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1 Introduction

Standard cosmology assumes a statistically homogeneous and isotropic distribution of matter
and radiation in the Universe. Correspondingly, on sufficiently large scales the geometry
of the Universe is assumed to deviate little from homogeneity and isotropy, i.e., from a
Friedmann-Lemaître (FL) universe. These assumptions are in good agreement with the small
fluctuations observed in the Cosmic Microwave Background (CMB), which is isotropic with
fluctuations of order 10−5, see [1–4] for the latest results.

Due to our motion with respect to the surface of last scattering, the CMB also exhibits a
dipole with an amplitude of about 10−3. This dipole has been discovered in the 1970s [5, 6]
and is now measured with exquisite precision [1, 7, 8]. This anisotropy in the CMB also
leads to the correlation of adjacent multipoles which have consistently been measured with a
significance of about 5 standard deviations [9]. Attributing the entire CMB dipole to our
motion, one infers a velocity of the solar system given by

v⊙ = (369 ± 0.9)km/s , (ra, dec) = (167.942 ± 0.007, −6.944 ± 0.007) , (1.1)

where (ra, dec) are the ‘right ascension’ (ra) and ‘declination’ (dec) denoting the directions
with respect to the barycenter of the solar system (at J2000, i.e. January 1, 2000). A possible
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intrinsic dipole in the CMB of the same order as the higher multipoles is expected to change
this result by about 1%. (This is simply a consequence of the fact that the clustering Cℓ’s are
about four orders of magnitude smaller than C1. Assuming that C1 has a similar intrinsic
clustering contribution this changes the dipole ∝

√
C1 by about 1%.)

Within the standard model of cosmology we expect to see this dipole due to our motion
also in the large scale distribution of galaxies [10]. While first results of a radio survey
agreed reasonably well with the CMB velocity [11], more recent analyses of catalogs of
radio galaxies and quasars have found widely differing results from which significantly larger
peculiar velocities have been inferred [12–16]. The latest results [17] show a 5σ discrepancy
with the CMB dipole which is considered by the authors as a challenge of the cosmological
principle. There are, however also critiques that the analysis of the data might be too
simplified and that a more refined analysis could give results that are consistent with standard
cosmology [18–20], see also [21] for an alternative method which gives results in agreement
with the CMB dipole albeit with large error bars.

In previous work [22] we determined the dipole inferred from the Pantheon+ compilation
of type Ia supernovae [23]. The first attempt to measure the dipole in supernova data dates
back to 2006, however with a much smaller dataset and large error bars [24]. In [22] we found
a dipole compatible in amplitude with the CMB dipole, but pointing in a different direction.
However, the dipole amplitude in supernova distances is proportional to [r(z)H(z)]−1 and
hence it rapidly decays with redshift so that for supernovae with z > 0.1 no significant
dipole can be measured. Here r(z) is the comoving distance out to redshift z and H(z)
is the Hubble parameter at redshift z. It is therefore possible that the dipole we have
seen in this data actually corresponds to the velocity v⊙ − v(bulk) where v⊙ is the peculiar
velocity of the solar system and v(bulk) is the bulk velocity of a sphere around us with radius
R ≲ z/H0 = 300(z/0.1)h−1Mpc, where H0 is the present value of the Hubble parameter.
Here we use the Hubble law for small redshifts, z ≪ 1: the radius out to z is given by
R(z) = z/H0 and H0 = h/(3000Mpc). The speed of light is set to c = 1 in our formulae.
Interestingly, the bulk velocity inferred in this way is in relatively good agreement with the
result of the ‘CosmicFlows4’ analysis [25], however our error-bars are significantly larger. In
the present paper we test this hypothesis. As we discuss in the next section, if the SN dipole
is really due to the peculiar motion of the individual supernovae and not due to a global
dipole, we expect to observe also a monopole and a quadrupole (and higher multipoles) of
similar amplitude. For this reason, we determine in this paper also the monopole and the
quadrupole of the Pantheon+ compilation of supernova distances, in addition to the bulk
flow (dipole) — a possible quadrupolar Hubble expansion in Pantheon+ was also studied
in [26] with the help of a cosmographic expansion.

We do indeed find a monopole and a quadrupole with amplitudes of the expected order
of magnitude. We also argue that the amplitude we find for the bulk velocity is not extremely
unlikely in the standard ΛCDM model.

Notation. We consider a spatially flat FL universe with linear scalar perturbations in
Newtonian gauge,

ds2 = a2(t)[−(1 + 2Ψ)dt2 + (1 − 2Φ)δijdxidxj ] . (1.2)
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The two metric perturbations Φ and Ψ are the Bardeen potentials. Einstein’s summation
convention is assumed. Spatial vectors are denoted in bold face. The derivative with respect
to conformal time t is indicated as an overdot. H = ȧ/a is the comoving Hubble parameter,
while the physical Hubble parameter is given by H = ȧ/a2. We work in units where the
speed of light is unity but, for the convenience of the reader, we present our results on
velocities in km/s.

2 Theoretical description

In our previous paper [22], we have found that even after subtracting the observer velocity
v⊙, assumed to be the one seen in the CMB data, there remains a significant dipole in the
supernova distances of the Pantheon+ compilation. We now want to study whether there
are also significant monopole and quadrupole contributions. At first order in cosmological
perturbation theory, the luminosity distance out to a source at observed redshift z in direction
n is, up to some small local contributions which we neglect here, given by [27–29]:

dL(z, n) = d̄L(z)
{

1 − 1
H(z)r(z)n·v⊙ − Φ(n, z)

−
(

1 − 1
H(z)r(z)

) [
Ψ(n, z) + n·v(n, z) +

∫ r(z)

0
dr′(Ψ̇ + Φ̇)

]

+
∫ r(z)

0

dr′

r(z)

[
1 − r(z) − r′

2r′ ∆Ω

]
(Φ + Ψ)

}
. (2.1)

Here v⊙ is the observer velocity and v(n, z) is the peculiar velocity of the source. The
functions are to be evaluated at x = nr(z) and t = t(z) = t0 − r(z). The symbol ∆Ω
denotes the Laplacian on the sphere, while d̄L is the luminosity distance of the background
FL universe. In (2.1) and in the following, the redshift z is the observed, measured redshift.
In the Pantheon+ data release this redshift is denoted zHEL, indicating heliocentric redshift.

