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FOREWORD

JAIME KELLER

Centro de Investigaciones Tedricas
Facultad de Estudios Superiores-Cuautitldn,
Universidad Nacional Auténoma de Mézico

(October 1993)

The XXIIth International Conference on Differential Geometry Methods
in Theoretical Physics was held in México during five days, September 20-24,
1993, in the most attractive tropical Pacific coast, 200 km from Acapulco,
in Ixtapa-Zihuatanejo. This series of annual conferences outgrowth of the
meetings in the Professor Konrad Bleuler’s house and garden.

Konrad Bleuler, an outstanding Swiss theoretical physicist, was born in
1912 in HerzogenBuchsee, Switzerland. Died on January 1, 1992, in Bonn. He
was educated at Eidgenodssische Technische Hochschule in Ziirich, influenced
mostly by his teacher and friend Wolfgang Pauli and since 1959 affiliated
later to the Institut fiir Theoretische Kernphysik, University of Bonn.

Konrad Bleuler was fascinated how abstract mathematical structures tie
into empirical quantities and that the relations among physics and geome-
try guided developments of both. His examples of the mathematical works
inspired by physics include the abstract structure of quantum mechanics, su-
permathematics, Yang-Baxter and braid equations, non-Abelian gauge the-
ory and conformal field theories.

Konrad Bleuler organized the first conferences and since this inception
in 1971 he was the permanent member of the International Advisory Com-
mittees and main force behind the organizing efforts. Bleuler’s intention
was to bring mathematicians and physicists together and he succeed in this
fusion as for example M. F. Atiyah, R. J. Baxter, M. Jimbo, Vaughan F.
R. Jones, Bertram Kostant, André Lichnerowicz, Yuri I. Manin, Krzysztof
Maurin, Jean M. Souriau, Shlomo Sternberg, Julius Wess, Edward Witten,
Chen Ning Yang, served during many years as active members of the Inter-
national Advisory Committees. Another Bleuler’s successful intention was
to help contacts among East and West.

The first conference in this series was held in 1972. The Proceedings
of the first DGM conferences, including XIVth conference in Salamanca in
1985, were published by Springer-Verlag in the series Lectures Notes in Ma-
thematics. There were two exceptions, the conference in Aix-en-Provence
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in 1974 and Warsaw conference in 1976. The last one was published as
the special volume of Reports on Mathematical Physics. Since 1986 the
Proceedings were published either by Plenum Press and by Kluwer (1986,
1987 and 1989), three times by World Scientific (Chester 1988, New York
1991 and Tianjin 1992) and Rapallo conference in 1990 was published again
by Springer-Verlag in the series Lecture Notes in Physics.

It was decided that starting 1993 these conferences will be organized
every two years.

In honour of Professor Konrad Bleuler and in order to remember his
contribution in the organization of this series of conferences, we proposed a
Bleuler Medal as a bi-ennial award to a young scientist for an outstanding
contribution to Geometrical Methods in Theoretical Physics. According to
a selection made by the International Advisory Committee the distinction
will be certified by a diploma signed by the Chairman of the conference and
a silver medal containing a universal symbol for arts and science and the
engraving Bleuler Medal, a year it is been awarded and a name of the victor.

The Bleuler Medal 1993’, the first one, we delivered to Shahn Majid from
the Department of Applied Mathematics and Theoretical Physics, University
of Cambridge in United Kingdom. This silver medal contains the Aztec
calentdar from the year 1385.

The conference in Ixtapa attracted 62 participants from 14 countries:
U.S.A. (20), Germany (8), Italia (8), México (7), Russia (6), Canada (4),
France (2) and with the single representatives from Belgium, Finland, Japan,
New Zealand, Poland and Serbia. .

Organizer and Editors:

The Symposium was organized by Jaime Keller (Chairman), Mrs A. Irma
Vigil de Aragén, Mrs Maria Esther Monroy Baldi, Adolfo Obaya Valdivia,
Garret Sobczyk and with the help of the International Advisory Committee:

Lawrence C. Biedenharn (University of Texas at Austin), Sultan Catto
(City University of New York), Alain Connes (Institut des Hautes Etudes
Scientifiques, Paris), Frank Flaherty (Oregon State University), Jurg Frohlich
(Ziirich), Mo Lin Ge (Tianjin, China), Vaughan F. R. Jones (New Zeal-
land), Louis H. Kauffman (University of Lllinois at Chicago), Werner Nahm
(Universitat Bonn), Cupatitzio Ramirez (Universidad Auténoma de Puebla,
México), Adolfo Sanchez Valenzuela (Centro de Investigacion en Matem-
aticas, Guanajuato, México), Julius Wess (Max-Planck-Institiit fir Physik
und Astrophysik, Miinchen), Chen Ning Yang (Stony Brook New York) and
Bruno Zumino (University of California and Lawrence Berkeley Laboratory).
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REMEMBERING KONRAD BLEULER

WERNER NAHM
Physikalisches Institut der Universitdt Bonn
nahm@pib1.physik.uni-bonn.de

(Received: September 5, 1994)

It was only during his last years that I got to know Konrad Bleuler more
closely, thus the memories of his many friends will do him more justice.
But one aspect comes first to the mind of everyone who knew him: Bleuler
had an overwhelming, never wavering enthusiasm for physics. Even after
his emeritation, he regularly came to seminars, full of curiosity for new
fundamental developments. After all mathematically demanding talks, he
emphatically congratulated the speaker. He impressed all the students, and
respect for him increased every year.

In spite of his long stay in Germany, Bleuler’s Swiss origins were un-
mistakable. He was born on September 23, 1912 in HerzogenBuchsee, can-
ton Bern, into a family of economically successful mechanical engineers.
When he started to study in 1931 in Ziirich at the Eidgendssische Technis-
che Hochschule, it still seemed obvious that he would become an engineer,
too. Soon, however, he was seduced by the beauty of mathematical forms
in nature. The decisive step for his turn towards physics was his study of
Riemannian geometry and Einstein’s theory of gravity.

In mathematics, Heinz Hopf had the strongest influence on Bleuler, in
physics it was Wolfgang Pauli. For a while, he oscillated between the two sub-
jects, and between Ziirich and Geneva. After obtaining his physics diploma
in 1936 he went to Geneva for two years, then back to Ziirich, where in 1942
he got his PhD in mathematics under George Polya. He became assistant of
Ernest Stiickelberg in Geneva, later of Walter Heitler and Gregor Wentzel
in Ziirich, where he obtained a titulary professorship in 1945.

Bleuler’s lifelong concern was the fundamental understanding of the atomic
nucleus. He stressed the importance of experimental data, but was convinced
that a good understanding:only would result from an esthetically pleasing
theoretical basis. Quantum electrodynamics already was phenomenologically
satisfying, but Bleuler very much disliked with the lack of Lorentz symmetry
of the calculations. In part he certainly was influenced by Stiickelberg’s work,
but even more the insistence on symmetry and mathematical transparency
was a part of his own nature. In 1950, Suraj Narayan Gupta published his
famous paper on the quantum theory of the electromagnetic field. To some,
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it may have looked like a pure intellectual exercise, since Gupta only consi-
dered non-interacting photons, but Bleuler immediately saw the potential of
this approach. He streamlined it and showed that it could be applied equally
well to the interaction with charges. Thus the Gupta-Bleuler formalism was
created, which later was developed into the great number of BRST type
approaches to the physical states.

In 1957, Bleuler became ordinary professor at the university of Neuchitel.
He worked hard on the understanding of the nucleus, but already had his
many interests outside of physics. In particular, he had contacts to se-
veral writers, e.g. rather close ones to Carl Zuckmayer, and to Friedrich
Diirrenmatt as the most famous. Bleuler decided to introduce Pauli to the
latter, which led to three nights of wine and conversation. Dilrrenmatt was
intrigued and somewhat intimidated, so he made sure to prove his superi-
ority in drinking. At the 1962 conference on Chaumont close to Neuchatel,
Diirrenmatt was guest of honor and gave a speech. A much more important
result, however, was his play “The Physicists” (by the way, one of my first
few contacts with physics). Pauli became the model for one of the physicists,
but the central male character got the name Beutler and was modeled on
Bleuler himself. Wolfgang Pauli told me that Bleuler’s way of expressing
himself was very recognizable on stage.

In 1959, Bleuler got simultaneous professorship offers to Bonn an Freiburg.
In the same year, he married Tinette Specogna. In Bonn he founded the In-
stitute fiir Theoretische Kern Physik, which he directed even after his emer-
itation until 1983. For many years, his main interest was the replacement
of the older phenomenological nucleon-nucleon potentials by ones based on
meson exchange. The resulting Bonn potential proved to be rather satis-
factory. Nevertheless, the advent of quantum chromodynamics immediately
motivated Bleuler to cast aside this framework and to argue for models based
directly on quarks. He was an organizer of three conferences on quarks and
nuclei.

Though ne did not want to abandon the understanding of the nucleus
as his own task, he always encouraged young physicists to work on more
fundamental questions. The conference series on Differential Geometrical
Methods in Theoretical Physics was the most influential result of his persis-
tent attempts to stimulate the interaction of mathematicians and physicists.
Before the ADHM instanton paper, the importance of such interactions was
far from universally accepted. Despite good preparations in discussions with
Rolf Nevanlinna and others, it hardly could be foreseen, how far Bleuler’s en-
thusiasm would carry, when he started the series in 1971 in an almost private
setting next to his home in Bonn. Personal friendship, the green environ-
ment and the pleasant atmosphere created by his wife helped .to establish
a tradition. Later, conferences expanded and took place in France, Poland,
Italy, Israel and in the United States. Important topics since the first years
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were geometric quantization, supersymmetry, and the geometry of gauge
theories. The conferences were always attended by leading researchers in
the field.

The series continued every year without interruption, with undiminishing
involvement of Bleuler himself. For me, it is a pleasant memory how much
he enjoyed the Lake Tahoe meeting in 1989 and deeply moving to remember
how he prepared the Tianjin conference in 1992. In spite of his illness, he
personally wrote the most important initial letters. Later, he had to observe
the partial decay of his sense of space and time and suffered much from it.
Still, his enthusiasm for physics was undiminished. Till the end, he longed
to participate in the conference. The support of his family greatly helped
him during his last months. He died on January 1, 1992, leaving his wife,
two children and three grandchildren.






BLEULER’s MEDAL WINNER:
SHAHN MAJID

JAIME KELLER and ZBIGNIEW OZIEWICZ

Centro de Investigaciones Tedricas
Facultad de Estudios Superiores-Cuautitlin,
Universidad Nacional Auténoma de Mézico

Shahn Majid is interested in mathematics closely tied to fundamental pro-
blems in theoretical physics: non-commutative geometry, quantum groups,
integrable systems and Yang-Baxter equations. His aspiration has been the
development of quantum geometry provided by quantum groups (Hopf al-
gebras).

A main result of Majid’s Ph.D. thesis (Harvard University 1988) was Hopf
algebras obtained by his ‘bicrossproduct’ construction. These Hopf algebras
arose as the algebras of observables of quantum particles on homogeneous
spaces and were of self-dual type. These models have some features in com-
mon with black-holes and formed Majid’s quantum-geometric approach to
the unification of quantum mechanics and gravity. The resulting Hopf-von
Neumann algebras have been pursued further by mathematicians working
in the theory of operator algebras.

Drinfeld and Jimbo introduced quasitriangular Hopf algebras. Majid found
that Drinfeld’s quantum double Hopf algebra could be understood as an
example of his ‘double cross product’ construction. These quasitriangular
Hopf algebras are connected with knot-invariants. Majid studied the repre-
sentations of a quantum group as a braided category and interpreted the
g-dimension as the category-theoretic rank.

Majid proved generalized Tannaka-Krein reconstruction theorems for quan-
tum groups and quasi-quantum groups. One application used quantum groups
to connect properties of the Wess-Zumino-Witten model to number theory.
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Majid introduced a Hopf algebra in a braided category, a braided group.
This is like super-group but with the Zj-graded transposition replaced
by noninvolutive braid statistics. Braided groups include the degenerate
Sklyanin algebra and Manin’s quantum plane. Braided groups lie on the
interface between algebra and knot theory. To prove results about braided
groups one must draw braid and knot diagrams or play with pieces of string.
There are braided lines, planes, matrices, differential calculi, a theory of in-
tegration on such spaces, and Lie-algebras all developed by Majid in analogy
with the supergeometry. _

A theory of quantum group principal bundles and connections (gauge
fields) on them, including the example of a g-monopole was introduced in a
joint paper by Tomasz Brzezinski and Shahn Majid in 1993.

Shahn Majid was born on November 1, 1960, in India.




SHAHN MAJID: LIST OF PUBLICATIONS

1988

—  Liouville theorem for the Yang-Mills self-duality equations,
J. Math. Phys. 29 2303-2310

~  Hopf algebras for physics at the Planck scale,
J. Classical and Quantum Gravity 5 1587-1607

1989

—  Canonical arbitrary - spin background - field wave operator,
Il Nuov. Cim. 101 A 857-882

- Partial waves for the linearized Yang-Mills equation about a monopole
background, J. Math. Phys. 30 1150-1157

—  Matched pairs of Lie groups and Hopf algebra bicrossproducts,
Nuclear Physics B, Proc. Supl. 6 422-424

1990

—  Physics for algebraists: non-commutative and non-cocommutative Hopf
algebras by a bicrossproduct construction, J. Algebra 130 17-64

—  Matched pairs of Lie groups associated to solutions of the Yang-Baxter
equations, Pacific J. Math. 141 311-332

—  Fourier transforms on .A/G and knot invariants,
J. Math. Phys. 32 924-927

—  Quasitriangular Hopf algebras and Yang-Baxter equations,
Int. J. Modern Physics A 5 (1) 1-91

—  Quantum group duality in vertex models and other results, in ed. L-L.
Chau and W. Nahm, Nato-ASI Series B 245 373-386 Plenum.

~  Representation-theoretic rank and double Hopf algebras,
Comm. Algebra. 18 (11) 3705-3712

—  with E. Beggs, Matched pairs of topological Lie algebras corresponding
to Lie bialgebra structures on dif{S!) and dif{ R),
Ann. Inst. Henri Poincaré 53 15-34



SHAHN MAJID

More examples of bicrossproduct and double cross product Hopf alge-
bras, Isr. J. Math. 72 133-148
On g-regularization, Int. J. Modern Physics A 5 4689-4696

1991

Mass dependence of U(1) axial symmetry breakdown,

Il Nuov. Cim. 104A 617-640

Gauge covariant vacuum expectations and glueballs,

1l Nuov. Cim. 104A 949-960

Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossprod-
ucts, and classical Yang-Baxter equations,

J. Functional Analysis 95 291-319

The principle of representation-theoretic self-duality,

Phys. Essays. 4 (3) 395-405

Reconstruction theorems and rational conformal field theories,

Int. J. Mod. Phys. A 6 4359-4374

Representations, duals and quantum doubles of monoidal categories,
Suppl. Rend. Circ. Mat. Palermo., Series 11 26 197-206
Quasi-quantum groups as internal symmetries of topological quantum
field theories, Lett. Math. Phys. 22 83-90

Some physical applications of category theory,

Springer Lec. Notes in Physics 375 131-142

Doubles of quasitriangular Hopf algebras,

Comm. Algebra 19 3061-3073

Quantum groups and quantum probability,

Quantum Probability and Related Topics VI, World Sci. 338-358
with Ya. S. Soibelman, Chern-Simons theory, modular functions and
quantum mechanics in an alcove, Int. J. Mod. Phys. A 6 1815-1827
with Ya. S. Soibelman, Rank of quantized universal enveloping algebras
and modular functions, Comm. Math. Phys. 137 249-262

Braided groups and algebraic quantum field theories,

Lett. Math. Phys. 22 167-176

Examples of braided groups and braided matrices,

J. Math. Phys. 32 3246-3253

with A.J. Macfarlane, Quantum group structure in a fermionic exten-
sion of the quantum harmonic oscillator, Phys. Lett. B 268 71-74
with A.J. Macfarlane, The superalgebra osp(1]2) and a related quan-
tum group for harmonic oscillator systems, in Proc. Topological and
Geometrical Methods in Field Theory, Turku, Finland 1991, World Sci.
227-236
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1992

—  Tannaka-Krein theorem for quasiHopf algebras and other results,
Contemp. Math. 134 219-232

—  Rank of quantum groups and braided groups in dual form,
Springer Lec. Notes in Math 1510 79-88

— with A.J. Macfarlane, Spectrum generating quantum group of the har-
monic oscillator, Int. J. Mod. Phys. A 7 (18) 4377-4393

—~ Braided groups and braid statistics, in Quantum Probability and Re-
lated Topics VIII World Sci. 281-295

—  with V. Lyubashenko, Fourier transform identities in quantum mechan-
ics and the quantum Line, Phys. Lett. B 284 66-70

—  (C-statistical quantum groups and Weyl algebras,
J. Math. Phys. 33 3431-3444

—~ Braided groups and duals of monoidal categories,
Can. Math. Soc. Conf. Proc., 13 329-343

—~ with T. Brzezifiski, A Class of bicovariant differential calculi on Hopf
algebras, Lett. Math. Phys. 26 67-78

— with M. J. Rodriguez-Plaza, Universal R-matrix for non-standard quan-
tum group and superization, preprint

1993

—  Braided groups, J. Pure Applied Algebra 86 187-221

—  Transmutation theory and Rank for quantum braided groups,
Math. Proc. Camb. Phil. Soc. 113 45-70

~ Anyonic quantum groups, in Spinors, Twistors, Clifford Algebras and
Quantum Deformations, eds. Z. Oziewicz et al. Kluwer 327-336

— with J. Donin and D. Gurevich, R-matrix brackets and their quantiza-
tion, Ann. Inst. H. Poincaré 58 235-246

— with M. J. Rodriguez-Plaza, Quantum and Super-quantum group re-
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~  Infinite braided tensor products and 2D quantum gravity,
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Anales de Fisica, Monografias, 1:61-64, eds. M. Olmo et al.,
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— with W. K. Baskerville, The braided Heisenberg group,
J. Math. Phys. 34 3588-3606
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Beyond supersymmetry and quantum symmetry (An introduction to
braided groups and braided matrices), in M-L. Ge and H.J. de Vega
eds., Quantum Groups, Integrable Statistical Models and Knot Theory,
World Sci. 231-282

Algebras and Hopf algebras in braided categories, in Advances in Hopf
Algebras, eds. J. Bergen and S. Montgomery, Marcel Dekker.

Braided momentum in the q-Poincare group,

J. Math. Phys. 34 2045-2058

Braided matrix structure of the Sklyanin algebra and of the quantum
Lorentz group, Comm. Math. Phys. 156 607-638

Free braided differential calculus, braided binomial theorem and the
braided exponential map, J. Math. Phys. 34 48434856

On Hopf algebra duality in quantum systems,

Anales de Fisica, Monografias, 1:145-148, eds. M. Olmo et al.

with T. Brzezirski, Quantum group gauge theory and @-monopoles,
Anales de Fisica, Monograffas, 1:75-58, eds. M. Olmo et al.

with T. Brzezifski, Quantum group gauge theory on classical spaces,
Phys. Lett. B 298 339-343

Quantum random walks and time-reversal,

Int. J. Mod. Phys. A 8 4521-4545

with T. Brzezinski, Quantum group gauge theory on quantum spaces,
Comm. Math. Phys. 157 591-638

1994

with Ya. S. Soibelman, Bicrossproduct structure of the quantum Weyl
group, J. Algebra 163 68-87

Cross products by braided groups and bosonization,

J. Algebra 163 165-190

with D. Gurevich, Braided groups of Hopf algebras obtained by twisting,
Pac. J. Math. 162 27-44
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On the addition of quantum matrices,

J. Math. Phys. 35 2617-2632
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Braided geometry: a new approach to ¢g-deformations,

to appear in Proc. Ist Caribb. Spr. Sch., CUP, 1993.
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— with M.J. Rodriguez-Plaza, Random walks and the heat equation on
superspace and anyspace, to appear in J. Math. Phys.

— with U, Meyer, Braided matrix structure of g-Minkowski space and
q-Poincaré group, to appear in Z. Phys. C. ‘

— q-Euclidean space and quantum Wick rotation by twisting,
to appear in J. Math. Phys.

— with A. Kempf, Algebraic ¢g-integration and Fourier theory on quantum
and braided spaces, to appear in J. Math. Phys.

— with M. Markl, Glueing operation for R-matrices, quantum groups and
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Submitted to Math. Proc. Camb. Phil. Soc.

—  Solutions of the Yang-Baxter equations from braided-Lie algebras and
braided groups. Submitted to J. Knot Th. Ramif.

—  with H. Ruegg, Bicrossproduct structure of the k-Poincaré group and
non-commutative geometry, Submitted to Phys. Lett. B.

— with E. Beggs and J. Gould, Finite group factorisations and braiding,
preprint.

—  Lie algebras and braided geometry, Advances in Applied Clifford Alge-
bras (Proc. Suppl.) 4 (S1) (1994) 61-77, this volume.

—  Foundations of quantum group theory, appx. 550 pages, to appear 1994,
CUP.
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Abestract. This paper studies invariants of 3-manifolds derived from certain finite dimen-
sional Hopf algebras. The invariants are based on right integrals for these Hopf algebras.
It is shown that the resulting class of invariants is definitely distinct from the class of
Witten-Reshetikhin-Turaev invariants.

Introduction

The purpose of this paper is to indicate a method of defining invariants of
3-manifolds intrinsically in terms of right integrals on certain Hopf algebras.
We call such an invariant a Hennings invariant [5], as Hennings was the first
person to point out that invariants could be defined in this way. The work
reported in this paper appears more fully in joint work of the author and
David Radford [10].

Hennings invariants were originally defined using oriented links. It is not
necessary to use invariants that are dependent on link orientation to define
3-manifold invariants via surgery and Kirby calculus. For that reason the
invariants discussed in this paper are formulated for unoriented links. This
results in a simplification and conceptual clarification of the relationship
of Hopf algebras and link invariants. The practical benefit is a simplified
algorithmic structure for the calculation of reasoning about the invariants.
Further reference to invariants of 8- manifolds in this paper will, unless oth-
erwise specified, be to this version of the Hennings invariant for unoriented
links.

We show in [10] that invariants defined in terms of right integrals, as consid-
ered in this paper, are definitely distinct from the invariants of Reshetikhin
and Turaev. We show that our invariant is non-trivial for the quantum group
U,(sl;)’ when ¥ is an fourth root of unity. The Reshetikhin Turaev invariant
is trivial at this quantum group and root of unity. The non-triviality of our
invariant is exhibited by showing that it distinguishes all the Lens spaces

* The author thanks the National Science Foundation for support of this research under
grant number DMS-9205277.
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L{n,1) from one another. This proves that there is non-trivial topological
information in the non-semisimplicity of U,(slz)’.

The paper is organized as follows. Section 1 recalls Hopf algebras, quasi-
triangular Hopf algebras and ribbon Hopf algebras. Section 2 discusses the
conceptual setting of the invariant. This involves a summation over labellings
of the link diagram by elements of the Hopf algebra. We work in a category
that allows immersed diagrams so that the special grouplike element in the
Hopf algebra and the ribbon element in the Hopf algebra both have di-
agrammatic interpretations. A trace function on the Hopf algebra that is
invariant under the antipode is shown to yield a link invariant. In section 3
we show that traces of the kind discussed in section 2 are constructed from
right integrals in many cases and that under suitable conditions these traces
yield invariants of the 3-manifolds obtained by surgery on the links. Section
4 sketches the promised application to U,(sl,)’.

1. Algebra

Recall that a Hopf algebra A [20] is a bialgebra over a commutative ring
k that has associative multiplication, coassociative comultiplication and is
equipped with a counit, a unit and an antipode. The ring k is usually taken
to be a field.

In order to be an algebra, A needs a multiplication m: AQ A — A. The
associative law for m is expressed by the equation m(m ® 1) = m(1 ® m)
where 1 denotes the identity map on A.

In order to be a bialgebra, an algebra needs a coproduct A: A — A® A.
The coproduct is a map of algebras, and is regarded as the dual of a multi-
plicative structure. A is coassociative. Coassociativity of A is expressed by
the equation (A ® 1)A = (1® A)A where 1 denotes the identity map on A.
The unit is a mapping from k to A taking 1 in k to 1 in A, and thereby
defining an action of k on A. It will be convenient to just identify the units
in k and in A, and to ignore the name of the map that gives the unit.

The counit is an algebra mapping from A to k denoted by E: A — k. The
following formulas for the counit dualize the structure inherent in the unit:
(E®1)A=1=(1® E)A. Here the 1 denotes the identity map on A.

It is convenient to write formally A(z) = X z(1)®z(;) € A®A to indicate the
decomposition of the coproduct of z into a sum of first and second factors
in the two-fold tensor product of A with itself. We shall further adopt the
summation convention that ¥ z(;)®2 ;) can be abbreviated to just () ®%(z)-
Thus we shall A(z) = z(;) ® z(g)-

The antipode is a mapping s : A — A satisfying equations m(1 ® s)A(z) =
E(z)1, and m(s ® 1)A(z) = E(z)1 where 1 on the right hand side of these
equations denotes the unit of k as identified with the unit of A. It is a
consequence of this definition that s(zy) = s(y)s(z) for all » and y in A.
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A quasitriangular Hopf algebra A [3] is a Hopf algebra with an element
p € A ® A satisfying the following equations:

1) pA = A’p where A’ is the composition of A with the map on A® A
that switches the two factors.

2) przpiz=(1®A)p, piap2s=(A®1)p.

These conditions imply that p has an inverse, and that p~1 = (1® s71)p =
(s®1)p.

It follows easily from the axioms of the quasitriangular Hopf algebra that p
satisfies the Yang-Baxter equation

P12P13P23 = P23P13P12-

A less obvious fact about quasitriangular Hopf algebras is that there exists
an element u such that u is invertible and s?(z) = uzu™! for all z in A. In
fact, we may take v = L s(e’)e where p=Te® e’

An element G in a Hopf algebra is said to be grouplike if A(G) = G® G
and E(G) = 1 (from which it follows that G is invertible and s(G) = G™1).
A quasitriangular Hopf algebra is said to be a ribbon Hopf algebra [18],[9]
if there exists a grouplike element G such that (with u as in the previous
paragraph) v = G™1u is in the center of 4 and s(u) = G~ 'uG™!. We call G
a special grouplike element of A.

Since v = G 'u is central, vz = zv for all z in A. Therefore G luz =
G 'u, whence s¥(z) = uzu™! = GzG™!. Thus s*(z) = GzG~! for all =
in A. Similarly, s(v) = s(G"'u) = s(u)s(G™1) = GGG = G™lu =
v. Thus the square of the antipode is represented by conjugation by the
special grouplike element in a ribbon Hopf algebra, and the central element
v = G~lu is invariant under the antipode.

2. Diagrammatic Geometry and the Trace

A function tr; A — k from the Hopf algebra to the base ring k is said to be
a trace if

tr(zy) =tr(yz) and

tr(s(z)) =tr(z)
for all z and y € A. In this section we describe how a trace function on a
ribbon Hopf algebra yields and invariant, T R(K'), of regular isotopy of knots
and links [6],[7].
The link diagram is arranged with respect to a vertical direction so that
the crossings form the two types indicated below, and so that other than
the crossings the only critical points of the height function are maxima and
minima. Each crossing is decorated with elements of the Hopf algebra as
shown below. Here p = L e ® €’ is the Yang-Baxter element in A® A, and s
denotes the antipode.
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()

It is implicit in this formalism that there is a summation over all the pairs
e, e’ for each Yang-Baxter element.

Hopf algebra elements may be moved across maxima or minima at the ex-
pense of application of the antipode. That is, if a Hopf algebra element is
moved across a maximum or minimum, then it is replaced by the application
of the antipode to that clement if the motion is anti-clockwise. If the motion
is clockwise, then the inverse of the antipode is applied to the element. See
the diagram below.

e
w < Uscx)

The link diagram is subject to deformations that generate regular isotopy [8].
Since the diagram is presented with respect to a choice of vertical direction
(discriminating the maxima, minima and crossing types), regular isotopy is
generated by a set of moves that include the cancellation of adjacent pairs
of maxima and minima and the switching of an arc across a maximum or
minimum. The full set of moves is shown in Figure 1. We have labelled these
moves as

=. (cancellation of maxima and minima)

IL.  (cancellation of opposite crossings)

III. (braiding)

IV. (switching)

IV’. (twist of crossings)

IV’ is equivalent to IV in the presence of the cancellation of maxima and

minima. These moves generate regular isotopy for diagrams arranged with
respect to a vertical direction.
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Figure 1

Remark. The symbol 7 is used to denote the replacement of one figure
by an equivalent figure. We shall sometimes use an equals sign (=) to perform
the same purpose. The symbol —%» or <4 will be used to indicate a
correspondence. For example, a link diagram corresponds to the diagram
obtained from it by decoration with elements of the Hopf algebra.

An invariant of regular isotopy must remain unchanged by the moves shown
in Figure 1. The simplest move is the cancellation of a pair consisting of a
maximum and a minimum.

9/ oy

This pair cancellation gives a reformulation of the slide rule for the antipode:
The antipode is accomplished by “composition with a maximum and a min-
imum”.
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7

Note also that once the crossings of a link diagram have been labelled with
elements of the Hopf algebra, the resulting diagram is depicted as a labelled
immersion of a curve or curves in the plane. This is quite natural since
the translation from algebraic braiding element to knot-theoretic braiding
element is accomplished via the composition with a transposition, and the
simplest diagrammatic representation of a transposition is the crossing of
two arcs in the plane.

These immersions can be deformed up to regular homotopy that respects the
given vertical direction. In other words, one can perform the projected forms
of the moves of Figure 1. If algebra is present on the lines then the following
extra move is added (sliding an external line past an algebra element).




RIBBON HOPF ALGEBRAS AND INVARIANTS OF 3-MANIFOLDS 9

V. (slide rule)

Since algebra elements are configured with respect to the vertical direction,
we do not allow the cancellation of a maximum and a minimum that have
an algebra element between them. This allows the representation of the
antipode as described above.

It is now easy to check the twist relation (IV’) for crossings:

- X ‘_\\/\

With these conventions, the square of the antipode is equivalently dia-
grammed as a “composition with two curls” as shown below:
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S’L (q&) < 37 < ?L

These curls are identified with the special grouplike elements G and G~ in
the Hopf algebra.

pofe fpe

Thus the diagram for the square of the antipode represents directly the
formula s%(z) = GzG 1.
Along a vertical line, algebra elements combine by multiplication.

F)

The product in the Hopf algebra corresponds to the multiplication of single
strand tangles. A single strand tangle is a bit of link diagram with two free
ends arranged with respect to the vertical so that one end is down and the
other end is up. Tangles are multiplied by attaching the down end of one
tangle to the top end of the other.
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5
ST

Il

The coproduct A : A — A® A in the Hopf algebra corresponds to a mapping
on tangles A : T() — T(?) from single strand tangles to double strand
tangles obtained by forming the parallel (two strand) cable of the given
tangle. The tangles in question can be immersions.

For example, we see that the formula A(G) = G ® G corresponds to the
regular isotopy shown below.

A(@)=A| 16]=Ap = P2 b=666.

In this way knots on aline can be resolved into algebra elements. For example
the twist shown below is equivalent to the ribbon element v. Note how the
factorization of v into a product of G and u = ¥ s(e’)e is related to the
slide convention for the antipode (in the diagrammatic calculation shown
below we use the fact that (s ® s)p = p.)

e
w
Q/«——» = s(e’) 5

/ oty =
s(e) ¢ e S(e) }6‘1

W= 6—|(/(4.

Note that s(v) = v corresponds to the identification shown below.
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of =\

——

When this identification is added to regular isotopy, the twists catalog only
the framing, and the equivalence relation on the link diagrams is equivalent
to ambient isotopy of framed links.

Finally, returning to the diagrammatic coproduct we see the interpretation
of the following formula of Drinfeld A(u) = pa1p12(u ® u):

In general, if T is a single strand tangle, and F(T) is the corresponding ele-
ment in the Hopf algebra A that is determined by our correspondence, then
F(A(T)) = A(F(T)) where the first A is the diagrammatic coproduct and
the second A is the algebraic coproduct. This fact follows from the axioms
for a quasi-triangular Hopf algebra in conjunction with our diagrammatic
conventions.

Definition and Computation of TR(K).

,

Suppose that tr: A — k is a trace function. That is, tr is a linear function
satisfying

1. tr(zy) =tr(yz) and

2. tr(s(z)) =tr(2).

To define the trace T R(K') for a knot diagram K, slide all of the algebra into
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one vertical portion of the diagram. Amalgamate this algebraic expression
according to the rule for multiplying algebra elements on the diagram, as we
have done above. Call this localized algebra element w. It is a sum of prod-
ucts, and can be formally represented as a product where it is understood
that there is a sum over all pairs of the type e, ¢’.

Let d be the Whitney degree of the flat diagram for K that is obtained by
traversing K upward from the vertical portion where the algebra has been
concentrated. The Whitney degree is the total turn of the tangent vector to
the curve as one traverses it in the given direction. For example:

Og;i_ O Jd=-1.

Define TR(K) by the formula TR(K) =tr(wG?). Note that w is itself a
summation over all the pairs z,2’ corresponding to Yang-Baxter elements on
the diagram. TR(K) defines a regular isotopy invariant of unoriented knots.
(The proof is primarily a matter of checking that TR(K') is independent
of the place where we concentrate the algebra. This reduces to checking
the independence in the case where the concentration is moved around a
maximum or a minimum. See example 2 below: and for a complete proof see
Theorem 5.1 of [7].)

In order to define an invariant of unoriented links, concentrate the algebra
for each component of the link, and define

TR(K) =tr(w, G )tr(wyGo )tr(wsG®) - - -tr(w, G)

where the labels 1,2,...,n refer to the components of the link, and the im-
plicit summation is the sum over all the pairs z,z’ in these words. The

elements wy, ..., w, are the algebra concentrations for each link component,
and the degrees dy,...,d, are the Whitney degrees of the components of
the link.

Example. This example points out how the T'R(K) is invariant under al-
gebra slides:

A (s 6) AL 6_')

tr(s{z)G) =tr(s(s(z)3)) =tr(G1s*(z)) =tr(G~1GaG~1) =tr(zG™1).
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Example 3. Here is the form of calculation for a link.

GO0

TR(L) = Str(feG-tr( fe'G).

Ifp= i z; ® y; then TR(L) = Z Z tr(y;o: G~ Otr(z ;4 G).
i=1 1=1j=
This is how the regular isotopy xmarnnt of the link would look as a specific

sum of traces of algebra elements.

II1. Invariants of 3-manifolds

The structure we have built so far can be used to construct invariants of

3-manifolds presented in terms of surgery on framed links. We sketch here

our technique that simplifies an approach to 3-manifold invariants of Mark

Hennings [5].

Recall that an element A of the dual algebra A is said to be a right integral

if A(z)1 = m(A® 1)(A(z)) for all z in A. For a unimodular [12],[15] finite

dimensional ribbon Hopf algebra A there is a right integral A satisfying the

following properties for all z and y in A:

0) A is unique up to scalar multiplication when £ is a field.

1) Azy) = AMs(y)e)

2) Mgz) = A(s(z)) where g = G?, G is the special grouplike element for
the ribbon element v = G~ 'u.

Given the existence of this A, define a functional tr: A — k by the formula

tr(z) = A(Gz).

Theorem. With tr defined as above, then

1) tr(zy) =tr(yz) forall z,yin A.

2)  tr(s(z)) =tr(z) for all z in A.

3) [mtr@)(A(x™)u = AMv™)v where v = G~lu is the ribbon ele-
ment.

Proof. The proof is a direct consequence of the properties 1) and 2) of A.
Thus tr(zy) = A(Gzy) = As%(y)Gz) = M(GyG~1Ga) = A(Gyz) =tr(yz),
and tx(s(2)) = M(G5(z)) = AgG~"5(2)) = Ms(G~"s(2)) = A(s7(x)s(G1))
A(s%(2)G) = MGG~ 1G) = MGz) =tr(z). I‘mally,

[m(tr@l)(A(u"l))} = Gl m(\- GO G) AL = [m(A@ 1)(AG)]
G lu = AMGu™1)G~ 1u = A(v™")v. This completes the proof. //

The upshot of this Theorem is that for a unimodular finite dimensional
Hopf algebra there is a natural trace defined via the existent right integral.
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Remarkably, this trace is just designed by property 3) of the Theorem to
behave well with respect to the Kirby move. The Kirby move is the basic
transformation on framed links that leaves the corresponding 3-manifold
obtained by framed surgery unchanged. See [11], [19]. This means that a
suitably normalized version of this trace on framed links gives an invariant
of 3-manifolds. Here is a sample Kirby move

1.
I

The cable going through the loop can have any number of strands. The loop
has one strand and the framing as indicated. The replacement on the right
hand side puts a 360 degree twist in the cable with blackboard framing as
shown above. Here we calculate the case of a single strand cable:

e/
€ /
sl w1 ©
S/ s/ ¥

The diagram shows that the trace contribution is (with implicit summation
on the repeated primed and unprimed pairs of Yang-Baxter elements)
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tr(flo~teGTY) fe' = tr(flevT G fe = tr(fleu!) fe
= [mtr @ 1)(fleu™ ® fe'u™H)]u = [m(tr ® 1)(pa1pr2(v™ @ v™))]u
= [m(tr@ D(A(™))]u = Ao, (A(u™') = pupra(u ' @ u™h))

It follows from this calculation that the evaluation of the lefthand picture
in the Kirby move is A(v™!) times the evaluation of the right hand picture.
The corresponding result for an n-strand cable is obtained by applying the
coproduct to the equation above, and using the functoriality of the coproduct
with respect to tangles and tensor powers of the Hopf algebra.

Thus a proper normalization of TR(K) gives an invariant of the 3- manifold
obtained by framed surgery on K. More precisely, (assuming that A(v) and
A(v~1) are non-zero) let

INV(E) = {IX)A(0™ )] E2A(0) /A=)~ FV T R(k)

where ¢(/') denotes the number of components of K, and s(K) denotes the
signature of the matrix of linking numbers of the components of K (with
framing numbers on the diagonal), then INV(K) is an invariant of the
3-manifold obtained by doing framed surgery on K in the blackboard fram-
ing. This is our reconstruction of Hennings invariant [5] in an intrinsically
unoriented context.

IV. Ug(sly)

The purpose of this section is to set up part of the general calculations for
U,(sl3)’, and to sketch the calculation of the special case of the evaluation
of the right integral on powers of the ribbon element v in the case n = 8.
This will give us the result that the invariant INV(K) is distinct from the
Witten- Reshetikhin-Turaev invariant at this root of unity. Complete details
are found in [10].

Recall the algebraic structure of Uy(sly)’.

Let ¢t be a primitive n-th root of unity, ¢ = t2, m =order(¢*). Assume m # 1
(that is n # 1,2,4).

The algebra has generators and relations as given below.

ae = gea
af =q7'fa
a" =1

em =0 = fm

le,f]=ef - fe=(a®—a"?)/(g—q7)
The Yang-Baxter element is given by the formula below [11],[16].

R=Y X [ g - ) ()] et et

v=0 1u€Z/nZ

The coproduct is described by the formulas
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ANa =a®a
Az =zQa ! + e®z, z=e¢,f

The counit is determined by the formulas

E(e)=E(f)=0 and E(a)=1.
It follows from the definition of the antipode s that for z = eor f, 0
E(z)l = m(s ® 1)A(z) = s(z)a™! + s(a)z = s(z)a™! + a1z, (5(a)
a~! sinceA(a) = a®a.).
This means s(z) = —a~'za, whence

s(e)=—¢7'e and s(f)=—qf.

-2

i

The special grouplike element is G = ¢™°.
The special element u such that s?(z) = uau™! for all z, is given by the

formula v = 3" s(R@)RM). The next Lemma gives a specific formula for u.

m—1
Lemmal u= )Y S @I = gy /(n(v),)]a? € £

v=0  i,j€Z/nZ
Proof. See [10].//
Change of Basis

We now make the following change of basis.
Replace e by —(q — ¢~ 1)e. Then

ae = qea
af =q¢ ' fa
a":l
“O-f
[f, e] = a’a”?

Note that in this basis the formula for © becomes

m-—1
U= Z Z [(tj(i—v)—ii’—Bu)/(n(v)q!)]aj e fY.

v=0  ijeZ/nZ
Right Integral

A right integral A for A = U,(sl3)’ is described as follows. Consider the linear
basis for A given by the set {a‘e’ f¥|0 < i < n,0 < j,k < m}. Then AMw)
for w € A is the coefficient of ¢?(m=Dem=1fm=1 in a writing of w in this
basis. We can write A = a2(m~1)gm-1 fm-1 where the bar over the expression
denotes the characteristic function of this element of the algebra A. That
this formula gives the right integral can be verified by direct calculation [17].
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.Orthogonal Idempotents

Let A; = (1/n) ¥ tYa?. Then A;A; = Ai6;; where 6;; is the Kronecker
J€ZInZ

deltaand 1 =Ag+ A1+ ...+ Aa_y.

Thus {Ao, A1, ..., An-1} form a set of orthogonal idempotents for the

group algebra k[G] where G = (a) = Z/nZ.

From the relation Z t'k = {gg:;g ,fork € Z/nZ, wehave
i€Z/nZ
Lemma 2. a= Y t7PA;.
i€Z/nZ

Proof: See [10]. //

Hence 'u=mz_:1 > < > [(t"‘2"3") /((v)q!)] [tj(“")aj/n])e"f"

v=0 i€Z/nZ \j€Z/nZ

= ";‘:-:1 ( E (t—i2—-30/(v)q!) A{—v) e'UfII

v=0 \i€Z/nZ

m—1 o2 2
Lemma3. u=c ( > [(t“3”‘ )/(v)q!] az”e”f”) wherec= Y t7VA;
v=0 1€2/nZ

Proof. See [10].//

The Special Case n = 8.

Let n = 8. Then m = 2, ¢ = v/—1 and the algebraic relations for U,(sl(2))’
are

=1, ¢=1¢
ae = gea

af =q ' fa
a =1
e?=0= f?

[f)e] =ad’-a2

Note that by the previous calculation,

u=c(1+t *a%ef) = ¢(1 - a’ef)
with ¢ given as in Lemma 3.
Recall that A = q2(m—1em~1fm-1ig 3 right integral for Uy(sl2)’. Thus, when
n = 8, the right integral is X = aZef.
Lemma 4. Let X = —a%ef. Then u = ¢ (1 + X) and

X?=(af-1)X = -2 ({gd A,-) X.
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Proof. See [10].//

The special grouplike in this case is G = a™2. Thus the ribbon element is
» = G~ lu = a*u. Thus v = a%¢(1 + X). To evaluate A(v*), let H = (a) be
the cyclic group generated by a. Note that v* = co + €1.X, where ¢; € k[H].

Lemma 5. Writing c1 = Y. oAy, with o; € k, then
i€2/82

APF)=(-1/8) = ¥ .

i€Z]82

Proof. See [10].//

Lemma 6. Let n = 8 and let A be the right integral and v be the ribbon
element for U,(sl(2))’ as described above.

Then A(v*) = —k/2.
Proof. See [10].//

Corollary. The value of the 3 manifold invariant INV(L(k1)) for n = 8 is
given by the formula INV(L(k,1)) = v/—1k for k # 0.

Proof. The surgery datum for L(k,1) is an unknotted loop with & curls.
Hence the unnormalized invariant is given by the formula

TR(¥*G-1) = M(Gv*G~1) = M(v*G~1G) = A(v*) = —k/2. The normalized
invariant is given by the formula

INV(L(k, 1) = M)A (v )]~ 22 (0) /A (v~ 1))~ T R(K).

Here ¢(K) =1 and o(K)=1ifk > 0,0(K) = -1if k < 0 since
the link has one component, and the linking matrix is (k). We know that
A(v) = ~1/2 and A(v"!) = 1/2. Therefore

INV(L(k, 1)) = [(1/2)(=1/2)]72((1/2)/(-1/2)1*' (-k/2)

= (=2 (=1)(~k/2) = (-1)/**.

This completes the proof.//

Remark. This finishes our verification that the invariant INV is definitely
different from the WRT invariant in the case n = 8, where WRT is trivial.
During the preparation of our paper [10] it came to our attention that similar
results have been independently obtained by Tomotada Ohtsuki [14]. He
finds that invariants defined for U,(s12)’ in a manner equivalent to ours
necessarily vanish for 3-manifolds that are not rational homology spheres,
and he performs calculations similar to ours for Lens spaces.
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Abstract. Recent work of Roberts has shown that the surgical 4-manifold invariant of
Broda [B1] and (up to an unspecified normalization factor) the state-sum 4-manifold
invariant of Crane-Yetter [CY] are equivalent to the signature of the 4-manifold. Subse-
quently Broda [B2] defined another surgical invariant of 4-manifolds in which the 1- and 2-
handles are treated differently. We use a refinement of Roberts’ techniques developped in
[CKY] to identify the normalization factor to show that the “improved” surgical invariant
of Broda [B2] also depends only on the signature and Euler character.

As a starting point, let us first observe that the construction of Crane-Yetter
[CY] does not really depend on the use of labels chosen from the irreps of
Uq(sl3) at the principal r*h oot of unity: the simple objects of any artinian
semi-simple tortile category (cf. [S, Y]) in which all objects are self-dual and
the fusion rules are multiplicity free will suffice. In particular, if we restrict
to the integer spin (bosonic)! irreps, we obtain a construction of a different
invariant of 4-manifolds.

in what follows, we use Temperley-Lieb recoupling theory (cf. [KL,L,R}).
In particular, arcs are labelled with elements of {0,1,...r — 2} (twice the

e' Supported by National Science Foundation grant #DMS-9106476
* Supported by National Science Foundation grant #DMS-9205277 and the Program for
Igzthemtﬁcs and Molecular Biology of the University of California at Berkeley, Berkeley,

* This use of bosonic is & hideous abuse of language. Everything in sight has braid
séatistics. The “bosons” of this paper are the result of g-deforming honest bosons.
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spin), A = e>™/47 g = A%, A(n) = (- 1)"9—-——1—,——-—— 6(a,b,c) denoted the
evaluation of the theta-net with edge labelled a, b and ¢, and 15— j denotes
the evaluation of the Temperley-Lieb version of the Cra,ne Yetter quantum
15j-symbol (with indices suppressed).

We then adopt the following further notational conventions:

Arcs labelled w denote the linear combination of arcs labelled 0,1, ...,7—2
in which the coefficient of ¢ is A(%). Arcs labelled & denote the linear combi-
nation of arcs labelled 0,2,...,2[ 252 ] (even iritegers) in which the coefficient
of i is A(i). N denotes the sum of the squares of the A(:)’s, N denotes the
sum of the squares of the A()’s for ¢ even. Let k be as in [KL,R], the eval-
uation of an w labelled 1-framed unknot divided by the positive square root
of N, and let £ be the evaluation of an & labelled 1-framed unknot divided
by N.

If L is a framed link, then &(L) denotes the evalutation of the link with
all components labelled (L) If £ is a set of 4-manifold surgery instructions
(cf Kirby [K]), that is a link L with a distinguished 0-framed unlink L then
B'(L) denotes the evaluation of the link L with all components of L (one-
handle attachments) colored w and all other components of L (two-handle
attachments) colored ©.

LEMMA 1. &(L) is invariant under handle-sliding. B'L is invariant un-
der handle-sliding of 1- and 2-handles I-handles and of 2-handles over 2-
handles.

proof: This follows immediately from handle-sliding over components la-
belled w and the analysis given in Remark 17 §12.6 of Kauffman/Lins [KL]
once it is observed that pairs of bosons only couple to produce bosons. O

LEMMA 2. (The bosonic encirclement lemma)

n

>,

j even

il
o

whenever n is even and non-zero.

proof: This follows from the same proof as the encirclement lemma of Lick-
orish [L] (cf. also Kauffman/Lins [KL]) with the “auxiliary loop” labelled 2
instead of 1. O
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Let
CYs(W)=AN"e=m 3 ] A(M0))

even labellings faces
Aof faces and o
tetrahedra

AX@)) e
II wonmmEpom e 1 18-

tetrahedra 4-simplexes
T

be the bosonic Crane-Yetter invariant.
Let |L| (resp. ¥(L), o(L)) denote the number of components of a link
L (resp. the nullity of the linking matrix of L, the signature of the linking
matrix of L).
We can then define a purely bosonic version of Broda’s original invariant
by
Brg(W) = ".'.‘w—u,( ,fy) o
N3
where £ is the underlying link of a surgery presentation of W; while a bosonic
version of the Reshetikhin/Turaev [RT] 3-manifold invariant is given by

Ig(M) = kBN (D)

where L is a framed link giving surgery instructions for M.
Applying the two lemmas above in an analysis otherwise identical to that
of given by Roberts [R] of the original Broda invariant [B1] shows that

PROPOSITION 3. Bre(W) = &™)
Similarly it follows from the bosonic encirclement lemma that
CYg(W) = Nro—m ~mg(L)

where ng is the number of d-simplexes in a triangulation, and L is the link
derived from a triangulation by putting a 0-framed unknot in each tetrahe-
dron, and a loop around each 2-simplex (running mostly through 4-simplexes
but linking each tetrahedron’s unknot) after the manner of Roberts [R].

It then follows as in [CKY] that
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PROPOSITION 4.  CYp(W) = &RMF*H (¥
Now, Broda’s new invariant is defined by

B(L)

JLi~v(L)

B(W)= ————
W) NN

For convenience we first analyse a slightly different normalization (for

which the proof of invariance is effectively identical to that for B(W): let

!
B0Y) = St
Now, it follows from the original encirclement lemma of Lickorish [L] that
CYp(W)= N™"™N"™B(L) (*¥)
where L is the surgery instructions given by assiociating the link L to the
triangulation as above, and letting L be the unlink of loops in the tetrahedra.

Observe that B is multiplicative under connected sum, and that B(§ I x
53) = N (an easy calculation). As shown in Roberts [R], £ is a surgery

-1
presentation for W#(n;l# S x §3). ) )
From this and the fact that for £, |L — L| = n2 and |L| = n3, we see that

B'(£)

ng—1
——l e 1 3
— ) = BwH(¥ 5 x5Y)

= B(W)N™-1,

Thus
B'(L) = B(W)Nm—nstm-1ns  (xk¥)

It then follows from (*), (**) and (***) that
B(W) = & W) 51

To return to Broda’s [B2] original normalization, note that
B(W) = B(W)(WN~})L-LI-IL-(L)

From which we obtain
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THEOREM 5. If W is a connected closed oriented smooth 4-manifold, then

N AR
B(W) = ko(W) (ﬁ)

proof: It suffices to shown that if W is given by the surgery instruction £,
then

L~ L]~ |L] = w(L) = x(W) - 2.

But this follows immediately from the observation that v(L) is the num-
ber of 3-handles attached in completing the construction of W. O
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Abstract. Lickorish {L] proved his encirclement lemma for Temperley-Lieb only in the case
where the Kauffman bracket variable A is the principal 4r*® root of unity. The analogous

statement does not hold for A = ie ¥ for r odd. As a consequence the interpretation
given by the authors in [CKY] based on the work of Roberts [R] of the Crane-Yetter [CY]
and Broda [B] invariants does not hold when the theories are constructed from this case
of T-L theory, as is shown by the example of S% x 52,

The encirclement lemma of Lickorish [L] (cf. also [KL]) is used crucially
in Roberts’ elegant proof [R] that the Turaev-Viro invariant [TV] is the
absolute square of the Reshetikhin-Turaev-Witten invariant [RT], and in
the reduction of the 4-manifold invariants of Broda [B] and Crane-Yetter
[CY] to classical homeomorphism invariants (cf. [B, CKY]).

In the following we present the representation theory of Uy(sl;) in terms of
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Temperley-Lieb recombination diagrams following Kauffman and Lins [KL].
In this version of the theory, the basic deformation variable is the Kauffman
bracket variable A, We denote the “standard truncation” at a root of unity
(the “small representations”) by Repf!(U,(slz)), where A is the Kauffman
bracket variable, a particular choice of 4r** root of unity. In particular we
are interested in 4*» roots of the principal 7** root.
The encirclement lemma can then be stated:
The Encirclement Lemma [L]

In Rep; ® (Uy(sl))

r-2 j n
} : :
n,j=10

Analyses of the Temperley-Lieb recoupling theory have been carried out
exclusively in the cases where A is the principal 4r** root of unity (cf. [KL],
[L], [B], [CKY]). A careful reading of [KL] shows that with the exception of
the Handle-Sliding Lemma, and the Encirclement Lemma, the entire theory
can be ca,rrxed through thh A some other root of unity, in "particular for
A= ie¥ (which is a primitive 27** (resp. r**) root of unity when r = 1
(mod 4) (resp r= 3 (mod 4))). Note, however, that this 4 is nonetheless,

a 4™ root of e*F".

The Handle-Sliding Lemma hold for A = ‘e s , as may be seen by con-

sidering Remark 17 of [KL] §12.6.

However, the Encirclement Lemma is false in the case A = ie% for r
odd. In particular

unless n = 0.

Proposxtxon
In Repi # (Uq(slp)) for r odd,
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-2 i r-2

SO -

nj=10

where N is the sum of the squares of the quantum dimensions, and in par-
ticular is non-zero.

proof: It suffices to show that the square of the braiding applied to (r — 2)
and j (for any 0 < j < r — 2) is the identity, since this will imply that the
map on the left-hand side is the identity map on (r — 2) multiplied by N # 0
(the sum of the squares of the quantum dimensions).

Now, in Rep{!(U,(sl2)), (r — 2) ® § is isomorphic to 7 — 2 — j. Thus
the square of the braiding is a scalar multiple of the identity. Applying the
formula for the braiding (cf. Kauffman/Lins [KL]), we find that the scalar
is

(1) =D (=25 =2+ D ~r=2-0)r=0) = (1) 4209

= (ser )2
— ,i2rjej1ri
(—1y(-1y
=1

So we are done. O

As a consequence the analogue of the result of the authors [CKY] (cf.
also [R]) interpreting the Crane-Yetter invariant in the case where A is the
principal 4rt* root of unity is without proof in the case of A = ier for r
odd. w

In fact there is no expression for CY (W) of the form ke WV G2
this case (for k a phase, and N the sum of the squares of the quantum
dimensions): direct calculation shows for A = i that CY(S2x§2) = 2N?,
while CY (S! x §3) = 1.

Similarly, Roberts [R] proof that the Turaev-Viro [TV] invariant is the
absolute square of the Reshetikhin-Turaev-Witten [RT] invariant will not
work in this case, since the reduction of Turaev-Viro to “chain mail” fails.
We have not been able to see whether this delicacy arises in the proofs of
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Turaev [T] or Walker [W] of the same result, nor to find examples which
would show the result fails in this case.
Another consequence of the failure of the encirclement lemma, in this case
is the observation that the two Rep{!(U,(sl2))’s for the different values of A
appearing above are inequivalent as abstract braided monoidal categories.
To be precise:

Definition The center Z(X’) of a braided monoidal category X is the full
subcategory of objects A satisfying

-1 _
Oax T 0X,A

for all objects X in X.
Definition A braided monoidal equivalence between two braided monoidal
categories is a monoidal equivalence which, moreover, satisfies

F(o)
F(A® B) > F(B®A)
F#* F#
F(A)® F(B) » F(B)® F(A)

where o denotes the braiding in the relevant catgory, and (F, F#, Fp) is
one of the functors in the equivalence.
We then have
2mi
Theorem The center of Repf *" (U,(sl)) is braided monoidally equivalent
. 2mi

to C — v.5.,®, while the center of Repi®*" (U,(slz)) is braided monoidally
equivalent to Z/2-gr-C-v.s., ®un—signed, (the “non-super” tensor product).
Consequently the two categories are not braided monoidally equivalent.

proof: To calculate the center in each case, it suffices, by semisimplicity to
determine which simple objects are in the center. In the first case the objects
isomorphic to 0 are the only simple objects in the center; in the second, the
objects isomorphic to 0 and 3 are the only simple object in the center. It
is trivial to verify that the functors in a braided monoidal equivalence map-
the center to the center.Ol
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By way of concluding speculations, it would be extremely interesting to

determine whether there is a way of modifying the category Repf’z‘:'l (Uqg(sl3))
in such a way that the center becomes the category of super-vector-spaces.
Doing »o could potentially lead to cancellation in the calculation for §2 x §2
giving an invariant unstable under addition of 2-handles-a first requisite for
a non-trivial invariant of differentiable structures.
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Abstract. A noncommutative-geometric generalization of the theory of principal bundles
is sketched. A differential calculus over corresponding quantum principal bundles is an-
alyzed. The formalism of connections is presented. In particular, operators of covariant
derivative and horizontal projection are described and analyzed. Quantum counterparts
of the Bianchi identity and the Weil’s homomorphism are found.

1. Introduction

The purpose of this letter is to present basic structural elements of a quan-
tum theory of principal bundles, in which quantum groups play the role of
structure groups, and quantum spaces the role of base manifolds. All consid-
erations are performed within the conceptual scheme of non-commutative
differential geometry [1, 2]. A detailed exposition of the theory is given in
papers [3, 4].

The paper is organized as follows. Section II begins with a definition of
quantum principal bundles. Then, questions related to differential calculus
are discussed. Section III is devoted to the formalism of connections. In
Section IV a generalization of the Weil’s theory of characteristic classes is
sketched. Finally, in Section V some examples of quantum principal bundles
are considered, and some remarks are made.

Before passing to quantum principal bundles we shall fix the notation,
and introduce relevant quantum group entities. Here, we shall deal with
compact matrix quantum groups [9]. Let G be such a group. The algebra of
‘polynomial functions’ on G will be denoted by .A. The group structure on G
is determined by the comultiplication ¢:.4 — A ® A, the counit e: 4 — C,
and the antipode k: A — A. The result of the (n — 1)-fold comultxphcatnon
of a € A will be symbolically written as (V) ® ... ® a{™. We shall denote
by ad: A —+ A ® A the adjoint action of G on 1tself. Explicitly, this map is
given by ad(a) = a(? @ k(aV))a®).

Let (I',d) be a first-order differential calculus [10] over G, and let

FA — Z®I1Ak

k>0
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be the universal differential envelope ([3]-Appendix B) of (T, d) (with I'*? =
A and T =T ). For each k > 0 let p,:T* — I'** be the corresponding
projection map. Further, let

re = 3 ®rek

k>0

be the tensor bundle algebra over I' (I‘®k =T®4...0, T (k-times) and
I“@0 A). Let us assume that (T',d) is left-covariant. We shall denote by

;. the space of left-invariant elements of I' while R C ker(e) will be the
right A-ideal which canonically, in the sense of [10] corresponds to (T, d).
The map m A — I, given by

n(a) = k(aV)da®

is surjective, and ker(r) = C1 @ R. Because of this, there exists a natural
isomorphism
mu = ker(e)/’R,

The above isomorphism induces a right A-module structure on I,
which will be denoted by o . Explicitly,

7(a) o b = w(ab),

for each a € ker(e) and b € A. The tensor product of k copies of T;,, will
be denoted by I'®% . The tensor algebra over I', . will be denoted by I'®

v’ v "111
It is naturally isomorphic to the space of left-invariant elements of I'®. The

differential subalgebra of left-invariant elements of I'* will be denoted by
I'%,,,. We have

Th, = Y T4,
k>0

where T2 consists of k-th order left-invariant elements. The following nat-

v
- P® /
171.7.! nv mv

ural isomorphism holds
Here I C T® is the ideal generated by elements of the form

¢ = (@) @ n(a®)

where a € R. The right A-module structure o can be uniquely extended
from T';,, to % such that

loa=e(a)l
(#n)oa=(9oaM)(noa?)
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for each 9,7 € T and a € A.

Let us assume that (T',d) is bicovariant, and let w:T;,, — I';,, ® A be
the adjoint action of G' on Ty, (coinciding with the restriction of the right
action of G on I';,,, ). We have

wr = (7 Q id)ad.

In the following, we shall denote by @®, @®* w”, w™* the adjoint actions
of G on the corresponding spaces.

The map ¢: A — A® A admits the unique extension to the homomor-
phism @:TA — TABT of (graded) differential algebras.

2. Quantum Principal Bundles and the Corresponding Differential
Calculus

The aim of this section is to introduce quantum principal bundles, and to

describe differential calculus over them.

Let M be a quantum space, represented by a (unital) *-algebra V. The
elements of V play the role of appropriate ‘functions’ on M.

DEFINITION 2.1. A quantum principal G-bundle over M is a triplet of the
form P = (B,i,F) where B is a (unital) *-algebra, while F: B - B® A and
#:VY — B are unital *-homomorphisms such that

(i) The following identities hold

(id®e)F =
(id® $)F = (F ® id)F.
(i) The map #:V — B is injective and
i(V)={beB|F())=b0®11},

for each b € B.
(iii) A linear map X:B® B — B ® A defined by

X(g®b)=qF(b)
is surjective.

The map F plays the role of the dualized right action of G on P. Con-
dition (i) justifies this interpretation. The map i:V — B can be interpreted
as the dualized projection of P on M. Condition (ii) says that M can be
identified with the corresponding ‘orbit space’ of P. Finally, condition (iii)
is an effective quantum counterpart of the classical requirement that G acts-
freely on P.
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Let P = (B, i, F) be a quantum principal G-bundle over M.

We are going to construct a graded differential algebra representing ver-
ticalized differential forms on P. Let us fix a bicovariant first-order differ-
ential *-calculus (T, d) over G. The *-involution naturally extends from T’
to T® (such that (99)* = (=1)%27y*9* for each ¥, € I'M®). Algebras

A, . A
T%® C I'A® are *-invariant.

Let us consider a (graded) vector space ven(P) = BQT'4,,.
LEMMA 2.1. The formulas

(@®9)(bon) =) ¢b,®(Pocy)n
k
Gben) =) bi® (1 oct)
k

k

where F(b) = Zkbk ® ¢, determine the structure of a graded differential
*.algebra on ver(P). As a differential algebra, ver(P) is generated by B. O

We shall assume that a differential calculus over the bundle F is specified
by a graded differential *-algebra Q(P) such that
(diff1) The differential algebra }( P) is generated by B = Q°(P).
(diff2) The map F: B — B ® A is extendable to a homomorphism
F:Q(P) - Q(P)RI
of (graded) differential algebras.
The map F is uniquely determined by the above conditions. We have
(F@id)F = (id® §)F.
The formula N
FN = (id® po) F
defines the action F*: Q(P) — Q(P)®A of G on differential forms (extending
the action F). The map F” is-a *-homomorphism and
(Zd ® E)FA = id
(F'® id)F" = (id ® ¢)F"
FMN = (d®id)F".
Let us construct a quantum analog of the verticalising homomorphism.
For each w € Q*(P) the element

Wv(w) = (‘Ld® 7rimlpk)j;\v(w)
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belongs to ver*(P). Here m;, :T* — T/, is the canonical projection map.

In other words, the above formula defines a linear grade-preserving map
x,: Q(P) — ver(P).

LEMMA 2.2. The introduced map is an epimorphism of graded differential
*. algebras. O

Now, horizontal forms will be defined. Intuitively speaking, they can be
characterized as forms possessing trivial differential properties along vertical
fibers.

DEFINITION 2.2. The elements of the graded *-subalgebra
ho(P) = F[Q(P) ® A
of Q(P) are called horizontal forms.
The algebra hor(P) is F -invariant, in the sense that
FM(hor(P)) C hor(P) ® A.

Horizontal forms w satisfying F(w) = w®]1 are interpretable as differential
forms on M. They constitute a graded differential *-subalgebra Q(M) of
Q(P), with QM) = i(V).

3. The Formalism of Connections

Before introducing connections in the game, we shall define (pseudo)tensorial
forms.
Let 9(P) be the space of linear maps f:T;,, — Q(P) satisfying
FAf = (f @ id)w.
This space is naturally graded. The elements of ¢*(P) are imaginable as
pseudotensorial k-forms on P, with values in the ‘Lie algebra’ of G. Further,
(P} is closed with respect to compositions with d: Q(P) — Q(P). Let 7(P)

be the graded subspace of ¥(P) consisting of tensorial forms (pseudotenso-
rial forms with values in hor( P)).

The formula
1 (9) = f(9)"
determines a *-involution on ¥(P) (and 7(P)).

DEFINITION 3.1. A connection on P (relative to QP)) is every first-order
linear map w:{';,, — Q(P) such that

Fuo®) = (w@ id)w(®) +1® 9
w(9*) = w(¥)*
for each ¥ € AP
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Connections can be equivalently defined as hermitian pseudotensorial 1-
forms w satisfying
Tw(d) =107

foreach 9 €T,,.
THEOREM 3.1. The bundle P admits at least one connection. O

Let con(P) be the set of all connections on P. This is a real affine subspace
of ' (P). The corresponding vector space consists of hermitian tensorial 1-
forms.

Let us fix a linear map 6:T;,, — I'®2 with the following properties

()1 6(9) =) 9@ thendd =) 99 and §(9%) = =) _ 97" @I}
(ii) We have
@®% = (§ ® id)w

(the right-covariance of §).
For given linear maps ¢, n:T;,,, — SUP) let us define new linear maps

< @,7 >7[(p’n]:rinu - Q(P) by

<@, >=mg(p®n)é
[o,1] = ma(p ®n)eT
where ¢7 = (id ® m)w:T;,, — I'D? and mq: Q(P) ® (P) — Q(P) are the

mv muv
‘transposed commutator’ [10] and the multiplication map.

If ¢ € %(P) and 7 € $3(P) then < ¢, 7 >,[p,n] € P+ (P).
For each w € con(P) let us consider a map

R, =dv— <w,w>.
LEMMA 3.2. We have

FR,(9) = (R, ® id)w(?)
R (%) = R,(9)",

For each ¥ € T,,,,,. In other words, R, is a tensorial hermitian 2-form. 0
DEFINITION 3.2. The map R, is called the curvature of w.

It is worth noticing that R, depends on the choice of §. This dependence
disappears if w satisfies the following multiplicativity property.

DEFINITION 3.3. A connection w is called multiplicative iff
wr(@Mwr(a®) =0

for each a € R.
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If w is multiplicative then it can be uniquely extended, by multiplicativity,

to a unital (*-) homomorphism w”:T%  — Q(P). Another interesting class

of connections consists of those having the following regularity property.

DEFINITION 3.4. A connection w is called regular iff

w(@)p = ()% Y g ocy)
k

for each 9 € T;,, and ¢ € hor( P), where F(p) = Ek‘f’k ® ¢

Regular connections (if exist) form an affine subspace p(P) of con(P).
The corresponding vector space consists of forms f = f* € 71(P) satisfying

f@)e = (—1)6‘? Z eef(Focy)
k

for each 4 € T;,, and ¢ € hor(P). :
Let 0:T®2 — T'®2 be the canonical flip-over operator [10]. Explicitly, this

A 8 mnv Ny
map is given by

o(n®v) = zk:'?k®77°ak
where Zk”k ® ap = w(?).
LEMMA 3.3. If w € p(P) then
ma(w ® ) = (=1)*mq(p ® w)o
for each ¢ € TF(P).0

Now, we are going to introduce the operator of covariant derivative. This
operator will be first defined on a restricted domain consisting of horizontal
forms. After introducing the operator of horizontal projection, the domain
of covariant derivative will be extended to the whole algebra Q(P).

For each w € con(P) and ¢ € hor(P) let us define a new form

Dw((p) = dﬂa - (_1)8‘9 E‘Pkww(ck)a
k
where FNg) = Zk‘Pk ® ¢
The form D_(¢) is horizontal, too.

DEFINITION 3.5. A linear map D,_: hor(P) — hor(P) is called the covari-
ant derivative associated to w.
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PROPOSITION 3.4. (i) The map D, intertwines the action (F*|hor(P))
with itself,
(i) If w is multiplicative then

Di(‘ﬁ) = Z%Rw”(ck)»
k

for each ¢ € hor( P).
(i1i) If w is regular then
Dw(¢¢) = DW(QO)@[) + (—1)8w¢Dw(d))
Du(¢") = D(¢)"
for each ¢, € hor( P).
(iv) If ¢ € QM) then D (p) = dp.O

The space 7(P) is closed under taking compositions with D_,. This fact
enables us to define the action of the covariant derivative on tensorial forms.

LEMMA 3.5. We have

Dw((P) =dp— (—1)6¢[(p’w]
for each ¢ € 7(P). O
Let us consider a linear map g¢,,:9(P) — ¥(P) defined by

1.(®) =< w, 0> —(-1)* < p,w > ~(-1)%%[p,w].

We have then
q,7(P) C 7(P).

Moreover, if w € p(P) then (g,|r(P)) = 0.
The following lemma gives the quantum counterpart for the classical
Bianchi identity.

LEMMA 3.6. We have
(D, = ¢, )(R,) =< w, < w,w >> — << W,w >,w >
for each w € con(P).O

If the connection w is multiplicative, then the right hand side of the
above equality vanishes. On the other hand, if w is regular then the second
summand of the left hand side vanishes. It is worth noticing that regular
connections are not necessarily multiplicative. However, there exists a com-
mon obstruction to multiplicativity for all regular connections, so that they
are multiplicative, or not, at the same time.

In general, the lack of multiplicativity of the connection w is measured
by a map r: R — Q(P) given by r_(a) = wr(aMwr(a?).
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LEMMA 3.7. (i) The following identities hold

ro(k(a)") = -7 (a)*
) 7,r.(a)=0
Fr (a) = (r, ® td)ad(a).

In particular, r_(a) is horizontal for each a € R.
(i) The map w — r, is constant on cosets from the space con(P)/p(P).
If w € p(P) then

"w(a)S" = Z()okrw(ack)
k
for each a € R and ¢ € hor(P), where FN¢) = Ekqpk ® ci. Further,

dr(a) =< w,w > 1(@Mwr(a®) — wr(eM) < w,w > r(e?).O

Let us assume that P admits regular connections, and let J(P) be the
ideal in Q(P) generated by the space r_(R), for some w € p(P). The previous
lemma implies

J(P)* = J(P)
FJ(P)YC J(P)®@T"
m,J(P) = {0}
dJ(P)C J(P).

Consequently, it is possible to project the whole formalism on the fac-
toralgebra Q(P)/J(P). In the framework of this projected calculus regular
connections become multiplicative.

The last topic in this section is the construction and the analysis of
horizontal projection operators. Let us fix a splitting of the form

' =72 g@I?

mv tnv mnv

in which T'},, is realized as a complement of the space I?,,, with the help of

a grade-preserving hermitian section ¢:T%,, — I‘gw, intertwining the adjoint
actions. Further, let us assume that §(9) = ¢d(¥). Finally, let us consider a
linear map m,: hor(P) @ I'sy, — Q(P) given by

m(# @ 9) = (V).
Here, w™ = w® and w®: T — Q(P) is the unital multiplicative extension
of w. This extends the previous definition of w”, formulated for multiplica-
tive connections. In particular, if w is multiplicative then the map m, is
t-independent.
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THEOREM 3.8. (i) The map m,, is bijective. It intertwines the product of
actions (F|hor( P)) and w”", with the action F/.

(i) If w is regular and if J(P) = {0} then m_, is an isomorphism of *-
algebras. Here, it is assumed that hor(P) @ T’} is endowed with a (graded)
*.algebra structure specified by

(B RN(p®¥) =Y (-1)%P9p, @ (noc, )V
k

(p@9) => i@ ock,
k

where FNp) = Zkgok ®c¢;.0

The ‘horizontal projection’ operator h: Q(P) — hor(P) can be now de-
fined as follows

hy, = (id® p*)mg!,

where p*:T%, — C is the zero-component projection. Clearly, h, projects

Q(P) onto hor(P).

With the help of h, the domain of the covariant derivative can be ex-
tended to the whole algebra Q(P). Indeed, the map D :Q(P) — hor(P)
given by

D,=h_d

extends the previously defined covariant derivative.

PROPOSITION 3.9. (i) The maps h,,, D, intertwine the action F*.
(#) If w € p(P) and if J(P) = {0} then h, is a *-homomorphism, and

D, (wu) = D, (w)hy(u) + (=1)°"h,,(w)D,(u)
D, (w") = D (w)*
for each w,u € Q(P).0O

Compositions of pseudotensorial forms with D, are tensorial. Hence, it is
possible to define the covariant derivative D, :¥(P) — 7(P). The following
lemma gives an equivalent, more geometrical, description of the curvature.

LEMMA 3.10. We have
w = Dy(w)

for each w € con(P).00
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4. Characteristic Classes

In this section we shall sketch a quantum generalization of the Weil’s theory
of characteristic classes. We shall assume that the bundle P admits regular
connections, and that J(P) = {0}. For each k > 0 let 7% C I'®* be the
subspace of ad-invariant elements, and let Z be the direct sum of all these
spaces. Clearly, T is a unital *-subalgebra of the tensor algebra I' . Let
H(M) be the graded *-algebra of cohomology classes associated to Q(M).
Let us consider a connection w. There exists the unique unital homo-
morphxsm R®:T®, — Q(P) extending the curvature R,. The map R® is

*_preserving, “and intertwines @® and FA.

PROPOSITION 4.1. (i) If 9 € I* then RS(¥) € Q**(M).

(i) If w € p(P) then dR®(9) = 0 for each ¥ € T.

(iii) The cohomological class of R®(9) in Q(M) is independent of the
choice of a regular connection w, for each 9 € 1.

(iv) The map W:I — H(M) given by W(¥) = [RE(9)] is a unital *
homomorphism. O

The homomorphism W plays the role of the Weil’s homomorphism in
classical differential geometry [6]. In fact, in classical geometry the domain of
the Weil’s homomorphism is restricted on the algebra of symmetric iuvariant
elements of the corresponding tensor algebra. However, besides simplifying
the domain of W, such a restriction gives nothing new: the image of the
Weil’s homomorphism will be the same.

A similar situation holds in the noncommutative case. Let S be the *-
algebra obtained from I'$, by factorising through the ideal J generated
by Im(I — o) C I‘Qﬁ, The algebra S plays the role of polynoms over the
‘Lie algebra’ of G. The adjoint action @® is naturally projectable on S. Let
Z,ym C S be the subalgebra of elements invariant under the projected action

(playing the role of invariant polynomials). Clearly, Z,,,, = I/(ZNJ).
LEMMA 4.2. If w € p(P) then

R3a(9) = R3(Y)
for each 9 € T2 .00

nv’

The above statement implies that W and R3 are factorizable through
the ideal 7. In this sense they naturally operate on Z,,,, and S respectively.

