In Table 1, we present the results obtained from apply-

ing data augmentation methods to the XBOX2 data when
predicting followup breakdowns. When comparing the re-
sults using no data augmentation to the results with data
augmentation, a slight increase in the mean AR score on
the validation set is seen for jittering, magnitude warping,
time warping and SMOTE. Magnitude scaling and window
slicing instead show a slight decrease. The SMOTE method
achieves the largest improvement over no data augmenta-
tion and yields an improvement of 1.3%, when keeping the
class weighting from the previous study. The best result
achieved with no class weighting was for time warping, with
an improvement of 1.1%.

Looking at the standard deviation, all augmentation meth-
ods yield a significant decrease. This means that the perfor-
mance of the trained model varies less on different validation
sets when using data augmentation, and that the models are
able to generalizes better, independently of the stable oper-
ation period. The best performance, with respect to AR𝜎 ,
was achieved by jittering which decreased the standard de-
viation by 5.2% compared to no augmentation, yielding a
standard deviation of 2.9%. Note, that ARt is only used to
validate the model’s generalization capabilities by testing
whether ARt is within AR𝜇 ± 2AR𝜎 .

CONCLUSION
In this paper, we investigated different techniques to im-

prove existing RF breakdown prediction models through
the use of data augmentation methods applied to time series
data from CERN’s XBOX2 test stand. We conclude that data
augmentation improves the standard deviation of our model
independent of the technique, making the used model more
robust and generic. The performance of the model, however,
only improve slightly dependent on the technique. The best
performance was achieved using the SMOTE method, keep-
ing the class weighting from the original study. SMOTE
improved the average model performance by 1.3% and de-
creased the standard deviation by 2.9%. The achieved results
provide new insights for the development of a proactive and
dynamic conditioning algorithm for CLIC RF cavities.

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOMS054

MC7: Accelerator Technology

T06: Room Temperature RF

TUPOMS054

1555

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



REFERENCES
[1] CLICdp Collaboration, The Compact Linear Collider (CLIC)

- 2018 Summary Report, P. Burrows, Ed. 2018, vol. 2, doi:
10.23731/CYRM-2018-002

[2] H. Wiedemann, Particle Acelerator Physics, 4th ed. Springer,
2015.

[3] B. Woolley et al., “High-gradient behavior of a dipole-
mode rf structure,” Physical Review Accelerators and Beams,
vol. 23, 2020, doi:10.1103/PhysRevAccelBeams.23.
122002

[4] A. Hassanein et al., “Effects of surface damage on rf cavity
operation,” Phys. Rev. ST Accel. Beams, vol. 9, p. 062 001, 6
2006, doi:10.1103/PhysRevSTAB.9.062001

[5] T. Lucas et al., High power testing of a prototype clic struc-
ture: Td26cc r05 n3, 2018.

[6] W. Wuensch et al., “Experience Operating an X-band High-
Power Test Stand at CERN,” in Proceedings of the 5th Int.
Particle Accelerator Conf., 2014, doi:10.18429/JACOW-
IPAC2014-WEPME016

[7] L. Millar, “Operation of Multiple Accelerating Structures
in an X-Band High-Gradient Test Stand,” Presented 22 Jul
2021, 2021, https://cds.cern.ch/record/2798232

[8] N. Catalan-Lasheras et al., “Commissioning of XBox-3: A
Very High Capacity X-band Test Stand,” in Proc. LINAC’16,
East Lansing, MI, USA, Sep. 2016, pp. 568–571, doi:10.
18429/JACoW-LINAC2016-TUPLR047

[9] C. Obermair et al., “Explainable machine learning for break-
down prediction in high gradient rf cavities,” 2022, doi:
10.48550/ARXIV.2202.05610

[10] W. Wuensch et al., “Statistics of vacuum breakdown in
the high-gradient and low-rate regime,” Phys. Rev. Ac-
cel. Beams, vol. 20, p. 011 007, 1 2017, doi:10.1103/
PhysRevAccelBeams.20.011007

[11] B. K. Iwana and S. Uchida, “An empirical survey of data
augmentation for time series classification with neural net-
works,” PLOS ONE, vol. 16, no. 7, e0254841, 2021, doi:
10.1371/journal.pone.0254841

[12] Q. Wen et al., “Time series data augmentation for deep learn-
ing: A survey,” 2021, doi:10.24963/ijcai.2021/631

[13] K. Simonyan and A. Zisserman, Very deep convolutional
networks for large-scale image recognition, 2014, doi:10.
48550/ARXIV.1409.1556

[14] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio
augmentation for speech recognition,” in INTERSPEECH,
2015.

[15] W. Hartmann, T. Ng, R. Hsiao, S. Tsakalidis, and
R. M. Schwartz, “Two-stage data augmentation for low-
resourced speech recognition,” in INTERSPEECH, 2016.

[16] T. Fawcett, “An introduction to ROC analysis,” Pattern
Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006, doi:
10.1016/j.patrec.2005.10.010

[17] G. An, “The Effects of Adding Noise During Backpropaga-
tion Training on a Generalization Performance,” Neural Com-
putation, vol. 8, no. 3, pp. 643–674, 1996, doi:10.1162/
neco.1996.8.3.643

[18] T. T. Um et al., “Data augmentation of wearable sensor data
for parkinson’s disease monitoring using convolutional neu-
ral networks,” 2017, doi:10.1145/3136755.3136817

[19] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “SMOTE: Synthetic minority
over-sampling technique,” Journal of Artificial Intel-

ligence Research, vol. 16, pp. 321–357, 2002, doi:
10.1613/jair.953

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOMS054

TUPOMS054C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

1556

MC7: Accelerator Technology

T06: Room Temperature RF



84 PAPER 3. DATA AUGMENTATION FOR BREAKDOWN PREDICTION



Paper 4

Explainable Machine
Learning for Breakdown
Prediction in High
Gradient RF Cavities

85



Explainable machine learning for breakdown prediction
in high gradient rf cavities

Christoph Obermair *

CERN, CH-1211 Geneva, Switzerland and Graz University of Technology, AT-8010 Graz, Austria

Thomas Cartier-Michaud, Andrea Apollonio , William Millar ,† Lukas Felsberger ,
Lorenz Fischl ,‡ Holger Severin Bovbjerg ,§ Daniel Wollmann , Walter Wuensch ,

Nuria Catalan-Lasheras , and Marçà Boronat
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The occurrence of vacuum arcs or radio frequency (rf) breakdowns is one of the most prevalent factors
limiting the high-gradient performance of normal conducting rf cavities in particle accelerators. In this
paper, we search for the existence of previously unrecognized features related to the incidence of rf
breakdowns by applying a machine learning strategy to high-gradient cavity data from CERN’s test stand
for the Compact Linear Collider (CLIC). By interpreting the parameters of the learned models with
explainable artificial intelligence (AI), we reverse-engineer physical properties for deriving fast, reliable,
and simple rule–based models. Based on 6 months of historical data and dedicated experiments, our models
show fractions of data with a high influence on the occurrence of breakdowns. Specifically, it is shown that
the field emitted current following an initial breakdown is closely related to the probability of another
breakdown occurring shortly thereafter. Results also indicate that the cavity pressure should be monitored
with increased temporal resolution in future experiments, to further explore the vacuum activity associated
with breakdowns.
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I. INTRODUCTION

In the field of particle accelerators, specially designed
metallic chambers known as radio-frequency (rf) cavities
are commonly employed to establish electromagnetic fields
capable of accelerating traversing particles. The energy
gain provided by a cavity is determined by the accelerating
gradient, a quantity defined as the longitudinal voltage
experienced by a fully relativistic traversing particle nor-
malized to the cavity length. Hence, in linear accelerators

(LINACS), any increase in the accelerating gradient trans-
lates to a reduced machine length. The continued interest in
future colliders and other accelerator applications, where
machine size is a key constraint, has continued to drive
research in this area. One such example is CERN’s
Compact LInear Collider (CLIC) project, a proposed future
high-energy physics facility that aims to collide positrons
and electrons at an energy of 3 TeV. To reach this energy at
an acceptable site length and at an affordable cost, the
project proposes the use of X-band normal-conducting
copper cavities operating at an accelerating gradient of
100 MV=m [1].
One of the primary limits on the achievable accelerating

gradient in normal conducting high-gradient cavities is a
phenomenon known as vacuum arcing or breakdown [2].
To operate reliably at high accelerating gradients, such
cavities must first be subjected to a so-called conditioning
period in which the input power is increased gradually
while monitoring for breakdowns [3–5]. Due to the limited
understanding of the origin of rf breakdowns and the
inability to predict them, current operational algorithms
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generally act responsively rather than preemptively. Hence,
they aim for a progressive recovery of operating conditions
by temporarily limiting the rf power following breakdowns
[6]. In this paper, we investigate the possibility of employ-
ing predictive methods based on machine learning to limit
the impact of breakdowns.
Data-driven machine learning algorithms have been

successfully deployed in particle accelerator applications
for incorporating sequential dynamics using large amounts
of available experimental data. Ongoing efforts at CERN
have demonstrated the successful use of machine learning
for failure analysis in particle accelerators, e.g., to identify
and detect anomalies in the rf power source output of
LINAC4 [7] or to detect faulty beam position monitors in
the LHC [8]. Deep neural networks were used to obtain
predictions [9] and its uncertainties [10] in diagnostics for
measuring beam properties at SLAC National Lab. At the
University of Florida in Gainesville, relevant physical
parameters for calculating the critical temperature of new
superconducting magnets were discovered [11] with
machine learning. Furthermore, eight different supercon-
ducting rf faults were classified with high accuracy at
Jefferson Laboratory [12] using classic machine learning.
However, to the best of our knowledge, none of the stated
methods analyzed the parameters of the trained machine
learning models, i.e., used explainable-AI, to explore the
physical properties of the underlying phenomena. This is
particularly relevant when making predictions that have a
potential impact on machine protection and machine
availability.
Overall, the objective of this work is to (1) analyze

historical data of CLIC rf cavities with explainable-AI to
better understand the behavior of breakdowns and to
(2) investigate possibilities of data-driven algorithms for
conditioning and operation of rf cavities.
The paper is organized as follows: Following this

Introduction, Sec. II describes the experimental setup and
data sources. Section III describes themethodology for data-
driven modeling and gives insights into the design choices
made, based on the characteristics of the available historical
data. We further provide a comprehensive overview of rf-
cavity breakdowns, convolutional neural networks for time
series, and explainable-AI techniques. We then present the
modeling and experimental results for two different data
types, i.e., trend data in Sec. IVand event data in Sec.V.With
explainableAI, we state that a pressure rise is the first sign of
a breakdown and validate it empirically. The strengths and
the limitations of our methodology are discussed, together
with an outlook for possible future work in Sec. VI. Finally,
we conclude our research in Sec. VII.
The code of our machine learning framework is publicly

available.1

II. EXPERIMENTAL SETUP

To investigate the challenges associated with the high-
gradient operation and to validate the novel 12-GHz rf
components for the CLIC project, CERN has commis-
sioned three X-band klystron-based test stands named
XBOX1, XBOX2, and XBOX3, respectively [13]. The
test stands have been previously reported in detail [4,13].
To allow for better readability of this paper, we provide
a short introduction to their structure and operation
modes. While all three test stands are built with the same
arrangement, they mainly vary depending on the specific
components used. A schematic of the high-power portion
of the XBOX2 test stand is shown in Fig. 1. The locations,
denoted with lowercase letters, are also shown in a
photograph of one of the test stands in Fig. 2. In each
test stand, a 12-GHz phase-modulated low-level radio
frequency (LLRF) signal is amplified to the kilowatt level
and used to drive a klystron. The high-power rf signal
produced by the klystron is then directed through a
waveguide network to the rf cavity. To increase the peak
power capability, each test stand is also equipped with

FIG. 1. Schematic of CERN’s XBOX2 test stand. The red and
green arrows show where the backward reflected traveling wave
(B) and the forward traveling wave (F) rf signals are measured via
directional couplers. The upstream and downstream Faraday cup
signals are labeled FC1 and FC2. The locations of the ion pumps
throughout the system are also shown (P). The lowercase letters
mark the items also shown in Fig. 2.

FIG. 2. Picture of a prototype accelerating structure installed in
one of the test stands [16]. Visible are the upstream Faraday cup
(a), an ion pump (b), the rf input (c) and output (e), the rf cavity
under test (d), the shielded lead enclosure (f), and the high-power
rf load (g).1https://github.com/cobermai/rfstudies.
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specially designed energy storage cavities, also known as
pulse compressors [14,15].
During operation, the forward (F) and backward (B)

traveling rf signals are monitored via directional couplers.
The gradient throughout the waveguide network is mea-
sured by directional couplers and logged by the control
system. The XBOX2 and XBOX3 test stands are situated in
a facility without beam capability. However, during high-
field operation, electrons are emitted from the cavity
surface and accelerated. This phenomenon, which is
undesired in real operation, is known as dark current
[17–19]. Monitoring the emitted current during operation
is an important measure used in detecting cavity break-
downs, as will be shown later. During the operation of the
test stand, the dark current is measured via two Faraday
cups, situated on the structure extremities in the upstream
(FC1) and the downstream (FC2) directions. Finally, the
internal pressure is maintained and measured with a series
of ion pumps (P) located throughout the waveguide
network.
In Fig. 2, a prototype of the CLIC accelerating structure

(d) is visible with the waveguide input (c) and output (e).
The directional couplers and coaxial cables, which measure
the high-power rf signals, can be seen at the top center,
above these waveguide parts. The upstream Faraday cup
(a), an ion pump (b), and the high-power rf load (g) are also
visible. The downstream Faraday cup is situated inside a
shielded lead enclosure (f) which is necessary for protec-
tion against the dark current.
Figure 3 shows two examples of different events,

measured by the directional couplers and the Faraday
cups. On the left side, the data from a healthy event are
shown, and on the right side, a breakdown event is plotted.
Figure 3(a) shows the approximately rectangular klystron
pulse (F1). As is visible in Fig. 1, the test slot is equipped
with a pulse compressor. To operate this device, phase
modulation is applied to the klystron pulse, beginning after
approximately 1700 samples of F1. Note that the position
of the edge is not always at the exact position, as it can be
changed by the operator without changing the performance
of the system. Figure 3(b) shows the resulting “com-
pressed” pulse which is delivered to the structure (F2).
The device consists of two narrowband energy storage
cavities linked via a hybrid coupler. As a consequence,
upon receipt of the klystron pulse, most of the power is
initially reflected, resulting in the sharp edge visible after
approximately 200 samples (0.125 μs) of F2. As the
storage cavities slowly begin to fill with energy and emit
a wave, interference between the reflected and emitted
waves occurs, resulting in the gradual change of amplitude
in the transmitted waveform. When the phase of the
incoming klystron pulse is modulated after approximately
1700 samples (1.0625 μs) of F2, the reflected and emitted
waves constructively interfere, producing a short, high-
power region that is flat in amplitude. Following the

cessation of the klystron pulse, the remaining energy in
the cavities is emitted, resulting in a gradual decay in the
amplitude of the transmitted waveform. Further details on
the design and operation of the pulse compressor are
available in [20].
The signal which is reflected from the structure (B2) is

shown in Fig. 3(c). As the accelerating structures are of the
traveling wave design, nominally, the reflected signal is
small. During breakdown events, however, the arc effec-
tively acts as a short circuit, reflecting the incoming wave as
shown on the right of Fig. 3(c). Fig. 3(d) shows the
transmitted signal (F3). During normal pulses, this wave-
form is similar to the signal at the structure’s input, while
truncation is observed during breakdown events as most of
the power is reflected back toward the input [see on the
right of Fig. 3(d)]. Finally, the upstream and downstream
Faraday cup signals are shown in Figs. 3(e) and 3(f),
respectively.
All XBOX2 data are shown in Fig. 4. Specifically, the

maximal value and the pulse width of the F2 signal with
respect to the cumulative pulses for all data in 2018 are
shown. Additionally, the cumulative breakdown count is
shown. Initially, many breakdowns occur during the first
part of the conditioning. Here, both the F2 maximal value
and the pulse width value vary. The yellow area represents
pulses, during which these F2 values were stable. These
pulses will be used for further processing in Sec. III A.

A. rf cavity breakdowns

In high-gradient rf cavities, small surface deformations
can cause a local enhancement of the surface electric field,
resulting in substantial field emission and occasional
plasma formation, i.e., arcing, which can damage the
surface as shown in Fig. 5. The plasma which forms in
the cavity during such breakdown events constitutes a
significant impedance mismatch that reflects the incoming
rf power.
Additionally, breakdowns are accompanied by a burst

of current, which is generally a reliable indicator for
structure breakdowns [18,22,23]. Minor fluctuations,
which do not lead to the formation of plasma and the
subsequent reflection of the incoming power detected by
the Faraday cups, are defined as activity on the surface of
the structure. In the XBOX test stands, these are measured
by Faraday cups to reliably detect breakdowns and regulate
the conditioning process (see Fig. 2 FC1 and FC2) [3,24].
Typically, at an accelerating gradient of 100 MV=m,
Faraday cup signals of the order of 1 mA are observed
in the test stands [18]. The threshold for structure break-
downs is typically set to 81.3% of the maximal resolution
of the analog to digital converter in the Faraday cups, e.g.,
−0.615 to 0.615 V for XBOX2, which corresponds to
currents in the hundreds of milliamps range. In Fig. 3, it is
shown that during breakdown events, a large dark current is
emitted, and thus the threshold on the Faraday cup signal
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3. Two examples of different events, showing the F1, F2, B2, F3, FC1, and FC2 signals. The left plots represent the signals of a
healthy event, the right plots represent the signals of a breakdown event. All signals are 2 μs long. Note that the power amplitude of the
forward traveling waves after the klystron (a), before the structure (b), and after the structure (d), are shown in MW. The power
amplitude in the backward traveling wave (c), the upstream (e), and downstream (f) Faraday cup signals are shown relative to their
maximum value, as no calibration coefficients were provided by the system.
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(FC1, FC2) is well suited to distinguishing between healthy
and breakdown signals.
Breakdowns usually occur in groups. When a breakdown

is detected in the XBOX test stand, the operation is stopped
for a few seconds. Afterward, operation is resumed by
ramping up the input power within less than a minute.
During conditioning, the total number of breakdowns

varies widely on the tested structure, which is why
structures are generally more comparable in terms of the
cumulative number of rf pulses. As a result, it has
previously been proposed that conditioning proceeds pri-
marily on the number of pulses and not solely on break-
downs [25]. This also aligns with the results of high-voltage
dc electrode tests, where conditioning has been linked to a
process of microstructural hardening caused by the stress
associated with the applied electric field [26]. In addition to
the copper hardness, the total number of accrued break-
downs is thought to be affected by the copper purity, the
cleanliness of the structure [27] defined by the amount of
dust and other contamination, the design of the cavity, and

the level to which the cavity must be conditioned dependent
on the nominal operating power and pulse length.

B. Data from experimental setup

90 GB of data from a period of 6 months in 2018 were
produced during the operation of the XBOX2 test stand.
The high-gradient cavity, tested during this time, was
produced at the Paul Scherrer Institute in Switzerland
[16,28]. The data are divided into so-called trend data
and event data. Trend data contain 30 single scalar values,
e.g., pressure measurements, temperature measurements,
and other system relevant features. Event data contain six
time-series signals of 2 μs length, with up to 3200 samples
(see Fig. 3).
Figure 6 shows an example of the trend and event data

logging mechanism. In the test stand, event data are
acquired every pulse at 50 Hz and trend data are acquired

FIG. 4. Overview of the conditioning period, containing all data analyzed. The yellow area represents the runs during which the
operational settings were kept stable and which we used for analysis. Additionally, the maximum power amplitude of the forward
traveling wave signal F2 (blue), its pulse width (green), and the cumulative breakdown count (red) is shown.