In a flat ΛCDM universe at low redshift where radiation can be neglected it is given by

d̄L(z) = (1 + z)
∫ z

0

dz′

H(z′) = 1 + z

H0

∫ z

0

dz′√
Ωm(1 + z′)3 + 1 − Ωm

. (2.2)

2.1 The monopole and quadrupole perturbations of the luminosity distance at
low redshift

In what follows we only retain the terms ∝ 1/[H(z)r(z)] in the perturbation of the luminosity
distance. These terms dominate the fluctuations at small redshift. For z ≪ 1 we may
approximate dL by

dL(z, n) = d̄L(z)
[
1 + 1

H(z)r(z)
(
(v⊙ − v)·n

)]
. (2.3)

For small redshifts, z ≲ 0.5 this term dominates over the other contributions since it is
enhanced by a factor 1/(rH) and since, at low redshift, velocities are about two orders of
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magnitude larger than the Bardeen potentials. Using that d̄L(z) = (1 + z)r(z) et H(z) =
H(z)/(1 + z) we can write (2.3) as

dL(z, n) = d̄L(z) + (1 + z)2

H(z) n· (v⊙ − v(n, z)) . (2.4)

If the source peculiar velocity v(n, z) were independent of direction, a pure ‘bulk velocity’
shared by all supernovae, this would lead to a pure dipole, which is what we considered in
our previous paper. However, we expect that the peculiar velocity also depends on direction
and on redshift. Here we assume that the redshift dependence is the one given by linear
perturbation theory, this is a reasonable assumption for the large scales that we investigate
(e.g. z = 0.025 corresponds to a radius of 75h−1Mpc). We then fit for an angular dependence
in the form of a monopole and a quadrupole. Of course we expect in principle also higher
multipoles to be present but we neglect them here. As the different multipoles are orthogonal
to each other, this should not bias our results on the monopole, dipole and quadrupole.1
Within linear perturbation theory, the time dependence of the peculiar velocity field is given by

v(x, z) = Ḋ1(z)
Ḋ1(0)

v(x, 0) ,

where D1 is the linear growth function and the overdot denotes a derivative with respect
to conformal time. Introducing the growth rate f(z) defined as [30]

f(z) = − d log(D1)
d log(1 + z) , (2.5)

we can write

Ḋ1(z) = D1(z)f(z)H(z)
(1 + z) .

With this, (2.4) becomes

dL(z, n) = d̄L(z) + (1 + z)2

H(z)

[
n·v⊙ − D1(z)f(z)H(z)

(1 + z)D1(0)f(0)H0
n·v(n(t0 − t(z)), t0)

]
. (2.6)

As mentioned above, if v(n(t0 − t(z)), t0) is independent of direction we obtain simply
a dipole. Here we now go one step further by allowing for a dipole, a monopole and a
quadrupole in the directional dependence,

n·v(n(t0 − t(z)), t0) = n·v(bulk) + ni(αij + γ δij)nj . (2.7)

In this expression, αij is a symmetric traceless tensor which can be given, e.g. by the five
components α11, α22, α12, α13 and α23. It represents the quadrupole of the peculiar velocity
field today, and since niδijnj = 1, γ corresponds to a monopole, the part of v that is
parallel to the radial direction n. Both, αij and γ have the units of a velocity. Putting
all of this together we obtain

dL(z, n) = d̄L(z) + (1 + z)2

H(z)
[
n·v⊙ − A(z)

(
n·v(bulk) + ni αij nj + γ

)]
, (2.8)

1If the sky coverage would be homogeneous we would expect the different multipoles to be completely
independent of each other. But since this is not the case, some bias might still be present.
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Figure 1. The prefactor A(z) as function of redshift. We assume H0 = 73.6 km/s/Mpc and Ωm =
0.334.

where we defined the prefactor A(z) as

A(z) := D1(z)f(z)H(z)
(1 + z)D1(0)f(0)H0

. (2.9)

The trace γ can be distinguished from d̄L(z) via its redshift dependence (1 + z)2A(z)/H(z)
which differs from d̄L(z) = (1 + z)r(z). A short inspection shows that the ratio between these
redshift dependencies, (1 + z)A(z)/(H(z)r(z)), is well approximated by 1/z and therefore
becomes large at very low redshifts.

In figure 1 we show the behaviour of the prefactor A(z). At small redshifts, z ≲ 0.2, we
find that A(z) ≃ 1, implying that the correction due to this factor is negligible, in agreement
with the assumption of a bulk motion of nearby galaxies.

In our assumption of a flat ΛCDM universe, it is possible to obtain an analytical expression
for the linear growth function and the growth rate:

D1(z) = 1
5 (1 + z) Ωm(0)

[
2F1

(1
3 , 1; 11

6 ; 1 − 1
Ωm(z)

)]
, (2.10)

where 2F1(a, b; c; d) represents the confluent hypergeometric function (see [31], chapter 13) and

f(z) = 1
2Ωm(z)

 5

2F1
(

1
3 , 1; 11

6 ; 1 − 1
Ωm(z)

) − 3

 , (2.11)

with
Ωm(z) = Ωm (1 + z)3

Ωm (1 + z)3 + (1 − Ωm) . (2.12)
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In our analysis we use the above expressions. In the literature, e.g. [30, 32], it is common
to find the approximate expression [30],

f(z) ≃ Ω0.56
m , (2.13)

which is in excellent agreement with (2.11), as described in appendix D of [33].