5. Examples and Remarks

(A) All quantum phenomena characteristic for the presented theory of quan-
tum principal bundles already figure in a special version of this theory deal-
ing with bundles over classical smooth manifolds. The theory of principal
bundles of this kind is developed in [3].
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The main structural result is that G-bundles P over a classical manifold
M are in a natural correspondence with classical bundles P, over the same
manifold, with the structure group G, consisting of classical points of G.
More precisely, the elements of G; are *-characters g: A — C. The product
and the inverse in G; are given by

99'=(g®g), g ' =gk,

while the counit e: A — C is the neutral element. The correspondence P <
P, can be roughly described as follows. The bundle P, consists of classical
points of P (*-characters of B). Conversely, if P, is given then P can be
recovered by applying an analog of the classical construction of extending
structure groups.

In developing a differential calculus on such semiclassical bundles P it
is natural to assume that all local trivializations of the bundle locally triv-
ialize the calculus, too. This requirement, together with the specification
of the calculus I'* over G, uniquely fixes the algebra Q(P). However, the
calculus (I',d) can not be chosen arbitrarily. It must satisfy specific consis-
tency requirements, interpretable as compatibility properties with certain
‘retrivialization maps’ of the bundle. Such differential calculi are called ‘ad-
missible’ in [3]. It turns out that a left-covariant calculus (T', d) is adinissible
iff (X ® id)ad(R) = {0}, for each X € lie(G). Here, the Lie algebra of
G is understood as the space of hermitian functionals X on A satisfying
X(ab) = e(a)X(b) + e(b)X(a), for each a,b € A.

There exists the minimal admissible left-covariant calculus: it is based
on the right-ideal R C ker(e) consisting of elements killed by all operators
(X ® id)ad. This calculus is also *-covariant and right-covariant. If G is
an ordinary compact matrix group then the minimal admissible calculus
coincides with the usual one (based on differential forms). However, small
quantum deformations of the classical group structure may cause drastical
changes at the level of the minimal admissible calculus. For example [3],
if G = SU,(2) [8] and g € (~1,1) \ {0} then the space T, is infinite-
dimensional, and can be naturally identified with the algebra of polynomial
functions over the quantum 2-sphere $2 [7].

(B) Classical principal bundles provide a natural mathematical frame-
work for the study of gauge theories. It is interesting to see what will be the
counterparts of these theories, in the context of quantum principal bundles
[5] (M playing the role of space-time). Properties of such ‘quantum gauge’
theories essentially depend (besides on the ‘symmetry group’ G), on the
following two prespecifications:

As first, it is necessary to fix a (bicovariant *-) calculus (T',d) over G. This
determines kinematical degrees of freedom. Secondly, we have to choose a
map 6:T,  — TI'®. This influences dynamical properties of the theory,

nv tny*
because § implicitely figures in the expression for the curvature.
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Closely related with problematics of quantum gauge theories is the ques-
tion of ‘gauge transformations’. If M is a classical smooth manifold then the
most direct way of defining gauge transformations as (vertical) automor-
phisms of the bundle P gives nothing new, because of the inherent geomet-
rical inhomogeneity of the bundle P. More precisely, automorphism groups
of P and its classical part P, are isomorphic. However, a proper quantum
generalization of gauge transformations can be introduced via the concepts
of quantum (infinitezimal) gauge bundles {4, 5]. These are bundles associated
to P, relative to the adjoint actions of G on G and T, respectively.

(C) Interesting examples of quantum principal bundles can be obtained
from quantum homogeneous spaces. A general construction is this. Let H
be a compact matrix quantum group, represented by a *-Hopf algebra B.
Entities related to H will be endowed with a prime. Let us assume that G
is a subgroup of H. At the formal level, this presumes a specification of a
*.epimorphism j: B — A such that

(1®35)¢ =i, ki=jk.
The *-homomorphism F: B — B ® A given by
F = (id® j)¢'

is interpretable as the right action of G on H. Let M be the corresponding
‘orbit space’. This space is represented by the fixed point *-subalgebra V.
Let i:V «— B be the inclusion map. The triplet P = (B,1, F)) is a quantum
principal G-bundle over M. Because of ¢'(V) C B® V there exists a natural
left action of H on M, represented by ¢'i:V — B ®V (M is a quantum
homogeneous H-space).

Let Q be an arbitrary left-covariant graded-differential *-algebra over
H, satisfying properties diff1/2. Let (¥, d) be the corresponding first-order
calculus. We have j(R') C R where R’ C ker(e) is the ideal correspond-
ing to this calculus. Moreover, there exists the unique graded-differential
*_ homomorphism j*: @ — I'" extending the map j. Explicitly,

it = (j @ id)r,
(and the identification T'* = AQT%

tnv
Let us consider a splitting of the form

is assumed). We have jAN¥, V=T, .

)

‘I’inv =LoT;

mv

where the space T, is realized as a complement to L = ker(j*|¥; ), with

the help of a hermitian right-G-covariant section e:T';,, — ¥, . Then the

map w:T;,, — § obtained by composing € with the cannonical inclusion

Y. ., — S is a connection on P.



46 MIGO DPURDEVIC

References

] Connes A., Non-commutative differential geometry. Institut des Hautes Etudes Sci-
entifiques: Extrait des Publications Mathématiques No.62 {1986);

] Connes A., Geometrie non commutative. InterEditions, Paris (1990);

] Durdevi¢ M., Geometry of Quantum Principal Bundles I. Preprint QmmP 6/92,
Belgrade University.

] Durdevi¢ M., Geometry of Quantum Principal Bundles II. Preprint QmmP 4/93,
Belgrade University.

5] Durdevié M., Quantum principal bundles and corresponding gauge theories. Preprint
QmmP 2/93, Belgrade University.

] Kobayashi S. and Nomizu K., Foundations of Differential geometry. Interscience

Publishers, New York London (1963); ’

] Podles P., Quantum Spheres. Lett. Math. Phys. 14 (1987) 193-202;

] Woronowicz S.L., Twisted SU(2) group. An ezample of a non- commutative differ-
ential calculus. RIMS, Kyoto University 23, (1987) 117-181;

9] Woronowicz S.L., Compact Matriz Pseudogroups. CMP 111, (1987) 613-665;

[10] Woronowicz S.L., Differential Calculus on Compact Matriz Pseudogroups (Quantum

Groups). CMP 122, (1989) 125-170;




QUANTUM PRINCIPAL BUNDLES 47
Acknowledgments

The possibility of my coming in Kingdom of the Feathered Serpent, and
of my attendance of the XXII-th DGM Conference, is based on the united
financial support of many firms and citizens from my hometown Petrovac-
na-Mlavi, in Serbia:

—Private company “Vlaji¢-Komerc”: Tomisa Vlajié
—Mrs Milica Andrejevié, and Miss Tijana Andrejevié
—Private Dentist Ordination: Dr Radivoje Karadzi¢, and
—~Mrs Snezana Karadzié

—Social company for remaking plastic materials “Mlavaplastika”
~Social tannery “Ikop”

-Social furniture factory “Javor”

—Agricultural corporation “Borac”

—Private savings-bank “Sinkom”: Stojkovié¢ Sinisa
~Mrs Filipovié Desanka;—Mr Ugrinovi¢ Miroljub
—Private firm “Zlatar”: Dini¢ Dugko

—Apothecary’s shop “Apoteka”: Pordevié¢ Goran

~Mr Stoimirovi¢ Zika; ~Mr Dordevi¢ Predrag

~Private firm “Zarac”: Dordevié¢ Branko

—Private firm “MSM”: Ranéié Slavisa

~Apothecary’s shop “Apoteka Seki”: Milosevi¢ Dragisa
—Private firm “Lord”: Aleksi¢ Tale

—Hairdresser saloon “Frizer”: Savi¢ Perisa-Slavce
~Coffee shop “Man”: Milovanovié Nebojsa
~Cabinet-maker’s workshop: Kosti¢ Jovan

-Building material Store: Milovanovié¢ Misa
—Furniture shop “Hrast”

—Cake shop “Havaji”: Pani¢ Radomir

~Mr Milosavljevié¢ Vlastimir; -Mr Micié¢ Dragan

Warm thanks are due to all of them.

I am especially grateful to Mrs Milica Andrejevié, Mr Radivoje Karadzic
and Mrs Snezana Karadzié, and last but not least to Mr Obren Joksimovié,
for their care and interest about my work, continuous support, and organi-
zation of this sponsorship.

I would like to thank to Soros Yugoslavia Foundation, and to the Orga-
nizers of the XXI1I-DGM Conference for partial financial supports.






ON BRAIDED TENSORCATEGORIES

THOMAS KERLER®

Department of Mathematics, Harvard University
Cambridge, MA, USA, kerler@math.harvard.edu

(Received: November 6, 1993)

Introduction

An important step in organizing selection rules and defining symmetry prin-
ciples of Quantumtheories in algebraic terms has been the introduction of
group theory into physics by Weyl, Wigner,Yang, Mills and others. Since
the works of [4] and [2] it has become clear that the relevant data can
be equivalently and more directly described by a symmetric tensorcategory
(STC). Often in low dimensional physics the axiom that the commutativ-
ity constraint squares to one has to be relaxed so that we naturally obtain
representation of the braid groups rather than the symmetric groups. The
more general braided tensorcategories (BTC) are related to quasitriangular
quasi-Hopfalgebras, but there is no one to one duality-correspondence as
for STC’s since BTC’s are rarely Tannakian. Interestingly, they appear in
many other areas of mathematical physics like the theory of subfactors of
von Neumann algebras, two dimensional integrable lattice models, and low
dimensional topology.

At generic points in the space of BTC’s many uniqueness statements can
be found by using deformation theory. They give some explanation about
the relation of affine algebras and quantum groups at generic levels. For
rational theories these methods break down. Nevertheless, one has identified
equivalent rational BTC’s coming from very different areas. An example
of a family of related rational models includes SU(2) and rank=2 WZW-
models, the corresponding quantum groups at roots of unity, subfactors
with Jones-index < 4, the Alexander or Jones polynomials, and the @-state
Pottsmodel. In order to explain these coincidences in terms of a classification
we need to find reasonable constraints on the considered class of BTC’s. Most
conveniently they are imposed on the combinatorial part of the ®-category,
i.e., the fusionrules.

In [10] (see also [6] for £ = 2) it has been shown that if the entire fu-
sionring of a BT'C is equal to that of Rep(Uy(si(k))) then the two categories
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themselves have to be isomorphic for suitable ¢. In this paper (which is in
large parts a summary of results from [6]) we wish to impose a much weaker
condition, namely that the category has a generating object X whose ten-
sorsquare X ® X is the sum of two simple objects. In this situation we face a
much larger class of categories including those that are obtained as product-
, orbit-, and subgrading-categories from the known ones. The mentioned
constructions rely on the study of gradings and invertible objects of a BTC.
Many of the resulting categories are inequivalent to any of the semisimplified
representation categories of Hopfalgebras and those occurring in conformal
field theory. We find a natural condition in terms of Hecke algebra repre-
sentations for when this list of categories is complete. We prove it for the
case where one of the summands of X ® X is invertible, thereby yielding a
complete classification.
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1. Braided Tensorcategories

In all our consideration we mean by a braided tensorcategory C an abelian
category (see [12]) for which the morphism sets are finite dimensional vec-
torspaces over C . In addition we have natural transformations

€ € Nat(®, PQ)and o € Nat(®(id X ®), ®(® X id)). Theyyield the com-
mutativity and associativity isomorphisms ¢(X,Y): X @ Y —» Y®X and
o X,Y,2): X®(Y®Z) - (X®Y)Q®Z which have to obey the pentagonal
and two hexagonal equations. For simplicity we shall omit « in the formu-
las although it can be a non trivial morphism. Also we shall only consider
rigid categories. This means that to any object X € C we find a conjugate
object XV and morphisms ev : XY®X — 1 and coev : 1 - X®XV, with
the usual pair of contraction identities. For details see, e.g., [13] for the
symmetric and [11] for the braided case.

For any ®—category C we can define the fusionring K}(C), which is the
ring over Z* generated by the equivalence classes {X] of objects subject to
the relations [X] = [Y]+ [X/Y] whenever Y is included into X and [X®
Y] = [X][Y]. It is clear that with this definitiun every object can be written
uniquely as the sum of the simple objects that appear in its composition
series and thé products of the simple objects determine all other products
of the fusionring.

A notion that is very useful for our purposes is that of grading. For a
BTC the set ®—Nat(idc) which consists of natural transformations £(X) €
End(X) with £(XQY) =£(X) ® £(Y) is an abelian group. This fact allows




ON BRAIDED TENSORCATEGORIES 51

us to decompose every object uniquely into a direct sum X = @, ¢grc) Xv-
Here X, is the maximal subobject such that the only eigenvalue of f(/\)u) is
v(€) for all . Gr(C) is the subgroup of all characters on ®—N at(idc) of this
form. This decomposition has the property that (X®Y), = ®,X,,-1 ®Y,
and that to any simple object X we can assign a unique v € Gr(C) with
X = X,. Thus Gr(C) makes K} (C) into a graded algebra. We call C locally
rational if every component K} (C), is finitely generated , i.e., if there are
only finitely many inequivalent, simple objects of a given grading.

A special type of simple objects are the invertible ones, which satisfy
X®XVY = 1. They form an abelian group on K} (C) we shall call Pic(C).
Let us introduce two natural group homomorphisms:

¥ ¢ Pic(C) — Gr(C) (1.1)
u i Pie(C) — ®—Nat(ide) (1.2)

where 9 associates a grading to an irreducible element in Pic(C) and p is
defined by 1, ® p(gXX) = €(X,9)e(g,X). A balancing of a tensorcategory
is a natural transformation of X — XVV to the identity functor. For a BTC
a balancing is equivalently given by a transformation § € Nat(id¢) with

(Y, X)e(X,Y) = 0(X) ® 8(Y)I(X®Y) ! and 6(XV) = §(X)! .

If such a balancing exists (there are plenty of examples where it does not) it
is unique up to elements of order two in @ —Nat(idc). To a given balancing
we can associate a family of traces trxy € End(X)* by

coev fe(X))e1 (X, XVY) ev
trx(f): 1-——-+X®XV(——(—LX®XV————+XV®X—>1.

We call a dimension a function d : K}(C) — C which respects sums and
products and is invariant under conjugation. Since the trace is cyclic, also
for pairs of morphisms between different objects, and factorizes w.r.t. ten-
sorproducts, we can define a canonical dimension by d;,(X) = trx(1). Di-
mension functions can also be constructed in a different way by applying
Perron-Frobenius theory to the fusion matrices of K}(C), representing the
action of the ring on itself by multiplication.

THEOREM 1.1. Assume that the fusionring K} (C) of a BTC C is locally
rational, then
1. there is ezactly one positive dimension dpp : K (C) - R*,
2.dpr>1 and dpp(X) =1 if and only if X € Pic(C).
3 IfX =X, then X : K}(C), — K}(C),, defined by multiplication has
norm dpp(X) independent of v .
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In the last statement we assumed K} (C) to be equipped with the inner
product for which the simple objects are an orthonormal basis.

In order to relate the positivity condition to properties of the categories
themselves we introduce C* structures which are known from applications in
operator algebras and physics [4], but are also related to the polarizations in
[13]. A *-structure on a BTC is an antilinear, contravariant, coexact BTC-
functor * : C — C. For simplicity let us assume that X* @ Y*~—=(X @ Y)*
is the identity so that o and € are unitary. We call the category of finite
dimensional Hilbert spaces H and denote by  the class of all covariant,
exact (not necessarily ®—) functors w : C — H which commute with * . We
say that C is a C*-category if for any morphism f there is some w €  with
w(f) # 0. In this case we can introduce a norm || f|| = supueqllw(f)|| which
renders the category C semisimple and equips the algebras End(X) with a
C*-structure in the usual sense. For C*-categories we construct a balancing
as follows. Define Ax € End(X) by

x 2 xoxvex X% e xox 2L x
From the positivity of < f > = ev(1Q flev* = trx(A% f) and the fact that
End(X) is a sum of type I factors with trace try weinfer that Ay is central.
Since trx is generally cyclic it follows that the unitary part 6,(X) = U(Ax)
gives rise to a natural transformation.

THEOREM 1.2. To any C*-BTC C there exists precisely one balancing such
that the associated traces try are positive VX € ob(C). It is given by 0, €
N at(idc) .

Clearly, for this choice, the dimension d, associated to the balancing is pos-
itive. Thus by Theorem 1.1 we obtain for locally rational C*-categories the
remarkable identity

dpr = d, (1.3)

where both quantities are defined in completely independent ways.

2. Hecke - and Temperley Lieb Type Categories

In many examples K} (C) is generated by a single object II (e.g., a fundamen-
tal representation) meaning every object is the direct sum of subobjects of
tensorpowers of IIGIIV. It is easy to see that in this situation Gr(C) = Z/N ,
generated by the character of II, and the order N > 1 is the smallest number
such that Hom(I*, II("*+N)) £ 0 for some n.

In order to state a tractable classification problem we confine the class
of BTC’s further by restricting the dimension of End(II®%). The condition
End(11%?) = C is by rigidity equivalent to Il € Pic(C) whereas End(I1®?) =
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C@C implies that IQII = A@ B for two inequivalent, simple objects A and
B. The first is a special case of a #-category which we classify in the next
section. In the second case €(II, IT) has two eigenvalues 44 and v so that the
rescaled natural representation of n-th braidgroup B, on &, = End(II®"),
defined by p(git1) = —741%* ® (11, 1I) factors into a representation of the
n-th Hecke algebra p : Hy(g) — €, with g := —yg77'. (We choose con-
ventions as in [14]). This sequence of morphisms is compatible with the
inclusions £, < Enyy @ [ f @ 1 and thus extends to p: Hoo — £o0. If
C is also a C*-category we have |¢] = 1 and p is a *-representation on every
Hp(q). Henceforth we call BTC’s with these properties Hecke type cate-
gories. For these T|g, = d(II)™™trpn defines a positive, normalized Markov
trace on £ with modulus n = 7(eq) = d(A)d(II)"2. Combining the above
observations with results from [14] we find the following restrictions:

THEOREM 2.1. For a Hecke type category with (11, T1)? nonscalar we have
-1 4 2m
1. ¢ = =By, =e€* 1 forsomel=4,5,...
9 po dA) D (1=gk)
A=A T Ee - h)
3. The morphism p factors through the semisimple quotient H,(q) — H,(,k'l)
whose representations are labeled by (k,1)-diagrams.

for somek = 1,...,1—-1.

Since H(* ) coincides with the GNS-quotient of the pullback p*r, the fac-
torized morphism 5 : H§§") — € is an inclusion. It also yields a morphism
of (non rigid) fusionrings K,(p), : K} (HEDY o K#(C), for positive grad-
ings n = 0,1,.... Here Kj(H((,g'l)) has a unique, smallest extension into a
rigid fusionring F*!) with Z-grading which is shown in [9] to be isomor-
phic to the truncated subfusionring of U,(GI(k)) generated by the usual
fundamental representation. If C is locally rational the norms of [1]| )

and and II| g+ (©), 2nd hence of IKo(p)nl] are independent of n for large n.

In this situation we find that K,(p)([1¥]) has norm one, i.e., it is invertible,
and thus can be used to extend K,(p) to a morphism of rigid fusionrings
¥ : F(&) 5 KF(C), defined also for negative gradings.

The embedding of the Hecke algebras gives us not only information on
the fusionring but allows us to compute the balancing phases. In H(q) the
scalar @y by which the central braid group element A% = (g1.. .g(N_l))N
acts in the irreducible representation associated to the diagram A has been
computed in [15] as a framing anomaly of link invariants. It is possible
to factorize the product of ¢’s in £y associated to A% into the expression
6(IT)®Ng(II®N)~1. This observation enters the second part of the following
theorem.
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THEOREM 2.2. If C is a locally rational Hecke type category, then
1. there is a unique morphism of rigid fusionrings

¥ PO k) with ¥([1]) =11
2. if X € 0b(C) is a subobject of ¥(A) for some diagramm X then
6(X) = O\1x where 6 = O(H)I’\I(—'y,q)"\'"p‘tza;l

By definition the image of ¥ generates additively 0b(C) so that every object
is a sum of those considered in b). Hence the balancing of a Hecke type
category is completely determined by &(II), y4 and vg.

In order to explain the constraints on ¥ resulting from Theorem (2.2)
we define the graph of a map of positive lattices A : L; — Lo as the bicol-
ored graph whose vertices are the generators of L; and Lp with respective
coloration. The number of edges between them are given by the matrix el-
ements of A. Denoting by ¥,,, mn and II,, the respective restrictions to
the n-th graded components the relation ‘I!(nﬂ)Ll_]_n = H,¥, means that
pairs of neighboring simple objects in the graph of Ll_]n are mapped by ¥
to sums of pairs of neighboring objects in the graph of II,,. By Theorem
1.1 ¥ is dimension preserving, i.e., dpr(¥(X)) = dpr(X). From part b) of
Theorem 2.2 we see that 8 has to have the same value on every simple object
of a connected component of the graph of ¥,, . Knowing the specific values
for one coloration namely the 8y on F(*/ this imposes together with the
neighborhood condition strong constraints on the structure of ¥,,. In many
cases the only remaining possibility is that the components of ¥,, are pairs
of different colorations so that ¥,, is an isomorphism for every n . In this case
we say that ¥ is a local isomorphism. A special subclass of such categories
are Temperley Lieb type categories which are defined in the next theorem.
Its proof is in part a direct consequence of Theorem 1.1 and identity (1.3).

THEOREM 2.3. IfC is a Hecke type category with ¢(T1,11)? nonscalar, then
the following four conditions are equivalent

1.)k=2 2.) es and 1@ey4 generate Ag(3) with B < 4
3.) A € Pic(C) 4) d(X) <2 and d(A) < d(B).

Here Ap(n) is the Temperley Lieb quotient of the Hecke algebra with mod-
ulus B = g+ ¢~ + 2 = d(I)2. The elements of F(!) are pairs [A1, A7) with
Ai € Z and 0K A; — A2 <1 —2. The graph associated to [1], is A;_; , where
the gradation is » = A1 + A2 and two simple objects are adjacent if they
coincide in one component. Specializing Theorem 2.2 to k = 2 we can write
the balancing as 8y = cnt? where t* = g is the primitive I-th root of unity
andd=A; — A2 +1.
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The norm of I, has to be the same as the norm of [1} so that by
an old result of Kronecker, see [8], the only possibilities for the graph of
I, are Aj_y, Dija4q1 or Egzg(l = 12,18,30). One readily checks that the
neighborhood and component condition discussed above exclude the D and
E cases. In summary, we have the following result for k = 2:

THEOREM 2.4. Suppose C is a Temperley Lieb type category with § # 4.
Then there ezists a local isomorphism of rigid, graded fusionrings ¥ :
F@) — K(C) with ¥([1]) = II.

3. Two Important Examples

A.) A class of braided tensorcategories that can be completely classified are
semisimple BTC’s for which all simple objects are invertible. We call them
f-categories. For a @-category C we have in particular K} (C) = Z+[Pic(C)]
and the map 9 from (1.1) yields an isomorphism Pic(C) = Gr(C). To a
class of pairs (¢,a) of natural isomorphisms (considered as functions a €
C(Pic(C)?) and € € C(Pic(C)?) by specialization) that give rise to equivalent
BTC’s we can assign a unique class in H4(G,2; C*), the cohomology group
of the Eilenberg MacLane space K2(G). This correspondence results from
the fact that the pentagonal and hexagonal equations translate to cocycle
conditions and the transformations ¢ ® h=¢' ® h’ of ®-isomorphisms give
rise to coboundaries, see [6]. The function 6 : Pic(C) — C*; g — €(g,9) is
easily shown to be quadratic, only dependent on the cohomology class of €
and a possible balancing of C. Combining these observations with results in
[5] we find the following classification:

THEOREM 3.1. To any quadratic fosm 6 on a finitely generated abelian
group G there exists one and up to isomorphism only one 8-category P(6,G)
such that Pic(P(0,G)) = G and 6(g) = €(g,9) .

B.) It is well known that the category Rep(Ut(Sl(k))) of quantum group

representations, with ¢ = t~2* a primitive I-th root of unity, is not semisim-
ple. Nevertheless, it is possible to define a semisimple subquotient cate-
gory. The morphisms are the quotients of Hom¢(X,Y) by the nullspaces
Hom(X,Y)° of the trace pairing

tr
Hom(Y, X)® Hom(X,Y)—— End(X) —— C*
In this category we also discard objects with End(X) = End(X)° which for
indecomposable X is equivalent to d(X) = 0.(For details of this construction
see [11] and also [1] and [7]). The full subcategory generated by the image
of Il = [1] is a semisimple Hecke type category R(t,k) without an apriori
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*-structure. Let us call this an indefinite Hecke type category. As for Si(k)
we label the simple objects by Young diagrams with the restrictions 0 <
AM— A <l-ksothat A=[1,1], B =[2], 74 = —t'** and yg = t1-*. The
group Pic(R(t,k)) & Z/k is generated by the o = [l - k] . The grading group
Gr(R(t,k)) is also cylic of order k and associates to a diagram A the number
of boxes |A|modk . Hence ¥ : Z/k — Z/k from (1.1) is just multiplication
with I. A possible balancing of R(t,k) is given by 8y = t“()) where

c(/\) = Z(A, - ’\j)2 + k(/\,‘ - /\j) .
i<j
The structure of the full subcategory over Pic(CP is determined in the sense
of sense of Theorem 3.1 by e(a,a) = (—1)¢~Ftl~F  The map u defined in
(1.2) is given by p(a)([1]) = t¥ ..A deformation argument used in [6] (which
should be extendable to general k) shows that the necessary constraint in
Theorem 2.1 for the existence of *:structures is also sufficient:

THEOREM 3.2. R(t,2) is isomorphic to a C*-category if and only if t* =
42m
et .

There is a remarkable uniqueness result on the categories with the same
fusion ring as R(t,k) due to [10] (for a proof for k = 2 using structure
constants see [6]).

THEOREM 3.3. Suppose for an indefinite Hecke type category C there is an
isomorphism of fusionrings ¢ : K}Y(C)=K}(R(t,k)) mapping generators
to each other. If in addition the invariants v4 and v of C coincide with
those of R(t, k) then v estends to an isomorphism of categories C = R(t,k).

4. Product and Orbit Categories

There are a number of natural operations betweern categories that allow us
to produce new categories, e.g., from the examples in the previous section.
A special class of @~ subcategories of a given BTC C is obtained by picking
a subgroup H C G7(C) and defining g — C to be the largest full sub-
category for which all objects have grading in H . Of particular interest is
the subcategory oC which consists of objects with trivial grading. It is ad-
ditively generated by the subobjects of all § ® j¥ with j simple. Also we
denote by C; NC; the largest full subcategory which is contained in two full
®—subcategories C; «— C.

Dual to the notion of direct products of Hopfalgebras we have the notion
of a product of categories C; which is a biexact functor ® : €; x C3 — C; 0 C;
onto the smallest additive completion of the ordinary product. The pre-
cise definition is given in [2]. Clearly, this functor induces an isomorphism
GT(Cl) P GT(Cz) e G’I‘(Cl ® Cz) .
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The notjon of quotients of BTC’s related to branching of representations
to sub-Hopfalgebras needs more explanation: To this end assume that P is
a full @—-subcategory with a ®@—fibre functor v : P — Vect(C) (or H)
of strict, symmetric categories. To any object X € ob(C) we have - up to
isomorphism - a unique maximal subobject Xp < X with Xp € ob(P). We
define a category C/P with ob(C/P) = 0b(C) and morphisms Hom(X ,Y)=
v((Y ® XV)p). (see [2], [3] for Tannakian categories.) The canonical mor-
phism in P, (Z®YY)p® (Y ® X¥)p — (Z ® XV), obtained from ev,
determines the composition of morphisms in C/P. Using the natural braid
isomorphisms we find two canonical isomorphisms in P

0*: (MO X )p® (V2@ X))p —» (19Y2) ® (X1 0 X2)V)p (4.4)

both of which define tensorproducts of morphisms in C/P.
Viewing the invariances as subobjects Z; — Zp the map

Hom(X,Y) - Hom(1,(Y®X")1) — Homc(L,v((Y®X¥)1))

= v((Y®X")1) = v((Y®X")p)

gives then rise to a @ —functor p : C — C/P such that the following diagram
commutes:

c —— c/P

J ]@ lc (4.5)

P — Vect(C)

Clearly, the images of the natural isomorphisms € = p(€) and & = p(a)
satisfy the pentagonal and hexagonal equations and are natural with respect
to morphisms in the image of p. But since the functor p is by definition not
full for P # Vect(C) there is a priori no reason for € and & to be natural
in C/P. It turns out that naturality is equivalent to demanding that P
decouples, i.e.,

«(Q,X)e(X,Q) =1 for all Q € ob(P), X € 0b(C).

In this case the two morphisms @* from (4.4) coincide. Suppose j € ob(C) is
simple and j®jV contains nontrivial subobjects from P. Then End(j) # C,
and since kernels and cokernels have to stem from C, C/ P fails to be abelian.
Also naive abelian completions usually spoil naturality of €. In order to avoid
this situation we have to impose the condition C, N P = Vect(C)®1. It is
easily seen that the only subcategories with this property are #-categories
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over subgroups R C Pic(C) on which the grading ¥|g from (1.1) is injective.
In this case the fusionring morphism associated to p is locally isomorphic
and the inequivalent objects of C/ P are identical with orbits of R. Hence we
call C/R an orbit category. (In [6] the term induced category was used.)

Conversely, any local isomorphism 1 is of the form that it sends simple
objects to their orbits under the action of 9~1(1) C Pic(C). Moreover, we
can pullback every category along such 3 by setting

Homc(X,Y) = @ Homc/P('l/)(Xu))"/)(Yv))‘
veGr(C)

Note that the decoupling condition for R is that R lies in the kernel of
the map p from (1.2). We conclude with a survey of properties of orbit
categories. For more details see [6].

THEOREM 4.1. 1. If R C Pic(C) is a subgroup on which p is trivial, ¥
is injective and the associsted 0-subcategory P is trivial then there ez-
ist a unique, abelian BTC C/P, and functors v and p such that (4.5)
commutles.

2. For any local isomorphism ¢ : F — KF(C) of rigid fusionrings there
is a unique BTC C with K}(C) @ F, a functor p: C — C and a fibre
functor on the subcategory associated to Y~1(1) eztending ¢ such that
(4.5) commutes.

5. Hecke Categories and Temperley Lieb Categories

In this section we discuss a new family of Hecke categories and a classification
of Temperley Lieb Categories. Combining the constructions and examples
given in the previous sections we can define a class of indefinite Hecke type
categories with fusionring F(*) by

D'(8,t,k) := a(P(6,Z) © D(t,k))

where A € Z&® Z/k = Gr(P © D) is the diagonal subgroup. The basic
invariants with respect to the canonical generator II' = (1)OII are 74 =
—~8(1)t*** and yp = 6(1)t!*, where (1) is the generator of P. In fact
Theorem 3.3 and Theorem 4.1 show that D' is the only category with this
fusionring and these invariants. We have an isomorphism

¢ : L@ Z/(k, 1)~ Pic(D"); (5,5) = ((k,1)i) © oK
where k' = k/(k,l) and lI" = (k,l)mod k. The grading 9 is the projection

onto the first factor i(k,l). The 6-category P;; associated to the infinite
cyclic subgroup generated by an object ¢(z,5) = (n) ® a™ with n # 0 is
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trivial and decouples iff €(a,a)™ = 0(1)""2 and t3™ = g(1)*". For these
values we denote by

D"(8,1,k,i,5) := D'(8,1,k)/ P; (5.6)

the orbit category as defined in Theorem 4.1. In the list of the categories of
the form (5.6) we recover the ones obtained from s£(k);_x and sf(I - k); and
products of these with level one theories. Using that the group extension

0 — Pic(oC) — Pic(C) — Gr(C)

is an invariant of C we can easily check that the orbit construction yields
categories inequivalent to any subcategories of the known representation
categories of Hopfalgebras. The easiest such case is found for/ =6, k = 2,
if we divide by the #-subcategory generated by ¢(1,1) = (2) © [4]. The set
of simple objects {[],..., [4]} is the same as for the U;(sly) category, but
we have modifies products [1]{1] = [3][3] = [2] + [4] and [1}{3] =[]+ [2].1
general the requirement 2.) of local isomorphie from Theorem 4.1 is dlfﬁcult
to verify. However for k = 2 we can use Theorem 2.4 and the uniqueness of
the D'-categories to prove the following classification.

THEOREM 5.1. Every Temperley Lieb type category with €(I1,11)? non-
scalar is of the form D"(8,t,2,1,5) for t* = et ¥ and admissible 6, i and
J-

In the case where €? is scalar we can consider products with suitable -
categories and reduce the problem to the case where ¢(II,1I)2 = 1. Since II

is a generator this implies that the category is symmetric and we can apply
the result of [4] to find a classification in terms of U(2)-subgroups.
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Abstract. We show that every Lie algebra or superLie algebra has a canonical braiding
on it, and that in terms of this its enveloping algebra appears as a flat space with braided-
commuting coordinate functions. This also gives a new point of view about ¢-Minkowski
space which arises in a similar way as the enveloping algebra of the braided Lie algebra
gl2,q. Our point of view fixes the signature of the metric on ¢-Minkowski space and hence
also of ordinary Minkowski space at ¢ = 1. We also describe an abstract construction for
left-invariant integration on any braided group.

Key words: Lie algebra — braided group - quantum group - g-Minkowski space — braided
integration

1. Introduction

Braided geometry is a generalisation of ordinary geometry based on the
idea of braid statistics between independent systems [1]{2][3][4][5][6]. This
includes as a special case the ideas of supergeometry but with the super-
transposition ¥ = 1 there replaced by a more general braiding where
¥? +# id. Braided differentiation and integration on braided vector spaces,
braided groups and braided Lie algebras are all known. Braided manifolds
and braided Yang-Mills theory are in the pipeline. The main conclusion is
that many constructions familiar in usual or supergeometry can be gen-
eralised to the braided case. Moreover, many constructions which are more
commonly associated with quantum groups and the theory of ¢-deformations
are more properly understood in these terms. There is a review article for
physicists[7] as well as an introductory conference proceedings|8].

Here we would like to use some of this braided geometry to explore a
basic conceptual problem that arises in quantum physics. The problem is
that we think of a quantum algebra of observables on the one hand as a
noncommutative version of the algebra of functions on phase space, or on
the other hand as generated by the algebra of functions on configuration
space and by the enveloping algebra U(g) for g a generalised momentum
symmetry. These points of view are contradictory unless it happens that we

* Royal Society Research Fellow and Fellow of Pembroke College, Cambridge. This
paper is in final form and no version of it will be submitted for publication elsewhere.
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can view U(g) as like the algebra of functions on some space, the momentum
part of phase space.

We will see in Section 2 that for any Lie algebra g, one can indeed view
U(g) as the algebra of functions on a braided version of IR". So the non-
commutativity of this algebra, which we normally associate with differential
operators and quantisation, can be thought of equally well as statistical
non-commutativity like that of Grassmann variables, albeit with a braid-
ing ¥ rather than 41. We call this phenomenon in which a Lie algebra or
enveloping algebra of operators is thought of instead as the coordinate func-
tions of some space, a quantum~geometry transformation. The very simplest
example is' U(IR™) = C[z;,22, -, 2y] where the enveloping algebra of an
Abelian Lie algebra is thought of instead as polynomials in some bosonic
position coordinates z;. This is the idea behind Fourier transforms and our
quantum-geometry transformation is a generalisation of this.

In fact, we have already explored this idea in the context of quantum
groups in [9][10], where it is related to Hopf algebra duality. We proposed
the ability to make this transformation, which reverses the role of quantum
and gravitational physics, as a guiding principle for physics at the Planck
scale. Now we want to touch upon these same ideas in the context of Lie
algebras and their generalisations. In fact, the above remarks apply just as
well to superLie algebras and the braided Lie algebras introduced in [11]. In
each case the enveloping algebra can be viewed instead as a braided version
of flat space. We develop this in Section 3. It provides a new way to think
about the definition of Lie algebras and braided Lie algebras.

In Section 4 we focus on the example of the braided Lie algebra gl .
Its enveloping algebra recovers a natural definition of g-Minkowski space.
The quantum-geometry transformation takes the subalgebra U,(suz) to the
mass-shell in ¢-Minkowski space. The signature of the metric is also fixed
as a deformation of the Lorentzian one in this approach. As far as I know,
the Euclidean metric on IR* cannot be deformed in the same way. Thus
the ability to ¢-deform spacetime provides in this way a kind of regularity
principle that physics should not be too much an artifact of setting ¢ = 1.
This is in addition to the more usual motivation for ¢-deformation in terms
of regularising infinities in physics[12] and quantum corrections to geometry.

It is hoped that this note will serve as an introduction for physicists
to braided geometry and to some of its motivation. The Appendix demon-
strates some of the mathematical techniques behind braided groups and
braided geometry. We give a self-contained account of braided integration.
This provides in principle the integration on many g¢-deformed spaces.
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2. Canonical Braiding on any Lie Algebra

A braiding on a vector space V is, by definition,amap ¥ : V@RV - VRV
such that

p s
1%=0s
Uyz0 Wip0 Upg = Wiy 0 ¥y3 0 ¥y, ie. (7 " (1)

where the suffices refer to the copy of Vin VQV @ V. If one writes ¥ =X
then this equation expresses that the two sides are topologically the same
braid as shown.

The simplest example is when V is Z;-graded and ¥(v @ w) = (—1)M]
w® v as in supersymmetry. Of course, in this example the exchange law is
not truly braided since ¥? = id.

PROPOSITION 2.1. Let V = € @ g and define the linear map
Y1el)=101, ¥(1®E=E(01l, ¥Y(E®1)=10¢
V(@) =n®E+ (511, V¢ neg.

Then ¥ is a braiding iff [, ]: g®¢g — g obeys the Jacobi identity. It has
minimal polynomial

(02 —id)(¥ +id) =0 (2)
iff [, ] is non-zero and antisymmetric.

This is an elementary computation. It says that the definition of a Lie
algebra is mathematically completely equivalent to looking for a braiding of
a certain form. We will use this principle to give a new point of view on the
definition of a braided Lie algebra in the next section.

Now in the theory of supergeometry, the simplest examples of superspaces
are supercommutative superalgebras. Thus for JR™™ some of the variables
(the bosonic ones) commute and some (the Grassmann ones) anticommute
etc. So the algebra is not commutative in the ordinary sense, but it is com-
mutative in the super sense

oW = . 3

where ¥ is included. Likewise, the universal enveloping algebra U(g) for
non-trivial Lie algebra g is of course not commutative.
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PROPOSITION 2.2. The braiding in Proposition 2.1 extends to a braiding
V:U(g)@U(g) = U(g)®U(g) and U(g) is indeed braided commutative in
the sense of (3).

The proof of this is easy enough at degree 2 for there it says that - o
V(E®n) = nf + [€,7) is to equal &7, which is the defining relation of the
universal enveloping algebra. So imposing the relations of braided-commuta-
tivity at order two and for the above braiding is mathematically equivalent
to the usual definition of the enveloping algebra. The easiest way to prove
the result to all orders is to prove it in complete generality for any Hopf
algebra, of which U(g) is an example with coproduct Aé = (@ 1+ 1@¢. If
H is a Hopf algebra then

U(hog)= ) Ady, (9)®hw),  Adi(g) =Y ha)gShe 4)

for all h,g € H is a braiding, and H is braided commutative with respect to
it in the sense of (3). Here Ah = 37 h(;)® hyy) is the coproduct of the Hopf
algebra and S is its antipode or ‘inverse’ operation.

We see that every enveloping algebra can be regarded as the algebra of
functions on some braided space, and every quantum group too, with a suit-
able choice of braiding. This change in point of view in which an enveloping
algebra gets regarded as a function algebra of some type is what we have
called a quantum-geometry transformation in the introduction. Viewing a
Lie algebra enveloping algebra in this way is significant for it means that the
whole machinery of braided spaces and braided geometry[7], such as braided
differential operators, etc can be applied. We will compute how one or two
of these constructions look for our enveloping algebra.

In particular, given a braided algebra B one has the braided tensor prod-
uct B®B between two copies[2]. This is an algebra in which the two copies
do not commute but rather enjoy braid statistics. The product rule is

(a®b)(c®d) = a¥(b® c)d (5)

where we braid b past ¢ and then multiply up. This is like the supertensor
product of superalgebras. Here is an example of what this is good for:

PROPOSITION 2.3. Let B = U(g) be regarded as a braided space as above.
There is an algebra homomorphism A : B — BQB given by A = 1Q€ —
Q1.

Just as the usual coproduct corresponds to addition (e.g. of angular mo-
mentum), so this map corresponds to subtraction. In a dynamical context
the usual addition provides a realisation of the centre of mass system in the
tensor product of two systems, whereas the above map is more like the re-
alisation of the reduced mass system in the (braided) tensor product. It has
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properties that one would expect for subtraction in relation to the addition.
It also generalises to any quantum group with A(h) = Sh;) ® h(z).

Now we come to a matrix version of the above results, in which we shall
do a few concrete calculations. If we choose a basis V = {z,} and write

¥(z,®2z,)=1250 a:aR"‘,,ﬁ,,

then the requirement for ¥ to be a braiding is the celebrated Quantum
Yang-Baxter Equation (QYBE) for R.
Let ¢ = {z;} fori=1,2,---,n—1and let zo = 1sothat V = C@ g. We

use greek indices when the whole range 0,---,n — 1 is intended. Then the
content of Proposition 2.1 is that
10 00
_10 I 0 ¢
R= 00710 (6)
0 0 0 I

where I are identity matrices and ¢’} are the structure constants of g. The
basis for V @ V' used here is {zo ® zo,Zo ® 2, 2; ® Zo, i ® z;}. Explicitly,

. b ik w0 . .
R%*; = c5j, RYjFi = 6'56%, R%'; = 6'; = R';%, R%% =1

and zero for the rest. This obeys the QYBE iff ¢ obeys the Jacobi-identity.
Next, given any R-matrix, the corresponding braided space V'(R) is the
algebra with z; and 1 as generators and relations

Ty, = xﬁzaR"“ﬁy.

This defines a braided version of IR™. Such a structure arises in many areas in
physics and is often called the Zamolodchikov or exchange algebra. Putting
in the form of our R-matrix (6) we recover the commutation relations

[Ayxi] - 07 {27,',2?]'} = Azkckij

so that the associated braided space is our enveloping algebra U(g) in a
homogenised form where we add the central element A = zg on the right
hand side. This is a concrete version of Proposition 2.2.

In the point of view of quantum or braided linear algebral4], this is just
one of many other constructions. If the {z,} are like a row vector, then
another algebra V(R) defined by generators 1 and {p*} and relations

un v o H Y
R”, ﬁpa p=pp
is more like a column vector. For our R-matrix above, this comes out as

[»*,p"] = 0.
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There is also a notion of braided-quantum mechanics generalising the one-
dimensional case pz — gzp = h to any R-matrix. It is generated by vector
and covector algebras and cross relations

pl":l,'l, - ZaRa‘,“ﬂpﬂ = h&“,,

as studied by several authors[13][5]. See also the contribution of A. Kempf
at this conference. For our R-mattix (6), this comes out as

[, 2;] = Acup® + 86%5, [P A]=0, [rz]=0, [r,A]=h

where # = p°. Some natural zz and pp relations in this context are with
a certain matrix R’ rather than R, for in this case (or in the free case
with no zz or pp relations) the general machinery in [5] says that one can
represent p* by braided differentials 52—“- in analogy with usual quantum
mechanics. One can likewise compute for our R-matrix (6) all the other
R-matrix constructions for quantum groups and braided groups. On the
quantum group side one has for example the usual quantum matrices A(R).
This comes out essentially as a matrix of n copies of the homogenised Lie
algebra, one for each row, and with each copy transforming as an adjoint
tensor operator with respect to the others.

Finally, we note that all the constructions above work equally well if we
begin with a superLie algebra. Now the canonical braiding is

v(een) = (-1)kMpet+ ¢ n o1

and obeys (1) #f [ , ] now obeys the superJacobi identity. It obeys (2) iff
[, ]is graded-antisymmetric. The superenveloping algebra is once again
characterised by (3). More generally, if ¥¢ is any other symmetric braiding
in the sense that ¥2 = id then for

Y(E®n) = Yo(é@n) + [, ®1

to obey (1) and (2) recovers the obvious axioms of a general ¥,-Lie algebra
as in [14]. The corresponding matrix picture is

10 0 O
0 I 0 ¢
R—OOIO
0 0 0 Ro

3. Braided-Lie Algebras

In this section we go beyond the super case and its obvious generalisations,
to the case when our Lie algebra is of a type where the background ¥ is
itself truly braided. The axioms for such a braided Lie algebra have been
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introduced by the author in [11] and consist of a coalgebra £, A, ¢, a braiding
Yo =N LB®L— LQL and a map | C®E—>£suchthat

Q- A

Here A : £ — L ® L should be coassociative in an obvious sense and € : £ —»
€ should be a counit and obey €o[, ] = ¢®e¢. Note that an ordinary Lie
algebra obeys these axioms if one puts [1,£] = ¢, [£,1] = 0 and

L=Chg, Al=1@1,el=1, AL=(@1+1Q¢E, & =0.

So this structure A, ¢ is implicit for an ordinary Lie algebra but we never
think about it because it has this standard form. The same is true for su-
perLie algebras, etc. But for examples of the truly braided type we need to
take a more general form.

THEOREM 3.1. Let £, A, ¢ be a coalgebra and %o = X a compatible braiding.
Then [, ] defines a braided Lie algebra implies that

A
¥ = /
[.1

is a braiding. The braided enveloping algebra U(L) is generated by 1 and L
with the relations (3) of braided commutativity.

The proof of this uses the same diagrammatic techniques as for braided
groups[7]. We shall see some of these techniques in action in the Appendix.
Here we content ourselves with the description of a general class of examples
from [11]. They are of matrix type where

2 ; . . . .
L=C" = {u‘j}, Au‘j = u'k®u"j, eu'; = &,

The only data we need is a matrix solution R € M, ® M, of the QYBE
which is bi-invertible. The ‘second inverse’ here is R and is characterised by

-EiablRajkb = 6ij6kl - Ri;blﬁajkb

We write I = (io,141) etc as multi-indices. Then[15][11]
Vo(us@ur) = ug QurRs X, [ur,us] = uxeXpy
RL KL = R4 R4k R by Rey oy

K D ] -1b 4 k d
cry= RailmbR kotocR 1e%aR aejl
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is a braided Lie algebra. We changed conventions here from [11] to lower
indices for the {us} in order to maintain compatibility with Section 2. The
associated canonical braiding from Theorem 3.1 is

I
Y(us@ur) = ug @uiR ;X
I K -1d, jo_pk i b el
Ry = R %R RN L R,

The braided enveloping algebra U(L) is given by taking u = {u';} as gen-
erators and imposing - o ¥ = -, So this is the algebra

1K
wjur = uguR 5%, ie. RojupRigug = ugRyjug Ryo (7)

where the second puts two of the R’s to the left and uses a popular notation.

Our construction of braided Lie algebras works over the whole moduli
space of bi-invertible solutions R. Inside this moduli space is a subvariety of
so-called triangular solutions where Ro1 R = 1. On this subvariety one has
¥2 = id and our braided Lie algebras are not truly braided. They reduce
in this case to the more obvious notion of ¥y-Lie algebras as at the end
of the last section after one takes a suitable scaling limit. To see this, we
parametrise R in such a way that as a parameter ¢ — 1, we l2nd on the
triangular subvariety. We also change variables to x; = us — §; where é; =
60, . The braided enveloping algebra then looks like

xoxr — xxxiR K = xx (51RIJKL - 6J5KL) (8)

and as ¢ — 1 the right hand side vanishes. But if we rescale x to ¥ =
(¢*> = 1)7x say, then the effective structure constants for ¥ can have a
finite limit and indeed they become those of a usual, super, etc. Lie algebra
depending on the point on the triangular subvariety that we are landing at.
Meanwhile, the coproduct

Ax=%01+10x+(¢*-1)x®%, ex=0

becomes our standard one. In this way, ordinary, super, etc. Lie algebras are
the semiclassical limits of braided Lie algebras as we approach the triangular
subvariety. They are therefore all unified and interpolated by our notion of
braided Lie algebras. Incidentally, this shows why the classification of all
solutions of the QYBE is such a hard problem: it includes the classification
of all Lie algebras, superLie algebras and more generally, of braided-Lie
algebras. Usual quantum enveloping algebras also fit into this picture[11].

So the braided enveloping algebra in the form (8) looks like an enveloping
algebra but in the form (7) it looks like the coordinate functions on a braided
commutative space. This is our quantum-geometry transformation again, in
a braided form.




BRAIDED GEOMETRY 69

In fact, these quadratic algebras (7) and the matrices Ry, R were intro-
duced by the author in [2] exactly as a braided analogue B(R) of the algebra
of functions on M,,. They are the braided matrices associated to R. We recall
that the more well-known quantum matrices A(R) have a matrix of non-
commuting coordinate functions forming a bialgebra or quantum group(16}.
Likewise, B(R) is a braided-bialgebra or braided group. The difference is
that the matrix coproduct above extends to an algebra homomorphism

A': B(R) — B(R)®B(R) (9)

provided we take for @ the braided tensor product algebra (5). This is like
the definition of a supermatrix, but with general braid statistics.

4. ¢-Minkowski Space

There are many approaches to what ¢-Minkowski space should be. Here we
describe our own approach coming out of braided geometry[17]. Generally
speaking, our approach to g-deforming physics is to introduce ¢ as a param-
eter controlling braid statistics but with the geometry otherwise remaining
commutative. Since usual Minkowski space can be thought of as 2 X 2 her-
mitian matrices, we naturally propose that ¢-Minkowski space should be the
algebra of 2 X 2 braided hermitian matrices. This is broadly compatible with
the pioneering approach of [18][19], who were motivated by the possibility of
spinors when defining their ¢-Lorentz group. On the other hand, we under-
stand directly the full structure of g-Minkowski space first and come to the
g-Lorentz group etc. only later as a quantum group that acts covariantly on
it.

We take the well-known R-matrix associated to the Jones knot polyno-
mial and the quantum plane,

qg 0 0 0

01 g—¢gt 0

0 0 1 0 (10)
0 0 0 q

and in this case we have the braided matrix algebra BM,(2) with generators

R=

and relations computed in [2] as u = ((Z Z)

qd + ¢ a central, ba = ¢%ab, ac = ¢*ca, be = cb+ (1 — ¢ *)a(d — a).

The braid statistics from ¥o has qd + ¢~'a bosonic but the others mixing
among themselves. The content of the braided matrix property (9) is that
we can multiply two copies u,u’ as

all blI _ a b al bl
C” d/l - c d C' dl
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provided we remember the corresponding braid statistics. We also showed in
[2] that our algebra has a multiplicative braided determinant BDET(u) =
ad — ¢*cb. It is bosonic and central.

Next, we studiéd *-structures on braided matrices in [17]. For real ¢, we
have

a b\ _f(a ¢
et d*) T \b d
so that these matrices are naturally hermitian. One has also
To(*®*)oA=Aox

where 7 denotes ordinary transposition. This is what one would expect since
the coproduct corresponds to matrix multiplication and (A-B)t = B- A for
ordinary hermitian matrices A, B. We denote the braided matrix bialgebra
BM,(2) with this *-structure by BH,(2), the algebra of braided hermitian
matrices. Note that the situation here is in sharp contrast to the usual
axioms of *-quantum groups, where hermitian quantum matrices cannot be
formulated. BDET is self-adjoint.

All of this makes this particular algebra ideally suited to serve as ¢-

Minkowski space. So we define g-Minkowski space as BH,4(2). The generators
b+c b—c¢

g 0 TPT T
are some natural self-adjoint spacetime coordinates while BDET becomes

2
¢ 2 (41 (qz—l) q

go=qd+q 'a, == z3=d—a

4222 2.2 kS
(q2+1)2x0 T — 97 2(q2+1)2x3+ q2+1 ToT3

2
and provides a real ¢-deformed Lorentz metric.

This ¢-Minkowski space has plenty of geometry associated to it, some of
which we describe now. It is evident from the description of braided matrices
(7) that they can be viewed if we want as a 4-dimensional row vector algebra
of the same general type as the {z,} in Section 2. They therefore transform
as usual under the action of the corresponding quantum matrices A(R).
Thus, :

uy — ’LL[AIJ (11)

is an algebra homomorphism {we have a right comodule algebra) under the
4 X 4 matrix quantum group

R KpAA A8 = AR AT \RA,BL, AN = AT4004,
This quantum group provides the basis for a g-Lorentz group in our picture.

It has a *-algebra structure

AIJ* — A(i),io)(_

71,J0)
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and the coaction and coproduct are *-algebra homomorphisms. We have
taken the quantum group line here because it is more familiar. There is an
equally good braided Lorentz group based on B(R) acting in the same way
as a braided comodule algebra.

Moreover, the quantum Lorentz group here maps into the dual of the
Drinfeld quantum double[20] with the result that our approach is indeed
compatible with other proposals based on' spinors[18}[21]. Thus, our A(R)
can be realised in the quantum group A(R) v« A(R) introduced in [22] and
generated by two copies of the 2 x 2 quantum matrices. We take these in the
form t € A(R) and t' € A(R21) say, with mutual relations and *-structure

taRo Rt = it Ri b e, W=t e, tiRt)=tIRt,.

The abstract picture behind A(R) 0« A(R) as a *-quantum group was found
in [3] as well as its relation to the quantum double. One should use the
inverse-transpose of the dual-quasitriangular structure found there in Propo-
sition 12. The realisation and the resulting 2 x 2 matrix form of the Lorentz
transformation (11) is

ALy =gtio, giv. o afs o oyttt et ie, u— thut.
ol 51 J i

These constructions all work for any R-matrix of real type. For (10), one
should think of our two copies of 2 X 2 quantum matrices as the analogue of
the complexification SL(2,C) of SU(2). Then the diagonal action u — t~'ut
when t is unitary defines an action of the quantum group SU,(2). This
in turn is the double-cover of rotations, which appears here as S0,(3) C
SU4(2), the subHopf algebra generated by expressions quadratic in the t.

All the usual geometrical ideas likewise go though without difficulty. For
example, the mass-shell or Lorentzian sphere in ¢g-Minkowski space is defined
by adding the relation

BDET(u) = 1 (12)

and is preserved under the SO4(3) action as one would expect. There are
also vector fields on ¢-Minkowski space for translation[11], and for Lorentz
transformation from (11). The action of the rotational vectors generates the
quantum group Ug(suy) as

w2 0= (700 ) DG )
(2 8)= (g ) =1 2000)

w (e a)=(x o)1 ) (0 L)
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where the limits are as ¢ — 1 and are as one would expect.

Another interesting feature is that this mass-shell or Lorentzian sphere
forms a braided group. This parallels the way that the Euclidean sphere in
the 2 X 2 quantum matrices M,(2) is the quantum group SU,(2). The big
difference is the %-structure or signature. In fact, this is part of a general
phenomenon. Just as most familiar groups have supergoup analogues, there
is a general procedure in [1] called transmutation which turns a quantum
group into a braided group in a systematic way. The formulae at the lowest
level are

u'; =t u'jukl = tabtdzRiacdejkc, i.e.,, u=t, uyRu; = Rt;t,

etc. and come out of category theory. We also gave a direct quantum groups
point of view to them in [15]. Finally we found in [17] that this transmu-
tation from quantum geometry to braided geometry also has the side-effect
in general of taking us from the unitary picture (our sphere in Fuclidean
space) to the hermitian picture (our Lorentzian sphere). This is the abstract
reason why only braided matrices and not quantum matrices can serve in
the g-deformed picture if we want the Lorentzian signature. One does not
see this constraint at ¢ = 1.

More recently, U. Meyer in [23] has found an addition law for g¢-Minkowski
space by introducing a new braiding suitable for the coaddition Au =
u® 1+ 1® u. The R-matrix for this braiding is different from R. above and
provides for a better g-Lorentz group with the quantum double appearing
as its double cover. The addition law also provides for braided differential
calculus according to the framework of [5] and, in principle, a translation-
invariant integration as we shall see in the Appendix below.

This completes our introduction to the braided geometry of ¢-Minkowski
space. On the other hand, we have seen in the last section that these braided
hermitian matrices are also the braided enveloping algebra of the braided
Lie algebra associated to our R-matrix. In our case this is the 4-dimensional
braided Lie algebra gly 4. It has basis h,z;,z_,v with braided-Lie bracket

(ho4] = (672 4+ Vg %24 = —¢ (24, h]
[hyo-]=—(¢7% + 1)z- = ~¢*[z_,h]
[24,2-]= ¢ %h = —[z_,24]

h h
[h’ h] = (q_4 - 1)h7 [7» { z+] = (1 - q_4) { Z4

T Z..

with zero for the others. We see that as ¢ — 1 the ¥ mode decouples and
we have the Lie algebra sus @ u(1), but for ¢ # 1 these are unified. There
is also a braided Killing form[11] which is non-degenerate as long as ¢ # 1.
So gl is an interesting braided-Lie algebra with potential applications in
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physics, such as in the unification of electroweak interactions in ¢-deformed
Yang-Mills theory[24] with this as the gauge symmetry. Its su; part can also
serve as differential operators of orbital angular momentum etc., along usual
lines.

The quantum-geometry transformation thus connects these two concep-
tually quite distinct structures. Explicitly, it is

h a—d

T —_
e

v ¢ 2a+d- (gt +1)

and gives an isomorphism U (gl 4)B Hy(2). So, provided ¢ # 1 there is only
one braided group in the picture. From one point of view it is the algebra
of functions on ¢-Minkowski space. From another point of view it is the
enveloping algebra of a braided Lie algebra. But what we see at ¢ = 1 is
two structures, depending on how we take the limit. If we work with a,b,¢,d
then in the limit the algebra is the commutative algebra of functions on
usual Minkowski space. If we work with h,z;,z_,v then the limit is the
highly non-commutative enveloping algebra U(sug @ u(1)).

The quantum-geometry transform here is valid for ¢ # 1 and maps Lie
algebras and their properties to geometry. For example, what from the geo-
metrical point of view is the mass-shell constraint (12) in g-Minkowski space,
comes out from the Lie algebra or differential operator point of view as
the quantum enveloping algebra U,(suy). Explicitly, the quantum-geometry
transform at this level becomes

HIE ( ¢ CHg-g e X )

¢ d ¢ Ha- e )Xeq? H 4 (g XX

This follows from some known results in the theory of quantum groups
[16][25] by putting u = I*SI~. This connection with quantum groups is
explained in full detail in [15], to which we refer the reader.

Likewise, what from the geometrical point of view is the time direction
zo appears from the Lie algebra point of view as giving the u(1) mode v
which could appear in a gauge theory or which, for example, acts via[, ] on
¢-Minkowski space by scaling of the space coordinates {z;}. On the mass-
shell it appears as the quadratic Casimir. In summary, U(glz4) is both a
braided enveloping algebra, such as an internal symmetry or an algebra of
differential operators acting on ¢-Minkowski space, and can be identified
with g-Minkowski space itself. Only remnants of this unification are visible
when ¢ = 1. We have seen also that the ability to develop the ¢g-deformed
picture forces us from Euclidean space to Minkowski space.

We have not had room here to describe many other features of quantum
and braided geometry. Notably, in [24] we introduced the theory of quantum
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group principal bundles and connections (gauge fields), including the exam-
ple of a Dirac monopole on a g-sphere. Some of this machinery can be applied
to g-Minkowski space. In short, a systematic g-deformed picture of the main
ingredients of physics is emerging, as well as some unusual phenomena that
are not very evident at the special point ¢ = 1.

Appendix. Braided Integration

In this appendix we introduce the reader to some of the mathematical tech-
niques of braided geometry by deriving here a formula for invariant integra-
tion. This is a problem that is of current interest and which was posed a
couple of times at the conference. Since quantum planes, g-Minkowski space
and many other g-deformed algebras are in fact braided groups, we can ap-
ply the general theory of braided groups. There are still some difficulties in
interpreting and computing the formula for integration, which we offer as a
challenge for the interested reader.

Our main goal is to demonstrate some diagrammatic techniques as used
for the basic properties of braided groups in [7]. We refer there for full details
of the methods and notation. As well as the result here, one can also prove
Theorem 3.1 and the braided version of (4) using the same techniques.

Briefly, let us recall that a braided algebra B is an algebra with a braiding
¥ =X mapping BQ B — B ® B. There should also be a’unit element,
which we view as a map 7 : € — B. The algebra, and indeed all our maps,
should be compatible with the braiding in an obvious way. We view it as
like functions on a braided space. A braided group is such a braided algebra
equipped also with a coproduct A : B — B@B and counit ¢ : B — €. This
is like the definition of a quantum group with the key difference that BRB
is defined with braid statistics as in (5). We saw some concrete examples
in the form of the braided matrices in Sections 3 and 4. Likewise, some
quantum planes are also braided groups with coaddition[3]. We are using
the term ‘braided group’ quite loosely here. In general, there should also be
an antipode S : B — B obeying axioms like the usual ones. One can also
ask for some braided-commutativity as in [2] but we do not need this here.

Crucial for us is the diagrammatic notation in which A = and - =VY.
We also suppose that our braided group has a dual B* and denote the
evaluation ma\,p ev: B*® B — C and coevaluation map coev: C - B® B*
by ev =\ and coev.=/M\. In concrete terms, ev is usual evaluation and
coev(A) =AY e, ® f* for a basis {e,} and dual basis {f°}.

Our goal is to find a map [ : B — € which assigns to a ‘function’in B a
number, and which is translation invariant under the group law. Classically
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this means [b(h({ )) = [b for all h in our group. We find correspondingly

/zz_r_Los?: . (id®/)A=1/

where the first is our definition of [ and the second is its translation-
invariance property. Here Tr is the braided trace as in [11] and L is left
multiplication, which gives the diagrammatic form shown.

A similar formula applies for ordinary quantum groups, and we will use
a similar strategy of proof. We note that braided integrals have also been
studied in [26] but our proof will be different. Our first step in the proof is
a lemma. We assume that S is invertible, then

where the first equality is the property that A is an algebra homomorphism
to the braided tensor product algebra B B. The second equality uses asso-
ciativity and coassociativity of the product and coproduct. The last equality
then cancels the inverse-antipode as explained in [7]. Then

BAARE

where the first equality is our lemma and the second uses that § is a braided
antialgebra homomorphism. Now pick up the coproduct at the top of the
third expression and push it down and to the left (not changing the topol-
ogy), giving the fourth expression. Now we use coassociativity and cancel
the antipode loop. We obtain the desired left-invariance of the integral.
Thus we have a nice formula for the invariant integral on a braided group.
The braided trace plays the role of ‘averaging’. The formula should, however,
be viewed with care because it could easily happen that it gives identically
zero or infinity and may well require a renormalisation to get a finite answer.

To see the nature of this problem, let G be an ordinary finite group and take
I3
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a basis of delta-functions {§,}. The dual basis is the the set of group elements
themselves. Then the formula gives

b= "la.68) = L b(0)t5(0)-

In the continuous case this gives 8(0) times the usual integral. One can
evaluate the trace in any convenient basis. It would be interesting to find a
suitable basis in the case of the quantum plane or ¢-Minkowski space and
likewise evaluate this integral. This is a direction for further work.
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Abstract. The relation of 3D Chern-Simons theories to quantum groups is studied, it
turns out that besides the already known quantum group realization for the quantized
theory, a similar realization exists for the classical theory. The classical limit of the theory
is considered in detail.

1. Introduction

In the last years 3D Chern-Simons theories have been studied due to their
multiple applications [1, 2, 3, 4].

As topological field theories, Chern-Simons theorie do not depend on the
metric of space-time manifold M.

If A is an algebra valued connexion of the group G on the manifold M,
then the Chern-Simons action is given by:

I= Zk; /M d3xeijkTr(A;ajAk + AiAjAk) (1)

where k is the coupling constant and T'r is the bilineal form of the algebra
of the group G.

The action (1) is invariant under spacetime reparametrizations and under
gauge transformations it is invariant up to an additive constant given by the
winding number of the transforming group element.

The equations of motion following from (1) are gauge covariant:

Fij = 0iAj - 0;A; — [Ai, A4;] =0 (2)

Thus, C-S theories will describe only “trivial” motions given by flat connex-
ions.
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If the group G is 150(2,1), then it was shown in [1] that the resulting
theory is equivalent to 3D Einstein gravity.

For quantized theories the expectation value of Wilson lines along knot-
ted closed curves will give the corresponding Jones polynomial. Moreover
the quantum Hilbert space of a 2D spacelike section punctured by the in-
tersection of the contained Wilson loops, describes the space of conformal
blocks of 2D conformal field theories.

An interesting issue is the one of computing the commutator algebra of
Wilson loops along spacelike curves [5]. As usual a foliation of M '= Rx L has
been chosen. Thus, it is enough to study Wilson loops on . In {5}, I50(2,1)
has been considerated in some detail; this study has been further pursued
in [6] for the spinorial representations of SO(3,1) and SO(2,2) where after
quantization the resulting algebra has been identified with SL(2),. Further,
the Wilson loop algebra of Poincaré and conformal groups {7}, and for de
Sitter supergravity [8] have been calculated with similar results. Generaliza-
tions for g > 1 have been pursued in [9].

In this contribution SU(2) C-S theory is considerated. In Sec. 2 it is
shown that although the Poisson bracket algebra of integrated connexions
is of braid type, the Jacobi identities are trivially satisfied. In Sec. 3 it is
shown that the Poisson bracket algebra of traces, i.e. Wilson loops, has the
structure of SL(2),. In Sec. 4 different quantization schemes are discussed.
Conclusions are drawn in Sec. 5.

2. Quantum Symmetry of Classical Chern-Simons Theory

If vy : R — X is a noncontractible closed curve on X, then an integrated
connexion

¥(7) = Peh 3)
is a solution of the differential equation [5]:

a¥

b 4

where A,is the connexion tangent to 4 at s. From the action (1) the canonical
Poisson bracket relations can be derived:

[Aaalt, ), 43(2, )] = 2 capdgs*(x - X' 5)

where a, 3 = 1,2 and a corresponds to the adjoint representation of G.

In order to compute the Poisson brackets of integrated connexions let us
consider two crossing closed curves v and o [5, 6]. We take them as indepen-
dent nontrivial homotopy classes, e.g., the cycles of a thorus. Both curves
are decomposed into three pieces, the central one being in the neighborhood
of the crossing point. (fig. 1).
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O3
Figure 1

Thus ¥(7) = ¥(73)¥(72)¥(11) and ¥(0) = ¥(03)¥(02)¥(0y). Taking
(5) into account we obtain:

{¥1(7),¥2(0)}pp =

V1 (73)¥2(03) {¥1(72), ¥2(02)} pp ¥1(71) ¥2(01) (6)
where, as usual, the notations are:
UYi=UQ®1 and ¥,=1Q ¥ (N
Further, we have:
¥(yg) = 1+ [ ds Ao [x(5)) () + Oe) )
U(og) = 14 o7 du Aq [x(u)] 2" (u) + O(€?)
thus
W11, ¥a(o0)}pp = - F5(1,0) (T & T2) ©)

where s(7y,0) = %1 is the signature of the relative orientation of 4 and o.
Therefore, in the limit € — 0:

{¥1(7), ¥2(0)}pp =
—25(y,0)U1(73) ¥2(03) (T* ® Ta) ¥1(71)¥2(01) (10)
If we restrict ourselves to curves v and ¢ with a common base point, the
algebra (2.8) can be put in a closed form, so that for example in the limit

€ — 0 we have ¥(73) = ¥(03), then we can fix the gauge in such a way that
we obtain the braid-like algebra:

{¥1(7), ¥2(0)} pg = T12(7,0)¥1(7)¥2(0) (11)
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where
2 a
r12(7,0) = —’k—s(%a) (T*®T.) (12)

which ¢bviously does not satisfy the classical Yang-Baxter equation. In fact,
in order to satisfy the Jacobi identities of (11), we need three different, but
equally based elements, say ¥(7), ¥(o) and ¥(o’) as in fig.1.2 (the fact that
7, o and o' are equally based is not explicitly shown). The point is that the
gauge (11) cannot be implemented simultaneously for all possible brackets,
for each of these brackets we must do separatedly a partition of the curves.
fig. 1.1

Figure 2

Taking that into account, it is easy to show that:

{¥1(7),¥2(0)}pp » ¥3(o')} pp +
{¥1(0), ¥2(o")}pp , ¥a(1)}pp +

{¥%s('), ¥1(M}pp  ¥2(0)}pp =0 (13)
where the second term vanishes identically due to the fact that
{¥1(0), ¥a2(0")} pp = 0 (14)

Now we consider the Poisson bracket algebra of traces of integrated con-
nexions (Wilson loops) for SU(2):

Cly) =Tr(7) (15)
(O, C0)}pp = =2 s(3,0)Tr [TU M T+ (T3 (0)] (16)
where the Casimir element is given by:

1 1
Ty ™ Tamty,™ = = 2600, ™ 8, ™ 4 56, bur, ™ (17)
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resulting the algebra [5, 6]:

T 1
{0, C@)pp = Fs(1,0) [-36C(@) +C(10)| (18)
which closes due to the trace identities for 2x2 matrices [5, 6]:
Tr(AB) = Tr(A)Tr(B) —det ATr(A™'B) (19)

In our case the determinant is one and we have:

C(y*0) = —C(a) + C(7)C(70)
C(o%y) = -C(7)+ C(0)C(y0) (20)

and so on. Thus, the only independent generators are: X1 = C(v), X2 =
C(o) and X3 = C(y0) with the resulting algebra [6]:

T
{Xi,X;}pp = % (€ XiX; + €i5xXi) (21)

where €;; = —€ji, €12 = €23 = €31 = 1 and €;;; is the 3D Levi-Civita symbol.
Relations similar to (21) arise for the monodromies of groups elements of
SU(2) WZW model in [10] where the resulting algebra has been interpreted
as the semiclassical version of SL(2),. In the following we wil] show that in
fact they constitute an exact representation of SL(2),.

Indeed, if we do the nonlinear reparametrization similar to the one used
for the quantized theory in [6], see also e.g. [11]:

K* = Xy +iX,eF5H (22)
X3 = -;— ( -FH _ efH) (23)
We obtain:
{K+,K—}p3 = % (e"fH - efH)
{H,K%}pp = :i:%K* (24)

where the deformation parameter is given by:

*ia

g=e (25)
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3. Quantization

In this section, we wish to obtain the algebra corresponding to (2.22) in
the quantized theory. Due to the lack of regularization criteria like operator
ordering, quantization of Chern-Simons theories imply a certain degree of
arbitrariness.

In our case the indicated thing to do is canonical quantization. However,
it would imply complicated operator manipulations to achieve (21). Instead
of it we choose a way similar to [6]. We start from the following naive ansatz:

(X, X,] = ih% (60 (X:X;) + eije Xi] (26)
where
vy J XX &=1
(’)(X,XJ)—{Xin’ S (27)

takes into account the nonconmutativity of X; and Xj;. In this case the
nonlinear reparametrization is given by:

K* \/1 - if]gfxl + i Xqet#

41—k .
X3 L2 (e* —e7H) (28)

1
-nh
22—

with the resulting algebra:

_ irh -
[K+,K ]:m(e“—-e u) (29)

[0, k%) = £In (1 - z"—I:‘-) K* (30)

so that after some rescalings the canonical form turns out to be:

q2H _ ;1~—2H
[Kt,K™] = L—q;:jl“_s'—)‘ (31)
[H, K*] = +ihK* (32)

where the quantized deformation parameter is given by:

¢= (1 - i%)%ﬁ (33)
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such that the limit A — 0

-I
xh k _
%1_1}(1)(1 hn‘l) [(1—-1—;—) ] e

gives the deformation parameter of the classical theory.
Now, we wish to make an ansatz of regularization for the operator product
on the 1.h.s. of (26) as follows:

L]

(34)

XiX; — i’%’d (X:X; + aX;X:) (35)
Therefore

(X1, X] = ihu [ : i — (Xu X2 + aXoXi) + x?,] (36)
hence

(X1, Xo] = Fﬁ—f (X1 Xz + Xs) = ihit (X1X; + X3) (37)

which has the same form as (26).
Therefore the deformation parameter will be:

L
oy k 1- z—h& "
g=(1-ihi)w = ~""ta_
1+'l(11—+%

(38)

where we substituted v — =« /k.
It is interesting to expand (38) in power series on h.
We obtain:

g = o Fom Do 60 () 1-(-o)" (39)

For example, if we take a symmetric ordering, i.e. a = 1, only even powers
of f will survive and the deformation parameter will be real:

0= e Ee 2 Do S 2 o f [14 0 (w9)] (40)

Our results are based on a heuristic quantization of the trace algebra
(11). Nevertheless, the resulting deformation parameter is consistent as far
as the classical limit (A — 0) concerns.

It would be interesting to quantize (11) instead of (21). However in this
case the noncommutativity of the operators leads to considerably complica-
tions, for example the trace identity (19) is not fulfiled anymore. Work is in-
progress in this direction.
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Abstract. Within the framework of quantum group symmetric Heisenberg algebras and
their (Bargmann-) Fock representations, we study the position and momentum operators:
Their commutation relations, uncertainty relations and spectra. As an effect of the un-
derlying noncommutative geometry, a scale appears, leading to the existence of minimal
uncertainties in the positions and momenta. The usual quantum mechanical behaviour is
recovered as a limiting case for not too small and not too large distances and momenta.

1. Introduction

Quantum groups, i.e. dual quasitriangular Hopf algebras, considered as de-
formations of function algebras on group manifolds, are examples of non-
commutative geometry [1, 2, 3, 4]. It is interesting to examine, whether the
introduction of noncommutative geometry into quantum theory can regu-
larise its short distance behaviour or even lead to a link to gravity. Here we
study the effects of noncommutative geometry in quantum mechanics.