FIG. 5. Example of a crater after a breakdown on the surface of
a copper rf cavity [21].
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at up to 600 Hz. Due to the limited data storage of the
experimental setup, the data cannot be stored with full
resolution. The waveforms associated with an rf pulse are
stored in an event data file every minute. In the case of
breakdown events, the two prior rf pulses are logged in
addition to the pulse, where the breakdown appeared. The
corresponding trend data file is updated at a fixed rate
every 1.5 s.
To go into more detail on the exact use of machine

learning, we describe our data mathematically. Our data are
a list of K-, M-dimensional multivariate time-series Xk ¼
½x1;…;xM� for k ∈ f1;…; Kg. Each of the M time-series
has N samples, i.e., xm ∈ RN for m ∈ f1;…;Mg. For both
the event and the trend data, an event K is defined as an
entry in the event data. The number of time-series M is
given by the available signals of the power amplitude of the
traveling waves and the Faraday cups for the event data. In
the trend data, M is given by the number of available
features, e.g., pressure, temperature, and other system
relevant features. The number of samples N is defined
by the number of samples in the event data signals and the
amount of most recent data entries, of an event k in the
trend data features.
Based on the Faraday cup threshold stated before, we

assign a label healthy (yk ¼ 1) and breakdown (yk ¼ 0) to
each event k. This results in a XBOX2 data set of shape
fXk; ykgKk¼1. Using this notation, 124,505 healthy and 479
breakdown events were derived. We further define the first
breakdown in each breakdown group as a primary break-
down, and all other breakdowns, within less than a minute
of the previous breakdown, as follow-up breakdowns.
With this definition, we split the given 479 breakdowns
into 229 primary breakdowns and 250 follow-up break-
downs (see Table I). Compared to the high amount of
healthy events, there is only a small amount of breakdown
events. This so-called class imbalance is tackled by
randomly sampling a subset of healthy events and by

assigning class weights to the breakdown events during
optimization of the algorithm and during the computation
of the performance measure.

III. METHODOLOGY OF ANALYSIS

In this section, we discuss the background of the data
processing used to generate the results. Generally, model-
ing schemes, for representing a system’s behavior, are
divided into model-driven approaches, where prior knowl-
edge is embedded to represent a system’s behavior, and
data-driven approaches, where the system’s behavior is
derived from historical data. With the increasing amount of
computational resources, available historical data, and
successfully implemented machine learning algorithms,
data-driven methods have become popular in many appli-
cations for failure prediction [29–31]. The choice of a data-
driven algorithm is dependent on the application, the
system complexity, and the amount of system knowledge
available, as schematically shown in Fig. 7. The goal is to
find the simplest model, which is capable to capture the
relevant characteristics of the system under study [32].
When considering the goal of identifying a breakdown in

an rf cavity, the most common approach relies on an expert
setting a threshold [18] on a relevant quantity, e.g., the
current measured by a Faraday cup, based on their knowl-
edge about the system. An alternative approach could
consider thresholds based on a statistical approach, which
can be derived from the distribution of cavity breakdowns
from past reliability studies [22]. However, such thresholds
are not sufficient for highly nonlinear problems and
complex system dependencies, like predicting rf break-
downs. In these cases, classical machine learning models,
e.g., k-nearest neighbors (k-NN) [33], random forest [34],
and support vector machine (SVM) [35], can be used to
find these correlations and to derive optimal, more complex
decision boundaries. In k-NN, an event is classified based
on the majority class of its neighbors. Here, the neighbors
are determined by finding the events with the closest
Euclidean distance. A random forest is a combination of
many decision trees to an ensemble. Decision trees learn
simple decision rules, e.g., the FC1 signal reaches its
saturation value, inferred from the most relevant character-
istics of the problem, also called features. SVM on the other
hand, learns a decision boundary that splits data into classes
while maximizing the decision boundary margin. If features

TABLE I. Information about different runs during which the
operational setting was stable. Due to the limited amount of
breakdowns, groups with similar F2 pulse width are formed for
validation and testing during the modeling phase.

Run

No. of
primary

No. of
follow-up

F2
max

F2
pulse

Groupbreakdowns breakdowns (MV=m) width (ns)

1 10 3 35.8 182.4 Group 1
2 50 58 39.5 171.2 Group 2
3 41 38 34.6 161.5 Test
4 14 15 42.5 106.5 Group 3
5 35 62 42.7 100.8 Group 4
6 30 53 38.3 211.2 Group 5
7 21 16 37 186.1 Group 1
8 13 8 37.1 222 Group 5
9 5 7 34.9 102 Group 3

FIG. 7. Overview of different data-driven models.
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in the data are not known a priori, deep learning [36], e.g.,
multilayer perceptrons, or convolutional neural networks,
provides the ability to automatically extract and estimate
them. Those methods are explained in detail in the
modeling subsection. Deep learning can be categorized
into discriminative deep learning, which directly models
the output based on the input data, and generative deep
learning, which models the distribution of the data from
which the output is inferred. In order to develop an end-to-
end time-series analysis framework without the necessity of
manual feature calculations, we use deep learning models
to analyze breakdowns in the CLIC rf cavities and show
that they achieve superior results compared to classic
machine learning approaches, such as k-NN, random forest,
and SVM.
Specifically, we use discriminative deep learning mod-

els, due to their recent success to classify time-series
signals [37]. By analyzing our models after training, we
show how to extract system knowledge and physics
insights, which then allows the extraction of models with
reduced complexity.
For the labeled measurement data from the XBOX2 test

stand, dedicated python toolboxes are used for feature
calculation [38], time-series classification [37], and inter-
pretation of model predictions [39]. Four steps of data
processing and analysis, namely, transformation, explora-
tion, modeling, and explanation, are carried out. These are
detailed in the next paragraphs.

A. Transformation

Before training our machine learning models, we apply
the following transformation steps to the data. All these
steps contribute to fit the data and their properties to our
models and include merging of event and trend data,
filtering of unwanted events, and resampling and scaling
of the event data signals.
Merging: Merging and synchronizing the trend data with

the event data is a critical data transformation step to ensure
the correct relative time order of the data (see Fig. 6).
Particular caution is required to take the nearest past trend
data samples for each event k.
Filtering: During our analysis, we only consider data

during which the operational setting was stable, i.e., we
filter the phases of commissioning or parameter adjustment.
Specifically, we define so-called runs as the periods where
the F2 max and F2 pulse width were kept constant. Table I
shows the properties of the different runs, and Fig. 4
highlights these time periods in yellow. Due to the limited
amount of breakdowns in certain runs and in order to
increase the statistics, we also combine runs with a similar
F2 pulse width (see Fig. 3) which we will use for modeling
later on. Additionally, using a threshold of 650 kW on the
power amplitude of the forward traveling wave signal F2,
we further discard all events which only included noise,
logged when the machine was actually not operating.

Scaling: The used features and signals have different
units and different value ranges. To make them comparable,
we standardize the data by subtracting the mean and
dividing by the standard deviation. This way, all features
and signals have a mean equal to 0 and a standard deviation
equal to 1, independently of their units.
Resampling: In the event data, the Faraday cup signals

(FC1, FC2) only have 500 samples compared to the 3200
samples from the other signals, as they are sampled with a
lower frequency. Therefore, we interpolate the Faraday cup
signals linearly to 1600 samples and selected only every
second sample of the other signals.

B. Exploration

The goal of the exploration phase is to get an initial
understanding of the event and trend data and to validate
the transformation step. We compute 2D representations
of the high dimensional data, in which each data point
represents data of an event k, e.g., compressing all
information that can be found in Fig. 6 on a 2D plane.
This enables us to see correlations and clusters within the
derived representations in a single visualization of the
data. Outlier events, which are fundamentally different
from other events, are further analyzed and, if appli-
cable, neglected after further consultation with experts.
Representation learning is a key field in machine learning
with many methods available including but not limited to
unsupervised machine learning methods like principal
component analysis [40], stochastic neighbor embeddings
[41], and representation learning methods based on neural
networks [41–43].
In Fig. 8, we use two dimensional t-distributed stochastic

neighbor embedding (2D-tSNE) [41], which converts
pairs of data events to joint probabilities, i.e., the likelihood
that they are similar. Close events have a high joint
probability, and events far away have a low joint proba-
bility. Accordingly, 2D-tSNE creates representations in a
2D space and iteratively updates its location, such that the
distributions P of the high-dimensional and the 2D spaceQ
are similar. This equals the minimization of the Kullback-
Leibler divergence [44] which measures the similarity
between two distributions, i.e., DKL ¼ P

x∈X ðPjjQÞ ¼
PðxÞ logðPðxÞQðxÞÞ, where X is the domain of x.

After the dimension reduction, the different coloring of
the representations is used to validate the steps of the
transformation phase. No information about the coloring is
given to the algorithm during training, which means that
neither the runs nor the labels are used as input to compute
the 2D-tSNE representations.
Figure 8 shows the 2D-tSNE dimension-reduced repre-

sentation of the trend data during runs in which the
operational settings were kept constant. The axis of the
figure represents the two dimensions of the lower dimen-
sional space, where correlations between the data samples
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are visible. First, representations are automatically colored,
identifying the stable runs (a). This leads to clear clusters
and validates the separation into different runs. In addition,
two clusters with a mix of every run are formed. Their
meaning becomes clear with different color schemes. The
first cluster with mixed runs gets clear when using a
coloring scheme as a result of the filtering in the trans-
formation step (b), i.e., the filtering with the threshold on
the power amplitude of the forward traveling wave sig-
nal F2.
Using all nonfiltered events from (b), we analyze if it is

possible to classify breakdowns without giving the model
any information about the label, i.e., if supervised modeling
is necessary or if unsupervised learning would already be
sufficient. Inspecting the clustering between breakdown
and healthy events (c), it seems possible to use unsuper-
vised learning for the classification, as many breakdown
events form one cluster and are clearly separable from
healthy events. This also explains one of the clusters of
signals with mixed runs in (a).
As the unsupervised classification of breakdowns was

successful, further investigations aim at identifying break-
downs during the following pulse, i.e., predicting break-
downs. Using all healthy events from (c), no clear
unsupervised separation is possible for distinguishing
events that are healthy in the next pulse from events that
lead to a breakdown in the next pulse (d). Notably, the same
phenomena can be observed when using other unsuper-
vised methods, like autoencoders [42] or a higher dimen-
sional space for clustering. As labels are available from the
FC signals, we employ supervised learning techniques to
distinguish the events shown in Fig. 8(d).

C. Modeling

The objective of the modeling phase is to find a function
fðXkÞ that predicts the output ŷkþ1. This means that we
classify whether a breakdown in the next pulse ŷkþ1 will
occur. This would be sufficient to protect the cavity and

employ reactive measures to prevent its occurrence. The
function fðXkÞ is modeled with a neural network, and its
parameters are optimized during training with the available
historical data.
The results are obtained by discarding the event of the

breakdown and the event two pulses before a breakdown,
expressed with an x in the events k ¼ 4, 6 in Fig. 6.
This can be attributed to the fact that the equidistance
of the event data is violated around a breakdown, which is
corrected by this action. The network then solely focuses
on using Xk¼5 to predict yk¼6.

1. Introduction to neural networks

To better understand the behavior of a neural network,
we next give a brief overview of its structure. At a single
neuron, a weight wm;n is assigned to each input xm;n of
Xk ≔ ðx0;0;…; xM;NÞ. The sum of the input multiplied by
the weights is called the activation a of a neuron, which is
further used as an input to an activation function hð·Þ. This
leads to the following equation:

fðXkÞ ¼ h

�XM
m

XN
n

wm;nxm;n þ w0

�
; ð1Þ

wherew0 is a bias weight. Common activation functions are
the sigmoid activation function hðaÞ ¼ 1=ð1þ e−aÞ or the
Rectified Linear Unit (RELU) hðaÞ ¼ maxð0; aÞ. The
choice of activation function depends on several factors
[36], e.g., the speed of convergence and the difficulty to
compute the derivative during weight optimization.
A neural network consists of several layers, where each

layer includes several neurons which take the output of the
previous layer neurons as an input. This allows the
modeling of nonlinear properties in the data set. With a
fully connected neural network, a neuron takes all outputs
of the previous layer as an input, while in a convolutional
neural network (CNN), the neuron only takes neighboring

(a) (b) (c) (d)

FIG. 8. 2D-tSNE of XBOX2 trend data during stable operation. The algorithm is able to distinguish between (a) stable runs, (b) not
filtered and filtered events, and (c) breakdown and healthy events. In (d), no clear separation of events with a breakdown in the next pulse
and a healthy event in the next pulse is possible. All representations in (c) are a subset of not filtered events in (b) and all representations
in (d) are a subset of all healthy signals in (c).
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neurons’ output of the previous layer as an input. A CNN,
therefore, creates correlations with neighboring inputs.
Essential parameters of a CNN are shown in a simple

example in Fig. 9. The kernel size, defines the number of
neighboring neurons used from the previous layer, and the
filter size, defines the number of neurons in the current layer.
The name filter is derived from the fact that a convolution can
also be seen as a sliding filter over the input data.
Furthermore, pooling refers to the method used for down-
sampling a convolution to enhance the created correlations.
Pooling can be either local, over each dimension separately,
or global, over all dimensions. Two common pooling
methods are maximum pooling, where the maximum of a
window is taken as anoutput, andaveragepooling,where the
mean of a window is taken as an output.

2. Learning of neural networks

Weight optimization is typically achieved with gradient
descent methods using a loss function. For classification
tasks with two classes, typically the cross-entropy-loss E ¼
−½y logðpÞ þ ð1 − yÞ logð1 − pÞ� is chosen, where y is the
known class and p is the predicted class probability. In a
process with i iterations, called epochs, a neuron’s weight
wm;n is then optimized by wiþ1

m;n ¼ wi
m;n − η∇wE. Here,

η > 0 is the learning rate, and ∇wE is the gradient of the
loss dependent on the weights. The gradient descent opti-
mization can be further accelerated with more sophisticated
optimizers. Specifically, we use the ADAM optimizer [45] in
our models. It varies the learning rate dependent on the mean
and the variance of the gradient. In Fig. 14(b), we visualize

the learning process of our models, by showing the models’
loss with respect to the epochs.

3. Advanced architectures

Due to their ability to learn correlations of neighboring
inputs, CNNs contributed to the recent success of machine
learning, finding many applications in image classifications
[46], language processing [47], and time-series classifica-
tion [37].
(i) time-CNN: The time CNN was originally proposed by

Zhao et al. [48] and consists of two average pooling
convolutional layers with 6 and 12 filters with a kernel
of size 7. It uses the mean-squared error instead of the
categorical cross-entropy-loss [44] for weight optimization,
which is typically used in classification problems.
Consequently, the output layer is a fully connected layer
with a sigmoid activation function. Due to this architecture,
the time-CNN has 4976 trainable weights and is therefore
the model with the fewest parameters in our studies.
(ii) FCN: The fully convolutional network was originally

proposed by Zhao et al. [49] and consists of three convolu-
tional layers with 128, 256, and 128 filters of kernel size 8,
5, and 3. In each layer, batch normalization is applied,
normalizing the output of the previous layer in each
iteration of the weight optimization [50]. This leads to
faster and more stable training. Each convolutional layer
uses a RELU activation function, except the last one, where
the output a1;…; aJ is globally averaged and fed into a
softmax activation function hiða1;…; aJÞ ¼ eai=

P
J
j e

aj to
obtain the output probability pðŷkþ1jXkÞ for i ¼ 1;…; J,
where J is the number of different labels. The model has
271,106 trainable weights.
(iii) FCN-dropout: It is of similar architecture as the

FCN with the same number of 271,106 trainable weights.
In addition, it has two dropout layers after the second
convolution and the global average pooling layers as
proposed by Felsberger et al. [29]. This dropout layer is
skipping neurons during training randomly with a proba-
bility of pdrop ¼ 0.5, which improves the generalization of
the model.
(iv) Inception: Inspired by the Inception-v4 network

[51], an inception network for time-series classification has
been developed [52]. The network consists of six different
inception modules stacked to each other, leading to
434,498 trainable weights. Each inception model consists
of a so-called bottleneck layer, which uses a sliding filter to
reduce dimensionality and therefore avoids overfitting.
Additionally, several filters are slided simultaneously over
the same input and a maximum-pooling operation is
combined with a bottleneck layer to make the model less
prone to small perturbations.
(v) ResNet: The residual network was originally proposed

byZhao et al. [49] and consists of three residual blocks, i.e., a
group of three convolutional layers. This architecture leads to
509,698 trainable weights. This relatively deep architecture

FIG. 9. Example of a convolutional neural network (CNN) for
time-series prediction. For simplicity, the input Xk consists of
only one signal, i.e., m ¼ 1, and the network consists of only one
hidden convolutional (conv) layer. As in most of our models, the
softmax activation function is used as an output to derive
fðXkÞ ¼ pðŷkþ1jXkÞ out of the activations aj. In this example,
the kernel size of the convolution layer is 3, the filter size is
F ¼ 12, and the probability of a breakdown in the next pulse
(ykþ1 ¼ 0), is stated. In this case, the network would have 60
trainable weights.
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is enabled by using skip connections after each block. This
skip connection is a shortcut over the whole block and
provides an alternative path during weight optimization
which reduces the risk of vanishing gradients [36]. The
kernel size of the convolutional layers is set to 8, 5, and 3 in
each residual block for the fixed number of 64 filters in each
layer. The activation function, the batch normalization, and
the output layers are similar to the FCN.
All models were trained on a single Nvidia Tesla V100

GPU. This took on average 24 min for the event data and
9 min for the trend data. Once the models were trained, one
prediction took 27 ms for the event data and 18 ms for the
trend data using TensorFlow [53] to compile the model
without any optimization or compression. However, due to
the random weight initialization and depending on the
network, the training time slightly varied.
When using a softmax activation function in the

last layer, the output of the function in Eq. (1) is the
probability of the next event being healthy or a breakdown,
i.e., pðŷkþ1jXkÞ ∈ ½0; 1�. To receive a binary label, ŷkþ1 ∈
f0; 1g, it is necessary to set a threshold to the probability. The
receiver operating characteristic (ROC) curve is a plot that
shows how this threshold impacts the relative number of
correctly classified labels as a function of the relative number
of falsely classified labels. TheROCcurve of the bestmodels
for each prediction task is shown in Fig. 14(a). We use the
area under theROCcurve (AR) to rate theperformance of our
models. This is a measure of the classifier’s performance and
is often used in data sets with high class imbalance [54].
Intuitively, this score states the probability that a classifier
designed for predicting healthy signals ranks a randomly
chosen healthy event kþ higher than a randomly chosen
breakdown event k−, i.e.,p½fðXkþÞ > fðXk−Þ�. AnAR score
of 1 corresponds to the classifier’s ability to correctly separate
all labels, while an AR score of 0 represents the wrong
classification of all labels.
For training, validation, and testing of our model, we

merged runs with similar F2 pulse width into groups as
shown in Table I, as some runs have a small number of
breakdowns. Specifically, we use leave-one-out-cross-
validation on the groups. This means we iterate over all
possible combinations of groups, while always leaving one
group out for validation. After adjusting the model weights,
e.g., the class weight, we then test our model on data from
run 3.
The mean score ARμ over all iterations and its standard

deviation, ARσ , are stated in the results together with
the test result ARt. In order to ensure that our model
provides a good generalization to new data, we aim that
ARt of the test set should be within ARμ � 2ARσ . To
compare deep learning models with classic machine learn-
ing models, we additionally present the AR score of k-NN,
random forest, and SVM algorithms. The hyperparameters
of these models have been optimized during a sensitivity
analysis. Specifically, we used k ¼ 5 neighbors for k-NN,

t ¼ 500 decision trees in random forest, and the radial
basis function for the SVM, withC ¼ 1, γ ¼ 3.3 × 10−2 for
trend data and C ¼ 1, γ ¼ 7.2 × 10−5 for event data. For a
detailed description of these hyperparameters, we refer to
existing literature [44].