2.2 Redshift corrections

The velocity-dependent terms in dL(z, n) actually stem from the fact that peculiar velocities
modify the observed redshifts. They are the first terms in a Taylor series in δz. It might
be more accurate to directly correct the redshift by subtracting δz inside the expression for
d̄L(z). This is the method used in [34] and we also adopt it here. The redshift correction
due to the motion of the solar system is given by

1 + z(cmb)(z, n) = 1 + z

1 + z⊙
, (2.14)

where

1 + z⊙ =
√

1 + (−v⊙)/c

1 − (−v⊙)/c
, (2.15)

with v⊙ = n·v⊙.
Similarly, we consider the redshift correction due to the peculiar motion of the supernovae

relative to the solar system which we model as a bulk velocity, a monopole and a quadrupole,

1 + zq(z, n) = 1 + z(cmb)

1 + zp(z, n) = 1 + z

(1 + z⊙)(1 + zp(z, n)) , (2.16)

where, similar to (2.15), zp is given by

1 + zp =
√

1 + (vp)/c

1 − (vp)/c
, (2.17)

with vp given by

vp = A(z)
[
n·v(bulk) + niαijnj + γ

]
. (2.18)

For (2.16) we simply use the formula for the redshift combining two boosts, one to the
CMB frame and one due to the peculiar velocity of the source. We can then rewrite (2.8)
more concisely as

dL(z, n) = d̄L(zq(z, n)) . (2.19)

3 Data and methodology

As in our previous work [22], we use the Pantheon+ data which provides distance moduli
µ for 1550 SNe,

µ = 5 log10(dL/10pc) = 5 log10(dL/1Mpc) + 25 . (3.1)
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As reported in table 6, 77 SNe are in galaxies that also host Cepheids, for which we know
the absolute distance modulus µceph. While Pantheon+ uses corrected redshifts including
the motion of the solar system and estimated peculiar velocities of the sources, we use the
actually measured redshifts for our analysis.

For handling the astronomical quantities and convenient unit conversions we use the
package astropy [35–37]. The theoretical model introduced in the previous section is
implemented in the code scoutpip2. To determine the parameters of our model we perform
an MCMC analysis using the python package emcee [38]. Our code is parallelized using
the Python package schwimmbad [39]. Our sampler consists of 32 walkers with the “stretch
move” ensemble method described in [40].

As in our previous paper, we maximize the likelihood

log(L) = −1
2∆µT C−1∆µ, (3.2)

where C is the covariance matrix provided by the Pantheon+ collaboration.3 The vector
∆µ is defined by

∆µi =

µi + dM − µi
ceph, i ∈ Cepheid hosts

µi + dM − µi
model, otherwise

(3.3)

where
µi

model = 5 log
(

dL(zi, ni)
Mpc

)
+ 25 , (3.4)

and dL(zi, ni) is given in (2.19). In eq. (3.3) we introduce the nuisance parameter dM which
is constrained by the supernovae in Cepheid-host galaxies, while the supernovae in galaxies
not hosting Cepheids constrain the luminosity distance parameters.

Finally, we analyse our chains using the getdist package [41]. Following the emcee
guidelines (the interested reader is referred to https://emcee.readthedocs.io/en/stable/t
utorials/autocorr/), we use the integrated τ [40] as convergence diagnostics. Here τ can
be considered as the number of steps necessary for the chain to forget where it started.
In particular, we assume that the chain is converged with respect to a certain parameter
when the number N of steps in the chain is larger than 50 times the auto-correlation time,
N > 50τ . We further consider as burn-in and discard the first 2 ⌊τmax⌋ steps, where τmax is
the maximum τ value for all the parameters. In all MCMC analyses, we use uniform priors
as reported in table 1 for the parameters that are varied.

4 Results

4.1 Simple dipole analysis

As first step, in order to test our code and the theoretical assumptions, we perform a similar
analysis for the dipole only as in our previous paper [22], but applying the redshift correction
as described in section 2.2, neglecting peculiar velocity corrections.

Doing this we obtain the same results as in our previous paper where the corrections were
applied at the level of the definition of luminosity distance instead of the redshift, i.e., using

2Available at https://github.com/fsorrenti/scoutpip
3We use the full covariance matrix, the sum of statistical and systematic errors.
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Parameter Prior range

|v(bulk)| [0, 1000] km/s
ra [0°, 360°]

sin(dec) [−1, 1]
αij [−500,500] km/s
γ [−500,500] km/s

dM [−1, 1]
H0 [40, 100] km/s/Mpc
Ωm [0, 1]

Table 1. Uniform priors for the parameters sampled in the various MCMC analyses. We vary sin(dec)
and not dec in order to sample the celestial sphere uniformly in area. We then apply the arcsin
function to the chain entries in order to recover the declination for the analysis. αij refers to a generic
element of the quadrupole matrix introduced in eq. (2.8).

only the first term in the Taylor series in d̄L(z̄ +δz) and linearising δz in n·v⊙ (neglecting bulk
velocity, the monopole and the quadrupole). The robustness of applying redshift corrections is
also manifest by the fact that, when considering the dipole only, we find a negligible difference
of ∆χ2 ≃ 0.8 with respect to the analysis developed in the previous paper where we used
eq. (2.11). In the first row of table 4 we report the constraints inferred from the MCMC
routine for the new orange contours, where the bulk velocity correction is taken into account
as a redshift correction. Note that while the amplitude roughly agrees with the velocity of the
solar system inferred from the CMB, the direction is very different, compared with eq. (1.1).
This result is in excellent agreement with our previous paper [22], where it was the main
finding. It led us to the conclusion that the bulk velocity cannot be neglected.

4.2 Including a bulk velocity

When fixing v⊙ to the Planck value and including just the v(bulk) correction in equation (2.17),
i.e. considering only the first term in brackets in equation (2.18), the dipole, we obtain the
contour plots shown in figure 2 and reported in the second row of table 4. These bulk
velocities agree with our previous paper [22]. As discussed there in details, the direction
of the fitted bulk flow agrees well with the bulk flow direction assumed in the Pantheon+
analysis [23], but the amplitude is nearly twice as large.

4.3 Bulk + quadrupole analysis

We now include also the quadrupole in the luminosity distance, which comes from the angular
dependence of the peculiar velocity field as discussed in section 2.1 and which we describe
by the matrix (αij), to perform a bulk + quadrupole analysis. As mentioned in section 2.1,
(αij) is a symmetric trace-less tensor of dimension 3 × 3. It is defined by five parameters
(e.g. α11, α22, α12, α13 and α23) that we introduce in our MCMC routine. In figure 3 we
visualise the quadrupole contribution plotting the function Q(n) = αijninj .
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Figure 2. Contour plots for the redshift correction as described in section 2.2, including just the
v(bulk) correction in equation (2.17), i.e. considering only the first term in brackets in equation (2.18)
and fixing v⊙ to (1.1) according to Planck. The dashed lines show as reference value for v(bulk) the
bulk flow obtained in the CosmicFlows4 project, see [25], for a sphere of radius R=150h−1Mpc (i.e.
|v(bulk)| = 395km/s, ra(bulk) = 178°, dec(bulk) = −66°), dM= 0, Ωm = 0.334 and H0 = 73.6(km/s/Mpc)
as obtained by Pantheon+ [23].