The commutation relations of the following generalised bosonic Heisen-
berg algebra are conserved under the action of the quantum group SU,(n)
[5, 6]: (See also [7] and also compare with [8, 9, 10, 11])

a;a; —qaja; = 0 for i<
alal — qataf‘ =0 for i>7
177 f At B J
a,-a;‘- - qa}a; =0 for i#j

a.'a:-r - qzafa; =1+(F~1) Za;‘-aj (1)
j<s

Here i runs from 1 to n and g is real. One obtains for the scalar product:

n

(Ol(@n)™ - o+ (@) (af)™ - .- (al)l0) - = [](ril! (2)

i=1

* Supported by Studienstiftung des deutschen Volkes, BASF-fellow.
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with

[T]q! = [Hq . [Q]q . [3]q - [T]q and [p]q = q:::ll (3)

Although quantum groups do in general have more than one free parame-
ter, no further parameters enter in these commutation relations [12, 13]. The
Hilbert space H, completed using the induced norm, is as usual isomorphic
to I2. The Poincaré series of the a’s and the a!’s remain unchanged. The
quantum group SUy(n) is a symmetry of the Heisenberg algebra. Neverthe-
less arbitrary Hamiltonians can be studied which not neccesarily have this
symmetry. The usual quantum mechanical programme, representation of the
Heisenberg algebra on a positive definite (Bargmann Fock-) Hilbert space
of wave functions and the definition of integral kernels like Green functions
etc., could be performed and some dynamical systems, using the undeformed
Schrédinger equation (and leading to unitary time evolution) were worked
out [14].

Since the above given commutation relations are respected by formal
hermitean conjugation, the natural candidates for position and momentum
operators ¢ « a + a! and p « i(a' — a) are representable as symmetric
operators on a suitable domain. Let us now try to reveal some features of
the underlying noncommutative geometry by studying these observables in
more detail.

2. Commutation relations of positions and momenta

We start with the following ansatz for the position and momentum operators:
(r=1,..,n)

2, := L.(al + a,) , py = iK.(al — a,) (4)
Defining their domain D to be
D:={veHp= Polynomial(a{,...,aL)IO)} (5)

which is dense in H, we insure that all z, and p, are represented as symmetric
operators with images that lie in their domain. Since the a’s and a'’s do not
carry units, the newly introduced constants L and K do.

It is reasonable to require the existence of a physical region in which the
usual quantum mechanics is recovered as a limiting case!, even if ¢ # 1.
This would be achieved if the commutation relations come out in the form
[z,p] = ih + f(q,z,p) with uncertainty relation AzAp > % + %(f(q,:v,p))
which then reduce to the usual relations where (f) is negligible.

! Weakening this restriction, the ansatz Eqs.4 is generalisable.




ON POSITION AND MOMENTUM OPERATORS IN Q-QUANTUM MECHANICS 89

Explicitly the commutation relations Eqs.1 read in terms of the z’s and p’s:

4KL
r,r= 6
ferp] = i ©)

AK, L (¢* — 1) N A 1
RS [XS: <4L3 4K? g;um,t [z pd]

Working out the induction and setting

Big?+1\"
K.L, := 2 (q 2 ) (7)
the commutation relations do indeed take the desired form:
2 s-1 2 2
PO gt +1 Ty Ds
[mr,pr] =1h + 1h(q2 - 1); <_—2——) (4[43 + 4K32) (8)
The mixed commutation relations read for r < s:
L
{za,Pr] = K q n 1{ sv"r} 9)
K, 1
[33,,27,-] = 7"""%’:'*_"1 s’pr} (10)
For r > s one gets:
K
[z.ﬂpr] = L q+ l{ps)pr} (11)
[Paspr] = =i L1y} (12)
sy Pr] = K q+ 1 T3y Pr

If ¢ = 1 the constants K and L drop out of the commutation relations,
reflecting that in ordinary quantum mechanics a length or a momentum
scale can only be set by the Hamiltonian i.e. by chosing a particular system.
Here, for ¢ # 1 the K and L appear in the commutation relations, thus
these scales become a property of the quantum mechanical formalism itself.

3. Uncertainty relation

Let us consider for simplicity the 1 dimensional case where Eq.8 reads:

(28] = i + (¢ ~ 1) (4 g K) (13)
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with
K = I‘—(qz +1) 14
T4l (14)

We will now study the situation for g2 > 1. The case ¢ < 1 is quite different
and will be discussed elsewhere. The following (standard) derivation of the
uncertainty relation holds on every domain D' of z and p, on which both
operators are symmetric and have their images in the domain. The above
given domain D is an example.

We start with the trivial statement that the following norm is positive:

[((z — (v,2.0)) + ia(p — (v,p.v)))v| > 0 Yve D' Va

Using Eq.13, that = and p are symmetric on D’ and choosing « such as to
get the most restrictive inequality this yields for all v in D’ the uncertainty
relation

AsAp > g (1 @ 1) ((Ax)2 + (@) | (AP + (p)2)> )

412 4K?
with the notation:
(Az)? := (v|(z - (v,2.0))*[v) and (z):= (v,z.0) .

In ‘polar coordinates’

Az :=2Lrcosa and Ap:=2Krsina (16)
the uncertainty relation reads:

: ¢ -1

sin2a > Tl (17)

and

1+ - 1) (85 + &)
"2 Gy Damta - (@ -1 1o

From Eq.17 follows that the minimal a is larger than 0 and the maximal « is
smaller than 7 /2. Thus the hyperbola of the ordinary uncertainty relation,
having the Az and the Ap axes as asymptotes has turned into a graph with
asymptotes that are no longer parallel to the axes. From Eq.18 follows that r
is always larger than 0, thus there are minimal uncertainties in the positions
and the momenta?. They are calculated to be:

q2_1 q2_1

Azo=1 Z and Apo =K 7 (19)

2 They depend on (z) and {p), the absolutely smallest values are given.
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Due to Eq.14 there were two free parameters: the length L and ¢. Instead
we can now use Azg and Apg as the free parameters and express L,K and
¢ in terms of these:

L= Acg \/2A:toApo + 1 + VA(B20) (Apo)” + (B)?

4AzoApg (20)
2Az0A 4+ /4(Azg)? 2 2
K = Apy [20T00P0 + 1+ /AR PR T () -
4Az0Apg
q= \/(2Aa:gApo + \/4(A:co)2(Apg)2 + h2)) /R (22)
The commutation relation Eq.13 then takes the form:
[z,p] = ik + ig(Azo, Apo) AN 23
z,p] = th + ig(Azo,
p g 0,8Po (A.’E())z (AP0)2 ( )
where
AzoApg 2020Ap0 + \/4(AzoApe)? + A? — h
9(Azo, Apg) := 4=22=F0 v (24)

B 2Az0Apo+ \/4(AzoAp0)? + B2 + B

Let us now identify the physical region where the ordinary quantum me-
chanical behaviour is recovered:

Since physically we know that Azg and Apg can only be very small, say
AzoApy < h/2, we expand g to the first nonzero order and arrive at the
simplified commutation relation:

[2.8] = ih + 3 (%(Aro)? + 9 (B20)?) (25)

Now it becomes clear that in our formalism not only the behaviour for small
distances and momenta is altered: Also for expectation values of z? or p?
large enough to make the second term on the rhs of the order % or larger,
the behaviour will be significantly changed. The region of approximately
ordinary quantum mechanical behaviour is thus specified through:

h2
4(Apo)?
(Apo)® < p* < 1273%537 (27)

(Az)’ € 2* < (26)

)

From the point of view of wave-particle dualism, meaning high momenta are
needed to measure small distances etc. this is of course a reasonable result.
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4. Functional analysis of z and p

The above derived uncertainty relation holds on every domain D' on which
both z and p are symmetric and have their images in D’. It implied minimal
uncertainties in the positions and momenta. Now if there was a vy € D'
that is eigenvector e.g. of z: z.v), = Av), one would then of course have
(Az)? = (va|(z — (v, 2v2))?|vs) = 0, which would be a contradiction. We
thus conclude that there is no domain on which z and p are symmetric and
have eigenvectors. Let us now study the functional analysis of z in more
detail, the analysis for p is completely analogous.

We start be choosing for z the domain D; := D (the finite linear com-
binations of the vectors (a!)"|0) with # = 0,1,2,...), on which = and p are
obviously symmetric and have their image in D,. We can thus already con-
clude from above that z has no eigenvectors in D,. Indeed, the eigenvalue
problem

z.v) = Aoy with vy = io—:f,.()\)ﬂIO) (28)

r=0 \/W

can be solved for all complex A, but from the recursion formula that we
obtain for the coefficients f,(A) of vy it is clear that infinitely many of them
are nonzero, thus vy ¢ D,.

Let us now consider the adjoint z* of z, which has the domain:

Dye ={veH| FweH Va€D,: (v,z.04)= (w,a)} (29)

Of course Dy C Dy and, using the above mentioned recursion formula one
proves that actually all vy are normalisable and are contained in the domain
Dg., i.e. they are eigenvectors of z*. Since there are nonreal eigenvalues
we conclude that z* is not symmetric. An analytic expression for the in-
teresting scalar product of two normalised eigenvectors (9, 9y/) has not yet
been worked out (the numerical approximation converges as quickly as a
geometrical series).

z** is a much better behaved operator since it is closed and symmetric.
Its domain

Dy ={veH| FweH Va€ Dyp: (v,z"a)=(w,a)} (30)

is in between those of z and z*: D, C Dy C D, and it can easily be
checked that it does not contain any eigenvectors vy.

We now apply the standard procedure, see e.g. [15, 16, for checking for
self-adjoint extensions of closed symmetric operators:

3 Note that [15] defines ‘hermitean’ as synonymous to self-adjoint while [16] uses it as
synonymous to symmetric.
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The dimensions of the spaces (we use z*** = z*)
L gee := ker(z* F i).Dge (31)

i.e. the deficiency indices, are both equal to 1 (there is only one v; and one
v—;). We can thus define the following one-parameter family of self adjoint
extensions:

Toa(P)a:=i(b+Ub) forall a=b-Ub (32)
with the isometric operator U defined on (z** + 1). Dy« @ Cu; as

Uv:=(a* —i)(z™ +i)"lv Vo€ (2™ +i).Dgee = Lyipee  (33)
and

U.av; := ae'tv_; (34)

Here ¢ is a free real parameter, labeling the self-adjoint extensions. For
the eigenvalues one can stay with the ‘Cayley transform’ U, calculate its
eigenvalues, and an inverse Mobius transform then maps them onto the
eigenvalues of z,,(¢).

The analysis for p analogously leads to a one-parameter family of self-
adjoint extensions p,,(%). One may now be tempted to try to fix the choice
of the extension parameters ¢ and 9 by requiring that z,,(¢) and p,,(¢) be
defined on the same domain. One would then like to diagonalise z,,(¢) to
obtain a coordinate space representation or to diagonalise p,;() to obtain
a momentum space representation.

However, we know from section 3 that z and p cannot be extended to a
common domain on which they are both diagonalisable.

We thus arrive at the following picture:

While in classical mechanics the states can have exact positions and mo-
menta, in quantum mechanics there is the well known uncertainty principle,
not allowing z and p to have common eigenvectors. Nevertheless z and p
seperately do have eigenvectors, though nonnormalisable ones.

From the above discussion we conclude that the ‘noncommutative geom-
etry’ or quantum group generalisation of the Heisenberg algebra has further
consequences for z and p: It is not only that they have no common eigenvec-
tors, they even do not have a common domain on which they are symmetric
and have eigenvectors. Nevertheless z and p seperately do have self-adjoint
extensions, and can even have normalisable eigenvectors. It remains to de-
termine the maximal common domain on which they are symmetric.
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Abstract. We replace invariant integration over momentum space by invariant integra-
tion over the vector representation of SO,(3,1). Our invariant measure is reduced to an
SUq(2) invariant one by imposing the g-time zero projection. Finally, we show the null
directions in the SOy(3,1) Hopf algebra that lead to a quantum Galilei group.

Key words: SO¢(3,1) - ¢-regularization - ¢g-Minkowski space - ¢-Galilei group.

1. Introduction

By introducing non-commutative algebraic geometry, we can regulate rel-
evant quantities in field theory before renormalizing [Rodriguez-Romo, to
appear]. In this context, we propose a scheme called ¢-regularization, where
the deformation is parametrized by g € R (being R the reals), and ¢% # -1,
in which relevant quantities in quantum field theories are finite for ¢ # 1,
and reduce to the unregulated, divergent, physically meaningful quantity as
g — 1. Namely, as well as in dimensional regularization we interpolate consis-
tently to dimension 4 — € where the relevant quantities are finite (these would
be infinite at dimension four); in ¢g-regularization we extend a quantum field
theory to the non-commutative framework (by introducing the parameter
q) where the relevant quantities are finite (these would be infinite at ¢ = 1).

We want to preserve the desired Lorentz invariance, so we present a ¢-
regularization invariant under the g-Lorentz group. The g¢-Lorentz group
that we use as symmetry has been constructed from the tensor product rep-
resentation of §Ly(2,C) [Carow-Watamura, Schlieker, Scholl and Watamura
1990]. Since SLy(2,C) is view as the general (coordinate) transformation of

the g-spinor (‘two dimensional object with the generators of Agl 0, Manin’s
quantum plane [Manin 1988], as entries) and the g-deformed Minkowski
space is obtained as a tensor product representation of pairs of two inde-
pendent copies of g-spinors, the quantum group of transformation matrices
acting on the quantum Minkowski space is identified as the quantum Lorentz
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group SO4(3,1). In other words, a four dimensional real representation of
SL4(2,,C) generates the quantum Minkowski space with S0,(3,1) as its
symmetry. We work out our approach in the light cone g-deformed coordi-
nates of this quantum Minkowski space-time.

In order to learn more about the symmetries of our $0,(3,1) invariant
measure and link them with physically meaningful problems, we study the
zero g-time projection in ¢-deformed Minkowski space-time and its relation
to the Woronowicz’s SU,(2) measure [Woronowicz 1988]. Moreover, we show
how, some null directions of the quantum group S04(3,1), lead us to a ¢-
deformed Galilei group.

This paper is organized as follows; in Section 2 we introduce the g-spinors
from the non-commutative Heisenberg algebra and present the S04(3,1)
Hopf algebra we use. In Section 3, we obtain the S0,(3,1)) invariant ¢-
regularisation in terms of light-cone coordinates (out from ¢-deformed Min-
kowski space) and ¢-spinors. In Section 4, we study the zero time projection
of the S0,4(3,1) invariant measure in terms of the SU,(2) measure given
by Woronowicz (1988) and the null directions of SO4(3,1) that lead to a
g-deformed Galilei group. The quantum Galilei group has been found as
symmetry in condensed matter [Bonechi, Celeghini, Giachetti, Sorace et al.
1992).

2. From Heisenberg algebra to g-spinors and 50,(3,1).

To start with, consider the fundamental Heisenberg commutator algebra-on
phase space (r,p);

[, 1] = in6 1)
] = ] =
and the translator operator on phase space;
U(a,b) = @P-PT)/A yhere a and b € R” . (2)
In a ray or projective representation eq.(2) obeys the following composition
law;
U(az, b2) - U(ay,by) = el2mioa(ri(@1,D1),(a2,b2))] . U(a; + az,b; + b3),(3)

where a;, by, az, by € R™ and, for a free particle in quantum mechanics, the
twe-co-cycle ay for translations in the phase space is given by

1
2#02(1’;(&1,1)1),(8.2,1)2)) = 2—’%(&1 . b2 - ag bl) (4)
Let us consider the following infinitesimal Galilei transformation
r =r+a; =r+ hu, r"=r+a;=r, (5)

pP’=p+b=p, p"=p+by=p+huy,
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where u is a unit vector in R". Define ¢ = e~**, impose eq.(5) as symmetry
in eq.(4) and substitute the result in eq.(3), thus

U(hu,0)U(0,5u) = qU(0,iu)U(ku,0) (6)

is a realization of A((,Z/ 0,
Following Carow-Watamura et al. (1990 and 1991), let us define

2] [159] 11

as a ¢-spinor, introduce the tensor product representation of two g-spinor
spaces, called (Z¢,Z*), with a pair of ¢-spinors (i = 1,2) in each space.
Hereafter greek indices are for spinor suffix and roman ones for different
spinors. Besides, it is required that

77 = R}, 277" (8)

|

where R;{i, is the Yang-Baxter matrix for SL,(2,C).
After projecting the real part of ¢, as above given, the identification 79 =
_ 1/2 _

€’ Z, is made. Here ¢’ = q91/2 qO v Zy € Af;g. is the hermitian

conjugate of the g-spinor Z*.
It is straightforward to see that

i _ Figi 2/0 o 22/0

Xi=27 ¢ A @ AY (9)
yields to the generators of a four-dimensional real representation correspond-
ing to the ¢-deformed Minkowski space and its quantum group of transfor-
mation matrices is SO04(3,1) [Carow-Watamura et al. 1990 and 1991].
3. On S0,(3,1) invariant g-regularisation.
From the X*/ algebra take the ¢-light cone coordinates (A,4,B,B), where

A=X+Y, A=X-Y, B=2+T, B=Z-T (10)
and (X,Y, Z,T) is the ¢-Lorentz vector [Carow-Watamura et al. 1990]. Rewrite
the generators (4, A, B, B) as follows

A=a, A=a, B=q7§’, B:q??b’ where @' = \/1-g¢. (11)

Let us define the Haar measure [ [ as a map A§/° ® AZ/O — C, being C the
complex, such that

[[1=t0 [ [ta vrearon (12)
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where A is a linear map called coproduct

A : (A0 @ AY0) — (A @ AX0) @ (AX/° @ AY/). (13)
We have expressed the action of AA on f as

Af = fa) ® fa) (14)

By analogy with the case of finite dimensional Hopf algebras [Larson and
Radford 1988], we use the following formal expression for eq.(14)

//f = TTA?,/°®A";/°L-"S'2 (15)

where Ly stands for f acting by left multiplication on AZ/ 0®A3/ % and S is the
antipode map. The deformed additive structure of the algebra generated by
the unit and (e, @, b,b) is such that [Rodriguez-Romo, to appear, Taft 1971]

S*a—-a)=wa-a); S*(a+a)=w'a+a);
52%(b) = b; 52(b)=b (16)

where w = f(g) and lim, w™! = 1. Exact expressions for A, ¢ and § as
well as the #-algebra are given in [Rodriguez-Romo, to appear].

To compute [ [ we propose the following basis in Agl °® Ag/ 0 ,
FAAAMAsNe <ei,\15 Ml inabyin B4 idh eu@) ’ (17)
where

Faradaddsde ¢ A2/0 @ A2/ and (A1, Az, As, As, As, Ae) € R.

. . 2/0  42/0
We associate to FA1A2:23M:As%6 5 dual basis Fyia g, € (Aq/ ® Aq/ )

where (A2/° ® A% is the dual Hopf algebra of A0 ® AZ/O, such that
q g q

F/\“\W\a/\w\sAGF/\QI\Q,AQI\L,/\QAQ = (5(,\; - ,\1)5(,\/2 _ )‘2), (18)

(25 = A3)8(Xy — Xa), 6(X5 — A5)d(X6 — Ae))

where, as usual, the Dirac delta functions é are defined with respect to the
Lebesgue integration on R. The basis FA1A233Mdsds admits a g-spinor rep-
resentation, see [Rodriguez-Romo, to appear]. Furthermore, the Haar mea-
sure [ [ defined on AZ/ °® Ag/ % can be written in terms of ordinary integra-
tion [Rodriguez-Romo, to appear].
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Theorem 1 [Rodriguez-Romo, to appearl For a suitable f € Az/ °® Az/ 0

that can be expressed on the FA1323M:As36 bagis [ [ f contains a compo-
nent that can be g-regularized, i.e. it is finite provided ¢ # 1, but infinite in
the limit ¢ = 1.

Proof. To start with, let

f=f= /_ °:° dAidAzf(Aq, Ag) FAr2 4 (19)

o0 - {v'e] -
/ dhadAafha, A FAM 4 / dhsds f( s, Ag) 520
-00 ~00
where Fr1Aadsddsde (FPMA2 FAshe F’\s’\“) and we express f as a normal

ordered form of ’, in terms of the generators. Namely, putting b to the left
of a, @ and b. Additionally, f is the Fourier transform of f’, i.e.

fi ) = (27f)_2/ dpidp; f'(pipg)e™ N =i (20)

t,J= (1,2)7(3’4),(5>6)'

Then we obtain

//f / dA ANy dA2 F(0,25)8(A5(1 — w) — Ae M) (21)
/ AN, AN, A F(0, A)SNG(1 — wY) — Age2%@ 4

/ LN, F(0,0)
~00

//f / AN dNeM? F(0,M5(1 — wTh)e? Q)4 (22)
/ d/\sd/\' —-/\’Q' (0 )V (1 «l)e—Zi/\éQ’)+

00 ~
/ AL, F(0,0)
-0

The last term in eq.(22) corresponds to the ordinary divergent term that
appears in thé commutative algebraic formulation of quantum field theory;
there is no way we can recover a finite term out of this in the limit ¢ — 1.
Checking the non-commutative algebra of §O4(3,1) we find the reason why
this happens to be so; the light cone g-coordinates b,b commute; i.e. T is
central with respect to (X,Y,Z), so this part of the Haar measure is not
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really defined on a non-commutative algebraic variety. Therefore we can
extract out of [ [ f the following g-regularizable component

[[1- [ axaxfo.0= (23)

Crso{ [~ anfoxa-w )+ [T anfona-wh}.

But w™! = f(q) is such that lim,yw™! = 1 [Rodriguez-Romo, to appear].
Thus, as ¢ — 1, [ [ f — [22 dAsd)Xs f(0,0) diverges, by contrast at ¢ # 1
and assuming suitable analicity and decay of f to allow contour integration,

eq.(23) can be made finite for suitable f; moreover, this is proportional to
(1-wh) L Q.E.D.

Sumimarizing, in this section we have extracted out of a suitable f €
AZ/()@ AZ/", written on the basis FA1 A Mdsde | 5 component that is made
finite as ¢ # 1 but diverge as ¢ — 1. This can be written in terms of
light cone g-Minkowski coordinates and ¢-spinors (Weyl or Majorana type)
[Rodriguez-Romo, to appear]. An example in two dimensional A¢* theory
can be seen in [Rodriguez-Romo, to appear].

4. q-Time zero-projection and q-Galilei group.

Theorem 2. The ¢-Time zero-projection in g-Minkowski space-time, re-
duces [ [ f— [22 dA5dAgf(0,0) to the Haar weight on the vector represen-
tation of SO (3) written in terms of SU,(2) [Rodriguez-Romo, to appear].

Proof

a) The identification Mt = M1, that leads A¥ to be written in terms of
SU,(2), corresponds to T = 0 in ¢-Minkowski space-time.

b) The algebra generated by (A4, A, B) is isomorphic to the g-space rela-
tions of the 3-dimensional vector representation for SO 2(3), given by Fad-
deev et al. (1987), (i.e. ¢ from Fadeev corresponds to ¢? here). Let us call
X1 = %(A-}‘fi), X2 = %(A—-A) and X3 = B.

¢) From the FA12 223282 basis, we project;

FMAzdsh (ei,\,zs ei,\ﬂl, euwﬁ emﬁ) (24)

=)
where X! = 21, X? = 22, and X3 = ¢7'.
From this and from the work done on the category of representations of
a Hopf algebra follow the proof.
Finally, let us now show how null directions in the §O,4(3,1) Hopf algebra
can lead us to obtain a quantum mechanical Galilei group.
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Theorem 3 [Rodriguez-Romo, to appear] By imposing the following null
bi-ideals
2 2

=0, u=0, uul=ulu=1 (25)
on M€ .S'Lq(2 C)and M € §L,(2,C) (factors in §04(3,1)) we obtain from

,\gf},) = M i € S50,(3,1) a direct product representation of the quantum
Galilei group
.. ul ul

Proof. By requiring the quantum matrix M = (u% u%) € SLy(2) to
belong to the quantum mechanical Galilei group; i.e. M must fulfill eq.(5)
then the null bi-ideals in eq.(25) have to be imposed on M, so to end up
with a group that has only one generator, as should be.

If we impose the null-directions given by eq.(25) in A € §0,4(3,1) we
obtain the representation of the quantum Galilei group as symmetry on a
4-dimensional real representation of $Ly(2,C). Namely

(a})~tu} 0 0 0
0 ﬁl‘ul-}-ngﬁlulz_l 0 ngﬁlul—gﬁlulz"l)
A — 1+q 1+q (26)
0 W (u)?
i‘u’—(ﬁlu’)‘l 1( 1) ng-lu +(alu1)—12
0 1+q 0 1+¢2

where 4} is the generator for the Galilei group that comes from M=M"1
the transformation matrix for Z*. Q.E. D

5. Summary and Conclusions

In this paper we have used the projective representation of the non commu-
tative Heisenberg algebra to construct the Manin quantum plane, thereby
defining ¢-spinors. Using this as a building block we present a 504(3,1)
invariant g-regularisation in terms of g-deformed light-cone coordinate , we
show how to extract, from relevant quantities, finite components {provided
g # 1) that can become infinite at ¢ = 1. To compute the Haar weight, we
propose a basis projected from the g-deformed Minkowski space-time in light
cone coordinates, so the functions to be g-regularized are to be considered
on this frame of reference. Additional work must be done to generalize our
scheme to arbitrary functions on the full ¢-Minkowski space-time basis’
Finally, in order to learn about this programme and its symmetries, we
study the T=0 (in ¢-Minkowski space-time) projection of our §0,4(3,1) in-
variant Haar measure in terms of th SU,(2) measure and the null directions
in the §0,(3,1) Hopf algebra that lead to a quantum mechanical Galilei

group.
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A concept of quantized spaces has emerged from the study of quantum
groups. Inhomogeneous quantum groups as the g-Poincaré group or the g-
Euclidean group lead to a g-deformation of the Heisenberg algebra. A one-
dimensional version of it is:
pPT — qITp = —i. (1)

q # 0 is supposed to be a real number, characterising the deformation. It is
the simplest example of this type and in this lecture I want to show some of
the characteristic features of the above-mentioned quantized spaces by way
of this example.

In a quantum mechanical model based on the algebra (1), z and p have
to be represented by linear operators in a Hilbert space. For real ¢, z and p
cannot be both hermitean. Denoting by * and p* the conjugate of z and p
respectively we find:

1 i
*III* _ “‘Il?* * 2
P ;5P p (2)

We shall assume p to be hermitean (p* = p) and we will introduce z* as a
new variable.

To complete the algebra, the z,2* relations have to be specified as well.
A consistent relation is:

zT* = qz*z. 3)
The algebra defined that way has a Casimir operator {central element):
C =(¢g—-1apz™ + iz — 2*). (4)

It can be used to eliminate z* in an irreducible representation with C having
a unique eigenvalue:

g =7 iC +2), r=1+i(g-1)ap=i[p,z]. (5)
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It is convenient to rewrite the algebra in terms of hermitean variables.
We introduce the hermitean “space”-variable

€= i {0 e o), ®
and a unitary operator u:

u = (rr*)" Y2, w'y = uut = 1. (7
The algebra is:

P~ q€p = i(¢ ~ ¢ (8)

up=qpu, € =g €,
with the conjugation properties:

pr=p,  &=¢  w=uTl 9)

A Hilbert space representation can be constructed. We choose p to be
diagonal and find:

pln>™ = moq" | n>™, (10)
)

Eln>™ =~ (gl n= 15—V n 157,

uln>™ =|n-1>m.

The real number mp # 0 characterizes the representation. The Hilbert space
H,, is defined as follows:

™ <n|m>™= b, (11)

):cn | n >™e Hyy < Z | e I’< 0.
n n

The operators p and £ in the Hilbert space representation (10) are hermitean.
The operator p is diagonal and self-adjoint. The operator £ is not essentially
self-adjoint. This can be seen in that £ does not possess a complete orthog-
onal set of eigenvectors with real eigenvalues. Assume £ has an eigenstate
| o > with real eigenvalue z¢. Applying v and u™! to such a state gives a
state with eigenvalue ¢z¢ and ¢~ 'zg respectively. Assuming that these states
with different eigenvalues are orthogonal leads to a contradiction. From (8)
follows:

p€ = —i{q"l/zu—ql/zu_l}. (12)
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The orthogonality assumption leads to the equation < z¢ | p€ | 20 >= 0. If
| zo > is in Hy, and has expansion coeflicients ¢,, we conclude:

m0 Y q"zo | ca [*= 0. (13)

A clear contradiction. This short argument shows that for a representation
of p and £ in terms of essentially self-adjoint and therefore diagonalizable
operators, the operator p has to admit eigenvalues of both signs. The math-
ematical requirement of essentially self-adjoint operators leads to the physi-
cally very reasonable consequence that there should be left and right movers
in the model. In the direct sum of Hilbert spaces Hy, @& H_r,, essentially
self-adjoint operators p and £ exist.

p|n>E = troq | n >E, (14)
)

£ n>Eo = v {qm |n—1>%0 —¢=1/2|n 41 >*"°},

u|n>E0 = |p—1>%m,

A q-deformed Fourier transformation transforms the momentum basis
into a coordinate basis and vice versa. The q-deformed cos and sin functions
have been defined by Koornwinder and Swarttouw [5]. With a slight change
in notation, they are:

cos[n] = cos(¢*™;q7%), sin[n] = sin(¢®";¢™), (15)
cos(z‘q“i) — i( l)k__q_ji(k:)___ 2k
’ = (5e ™
n(sa) = (-
’ (4_2 “2)2k+1 ’
N o m _ (60
(g; )k = Eo(l—aq ). N = m.

These functions satisfy the orthogonality and completeness relations:

Z ¢*" cos[k + n]cos[l + n] = N72q" U6y (16)
Z ¢ sin[k + n]sin[l + n] = N"2¢7 %5y,
n=—=00

The momentum basis of (14) is transformed into the coordinate basis with
these functions:



108 JULIUS WESS

. N &
|2k > = 5 > "t {coslk +n] (| 2n >™ + | 20 >"™)  (17)
n=—o
tisin[k+n](|2n+1>™ - | 20 + 1 >7™)}
|2k +1>% = £V2- 3= ¢ {sinfk + n] (| 20 >™ + | 20 >7™)

n=-—00

Figeoslk +n+1](|2n+1>™ + |20 >7™)},

These states form a complete and orthogonal set of eigenvectors of the op-
erator £:

1

+_
Elk>T= Syt

ke >t (18)
The action of p on the eigenstates of £ can be calculated:
ple>t=mo(-q)™* {|k+1>% —¢q| k-1 >%}. (19)
Let us introduce the wave function (k) for an arbitrary state:
oo
[p>= 3 {$a(®) 1k >% +yp_(k) [k >7}. (20)
k=co

The probability of finding the “particle” at the point :i:;o-;lm-qk is given by

| %+ (k) |2. The normalization condition is:

[ee]

S (loet) P+ 19-(k) 2) = 1. (21)

k=—c0

The momentum acts on the wave function:

poa(k) = (=) *ro {9k + 1) — gz (k - 1)}. (22)

A dynamic is defined by a Hamiltonian and the corresponding Schroedinger
equation. It is natural to study the Hamiltonian of a “free particle”:

H=7:p (23)
with the Schrc;edinger equation:
.0
1&’/):1:(1‘770 = Hyy(k,t) (24)
= —4ndg (g u (k4 2,8) = (0+ Dvs(k ) + (k- 2,0)}
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This Schroedinger equation finds its solution in terms of the momentum
eigenfunctions with eigenvalues of the Hamiltonian:

1
E, = §7r§q2". (25)
Let us calculate how the probability of finding the “particle” at the space

point :l:;r—o—;—,—,qu changes in time due to the Schroedinger equation (24). We
find

0 .4 . .

5{ {¢i(k7 t)¢i(k1t)} = ]:i:(k + 17t) - J:i:(k - lat)’ (26)

/
with the “current density”:
]ﬂ:(k - 1,t)
= Lndq % Lyl (k k+2,t) — 9Lk +2,t)pe(k 27
= o {wl(k, v (b + 2,) - L (k + 2,00k, 1)} (27)

The probability is conserved, equ. (26) is the “continuity” equation.

After having studied the one-particle states, let us try to generalize the
model to a many-particle system by imposing a second quantization. The
one-particle states are created by creation operators from a vacuum state:

lk>¥=cl, 10>  [n>*=dl ]0>. (28)
The operators cf, al create the particles in the coordinate or momen-

tum representation, respectively. From (17) follows how these operators are /
connected: ‘1

1 i
s = 5N 2 a®*) {coslk + nl(af, ¢ +a}, ) (29)
+ ism[k + n](a;n-{—l,-i- - a;n-i-lr')}
1 o
C§k+1,i = §N E‘I(k+ ) {Sm[k+ n](a;n,-l» - a;n,—-)

Ficos[k + 7z](a%n+1'+ + a%n+1'~)} .

The-operators ¢, and therefore the operators a as well, are assumed to an-
nihilate the vaccuum:

Ckr |0 >=ap,y |0 >=0, (30)
7 takes the values +, —. In accordance with a locality requirement we assume:

Ck,rcllyrl i 0>= 6k,k’6r,r’ | 0>. (31)
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From (29) follows the same relation for the a operators:
@n,ral, 10 >= 8,060 0> (32)

We define a momentum operator and a Hamilton operator, both bilinear in
the respective creation and annihilation operators in such a way that they
have the right one-particle spectrum:

2
T
P=mo} q"ral tns,  H=713 ¢"a] an,. (33)
T

n,r

These operators can be expressed in terms of the operators ¢, ¢* as well:

P = ZT‘I_2k {C;k,r(CZkH,r — qck-1,) + (C£k+1,r - qc;k—l,r)c“?y"}
k,r

T _
H = OZq el err — Pei1r — ¢ Ckirn)- (34)

The simplest way to define second quantization is by imposing the “canon-
ical” quantization condition:

[ckﬂ" c;c’,r’} = 51\‘,16’57‘.7‘” (35)
which implies:
{an',, G'IL',T'] = byt by - (36)

This renders the momentum and energy density of (34) as “quasi” local
objects:

P

—2k
qu 2 {cgk, (cakt1,r = qC2ko1) + (Chpr, — qC;k—l,r)czk,r}

T2 _
H = -2 Zq 2k ckr‘q Ck— Ir“‘q Ck-H,r)‘ (37)

By “quasi local” we mean that they commute when they have no lattice
points in common. If the system has an additional quantum symmetry, com-
mutation relations like (35) or (36) will not be covariant.

The commutation relations will have to be deformed as well. Again, the
simplest example of this kind is:

ckc, =ciex, exctt = RPettes (38)
= 6;63(1+ (- 1)6})-

The matrix R is a solution of the Yang-Baxter equation. The index of the
creation operator has been raised to make the formal structure of equ. (38)
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agree with the q-deformed differential calculus, as it was introduced in ref.[1].
All the consistency conditions of this calculus are satisfied with the R of
(38). We introduced the § parameter as there is no connection with the
g-parameter from before in this model. The relations (35) are obtained for
G = 1. With this g-deformation of the canonized commutation relations,
momentum and energy density remain quasi local.

The a,a’ relations are not local in momentum space any more. An explicit
calculation, using (17), gives:

a»?m,ralnnYS = 6::‘6: + a'ﬂn’sa'Zn.r + %N(Q - 1) Zk,u,u q4k+m+n+u+u (39)
{ [at?tag, + + at® 7 ay, _[cosk + m] cos[k + n] cos[k + y] cos[k + v]
+ rs[singk + m]sin[k + n]sink + p}sin[k + v]]
+[at®tay, _ + a7~ ay, (][cos[k + m] cos[k + n] cos[k + 1] cos[k + V]
— rs[sin[k + m]sin[k + n]sin[k + p]sin[k + v]]
+ [0 ¥ agup 4 + a0 Tag,, ]
[cos[k + m] cos[k + n]sin[k + p]sin[k + V]
+ g%rs[sin[k 4+ m]sin[k + n] cos[k + p] cos[k + V]|
+a® a4 atthag, 0 ]
[~ cos[k + m] cos[k + n]sin[k + u]sin[k + v]
+ ¢*rs[sin[k + m]sin[k + n] cos[k + y] cos[k + v]]} .

and similar relations for @, at with odd indices. These relations can again be
written in R-matrix notation. It yields again a solution of the Yang-Baxter
equation and meets all the consistency conditions of ref.[1].

If we had started from “locally deformed” relations in momentum space,
we would have obtained non-local relations in coordinate space - there would
have been no local expression for the momentum and energy density. This
example clearly shows how difficult it will be to handle the locality require-
ment in q-deformed theories - a problem far from being solved.
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Abstract. We explore a differential calculus on the algebra of C*-functions on a mani-
fold. The former is ‘noncommutative’ in the sense that functions and differentials do not
commute, in general. Relations with bicovariant differential calculus on certain quantum
groups and stochastic calculus are discussed. A similar differential calculus on a superspace
is shown to be related to the Batalin-Vilkovisky antifield formalism.
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1. Introduction

Since Connes’ work on noncommutative geometry, the notion of differen-
tial calculus on algebras has entered the realm of physics through numer-
ous publications. As the commutative algebra of (€-valued) functions on
a topological space carries all the information about the space in its al-
gebraic structure, certain noncommutative algebras may be regarded as a
generalization of the notion of a ‘space’. If the algebra A is associative, one
can enlarge it to a differential algebra, a kind of analogue of the algebra of
differential forms on a differentiable manifold.

More precisely, this is a Z-graded associative algebra A(A) = @,>0 A"(A)
where A? = A. The spaces \"(A) of r-forms are generated as A-bimodules
via the action of an esterior derivative d : A\"(A) — At1(A) which is a
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linear operator acting in such a way that d? = 0 and d(ww’) = (dw)w' +
(=1)Y'wdw (where w and w' are r- and 7/-forms, respectively). Without fur-
ther restrictions, A(A) is the so-called universal differential envelope of A.
It associates, for example, independent differentials with f € A and f2.

What we would rather like to have is a closer analogue of the algebra
of differential forms on a manifold. In particular, if A is generated by a set
of n elements (e.g., coordinate functions z* on a manifold), we might want
the space of 1-forms to be generated as a left- (or right-) A-module by the
differentials dz*. In order to achieve this, one has to add commuitation rules
for functions and differentials to the differential algebra structure defined
above. In case of the commutative algebra of C*°-functions on a manifold,
the ordinary calculus of differential forms simply assumes that 1-forms and
functions commute. If, however, A is the algebra of functions on a discrete
set, this assumption cannot be kept. The algebra of functions on a two-
point set, for example, is generated by a function y such that y? = 1. Acting
with d on this relation yields ydy = —dyy and thus aenti-commutativity.
In this example the commutation relation is not an additional assumption,
but follows from the general rules of differential calculus. This is a special
feature of the two-point space. This example plays a crucial role in models
of elementary particle physics [1]. Here we just take it to illustrate what we
mean by ‘noncommutative differential calculus’, namely noncommutativity
between functions and differentials.

Let A be the set of functions on R generated by a coordinate function
z (and a unit element which we identify with 1 € €). The simplest consis-
tent deformation of the ordinary differential calculus is then determined by
[z,dz} = adz where a is a positive real constant. If we define partial deriva-

tives by df :5f dz = dz 5]’, they turn out to be (left- and right-) discrete
derivatives. An integral is naturally associated with d and (for the higher-
dimensional generalization of the calculus) it turns out that the deformation
from a = 0 to « > 0 transforms continuum theories {like a gauge theory) to
the corresponding lattice theory (where a plays the role of the lattice spac-
ing) [2]. A simple coordinate transformation brings the above commutation
relation into the form ydy = gdyy with ¢ € C, the differential calculus
underlying g-calculus {3}. This noncommutative differential calculus is the
best understood and most complete example so far. We can also introduce
it on the space of functions on a lattice with spacings a instead of A. More
generally, differential calculus on discrete sets is supposed to be of relevance
for approaches towards discrete field theory and geometry (see [4] and the
references given there).

Another interesting example of a noncommutative differential calculus on
a commutative algebra is the following [5, 6]. Let A be the algebra of C*°-
functions on a manifold M and let us assume the following commutation
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relations expressed in terms of local coordinates z':
(¢}, de?] = v g¥ dt (1.1)

where 7 is a constant, g a real symmetric tensor (e.g., a metric) on M, and ¢
an ‘external’ (time) parameter. The above commutation relation is actually
coordinate independent. The differential calculus based on it is related to
quantum mechanics [5] and stochastics [6] (depending on whether v is imag-
inary or real), and to ‘proper time’ (quantum) theories [5]. A generalization
of (1.1) is obtained by replacing v dt by a 1-form 7, i.e.

[z}, da?] = T g¥ (1.2)
where T should have the following properties,
[, 7]=0 , 77=0 , dr=0. (1.3)

This structure in fact shows up in the classical limit (¢ — 1) of (bicovariant
[7]) differential calculus on certain quantum groups [8]. For functions f,h €
A, we have

[fidhl =71 (f,h)g , (f,h)g:=g" 0:f Ojh (1.4)

where 9; := 8/0z'. In sections 2-5, a brief introduction to various aspects
of this differential calculus is given. Some of the results, in pdrticular in
sections 3 and 5, have not been published before.

Sections 6 and 7 present basically new results. We introduce a differential
calculus on a superspace and show that the antibracket and the A-operator
of the Batalin-Vilkovisky formalism [9] (developed for quantization of gauge
theories) appear naturally in this framework. A corresponding generaliza-
tion of gauge theory is also formulated. The differential calculus is a kind
of superspace counterpart of the abovementioned differential calculus on
manifolds.

Our work establishes relations between noncommutative differential cal-
culus and various mathematical structures which play a role in physics. The
latter are thus put into a new perspective which will hopefully contribute to
an improved understanding and handling of these structures.

2. The classical limit of bicovariant differential calculi on the quan-
tum groups GLg(2) and SL,(2)

Let us denote the entries of a GL(2)-matrix as follows,
z! 2?
M= (m3 $4> : (2.1)

Let A be the algebra of polynomials in z*. The quantum group G L,(2) is
a noncommutative deformation of A as a Hopf algebra. The structure of a
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quantum group allows to narrow down the many possible differential calculi
on it. This results in the notion of bicovariant differential calculus [7]. For
GL,(2) there is a 1-parameter set of bicovariant differential calculi. In the
classical limit ¢ — 1 they lead [8, 6] to the commutation relations (1.2) with

g9 = (det M)V ziad +4(6% 69 — 60 63y (2.2)
T = s(dz!z? — d2?z® — dz®2? + dzta?) (2.3)
where s is a free parameter. The ordinary differential calculus on GL(2) is

only obtained when s = 0.
The condition for the matrix M to be in SL(2) is the quadratic equation

det M =zla? — 2223 =1. (2.4)

Compatibility of the analogous condition for the quantum group SL.(2)
with bicovariant differential calculus restricts the parameter s to only two
values (both different from zero) [8]. There are thus only two bicovariant
differential calculi on SL,(2) and for both the classical limit is not the or-
dinary differential calculus. We will only consider one of them here. In a
cordinate patch where z! # 0 we can use 2%, a = 1,2, 3, as coordinates. The
differential calculus is then determined by (1.2) with

g =zt + 4669 (2.5)

T % (de' 2 — dz? 2® — do3 2? + dat2?) (2.6)

i

where 2% = (1 4 z2z3)/2'. Although we only have three independent co-
ordinates in this case, the space of 1-forms (as a left or right .A-module)
is four-dimensional since T cannot be expressed as 7 = Y 5., dz°® f, with
f. € A. What’s going on here is explained in more detail in the following
section, using a simple example.

3. Differential calculi on quadratic varieties

Let ', i=1,...,n, be real variables, a;; a nondegenerate symmetric con-
stant form with inverse a*?. We want to construct a noncommutative differ-
ential calculus with (1.2) and (1.3), compatible with the quadratic relation

o5 i =1. (3.1)
The SL(2)-condition (2.4) provides us with a particular example. Acting
with d on (3.1) and using (1.2), we obtain

T =det (-2 27 a) =: de' (3.2)
where we have assumed that a := a;; ¢/ # 0. The condition [2},7] = 0
implies

g9 =0. (3.3)
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It is natural to look for an expression for g" in terms of @/ and the coordi-
nates z*. We are then led to the following solution of the last equation:

= aied -l (3.4)

From this we find @ = 1 — n. In the SL(2) case, we recover (2.2) and (2.3)
with the correct restriction on the parameter, i.e. s = 1/3.

Ezample: Consider two variables z,y subject to the quadratic relation
zy=1. (3.5)
We thus have n = 2, a;; = (1/2)(6:1652 + 6:i26;1) and

(¢7) = ( fi ;21 ) : (3.6)

Furthermore, 7 = dx y + dyz. In the case under consideration, (1.2) is a
system of four equations. Three of them are redundant, however, since they
are consequences of

[z,dz] = 722, (3.7)

Although we have only one free coordinate (z), the 1-forms dz and r are
independent in the sense that 7 = dz (1/z) — (1/z)dz cannot be expressed
as f(z)dz or dz f(z). The space of 1-forms is therefore two-dimensional (as
a left or right A-module, where A is now the algebra of functions of z). We
can use the expression for T to eliminate 7 from (3.7). This results in the
equation z dz — 2dz z + (1/z)dz z? = 0 which is insufficient to transform
the A-bimodule of 1-forms into a left (or right) A-module.

4. A generalized gauge theory and ‘second order differential ge-
ometry’

It is rather straightforward to formulate a generalization of gauge theory
and differential geometry using the ‘deformed’ differential calculus on A =
C*(M) with (1.2) and (1.3) (see also [5]). It should be noticed, however,
that — as a consequence of the deformation — the differential of a function f
is now given by

& =1 %gij 9:0;f + da' 0 f (4.1)

and involves a second order differential operator. If a (space-time) metric is
given, it is natural to identify it with ¢,

Let 1) be an element of A™ which transforms as 9 + ¢/ = U ¢ under a
representation of a Lie group G. For local transformations we can construct
a covariant derivative in the usual way,

Dy =dp+ Avp. (4.2)



118 A. DIMAKIS AND F. MULLER-HOISSEN

This is indeed covariant if the 1-form A transforms according to the familiar
rule

A=UAU ' —quU". (4.3)

In the following we will only consider the case where the coordinate differ-
entials dz' and the 1-form 7 are linearly independent and form a basis of
the space of 1-forms (as a left or right .A-module). A can then be written in
a unique way as

1 .
A:T§A7+dz‘A;. (4.4)
Inserting this expression in (4.3), we find that A; behaves as an ordinary
gauge potential and

Ar = g7 (0:A; - Aid))+ M (4.5)

where M is an arbitrary tensorial part (M’ = UMU™1!). Since U depends on
z*, in general, it does not commute with dz7. It is convenient to introduce
the gauge-covariant differential Dz* := dz* — 7 A’. The covariant derivative
of 1 can now be written as

1 .. .
Dy =13 (¢"DiD; + M) ¢ + D' Dy (4.6)

where D; denotes the ordinary covariant derivative (with A;). The field
strength of A4 is

1
2
where D*F = dz* D7 F}; involves the Yang-Mills operator (when g is iden-
tified with the space-time metric). Fj; is the (ordinary) field strength of
A;.

If r behaves as a scalar and ¢ as a contravaiant tensor under coor-
dinate transformations, the defining relations of our differential calculus -
and in particular (1.2) — are coordinate independent [5, 6]. The coordinate
differentials dz* do not transform covariantly, however, since

1 ) .
F=dA+A*=r_(D'F~DM)+ 5 Da' Do/ Fy (4.7)

dz™* =1 —;— gij(')i(?j:v'k + dgt 9™ (4.8)

as a consequence of (4.1). For a vector field Y* we introduce a (right-)
covariant derivative

DY':=dYi4+YI T, (4.9)

This is indeed right-covariant iff the generalized connection ;T is given by

; 1 . i : m ) '
I=r 2 [g“(akf"ﬂ + Dol 50) + M j} +dz* T (4.10)
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where I‘ijk are the components of an ordinary linear connection on M and
M?; is a tensor. Let us introduce the right-covariant 1-forms

De* = da* + 7 % T*;9Y . (4.11)
(4.1) can now be rewritten as
1 5 .

df =1 5 gUV,'ij + Dzt 9; f (4.12)

where V; denotes the ordinary covariant derivative. Also the covariant ex-
terior derivative of ¥* can now be written in an explicitly right-covariant
form,

DY' = 1= (¢MViVeYt + MY YP) 4 Dad VY (4.13)

It is interesting that the (covariant) exterior derivative of a field contains in
its T-part the corresponding part of the field equation to which it is usually
subjected in physical models. We refer to [5] for further results.

5. Stochastic differential calculus

When 7 = ydt as in (1.1), we may consider (smooth) functions f(z*,¢)
depending also on the parameter t. (4.1) then has to be replaced by

df = dt (9, + gg‘f 0:0;) f + dz* Oif . (5.1)

Such a formula is wellknown in the theory of stochastic processes (Ité cal-
culus) [10] and suggests that our noncommutative differential calculus pro-
vides us with a convenient framework to deal with stochastic processes on
manifolds. There is indeed a kind of translation [6] to the (It6) calculus of
stochastic differentials. This can be used to carry the ezpectation map from
the latter over to our calculus. In this section, we introduce an expectation
E on the (first order) differential calculus in a more formal way. It is then
shown for a specific example, that our rules reproduce familiar results.

Let us consider the equation (1.1) in one dimension (for simplicity). We
write it in the form

(Xi,dXy) = dt (5.2)

viewing X; as a process on IR, a map IR x [0,00) — IR. A denotes the algebra
of smooth functions of X; and ¢, and 7 the subalgebra of functions of ¢ only.
Let E be an F-linear map A — F which is the‘identity on F. We extend it
to 1-forms as an F-linear map via
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Edfy=d(Efy) , E(dX:f))=0 (Vi€ A). (5.3)

On the rhs of the first equation in (5.3), d is the ordinary exterior derivative.
The second equation can be interpreted by saying that, given f;, a further in-
crement dX; is statistically independent (i.e., f; is ‘nonanticipating’). Then,
as a consequence of (5.2), E(f; dX;) does not vanish, in general. Here we
should view f; as evaluated after a time step dt with increment dX;in X;.

Ezample: (Ornstein-Uhlenbeck process)
Let us consider the differential equation

dY; = —kdtY; + o dX; (5.4)

with constants k,c. For EY; we obtain from (5.4) the ordinary differential
equation

dEY; = —k EY, dt (5.5)

with the solution EY; = EYp e *t. Let us now show how to calculate higher
moments. With

[Y:,dYs] = 0 [V;,dXi] = 0 [X,,dY,] = 0% dt . (5.6)
we find

d(Y?) = dV, Y, + Y, dY, = 2dY, Y, + o2 dt

=20dX,Y; + dt (0% — 2k Y}?) (5.7)

and, using E(dX;Y;) = 0, the ordinary differential equation

d(EY?) = dt(0? — 2k EY}?) (5.8)
for the second moment. The solution is

EY? = "M EYZ + %(1 — e 2Kty (5.9)

If the moments EY* are given, we obtain in this way the moments EY;®, ¢ >
0. The results are the same as if we treat (5.4) as an (It6) stochastic dif-
ferential equation, which is the Ornstein-Uhlenbeck equation (see [10], for
example). We have used rather unusual techniques, however, namely a non-
commutative differential calculus.
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6. A differential calculus on superspace

So far we dealt with a commutative algebra generated by coordinate func-
tions &', ¢ = 1,...,n. In this section we enlarge it to an algebra A of func-
tions on a superspace by adding odd variables ¢; and 7. Again, we associate
with A a'differential algebra A(A) via the action of an exterior derivative d.
In the case of superalgebras a different version of the Leibniz rule is usually
adopted [11],

dww') = dww' + & duw'’ (6.1)

where the hat denotes the grading involution. This is defined on A(A) by
i =zt f, = =§,% = -7, dw = —do, o' = &&' and linearity. In par-
ticular, the dz* are odd and dn, df; are even. In the even sector of A,
(6.1) coincides with our previous rule, however. We write [, ] for the graded
commutator (i.e., [w,w'] = ww' — w'w for w even and [w,w’] = ww' - &'w for
w odd). The universal differential calculus is now restricted by the following
relations,

[2%, d¢;] = —[€;,da’] = dn§} . (6.2)
The remaining graded commutators between superspace coordinates and
their differentials are taken to be zero (so that we have the standard rales in
the pure even and odd sectors). This defines a consistent differential calculus
where the space of 1-forms is generated as a right (or left) A-module by
dz*,d€;,dn. The differential of a function f on the superspace can then be
expressed as

df = dn 0, f + do* :f + d&; C'f (6:3);
where 8, 3;, (' are operators on A. Using (6.1) and the basic commutation
relations, we find

[dxiy f] = —dTIC’f ’ [dfh f] - “d77 5tf . (6'4)
With the help of these relations, the Leibniz rule (6.1) for d now implies

Bh) = Gf)h+ F@Bh) , E(m) = @Dh+FER)  (65)

On(Fh) = (9 f) b+ F(8ah) + (Ef) Bih+ (0 f) Git . (6.6)
Together with §;27 = 6{ = (7¢;, 8, = 1 (a consequence of (6.3)), this leads
to ~

3 0 1 z.
3;—3i-=5'z§,€ =( 85,

(where a subscript (£) indicates that the derivative is taken from the left).
Hence

df = dn(8,f + Af) + do' ;S + d&i ('f . (6.8)

0 .
O =0,+A = 5%’1 +¢o; (6.7)
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Using (6.4), we obtain

[f,dh] = dn (f,h) (6.9)
where on the rhs appears the antibracket [9)
(fih) = (@) Ch+ () ch = A(fr) = (Af)h~ f A (6.10)

The operator A satisfies A% = 0.

The relation (6.9) is very much analogous with the relation (1.4). Of
course, we may consider both deformations of the ordinary differential cal-
culus on the superspace simultaneously. In a sense, 7 is the odd counterpart

of tin (1.1).

7. Generalized gauge theory on superspace

We consider again the superspace differential calculus introduced in the
preceeding section. Let 1 transform under the action of a (super) group G
according to ¢ = ¢/ = Uv. With respect to local transformations on the
superspace, an exterior covariant derivative can be defined in the usual way
as

Dy:=dp+ A (7.1)
with a connection 1-form A. It is indeed covariant, i.e. D'y’ = U Dy, if

A=UAU—dUU". (7.2)
Inserting the decomposition

A=dya+da' A; + d& A (7.3)
we find

Al=U AU = @QU)U™ | AN =UANUT (YUY (14)
and
W=UpUt =@, U™ |, pr=at+ A=A (7.5)

In order to read off gauge covariant components from covariant (generalized)
differential forms, we need the following covariantized differentials (cf also
section 4),

Da' :=dz' —dnA' , D& :=d& —dnA; . (7.6)
Their transformation rule is

Det=0UDs'U™" |, Dg=UD&U™ . (7.7)
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Now we find ‘

Dy = dn(Dyp + TiDit) + Do Dip + D T (7.8)
where

Dy:=08,+p , Di:=0i+4; , I':=C+A%. (7.9)

The operator I D; (the covariantized A) which appears in (7.8) is a gener-
alization of the Dzrac operator. If a metric tensor g is given and ¢*U = 0,
we can choose A’ = g‘J§ = € so that I = (' 4 ¢ and

T 4 19T = 2 gY (7.10)

which is the Clifford algebra relation. In this case, I'* D; is indeed the Dirac
operator.

More generally, we have the following relations between transformation
properties and exterior covariant derivatives,

Y Up = Dy=dp+ Ay — UDy
Vv Uy = Dy=dp— Ay — UDy

Yo gUt > Dp=dh- A DYU (T
v PpUt = Dy=dp+9A— DPUTL.

The curvature 2-form of the connection A is given by
F:=dA-AA. (7.12)

We will leave the further investigation of this calculus to a separate work.
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Abstract. A generalization of the differential geometry of forms and vector fields to the
case of quantum Lie algebras is given. In an abstract formulation that incorporates many
existing examples of differential geometry on quantum spaces we combine an exterior
derivative, inner derivations, Lie derivatives, forms and functions all into one big algebra,
the “Cartan Calculus”.
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1. Introduction

The central idea behind Connes’ Universal Calculus (Connes, 1985) in the
context of non-commutative geometry was to retain the classical differential
geometric properties of d, i.e. nilpotency and the undeformed Leibniz rule:
do = d(a) + (—1)Pad for any p-form a.

We use parentheses to delimit operations like d, i, and £,, e.g. da =
d(a) + ad. However, if the limit of the operation is clear from the context,
we will suppress the parentheses, e.g. d(i;da) = d(i;(d(a))).

Here we want to base the construction of a differential calculus on quan-
tum groups on two additional classical formulas: to extend the definition of
a Lie derivative from functions and vector fields to forms we postulate

~fod=dod; (1)

this is essential for a geometrical interpretation of vector fields. The second
formula that we can — somewhat surprisingly — keep undeformed in the
quantum case is

£y =iy, d + diy,, (Cartan Identity) (2)

where {x;} are the generators of some quantum Lie algebra.
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2. Quantum Lie Algebras

A quantum Lie algebra is a Hopf algebra U/ with a finite-dimensional biin-
variant subvector space 7, spanned by generators {xi} with coproduct

Axi=xi® 1+ 07 ® x;. (3)

More precisely we will call this a quantum Lie algebra of type II. Let
{w? € 7;*} be a dual basis of 1-forms corresponding to a set of functions

b € Aviaw = bl db,; ie.

AAG) = 1@ X ‘ (4)
Aalx:) = x; @I, T ¢ Fun(Gq), (5)
(W) = = < xi, SH >= 6], (6)
AAW) = 10, ' (7
AW = W @ 87T (8)

If the functions &' also close under adjoint coaction A44(b%) = &/ @ §~1T";,
we will call the corresponding quantum Lie algebra one of type L.

We can derive two alternate expressions for the exterior derivative of a
function from the Cartan identity (2) in terms of these bases

d(f) = W £, (f) = =Ly, (. (9)
Combining the two expressions for d one easily derives the well-known f—w
commutation relations

fu' = W £o,4(f). (10)

The classical limit is given by O;' — 16;:, so that forms commute with
functions.

3. Generators, Metrics and the Pure Braid Group

How does one go about finding the basis of generators {x;} and the set of
functions {b'} that define the basis of 1-forms {w'}? Here we would like to
present a method that utilizes pure braid group elements as introduced in
(Schupp et al., 1992).

Let us recall that a pure braid element T is an element of /&U that
commutes with all coproducts of elements of U, i.e.

TA(y) = A(y)T, Vy € U. (11)

T maps elements of A to elements of I with special transformation proper-
ties under the right coaction:

T A—-U: b—=T,=<T,b®id >;

AA(TH) = Yoy, ® S(baby =< T @id, 72(a%(b) @id) >. (1D
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An element T of the pure braid group defines furthermore a bilinear qua-
dratic form on A

(,):A®A—Ek: a®br (a,b)=- < T,a® S(b) >€ &, (13)

with respect to which we can construct orthonormal (b;,47) = &1 bases {b;}
and {bJ} of functions that in turn will give generators x; := T, and 1- forms

= S(b 1))db(2) Typically, one can choose span{b;} = span{b’}; then one
starts by constructing one set, say {b;}, of functions that close under adjoint
coaction

A% = b; @ T, (14)
If the numerical matrix
nij = - < T,b; @ Sb; > (metric) (15)

is invertible, i.e. det(n) # 0, then we can use its inverse 7'/ := (y71);; to
raise indices

b = by (16)
This metric is invariant — or T is orthogonal — in the sense
mji = muT* T (1)

Once we have obtained a metric n, we can truncate the pure braid element
T and work instead with:

T = Tirune = "'S(Xi) ® X" = 'S(Xt') ® Xj"fﬁ’ (18)

which also commutes with all coproducts. Casimir operators can also be
constructed from elements of the pure braid group. The truncated pure
braid element gives for instance the quadratic casimir:

[o70 (57! @id)(Terune) = 17“ij,—. (casimir) (19)

Now we would like to show that we have actually obtained a quantum Lie
algebra of type I:

~ < xi, b >= —< 1,5 ® Sby > nf = my = 6, (20)

Aa(Xi) = Thypy ® S(bi1))bizy = To,; @ Ti; = x; @ T%; (21)
and

AAd(bi) — bk ®Tk177“ - bk ®nklmnTnjnji = bk ® S-—lTs'k. (22)

Note, that T has to be carefully chosen to insure the correct number of
generators. Furthermore, we still have to check the coproduct of the gener-
ators. If they are not of the form Ay; = x; ® 1 + 0 ® X; then we might
still consider a calculus with deformed Leibniz rule.
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3.1. EXAMPLES
3.1.1. The R-matriz approach

Often one can take b; € span{t",,}, where t",, is a quantum matrix in the
defining representation of the quantum group under consideration. If we are
dealing with a quasitriangular Hopf algebra with universal R = a; @ ¢, a
natural choice for the pure braid element is

Tr= -}{ (1 ®1-~ RnR”) ) (23)

where the term R?'R!? has been introduced and extensively studied by
Reshetikhin & Semenov-Tian-Shansky (1990) and later by Juréo (1991),
Majid (1993) and Schupp, Watts & Zumino (1992). These choices of b;’s
and T lead to the R-matrix approach to differential geometry on quantum
groups. The metric is

n=—-< X1,5t; >= % (1 - [(Rzl"l)t2 (Rn”)-l]ta) ) (24)

where X1 =< Tg,t1 ®id > and Ryj2 =< R,t; ®t; >. In the case of GL4(2)
we find.

g2 0 0 o0
0 0 ¢l o

TaLg(2) = 0 q—3 qO 0 (25)
0 0 0 ¢!

In its reduced form, this matrix agrees-with the metric obtained from
quantum traces (see next section) except in the casimir sector X1;+¢-2X3,.
The formulation in terms of the pure braid element has the advantage that
it does not require the existence of an element like » that implements the
square of the antipode.

Using this metric we recover — as expected — the well-known (Zumino,
1992 and Schupp et al.(2), 1992) expression of the exterior derivative d on
functions in terms of the quantum trace over X and the Cartan-Maurer form
Q=tlde:

d=wiy; =tr(Q-X) (on functions). (26)
(This follows essentially from Dilng = Pyy, where D =< u,t > with u =
S(6*)a; and I)’ is the permutation matrix.)

8.1.2. Trace formula for the metric

Again, in the case where U is a quasitriangular Hopf algebra, there exists
an alternate way of defining a Killing form; let p : U — M,(k) bean n x n
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matrix representation of I with entries in k. Define the map 7(®) : UQU — k
as

1)z ® y) := tr,(uzy), (27)

where =,y € U, tr, is the trace over the given representation, and u (see
above) implements the square of the antipode. The map 7%®) has the follow-
ing properties:

1(y®z) = 1z @ $*(y)), (28)
(20 5 2)® (22) 5 ¥)) = 1)z ® y)e(2), (29)

for all z,y,2 € U. Respectively, these express the symmetry of 1](") and
its invariance under the adjoint action. In the case when U is a quantum
Lie algebra with generators {x;}, we can'define the Killing metric for the
representation p as

7 = 1) ® x;)- (30)

3.1.3. The 2-dim quantum euclidean group

This is an example of a quantum Lie algebra that seems to have no universal
R and where the set of functions {b;} does not arise from the matrix elements
of some quantum matrix. In (Schupp et al., 1992) we constructed such a set
of functions bo, by, b_, b; and a pure braid element Y, = 3(Ac—c®1) from
the casimir ¢ := Py P_ of ¢;(2). Now we can put the new machinery to work
and calculate the (invertible) metric

01 0 0O
10 0 0

7]&,(2) = 00 0 -1 ’ (31)
00 —¢2 0

which immediately gives an expression for d on functions:
d = wox1 + wiXo — (WX — W-X+4- (32)

4. Calculus of Functions, Vector Fields and Forms

Here we will generalize the Cartan calculus of ordinary commutative differ-
ential geometry to the case of quantum Lie algebras.

As in the classical case, the Lie derivative of a function is given by the
action of the corresponding vector. field, i.e.

£I(a) =zpa=aq) < T, a(3) >, (33)
£ra = a@) < 2y Gy > fr(,‘,).



130 PETER SCHUPP ET AL.
The action on products is given through the coproduct of z:
zbab= (IB(I) 4 a,)(x(2) > b) (34)

The Lie derivative along z of an element y € U is given by the adjoint action
inU:

ad
L2(y) =2 > y=z)yS(2(z). (35)
To find the action of i, we can now attempt to use the Cartan identity (2):
Xiv @ = £3,(0) = i, (da) + d(i,0). (36)

The idea is to use this identity as long as it is consistent and modify it if
needed.

As the inner derivation 2,; contracts 1-forms and is zero on 0-forms like
a, we find

ixi(da) = xiva = aqy < Xi,aq) > . (37)
Next consider that for any form «,
£xi(da) = d(ix,da) + iy, (dda) = d(£y;a) +0, (38)

which shows that Lie derivatives commute with the exterior derivative;
£,,d = d£,,. We will later need to extend this equation to all elements
ofU: £,d =d.L;. From this and (33) we find

£:d(a) = d(aq)) < z(),aq) > £,;(2). (39)

To find the complete commutation relations of 2, with functions and forms
rather than just its action on them, we next compute the action of £,; on
a product of functions a, b € A, i.e.

£xi(ab) = ix,d(ab) = iy;(d(a)b + ad(b)), (40)

and compare with equation (34). Recalling that the x; have coproducts of
the form Ax; = xi ® 1 + 0 ® x;, O’ € U, we obtain

0 = (O;’ >a) ix,- = £O‘.,-(a) iy, (41)

if we assume that the commutation relation of 4,; with d(a) is of the general
form

iy, d(a) = 1y, (da) +“braiding term” - 2, . (42)
N e
eA
A calculation of £,,(d(a)d(b)) along similar lines gives in fact

iy, d(a) = (xiva) - d(0: > @) iy,

iy, (da) ~ £o,;(da) iy, (43)
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and we propose for any p-form a:
by = (@) + (_1)p£0¢1(a) in' (44)

Using the Cartan identity we can derive commutfation relations for (Lie)
derivatives and functions from equation (41), which can be written in Hopf
algebra language as

Xe = aq) < X(1),%42) > X(2)- (45)
This actually defines the product in the cross-product algebra AxU of gen-
eral vector fields that one obtains by combining the Hopf algebras A and U
see e.g. (Schupp et al., 1992).

4.1. MAURER-CARTAN ForMS

The most general left-invariant 1-form can be written (Woronowicz 1989)
wp 1= §(b))d(brz)) = —d(5b(1))b(2), (46)
left-invariance: aA(ws) = S{b(2))b3) ® S(b1))d(b4)) = 1@ ws, (47)

corresponding to a function b € A. If this function happens to be t;, where
t € Mpu(A)is an m x m matrix representation of I with A(t'x) =t'; @ t/;,
and S$(t) = 7!, we obtain the well-known Cartan-Maurer form w; = t~1d(t).
Here is a nice formula for the exterior derivative of wy:

d(wp) = —Wh(1y Wz (48)
The Lie derivative is

£x(wb) = Whyy < X S(b(]))b(s) > (49)
The contraction of left-invariant forms with 2, is

ix(ws) = — < x, S(b) >€ k. (50)

4.2, TENSOR PRODUCT REALIZATION OF THE WEDGE

From (49) and (50) we find commutation relations for 4,, with w’,

Ty W

il

- "EO'k(wj)iXk
: ‘ A 51
= 63 —-wh < Oik7S—-1(TJm) > ix"’ ( )

which can be used to define the wedge product A of forms as some kind of
antisymmetrized tensor product. So far we have suppressed the A-symbol; to
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avoid confusion we will reinsert it in this paragraph. As in the classical case
we make an ansatz for the product of two forms in terms of tensor products

N wl =Wt ® Wi — 6ijmnwm ® W™, (52)

with as yet unknown numerical constants §,,, € k, and define 1y, to act
on this product by contracting in the first tensor product space, i.e.

(W A k) = Sk = 69k, 6m0n, (53)
But from (51) we already know how to compute this, and we find

6% mn =< Op?, ST, >, (54)
or

W AW

i

([—J)‘J nw Qwr

= W Quw —wF® L£o,i(w). (55)

These equations give implicit (anti)commutation relations between the w's.
Note that (1 — &) has a sensible classical limit — it becomes (1 — P) where
P is the permutation matrix. Using the same method as for w we can also
obtain a tensor product decomposition of products of inner derivations.

Example: Maurer-Cartan Equation

dw’ = dwy, = - Awy
) @

T TYsusy, ey &% (2)

- —wk®w < =S¥, S (Sbf bJ )>< le, 2)

56
= —wF@u < (S XL)(l)XIS(S Xk) 2),Sbj (56)

ad
) S=Ixk o xi
= - ,'cflwk®wl.

In the previous equation we have introduced the adjoint action of a left-
invariant vector field on another vector field. A short calculation gives

d " — a
STk B Xt = xexe(858° — 6°°0) = xa < ST Xk T >= xa /%% (57)
as compared to
d R
Xk B X1 E Lx(Xt) = X6xe(6260 — B0) = Xa fit (58)

with Rebyy =< 040, T¢ >. The two sets of structure constants are related by
< Xk, T >= fi®1 = —fl*R7 . See (Castellani et al. 1993) for a detailed
discussion of such structure constants.
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4.2.1. The “Anti-Wedge” Operator.

There is actually an operator W that recursively translates wedge products
into the tensor product representation:

WiAR - Tr @AY, p>1,

W(a) = " @ iy, (a), (59)
for any p-form a. For example,
WAWE = Wt ® ix,’(wj A W) . (60)
= W @ (Hwk - Loym(w)ih,).
4.3. SUMMARY OF RELATIONS IN THE CARTAN CALCULUS
Commutation Relations
For any p-form a:
do = d(a) + (-1)Pad (61)
i = iy () + (=1)P Lo 5(a)iy, (62)
Lo = £x,(a) + -’£O.~i(a)£x1 (63)
Actions
For any function f € A, 1-form wy = Sf(l)df(z) and vector field ¢ € AxU:
() =0 (64)
i(df) = dfiy < xi5 fig) > (65)
ti(wg) = = <xi, 5> (66)
£x(f) = x(f) = fy < x fz) > _ (67)
£x(wf) = Whg <X S(f(l))f(s) > (68)
£4(8) = x1)8S(x(2)) (69)
Graded Quantum Lie Algebra of the Cartan Generators
dd = 0 (70)
d£, = £,d (71)
’Cxe = diy, +1y,d (72)
{£Xi’£xk}q = "gx:filk (73)
["£Xnix;¢]q = ix:filk (74)
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The quantum commutator [, ], is here defined as follows:
[£an]q = £,0 - £o5(0) Ly, (75)

This quantum Lie algebra becomes infinite-dimensional as soon as we intro-
duce derivatives along general vector fields.

4.4. LIE DERIVATIVES ALONG GENERAL VECTOR FIELDS

So far we have focused on Lie derivatives and inner derivations along left-
invariant vector fields, i.e. along elements of 7;. The classical theory allows
functional coefficients, i.e. the vector fields need not be left-invariant. Here
we may introduce derivatives along elements in the Ax7, plane by the
following set of equations valid on forms: (note: ¢(x) = 0 for x € T,)

i = fiy, (76)
‘ffx = d'ifx+ifxd’ (17)
£fx - f£x+d(f)ix> (78)
Lpd = dby,. (79)

Equation (78) can be used to define Lie derivatives recursively on any form.
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Abstract. We present a formulation of covariant translations in the quantum plane.
We are led to an extension of the algebra of the coordinate functions and their dual
derivatives by the quantum analogue of their eigenvalues. Jackson exponentials emerge
as the corresponding eigenfunctions. An integral invariant under quantum translations is
introduced and is used to define quantum Fourier transforms.

Key words: Quantum Plane - Integrals - Quantum Fourier Transform

1. Introduction

Since its inception, the quantum plane has been envisioned by many as a
paradigm for the general program of gq-deformed physics. Such an endeav-
our presupposes the availability of adequate mathematical tools, integration
being one of the most indispensable among them. The aim of this paper is
to address aspects of the problem of integration in the quantum plane in a
manner that will keep the results accessible to physicists.

The paper is structured as follows: section 2 introduces translations for
the coordinates and the derivatives which are shown to be implemented
by a translation operator in the form of a Jackson exponential. Section 3
discusses integration, invariant under the above translations, while in section
4 we define the quantum Fourier transform. We close, in section 5, with the
introduction of vacuum projectors which allow us to recover the integration
prescription introduced earlier in a constructive way.
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2. Translations in the g-plane

We recall now the construction of the quantum plane (Wess et al. 1990). We
deal in the follswing with the (non-commutative) algebra of functions on
the quantum plane eunlarged so as to also include derivatives that operate
on these functions. We choose as generators of A the coordinate functions
', i = 1,...,n (together with the unit function 1,) and the derivatives dual
to them, 9;, j = 1,...,n (together with the unit 15). A set of consistent
commutation relations among the above generators is known:

o'z’ = ¢ 1R}z
0 = q“R}j,aja,-
Oz’ = 6} + qR}2'0;. (1)
Here, R is an invertible solution of the quantum Yang-Baxter equation:
RisRysRia = RysRizRos
and satisfies the characteristic equation:
R-AR-1=0, A=q-q! (2)

(this is the GL,(n) R-matrix of (Reshetikhin et al. 1990). The above com-
mutation relations permit unambiguous ordering of an arbitfary monomial
in the z’s and @’s into any desired order. One can now write down, if one
wishes, differential equations for functions of the z’s and study for example
quantum mechanical systems by solving Schroedinger’s equation in deformed
space. In doing so, as well as in many other applications, one is sooner or
later bound to be confronted with the problem of (spatially) translating
functions of the z’s. One place, in particular, where this question would
certainly manifest itself, would be in the statement of finite translation in-
variance of any sort of integral one adopts for the quantum plane. One has
then to first make more precise the notion of translation - it is natural, for
example, to require a certain covariance. In its simplest form, that would
be the requirement that the translated coordinates obey the same algebra
ag the original ones (we would also need, of course, reduction to the correct
classical limit 2 — z* + o' as the deformation parameter approaches its
classical value). We introduce then a set of “displacements” a,i=1,...,n
and require that the = + a ’s obey the same commutation relations as the




INTEGRALS IN THE QUANTUM PLANE 137

z’s. We would also like the displacements to be of “coordinate nature” i.e.
we postulate ¢ — a commutation relations identical to those of the z’s. We
are then forced to introduce non-trivial ¢ — z commutation relations. The
resulting algebra is:

da = ¢ 'Ry d*d
i 5o pid okl
z'a! = qula Z . (3)

One easily checks, with the help of (2), that

(21 + a1)(e2 + a2) = ¢ Ruz(21 + a1)(22 + a3)

i.e. translation of the coordinates preserves their algebra (given by (1)).
It is interesting to compare {3) with the commutation relations between
coordinates and differentials introduced in (Wess et al. 1990):

2182 = qRiobi23 ;

the displacements a' are the bosonic analogue of the £’s (the algebra (3)
has been introduced by Majid, in the context of braided Hopf algebras, in
(Majid, 1992). We can also give consistent @ — a commutation relations:

da' = ¢ H(R)Pd'0; (4)

(again, similar to the 8 — £ ones). Consider now the translation generator T’
defined by:

T=dd =a-0.
Using (3), (4), we easily find:
[T,z'] = o', TO; =¢*8;T, Td' =q 2a'T. (5)

These allow us to build a finite translation operator by “q-exponentiation”.
We have:

s = 'T" + [n),T""'d' (6)
whese [n], = (1 - ¢®™)/(1 — ¢%) and therefore:
Fey(T) = eo(T)(&' - a) ™)

where:
o<

(=3 -[-—}—,T [lg! = [112), .. [l
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is the Jackson exponential (see for example (Exton, 1983) and references
therein). Alternatively, we can write (6) in the form:

T2 = o' T" + [n] 10’ T
which gives:

e-1(T)z' = (z* + a')e 1 (T) (8)
or, more generally:

e (T)f(2) = £z + a)egmi (T). (9)

One can regard (7) (or (8)) as an eigenvalue equation for the operator z'.
To make this more precise, we introduce coordinate and derivative vacua,
denoted by |Q;) and |Q5) respectively, which satisfy:

2 0) =0, 1|Q:) =), 8I0) =0, 15]Q) =)
with similar relations for z,d acting from the right:
(Qlz' =0, (|l = (], (Q3]0; =0, (Qs]15 = (Qa).