D. Explainable AI

To interpret the “black box” nature of deep neural net-
works, explainable AI recently gained attention in domains
where a detailed understanding of the driving factors behind
the results is of primary importance. In fields like medical
applications [55,56], criminal justice [57], text analytics [58],
particle accelerators [29], and other fields in the industry
[59], experts cannot simply accept automatically generated
predictions and are often even legally obliged to state the
reasons for their decision. To reliably predict breakdowns in
rf cavities, the explanation of a model is of similar
importance. Hence, we utilize explainable AI in our studies
to provide the experts with any relevant information used
by the model to aid in interpreting the behavior of data-
driven models, build trust in the prediction, validate the
results, and find possible errors within the earlier data
processing steps. Additionally, understanding why a pre-
diction is mademay shed light on the underlying physics of
vacuum arcs and thus aid in future design decisions
pertaining to high-gradient facilities.
Explainable AI is divided into event-wise explanation,

where each prediction of the model is analyzed separately,
and population-wise explanation, where all predictions
are investigated at once. Event-wise explanation enables
experts to gain trust in a specific prediction. The choice
of event-wise explanation algorithms is dependent on
the input, i.e., image, text, audio, or sensory data, and the
preferred explanation technique, i.e., by showing the sample-
importance [60] or by explanation-by-example [61].
Important samples are often computed with additive feature
attributionmethods [60,62,63], which calculate a local linear
model for a given event to estimate the contribution of a
feature to one prediction. Alternative gradient-based meth-
ods aim to determine the features that triggered the key
activations within a model’s weights [64,65]. Explanation-
by-example states reference examples on which the predic-
tion ismade, by using the activation of the last hidden layer in
a neural network and searching for similar activations of
events in the training set [61].
Population-wise explanation helps experts to gain trust

in the model and to select relevant input features for the
predictions. In its simplest form, this is achieved with a
greedy search [66], or deep feature selection [67] which
applies similar techniques to regularized linear models
[34,68]. However, both of the stated methods are very
computationally intensive for deep learning models. A
more efficient method proposes to train an additional
selector network to predict the optimal subset of features
for the main operator network [69].
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In our studies, event-wise explanations are converted into
population-wise explanations by looking at the distribution
of a subset of event-wise explanations [70]. Our event-wise
explanations are calculated with an additive feature attribu-
tion method [60]. This means we define a model

gðXkÞ ¼
XM
m

XN
n

ϕm;nxm;n þ ϕ0; ð2Þ

which is approximating the output fðXkÞ for one event k,
where Xk is either the trend data or the event data. In this
local linearmodel,ϕm;n equals the contribution of the feature
xm;n to the outputfðXkÞ and is called the feature importance.
To calculate ϕm;n, we assign a reference value to each
neuron. This reference value is based on the average output
of the neuron. When a new input value xm;n is fed into the
network, a contribution score is assigned to the neuron,
based on the difference between the new output and the
reference output. All contribution scores are then back-
propagated from the output to the input of themodelf, based
on the rules from cooperative game theory [71]. The
contribution scores ϕm;n at the input are called SHapley
Additive exPlanation (SHAP) values [39] and are used to
explain our produced results.
This interpretation is, however, different for trend and

event data. In trend data, the SHAP values are interpreted as
feature importance, stating the contribution of, e.g., the
pressure to the prediction of breakdowns. In event data, the
SHAP values are given for each time-series sample, e.g.,
the importance of each of the 3200 samples in the F1 signal.
Here, the mean of all SHAP values in one signal is taken to
derive the overall importance of a signal.

IV. RESULTS USING TREND DATA

In this section, we report the results of applying the
methodology of analysis described above, using the trend
data of the XBOX2 test stand. Specifically, we use the
N ¼ 3 closest trend data point in the past, of an event k, as
described in Sec. II B. Each trend data event consists of

M ¼ 30 values, including pressure, temperature, and other
system relevant features, measured in the test stand.

A. Modeling

Table II shows the AR score for the prediction of
breakdowns with trend data. The results of the different
model types described in the previous section are reported
for comparison and discussed in detail. For each type of
breakdown, the best model score is highlighted in bold. We
chose the best model based on four decision criteria: (i) the
average performance of the model ARμ, (ii) the ability of
the model to generalize within runs ARμ � 2ARσ, and
(iii) the ability of the model to generalize to new data ARt.
Additionally, we consider (4) the simplicity of the model
given by the number of trainable weights and the complex-
ity of the model structure, as this has a direct impact on the
computational cost, which we want to minimize.
The ResNet model is able to predict primary breakdowns

with an average AR score of 87.9%. With 7.2%, the
standard deviation is much higher compared to the pre-
diction of follow-up breakdowns, but still, the best gener-
alization capability compared to the other models for
predicting primary breakdowns. The inception network
scores best on the test set with 82.9%. However, since the
ResNet model performs best on two out of four decision
criteria, we consider it the best for predicting primary
breakdowns.
The relatively high standard deviation in the prediction

of primary breakdowns states that the patterns learned by
the network vary, i.e., the indicators of a primary break-
down differ dependent on the runs on which the network is
trained.
With an ARμ score of 98.7% and an ARt score of 98.6%,

the inception model predicts follow-up breakdowns best.
This means that for the training set, there is a probability of
98.7% that our model assigns a higher breakdown prob-
ability to a randomly chosen breakdown event than it
assigns to a randomly chosen healthy event. The score is
0.1% less when the model uses the test data. This indicates

TABLE II. AR score of different models, predicting primary, follow-up, and all breakdowns with trend data. The model for each
column is highlighted in bold. ARμ relates to the average AR score of different validation sets and ARσ to the standard deviation. The
trained model is finally tested on the test set with a performance ARt.

(1) Primary breakdowns (2) Follow-up breakdowns (3) All breakdowns

Model ARμ (%) ARσ (%) ARt (%) ARμ (%) ARσ (%) ARt (%) ARμ (%) ARσ (%) ARt (%)

k-NN 61.0 7.4 63.1 89.8 8.1 92.9 76.7 8.0 75.9
SVM 68.8 10.0 73.8 93.6 5.7 97.0 84.2 9.8 87.8
Random forest 81.0 16.7 82.5 96.9 3.5 96.5 87.9 13.3 90.0

Time-CNN 55.2 11.0 48.1 92.8 3.8 87.6 67.7 6.3 66.0
FCN 86.1 8.7 81.0 98.2 1.0 97.8 93.8 4.2 90.6
FCN-dropout 84.9 9.0 81.7 95.6 3.0 97.3 92.7 4.6 90.6
Inception 85.4 8.5 82.9 98.7 1.6 98.6 92.3 4.8 90.9
ResNet 87.9 7.2 80.4 98.7 1.4 98.0 93.1 4.6 90.1
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that the model generalizes well to new data, as the ARt
score is within ARσ . The ResNet model offers similar
results and an even smaller ARσ. However, the inception
model is preferred for the prediction of follow-up break-
downs due to its fewer trainable weights.
Looking at the prediction of both follow-up and primary

breakdowns, the AR scores are approximately averaged
compared to the two separate AR scores, the number of
primary and follow-up breakdowns is similar. This indi-
cates that the model finds similar patterns for both break-
down types. Here the FCN model scores best with an ARμ

score of 93.8% and an ARσ of 4.2%.While the ARt score of
90.6% is slightly lower than in the inception model, the
FCN model has significantly fewer trainable weights.
The time-CNN model generally performs poorly com-

pared to the others. A possible reason for this is that the
low amount of trainable time-CNN weights cannot cap-
ture the complexity of the data. Additionally, the structure
of the model might be insufficient. Here, we specifically
refer to the unusual choice of Zhao et al. [48] to select the
mean-squared error and not the cross-entropy-loss. The
mean-squared error is typically used in regression prob-
lems, where the distribution of data is assumed to be
Gaussian. However, in binary classification problems, the
data underlie a Bernoulli distribution, which generally
leads to better performance and faster training of models
trained with the cross-entropy-loss [72]. The lower per-
formance of the time CNN suggests that the mean-squared
error should not be used in classification tasks for XBOX2
breakdown prediction.
Random forest is the only classic machine learning

algorithm that achieves similar ARμ and ARt scores
compared to deep learning. For example, when looking
at the prediction of primary breakdowns, the ARt score of
82.5% is even higher than the ResNet score of 80.4%.
However, the standard deviation ARσ of 16.7% is more
than twice as high compared to the ResNet model, which
makes its prediction less reliable. The higher standard
deviation of classic machine learning compared to deep
learning is also observed in the other breakdown predic-
tion tasks.
For each prediction task, the ROC curve of the best

model’s test set performance is shown in Fig. 14(a). Here,
the true positive rate corresponds to the percentage of
correctly predicted healthy events, and the false positive
rate corresponds to the amount of falsely predicted healthy
events. For predicting primary breakdowns, the ResNet
ROC curve (1) is plotted in green. Note that the ARt score,
corresponding to the area under the ROC curve, is 80.4% in
this case. One can see a slow rise, which reaches a true
positive rate of 1.0 at a false positive rate of about 0.4. For
predicting follow-up breakdowns, the inception model (2,
red) has the highest ARt ¼ 98.6% which is confirmed by
the large area under the red curve. The curve of the FCN (3,
blue) for predicting all breakdowns with ARt ¼ 90.6%, is a

mixture of the primary and follow-up breakdown prediction
curves. It is reaching a true positive rate of 1.0 at a false
positive rate of about 0.2. Using this information, it can be
decided at which probability pðŷkþ1 ¼ 1jXkÞ an event
should be classified as a healthy event. Considering the
inception model (2, red) for predicting follow-up break-
downs, a good choice would be the “edge,” where the true
positive rate is ∼1 and the false positive rate is 0.05. Here,
almost all healthy events are labeled correct, while 5% of
all breakdowns are falsely considered to be healthy events.
However, the final choice of the probability threshold
depends on the final application setting of the model
and the consequences of false positives and false negatives,
further discussed in Sec. VI.

B. Explainable AI

As primary breakdowns are generally considered a
stochastic process [73], the good performance in Table II
on predicting primary breakdowns is especially interesting.
Hence, we focus on the trained models to gain deeper
insights into the reason behind the good prediction results.
Figure 10 shows the importance of the features Xk for the

prediction of primary breakdowns with trend data. Pressure
5 measurements, indicated also with P5 in Fig. 1, is the
most relevant feature by a very significant margin, even
when compared to the second and third most relevant
features. By looking at this signal in more detail, for the
different breakdown events in Fig. 11, it can be seen that the
highest pressure reading is logged up to a few seconds
before a breakdown event. Initially, it was expected that the
pressure should be highest after the breakdown is detected
via the Faraday cups, after the arc formation and the burst
of current. However, here we observe the peak value
beforehand.
We investigated the possibility that the observed effect is

caused by a systematic error or a timing misalignment in

FIG. 10. The three most important trend data features, selected
from 30 features in total, for predicting primary breakdowns with
trend data.
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pressure rise, which could have occurred due to the logging
algorithm in the control software of the XBOX2 test
stand. We utilized a trend data feature of the XBOX2 test
stand, which indicates whether the test stand was in an
interlocked state, i.e., pulsing is inhibited, or if it is pulsing.
Notably, this feature was not used for prediction. Since the
pulse rate is 50 Hz, we know that the breakdown must have
occurred in 1 of the 75 pulses prior to the interlock.
Figure 11 shows the trend data features of the internal
beam-upstream pressure during run 4. All data are aligned
to the interlock time of the mentioned XBOX2 feature,
which is indicated with the black dashed line. The gray area
is the confidence interval, covering the previous 75 pulses
during which a breakdown occurred, and the interlock
signal was generated. A rise in pressure is visible in all data
samples before the interlock is triggered. However, the low
trend data sampling frequency means significant aliasing is
possible, and so the true peak pressure could occur either
earlier or later than is shown in the data. Therefore, the
internal beam-upstream pressure signal should further be
investigated.
Notably, during breakdowns, the vacuum readings

located the furthest away from the structure demonstrated
a markedly smaller rise which occurred later in time than
that observed in the pumps located closest to the structure.
This aligns with the expectation that the pumps situated
farthest from the site of a given pressure change should
measure it last due to the vacuum conductivity of the
waveguide.
Generally, significant outgassing is observed in the early

stages of component tests in the high-gradient test stands,
and a conditioning algorithm that monitors the vacuum
level and regulates the power to maintain an approximately
constant pressure has been designed specifically for this

early phase of testing [13]. It is known, that the exposure of
fresh, unconditioned surfaces to high-electric fields results
in measurable vacuum activity, however, it is unclear why a
measurable pressure rise may occur prior to breakdown
when a stable high-gradient operation has been reached.
One potential explanation is that the phenomenon may be
related to the plastic behavior of metal under high fields. In
recent years, it has been proposed that the movement of
glissile dislocations, which is a mobile dislocation within
the metal, may nucleate breakdowns if they evolve into a
surface protrusion [74]. If such dislocations migrate to the
surface, then the previously unexposed copper may act as a
source for outgassing, resulting in measurable vacuum
activity while also being liable to nucleate a breakdown
soon thereafter.

C. Experimental validation

To experimentally validate the phenomenon of the
pressure rise before the appearance of a breakdown in
the XBOX2 test stand, a dedicated experiment was con-
ducted on a similar rf cavity in the XBOX3 test stand. In
case of a substantial pressure increase which may indicate a
vacuum leak, klystron operation is inhibited and thus no
further high-power rf pulses can be sent to the structure. To
facilitate interlocking, the pumps throughout the waveguide
network are checked at 600 Hz, several hundred Hz higher
than the rf repetition rate. However, due to the limited
storage space, not all data are logged (see Fig. 6).
If the pressure begins to rise several pulses prior to a

breakdown event, then by appropriately setting the thresh-
old, it is possible to generate an interlock signal and stop
pulsing prior to the breakdown. If the rise in pressure is
caused by the start of processes that lead to a breakdown
then by resetting the interlock and resuming high-field
operation, it is assumed that the processes may continue,
and a breakdown will then occur shortly after the initial
interlock was generated. To validate this hypothesis, a 3-h
test slot was granted in CERN’s XBOX3 test stand during
which the threshold for vacuum interlocks was set to be
abnormally low, close to the pressure, at which the test
stands generally operate. During this time slot, the data in
Fig. 12 was recorded. The procedure of the experiment is
visualized in Fig. 13. After detecting the early pressure rise
with explainable AI, this finding allows us to simply use a
threshold above 10% of the nominal pressure (see Fig. 11).
Naturally, a large sample size, i.e., number of primary
breakdowns, is desirable to validate the phenomenon. The
breakdown rate may be considerably increased by raising
the operating gradient although, as shown in Fig. 11, the
pressure remains considerably elevated following break-
down events, necessitating a recovery period of several
minutes before the pressure returns to the prebreakdown
baseline. Additionally, increases in power are associated
with increased vacuum activity and so stable, low pressure
operation was favored throughout the run to avoid false

FIG. 11. Data samples of pressure 5, aligned to the interlock
state of the test stand. The gray area represents the confidence
interval, i.e., the window of time covering the previous 75 pulses
in which the breakdown occurred. Data indicate that the pressure
begins to rise before an interlock is triggered with the Faraday cup
and the reflected traveling wave signals.
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alarms and ensure reliable interlocking. During the
3-h experiment period, five primary breakdowns occurred,
two of which were preceded by a vacuum interlock. One
such example is shown in Fig. 12.
In Fig. 12, an interlock was produced and then reset

several seconds later. The reset was done by removing the
interlock thresholds temporarily to allow the test stand to
ramp back up to nominal conditions and resume high-
power operation. After ramping up in power, two primary
breakdowns occurred, as shown by the red lines.
These instances align with what was observed in the

historical data. However, given the relatively few primary
breakdowns, further experiments are necessary. To over-
come the alignment and resolution issues present in the
historical data, an improved test stand logging system is

currently being developed to record pressure as event data
with high resolution.

V. RESULTS USING EVENT DATA

In this section, we report the results of applying the
methodology of the analysis described above, using only
the event data of the XBOX2, as shown in Fig. 3. We report
these results separately to show that our models do not
solely rely on the pressure reading as described in the
previous section to successfully predict breakdowns.

A. Modeling

In Table III, we summarize the results of predicting
breakdowns with event data based on the models described
in Sec. III. We use the same decision criteria as in the
previous Sec. IVA to select the best model.
With a mean validation score of 56.6% and a test score of

54.0%, the FCN-dropout performs best on the prediction of
primary breakdowns. Although the ARσ score of 8.3% is
higher than in the inceptionmodel, the FCN-dropoutmodel is
preferred since it has significantly fewer trainable weights.
Note that a score of 50% equals a random classifier, which
guesses the output.Despite the stochastic behavior of primary
breakdowns, ourmodels exceed the expected 50%.However,
the result is significantly lower compared to the prediction of
primary breakdowns with trend data in Table II. This shows
that the pressure rise found in analyzing the trend data is the
main indicator for predicting primary breakdowns, given the
available data and the described models.
Nevertheless, using event data, the models accurately

predict follow-up breakdowns. Here the FCN model is
preferred with an AR score of 89.7% for the prediction of
follow-up breakdowns and shows the best generalization
result on the test set with 91.1%. The AR score of 89.7%
implies that with a probability of 89.7%, the FCN model
attributes a higher breakdown probability to a randomly
selected breakdown event than a randomly selected healthy
event. The FCN-dropout offers better generalization on

FIG. 12 Maximum value of the structure input power amplitude
of the forward traveling wave (F2 max) and minimal value of the
downstream Faraday cup signal (FC2 min) during the experiment
to predict breakdowns. The orange dashed line shows an inter-
lock, activated by a threshold on the pressure signal, meant to
prevent a breakdown. The maximum structure input power
amplitude of the forward traveling wave is logged as a feature
in the trend data every 1.5 seconds. The minimal value of the
downstream Faraday cup signal is extracted from the event data
according to Fig. 6.

TABLE III. AR score of different models, predicting primary, follow-up, and all breakdowns with event data. The model for each
column is highlighted in bold. ARμ relates to the average AR score of different validation sets and ARσ to the standard deviation. The
trained model is finally tested on the test set with a performance ARt.