– 9 –



J
C
A
P
0
4
(
2
0
2
5
)
0
1
3

-150° -120° -90° -60° -30° 0° 30° 60° 90° 120° 150°

-75°
-60°

-45°

-30°

-15°

0°

15°

30°

45°

60°
75° SNa position

v(bulk) direction

40 20 0 20 40 60 80
Q (n)

Figure 3. We show the inferred quadrupole function, Q(n) = αijninj in equatorial coordinates. The
Supernova positions as well as the direction of the bulk velocity are also indicated. Note that the
peak of the quadrupole is not far from the bulk velocity direction. No strong correlation with the
supernova positions is evident.

λ1 [km/s] λ2 [km/s] λ3 [km/s]

−121+39
−33 −23 ± 34 145+40

−50

Table 2. Posteriors for eigenvalues of the quadrupole matrix (αij).

Instead of the matrix elements αij , however, we show in our plots the geometrically
more interesting quantities given by the eigenvalues and the direction of the eigenvectors.
Note that these also amount to five parameters given e.g. by λ1 and λ2, the traceless
condition then determines λ3, as well as three angles determining the direction of the first
two orthogonal eigenvectors. The third eigenvector is then simply given by the orthogonality
condition, w3 = w1 × w2. Note that with wi also −wi is an eigenvector, so we can fix
their orientation at will.

Using the samples obtained for the matrix elements αij , we determine the contour plots
for the eigenvalues which are shown in figure 4 and reported in table 2.

In our parametrisation of the matrix (αij) the trace vanishes, hence the sum of the
eigenvalues is zero by construction. However, eigenvalues λ1 and λ3 differ from zero by 3 to 4
standard deviations. Since their distributions are close to Gaussian, see figure 4, we conclude
that the detection of the quadrupole is significant. The direction of the eigenvectors is fixed
up to a sign. To remove this ambiguity, we choose all eigenvectors to point into the northern
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Figure 4. Distribution of the eigenvalues of (αij)
without redshift cut. Dashed lines indicate the
values λi = 0.

Figure 5. The scalar product µ2
i =[

(wi · v(bulk))/|v(bulk)|
]2, analysis without red-

shift cut.

ra [°] dec [°] (µi)2 [(km/s)2]

w1 230 ± 60 38 ± 20 0.132+0.068
−0.17

w2 242+90
−80 25+10

−20 0.171+0.083
−0.21

w3 71+10
−30 37 ± 10 0.70+0.25

−0.14

Table 3. Position of the eigenvectors wi in the northern hemisphere. In the last column we also show
the scalar product (µi)2 =

[
(wi · v(bulk))/|v(bulk)|

]2.

hemisphere. They are normalized and dimensionless, since we assume the eigenvalues to
have the dimension of velocity. In table 3 we report their directions. As λ2 is compatible
with zero, it is not surprising that the direction of w2 is not well determined. However, also
the direction of w1 has surprisingly large errors.

To compare the amplitude of the quadrupole with the bulk flow, we define

λ =
√

λ2
1 + λ2

2 + λ2
3 , (4.1)

and compare it with |v(bulk)| obtained in the bulk + quadrupole analysis. While |v(bulk)| =
338 ± 40 km/s, we find λ = 190 ± 40 km/s.4 Even though the quadrupole is somewhat smaller
than the dipole, it is of a comparable order of magnitude.

In figure 5 and table 3 we also show the scalar products µ2
i =

[
(wi · v(bulk))/|v(bulk)|

]2
.

Note that the sign has no significance since both wi and −wi are eigenvectors of λi. Since
the direction of w2 is not well determined the value of µ2 is also not. Interestingly, w3 is well
aligned with v(bulk) and, as a consequence, w1 is nearly orthogonal to v(bulk).

4Errors associated to λ are computed using the python package uncertainties [42], which handles error
propagation to determine the errors of functions of quantities with uncertainties.
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Figure 6. In this figure we show the parameters not involving the quadrupole and the monopole and
compare their values in an analysis including the quadrupole (orange) and an analysis containing only
the dipole from the bulk velocity.

In figure 6 we compare the inferred cosmological parameters and the bulk velocity in an
analysis including the quadrupole from the bulk motion (orange) with the one including only
the dipole. We find that all values are virtually identical in both analyses. It is not surprising
that the dipole is not changed, as we expect different multipoles to be independent, but we
note that also the cosmological parameter constraints stay the same.

4.4 Bulk + monopole analysis

We also model the data by adding a monopole to the bulk velocity, the parameter γ of
eq. (2.18). The unperturbed cosmological d̄L(z) of course also represents a monopole. But
the redshift dependence of the velocity monopole, given by (1 + z)2H−1(z)A(z) is quite
different from d̄L(z) so that this degeneracy is lifted. Note especially that contrary to d̄L(z),
the redshift contribution from the velocity monopole does not vanish for z → 0. This is
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Model γ |v⊙| ra⊙ dec⊙ |v(bulk)| ra(bulk) dec(bulk) H0 Ωm
[km/s] [km/s] [°] [°] [km/s] [°] [°] [km/s/Mpc]

Section 4.1 — 318±40 140±7.7 42+7
−6 — — — 73.2 ± 1.0 0.340 ± 0.018

Section 4.2 — — — — 320 ± 40 203 ± 11 −52.5+4.8
−5.5 73.2 ± 1.0 0.340 ± 0.018

Section 4.4 −106±40 — — — 318 ± 40 197 ± 11 −52.8+5.0
−6.0 74.2 ± 1.1 0.316 ± 0.019

Table 4. Constraints on parameters for the models we discussed in sections 4.1, 4.2 and 4.4 without
imposing any redshift cut. For the sake of simplicity in presenting the results, we omit the constraints
on dM. Here and in all the following results tables, the errors show the 68% confidence intervals
obtained when analysing the MCMC chains with getdist. They are purely statistical errors, as a
consequence, they should be interpreted with care.

due to the fact that a radial velocity of the source modifies the measured redshift so that
dL = 0 now no longer coincides with vanishing redshift. This makes the monopole at low
redshift very distinct from d̄L(z).

