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Singularities of Feynman ampllitudes associated specifically with
vanishing internal masses appear frequently in various applications of
field theory. The most well-known example is the infrared divergences
in QED and non-Abelilan gauge theorles. In examining the large momentum
behaviour of Feynman amplitudes, we 2lso encounter with such singulari-
ties since large momentum limit with fixed masses may be translated to
certain zero mass limit with fixed momenta. It 1s our ultimate purpose
to construct a general method for treating these so~called mass singu-
larities[1]. Here we give a brief account of the results obtained thus
far. The details will be published elsewhere[2].

We illustrate the salient features of mass singularities choosing
the box diagram G (fig.l) as an example., If we ignore spin, the corre-
sponding Feynman amplitude FG’ which is regarded as a function of Inter-

nal masses m = {ml,...,mu} as well as external momenta P = {Pl""’PM}’
i1s written using Feynman parameters gz = {zl,...,zu} as[3]
4 4
1= I dz.,
§( ilei) e Z
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4 [V(gamsg)-ie:l
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F:Z F)3 Vs ( = Vji ) veing given by

Fig.l. The box diagram G
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The Feynman amplitude (1) develops a singularity when the singu-
larity of the integrand given by V(z,m,P)=0 becomes unavoidable by any
distortion of the hypersurface of integration iilzi=l. The corresponding
singularity of FG 1s classified into two types according to whether the
subhypersurface of iilzi=1 along which V vanishes depends on (1) all,
or (ii) only some of the Feynman parameters ZyseensBye We find that
the former gives rise to ordinary threshold singularities. They are of
no interest to us since it is not necessary for thelir appearance that
any of the internal masses vanlsh. On the other hand, some of the inter-
nal masses inevitably vanish in the latter case (see below). In this
sense, we call singularities of the latter type as mass singularitiles.

To analyze their structure, suppose, for instance, that V(g,m,g)

vanishes identically on the domain boundary D defined by zl=z3=0,z2+zu=l.
We easily find from (2) and (3) that
_ 2.2 1 2, 2 2 2 2
V(E’m’g)lzl=z3=0 = myzy, + 2[m2+mu (P3+Pu) ]z2zLl + myzZy s ()

which agrees with the V function for the reduced diagram M shown in
fig.2. We thus find two necessary conditions

_ _ 2 _ 2
() m, = my, = 0, (B) (P3+PM> = (P1+P2) =0
for a mass singularity to occur. The first condition (a) justifies our
definitlion of mass singularity. The
second condition (B) says that the
P 4 P

4

external momenta must be exceptional

[4].

The behaviour of F,(m,P) near P 2 P
the singularity depends strongly on 2 3
how fast V vanishes at the boundary

D. To examine thils problem, consider Fig.2. The reduced diagram M
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the limit 6+0 where Zqs 23=O(6) and Zys Za=0(l), 22+zn=l—0(6). The
leading term of V in this 1imit is given by (4), which of course vanishes
at the singularity. After substituting (e) and (B) into Vij’ we find
that the 0(8) term is given by

2 L2 2 52 2 .2 2 ;2
(ml_P2>leE + (ml—Pl)zlz4 + (m3~P3)z322 + (mB-PL})z3z)_5 . {5)

Since (5) does not necessarily vanish, V behaves as 0(8) in the general
case. If m and P satisfy the further condition

2 _ p2 _ o2 2 _ 52 _ 52
(v) mj = P = P§ and m3 = P3 = P}

in addition to (o) and (B), however, (5) vanlshes identically and V
behaves as 0(62), leading to an enhancement of mass singularity. Note
that the three conditions (o), (B) and (y) agree with those for the infra-
red singularity which appears in the forward Coulomb scattering amplitude
in QED.

The singularities we have examined above
FH FZ do not represent the most general ones associ-
ated with vanishing masses. In fact, Zy and z3
may make pinches instead of sticking fto the
boundary. If this happens, z, and z3 have to

1
1 3 satisfy

o~

BV/dzy = Py vis8y = 0 (1=1,3) , (6)

for any values of Z5 and Zye It follows that

Fa F% Vij = 0 (i=1,3, j=2,4) and V11V33_v13=0' The
latter gives
Fig.3. The reduged 2 2 - =
g.3 e & (8) (P2+P3) (m1+m3) and myz, M2y 0

which are the threshold conditions for the re-
duced diagram M shown in fig.3. Substituting these back into V and
demanding it to vanish for arbiltrary Z, and Zy, we find that the four
conditions (a), (B), (y) and (8) are all necessary. In a rough sense,
this singularity may be interpreted as a product of the enhanced mass
singularity at M (fig.2) and the threshold singularity of M (fig.3).

All these considerations can be generalized in a straightforward
way to arbitrary diagrams. In parallel with the simple example treated
above, we find that mass singularities in general can be classified



58

schematically as shown in fig.4 ( in this figure, M' ( M ) is a subdia-
gram ( proper subdiagram ) of M ( G ) and G/M ete. denoctes the reduced
dlagram obtained from G by shrinking the lines of M to points, etc.).

without enhancement

V = 0(§)
occurs at some ...characterizes excep-
domain boundary tional momenta
Mr= M
mass singularity with enhancement
z,=0 for ieM’ A v = 0(62)
aV/azj=o for je€M-M' ...includes infrared
V=0 singularity
for any values
of z, €G-
— contains some......mass singularityt at M=G/M
pinches ® threshold singularity
Mg N of M=H/(H-X)

( H=G/M', x=M/M' )

twith enhancement if
X contains no loop.

Fig.l4, Classification of mass singularities.

our future program is to establish general power counting rules
for various types of mass singularities. Complications arilsing from
ultraviolet divergences and their renormalization will be analyzed
choosing A¢ theory as an example., Non-Abelian gauge theories will also
be examined in connection with their infrared properties.
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