(4) Primary breakdowns (5) Follow-up breakdowns (6) All breakdowns

Model ARμ (%) ARσ (%) ARt (%) ARμ (%) ARσ (%) ARt (%) ARμ (%) ARσ (%) ARt (%)

k-NN 49.6 1.2 48.4 61.4 10.1 58.7 57.2 10.0 54.9
SVM 50.0 0.0 50.0 63.0 7.8 62.5 57.3 3.6 56.3
Random forest 48.2 3.4 50.0 66.9 9.2 73.0 58.4 6.9 59.7

time-CNN 52.7 3.4 51.9 79.2 12.8 82.1 59.8 7.7 66.6
FCN 54.7 9.8 52.8 89.7 8.1 91.1 66.8 12.5 68.7
FCN-dropout 56.6 8.3 54.0 89.1 5.3 83.7 65.2 7.3 67.3
Inception 52.6 3.6 49.9 87.9 8.4 90.5 65.9 13.6 67.1
ResNet 51.9 7.0 53.5 88.7 7.7 89.9 67.2 14.3 68.5
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different runs with an ARσ of 5.3%, but relatively bad
generalization on the test set with an ARt score of 8.7%.
The inception model and the ResNet model archive similar
results, but utilize more trainable weights, which is
disadvantageous.
With 8.1%, the standard deviation of predicting follow-

up breakdowns with event data is much higher than the
prediction of follow-up breakdowns with trend data in

Table II. This means that the patterns learned by the
network vary more when our models are trained on event
data than on trend data. The values in Table I underline this
conclusion, as the F2 max values and the F2 pulse width
values are different depending on the run. The influence of
the F2 max deviation is mitigated by the standardization of
each signal by its own mean. However, the fluctuation of
the F2 pulse width values makes it harder for the network to
find common patterns in the time-series signals. In the trend
data, the model mainly focused on the pressure rise, which
is a phenomenon occurring across all runs.
Like in Table II, the mean of both primary and secondary

breakdown prediction scores is close to the prediction of all
breakdowns. This again indicates that the patterns detected
are used for both follow-up and primary breakdowns.
However, in primary breakdowns, this pattern occurs only
rarely, leading to lower performance compared to the
prediction of breakdowns with trend data. Here, the ResNet
model has the best ARμ score with 67.2%, the FCN-dropout
model has the best ARσ score of 7.3%, and the FCN model
has the bestARt scorewith 68.7%.Overall, the FCN-dropout
model is considered best, due to the significantly lower
standard deviation and the relatively low amount of trainable
weights compared to the inception model.
In contrast to the trend data results in Table II, all classic

machine learning methods show lower performance than
the deep learning models. Figure 7 shows that classic
machine learning requires features as input. When those
features are given, as they are in the trend data, similar
performance to deep learning is achieved. However, in the
event data, time-series signals are used as input instead of
features. Classic machine learning models are not able to
generalize well anymore. Deep learning models automati-
cally determine features in their first layers, and therefore,
reach higher performance in all three prediction tasks.
Figure 14(a) shows the ROC curve of the best model’s

test set performance from Tables II and III. For predicting

(a) (b)

FIG. 14. Receiver operating characteristic (ROC) (a) and learning curve (b) of trend and event data modeling. For all prediction tasks
(1–6) shown in the results in Table IVand Table V, the curves of the best model’s test set is shown. The dashed orange line represents a
random classifier in the ROC curve.
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FIG. 13. Flowchart showing the procedure of the experiment.
The pressure interlock was set to 10% above a nominal pressure.
The Faraday cup signals and the reflected traveling waves were
used to detect the breakdown.
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primary breakdowns, the FCN-dropout model (4, cyan)
with ARt ¼ 54.0% is close to the orange dashed random
classifier, where with AR ¼ 50.0%. Contrary, the FCN
model (5, purple) for predicting follow-up breakdowns
with ARt ¼ 91.1% covers a significantly larger area under
the curve. The FCN-dropout model (6, black) combines the
two curves, indicating that the predicted breakdowns were
mostly follow-up breakdowns.
Similar to the trend data prediction, the threshold on

pðŷkþ1 ¼ 1jXkÞ can be selected. For example, there are two
“edges” in the (5, purple) ROC curve at a false positive rate
of about 0.05 and at 0.2. At the first “edge,” ∼50% of all
healthy events are classified correctly, and only 5% of
breakdowns are falsely considered healthy. At the second
“edge,” ∼90% of all healthy events are classified correctly,
but 20% of breakdowns are falsely classified as healthy.
The selected threshold is dependent on the class weight, as
we use 124; 505 × 2.5% ≈ 3113 healthy and 479 break-
down events, and the effect on the machine availability of
the application, as discussed in Sec. VI.
However, the number of epochs in our experiments is not

fixed. The models are trained until the loss does not change
significantly within 100 epochs, i.e., we use early stopping.
Figure 14(b) shows the learning curve for the test set
prediction of all the best models for 1000 epochs.
Models trained on trend data (1–3) converge faster than

models trained on event data (4–6). In addition, models
trained on follow-up breakdowns (2,5) converge faster than
models trained on primary breakdowns (3,6). Also, the
performance of classic machine learning models is closer to
deep learning models in follow-up breakdowns compared
to primary breakdowns. This indicates that correlations
within the data and follow-up breakdowns are more linear
compared to correlations within the data and primary
breakdowns. The FCN-dropout model (4, cyan) for pre-
dicting primary breakdowns and the FCN-dropout model
(5, black) fail to converge to a loss close to zero. This is in

good agreement with the fact that those models achieve
lower ARt scores.

B. Explainable AI

Due to the poor performance for the prediction of
primary breakdowns, only models for the prediction of
follow-up breakdowns are considered for the explanation in
this section.
The signals identified by the FCN as being most

important for the prediction of follow-up breakdowns are
shown in Fig. 15. The downstream Faraday cup signal
(FC2) is classified as being most important (a) by the used
models, but the difference to the other signals is not as
significant as in Fig. 10. Further investigation showed that a
specific portion of both Faraday cup signals, particularly
the rising edge, was identified by the SHAP approach as
being the most important region for breakdown prediction.
An example is shown with the downstream Faraday cup

signals in Fig. 15(b). Here, the mean signal over all
“healthy in the next pulse” events is plotted in blue and
the mean over all “breakdown in the next pulse” events is
plotted in red. The important samples in the signal, i.e., the
SHAP values, are highlighted in pink. The most important
area for the model is approximately 1000–1200 samples.
The reason for a relatively high noise in the red signal is

twofold. First, there is higher variance in breakdown
signals, as they generally vary in their shape. Second,
follow-up breakdowns are generally lower in amplitude.
This is due to the fact that after the machine is stopped as a
consequence of a primary breakdown, its input power is
gradually increased again to recover the nominal power.
This leads to lower amplitudes in the follow-up breakdown
signals. We mitigate this effect by standardizing each signal
separately with its own mean and standard deviation.
However, due to the lower amplitudes, the noise is more
severe in follow-up breakdown signals. The increased
deflection at the end of the red signal is also attributed

(a) (b)

FIG. 15. Most important signals (a) and FC2 samples (b) for predicting follow-up breakdowns with event data. In addition to the most
important samples (marked by the pink background), the average preceding signal for a subsequent healthy event (blue) and a
breakdown event (red) is shown, respectively.
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to this effect. Notably, our models do not focus on the noise
or the deflection at the end, because the rising edge of both
Faraday cup signals enables more general predictions.
The identified portion in the signal in Fig. 15 has been

previously studied in detail [17,22]. The shape of the dark
current signal is generally defined by several quantities.
The fill time, i.e., the time for the rf pulse to propagate from
the input to the output of the prototype CLIC structures, is
generally in the order of 60 ns, which corresponds to 48
samples in the plot. As the rf pulse fills the structure of the
individual cells, i.e., the subsection in the rf cavity, the cells
begin to emit electrons. This results in a rising edge in the
F1 signal which is comparable to the fill time of the
structure. A similar transient behavior is then observed at
the end of the rf pulse, as the structure empties and the cells
stop emitting.
Breakdowns alter the surface of the rf cavity and thus

change the emission properties of the structure. As a
consequence, both the amplitude and shape of the signal
are known to change markedly after breakdowns [73,75]. It
is postulated that particular signal characteristics may then
be associated with an increased probability of future
breakdowns. Additionally, it has previously been proposed
that fluctuations in the dark current signal may be asso-
ciated with nascent breakdowns, however, these fluctua-
tions have proven difficult to measure [22]. Such
fluctuations constitute another phenomenon that could
potentially be detected with the present framework.
Notably, all previous observations seem compatible with
the findings and explanations of our ML studies.

VI. FUTURE WORK

The goal of our study is twofold. First, we want to shed
light on the physics associated with breakdowns through
the insights gained with explainable AI. Second, we aim at
supporting the development of data-driven algorithms for
conditioning and operation of rf cavities based on machine
learning. In this section, we further elaborate on these goals
and future activities, starting from the results presented in
the previous paragraphs.

A. Breakdown Physics

To further validate the explainable-AI findings in this
work, future experiments will focus on the validation of the
presence of a pressure rise prior to the occurrence of
breakdowns, by using our simplified threshold-based
model to provide an interlock signal. To make more
insightful explanations, especially suited for the domain
experts of CLIC, we will further improve the used explain-
able-AI algorithms. Current explainable-AI methods are
developed and tested mostly with the goal to interpret
images and highlight important areas for classification
problems. Typical examples involve the recognition of
characteristic features of animals, e.g., the ear of a cat. In

images, those areas are self-explanatory and easy to under-
stand by humans. However, explanations in time-series
signals are harder to interpret (see Fig. 15). In the future,
our work will focus on refining the model explanations by
investigating the possibility of using understandable fea-
tures and correlations to the important areas, e.g., the low
mean value and high frequency in the important area of the
red signal in Fig. 15. For this, we will build on existing
work, which searches for correlations in the activations of
the hidden CNN layers [61,76–79].

B. Model application

Investigations on the direct application of our models are
ongoing. Here, the final model will be selected depending
on the chosen task according to Tables II and III. For
example, the FCN would be chosen for predicting follow-
up breakdowns with event data, as it performs best. Below,
we address several remaining challenges with which the
model’s performance could be improved and the potential
of machine learning further exploited. Additionally, it is
currently under evaluation of how the predictive methods
can be embedded in the existing system by notifying an
operator or by triggering an interlock before a predicted
breakdown.
Model improvements.—To further advance the develop-

ment of data-driven algorithms for conditioning and oper-
ation, we will test and improve our model with data from
additional experiments. The accuracy of machine learning
models is highly dependent on the quality of the data with
which the model is trained. As such, the importance of
continuous and consistent data logging during experiments
is of primary importance during the study and further
improvements are being discussed with the CLIC rf test
stand team to (i) increase the logging frequency for both
trend and event data, (ii) to implement signals of additional
pressure sensitive sensors, e.g., vacuum gauges and vibra-
tion sensors, or (3) provide a means of accurate timing
calibration in the test stand.
Model embedding.—As mentioned in Sec. II, it has

previously been proposed that accelerating structures con-
dition on the number of cumulative rf pulses and not solely
on the cumulative number of breakdowns [25]. This also
aligns with the intuition that conditioning is a process of
material hardening caused by the stress of the applied
electric field [26]. As such, possibilities are investigated to
increase the applied field at a rate that still produces the
hardening effect but refrains from inducing breakdowns
unnecessarily frequently. Conversely, as conditioning typ-
ically requires on the order of hundreds of millions of
pulses, it is highly desirable to minimize the number of
pulses taken to reach high-field operation in order to reduce
the electricity consumption and test duration. The optimal
method may lie between these two scenarios, where our
machine learning models come in to improve future
conditioning algorithms.
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Second, we focus on the possibility to derive operational
algorithms that are planned to increase machine availability
in modern high-gradient accelerators, exploiting our
machine learning models. The basic idea is to maximize
the availability of a future accelerator by dynamically
detuning structures that are predicted to experience a
breakdown, thus limiting the impact of breakdowns on
the operation. The reduction in energy associated with
doing so may then be compensated in one of two ways,
either by powering an additional, spare structure in the
beam line which is normally desynchronized, or alterna-
tively, by temporarily increasing the voltage in the remain-
ing structures until the arcing structure stabilizes again. In
this scenario, the effect of false predictions of our model
will directly affect the performance of the machine, and it is
therefore of crucial importance to achieve sufficient accu-
racy in the predictions.
In a single rf structure, the approach discussed above is

no longer valid. Currently, if a breakdown is detected, it is
unclear if the breakdown is inevitable or if it may be
avoided by taking an appropriate action. If the implemented
response is one which interlocks the machine temporarily, a
false prediction would then result in an unnecessary stop of
the machine and hence a reduction in availability equal to
that associated with the breakdown event. Thus, in such a
scenario, a threshold on the probability of pðŷkþ1jXkÞ is
preferred such that the classification is healthy if the model
is uncertain. Alternatively, a hybrid model [80] could be
implemented, e.g., to enable machine operators to adjust
the machine parameters if there are many predicted future
breakdowns.

VII. CONCLUSION

In the work presented, a general introduction to data-
driven machine learning models for breakdown prediction
in rf cavities for accelerators was shown. Following the
steps of transformation, exploration, modeling, and explan-
ation, several state-of-the-art algorithms have been applied
and have proven to be effective for our application. By
interpreting the parameters of the developed models with
explainable AI, we were able to obtain system-level
knowledge, which we used to derive a fast, reliable, and
threshold-based model.
We have shown that our models can predict primary

breakdowns with 87.9% and follow-up breakdowns with an
AR score of 98.7% using trend data. Thanks to the analyses
carried out with explainable AI, we discovered that
historical CLIC rf test bench data indicate that the pressure
in the rf cavity begins to rise prior to the Faraday cup
signals, in case of a breakdown. Our findings could enable
the possibility to act before a breakdown is detected with
the Faraday cup signal by setting a lower threshold on the
vacuum signal. This would allow us to either avoid the
breakdown development at an early stage or to take
additional actions to preserve the beam quality.

Using event data, we achieved an AR score of 56.6% for
predicting primary breakdowns and 89.7% on follow-up
breakdowns, highlighting the low capabilities of the model
to predict primary breakdowns but high performance on
follow-up breakdowns. Focusing on the latter, explainable-
AI points out that the last part of the rising edge in the
Faraday cup signals has a high influence on the occurrence
of breakdowns. Investigations to explain this behavior are
currently ongoing but are supported by past studies on the
subject.

Our code is publicly available1 and provides a frame-
work for the transformation, exploration, and modeling
steps, which can be used to analyze breakdowns in other
fields or domains.
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Abstract

With the continuous increase of deep learning applications in safety critical systems, the
need for an interpretable decision-making process has become a priority within the research
community. While there are many existing explainable artificial intelligence algorithms, a
systematic assessment of the suitability of global explanation methods for different applica-
tions is not available. In this paper, we respond to this demand by systematically comparing
two existing global concept-based explanation methods with our proposed global, model-
agnostic concept-based explanation method for time-series data. This method is based
on an autoencoder structure and derives abstract global explanations called ”prototypes”.
The results of a human user study and a quantitative analysis show a superior performance
of the proposed method, but also highlight the necessity of tailoring explanation methods
to the target audience of machine learning models.

Keywords: Explainable AI, Concept Explanations, Time-Series.

1. Introduction

Deep learning methods have conquered nearly every aspect of machine learning applications
due to their flexibility and predictive power. However, they did not yet gain the same
interest in safety-critical applications, due to their ”black box” behavior (Béıtez et al.
(1997)). Especially in safety critical applications, wrong decisions can have severe impact
on human health, e.g. in medical diagnosis (Reardon (2019); Weng et al. (2017)) or financial
assets and reputation of large scale projects such as particle accelerators (Obermair et al.
(2022)). In these cases, experts cannot simply rely on automatically generated predictions
and are often legally obliged to state reasons for their decisions (Goodman and Flaxman
(2017)). Therefore, the demand for methods that allow for the interpretation of black box
models has been increasing and a wide variety of eXplainable Artificial Intelligence (XAI)
algorithms were proposed in recent years.
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The currently most popular XAI algorithms (Ribeiro et al. (2016); Bach et al. (2015);
Shrikumar et al. (2016); Lundberg and Lee (2017); Simonyan et al. (2013); Chattopadhay
et al. (2018)) are relevance-based methods capable of highlighting the parts of the data
which are important for model predictions. Considering a handwritten digit classification
problem using the MNIST dataset (Deng (2012)), for example, highlighting relevant pixels
representing a particular number is an intuitive interpretation for humans.

Concept-based explanations (Kim et al. (2018); Yeh et al. (2020)) represent an alter-
native to highlighting important parts of the data. While there exist multiple definitions
of concepts across the literature, we define a concept as explanatory data containing all
relevant properties that allow humans to make the same decisions as the black box model.
Typically, concepts are provided by (1) data examples, i.e. explanation-by-example, or (2)
artificial data containing the most relevant information, i.e. prototypes. In the example of
handwritten digit classification, showing the image of a typical digit ’one’ from the available
data would be an explanation-by-example, while showing an artificially created example of
the digit ’one’ with its main properties, e.g. the straight vertical line, would be a prototype.

In a recent empirical study conducted within a group of non-machine-learning experts,
(Jeyakumar et al. (2020)) showed superior performance of a concept-based explanation
method compared to relevance-based methods for time-series data. Explaining the non-
intuitive nature of time-series data to non-machine-learning experts is a common task in
safety critical applications, e.g. when explaining heart beat signals to medical professionals
and patients. Consequently, concept-based explanations are an important tool in this do-
main. However, explanation-by-example and prototypes have not been compared in detail
yet, although they belong to the main types of existing concept-based explanation methods.

Contribution. In this work, we investigate the advantages and disadvantages of explanation-
by-example or prototypes for time-series explanations, depending on whether the target
audience is users or model developers. Initially, we define a concept mathematically and
denote concept properties to increase the explanation confidence. Consequently, we pro-
pose a model-agnostic concept-based XAI method1, relying on an autoencoder using proto-
types. We then compare our model-agnostic prototype (MAP) method to an explanation-
by-example (EBE) (Jeyakumar et al. (2020)) and a model-specific prototype (MSP) (Gee
et al. (2019)) explanation method with a human user study and a quantitative analysis.

Human User Study Details. For the conducted human user study, we utilized the
ECG200 (Olszewski (2001)) dataset containing heartbeat signals and an artificial dataset
reproducing signals from machine sensors in a noisy environment. Participants were asked
to classify the time-series signals from the dataset, using the concept explanations which we
provided. In total, 75 participants classified 3480 time-series signals based on explanation-
by-example or prototypes derived from the different methods. The survey shows that our
method is preferred, but also highlights the importance to distinguish between target audi-
ences when comparing XAI methods.

Paper Structure. We first give an overview of related XAI work, followed by a formal
definition of a concept and its properties. We then introduce our XAI method and our

1. https://github.com/cobermai/concep_based_explanations
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study details. Finally, we discuss the results, and present future work in the domain of
particle accelerators.

2. Related Work

In this section, we highlight the need for concept explanations, which are model-agnostic,
applicable to time-series data, and tested and optimized for their target audience. With
the increasing amount of time-series data available, hundreds of time-series classification
methods have been recently proposed. Different methods are frequently based on nearest
neighbors (Bagnall et al. (2017)), ensemble classifiers (Lines et al. (2018)), or convolutional
neural networks (Fawaz et al. (2019)).