The action of z* on a function f(8,a), denoted by z*(f(8,a)), is expressed
in terms of the coordinate vacuum as:

2(£(8,0))|0%) = = £(3,0)|). (10)

In words, to compute the left hand side of (10), we order it with all the 2’s
on the right, where they anihilate the vacuum, and what remains is termed
“the action of z* on f(0,a)”. We can define the (more familiar) action of the
derivatives on functions of z,a in a similar manner. Actions from the right
are also obviously defined via “left vacua” (.|, (Qs|. With these (standard)
definitions, (7) gives:

(eg(T))a’ = eg(T)a’ (11)

which suggests the interpretation of a' as the eigenvalue of z* (z* acts here
from the right). In the classical limit ¢ — 1, the a’s commute with every-
thing. Notice that e,(T) is a common eigenfunction for all z*, the noncom-
mutativity of the latter being reflected in the non-trivial ¢ — @ commutation
relations. It is interesting to note that one can interpret the derivatives 0;
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the way one does in classical analysis: 8;(f(z)) is the coefficient of a in the
expansion of f(z + a) around z (Majid 1993). Indeed, from (9) we have:

e (T)(f(2)) = f(z + a) (12)
which, by expanding the Jackson exponential, gives:
f(z +a) = f(z) + a'0i(f(2)) + O(a?), (13)

the only difference in the quantum case being that one has to specify an
ordering before identifying the derivative (above, we took the ¢’s to stand
to the left of the z’s).

The interpretation given to the af above naturally leads to the question
whether a similar construction is possible for the derivatives. To this end, we
introduce the momentum-space analogue of the a’s, which we call p;, i =
1,...,n and find that the following commutation relations are consistent
with the rest of the algebra:

ppk = g RYpip;

pox = qffzajpi

ma' = ¢ (R7)e'ps

pat = ¢ (R a'p;. (14)

Several useful identities can now be computed. We give a list involving those
that we will need later (a -8 = o'5;):
Tp; = pT

z-80z' = ' +¢2'z-0

z-0d = d'z-9

Jiz-0=08+qx-006

z-0p; = piz-0

(z-p)a-p) = ¢(a-p)(z-p). (15)

We easily find now how 9; commutes with e,(z - p):

Oieq(z - p) = eq(z - p)0; + pieg(z - p). (16)
Also:

Oieg-1(2 - p) = €41 (z-p)0; + eq_x(a: - p)pi. a7
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We can therefore interpret the p’s as (non-commuting) eigenvalues of the
derivatives:

Oi(eq(z - p)) = pieg(z - p), (18)

Notice that being eigenvalues of derivatives, rather than momenta, the p’s
become real commuting quantities in the classical limit.

A couple of remarks are in order here. The first regards the covariance of
the scheme described above under the coaction of GL,(n). The commutation
relations given in (1), (3), (4) and (14) go into themselves when z, 9, a and
p transform according to:

g e (2') = Tj!
@' (o) = Tid’
8 — () = ;M
pir (0)i = M}

where T} is a GLy(n) matrix, M = (T*)~! (M"* denotes the transpose of
M) and we take, as in (Wess et al. 1990), the elements of T' to commute
with all the variables and derivatives above. A second point that deserves
attention is the fact that derivations do not commute with translations. In
general:

3i(f(z + a)) # 3:(f(2))|z-rz+a- (19)

This can be traced to the fact that d; does not commute with a - 8. Indeed,
in order for (19) to be an equality, we would need (using (13)):

0i(f(z) + a-9(f(2))) = 0i(f(z)) + a- H(f(2))) =
= 0i(a-0(f(2))) = a-3(9:(f(2))) =
=>a.'a'3 = a-aa,'
while, in our case, (5) holds: a - 8 8; = ¢%0; a - 0. One can make a different

choice of commutation relations which will make (119) into an equality but
then (13) is not satisfied - we will not explore this further here.

3. Invariant Integration

We wish now to turn our attention to the problem of integration. The inte-
gral we are looking for is a linear map from functions on the quantum plane
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to complex numbers. Keeping in mind the classical limit, we expect it to be
defined only for a class AL of elements of A, - we will use the notation (f)
for the average, or integral, of f in that class. Such a map acquires interest
when endowed with specific covariance properies. In our case, it is natural to
require invariance under translations. This can be expressed in infinitesimal
form as the requirement that the integral of a derivative vanish:

(8:(f(2))) =0, €A (20)

A prescription for computing such an integral is known (Wess et al. 1990).
One first expands f(z) in a sum of monomials in the z’s and uses the com-
mutation relations to bring each such monomial into some standard ordering
(the same for all monomials). Then one performs the classical integral (from
minus infinity to plus infinity) of the ordered function - the result is the
quantum integral (f). Different standard orderings of the z’s change only
the overall normalization and the result satisfies (20)(notice that ; is the
quantum derivative). We would like though to be able to talk about finite
translation invariance, i.e. we would like our integral to satisfy an equation
like

(f(z +a)) = {f(2)). (21)

To make this precise, we ought to generalize the prescription for integra-
tion given above to the case of a function of z and a (since z,a do not
commute, such a generalization is not trivial). Nevertheless, the natural ap-
proach works: to compute (f(z + a)), expand in monomials of z, a, use the
commutation relations to move all the a’s, say, to the left of each monomial
and out of the integral, and then compute the quantum integral of the z’s
as before (notice that the a’s need not be brought into any standard order).
That such an integral satisfies (21) can easily be seen as follows. From (12)

we have:
Sl a) = (e (@ O@) = 3 e lla O

We may now use the commutation relations given in (4) to move all the
a’s in (a - 9)™ to the left (and then out of the integral). The form of (4 )
ensures that each term left in the integrand, except for n = 0, will be the
derivative of some function of the z’s and the integral of these vanishes
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by (20); (21) then follows. We should emphasize here that the integral of
f(z,a) is not, in general, translationally invariant (i.e. while (f(z + a)) =
(f(z)) holds, (f(z + a,a)) # (f(z,a)) in general). In the same spirit, we
define the integral (f(z, a,p)): we move a and p to the left and then perform
quantum integration on the 2’s - we’ll need this in defining the Fourier
transform in the next section.

4. Fourier Transform

Armed with the tools developed in the previous section, we are now (al-
most) ready to discuss Fourier transforms in the quantum plane. The only
ingredient missing is the observation that

(f(z + a,p)) = (f(z,p)), (22)

which one can show by noticing that p commutes with 7" and that the p, z
commutation relations are identical to those between p and z + a.
We define now the Fourier transform f(p) of a function f(z) by:

F() = {eg(—iz - p)f(2)) . (23)

We will need the properties: e,(a + ) = €,(8)e (@) for af = ¢*Ba and
eq(@)eg—1(—a) = 1 of the Jackson exponential to derive the analogue of a
property of Fourier transforms, familiar in the classical case. Setting f,(z) =
f(z + a) we have:

f(p) = (eq(—iz - p)f(2))

(eg(—i(z + a) - p)fa(2))

(eg(—1a - pleg(—iz - p) fu(2))

eq(—ia - p)fa(p)-

eg-1(ia - p) f(p) (24)

i

i

il

= fa(p)

In the third line we used the last of (15). Notice that, as in the classical
case, the factor in front of f(p) is actually a one dimensional representation
of translations. Under z — z 4 a:

e—1(ic p) — e1(iz-p+ia-p) = ei-1(ix-ple,-1(ia-p).
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5. Vacuum Projectors

In this section we introduce a “vacuum projector” E which realizes the
operator |Q3)(Q;| (up to a possible normalization factor) in terms of co-
ordinates and derivatives (a similar object, in a Hopf algebra context, has
been introduced in (Chryssomalakos et al. 1992). It is given by the formal
expansion:

E= }of [(k]q_l!Ek. (25)

where Ej = 2% ...2%;, ...8;, (z* is the i-th coordinate). Indeed, one can
show, using the easily verifiable commutation relation:

Ek:l:‘ = [k]qx"Ek_.l + qzkmiEk,
that:
Ez' =0, &E = 0.

As a result, E2 = E. We can now easily realize the projector |Q;)(Qs| as
well. We know from (Wess et al. 1990) that A admits the *-involution (which
we denote by a bar):

:;i = :L'i, o; = _q2(n+l—-i)a‘,, g= q—l
(corresponding to a real quantum plane). It then follows immediately that
E, given explicitly by:
E [k qZk(n+l) —2(01+t2+ +|k)Ek (26)

where Ei, = 8;,...0;, 2 ... z", realizes the operator |Q;){(Qs]. An alterna-
tive form for Ej, as a function of z - 9, is:

Ep= ¢ (2. 0)(z -0 - [U)(z -0~ [2]g) ... (s - 0 = [n - 1],).

One can easily show that E}j can also be expressed in terms of z - 8.

The above,abjects allow us to approach the problem of integration from
an alternative point of view. We can use the vacua introduced earlier to
define the integral of a function f(z) via:

(f(z)) = (Qa] f()I25). (27)
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This definition automatically satisfies (9;(f(z))) = 0 and therefore it also
satisfies (f(z + a)) = (f(z)). Notice however that in deriving this last in-
variance property we do not need any ad-hoc rules about how to commute
a’s (or, for that matter, p’s) through the “integral sign”. Indeed, choosing
the normalization E = [Q3)(Q|, £ = |Q,){25| (which, in turn, implies
(Q:]2) = 1) (27) gives:

19251 £(2)[20){ e
(FeNQ) (|
(f(2))é(2)-

However, as we have seen, Ej and Ej, can be expressed as functions of z - 8

I

Ef(z)E

only. Refering back to the list given in (15), we see that a’, p/ commute
x

with z - 8 and this justifies postulating the integration procedure described

in section 3.
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Abstract. The algebraic formulation of the quantum group noncommutative geometry
in the framework of the R-matrix approach to the theory of quantum groups is given. We
consider structure groups taking values in quantum groups and introduce the notion of
noncommutative connections and curvatures transformed as comodules under the coaction
of the structure quantum group GLi(N). These noncommutative connections and curva-
tures generate G Lq(N)-covariant quantum algebras. For the special case of these algebras
we find GL(N)-invariant composite elements that can be interpreted as noncommutative
analogs of the Chern characters. We also present an explicit realization of such covari-
ant algebras considering the coset construction GL¢(N + 1}/GLy(N). In this report, we
generalize some results presented in [1]. )

Noncommutative geometry [2] has started to play a significant role in
mathematical physics for the last few years. One of the nontrivial exam-
ples of the noncommutative geometry is given by quantum groups [3,4]. The
differential geometric aspects of the theory of quantum groups have been
intensively investigated recently in the papers [5,6,7]. Using these investi-
gations many approaches to formulate quantum group gauge theories have
been developed [1,8,9,10]. In this report we continue the investigations pre-
sented in the letter [1] and describe how it is possible to generalize usual
commutative geometry and to introduce noncommutative G Ly( N )-covariant
derivative, GLy(N)-connections (or GLg(N)-gauge fields) and curvature 2-
forms. We use the notation of the paper [3] in which the R-matrix formula-
tion of quantum groups has been elaborated. We note also that according to
the results of the paper [10] one can reformulate our algebraic constructions
for the case of the unitary groups U,(N).

Let us consider a Z,-graded finite dimensional Zamolodchikov algebra
(denoted by Q27) generated by the operators {¢', (de)’}, (1,5 = 1,2,...,N)

* This work was supported in part by the Russian Foundation of Fundamental Research,
grant 93-02-3827.
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with the following commutation relations:
Ree' = cee’ , (£)cR(de)e’ = e(de)’ , R(de)(de) = —%(de)(de)', (1)

where e = €1 is a q-vector in the first space, ¢’ = e is a g-vector in the second
space, R = PjpRy2 is a matrix which atts in the first and second spaces si-

multaneously, Pi2 = 6;;6;? is the permutation matrix and Riz is the GLg(N)

R-matrix satisfying the Hecke relation: R? = AR+1 (A = ¢—¢~'). We imply
the wedge product in the multiplication of the differential forms in formulas
(1) (we also omit A in all formulas below). One can recognize in the relations
(1) (for () = +1) the Wess-Zumino formulas of the covariant differential
calculus on the bosonic (¢ = ¢) and fermionic (¢ = ~1/¢) quantum hyper-
planes [11] where €' are the coordinates of the quantum hyperplane while
(de)* are the associated differentials. The choice (£) = —1 corresponds to
the case when e' are bosonic (¢ = ~1/¢) and fermionic (¢ = ¢) veilbein
1-forms. Note, that there is a second version of the algebra (1) that can be
obtained by the replacement R — R, ¢ — ¢~1. Below, we concentrate
only on the consideration of the algebra (1) (an other type can be treated
analogously).

It has been suggested in [12,1} that the algebra Q7 (1) should be consid-
ered as a comodule with respect to the coaction of the Z3-graded quantum
group g vy with the GL,(N)-generators {T]‘} and additional generators
{(dT)}} (3,5, k,1 = 1,2,...., N) which are the basis of the differential 1-forms

on the quantum group G L,(N). This coaction {2, A QgL v) ® 1z con-
serves the grading and can be written down as a homomorphism:

ei—g'—+ ?:T;@)ej, (2)
(de)’ 2 (de)’ = (dT) ©@ & + T} ® (de)’. (3)

Here ® denotes the graded tensor product: a®b = (--1)65(1®b)(a®1) , where

f=deg(f)and a € Q(G&zq(N) , b€ Q(Zb). We recall that the algebra Qz with

the generators (1) has the following expansion 2z = @ Q(Zn), where Q(Z")

n=0
denotes the subspace of the differential n-forms and there exists a similar

expansion for the Zy-graded quantum group Qer,vy = @ Q(Gnl),q(N)' Sub-

n=0
stituting the transformed algebra {&', (de)'} into the commutation relations
(1) we obtain the following equations for the generators {T7, (dT)}}

(R-o)TT(R + l) =0, (R(dT)T' = TdTYR )R + Lyoo, @
C [

(R + %)(d’[’)((l’l‘)'(R + %) =0, (R+ %)((dT)T’R -R7'T(dT)) = 0,(5)
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where T =Ty = TQ®I whileT' =T, = I®T and I'isa (N X N) unit matrix.
The relations (4), (5) have to be fulfilled both for ¢ = ¢ and ¢ = —¢~};
therefore, we deduce from them the following ¢-commutation relations for
the bicovariant differential complex on GLy(N) (see [12,6,7]):

RTT = TT'R, (6)
R(dT)T' = T(dTYR™!, (7
R(dT)(dT) = —(dT)(dT)YR™'. (8)

We stress that (8) follows from (7) if the differential d is nilpotent d? = 0 and
obeys the graded Leibnitz rule d(fg) = d(f)g+(~1)f fd(g). It is interesting
to note (see [1]) that the algebra Qg () (6)-(8) is the Hopf algebra. The
comultiplication A, the counit € and the antipode § are defined by

AT)=TQT, «T)=1, S(T)=T"", 0
AT)=dT@T +T®dT , (dT)=0, SdT) = -7-1dr7-1, ¥

and satisfy all the axioms of the Hopf algebra. One can show that it is
possible to extend the action of the differential d over the tensoring and
apply d to the algebra Qgp (v) ® {1z in such a way that: d(g ® Qz) =

d(9) ® 0z + (~1)¥g @ d(Rz), where g € Q%) ) and d? = 0.

Now we would like to interpret formulas (2) and (3) as a structure (gauge)
quantum group transformation of the comodule e'. Here, the matrix T} is
interpreted as a noncommutative analog of a structure (gauge) group ele-
ment. In view of this, it is natural to consider the appearing of the additional
term (dT); ® e’ in (3) as a noncovariance of the comodule (de)* under the
gauge rotation (2) (or as an indication that the differentials (de)’ describe
"nonparallel transporting” of the vector e'). To restore the covariance, let
us define a covariant differential V so that the transformations (2}, (3) are
rewritten in the form

e 2L ?:T}@ej, (10)
(Ve)l 2 (Ve) =T @ (Ve) . (11)

In general (Ve)' ¢Qz and, hence, the action of the operator V enlarges the
algebra Q7 up to some new algebra Q5. Then, we assume that the operator d
can be induced (as a differential) onto the whole algebra 27 and this algebra
(Zn), where Q(Zn) is the subspace of
n-forms. We postulate that the elements (Ve)' belong to the space Q(Zl) and
there is the following expansion of (Ve)' over the generators {e', (de)’}

(Ve)' = (de)’ — Ajel, (12)

is naturally decomposed as Q; = @, _o 2
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It is clear that the coefficients A;- € Q(Z-l) and it is natural to consider them
as noncommutative analogs of the connection 1-forms. Under the transfor-
mations (10) and (11) 1-forms A} are transformed as

L5 AL = THT V), @ Al +dTIT- 1 @ I = (TATY); + (dTT~1);.(13)

Here .Z; € QGLq(N)@)Z. In the last part of (13), a short notation is introduced
to be used below. The second action of the covariant derivative V to the
expression (12) leads to the definition of the curvature 2-forms F} € 0(22):

V(Ve) = — (d(A) - A?) e = —Fe. (14)

The quantum group gauge transformation (13) for the curvature 2-forms FJ‘
is represented as the adjoint coaction

Fifs Fio (T,;'T—li.) ® F} = TLFFTY (15)

We note that the tensor FJ‘ is a reducible adjoint representation of GLy(N)
and it is possible to decompose it into the scalar F® = Tr,(F) and the ¢-
traceless tensor: FJ' = Fj - 6;T7‘Q(F)/T‘l‘q(1). Here, we have introduced the
g-deformed trace [3,6,1,13]

N
Try(F)=Tr(DF) =Y ¢ N1 F}, (16)
=0

The next action of the covariant derivative on the formula (14) yields the
Bianchi identities that are represented in the classical form: d(F) = [A4, F].

To complete the definition of the algebra 27, we have to deduce the
commutation relations of the new generators {A;», F ; ,...} and the old ones
{e', (de)’}. First of all, let us note that the choice of the connection A; in
the pure gauge form (see (13))

A =dT{(T™ eI, (17)

leads to the conclusion that the generators A_‘; could satisfy the following
g-deformed anticommutation relations:

RARA + ARAR™! =0, (18)

where A = A; = A® I. These relations for the noncommutative gauge fields
have been postulated in the context of the quantum group gauge theories
in {1,9]. Note, however, that in the right-hand side of Eq.(18) one may add
an arbitrary linear combination of the curvature 2-form F = dA — A? which
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vanishes on the solution (17). Thus, the general covariant commutation re-
lations for Aj are

RARA + ARAR™! = ¢(R)(FR 4+ R™IF) + o(R)F?, (19)

where F = Fi = F® I and a(R) = a; + 2R, a(R) = a1 + apR. Further,
for simplicity, we will consider the case when a(R) = 0. We stress that the
anticommutation relations (19) are covariant under the transformations (13)
and (15). The special form of the right-hand side of Eq. (19) is dictated by
the symmetry properties of the g-anticommutator appearmg in the left- hand
side of this equation (¢ = +¢*'): (R— c)(RARA+ARAR‘ JRAc™H) =
Arbitrary parameters a;, «; introduced ih Eq.(19) depend on the choice of
the noncommutative geometry and have to be fixed partially by the consis-
tency conditions (with respect to the two ways of reordering of any cubic
monomial) for the algebra Q5. It is amusing to note that the additional
nonzero term included into the right hand side of (19) looks similar to the
quantum anomaly terms arising in the (anti)commutators of fields (or cur-
rents) in certain conventional quantum field theories. .

In order to find commutation relations A; with the generators {e (de)'},
we postulate that the coordinates of the comodule (12) commute in the same
way as the components of 1-forms (de)* (see (1))

R(Ve)(Ve) = —%(Ve)(Ve)’ (20)

(£)(c - b)R(Ve)e' = e(Ve)' . (21)

where b is a constant to be fixed below. From (1) and (21) we deduce co-
variant commutation relations for 4 and e:

(£)eA’ = RARe + bR(Ve) (22)

and the consistency condition for reordering (in two different ways) the
monomials ee’ A” = e;e9A43 leads to the only two solutions for the parameter
b: A)b = 0, and B.)b = A. Thus, we have two variants for Eq.(22)

A) (£)eA’ = RARe, B.) (+)eA’ = RAR 'e+ AR(de) . (23)

Recall that in the paper [1] we have considered only the first case A.): b =
Taking into account (20) one can obtain the corresponding commutatlon
relations for (de) and A

(£)(de)A’ = —R™PAR(de)+(b—A)AR(Ve)+a(R)(RF+FR™1)e ,(24)
where

MI_{_:_L)(L(R) (25)

a(R) = 14 c?
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and v is a new arbitrary parameter. Type A.) and type B.) commutation
relations (22), (24) are covariant under the gauge coactions (2), (3) and (13)
and both cases lead to the same covariant commutation relation for (Ve)
and A:

(£)(Ve)A' = —RAR(Ve) + (@(R) - ao(R))(RF + FR e, (26)
Differentiating (22) and then using (24), one can derive

eF' = RF(R - ble+ a(R)(RF + FR V)e =
(27)
= (R + @(R))FRe + (a(R)R"" - bR)Fe

where we define
a(R) = —(1+ bR)a(R) + (b — A)Ra(R). (28)

Considering the reordering of the monomials e¢’F” in two possible ways and
comparing the results we obtain for both types A.) and B.) (b =0, A) the
restriction

1.) aR) =0, (29)
which leads to the commutation relation:
eF' = RF(R - b)e. (30)

Note that for the type A.) (b = 0) we have an additional solution 2.) a(R) =
—A equivalent to the relation: eF’ = R™!FR™'e. This relation, however,
contradicts the algebra (19), (22) and (26) when we consider the consistency
of the reordering of the cubic monomial eR’A’R'A’, where R’ = Py3Ry3.

Substituting the definitions (28) and (25) into the condition (29), we
obtain the following solutions for the parameters a(R) and 7:

1.) a(R) =0 = a(R) = 0
2) a(R)y=a(R-¢), 7= #1— +(b-A)= (31)
= i(R) = 2R~ ¢)

»

where ag # 0 is a constant.
Now, postulating the natural quantum hyperplane condition:

(R —c)(Fe)(F'e')=0

and using Eq.(30) we find the following closed relations for the generators
13
]

(R-c)FRF(R+c¢ ') =0. (32)
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We assume that the commutation relations for the curvature 2-form F; have
to be independent of the choice of the parameter ¢ = +¢*!. So, we deduce
from Eq.(32) the commutation relations RFRF = FRFR. These relations
are known, first, as reflection equations [14], second, as the commutation re-
lations for invariant vector fields on GL,(N) [6,7] and, third, as the defining
relations for the braided algebras [15].

To complete the definition of the algebra 2z we postulate the following
commutation relation for F and A: FRAR = RARF. This is the simplest
relation that covariant under the coactions (13), (15) and allowing one to
push the operators F through the operators A.

Thus, leaving aside the commutation relations with the generators {e, de},
we obtain the following algebra with the generators A (1-form connection)
and F = dA — A? (2-form curvature):

FRAR = RARF, RFRF = FRFR,
RARA + ARAR™! = ¢(R)(FR + R"'F) + a(R)F?

where a(R) = ao(R — ¢) or a(R) = 0 (see Eqs.(31)) and o(R) = 0. Note
that for the case ag # 0, the associativity conditions for the whole covariant
algebra Q5 give some additional constraints on the generators of this algebra.
In particular, one can deduce

(R-¢)FRe = 0. (34)

Now, we present an explicit realization of such a covariant algebra Q3
where the parameter ap and additional relations on the generators will be
fixed. We consider the differential geometry of the group GLy(N + 1) and
interpret it as a noncommutative geometry on the total space of the principal
fibre bundle with the base space GLy(N + 1)/GLy(N) and the structure
group being GL,(N).

Let us introduce Zj-graded extension of the GLy(N + 1) quantum group
generated by elements {77, dT}} (I,J =0,1,... N) satisfying the commu-
tation relations (6)-(8) with the GLy(N + 1) R-matrix acting in the space
Mat(N +1) x Mat(N + 1). Then, we consider the following left coaction of
the group GLy(N) on the group GLg(N + 1):

oy [ZoT?
Tf — ® (35)

0|T} TS| TF
where as usual 4,7,k = 1,2,...N. It is evident (from the commutation

relations for the GLy(N + 1)-generators) that the elements TJ‘ generate the
quantum group GLy(N). For the Cartan 1-forms on the GL (N + 1)-group

(33)

w ‘Q_? =< élj

QO =dTh(T ™))} = . (36)
A

Q) = |e >
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t ie coaction (35) is rewritten in the form:

w |<e w | <er!
- (37)
le>] A Tle >|TAT™! +dTT!

where the short notation has been used (see e.g. (13)). Comparing these
transformations with the transformations (10) and (13) it becomes clear that
the Cartan 1-forms |e > and A can be interpreted as veilbein 1-forms and
connection 1-forms respectively. Then, the generators < €| are nothing but
contragradient veilbein 1-forms. The Maurer-Cartan equation dQ2} = Q4 QX
leads to the following constraints on the noncommutative differential 1-forms

Qk:

do—~w?-<éle> |d<eél-<élA-w< e
=0 (38)

dle> —Ale> —le > w| dA-A?—|e>< ¢

Now, we deduce the commutation relations for the noncommutative Cartan
1-forms (36) using the N + 1-dimensional analog of the commutation rela-
tions presented in (18). Taking into account the Maurer-Cartan equations
(38) one can rewrite these relations in terms of the notation (36) in the form:

RARA + ARAR™! = ~A\(RF + FR™!) (39)
—~eA' = RARe + AR(de — Ae), —A'é¢ = eERAR + A(dé — €A)R (40)
éRe = —qe'd, Ree' = —q7lee!, &eR = —¢~ ¢, (41)
wl=0, {w,e} = {w,e} =0, {4,w}=g\e>< & = g\F. (42)
Here, we have also introduced the notation for the curvature 2-form:
F=dA-A’=|e><¢. (43)

The last equality follows from Egs.(38). Note, that for the curvature (43)
one can prove the identity (34) using the relations (41). Then, we obtain,
from the commutation relations (39)-(41) and Eq.(43), that the following
commutation relations for F' and A hold:

RFRF = FRFR, RARF = FRAR + A(RFw - FwR) (44)

To exclude frdm these relations the noncommutative scalar generator w we
introduce a new connection 1-form: A; = A—w-I, where the corresponding
curvature 2-form is

Fi=g®F-<éle>I=¢F+q¢ NF°. I (45)
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The scalar FO = Try(F) is defined in (16) apd invariant under the adjoint
coaction (15). Finally, we obtain from Eqs.(40)-(41) and (44) that the ele-
ments {e, A;, F'} generate the following closed algebra:

RFRF = FRFR, RARF = FRA(R,
RA:RA; + A, RAR™! = q3(FR™ + RF)(R - ¢), (46)
—eA} = RARe, eF' = RFRe

where ag = 1 — ¢? and ¢ = —¢~ 1.

Comparing the commutation relations (41) and (46) with the relations
(1), (22) and (33) one can infer that we have explicitly realized the covariant
quantum algebra 27 of the type A.) (b = 0) in terms of the algebraic objects
related to the GLy(N + 1)/G Lg(N)-geometry.

At the end of this report, we present the noncommutative analogs of the
Chern characters. For this, let us consider the special case of the closed
algebra (33) with the generators A and F where the parameters a(R) =
0. Here, as we have explained above, A; are noncommutative analogs of
connection 1-forms, while FJ‘ are interpreted as curvature 2-forms. In analogy
with the classical case (see e.g. [16]), we consider as invariant characters the
following expressions:

Cy = Tro(F*) = DiF} ... Fi*1, (47)

where we have used the g-deformed trace introduced in (16). By definition,
the g-trace possesses the invariant property

Tr(TET™Y) = Tr(E) (48)
for T} € GL,(N) and arbitrary quantum matrix E;- satisfying [T, E] = 0.
In particular, we have

Trg(RER™Y) = Tro(RIER) = Try(E) (49)

Here T'rg2(.) denotes quantum trace over the second space. One can obtain
also the following identities

i
Trep(R¥) = ¢*NIy, Try(I) = T = W (50)
Using (48) we immedeatly obtain that 2k-forms C} (47) are invariant under
the-adjoint coaction (15). Moreover, C}. are the closed 2k-forms. Indeed,
frofir the Bianchi identities dF = {A, F] we deduce

dCr = Tr(AFF — F*4) = 0, (51)
where we have taken into account (see Eqs.(33), (49) and (50))

Tr(AF¥) = ¢ NTr4(Tre(RT'RARFY)) =
¢ NTr(Tre2(FFRA)) = Tro(F*A).
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We believe that C; have to be presented as the exact form Cp = dL(C}%,

where the Chern-Simons (2k — 1)-forms Lg% are represented as

1 _ 1ok
-’;—(TJAa(dA)" e 4 WA% 1 (52)
;

LG} = Tro{A(dA) +
and the constants hgk) depend on the deformation parameter ¢. We do not
have explicit formulas for all parameters (¥} (in the classical case ¢ = 1
these formulas are known [17]), but for the case £ = 2 one can obtain a
noncommutative analog of the three-dimensional Chern-Simons term in the
form:

LY = Tr{AdA - ——}——A"}‘, pP =1+ (53)

2 2 g2
g ¢ +q
To conclude this report, we would like to note that it is extremely interesting
to write the Chern characters for the general case of the algebra (33) when

the parameters a(R) # 0 and a(R) # 0.
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Abstract. We discuss a mathematical approach to collective even effects in infinite-
dimensional odd geometry, which is based on nonstandard hulls, or ultraproducts. Our
construction leads to previously unknown examples of geometries (graded Lie-Cartan
pairs) with substantial even sector. All results are illustrated with a particular example of
a purely odd l.-supermanifold.

Key words: Infinite-dimensional supergeometry, purely odd superspaces, ultraproducts,
nonstandard hulls, Lie-Cartan pairs.

1. Introduction

Infinite-dimensional supergeometry still remains a land of mystery: ma-
thematical theory of it is but rudimentary, which fact makes it difficult
to approach a few appealing problems in the area. We address one of such
problems suggested by Manin [13]: to represent even geometry as a collective
effect in infinite-dimensional odd geometry.

One can handle infinite-dimensional objects of supergeometry by extra-
polating from finite dimensions the functor of points [12]{3]. A far-reaching
theory of Banach supermanifolds has been constructed along those lines
[14]. However, for many needs of supergeometry — the above Manin’s prob-
lem notwithstanding — the functor of points approach is insufficient and
what one actually needs, is a genuine geometric object representing such
a functor [1]. One solution was proposed by Schmidt [23]; his holomorphic
supermanifolds modelled on graded locally convex spaces are geometric, or
locally ringed, superspaces [13] with a certain additional structure. Khren-
nikov {11] attempted to extend to infinite dimensions the “naive” view of
supermanifolds [5][22]; it appears, however, that Khrennikov’s theory was
mathematically shaky at some points [15]21].

In this paper we consider one particular example of a (0, co0)-dimensional
superspace which may be justly termed a supermanifold modelled on the
purely odd l,. Namely, we produce a representing object for the functor
of points determined by the purely odd Banach space 199 = (0) @ l. To
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do that, we enlarge the category of finite-dimensional Grassmann algebras
(the usual realm of functor of points) to a wider category of locally convex
graded-commutative algebras. The opposite category can be thought of as
a category of purely odd superspaces.

Our approach to Manin’s problem is based on the existence of preferred
topology on “function algebras” of the above superspaces. Our construction
can be presented in either of two different languages: that of ultraproducts,
or that of nonstandard analysis. The latter one provides a nice conceptual
understanding of what is happening. Suppose we allow for infinitely large
and infinitely small quantities to dwell in topological vector spaces. Imagine
a finite observer viewing a superspace, Spec A, of dimension (0,00). Being
finite, he or she can only see finite elements of the function algebra A -
infinitely large elements are non-observable. At the same time, our observer
cantot distinguish between elements which are infinitely close to each other.
Therefore, the function algebra on the geometric superspace appears to him
or her as the quotient of a subalgebra of all finite elements of A modulo
the ideal of infinitesimals. This quotient is a reputed object of nonstandard
analysis, termed the nonstandard hull of A (alias the ultrapower of it). A
remarkable fact is that the nonstandard hull of a nilpotent algebra can pos-
sess a highly nontrivial semisimple quotient, which means that the observed
geometric superspace has a nontrivial spatial sector.

After being rewritten in the language of ultraproducts, the above con-
struction becomes functorial.

In this paper we show that in the case of purely odd {,-supermanifold, the
derivations of the nonstandard hull algebra are abundant. This is important
for existence of a differential geometry substantial in its even sector, in the
spirit of Lie-Cartan pairs approach.

Throughout the paper, the basic field is C. The symbol A(g) denotes the
exterior algebra on CY.

2. A purely odd [-supermanifold

The functor of points, consciously transplanted from algebraic geometry to
supergeometry and advertised since then by Leites [12], has been re-invented
in different guises [5][24].

If M is a geometric superspace and ¢ a natural number, then a g-point
of M is any geometric superspace morphism Spec A(¢) — M. Denote by
Pr(q) the set of all g-points of M; the correspondence A(q) — Pum(q) is
a contravariant functor from the category of finite-dimensional Grassmann
algebras and even algebra homomorphisms, which we denote by G, to Sets.

Let E = E° @ E! be a graded locally convex space. One normally asso-
ciates to E the functor of points of the form A(q) = (A(g) ® E)° [14]. This
functor of points is assumed to represent (in fact, serve as a surrogate of) a
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supermanifold naturally associated to E.

We shall construct a representing object for the functor of points associ-
ated to the graded Banach space {924 = (0) @ oo

Denote by Ali the exterior algebra on Iy, endowed with the strongest
locally convex topology inducing the given topology on !y, and completed
thereafter. The algebra Al; can be otherwise described as the graded-com-
mutative complete locally convex algebra generated by a bounded countable
subset of the odd part in a universal way. Namely, if one denotes by = =
{&1,...,&n,...} the set of canonical coordinate vectors for l;, then every map
f from Z to the odd part of a complete locally convex graded-commutative
- algebra A, such that f(Z) is a bounded subset in the LCS Al, extends in
a unique fashion to a continuous even algebra homomorphism f: Al — A
[20].

Let GO stand for the category of all complete locally convex graded-com-
mutative algebras topologically generated by the odd part (the algebras of
Grassmann origin, or GO-algebras [2]) and continuous even algebra homo-
morphisms. This category plainly includes the category G as a full subcat-
egory in a canonical way. The opposite category GO°? will be interpreted
as a category of purely odd superspaces. For an object A € ObGO we de-
note by Spec A the corresponding object in Ob GO, realized as a geometric
superspace over a one-pointed underlying topological space, {*}, with A as
the algebra of sections of a constant structure sheaf.

Theorem 1. The object Spec A1y of the category GOP represents the func-
tor of points determined by 193¢ on the full subcategory G°P of GO°P.

Proof. Let ¢ € N. The set of all geometric superspace morphisms C%9 —
Spec Aly, that is, even continuous homomorphisms Al; — A(g), can be
identified, by virtue of the universality property of Ay, with the collection
of all bounded sequences of elements of A(¢)}, that is, the I, type sum of
countably many copies of the finite-dimensional vector space A(g)!. But it
is nothing other than A(¢q)! ® e (under a canonical identification), or, just
the same, [A(g) ® 19441°.

Remark that the functor of points determined by [9%¢ does not admit
a canonical extension to the whole of category GOP. For a discussion, see
(16][19].

Even as we do not name here what other fragments of a general con-
struction we are aware of, the above example suggects that the presence of
a distinguished topology on the algebra of functions can be of significance.
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3. General construction

Let I be an infinite index set and U be a free non-é-complete ultrafilter
on I. Yor a locally convex sp&ce E, form the ultrapower of E. This is the
Hausdorff quotient of a locally convex space of all bounded families z =
(2:)ier of elements of E, where the topology is determined by seminorms
*p(z) = limy p(2;). This object is denoted either by Ej, or, in the context
of nonstandard analysis, by E. In the latter case it is called the nonstandard
hull of E and interpreted as the quotient of a subspace, fin F, of all finite
elements of the nonstandard enlargement *E of E by the ideal, ug(0), of
all infinitesimals. Here fin E is the union of all sets of the form *B, where
B C F is bounded, and pg(0) is the intersection of all sets of the form *U,
where U C E is a neighbourhood of zero. (See [6] for theory of ultraproducts
of LCS, [25] for theory of nonstandard hulls, and [17][18]{20] for more on the
present construction.)

The correspondence E +— ELI, is functorial in E. If A is a locally convex
topological algebra, then so is Af.

The core of the suggested approach is an idea to view the nonstandard
hully A, of the algebra of functions on a purely odd superspace, Spec A, as
the algebra of functions on some new geometric superspace, which is an
“observable form” of Spec A, or the shadow SpecA throws into the finite
world.

The whole construction can be given a form of a covariant functor from
GO to a suitable category of geometric superspaces. However, we will dis-
cuss only some aspects of this functor now,

Recall that the Gelfand space, £(A), is defined in case where A is a non-
Banach LC algebra as the set of all continuous characters on A endowed with
the weak* topology. The underlying topological space of the “observable
part” of Spec A is the Gelfand space of the nonstandard hull A, and this
way a covariant functor emerges, GOP? — Tych.

The geometry of the nostandard hull algebra, A, turns out to be in some
cases nontrivial in the even sector, unlike that of A. The following results
show that for A = Al; the underlying topological space of the “shadow”
geometric superspace is rich, and a nontrivial analytic structure dwells in it.

Theorem 2. ([20]; cf. [18]) The Gelfand space E(//\Tl) is an inseparable
Tychonoff topological space. This space contains a topological copy of the
cube I™ for each natural number n, therefore the topological dimension of

Z(m) is infinite in any sense.

Theorem 3. [20] There exists a homeomorphism & from the unit disc D C
C into L(A\ 1) such that for every element a € A\l; the composition o ® is
a holomorphic function from D to C.
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4. Derivations and Lie-Cartan pairs

The aim of this Section is to show that the algebra of the form A, where A €
0bGO, in some cases possesses an adundance of (continuous) derivations.
Specifically, the following is true.

Heorem 4. Let z € //\Tl If for all continuous graded derivations, d, of
Al one has da =0, thenz € C.

Or, in an equivalent form,

Theorem 5. Let z € /ﬁ \ {0}. There ezists a continuous differential ope-
rator P of order > 0 on Aly such that Pz = 1.

This result gives a hope that differential geometry of the nonstandard
hull Al; (as well as the corresponding geometric superspace, which we do
not discuss here) is substantial in even sector.

We start with a general construction, hopefully of independent interest
for noncommutative differential geometry.

A graded Lie-Cartan pair [10]{7][8] (L, A) consists of an associative unital
graded algebra A, a Lie superalgebra L which is a left unital A-module, and
a Lie homomorphism L — Der A, satisfying the following axioms

(i) a(€b) = (a)b for all a,b € A and £ € L;
(ii) [, an) = (=1)%%a[é,n) + (€a)n for all ,n € L and a € A.

(Here [,] stands for the supercommutator in L, and the usual parity conven-
tions are assumed.)

The two fundamental examples are 1) 4 = C°(X) is the algebra of
smooth functions on a finite-dimensional manifold X, and L = vect{X) is
the Lie algebra of smooth vector fields on X (classical differential calculus
[7]), and 2) A = A(q), and L = Der A(q) (fermionic differential calculus
(8)).

Consider a Lie-Cartan pair (L, A) and assume that A carries a locally
convex topology such that every derivation d € L, d: A — A is continuous.
(As is invariably the case in all “classical” examples.) We shall also assume,
without much loss in generality, that the fixed homomorphism I — Der A
is a monomorphism.

Denote by fin L the set of all £ € *L such that £(fin A) C fin 4, and
by pr(0) theset of all £ € *L with £z € u4(0) for all z € fin 4. One
can check that fin L is a Lie subalgebra of L, and u1(0) is a Lie ideal in
fin L. Denote by L the quotient Lie algebra fin L/1r,(0). The monomorphism
finL — Derfin A factors through pz(0), giving rise to a monomorphism
L — Der A.
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Theorem 6. The pair (L, A) is a Lie-Cartan pair.

We call (L, A) the nonstandard hull of the pair (L, A).

The Lie superalgebra of graded derivations of A(g) is well-known [9][4]:
.. it is generated, as a free graded A(g)-module, by 8/9¢,,8/0¢,,...,0/0&,,

. ‘where £, £,,...,&; is any system of free odd generators for A(g) and 9/9¢;

stands for the formal odd derivation by &;.

One can describe in a similar way the algebra Der Al of all continuous
derivations of Al;. Remark that for every odd generator & of Alj, the odd
derivation of thelatter algebra §/0¢; is well-defined and continuous.

Theorem 7. The algebra Der Al is isomorphic, as a Alj-module, to the
loo-type sum of countably many copies of \l; under the correspondence e;

9/9¢;.

Proof. The l-type sum of countably many copies of Al is formed by all
bounded sequences y = (y;) of elements of Alj, and e; is the i-th standard
basic vector (0,0,...,0,1;,0,...). For any such y and any element z € A4,
the rule ya = Y, y;02/9¢€; correctly defines an element of Aly; using struc-
tural results on Al; from [20], one can show that the emerging derivation,
¥, is continuous; therefore, an even homomorphism from the l-type sum
to Der Al mentioned in Theorem 7 is well-defined. This homomorphism
is onto, because any derivation d € Der Aly is the image of a sequence

y = (d&).

Theorem 8. The nonstandard hull of the Lie-Cartan pair (Der Ali, Alh)
18 canonically isomorphic to the pair (Dev Al /\11), where the nonstandard
hull of Der Al is formed as of a LCS under the identification of Theorem
7.

Proof. A direct application of relevant definitions.

Proof of Theorem 4. We adopt the notation of [18]. Let z = 3°, z,£# be
an arbitrary element of fin Aly \/.L/\ll(()). One can assume that the set of
indices with non-vanishing coefficients is #-finite, and that all multi-indices
i are of the same (standard) finite length n € N. If there exists an ¢ with
0z /9¢; non-infinitesimal, then set d = 0/0¢;. Otherwise, one can assume
(by proceeding to a sub-sum, if necessary) that the distinct multi-indices
in the representation of z are disjoint. Select a *-finite subset 4 C "N
which intersects every such multi-index exactly once, and set y = (y;), where
¥ = €xa(?) and ¢ = *1. According to Theorem 8, the element y is in
fin Der Al;. Since z is finite, one can choose ¢; 0 as to make the element yz
finite. If one denotes by § the image of y in Der Aly, and by £ the image of

zin Al1, then §3 # 0.
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5. Conclusion

Here are sonie problems not entirely devoid of interest.

1. The comultiplication and antipode can be extended by continuity over
completians of infinite-dimensional Grassmann algebras at least for some
locally convex topologies on them. (Such A% extension is possible, e.g., for
Al, and impossible for the Banach-Grassmann algebra By, studied in [22].)
Does this structure — at least, in some cases — give rise to a Hopf algebra
structure on the nonstandard hull, and thereby, an abelian topological group
structure on the Gelfand space?

2. Can one construct a genuine measure and integral on the Gelfand space
of the nonstandard hull of a locally convex Grassmann algebra, starting from
the formal Berezin integral in the latter algebra?

3. Suggested after my talk by Achim Kempf. Is it possible that for some
A € 0bGO the Gelfand space of the nonstandard hull A is both nondiscrete
and topologically finite-dimensional?
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Abstract. String backgrounds are described as purely geometric objects related to moduli
spaces of Riemann surfaces, in the spirit of Segal’s definition of a conformal field theory.
Relations with conformal field theory, topological field theory and topological gravity are
studied. For each field theory, an algebraic counterpart, the (homotopy) algebra satxsﬁed
by the tree level correlators, is constructed

Key words: Frobenius algebra — Homotopy Lie algebra —~ Homotopy commutative algebra
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String theory — String background — Topological gravity

1. Introduction

The usual way of describing a string background as some construction on top
of a conformal field theory involving the Virasoro operators, the antighost
fields and the BRST operator appears too eclectic to be seriously accepted
by the general mathematical public. Here we make an ‘'attempt to include
string theory in the framework of geometric/topological field theories such as
conformal field theory and topological field theory. Basically, we describe all
two-dimensional field theories as variations on the theme of Segal’s conformal
field theories [10]. Our definition is in some sense dual to Segal’s definition
of a string background, also known as a topological conformal field theory,
via differential forms and operator formalism, see Segal [11] and Getzler [1].

In this paper, each geometric field theory is followed by a leitmotif, the
structure of an algebra built on the state space of the theory. Whereas it is
commonly known that two-dimensional quantum field theories comprise very
interesting geometrical structures, related algebraic structures have emerged

* Research supported in part by NSF grant DMS-9108269.A03
** Affiliated to Department of Mathematics, Princeton University, Princeton, NJ 08544~
1000, USA
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very recently and are still experiencing a very active period of growth. A list
of references, perhaps, already outdated, can be found in the recent paper

[5].

2. Topological Field Theory and Frobenius Algebras

Note. The field theories we are going to consider here will all have the total
central charge zero. The general case can be done by involving the determi-
nant line bundles over the moduli spaces.

A topological field theory (TFT) is a complex vector space V, called the
state space, together with a correspondence

~TT
4
m 4 ‘n — |Z) : VOm 5 yen
(1)
~ T {
An orientable surface
¥ bounding m + n cir- A linear operator |X)
cles

Here a surface is not necessarily connected. Its boundary circles are enumer-
ated and parameterized. The first m > 0 circles are called inputs and the
remaining n > 0 circles are called outputs. The linear operator |Z) is called
the state corresponding to the surface .

This correspondence should satisfy the following axioms.

1. Topological invariance: The linear mapping |X) is invariant under
diffeornorphisms of the surface .

2. Permutation equivariance: The correspondence T + |Z) commutes
with the action of the symmetric groups Sy, and S, on surfaces and
linear mappings by permutations of inputs and outputs.

3. Factorization property: Sewing along the parameterizations of the
boundary corresponds to composing:
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) >

|
’ l — VoM 4 y8n , yok
|
| |
The sewing of the outputs of The composition of the
a surface with inputs of an- corresponding linear op-
other surface erators

4. Normalization:

O 0 = vy

A cylinder The identity operator

These data and axioms can be formulated equivalently using functors.
Within this approach, a TFT is a multiplicative functor from a “topological”
tensor category Segal to a “linear” tensor category Hilbert. An object of the
category Segal is a diffeomorphism class of parameterized one-dimensional
compact manifolds, i.e., disjoint unions of circles. A morphism between two
collections of circles is a diffeomorphism class of orientable surfaces bounding
the circles. The identity morphism of an object is the cylinder over it. The
operation of disjoint union of collections of circles introduces the structure
of a tensor category on Segal.

The other category Hilbert is the category of complex vector spaces
(Hilbert in real examples), not necessarily finite dimensional, with the usual
tensor product. Then the space V is the vector space corresponding to the
single circle and it is easily checked that the functoriality plays the role of
the factorization property and that the two definitions are equivalent.

Any orientable surface can be cut into pants and caps:

Q

> ) T

In fact, observe that orientable surfaces have the following generators
with respect the sewing operation. And respectively, the space V is provided



170 A. A. VORONOV

with an algebraic structure generated by the operations below with respect
to composition of linear mappings.

— VeV -V

= 0
@ o cover
O>
D

[

VoV

V-C

I

— C—-V

THEOREM 1 (Folklore). A TFT is equivalent to a Frobenius algebra, i.e., a
commautative algebra V with a unity and a nondegenerate symmetric bilinear
form {(,) : V® V — C which is invariant with respect to the multiplication:

{ab,c) = (a, be)

and has an “adjoint” C—oV Q@V.

An “adjoint™ to a mapping ¢ : V@V = Cisamappingy : C VRV,
such that the compositions V WYy oveV 28y and v L& By eve

ld—{?’ V are identities. When the space V is finite dimensional, an inner
product establishes an isomorphism V' — V*, and an adjoint mapping gives
a mapping V* — V, which is nothing but its inverse. Thus, in the finite
dimensional case, a Frobenius algebra is just an algebra with an invariant
nondegenerate inner product. The theorem follows from the remark above
about decomposing a surface into pants, caps and cylinders and the obvious
fact that the symmetric form (,) in a Frobenius algebra V' can be obtained
from a linear functional f : V — C as {(a,b) = f(ab).

An important substructure is observed for a TFT at the tree level, when
we restrict our attention to surfaces of genus zero and with exactly one
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output:

n — VO LV

@ — C—oV

Topological invariance, permutation equivariance, the factorization and the
normalization axioms make sense for such surfaces and are assumed.

The following fact is worth mentioning, because we are aiming to study
similar algebraic structures occurring in string theory at the tree level.

COROLLARY 2. A TFT at the tree level is equivalent to a commutative
algebra V' with a unity.

3. Conformal Field Theory

A conformal field theory (CFT) is a device very similar to a TFT, except
that
1. the correspondence (1) is defined on Riemann surfaces bounding holo-
morphic disks and the state |$) depends smoothly on the Riemann sur-
face I,
2. topological invariance is replaced by conformal invariance,
3. when two Riemann surfaces are sewn, the result is provided with a
unique complex structure, and
4. normalization is slightly different:

O — id:H—- H

A cylinder of zero length The identity operator

In other words, a CFT is a smooth mapping

’Pm-{-n - Hom(H®m, H®n), (2)
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m < 'n — |T): H®™ o HO"

A point ¥ in the

moduli space Prnyn A linear operator |Z)

where Py, 4p, is the moduli space of Riemann surfaces (one-dimensional com-
plex compact manifolds) bounding m + n holomorphic disks. The surfaces
can have arbitrary genera, the disks are holomorphic mappings from the
unit disk to a closed Riemann surface and they are enumerated. The map-
ping (2) must be equivariant with respect to permutations, transform sewing
of Riemann surfaces into composition of the corresponding linear operators
and must be normalized as above.

There is an evident reformulation of the CFT data as a functor from

a suitable category Segal to the category Hilbert analogous to the one for
TFT’s.

4. String Theory and Homotopy Lie Algebras
4.1. STRING BACKGROUNDS

Let H be a graded vector space with a differential Q, Q? = 0, i.e., H be a
complex. A string background is a correspondence

C.Pm+n - Hom(H®m, H@ﬂ)’ (3)
Q

Q
@‘ —  |C): H®™ > HO™,

Chains C in Pp4n Linear operators |C)
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which satisfies the axioms below. [On the figure, the surface is nothing but
a pair of pants (so m = 2, n = 1) and the chain is just a circle. The
pants moving along the circle in the moduli space sweep out a “surface of
revolution”, which I attempted to sketch above.] By chains here we mean
the (complex) vector space generated by (oriented) singular chains.

1. Smoothness: The mapping (3) is smooth.

2. Equivariance: The mapping (3) is equivariant with respect to permu-
tations of inputs and outputs.

3. Factorization: The sewing of outputs of a chain with inputs of another
chain (namely, outputs of each Riemann surface in the first chain are
sewn with inputs of each Riemann surface in the second chain, each
time producing a new Riemann surface) transforms under (3) into the
composition of the corresponding linear operators.

4. Homogeneity and @Q-8-Invariance: The mapping (3) is a morphism
of complexes. That means that it maps a chain of dimension k to a
linear mapping of degree —k (with respect to the natural grading on the
Hom) and that the boundary of a chain in Py, transforms into the
differential of the corresponding mapping,

|oC) = QIC),
where Q acts on each of the m + n components H of Hom, as usual.
5. Normalization: The point {Riemann sphere with two unit disks around
0 and oo cut out} € Pp4n maps to the identity operator id : H — H.
This correspondence can also be axiomatized as a functor, like in the cases
of TFT and CFT. The corresponding category Segal will still have disjoint
unions of circles as objects, but its morphisms will be chains in the mod-
uli spaces. In the category Hilbert, one has to consider graded spaces with
differentials (i.e., complexes), but still all linear mappings as morphisms.
The Virasoro semigroup of cylinders (including the group of diffeomor-
phisms of the circle, represented by cylinders of zero width) acts on H via
the degree 0 states exp tT'(v) = | exp tv) corresponding to cylinders, regarded
as points in Py41:

. — exptT(v): H— H,
@

exp tv

where v is the generating complex vector field on the circle. The so-called
antighost operators b(v) on H can also be easily identified in our picture.
They are the derivatives

b(v) = %B(w)H (5)

of the operators B(tv) of degree —1 obtained when the same cylinder cor-
responding to v is regarded as a one-chain in Py4j. At time ¢, the cylinder
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exp(tv) is a point in Pr41. When ¢ changes, these points sweep out a path
in P141. Note that

[T(v1), T(v2)] = T([v1,v2]),

because the operators exp tT'(v) define a representation of the Virasoro semi-
group, and

{b(v1),b(v2)} = 0,

because the two-chains exp(svy) X exp(tve) and exp(tvz) x exp(svi) differ
only by orientation. In particular, b?(v) = 0. Moreover,

{Q,b(v)} =T(v),

because the boundary of the cylinder exp(tv) viewed as a one-chain is equal
to the same cylinder viewed as a point minus the trivial zero-width cylinder.

String theories are also referred to as topological, because of the following
fact.

THEOREM 3. The cohomology of the state space H of a string background
with respect to the differential Q forms a TFT. Thus, the cohomology of H
has a natural structure of a Frobenius algebra.

Proof. Two Riemann surfaces £; and T which are diffeomorphic can be

connected by a smooth path C in the moduli space. Hence, for the corre-
sponding states we have

|T2) - [21) = |6C) = Q|C),

which means that their Q-cohomology classes are equal. O

4.2. HIGHER BRACKETS

The state |C) is an operator from H™ to H", which for n = 1 may be
thought of as an m-ary operation on the space H. By the factorization ax-
iom, the operation of sewing of chains C in the moduli spaces corresponds to
compositions of the corresponding operations on the space H. Respectively,
any relation (involving compositions and boundaries) between chains in the
moduli spaces produces an identity (involving compositions and the differ-
ential Q) for the corresponding operations on H. At the tree level, when
we consider Riemann surfaces of genus 0 only, this algebraic structure on
H is rather tamable. This is because the topology of the finite dimensional

moduli spaces Mg m4 of isomorphism classes of m + 1 punctured Riemann
spheres takes over the situation,

Consider the following brackets:

[z1,...,Zm] = “Mom1)" (21, - . . Tm), m > 2, (6)
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where z1,...,Zm € H are substituted on the right-hand side as arguments
of the Hom(H™, H), where the state [Mg m+1) lives. The quotes are due to
the fact that the space Mg m+1 is not really a chain in Pp4q: there is no
natural mappings from Mg m41 to Ppy1. A standard escape is to impose
these mappings as extra part of data. To preserve nice properties, this is
achieved in the following two steps.

Step 1. Push the correspondence CyPp,4+1 — Hom(H™, H) down to a map-
ping CoP., .1 — Hom((H™)™, H™!) from chains on the quotient space P/,
of Pm+1 by rigid rotations of the holomorphic disks to the space of multilin-
ear operators on H™!, The latter is the subspace H™! of vectors in H which
are rotation-invariant, i.e., stable under the operators exp(tT'(v)) of (4) and
annihilated by the operators B(tv) of (5) corresponding to rigid rotations
v € S!. The pushdown is performed by pulling a chain C in P, back
to a chain C of the same dimension in Py,41, restricting the operator |C)
to (H™)™ and projecting the value of the operator |C) onto H™! via the
mapping h — b(8/98)hg, where 0 is the phase parameter on the circle S
and hy is the rotation-invariant part of h (which exists provided the action
of 8! on H is diagonalizable).
Step 2. Map the finite dimensional moduli spaces Mgm41 to the infi-
nite dimensional quotient spaces P;,,;, so that gluing Riemann spheres in
Mo,m+1’s at punctures corresponds to sewing of Riemann spheres in Py, ,;’s.
Sewing in P, ,,’s can only be performed provided at least relative phases
at sewn disks are given. The corresponding gluing operation should also
be of this kind. Thus, the gluing operation takes us actually out of the
spaces Mo m4+1 to certain real compactifications of them, [5]. Such map-
pings Mom+1 = Py, exist. Zwiebach’s string vertices [12] make up an
example of those. Here we thereby allow certain freedom of their choice.
These additional data have been called a closed string-field theory in [5]
after Zwiebach gave this title to the choice of his string vertices. After these
modifications, we obtain brackets [z1,...,Zn) defined on H rel

THEOREM 4. These brackets define the structure of a homotopy Lie algebra
(see next section) on the space H™!,

This result was obtained by Zwiebach in [12]. A mathematically rigorous
proof of this theorem with the use of operads was given in [5]. This algebraic
Structure generalizes the trivial one of Corollary 2 to the case of string theory.

4.3. HoMOTOPY LIE ALGEBRAS

A homotopy Lie algebra is a graded vector space H, together with a differ-
ential Q, Q2 = 0, of degree 1 and multilinear graded commutative brackets
[z1,...,z;] of degree 3 — 2m for m > 2 and zy,...,zm € H, satisfying the



176 A. A. VORONOV

identities

m

Qlz1,...,zm] + Ze(i)[xl,. ey QTiy o, Zpn)
i=1

= Z E e[z, .-y zi ), By - Tji, ],

kt+l=m+1 unshuffles o :
k12>2 {1,2,....m}=L UL,

I o= {iyy..., 5}

I ={j,.... 511}

where €(i) = (—1)#1l+-+zi-1l ig the sign picked up by taking Q through z;,
«++yTi-1, |z| denoting the degree of z € H, €(0) is the sign picked up by the
elements x; passing through the z;’s during the unshuffle of z1,...,2m, as
usual in graded algebra.

Note that for m=2, we have

Qlz1, %2, 73] + (X[Q=z1, 32, 73] £ [21, Q2, 23] £ [21, 22, Qz3])
= [[z1,72), 23] £ [[21, T3], z2] £ [[22, 23], 21],

which means that the graded Jacobi identity is satisfied up to a null-homo-
topy, the Q-exact term on the left-hand side.

5. Topological Gravity

A topological gravity is the same as a string background, except that it is
based on a graded vector space V which is not required to have a differential
Q and that the correspondence CoPpin — Hom(H®™, H®) is replaced
with

HoMpin — Hom(VO™ Vo1,

where M 4n is the Deligne-Knudsen-Mumford compactification of the mod-
uli space and H, stands for homology. Sewing in the factorization property
should be replaced with gluing at punctures to form double points similar
to Step 2 in Section 4.2, but with no relative phases. This notion of a topo-
logical gravity is essentially the same as the notion of a homotopical field
theory of Morava [9].

Another notion closely related to topological gravity is in certain sense
a dual topological gravity, where the real compactification of [5] replaces
the Deligne-Knudsen-Mumford one. At the tree level, when the Riemann
surfaces have genus 0 and n = 1, this theory is dual to the one above in the
sense that the underlying operads are Koszul dual, see Getzler and Jones

[3].

THEOREM 5. 1. A string background based on a state space H yields the
structure of a dual topological gravity on the space V' of Q-cohomology of
Hrel.
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2. A dual topological gruvity implies a TFT on its state space V.

Proof. 1 becomes evident if we observe that the quotient of Pp4n mod-
ulo rigid rotations at each puncture is homotopically equivalent, respecting
sewing, to (the real compactification of) My, 4n.

2. A TFT is obtained by restricting a dual toplogical gravity to a correspon-
dence Hy(Mmin) = Hom(V™, V™). O

5.1. GRAVITY ALGEBRAS

At the tree level, a dual topological gravity also gives rise to a remarkable
algebraic structure on V. This structure is called a gravity algebra and was
introduced by Getzler [2]. It consists of an infinite number of multilinear
brackets, staisfying quadratic equations. It would be interesting to describe
the algebraic structure corresponding to a topological gravity, i.e., the struc-
ture of an algebra over the operad Ho M1, in similar terms.

5.2. HomoToPY COMMUTATIVE ALGEBRAS

According to general ideology, cf. Kontsevich [7] and Ginzburg-Kapranov
[4], there are three principal types of homotopy algebras: homotopy Lie,
homotopy commutative and homotopy associative. The first two types are
dual in certain sense, the third one is self-dual. It is remarkable that this
duality is implemented in algebraic geometry by passing from the usual
Deligne-Knudsen-Mumford compactification of the moduli space to the real
version of it.

More precisely, suppose we are given a complex V' of vector spaces and a
correspondence

CoMpmin = Hom(VO™ VO™,
C ~ |C),

which is a multiplicative functor between the corresponding tensor cate-
gories, i.e., compatible with gluing at punctures, permutations, differentials,
etc. Such a theory may be regarded as topological gravity lifted to the chain
level from homology. Suppose it satisfies the additional condition |C) = 0
whenever dimC > (1/2) dim My 4. This condition is a kind of chirality,
not literally, though: no holomorphicity is assumed.

If we consider m — 2-cycles (more exactly, half-dimensional cycles relative
to the boundary) in My ;41 instead of the fundamental cycle to define m-ary
products as in (6), the operad approach of [5] will lead to the structure of a
homotopy commutative algebra {3, 4]. This is the matter of the forthcoming

paper [6].
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Note. Since this paper was written up, our question (see Section 5.1} of
describing the algebraic structure of topological gravity has been answered
by Kontsevich-Manin [8] and Dijkgraaf-Getzler. This structure may be de-
scribed as a family of graded commutative associative multiplications on a
vector space V parameterized by the very space V. Following Getzler, it
is reasonable to call it a WDV V-algebra, after Witten-Dijkgraaf-Verlinde-
Verlinde, who observed it in quantum field theory.
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The dilogarithm Lia(2) is defined by

log(1 —
;—ld—L_z'z(z) = _“o_g(__z_), for non-real z,
z z
Liy(z) = 3. %—2- for |z] < 1.
n=1

In particular Liy(1) = ?/6. Its analytic continuation is multivalued and
will be considered below.
A g-deformed version of the dilogarithm is given by

fo o]
~ > log(1—ug"), g <1.
n=1

When the absolute value of ¢ is close to 1, one can approximate the sum by
an integral, which yields Lig(u)/ log(q).

Dilogarithms have a long history both in physics and in mathematics,
which would take to long to describe. In physics, they appear in the evalu-
ation of Feynman graphs, which at present has no relations to the new ap-
plications considered below. The latter seem to have originated first in the
investigations of Faddeev’s Leningrad/ St.Petersburg group. On one hand, g-
deformed dilogarithms describe the S-matrix of the sine-Gordon model [FK
1978, eq. 5.3], on the other hand the magnetization of the XXY model was
linked to the central charge of the corresponding conformal theory and later
calculated in dilogarithmic form, see e.g. [KR 1987]. Parts of the group dis-
persed, but the investigations were taken up elsewhere. In particular, much
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evidence was produced which links dilogarithms to conformal dimensions,
see [FNO 1992]. We shall see that the corresponding dilogarithm identities
correspond to elements of finite order of the so called Bloch group. The
fact that the conformal dimensions are rational is closely linked to the finite
order property.

On the other hand, infinite order elements of the Bloch group seem to
be essential for the classification of three dimensional manifolds, one of the
most interesting problems of present day mathematics. Some relation to the
classification of two dimensional conformal field theories can be expected,
since the latter yield topological field theories in three dimensions and those
in turn yield invariants of manifolds of three (real) dimensions. These in-
variants are of the type of the well known Chern-Simons and #-invariants.
Again, they are rational and related to the real part of dilogarithms. At least
as important, however, is the volume invariant of Thurston’s classification
program for three-manifolds [Thurston 77,82], [DS 1982], [NZ 85]. This in-
variant yields imaginary values of the dilogarithm function, for Bloch group
elements of infinite order.

For an elementary introduction to Thurston’s program see [Meyerhofer
1992]. For convenience of the reader, I repeat some of the essential points.
Three dimensional manifolds have canonical decompositions with respect to
cuts along spheres and tori. For manifolds which are indecomposable with
respects to such cuts, Thurston argued that they can be given a geometric
structure. In other words, they can be written as the quotient of a homoge-
neous space with respect to the action of a discrete group. Thurston proved
his conjecture under various conditions, but the general problein is still open.

In two dimensions it is easy to write any manifold in such a way, namely
just as the quotient of its covering space by its fundamental group. In fact,
the covering space of any compact two dimensional Riemannian manifold
is either the sphere, the plane or the hyperbolic space, which all can be
given a homogeneous metric. Apart from the torus, the curvature can be
normalized to +1, which gives the manifolds a canonical volume. Due to the
Gauss-Bonnet theorem

/RdV: ir(l-g),

the classification by the genus g and the one by the normalized volume are
equivalent.

For almost all values of the genus, indeed for ¢ # 0, 1, the geometric struc-
ture is hyperbolic. In three dimensions, there is a sense in which the generic
manifolds have a hyperbolic structure, too. Note first that every three di-
mensional manifolds can be constructed by Dehn twists around some link in
the sphere §3. To perform such twists, one cuts out a small tubular neigh-
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borhood around each knot component of the link, transforms the surface of
each resulting solid torus by a diffeomorphism of the mapping class group
$L(2,Z), and glues it back in. More precisely, consider a solid torus D x S,
where D is the unit disk with polar coordinates 7, ¢. On $ we have an angle
coordinate 6. The mapping class group of the torus surface is given by the
transformations

() -G O06) G esen.

Thus it can be identified with the modular group SL(2,Z7)/Z,. The trans-
formations generated by (3}) can be continued to the whole solid torus, such
that the corresponding Dehn twists do not change the topology of the mani-
fold. Thus the resulting manifolds are given by the cosets of (*7) modulo this
subgroup, in other words by the first matrix column (p, ). Except for special
links or special small values of the (p, ¢), the manifold constructed by Dehn
twists will be hyperbolic. In this sense, generic manifolds are hyperbolic.

The Dehn twist construction is very far from a classification, since it
is highly non-unique and since there is no effective classification of knots.
Nevertheless, the construction easily generates many hyperbolic manifolds
of small volume. In particular, take the Dehn twists around the figure-of-
eight knot. The volume is an increasing function of the partially ordered
labels (p,¢). Its minimum at (1,5) is conjectured to be the smallest value in
the set V of all possible volumes of hyperbolic three-manifolds of curvature
—1.

To calculate such a volume, one cuts the manifold into tetrahedral pieces.
The volumes of hyperbolic tetrahedra first were calculated by Lobatchevsky.
His formula is a bit complicated, but it simplifies a lot for ideal tetrahedra,
for which the vertices lie at infinity. Disregarding lower dimensional subman-
ifolds, any hyperbolic manifold can be cut up into such ideal tetrahedra. For
compact manifolds, one just has to cut out a circular geodesic, which comes
to lie at the infinite points of the hyperbolic space. The sides of the tetra-
hedra all wind around this geodesic and converge towards it.

In terms of the quaternions 1,14, 7,k, the points of hyperbolic space can
be written in the form X = z 4 iy + jz, # > 0. Consider the matrices
(‘;3) € SL(2,C), where the complex numbers C are given by the linear
combinations of the quaternions 1,¢. Their group acts on hyperbolic space
by the transformations

X' =(aX +b)(cX +d)7".
To see this, note that

X' = (aX +b)(Xtct +dN)|eX +d|2.
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The j, k part of X' is proportional to
ajd* — bjet = (ad — be)j = j .
In particular,
Z=zleX+d"2>0.
Since
dX'= —cHeX +d) edX (X +d)7,
the metric
(dz? + dy? + d2?)/2% = dXdX T [2*

is conserved under SL(2,C). The boundary at infinity of hyperbolic space is
given by the plane z = 0 plus a point at infinity, thus it is isomorphic to the
Riemann sphere, Its transformations under SL(2,C) are the usual rational
linear ones.

The volume of an ideal tetrahedron depends on its four vertices z; € C,
t =1,2,3,4. As we have seen it is invariant under rational linear transfor-
mations. Invariant functions of the z; only depend on the double ratio

_ (- m)(z = 2)
(71— 23)(22 — 24)

Let the volume function be denoted by V(2y, 22, 23,24) = D(z). For real z,
all vertices lie on one line, such that the volume vanishes. It is convenient
to incorporate the tetrahedron orientation by the sign of the volume, such
that D(Z) = —D(z). Permuting the vertices yields the symmetry properties
D(z) = =D(1 — 2z) = —D(1/z). As long as no vertices*coincide, D is a real
analytic function of its argument.

The union of two tetrahedra joined along a face can be cut into three
tetrahedra by using the body diagonal as a new edge. Similarly, each tetra-
hedron can be cut up into four tetrahedra by choosing another vertex in the
interiour. This yields

Y (=) =0,

=0

where #; denotes 2, 21, 22, 23, 24 With z; omitted. Equivalently one has

D(z) + D(y) + D(1 — zy} + D (11_—;,) +D (f:fy) =0

This is the five term identity, which has been discovered and rediscovered by
several famous mathematicians. With the convention D(o0) = 0, it implies
the symmetry properties of D.
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Under very weak regularity conditions, which are obviously true for the
tetrahedron volumes, the five term identity and the relatity properties yield

D(z) = S(Liy(2)) + arg(1l — 2)log|z| .

The dilogarithm Lt has a multivalued analytic continuation, but D(z) be-
comes a continuous function on the whole plane. Away from the singularities
at z = 0 and z = 1, it is real analytic.

Splitting the five term identity for D(z) into its holomorphic and antiholo-
morphic parts, one obtains a five term identity for the Rogers dilogarithm

. 1
L(z) = Lig(z) + §log(x)log(1 -z),
namely

l1-z 1-y
{ — [, = 2 .
Ho)+ )+ L - e + L (7o ) + L (L) =22

The constant 3L(1) = 72/2 on the right hand side is determined by
putting ¢ = y = 0. The identity is valid for z,y € (0,1).
Thus volumes of hyperbolic three-manifolds have the form

V=Y D(z%).
k

The fact that the tetrahedra fit together to form a manifold without bound-
ary yields the closure condition

Z[zk]/\ [l — Zk] =0,
k

where the symbol [z] fulfils the single relation [zy] = [z] + [y] and the
wedge product is defined by bilinearity and antisymmetry. Replacing ad-
joining tetrahedra as in the five term relation conserves this condition, since

RIA[L-a]+ A1 -] =
el Al -+ [(S]  [s5] + [ A [551]
as can be checked easily.

The Bloch group [Bloch 78] is defined by the formal sums . ng(2x),
%, € C, ng € Z, which satisfy the closure condition

an[zk] A[l- zk} =0,
k

modulo the formal sums coming from the five term identity, for which this
condition always is satisfied. Moreover, one uses the convention (c0) = 0,
which implies (0) = (1) = 0. This is no significant restriction, since 15(0c0)
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vanishes by the five term identity. The map D : ¥, ni(2x) — Yop neD(2k)
is a well defined map from the Bloch group elements to the real numbers.
The volume set V belongs to the image of this map.

Since the closure equation is essentially algebraic, this implies that V is
a countable set. Admitting disjoint unions and manifolds with boundaries,
this set becomes closed and additive. Moreover, one can show that it is well
ordered. In other words, for every volume there is a unique next larger vol-
ume. Accumulation points only-arise by convergence towards upper limits,
not towards lower ones. Let V' be the subset of accumulation points of V
and iterate this procedure to obtain the sets V(™ of n-fold accumulation
points. One finds that all of these sets are non-empty, though they have
empty intersection. In the language of ordinal numbers, this is expressed by
the fact that the ordinal number of V is w®.

Many elements of the Bloch group can be produced by the equations

log(1—z) = Z B;;log(%) ,

J

i=1,...,7. If one makes Dehn twist around the figure-eight knot one finds
r =2 and

B = —-—i— <p q) .
p+q\q P
So far, we have considered some standard manifold mathematics. Now
let us cosider the partition functions of some conformal field theories, which
yield new, but apparently related features. On the Hilbert space of such a
theory one has the action of left and right Virasoro algebras with generators
Ly, L], and central extension c. The Hamiltonian is given by H = Lo + Lj
is the momentum by P = Lo — L. For our purposes it is convenient to shift

these generators, such that Lo = Lo — /24 and analogously for L}. Consider
the partition function

Z(r,7) = tr(exp(21ri(I~/0T - Ly7))

of such a theory, such that the imaginary part of 7 can be identified with
the inverse temperature,

The partition functions of conformal theories are invariant under modular
transformations

r— (‘Z,Z) (‘g) (‘c’ Z) € SL(2,7) .

Using 7 — —1/7, one reads off the high temperature behaviour

Z ~ exp (%ceﬁ(l/r - 1/1")) .
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The quantity cq is called left and right effective central charge of the the-
ory. Since the partition function diverges at large temperature, the effective
central charges have to be non-negative. For a unitary theory, they coincide
with the central charge ¢ of the Virasoro algebra. More generally, cof is
given by the maximum of ¢ — 24h, where h runs over eigenvalues of L.