Interestingly, while adding a quadrupole with its five free parameters reduces the χ2

by the modest value ∆χ2
Q ≃ 5.9 with respect to the analysis including only a bulk velocity

of section 4.2, by adding a monopole characterized by just one free parameter, γ, we gain
a ∆χ2

M ≃ 6.85. The inclusion of the monopole also leads to a slight increase of H0, by
0.9σ and to a decrease of Ωm by about 1.2σ, see third row of table 4. The increase of
H0 can be understood as follows: Considering eqs. (2.16) to (2.18) we see that a negative
value of γ leads to an increase in zq with respect to its value for γ = 0 hence the measured
dL(z) = d̄L(zq) > d̄L(z). And since H0 is inversely proportional to d̄L(z), this implies a
larger H0. At z < 0.01 this reduction of d̄L(z) is about 1.2%, but due to the reduced value of
Ωm, it decays rapidly and is only about 0.02% at z = 0.5. The difference d̄L(z, Ωm = 0.316,
H0 = 74.2) − d̄L(z, Ωm = 0.34, H0 = 73.2) crosses zero at z ≃ 1, above which the Pantheon+
dataset contains no SNIa.

However, like the quadrupole the monopole does not affect the dipole, v(bulk). This again
is a consequence of the fact that the different multipoles are orthogonal functions. As the
background luminosity distance is a monopole, only the monopole of the peculiar velocity, i.e.
its radial component, can affect it and thereby modify the inferred cosmological parameters.

The contour plots for this analysis are shown in figure 7. Note the correlation between γ

and Ωm and the anti-correlation of γ and H0. Despite the relatively low mean value amplitude
of the monopole, about 1/3 of the bulk velocity, its impact on the cosmological parameters
is quite strong. Despite the fact that the monopole is distinguished from the background
luminosity distance only via its redshift dependence, it is detected with a significance of more
than 2σ. As we shall see, this is mainly due to its strong effect at very low redshift.

4.5 The full bulk + quadrupole + monopole analysis

Finally we model the redshift by adding all, the radial velocity (monopole), the bulk velocity
(dipole) and the quadrupole. With respect to the analysis allowing only for a bulk velocity
we performed in section 4.2, we gain a ∆χ2 ≃ 9.31 in this model which has six additional
parameters. As we have seen in the previous section, most of this improvement is due to
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Figure 7. Contour plots for the analysis including a bulk velocity and monopole, corresponding to a
radial peculiar velocity.

the monopole. The ∆χ2 for the quadrupole alone is only somewhat larger than 5 which
is the expected value for 5 new parameters and not a truly better fit, while for the single
parameter γ, χ2 is reduced by more than 6.

The contour plots of this analysis are shown in figure 9 (green contours and lines) and
the mean values with 1σ error bars are reported in table 5 (first line). As already in the pure
monopole analysis, the monopole amplitude, γ is correlated with Ωm and H0. The mean
values of H0 and Ωm are affected by the presence of γ, but the values found in the original
Pantheon+ analysis [23] remain consistent within 1σ with our results.

4.6 Applying redshift cuts

We repeat our bulk + monopole + quadrupole analysis to sub-portions of the Pantheon+
dataset obtained by removing all the supernovae with a redshift smaller than a certain values
zcut. Note, however, that all galaxies with Supernovae and Cepheids which are only used
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Figure 8. Visualisation of the constraints on monopole, dipole and quadrupole as reported in table 5.

zcut γ |v(bulk)| ra(bulk) dec(bulk) H0 Ωm λ1 λ2 λ3
[km/s] [km/s] [°] [°] [km/s/Mpc] [km/s] [km/s] [km/s]

No cut −95 ± 44 323 ± 50 199 ± 12 −51.2+5.4
−7.0 74.1 ± 1.1 0.317 ± 0.019 −111+40

−31 −12 ± 32 122+40
−50

0.005 −43 ± 47 342 ± 50 195 ± 13 −56.6+5.4
−6.8 73.9 ± 1.1 0.326 ± 0.021 −109+40

−31 0 ± 30 110+30
−40

0.01 −73 ± 55 267 ± 50 211+15
−13 −43.3+8.5

−11 74.0 ± 1.1 0.325 ± 0.021 −152+58
−43 9 ± 39 143+40

−50

0.0175 −97 ± 68 335 ± 70 216+17
−15 −52.1+7.2

−9.9 74.1 ± 1.1 0.323 ± 0.023 −187+69
−53 16 ± 48 171+50

−60

0.025 −71 ± 100 390 ± 100 239+30
−20 −61.9+8.0

−13 74.0 ± 1.1 0.323 ± 0.024 −254+87
−68 −15 ± 69 269+70

−100

0.0375 −168+150
−170 279+100

−200 237+70
−30 −37+18

−39 74.0 ± 1.2 0.322+0.025
−0.028 −434+140

−120 18 ± 110 416 ± 100

0.05 −26 ± 220 215+100
−200 197+100

−80 −27+27
−49 73.8 ± 1.3 0.327+0.027

−0.031 −498+140
−120 1 ± 130 498 ± 100

0.1 76+300
−200 274+100

−200 179 ± 100 −11+38
−48 73.4 ± 1.3 0.337+0.027

−0.030 −598 ± 140 −11 ± 160 608 ± 100

Table 5. Constraints on parameters for the monopole, dipole and quadrupole inferred in the
Pantheon+ data set for different cuts in the redshift of the supernovae. For the sake of simplicity in
presenting the results, we omit the constraints on dM.

to determine dM but do not affect the model, are always included, also if their redshift
is below zcut. We have found that the inferred monopole, dipole and quadrupole is quite
sensitive to the redshift cut for very low values of z and becomes insensitive for zcut > 0.1
For zcut ≥ 0.05 the monopole and dipole are actually no longer detected at more than 2σ.
We therefore only report results for zcut ≤ 0.1. We show the resulting contour plots in
figures 9, 10 and in appendix A, figures 17 and 18. The constraints on monopole, dipole
and quadrupole are presented in figure 8. In table 6 we report the number of supernovae
included within a given redshift cut.