Many of the recently proposed XAI methods target the interpretation of such time-series
classification methods (Rojat et al. (2021)). This is especially relevant for safety critical
applications, where time-series data is a common data format. Tjoa and Guan (2020)
provide a list of different XAI methods for medical applications as an example for safety
critical applications. A recent summary from AlRegib and Prabhushankar (2022) highlights
the small amount of model-agnostic XAI approaches and underlines the importance of
human evaluation of such approaches. Amazons Mechanical Turk enables a relatively fast
way to derive human non-expert evaluations without a bias, and is commonly used in XAI
studies as in Jeyakumar et al. (2020), Lundberg and Lee (2017), Ribeiro et al. (2016), and
Kim et al. (2018). It is more difficult to choose an intentional bias. For example, a bias
towards the characteristics of the research community in safety-critical applications.

In the following subsections, we provide an overview of relevant concept explanation
methods, distinguishing between methods using explanation-by-example and methods using
prototypes to visualize their concepts. For each method, we emphasize whether the model
is model-specific and whether the explanations are local or global. Local explanations,
analyze the black-box predictions of each data sample, i.e. an instance, separately, while
global explanations investigate all predictions at once.

2.1. Concept visualization with explanation-by-example

Kim et al. (2018); Yeh et al. (2020) describe concepts as a set of implicit vectors. To
visualize a concept, the instance/example closest to the vector is extracted from the model
specific architecture. Jeyakumar et al. (2020) cluster instances with similar activations
in the last layer of a deep neural network. They use the cosine similarity as a similarity
measure. The access of the activations makes this method model-specific. Explanation-by-
example is frequently extended to show only relevant segments of examples. Chen et al.
(2019); Das et al. (2020) show image patches like the ear of cat as examples. Guidotti et al.
(2020) propose a model-agnosic method, which generates relevant example segments, using
decision trees. These segments are frequently called shapelets. In Mochaourab et al. (2022)
global explanations are derived from relevance-based explanation using Sobol’s indices, i.e.
a variance-based sensitivity analysis.
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2.2. Concept visualization with prototypes

Prototype based methods aim at defining representative concept prototypes for model ex-
planation (Bien and Tibshirani (2011)). Li et al. (2017); Gee et al. (2019) train prototypes
with an autoencoder. A classifier is trained in parallel. This classifier utilizes the euclidean
distance of the prototypes and the latent space of the autoencoder as an input. Here, clas-
sification and explanation are combined in the same model, which makes it model specific.
In a similar way Zhang et al. (2020) derive one prototype per class with a model specific
attention prototype network. Tang et al. (2020) generate time-series shapelets by combining
concept-based and relevance-based methods.

The presented list of state-of-the-art methods, highlights the frequent use of prototypes
and examples for visualization. For these methods, it has not been evaluated, which visu-
alization technique is best in helping humans to reach similar accuracy as the black box
model. This topic will be mathematically approached in the next section.

3. Concept Definition and Properties

Consider a training set of N instances X = {x1, ...,xN}, where each instance xn ∈ Rp

has a corresponding label yn ∈ Nt, and a black box model f(·), e.g. a pretrained deep
neural network, which approximates these labels ŷn = f(xn). An explainer model is then
used to derive a set of M concept explanations X̂ = {x̂1, ..., x̂M} with predictions Ŷ =
{f(x̂1), ..., f(x̂M )}, where each explanation m = 1, ...,M corresponds to a reconstructed
concept x̂m.

XAI methods are often evaluated through dedicated questionnaires (Holzinger et al.
(2020)), asking its users to state their subjective assessment of the given explanation. To
provide an objective evaluation of XAI methods, a human perceiver s(·) of an explanation
should be able to find the correct label for unseen instances on their own. Showing all
concept explanations X̂ and their corresponding labels Ŷ to users in the target audience,
the concept receptivity is measured by the accuracy of the users when labeling new instances
xn.

Definition 1 (Concept Receptivity) A human perceiver s(·) has a concept receptivity
r, which is the ability to find the label ŷn for random instances xn given the reconstructed
concepts X̂ with labels Ŷ

r(X̂, Ŷ) =
1

N

N∑

n=1

1ŷn=s(xn,X̂,Ŷ), (1)

where 1 is an indicator function.
Human evaluations of explanations are labor-intensive. To this end, we further propose a

quantitative evaluation method. Explainer models frequently use a transformation function
to derive lower dimensional features zi = g(xi) , where zi ∈ Rq,xi ∈ Rp, and q < p. In
order for this latent space to faithfully represent the input space, the relation of instances
in the latent space, should be similar to the instances in the input space.
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Definition 2 (Representability) We specify the similarity of two instances xj and xn

with the conditional probability

p(xj |xn) =
exp(−||xn − xj ||2/2σ2

n)∑
k ̸=n exp(−||xn − xk||2σ2

n)
, (2)

assuming a Gaussian distribution of data points with standard deviation σ (Van der Maaten
and Hinton (2008)). With this definition, we compare the conditional probabilities Pn =
p(xj |xn) and Qn = p(zj |zn), between input instances xj and their latent space activa-
tions zj. We, therefore, determine the Kullback-Leibler (KL) divergence between condi-
tional probabilities of one instance n, to all other N instances in the dataset. Notably,
KLPn=Qn(Pn||Qn) = 0 indicates that distribution Pn equals Qn. The sum of all KL diver-
gences is the concept representability

ϕc =
N∑

n

KL(p(xj |xn) ∥ p(zj |zn)) =
N∑

n

N∑

j

p(xj |xn) log
p(xj |xn)

p(zj |zn)
. (3)

Similarly, we determine how well the reconstructed concepts represent the input. In order
to make the M concepts comparable to the N input instances, we look for the nearest concept
of each input instance in the latent space in terms of the L2-Norm, argminx̂m

||g(xn) −
g(x̂m)||2. Hence, we obtain the reconstructed concepts in the input space, X̂ = {x̂1, ..., x̂N}.
We define the reconstructed concept representability as the sum of all KL divergences,

ϕcr =
N∑

n

KL(p(xj |xn) ∥ p(x̂j |x̂n)). (4)

Fig. 1 depicts the concept representability ϕc and the reconstructed concept repre-
sentability ϕcr. The input xn consist of two blue signals of class one and one red signal
of class two. Two concepts c1, c2 are derived from the latent space zn with k-means. The
red signal is reconstructed with c2. The two blue signals are closest to c1, and their re-
constructed concept is therefore equal. Hence, the similarity of the input signals is well
reflected by the concepts.

Figure 1: Example with three instances of two classes in red and blue. Two concepts have
been reconstructed from the latent space.
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4. Model-Agnostic Prototype Method

Our proposed method uses an autoencoder architecture, shown in Fig. 2, consisting of an
encoder function g(·) that maps each instance n onto a latent space zn ∈ Rq, and a decoder
function h(·) that transforms the latent space back to the original input space Rp. Using
the latent space of the training set, we infer the concepts C = {c1, ..., cM} with k-means
(k = M), where concepts are considered to be prototypes. A prototype enables the inference
of M reconstructed concepts through x̂m = h(cm), using cm within the latent space of the
model.

Our method is trained independently of the black box model and is therefore model-
agnostic. This not only enables to use any existing model without modifications, it also
enables to derive explanations for already trained models. Furthermore, we argue that
model-specific explanation methods, that access the activations of a hidden layer from a
trained black box model, infer worse reconstructions, as detailed information necessary for
the reconstruction is lost in the process of optimizing the weights for classification. Unlike
other autoencoder methods (Gee et al. (2019); Li et al. (2017)), we derive our concepts
directly from the latent space, i.e. the activations of the last encoder layer, instead of
optimizing the concepts during training. We also employ a similarity loss for the latent
space to diversify the concepts in Eq.7. In practice, this leads to more robust training,
faster convergence, and more meaningful concepts.

Figure 2: Model architecture used for the MAP explainer. Given a trained black box model,
we fit an autoencoder to reconstruct the input data and to recreate the output of the black
box model. The concepts are derived from the autoencoder latent space and are optimized
to be diverse.

During optimization of the autoencoder weights, we maximize the ability to reconstruct
both the input, and the exact prediction in terms of softmax outputs of the black box
model. To regularize the concepts, we also employ a similarity loss during training. For the
reconstruction loss, we use the mean-squared-error,

R(g, h,X) =
1

N

N∑

n=1

(xn − h (g(xn)))
2 . (5)
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For classification tasks the ability to reconstruct the model prediction, is measured via the
categorical-cross-entropy loss,

C(g, h, f,X) = −
N∑

n=1

(
argmax

ŷ
f(xn)

)
logf (h (g(xn))) . (6)

Diverse concepts are obtained by penalizing non-orthogonality between two different con-
cepts ci, cj ∈ C. Specifically, we define the similarity loss as the scaled sum of their inner
products (Yeh et al. (2020))

S(C) =

∑
i ̸=j c

T
i cj

M(M − 1)
, (7)

where the concepts are the cluster centers of the latent space, derived with k-means2. The
complete learning objective is given as follows. Notably yn is not required, which enables
an unsupervised training of model-agnostic prototypes,

L(g, h,X) = R(g, h,X) + λCC(g, h, f,X) + λSS(C). (8)

4.1. Model Structure

We use two different autoencoder structures (for full details, see appended code1), based
on an extensive sensitivity analysis, and relevant literature from Agarap (2018) and O’Shea
and Nash (2015). In this section, we first validate our model and show the effect of the
hyperparameters λC and λS in Section 4.2. For this task we use a three layer convolutional
autoencoder architecture with a 3x3 kernel and a filter size of 32, 64, and 1 for both the
encoder and the decoder. Additionally, both the encoder and decoder, use ReLU activations
in the first two layers, and a sigmoid activation in the last layer.

For the explanation of time-series classification, in Section 5 and 6, we use a one layer
encoder, L1-activity regularization and a normalized output. This means that our method
finds a linear mapping of the input signal to the concepts. Multivariate time-series are
flattened before the encoder. We set the hyperparameters to λC = 1 and λS = 1, and
monitor that all loss terms converge. Furthermore, we used a three layer neural network,
with 300 neurons per layer and a sigmoid activation in the second layer as a decoder.

For both autoencoders, we set the latent space size to five times the number of concepts
and use the ADAM optimizer. This enables all loss terms to converge, while keeping the
latent space small.

4.2. Model Validation

We validate our method by explaining a classifier, trained to predict whether an instance
of the MNIST dataset of handwritten digits (Deng (2012)) contains the digit ’three’. As a
classifier, we use a four layer neural network. Specifically, it consists of two convolutional
layers of size 32 and 64, followed by two fully connected layers of size 128 and 10. All layers
but the last use ReLU activations, where a softmax activation is used. In addition, we use
max pooling after the second layer, and 0.2 and 0.4 dropout after the last two layers. The
classifier is trained with the ADAM optimizer, achieving an accuracy of 99.8%.

2. In practice, this means that k-means is applied on each batch during training.
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Ten model-agnostic prototypes (M = 10) were reconstructed, shown in Fig. 3, with
different hyperparameters λC and λS . These prototypes, were manually sorted. The pro-
totypes, calculated with λC = 1 and λS = 1, manage to represent all digits in the dataset,
except for an overlap of digits ’four’ and ’nine’. Without similarity loss (λS = 0), there are
two concepts for the digit ’one’, an overlap in the digits ’five’ and ’nine’, and digit ’four’
is missing. Without classification loss (λC = 0), all numbers are represented with lower
reconstruction performance compared to the first row. Finally, the effect of setting both
hyperparameters to 0 is shown (λC = 0 and λS = 0). This means the reconstructions are
blurry, the number ’eight’ is missing, and the number ’one’ occurs twice. With this simple
example, we demonstrate the effectiveness of our model on an easily interpretable and well
known dataset. The same approach will be applied to time-series classification problems,
which are harder to interpret for humans.

Figure 3: Validation of our MAP method using MNIST with and without similarity and
classification losses, with M=10. The black box model was trained to classify whether an
image contains the digit ’three’.

class 1 class 2

λS=1
λC=1

λS=0
λC=1

λS=1
λC=0

λS=0
λC=0

5. Methodology

5.1. Modeling Methodology

We conduct a quantitative analysis on 12 datasets and a human user study, where we assess
two of the datasets qualitatively. The selection of the datasets is based on signals frequently
used in safety critical applications. We derive 11 of the datasets from the UCR archive Dau
et al. (2019) and create one artificial dataset on our own. We address details for the human
user study and the experimental methods in Section 5.2. The results of the quantitative
analysis and a human user study, are reported in Section 6.1 and Section 6.2, respectively.
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5.2. Human User Study3

We analyze the suitability of the three different methods in the context of safety critical
applications empirically, with one survey1 per method. For each survey, participants labeled
15 instances from two different datasets. These 15 instances were drawn randomly from
the dataset to ensure fair comparison. To choose the right label, participants were given
the concept explanations for each class in the dataset. Out of all correct answers, we then
calculated the concept receptivity, as described in Eq. 1.

Participants. Our study was distributed within our research community, collecting a
total of 3480 answers from 75 students and research staff working in the field of safety
critical applications. The bias, introduced due to sampling in this research community, is
intentional in order to optimize the models towards their future users. In the beginning of
the survey, participants were asked to indicate whether they have prior knowledge in the
field of machine learning. People who answered positively to this question were classified
as typical developers of ML methods, and people who answered negatively to this question
were classified as potential users of explanations in safety-critical system application.

Validating Responses. We applied two filtering criteria to eliminate non-reliable or biased
answers. While people were allowed to fill in more than one survey, we only took into account
the first survey for each person for the main results. This is to remove positively skewed
responses resulting from familiarizing with the datasets, further discussed in the results.
Additionally, we eliminated participants scoring worse than random, i.e. with less than 15
out of 30 correct answers. In total, 2190 answers from 73 participants were analyzed.

Datasets. For the survey, we selected two distinct datasets containing scaled signals of
electrical activity and sensor data measured in Volt.

1. ECG200: We use the ECG200 (Olszewski (2001)) dataset from the UCR archive (Dau
et al. (2019)) containing data of electrical activity measured during one heartbeat. Specif-
ically, the latter part of a heart beat is shown in the signal, starting after the peak point
R. The characteristic properties of a normal heart beat (class 1) compared to an ischemic
heart beat (class 2) are the high peak point R and the limited recovery time from its
minimum S to T. We show a scaled reconstruction of the ground truth in Fig. 4 together
with the characteristic points R, S, T, and U.

2. Artificial Dataset: Furthermore, we created an artificial dataset, reproducing signals
from machine sensors in a noisy environment.In particular, we used four basic time-series
shapes, shown in the ground truth signals Fig. 5, and added multiplicative and additive
noise with an amplitude of 0 to 1.1, drawn from a uniform distribution.

Black Box Model. We used a Fully Convolutional neural Network (FCN) (Fawaz et al.
(2019)) to classify the signals. It consists of three convolutional layers with 128, 256, and
128 filters of kernel size 8, 5, and 3. The first two layers use ReLU activation and batch
normalization. The last layer’s output is globally averaged and fed into a softmax activation.

3. The study was conducted in compliance with the CERN (2022) Data Privacy Protection Policy and the
CERN (2010) Code of Conduct.
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Explanation Methods. We compare our MAP explanation method, described in Sec-
tion 4, with two addition concepts explanation methods. Their implementation details are
stated below. The number of concepts is set to two times the number of classes in all
datasets M = 4, which allows all loss terms to converge. We also tried to keep the number
of concepts low and even to improve the simplicity of our survey.

1. Explanation-By-Example (EBE): First, we used the idea of instance explanation-by-
example methods (Jeyakumar et al. (2020); Papernot and McDaniel (2018)) to implement
a global explanation method. Namely, we split the FCN into an encoder g(·) and a
predictor, at the last convolutional layer. We then calculate the k-means cluster centers
of the activations g(xn). The instance with the closest euclidean distance to each cluster
center was then used as a global explanation-by-example.

2. Model-Specific Prototypes (MSP): We implemented the model-specific prototype
method from Gee et al. (2019). This method also learns prototypes from the output
of an encoder. A softmax classifier then uses the distance of the encoder output to all
prototypes for classification. Finally, the learned prototypes are reconstructed with a
decoder. In addition to the cross-entropy loss and the reconstruction loss, the authors
introduce a prototype diversity loss as a learning objective. As the method is model-
specific, we used the convolutional layers of the FCN as an encoder on top of a fully
connected layer with 20 neurons as an encoder g(·). Similar to our MAP model we used
a three layer fully connected neural network, with 300 neurons per layer and a sigmoid
activation function in the second layer as a decoder h(·). Similarly to the paper (Gee
et al. (2019)), the predictor consists of a softmax layer, where decisions are inferred from
the distance of input instances to the learned prototypes. All hyperparameters were
taken from the original paper, after performing a detailed sensitivity analysis.

Training Stability. While the training of the FCN already converged after 200 epochs,
we trained both autoencoder methods for 1500 epochs to ensure convergence of all regular-
ization terms. We ensured that none of the models was stuck in local minimum, by training
each model five times and selecting the one with the lowest overall loss.

Study Significance. Confidence intervals are calculated using the binomial
proportion (Brown et al. (2001)) p̂ ± z

√
(p̂(1− p̂))/n, where p̂ is the proportion of suc-

cesses in a binomial trial, i.e. the amount of all correctly classified instances divided by the
amount of all classification samples n. Here, z is the quantile of a standard normal distri-
bution 1 − α/2, where α is the target error rate. This means that for our 95% confidence
interval α = 0.5 and z = 1.96.

6. Results

6.1. Modeling Results

The quantitative modeling results of EBE, MSP, and MAP are shown in Table 1. Based
on the definitions given in Section 3, the classification accuracy, the concept representabil-
ity, and the reconstructed concept representability are shown by the mean and standard
deviation (in brackets) over five training runs.

The EBE & MAP methods, use the same FCN classifier for the prediction of the classes.
This FCN classifier is trained only with the cross-entropy loss, without a specific loss for
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Table 1: Concept properties of EBE, MSP and our MAP. The model accuracy (higher
scores are better), the representabilities (lower scores are better) are given by the mean of
five independent training runs with standard deviation in brackets. The accuracy of EBE
and MAP is equal, as they use the same FCN classifier for prediction.