The set C of values of Ceff for all possible conformal theories is conjectured
to share many properties of V. It is additive, since the tensor product of
theories yields the sum of the effective central charges. At least for rational
theories, the effective central charges are rational, and this may be generally
true. In fact, C is conjectured to be well ordered, with the same ordinal
number w“ as V.

For rational theories one has

2(r,7) = Y Z(1)2U7)

where the sum is finite and runs over the superselection sectors of the theory.
Asymptotically, all the Z; are proportional. The proportionality constants
are called conformal dimensions. With ¢ = exp(2wit) the asymptotic be-
haviour is obtained for |¢| close to 1. One finds

Zi(r) ~ exp(—g-ceff/ 108(4)).

The normalization is chosen such that §y = 1 for the vacuum character Z;.

For ¢ < 1, the rational conformal theories are classified by pairs (p, q)
of natural numbers > 1 without common prime divisors. One has ¢, =
1 — 6/pgq, such that the possible values in C are given by cog = 1 - 6/n,
where n runs over those natural numbers which are not prime powers. For
¢eff > 1 not much is known.

Let us calculate partition functions and effective central charges for a few
simple theories. The partition function of a free boson is proportional to

P(r)=[Ja-¢H7,
k
One has

P(r) =Y p(k)¢",
k

where p(k) counts the additive partitions of k into natural numbers. If we
denote the number of partitions into exactly n natural numbers by p,(k),
we find

Z(r)= Zan(k)qk .
n ok
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Any partition can be written in the form k = my + mq + ... + m,,, where
m; > miy1. Writing l; = m; — m;41, the Iy are independent variables. Since
k= 3";il;, one finds

Y palk)e* = (97,
k
where

@a=0- =) d1-gq.

For a free fermion, we have a very similar partition function, except that
the m; have to be different due to the Pauli principle. To get independent
variables, we have to write I; = m; —m;4; — 1. Moreover, we can use integral
or half-integral k. In the latter case we obtain

Zo(r) = ¢ 3¢ [(q)n

in the former

Zy(r) = ¢ 3 "2 (g), .

The values of the h; are given by the lowest eigenvalues of L in the core-
sponding superselection sector. Their minimal value is —c g/24.

Finally let us consider the conformal theory given by the Lee-Yang edge
singularity. The theory is minimal, such that all holomorphic fields are gen-
erated by the energy momentum density T'(z). The normal ordered prod-
uct : TT : is proportional to the second derivative of T and does not
yield an independent state. Taking Fourier coefficients, one sees that prod-
ucts of the form L, L, and L,L,41 can be reduced to simpler ones, which
looks like an extended Pauli principle. For the partition function this means
m; > mip1 + 2. With the independent variables [; = m; — m;41 — 2 one finds

Zo(r) = ¢ S ¢ /(g)n
and

Zi(r) = ¢ ¢ [(@)n |

in the two superselection sectors.

When we tensorize r theories of this kind, the characters are multiplied.
To write the product characters in analogous form, we consider n as a vector
with r components and define (¢), :b(q)n]l «..{@)n,. The exponent in the
numerator becomes a quadratic form

Q(n) = —;—an+bn+ h,
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with a diagonal r X r matrix B and a vector b which depends on the repre-

sentation.
Other conformal theories have characters of analogous form, but with

more general symmetric matrices B. Thus we consider characters of the
form

> (@) -

T geeesTly

To calculate c.g, one has to evaluate all these sums for q close to 1.
This can be done by a saddle point calculation. First one interpolates the
summands by a continuous function of n, using

(@Dm = (9% ﬁ(l - q"q").
: k

The logarithm of the product is essentially the q-deformed dilogarithm of
¢™. In leading order it can be replaced by —Li2(¢™)/log(g). Now (g)oo is
essentially the Dedekind n-function, whose modular behaviour is well known.
In particular, we have

log(q)eo ~ Lig(1)/log(q)

in leading order.
Varying the n; yields a stationary point for z; = ¢™ with

log(l —z;) = ZBU log(z;) .
)

For the effective central charge one obtains

coff = Y0 L(1 - 2)/L(1)

where we used the Rogers dilogarithm and its properties L(1) = n2/6, L(1)~
L(z) = L(1 - ).

For the free boson, B = 0 and cyg = 1. For the free fermion B = 1/2,
which yields cof = 1/2. For the Lee-Yang edge singularity B = 2, such that
1—z = z?, which yields the golden ratio. The five term identity immediately
yields 5L(z) = 3L(1) and cof = 2/5.

The characters of conformal field theories are modular, which essentially
means that the saddle point approximation gets no perturbative correction,
in the sense of a power series expansion in 7. To find these corrections, one
uses the expansion

Y52, log(1 — ug®) = Liy(u)/2mit — Jlog(1 — v)

m . B
+ X g Y (2mimr )P 2
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with 4 = ¢™. Here the B, are the Bernoulli numbers, which apart from B,
vanish for odd k. Finally one uses the fact that q'/?%(¢)., is a modular form
and has no perturbative corrections [NRT 93].

An alternative expression for these corrections can be obtained by the
following method. First one writes the character in the form

f Z u g E ™ [(@)mdu/2miu .

The first sum can be transformed by Poisson summation. For the second
sum one uses

S /(g = J[ (1~ ug®)
m k=0

and its expansion given in the previous paragraph.
The perturbation expansion has exactly the same form as before, except
for the substitution of 7 by —7 and of Q(n) = %an +bn+h,by

Q'(n) = %nB"ln +nB~b+ R,
where

ir_ 5 T l -1

K =h 7 + 2bB b.

In other words, when a pair B, b yields partition functions without power law
correction, then B~1, B~1b does the same. The duality between B and B!
generalizes the level rank duality known from the characters of Kac-Moody
algebras, as we shall see.

First, however, let us study non-perturbative corrections. Using the Ja-
cobi triple product identity

(1= o) I - wg™)(A - )1 = u7'q") = Yo(=) urg 2
and Poisson summation of the right hand side plus reverse application of

the Jacobi triple product identity one finds

iu1/2
-1

&-—1/2611—28—771'22/717(&, q) ,

-1‘ n b n
g7 [T(1 - ug")(1-w'¢") =
n 0} U

where u = exp(2riz), @ = exp(—2niz[T), ¢ = exp(2mir), § = exp(—27i/T),

F(i,§) = (1-a) [[(1 - ag™)(1 - a7'§") .
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We split the right hand side into a factor regular at zero and one regular at
o0. In particular, the dilogarithm symmetry yields

%Ltl_l__{i":ﬁ—l/Zdi%e-wizzl‘r
= exp((Liz(u) + Lis(u~))/2mir — $log(l — u) — Llog(1 — u71) .
By the residue theorem we have

ico . 2mis 2mis
log F' = ~—12-/ log(1 — e—2m/7) (6 u+1 + ™ u) ds

ioo e21risu -1 eZm'a -

This yields the unique splitting

Y52 log(1 — ug®) = Lis(u)/2mit — Llog(l — u) —

Y 2mis 2xis
—1 [ log(1 — e™2m0/7) (Gith + gTte ) ds
which is exact for |u| < 1 and takes care of non-perturbative terms.
Contour integration yield the contributions of characters with

non-minimal h. One must be careful with its analytic continuation, since
the dilogarithm has cuts at arguments 0,1. To handle these difficulties, it is

convenient to define the Rogers dilogarithm L(z) only modulo 472 ard as a

function of U,V, such that
V=1-¢"=1z.

Starting from 0 < # < 1 and real U,V one obtains by analytic continuation
a function L(U,V) which is one valued modulo 47%. The five term identity
now takes the form

5
Y LU, Vi)y=7%/2  mod 4n?,
i=1

U1+ Uiy1 = Vi and Uiys = Uj, Vigs = V. Note that U,V are well defined
on the Riemann surface of the dilogarithm.They are found by deforming the
integration contour into the Riemann surface of the dilogarithm and using
the variables U,V instead of z. One finds stationary points for

Vi= ZB;J'U,' .
2

For the h we obtain
~h =3 L(U;,Vi)/(4x%)  mod1l.

For any given stationary point we can find others by adding 27in; to V; and
2mim; to U;, as long as the m;, n; are integral and n = Bm. This changes the



190 WERNER NAHM

value of h by nm/2. For bosonic theories, the eigenvalues of Lg are integrally
space. Thus B must have a form such that nm only takes even values. Such
matrices may be called even. As long as the matrix elements are integral,
this terminology coincides with the usual condition that even matrices have
even diagonal entries. For fermionic theories, half-integral spacing is allowed
in the Neveu-Schwarz sector.

The sum 37;[z;] belongs to the Bloch group, since one checks easily
Sulzid A1 — 2] = 0. Moreover, 3°; D(z;) = 0, since the eigenvalues h
of Lo are real. It has been proven that this property implies that 3;[2;] is
a torsion element of the Bloch group. In other words, for some N, §°; Nlz;]
vanishes by the five term relation.

Already at the present stage, we obtain a simple mterpretatlon of level
rank dualities. In the simplest case, this duality relates the SU(N) Kac-
Moody algebra at level M and the SU(M) Kac-Moody algebra at level N.
In particular, the central charges of the two theories add up to the integer
NM —1. In our formalism, every torsion element 3 ;_,[z;] of the Bloch group
has a dual element 37_,{1 — z;]. The corresponding matrix B’ is just the
inverse of B, as expected. The effective central charges add up to the matrix
rank 7.

In terms of L{U,V), the Bloch group is given by equivalence classes of
sums 3, ni(Us, Vi),

exp(U;) + exp(Vi) =1,

with the closure condition }"; U; AV; = 0, using the ordinary wedge product
over the vector space of complex numbers. If N 3", U; A V; is a sum of five
term relations in U,V, the five term identity for L(U, V') implies that the
denominators of A have to divide 8 N. This is obvioysly true for the examples
considered above. Since the free fermion yields N = 2 and in particular
h = 1/16, the result is the best possible of this form.

There is some hope to classify the matrices P which yield torsion ele-
ments. For r = 1, the only relevant elements are [1/2], [1 — 7] and the golden
ratio defined by 7 + 72 = 1. The corresponding matrices for the first two
cases are B = 1 and B = 2. The theories are the ones described above and
the effective central charges are 1/2, 2/5. The first case is self-dual, the sec-
ond one has a dual theory with B = 1/2 and effective central charge 3/5.
The free fermion is given by the (3,4) minimal model, the two others by the
(2,5) and (3,5) models.

More generally, the vanishing of perturbative corrections to the saddle
point approximation yields strong and calculable constraints on B, b, h.

For r = 2, M. Terhoeven made a classification under the plausible as-
sumption that every allowed matrix B admits b = 0. In this case, one always
finds h = —c,g/24, such that the level rank duality between the conformal
dimensions just yields coq + cg/f =7
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For r = 2, this assumption yields three exceptional cases and one series.
The exceptional cases are given by the 22,7), (3,7) and (3,8) minimal models
and correspond to B = 2(3]), B = 1(§}) and B = (%}). The series is of the
form

1
B=-— (p q) .
ptg\qg p

The corresponding characters are theta functions and the central extension
is 1.

A relation of this series to the Dehn twists of the figure-eight knot seems
evident, but so far the close formal analogies cannot yet be explained. In
particular, it would be very interesting to relate the renormalization flow of

the conformal models to the continuous interpolation between Dehn twist is
considered in [NZ 85] and in [Yoshida 85].
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Abstract. The interaction of matter with gravity in two dimensional spacetimes can be
supplemented with a geometrical force analogous to a Lorentz force produced on a surface
by a constant perpendicular magnetic field. In the special case of constant curvature,
the relevant symmetry does not lead to the de Sitter or the Poincaré algebra but to an
extension of them by a central element. This richer structure suggests to construct a
gauge theory of 2-D gravity that reproduces the Jackiw-Teitelboim model and the string
inspired model. Moreover matter can be coupled in a gauge invariant fashion. Classical
and quantized results are discussed.

Introduction

The beautiful success of General Relativity and the key role played by gauge
theories in the description of fundamental interactions are two main reasons
leading physicists to be interested in differential geometry. On the one hand,
particles follow geodesics of spacetime, on the other hand, gauge potentials
are identified with connections on some principal bundle. Moreover, it is
tempting to exploit the local symmetries of General Relativity to write it as
a gauge theory. Attempts in this direction turn out to be rather successful in
lower dimensional gravities. In 241 dimensions, it is recognized {Achucarro
and Townsend 1986, Witten 1988/89) that planar gravity is described by a
Chern-Simons model. In this note, I will consider the even simpler case of
141 dimensions, where a gauge theoretical formulation of lineal gravity has
a natural setting using an extended (Cangemi and Jackiw 1992) Poincaré
(Verlinde, eds. 1992, Grignani and Nardelli 1993) group or, more generally,
an extended (Kim, Soh and Yee 1993, Cangemi and Dunne 1993) de Sitter
(Fukiyama and Kamimura 1985, Jackiw 1992) group; the extension is related
to a geometrical force (Cangemi and Jackiw 1993) which exists only in that
particular dimension.

* This work is supported in part by funds provided by N.S.F. under contract PHY-89-
15286 and by the “Fondation du 450e anniversaire de I’Université de Lausanne”.
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Gravity in 141 dimensions

The reduction of General Relativity to 1+1 dimensions is not straightforward
because of the vanishing of the Einstein tensor. There are two main proposals
for lineal gravities.

One is obtained with a dimensional reduction of the Einstein-Hilbert
action in 241 dimensions (Teitelboim 1983-1985),

Iyr = 5;—10- /d2z\/:§77(R -A). (1)

The Lagrange multiplier n enforces constant curvature, R = A.

The other proposal (Callan, Giddings, Harvey and Strominger 1992) is
inspired by string theory on a two dimensional target space (it can alter-
natively be viewed as an s-wave approximation of 341 gravity (Harvey and
Strominger 1992).

Toi= 5 [ dov/=ge (R + 430,40, - X) )

Its classical solutions are g, = Ay /(M —A(z—7Z)?), where h,, = diag(1,—1)
is the flat spacetime metric. The value M = 0 corresponds to a flat met-
ric (vacuum solution), whereas the cases M # 0 have the characteristics of
a black hole. The action (2) takes a simpler form with a change of vari-
ables (Verlinde 1992, Grignani and Nardelli 1993), g, = exp(—2¢)guu,

1= exp(-29).
Isi= 5 [ doy=gaR - ) )
2k

The Lagrange multiplier, 5, now epforces zero curvature, £ = 0. Propos-
als (1) and (2) suggest the more general action (Kim, Soh and Yee 1993,
Cangemi and Dunne 1993)

Ig= 5 / d%ﬁ(n(}z —A)- A) (4)

In view of the string inspired model (2), the “stringy” metric g,, is confor-
mally related to g,y, §uv = guv /7. However, there is no definite reason to
prefer one or the other as the physical metric (Fujiwara, Igarashi and Kubo
1993).

Let us end this section by recalling an equivalent formulation of geome-
try where (g, R) is substituted with (ej,w,). The Zweibein, e, is related
to the metric, g, = ezhabef’,, and the spin-connection, w,,, to the curva-
ture, dw = Rvol/2 (vol is the volume two-form). Moreover, a space without
torsion implies a relation between the Zweibein and the spin-connection,
de® + €*ywe® = 0 (g is the antisymmetric two-tensor with value € = 1).
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Point particle motion on the line

The gauge symmetry hidden in the action (4) becomes obvious if one studies
the motion of a particle on the line. The interaction of a point particle
in a background geometry is usually described by the geodesic equation.
However; in two dimensions (and only in this dimension), the right side of
that equation may be supplemented by a force term of a geometrical nature
(Cangemi and Jackiw 1992),

m # . .
e #¥i? = F(R)g* /—geu,2°. %)

dT / (Xg ﬁzﬁ Jxﬂgaﬁz ve

This equation is still general covariant and invariant under reparametriza-
tion provided F(R) is a scalar function. We will restrict ourself to linear
examples, F(R) = —B — AR/2. Due to its similarity with electromagnetism
(which is not included here), the generalized geodesic equation (5) is ob-
tained from the variation of the action,

- / dr [ 5T ) g (7)) ()
+8(7)(Awua(r) + Bau(a(r) )] (©

where w is the spin-connection and a a one-form satisfying the exactness
condition da = vol.

It is easy to check that for constant curvature this action is invariant
under a change of coordinates defined by a Killing vector field. Constant
curvature spacetimes (with trivial topology, which we assume here) are max-
imally symmetric and thus possess three independent Killing vectors fields,
§é‘ J),E(”O), fé‘l). By Noether’s theorem, they generate three conserved currents.

=" — J

7
fé‘a) = (1 — %11:2) + %ha,,a:"z“ -— P, (e =0,1) ™

With the canonical symplectic structure [3—;,9: ] = §;, these currents fulfill

the algebra,
[Pa7‘]] = €a.bea ( )
8
[Po, By] = eas(37+Bal),  Ba=B+3AA,

where I is a central element acting by 1 in the representation (7).
Due to the presence of a geometrical force, we do not get the de Sitter
algebra in its expected form; more specifically, in the flat case, A = 0, we
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do not recover the Poincaré algebra but a central extension of it. For B # 0,
this algebra possesses a non-degenerate, invariant inner product,

hab 0 0
0 (m/By)? 1/Bp
ha = (Q4,QB) = 1-8(m/By)? T 1- A(m/zw 9)
0 1/31\ A/2

T 1-%(m/Ba)? l—é(m/sm

(A,B = 0,1,2,3; Qo = P,; Q2 = J; Q3 = I), which depends on a real
parameter m. The Casimir Q4h*PQp in the representation (7) coincides
with the Hamiltonian for a particle of mass m. It can be shown that the
freedom in the parameter m corresponds in the case A = 0 to a global
symmetry (Jackiw 1992) also found in the dilaton model (Russo, Susskind
and Thorlacius 1992) where its anomaly plays a crucial role in the existence
of Hawking radiation (Fujiwara, Igarashi and Kubo 1993).

Gauge formulation of the gravity sector

We suggest to use this enhanced group structure for a gauge description of
gravity. A connection will be thus a one-form of the type

A=e"P,+wJ + Bpal (10)
with curvature two-form
F = dA+ A?

= (de® + ®ywe’) P, + (dw + 2 € “eqped)J + By (da + Le el (11)

The components of F' reproduce geometrical quantities if we interpret e® as
a Zweibein and w as a spin-connection: The two first components are the
torsion relating the Zweibein to the spin-connection, the third one equals
(R — A)vol/2 and the last one (da — vol). Using a scalar function with value
in the adjoint representation of the gauge group, § = 7* P, + n*J + °I, and
the non-degenerate inner product (9), we build a gauge invariant action,

r oL
IS - 27k /(U’F
—_ 1 a a b
= 57 /[na(de + %pwe’)
. b
-“:m((m/&)?nz — ) (dw + Se eare’)
+1—%(1}1/BA)2 (_(772 + 3577 )(da + 3e"eave )] (12)
which not only reproduces the action (4) with

n= ;’%(“,,17/7;’;)3( (m/Ba)*n® - "2‘37773)
(13)

— 1 2 A .3
A= 1-8(m/Ba)? ("77 + 25,7 )’
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but also provides a one-form, whose classical value, da = vol, is the one
needed to construct the matter action (6).

Besides the zero curvature condition, F' = 0, we also get an equation for
the scalar function, D,n = 0. This set of equations is easily solved by the
genera.l solution

A=U"tdU, n=U""noU (14)

for any group element U and constant gauge algebra element 7). Of course,
U has to be chosen carefully in order to reproduce a geometric solution
associated to a non-degenerate metric g,, (Cangemi and Dunne 1993, Jackiw
1992). The “stringy” metric §u, = gy /7 then takes the form of a static black
hole, for A = 0, §uw = by /(M —X(z—Z)?). Nevertheless the physical content
of the model will not depend on this choice and U = L ie., e* =w=a =0,
is perfectly admissible. This is sometimes referred as the unbroken phase.
The physics should be contained in the gauge invariant part of 7,

<773 77) = (77(0)777(0)) =M,
{(m, I) = (no), I) = A/ Ba.

The gauge theoretical approach relates the number of free parameters
in the classical solutions (M, ), %% z!) to the dimension (four) of the gauge
group. It introduces also the cosmological constant A as a dynamical variable.
The parameters M and A are gauge invariant quantities and describe the
physical content of the theory, as we will see in the next section.

(15)

Quantization of the gravity sector

A gauge theoretical setting allows a more tractable way to deal with quanti-
zation. We present here the canonical quantum structure of gravity without
matter; it is simple and interesting, even if, in the absence of matter, there
are no propagating degrees of freedom. We write the action (4) in its Hamil-
tonian form.

1 :
= / 2z (n, F,)

1 1
m /dtdaz ((T], BoAl) + (AO; Dln)) - 5;’; /dtdzal(n’ AO) (16)

The Hamiltonian is a sum of constraints
G = —(0in* + fc*AP°) (17)

(A,B,C =0,1,2,3 are the gauge group indices, which are raised and lowered
with the inner product hsp, and fec# are the structure constants of the
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gauge group). The spatial component of the gauge connection is canonically
conjugate to 17 and we postulate the usual commutation relations

[na(z), AT ()] = 27k 656(z — y). (18)

With these commutation relations, the algebra of constraints coincides, as
usual in gauge theories, with the original gauge algebra.

[Ga(z),GB(Y)] = ifaB®Go(2)8(z — y). (19)

In a Schroedinger picture, we consider states as functionals of n4(z),
¥[n4), on which Afl(z) acts by functional derivation, (2rk/¢)(8/6n4(z)).
Physical states are those annihilated by the constraints G4 and they satisfy
the differential equations

é §
. b . _
((%na —i2rk e, Ubg;]‘«; +i2rk nzeab-é—%)lf = 0,
(3 24 ionk heo -'5—) ¥ =0 (20)
in 4 bnaénb = Y
(61773 + 127k BAe“bna—é-) ¥ =
np

These equations are solved by the functionals

; aba
U] = exp (5,;,; [z n2f-,—,—c’—,;’-}’ﬁ) $(M, 3)

; (21)
{m,m)=M

{mIy=X/Bp )

with support on the constant gauge invariant combinations (n,n) = M and
(I,m) = A/Bha; 9 is a function of the variables M and A. The physical states
depend on the two values M and A, which coincide for classical solutions
with the two parameters of the black hole configuration. Let us now couple
matter to this gravity.

Coupling to matter

The coupling to matter follows the one discussed before, see Eq. (6). It is
possible to find a gauge invariant formulation of it either for point particle or
for fields, cf. Ref. (Cangemi and Jackiw 1993). The gauge invariant actions
are of the form

LA p(r), €%, TolAu 9,6, ... (22)

where the additional field £° acts like a Higgs field that insures the gauge
invariance of the action. The essential feature of this coupling is that it does
not involve 7. In this gauge formulation, the matter is coupled to the metric
9., Whereas in the geometrical point of view people use mainly a coupling
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to guv- But, since their coupling is conformal, it is not really different at
the classical level. Nevertheless, this difference could have its importance
once we proceed to the quantization (Fujiwara, Igarashi and Kubo 1993).
Notice that our coupling breaks conformal invariance at the classical level
even in the massless case. Namely, the trace of the energy-momentum is
proportional to the additional force strength, B and at the quantum level
its vacuum expectation picks up an additional term, R/24r (Cangemi and
Jackiw 1993).
The equations of motion are modified in the following way

F=0, Dun=2rkJ5, (23)

where (J3)4 = —€,, (811, /6A2) is the axial current. Let us consider the
point particle. Outside the particle trajectory, Jf} is zero and the equations
are those of pure gravity. We have two sets of four constant parameters
on each side of the trajectory, whose differences are fixed by the particle
characteristics. The shift in M and A implies a transition from a pure gravity
state to another when crossing the particle line; this is usually interpreted
(Callan, Giddings, Harvey and Strominger 1992) as a black hole created
by an in-falling particle. The shift in Z is a basic ingredient in deriving a
Hawking radiation (Callan, Giddings, Harvey and Strominger 1992) for the
“stringy” metric, gu..

Our formulation reproduces interesting features of lineal gravity. But be-
ing a gauge theory, we are able to discuss in a straightforward manner issues
concerning gauge charges or quantization.

A gauge definition of mass

The definition of mass and angular-momentum is an ill-defined concept in
General Relativity. Different methods lead to different results (Bak, Cangemi
and Jackiw 1993). However, when one has a gauge invariance, Noether’s
procedure uniquely define conserved eurrents and charges. In our model, I+
I, an infinitesimal gauge transformation 6 generates an explicit conserved
current

1
w_ Lo
Jg = € 0u(n,6) (24)
and a conserved charge.
. 1 Il.—_ o0
Qo = /dmljg = -7}—"-:-(17, 0)’1_1:'}:00. (25)

The question is which @ define energy. Obviously, energy should be related
with infinitesimal diffeomorphisms in a time-like Killing direction.
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But, in topological field theory (F = #8), infinitesimal diffeomorphisms
are equivalent to infinitesimal gauge transformations (Jackiw 1978).

LfAIl = faaaAu + aufaAa = Du(faAa) + faFau- (26)

An infinitesimal diffeomorphism, f°, is identified with an infinitesimal gauge
transformation, f*A,. It is thus associated to the conserved charge

1 o -
Qr=—nf ATt (27)
and energy E is defined for a time-like Killing vector f«.
In the absence of matter, the contributions at ! = 400 and z! = —c0

are identical, which implies £ = 0. When matter is included, due to the
jump of the value of 7 across the particle trajectory, the contributions are

different and gives a non zero energy, £ = (,7) = M, in full agreement
with the ADM definition.

Conclusions

In this brief note, I have shown how General Relativity and gauge theory
can be combined in 1+1 dimensional spacetime. Once the gauge group is
recognized, we are able to produce a gauge theory, which encompasses the
Jackiw-Teitelboim and the string inspired models. The inclusion of matter
in a gauge invariant way is possible and provides a model, which not only
reproduces previous results but also provides a natural way to define gauge
invariant and conserved quantities, as energy, and to deal with quantiza-
tion. Another interesting feature of the model is the introduction of the
cosmological constant as a dynamical variable (Izawa 1993). Supersymmet-
ric extensions have been studied in relation to a positive energy theorem
(Park and Strominger 1993) and for a topological description of supergrav-
ity (Cangemi and Leblanc 1993). The quantization of pure gravity has shown
how the physical states depend on gauge invariants. The quantization of the
full model deserves further study. It would also be interesting to consider
topological effects occuring in the definition of the one-form a and in the
resolution of F = 0 (e.g. Hwang, Kim, Soh and Yee 1993).
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Abstiract. The classification of quasi - primary fields is outlined. It is proved that the
only conserved quasi - primary currents are the energy - momentum tensor and the O(N)-
Noether currents. Derivation of all quasi - primary fields and the resolution of degeneracy
is sketched. Finally the limits d = 2 and d = 4 of the space dimension are discussed.
Whereas the latter is trivial the former is only almost so.

1. Some general remarks

We have studied only a very special example of a critical field theory at di-
mensions 2 < d < 4. Nevertheless we believe that the results are relevant for
many critical field theories, in particular sigma models in a neighbourhood
of a free theory. Our neighbourhood is defined by a % expansion.

In this résumé we extract results from a series of papers (Lang and Riihl
1991-1993) and from earlier literature on conformal field theory in general
(Dobrev, Mack, Petkova, Petrova and Todorov 1977; Ferrara, Gatto and
Grillo 1973) or conformal sigma models in particular (Vasil’ev, Pismak and
Khonkonen 1981-1982). These results may have different status but we con-
dense them equally into “theorems” which should not be considered as ma-
thematical theorems but as tested conjectures. General statements of quan-
tum field theory and group theory are thus mixed up with conclusions from
low order perturbative expansions. Let us start with such a theorem which
certainly disappoints many of the readers:

Theorem 0: Almost none of the structures of conformal field theory at
d = 2 can be rediscovered at 2 < d < 4.
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2. Definition of the model

We start with the partition function

Z = / D[S]Dla) exp{ - / dz [%(auS)2(x)+z%a(z)(Sz(z) - 1)]} (1)
where

S : O(N)- vector, O(d) - scalar;
a : O(N)- O(d) - scalar;
d = 2u : space - time dimension
If S and « are normalized in a standard fashion
«

(54(2)85(0)) = ba(2?) (2)
(a(z)a(0)) = (=2)7" (3)

the critical coupling constant z becomes a computable function of N, and

N-ooo: z = O(3) 4)
The limit N — oo is a free field limit
I}im S(z) = s(z) (5)

but s(z) possesses infinitely many components which leads to problems
sometimes. A saddle point expansion of (1) gives the 4 - expansion.

A critical theory such as this is conformally covariant. Operator product
expansions (OPE) generate a field algebra A(S, @) of the two fundamental
fields S and o which is associative and possesses a commutation property
connected with the crossing behaviour of n - point functions. The building
blocks of A(S, &) are the conformal or quasiprimary fields (gp - fields ).

Theorem 1: All qp - fields belong to representations of the conformal
group characterized by two quantum numbers only: 4, the
scaling dimension under dilatations and [, the tensor rank
under space - time rotations.

These are the elementary representations. In addition the gp - fields transform
irreducibly under O(N). We ascribe to them a Young frame Y.
Consider the dimension 84 of the gp - field ¢

8 = [64] +1(¢) (6)
[64] : the normal dimension
n(¢) = O(#) : the anomalous dimension (7
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By definition

[64’] = P(I"‘l)‘i‘q, P,QEWO (8)

[6s] = n -1 9
So we expect that in the limit N — oo ¢ tends to a normal product of p
fields S with not more than ¢ derivatives (see below).

Each elementary representation [6,] of a gp - field possesses a dual rep-
resentation [¢',1'] (‘shadow representation’)

§ =d-6+2la (10)
! =1lb (11)

The two - point functions

<¢[5,1}(9’)¢[5,1](0)> and <¢[a',z'](93)¢[5',z'](0)>

are as kernels and up to a normalization inverse to each other. An n -
point function of ¢(s is transformed into an n - point function of ¢(er .y by
amputation. Therefore we have

Theorem 2: The fields ¢(5) and (s ;1) are dynamically equivalent.

So from each pair ¢ys 5, ¢[s',11) We would like to choose only one representative
as basis element of A(S,a). We will in fact be able to do that but in an
unexpected fashion,

From

(8]

il

d— (p(p—1)+q) +2
2-p)(p-1)+2-q+2 (12)

we see that the a - field can be considered as the shadow field of

(8%=) (13)

ren.

since
p=2,q¢=0,1=0implies [§'] = 2 (14)

Inspection of the action in (1) also suggests this interpretation of a.
Next we decompose ¢ in (8) as

g=1+t=1+2r  (t twist) (15)

where r is the number of o fields bound into ¢ at N — oo and ! is the
number of derivatives. p, | and r (or t) serve as quantum numbers in a
neighbourhood of N — .
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3. Classes of gqp - fields

Construction of the qp - fields goes by OPE and harmonic analysis. This
automatically orders the qp - fields according to increasing dimensions §.
From the interpretation of the quantum numbers p, I, t in (8), (15) we can
naturally expect these numbers to be bounded by

p20,120,t20 (16)

In fact, this is fulfilled by our construction. Most of the shadow fields are
forbidden by (16) but a few of them are still permitted.

We put all gp - fields with the same Y and p into a class (Y,p). A generic
class looks graphically as Fig.1.

(6] (6]
0] 4 Of mmm  — e 5 —_ = —
[So] + P b+ s
[6o) + b — — — w4 — —
S0] + df w— — — +3} — e
(6o] lo # =0
o) +3p —  — +2bk —
{60} u !
So] + 2 e e 1
(6] + P ” u+
So) + 1} — -
Lol + lo+1 g
5 - — p=1f ——
(ol lo S
1 1 1 | 1 i 21 I>
0 2 4 6t 0 2 4 6t
Figure 1: A generic class (Y,p) * Figure 2: The class (0, 1)

Labels may be multiply occupied by qp -fields, which are distinguished
by their anomalous dimensions (“degeneracy”). Some of the simplest classes
look different indeed.

(A) The class (O0,1) containing the fundamental field S. At ¢ = 0 there is
only the scalar field S. At th¢ level ¢ = 2,1 = 0 we would expect the
shadow field §’ of S. But it is not found, this level is empty. The level
t = 4,1 =2 is twofold degenerate.

(B) The class (8,0) containing the fundamental field a. At ¢ = 2 we have
only the a field (we start counting from ¢ = 2 in this case). At t = 4 we
have only even /'and at ¢ > 6, ] = 1 is empty.

Indeed, fpsion of two qp - fields into a third one by OPE

L(6c—64-6
A@B0) = (7)) + ... (17)
abbreviated as
A® B - C (18)
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is analogous with the formation of bound states. Two bosonic a’s cannot
be bound together to a state with odd ! and for more than three a’s
I =1 is also excluded by bose symmetrization.

(C) The class (#,2) containing the energy - momentum tensor T, .
The level ¢t = 0, I = 0 has been found unoccupied. The shadow field of
o should appear on this level, or, according to our remark above, the
field (Sz(a:)) . Thus the sigma - model constraint works and this

field has been eliminated. The energy - momentum tensor field lies at

t=0, Il=2 6=[6=2u=4d (19)
(6] 8]
8k — —— —— 2 o e e— —
6 — —— 2t 2 - — — —
a4 = woop—
2 b — w-2
e 4
i I 1 ] T ] ] 1 .
2 4 6 8t 0 2 4 6t
Figure 3: The class (0,0) Figure 4: The class (9, 2)

Looking through the classes more carefully, we recognize that the elimi-
nation of shadow fields has been completed.

In (Lang and Rithl 1992b) we showed that elimination of the shadow field
of a was directly related with a renormalization condition. Using dressed
propagators and vertices (represented as Polyakov triangles o) we have three
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such conditions

PR + oz _Q._. + ... = 0 (S)

cewa 4+ z --O - -+

t
1
)
'

"
A /\

These three conditions suffice to determine 7(.), n(a) and 2. A generaliza-
tion of the argument in (Lang and Riihl 1992b) shows validity of

i
)

(@)

2l

Theorem 3: The requirement that one (two) shadow field(s) of the fun-
damental fields do(es) not show up replaces one (two) renor-
malization condition(s).

"Phe status of the proof is still not satisfactory: O(7r) calculations at best.
The theorem (‘equivalence theorem’) is very powerful in practice.

The a - field produces a field algebra A(e) which is a subalgebra of
A(S,a). It contains only O(N)- scalars, among them the energy - momentum
tensor T},

T, € (0,2) (20)
Indeed
a®a—T (21)

at O(3) , so p is not conserved at this order. Moreover
TT — o (22)

s0 all A(e) can be generated from T (at d = 2 T generates not only Vir x
Vir but W algebras as well!).,

Theorem 4: The only conserved qp - currents in A(S,a) are T, and
Juab, the Noether currents of O(N)- symmetry from the
class (H,2).

Sketch the proof. Denote by #Y the number of blocks in the Young frame
Y. Then

p—#Y = 20, n € INy (23)
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This is obvious at N = oo since n is the number of contractions applied to
the normal product of p vector fields s. But in a neighbourhood of N = 0o
it remains valid due to standard arguments of harmonic analysis.

Next we use a classical lemma of conformal field theory (Lang and Riihl
1993a, Appendix A) for qp - fields which are symmetric tensors in spacetime.
In fact for 2 < d < 4 we have the situation of d = 3: symmetric tensors are
sufficient. The lemma says that a qp - current is conserved if and only if

I>1,6=08l=2p-2+1 (24)
i.e.

p=21>11t=0 (25)
and

7¢) = 0 (26)
This leaves as candidates the classes

@®,2), B2, ©.2 (27)

In each case the t = 0 towers are nondegenerate with the following anoma-
lous dimensions at leading order

. (M)
(@,2) : n(SI) N (I-1)2p-—-2+1) ! even
@,2) :17_(_{1_2 T M u-14D(e-2+10) ! odd (29)
’ n(S)
0, (I=2)
(Tl) 2(1 - 1)+
(8,2) : LT, = { ii-2 (30)
() 2(2u+ 1+ p)i-a-2p
,g ((p+ 1)!) (2 + 1)1-4
| (I > 4,even)

The curves for the expression (29) are presented in (Lang and Rithl 1992c,
Fig. 6). None of these functions changes sign. They vanish identically for J;
and Ty and are otherwise different from zero for all 2 < d < 4. It is also
important to guarantee that no empty levels are filled up at higher orders of
% or that degeneracy appears this way. The first is made sure by crossing
symmetry, the second possibility can at present not be excluded.
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Figure 5 A.pedigree of fusion

4. Fusion

Each qp - field has a pedigree of fusion. Fig. 5.

The internal lines are arbitrary qp - fields which can be produced from
the parents. This means that the fusion coefficients effective at a vertex must
be nonzero:

S5 # 0 (30)

Theorem 5: Fusion coefficients vanish only if the corresponding Little-
wood - Richardson coefficients of O(N) are zero or if this
follows from a crossing symmmetry selection rule.

As an example let A = B scalar and the Littlewood - Richardson coefficient
be symmetric (antisymmetric) under exchange of A and B. Then odd (even)
1 are forbidden for C. Another example is the fusion

a® S (31)

which leads to any level of the class (D,1) at O(#) already, but in the class
of degenerate levels only to one linear combination of gp - fields . So to

resolve degeneracies we have to consider different pedigrees with the same
final level.

Theorem 6: The qp - fields with I = 0 are never degenerate.

This corresponds to the uniqueness of a ground state in QM.
We introduee the concept of ‘dominant channel fusion’ (DCF). This kind
of fusion acts already at O(1) and produces scalar qp - fields of the type

(Y,p;[8,1) = (2, ,p;p(p— 1)+ 2r,0) (32)
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from qp - fields of the same type. Let twosuch qp - fields with labels {r1, 1},
{pa, 2} be given. The resulting field has labels {P, R} with

P =p+p (33)
R=r1+rm2 34)

For DCF normal dimensions are additive and degeneracy does not occur.
Only symmetric O(N) tensors are produced by definition. Pedigrees with
DCF at each vertex produce a qp - field of type (32) which depends only on
the numbers p of S fields and r of a fields entering and not on the form of
the pedigree. In other words: DCF is abelian.

We denote the qp - fields (32) by Mép , Any qp - field on the level
@, ,mp(p-1)+2r+1,1) (35)

is denoted M, ,{’Z’r} where k is introduced to take account of the degeneracy.
We are interested in the fusion process

Mém,r;} ® Mém.rz} - Ml{,z1+m.r1+r2} (36)
If we keep
P = p+py, R=ri+4r (37)

fixed but let p{, r1 run, we obtain different combinations of M, l{,f’n} which
can be resolved.
Technically one considers the four - point functions

(M) ) M (3) M 45) M 00 9
with fixed

P= pit+p =pi+70

R= r+r, =r1+n 49

On the one hand these four - point functions (38) are calculated from a
2(P + R) - point function involving 2P S fields and 2R o fields by OPE
reduction via DCF. This is mainly a combinatorical task bringing in the
“replica parameters” py, 71, P2, T2, P}, T}, Db, 75 and, at OGV) , the connected
four - point functions

<SSSS>conn , <aaaa> conn’ <aSaS>c0nn (40)

which are explicitly known (Lang and Riihl 1992a, 1992b, 1993a). Crossing
between the unprimed factors exchanges

1 & pa, Ty & T (41)
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so that we can use the crossing symmetric combinations

tho = 1iry, 3 = pipey, t3 = pira+pan (42)

On the other hand we compare the four - point function (38) with con-
formal exchange amplitudes (this is an element of harmonic analysis).

M

) \2,

Figure 8 Conformal exchange amplitude

This allows us to extract expressions for

3 fiat fi (43)
k
and
S S (M) (44)
k

. M, . .
The fusion constants f;"* are functions of the replica parameters

M,
fi2™ = Fi(p1,m15p2,72) (45)

By a simultanous diagonalization procedure for the two expressions obtained
for (43), (44) we can extract the fusion coefficients and the anomalous di-
mensjons . The fusion coefficients are obtained in the form

fg"" = polynomial in the replica parameters giving (46)
(—=1) under crossing times an algebraic fynction
depending homogenously on t;, t3, t3

We have in fact solved the following cases (Lang and Riihl 1993b)
P =0, R arbitary > 0: levels 0 <! < 6 and t = 2R in the class (9,0).
Degeneracy sets in at R > 4 and ! > 4,
R =0, P arbitary > 0: levels 0 <1< 6 and ¢t = 0 in the classes
(e, , P). Degeneracy sets in at
P>4and! > 4.
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In both cases the anomalous dimensions are

Q(—%f—) = rational functions of p at leading order. (47)
n
and the algebraic function in (46) reduces to a (nonhomogeneous) polyno-
mial of éither ¢ or 3.

If RP # 0, degeneracy starts already at R+ P > 3,1 > 2. We resolved
only the cases 0 <! < 3. Moreover we find

M) _ algebraic (irrational) function of 4 at leading or- (48)
n(S) der.

Many infinite sequences of anomalous dimensions are known now and in
these sequences we can study limits. Consider a tower of nondegenerate qp -
fields M,{P'R}, P, R fixed, ! running. Then in the DCF process (36) the pair
of qp - fields on the left hand side is uniquely determined. At leading order
in 4 we find

lim (M) = (M) + (M) (49)
Instead in the case of degeneracy

PR P
(M) = o(5) (50)
which makes the 1—\1,— expansion asymptotic only if N > /2. We could also
think of keeping ! fixed and letting P, R run. Then

(M, ,{P'R}) = O(—;—f x second order polynomial in P and R) (51)

imposing a similiar restriction on N.

We emphasize that our method of constructing the states M ,{P'R} by
forcing all internal qp - fields of the pedigree to have tensor rank zero may be
too restrictive for large I. In a forthcoming article we will study an alternative
algorithm which remains correct at large [ as well.

5. The limits d\, 2 and d /" 4

For any 2 < d < 4 the limit N — oo leads to a free field theory. In this
limit each qp - field ¢ € A(S, &) possesses a corresponding qp - field ¢ in
the free field algebra Ag(s). In Green functions involving a fields we may
first amputate them and perform the limit afterwards. At the boundaries
d = 2, d = 4 the behaviour of coupling constant and critical indices

RPN (52)
k=1
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sinwy T'(2u - 2)
r T(p+1)I(p-2)’

z~§:ﬁ‘~ (54
—k=1Nk’ )

concerning their zero orders in d is listed in the following table

m($) =

(53)

d=2ld=4
z 0 2
Z9 0 2
m($) 1 2
n2(5) 1 2
mie), ¢ #5| 1 1

All critical exponents vanish at both limits. These limits are therefore
connected with free field theory.
At d = 4 we obtain a free field theory in the trivial sense that

LIIJ%S(:L’) = s(z), As(z) = 0
s(z) : N - component O(N) - vector field (55)

As a test we can calculate the limit of <aSaS> after amputation. This limit

d = 4 is assumed fieldwise and is an isomorphism of field algebras in the
straightforward sense. Let A, B,C € A(S, )

A@BO) = (=2) 7Y o) + .. (56)

Then if a, b, ¢ are the corresponding free fields

a@b0) = (7)1 0 2)e(0) + .. (57)

The limit ¢ — 2 is performed termwise.
This is not true at the other limit d = 2. First we consider the two
conserved gp - currents

¢ : T, or Jua
which have well defined local field limits
@t OF Juab

Both 7' and J can be constructed from fusion of S ® S. We introduce the
Ward identities in any ad hoc normalization and normalize the fields ¢ 3
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{T,J}, ¢ 3 {t, j} relative to the same Ward identities. Conformal invariance
implies the same scaling dimension and tensor structure for ¢ and ¢ so that

(8(2)4(0)) = Colk) (=) (0)) (38)
By explicit calculation we find
lim Co(w) = 1= 2+ () (59)

I = tensor degree of ¢ (1 or 2)

‘Ward identities can be derived from the two - point functions. Instead of
normalizing fields by three - point functions and comparing the two - point
functions we can introduce a standard normalization of twe - point functions

<¢(z) ¢(0)> = (z2)—6¢ - tensor(z) (60)

with the tensor factors connected to Gegenbauer polynomials which can be
submitted to an ad hoc normalization, say C}' ~1(1) = 1, too. Doing that, the
factors C¢(p) appear in the three - point functions as fusion coefficients. It
becomes clear that the appearance of such factors is quite general. Consider

the fusion of n fields S by DCF into the field Mé"’o}. In the free field limit
this corresponds to taking the Wick normal product

18g (61)
Two such fields multiply as
188t 1 (z) 1881 (0) = 18811 (0) +... (62)
whereas DCF yields
O(p—-1
MO @MFN0) = 1 ()T MO0+ (6)

The exponent of z? contains only anomalous dimensions and tends to zero
at 4 = 1. Computation of f gives

I 1
flp) = 1+ mn(s)pxpz + O(F) (64)
so that, with (53)
lim () = 1- B2 4 (1) (65)

Then we end up with a final
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Theorem 7: The d = 2 limit is into the universality class of the polyno-

mial algebra of free fields. Fusion coefficients are O(4) de-
formed with respect to free field theory.

In particular this implies that exponential expressions of free fields (“vertex
operators”) cannot arise. Moreover the € = d — 2 expansions (which are in
the literature since about 1976) are correct only if applied to critical indices
and not to amplitudes. To our knowledge this restriction has never been
clearly expressed before.
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1. Introduction

There are well known examples of classical field theories for which the min-
ima (instantons) of the euclidean action come into families (moduli). The
basic examples are the euclidean versions of Yang Mills theory, gravity with
cosmological constant and some classes of o-models. In the semiclassical
approximation to such theories, there are observables which correspond to
cohomology classes on the moduli spaces of instantons and whose expecta-
tion values coincide with the associated intersection numbers. This is the
“topological sector” of the theory. As the intersection numbers do not de-
pend on the covariance, the expectation values of the topological observables
is not perturbative and to compute them one can safely set the covariance to
zero (i.e. pick up a purely topological action) and work with the intersection
theory of moduli spaces (see e.g. [3] for more details).

For non linear o-models with values in compact Kahler manifold, how-
ever, the folklore is that what matters is the cohomology ring of the target
space modulo the “quantum correction”. This is somewhat surprising be-
cause:

1) what really matters is the intersection ring of the instanton moduli
spaces

2) the quantum correction is generically inomogeneous (e.g. w? = 1 with
degw = 1 for P! models) and breaks the grading which is typical of
intersection rings.

This inconsistency is actually only apparent, as everything can be ex-
plained and understood geometrically as we did in [2]. There we first con-
sidered the case of g-models P! — Gr(s; n) from the Riemann sphere P! to

* Work partially supported by Progetto Nazionale 40% “Metodi geometrici e
probabilistici in Fisica Matematica” and by CNR-GNFM.
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a Grassmannian and checked that the geometrical construction yielded the
right answer alredy proposed by Gepner and Intriligator on purely algebraic
grounds. We then studied the generalization to flag-manifold valued models.
The case of models with values on toric manifolds is presentely under study.
The general picture we get is as follows:
i) the moduli spaces M, of instantons of (multi)-degree d have projective
compactifications My = M U A,
il) whenever one has to compute intersections of the form

(ﬂl--'ﬂiba; Hd)a

one can find classes §}...3,in the Chow ring of M4_; such that

(Br...Br-c; My) = (By...00; My_1)

which formally amounts to putting o = 1, i.e. to applying the quantum
correction.

Understsanding these results in general is a nice exercise of algebraic geom-
etry, which requires some technical tools which may be not widely known
among physicists. We feel better to concentrate hereinafter on the simplest
example where all the details can be explicitely worked out. We hope that
this may help a wider understanding of the basic geometrical ideas underly-
ing “quantum corrections”. For the approach to more general examples we
refer to [2].

The topological P'-model

As it is well known, the minima (instantons) of the Dirichlet action for
maps f : P! — P!, P! being the Riemann sphere, are simply holomorphic
maps. The parameter space of such instantons is then the disjoint union
M = Q150 M4 of the spaces My of holomorphic maps of degree d. Every
f € M; can be explicitely given as

Ty = -Pi(zﬂ?zl)a (1' = 0’1)

where (29,21),(20,21) are homogeneous coordinates of the source and the
target and P;(29,21) are homogeneous polynomials of degree d. Notice that
this gives a well defined map of degree d if and anly if the P;’s have no
no common zeroes. As homogeneous coordinates are defined up to scalar
multiplication, the parameter space of such maps is the space of ¢oefficients
occurring in the polynomial P; modulo scalar multiplication. We get then
that My ~ P24+1\ A is an open subvariety of P29+1, the degeneracy locus
A being the set of parameter where Py and Py have common zeroes.

There are in principle several ways of compactifying M, into a projective
variety M4. In the present case, it is natural to set My ~ P24+l ~ M U A.
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Notice that A has (complex) codimension 1 in M; indeed, it is a divisor
given by the vanishing of the resultant

ap a1 a4 0 0

0 a a aq_1 a4 0

R= 0 . 0 a a . Qg_1 G4
T by by by O . 0
0 b() bl bd—l bd 0

0 0 by b bi_y b4

of the two polynomlals Po(20,21) = @o2d + ... + agq12{ and Pi(20,21) =
boz8 4 ... + bap12{. For instance, when d=1 d = 1, the two polynomials
Py = azp + bz, Py = czg + dz are parametrized by m:= (a:b:c:d) € P3,
(a: ...: d) denoting the line spanned by (a,...,d), and have a common zero
whenever m belongs to the quadric Q C P3given by the equation ad—bc = 0
So A~ Q and M; ~P3\ Q.

The “universal” instanton of degree d
f:P'x My — P!

(20 : 21,m) — frm(20: 21),

where f,, denotes the map parametrized by m € My, is holomorphic on
P! x My — P!. For m € A instead, there is a finite number of points of
P! where f,, degenerates and hence the universal instanton is not defined
on a locus of codimension two in P! x My. It follows that f is actually a
rational map from P! x M, to PL. For every point p € P!, the map

f(p):px Mg — P!

(p,m) — fm(p)

is again a rational map, with degeneracy locus

Pl(p’m) = 0}

Let us next work out in full details the simplest case of d =
universal instanton reads

Ap={me My | Po(p,m) =

1. The

f:P'xM; — P!
(20: 21,0 :b:c:d) — (az0+ b2y : czo + dz1)

and and we know that it is not defined where ad — bc = 0 and azg + bz; = 0.
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We want to see in this simple example how the homology (actually the
Chow) ring of the target space is related to intersection theory on the M.
Recall that the intersection ring of P! is generated by the class [p] of a
point p € P! (i.e. the Poincaré dual of the Kahler form w), with the relation
[p).[p] = 0. The idea is to study the “preimage” under f of p in the target
P! The map f, where defined, is completely determined by its graph T C
P! x M; x P!, To define a suitable preimage of a point p belonging to the
target P! we have to compactify T into T C P! x My x P! so that we can
define f~1(p) =: T N (P! x M; x {p}). Clearly

T= V(Io(CZo -+ dl) - 21(0,20 + bzl)) C P! X Hl X Pl,
where V(...) denotes the zero locus of ..., and
F7H(p) = V(Zolezo + dz1) = Fa(az + bz1)) C P x My,

where (%o : ¥1) are the homogeneous coordinate of p € P1. To find classes in
M corresponding to local observables, we have to fix also a point (0, say)
of the source P! and consider the map

f°: M - P!

given by f%(a :b:c:d):= f(0:1;a:b:c: d). Similarly to what we have
done before, we can look at the primage in M; under f° of the fundamental
class of p € P!, getting

(£ ) = ({0} x M1 x {p})nT C My,

which is the zero locus of

Iod = :ltlb,

i.e. a hyperplane H C P3 = M. Let us calculate the intersection

(f2)"X(p) N (f°)"1(p'), setting for simplicity p = (0 : 1),p’ = (1 : 0). We
have (f%)~1(p) = V(b), (f°)~1(p') = V(d) and their intersection is the line

L= ()@ ()7 (#) ={(a:0:c:0) € M1}.

Clearly L is contained into A. To give a closer look to L we need a more
concrete understanding of what kind of graphs are represented by the points
of A\f m=(a:b:c:d) € M;\A then f,, has as graph I', = V(zo(czo +
dz1) —z1(az9+b21)) C P x P1. Now, I, is a graph of an actual map if and
only if the first projection I', — P! an isomorphism. Then, if m € A, I'n,
does not represent any function, because the point at which both azg + b2
and czg + dz; vanish does not belong to the graph. Nevertheless if we define
T, as before, we have a subset of P1 x P! of the same degree of a real graph
(in the present case, this is a consequence of the fact that T is defined by
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a unique equation, for more general targets this depends on the fact that
My is equipped with a “flat family” of graphs). Whenever m € L whe have
that Ty = V(czo20 — azy2p) = V(zo(w:o — azy)). It is clear that Ty, is the
union of two lines: the first, which is given by the equation 2, = 0, does not
represent any function; the second, which is given by cxo — az; = 0 is the
graph of a constant function.

We have then an isomorphism

)N 271 (') = L= Mo,

given by L3 (a:0:¢c:0)+ (a:c) € Mg = Mo ~ P!, which, as explained
in the introduction, gives the quantum correction f%~1(p) N fo”l(p') =1,
at least at the level of degree-one instantons. Let see more closely how this
works. Since M =~ P3, the unique non vanishing expectation value of local
observables can be computed as an intersection of the form

[i] = [(f) " ) LIS) () L(°) 7 (p3)]

of three cycles classes [...] in the intersection ring of P3.

Unfortunately, the representatives of the cycles classes explicitely occour-
ring above do note intersect transversally, but we can argue as follows. The
action of §I(2,C) on the source P! sends cycles into equivalent cycles, and
therefore we can compute [{] by computing

= (f1)7Hp) N (f7) " p2) N (f*) 7 (p3)
i.e.
i= Vi, Vi=V(=2P5Pa— 2P0z 4 220 a)
where p; = (z(k) gk)) and ¢ = (Eék) : Egk)). One easily checks that the
sistem of 3 linear equations in (a,b,c,d) equivalent to the intersection above
has maximal rnk for a generic choice of the pi, qx and therefore there is a
unique line (@ : b: ¢ : d) in the intersection.

It is also obvious that V, N V3 is isomorphic to a copy of My = P! and
therefore s C M. Accordingly, for the intersection numbers, we have

< [Vi).[Va).[Va); My >=< [Vi].[Mo]; Mo >,

and this is exactly what is called the quantum correction in the physical
literature.

Returning to the general situation there is a map
f:P x (M4\A) - P!

(zo:z1:a0:..iag:ibg:...:bg) — (aozg + ..+ adzf : bgzg + ...bdzf)
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(A being the zero locus of the resultant) from which we get a divisor
T= V(xo(bozg + ..+ bdzf) - a:l(agzg + ..+ adzf)) c P! x Hl x Pt

Fixing a point 0 of the source and two points p = (0 : 1),p’ = (1 : 0)
of the target as we made in the example, we can compute the intersection
L = (f9Yp) n(f°)"}(p) C My where again f° : My — P! is given by
fo(m) := f(0;m). We find

L=V(ag)nV(bg) = {(ap:...:84-1:0:bg:...:b4-1:0) € M4} C A.

To every m € L we can associate a subset 'y, C P! x P!, which cannot
represent any function, by setting

T = V(20[e0(bo2d ™! + o + ba_128™Y) + z1(a0z8 4 . + ag_12871))).

Again Ty, is the union of two components:the first, which is given by the
equation zp = 0, does not correspond to any function; the second, which
is given by :::g(bgz(",l'1 + ..+ bd-lz‘li"l) + xl(aozg"l + ...+ ad._lz‘li'l) = 0,
represents an instanton of degree d — 1.

Finally, similarly to what happens for degree-one maps, we have an iso-

morphism
(OO HY) = L~ M.

which gives the quantum correction
) en ()7 =1
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Abstract. We present a topological Lagrangian field theory that is geometrically similar to
the Yang-Mills(-Higgs) Lagrangian, and study the Bogoni6I'nyi solitons contained within
this theory. The topological field theory may provide an example of a dual field theory to
Yang-Mills(-Higgs). The existence of a dual field theory to Yang-Mills(-Higgs) theory was
conjectured by Montonen and Olive.

1. Introduction

Recently a class of Lagrangian topological field theories possessing a ‘min-
imizing’ Bogomol’nyi structure has been introduced on oriented, compact,
connected four-manifolds [8]. The associated Bogomol’nyi equations are rem-
iniscent of the self-duality equations in Yang-Mills theory, and the solutions
to the topological Bogomol’nyi equations share much in common with solu-
tions to the self-duality equations (instantons). Like the Yang-Mills instan-
ton, for example, solutions to the topological Bogomol'nyi equations can be
translated into geometrical structure on an appropriate holomorphic vector
bundle, and, the moduli space of solutions fosns a Hausdorff differentiable
manifold. We shall call solutions to the topological Bogomol'nyi equations
‘topological instantons’. The topological field theories studied in [8] achieve
these results with relatively little hard analysis and algebraic geometry when
compared with the Yang-Mills instanton theory [2]. The reason for this is
that topological instantons are essentially equivalent to the differential ge-
ometric formulation of ‘stable vector bundles’ due to Kobayashi [6]. The
differences between Yang-Mills instantons and topological instantons are
also significant. We mention three differences. First, non-trivial topological
instantons can exist on pseudo-Riemannian space-times, while Yang-Mills
instantons are, trivial on space-times. Second, topological instantons have a
larger gauge group, U(n). Third, topological instantons by virtue of their
non-triviality on space-times have a space-of-motions equivalent to the mod-
uli space; Yang-Mills instantons are pseudo-particles and do not possess a

* This work is supported in part by an NSERC research grant (OGP0105498)



224 MARK TEMPLE-RASTON

space-of-motions. It is well-known that self-dual instantons in Yang-Mills
theory and BPS magnetic monopoles in Yang-Mills-Higgs theory are closely
related [1]. BPS magnetic monopoles are non-singular, finite-energy solu-
tions to the self-duality equations reduced to three spatial dimensions with
a gauge symmetry in the (imaginary) time direction. A similar process can
be applied to the topological instanton, leading to the theory of topologi-
cal monopoles. The topological instanton and the topological monopole ob-
tained by dimensional reduction are the subject of this paper.

In the next section we discuss the differential geometry of the class of
topological field theories on four-manifolds introduced in [8], and expose
the Bogomol'nyi structure. Solutions to the Bogomol’'nyi equations (topo-
logical instantons) are shown to be projectively flat. The physical stability
of the topological instanton field configuration is argued from the topology
of the underlying four-manifold. In section three, we dimensionally reduce
the four-dimensional topological field theory to three spatial dimensions.
The Bogomol’nyi structure survives the dimensional reduction. Topological
monopoles are the solutions to the Bogomol’nyi equations in three dimen-
sions. Although the theory of topological monopoles is very similar to the
theory of BPS magnetic monopoles, there is an interesting difference between
the Bogomol’nyi structures of the two theories. In the theory of BPS mag-
netic monopoles the Bogomol’nyi equations appear as a completed square in
the Lagrangian, while in the theory of topological monopoles they do not.
The Bogomol’nyi equations in our class of TFTs consist of two equations,
either of which will saturate the Bogomol’'nyi energy. This added flexibility
in saturating the Bogomol'nyi energy allows greater freedom in constructing
solitonic particles with either an electric or magnetic charge.

2. Instantons in topological field theories

The Lagrangian theories in [8] are defined by the Lagrangian Action func-
tional:

C(A,B):/ <(HA®IE)A(IE®KB)>——12—<(IE®KB)2> (1)

defined on the product space A(P) x .A(P) Interpreting H4 and K% as
curvatures in the Lagrangian Action requires that the real dimension of M
be four. Ig is the identity transformation on the adjoint bundle, E. The
brackets < > remind us that a choice of adjoint-invariant, real-valued inner
product on the adjoint bundle is needed. The Action functional introduces
an artificial asymmetry in H4 and KB which is not supported by a physical
argument; we will return to this later. The variational field equations for (1)
are

DAKB =0, DPHA=y, (2)
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where we have made use of the Bianchi identity DPKB = (. The set of
solutions is clearly neither empty nor entirely trivial. The physical stability
of a class of nontrivial, nonsingular, finite-Action solutions to the varia-
tional equations (3) can be demonstrated by a topological argument. The
Lagrangian (1) can be rewritten as

2L(A,B) = —/M < (HA®Ig-Ig®KB)? > +/M < (HA®IE)?* >(3)

The inner product structure defines a Weyl polynomial of degree two. Let
E, and Ep be the vector bundle E equipped with either the connection A
or B, respectively. The first term in the Lagrangian £ in equation (3) is a
topological invariant for the tensor product bundle E4 ® Ef. Recall that
the curvature of E4 ® F} is given by QEA®E;9 = HAQIg — Ir ® KB. The
Bogomol’nyi equations,

HAQIp =Ig® KB, (4)

are therefore a vanishing curvature condition on the tensor product bundle
E 4 ® Eg. Solutions to (4) automatically satisfy the variational field equa-
tions (2). An indice computation for (4), HA 6.4 = 8,5 KB, shows that the
curvature forms H4 and K% are projectively flat. That is,

HA = KB =iFI,, (5)

where F is a real-valued two form on M, and I, is the identity endomorphism
for the vector bundle, E, of rank r. The Bianchi identity imposes a simple
condition on F, that dF = 0, so that F € H*(M,R). Since M is compact,
HZ(M,R) is of finite dimension. If F is a curvature on M, then the second
term in (3) is a topological invariant of the underlying four-manifold, M.
Topologically non-trivial solutions to the Bogomol'nyi equations will be said
to be ‘physically stable’ if F' is a curvature of M and if the solutions have a
fixed non-zero Action given by

2L = —/MF/\F=—241r sgn(M) #0,

where the topological signature of the manifold, M, is denoted by sgn(M).
Physically stable, non-trivial solutions to the Bogomol'nyi equations (5) on
The vector bundle (F, < >) are called topological instantons [8].

3. Monopoles in topological field theories

We now examine static, non-singular solutions to the Bogomol’nyi equations
(5). By assuming a gauge symmetry in the direction of time, X;, we can
dimensionally reduce the four-dimensional theory on R* defined by (1), to
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a theory on R3. The reductions are performed using the gauge symmetry
equations,

HA(Xy,) = =DA%y, (6)
KB(X;,-) = -DBopg.

Dimensional reduction introduces the equivariant Lie algebra valued fields,
®4,95 € A%R3, End(E)), defined by &4 = A(X;) and 5 = B(X,)
[4]. We can either reduce the Bogomol'nyi field equations (5) directly, or,
reduce the full variational field equations. In the first case, the Bogmol’nyi
equations locally reduce to

DA%, = DBég = Elf,

HA|gs = KB |po = Fp. (7)

E is the one-form obtained by contracting F in (5) on the infinitesimal time
displacement. In the second equation in (7) F' denotes the restriction of F
in four-dimensions restricted to the leaves in the foliation defined by X,.
Alternatively, the Lagrangian Action (1) after reduction becomes

E(A,B) = [, <Ug® KB)A(Ig @ DBop) >
- <(Ig® KBYA(DA®4 ® Ig) > (8)
- <(HA®IE)/\(IE®DB‘I)B) >,

and the dimensionally reduced field equations become

DBHA =, DBDA® 4 = [HA, &5, )
DAKE =9, DADBog = [KB,®,).

The energy functional (8) can be rewritten as

£(A,B) =
S, <(HA® Ig — Iz ® KB) A (DA@,4® Ig — Ig ® DP®p) > (10)
= Jar, < (DA®4®IE) A (HA®Ig) >

It is clear from (10) that the reduced topological instanton equations (7)
continue to saturate the Bogomol'nyi bound, given by the second integral in
(10). In Yang-Mills theory, solutions to the time-reduced instanton equations
are called BPS magnetic monopoles. We call solutions to the time-reduced
topological instanton equations: topological monopoles. Unlike Yang-Mills
theory, however, the energy functional (10) is saturated at the Bogomol'nyi
bound with either equation in (7). We need not insist that both equations in
(7) be satisfied in order to saturate the bound, although of course the field
configurations must still satisfy the second-order variational field equations.

To be observable to conventional detectors, U(n) field configurations must
be broken. The symmetry breaking mechanism for BPS magnetic monopoles
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is very attractive [3], so we will use it here. Imagine a solitonic core region
at the origin. Let G and H be compact and connected gauge groups, where
the group H is assumed to be embedded in G. The gauge group of the core
region G is spontaneously broken to H outside of the core region when the
Higgs field is covariantly constant, D® = 0. In regions far from the core
(r — c0) where we assume that DA® 4 = 0, it can be shown that

HA = ®,F,, : (11)

where Fy € A*(Mj3, Ep), is any closed two-form on M3 taking values in
the H-Lie algebra bundle, denoted by Ey here. A similar expression to
(11), KB = &pFp, can be written when DB®p = 0. We.assume that
<®4®4 >= 1 when r >> 1 and where spontaneous symmetry breaking has
occurred. When G = U(n) and H = U(1), F4 becomes a pure imaginary
two-form on M3. Consider the Bogomol’nyi solitons defined by (7). Solutions
to (7) have an energy topologically fixed by

£ = —fM3<(DA¢’A®]E)/\(HA®IE)> (12)
"fM3d<q)AHA >= "fs2 < @AHA >,

I

where §? is a large sphere surrounding the monopole core and lying com-
pletely in a region where DA®4 = 0. Substituting (11) into (12) and using
the normalisation condition <®4®4 >= 1, the energy is fixed by [ F4. As
in the case of the BPS magnetic monopole, [ Fi4 would be interpreted as
the magnetic charge.

4. Conclusion

In this short contribution we have introduced a class of topological field theo-
ries in three and four dimensions, exposed their Bogomol’nyi structures, and
argued the physical stability of solutions. But we believe that the theories
presented here are incomplete because there is a physical asymmetry in the
gauge fields present in (1). Symmetry in the Action is easily regained, how-
ever, by exchanging H# and K2, and adding it to the Lagrangian (1). The
variational field equations and the Bogomol’'nyi equations are unchanged by
the symmetrization. In four dimensions, the stability of the topological in-
stanton is only slightly different—the symmetrized Action is twice that of
the asymmetric Action. In three dimensions, the saturated energy functional
becomes

£ == [, <(D'@A@Ip)A(HA® Ig) >
—Ju, < (DPOB @ Ip) A(KP @ IE) > . (13)

We argued stability from the topological interpretation that can be given
to (13). The symmetrization of the topological field theory implies that the
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solitonic particle is topologically stable if either of the integrals in (13) is
non-vanishing. The integrals should correspond to the magnetic and electric
charge of the soliton given by [o, Fs and [g Fp, respectively.

A particularly glaring omission in the solitonic particle spectrum in YMH
theory is the electric monopole. The Montonen-Olive conjecture addresses
this by proposing with some compelling evidence that there exists a dual
field theory to YMH theory which would replace the BPS magnetic monopole
with solitonic intermediate vector bosons: W*, Z0 [5]. Although there is still
much study needed, we believe that theory of topological monopoles may
be an example of a dual field theory [9]. If so, then in order to ensure the
stability of the Zg particle, the Zy must be a magnetic monopole.
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Abstract. The two-dimensional self-dual Chern-Simons equations are equivalent to the
conditions for static, zero-energy vortex-like solutions of the (2+1) dimensional gauged
nonlinear Schrddinger equation with Chern-Simons matter-gauge coupling. The finite
charge vacuum states in the Chern-Simons theory are shown to be gauge equivalent to the
finite action solutions to the two-dimensional chiral model (or harmonic map) equations.
The Uhlenbeck-Wood classification of such harmonic maps into the unitary groups thereby
leads to a complete classification of the vacuum states of the Chern-Simons model. This
construction also leads to an interesting new relationship between SU(N) Toda theories
and the SU (N} chiral model.

The study of the nonlinear Schrédinger equation in 2 4 1-dimensional
space-time is partly motivated by the well-known success of the 1 + 1-
dimensional nonlinear Schrédinger equation. Here we consider a gauged non-
linear Schrédinger equation in which we have not only the nonlinear poten-
tial term for the matter fields, but also we have a coupling of the matter fields
to the gauge fields. Furthermore, this matter-gauge dynamics is chosen to
be of the Chern-Simons form rather than the conventional Yang-Mills form.
With this choice, the nonlinear term in the Schrédinger equation may also
be viewed as a Pauli interaction, due to the Chern-Simons relation between
the magnetic field and the charge density.

The theory with an Abelian gauge field was analyzed by Jackiw and Pi [7]
who found static, zero energy solutions which arise from a two-dimensional
notion ‘of self-duality. The static, self-dual matter density satisfies the Liou-
ville equation, which is known to be integrable [10]. The gauged nonlinear
Schrédinger equation with non-Abelian Chern-Simons matter-gauge dynam-
ics has also been considered [5, 3, 4], and once again static, zero energy solu-
tions (referred to as “self-dual Chern-Simons vortices”) have been found to
arise from an analogous, but much richer, two-dimensional self-duality con-
dition. These two-dimensional self-duality equations are formally integrable

* Work supported in part by the DOE under grant DE-F(G02-92ER40716.00 and in
part by the University of Connecticut Research Foundation.
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and in special cases they reduce to the classical and afline Toda equations,
both known integrable systems of nonlinear partial differential equations
(8, 9].

Here, I classify all finite charge solutions to the self-dual Chern-Simons
equations by first showing that the self-duality equations are equivalent to
the classical equations of motion of the Euclidean two-dimensional chiral
model (also known as the harmonic map equations), and then using a deep
classification theorem due to Uhlenbeck [11] which classifies all U(N) and
SU(N) chiral model solutions with finite chiral model action. The chiral
model action is in fact proportional to the net gauge invariant charge @ in
the matter-Chern-Simons system, and so the classification of all finite charge
solutions is complete. I also present the explicit “uniton” decomposition of
a special class of solutions to the SU{N) chiral model equations which have
the remarkable property that when the matter density for these solutions is
diagonalized, it satisfies the classical SU(N) Toda equations. Such a direct
correspondence between the Toda equations and the chiral model equations
is surprising.

The 2 + 1-dimensional nonlinear Schrédinger equation reads !

DV = ~ DM 4 [ [¥,01],9] (1)
K

where the covariant derivative is D, = 8, + [A,, ], and both the gauge
potential A, and the matter field ¥ are Lie algebra valued: A, = A}T*,
¥ = ¥°T". The main results of this paper are for the Lie algebra of SU(N),
but the formulation generalizes straightforwardly to any simple Lie algebra
(the noncompact case has been studied in [1]). The matter and gauge fields
are coupled dynamically by the Chern-Simons equation

1
Fuy = Eeuup']p (2)

where F,, = 0, A, — 0, A, +[A,, A,] is the gauge curvature, « is a coupling
constant and J# is the covariantly conserved (D,J* = 0) nonrelativistic
matter current

JO = (v, ¥
= =2 (1 D - (D), 9) 3)

[t

Il

The Schrédinger equation (1) and the Chern-Simons equation (2) are invari-
ant under the gauge transformation

¥y — g_l\Ilg
Ay — g A9+ g7 0.9 (4)

! Note that there is a typographical error in this equation in [4].
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where g € SU(N).
In [3, 4] it has been shown that the minimum (in fact zero) energy solu-
tions to (1,2) are given by the self-dual Ansatz

D_¥ =0 (5)

combined with the remaining Chern-Simons equation
2
0-Ap — 0L A +[A, Ay = — (vt ¥, (6)

Here Ay = Ay £ 1Ay, Dy = Dy £ 1D, and with antihermitean Lie algebra
generators we have Ay = w(A;)’f. Equations (5,6) are collectively referred
to as the self-dual Chern-Simons equations. The self-dual solutions provide
static solutions to the gauged nonlinear Schrodinger equation, as can be seen
from a Hamiltonian formulation [3]. Alternatively, this follows directly from
the equations of motion (1,2). To see this, note that if D_¥ = 0, then the
currents take the simple form

Jt = S i) = —%[\I/T,D+\I/]. (7)

It then follows from the Chern-Simons equation (2) that Ay = ZLK[‘I/T,\II].
The identity

1
D¢ = D,D_V +i[F5,%] =D, D_V¥ - ;[[\Iﬁ, ¥], 9] (8)
then implies that the Schrodinger equation reduces to
1
10¥ = -§D+D_\I' =0. (9)

In fact, owing to a remarkable dynamical SO(2,1) symmetry of the gauged
nonlinear Chern-Simons-Schrédinger equations (1,2), it is possible to show
that the implication holds in the reverse direction: all static solutions are
self-dual {3].

Before classifying the general solutions to the self-dual Chern-Simons
equations, it is instructive to consider certain special cases in which sim-
plifying algebraic Ansdtze for the fields reduce (5,6) to familiar integrable
nonlinear equations. First, choose the fields to have the following Lie algebra
decomposition

A=Y A¥H,, V=3 ¢ Ea, (10)

where the sum is over all positive, simple roots « of the Lie algebra, and
H, and E, are the Cartan subalgebra and step operator generators (respec-
tively) in the Chevalley basis [6]. Then the self-dual Chern-Simons equations
(5,6) combine to yield the classical Toda equations

2.
Vi0ogpy = —;]ﬁa[}pg (11)
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where p, = |9*]?, and K,z is the classical Cartan matrix for the Lie algebra.
For SU(2), (11) becomes the Liouville equation V2ogp = —4p, which Liou-
ville showed to be integrable and indeed “solvable” [10] - in the sense that
the general real solution can be expressed in terms of a single holomorphic

function f = f(z™):
p=5Vog (14 f(z7)f(a*)) (12)

Kostant [8], and Leznov and Saveliev [9] have shown that the classical Toda
equations (11) are similarly integrable, with the general real solutions for
po being expressible in terms of r arbitrary holomorphic functions, where r
is the rank of the algebra. For SU(X) it is possible to adapt the Kostant-
Leznov-Saveliev solutions to a simpler form more reminiscent of the Liouville
solution (12):

Po = g-VQIOg det (Ali(z“L)Ma(x")) (13)

where M, is the Nxa rectangular matrix M, = (v d_u 8*u ...8% 1u),
with u being an N-component column vector

1
fi(z™)
wu=| JfoAz7) (14)
fr-1(z™)

For a radially symmetric SU(3) example see Figure 1. An alternative,
extended, Ansdtz involves the matter field choice

V=Y Fa+ YME (15)

where E_py is the step operator corresponding to minus the maximal root.
With the gauge field still as in (10), the self-dual Chern-Simons equations
then combine to give the affine Toda equations

9 . .
V2logpa = ——,;Kabpb, K is the affine Cartan matrix. (16)

The affine Toda equations (16) are also known to be integrable.
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Fig. 1. A plot of the nonAbelian charge density p; for a radially symmetric SU(3)
Toda-type vortex solution (13) to the self-dual Chern-Simons equations (5,6). For a radially
symmetric solution, the functions fo(z7™) appearing in (14) are chosen to be powers of
T

Having considered some special cases of solutions to the self-dual Chern-
Simons equations, we now consider the general solutions by first making a
gauge transformation to convert the equations (5,6) into the single equation

a_x = [x',x] (17)

where x is the gauge transformed matter field x = \/gg\l'/g”l. The existence

of such a gauge transformation g~ ! follows from the following zero-curvature
formulation of the self-dual Chern-Simons equations [3, 4]. Define

A+5A+—\/—g\lf, A_EA_+\/%\1/T. (18)

Then the self-dual Chern-Simons equations imply that the gauge curvature
associated with A4 vanishes: 0_ A4 — 04 A~ + [A_,A;] = 0. Therefore,
locally, one can write Ay as pure gauge

Ay = g 1049 for someg € SU(N). (19)
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Gauge transforming the self-dual Chern-Simons equations (5,6) with this
group element g1 leads to the single equation (17).