– 15 –



J
C
A
P
0
4
(
2
0
2
5
)
0
1
3

150 0

γ

100

200

300

λ
3

100

0

100

λ
2

300

200

100

λ
1

0.3

0.4

Ω
m

72

74

76

H
0

0.10

0.05

0.00

0.05

dM

60

40

20

d
ec

(b
u
lk

)

160

200

240

ra
(b
u
lk

)

200

300

400

v
(b
u
lk

)

200 400

v(bulk)

160 200 240

ra(bulk)

40 10

dec(bulk)

0.05 0.05

dM
72 74 76

H0

0.30 0.35

Ωm

300 100

λ1

50 50

λ2

100 200 300

λ3

zcut = 0.01

zcut = 0.005

No cut

Figure 9. Contour plots for the full bulk velocity, quadrupole and monopole analysis described in
section 4.5 with three different cuts in the redshift of the supernovae. More cuts are shown in figure 19
in appendix A.

Our results are also summarized in table 5, where the full analysis is presented, and
in table 7 where we do not include the monopole. Note that already at z = 0.005, the
monopole is no longer detected at more than 1σ. It is significant only at very low redshifts
where it is multiplied by a factor 1/H0r(z) ≃ 1/z. Nevertheless, its presence does somewhat
raise the inferred value of the Hubble parameter, albeit within 1σ and not in the direction
which would reduce the Hubble tension. Note also that for the first redshift cut only 9
supernovae in galaxies without Cepheids and 27 supernovae in galaxies with Cepheids are
removed, see table 6. Hence most of the monopole signal comes from modelling these 9
lowest redshift supernovae.

This MCMC converges well also for zcut = 0.1. The results for the bulk velocity and the
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zcut Pantheon+ SNe in
without Cepheids Cepheid hosts

No cut 1624 77
0.005 1615 50
0.01 1576 7

0.0175 1468 2
0.025 1312 0
0.0375 1126 0
0.05 1054 0
0.1 960 0

Table 6. Number of supernova lightcurves in each sub-portion of the Pantheon+ dataset obtained
removing all the supernovae with a redshift smaller than zcut. (Note that while the Pantheon+
compilation contains 1550 different SNIa, it has 1701 lightcurves as several supernovae have been
observed in more than one experiment.) For information, in the last column we provide also the
number of SNe in Cepheid-host galaxies in each sub-dataset.

zcut |v(bulk)| ra(bulk) dec(bulk) H0 Ωm λ1 λ2 λ3
[km/s] [°] [°] [km/s/Mpc] [km/s] [km/s] [km/s]

No cut 338 ± 40 206 ± 11 −52.5+5.0
−6.0 73.4 ± 1.0 0.334 ± 0.019 −121+39

−33 −23 ± 34 145+40
−50

0.005 349 ± 50 196 ± 12 −57.6+5.2
−6.2 73.6 ± 1.0 0.333 ± 0.019 −110+41

−32 0 ± 30 110+30
−40

0.01 432 ± 100 242+30
−20 −65.0+7.6

−10 73.7 ± 1.0 0.334 ± 0.020 −266+86
−71 −16 ± 70 281+80

−100

0.0175 363 ± 70 218+17
−14 −55.5+6.3

−8.2 73.5 ± 1.0 0.340 ± 0.020 −181+64
−50 16 ± 46 165+40

−60

0.025 432 ± 100 242+30
−20 −65.0+7.6

−10 73.7 ± 1.0 0.334 ± 0.020 −266+86
−71 −16 ± 70 281+80

−100

0.0375 316 ± 200 242+70
−30 −46+14

−32 73.5 ± 1.1 0.339 ± 0.022 −431+140
−120 28 ± 100 404 ± 100

0.05 210+100
−200 199+100

−80 −26+27
−50 73.8 ± 1.1 0.328 ± 0.022 −497+140

−120 5 ± 130 492 ± 100

0.1 280+100
−300 179 ± 100 −10+39

−48 73.5 ± 1.1 0.334 ± 0.025 −591 ± 140 −12 ± 160 603 ± 100

Table 7. Constraints on parameters for the dipole and quadrupole inferred in the Pantheon+ data
set for different cuts in the redshift of the supernovae. For the sake of simplicity in presenting the
results, we omit the constraints on dM.

quadrupole of this analysis are in good agreement with the full analysis. It is interesting
to note that while for zcut ≥ 0.0375 the dipole, i.e., the bulk velocity, is no longer detected
at more than 1.5σ, see table 5 and figures 19 and 20, the eigenvalues λ1 and λ3 of the
quadrupole remain non-zero even at 95% confidence. Contrary to the bulk velocities, the
eigenvalues λ1 and λ3 of the quadrupole are even increasing with redshift cut. This means that
above zcut = 0.0375, corresponding to a distance R = 112h−1Mpc, the angular fluctuations
in the luminosity distance are better fitted with a quadrupole than with a dipole. This
is not so surprising as the quadrupole represents fluctuating velocity field roughly on the
scale of the redshift cut while the bulk velocity is assumed to be constant on all scales
relevant in the analysis.
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Figure 10. Contour plots for the bulk velocity and monopole analysis described in section 4.4 with
three different cuts in the redshift of the supernovae. More cuts are shown in figures 17 and 18 in
appendix A.

4.7 χ2 analysis

It is also interesting to study the improvement of the fit when including the monopole and
quadrupole. As shown in table 8, this strongly depends on the redshift cut. Introducing no
cut the fit is significantly improved and as we have seen this is mainly due to the monopole.
At the very low cuts of zcut = 0.005 and zcut = 0.015 corresponding to a radius of 15h−1Mpc
and 30h−1Mpc, the improvement is not significant considering that we have introduced 5 or,
with monopole 6, additional parameters. However, for zcut ≥ 0.0175, ∆χ2 is monotonically
increasing and for zcut ≥ 0.025, the improvement obtained by including a quadrupole (and
monopole which is irrelevant at this redshift) is, even if not overwhelming, more substantial.
This is due to the fact that even for the highest redshift cuts, λ1 and λ3 are non-zero within
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∆χ2

zcut Bulk + quadrupole Bulk + quadrupole
+ monopole

No cut 5.92 10.08
0.005 3.15 3.45
0.01 6.40 7.33

0.0175 5.36 7.07
0.025 7.95 8.06
0.0375 8.04 8.64
0.05 9.37 9.21
0.1 9.52 9.80

Table 8. ∆χ2 differences for different redshift cuts between the mean value dipole determined
in our previous analysis [22] and the hypothesis of a bulk motion with only quadrupole correction
(second column) and the hypothesis of a bulk motion with both quadrupole and monopole correction
(third column).

