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Singularities of Feynman amplitudes associated specifically with 

vanishing internal masses appear frequently in various applications of 

field theory. The most well-known example is the infrared divergences 

in QED and non-Abelian gauge theories. In examining the large momentum 

behaviour of Feynman amplitudes, we also encounter with such singulari- 

ties since large momentum limit with fixed masses may be translated to 

certain zero mass limit with fixed momenta, it is our ultimate purpose 

to construct a general method for treating these so-called mass singu- 

larities[l]. Here we give a brief account of the results obtained thus 

far. The details will be published elsewhere[2]. 

We illustrate the salient features of mass singularities choosing 

the box diagram G (fig.l) as an example. If we ignore spin, the corre- 

sponding Feynman amplitude FG, which is regarded as a function of inter- 

nal masses ~ = {ml,...,m 4} as well as external momenta ~ = {PI,...,P4}, 

is written using Feynman parameters ~ = {Zl,...,z 4} as[3] 

4 4 
~(i- Z z i) ~ dz~ 

P4 FG(m 'P )  = I i=,~ O= l  J ( 1 )  
_ _ [V(~,m,p)_ig] 2 ' P' k 4 f 

P2 P3 

where 

V ( z , m ,  p_. ) - 
4 

i 
v..z.z. 

2 i,j=l ~ ij i J 

vij ( = Vji ) being given by 

, ( 2 )  

Fig.l. The box diagram G 
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((vij)) = 

2m 2 , 2 2 _2 2 2 2 
ml÷m2-f 2 , ml+m3-(P2+P 3) , 

2m~ 2. 2 ~2 
, m2tm3-~ 3 

2. 2 ~2 
mltm4-r I 

2 2 2 
• m2+m4-(P3+P4 ) 

2 2 ~2 
• m3*m4-~ 4 

(3) 

The Feynman amplitude (i) develops a singularity when the singu- 

larity of the integrand given by V(z,m,P):0 becomes unavoidable by any 
h 

distortion of the hypersurface of integration i~izi=l._ The corresponding 

singularity of F G ishclasslfied into two types according to whether the 

subhypersurface of i~izi:l along which V vanishes depends on (i) all, 

or (li) only some of the Feynman parameters Zl,...,z 4. We find that 

the former gives rise to ordinary threshold singularities. They are of 

no interest to us since it is not necessary for their appearance that 

any of the internal masses vanish. On the other hand, some of the inter- 

nal masses inevitably vanish in the latter case (see below). In this 

sense, we call singularities of the latter type as mass singularities. 

To analyze their structure• suppose• for instance, that V(~,m•P) 

vanishes identically on the domain boundary D defined by Zl=Z3=0,z2+z4=l. 

We easily find from (2) and (3) that 

i 2 2 
V(z ,m,~) lz l=Z3=O = m~z~ + ~[m2+mq-(P3+P4)2]z2z4 + m~z~ , (4) 

which agrees with the V function for the reduced diagram M shown in 

fig.2. We thus find two necessary conditions 

(~) m 2 = m 4 = 0 , (B) (P3+P4)2 = (PI+P2)2 = 0 

for a mass singularity to occur. The first condition (~) ~ustifies our 

definition of mass singularity. The 

second condition (~) says that the 

external momenta must be exceptional 

[43. 

The behaviour of FG(m, ~) near 

the singularity depends strongly on 

how fast V vanishes at the boundary 

D. To examine this problem, consider 

P2 2 P3 

Fig.2. The reduced diagram M 
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the limit 6+0 where Zl, z3=0(6) and z2, z4=O(1) , z2+z4=l-O(6). The 

leading term of V in this limit is given by (4), which of course vanishes 

at the singularity. After substituting (~) and (8) into vij , we find 

that the 0(6) term is given by 

2 2 2 2 2 2 2 2 
(ml-P2)ZlZ 2 + (ml-Pl)ZlZ 4 + (m3-P3)z3z2 + (m3-P4)z3z 4 (5) 

Since (5) does not necessarily vanish, V behaves as 0(6) In the general 

case. If m and P satisfy the further condition 

2 ~ m~ P32 (y) ml = PI = P and = = P 

in addition to (~) and (B), however, (5) vanishes identically and V 

behaves as 0(62), leading to an enhancement of mass singularity. Note 

that the three conditions (~), (B) and (7) agree with those for the infra- 

red singularity which appears in the forward Coulomb scattering amplitude 

in QED. 

P, 

Fig.3. The reduced 
diagram M 

The singularities we have examined above 

do not represent the most general ones associ- 

ated wlth vanishing masses. In fact, z I and z 3 

may make pinches instead of sticking to the 

boundary. If this happens, z I and z 3 have to 

satisfy 

4 
~V/~zi = [ vijz j = 0 (i=1,3) , (6) 

j=l 

--for any values of z 2 and z4_ It follows that 

2 The vij = 0 (i=1,3, j=2,4) and VllV33-v13=O. 

latter gives 

(6) (P2+P3)2 = (ml+m3)2 and mlzl-m3z3:0 

which are the threshold conditions for the re- 

duced diagram ~ shown in fig.3. Substituting these back into V and 

demanding it to vanish for arbitrary z 2 and z4, we find that the four 

conditions (~), (B), (Y) and (6) are all necessary. In a rough sense, 

this singularity may be interpreted as a product of the enhanced mass 

singularity at M (fig.2) and the threshold singularity of ~ (fig.3). 

All these considerations can be generalized in a straightforward 

way to arbitrary diagrams. In parallel with the simple example treated 

above, we find that mass singularities in general can be classified 
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schematically as shown in fig.4 ( in this figure, M ' ( M ) is a subdia- 

gram ( proper subdiagram ) of M ( G ) and G/M etc. denotes the reduced 

diagram obtained from G by shrinking the lines of M to points, etc.). 

mass singularity 

zi=O for ieM' 

~V/~zj=O for  jI~M-M' 
V=O 
for any values 

of Zk~a-~. 

- - o c c u r s  at some 

domain boundary 
~,= i 

-- without enhancement 

V = 0(~) 

...characterizes excep- 

tional momenta 

-- with enhancement 

v = o(~ 2 ) 

...includes infrared 

singularity 

-- contains some ...... mass singularity% at M=G/M 

pinches ~ threshold singularity 

M'~ M of ~=H/(H-X) 
( H=e/~', X=M/M' ) 

~ with enhancement if~ 

X contains no loop./ 

Fig.4. Classification of mass singularities. 

Our future program is to establish general power counting rules 

for various types of mass singularities. Complications arising from 

ultraviolet divergences and their renormalization will be analyzed 

choosing i¢4 theory as an example, Non-Abelian gauge theories will also 

be examined in connection with their infrared properties. 
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