Equation {17) can be converted into the chiral model equation by defining
X = $h™184h for some h € SU(N) (the fact that it is possible to write x in
this manner is a consequence of (17)). The chiral model equation [15] reads:

04 (h™10_h) + d_(h~10,h) = 0. (20)

Given any solution h of the chiral model equations, or alternatively any
solution x of (17), we automatically obtain a solution of the original self-
dual Chern-Simons equations:

K
WO = B AP =x a0 = (21)

The global condition which permits the classification of solutions to the
chiral model equation (20) is that the chiral model “action functional” (also
referred to in the literature as the “energy functional”)

£lh] = —% / P tr(h~10_hh™' 9, h) (22)

be finite. This finiteness condition is directly relevant in the related matter-
Chern-Simons system because £[h] = 2 [ d%z tr(XXT) =14 [d% tr(\Il\IlT) =
%Q where () is the net gauge invariant matter charge. As well as being phys-
ically significant, this finiteness condition is mathematically crucial because
it permits the chiral model solutions on IR? to be classified by conformal
compactification to the sphere 2 [11, 13].

Theorem (Uhlenbeck [11]; see also Wood [14]): Every finite action solution
h of the SU(N) chiral model equation (20) may be uniquely factorized as a
product of “uniton” factors

h=+he ﬁ(?p,‘ ~1) (23)

=1

where:
a) ho € SU(N) is constant;

b) each p; is a Hermitean projector (p,1l = p; and p? = p;);
¢c) defining h; = ho [T, (2pi — 1), the following linear relations must hold:

1
(1-p) <8+ + ihi"_113+h,'_1> pi =0
(1-pi) R 0-hizi pi = 0

it

d)m<N-1.
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The % sign in (23) has been inserted to allow for the fact that Uhlenbeck
and Wood actually considered U(N) rather than SU(N). ;

An important implication of this theorem is that for SU(2) all finite
action solutions of the chiral model have the “single uniton” form

h=-ho(2p-1) (24)
where p is a holomorphic projector satisfying
(1-p)04p=0 (25)

These solutions are essentially the @' P! model solutions of Din and Za-
krzewski {2, 15].

At this point, it is not at all obvious how these types of solutions to
the chiral model equations (and therefore by (21) of the self-dual Chern-
Simons equations) are related to the special Toda-type solutions discussed
previously. The key observation is that while the algebraic Ansdtze (10,15)
each lead to a non-Abelian charge density p = [\Ilt,\Il] which is diagonal,
the chiral model solutions (21) have charge density p(®) = %[XT,X] which
need not be diagonal. However, p is always hermitean, and so it can be
diagonalized by a gauge transformation. It is still an algebraically nontrivial
task to implement this diagonalization, but this is achieved below for the
solutions of SU(N) Toda type.

It is instructive to illustrate this procedure with the SU(2) case first.
Since p® = p, the holomorphic projector condition (25) is equivalent to the
condition d4p p = 0. All such projectors may be written as

p= MMM~ Mt (26)

where M(z7) is any rectangular matrix depending only on the 2z~ variable.
For SU(2) we can only project onto a line in @2, so we take

= () 1)

This then leads to
1 1 f _ _ o f (-1 1/f
P (; 7r) x=ou- (5 ) e

1+ ff (1+ 1f)?
The corresponding matter density is
which may be diagonalized by the unitary matrix

o= (7 1)

9,0_log det(M 1 A1) ((1) —?1) (30)

X1, xlg
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This is precisely Liouville’s solution (12) to the classical SU(2) Toda equa-
tion.

For the SU(N) chiral model with N > 3 it becomes increasingly difficult
to describe systematically all possible uniton factorizations consistent with
the linear relations listed in Uhlenbeck’s theorem, but Wood [14] has given
an explicit construction and parametrization of all SU(N ) solutions in terms
of sequences of Grassmannian factors.

Another useful result from the chiral model literature is due to Valli:

Theorem (Valli [12]): Let h be a solution of the chiral model equation (20).
Then the action € defined in (22) is quantized in integral multiples of 8.

As a consequence, the gauge invariant Chern-Simons charge
Q = [tr(¥'¥) is quantized in integral multiples of 27k. A related quan-
tization condition has been noted in [3], where the non-Abelian charges
Q& = [ pa are quantized in integral multiples of 2w« for the SU(N) Toda-
type solutions (13). In this case, @ = 3, Qo

The relationship between the SU(2) uniton solutions and the SU(2) Toda
solutions illustrated above (26-30) can be generalized to SU(N) as follows:

Theorem [4]: The following matriz

h= (~1)%N(N+1)1\i—11(2pa - 1) (31)

a=1

where p, is the hermitean holomorphic projector p, = Ma(MlMQ)”IMl for
the matric M, in (13,14), is a solution of the SU(N) chiral model equation
(20). Furthermore, defining x = $h™'04h, there ezists a unitary transfor-

mation g which diagonalizes the charge density matriz [xf,x] so that

N-1
g It xlg = 3 {040-log det(M] M,)} He (32)

a=1

where H, are the Cartan subalgebra generators of SU(N) in the Chevalley
basis. This diagonal form is precisely the SU(N) Toda solution (13).

This theorem is proved [4] by expressing the projectors p, in terms of
an orthonormal basis for the space spanned by the columns of My. The
diagonalizing matrix g is also constructed from this orthonormal basis.

In conclusion, I mention some open problems suggested by these results.
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1. The most important physical problem is now to make use of this com-

plete description of the vacuum of these Chern-Simons-matter theories
in order to develop a second quantized theory.

. The fact that this quantization is possible for the 1 4 1-dimensional
nonlinear Schrodinger equation (NLSE) is intimately related to the in-
tegrability of the 1 + 1-dimensional NLSE. Here, in 2 + 1-dimensional,
the situation is less clear. Is the 2 4+ 1-dimensional gauged nonlinear
Schrodinger equation (1) with Chern-Simons coupling (2) integrable?

. Can one find time-dependent (i.e. positive energy) solutions other than
those obtained via the action of the dynamical SO(2,1) symmetry acting
on the static solutions?

. The work of Uhlenbeck, Wood and Ward gives a beautiful geometrical
picture of the chiral model solutions for the unitary group. What is
the geometrical interpretation of self-dual Chern-Simons solutions for
other Lie groups? Some solutions, in the Toda form, are known, but the
geometrical understanding of the corresponding chiral model solutions is
not clear. This should be particularly interesting for the self-dual Chern-
Simons solutions of the affine Toda form.



238 GERALD V. DUNNE
References

[1] Cangemi D., Self-Dual Chern-Simons Solitons with Non-Compact Groups, J. Phys.
A: Math. and Gen. 26 (1993) 2945,

[2] Din A. and Zakrzewski W., Properties of General Classical CPN~1 Solutions, Phys.
Lett. 95B (1980) 419; Interpretation and Further Properties of General Classical
C PN~ Solutions, Nucl. Phys. B182 (1981) 151.

[3] Dunne G., Jackiw R., Pi S-Y. and Trugenberger C., Self-Dual Chern-Simons Solitons
and Two-Dimensional Nonlinear Equations, Phys. Rev. D43 (1991) 1332,

{4] Dunne G., Chern-Simons Solitons, Toda Theories and the Chiral Model, Commun.
Math. Phys. 150 (1992) 519.

[5] Grossman B., Hierarchy of Soliton >~ utions to the Gauged Nonlinear Schrodinger
Equation on the Plane, Phys. Rev. Lett. 65 (1990) 3230.

[6] See e.g., Humphreys J., “Introduction to Lie Algebras and Representation Theory”
(Springer-Verlag 1990).

[7] Jackiw R. and PiS-Y., Soliton Solutions to the Gauged Nonlinear Schrédinger Equa-
tion on the Plane, Phys. Rev. Lett. 64 (1990) 2969; Classical and Quantum Nonrel-
ativistic Chern-Simons Theory, Phys. Rev. D42 (1990) 3500.

{8] Kostant B., The Solution to a Generalized Toda Lattice and Representation Theory,
Adv. Math. 34 (1979) 195.

[9] Leznov A. and Saveliev M., Representation of Zero Curvature for the System of
Nonlinear Partial Differential Equations zo,.: = exzp(kz)a and its Integrability,
Lett. Math. Phys. 3 (1979) 389; Representation Theory and Integration of Non-
linear Spherically Symmetric Equations of Gauge Theories, Commun. Math. Phys.
74 (1980) 111.

[10] Liouville J., Sur U’équation auz différences partielles ;ﬁ;logz\ + T:f = 0, Journ.
Math. Pures Appl. 18 (1853) T1.

[11} Uhlenbeck K., Harmonic Maps into Lie Groups {(Classical Solutions of the Chiral
Model), preprint (1985), J. Diff. Geom. 30 (1989} 1.

f12) Valli G., On the Energy Spectrum of Harmonic Two-Spheres in Unitary Groups,
Topology 27 (1988) 129. ‘

{13] Ward R., Classical solutions of the Chiral Model, Unitons and Holomorphic Vector
Bundles, Commun. Math. Phys. 128 (1990) 319.

[14] Wood J. C., Ezplicit Construction and Parametrization of Harmonic Two-Spheres
in the Unitary Group, Proc. Lond. Math. Soc. 58 (1989) 608.

[15] For a review see Zakrzewski W., “Low Dimensional Sigma Models” (Adam Hilger

1989).




FREE FERMION CONSTRUCTIONS OF SUPER
VIRASORO AND SUPER KAC-MOODY
ALGEBRAS

LOVISE DOLAN
Department of Physics, University of North Carolina
Chapel Hill, North Carolina 27599-3255, USA

(Received: November 20, 1993)

Abstract. Free fermion constructions of the superconformal and Kac-Moody algebras
are discussed. Coset representations provide examples for the N = 1, ¢ < % discrete
series. They generalize the Kac-Todorov construction of the supercurrent which was valid
for N=1,¢> %, and differ by the terms mixing the SuperVirasoro and Kac-Moody
algebras. They thus provide a guide for searching for new forms for the lower and upper
components of the superfields in one-to-one correspondence with the untwisted states in
a twisted superconformal field theory, and may be useful in discussing the low energy
phenomenology of superstring theory.

1. Introduction

Conformal, superconformal and extended superconformal algebras play a
role in string theory. In this paper we investigate constructions of the super-
current generator F'(z) of the two N = 1 world sheet supersymmetric exten-
sions of the Virasoro algebra, i.e., the Ramond and Neveu-Schwarz sectors.
The critical dimension of this system (determined by the absence of negative
norm ghost states) is D = 10. Unitary representations of the N = 1 super-
conformal algebra with critical central charge ¢ = 15 are constructed from
the matter superfields. The superconformal BRST ghost system provides a
non-unitary representation of the N = 1 superVirasoro algebra (SVA) with
¢ = —15. Although the representation is non-unitary, the SVA generators
still satisfy the hermiticity conditions Lghostt = [8host  pehostt — pghost
addition, the superconformal ghost system also carries a representation of
the extended N = 2 world sheet algebra.[!]

The matter superconformal fields of conformal weight one-half close to
form a super Kac-Moody algebra (SKMA). The mixing between the SVA
and the SKMA differs depending on the particular construction of the su-
percurrent. The N = 1 algebra is given by operator products where the right
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hand side holds for |z| > |[{| up to terms regular as z — (.

s arg | 0
LU= it o e Y g
ap(g) | 0
L(2)F(¢) = (; RIARE CC)
) |
F(F(Q) = s + (QZL-(C(;)> v

In component form we have

[Ln;Lm] = (Tl - m)Ln+m + i% n3 - n)én —m
[Ln7 Fm] = (g - m)Fn+m

C

1
{Fn» Fm] =2Lngm + g(n2 - Z)én,—m (2)

The super Kac-Moody algebra is
kéab ifabcTc(C)

PETE) = gt G o)
Ta(Z)db( ) - Z.f(a:c ()C)
& (2)d(z) = (;—_-”.C—) (3)

Here fabe fabe = Cybce; the level of the KMA is z = —2,% = %fz, where h is the
dual Coxeter number of the compact Lie algebra with structure constants

fabc~

Constructions of the matter supercurrent are given by the following.

1)The Kac-Todorov construction extends to a super Kac-Moody alge-
bra and has a mixing between the SVA and SKMA which reflects the fact
that the SKMA generators are conformal weight one- ha.lf superﬁelds The
Virasoro generators form a Sugawara construction and 3 < ¢ < _1Tm.z

2)The coset constructions have SVA generators Wthh are seen to be a
modification of the Kac-Todorov construction. This constructions also ex-
tends to a SKMA, but now the mixing between the SVA and the SKMA is
different from the Kac-Todorov case. The central charge satisfies 0 < ¢ <
dimg

23)Complex free fermions provide a construction similar to Kac-Todorov,

but now the supercurrent can carry automorphisms of groups other than

SU(2)8 in the presence of massless fermions. Here ¢ = d-’gﬂ.

<
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2. The Kac-Todorov construction

This construction provides the general free real fermion representations of '
the internal space SVA and SKMA algebras with the following mixing char-
acteristic of a weight one-half superfield.

L(2)T(C) = (Zi(?)z + (iT%CC)
L(2)d"(0) = ¢ du(g))z * (z_-ﬁ;)
F(2)T*(¢) = m(zd a—(%? ’ (‘j%‘o]
F(2)d*(¢) = \/%(Za_(%' Y

A realization is given by

v 1 osvar sas oy 1o dd*(2) , €
1) = R = 1 0w 16
W z

Ao

T%2) = =t fabcdb(z)dc(z)

e

Here 1 < a < ¢. This representation has level & = %iz =hand &= o
3

—1

bed®(2)d(2)d(2). 5
6\/%—£fb (2)d°(2)d(2) (5)

(2)T%(=

i.e. ¥ < & The most general realization is given by

1) = L)+ gy G = L) + 18,2

T%2) = T“(z) + ¢“(2)

E 1
F(z) = g F(2) + —==—=d%(2)¢"(2) (6)
R+ 3 ke 4 %
with level ¢ = h + 29 and ¢ = éi;—'m + z;gi:’ig = 3di2mg - i’d;mg‘, i.e. % <EL

¢ < 3™ The abelian SKMA is

1) =5 ey Ot L))
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T%(z) = ¢*(2) = 22-3 fursbl (27 (2)
F(z) = —-\/176—_(1—(1‘1(2)(1“(2), (7

Here foryforg = 2k%64 and ¢ = %(dimd“ + dimb[) > -233

3. Coset construction

We now modify the Kac-Todorov construction of the supercu.rent to be of
the general form

F(z) = AF(2) + Bd*(2)q*(). (8)
It follows that

L(2) = CL(2) + DL%,,(2) + ET*(2)*(2)

T%(z) = T%(2) + ¢°(2). (9)
Case 1: for E = 0, we regain the Kac-Todorov forms: a) minimal B = D =
0,A=C=1and b) maximal B = ——A = ———.

Vi et
z9 _ M

; where 4 =

_zd

Case2:for £ = =2k L
(x3+h)(z94+2R)

(= —Z h
cylzt42h) 7 T zed2h’ T T zi42h

e
B = Y_* __ the mixing between the SVA and SKMA is given by
V (@94+h)(z942h)

L(z)T*(() =0

L () =
. dds(¢ - e b e
y 29 ) d*(¢) L& ) —2h~ i fabeq(2)d(2)
294+ 2R22=0)?  (2-0)" (294 2h)ey,”  (2-0)
PT(C) =0
5
F(2)(0) = e e )0 () + he(Q)). (10)
(2= 0"\ (a3 + h)(as + 2h)
This representation has level z = h+ 2% and ¢ = di? (1- @m),

e 0<c< i%mg-. For g = SU(2) (so h = 2), we see this is just the discrete
series for unitary representations of the N =1 SVA (let ¢? = m):

3 8 3

7
=0 ) = Yy ()
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Case 2 is seen to be equivalent to the coset constructionf®l,

L(z) = LG(Z) - LH(Z) ( )+ LSu.g( )

: (1 ¢ [z 2)NET(2) =
*m[I(T (2) + ¢ ()T%(2) + ¢*(2))21T°(2)
=T%(2) + ¢"(2) (12)
ot Z
F(z) = —F(:) + () (z)

V(29 + h)(a7 + 2h) V(27 + R)(21 + 2R)

The coset here corresponds to G = SU(2)® SU(2) and H = SU(2).

4. Complex fermions

For complex fermions satisfying twisted boundary conditions fe(e*™iz) =
e f4(z), fo(e¥™z) = e7?™ f(z), the supercurrent construction general-
izes the Kac-Todorov expression to be given by

-1

F(z) = W fabch®(2)hP (2)he(2). (13)
2

The space-time fermi fields satisfy the periodicity condition h#*(e*"'z) =

Soh*(2) where 6, = F1 for R an NS fields respectively, so F(e2™2) = 6, F(z).

In a given sector, all the fermionic boundary conditions can be specified by

a matrix wi: so h*(e?™z) = wih(z) and

fdefwgwgwéf = 6o<fabc, (14)

i.e. Fwy is an automorphism M of the Lie algebra g with structure constants
fabe used to define the supercurrent in a Ramond (Neveu-Schwarz) sector.
The Virasoro generator is then given by

1) = P50 12 L0y iog(-a) (15)

where we are ultimately interested in the automorphisms w of g for which
the' coboundary term {str([tlog(-w)}?) = (i’gi?, , i.e. the automorphisms for
which the coboundary term takes its minimum value on the Ramond sector.
In D space-time dimensions, the mass operator is

m? = 4 222 4 Lin([log(~w)) (16)
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and the structure constants require dimg = 3(10 — D). So for massless
space-time fermions, m? = 0, the coboundary term realizes its minimum
value, and in D = 4, the dimension of ¢ is 18, where g is the algebra of the
structure constants occuring in the supercurrent (13). This mass formula is
tc be contrasted with that of the Kac-Todorov construction where massless
fermions require

1 D-2
2:-—— P di 2 17
m 2+ 15 + dimd , (1m)

sofor D = 4, g is U(1)8, which is the gauge group of the states in string mod-
els using the Kac-Todorov supercurrent construction necessary for sectors
with massless Ramond states.

In order to examine which gauge groups occur as the relevant internal
gauge symmetry of the spectrum of states for the complex fermion form of
the supercurrent given in (13), we investigate the SKMA (which mixes as a
weight one-half superfield) with this representation of the internal superVi-
rasoro algebra, ¢ = 9. The modified Cartan Weyl basis for the SKMA diago-
nalizes inner automorphisms. The fermions in this basis are h'(2),h%(2),
for 1 < i < rank(g) and a € roots(g), thus h' are real (R, NS) and
h%* = b~ are complex. The SKMA generators now form a twisted SKMA
where H'(e*"'2) = H'(z) and the step operators E%(z) = ™A F(e= 2 5),
So for inner automorphisms, the zero mode subalgebra which is the gauge
symmetry of the spectrum is U(1)7*"*(9), For outer automorphisms, one can
check for the relevant groups SU(3), SU(4) and SO(5) that the zero mode
subalgebra is again a product of U(1) factors.

5. Non-free fermion representations of the supercurrent

Not all known representations of the superconformal algebra can be ex-
pressed as free fermion constructions. In particular, the Waterson boson!®:
provides a representation for N = 2, ¢ = 1. The N = 1 subalgebra is gener-
ated by

L(z) = 5 1 a(2) - a(2) :

Il

t\'.)l:»—t

F(z) = f( eVIXE) Ly mVIXG) (18)

6. BRST superconformal ghost system

Non-unitary representations of the superVirasoro algebra are provided by
the BRST superconformal ghost system["7). The ghost superfields are B(z) =
B(z) +0b(z) and C(2) = ¢(2) + 87(z) with conformal spin hg = 2, h, = -1,
etc. The commutation relations on the Ramond sector are {bn,¢m} = 6n —m,
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[ﬁn,‘/m] = —bp,~m. The superVirasoro representcxtion has ¢ = —15, but the
generators still satlsfy the hermitian property FT ", and LT =L_,:

1() = ~2: bz )"c(z) LG Iy O
1 dﬂ(z)
L0
F(z)=:b(2)7(2) : =3 : B(= )dc(z) - El%(zz-—)c(z) : (19)

An alternative form for the supercurrent is given by Schwarz®l:

dc(z) iﬂ@ (
dz

F(2) = ~2:b(21(2) 45 2 B(5) 52 o(2): (20)

The ghost number current forms an abehan SKMA:

T(z) = — 1 b(2)e(2) : = : B(2)y(2) : +i (21)

The supercurrent in (19) can be identified as F't + F~ and can be used to
construct a second h = 2 supercurrent —F* + F~ as the upper component
of the superfield whose lower component is

H(z)=2:b(2)c(2) : +3 : B(2)1(2) : (22)
We find

PR+ P() = W) 43 () B 4 PO

co(z): (23)

The set L,G*,G~, H form an N = 2 superconformal algebra with ¢ = —15.

We include here for completeness, the unitarity restrictions on the cen-
tral for the N = 0,1,2 superVirasoro algebras/®!%, For N = 0, unitary
representations occur for all values of ¢ > 1 h > 0 and for discrete values
below 1 given by ¢ = 1 — m =0,1 R 1";), g, .., 1. The critical value
of the-central charge is ¢ = 26. The N = 1 system provides representations
of two supersymmetric extensions of the Virasoro algebra, i.e. the Ramond
and the Neveu-Schwarz. The critical dimension is D = 10. The only possible
unitary highest weight representations, i.e. representations generated from
a state |h), satisfy Lplh) = 0,n > 0; L0|h) = hlh); Fylh) = 0,n > 0; are
cha,racterized by (c,h) where either ¢ > 2, h > 0; or for the discrete values
0<e< 2 given by ¢ = —{ W] 0, 1”;), 1,.. % The critical value
of the central charge is ¢ = 15. For N = 2, the crrtxcal dimension is D = 2
complex or D = 4 real. Unitary representations occur for all values of ¢ > 3
and for discrete values below 3 given by ¢ = m =0,1,...,3. The critical
central charge is ¢ = 6.
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Abstract. Geometro-stochastically quantized fields are introduced as sections on a first
quantized Hilbert bundle, H, over Riemann-Cartan space-time with axial vector torsion
representing quantized elementary matter in a gauge theory based on the (4,1)-de Sitter
group. M is a soldered bundle with built-in fundamental length parameter R typical for
hadron physics carrying a spin zero phase space representation of G = SO(4, 1) belonging
to the principal series of unitary irreducible representations. In a nonlinear realization of
G the Lorentz subgroup may be related to a gauge formulation of gravitation. Bilinear
currents are introduced through G-invariant integration over the local fibers in H, and
covariant field equations are set up for the quantum fiber dynamics (QFD) describing the
coupling of quantized material sources to the underlying bundle geometry in the presence
of gravitation.

1. Introduction

It is well known that Einstein’s metric theory of gravitation may be for-
mulated as a Lorentz gauge theory by reducing the original linear frame
bundle P'(B,G’' = GL(4, R)) over the space-time base B, in the presence of
a pseudo-Riemannian metric g,,(z) with Lorentz signature, to the Lorentz
frame bundle Pr(B,H = SO(3,1)) over B = Vj. Also the connection on
P’ reduces to a connection on Py, provided g,,(z) is covariant constant, i.e.
satisfies V,g,,(z) = 0, which just defines the Levi-Civita connection de-

noted by f‘fw = { :V}. [Purely metric quantities will be denoted by a bar

in the following]. The metric g,,(z) may thus be regarded as a parallel sec-
tion on a bundle over space-time with ten-dimensional homogeneous fiber
G'/|H = GL(4,R)/S0O(3,1).

The pull back of a connection on Pp, with respect to a local section defin-
ing a gauge will be called w(z) which is a Lorentz Lie algebra-valued matrix
of one-forms, @;j(z) = —@;i(e); 4,7 = 0,1,2,3 ;2 € V4, with @;;(z) =
0%Ti;(z), where 8% = Ak(z)dz# are the fundamental one-forms on the base
V4 of Pr, [providing an orthonormal basis for the dual tangent space T (V4)
at z], and [k (z) are the Ricci rotation coefficients. A local orthonormal
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basis of the tangent space T(Vy) at z, which is provided by a local section
on Pr, will be denoted by e; i = 0,1,2,3; with e; = M(2)d,,, where A(z)
are the vierbgin fields and /\ﬁ(z) their inverse, obeying

N@X (@) =85 gu(e) = M)A (@)mi - (1.1)

g = diag(l,—1,-1,-1) is the Minkowski metric, and local Lorentzian
indices will be written with Latin letters (¢,k,7...), while Greek indices
(p,v,p...) refer to a natural basis 8, in T(V4) and dz* in T(Vy), respec-
tively. [For repeated covariant and contravariant Greek and Latin indices
the summation convention applies. Greek indices are lowered with g,,(x)
and raised with its inverse g#¥(x); Latin indices are raised and lowered with
7% and 7n;y, respectively.]

The problem of the theoretical description of atomic, nuclear or subnu-
clear particles in the presence of gravitational fields raises the question of
how to extend classical general relativity — relating the geometry of space-
time to the distribution of energy and momentum of classical macroscopic
matter — to the domain of quantum physics obeying the laws of quantum
mechanics for the description of matter at the atomic and “elementary”
particle level and requiring a treatment in terms of wave functions and field
operators. We are aiming here at a unified geometric formulation of gravita-
tional and subnuclear hadronic forces in the presence of classical as well as
quantized material sources. [The electroweak interaction will, for simplicity,
be disregarded in the following discussion. It may be included by enlarging
the principal bundles introduced below by an additional U (1)@ SU(2) fiber.]

Although gravitational effects are negligibly small in particle physics the
structure of Einstein’s metric theory of gravitation is so unique in its dualism
between the metric of the ambient space and the distribution of matter
therein that it may legitimately be asked whether a similar dualism may also
be invoked for the theoretical description of interections in the subnuclear
world, i.e. being relevant for hadrons at distances of the order of a Fermi
or below (~ 10713 — 107!® cm). With this aim in mind we shall investigate
here a model based on a higher dimensional bundle raised over space-time
characterized by a structural group G which is bigger than the Lorentz group
but, in fact, contains the Lorentz group H = §0(3,1) as_a closed subgroup
with SO(3,1) = O(3,1)** (proper isochronous Lorentz group) being related
to a gauge formulation of gravitation [1]. However, there will appear further
contributions at the level of the connection @(z) on P, introduced above
when one considers the induced Lorentz gauge degrees of freedom appearing
in this enlarged bundle formalism; i.e. there may appear torsion or Weyl
degrees of freedom related to the additional motions present or possible in
the internal spaces [the local fibers] on which the group G acts and which
may come into play at small (subnuclear) distances in the space-time base.
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We shall base the following discussion on the (4,1)-de Sitter group, G =
S0(4,1), as the bigger gauge or structural group containing the Lorentz
group as a gauged subgroup, and introduce the de Sitter frame bundle,
P(B =Us,G = 50(4,1)), over a Riemann-Cartan space-time Uy as a geo-
metric arena for the unification of general relativity deseribing classical
(macrophysical) gravitation, and strong subnuclear interactions modifying
Einstein’s theory at small distances due to the presence of quantized elemen-
tary (microphysical) sources. We shall disregard Weyl degrees of freedom in
the following and shall specialize later to axial vector torsion (i.e. to a com-
pletely antisymmetric torsion tensor). Compare Ref. [2] for a Weyl rescaling
of the metric in the fiber in the de Sitter gauge theory. It will be seen in
this context that Einstein’s metric of general relativity remains a classical
field describing macroscopic gravitation despite the presence of quantized
elementary sources in the geometry. Gravitation need thus not be quantized
in this unified theory.

Nonlinear field equations for the additional nonmetric geometric fields
are set up establishing a further feed back mechanism between matter (i.e.
elementary hadronic matter described in a quantum mechanical manner)
and the underlying bundle geometry raised over space-time. These addi-
tional source equations have the consequence that despite the presence of
quantized matter — represented in the form of generalized wave functions
(sections on a Hilbert bundle H) transforming under an irreducible phase
space representation of SO(4,1) — which induce in the bundle geometry
the additional geometric fields through certain bilinear currents, the metric
continues to play a classical réle as the potential for a classical part of the
connection on P(Uy, SO(4,1)) [more exactly, its Lorentz part in the so-called
nonlinear gauge (see below)]. For details see Ref. [3]. After introducing in the
next section the Hilbert bundle H over space-time and discussing the gener-
alized wave functions representing quantized spinless matter in the theory,
we investigate various generalized gauge currents as source currents for the
geometry and discuss, finally, two sets of covariant nonlinear field equations
{current-curvature and Einstein-type equations) for a gauge dynamics on H
which we call quantum fiber dynamics (QFD).

2. Representation of Quantized Matter

In order to describe quantized elementary matter in the presence of gravita-
tional fields generated by distant macroscopic classical masses one introduces
a Hilbert bundle H over a Riemann-Cartan space-time Uy carrying a system
of covariance of the (4,1)-de Sitter group [4]. H is a “ first quantized” bundle
(in the terminology used in [4]), which is associated to P(Us, G = S0(4,1)),
possessing a standard fiber, ’H%p), being a resolution kernel Hilbert space
with resolution generator 7 and generalized coherent state basis. The bun-
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dle H carries a spin zero phase space representation of SO(4,1) belonging to
the principal series of UIR’s (unitary irreducible representation) determined

by the parameter p. The quantum bundle H with local fiber ’HS{’)(::) pro-
vides a geometric arena for the propagation of the de Sitter quantum fields
\Ilg”)(f ,€), as described below. Moreover, H possesses a built-in fundamental
length parameter R of geometric origin chosen, as mentioned, to be of the
order of 107*2 cm typical for hadron physics [4,1]. We cajl \L(f)(f, ¢) a gener-
alized quantum mechanical wave function of de Sitter type which is square-
integrable, for any z € Uy, with respect to a G-invariant méasm:e dE(¢,¢)
[see below] in the local de Sitter phase space variables (£,() € ¥ c N,
where

Nt =V xct (2.1)
with [ng = diag(1,-1,-1,~1,-1)] :

V4l : [5:6] = Eafbnab = “Rz s

C* 5 6,4 = = 0; ¢F= 3 (22)

The summations in (2.2) run over a,b = 0,1,2,3,5. Here N#% denotes the
de Sitter phase space: V] ~ G/H = S0(4,1)/50(3,1) is (4,1)-de Sitter
space [a single-shell hyperboloid of radius R in a Lorentzian embedding
space Ry44), and C* is the intersection of the light cone in R4, with the
surface (° = %. The superscript of C* stands for sign(® = + with the
vector (°® = ((",C5 = % ;1 = 0,1,2,3, characterizing a so-called horosphere
or horocycle [5] through the origin £° = (0,0,0,0,—R) of V/. ¢ € C* plays
the réle of the wave vector or momentum variable for a wave phenomenon
in de Sitter space (a space of constant curvature with curvature radius R).
$% = H x C* denotes a six-dimensional horospherical submanifold of N
composed of a horosphere H (a space-like hypersurface) in V and the cone
c,

For later use we, furthermore, introduce the de Sitter phase space bundle
over space-time Uy,

E = E(Uy, F =V} xC*,G = 50(4,1)) (2.3)

which is a soldered bundle associated to P. [The soldering is performed here
through the lacal subspace VJ(z) of N being tangent to the space-time
base U, for each z [6,7].] Moreover, we introduce the de Sitter bundle over
U4a

E=EUy F=V]~G/H,G=50(4,1)) (2.4)
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which is a soldered bundle associated to P with “cdrled up” four-dimensional
fiber of definite (fixed) radius R which is isomorphic to the noncompact coset
space G/H = 50(4,1)/S0(3,1) [7].

We now construct a phase space representation of the de Sitter group for
spinless particles, denoted by U(4,) = UW(A,); A, € SO(4,1), which is
related to the spin zero UIR of SO(4,1) of the principal series characterized
by the parameter p, 0 < p < 0o. The value of p determines the mass of the
particle in question. [The eigenvalue of the Lapla.ce Beltrami operator, Og,
on V/ has eigenvalues k(k + 3)/R? with k = =2 + ip; 0 < p < 00, leading
to the following relation between p, the radxus R of de Sitter space and the
mass m of the particle: [2£]2R? = p? + 1 (compare Ref. [8]).]

Hf—,” ) is the Hilbert space L*(%%) of square-integrable functions in the
variables (¢,¢) € £% C N * with respect to the G-invariant measure [4]

dE(¢,¢) = R’ A (] ——58(1[€, ]l = e)du(€)8([¢,CNa'¢ (2.5)

where du(é) = %Idfodfldfzdfs is the invariant measure on V.

dS(Ag€, Ag¢) = dE(£,¢). In (2.5) c is a positive constant determining a
particular horosphere H¢ in V characterized by ( being parallel to a horo-
sphere H 2 through the origin £° characterized by the same vector (. One
can construct a coherent state basis of 'Hf-,” ) in termsof horospherical waves
[8,4] (which are analogous to plane waves in flat space) from SO(3)-invariant
resolution generators 7j(¢’) yielding a parametrization of the basis of 'H,({’) in

terms of the coset space SO(4,1)/50(3). H,(f )is a single-particle resolution

kernel Hilbert space with decomposition ’ng) = HY @K, where the su-
perscripts + and — stand for the sign of (° with H* and H~ denoting the
one-particle and one-antiparticle Hilbert spaces, respectively. For the discus-
sion of second quantized Hilbert bundles with Fock space fibers constructed
in terms of tensor products of the spaces H* and H~ compare [4] and also
the recent book by Prugovecki [9] Here we shall confine the discussion to
the spaces H* and the resulting first quantized Hilbert bundle.

Having introduced the Hilbert space ’H%" ) we now consider as the geo-
metric arena for the description of spinless quantized matter the following
soldered (first quantized) Hilbert bundle over Riemann-Cartan space-time
with standard fiber H%” ) and structural group provided by the unitary irre-

ducible phase space representation U(4,) :
H = H(Us, F = HY, U(4,)). (2.6)

H is associated to P(Uy,S0(4,1)) and carries a system of covariance of
the (4,1)-de Sitter group. The variables (£,¢) in each local fiber NZ of E
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play the role of local geometro-stochastic variables on H determining the
quantum-kinematical localization properties of spinless quantum particles
(possessing internal de Sitter gauge degrees of freedom) on curved space-
time [4]. Denoting now the generalized coherent state basis in the local fibers

He )(z) of H which is adapted to a particular choice of gauge ¢ = u(z) on P

by aul ), where z € Uy and (£,() € E , one obtains the following resolution
of umty atz e Uy:

Jos 1N gl = 1E (27)

Here d(¢,¢) is the measure (2.5) on the local (horospherical) hypersur-

face E* in MZ. Any state vector \Il(p )+ belonging to the principal series of
UIR’s of M 0(4 1) with zero spin may be expanded with respect to the local

quantum frame basis, Qe'(( z) according to:

v0* = [ a5, 08002 . (28)

£

The coefficient wﬁ;”(g,c) in the expansion (2.8) is the scalar de Sitter coor-
dinate wave function, called for short the generalized wave function, which
may be regarded as a section on the first quantized bundle H and represents
first quantized matter in the theory.

One can adopt a convenient bracket notation for the G-invariant integra-
tion with measure (2.5) over the local hypersurface £ and solve (2.8) for

¥{9(¢,¢) yielding
VO, Q) = (BpF) | 9P¥);4. (2.9)

gl )(f,() has the following transformation property under gauge transfor-
mations (i.e. changes of section on H)[4]:

(0(4,)89)(6,0) = ¥ (436, 47,¢) - (2.10)

A G-invariant scalar product of two sections ‘Ilg’,’ )(€,¢) and ‘Ilg‘: )(£,¢) is de-
fined by

@0 1 ¥ss = [00€0¥A0dEE D, 1)

£
The covariant derivative of a section ¥ )(f,C ) on H is given by

DRYP(£,¢) = [d+ TRIEP(¢,0)
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= [d+ Sl (@) MW E,Q) (2.12)
where [WR(2)]ap = —[wR(2)]bs is the pull back of a connection on P, and M,

denote the generators of the spin zero phase space representation U (Ag) of
S0(4,1) given by

Mgy = — My = Lab(€) + Las(() (2.13)

with

, 7] 0 . i)
La(€) = i(tag ~ 676 Lab<<)=z(ca52b—~cb-£~a—). (2.14)

Local de Sitter indices @,b,¢,... running over 0,1,2,3,5 are raised and
lowered with the de Sitter metric 7% and 74, respectively.

We, finally, introduce the kernel for the propagation from (£,¢) to (¢/,¢’)
in the local fiber over z € Uy in H which is determined by the following

overlap of the coherent state basis (I>u($) at z:
RENE,¢56,0) = (850 | @30y (2.15)

Eq. (2.15) defines a reproducing kernel in Hf-”’ )(:c) with the reproducing
property following from (2.7), i.e.

RYNEL 6.0 = [ RN e VRN, ¢, 6,08 ¢") . (2.16)
]

The kernel I?,%fg({',(';f,() determines the propagation of the generalized

wave functions w&" )(§ ,€) in the local fiber variables. For the discussion of
the (strongly and weakly) causal geometro-stochastic propagation on the
bundle H we refer to Refs. [4] and [9].

We, moreover, require that the generalized wave function 1% )(E, () satis-
fies a de Sitter gauge covariant and Uy-covariant second order wave equation
on ‘H with real eigenvalue . Specializing to axial vector torsion in the Uy
base this equation may be written, with DF = 9, + zI‘R(x), as [1]

(On + )P, Q) = (—J—-——-D,?Fggwuf +a)U(E =0 (217)
where g = det g,.(z), and o is a constant of dimension L~? (L=length)
characterizing the wave motion on H.

Using the operators DF = M(z)DF with DR = 6* DR as defined in (2.12)
and the generators M, of the phase space representation I/(4,) of SO(4,1)
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one can construct, by G-invariant integration over the local fiber variables,
the following set of hermitean gauge covariant currents, antisymmetric in
a,b, and bilinear in the matter fields \Ilg(:’)(g,() and their adjoints for a fixed
value of p:

JEE) = & [ W06 BB, - DM QaSE ), (218)
Ei
with
—+R —R R e «~R
Dk:ak +Z Fk (22), Dk:Ok -1 Fk (III), (219)
- 1

and analogously for Mgy and M= Mg, . As a result of (2.17) the currents

(2.18) are covariantly conserved, The equations (2.18), (2.12) and (2.13),

9.14) show that the currents J*)(z) result from an averaged internal motion
kab

taking place in the local fibers on H. For a,b = i, it is an internal rotational
motion (Lorentz rotation); for a,b = 4,5 it is a generalized translation (de
Sitter boost) in the fiber. It is thus apparent that our formalism describes
quantized material objects possessing internal gauge degrees of freedom and
extension. We shall use the currents (2.18) as source currents for the bundle
geometry tying thereby the quantized motion in the fiber to the geometry
of the entire space.

3. Nonlinear gauge and field equations

In order to recover gravitation in a G-invariant manner as a gauge theory
of the Lorentz subgroup H = 50(3,1) of G = §0(4,1) we introduce a new
Higgs-type field in the formalism given as a section, £(z), of the soldered
bundle E defined in (2.4) obeying £(2)¢(z)nss = —R? [compare (2.2)].
Global sections on E always exist. The “zero section”, £(z) = £°, may be
identified with the space-time base of E. The field {(z) acts as a symmetry
reducing field in the bundle framework: If £(z) is parallel with respect to
wh(z), i.e. satisfies

DR (z) = de*(2) + [w(2)*€"(2) = 0, 3.1)

the SO(4,1) gauge symmetry reduces to the SO(3,1) gauge symmetry de-
scribing pure (metric) gravitation. We assume that the full de Sitter gauge
symmetry does not reduce everywhere to the Lorentz subsymmetry, but that
this reduction of symmetry indeed occurs far outside the quantized material
sources present in the geometry. There are, however, regions in space-time,
denoted by D(;);¢ = 1,... N, where the G-symmetry does not reduce, i.e.
where DF¢9(z) # 0. In these regions w? (or W&, see (3.2) below) takes
values in the Lie algebra g of SO(4,1) while for regions where (3.1) is true
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wht (or WF) reduces to a set of one-forms with values in the Lie algebra g’ of
the subgroup SO(3,1). In general g may be decomposed as g=g'®t, where
t is a vector space generating the homogeneous space G/H isomorphic to
vy
! One may now consider de Sitter boost transformations, A(§(z)) €

50(4,1), transforming the origin £° in V{ into é(z) at =z € Us and use
these transformations to go over to a nonlinear realization of the de Sitter
transformations in terms of Lorentz transformations in £° yielding for w®
the following form:

R 8D G, g = (1 Ho 0 (et

(e (o)l

' | . (3.2)

with  [WRG @) = BE); + @)y, (33)
and  [WRG )]s = AT E D). (34)

We call the form W(z,£(z)) in (3.2) the nonlinearly transforming form of
the connection on P (the nonlinear gauge denoted by N.L.). It transforms
under gauge transformations, £'(z) = Agy)€(z), with a matrix
A(A(€(x),&(x))) € H leaving the form of the r.-h. side of (3.2) unchanged
(for details see [1] and [3]). The first term on the r.-h. side of (3.3) is the
metric part defining a connection on Pr. However, the Lorentz part (3.3)
of (3.2) has a torsion addition denoted by 7f(z,£(z)). (3.4) defining the
soldering forms [8F(z,£(x))) of the de Sitter connection shows explicitly
that (3.2) is Lorentz valued for DR¢(z) = 0, i.e. outside the domains Dy
where the G-gauge symmetry reduces to the H-gauge symmetry. A form
analogous to (3.2) is obtained for the curvature two-forms [QF(z,£(2))]%; in
the N.L. gauge.

As field equations for the bundle geometry we now introduce, besides
(2.17) for 1% )(f ,$), the following two sets of de Sitter gauge covariant and
Uj-covariant nonlinear source equations

Ri(o,6(2)) = snRR(z,6(2) = 5 Tk (2,6(2)),  (35)

NL

t]ab(x E(z)) =k JJGb ((C E(.’l:)) (36)

A further equation for the reducing section £() is introduced and dis-
cussed in [1]. Here k and K are two independent coupling constants; x is Ein-
stein’s gravitational constant, and K is a new coupling constant characteriz-
ing the quantum fiber dynamics (QFD), i.e. the dynamical relation between
quantized matter described on H and the full uncontracted bundle curvature
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N.L.
tensor. The operator D' in (3.6) denotes the full covariant derivative of the
Lorentz and de Sitter indices [the latter taken with respect to the N.L. form,
WH(z,£(z)), of the connection]. The r.-h. side of (3.6) is the current (2.18)
tranformed to N.L. form with the help of A~1(£(z)). Rf}ab(a:,f(a:)) is the full
curvature tensor with the Lorentz part (for a,b = k, ! composed of metric,
torsion, and quadratic de Sitter boost contributions (see [1]), and with the
de Sitter boost part (for a,b = 4,5). Egs. (3.5) are of Einstein type involv-
ing the contracted Lorentz curvature tensor, Ri(z,é(z)) = W‘Rf}kl(m, £(z)),
and the corresponding curvature scalar RF(z, £(z)) again composed of three
parts (metric, torsion and boost). On the r.-h. side of (3.5) appears the total
energy-momentum tensor decomposing into the classical symmetric part,
Tix(z), of general relativity representing classical matter, and a quantum

part induced by \Ili")(f,g“) possessing no symmetry in the indices, 7,k :

N.L. _ N.L.
Tix (=,€(2)) = Tirz)+ Tip (T) . (3.7

A detailed investigation of (3.5) and (3.6) is presented in [1] and [3], in the
latter reference with particular emphasis of the réle played by the metric of
Einstein’s theory in this context. It is shown there that the g, -field of clas-
sical general relativity survives unchanged in this theory in the presence of
quantized matter which, on the other hand, determines the additional fields
characterizing the bundle geometry: axial vector torsion in the base and
de Sitter boost contributions related to the soldering forms of the SO(4,1)
connection in P,

The réle of axial torsion outside the region D(;) and outside the sources
may be studied solving the vacuum torsion equation contained in (3.6). It
reads when one neglects classical gravitational forces, i.e. for a metrically
flat space-time base,

1 ..
o*kE - Ea;‘P“ —e kRO KR =0 (3.8)

where *PR = —69"* KE, and the axial vector torsion field, * KE, is given by
[compare (3.3)]

K= -2 MRE (6@ e 6@) = PRE(,0) . (39)

Despite serious efforts no truely nonlinear solution of the equations (3.8)
has yet been found except the trivial solution *KF = k,exp(&ik - ) with
ksk* = k -k = 0, for which each term on the 1.-h. side of (3.8) is separately
zZero.
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Abstract. We investigate the Dirac bracket algebra of the scalar pregeometry including
topological pregeometry with BRST formalism, as the first step to its quantization. We
derive the precise expression for induced gravity, and discuss how the gravity is induced
from the topological theory.

1. Introduction

The quantum theory and the relativity are two of the greatest successes of
physics in this century. The problem is, however, that we have no realistic
quantum theory of general relativity. Tremendous efforts have been devoted
to this subjects, canonical quantization approaches, superstring theories,
searches for fundamental clues in lower dimensional systems, etc. Faced with
a so difficult problem, we may come to the question “Is the general relativ-
ity really fundamental?” “Should it really be quantized as the fundamental
object?” In fact, there exist theoretical schemes, called “pregeometry” by
Wheeler, where Einstein’s general relativity is not fundamental but is in-
duced from more fundamental ingredients [1]. In Sakharov’s idea, the Ein-
stein gravity is induced through quantum fluctuations of the matters. The
metric is a composite of the fundamental matter fields, and the quantum
properties of gravitation are secondary effects due to those of the funda-
mental matters, just like the quantum properties of the hadrons stem from
those of the quarks. Then we have first to establish the quantized theory of
pregeometric matters rather than the gravity itself. In this talk, we would
like to make a first step towards the quantization by applying the BRST
formalism to the scalar pregeometry [2].
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2. Scalar pregeometry

The fundamental action for pregeometry should be invariant under diffeo-
morphisms, and be written without metric, but with the matter-fields only.
If the matters are the scalar fields, the fundamental action is given by the
Nambu-Goto type one [3],

Ly= \/. det 8,610, 4 111 F(9). (1)

where ¢ is the fundamental scalar field, F(¢) is a function of &, and
nrr=diag(1,-1,-1,----1). In (1), pw=0,1,---,D - 1,D, and I,J=0,1,---N - 1,
where D is the number of the spacetime dimensions, and N is the number
of the field ¢. Now we briefly review how the Einstein gravity is induced in
this system. The Lagrangian Ly is equivalent to the following Lagrangian
with the auxiliary field g,.:

where g, plays the role of the metric, g = detg,,, and G(¢) = (D/2 -
1)(F(¢))~2/(P=2), They are equivalent because their equations of motion as
well as their commutator algebras of the fields coincide with those of each
other. The quantum effects of this Ly, give rise to this effective Lagrangian
of Einstein gravity,

Lr=v=3 (A + grgR) ®

where R is the scalar curvature, and A-and G;}l are divergent coeflicients,
which plays the roles of the cosmological and the Newtonian constants, re-
spectively. We introduce a momentum cutoff which we take as realistic one
connected with the fundamental scale. Thus the Einstein gravity is induced
with a composite metric.

3. BRST .Formalism

We should quantize the pregeometric matter Lagrangian Ly or L4, rather
than the Lagrangian Lp for the Einstein gravity.

1
Log =77 (380080, - G9)) . 0
The action Sgy = [ L4,dPz is invariant under diffeomorphisms

6¢I = 5}‘8/\¢1, 69;:1/ = guz\aw‘:/\ + gu/\auEI\ + 5/\8/\91“/- (5)
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where ¢* is an arbitrary infinitesimal function of z*.

Our strategy of quantization is as follows. 1) we fix the gauge by adding
the gauge fixing term, 2) add the Faddeev-Popov ghost term to make the
action invariant under BRST transformations, 3) exhaust the constraints of
the system, 4) work out their Poisson-bracket algebra, 5) define the Dirac
bracket, and assign the commutators.

We fix the gauge by the de Donder condition:

Lar = by, (V=99""). (6)

where by, is an auxiliary field. The BRST transformations of ¢! and g, are
given by replacing € in (5) by the Faddeev-Popov ghost c*:

Spd’ = 0, SBgu = 9,30, + 9,004 + POrgu. ™)

To make the total action invariant under the BRST transformation, we add
to the Lagrangian the Faddeev-Popov term

Lrp = iv/=gg" 8,€:9,¢", (8)
and define the BRST transformations for c#, €, and b, by

pc = *Orc#, 8pT, = ib, + *NE,, Opb, = P Orb,. (9)
The BRST transformations ég are nilpotent.

4. Constraints

Now the system is described by the Lagrangian (with §*¥ = /—gg*")

L= L¢1g+£GF+£FP
= —56‘“’6}4‘# * au¢ V4 —gG + aﬂg‘wbu + igyua#z/\aucl\- (10)
The canonical conjugate variables of ¢z, ¢¥, €, and §*", are, respectively,
18 = —PP0,¢s, 75 =id®8,T,, T =—ig%d,c",
W{‘;‘ =0, Pmn =0, Poo=bo, Pom = b /2. (11)
where p,v-.. = 0,1:'--,D -1, and m,n,--- =1,---,D — 1. Among them,

the first three are solved for the time derivatives, Gp¢!, OoCy, and Gpc*, while
the last four give the constraints

W{:NO, Pmn &0, Xo = Poo —bo = 0, Xm = Pom —bn /2% 0. (12)
The only non-vanishing Poisson bracket among the constraints is

[xu(2), 7 (9)lp = 646(x - y). (13)
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At this stage, 7}', and x, belong to the second class, while P, belongs to
the first class.
The Hamiltonian density reads

- 1 4 com (b 1 7Om
H = 2500(7‘- + 37" 0md) - (7% + 7 "0nd)

1 ~
+ 507" O - Ond+ (~H) PTG = 0™ by

.1 . . . _
+z§,—03(7rf\ - z_?]’o'"(?mé,\)(ré\ + zg""anc*) — GO TrOn (14)
which governs the time evolution of the physical quantities. For consistency,
the constraints should remain vanishing during the time evolution. As for
the second class constraints, we can make them so by adding appropriate

constraints to the Hamiltonian. On the other hand, the condition that the
first class constraint Py, remain vanishing implies the secondary constraint

_D-2/ 1 o N
By = 2 (—-2-6,,4, 0 — Dyyubny + 0TI ) — gmn 0. (15)

At this stage, the constraints are X, 7}, ®mn, and Pma. Though the Poisson
bracket algebra of them are complicated, it is diagonalized by introducing
Xu and 7} defined by

Xo = X0 + Pmnd ™" goo, Xk = Xk + 2PmnG" " Gok,
~ . - Kl
“2 = 7’27 “: = 7{: - (D - 2)al(pﬂm-a-"m /G), (16)
where
™ = =g (kg — grmgH), g = g - ™0™ g™, (17)

The only non-vanishing Poisson brackets among them are

[Xu(2), 7 (9)lp = 86(x ~ y), (18)
[le(a’)’ﬁmn(:‘/)h’ = Cklmns(x - Y)’ (19)
where
Chimn = —— (gk( o)t — _L—gklgmn) . (20)
‘/_'_—g mYn D -2

Now all the constraints belong to the second class, and can be kept vanishing
during the time evolution. Then, it is convenient to define the Dirac bracket
for arbitrary fields A(z) and B(z) by

[A(z),B(y)]D = [A(IE),B(y)]p
- [ (2@t 50
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~[A(2), Ru(NplFE (), BW)le
HA(2), Bu()]pC ™" (2)[@mn(2), B(y)lp
~[A(2), 81(2)]pC"™" (2)[Bran(2), B()lp | dz (21)

which vanishes if A(z) or B(z) is a constraint.

5. Quantization

We assign the equal-time (anti-)commutators in terms of the Dirac bracket
as

[A(2), B(y)] or {A(z),B(y)} = i[A(z), B(y)lp- (22)
Then we obtain for ¢/, ¢#, ¢,, §°#, and the conjugates r?, 7%, mE, bu(= Poo
or = 2P0m)

[¢] (z)ﬂw(y)] i6{8(x ~y), [§%(2),bu(y)] = i8Lé(x ~y),
{N2),m(w)} = i6R6(x —y), {ax(z),m5(v)} = i656(x~y),  (23)

and §™" depend on ¢!, c#, €,, b, through the constraint ®,,, ~ 0, and obey

[§*(2), ¢ (v)] = iCH™(z) 1 o

X (am¢l(x)an5(x - y) + D - 2gmn 6(}51 é(x y))
7 (2), 7 (y)] = C~"‘~""”(3E)<9mcy($)a §(x~y),
7 (2), 7 (y)] = = CH™"(2)0mc* (2)0a8(x — ),

gkl(x)aﬁo#(y)] = —gi’gopé(x -¥)
7(2), 3" (9)] = —~CH™ (2)8,8(% - y), (24)

with C¥m" = (D — 2)C*™" /G. The BRST charge is given by Qp = [ J3dx
with
1
= - e 4 0) -4+ 57009

?]00 (7§ = "™ B )(1d + g M)

+§§mn6m¢ M an¢ - ‘\/ "‘gG it ig’nﬂam_c—pancp>
+c" (1r¢ “Ond + 7500t + 7L 6,;5#)
by (=in + On(c"g% ~ OFH)) . (25)



264 KEIICHI AKAMA AND ICHIRO ODA
8. Quantum transition amplitude
The transition amplitude from the state ¥; to ¥y is given by
Ty = / D! D¢ DG Dy, Db, Drl De* D DE, Dt
3T T T [6(7)8(Xu)0(Bran ) 6(rmn) det Cijpi]
expi [P (- §+ B + xfhu+ mieh + LG~ M), (26)
Using the explicit expression of det C';;1, we get
det Cjjpt = (det gmn)P(v/=9) PP~/ x constant. (27)

The integrations by WZ‘ s Doy, and Pmn, are trivial. We perform the integrations
by 7§, 75, and 72
SDr{ DRt expi [ a0 (i -+ mies + w5 + 0,5 - 1)
= @) expi faPa, (28)

where £ = L4g + Lar + Lrp. We rewrite the §(®myn) as
T16(2mn) = / D(y/=gu™") expi / AP/ Zgu™" B, (29)
P
where 4™" is the Lagrange multiplier. Then we obtain
Ty = / D¢! D§* Db, De De, Du™ ¥} ¥;
I [@Y2 (V=5 expi [ aPa (L +V=gu™ @) . (30)
@

7. Induction of gravity

To get the effective Lagrangian L.g for induced gravity we perform the
integration by ¢ in Ty;

/D¢I expi/dDa: (L+ V=gu™"®p,) = expi/dDzﬁeﬁ. (31)

We use the stationary phase approximation, i. e. in the integration by ¢, we
neglect O(¢%) terms in £ + /—gu™"®,,,. After a lengthy calculation, we
finally obtain the effective Lagrangian

1 1
Len = V“g[167rGNR+ e

b,0,(v=9g") + ig" 88,0, ¢
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1¢1 m 1
+3{53 @AV = (DaU™)? + DnU™ Dol + 3(DnU)'}
1 2 mn\2 1 2 mn . .1‘
+3M2{@™) + S0P} 4 iU + ko (U™ R = SUR

+k3U"m (—6mbn + iam'é',\anc’\) ] (32)
with the divergent coefficients
- 3(D-2)
— 2AD 2 M - _________A
167Gy © ’ D ®
ky = 3pAD/2+1 ky = pAD/2—-1, ks = l (1 + _lé)—) A——D/2+1,
p
( p = \/N/6(D - 2)(D/2)\(4m)P/2 ) , (33)

where A is the ultraviolet cut off (Pauli-Villars mass), and the cosmological
constant A is fine-tuned to be 0. Since Gy > 0, the induced gravity is
attractive. Roles of the field U is not yet fully investigated.

8. Conclusions and discussions

If the number N of the fundamental scalar fields coincides with the number
of dimensions D, the scalar pregeometry becomes topological [4]. In this
case, we can show that no local physical mode exists. Only the topological
invariant quantitiex are observable. It is interesting to see that the gravity is
still induced. This is because the fundamental scale breaks the topological
symmetry.

In summary, if the Einstein gravity is an induced effect (pregeometry),
we have first to quantize the pregeometric matters rather than the gravity
itself. To make a first step towards the quantization we applied the BRST
formalism to the scalar pregeometry. We derived the Dirac bracket algebra,
but the problem of the operator ordering is not solved. We derived the
precise expression for induced gravity. It depends on the ultraviolet cutoff
A, which we take as the physical fundamental scale.

Finally, we would like to emphasize that, the quantum gravity has another
possibility that the fravity is not fundamental, and we should first quantize
the pregeometric matter.
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Abstract. We consider the SO, invariant quantum dynamics of a point particle moving
on the 3-sphere. Quantum exchange relations for different times are derived with an “R
matrix” depending on the time difference and on the conserved angular momentum. Their
implications for correlation functions are worked out.

1. Introduction

In studying the G current algebra models (G standing in general for a simple,
compact Lie group) special attention is devoted to the analysis of the so-
called zero modes, which can be described in terms of a point particle moving
on the group manifold G itself (for a sample of references on the Hamiltonian
approach to such models - see [1,2,3]). In this context Alekseev and Faddeev
[4] presented an R-matrix treatment of the phase space I' = T*SU, with an
emphasis on its splitting into chiral parts which admit a natural quantum
group deformation. Here we present a manifestly SO4 invariant solution of
the corresponding quantum mechanical model.
Our main result is the derivation of generalized “exchange relations”

g(t2) ® g(t1) = Ri29(t1) ® g(t2) = 9(t1) ® g(t2) Baa

where the “R-matrix” (or rather “6 — j symbol”) depends on the time
difference t;2 = t; — t; (playing the role of a spectral parameter) and on
the conserved right (or left) invariant angular momentum . The represen-
tatives of the resulting R-matrices with operator valued entries on a set of

* On leave from the Institute for Nuclear Research, Bulgarian Academy of Sciences,
Tsarigradsko Chaussee 72, BG-1784 Sofia, Bulgaria
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(permuted) n-point correlation functions satify a generalized Yang-Baxter
equation . Ry2 appears to provide an example for an R-matrix depending
on a spectral parameter in the framework of quasi-coassociative bialgebras

(cf. [5]).
A more detailed version of this work appears elsewhere [6].
2. Classical approach

We write the SU, group element g = (¢°) as a pair of conjugate 2-spinors

w' w?
o= (L ) D)

Since gg* is a multiple of the unit matrix
gg* =det(g)-1, detg=w*w (= wiw®), (1.2)

the configuration space SU, ~ §° appears as a real hypersurface in €% given
by the { primary ) constraint equation

$3:iww* —1=0 (wed?). (1.3)

We shall derive the PB structure on T from the canonical PB on T*@2. Let

pe ( o+l 7[.*2) (14)

-7 T
be the canonical momentum matrix. The non-zero PB on T*C? are

{w*,7g} = 65 = {w, ="}, (15)

Primary constraints generate gauge transformations. Since 7, 7* are the only
gauge-dependent quantities, we impose the gauge condition ( secondary con-
straint )

u=tr(gp*)=wr+w'r* =0, {w'w-1u}=1 (1.6)

At this point we have a pair of second class constraints. Rather than com-
puting the Dirac brackets for 7(*) and w(*) we shall single out a subalgebra
A(T) of the algebra of functions on T*€'? whose Dirac brackéts coincide
with the original PB. To this end we introduce the right invariant angular
momentum

[t N .,
£_<£+ __£3>-—ng (1.7)
and its left invariant counterpart

E=—ig*p (=ip*g) = —g*tg (9¢" = 1); (1.8)




50(4) INVARIANT QUANTUM MECHANICAL MODEL 269

£, and £, generate left and right infinitesimal SU, shifts:

. 1 (5 1
{la, 9} = —50ag, {fa,g} = 59%. (1.9)

They imply that the angular momenta have vanishing PB with the con-
straints,

{ls, w*w} = 0 = {la, i}, {1.10)
(and similar relations for £), thus appearing as gauge invariant observables

corresponding to vector fields tangent to I'. They span among themselves
the SU; X SUz PB Lie algebra:

{Ka,eb} = €gpc Lo,y {Za, Zb} = €abe Zc, (1‘11)

{e,,,Zb} = 0. (1.12)

The similarity relation (1.8) between —¢ and £ implies that left and right
angular momentum squares coincide:

%trlz = L2 (= £0%) = %m”. (1.13)

The subalgebra A(T) is generated by £, £ and g subject to the relations (1.9)
(1.11-13) and

{994} =0. (1.14)
In order to get the time evolution of our mechanical model we have to

introduce a Hamiltonian which has to be SUz x SU; invariant and depending
on the constraint (1.3). The simplest choice is

H =L+ M\w*w - 1). (1.15)

Angular momenta £,f are conserved and the Lagrangean
e 1, ... .
L= itr(bgg”) - H = (99" — Mgg™ - 1)) (1.16)

allows to identify the linear momentum (1.4) with ¢ and the angular mo-
menta £ and ¢ with (the traceless parts of) ijg* and —ig*g.

We see that the position observables g ( or w*) ) and the gauge-invariant
angular momenta £ and £ have linear PB. We would like instead to have
quadratic expressions in the r.h.s. of the PB, since such a kind of quadratic
relations are a point of departure for the R-matrix approach to the study
of completely integrable systems. We shall see that the different-time PB
for g(t) appears as a quadratic expression in g(t1) ® g(t2) with coefficients
depending on the constants of motion £ ( or £ ).

Instead of going on with the classical formulation we shall pass now to
the quantum one, coming back again to the classical case at the end.
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3. Quantum approach

We define the quantum algebra Ay = Ax(T) as the algebra generated by ¢, £
and g with the PB (1.9) (1.11) (1.12) and (1.14) represented by commutators
according to the standard rule
th{,}-=1[,]
Since
2 = (62 4+ +6)1-he, (2.1)
we define the invariant ( quantum ) Hamiltonian by

H=0C+h=(C+E+E)1=LL+h)1=E2+hi. (2.2)

The equations of motion

i90) = #7000, 7] = = [0, 2] 00 = ~9(0) (T4 31) = (¢4 31) o)
have the solutions ( e(z) = ez ) (2.3)

g(t):ge((f-{-%h)t) (:e(—(l-}-i—h)t)g), g=g(0) (24a)

w(t) = we ((Z+ %ﬁ) t) L wrt) =e (- <Z+ %n) t) W (2.4b)

Ax(T') admits an antilinear involution ¥, “the TCP symmetry”, such that

Hw(t)) = w*(~t), w'(t)) = w(-1), (25)
Il) = —La, I(ly) = —L,. (2.6)

We shall view the elements of Ax(T') as operators in the vacuum Hilbert
space H with a unique SU; x SU; invariant state (0| |0) such that [0)is a
cyclic vector with respect to Ay (I').The involution ¥(A) is then implemented
by an antiunitary operator © such that

0[0)=10), ©AO'=9(4), ©%=1. 2.7)

Charge conservation implies that only even point correlation functions with
an equal number of w and w* can be nonvanishing. © invariance and antiu-
nitarity allow to relate correlation functions with opposite order of factors,
e.g.
1 2 2n-1 2n
(0] w(ty) (w)*(t2) - "W (tan-1) (W)"(20) |0) =

n-1

_ n., 2 2., 1 28)
= (0](w)*(=t2n) " (—t2n-1)- - (w)"(~t2) w(=11)|0).
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Using the solution of the equations of motion (2.4) together with © and
time translation invariance, we get

(Olga (tl)gpzz(tZ)“)) = %eaxaz P2 e(”‘%htw) ’ (29)

where ¢ is the unit antisymmetric tensor. The 2n-point function is uniquely
determined from the initial (equal time) condition

(Olggl ggh 0)= (n-{1~ 1)1 Z Hfa;aj Pibi | (2.10)

i<y
As an explicit example we give the 4-point function

(0] g(tl) g(tz) g(t3) 9(t4)l 0)= (Ol 3 |0)e (“%(3&4 +(1+ 4P34)t23))

(2.11)
where Ps4 is the operator permuting the indices 3384 and the equal-time
4-point function is given by

1234
01999910)=

—~

51082 B354 + €oyas

1
— .6 (601101260130146 5183 204 + €ayos

5104 eﬁaﬁa)
(2.12)

€aza4 € €xoaz €

4. A quantum R-matrix with operator valued entries

The operators g(t) satisfy for different times a generalized exchange relation
of the type

3(ts) 3(t1) = Raz 9(t1) 9(t2) =9(t1) §(t2) Bra, (3.1)

where Rq9 and Ris depend on the time difference ¢;; and on the conserved
right and left invariant angular momenta £, and £, respectively. To con-

~ 1 1
struct Ry, and thus derive (3.1) we express §(¢1) in terms of 9(t;) and use
the commutatativity of g at equal times:

3(t2) $(t) = (1) F(ta)e ((z 3h) 2)=

1 L 2 L
'_‘g(tl)e (" ¢ t12) g(t2)e(£ t12) ) g(tz) U126<£ t12)
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where Uys is a unitary operator defined by

e(-— %tlz) £2l(t2) =3(t2) Usa.

Analysing the explicit form of Uyq, we can see that the structure of

5 -
Fi2 = 6(—-2-t12) Ry

is given by

1 2 2 21
Fi2 = i+ RP+ F3 <E+Z)+F4£P+F5££

where
F; =E(t12,N2), Nzhz E(2L+h)2

To compute F; we differentiate (3.1) with respect to ¢;, finding

1 2 . 1
g (t1) 9 (t2) {-7"12 +1 [f,fn] + iﬁPflz} =0,

and we add the initial condition
fllz(O) =1& E(O,Nz) = 6{1.

The unique solution is given by

2 ; 1 [ 2
2 — —tht _ — g} [
heFy = o (e 2cosNht+NsmNht) ND

— R — 2 i -—iht)
hFy = hFs = Vi1 ( cos Nkt + NsmNht+e ,

cos Nhit -1
N2 ’

sin Nht
N 3

hF3 =

Fy=—i

NZ-1

cos Nht — 1 L R2F, =t

N2

One can derive a similar relation for Rys(t12;€) = ﬁlg(tu; —Z).

=1+

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7a)

(3.7b)

(3.7¢)

(3.7d)

(3.7¢)
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We can compute the action of R;i4+1 or F;i41 on correlation functions.
The explicit expressions for the 4-point functions are given by

(0] Fra(tra) 9 (81) 4 (82) 9 (ts) 9 (ta)0) =

= e(=APyat12)(0] 9 (1) 9 (t2) 9 (ta) 9 (ta)]0), (3.80)

(0] §(t1) §(t2) 9 (t3) 9 (ta) Fau(taa) |0) =

1 2 3 4
e(—hPast3s)(0] 9 (t1) 9 (t2) 9 (t) 9 (14)]0), (3.8b)
while (with shorthand notation)

(F23)a = e(hts Pra) e(htaz Pra) (3.8¢)
h h
(Fia)a = 6(5 ti2 Pas) 6("2- tas Pi2). (3.84)
The R;; (and F;;) so defined are verified to satisfy the relations
Riip1(t) Riiya(—t) = 1, (3.9)

RV (t12) RGP (113) R (t2s) = RTY (3.10)
= R (t23) R (t13) RS (112),

where the upper indices (ijk) stand for the order of g (t;) to which R is
applied. We note that such generalized Yang-Baxter equations that reflect
the operator dependence of R are reminiscent to the relations found by Mack
and Schomerus in their study of quasi co-associative quantum symmetries
[5].

In the limit # — 0 we obtain the classical counterpart of the “quantum
R matrix”.Setting

{g(tl), g(tz)} = hm [g(tg), g(tl)] (3.11)
we find . , . ,
{3, B} =t 80 0,0, (3.12)
where
. i 12 2 1 2L
#(t,8) = tP~ 5 1 <z+£)+it2ep+§t“ee, (3.13)

or a similar expression with r(t,£) = #(t,—£) acting on the left. One can
also write a linear in #;, expression for the PB with operators acting on

both sides of !}3 (see [6]).



274 P.FURLAN, Y.S.STANEV AND LT.TODOROV

References

[1] Alekseev A. and Shatashvili S.: Quantum groups and WZNW models, Commun. Math.
Phys. 133 (1990) 353-368; L.D. Faddeev, On the Exchange matrix for WZNW model,
Commun. Math. Phys. 132 (1990) 131-138.

[2] Chu M., Goddard P., Halliday I., Olive D. and Schwimmer A.: Quantization of the
Wess-Zumino-Witten model on the circle, Phys. Lett. B 266 (1991) 71-81.

[3] Falceto F. and Gawedzki K.: Quantum group symmetries of conformal field the-
ories, XX** International Conference on Differential Geometric Methods in Theo-
retical Physics, N.Y., June 1991, Bures-sur-Yvette preprint IHES/P/91/59; Lattice
Wess-Zumino-Witten model and quantum groups, Lectures at the XXVII'" Karpacz
Winter School of Theoretical Physics, February 1992, Bures-sur-Yvette preprint
IHES/P/92/73.

[4] Alekseev A. and Faddeev L.D.: (T*G):: A toy model for conformal field theory. Com-
mun. Math. Phys. 141 (1991) 413-422.

[5] Mack G. and Schomerus V.: Quasi Hopf quantum symmetry in quantum theory, Nucl.
Phys. B 370 (1992) 185-230.

[6] Furlan P., Stanev Ya.S. and Todorov 1.T.: Exchange relations and correlation functions
for a quantum particle on the SUz-group manifold, Vienna preprint, ESI 34 (1993),
submitted to J. Math. Phys.




CURRENT ALGEBRA AND
RENORMALIZATION

JOUKO MICKELSSON
Theoretical Physics, Royal Institute of Technology,

Stockholm 8-100 44, Sweden
jouko theophys.kth.se

(Received: March, 1994)

Abstract. In this talk I want to explain the operator substractions needed to renormalize
gauge currents in a second quantized theory. The case of space-time dimensions 3 + 1 is
considered in detail. In presence of chiral fermions the renormalization effects a modifi-
cation of the local commutation relations of the currents by local Schwinger terms. In
1 + 1 dimensions one gets the usual central extension (Schwinger term does not depend
on background gauge field) whereas in 3+ 1 dimensions one gets an anomaly linear in the

background potential.
We extend our method to the spatial components of currents. Since the bose-fermi

interaction hamiltonian is of the form j* Ay (in the temporal gauge) we get a new renor-
malization scheme for the interaction. The idea is to define a field dependent conjugation
for the fermi hamiltonian in the one-particle space such that after the conjugation the
hamiltonian can be quantized just by normal ordering prescription. We also discuss the
regularization of vector fields in Fock space.

1. Introduction

Algebraic techniques have been proven to be very powerful when solving
many quantum field theory models in 14 1 space-time dimensions. The best
understood and applied algebras are the affine Kac-Moody algebras, which
are related to central extensions of loop groups, and the Virasoro algebra
which is a central extension of the Lie algebra of vector fields on the circle.
The latter algebra emerge for example in the construction of the energy
momentum tensor in conformal field theory in two dimensions. On the other
hand, the energy momentum tensor can be constructed by the Sugawara
method as a quadratic expression in the components of the affine Lie algebra.
In gauge theories the affine algebra is the Lie algebra of the group of gauge
transformations, broken by the chiral anomaly. The Virasoro algebra is also
important in understanding certain solvable statistical mechanics models in
two dimensions. For a review on these topics see [3].

A natural question is how far we can go with some suitable generalizations
of the above algebraic structures in dimensions higher than 1+ 1. It is clear
that for a succesful theory we need at least two things to begin with. First,
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what are the algebras. Second, what are the representations of the algebras.
In this talk I will mainly address the questions related to generalized affine
(chirally broken gauge symmetry) algebras. In the last section 5 I will briefly
address the problems arising from quantization of vector fields in dimensions
higher than 1.

The appropriate group (and Lie algebra) extensions replacing the affine
algebra in higher dimensions has been found in the study of anomalous
gauge theories, {7]. The difficulty is that no unitary faithful representations
are known (and they probably do not exist, [12]). But there is a way around
this problem. A representation is replaced by a operator valued cocycle in a
Hilbert space (which in this talk is the Fock space of chiral fermions). Al-
ternatively, one can view our construction (in 3 physical space dimensions)
as a representation, not of the original Mickelsson-Faddeev-Shatasvili exten-
sion in {7], but as a representation of the gauge algebra extended by certain
pseudo-differential operators of degree —2. The degree —2 comes from the
fact that these operators are Hilbert-Schmidt and can be canonically quan-
tized in the Fock space.

Chiral fermions in a nonabelian external gauge field are quantized as
follows. Let G be a compact gauge group, g its Lie algebra, M the physical
space, and A the space of smooth g valued vector potentials in M. For
each A € A one constructs a fermionic Fock space F4 containing a Dirac
vacuum 4. The Hilbert space F4 carries an irreducible representation of
the canonical anticommutation relations (CAR)

a*(u)a(v) + a(v)a*(u) = (u,v) all other anticommutators = 0.
The representation is characterized by the property
a*(w)pa=0=a(v)py forue H_(A)andv € H (A) (1.1)

where H(A) is the subspace of the one-particle fermionic Hilbert space H
spanned by the eigenvectors of the Dirac-Weyl Hamiltonian

Dy = i'yk(Vk + Ak) (1.2)

belonging to nonnegative eigenvalues and H_.(A) is the orthogonal comple-
ment of H1(A). Here V,’s are covariant derivatives in directions given by a
(local) orthonormal basis, with respect to a fixed Riemannian metric on M.
In the following we shall concentrate to the physically most interésting case
dimM = 3 and the y-matrices can be chosen as the Pauli matrices 0y, 07,03
with oy02 = i03 (and similarly for cyclic permutations of the indices) and
O‘z =1.