95% confidence. On the contrary, their mean values are even increasing. Despite the fact
that also the error bars increase, the significance of λ1 and λ3 simply measured as (mean
value)/error also increases with redshift. This is not the case for v(bulk) which can vanish
within less than 90% confidence for zcut ≥ 0.0375 and becomes even less significant with
increasing redshift, see table 7 and figures 17 and 18 in appendix A. We finally note that
whenever tested we found a slightly smaller χ2 when the correction is applied as a redshift
correction, eq. (2.19), than when it is applied on the distance dL directly, eq. (2.8).

4.8 Mock tests

In order to confirm the significance of the monopole, quadrupole and the bulk velocity (dipole
in the supernova data), we have also compared the analysis of the true Pantheon+ data with
the analysis of a mock dataset created using an artificial redshift distribution (the comparison
with the original redshift distribution is shown in figure 11), the distance moduli computed
according to eqs. (2.16), (2.18), (2.19), fixing a constant |v(bulk)| = 400km/s in direction
(ra, dec) = (100°, 20°), so that the monopole and quadrupole vanish, and a cosmology given by
the fiducial values Ωm = 0.334, H0 = 73.6. Moreover, for simplicity, we neglected supernovae
hosted in cepheids, fixing dM=0, and we used a diagonal covariance whose elements are the
same as the diagonal of the covariance matrix of the Pantheon+ analysis.

For H0, Ωm and the bulk velocity we are able to recover the values chosen for the
construction of the mock dataset. At the same time, we do not find any monopole or
quadrupole, while they are detected in the real data. In figure 12 we show the results from a
parameter estimation of the Mock dataset compared to the real data for dipole and quadrupole
only. The bulk velocity inserted in the Mock data and the cosmological parameters used are
indicated by dashed vertical and horizontal lines. Clearly, the input parameters are very well
reproduced and all three eigenvalues of the quadrupole are well consistent with zero. The
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Figure 11. Visual comparison of the redshift distribution given by Pantheon+ (orange histogram)
and the mock distribution (blue histogram) used in section 4.8.

same is true for the monopole. This confirms our interpretation that the bulk velocity, the
monopole and the quadrupole are really present in the data.

5 Systematics checks

We tested wether our signal was dominated by a single supernova. For doing so, we first
computed the χ2 differences for the full bulk + monopole + quadrupole analysis between
considering all the supernovae and removing one supernova at a time. We plot the differences
as function of the redshift in figure 13. We then run an MCMC removing the 4 supernovae
with redshift z ≤ 0.1 contributing the most to χ2 (i.e. the supernovae whose ∆χ2 ≥ 10). We
considered only z < 0.1 supernovae since they are the ones mainly constraining the multipoles.
From the MCMC run, we obtained essentially identical contours as in figure 9, proving that
the our signal is not dominated by a one or a few supernovae.

We also checked wether our signal was the result of a Milky Way dust systematic in the
supernovae. For doing so, we performed our bulk + monopole + quadrupole analysis on a
subdataset of 1320 supernovae with the Milky Way extinction parameter MWEBV≤ 0.05
(see figure 14). We obtained the contours in figure 15. The contours are of course somewhat
wider due to the lower statistics, we removed 381 supernovae from our dataset, but the
main results remain valid. There is a shift for the monopole and the right ascension of the
bulk velocity at the level of nearly 1σ. The difference between the mean value for the bulk
velocity obtained in the main analysis in section 4.5 and the one obtained when removing
supernovae with MWEBV≤ 0.05 is

∆v(bulk) = 7km/s , (∆ra, ∆dec) = (32, −1.7) , (5.1)

while the difference between the monopole mean values is

∆γ = −89km/s (5.2)
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Figure 12. We compare the mean value parameters from the original Pantheon+ data (orange) with
the ones from Mock data in which both, the monopole and the quadrupole have been removed. Note
that λ1 ≤ λ2 ≤ λ3 together with λ1 + λ2 + λ3 = 0 enforces λ1 ≤ 0 and λ3 ≥ 0.

v(bulk)[km/sec] ra [o] dec [o]
323 ± 50.5 199 ± 34 −51.2+5.4

−7.2

Table 9. The bulk velocity when adding a systematic error due to Milky Way dust extinction.

While the monopole becomes even more negative and actually more significant, the trend
for the bulk velocity is less clear. We therefore just add the difference due to Milky Way
dust extinction as systematic uncertainties in quadrature to the errors inferred from the
Pantheon+ covariance matrix that is given in table 5. The resulting errors for the bulk
velocity are shown in table 9.
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Figure 13. χ2 differences as function of redshift for the full bulk + monopole + quadrupole analysis
between considering all the supernovae and removing one supernova at a time.

Clearly, adding these possible errors does not change our main results. The bulk velocity
remains significant and even though the right ascension is now within 1σ of the observer
velocity v⊙ given in (1.1), the declination is still very far away, it rather becomes even
more negative.

6 Conclusions

In this paper we analysed the Pantheon+ data including a dipole, a quadrupole and a
monopole perturbation in the luminosity distance which are motivated by the peculiar motion
of the supernovae which leads to an angular dependence of the redshift perturbation. We have
found that both the quadrupole and at very low redshift also the monopole are significant
and of a comparable amplitude as the dipole of the bulk velocity. Removing low redshift
supernovae from our sample, we even find that the monopole and the dipole from the bulk
motion are no longer detected with high significance. This can be due to the fact that at higher
redshifts, monopole and dipole perturbations, which are sensitive to fluctuations that are at
least of the size of the redshift shell, would require fluctuations on even larger scales which,
within standard cosmology are small. However, the quadrupole, that measures fluctuations
of typically half the size of the shell remains non-zero at more than 95% confidence. It is also
interesting to note that the eigenvalues of the quadrupole are significantly increasing with
redshift while their errors stay roughly constant. Hence they also become more significant
at higher redshift. This trend is understandable as at higher redshifts, where neither the
monopole perturbation nor the dipole (bulk velocity) are significant, the peculiar velocity
of the sources has to be modelled by the quadrupole alone in our approach.
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Figure 14. Comparison of the full supernovae distribution (orange histogram) with the distribution
of the 1320 supernovae with MWEBV≤ 0.05 (blue histogram).