Dataset Model Accuracy [%] Concept Representability Reconstructed Concept Representability
FCN(ours) MSP EBE MSP MAP(ours) EBE MSP MAP(ours)

ECG200 84.0(0.8) 79.7(10.8) 2.3(0.1) 2.1(1.1) 0.2(0.1) 8.1(4.6) 5.8(2.4) 0.6(0.1)
Artificial data 99.9(0.1) 93.6(17.7) 15.7(0.7) 15.7(4.8) 7.8(0.8) 4.7(2.7) 4.7(0.9) 4.3(1.8)

ACSF1 85.9(2.5) 85.9(3.1) 1.0(0.2) 1.4(0.1) 0.5(0.1) 1.8(0.9) 2.8(1.9) 1.2(0.2)
Computers 83.5(2.0) 73.8(11.0) 6.0(0.9) 12.0(4.8) 1.5(0.2) 2.1(0.0) 13.2(0.5) 9.3(1.0)
ECG5000 92.9(0.2) 92.7(0.7) 3.9(0.2) 13.0(1.5) 2.0(0.3) 8.9(0.3) 5.6(1.3) 6.3(0.5)
LargeKitchenAppliances 86.9(0.6) 89.4(1.2) 9.5(0.5) 15.5(0.3) 1.3(0.5) 15.5(1.2) 11.8(2.5) 9.1(0.4)
PowerCons 91.9(0.8) 78.7(19.1) 2.7(0.1) 4.7(2.2) 1.2(0.2) 9.6(1.5) 5.3(2.6) 7.4(1.7)
RefrigerationDevices 50.1(1.8) 50.3(3.1) 5.4(0.3) 11.5(0.7) 4.1(1.0) 12.6(0.6) 14.2(1.0) 18.3(1.4)
ScreenType 61.8(1.8) 62.1(2.4) 5.0(0.2) 10.9(0.9) 1.8(0.2) 7.2(0.8) 14.7(2.9) 12.4(1.1)
SmallKitchenAppliances 78.5(1.2) 74.7(3.3) 8.8(0.3) 14.9(1.0) 1.5(0.7) 13.3(0.1) 18.6(0.8) 15.5(0.6)
Plane 99.4(1.1) 95.6(7.7) 0.4(0.1) 0.9(0.8) 0.2(0.1) 1.0(0.3) 2.8(1.9) 0.9(0.5)
Trace 100.0(0.0) 100.0(0.0) 1.2(0.0) 1.9(0.1) 0.1(0.0) 2.6(0.9) 2.0(0.2) 0.9(0.2)

Win 9 5 0 0 12 4 2 6

explanation. The MSP method is trained to classify and explain at the same time. As a
result of this combined objective, the model does not always converge to the global minimum
of the cost function. This effect is also observed in the Artificial data, the Computers, the
PowerCons, and the Plane dataset, where the standard deviation of the MSP is much
higher compared to the standard deviation of the FCN. If the MSP does converge, then it
reaches similar results compared to the FCN. In case of the LargeKitchenAppliances, the
ScreenType, and the SmallKitchenAppliances datasets, the mean accuracies of MSP are
even higher compared to the FCN mean accuracy.

The MAP reaches the highest concept representability in all cases. This shows that the
distribution of the latent space is representing the input distribution most accurately for the
MAP. While the MAP derives the latent space with a linear transformation, the decoder
is still able to identify the correct concepts. This can be seen in the high reconstructed
concept representability, where the MAP achieves best results for six datasets. The recon-
structed concept representability of EBE is highest in four datasets. The similarity between
input instances and explanation-by-example concepts is more similar for EBE compared to
prototypes of MSP and MAP, where unimportant information, e.g. noise, is filtered out.

We further obtained the true reconstructed concept representability on the artificial
dataset, where the ground truth is available. Here, we used the ground truth signal of each
input instance as a concept. For this case we obtain a reconstructed concept representability
of 3.7, while MSP and EBE reaches 4.7, and MAP reaches 4.3. Looking at Figure 5,
the prototypes of MAP are closest to the ground truth, which validates the performance
measure.

6.2. Human User Study Results

The results of the study including 73 Participants which classified a total of 2190 instances
are presented in Table 2. Analyzing the answers of all participants from both datasets, our
MAP method, showed the best results with 79.3% correct answers. This observation is valid
also when taking into account the non-overlapping confidence intervals. When looking at
the same quantity for individual datasets, one can observe a similar trend.
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Figure 4: Ground truth and explanation of the ECG200 (Olszewski (2001)) dataset, showing
the latter part of a heart beat, starting before the peak R. For each class, two concepts were
extracted with different explanation methods.
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Figure 5: Explanations of artificially created dataset with two concepts per class, extracted
from different explanation methods. The ground truth signal shows the four shapes within
the dataset, to which multiplicative and additive noise with an amplitude of 0 to 1.1, drawn
from a uniform distribution, was added.

Ground truth EBE MSP MAP (ours)

C
la
ss

1

0 50 100
−0.5

0.0

0.5

1.0

1.5

V
ol
ta
ge

/a
.u
.

0 50 100
−0.5

0.0

0.5

1.0

1.5

0 50 100
−0.5

0.0

0.5

1.0

1.5

0 50 100
−0.5

0.0

0.5

1.0

1.5

C
la
ss

2

0 50 100
−0.5

0.0

0.5

1.0

1.5

Time /s

V
ol
ta
ge

/a
.u
.

0 50 100
−0.5

0.0

0.5

1.0

1.5

Time /s

0 50 100
−0.5

0.0

0.5

1.0

1.5

Time /s

0 50 100
−0.5

0.0

0.5

1.0

1.5

Time /s

In the artificial dataset, EBE was preferred by users over other methods. When con-
sidering Fig. 5, one would not expect this, as it seems that EBE is the most distinct from
the ground truth signal. However, possibly participants not familiar with machine learning,
were not able to establish the link between the pattern in the abstract concepts and the
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Table 2: Results of the study comparing global EBE, MSP and our MAP. 73 Participants
classified a total of 2190 instances, given the reconstructed concepts x̂ and their labels ŷ.
The classification accuracy denotes their receptivity r (see Eq. 1) for the calculated concepts
and is shown with the 95% confidence interval for a binomial proportion.

Participants Method ECG200 [%] Artificial data [%] Total [%]

EBE 65.6 ± 6.7 79.0 ± 5.7 72.3 ± 4.4
Developer MSP 64.4 ± 8.1 74.1 ± 7.4 69.3 ± 5.5

MAP (ours) 74.8 ± 5.2 84.8 ± 4.3 79.8 ± 3.4

EBE 71.3 ± 7.3 80.0 ± 6.4 75.7 ± 4.9
User MSP 64.3 ± 6.5 67.6 ± 6.3 66.0 ± 4.5

MAP (ours) 77.8 ± 7.0 78.5 ± 6.9 78.1 ± 5.0

EBE 68.1 ± 4.1 79.4 ± 3.1 73.8 ± 2.4
All participants MSP 64.3 ± 4.0 70.1 ± 3.2 67.2 ± 2.4

MAP (ours) 75.8 ± 3.6 82.7 ± 2.9 79.3 ± 2.2

time-series instances. Looking at the performance of the MAP method on the artificial
dataset, prototypes that did not fit the shape of the ground truth, appear to be confusing
for the users.

For the ECG200 dataset, developers and users were able to generalize best using our
method with 74.8% and 77.8% correct answers, respectively. Looking at the class 2 signal
in Fig. 4, the characteristic features of ischemic heartbeat signals are represented well by
the derived concept. Specifically, the low amplitude in the spike R and the long recovery
time from the points S to T is visualized, while showing much less noise than the other
methods. A trend of developers giving worse results than users is visible, suggesting that
developers are not necessarily able to generalize better than users utilizing concept-based
explanations.

We further evaluated the effect of our filtering criteria (see Section 5.2), by looking at the
results of the 1170 dropped answers from 39 participants who filled out more than one survey.
Here, the learning effect outweighed the decision fatigue, as the performance increased on
average by 6.8% for ECG200 and 5.1% for the artificial dataset in later attempts.

7. Conclusion

The quality of global, and model-agnostic concept explanation techniques is a key factor
to help experts in safety critical domains gaining trust in predictions made by machine
learning models. We demonstrated that our provided model-agnostic method fulfills these
requirements by providing accurate and complete explanations, independent of the weight
initialization or the concept numbers. We assessed the quality of our explanations quanti-
tatively with 12 datasets, containing data common in safety critical applications. On two
datasets, we further performed a human user study across 75 participants with, 2190 vali-
dated answers. The conducted survey showed that our proposed method helped participants
to generalize explanations for classification tasks on time-series data across all datasets and
target audiences. Specifically, participants reached 79.3% correct answers on average us-
ing our method, while reaching only 73.8% with explanation-by-example and 67.2% with
model-specific prototypes. In the case of the artificial dataset, the prototype explanations
show a significant visual discrepancy with respect to the signals presented in the survey,
possibly leading to better results of the explanation-by-example method. In our domain,
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i.e. predicting failures in particle accelerators, explanations are expected to be interpreted
by domain experts. This makes the explanation by model-agnostic prototypes the preferred
option in general, with explanation-by-example representing a valid alternative if prototypes
become too abstract.

8. Future Work

Our future work will focus on the application of the proposed method to predict failures
in superconducting electrical circuits in CERN’s Large Hadron Collider (LHC Wenninger
(2016)). The circuit data collected during several years of successful operation enables the
use of data-driven methods to help experts find anomalies in the behavior of superconduct-
ing circuits and potentially also of protection systems. Our model-agnostic explanation
technique will help in explaining existing deep learning models to system experts with no
machine learning background. This will enable faster and more accurate fault diagnostics
and optimized maintenance actions, further increasing safety and availability of the LHC. In
addition, improvements of our method will aim at making more tailored variants of our ex-
planation. Particularly, we plan to use Fourier analysis to correctly address the complexity
of the behavior of superconducting circuits in the frequency domain.
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Pernkopf, Emmanuele Ravaioli, Arjan Verweij, Daniel Wollmann, and Mariusz Wozniak

Abstract—CERN’s Large Hadron Collider (LHC) with its
eight superconducting main dipole circuits has been in operation
for over a decade. During this time, relevant operational
parameters of the circuits, including circuit current, voltages
across magnets and their coils, and current to ground, have been
recorded. These data allow for a comprehensive analysis of the
circuit characteristics, the interaction between their components,
and their variation over time. Such insights are essential to
understand the state of health of the circuits and to detect and
react to hardware fatigue and degradation at an early stage.

In this work, a systematic approach is presented to better
understand the behavior of the main LHC dipole circuits
following fast power aborts. Non-negative Matrix Factorization
is used to model the recorded frequency spectra as common
sub-spectra, by decomposing the recorded data as a linear
combination of basis vectors, which are then related to hardware
properties. The loss in reconstructing the recorded frequency
spectra allows to distinguish between normal and abnormal
magnet behavior. In the case of abnormal behavior, the analysis
of the sub-spectra properties enables to infer possible hardware
issues. Following this approach, five dipole magnets with
abnormal behavior were identified, of which one was confirmed
to be damaged. As three of the other four identified magnets
share similar sub-spectra characteristics, they are also treated
as potentially critical. These results are essential for preparing
targeted magnet measurements and may lead to preventive
replacements.

Index Terms—Large Hadron Collider, Quench Protection,
Non-negative Matrix Factorization, Machine Learning

I. INTRODUCTION

THE LHC is the world’s highest energy particle
accelerator, relying on 1232 superconducting main dipole

magnets to bend the high-energy particle beams along its
circumference. These dipole magnets are powered through
eight separate circuits of 154 magnets each. To reach the
nominal field of 8.0 T and a current of 11.85 kA, each
magnet is cooled down to 1.9 K with superfluid helium. At
this temperature, the magnet is superconducting. A resistive
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Fig. 1. Schematic view of the main dipole circuit, including the Power
Converter (PC), the Crowbar (CB) and the Current Leads (CL). The Quench
Detection System (QDS) triggers a Fast Power Abort (FPA), which deactivates
the PC and activates the energy extraction systems. Furthermore, it triggers
the discharge of the quench heaters (QH) in the respective magnet, if a
quench is detected. The two Energy Extraction systems EE1 and EE2 consist
of a switch SEE, and an Energy Extraction Resistance REE. The circuit is
grounded at the center of the resistor REE in the EE2 system. The magnet with
inductance LM and the by-pass Diode D with a Parallel Resistance RP are
in a liquid helium cryostat. Magnets are labeled by their Physical position (P)
from the left to the right. The Electrical positions (E) are counted clockwise
along the electrical connection starting from the PC. The numbering shown
here is representing the circuits in sectors 12, 34, 56, and 78. In sectors 23,
45, 67, and 81 the electrical labels are inverted, as the PC is on the left side
of the circuit.

transition in a superconducting magnet, also called quench,
results in local heating in the superconducting cables and
high voltage transients in the magnet, which can possibly
damage the magnet if not appropriately managed. In case of a
quench or other powering failures in the circuits, a system of
protection elements is in place to safely dissipate the energy in
the quenched magnets and extract the remaining energy from
the circuit [1]. This process is referred to as a Fast Power
Abort (FPA) event. To better understand the data recorded
during a FPA event, the LHC main dipole circuits and their
protection system are explained in more detail below.

Figure 1 shows a schematic view of a main dipole
circuit with its 154 magnets, each represented by a magnet
inductance LM [2]. For this analysis, the magnets are counted
along their physical position from the left to the right or
clockwise along the electrical connection starting from the
Power Converter (PC). In case the PC is switched off, the
current I circulating in the circuit by-passes the PC via the
Crowbar (CB). The Current Leads (CL) indicate the transition
between the cold superconducting part of the circuit and the
warm, normal conducting part of the circuit.

The protection system includes a Quench Detection
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Fig. 2. Voltages UM across the 154 main dipole magnets of sector 78
following a quench in the magnet with the electrical position 141 on
31.03.2021 with its different phases: a) the FPA is triggered at 0 s, the QHs
for magnet 141 are activated, and the PC is deactivated; b) after around 0.03 s
the by-pass diode of the quenched magnet becomes conductive; c) the first
Energy Extraction system EE1 is activated about 0.1 s after the FPA trigger;
d) the second Energy Extraction system EE2 is activated approximately 0.5 s
after the first one. The blue curve shows the voltage across the quenched
magnet, while the remaining curves represent the voltages across the other
153 magnets of the circuit. The voltage signals of one of the analyzed plateaus
are shown in the magnified view on the right top corner.

System (QDS), which detects a quench and triggers the
appropriate protection actions [3], [4]. Upon the detection of
a quench in a dipole magnet, the PC is switched off and the
Quench Heaters (QH) of this magnet are activated. QHs are
resistive strips attached to the outer surface of each magnet
coil [5]. They ensure protection by distributing the magnet’s
stored energy more uniformly over the quenched magnet
windings [6]. The by-pass Diode D diverts current from the
quenched magnet. This restricts the quenching magnet to
only absorb its stored magnetic energy, not the energy of the
entire circuit. The Parallel Resistance RP installed across each
magnet, smoothens transient voltages during this process [7].
To avoid the circuit’s energy to solely discharge in the diode
of the quenched magnet, the switches SEE in both Energy
Extraction (EE) systems are sequentially activated [8]. They
direct the circuit current towards the Resistances REE, which
extracts the circuit’s energy within around 300 s. The voltages
UM measured over the 154 magnets during a FPA event are
shown in Fig. 2. These signals are voltage transients that
contain information about the behavior of the electrical circuit
and its components [9].

A quench is a routine occurrence, during training
periods aimed at increasing the peak magnetic field
in the superconducting magnets [10], and rarely occurs
during operation. Once a quench emerges, it is frequently
accompanied by secondary quenches. Secondary quenches
result from electromagnetic perturbations milliseconds after
the initial quench [2] or from thermal propagation in the
helium tens of seconds later [11]. Following a quench or a
secondary quench, the magnet is exposed to local heating,
high voltages, and thermal expansion, depending on the
circuit’s energy level [12]. The magnets are designed with
additional margins for this case, but defects can still occur.
Certain hardware failures in the superconducting circuits

can notably impact the availability of the LHC, potentially
resulting in months of downtime. The understanding of normal
and abnormal circuit dynamics helps to ensure safe quench
mitigation and to detect precursors of hardware failures,
allowing to schedule preventive maintenance.

To better understand the circuit dynamics, local frequency
responses of selected main dipole magnets have been measured
and evaluated [13], [14]. FPA events have been deliberately
triggered in all main dipole circuits to better understand
the voltage transients in the circuits in the absence of
a quench [15]. The main dipole circuits have also been
extensively studied with electrical simulations with Simulation
of Transient Effects in Accelerator Magnets (STEAM)
framework [16], [17].

While these simulations account for much of the circuit’s
behavior and measurements, some aspects - such as the voltage
transients observed in the magnified view of Fig. 2 following
activation of the EE systems - cannot be captured entirely
by simulation. In this time window, secondary quenches
frequently occur due to electromagnetic perturbations [2]. A
better understanding of the circuit behavior, and in particular
the voltage transients after triggering the EE systems, allows
the development of mitigation strategies to reduce the number
of these electromagnetically induced quenches and the risk
associated with them.

The presented research aims to provide insights into the
propagation and physical process explaining the observed
frequency spectra of the magnet voltage after activation of the
EE systems. Normal and abnormal behavior in these frequency
spectra is detected and characterized.

The detection of normal and abnormal behavior and their
associated physical processes is carried out by Non-negative
Matrix Factorization (NMF). The choice of NMF is motivated
by recent successful applications of data-driven models to
predict quenches [18], to classify QH failures [19], or to model
the voltage across magnets [20].

NMF aims at providing interpretable results, as the lack
of interpretability is a frequent criticism to other data-driven
methods [21], [22]. The method was originally used to
decompose pictures of human faces into coherent components
like eyes, mouth etc. [23]. The decomposed components are
additive and are therefore easy to understand by humans.
NMF has been successfully applied to discover molecular
patterns in genes [24], to separate different sources of a
mixed acoustic signal [25], and to derive properties of galaxies
from astronomical observations [26]. In the context of this
research, NMF is used to decompose the frequency spectra
of the voltages recorded in the LHC’s main dipole circuits
during FPA events (see Fig. 2) and understand the physical
processes causing them. The loss introduced by the frequency
decomposition for each FPA event allows detecting and
interpreting abnormal behavior in the circuits.

The remainder of the paper is structured as follows. In
Section II, an overview of NMF within the context of this
study is given. In Section III, the results are presented by
showing possible causal relationships between the distinct
frequencies in the circuit and the circuit hardware. In
addition, five abnormal FPA events are highlighted, and their
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characteristic frequencies are interpreted. In Section III-E,
the risk of abnormal FPA events for the different hardware
components of the machine is elaborated. Finally, Section IV
summarizes the results.

II. METHODOLOGY

A. Available Data and Preprocessing

This subsection explains the selection and pre-processing of
the measured voltage signals. After the FPA is triggered (point
a. in Fig. 2), the first EE system is activated 0.1 s later (Fig. 2
b.). The second EE system is activated after further 0.5 s
(Fig. 2 d.). The two periods analyzed in this study are the two
voltage plateaus [0.2; 0.575] and [0.7; 1.075] seconds after the
triggering of the FPA. These were chosen because the observed
frequency spectra in the magnet voltages are not reconstructed
by the existing simulation models, which are based on the
current knowledge of the circuit’s behaviour. Each of these
plateaus covers P = 154 voltage signals recorded with a
sampling rate of 1068 Hz over a length of 0.375 s.

All data used for this study have been recorded after
2017, as the activation times of the EE systems have been
kept unchanged since then. In total Q = 699 distinct FPA
events have been used. These events are split into three
categories: 48 events do not contain a quench, 494 events
contain a single quench of one magnet in the circuit, and
157 events contain at least one secondary quench due to
electromagnetic perturbations. The frequency spectra of the
latter events deviate strongly from the others, therefore, only
the 48 events without a quench and the 494 events with a single
quench are compared to derive anomalies in Subsection II-E.
In contrary, the spectral components of all Q = 699 events
are interpreted in Subsection II-D. Secondary quenches due to
thermal propagation in the helium do not affect the frequency
spectra in the voltage plateaus, as they occur at a later stage.
Events with those secondary quenches are treated like events
with a single quench.