The group G = Map(M, G) of smooth gauge transformations acts on A
as g-A = gAg~1+dgg~?. The Fock spaces F4 form a vector bundle over A.
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A natural question is then: How does G act in the total space F of the vector
bundle? Since the base base A is flat there obviously is a lift of the action
on the base to the total space. However, we have the additional physical

uirement that N A
i §Dag™" = Dg.a (1.3)
where D4 is the second quantized Hamiltonian and § is the lift of g to F.
This condition has as a consequence that g4 should be equal, up to a phase,
to the vacuum %g.4.

A complication in all space-time dimensions higher than 141 is that the
representations of CAR in the different fibers of F are inequivalent, [1]. The
effect of this is that a proper mathematical definition of the infinitesimal gen-
erators of G (current algebra) involves further renormalizations in addition
to the normal ordering prescription. In one space dimensions the situation is
simple. The current algebra is contained in a Lie algebra gl; which by defi-
nition consists of all bounded operators X in H satisfying [¢, X] € Lg, where
¢ is the sign operator Tg—g— associated to the free Dirac operator and L is the
space of Hilbert-Schmidt operators. In general, we denote by L, the Schat-
ten ideal of operators T' with |T|P a trace-class operator. Let a}, = a*(uy),
where Doun = Anu, and the eigenvales are indexed such that A, > 0 for
n > 0 and A, < 0 for n < 0. Denoting the matrix elements of a one-particle
operator X by (X,m), the second quantized operator X is

X= ZXnm s B (1.4)
where the normal ordering is defined by
. {—ama;ifn=m<0
tand, =8, .
" a,a, otherwise.
The commutation relations are
[X,Y] = [X,Y]+e(X,Y) (1.5)
where ¢ 1s the Lundberg’s cocycle, [5],

o(X,Y) = al—trc[e,X][e, Y]. (1.6)

When X,Y are infinitesimal gauge transformations on a circle the right-
hand-side is equal to the central term of an affine Kac-Moody algebra, [13],
¢ 1

o(X,Y) = o /S XY (1.7)
In this talk I want to explain the regularizations needed in 3 + 1 space-time
dimensions and the generalization of (1.4) through (1.7). In section 4 we
shall use the same regularization to define a finite bose-fermi interaction
hamiltonian for QCD. (We shall not attack problems associated to vector
boson self-interactions.)
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2. Action of the group of gauge transformations in the Fock bundle

Let €(A) = {24:; if D 4 has zero modes define €(A) to be +1 in the zero mode
1Dal

subspace. For A € A denote by P4 the set of unitary operators h: H — H
such that

[, k= e(A)h] € L. (2.1)

If € P4 then also hs € P4 for any s € Uy, where U is the group of unitary
operators s with the property [¢,8] € Ls. The spaces P4 form a principal
bundle over A with the structure group Us.

Since A is flat the bundle P is trivial and we may choose a section 4 —
ha € P4. Define

w(g; A) = ;4 T(g)ha. (2.2)

where T'(g) is the one-particle representation of ¢ € G. By construction, w
satisfies the 1-cocycle condition

w(gg'; A) = w(g; g - Aw(d'; A). (2.3)
Using T(g) D aT(g)~! = D,.4 weget T(g)e(A)T(g)~! = €(g-A) which implies

hg.ale,w(g; ARG = (hg.a€hy}y)T(9) — T(g)(hachy’)
(g - A)T(g) - T(g)e(A) mod L,
= 0.

Since L, is an operator ideal this equation implies
[e,w(g; A)] € La. (24)

Thus the 1-cocycle w takes values in the group Uj.
Remark. In one space dimensions we can set hy = 1 since [¢,T(g)] is
already Hilbert-Schmidt. In d space dimensions the off-diagonal blocks of
T(g) are only in the Schatten ideal L,, p > d, [11].

The group valued cocycle w gives rise to a Lie algebra cocycle 8 by

theta(X;A) = %w(etx 1 A) le=0
= h'dT(X)ha + h3'Lxha. (2.5)
It satisfies the Lie algebra cocycle condition
0(1X,Y]; A) - [6(X; A),6(Y; A)] — LxO(Y; A) + Ly 8§(X; A) =0, (2.6)

where Lx is the Lie derivatwe in the direction of the infinitesimal gauge
transformation X, Lx f(A) = 4 f(e~*X - A) |;=0 . We denote by dT the Lie
algebra representation in H corresponding to the representation T of finite
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gauge transformations. For each A € A and X € Map(M, g) the operator
(X; A) € ghy-

The section h4 of P can be used to trivialize the bundle of Fock spaces
over A. Each fiber F4 is identified as the free Fock space Fy. The Hamilto-
nian Dy is quantized as

Da = q(h3'Dahy), (2.7

;hat is, we first conjugate the one-particle operator Dg by hs and then
canonically quantize h;lD 4k 4. The conjugated operator has a Dirac vac-
uum ¥4 contained in Fy (but differing from the free vacuum ). The CAR
algebra in the background A is represented in Fy through the automor-
phism a*(u) — a%(u) = a*(h3'w), a(uv) — aa(u) = a(h;'w) and using the
free CAR representation for the operators on the right. The Hamiltonian

Dy is then X
Dy = E/\n(A) ta(un)aa(uy): (2.8)

where the u,’s for nonnegative (negative) indices are the eigenvectors of
D4 belonging to nonnegative (negative) eigenvalues. The normal ordering
is defined with respect to the free vacuum.

Sections of the Fock bundle are now ordinary Fy valued functions. The
effect of an infinitesimal gauge transformation consists of two parts: The Lie
derivative Lx acting on the argument A of the function and an operator
acting in Fo, R

X=Lx+ ZG(X; Apm : GG 3, (2.9)

where the 8(X; A),,,’s are matrix elements of #(X; A) in the eigenvector ba-
sis (v,) of Dg. The commutation relations of the second quantized operators
are modified by the Lundberg’s cocycle, [9],

[X,¥] = [X, Y]+ c(0(X; A),0(Y; A)). (2.10)

In the next section we want to compute the right-hand side of (2.10) more
explicitly. We shall denote by ¢,(X,Y; A) (n=dimM) the second term on
the right. It is a Lie algebra 2-cocycle in the following sense:

en([X,Y],Z; A) + Lxcn(Y,Z; A) + cyclic perm. = 0.

Remark. In the case of massive Dirac fermions the cocycle vanishes in
cohomology. Namely, there is a mass gap [~m,m] in the spectrum of the
Hamiltonian D 4. For this reason the spaces Hy(A) form a smooth vector
bundle over A. Since A is flat this bundle can be trivialized. It means that
one can define a continuous family of operators h 4 such that € = h‘ e(A)h4.
With this choice it is easy to see that actually [¢,w(g; A)] = 0 and therefore
the cocycle ¢, is identically zero. This does not work for massless chiral



280 JOUKO MICKELSSON

fermions because there is no mass gap and in fact there is a spectral flow
across any point in the spectrum, that is, one can always choose a continuous
path in the space A such that along the path the eigenvalues of D4 crosses
any given point in the spectrum.

3. A computation of the cocycle

Let us recall first some basic facts about pseutlodifferential operators (PSDO’).
A (classical) PSDO P is represented through its symbol. The symbol is a
smooth function in the cotangent space T*M which has an asymptotic ez-
pansion of the form

p(z,€) = pe(2,8) + pe-1(2, &) + Pr—2(2, ) + ... (3.1)

where n is an integer and the p;’s are functions which are smooth outside of
the zero section in T*M and are homogeneous of degree j in the momentum

variables € = (£1,...,6&n),
p;(z,t€) = t'p;(z, E)for t > 0. (3.2)

The degree k of the principal symbol py is the degree of the PSDO P. We
shall consider PSDO’s acting on vector valued functions. In that case the
symbols are N X N matrix valued functions. For simplicity we shall consider
only the case when the cotangent bundle is trivial; in general, one has to
cover T* M with coordinate charts and the symbol is given by a collection of
local symbols in the coordinate charts, with appropriate rules for a change
of coordinates in the overlap sets; see [6], II1.3 for details.

A PSDO P is a partial differential operator if the symbol pis a polynomial
in the coordinates £;. In that case the operator P is simply obtained from p
by replacing the coordinates §; by the partial derivatives —i37 and inserting
the derivatives to the right-hand-side of the coefficient z-space functions.

A PSDO P is defined by its asymptotic expansion up to an infinitely
smoothing operator. An infinitely smoothing PSDO is an operator with a
symbol approaching zero faster than any power ﬁ; as |€] — oco. In particu-
lar, an infinitely smoothing operator is trace class. A PSDO on a compact
manifold of dimension = is trace class if and only if its degree k < —n — 1.
The product of a pair P,Q of PSDO’s is represented by the symbol

(=i
m!

(pra)&z) =) 7 poy g (3.3)
m

where the sum is over multi-indices m = (my,...,my,) € N?, |m| = m; +

veetmy, ml =myl...m,!t and 07 = (5%1—)'"1 ...(3—2;)’"". In particular, the

principal symbol of the product is just the (matrix) product of the principal

symbols of the factors.
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In the euclidean case M = R™ a PSDO P with symbol p acts on sections
o of a trivial CN bundle over M in the following way:

(PO)@) = [ pla, 0 4ae (3.4
where 9 is the Fourier transform of 9,
P(&) = (ﬁ'ﬁ/w(a:)e“"”'sd"z. (3.5)

The adjoint of P (in the Hilbert space of square-integrable sections, the
measure defined by a Riemannian metric on M) is in general a complicated
expression in terms of the symbol p. We shall give the formula only in the
euclidean case: .

P*~p* 4+ Qp™ + 559"’;;* +... (3.6)

where

0= iy oo
J

and p* is the matrix adjoint of the matrix valued symbol p.

We shall construct the section hy explicitly as a function of the vector
potential when dimM = 3. We shall define h4 through its symbol, as a pseu-
dodifferential operator in the spin bundle over M. I claim that an operator
with the following asymptotic expansion satisfies the requirement (2.1):

ha=1- il64) + terms of lower order in |€]. 3.7

4 [¢)?
In order to make the discussion as simple as possible we assume that M
is the one-point compactification of R? and we use standard coordinates in
R3. We also use the notation A = ¥ Axoy.
An example of an unitary operator with the asymptotic expansion (3.1)
is the operator

ha = exp (;1"-(03 +17/2(Do, 41(D3 +1)7117) (3.8)

where we have added a small positive constant A to the denominator in order
to cancel the infrared singularity at £ = 0; this has an effect in the asymptotic
expansion only on terms of order -2 and lower in the momentum &.'It is clear
that the lower order terms do not have any effect on the condition (2.1)
since any operator of order < —2 is automatically Hilbert-Schmidt when
the dimension of M is 3. Thus we have

i ¢ dX]

O(X; A) = hzldT(X)hA + hzlﬁxh,; =X+ Z"Tﬂz—" + O(—Q) (3.9)
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where O(—p) denotes terms of order < —p. The symbol of the PSDO ¢ is ]-E]
and it is a simple computation to check that indeed [¢,8(X; A)] € L, using
the product rule of symbols.

The term of order -2 in § is important in computing the actual value of
the Schwinger term. It is equal to

Llondl, o . 1[6A4]
1 Jep Xty g

1§ 4]
16 |¢[4
Note that all terms are linear in the vector potential A. The computation
of c3(X,Y;A) = ¢(8(X; A),0(Y; A)) is greatly simplified when we keep in
mind that it is only the cohomology class of the cocycle ¢ we are interested
in. Another simplification is the following: Formally,

0o =— O X

+= 16 dX]. (3.10)

1 1
Ztre[e, Plle,Q] = —-2—tr[e, PlQ (3.11)

when P,Q are in gl,. However, the operator on the right is not quite trace-
class; only its diagonal blocks are trace-class. For this reason the trace is
only conditionally convergent. It is convergent when evaluated with respect
to a basis compatible with the polarization H = H, @ H_, for example, one
can choose a basis of eigenvectors of Dy. The trace of an operator P with
symbol p(¢, z) on a n-dimensional manifold is

4P = ()" / tr p(€,2)d e (3.12)
27 Jeo

As an exercise, let us compute (3.11) when M = $? and P,Q are mul-
tiplication operators (infinitesimal gauge transformations). In that case the
symbols are just smooth functions of the coordinate z on the circle. Now
€= ]%' is a step function on the real line, its derivative is twice the Dirac

delta function located at £ = 0. It follows that the symbol of the commutator
e, P]is
2 3

. ! ("i)2 ]
(~8ep'(2) + Slap(z) + ...
Applying the formula (3.12) to (3.11) we get

1 1
girele Plle @l =5 |  trp(@)g()dz,
where the trace under the integral sign is an ordinary matrix trace. If one
feels uneasy with singular symbols, one can approximate € by a differentiable
function Elﬁﬁ and at the very end let A — 0.
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In the 3-dimensional case we have to insert P = 6(X; A),Q = 6(Y; A) in
(3.11). Using the asymptotic expansions for P and @, p = J_p_k(é,2) one
has

c3(X,Y;A) = Ztr<|§l *PHG—DF If[ ) (3.13)

In fact, one needs to take into account only finite number of terms. The sum
of terms with k < —4 is a coboundary of the 1-cochain

> tr(ex6(X;A))_y (3.14)

k>4

Thus we may restrict the sum in (3.13) to indices k¥ > —4, so we have only
a finite number of terms to check. To take care of the infrared singularity
in the integration in (3.12) we replace all denominators |¢|™% by (|¢] + A)~F.
One can then check by a direct computation that, modulo coboundaries,
the result of the computation in (3.13) does not depend on the value of A
(i.e., one may take the Nmit A — 0 in cohomology). The final result is in
accordance with the cohomological [7], [10], [14] and perturbative arguments,

4],
1

2472

What we have constructed here is an action of a Lie algebra g, which
is an extension of Map(M,g) by the abelian Lie algebra of complex valued
functions on A, in the space of smooth fucntions A — F. The operators
acting in this space are the generators Lx + 6(X; A). We have not really
constructed a unitary representation of § because we do not have a quasi-
invariant measure in the space A of smooth vector potentials. However,
our construction can be viewed as a true old fashioned representation of a
different extension g of Map(M, g).

Consider the Lie algebra of all pseudodifferential operators of the form

es(X, Y3 A) = /M trA[dX, dY). (3.15)

i [§,dX]
4 ¢

where X is an infinitesimal gauge transformation (multiplication operator
by X € Map(M,g)) and { is an arbitrary PSDO of degree —2 acting in
H. As we saw above, the commutator [¢,6], is Hilbert-Schmidt and so 8
is canonically quantizable. It is easely seen that the commutator of two
operators of the form (3.16) is again of the same type and therefore they
indeed close a Lie algebra. This Lie algebra g’ is an extension of Map(M, g)
by the Lie algebra P_; of PSDO’s of degree -2 acting in H,

=X+ +¢, (3.16)

0 — P_3 — g’ — Map(M,g) — 0,
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defined by the natural inclusion P_¢ — g’ and by the projection § — X.

In the second quantization the Lie algebra g’ is centrally extended to
a Lie algebra § because of the Lundberg’s cocycle. Thus the algebra of
second quantized operators 8 can be vieved as a Hilbert space representation
of g. It would be an interesting task to pursue in greater generality the
representation theory of g.

4. The interaction hamiltonian

Up to this we have discussed the regularization of the time component jo (=
charge density) of the nonabelian gauge current. However, in renormalized
perturbation theory one needs also the space components

7R(2) = Pla)nT (=) : (4.1)

where the T*’s are generators of g. This is because the interaction Hamilto-
nian contains the term

Hi= / A (2)j8(2)d%. (4.2)

Actually, in the abelian case the hamiltonian is the free quadratic Dirac &
Maxwell hamiltonian + the interaction Hy. Thus in the abelian case it is
sufficient to renormalize Hy such that it becomes a well-defined operator in
the Fock space of fermions and photons.

In this section I shall explain only the renormalizations needed to make
Hy well-defined in the background quantization.

The aim is achieved through a sharpening of the regularization used for
the time component. We want to define an operator valued function h4 such
that

h3'Dgha = Do+ Wy (4.3)
where W4 is a PSDO of degree 0 with the additional property that
[e,Wa] € Lo. (4.4)

The condition (4.4) guarantees that the matrix elements
< ¢|WA1 v Wyn IO > (45)

are finite, when ¢ is a state in the fermionic Fock space containing a finite
number of particles. Here Al...A™ are any given values for the external
gauge field (smooth and with appropriate vanishing conditions at spatial
infinity when the physical space is noncompact). But the finiteness of the
matrix elements (4.5) is precisely what is needed in the perturbation expan-
sion, based on the Dyson expansion of the time evolution operator; see any
standard quantum field theory text book, e.g. [2)].
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The choice of h4 in the previous section is not quite sharp enough to
achieve (4.4). A correct modified expression is the following:

L 2_1[ok _o&
ha = 1= gl )~ ele AP - 5 s~ 2 04
1
~gEAle AlA-O - g4 -OlE A1+ 0-3)  (46)
After a tedious computation we obtain
Wi = Ky(€ + iA)ha = € = o4 ¢
e o _ ok
8 £’[i£l2 |€[4yakA] 4‘&2[678/:‘4]
2|£'2€ljk€J[AhAk] lflemA + !514(/1 £)2+0( 2) (47)

It is then a simple computation to show that [¢, W4] is of degree —2. There is
no magic in the derivation of the formula (4.6} for h4. It is a simple recursive
procedure. Writing

ha=1+4+h_y+ho+...
in the asymptotic expansion, one gets
(E+aotaci+.. Vha=E+ah+a +...,

where
(16 = 0o + [6: h’—-l]

oLy = oy + [ag, ho1] + Ehog + (B)) -2 — iokOkh_y. (4.8)
The condition (4.4) is equivalent to the pair of equations
"o 'y a8 (z) 1y
[e,00] =0 and[e,al,] — (8, €)(0; "cp) = 0
which together with (4.8) gives a set of linear equations for h_; and h_3. One
can then determine the lower order terms hy, k < —2, from the unitarity

condition for k. This is again a set of recursive linear relations obtained from
the formula (3.6) for the adjoint of a PSDO.
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5. Vector fields and second quantization

One parameter groups of diffeomorphisms on a manifold M are generated by
smooth vector fields. For this reason, although the exponential mapping is
not quite onto, the algebra of vector fields (with respect to the Lie bracket)
can be considered as the Lie algebra of the diffeomorphism group Dif f(M).
Instead of considering the action of the finite group transformations in the
Fock space formalism we shall restrict here to the action of (regularized)
vector fields.

It is easy to see that the commutator [e, f] is not even compact when
f = fi0 is a vector field on a manifold with dimM > 1. It is only in
dimension 1 that the commutator is actually Hilbert-Schmidt. We shall show
that for any f there is a PSDO F = F(f) with the following properties:
(1) F(f) - f is of order zero
(2) [e, F(f)] is Hilbert-Schmidt
(3) for any vector fields f, g also [F(f), F(g)] has the properties (1), (2).
The Lie algebra of operators in the one-particle space generated by the
F(f)’s is called the algebra of regularized vector fields, to be denoted by
Dreg(M).

We shall define F(f) through its expansion F(f) = f+60+6-1+...
where 8, is homogeneous and of degree n. Note first that the first order term
in the commutator F(f)*F(g)— F(g)+F(f)is just the ordinary commutator
[£, 9] of vector fields, so the algebra D,;(M) is an extension of D(M) by the
algebra gl,., of zeroth order operators w such that [¢,w] is Hilbert-Schmidt.

In order to find 6 and 8-, (for the regularization, we are not interested
in the lower order terms because they are Hilbert-Schmidt) we first compute

[6’ F(f)]Oa

. O¢ 0f;

(ex F(f) = F(f) o = ~ige 5o

& + [€,60] = mo + [€, 6o].
where the last commutator on the right is just the matrix commutator in-
volving the Pauli matrices.

Since ¢ is a unit spinor, its derivative in any direction in momentum space
is orthogonal with respect to £ = £rox. Consequently the matrix no can be
written as a commutator in spin space, 7o = —[¢, 6] for some symbol 8 of
order zero. Actually, by the algebra of Pauli matrices, we get a solution

1
6o = ~Z[€’ 7’0]

Having made this choice, we compute the next term in the starcommutator,

(exF(f)—F(f)x€)_, = [5’04]_{%%
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B Z 0% aZf,,, 232662fm
iz 06506, 0z Oz ; bm 0¢} 9zt
= {670—1]+7’—1‘

One can check by a completely straight-forward -algebra that 7_, has
vanishing trace and also tren_; = 0. From this follows that 77_1 can be
written as a commutator of some f_; with e. We can choose 6_; = —[e,n_1].

With these choices [¢, F(f)]. is of order —2 and thus Hilbert- Schmxdt
In an analogous manner as in section 3, in the case of infinitesimal gauge
transformations, we can view Dy.,(M) as an extension of the Lie algebra
D(M) of smooth vector fields by the nonabelian Lie algebra gl,,

0_—)811'” —_’DTCQ(M)__)D(M)'—__)O

with the obvious maps. This Lie algebra is then modified in the second
quantization by the Lundberg’s cocycle.

We have all the time assumed that M is compact in order to avoid dis-
cussing infrared divergencies. In the case of a noncompact physical space
(like JR%) one has to choose suitable boundary conditions for the Dirac and
gauge fields and vector fields in order to preserve the Hilbert-Schmidt prop-
erty of the commutator with the sign operator e.
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The conditions which are imposed by mathematical axioms can in general
only within limits be fulfilled by physical objects. The integers which occur
in arithmetics may still rather well be in harmony with atomistic physics.
Points, lines, planes, etc., defined by the continuum in geometry obey how-
ever definite relations which can at best in crude approximation be identified
with measurable physical systems. This is apparent from the one to one map-
ping of sets of the continuum on subsets. One can expect from the foregoing
that any good and therefore clear physical theory involving a continuum will
lead eventually to extreme results where physics can no longer do justice to
the axioms so that no reasonable person can believe in the absurdity of its
predictions. Riemann had already recognized the problem of the continuum
in the complementarity of geometry and physics for the description of na-
ture. He devoted a section of his habilitation work to a discrete description.
One can not expect that in the sophisticated spacetime continuum of the
general theory of relativity the consequences of Riemann’s critique of such
sharply contoured geometric constructions as points, lines — and even the
light cone, will not come to the light when describing extreme physical situ-
ations. This is already known in microscopic physics where the uncertainty
relation rules out the identification of points with physical objects. The
persistence of the curse of the thirteenth fairy — (with which Schrédinger
poetically compares the continuum because it proceeded the birth of our
science) — results strangely enough from macroscopic physics. The Einstein-
Hilbert equations of general relativity predict inevitably the gravitational
collapse of a sufficiently large cloud of dust to a point, irrespective of the
nature of the short range interaction between the dust particles. The point
of view that this extreme result is a manifestation of the predicted absurdity
and has not the character of a physical law, is not shared today by many
physicists. Einstein himself and also Schrédinger did however not advocate
the last mentioned trend. This is witnessed by the article [1] which intro-
duces a modified interpretation of the field equations to abandon the domain
beyond the horizon. One sees in the apparent inevitability of gravitational
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collapse rather one of the greatest revolutions in our physical world picture.
The argument for this collapse is based on the fact that the curvature near
the formation of a horizon can remain small. The principle of equivalence
seems then to rule out any reason why physics should be different in this
domain than in others so that a given solution of the Einstein-Hilbert field
equations does apply everywhere.

The author’s counter-argument is based on macroscopic quantum ef-
fects induced by the curvature. The earliest discovered of these effects is
Schrédinger’s alarming phenomenon of elementary particle pairs created in
the time dependent metric of an expanding universe [2]. Associated with it
are the contributions of virtual elementary particle pair effects, which be-
came known as the gravitational analogues of the Uehling term of the Lamb
shift {3] and of the Casimir effect [4]. There exist other more complicated
contributions of quantized fields in classical gravitational fields, even in low
order approximations. The terms due to virtual particle contributions are in
general divergent and non-renormalizable. Every quantum field contributes
to an additional source term of the gravitational field equations. The gravi-
tational field itself has also to be considered — but we can hardly do more
than speculate about the microscopic manifestations of the gravitational
field. Solutions of the classical Einstein-Hilbert equations can not account
for the appearance of such source terms.

We summarize the conclusions we draw from the foregoing considerations:

1. The gravitational collapse of dust to a geometrical point predicted by
classical general relativity is tentatively considered as an absurdity of
the kind discussed.

2. Our knowledge about quantum effects in classical gravitational fields
excludes a rigorous macroscopic description of extreme situations in
terms of the Einstein-Hilbert equations alone. These cannot produce
the Schrodinger phenomenon and thus also not its virtual manifesta-
tions which ought to be considered before conclusions about horizon
formation are drawn.

3. We lack empirical knowledge about .the structure of the gravitational
interaction in microscopic regions and lack adequate knowledge of parti-
cle — and field theory to even estimate the magnitude of the mentioned
macroscopic quantum effects in classical gravitational fields.

4. We have no direct observational criterium to distinguish a highly col-
lapsed system from a true black hole with a horizon.

5. To avoid the fallacies cited under point 3 we search for modified macro-
scopic equations which are hoped to include the macroscopic quantum
effects in average and tend to eliminate the absurdity. These equations
must be of higher order than the second and must give a good appro-
ximation to general relativity in less extreme situations. The coupling
of matter with gravitation should contain nonminimal terms to produce
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the Schrodinger phenomenon.
What about the principle of equivalence, Einstein’s ingenious bridge between
physics and geometry? Einstein and Rosen [1] conclude with its help that
something different than the vacuum must be found (latest) at the horizon
— if the rest of physics is to remain valid. They postulate there a source in
accordance with Einsteins geometrization program. On the other hand the
ultrarelativists — those who for one or the other reason follow an orthodox
course without much consideration about results of quantum and particle
physics - they conclude from the principle of equivalence that space-time has
to be extended unaliered beyond the horizon until it ends in a singularity.
Their use of the prescribed mathematics is certainly correct — but they risk
to fall just because of this onto the mentioned absurdity. The Schrédinger
phenomenon demands modifications of the classical equations already before
and outside the horizon.

Equations with an admixture of fourth order terms, derivable from a
Lagrangian of the form: :

L = /g (R+ aR? + bRy;;x RMIF) (1)

a,b constants of dimension (length) have early been considered [2]. Their
vacuum solutions include all of those of general relativity. Other physically
significant vacuum solutions are not known. The presence of matter requires
here solutions different from general relativity but none are known either.
Other lower order effects of quantum field theory are even more difficult to
incorporate into classical equations.

The search for modified equations need not to be restricted to the pertur-
bation formalism of quantum field theory. The approach from a gauge prin-
ciple and in particular from Kaluza-Klein models appears promising. The
latter achieve a quasi-unification of general relativity in interaction with a
gauge field of vanishing rest mass in a (somewhat mutilated) metrical space
of 44+ n dimensions. The Schrédinger phenomenon, of particular interest for
a massless gauge field, does not appear in the classical theory. A nonmininal
interaction is required to obtain it classically. There are too many possibi-
lities to arrive at such equations. We shall follow one way led by an early
attempt of the author to describe the inner quantum number of spin by a
higher dimensional Kaluza-Klein generalization. The gauge group is in the
simplest case that of the tetrade rotations. The theory has the unique fea-
ture of convertability of the inner quantum number (spin) into a dynamical
variable (angular momentum) {5,6].

The theory is formulated on the ten-dimensional manifold of the anti-De
Sitter group G = S0O(3,2). The subgroup H = SO(3,1) is the gauge group.
The principal fibre bundle P(G, H, G/H, ) has the anti-De Sitter universe
with the topology of G/H as base manifold and the natural projection 7 :
G — G/H. The Cartan-Killing metric v of every semi-simple Lie group G,
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Tuv = Tr{(AdAu) Y (AdAu)}» (2)

with A,, A, left invariant vectors of &, fulfills Einstein equations,
Ruy ~ 37w (R-52) = 0. (3)

A metric ¢ = 7’ v is then defined on the base. It is in this case the anti-De
Sitter metric which fulfills:

By — g (B+1)=0 (4)

with B;; the Ricci tensor of the base space. The left invariant vectors
Ar (R = 1...10) are Killing vectors of v. We shall label henceforth in-
dices pertaining to the base space by letters A... L running from 1...4
and those pertaining to the fibre by letters M ...Q running from 5...10.
General indices R...Z run from 1...10. This rule will be applied without
further warning also to the Einstein summation convention.

We consider more general metrics v which are solutions of the Einstein
equations (3) and keep the six Killing’s vectors with unaltered commutation
relations on each fibre,

[Ap, Ag) = cpy An. (5)

The structure of the principal fibre bundle P and of the subgroup H on
the fibres thus still exists. In the space perpendicular to the Ay there exist
four orthonormal vector fields Ag with the unaltered commutation relations
of the group G-

[Ag, Am] = chiy Al (6)

only the commutation relations:

[Ag, AF] = Cp(z) AR (7)

are modified to base point dependent general structure constants.

The metric v defines a connection on P with horizontal vectors Ag per-
pendicular to the fibre. The generalized structure constants CM,, Cfy de-
termine respectively curvature and torsion two forms over the base. The
topology of the base remains that of the anti- De Sitter universe, but the
metric g = 7'y is now generalized.

The construction constitutes a generalized classical Kaluza-Klein theory
with a gauge field FM which is determined by the CIE‘;JH. The geometry on the
base is non-Riemannian. The torsion two-form is in general not vanishing.
The gauge group H is a pseudo orthogonal subgroup of GL(4,IR) which
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allows the decomposition of the connection into a Riemannian part and
contortion,

H .
K= L (i e Tl (9)
EF = 5 \'EF FE EF

with T the torsion tensor.
The components of the curvatusc tensor F of the two form FM can
likewise be decomposed:

Fagrs = Bagrs + Qae1J, (10)

Quarry = Kagry — Kaggu + Kapr KB — Kags Kgy (11)

with the Riemann tensor B and contortion K. The semicolon denoting the
Riemannian covariant derivative.

Such a decomposition cannot be achieved with the full GL(4, IR) as gauge
group. The assumptions about Riemannian curvature found in the litcrature
[7) in connection with this gauge group can thus in general not be right. See
ref. 6.

The purely vertical component of the ten-dimensional equation (3) is
eliminated with Lagrange multipliers to restrict only to such solutions for
which the natural metric on the fibres is preserved and the Planck length
(in units with A = ¢ = 1 the square root of the gravitational constant G) is
introduced on the base manifold as physical unit of length instead of that of
the radius of the universe. The theory cannot yield a relationship between
these two lengths without altering the topology of the manifolds.

The mixed horizontal-vertical components of equation (3) are

this becomes if torsion vanishes

B4yl =0 (13)

and due to the Bianchi identities:

By - By =0 (14)

related by Yang to a gauge theory of GL(4,IR) [7]. The absence of torsion
which can in this case not be separated, is not accounted for in Yang’s
paper and equation (14) alone also admit unphysical solutions. Yet the term
(12) is the Riemannian analog of Maxwell’s equations. It is supplemented in
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equation (11) by a source formed out of torsion and by the purely horizontal
cormponents of equation (3),

Bl{? - %GFAHDE FAHDL _ %5{; (B - %GFAHDJ FAHDJ 4 1) =0 (1%5)

We are inclined to relate the torsion term of equation (12) to a nonmi-
nimal interaction of torsion with elementary particle spin. Equation (13)
admits all vacuum solutions of general relativity. Equation (14) consists of
the Einstein’s term with cosmological member and the energy-momentum
tensor of the Yang-Mills field, which can be decomposed again into me-
tric curvature and torsion; it is of vanishing trace. Vanishing torsion leaves
this term bilinear in the metric curvature - apparently an additional vac-
uum energy of virtual matter fields which remains small with the curvature.
The real field part is bilinear in @ and the term linear in B and @ con-
stitutes the nonminimal interaction which can give rise to particle creation
by gravitation, the Schrédinger phenomenon, of which even the virtual part
appears. Einstein’s request for the geometric expression of the matter ten-
sor is fulfilled — yet as its vanishing trace shows, the model describes only
very special matter. The spherically symmetric vacuum solution of general
realtivity satisfies also equations (12,13,14) but other solutions of Einstein’s
theory in general do not, due to the nonlinear term.
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Abstract. In the first part we review the construction and classification of classical W
(super)algebras symmetries of Toda theories. The second part deals with recently obtained
properties. We show that chains of W algebras can be obtained by imposing constraints on
some W generators. We call secondary reduction such a gauge procedure on W algebras.
Then we emphasize the role of the Kac-Moody part, when it exists, in a W (super)
algebra. Factorizing out this spin 1 subalgebra gives rise to a new W structure which we
interpret either as a rational finitely generated W algebra, or as a polynomial non linear
Woo realization.

1. Introduction

W algebras constitute today a rather broad subject: on the one hand they
play a role in different parts of 2 dimensional Conformal Field Theories
(CFT), on the other hand much has still to be done for a complete knowl-
edge of these algebras and their algebraic properties. First it was thought
that they can be used to facilitate the analysis of rational CFT (i.e. theo-
ries in which the main parameters, namely central charge ¢ and conformal
dimensions h; are all rational numbers): this extra symmetry, bigger than
the conformal one, could help to characterize degeneracies, and to classify
in a simpler way the physical states. After that it was realized that they
show up in several places. We currently talk nowadays about W gravity. W
algebras appear in the quantum Hall effect, black holes models, in lattice
models of statistical mechanics at criticality, and in Toda models (Leznov
and Saveliev 1989) as symmmetry algebras (Feher, O’Raifeartaigh, Ruelle,
Tsutsui and Wipf 1992).

After some definitions (Section 2), we will concentrate on classical W al-
gebras and superalgebras which are finitely generated -we generically denote

* Groupe de Lyon, ENS Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07, France.
** Groupe d’Annecy, LAPP, BP 110, F - 74941 Annecy-le-Vieux Cedex, France.
*** Groupe d’Annecy.
! Groupe de Lyon and groupe d’Annecy.
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them W,-. Two remarkable facts can then be mentioned (Section 3):

-i) The constants of motion of a Toda theory form a W, algebra, and such
a Toda theory can be seen as a gauged WZW model, on which.constraints
have been imposed (Feher, O’Raifeartaigh, Ruelle, Tsutsui and Wipf 1992).

-ii) As a consequence, one can explicitly construct such W, algebras, and
give a group theoretical classification of them (Frappat, Ragoucy and Sorba
CMP 1993).

Two comments:

- this classification is based on the SI(2) embeddings in a simple Lie
(super)algebra G and on the 0Sp(1]|2) embeddings in a simple superalgebra
SG. We will try to insist on the property of SI(2) to be intimately linked
to a W, algebra from its definition: this is important for our construction,
but also allows to think that the classification of W,, algebras symmetries
of Toda models hereafter given is “not far” from exhausting the set of W,
algebras.

- there are two main types of W, algebras: those that we will call the
Abelian ones because they are related to Abelian Toda models: for example,
if the underlying group of the Toda model is Si(n), one gets the algebra
generated by Wy, Wi, .. W,.

There is a second type of W, algebra, less well-known: they are associated
to non Abelian Toda models (Leznov and Saveliev 1989), and we call them
non Abelian W, algebras, and we will come back to this class of algebras.

The above classification can be simplified using two interesting features,
directly suggested by properties of simple Lie algebras and superalgebras,
namely:

- deduction of W,, algebras related to non simply laced algebras B,,C,,...
from W, algebras related to A, series by “foldings” (Frappat, Ragoucy and
Sorba NP 1993) analogous to the folding technics which produce B,,C,...
algebras from A, ones (Section 4).

- existence of chains of W,, algebras mimicking chains of embeddings of
subalgebras in a simple Lie Algebra (Delduc, Frappat, Ragoucy and Sorba
1994). Imposing constraints, when possible, on a the W algebra itself, one
can reduce W into another algebra W: we will call this technics a secondary
reduction (Section 5).

Finally coming back to the non Abelian W, algebras, one can remark
that most of them contain a Kac Moody part. Such a Kac Moody subalgebra
should play a particular role. In particular, we will see that factorizing out
this “spin one” part in the W,, algebra gives rise to an algebra which can be
seen either as an W, algebra, that is an infinitely generated W algebra, or as
a finitely generated W algebra but of a new type; we will call it “rational” W,
algebras (Delduc, Frappat, Ragoucy, Sorba and Toppan 1993). This problem
as well as its supersymmetric generalisation is the subject of Section 6. which
ends up by a comparative study of the factorizations of spin 1/2 fermions
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and spin 1 bosons in a W algebra.

‘We have chosen to illustrate each property which is introduced on an
example instead of presenting general proofs. We hope that this approach
will make the reading as easy for the non experts as for those familiar with
W algebras, these last ones being invited to directly go to the three last
sections.

2. Definitions

We know from d = 2 CFT that the stress energy tensor has a short-distance
0O.P.E. of the form, with z,w complex variables:

2T (w) 0T (w) c/2

TE)Tw) = ot Goap T o T (2.1)
Expressing T'(z) into Laurent modes
dz
— —m—2 — m+2
T@)= ¥ " hny  Lm= § 5 2T() (2.2)

meZ

the integral being understood around the origin clockwise, we have the C.R.
of the Virasoro algebra:

[Lmy L] = (M = n)Lman + fgm(ml’ = 1)bmyn0- (2.3)

Note that {L41,L_1, Lo} generate an SI(2, R) algebra, while ¢ is the central
charge.

In a CFT, primary fields are those which transform as tensors of weight
(h,h) under conformal transformations:

z - w(z), Z— w(z)

Braler?) = g (e, 00 (22)" (42)" 2

T(z) being the generator of local scale transformations, one gets the O.P.E.,
after restricting to the z-part:

T(2).bn(w) = (';¢f(;”))2 + ?ff(‘u‘g o (2.5)

h is called the conformal spin of the primary field ¢,(z). One can deduce
from eq. (2.5) the CR

(Lm, $n(2)] = (m + 1)ha™gp(2) + 2™ 1 0n(2). (2.6)

Now let us add to the Virasoro algebra some primary fields. With some
precautions, we can obtain a W algebra.
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As an example, let us consider the N = 1 superconformal algebra: it is
made from the (conformal spin 2) stress energy tensor T(z) and a conformal
spin 3/2 fermionic field G(2). Developing T'(2) and G(2) in Laurent modes:

G(z) =Y 273*" G, (2.7)

with r € Z or r € Z + } following we are in the Ramond or Neveu-Schwarz
sector, we get the (anti) C.R.:

1
[Lm,G,-] = (;m - T)Gm+,- '
{Gr,G} = 2Lpis + -;i(r? ~1/8)b,400 _ (2.8)

We have a W (super)algebra. It is specially simple since it closes linearly
on the generators L, and G,. Let us add two remarks which will be relevant
for the future.

First {L41, L1, Lo,G 41/, G-1/2) generate the OSp(1[2) superalgebra,
that is the “sppersymmetric” $I(2) extension. In the following OSp(1|2) will
play for W, superalgebras the role of SI(2, R) for W,, algebras.

Secondly {G11/2} constitutes a spin 1/2 representation of the algebra
{L41,Lo}. More generally (Bowcock and Watts 1992) if Wj(z) is a h primary
field under 7'(z) the modes W, with —A +1 < n < h — 1 will form a spin
(h — 1) representation of {L.41,Lo}.

The above definitions and properties stand for the above OPE to be
radially ordered. We will relax this last feature in the following and restrict
ourselves to the classical case.

Then a classical finitely generated W,, algebra will be defined as a Lie
algebra with a Poisson bracket {,}pp., and a set of generators involving a
stress-energy tensor T' as well as a finite number of primary fields Wj, (i =
1,..n — 1) under T satisfying:

{T(2),T(w)}p.p. = ~2T(w)8'(z - w) + T (w)é(z — w)

+§6”I(z - w) (2.9)
{T(2), Wh,(w)}p5. = —hiWh,(w)6'(z — w) + OWh, (w)b(z — w) (2.10)
{Whi(2), Wi, (w)} = 3 Pijia( )8z ~ w) (2.11)

where P; j.o(w) are polynomials in the primary fields Wy, T and their deriva-
tives. o

Let us remark that the property of a primary field W, of conformal spin &
to be connected to the representation Dj_; of the SI(2, R) algebra {Ly, Lo}
limitates through the tensorial product Dy,_y X Dj; 1 the allowed conformal
spin of the P; ;o polynomials.
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3. From a WZW model to a Toda theory
3.1. THE METHOD

It has been elegantly shown that, starting from a WZW model, the action of
which is S(g) and the fields g(z) belong to the group G, and imposing some
of the components of the conserved currents to be constant or zero leads to
a Toda model (Feher, O’Raifeartaigh, Ruelle, Tsutsui and Wipf 1992).

Let us denote Swzw(g) the action of the WZW model based on a real
connected Lie group G, and ¢ € G. Then from the Kac-Moody invariance
G1 X Gg with Gy 2 G 2 G of the model

9(2) = g1(z7 )g(z)ga(e™) (3.1)

with z = (z%,2~) denoting the two-dimensional variable, we get the cur-
rents:

Jy=¢10, g and J. =0_gg7! (3.2)
which, due to the equations of motion, are conserved:

In order to perform the gauge theory approach which will be relevant,
we need G to be non compact: let us consider as an example the Si(n, R)
group. We decompose its Lie algebra G as follows:

G=G-dHDPG+ (3.4)

where G4 (G.) is the subalgebra of positive (negative) root generators and
H the Cartan part, i.e.:

*

e G (3.5)
G- "

*

Note that the generators E,, (i = 1...n—1) associated to the (positive) simple
roots are in the positions Ey3, Eyg, ...Ey.1,, in the above matrix, while E_4;
occupy the position Eyy,...,Eypn_1 (E;; being the n X n matrix with 1 in
position (4, 7) only).

The basic idea is to impose constraints on some components of these J4
currents. Let us impose the restriction of J. to its G_ components to be:

n—-1

Jolg =M= wEa, Jilg, =3 viFa, (3.6)

=1 f=1
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with y; and v; real positive constants.

Such constraints can be obtained as a part of the equations of motion of
a new model resulting from a Lagrange multiplier treatment on the WZW
action. More precisely, it is a gauge theoretical approach involving as gauge
group the (non compact) part G4 in Gy and G_ in G, associated to the
Lie G subalgebra G, and G_ respectively with elements g,(z) € G+ and
g—(z) € G- which will lead to the Euler equations (3.3) and (3.6). The use
of the local Gauss decomposition

g=9g4 -h-g. with h(z) = exp Zqﬁg(z)H; 3.7
i=1
provides in the Euler equations the differential equations of the Toda theory
based on the group G, the ¢;’s being the corresponding fields.

040_¢; = uiy exp ZK;quj (3.8)
j
where K;; is the Cartan matrix associated to the Lie algebra G of G.

Two remarks can be made at this point.

i) The above G Toda theory involves r = rank G fields in one-to-one
correspondence with the Cartan part H of G, and it is usually called the
“Abelian” Toda theory on G.

ii) The above construction actually mvolves the principal SI(2) subalge-
bra of G with generators:

r r
H= Z K%H; E_.=YE.., Ey=)Y KYE, (3.9)
1,5=1 1=1 §,j=1
(note that a rescaling in Eq.(3.6) allows to take all the y; = 1; K*/ is the
inverse Cartan matrix).
Moreover the currents J_ (resp. J;) are not invariant under the gauge
transformations generated by the constraints (3.6). Focussing on J_, these
transformations read:

J(z-)—~ Ji(z-)
= g4(2-)0-(2-)g4(2-) 7 + 0-g4(2-) - 94+ (2-)7" (3.10)

where g4(z_) € G4. This will allow to bring the currents to the gauge-fixed
form:

I =M_+) Win(J)M; (3.11)
>0
where the W4, are polynomials in the currents J_ and their derivatives

0% J_. In the so-called “Drinfeld-Sokolov highest weight gauge” each gen-
erator M; is the highest weight in the S§I(2),,, representation G; space




CLASSICAL W ALGEBRAS 303

obtained by reducing with respect to $I(2),pa the Lie algebra G: considered
as a vector space, G writes

G =@5,D; (3.12)

with D; of dimension (2j + 1). The Poisson brakets among the W;’s can be
obtained from the Poisson-Lie algebra satisfied by the current components:

{J2(2-), 2 (22 )}pp = ifPUC (2L )b(z- — 2 ) + k6°°8'(z— — 2 )(3.13)

where f2° are the structure constants for a given basis of G.

Then each Wj,, is associated to a D; and its conformal spin is (j+41) with
respect to the stress energy tensor itself relative to the D; representation
spanned by the generators of SI(2)ppar:

T=Ty+trH.0J (3.14)
with
1
To = —tr(J.J). (3.15)
2k
Note also that each W4, can always be seen as a primary field with
respect to T, after adjunction of an extra term in the J’'s and derivatives.
Before going to examples, let us remark that, in this approach, a classical
W-algebra is a subalgebra of the enveloping algebra of (3.13), itself symme-
try of a WZW model: the constraints reduce the symmetry in such a way

that only some polynomials in the J%’s and their derivatives generate the
residual symmetry.

3.2. EXAMPLES

Let us take for G the SI(3) algebra. The Abelian Toda theory is obtained
by/imposing on the J currents the constraints:

P13 P4 leading by the 0T Wy
Jo=11 ¢ s gauge actionof JY =10 T |(3.16)
010

0 1 —pr—¢p2] g+(z-)€G1to
Involving S1(2),pa1 generated by:
0
0

000 010 1
E_={100) E,=[001) H=]0 (3.17)
010 000 00 -1

G decomposes under the (adjoint) action of S1(2),ps; as:

G/si(2) = D1 ® Dy (3.18)

OO
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to which are associated resp. with the spin 2 and 3 quantities T and W3
generating the well known Zamolodchikov (Zamolodchikov 1985) {T,W3}
algebra.

But still with SI(3) there exists another kind of constraihts which allows
for a similar treatment of the WZW model. It reads

Y1 ¥3 P4
Jo=11 2 s (3.19)
0 w6 —p1— 2
Now the §1(2) subalgebra which is involved is the following:
000 010 1/2 0 0
E_o;=0100] E4yo,=[000)} H=| 0 -1/20] (3.20)
000 000 0 0 0

with respect to this SI(2), G decomposes as:

G =D& D20 D128 Do (3.21)
and the gauge invariant matrix current takes the form:
W, W, W3‘72
=11 W 0 (3.22)
0 Wy, -2

The algebra {W,, W;ﬂ’ W372, W, } is usually called the classical Bershad-
sky algebra (Bershadski 1991). It is the symmetry algebra of the. “non
Abelian” Toda model constructed from the §1(2) algebra defined in (3.20).

There are only two different §I(2) subalgebras in §I(3); therefore we
have exhausted the different Toda models and the associated W-algebras
relative to SI(3). More geuerally, starting from a simple algebra G, each
admissible choice of J components which can be set to constant (i.e. first
class constraints in Dirac terminology) will correspond to an Si(2) in G
and vice-versa. Then to determine all the different W-algebras symmetries
of Toda theories associated to G, one has first to comsider all the different
S1(2) in G. (This mathematical problem has been solved by Dynkin). In
each case, the decomposition of G with respect to SI(2) representations will
provide the conformal spin of the associated W algebra (Frappat, Ragoucy
and Sorba CMP 1993).

Supersymmetric Toda theories can also be considered. A supersymmet-
ric treatment of the WZW models, based on simple superalgebras SG has
to be done, constraints being written in’ a superspace formulation (Delduc,
Ragoucy and Sorba 1992). Then SI(2) is replaced by its supersymmetric ex-
tension OSp(1|2). The classification of 0§ p(1|2) subsuperalgebras in simple
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superalgebras followed by the reduction for each SG of its adjoint representa-
tion with respect to each OSp(1]2) subpart provide the conformal superspin
content of the W superalgebras symmetries of Super Toda theories (Frappat,
Ragoucy and Sorba CMP 1993).

From such a classification, general properties of the W (super)algebras,
allowing a simplified and synthetic overview, can be deduced: this will be
the object of the two next sections.

4. Folding the W (super)algebras

Using the properties of a non simply laced simple algebra to appear as a
subalgebra of Si(n) after a suitable identification of Si(n) simple roots, one
can obtain W algebras related to B-C-D series from W algebras related
to unitary ones (Frappat, Ragoucy and Sorba NP 1993). Let us give an
example, based again on the SI(3) group. Its Dynkin diagram (DD) is :

(45} Qg
O—=0O
(a.1)

ay and a3 representing the simple roots, to which are associated the gen-
erators E,, and E,,. It is known that the transformation 7 such that:
(i) = o; i # j = 1,2 which is a symmetry of DD can be lifted up
to an (outer) automorphism on the Lie algebra of SI(3) by defining:

#(Eio;) = Egr(ay) 1=1,2 (4.2)
with
#Eo, E-o;) = T(ai)H (4.3)
The §1(3) subalgebra G invariant under # is then generated from:
Etay + Eta, (4.4)

That is, by “folding” the root a; onto az, SI(3) reduces to the Lie algebra
GF of the (non compact) 3 dimensional orthogonal group:

ay 02 o; + ay
qu Eaz Eal + E012

(4.5)

On the 3 x 3 matrix representation, where E,, is identified with E;; and
E,, with Ey3, it will result that from the G matrices M = m* E;;, m*/ being
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real numbers satisfying the traceless condition 3°3_, m* = 0, one obtains a
representation of G© by imposing the conditions:

mi = (<1 =i (4.6)

Identifying in the Abelian Toda theory on SI(3) the J° current compo-
nents as in (4.6), it is not a surprise to get, by Hamiltonian reduction:

0T Ws 0T 0
01 0 010

as can be expected in a rank 1 algebra.

Of course, this simple example can be generalized, the foldings of Ay, =
Sl(2n) and Az, = Si(2n + 1) providing the symplectic C, = Sp(2n) and
B, = SO(2n + 1) algebras respectively. If one notes that SO(2n) can be
obtained from SO(2n + 1) by a regular embedding, one realizes that the W
algebras associated to the A, series can be “folded” into the W algebras
relative to the other infinite series (note also that for the exceptional cases,
the G ones can be deduced from D4 = SO(8) and Fy W-algebras from the
Eg ones). The same procedure can be applied to superalgebras (see (Frappat,
Ragoucy and Sorba NP 1993)).

An useful consequence of this technics is to get identities between struc-
ture constants of W-algebras relative to different simple algebras: denoting
by C!‘j the general structure constant of the “fusion rule™:

(W] W3] = 65511 + CH(9)Wh) (48)
We have as examples, in the Abelian case:

CS(Dn) = Cxl;(A2n) NN ?é n (49)

CE(Cn) = CE(Aza-1)  CH(Bn) = CE(Azm), (4.10)

such relations being sometimes precious, due to the difficulty to obtain ex-
plicit commutation relations.

5. Secondary reductions

Let us consider again ¢ = SL(3) and the two W-algebras which can be
constructed, via Toda theories, from such an underlying simple algebra;
they are the Zamolodchikov algebra {T, W3} and the Bershadsky algebra
generated by {W2,W;}‘2,W3‘/2, Wi}. The corresponding JY9 matrices read
(see Eq. (3.16) and (3.22)):

0T Wi Wi W, W3,
Jpa=110T HRonaba =| 1 Wi 0 (5.1)
01 0 0 Wy, —2W;
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One remarks that the constraints imposed in the Non Abelian case
{trd- - E_ay =15 trJoE_(a40) = 0} (5.2)

form a subset of the constraints corresponding to the Abelian case:
{tr)_ Beoy =tr) - Begy =15 1) E_(ayyan) = 0} (5.3)

It is time to give explicitly the P.B. of the Classical Bershadsky algebra:
let us, for convenience, make a little change in the notations and denote W;

by J and Wy + 5.J - J by T,
(), (W)} = -2e8'(z - )
(J(2), Wy(w) = :tgwfna(z ~w)
{T(), Wiy (0)} = ~2W,(w)8'(z - w) + OWa(w)6(z - )
{T(2),J(w)} = =J(w)b'(z — w) + 0J (w)b(z — w)
{T(2), T} = ~2T)F(z = w) + OT(W)o(z - w)
-}-56"'(2 - w)
(Wa(2), Wip(w)} = 20(0)8'(z - w) - c8'(z —w) +
(T - fgﬂ - 3T)(w)8(z - w)
{W35y(2), Wiip(w)} = 0 (5.4)

The last relation, which expresses the nilpotency of W372 (and W3+/2),
allows to consider the constraint

W3—/2 =1 (55)

as a gauge constraint (first class constraint).

With the help of J(2), it is possible to redefine the energy momentum
tensor T' in such a way that the constraint becomes conformally invariant,
that is, shifting T into

T=T-0J, (5.6)
W5372 behaves as a spin 0 field:

{F(2), Wypw)} = Wy, (w)é(z - w)
~ 0 using Eq.(5.5) . (5.7)
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Then one can look at the reduced W algebra obtained by constructing the

polynomials invariant under the gauge transformations associated to W3’/2

Therefore, let us consider the finite gauge transformations on the currents:
X(w) - X(w)
- X(w)+ / dz a(2){Wyy(2), X (w)}
+5 [ dz da(@al@) {Wapale), (W), X))
+.. (5.8)

where X = J,T, W;;,_,, the constraint (5.5) being used on the r.h.s. of the

P.B., following Dirac prescriptions on constraints (“weak equations”). Then
the J current transforms as:

J(w) = J(w) + / dz a(2){Wyy(2), Wa(w)} + 0 (5.9)

W), I} = (300 - v) (510)
that is:

J(w) = J(w) + %a(w) (5.11)

Then, it is clear that a global gauge fixing is given by
j(w) =0 (5.12)
that is, by taking:
2
a = —gJ (513)

It follows for T':

T(w) - T(w) = T(w) - g / dz-a(z) 6'(z = w) + 0

= T(w)+ %60[
=T-38J (5.14)

as expected from Eq.(5.6) !
In the same way:
8

2 2 2 2c
Wiy — Ws = Wi, + ;I T+57-07- -2—7;J3 - —3—32J (5.15)
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the notation W being justified by the property of Wj to behave as a spin 3
field under T'. R R

At this point, it is not a surprise to realize that the T' and W35 quantities
generate a (algebra isomorphic to) Zamolodchikov algebra.

The above illustrated method with W algebras based on G = SL(3) can
be applied to any simple algebra G up to some obvious technical difficulties.
Starting from the weakest constraints and adding new ones on a W algebra
relative to some Lie algebra G, one can then obtain chains of W algebras,
the “smallest” one being relative to the Abelian Toda case (highest number
of constraints). As could be expected by Lie algebra experts, there also exist
cases with G non simply laced, i.e. B, or Cy,, for which such a secondary
reduction towards the Abelian case cannot be obtained. Finally, in the same
way one gets Toda equations by gauging WZW models, a gauging of the
Toda action in which a (Non Abelian) W algebra stands as the current alge-
bra of the theory could be performed, leading to a new (more constrained)
Toda action. Such an approach for a generalized gauge Toda field theory,
as well as a more complete discussion on secondary reductions will sdon be
available (Delduc, Frappat, Ragoucy and Sorba 1994).

8. Rational W algebras
6.1. COMMUTANT OF THE SPIN 1 PART

Now let us turn our attention to the particular role of the spin one part,
when it is present, in a W algebra. One can easily check, by dimensional
arguments, that these fields generate a Kac-Moody algebra W;. Moreover
the set of W generators decomposes into irreducible representations under
the adjoint action of this Kac Moody algebra. Let us study what happens
when factorizing out the spin one part in a W algebra, that is by computing
the commutant in W of the W; Kac-Moody subalgebra (Delduc, Frappat,
Ragoucy, Sorba and Toppan 1993).

Most of W algebras associated to Non Abelian Toda theories contain
spin-one fields. Let us perform our calculations on the Bershadsky algebra
already considered in the previous sections (see in particular Eq. (5.4)).

First, by the following shift on T,

T=T-272 (6.1)
3c
one gets the P.B.:

{T(3),J(w)} = 0
{T(), Wa(w)} = ~2Wa(w)¥'(z — w) + (DWa)(w)6(z - w)
W) W_(w)} = (T - D*)(w)6(z - w) (6.2)
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while T satisfies the usual Virasoro P.B.:
{T(2), T(w)} = —2T(w) 6'(z — w) + dT(w)é(z — w) + 25"'(2 - w)(6.3)
In the above equations, one has used the covariant derivative D such that
DWy = (0% %J)Wi (6.4)

while the D? showing up in the r.h.s. of {W,,W_} is relative to w. The
appearance of a covariant derivative may open new perspectives in the field
of integrable models. It is here particularly convenient in order to construct
the commutant of J. Indeed the set of fields commuting with J is generated
by the stress energy tensor T and the bilinear products:

w9 = (DPW, )Y(DIW_) (6.5)

with p, ¢ non negative integers.
Actually, the fields W9 and T are the building blocks from which one
can construct an infinite tower of primary fields of spin 34,...

W3 - W+W_
W4 = W+DW_ - W..'DW+

Wayn = WoD"W_ — (D"W)W_+... for n>2 (6.6)

these fields being created by the P.B. of fields of lower conformal spin, for
ex.:

{Ws(z), Wa(w)} = 2Wa(w)& (2 — w) — OWs(w)é(z — w) (6.7)

and so on.

At this point, one may say that by looking at the commutant of the spin
one generator J in the Bershadsky W algebra, one has obtained a polynomial
non linear W, realization.

But the primary fields W3,,, with n > 2 are not independent, and can
be expressed as rational -and not polynomials- functions of T, W3, Wy: for
example W5 can be written in terms of W3 and Wy as follows:

Wi (W2 = (0W5)?) + 6Wa(9*W3) + TW;)] (6.8)

1

A [7

Therefore, the commutant of J exhibits a new structure with respect to
the standard W algebras, which can be seen either as a rational finitely
generated W algebra or as a polynomial non linear W, realization.

The above example is the simplest one exhibiting such a structure. Of
course a general approach with a non Abelian W; part can be performed
(see (Delduc, Frappat, Ragoucy, Sorba and Toppan 1993)).
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6.2. SUPERSYMMETRIC EXTENSION

The supersymmetric extension of this problem can be considered in an anal-
ogous way. Again, let us illustrate the method on an example, the N = 3
superconformal algebra SC(N = 3) generated by a spin 2 generator T(2),
3 spin § components G2 /2 (a = 1,2,3), 3 spin 1 elements J%(2), constitut-
ing an S!(2) Kac-Moody algebra and a spin § fermion 9(z). The C.R. in
the classical case can be deduced from the formulas (15) of (Goddard and
Schwimmer 1988), in which we identify the O.P.E. with the P.B. and the
singular terms @—__1;07; with (-l)k“lﬁc—_—f—l-—ﬁ&(k"l)(z — w). After defining:

GE(2) = 3=(G' £ iG?)(2) and J*(2) = Z=(J! £ iJ?)(2)
G%z) = G@(Z) J%(2) = ﬁz)

we will adopt the superfield formalism (Delduc, Ragoucy and Sorba 1992)
and define:

(6.9)

T(2) = 3 G%=2) + 0T(zz of superspin 3
T=(z) = £J=(2) + 0G*(z) of superspin 1 (6.10)
®(2) = ¥(z) + 0J°(2) of superspin %
using the supervariable notations:
Z=(2,0), W=(w,n) and Z-W=z—-w-10p (6.11)

then the P.B. can be “compactly” written as (keeping in mind from above
that: 2= = (8 — n)6(Z — W) = 6(Z — W) and so on for their derivatives,
and the O.P.E. being in place of the P.B.):

T(Z)-0,(W) = "E‘Zﬁf"v%fes(w) . 1;0,—(?;)
-1

if ©,(W) denotes the superspin J*(W) or ®(W) of superspin s = 1 or %,
and as usual: D = 9, + 10,

T(Z)T(W) = g (-Z-‘f:iv"’,—)zf(wné ’;T_(Z,) + Zo _—IZ/(?T(W)
c/6
B(2TEW) = £ L TE W)+ ..
s(z)s(w) = =24 ..

zZ-w
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THZ)T~ (W) = - ( Zo__v?,)zti(W) 7 D2(W) - 6- ;’Vaq,
~2 Z” - ;’VT(W) - (Tzc—_/g'vjf + (6.13)

We wish to factorize out the superspin % superfield ®(Z). As in the
nonsupersymmetric case, we can operate a shift on 7(2)

To(2) = T(Z) - %@(Z)D@(Z) (6.14)
such that:
To(Z)-d(W)=0 (6.15)
We can expect the covariant derivative of Eq.(6.4) to become:
D=D- -3—th> (6.16)

if q is the super U(1) charge carried by the primary superfield, i.e.:
t - (DF2e)7* (6.17)
C

Now the spin 2 superfield Wo(Z) = J+(Z)-J ~(e) is a primary superfield
under 7o(Z) in the commutant of $(Z). The properties above obtained with
W algebras generalize here with W superalgebras. Computing for example
the P.B. of W, with itself one gets:

Wa(Z)Wa(W) = & ((2ZW2(:;))2 6W2(W) + (Z0 —;)2DW2(W)
+§ 20 1 D6W2(W)) 3 Z” T (To - Wa)(W)
S 2L W (W) + . (6.18)

where Wy /,(W) is the (new!) 7/2 superspin primary superfield defined as:

Wi = J¥D3T™ + T D3I+ - guam - -:-c‘-‘- To-Wa (6.19)

6.3. SPIN 1/2 VERSUS SPIN 1 FIELDS

The superalgebra SC(N = 3) was the first example considered by the au-
thors of (Goddard and Schwimmer 1988) to illustrate their result about the
factorization of the spin 1/2 part in a superconformal field theory, more pre-
cisely that a meromorphic field theory can be decomposed into the tensor
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product of a spin 1/2 part and a conformal field theory without spin 1/2
field. We would like to stress that this property can easily be proved, at least
at the classical level, by the use of finite gauge transformations already in-
troduced in the previous section (see Eq.(5.8). Indeed, leaving to the reader
the general proof (which will also be found in (Delduc, Frappat, Ragoucy
and Sorba 1994)) let us stay with the SC(N = 3) algebra and perform on
its generators X (w) the transformation:

X(w) - X(w) = X(w) + / dz a(2)Y(2).X(w) + 0 (6.20)

where ¥(z) is the fermion field (we do not use any more the superfield
formalism, since we wish to only factorize the (2) fermion and not the
superspin 1/2 field).

Owing to the OPE relation:

c/3

Z—w

W(z) - P(w) = (6.21)

one directly gets, imposing the “gauge fixing”:
a(w) = —P(w) (6.22)
the transformed fields (a = 1,2,3)

$=0; T:T-%«pa«p L GO =GO —T%  Jo=Jo. (6.23)

In accordance with the results of (Goddard and Schwimmer 1988), the
O.P.E. among the transformed fields are identical, except for the central
charge to the ones relative to the non transformed fields, and as expected
such that:

T-p=G-yp=J9=0 (6.24)

Note that this gauge transformation can also be done with spin 1/2
bosons, and leads to the same conclusion (Delduc, Frappat, Ragoucy and
Sorba 1994). It has also be shown that the action of such a super-Toda model
can be rewritten as the sum of two terms, one relative to the spin 1/2 part
and the other to the factorized W part (Ragoucy 1993).

It is natural to wonder what happens if, instead of performing a gauge
transformation associated with a 1/2 fermion, one involves a spin 1 field.
Let us take once more as an example the Bershadsky algebra (see Eq.(5.4)):
its (simple) Kac Moody generator J(2) satisfies:

3/2¢

J(2) - J(w) = G-wp

(6.25)
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In order to obtain J = 0 in the transformation:
J(w) = J(w) = J(w) + /dz a(z)J(z)- J(w)+... (6.26)
We would have to impose a such that
da(w) = J(w) (6.27)

The pathology created by this relation appears in different places. In
particular, one would get:

a(z) - Wiy(w) = :i:%Wflz(w)ln(z —w) (6.28)
and some trouble to compute, from:

Wiiy(w) = 3/ 2CIWE (w) (6.29)
the quantity:

Wiha(2) - Wipp(w) (6.30)

Thus, gauge transformations relative to spin 1/2 fields allow to recover the
result of Ref (Goddard and Schwimmer 1988), namely the property that spin
1/2 fermions can be eliminated in a super W algebra, but such a technics
does not appear suitable for the factorization of spin 1 fields, as could be
expected from the results presented in the first part of this section.

Note that the above discussion has to be compared with the factoriza-
tion at quantum level, of spin 1/2 and 1 fields considered in (Deckmyn and
Thielesmans 1993): the projection used there appears as a quantum version
of our gauge transformation.
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Abstract. We study the scattering of Skyrmions at low energy and large separation using
the method proposed by Manton of truncation to a finite number of degrees of freedom.
We calculate the induced metric on the manifold of the union of gradient flow curves,
which for large separation, to first non-trivial order is parametrised by the variables of the
product ansatz.

1. Introduction

Scattering of solitons in a non-integrable, non-linear classical or quantum
field theory remains an intractable and difficult problem, however, it con-
cerns one of the most interesting aspects of the nature of the corresponding
physics. Numerical methods have given reasonable ideas on how the scat-
tering proceeds but they are still unsatisfactory for uncovering the detailed
dynamics governing the scattering.

A method has been proposed by Manton (1988) for truncating the de-
grees of freedom from the original infinite number to a relevant finite number
of variables. The idea first considers the case of theories of the Bogomolnyi
type, those theories which admit static soliton solutions, usually in the topo-
logical two soliton sector, which asymptotically describe two single solitons
at arbitrary positions and relative orientations. The configuration at small
separation contains, in general, strong deformations of the individual soli-
tons and in fact they lose their identity. However the set of configurations
have the same energy since they correspond to the continuous variation of
a finite number of parameters, the moduli. Otherwise they could not be
stationary points of the potential. In general, for solitons corresponding to
a topological quantum number, the moduli space corresponds to the sub-
manifold of minimum energy configurations within the given topological
sector. Manton suggests that the low energy scattering of solitons, with ini-
tial configuration on this sub-manifold corresponding to asymptotic, single
solitons, with arbitrarily small initial velocity tangent to the sub-manifold,
will self-consistently be constrained to remain on the sub-manifold. Since the
potential energy is a constant on the sub-manifold the resulting dynamics

* This work supported in part by NSERC of Canada and FCAR of Québec.
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reduces to geodesic motion on the sub-manifold in the induced metric on
the sub-manifold from the kinetic term. It is a difficult task to prove such a
truncation of degrees of freedom in a mathematically rigorous fashion, how- -
ever, it does seem intuitively correct. The non-linearity of the theory implies
the coupling of the degrees of freedom corresponding to the sub-manifold
with all other excitations through the potential. We are assuming that these
are negligible. Manton and Gibbons (1986) applied this program with re-
markable success to the case of magnetic monopoles in the BPS limit and it
has also been applied to vortex scattering in a similar limit (Samols 1992).

The generalization to the more common situation where the set of static
solutions correspond to a finite set of critical points proceeds as follows.
The critical points are typically a minimum energy configuration which is
essentially a bound state of two solitons, an asymptotic critical point which
corresponds to two infinitely separated solitons and possibly a number of
unstable non-minimal critical points of varying energies of the same order.
These critical points are degenerate with a finite number of degrees of free-
dom. They are connected by special paths, the paths of steepest descent or
equivalently the gradient flow curves. In this case Manton proposes that the
dynamics will be constrained to lie on the sub-manifold comprising of the
union of all these curves. This again is intuitively reasonable. If we think of
the space of all configurations as a large bag, the bottom surface of the bag -
will correspond to this sub-manifold, and a slow moving marble rolling on
the bottom will tend to stay there.

The Skyrme model falls into the second case. We identify the correspond-
ing sub-manifold for well-separated Skyrmions and we calculate the induced
metric to lowest non-trivial inverse order in the separation from the kinetic
term. This is the first step towards calculating the scattering of Skyrmions
in this formalism.

2. The Skyrme model
The Skyrme model is described by the langrangian,

2
L= %tr(v*auvvfaﬂv) + ﬁl-g 1n([U10,U, U0, UP) (1)
where U(z) is a unitary matrix valued field. We take

U(z) € SU(2). (2)

The Skyrme langrangian corresponds to first terms of a systematic expansion
in derivatives of the effective langrangian describing low energy interaction
of pions. It is derivable from QCD hence f, and g are in principle calculable
from QCD. What is even more surprising is that it includes the baryons as
well which arise as topological solitonic solutions of the equations of motion.
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The original proposal of this by Skyrme (1961) was put on solid footing by
Witten (1983).

The topological solitons, called Skyrmions, correspond to non-trivial map-
pings of IR? plus the point at infinity into SU(2):

U(z) : R34+ 00 — SU(2) = S (3)
But

R+ 00 = $° (4)
thus the homotopy classes of mappings

U(z): 5% - §° (5)
which define

(%) = Z (6)

characterize the space of configurations.
The topological charge of each sector is given by

1
2472

which is identified with the baryon number. Thus for the scattering of two
Skyrmions, we are looking at the sector of baryon number equal to 2. In this
sector the minimum energy configuration should correspond to.the bound
state of two Skyrmions, which must represent the deuteron. The asymptotic
critical point corresponds to two infinitely separated Skyrmions. There ex-
ist, known, non-minimal critical points, corresponding to a spherically sym-
metric configuration, the di-baryon solution (Kutschera and Pethick 1985).
The energy of this configuration is about three times the energy of a single
Skyrmion. There are also, possibly, other- non-minimal critical points with
energy less than two infinitely separated Skyrmions (Isler, LeTourneux and
Paranjape 1991). The scattering of two Skyrmions will take place on the
union of the paths of steepest descent which connect the various critical
points.

N= / &Px (U UUTUUOD) )

3. Skyrmion-Skyrmion scattering

We consider the scattering only for large separation. In this way we do not
have to know the structure of this manifold in the complicated region where
the two Skyrmions interact strongly and consequently are much deformed.
In the region of large separation the product ansatz corresponds to

U(X) = Ul(x - R])Ug(x — RQ) (8)
= AlU(x ~ R1)A:1 AU (x - R2) A2
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where U(x—R;) and U(x - R;) correspond to the field of a single Skyrmion
solution centered at Ry and R, respectively. The full Skyrme model dynam-
ics implies a deformation of each Skyrmion. This deformation, from a nu-
merical studies, is found to be unimportant already at a separation of 1.5
fermi (Walhout and Wambach 1991). We will neglect this deformation.

It remains to calculate the metric on the sub-manifold parametrized by
the product ansatz. We find the interesting result that the metric behaves
like 1/d where d is the separation (Schroers 1993). We find the kinetic energy:

T= - 2M + IMR,” + LMK,
— Atr(A A ATAL) — Atr(A Ay AL Ay) + T (9)

where
M —

41r/0°°r2dr{ fx{(@r) +2§%l}+m2¥[ﬂ%i+2 gf)?]}’ (10)
= (efn)S/T2drsin2 f[l + (;7;.)7 <f12 + gx_r_:r[)

and finally the interesting term

Tint = 2f2K7 FL F3 42(6% — d'd7) Doy (A} 42) (11)
where
FL = —B} B} + B!B! - €ias (Bia* - Bat) (12)
Ai=al+ip-r (13)
(@Y +18' =1 (14)

(correspondingly for A;), and & is determined by
K
f(’I‘)N:r—i and d=R1—R2, d:‘dl.

The metric can be be obtained from this expression by choosing local coor-
dinates on the product ansatz manifold (R1,Rz,!,?) and extracting the
quadratic form relating their time derivatives.

The potential (Isler, LeTouurneux and Paranjape 1991) between two
Skyrmions can be calculated to give

V = drfix ,(1— cos0)(33(n d)?-1)

where 8, 7 pick out the element of SU(2) given by AlA;.

The potential is of higher order than the metric, hence the dominant
contribution to the scattering at large separation comes only from the metric.
Thus to leading order we may even neglect the potential, and then the
problem reduces to calculating the geodesics on the product ansatz manifold.
We are presently working this out.
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The material presented in this talk is based on recent work of the au-
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and from the University of Sio Paulo) which has produced new insight
into the algebraic structure of classical non-linear sigma models as (infinite-
dimensional) Hamiltonian systems [1-5]. After some introductory remarks
intended to place this line of research into its appropriate context, the two
main results obtained so far were discussed. The first, valid for general sigma
models (defined on arbitrary Riemannian manifolds), is the explicit calcu-
lation of their extended current algebra, i.e., the algebra generated, under
Poisson brackets, by the components of the Noether current referring to a
given internal symmetry and by the components of the energy-momentum
tensor; this calculation can be carried out in closed form by introducing
a single new composite scalar field. The second, valid for integrable sigma
models (defined on Riemannian symmetric spaces), is the identification of a
new algebra which, in this class of models, should be regarded as the substi-
tute for the classical Yang-Baxter algebra. To put this result into its proper
perspective, a brief summary of basic definitions from the theory of two-
dimensional integrable field theories was given, including that of ultralocal
vs. non-ultralocal models.

A full presentation will be published in the journal “Resenhas”, edited by
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Foreword

Newtonian mechanics and Maxwell’s electrodynamics are phenomenologies:
related to a diverse phenomena and presented as disconnected in a separate
courses and textbooks. The one aim of this paper is to kxibits a formal
analogies among them in a framework of multisymplectic geometry.

We consider a vector bundle E of exterior forms over oriented manifold,
E =5 {M,vol}. In mechanics dimM = 1 and dim E = dim M + 4n, in
electromagnetism dim M = 4 and dim £ = dim M + 20n. A phenomenologi-
cal (not unique) differential pseudoform Q on E (vol-dependent) determines
four Poincaré-Cartan subbundles {P}: hamiltonian, lagrangian and two new
not-named subbundles on which 2 is presymplectic, P*d2 = 0. This leads
to twelve Legendre’s transforms among these subbundles, of which two are
well known.

A field equations of considered bivertical theory for dim M = 1 reduce
to the Newton equations and for dim M = 4 to the Maxwell equations.
This unification allows to see analogies. In particular, force field — current,
the London equation in electromagnetism is an analogy of the harmonic
oscilator force in the Newton dynamics, one can pose the Kepler problem
in the Maxwell electrodynamics by formal analogy to the Kepler problem in
mechanics, etc.