It is intriguing that our result for the bulk velocity is within 95% confidence in agreement
with the bulk flow found in the CosmicFlows4 analysis [25]. That it does not perfectly agree
with CosmicFlows4 is not surprising since our zcut means that we exclude all supernovae
inside a ball of radius r(zcut). While the remaining bulk flow is dominated by the one in a
shell close to r(zcut), this is not quite the same as the velocity inside the ball. Also, while the
CosmicFlows4 analysis does include the Pantheon+ data, it has a much larger catalog of about
38,000 galaxy velocities. For zcut < 0.0375 we obtain a bulk flow of about 316 ± 200km/s, and
based on appendix B, see also figure 16, we conclude that the probability to find a velocity
of this size or larger inside a ball of redshift zcut = 0.0375 is

P (v(bulk) ≥ 316, zcut = 0.0375) = 16% , (6.1)

where we have used the cosmological parameters inferred from the MCMC analysis reported
in table 5. This is the result within standard ΛCDM with σkV (r = 112h−1Mpc) ≃ 212km/s,
and arguably does not appear to be highly unlikely. Taking additionally into account that
our error in v(bulk) is relatively large, our analysis does not exclude v(bulk) = (316 − 200)km/s,
for which we find

P (v(bulk) ≥ 116, zcut < 0.0375) = 93.73% , (6.2)

and for which certainly there is no tension.
The reason that our results are not in strong tension with ΛCDM is mainly due to

the weaker statistical power of the supernova-only sample, hence to the large error bars of
v(bulk) and to the fact that we have no truly significant bulk flow at r ≥ 200h−1Mpc. Were
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Figure 15. Contour plots for the full bulk velocity, quadrupole and monopole analysis described in
section 4.5 considering all the supernovae (orange contours) and the 1320 supernovae with MWEBV≤
0.05 (blue contours).

we to take at face value the bulk flow of 274km/s at zcut = 0.1 reported in table 5, which
corresponds to r = 300h−1Mpc, with σkV (r = 300h−1Mpc) ≃ 98.69km/s, we would find

P (v(bulk) ≥ 274, zcut < 0.1) = 3.82 × 10−5 . (6.3)

This would be similar to the findings of ref. [25]. But from table 5 we also see that v(bulk)(z =
0.1) is compatible with zero within 2σ, and is statistically acceptable for the 1σ lower limit.

Within the statistical power of the Pantheon+ data, we therefore conclude that the
inferred monopole perturbation, dipole and quadrupole in the Pantheon+ data are in reason-
able agreement with a velocity field expected in the standard ΛCDM model of cosmology.
It will certainly be very important to repeat this analysis with a larger sample of super-
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Figure 16. We show the probability to measure a bulk velocity larger than a given value inside a
ball corresponding to the redshift zcut. For better visualisation we show the result in log scale (left
panel) and linear scale (right panel).

novae. Especially low redshift supernovae with z ≤ 0.1 are suited to improve the statistical
power. For example, the Vera Rubin Observatory’s LSST should be able to detect up to
104 supernovae within a year or so in this redshift range [43], while the Pantheon+ dataset
has 800 sources in this redshift range.
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A Pantheon+ redshift dependence

In this appendix we also show the contour plots for higher redshift cuts for both the bulk
+ quadrupole analysis and the full bulk + quadrupole + monopole analysis. We choose
zcut = 0.0175, 0.025 and 0.0375 in figure 17, 19 for both the analyses, whereas we set
zcut = 0.05 and 0.1 in figure 18, for only the bulk + quadrupole analysis.
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Figure 17. Parameters for redshift cuts at medium redshifts for the bulk + quadrupole analysis.
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monopole analysis.
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B Statistical properties of the velocity field

In the standard cosmological model, the velocity field v is the gradient of a scalar velocity
potential V , v = ∇V . The velocity potential is an isotropic Gaussian random field with zero
mean and power spectrum (at z = 0) PV (k). This implies that each component vj of the
velocity field is itself an isotropic Gaussian random field, and in Fourier space is given by

vj = ikjV . (B.1)

The variance of the fields vj and V are then related through

⟨v2
j ⟩ = k2

j ⟨V 2⟩ . (B.2)

Thanks to the statistical isotropy of the velocity field, each component k2
j contributes equally

to k2 = k2
1 + k2

2 + k2
3, so that the prefactor is 1/3 on average, and

σ2
vj

= k2

3 σ2
V = 1

3σ2
kV . (B.3)

Here we are interested in the variance of the velocity field when averaged over a spatial
volume of a given size R,

σ2
kV (R) =

∫
PkV (k)|W 2

R(k)| d3k

(2π)3 (B.4)

for a given window function WR(k) that describes the shape of the spatial volume. For a
spherical top-hat window in real space, the Fourier-space window function is

WR(k) = 3
(kR)3 (sin(kR) − kR cos(kR)) = 3

kR
j1(kR) . (B.5)

In perturbation theory, the power spectrum of V is related to the power spectrum of the
density contrast δ through

PkV (k) = H2
0 f2

0
Pδ(k)

k2 (B.6)

where f0 = f(z = 0) is the growth factor today in the ΛCDM model. We show σkV (R)
as a function of R in figure 21.5

In order to evaluate the probability for finding a larger bulk velocity on a given scale
R than a certain value v0 we consider the random variable

Zj =
√

3 vj

σkV (R) , (B.7)

which has zero mean and unit variance. Its norm-squared, Z2 = ∑
j Z2

j = 3v2/σ2
kV (R)

then has a χ2 distribution with 3 degrees of freedom (and |Z| has a χ distribution). The
5For computing the power spectrum used in the probability analysis we used the boltzmann solver camb [44],

assuming H0=73.6 km/s/Mpc and Ωm=0.334 for the background cosmology.
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Figure 22. The probability to find a value large than x for a random variable with a χ2 distribution
for 3 degrees of freedom.

probability to find a value larger than x for a random variable Z2 that has a χ2 distribution
with n degrees of freedom is

P (Z2 > x) = Γ(n/2, x/2)
Γ(n/2) (B.8)

where Γ(k, x) is the incomplete Gamma function. We show this probability for n = 3 in
figure 22. From figure 21 we see that on a scale of R = 112h−1Mpc which corresponds to
zcut = 0.0375, we find σkV ≃ 212 km/s. In our analysis we find a mean value of v(bulk) ≈ 374
km/s inside this redshift cut. For a χ2(3) distribution, we obtain

P (Z2 > 3(374/212)2) ≈ 0.01599 . (B.9)

While this probability is not very high, it is by no means excluding the model.
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