The 699 events with voltage signals from 154 magnets
for each of the two plateaus after the activation of the
EE systems yield a total of M = 2 · P · Q =
215292 distinct voltage signals. Each of these M =
215292 voltage signals is transformed into a frequency
spectrum with N = 200 data points via a Fast Fourier
Transformation (FFT), an efficient algorithm for computing
the discrete Fourier transform [27]. The Nyquist criterion
allows showing frequencies of up to 534 Hz [28]. In order
to mitigate spectral leakage seven window functions including
a window-specific amplitude correction are compared. The
window functions are: Rectangular, Hanning, Hamming,
Bartlett, Blackman, Flat-top, and Tukey [29]. An exponential
trend x̄ of the form

x̄ = Ae−t/τ + C, (1)

is fitted with least squares [30] and subtracted from each
individual voltage signal x with timestamps t. A corresponds
to the amplitude of the decay, τ to the decay’s time constant,
and C to the offset. This exponential trend, which is best
visible in the voltage signal with the highest amplitude in the

(a) V (b) W (c) H
Fig. 3. Example of the NMF decomposition V ≈ WH. In this example,
M = 3 frequency spectra with N = 30 data points are approximated
with K = 2 spectral components. The color spectrum indicates the voltage
amplitudes and ranges from black 0 to white 1. The vertical index count i
starts at the bottom.

magnified view of Fig. 2, corresponds to non-linear effects in
the magnets [2]. Applying these pre-processing steps yields
a dataset composed of M frequency spectra from Q FPA
events, with N data points in each frequency spectrum that
is processed by NMF.

B. Non-negative Matrix Factorization

Using N and M defined above, let V be the input matrix,
with entries vi,j for i = 1, .., N and j = 1, ..,M . NMF
decomposes the N ×M matrix V into a product of a N ×K
matrix W and a K ×M matrix H such that:

V ≈WH. (2)

Here, W represents the spectral components and H their
weights. The parameter K defines the number of spectral
components. All elements wi,k and hk,j of the matrices W and
H are constrained to be non-negative, leading to the additive
nature of the NMF decomposition [23].

Figure 3 illustrates this behavior for a simplified example:
the K = 2 spectral components can be added to reconstruct
the M = 3 frequency spectra. For simplicity, the shorthand
representation ”:” is used to identify all entries from one
dimension, e.g. [W]i=[1,..,N ],k=1 = w:,1. The two spectral
components w:,1 and w:,2, have their maximum of 1 at i = 2
and i = 20, respectively.

Optimizing W and H involves minimizing an element-wise
similarity metric d∗(·) between the input vi,j and the
reconstructed input v̂i,j =

∑K
k wi,khk,j . Three widely used

similarity metrics are:
1) Squared Eucleadian (Eu) distance [31]:

dEu(vi,j , v̂i,j) = ∥vi,j − v̂i,j∥2 (3)

2) Generalized Kullback-Leibler (KL) divergence [32]:

dKL(vi,j , v̂i,j) = vi,j log
vi,j
v̂i,j
− vi,j + v̂i,j (4)
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Fig. 4. The Squared Eucleadian (Eu) distance, the Generalized
Kullback-Leibler (KL) divergence, and the Itakura-Saito (IS) divergence as
a function of v̂i,j , assuming vi,j = 1.

3) Itakura-Saito (IS) divergence [33]:

dIS(vi,j , v̂i,j) =
vi,j
v̂i,j
− log

vi,j
v̂i,j
− 1 (5)

Figure 4 shows the three metrics as a function of v̂i,j
with vi,j = 1. The Eu-distance squares the absolute
difference, demonstrated by this example: dEu(1, 2) =
dEu(100, 101). Figure 4 (Eu) therefore shows a quadratic
function, equally sensitive to v̂i,j greater or less than one.
The KL-divergence reflects the relative entropy, corresponding
to the energy in a system. This causes an increased
sensitivity for under-estimation and a decreased sensitivity for
over-estimation of the reconstruction v̂i,j [32]. This is reflected
in Fig. 4 (KL) by a larger distance metric for v̂i,j < 1 as
compared to v̂i,j > 1. The IS-divergence is scale-invariant [34]
as it compares relative differences, illustrated by dIS(1, 2) =
dIS(100, 200). The effect of sensitivity observed for the
KL-divergence is amplified for the IS-divergence, as is visible
in Fig. 4 (IS) [33]. The advantages and weaknesses of these
properties will be discussed in Section III-A. Using d∗(·), the
reconstruction loss is obtained by

∑N
i

∑M
j d∗(vi,j , v̂i,j).

All values of W and H are initialized with
average non-negative double Singular Value
Decomposition (SVD) [35]. The term ”double” is derived
from the use of SVD in approximating both matrices W and
H. This method leads to faster convergence and more robust
spectral components compared to random initialization. Any
zero values derived by SVD are replaced by the global
average of V as they would otherwise remain at zero during
the consecutive multiplicative updates. These multiplicative
updates of wi,k and hk,j are specific to each of the three
similarity measures [25]:

4) Squared Eucleadian (Eu) distance:

wi,k ← wi,k

∑
j vi,jhk,j∑
j v̂i,jhk,j

, hk,j ← hk,j

∑
i vi,jwi,k∑
i v̂i,jwi,k

(6)

5) Generalized Kullback-Leibler (KL) divergence:

wi,k ← wi,k

∑
j

vi,j
v̂i,j

hk,j∑
j hk,j

, hk,j ← hk,j

∑
i
vi,j
v̂i,j

wi,k∑
i wi,k

(7)

6) Itakura-Saito (IS-divergence) divergence:

wi,k ← wi,k

√√√√
∑

j
vi,j

v̂i,j

hi,j

v̂i,j∑
j

hi,j

v̂i,j

, hi,k ← hi,k

√√√√
∑

i
vi,j
v̂i,j

wi,j

v̂i,j∑
i
wi,j

v̂i,j

, (8)

No NMF regularization [36], [37] is applied to avoid the risk
of regularizing spectral components with small amplitudes and
to minimize the number of parameters to be optimized that
would unavoidably be added with regularization.

C. Spectral Component Identification

In this subsection the methodology to derive the final
spectral components W, their number K, and their
corresponding weights H is described. 19 different numbers
of spectral components are investigated (K = 2, ..., 20).
The exact spectral components to which the NMF algorithm
converges, also depend on the choice of the three distance
measures from Eq. 3-5, and the seven types of distinct
window functions. All three parameters are referred to as
hyperparameters in the remainder of this paper. In total, 399
possible combinations of parameters exist.

The number of spectral components K determines the
resolution of the factorization. Choosing a larger K results
in a reduced reconstruction loss. However, in the context of
this project, separating the measured frequency spectra into
common spectral components aims at representing different
physical processes. Hence, more spectral components are
only desirable if they can be mapped to separate physical
processes. Ideally, one physical process should be represented
by one spectral component. To choose K accordingly, an
additional performance measure is introduced, based on prior
research [39], [40].

This performance measure calculates the mean pairwise
Chebyshev distance between column pairs of spectral
components and column pairs of their weights. The Chebyshev
distance shows the maximum value of the absolute differences
between two vectors [38]. For the spectral components, the
average Chebyshev distance over all (K−1)! possible pairs of
spectral components is used as the performance measure d̄Ch.
An example to calculate d̄Ch for the spectral components in
Fig. 3b is shown below.

w:,1 w:,2 w:,1 w:,2 wnew
:,1

i = 20 1 0 0 1 0

i = 2 0 1 1 0 1
d̄Ch = 1 d̄ new

Ch = 1+1+0
3 = 2

3

Since W has only two columns, there is one possible column
pair of spectral components, resulting in d̄Ch = max(|w:,1 −
w:,2|) = 1. If the columns in Fig. 3b are subtracted, this
is evident as their absolute difference is w2,1 = w20,2 = 1.
Suppose K is increased by one, and the additional component
wnew

:,1 , happens to be identical to w:,1. In this case wnew
:,1

represents the same physical process as w:,1. Consequently,
max(|w:,1 − wnew

:,1 |) is zero, leading to a decreased d̄ new
Ch on

the right side of the example calculation above. This example
shows that adding more spectral components K, which are
not expected to come from different physical processes, gets
penalized by the introduced performance metric.
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The performance measure is derived similarly for the
spectral component weights H in Fig. 3c:

h:,1 h:,3 h:,3 h:,1 h:,3 h:,3

k = 1 1 1 0 0.5 0.5 0
k = 2 1 0 1 1 0 1

knew = 1 − − − 0.5 0.5 0

d̄Ch = 1+1+1
3 = 1 d̄ new

Ch = 1+1+0.5
3 = 5

6

For the existing H in Fig. 3c this is shown on the left side of
the example calculation. There are three possible column pairs
where the Chebyshev distance of e.g. the first column pair is
calculated by max(|h:,1−h:,3|) = 1. If the spectral component
wnew

:,1 is added, the spectral component weights are adjusted to
obtain the same reconstructions. This is illustrated by the right
side of the example calculation above. The Chebyshev distance
of max(|h:,1 − h:,3|) is reduced to 0.5, affecting the average
d̄ new
Ch = 5

6 accordingly. Again, the performance measure
indicates that K should not be increased. For computational
efficiency, this performance metric is not evaluated for all
(M − 1)! combinations of M = 215292 frequency spectra,
but for M∗ = 1000 randomly chosen frequency spectra. In
addition to the performance metric, the final choice of spectral
components is based on manual inspection of the identified
components. This will be discussed in Subsection III-A.

D. Spectral Component Interpretation

This subsection describes the method of identifying the
physical process behind a spectral component. For this
purpose, the location of the maximum, the average of the
maximum amplitude, and the weight propagation of the
spectral components are analyzed and discussed. These allow
relating a spectral component to hardware behavior in the LHC
main dipole circuits [41].

For each FPA event q, the location of the maximum is
defined as the magnet position with the highest of the P = 154
weights of a spectral component k. The average weight at
this position over a selection of FPA events is defined as the
average maximum amplitude. A distinction is made between
maxima near the quenched magnet, the PC, or the two EE
systems.

From the magnet position at which the maximum occurs,
the spectral component can propagate to its physical or
electrical neighbors. This results from the fact that physical
magnet neighbors can experience electromagnetic coupling
due to gaseous helium flow between adjacent cryostats, or
instrumentation cables and other equipment being installed in
their close vicinity, even if they are not directly electrically
connected. The magnets are therefore labeled both in their
physical and electrical order (see Fig. 1).

The type and direction of the propagation give insight into
the mutual interaction of circuit components during a FPA. A
distinction is made between the following propagation types:

• Propagation along the electrical position of the circuit:
If the weights H of a spectral component decrease
continuously in both directions with the electrical
positions, the spectral component propagates through the
electrical wiring.

• Propagation along the physical position of the circuit: If
the weights H decrease with the physical position, the
spectral component propagates through the helium or the
mechanical connection between the magnets. Propagation
in helium is usually limited to three physically close
magnets, which are installed together in adjacent cryostats
belonging to the same cryogenic cell. It is further possible
that the instrumentation wires or power cables of nearby
physical neighbors cause interference and generate noise,
which also propagates along the physical position.

• Artifact of the QDS measurement unit: Lastly, the
propagation can depend on effects in the QDS
measurement unit. One QDS measurement unit measures
the voltage signals on one to three electrically close
magnets and one reference magnet. If the QDS
measurement unit’s input position affects the spectral
component, it is assumed that the voltage signal is
generated by the measurement unit’s electronics, not
present directly at the magnet [3], [4].

In addition to the characteristics of the spectral components,
several correlation parameters are considered to interpret the
spectral components. The most relevant of these are:

• The magnet manufacturer: Each of the three
manufacturers used slightly different materials and
fabrication methods to produce the magnets, which
results in slightly different magnet behavior.

• The sector number: The circuit layout and hardware
component manufacturers vary slightly across each of the
eight sectors.

• The amplitude and the ramp rate of the circuit current at
the time of the FPA trigger: These one relate to the stored
energy in the circuit and affect the voltage amplitude after
the triggering of the FPA. The ramp rate dI/dt refers to
the change of the current over time.

• The FPA event type: The presence of a magnet quench
during the analyzed time period affects the frequency
spectra significantly. The activation of the QHs induces
new voltages, and the diode opening leads to additional
transient voltages visible in the frequency spectra.

In the results section, the listed propagation types and
correlation parameters are determined and relationships are
established for each spectral component to identify the spectral
components’ underlying potential physical processes.

E. Anomaly Detection

FPA events are abnormal when a frequency spectrum
cannot be reconstructed well with the learned spectral
components. For this purpose, for each FPA event q =
1, ..., Q the maximum reconstruction loss d̂q over all signals
in the FPA event is calculated. This reconstruction loss
depends on the chosen hyperparameters. Those are the
combinations of distance measure d∗(·), the number of spectral
components K, and the selected FFT window functions.
Hence, anomalies with abnormal behavior are estimated across
all hyperparameter combinations.

To make the maximum reconstruction loss d̂q of different
combinations of hyperparameters comparable, the probability
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distribution over d̂q is calculated. The probability distribution
over d̂q for each hyperparameter combination is assumed to
be gamma distributed,

f(d̂q;α, θ) =
1

Γ(α)θα
d̂α−1
q e−

d̂
θ , (9)

where Γ is the Gamma function. The parameters α and θ are
derived through a maximum likelihood estimation [42] to fit
the distribution of the maximum reconstruction losses over all
FPA events for one combination of hyperparameters. For this
distribution, a p-value z of an event can be defined by the
probability of obtaining a d̂

′
q at least as high as the observed

d̂q ,

z =

∫ ∞

d̂′
q

f(d̂q;α, θ)dd̂q. (10)

The distribution fit is performed for all possible combinations
of hyperparameters. Therefore, each event has as many
p-values as there are combinations of hyperparameters.
Abnormal events are then considered as those for which
the median of all p-values is low. This yields an anomaly
identification strategy that is robust to the choice of
hyperparameters.

As mentioned earlier, the 48 events without a quench
and the 494 events with a single quench are considered
for anomaly detection. Another restriction concerns the
selection of distance measures. Here, the IS-divergence
is not considered for anomaly detection. Anomalies that
indicate critical hardware faults are expected to have
dominant amplitudes, but the IS-divergence compares relative
amplitudes. The IS-divergence is, however, still relevant for
identifying components explaining physical processes behind
anomalies. Thus, for anomaly detection, only two distance
measures are used: The Euclidean distance and KL-divergence.
Together with the seven FFT window functions and the 19
different numbers of spectral components, 266 combinations
of hyperparameters are used for anomaly detection.

F. Anomaly Interpretation

Anomalies are interpreted by considering the spectral
components’ weights in the FPA voltages. If the weights
of certain spectral components are higher in a FPA event
with high reconstruction loss, these spectral components might
be associated with the anomaly. Thus, with the knowledge
gained in Section II-D, also the physical process underlying
the spectral component can be attributed to the anomaly. This
is used to check whether the anomaly is pointing at a hardware
problem.

III. RESULTS

A. Spectral Component Selection

Contrary to anomaly detection, all 399 combinations of
hyperparameters and all 699 FPA events, are used to derive
the spectral components for interpretation. Figure 5 shows
the resulting mean pairwise Chebyshev distance d̄Ch of
the (a) spectral components W and their (b) corresponding
weights H, as a function of the number of spectral components

(a) d̄Ch of W

(b) d̄Ch of H

Fig. 5. The mean pairwise Chebyshev distance d̄Ch for (a) the spectral
components W and (b) their weights H as a function of the number of
extracted spectral components K. Compared are the NMF distance measures:
The Squared Euclidean (Eu) distance, the Generalized Kullback-Leibler (KL)
divergence, and the Itakura-Saito (IS) divergence. The curves indicate the
mean over seven different FFT windows, with the first and third quartiles
defining the lower and upper confidence intervals, respectively.

K for the three distance measures in Eq. 3-5. The average
d̄Ch values across seven distinct FFT windows are shown,
with the first and third quartiles forming the lower and upper
confidence intervals, respectively. In the range of around seven
components, there is a local maximum visible, except for
the Eu-distance and KL-divergence in Fig. 5a. Although the
d̄Ch curves in Fig. 5a further increase after this extreme
point, they decrease in Fig. 5b. The IS-divergence shows the
best performance for less than eleven spectral components
in Fig. 5a and for more than four spectral components in
Fig. 5b. In these regions, the effect of considering relative
amplitudes by the IS-divergence is reflected: Also frequencies
with small amplitudes are well reconstructed, which increases
the diversity of the spectral components and their weights. A
similar behaviour is observed for the KL-divergence.

Compared to the number of spectral components or the
distance measure, the impact of the FFT window function on
d̄Ch is lower, as shown by the relatively narrow confidence
intervals in Fig. 5a and 5b. To choose the ideal FFT window
function, the FFT window function with the highest d̄Ch at
the local maxima of the curves at K = 7 is selected. At
K = 7, the Chebyshev distance is highest if the FFT is
calculated using a Hanning window function (not shown in
plot). Hence, frequency spectra, derived with a Hanning FFT
window function and reconstructed with seven components,



IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. X, NO. X, X 7

(a) vi,j (b) |vi,j − v̂i,j,Eu| (c) |vi,j − v̂i,j,KL| (d) |vi,j − v̂i,j,IS |
Fig. 6. Comparison of three different distance measures with a FPM. An FPM shows the frequency and amplitude of the voltage signal as a function of the
electrical position. (a) shows a FPA event with a quench in sector 78 on 31.03.2021 with an FPM. The solid white arrow marks the quenched magnet, while
the empty arrow marks its physical neighbors. This FPA event was reconstructed with K = 7 and (b) the Eu-distance, (c) the KL-divergence, and (d) the
IS-divergence. To facilitate visual comparison, the values from the input FPA event in (a) are subtracted from those of the reconstructed events. The absolute
values of the subtractions are shown as an FPM in (b-d). Circled areas highlight incomplete reconstructions.

are shown in more detail in Fig. 6.
To illustrate the propagation of frequencies in a FPA event,

Frequency-Position Maps (FPMs) are used. An example of
such an FPM is shown in Fig. 6a, where the frequencies
occurring in the 154 voltage signals, measured [0.2; 0.575]
seconds after the triggering of the FPA, are plotted as a
function of the electrical position for the FPA event on
31.03.2021 in sector 78. The FPM in Fig. 6a shows the
processed and Fourier-transformed voltage signals from Fig. 2
as frequency spectra values vi,j . During this event, a quench
occurred at the electrical position 141 (white solid arrow in
Fig. 6a). The electrical positions 14 and 15 are the physical
circuit neighbors of the quenched magnet (white empty arrow
in Fig. 6a).

Figures 6b-6d, show the absolute difference |vi,j − v̂i,j,∗|
between the NMF reconstructions v̂i,j,∗ and the input vi,j
for the different distance measures discussed above. Only
frequencies below 220 Hz are included for better visibility.
The example aims at comparing the reconstructions for
Eu-distance, KL-divergence, and IS-divergence using K = 7
and a Hanning FFT window function. The colored spots in the
FPMs (Figs. 6b-6d) show electrical positions and frequencies
with a reconstruction difference. The darker the color of
the points, the larger is the reconstruction difference. If the
reconstruction is identical to the input and the reconstruction
difference is zero, the plots would be completely white.

In Fig. 6b, small reconstruction differences are visible in the
low-frequency range for the Eu-distance. Voltage amplitudes
in this range are generally higher. Reconstructions optimized
with the Eu-distance, demonstrate superior performance
in reconstructing lower frequencies as compared to the
two other measures. At 110 Hz, 150 Hz, and 180 Hz
significant reconstruction differences are visible by dark spots,
highlighted by dashed ellipses. At these frequencies, the
amplitudes are lower and are therefore not taken into account
by the Eu-distance.

In comparison, for the KL-divergence more significant
reconstruction differences are visible by the dark spots in the
low-frequency range in Fig. 6c. Instead, the reconstruction
differences at 150 Hz and 180 Hz are smaller than for the

Eu-distance measure. This can be explained by the fact that
the KL-divergence reflects the relative entropy. Hence, instead
of reconstructing the low frequencies with high amplitude
more accurately, the entropy is optimized by reconstructing
frequencies with lower amplitudes as well.

In Fig. 6d, the IS-divergence leads to reconstructions where
both 110 Hz and 150 Hz oscillations have been captured, as
there are no significant reconstruction differences visible there.
The scale-invariance [34] of the IS-divergence makes it ideal
to reproduce also frequencies with low amplitude. However,
the low-frequency range, where significant reconstruction
differences are visible, has been reconstructed poorly by the
IS-divergence.

Based on the interpretation of Fig. 6 and further
visual inspections, four Eu-distance components and three
IS-divergence components that capture the frequency spectra
best were selected for further analysis. Figure 7 shows how
the selected spectral components are used to reconstruct the
frequency spectra in the voltage signal, measured [0.2; 0.575]
seconds after the triggering of the FPA event. Figures 7b-7h
show the contribution v̂i,j of each of the seven selected
spectral components j to the reconstruction of the frequency
spectra vi,j of the FPA event in Fig. 7a. In all FPMs, the
frequencies and amplitudes of the voltage signals are shown
as a function of the electrical position. The amplitude is
displayed logarithmically as a color in the range 10−4 V
to 10x V , where x is the maximum amplitude of the
spectral component in this event. This x is indicated in the
caption of each FMP with the spectral component number j.
For the reconstruction of the sub-spectra with the different
components, the following can be observed: High amplitudes
in the low-frequency range, with their maxima at (b) 3 Hz,
(c) 6 Hz, (d) 20 Hz, and (e) 66 Hz, are reconstructed by
the Eu-distance spectral components. Lower amplitudes in the
high-frequency range are reconstructed with the IS-distance
spectral components, having their maxima at (f) 150 Hz and
(g) 478 Hz. Lastly, a broadband spectrum, spanning vertically
over the whole frequency range, can be reconstructed by the
IS-distance spectral component (h). Due to the additive nature
of NMF the Eu-distance reconstruction in Figs. 7b-7e and the
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(a) vi,j (b) v̂i,j , j=1, x=−1.86 (c) v̂i,j , j=2, x=−2.11 (d) v̂i,j , j=3, x=−2.90

(e) v̂i,j , j=4, x=−1.52 (f) v̂i,j , j=5, x=−2.85 (g) v̂i,j , j=6, x=−3.22 (h) v̂i,j , j=7, x=−3.02
Fig. 7. Frequency and amplitude of the identified seven spectral components as a function of the electrical position. (a) shows the FPM of the frequencies
occurring in the voltage signal, measured [0.2; 0.575] seconds after the triggering of the FPA of sector 78 on 31.03.2021. (b-h) show v̂i,j for each spectral
component j, used to reconstruct the initial FPM in (a). For better visibility, the maximum of the color axis is scaled with 10x V . Additionally, the frequency
range is restricted to 0-220 Hz, in which the majority of the spectral components occur.

IS-divergence reconstructions in Figs. 7f-7h can be added to
reconstruct the input in Fig. 7a. The propagation and physical
process of each spectral component are discussed in the next
subsection.

B. Spectral Component Interpretation

Seven spectral components have been identified and
are considered important to describe the overall frequency
response of the LHC’s main dipole circuits during FPAs. In
the following, their characteristics and the potential underlying
physical processes are discussed one by one. A summary of
the discussed spectral components is given in Table I, where
the columns show the characteristics described in Section II-D.

• Spectral component one (SC1) is visible in Fig. 7b in
the bright horizontal frequency band at 3 Hz. There are
particularly bright spots at positions 15 and 141 which
have a different explanation than the remaining bright
spots.
The magnets at positions 15 and 141 are the physical
and electrical neighbors of the quenched magnet,
respectively. Considering all FPA events with a quench,
the average maximum amplitude at the physical and
electrical neighbors of the quenched magnet is 62 mV.
In FPA events without a quench, the average maximal
amplitude is 5 mV. It can be concluded that the physical
process causing SC1 is the quench of a magnet. It
can be assumed that the quenching magnet causes
electromagnetic perturbations, which are propagating

through instrumentation wires and the connected QDS
measurement units. Interestingly, the 3 Hz frequency
amplitude is one order of magnitude larger if the
quenched magnet was produced by manufacturer one.
These perturbations are important because they are most
likely the origin of high-energy secondary quenches
in neighboring magnets tens of milliseconds after the
primary quench occurred.
The remaining bright spots are introduced in the
pre-processing steps. Deviations of the signal x from
the exponential trend x̄ (see Eq. 1), are interpreted as
oscillation by the FFT. These oscillations are part of SC1
but do not originate from a physical process.

• Spectral component two (SC2) is visible in Fig. 7c by two
bright points at 6 Hz at the electrical positions around 15
and 141.
These are the locations of the physical and electrical
neighbors of the quenched magnet. As for SC1, it can
be assumed that the physical processes causing SC2 are
electromagnetic perturbations induced by the quenched
magnet. This assumption is supported by the fact that
the average maximum voltage of FPA events is 36 mV,
while for events without quench the average voltage is
100 µ V. Similarly to SC1, the frequency amplitudes are
one order of magnitude larger if the quenched magnet
was produced by manufacturer one.

• Spectral component three (SC3), in Fig. 7d, shows
a similar pattern to SC2. Bright spots are visible at
the physical and electrical neighbors of the quenched
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TABLE I
CHARACTERISTICS OF SPECTRAL COMPONENTS.

Spectral
Component

Dominant
Frequencies

Location of Maximum Average Maximum
Amplitude

Propagation Possible Physical Process

SC1
Fig. 7b 3 Hz

Phys. & el. neighbors
of quenched magnet

62 mV Phys. & el.
position

Electromagnetic perturbation

Evenly distributed
within circuit

5 mV Evenly distributed
within circuit

Preprocessing

SC2
Fig. 7c

6 Hz Phys. & el. neighbors
of quenched magnet

36 mV Phys. & el.
position

Electromagnetic perturbation

SC3
Fig. 7d 20 Hz

Constant across
all magnets

14 mV Constant across
all magnets

Diode induced oscillation

Phys. & el. neighbors
of quenched magnet

4 mV Phys. & el.
position

Electromagnetic perturbation

Phys. & el. neighbors
of power converter

1 mV Phys. & el.
position

Leftover voltage waves traveling along
the chain of magnets by magnet impedance

SC4
Fig. 7e

66 Hz
184 Hz
302 Hz

Phys. neighbors
of quenched magnet

73 mV El. position Oscillations caused by quench

SC5
Fig. 7f

150 Hz El. neighbors
of EE systems

1 mV Position in QDS
measurement unit

Artifact of the
QDS measurement unit

SC6
Fig. 7g

107 Hz
220 Hz
260 Hz
370 Hz
478 Hz

Phys. & el. neighbors
of PC

690 µV El. position Passive hardware elements of
PC in sector 78

SC7
Fig. 7h

Broadband
spectrum

Phys. & el. neighbors
of quenched magnet

4 mV Phys. & el.
position

Quench heater induced oscillation

Phys. & el. neighbors
of quenched magnet

1 mV Phys.
position

Quench dependent oscillations

magnet. However, additional physical processes appear
when comparing different events where either no quench
occurs, a single quench occurs, or a diode opened due to
a secondary quench in the analyzed time window.
In events with an additional diode opening during an EE
plateau, the average maximum amplitudes are 14 mV,
where the values show little variance. Here, the diode
opening induces a 20 Hz oscillation in the circuit, which
is constant across all magnets. No diode opened during
the FPA event shown in Fig. 7d, which is why the bright
spots are not visible across all electrical positions.
In events with a single quench the average maximum
amplitudes are highest at the physical and electrical
neighbors, with 4 mV. This effect can be seen in Fig. 7d.
Similar to SC1 and SC2, the physical process causing
SC3 is electromagnetic perturbations originated at by the
quenched magnet.
In events with no quenches the amplitude of SC3 is
highest at the magnet close to the PC with an average
maximum amplitude of 1 mV. Here, the amplitude
gradually decreases and is lowest at the first EE system.
This can be traced back to the quench-independent
leftover voltage waves traveling along the chain of
magnets as governed by the magnet impedance. This
effect is observed for all events and is proportional to
the amplitude and the ramp rate of the circuit current
at the moment of the FPA trigger [17]. In Fig. 7d the
frequencies caused by the quench are more prominent,

making this process not observable with the given color
range.

• Spectral component four (SC4) is visible in Fig. 7e and
shows a bright spot at 66 Hz at positions 14 and 15.
This shows that the locations of its voltage maxima are
in the physical neighbors of the quenched magnet. From
there the bright spot is gradually getting darker in both
directions, indicating that the oscillation is propagating
along the electrical direction.
A similar pattern is observed at 184 Hz, but in a darker
color. In addition, SC4 is high at 302 Hz. The amplitude
of this approximate 3rd and 5th harmonic scales indirectly
proportional to the number of the nth harmonic.
While the exact physical process of SC4 remains elusive,
it is expected that it is emphasized by a quench. This
expectation is supported by comparing FPA events with
and without a quench. In events without a quench, the
average maximum amplitude is two orders of magnitude
lower than for events with a quench (73 mV vs. 730 µV).

• Spectral component five (SC5) appears as a double
horizontal band at 150 Hz near the center around the
electrical position 77 in Fig. 7f. The bright spots of
the band occur at exactly the same input of each QDS
measurement unit. This indicates that SC5 is introduced
by the electronics of the QDS measurement unit. SC5
only occurs in FPA events in sectors 12, 45, 67, 78, and
81. No specific hardware component has been identified
as the cause of this behavior. It occurs in the same
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position, regardless of the number of quenches or the
quench position, with an average maximum amplitude of
1 mV.

• Spectral component six (SC6) is visible at 107 Hz and
220 Hz as spots originating at the electrical positions
1 and 154 of Fig. 7g. The magnets at these electrical
positions are installed close to the power converters of the
circuit. The amplitude of SC6 decreases with increasing
distance from the power converter. In addition, SC6 has
high amplitudes at 260 Hz, 370 Hz, and 478 Hz, not
visible in Fig. 7g due to the restricted range of the
frequency axis.
During the EE plateaus the PC is deactivated, indicating
that SC6 originates from passive hardware components in
the PC. SC6 only occurs in sector 78. No exact hardware
component has been identified that could explain this
behavior. It always occurs in the same electrical positions,
regardless of the quench position, with an average
maximum amplitude of 690 µV.

• Spectral component seven (SC7) in Fig. 7h shows one
vertical line with high amplitude at the electrical positions
14 and 15, and one line with low amplitude at the
electrical positions around 140 and 142. Both lines
have interruptions at frequencies already reconstructed by
other spectral components. These vertical lines indicate a
broadband spectrum in magnets physically close to the
quench. In the time domain, this broadband spectrum
corresponds to a spike. In a previous analysis of faults in
a subsystem of the LHC protection system, such spikes
were used as indicators for intermittent short circuits [19].
Hence, SC7 might also be a critical indicator of an
intermittent short circuit in the magnet.
In FPA events with a single quench the average maximum
amplitude of this broadband spectrum is 1 mV. For
FPA events without quenches, the average maximum
amplitude of SC7 is significantly smaller (<100 µV). This
shows that SC7 depends on the quench.
A different physical process is observed during events
with secondary quenches, where the average maximum
amplitude is 4 mV if the QHs of one of the additionally
quenched magnets are activated during the EE plateaus.
In this case, SC7 propagates along the physical and
electrical position of all magnets in the circuit and is
likely induced by the inductive part of the QH strips.
No QHs were activated during the FPA event shown in
Fig. 7d, which is why this physical process cannot be
observed there.

C. Anomaly Detection

In this subsection, the selected anomalies from FPA events
with low median p-values following the definitions given
in Section II-E are presented. FPA events with low median
p-values are labeled based on an LHC specific four-digit
identifier of the quenched magnet, marked by a ’#’.

Figure 8 shows a boxplot, a conventional method to
illustrate statistical data characteristics [43], of the ten FPA
events with the lowest median p-value. For each anomalous

FPA event, the quenched magnet is given on the x-axis and a
box represents the statistical distribution of p-values over 266
different combinations of hyperparameters (the IS-divergence
is not used). The box represents the range between the first
and the third quartile, where the line in the middle represents
the median. The outer limits further indicate the variability of
p-values, which are obtained by subtracting 1.5 times the box
length from the first quartile and adding it to the third quartile,
respectively. The y-axis is plotted logarithmically, therefore,
the first quartile’s outer limit is cut, if it is zero.

Fig. 8. Boxplot of the 10 FPA events with the smallest median p-values. For
each event, the quenched magnet is given on the x-axis. Each box extends
from the first to the third quartile, with a horizontal line at the median. The
lines extending from the box further show the variability of p-values. They
cover a range of 1.5 times the box length, either subtracted from the first
quartile or added to the third quartile. The orange dashed line indicates the
confidence interval of 95% at a p-value of 0.05, while the red vertical line
indicates the 99% confidence interval at a p-value of 0.01.

The four FPA events with the quenched magnets #2038,
#1225, #1146, and #1291 state a median p-value smaller than
1%. In the boxplot for those FPA events, the first and third
quartiles are below the 99% confidence interval, and the outer
box limits are below 95%. For the six other FPA events in
Fig. 8, both quartiles and outer limits are above their respective
99% and 95% intervals. Based on this classification, only the
four events with a median p-value of less than 1% are therefore
referred to as anomalies. In the following subsection, these
anomalies are discussed in more detail.

D. Anomaly Interpretation

To better understand the characteristics of the anomalies,
the spectral component weights in the anomalous FPA events
are compared to those in normal FPA events. Notably, the
weights of SC7 are elevated in three of the four identified
FPA events. As discussed above, SC7 represents a broadband
spectrum and has an average maximum amplitude of 1 mV
for FPA events with a single quench (see Tab. I). However,
with 820 µV only the maximum amplitude in the anomalous
FPA event where the magnet #1146 quenched is similar to
this average. For the FPA events where the magnets #2038,
#1225, and #1291 quenched the amplitudes of this spectral
component are 240 mV, 80 mV, and 210 mV, respectively.
These amplitudes are more than 80 times higher than the
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maximum average amplitude for other FPA events. In no other
FPA event with a single quench the values are this high. It is
inferred that a high SC7 in the quenched magnet is a sufficient
criterion for identifying an anomaly.

Having identified the criticality of a high SC7 amplitude
in the quenched magnet, the previously excluded 157 FPA
events with secondary quenches are also examined for this
characteristic. One FPA event with an amplitude of 1200 mV,
more than 1200 times higher than the average maximum,
stands out. Therefore, this FPA event, where a quench occurred
at the magnet #2421, is also referred to as an anomaly in the
course of this analysis.

In magnet #1146, the SC7 amplitude is not elevated during
the quench. Instead, the low p-value in this FPA event is
associated with a high SC1 amplitude of 1500 mV in the
physical neighbors of the quenched magnet. As discussed in
Subsection III-B, this component represents electromagnetic
perturbations propagating through instrumentation wires and
the connected QDS measurement units. Based on current
knowledge, these electromagnetic perturbations are not
associated with a hardware fault.

E. Recommended Maintenance Actions

One of the four quenched magnets, with a significantly
increased SC7 amplitude during a FPA event, has developed an
intermittent short circuit during the FPA event on 25.04.2021.
As such an intermittent short circuit is a critical event,
the other three magnets #1225, #1291, and #2421 are also
treated as potentially critical and will be checked by transient
voltage measurement. If an intermittent short circuit cannot
be excluded during the transient voltage measurement, these
magnets could be replaced in one of the next maintenance
stops of the LHC. In any case, the electronics of the QDS
measurement units of these magnets should be exchanged in
order to exclude measurement errors.

Transient measurements will also be performed on the
magnet #1146. These measurements will provide further
information about electromagnetic perturbations.

Tab. II summarizes the five discussed anomalies, sorted by
their median p-value in the first column. The second column
shows the quenched magnet, the affected circuit and the
date of the related FPA event. The third column summarizes
main findings of the FPA event and states the recommended
maintenance actions.

IV. CONCLUSION

In this study, the voltages measured across the 1232
magnets in the eight LHC main dipole circuits were analyzed
to understand the normal and abnormal behavior of the
circuits. Specifically, the amplitude and propagation of the
frequency spectra measured at the magnets in 699 Fast Power
Abort (FPA) events were investigated using Non-negative
Matrix Factorization (NMF).

This allowed the extraction of seven spectral components
that define normal behavior, occurring in the measured
voltages during a FPA event. Analyzing the spectral
components’ distribution and propagation across the circuit

TABLE II
LIST OF DETECTED ANOMALIES WITH RECOMMENDED MAINTENANCE

ACTIONS IN THE REMARKS COLUMN.

Median
p-value

FPA
Event

Remarks

8× 10−11 #2038
Sector 78

25.04.2021

High SC7 in #2038 (240 mV)
Exchanged on 25.04.2021

due to intermittent short circuit

7× 10−5 #1225
Sector 45

12.05.2021

High SC7 in #1225 (80 mV)
Additional measurements
Hardware replacements

1× 10−3 #1146
Sector 34

06.05.2021

High SC1 (1500 mV)
Additional measurements

2× 10−3 #1291
Sector 12

14.05.2021

High SC7 in #1291 (210 mV)
Additional measurements
Hardware replacements

- #2421
Sector 34

20.04.2021

High SC7 in #2421 (1200 mV)
Additional measurements
Hardware replacements

and across FPA events provided a deeper understanding of
the mutual interaction of hardware components and allowed
identifying the potential physical processes causing the
spectral components. It was shown that spectral components
one to three, with maxima at 3 Hz, 6 Hz, 20 Hz, are
induced by the quench due to electromagnetic perturbations.
Their amplitudes are one order of magnitude higher when
the quenched magnet was produced by manufacturer one.
Spectral component four shows a 66 Hz oscillation induced
by the quench. With maxima at 150 Hz and 478 Hz,
components five and six are independent of the quench and
were attributed to artifacts of the QDS measurement unit, and
to passive elements in the power converter of one individual
circuit. Spectral Component seven (SC7) shows a broadband
spectrum, induced by the quench. As previous studies showed
that such broadband spectra can be an indicator of short
circuits [19], SC7 could also indicate an intermittent short
circuit in the magnet.

Five magnets with abnormal behavior during FPA events
were detected using the reconstruction loss of NMF and the
SC7 amplitude at the quenched magnet. One of these magnets
was replaced on 25.04.2021 after a short circuit was detected
following the FPA event. Similarly to the replaced magnet,
three of the four remaining magnets showed an elevated
SC7 amplitude during their quench, which is more than 80
times higher than normal. Dedicated transient measurements
will be performed on these magnets and the electronics
of their QDS measurement unit should be replaced. If an
intermittent short circuit still cannot be excluded, the three
magnets could be replaced in one of the next maintenance
stops of the LHC to prevent weeks of unplanned LHC
downtime. In the magnet which did not show a high SC7
during the FPA event in the quenched magnet, data do not
indicate a hardware fault. Instead, an abnormally high spectral
component one was observed, which will also be evaluated
by transient measurements. The presented methodology has
proven to be a powerful tool to describe the normal behavior
of the circuits systematically and to detect abnormal behavior
indicating potential hardware fatigue and degradation of
hardware components in the circuit.
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