The present paper is partly based on Diploma Thesis by Magdalena
Gusiew-Czudzak (1993). Z.0. would like thank Constantin Piron for in-
spiring discussions during 15 years of friendship.

History. Multisymplectic geometry in a classical field theory was initiated
by Dedecker in 1953 and was developed in Warsaw by Tulczyjew around
1968, and by Kijowski (1973), Gawedzki (1972), Szczyrba and Kondracki
(1979). In Chechia by Krupka since 1975. See Kijowski and Tulczyjew (1979).

Notations.

A = Ap = ®A* is de Rham complex of differential forms on a manifold E,
F = A°. A cocycles are denoted by Z = {a € A, da = 0}.

W = Wg = derF is the Lie F-module of (one)-vector fields on E, such
that WA = @W"F is the Grassmann F-algebra and graded Lie IR-algebra
of multivector fields; WA = F,

|a| = gradea € IV and ¥ denote an automorphism of Grassmann algebras,
Ya = (-1)%a.

An inner product is denoted by i € alg(W",EndA).
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1. AXIOMATIQUE CLASSIQUE
Vertical distribution and filtration of forms

Let E be fibered over oriented manifold E -~ {M, vol}. Then 8 = n*vol € Z
is a decomposable cocycle on E.
Let Ver be the associative distribution of 8, which is said to be a vertical

distribution,
Ver= Verf = {X e W; ix0 =0} CW.

There is one to one correspondence between a set of (vertical) distribu-
tions and a set of one-dimensional modules of decomposable forms. We will
identify

{E,8} = {E, Ver}.

DEFINITION 1. Let A be F-algebra of differential forms on E. A F-submodule
Ap={a€h, iza=0 VZEe€ Ver"(k“)},

is said to be a submodule of k-vertical forms. The factor module is denoted
by Ay = Agky/A(r—1) and if o € A then o/ (k) € AfAg.

COROLLARY 2. A(k) A A(;) C A(k+l)7 A[k] A A[[] C A[k+[] and we have a
filtration of forms

Ay C...CA@ CAGgyy C...CA.

COROLLARY 3. {A[{"}/(k—1) # 0 iff j <k < |8] +j. In particular
the following implication holds |Q|=1+0] = QNAE=0.
Let Ver be a F-submodule of a differential one-forms anihilating Ver

Ver = {a € A!; a(Ver) = 0}.

DEFINITION 4. A differential form o on {E, Ver} is said to be vertical if
a € Ver®; Ver™ = Fp.

A form 6 is decomposable iff dim E = |6| + dim Ver 4.

LEMMA 5. A form « is 0-vertical iff a is a vertical, Ag) = Ver”",
e =0 <> a¢€Ver’.

LEMMA 6. The following are equivalent

A
{ ‘oof!;;‘m Ver } < {isdecomposable}
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Classical field theory

DEFINITION 7. Let E be a vector bundle over oriented manifold E ——
{M, vol}.

(i) A classical field theory is a triple {E,8 = n*vol,Q}, where  is a diffe-
rential vol-dependent pseudoform on E such that |} = 1 + dimM.

(i1) A subbundle ¢ of E is said to be a solution of {E,0,0} if for every
vector field Z on E,

"0 #£0 and ¢*izQ=0. (1)

(iii) A field theory {F,8,Q} is said to be regular if every integrable dis-
tribution Hor tangent to solutions of equation (1) is complementary to
Ver,

HorNVer=0 and W = HorU Ver.

Comment. The field theory is regular if every solution ¢ of (1) is transversal
to Ver and dim ¢ = |6].
A pseudoform Q determine a F-linear map Q@ : WAIPl —, AL A pseudo-

form  can be viewed as a retrangular matrix (dl;;;‘E) x (dim E).

PROPOSITION 8. Let ker Q@ C WM, Then
(i) dimkerQ@ =1 = {FE,Ver,Q} is regular.

(it) Let {E,Ver,Q} be regular, codimVer = |8] = 1 and let  be a cocycle
(so Q is symplectic). Then dimkerQ = 1, (= dim F =odd).

Comment. If [§] = 1, then a cocycle Q is regular iff dimkerQ = 1. The
|6] = 1 refers to mechanics and the property to be regular is said to be the
classical determinism. A symplectic mechanics, df! = 0 with dimkerQ =1,
on jet manifolds of arbitrary order is presented in Thesis by Olga Krupkova
(1992).

Example. Regular field theory {E,8,Q} need not imply that dimker @ = 1.
Let dim E = 1+ 4n with a chart {t,¢*,v%,pa, f4} and 8 = dt. Let @ =
(dpa — fadt) A (dg? — vAdt), then dQ # 0, dimkerQ = 1+ 2n and this
mechanics {E,6,Q} is regular.

Proof of Proposition 8. An integrable distribution Hor C W tangent to so-
lutions of field equations (1) needs to satisfy two conditions
- O(HorMh) £0 (= dimHor > |6] + dim(Hor N Ver)),

Hor™M ¢ ker (=> dim(Hor™!) = (dm!xallior) < dim ker Q) .
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The last condition imply
dimkerQ@=1 = dimHor <4

It follows that Hor NVer= 0 and dim Hor = |{6] = codim Ver, which complete
the proof of (i).

Let Q be a cocycle. Then the associated distribution ker 2 C W is in-
tegrable. If |6] = 1, then Hor= ker{2 is integrable and the regularity of Q
imply that dimker( = 1.

COROLLARY 9 (Gawedzki 1972). Let {E,Ver,{} be regular field theory.
Then it is sufficient to consider the field equations (1) for a vertical vector

fields only,
¢*iVerQ =0 = ¢“LWQ = 0.

Proof. Let a distribution Hor be as in the proof of Proposition 8. We must
show an implication Q(Ver A Hor™?) = 0 = Q(W A Hor"¥!) = 0. This is
the case if W = Hor U Ver and Hor"(1+19) = ¢, a

Subbundles

DEFINITION 10. Let {E,0,Q} be a classical field theory as in definition
7(i).
(i) A subbundle ¥ « E is said to be a pre-symplectic for {E,0,Q} if ¥ is
a maximal subbundle anihilating dSQ,
¥*6£0 and W'dQl =0.

A presymplectic bundle ¥ is said to be symplectic if a field theory
{¥,9*0,9*Q} is regular. A regular cocycle ¥*§) is said to be a sym-
plectic form on {¥,¥*8}.

(ii) A subbundle P — ¥ — E is said to be the Poincaré-Cartan subbundle
(ezact presymplectic) if P is a maximal subbundle on which Q is ezact,

PO£0 and P'Q=da.

A presymplectic potential o is said to be the Poincaré-Cartan form.
If a field theory {P,P*8,da} is regular then a is said to be a regular
Poincaré-Cartan form.

(iii) A subbundle L — ¥ «— E is said to be a lagrangian for {E,0,Q} if £
is a maximal subbundle anihilating Q,

L8#0 and L*Q=0.
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(iv) A subbundle J <« P — ¥ «— E is said to be the Hamilton-Jacobi
bundle if J is a maximal subbundle on which a Poincaré-Cartan form
is ezact,

J8#£0 and J'a=dS.

A potential S is said to be the Hamilton-Jacobi form, |S| = |8| — 1. The
equations in (iii-iv) are said to be the Hamilton-Jacobi equations.

A Poincaré-Cartan form strictly speaking is vol-dependent and therefore
is a pseudoform.

On presymplectic subbundle ¥*Q) is a cocycle, the action integral is well
defined (see e.g. Oziewicz 1992) and a field equation of definition 7 (ii) is
the Euler-Lagrange equation.

A (pre)symplectic ¥ and Poincaré-Cartan P subbundles are known as a
phenomenological material relations, p = muv, Kepler problem f4 = —¢3q4,
D =¢oFE, B = poH, London equation J, = A,, etc.

Jacobi in 1838 proved that in mechanics the lagrangian and the Hamilton-
Jacobi subbundles, £ and 7, are families of solutions, ¢ «+ L and ¢ —
(PoL)~ J. A coordinate-free proof is in (Oziewicz and Gruhn 1983). An
extension of the Jacobi theorem beyond mechanics is not known.

The following table gives dimensions of subbundles for a phenomenological
field theory, formula (10) below, and follows from the considerations in the
part II, see definition (14) and formulas (15-17).

E Y =P = J <~ ¢
ldim ldim ldim dim}
mechanics 1+4n 142n 14n 1
strings 246n 243n 2+n 2
electrostatics 3+8n 34+4n 3+n 3
magnetostatics | 3+12n 3+6n 343n 3
Klein-Gordon’s 44100 445n 4+4n 4
n-fields
electromagnetism | 4+20n 4+10n 4+4n 4
s . « time
God’s material quantum space
choice relations space” ppace-time
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Hamilton-Lagrange field theory

DEFINITION 11. A field theory {E,0,Q} is said to be k-vertical if 0 #
N e A(k) and d) ¢ A(k-—l) orifd =0, € A(k) and Q ¢ A(k—l)'

Comment. For a cocycle Q € Z the definition 11 was introduced by Kon-
dracki (1978). The notion of the k-vertical field theory is essential for the
theory of the Poincaré-Cartan forms if @ ¢ Z and for the Hamilton-Jacobi
theory if (2 € Z.

Because a distribution Ver is integrable threfore

Qe A(k) — Qe A(k—l) o7z .
dQ & Ay QEAp-2 D2
A form dQ) # 0 is k-vertical iff  can be decomposed (not uniquely) as
the sum of (k — 1)-vertical form and & cocycle. Two fibrations of de Rham
complex A are involved in this decomposition: first over a factor F-module
A/A(x-1), second over a factor IR-space A/Z. A form df2 is k-vertical if exist
splittings
AZ A A
Tu
AfAgg-1
such that
wR/Z) € Ap-1), v(Q(k-1)) € Z
and Q=uQ/Z)+v(Q/(k-1)). (2)

Above splittings are not unique, they are determined up to the (k — 1)-
vertical cocycles

i
Agp-yNZ = dAg_y).

Let a field theory {E,6,Q} be k-vertical. Then a splitting u determine a
splitting v and vice versa. Locally

WQ(k-1)) X dw,

and Q= f+dw, where f = Q —dw € Aj_y)- (3

In (3) a differential form w is determined modulo (k — 2)-vertical forms. On
Poincaré-Cartan subbundle P — E, Q and f are exact,

dF = P §, dor = P*Q, (4)
and aF = F+P'w mod Zp.
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In the last section we shall show that exists a correlation between decom-
positions (2-3) and Poincaré-Cartan subbundles.

Depending on choice of f in (3), a potential F' could coincide (up to sign)
with a hamiltonian H or with a lagrangian L.(see the next sections), however
a freedom in the decomposition (2-3) allows to see more possibilities.

If fis (k — 1)-vertical on {E, Ver}, then F in (4) is (k — 2)-vertical on
{P, P},

(A, ®2p)3F — dFeAt) (5)

The Poincaré-Cartan equation dF = P*f (4), allows to express P*w in

terms of partial derivatives of F' wrt a basis of a Fp-module Al(ilfll) C Ap.

Therefore a differential form F determine a Poincaré-Cartan form,
Al(il-z)/z? 3F +> oarpe€ A';;” mod Zp.

This motivate the definition
DEFINITION 12. Let a distribution Ver be integrable and Q ¢ Z.

(i) Let 2 < k < [dQ] and let a field theory {E,Ver,Q} be k vertical, dQ) €
Ay and dQ ¢ Qs_y). Then a Fp-module Al}_, is said to be a module
generating Poincaré-Cartan forms.

(i) A field theory {E,0,9} is said to be a Hamilton-Lagrange field the-

ory, abbreviated by HL, if the Fp-dimension of a generating module of
Poincaré-Cartan forms is 1.

For HL field theory a Poincaré-Cartan form is determined by one (pseudo)-
scalar function, (lagrangian, hamiltonian, ...).

LEMMA 13. A field theory {E, Ver,Q ¢ Z} is HL iff dQ is bi-vertical, d) €
A(z).

Proof.
min(k—2,16}) .
. dim Ver
dlm{A}i’_z)} = Y ( ; ) .
1=0
Therefore

dim{Af)_,} =1 iff {E,Ver,Q¢ Z}is bi-vertical.

Comment. In"HL field theory a (local) hamiltonian and lagrangian F (4)
are vertical differential forms on P. For not HL theories analogous hamil-
tonian or lagrangian forms are no more vertical and therefore can not be
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expressed by means of one pseudoscalar function. Analogous considerations
are valid for the Hamilton-Jacobi theory if Q € Z.

Partial derivatives of vertical forms. Note that
dim{A'(ilfl} = dim Ver.
We will suppose that a modul A’é‘;’ l, on E as well as on subbundle P,

is generated by differentials of homogeneous vertical forms (in general of
different degrees),

KI)H = gen{dw?, v’ € A}

This means that ¥ & € Al1! has unique decomposition
(1)

a = dw? A ay, wh,ay € Ao)-

In particular a generating set {dw"} determines partial derivatives of highest
degree vertical forms

Al _ 4, OF 16]+1
Algy 3 Fr— dF = du A 5 € A

Example

oL 8L
dL = dq /\an-}—d A

II. PHENOMENOLOGY
Phenomenological field theory

Let E be a vector bundle over oriented manifold E -~ {M,vol}. Let
{¢%,v*; A € I C IN} be a collection of vertical differential forms on a
bundle F and let {pa,fa; 4 € I C IN} be a collection of vol-dependent
vertical differential pseudoforms on E. Newton’s and Maxwell’s phenomeno-
logical equations as well as of electrostatics and of magnetostatics have the
following form

94 qu _ ‘UA, ¢*0A =0,
wa = dpg— fa, Pwa=0. (6)

A differential forms {q®,v4,p4, f4} in (6) are independent, as they are deter-
mined by independent experiments. A phenomenological material relations
among these fields are consequence of further independent measurements.
This was stressed by Newton (1686) and Maxwell. After Lagrange it became
customary to present the Newton equations (as well as of electrodynamics

n
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OA = j) as a second order from the begining, contrary to original Newton’s
presentation. That the equations (6) should not presuppose a material re-
lations was stressed by Piron (e.g. in Piron’s Lectures on electrodynamics,
1989).

A phenomenological material relations are equations for a (pre)symplec-
tic subbundle of a field theory {E, 8,2} (definition 10 (i)), and are given in
the last section.

A strategy is to determine a most general regular field theory {E, 6,90}
which field equations (1) coincide with the experimental one (6). A different
field theories with the same set of a first order equations (6) will lead to
a different (pre)symplectic subbundles and therefore to a different second
order equations. A solutions ¢ of equations (6) anihilate an ideal generated
by {#4,w4} therefore for a regular field theory we need an equality of ideals,

gen{ive N} = gen{z?A,wA}. M

Because a distribution Ver is integrable then {#4,w,} are 1-vertical. A most
general pseudoform Q compatible with (7) needs to be 2-vertical of the form

Q=) (K Awa AP +Tap A4 A5 + x4B Awy Aws), (8)
A,B

where {K8,T 4, x B }is a collection of vertical (pseudo)forms such that
Tap = (~1)P"°Irg,,  xAB = (~1)lallesly B4,

DEFINITION 14. A field theory {E,Ver,} with Q of the form (8) is said
to be a phenomenological field theory.

Because {2 is IN-homogeneous then

[v4] = 1+]¢*,
[fal = 1+ |pal,
4P| + |74l + |KB| = |6],
[vB] + |pal + |KB| = 6]. 9

In mechanjcs |K| = |I'| = |x] = 0. A conditions
VA |wal 2194 and |K]|=|x]=0,

determine unique grades for mechanics and string theory and n possibilities
for || = 2n — 1 and 2n. In this case x can contribute in mechanics and
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magnetostatics only.

16| lal |0 pl 11 IT|
1 0

01 01 mechanics

2 0 1 1 2 1 strings

3 01 2 3 2 electrostatics
1 2 1 2 0 magnetostatics

4 0 1 3 4 3 Klein-Gordon scalar fields
1 2 2 3 1 electromagnetic field

If {K,T, x} are vertical cocycles then field theory (8) is HL, dfQ is bivertical,
and
Q= {d(Kf App + YT aB /\qB) - (Kf Afe+TBa AvB)}AﬂA +uwfd Awy.

Effectively “momenta-induction” and “force-current” are rotated and trans-
lated by “connection I'”, a natural description of velocity-dependent forces,

pa — KZ App+ 4T ap A g5,
fa — KB Afg + TpaAd®.

A phenomenological symplectic mechanics (8) without x-terms has been
considered by Jadczyk and Modugno (1992).
Consider HIL field theory

Q=) waAd® € Ay®Z CAgy. (10)

The following decompositions, like (2-3), define 1-vertical differential forms
{h,1,s,t},
Q = ~h+d(ps Adg?)
+ + d{pa A (dg* ~ v*)}
+s + d{g? A yPl(dps — f4)}
= +t+d{g* AP (dpa — f4) - pa A0} (11)

dps A v + d(IA A 1/’MfA’

dvi AP, — dgh A Pl fy,

dps A vt —dfa A (=)Plyg?,

= dv AHPlp, 4 dfy A (<) g, (12)

= d( pA A vA )a

= d(Yfang?). (13)
If differential forms {g#,v4,p4, f4} are the Liouville forms, considered in
the next section, then pseudoform € (10) is regular and imply equations (6).

~ B e~ >
momom

:‘ e
i +
w &
m A
s o
1+
-— @
(I
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The Liouville differential forms

Let M be a manifold and for p € M, T;M be IR-space of exterior forms
at p. Let T*M > M, be a vector bundle of exterior k-forms, (T*M), =
(Ty MY, with (T; M) = R.

A differential form a € Afu determines unique section o, € I'(M,T kM )
and Aqxps D A — oA € Apy,

AM (g-:—- AT"M
Al A
M 2% TFM
DEFINITION 15. A differential k-form A € Aqx g is said to be the Liouville
form if

aA=a forevery a€ Ak

The Liouville differential k-form exists, is unique and has a local form
A= EIV > AT (A A LA AP,

The Liouville differential forms of arbitrary degree has been introduced by
Tulczyjew in 1979. The Liouville forms are vertical wrt § = 7*volyy.

Let E be a vector bundle E - M of an exterior forms of different
degrees on a manifold M,

E=@{@" M) (TV1M) o (TPAIM) @ (TV4IM)} . (14)
A

Let {g¢4,v4,p4, fa} be a collection of Liouville’s forms on E. Define dimen-
sion of a form as dimension of a factor inodule,

dima = dim Ver 6 — dim{(Ver &) N Ver8}. (15)
One of necessary condition for implication (8) = (6) is
dim Ver = 3 (dim dg* + dim dv* + dim dp4 + dim df4). (16)
A
If A is the Liouville form on FE then according to definition (15-16),
dim (d)) = (anI;IM ) . (17)

A field theory {E (14),7*volps, €2 (10)} is regular and imply equations (6).
From formula (17) we get the dimensions, dimF, listed in the Table after
definition 10. The Liouville forms {K,T, x}, for simplicity, are not included
in the bundle E (14). The Liouville forms {K,T,x} in (8) contribute to
dimE. In mechanics with (8), |6| = 1, dimE = 1 + 4n + 2n% — n.
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Poincaré-Cartan subbundles

Consideration of this section are the same for the case of presymplectic
and Poincaré-Cartan subbundles. To be specific we will consider Poincaré-
Cartan subbundles only, definition 10 (ii), and for E being a vector bundle
of exterior forms (14) with conditions (9).

Let a bundle E be splitted with a fiber-preserving projectors rp and 7¢,

Ix lx I

Let subbundles P and C be of equal dimensions, dim Ver (16) on E is even.
For a Poincaré-Cartan subbundle P — E we have dimP = dim P = dim C.
Let wp|P be a fiber-preserving isomorphism. A Poincaré-Cartan subbundle
P will be identified with an injection P : P — P C E, rpo P = idp, and
¢=mcoP: P — C is a fiber-preserving bundle map. If § = n*volps then
P0=6 € Ap.

Consider splittings of a bundle E for which § have the following form as
in decomposition (2-3),

Q=14 drpa Ar5S + dw. _A (18)

On Poincaré-Cartan subbundle a form ) drpa A 778 is exact,

P*(Y drpaAnyp) = Y danp*B=dF € Ap.

Therefore
vy OF
- aa .

A differential forms {Q,h,1,s,t} (10-13) are exact on Poincaré-Cartan
subbundle P «— ¥ < E. In particular a hamiltonian H and a lagrangian
L are differential forms on different Poincaré-Cartan subbundles and are
defined as potentials,

dH = Pth, dL=P}l, dS=Pls, dT =Pt (19)

A compositions like £ = Py 16 P, etc, are said to be Legendre’s trahsforms.
With help of identities (13) Legendre’s transforms allow to calculate, for
example, a lagrangian L for a given hamiltonian H,

dL =Pl = (P} o Py o Py ){d(pa A v?) = b}
= L*{dP}(pa Av?) - dH}.
Therefore, modulo cocycles

L=(LoP})(paAv?)—L*H mod Z.
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A Poincaré-Cartan forms {a, da = P*Q} can be expressed in terms of
L,H,S, and T if we identify the decompositions (11-12) with (18-19).

OH 0H
A = 200 * e = pl0t S0
(pth'— aPA, th—'l’ an?
ag = —H+paAdg® mod Zp,
OH oH
= — o1 —
doy (dpA P an) A (d apA) . (20)
.- oL . oL
PIpA = 1/)(1”0”%7, ¢ fa=—9ll— 32’
op =L+ om A U (dA — %) mod Zp,
dog = {d— _(- )l% } A HAHID (GA _ 44y, (21)
"’UA = ____’ A = 1+[6)
Opa =) d) f

as=S+ a%?— A+ (dpy — f4) mod Zp,

dog = — {d— (- )l"lw } A IHD (dpy — £4). (22)

T A T
pa= g IT gk = ()M"’b—

aTET'+{ ¢1+"’| —f,,} a;r "AAam:* mod Zp,
ar = {(-)*¥ag —poA A {dgT - (o) @)

A (f,v)-subbundle (23) in electromagnetism was considered by Thirring
(1979, p. 109) and therefore one is tempted to call a differential form T as
a thirringian.
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Abstract. The Hamilton’s principle and the Lagrangian formalism in presence of con-
straints have been analyzed. The differences between the degenerate and the nonholonomic
case are intrinsically characterized.

Key words: degenerate Lagrangians — geometric quantization — nonholonomic systems

1. Introduction

When text books introduce Lagrangian mechanics, they implicitly assume
that:
(a) the dynamics is described by a second order vector field which is defined
on all TQ (i.e. the initial conditions for the differential equations can be
arbitrarily chosen in T'Q), TQ being the tangent space of the configuration
space @;
(b) the fiber derivative of the Lagrangian £

FC:TQ —T*Q
(T*Q being the cotangent bundle) is, at least locally, a diffeomorphism. In
such a case L is said to be regular or standard.

By using these hypotheses in an essential way one can deduce the Euler-
Lagrange equations from a variational principle, develop the Lagrangian
formalism (in particular the Noether theorem), and build up the Hamilto-
nian description of motion. But in a lot of physically meaningful cases, the
motion of the system is confined to a submanifold of T'Q where a priori there
is no reason to believe that a Lagrangian description would be possible. As
a matter of fact the constraint submanifold does not generally maintain a
tangent bundle structure.

Nevertheless, by judiciously transferring the principal intrinsic tools of
T@Q on those submanifolds, it is possible to preserve a Lagrangian point of
view. Hence, under particular conditions, we will verify that suitable Euler-
Lagrangian vector fields make the action functional stationary and we will
connect symmetries of the Lagrangian with conservation laws. These re-
sults will be valid in both cases of degenerate Lagrangian (typically the
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Lagrangian density in the gauge theories [1]) and of the systems with con-
straints introduced from the outside (nonholonomic constraints). In the first
case, as is well known, the constraints are implicitly linked with the degen-
eracy of the Lagrangian. The differences between the two situations will be
stressed.

2. Lagrangian mechanics on T(Q

It is known [2] that it is possible to define on T'Q a (1-1)-type tensor field S
(the so-called vertical endomorphism) intrinsically, with the properties:

(3) ImS =kerS =V(TQ)
() Ns(X,Y)=0 VX,Y € X(TQ)

where V(TQ) represents the set of the vertical vector fields defined on TQ
and Ng the so-called Nijenhuis tensor

Ns(X,Y) = S*[X,Y] +[SX,SY] - S[SX,Y] + S[Y,5X].

S endows T'Q) with the structure of an integrable, almost tangent mani-
fold. Moreover it induces a derivation with grading rank 0 and allows to
define the vertical derivative:

ds = [is7d};
in particular, the action of dg on functions defined on TQ is
dsf = (df)o S f e FTQ). (1)

Use will be made herein of the well-known Liouville vector field A € X(TQ).
Indeed a second order vector field I'y will be such that S(To) = A.

If the Lagrangian £ of a system is regular, the 2-form w = —dd L bestows
TQ with a symplectic structure; moreover E := (La — 1)L is the usual
Lagrangian energy. Besides, use will be made of the semi-basic 1-form

A=dE - irw,

I’ being the second order dynamics,
As is known in literature [3], the stationarity condition for the functional

2
Ldt

t

gives rise to the condition
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_./ zxAdt+/ l(A SF)LXd£+7'[XA Sp]dﬁ)
s

i ta
- /t L isxdLdt + /t Lr (i, dL) dt = 0. (2)
1 1 .

Here X € X(T'Q) represents the variation vector field. In the absence of any
constraint, T is a well-defined second order vector field (ST — A = 0), X
generates point transformations (S[X,T] = 0), therefore

dE — irw =0 3)

are the Euler-Lagrange equations for the problem: the integral curves of I’
are critical curves for the above functional.

In order to complete the description of the regular case, we remember
that the vector field

X(T) = X + S[T, X
generates a Cartan symmetry for the Lagrangian if 3F € F(T'Q) s.t.
Lx(ro)L = Lr, F Vo : $(To) = A. (4)

In this case the Cartan symmetry gives rise to a conservation law and rep-
resents a dynamical symmetry for I'; moreover, the energy is constant on its
integral curves.

As proved in [4], this characterization of the symmetries allows the proof
of a converse Noether theorem which is completely specular to the direct ver-
sion and leads to a formulation of the theorem Wthh is completely equivalent
to the Hamiltonian approach.

3. Constrained motions

(a) nonholonomic systems

Consider the Lagrange equations (3) in the presence of a velocity-depen-
dent constraint

F(TQ)> ® =0;

let Z € X(TQ) be the Hamiltonian vector field which is the solution of the
algebraic equation

izw = d;
consequently

iszw-{-dsq) = 0. (5)
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Moreover, taking (3) and (5) into account, we can write
dE — ijw = Md 9, ‘ (6)

where I' = T+ A\SZ is of course a second order vector field. As clarified in [5]
the tangency condition of I' to the constraint submanifold determines the
maultiplier A. By inserting (6) into (2) it is easy to prove that the stationarity
of the functional is guaranteed by

Lsx®=0. )

This is easy to prove since I is of second order, X(T') is of course Newtonian
and, finally, the condition

isx L2 =0

remains unchanged with regards to the regular case.

But otherwise (7) is not a condition, it is a consequence of the D’Alembert
principle: one can see [6] that the vector fields X satisfying (7) generate
virtual displacements which are orthogonal to the constraint force associated
with ®. I is thus the actual constrained dynamics. Note that the fact, that
X is not generally tangent to the constraint submanifold, does not represent
an obstruction for the validity of Hanﬂlton’s principle. X is only supposed
to be a complete lifting of a vector field belonging to X(Q).

We may now discuss the Noether theorem. Introducing

G:=ixd,L-F (8)
and taking (4) into account, we obtain

LiG =iy (dE —ipw) = Aiy(ryds®
that is

LiG =0+ Lsx®=0. (9)

Again, the main result of Lagrangian formalism is preserved on condition
that infinitesimal displacements remain orthogonal to the constraint force;
we have to underline that generally the introduction of these constraints
does not allow us to relate Cartan symmetries with the dynamical ones. As
a matter of fact it is easy to exhibit very simple counterexamples in which
[X(T),T] # 0 and the reason resides essentially in the fact that X can be non
tangent to the evolution space. In this case X does not transform integral
curves into integral curves of the dynamical vector field.

Finally it is relevant to verify that the condition on §X is crucial for
the converse theorem as well. Suppose that a function G € F(T'Q) remains
constant during the constrained time evolution:

LyG =0




HAMILTON'S PRINCIPLE FOR CONSTRAINED SYSTEMS 345
hence, if

iXgW = dG,
we define

F:=ixsdsL—G.
By differentiating this last expression we get,
LxsG = ixg (Lpds L — Md @)
from which it follows that
LxsG +igp x gL = LpF' — ALsx 5 ®.
Once again
Lyl = LroF (YTo:S5(To) = A) <= Lsx;®=0.

(b) degenerate systems

We now want to consider the case in which £ is not regular, or equiva-
lently w = —ddgL is degenerate [7]. In such a case we introduce the vector
field set

Kerw = {K € X(TQ)lixw = 0}
together with
V(Kerw) = KerwnNV(TQ).

The motion of the system could eventually be restricted to the primary con-
straint submanifold M C T'Q by looking for a solution for (3) which should
also be of the second order; other constraints can arise if one requires the
tangency of the solution to M. At the end of the analysis one obtains a dy-
namics I' which may exhibit terms depending linearly on arbitrary functions
of time. In fact one obtains a class of equivalence {T'} of solutions. Note that
in the present discussion we do not make use of the Dirac theory but rather
of the Lagrangian constraint approach.

It was proved by Gotay, Nestor and Hinds (1978)[7] that the intrinsic
expression for the primary Lagrangian constraints is

Lé(FO)C =LryLszro)l VZ:SZ € V(Kerw)
and T satisfies

iw — dE = &,d 0¥ - (10)
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(v* being known functions belonging to F(7'Q)). Then, if we substitute the
last expression in (2) and evaluate all integrals, we conclude that

" L Ld
t= 0
JRZES

because of the tangency of the second order dynamics to M. In this case
we have that every I' € {I'} represents the Fuler-Lagrange equations on
M without conditions on the variations. In fact all the four terms in (2)
vanish on M; in particular every element of {I'} acts in the same way on
ig5 dL since this last term is a FL-projectable function. As a matter of fact
a function of F(TQ) is said FL-projectable if it is constant on the leaves of
the foliation generated by V(K erw) and, on the other hand

I'N~Ty =T =T+ V(Kerw).

The Noether theorem for degenerate Lagrangians is exhaustively proved
in [8]. We only want to remind that in this case all the results obtained
in the regular case are preserved on condition that use of an appropriate
definition of dynamical symmetry would be made: one has to request that
X(T) be tangent to the final submanifold M #; moreover a set of 7 functions
o’ € F(TQ) must exist such that

[X(I‘),I‘]:f a’K}', K? e V(Kerw)

so that X (T') carries I into an equivalent dynamics.
Thus we obtain:

(a) LrG = 0;
(b) X(T') is a (in the above sense) dynamical symmetry;
(¢) Lxr)E = 0;

(d) the converse Noether theorem.

4. Conclusions.

We can conclude that the difference between the two kinds of constrained
systems resides in the form of the equations of motion: as could have been
foreseen, the case in which the equations of motion take the usual form on
the constraint submanifold is the one in which the Lagrangian formalism is
almost completely preserved. From the physical point of view the last situ-
ation is the most important one: one has to remember that this request is
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pecessary for both the methods of geometric quantization (canonical quan-
tization and path integral quantization) [9].
If we denote the identification mapping with

jiM—TQ,
we have from (10) that
F*(dE — irw) = 0

hold true in the case of degenerate Lagrangians. Instead in the nonholonomic
case the pullback

F*Ad®

does not generally vanish; on the other hand a second order vector field I
does not exist such that

F*(dE — izw — Adg®) = j*(dE' - ipw').

This is because of the difficulty in solving the so-called inverse problem [10].
So in the case of constraints added from the outside we are in the presence
of a total arbitrarity, and consequently a part of the formalism is destroyed:
the one concerning the symmetries of the dynamics. But it is important to
emphasize that the introduction of the constraints preserves the conservation
laws, i.e. the possibility to implement the ordinary procedures of reduction
and eventually of the integration of the differential problem [11].
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Abstract. The 2-cocycles of the Galilei Lie algebra are shown to be in one-to-one corre-
spondence with certain affine maps from Galilean spacetime into the dual of the homo-
geneous Galilei Lje algebra. The kinematic interpretation of these affine maps is detailed.
The symplectic orbits in the space of 2-cocycles are described in a direct coordinate-free

manner.

1. Introduction

We develop a coordinate-free description of the 2-cocycles of the Gaiilei Lie
algebra and the orbits of the Galilei group in the space of 2-cocycles. These
orbits of course include the physically significant symplectic homogeneous
spaces of the group—those corresponding to elementary Galilean systems
with nonzero mass. (See [3], [4], [7].) The ideas are elementary and can be
applied to other semidirect product groups. The work was motivated in part
by a desire to have a coordinate-free account of the geometric quantization
of the Galilei group, which is interesting due to the connection between non-
trivial 2-cocycles and projective representations [8]. Such an account would
be helpful for, constructing and interpreting coherent states over homoge-
neous spaces of the Galilei and Poincaré groups.

2. Affine Transformation Groups

The intrinsic structure of an affine transformation group is given by a certain
exact sequence. The induced Lie algebra sequence admits natural splitting
maps, labelled by the points of the affine space and having an affine position
dependence. The Lie algebra sequence and its dual inherit the equivariance
of the original; this facilitates the description of orbits.

Let X be a finite dimensional affine space modelled on a vector space V. If
(Y, W) is another affine space, an affine map from X toY isamapa: X - Y,
together with a linear map A:V — W, the linear part of a, satisfying

az+Z)=ax+AZ (z€X,Z€eV).
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In particular, the group GA(X,V) of affine transformations of X fits into
an exact sequence

0 — V = GA(X,V) — GL(V) — 1. (1)

We call a Lie group G an affine group of X if there is an exact sequence of
groups
0-V-G—-L—-1 2
that maps by homomorphisms (identity on V) into the sequence (1). That is,
there is an action of G on X by affine transformations extending the action of
V and a representation p: I — GL(V) such that the linear part of the action
of a € G is p(A), where A is the image of ¢ in L. Operations on vector and
affine space elements will be abbreviated; for example, aZ = AZ = p(A)Z.
The Lie algebra ga of GA(X,V) is naturally identified with the vector
space of affine maps from X into V. Corresponding to the group sequence
(1), we have the sequence

0— V- ga-— gl(V)— 0. (3)

The homomorphism from (2) into (1) induces a homomorphism from the
G-equivariant Lie algebra sequence

0-Vog—I1-0, (4)

into (3), involving the infinitesimal representation p:1 — gl(V). A Lie algebra
action will be indicated by juxtaposition; thus KZ = p(K)Z for K € | and
Z eV.If k € g maps to K € 1 we call K the linear image of k. Throughout,
the symbols 7 and k are reserved for elements of g and their linear images
are denoted J and K.

For each z € X there is the evaluation splitting map £,:g — V given by
&k = kz. The complementary splitting map is

Felog,  F.K=k—ke, (5)

where k is any element with linear image K. The image of F, is the subal-
gebra of g whose elements, as infinitesimal transformations of X, fix z.

From the Lie algebra sequence (4) we get the G-equivariant exact se-
quence of dual vector spaces

0-F—>g">V' =0 (6)

Where the context requires, elements of I* will be considered members.of
g*. The image in V* of an element p € g* will be denoted /i and called the
linear image of y. We shall need the map V*QV —I*, p® Z — p® Z, given
by

(p®Z,K)=(Kp,Z)=-pKZ (K €). )
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The evaluation splitting maps give us, for each ¢ € X and p € V¥, an

element
&Epeg’,  (&p k) =(p, kz), (8)

whose linear image is p. The associated map from T*X = X'x V* into g is
just the standard G-equivariant momentum mapping [1]. The splitting maps
F. give us for each p € g* an affine map X — 1", px = Fou:

(uz, K) = (u, F.K) (z€X, K €. (9)

In the case of the Euclidean group, pz restricts p to infinitesimal rotations
about the point z; uz is the angular momentum of the kinematical system
represented by p. The position dependence is

pz+2)=pz+pd 2.
For p € g* we can now write, for any z € X,
po=px+ EZfL. (10)

If p(1)V = V, then the linear image fi is determined by the affine map
induced by p. Thus we have the following.

Proposition. Let Aff »(X,1*) be the space of affine maps from X into * with
linear parts of the form Z — p®&® Z for some p € V*. There is a G-morphism
g* — Aff, (X, 1*). If (1)V = V, then this map is an isomorphism.

The condition holds for pseudo-Euclidean affine groups but not for the
Galilei group.

We now rapidly describe the coadjoint orbits of an affine group (also
described in [4], [6], [6 ]) The G-equivariance of the sequence (6) implies
that a G orbit O C g* is a fibration over an L orbit O C V*. Fixp e O
and let O, be the fiber in O over p; that is, O, is the intersection of O with
the inverse image of p under the projection g"‘ —V*. Let G, be the isotropy
subgroup of p for G acting on V* via L. The fiber O, is itself the total space
of a Gp-equivariant fibration, which we now describe.

Let L, be the isotropy subgroup (little group) of p for L acting on V*. Con-
sider the dual of the L,-equivariant linear isotropy sequence |, — | — /1,
namely

(] »x *
0—-L—-F-1 -0,

where I ~ (I/lp) is the annihilator of the isotropy algebra I, C I. By com-

puting (p ® V)° = I, directly from the definitions, one finds that BL=p V.
If mp:1* — I denotes the natural projection, the map

Yp: Op — ';a vp(p) = mp(uz),
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(independent.of z € X) projects onto a coadjoint orbit of L, and has affine
fibers given by Vop=pu4+p®V for # € Op. (The coadjoint actlon of ZeV
onp€Egisgivenby Z - p=p-a®Z.)

The coadjoint orbits of G may thus be described as follows.
Proposition. Let @ C g* be a G orbit and let O be its linear image in
V*. The linear image map gives O the structure of a fiber bundle O — O
with the typical fiber O, (p € O) itself being an affine fibration over a little
group coadjoint orbit L, - y,(¢t) (¢ € Op). The action of G maps fibers of
each type to fibers of the same type.

3. The Galilei Group

Galilean spacetime is a four-dimensional affine space (X, V) equipped with
an affine map X — IR whose linear part, 81V — IR, has kernel a Euclidean
vector space E a IR3. The structure of V is provided by the exact sequence

0-—>E-—>V-€>R-—>0.

The Galilei group G is the group of affine transformations of (X,V) whose
linear parts lie in the group

L={AeGL(V)s.t. A(E)CE, AE € SOg, and fo A = 6}.

The origin-independent structure of G is given by the exact diagram

E E
! !
6 - V - G - L = 1 (11)
! !
R SOg

The map E — L is given by v — T, where T,(Z) = Z + 6(Z)v; T, is a shear
transformation of V giving the so-called boost with vetocity v. A useful way
to view the group L is as the Euclidean affine group of (V;, E), where

Vii={ZeV|8Z)=1},
the space of unit four-velocities. In this context, the elements of E are in-
terpreted as relative three-velocities.

4. Galilean 2-Cocycles ‘

The dual of the Lie algebra diagram derived from (11) can be used to analyse
the elements and orbits in g*. But one knows that the physically interesting
symplectic homogeneous spaces lie in the space of 2-cocycles Z%(g) [4].
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Let Z1(1,V*) denote the vector space of 1-cocycles of | with values in V*;
these are the maps b:1 — V* satisfying b([J,K])Z = y(J)KZ — b(K)JZ. We
need to describe some maps into and out of Z1(1,V*). Because there are no
-invariants in V* AV*, a 2-cocycle a vanishes when restricted to VX V. Thus
there is a well-defined G-morphism

Zz(g)—-)Zl(l,V*), o a,
with
a(J)Z = a(j,Z) (ZeVv,j—JEe).

We call @ the linear image of «. Because elements of | map V into E, there
is a one-to-one coboundary map

§:E* — Z\(L,V),  (6p)(J)Z = —pJ Z.

Because the bilinear form on E given by b(u®8)v for u,v € E is so-invariant
(i.e., the natural action of so annihilates it), it must be a multiple of the
inner product. Thus there is a well-defined map

Z'(,v*)— R, b b(u® O)u,

where u is any unit vector in E. It is appropriate to call the image of b the
mass of b.
Our first main result is the following.

Theorem 1. There is an exact diagram

so* E*
! !
0 - r 5 225 - Z2Iav) — 0 (12)
| !
E* IR

Sketch of Proof. The exactness of the right vertical sequence involves the
semisimplicity of so. Exactness of the horizontal sequence at I* follows from
H'(1) = 0 and H%(1) = 0. To show that the second horizontal map is onto,
and for subsequent use, we introduce the pullback analogous to the &7 of
(8). Given b € Z(1,V*), each = € X determines a 2-cocycle £¥b € Z%(g)
defined by

(E¥b)(4,k) = b(J)kz — b(K )jz. (13)

For any «, this produces a 2-cocycle whose linear image is b. Q.E.D.

Observe that the well-known result of [2], H?(g) = IR, follows readily from
the theorem.
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Next, we associate an affine map to a 2-cocycle @ € Z%(g). A straightfor-
ward calculation shows that, in analogy with (10), for any z € X,

a:f_,:a+£fd,

where F; is the splitting map of (5) and where FZa, an element of Z(1), is
included in Z%(g). We define a map Z(I,V*)QV -1, b® Z — b® Z, by

(b® Z, K) = b(K)Z.

I b = 6p (p € V*), then this yields the p& Z of (7).
Proposition. Each a € Z%(g) gives rise to an affine map X —1*, z + az,
defined by 6(ax) = Fra. The position dependence is given by

a(c+2)=az+a® 2

If o = 6p (1 € g*), then the affine map for a is the same as that for p in
(9)-
Our second main result is the following.
Theorem 2, part i. Let Aff2(X,1*) be the space of affine maps from X
into I* with linear parts of the form Z + b® Z for some b € Z1(I, V*). There
is a G-isomorphism
Z%(g) — Affo(X,1).

For the kinematic interpretation of 2-cocycles it is useful to add a similar
description of elements of the ‘four-momentuff space’ Z1 (LV*).

Theorem 2, part ii. There is an L-isomorphism of Z(I,V*) with the set
of affine maps V; — E* having linear part of the form v + —muv! for some
m.

For b € Z*(1,V*), the associated affine map p: V; — E* is given by

(pY, u) = (v @)Y (u€E).

The element « ® 8 € | is the infinitesimal boost by u.

We now give the kinematic interpretation of a typical element o € Z%(g)
representing an elementary Galilean system (assumed to have nonzero mass).
The linear image of @ in Z'(l,V*) is a four-momentum object & The image
of & in IR is the mass m; and & gives rise to an affine isomorphism V; — E*
with linear part determined by m. The value of this affine map at Y € V3
gives the three-momentum of the system relative to Y. The four-velocity of
the system is the argument in Y5 € V; that maps to zero. The 2-cocycle a
gives rise to an affine map X —1* with linear part determined by &. The
value of this affine map at a point gives the total four-angular momentum
of the system about the point. For each z € X, the linear image of oz in
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E* is —m times the (transpose of the) Euclidean position vector r; of the
mass-center world line with respect to z. (The vanishing of this image in
E* determines the world line.) And az gives rise to an affine map V; — so™
with linear part determined by mr;. The value of this affinemap atY € V1
gives the three-angular momentum of the system about z relative to Y. The
intrinsic angular momentum %f the system is the value of this affine map at
the four-velocity Y5 of a; alternatively, it is o considered as an element of
so*, where o is any point on the world line.

For use in the final section, we introduce the cocycles oy € Z!(I,V*)
defined for Y € V; by

ov(J)Z = (JY,QvZ) (JEL ZEV),

where

Qyv:V -V, QvZ:=72-6(2),
is the projection onto E along Y and ( , ) denotes the Euclidean inner
product. For any Y, the cocycle moy has mass m. In passing, we note that
we can now write down an L-isomorphism Z(1,V*)—V (respecting the
respective exact sequence structures). It is given, for Y € V; and p € E*, by

b=6p+moy — Y, =p' +mY.

If m # 0, then Y} is the unique element of V such that 6 & Y, = 0 and
6(Ys) = m; it is the four-velocity associated to b.

5. Orbits of 2-cocycles

By consideration of the G-equivariant diagram (12), the G orbits in Z%(g)
(with nonzero mass) can be described in the same manner as coadjoint orbits
of affine transformation groups were described. A typical such orbit in Z?(g)
is seen to be a bundle O — O over an L orbit in Z1(1,V*), a three-dimensional
affine subspace O of Z(1,V*). Choice of a fiducial Y € V; determines an
isomorphism of O with the space E of relative three-momenta—the space
of the conventional ps of nonrelativistic mechanics. Each fiber of O is itself
a fibration over a sphere (or a point), with three-dimensional affine fibers.
The spheres attached to the various points of @ may be identified with one
coadjoint orbit of fixed radius s in so*, the sphere of three-angular momenta
of length s. (There is an equivariant map from O onto this coadjoint orbit.)
To realize the orbit O intrinsically, consider the space of lines in X not
parallel to E; this is a bundle over V; given by

M:={[z,Y]|YeV,ze X},

where [z,Y] denotes the line through z parallel to Y. Let S denote the unit
sphere in E. Recall that a vector w € E determines an element w* € so given
by wX¥u = w x u (for u € E); for e € E, define & € so* by (&, w*) = (e,w).
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Theorem 3. If m # 0 and s # 0, there is a symplectic G-isomorphism
YMxS—0, ¥([z,Y],e) = mEFay + sbe,

where £¥ is defined in (13). The map ¥ is a bundle map over V; — O,
Y — moy.
The existence of such a diffeomorphism is well-known from, e.g., [4] or [7].
The direct coordinate-free expression of the map is new. A trivial modifica-
tion gives the case s = 0.

It remains to describe the relevant symplectic structures. The symplectic
structure w on the orbit O is given at a € O by

w(ja,ka) = ofj,k),

where jo denotes the infinitesimal action of j on a. The manifold M has
the symplectic structure wag determined by symplectic reduction via the
obvious map X x V; — M, where X x V; has the presymplectic structure
wx xV,, defined as follows. At z = (z,Y),

WX xVy (jz7kz) = (gzr#aY)(]a k)’

where jz = (jz,JY) denotes the infinitesimal action of j on 2. In coordinates
(t,q,v) for X x V;, defined with respect to an origin (O,Y) in X x W4, such
that = o4+ q+tY and Y = Y +v, we have wxxv; = dvAdq. The pullback
of waq by the reduction map is wxxv;. Since the coordinates (q,v) descend
to coordinates on M, we can also write waq = dv A dq. Let wg denote the
area form on the unit sphere in E. Then the symplectic nature of the map
¥ of Theorem 3 is expressed by

V*w = mway — Sws,

where wps and ws here denote the appropriate pullbacks by projections from
M x S. The term —swg corresponds to the symplectic form on the spherical
coadjoint orbit of radius s in so*.
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Abstract. It is conjectured that space-time and momentum space are both conformally
compactified and represented by homogeneous spaces of the conformal group generated
from two different subgroups transformed in each other by conformal inversion. It is pro-
posed that this hypothesis may be possibly supported by the recently discovered large
scale correlation of galaxies in pencil beam surveys, as far as space-time is concerned,
while the hydrogen atom in stationary states might represent a support to the conjec-
ture of momentum-space compactification, connected to the space-time one by conformal
inversion. Further possible consequences of the hypothesis are briefly outlined.

1. Introduction

Historically the main, often implicit, axiom of physical sciences is represented
by the postulated geometrical properties of space and time where physical
phenomena occur. As an example newtonian space-time is constituted by
IR3-space where euclidean geometry holds and by an oriented straight line
IR representing time. This space-time is still appropriate for the description
of non-relativistic local motions.

The discovery of electromagnetic phenomena and of Maxwell’s equations
with their Poincaré covariance induced to the axiomatic introduction of
Minkowski space-time apt for the local description of relativistic phenomena.
This space-time may also be defined group theoretically as an homogeneous
space constituted by the Poincaré group divided by its Lorentz subgroup. In
this way the axiomatic role is shifted from space-time to its isometry group.

For the description of global phenomena dealt by cosmology Robertson-
Walker space-time is often postulated, this also characterized by the sym-
metry implied by cosmological principle.

Several motivations [1] (of which the main is Maxwell’s equations con-
formal covariance [2]) suggest the hypothesis that the conformal symme-
try is a fundamental one for physics of massless systems. If we adopt it,
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then space-time should be conceived as the compact homogeneous space
M diffeomorphic to (3 x §)/Z, generated by the conformal group G as
follows:
3y gl
7= 5 xS (1.1)
Hy Zy

where the subgroup Hy = L x D »a K of G is constituted by L = Lorentz-,
D = dilatations- and K = special conformal-transformations. In this case
the particular space-time mentioned above should be considered as densely
imbedded in M . As a consequence of the embedding, the flat space (as
Minkowski) result conformally flat with conformal factors depending on the
modality of the embedding [3]. ~

If space-time is represented by the compact manifold M given in (1.1)
then one should expect that any field theory in it should be free from infrared
divergences, but not from ultraviolet ones [4], an unsatisfactory result for a
conformal world where dilatation invariance should hold.

An opposite result, that is regularization of ultraviolet divergences but
not of infrared ones, could be expected in case of compactified momentum-
space.

A suggestion of momentum space compactification may be fouud in spinor
theory. In fact the E. Cartan definition of a simple spinor ¥ associated with
the pseudoeuclidean space V = IR™*+1™~1 ig represented by [5]:

Y'Y =0 a=12,...,2m (1.2)

where p, are the components of p € V and 4°* are the generators of the
Clifford algebra Ci(m + 1,m — 1). Notoriously for ¥ # 0 we have p,p® = 0,
therefore p € V lies in the projective light cone P of V which is compact.
In fact:

S™ x Sm—2
Zy

The fact that P is a good candidate for compactified momentum space

derives from the observation that from (1.2) one may easily get several of

the fundamental equations of physics like, for m = 2, Weyl equation for
massless neutrinos:

P= (1.3)

p“')’“(l + 75)\I’i =0, p=123,4

and Maxwell equations:

puFs? =0, (14)

and, for m = 3, the twistor equations
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pJ(1£ Ty =0 a=1,2,3,4,56 (1.5)

and so on [6]. All of them in compactified momentum space represented by
eq.(1.3).. o

Going back to compactified space-time M given by eq.(1.1), one may
transform it with conformal inversion I, one of the global transformations of
the conformal group. The result is:

G §xs
Hip 7

where Hir = L X D va T obtained from H; above by substituting special
conformal transformations K with Poincar’e translations T'.

Observe that P may be also considered as a compactification of P = IR3?,
however if in space-time M = IR3! the coordinates of a point z have the
dimension of a length in P = IR®!, the coordinates of a point p have the
dimension of the inverse of a length, since: Iz, = +z,/z?.

The action of G in M unambiguously defines the action of G in P , and
in conformally flat momentum space it might be identified under certain
conditions with the standard one [7].

Adopting the suggestion of spinor geometry, we will then adopt the hy-
pothesis that P represents compactified momentum space. Furthermore, if
we admit the validity of global conformal covariance in nature, since P is
obtained from M as a consequence of conformal inversion: one of the trans-
formations of G, then we will suppose that both space-time M = IR3! and
momentum space P = IR are simultaneously compactified in M given by
and P given by (1.2) respectively, connected by I, conformal inversion.

As a consequence then in a fully conformal theory both infrared and
ultraviolet divergences should both be absent, as expected in a conformal
world.

It is well known that if one adopts M given in (1.1) as space-time, then
its dual momentum space may be conceived as an infinite lattice, whose
points are labelled by the indices of spherical harmonics [4]. If momentum
space is also compactified, then this lattice will have to be mapped in P and
result therefore finite. From P in turn a finite lattice will result in M . It
could be expected that on these two finite lattices, labelled by the quantum
number of the spherical functions on §2 x §?, Hopf groups may act!. This
will be further analyzed elsewhere.

In the following we will try to explore if our hypothesis of simultaneous
compactification of space-time and momentum space, correlated by eq.(1.6)
may find support from some observable phenomena.

IMI'=P= (1.6)

! This possibility was suggested to me by S.Majid, to whom I am grateful.
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2. Observable Consequences
2.1. SPACE-COMPACTIFICATION AND THE STRUCTURE OF THE UNIVERSE

In cosmological applications compactified space-time M given in eq.(1.1) is
often substituted by [4]:

Maw = §° x R} (2.1)

where IR! is interpreted as infinite covering of S1. It is one of the possible
compact-space realizations of Robertson-Walker space-time with metric:

ds? = —dt? + R*(t)[dx* + sin’x(d6* — sin®0d¢?)), (2.2)

which may be also obtained by imposing the cosmological principle stating:
“the homogeneity and isotropy of space in the universe”[8].

Several cosmological models consider the universe evolution in Robertson-
Walker space-time. In a previous paper [9] we took as an example the infla-
tionary model which considers a scalar field ¢: the “inflaton field”, for which
the equation of motion Mpw. is:

39
ot

where A(S3) is the Laplace-Beltrami operator in $3, with elementary solu-
tions:

{R“3%R + %{A(sﬁ) -1]}¢=0 (2.3)

Ontm = fn(t)Ynlm(Xa g, ¢) (24)
and the spherical functions Y,,,,,(x, 8, ) are defined by

A(SYtm = —n(n + 2)Yotm. (2.5)

Then the component Too of the energy momentum tensor T),, interpreted
as energy-density X has, for eigenmode, the form:

anm = K(t)[YMm(X’ 07 ¢)]27 (26)

which represents then a possible eigenvibration of a closed universe compati-
ble with the cosmological principle as already anticipated by E. Schroedinger
[10].

Recent observations up to 1400 Mpc in the North-South galactic poles
directions have revealed striking correlations of galaxies showing 10 peaks
spaced by 128 Mpc [11]. They may be described by eq. (2.6) by identifying
energy density with matter density. Assuming the value 3000 Mpc for the
inverse H=! = Rn/2 of the Hubble constant, the observations may be rather
well represented with just one eigenmode Y;, g0, for which
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Fig. 1. Observational result on large-scale distribution of galaxies in the direction of south
and north galactic poles reproduced from ref. [11], fig. 2a) (broken line). The continuous

curve represents the theoretical energy density p(z,zo0) given by eq.(2.8). It is normalized
to the third peak of the observational data.

sin?(n +1
R 5= Ragol, 1) = K () -T2 (2.1

and the unknown time-dependent factor may be eliminated by considering
the relative density. For n = 46 one has:

Rye(X,1) sin?47xsin%xo
Rye(xot)  sin®xsin?47xo’
The result is reported from reference [9] in fig. 1.

More observations are being performed confirming the previous ones with
some variations in other directions [12]. They seem to be rather well repro-
ducible with the single eigenmode Yy5,10 as it will be reported in a subse-
quent paper.

Should the present trend be confirmed from further observations and
computations, one might conclude that they may constitute a confirmation

p(xox) =

(2.8)
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of the role of M in the universe (or at least of the S3 part of it).

2.2. MOMENTUM-SPACE COMPACTIFICATION AND THE H-ATOM

In the frame of the hypothesis proposed in the introduction the compactifi-
cation M of space-time should imply the compactification P of momentum
space and the two should be correlated by conformal inversion I, as shown
in eq.{1.6).

It is well known that I maps every point z, of Minkowski space-time JR31
in z,/z?, say:

and therefore for space-like z,,, every point inside a sphere $? of radius one
centered in the origin is mapped by I to a point outside it; one could call
“small” and “large” the space inside and outside S? respectively however
these words have no meaning in a conformal world. In order to give them
meaning one should give a dimensional radius to $? but then conformal
covariance would be broken. The situation is different with the dimensionless
scalar product z,k* where k* is a point of the wave-number space dual to
z,; then, in fact:

“
z,.k
z2k2’

Iz, b —

and if one substitutes k, with momentum p, = fik,, then S? has radius A?
and the words “large” and “small” refer to classical and quantum system.
Therefore if we consider the universe considered in section 2.1 as a “large”
classical system we should, by conformal inversion, obtain a system in

Prw.=S*x R (2.9)

where $° represents compactified momentum space (3-dimensional) and R
energy and search for quantum systems whose equation of motion is repre-
sented by eq.(2.5) in momentum space. Such systems indeed exist and they
represent the most common element in the universe: the H-atom.

In fact let us represent the sphere $° in (2.9) by:

S3:riyri4nieal=1,
then, as shown by V.Fock [13] eq.(2.5) on $3 is equivalent to the integral
equation

sy = 2 [ o

ot ) (r-n)2 )2
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where m = {mimymams} is a point on 52 and which, for A = n + 1 is satisfied
by the spherical harmonics ¢ = Yo, . If we stereographically project $3 on
JR3-momentum space through

1+7f5’

P; i=123,
where po = mc is a unit of momentum (m is the mass of the electron) we
easily obtain, after setting

1= __cﬁ me?
n+l= ~ he{ —2E’

n=0,1,2...
and

Wnlm(p) = K(pva)Ynlm(X’ 6, ¢)’

with K(p,pp) a normalization factor which renders ¥,,,, orthonormal in
IR3, the Schrédinger equation of the H-atom in momentum space:

1, e / ‘I’ntm(P')da
— = FE.¥
where
4
me
En = 2h(n +1)?°

It may be shown that the introduction of py is equivalent to giving a
radius po to S,

It is known that the whole spectrum of the H-atom may be obtained by
acting on Wpey, with the algebra of SO(4,2) realized in momentum space
[14].

Therefore the eigenfunction Y4, (X, 0, ¢), possible candidates for the in-
terpretation of the large-scale distribution of matter in the universe are
proportional to the Fourier transforms of the H-atom eigenfunctions in sta-
tionary states.

Obviously this correspondence is not unique. In fact there might be more
systems both in space-time and, correspondingly, in momentum space, whose
geometrical structure (and dynamics) is determined by that of M and cor-
respondingly of P . One of them is represented by planetary systems. But
more may exist. Each might be characterized by the possible radius of $2 like
the two considered here (R for the universe and pg = mc for the H-atom).
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3. Conclusion

Should the hypothesis formulated in this paper be confirmed by further
observations and computations then one might draw from it several further
interesting consequences. One of them could be that if the eigenvibrations
Ynem(X,0¢) are apt to represent the observed large scale structure of the
universe, then they would mean that the cosmological principle is broken,
and not just locally by matter condensations as we well know, but also by
the large scale structure of space repregented in our particular model by the
eigenvibrations of the inflaton field ¢.

It would be an example of spontaneous symmetry breaking, of the group
SO(4) in this case, which is instead the isometry group of 3 in Mpw.
given by (2.1), where the equations of motion (2.3) and (2.5) are formu-
lated. One should then distinguish between the “homogeneous space” on
one side, which is determined by the group of symmetry, in this case SO(4),
dictated by the symmetry implied by the Cosmological principle, where the
equations of motions are written and the “physical space” on the other side
obtaired from the solutions of equations of motion written in that homoge-
neous space, which then may break spontaneously the postulated symmetry
(in a similar way as the Kepler orbits spontaneously break the SO(3) sym-
metry of the equations of motions). The cosmological principle then applies
to the “homogeneous space” but not to the “physical one”. Furthermore,
while the “homogeneous space” is finite and continuous for the transitive
action of the group, the “physical space” might be both finite and discrete.

The concept of a finite space is not new: it is contemplated in the cos-
mology of a closed universe where space is represented by $° with radius
R equal ~ 1010 light years, say. In such a universe the concept of distance
has an upper limit: 7 R beyond which the mere concept of distance looses its
meaning. Such a closed universe implies the existence of a minimal momen-
tum ~ AR™!, below which the mere concept of momentym is meaningless.
This, by itself originates the conception of physical momentum space as an
infinite lattice.

We have seen that spinor geometry and conformal inversion induces to
conjecture that homogeneous momentum space should also be compact, rep-
resented by a sphere §2 of radius M, say, But then the above lattice will
also have to be finite; not only but the existence of a maximal momentum
~ M will imply the existence of a minimal distance ~ AM ™! in physical
ordinary space, below which the mere concept of distance is meaningless,
and the physical ordinary space will also have to be represented by a finite
lattice, dual to the one of physical momentum space.

Concluding, we may affirm that the postulated conformal symmetry ax-
iomatically defines the “homogeneous, compact space” where the postulated
group acts continuously and transnively. The “physical space” instead may
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pof only spontaneously break that symmetry, but also might naturally re-
sult discrete and finite, on which then the mere concepts of infinity and
infinitesimal are absent. :

It is to be underlined that this last property derives not only from the
identification of the “physical space” as originated from some functional of
the solutions of some field equation on the compact “homogeneous space”,
but also from any single valued function on it. This should then in principle
be applicable also to general relativity where space-time, conceived as a field
(obviously not scalar), should, in our language, be classified as a “physical
space” to which all the considerations exposed above (after extending them
to tensor fields) should apply.

Observe that this possible group-theoretical genesis of finite, dual lattices
in ordinary and momentum “physical spaces” differs both from the one
pursued, after the introduction of a fundamental length, in non local field
theories some decades ago, and from the one adopted for the numerical
solution of Q.C.D. field equations.

These ideas will be further analyzed elsewhere.
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Abstract. A set of algebraic relations involving the bundle torsion, gauge curvature field,
and four-velocity in the Finsler-spacetime tangent bundle is presented that maintains (1)
compatibility with Cartan’s theory of Finsler space, (2) the almost complex structure, and
(3) the vanishing of the covariant derivative of the almost complex structure. This avoids
the much more restrictive condition of vanishing gauge curvature field. A simple solution
to the torsion relations is also obtained.

1. Introduction

It was demonstrated recently that the spacetime tangent bundle of a Finsler
spacetime [1, 2] is almost complex, and also Kihlerian [1, 3] and complex
[4] with vanishing covariant derivative of the almost complex structure, pro-
vided that the gauge curvature field is vanishing. A vanishing gauge curva-
ture field is equivalent to the condition that the four-velocity tangent-space
coordinate be a parallel vector field. The vanishing of the gauge curvature
field was also shown to be a sufficient condition for the bundle connection to
have a form consistent with Cartan’s theory of Finsler space [1, 2]. However,
through the introduction of bundle torsion satisfying prescribed conditions,
the Finsler-spacetime tangent bundle can be made to remain consistent with
Cartan’s theory of Finsler space, and remain almost complex with a vanish-
ing covariant derivative of the almost complex structure, without the need
to impose the relatively restrictive condition of vanishing gauge curvature
field [5]. However, a nonvanishing gauge curvature field precludes that the
bundle be complex [5]. A number of implied relations involving the torsion,
gauge curvature field, and four-velocity can be demonstrated.

In the present work, we first review the basis for the torsion relations and
then obtain a simple solution, in which the only nonvanishing component of
the torsion is in the fiber-base-base sector of the bundle, and is given by the
negative of the gauge curvature field.
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2. Finsler-Spacetime tangent bundle with torsion.

The components of the bundle connection (&M, 5 of the Finsler-spacetime
tangent bundle, including bundle torsion, and written in an anholonomic
basis adapted to the spacetime connection; are given by [5]

@ 5 = {F‘ o } + @K (1)
@riy, = My + ‘;‘Fbau + B Ky, (2)
1
(S)I‘“ba =¥ + §Fbau + (S)K“baa (3)
B)TH , — oo D s B pu
Ty = pPo? I + K ab) (4)
Dz>
1
O = ~Tlag™ + 5 F"ap + O K "ap, ()
&m - A D ™ B gm 6)
ab = —poV Dzr b @ + abs (
®prmy, = { mba} + @K™, (7
(S)Pmab ="+ (S)Kmab' (8)

Here recall that a generic point in the bundle manifold has coordinates
MM =0,1,...,7} = {x*,x™; 1= 0,1,2,3;m = 4,5,6,7} = {x*, pov*;
p=10,1,2,3}, where x* and v are the spacetime and four-velocity coordi-
nates, respectively. Greek indices refer to spacetime and range from 0 to 3;
lower case Latin indices refer to four-velocity space and range from 4 to 7;
and upper case Latin indices refer to a point in the bundle and range from
0 to 7. Any lower case Latin index n appearing in a canonical spacetime
tensor or connection is defined to be n — 4 implicitly. The length pg is of the
order of the Planck length [6]. Also in the above equations, there appears
the spacetime connection

Dop = {u aﬂ} - {u aﬁ} = Al = ApIht — AMeg,  (9)

in which the gauge potential is given by
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o A
Ay = Pov'\r",\u = PO”A{ K /\V}—ng vﬁnﬂw\{ of }1 (10)
where {# o ,3} is the ordinary Christoffel symbol

PR W BT I )

{ aﬂ }— 29 (axﬂgua + ax'agl/ﬁ axugaﬂ)’ (11)
and g, is the spacetime metric tensor. Also, the Christoffel symbol of four-
velocity space is given by

1 ;0
IWep = 3P0 g ForJes (12)

Also in the above, ® KM p is the bundle contorsion

1 - - -
®rMp = E(GMLGAD(S)TDBL +GMLGpp TP, +®) TMAB)» (13)
where 8)TM, 5 is the bundle torsion, and the bundle metric is given by

Gy = (gsu 0 ) (14)

9mn

in the adapted anholonomic basis. Also in the above, the gauge curvature
field is given by
Fﬂaﬂ = POUAR“Aaﬁ9 (15)

where

R*ap = Thga = Thap + T4 aINg — T4 5T M (16)

is the spacetime Riemann curvature tensor, written in the adapted basis.
Here, the comma followed by a lower case Greek index denotes the operator
v = 0/0zY — pg~1 AP,8/8vP, corresponding to the adapted basis. Also in the
above D/ Dz denotes the ordinary spacetime convariant derivative with the
spacetime connection Eq. (9). The anholonomic basis vectors are defined by

808" Gon

The associated structure coefficients C4g™ are defined by the commutator

(But) =B Bn) = {5 ~ 07 Mpmpi o} ()

[Ea, EB) = Ca¥ En, (18)

and the only nonvanishing components are
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Cof” = —FT4p, (19)
Cabm = "Cbam = ¢mab’ (20)
where
s = po"l-(?-A“ . (21)
af 500 [3

In Cartan’s theory of Finsler geometry, involving the base manifold only,
the connection coefficients are those corresponding to Egs. (1) and (2). Those
of Eq. (1) are identical to one set of connection coefficients appearing in
Cartan’s theory, provided

G Kk =0. (22)

Those appearing in Eq. (2) are identical to the remaining set of connection
coefficients of Cartan’s theory, only if

G Kk, = —%F,,a“. (23)
If the bundle torsion is not present, then the contorsion is vanishing, and
Eq. (23) then requires that the gauge curvature field be vanishing, but a

nonvanishing torsion circumvents the latter more severe restriction. From
Egs. (23) and (13) and the antisymmetry of the torsion, it follows that

OFk = _OFu, %p,,; +®Fs (24)

Next define the antisymmetric part of the bundle connection by

1 1 .
(B)FMAVB = —(B)I‘M%q = -2-(8)FM[AB} = 5(—CABM + (B)TMAB). (25)

Throughout, we employ the notation Tt T T According
to Eqgs. (13) and (22) and the antisymmetry of the torsion, one also has

OTtep = Khogy = 0. (26)
Then using Eqgs. (25), (18), and (26), we obtain
(S)P"af =0. (27)

Next, if we use Egs. (25), (18), and (24), we deduce that




FINSLER SPACETIME TANGENT BUNDLE 371

1(a)5 1 1
Bps,, = =@fs , - _—p s _ (8 gk )
r Vb 9 Tab 4Fba 9 Kbon ( 8)
and
(8) 1@®)p 1 1(s)
e = =OITH, = =Fi ' + 2V KH,. (29)
v 2 4 2

Also, according to Eqgs. (25) and (18), one has

@®)ps,, = lTﬂab. (30)
v 2

Only the components of the antisymmetric part of the connection Eqgs. (27)-
(30) are needed explicitly for the considerations that follow.

3. Almost complex structure

The Finsler-spacetime tangent bundle is almost complex, and in the an-
holonomic basis adapted to the spacetime connection, the almost complex
structure is given by [1, 3]

0 ~Gab
o= (0 ) y
AB 9ap 0 ( )

in the absence of torsion. In the presence of bundle torsion, the bundle
connection has an antisymmetric part, and the almost complex structure

becomes [5]
2008 T4as v, ~Gab + 2po(8)1“‘(3, v, "
— v
Jap = Jag + 2/’0(8)1"‘.;‘,,3 v, 2p0(8)I"‘¢3,v“ (32)

If we use Eqgs. (27)-(30) in Eq. (32), and compare with Eq. (31), we conclude
that the almost complex structure (Eq. (31)) is preserved in the presence of

torsion, if the following conditions are satisfied:

1
(B)K”bavu. = “EU“Fbau (33)
and

@4 v, = 0. (34)
Next, if one expands the convariant derivative of the almost complex

structure VEJ 4P by using Egs. (31), (14), (1)-(8), (22) and (23), together
with the corresponding results of [3] one concludes that

VeJE =0, (35)
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provided that the following relations involving the bundle torsion are satis-
fied (including the other relations obtained above):

(8)K“se =0, (S)T“& =0, (S)K“ge = _% i (36 — 38)
®Fu_ - _1 ®pn, O pd -1

THse = ""Z'Febl‘ - W KF s, K de Poya = ’éﬁab}w (39’40)
(S)K“d,v“ = —%V“Fde;u (S)T“da = %Fde“ +(8) K¥., (41,42)

_ 1
(S)K“depdbpa = 07 (S)Tudevu = 01 (S)Km&:Pﬁsma = 'iF{aﬁ]sv (43 - 45)

®gme, PP, =0, ®Km, =0, Gk =0, (46 — 48)

where

Pﬂ&ua = 5ﬁu650 - gﬁagum (49)

In summary, Eqgs. (36)-(39) and (42) insure compatibility of the bundle con-
nection with Cartan’s theory of Finsler space; Eqs. (41) and (44) insure that
the almost complex structure is maintained; and Eqgs. (40), (43), and (45)-
(48) insure that the covariant derivative of the almost complex structure is
vanishing.

By means of the following identity [5],

v Flogp =0, (50)

together with Eqgs. (39)-(42) and (45), the following additional torsion rela-
tions can also be demonstrated [5]:

(S)T“gevu =0, (S)T“d,vu =0, (51,52)
OV s, Peue =0, ©TH, PR, =0, (53,54)

(S)K“dev‘Pbd,,a = 0, (8)Km5,v¢Pﬁ6ma =90. (55, 56)
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4. Simple solution to torsion relations

A general solution to the torsion relations, Egs. (36)-(48) and (51)-(56),
expressing the components of the bundle torsion explicitly in terms of the
gauge curvature field and four-velocity, will be addressed elsewhere. Here we
instead seek a simple particular solution.

Begin by considering Eq. (45) with the following ansatz

G gme, = KF™, (57)

as part of a possible self-consistent solution, where & is a constant. If we
substitute Eq. (57) in Eq. (45), it follows, that K = -1/2, and therefore

(B)Km& = —--;-F"‘&, (58)
Also, Eq. (41) immediately suggests
o= L -

Furthermore, in accordance with Eqs. (43) and (46), we can make the simple
ansatz

@ Kr, =0, CK™, =0. (60,61)

Thus, the only nonvanishing components of the contorsion are given by Eqgs.
(38), (58), and (59), which are assembled here:

O Kty = Kty =~ Fal (62)
and
®pm _ _1
K™, = ~2F™. (63)

All other components of the bundle contorsion are taken to be vanishing
(Egs. (36), (60), (61), (47), and (48)), namely,

Oty = Oty = OK™, = Ok, = OKm. = 0. (64)
Next we can substitute Eq. (62) in Eq. (39) and obtain

@, = 9. (65)
Also, if we substitute Eq. (62) in Eq. (42), we get

E 7w, = 0. (66)
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Furthermore, in accordance with Eq. (44), we also make the simple ansatz

@ u,, =0. (67)

Next, if we substitute Egs. (64) and (67) in the expression for #) K™, given
by Eq. (13), we obtain

(g™gba + 6™46%)OT%, = 0. (68)
Equation (68) suggests the simple ansatz

@7, = 0. (69)

Next, if we substitute Eqs. (64), (69), and (67) in the expression for &) K™,
given by Eq. (13), we obtain directly,

@™, =0. (70)
Furthermore, if we substitute Eq. (64) in the expression for B) K™, given
by Eq. (13), we obtain

8) .
(gmlgad5"b + 9™ gbab"s + 6md6na61b)( "4, = 0. (71)

Equation (71) suggests the simple ansatz

(8)Tdn1 =0. (72)

Finally, if we substitute Eqgs. (65) and (63) in the expression for &) K™,4
given by Eq. (13), we get

(S)Tmap = —~F"p5. (73)

In summary, the only nonvanishing component of the torsion is in the

fiber-base-base sector, and is given by Eq. (73). All other components of

the bundle torsion are vanishing (Eqgs. (37), (65)-(67), (69), (70), and (72)),
namely,

(8)1—1“66 = (S)TuSe = (S)Tude = (S)Tﬂde = (S)Tmﬁe = (S)dee: = (S)dee =0.

(74)
Equations (36), (37), (43), (44), (46)-(48), and (51)-(54) are trivially satisfied
by Eqs. (74) and (64). Equations (39) and (42) are satisfied by Eqgs. (74) and
(62). Equation (40) is satisfied by Eq. (62) together with Eq. (49). Equation
(45) is satisfied by Eq. (63) together with Eq. (49). Equation (55) is satisfied
by Eq. (62) together with Eq. (50). Equations (38) and (41) are satisfied by
Eq. (62). And finally, Eq. (56) is satisfied by Eq. (63) together with Eq. (50).
Thus, all of the torsion relations are satisfied by the simple solution given
by Eqs. (73) and (74).




FINSLER SPACETIME TANGENT BUNDLE 375

5. Conclusion

The Finsler-spacetime tangent bundle with bundle torsion is compatible
with Cartan’s theory of Finsler space, and is almost complex with a van-
ishing covariant derivative of the almost complex structure, provided that
the torsion satisfies the relations given by Eqs. (36)-(48) and (51)-(56). A
simple particular solution to these torsion relations is given by Egs. (73)
and (74), in which the only nonvanishing component of the torsion is in
the fiber-base-base sector of the bundle, and is given by the negative of the
gauge curvature field.
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Abstract. We present a review of the development of a

fields. Instead of a mathematical model based in a mathematical group, we show that we
can actually develop a theory which, as a consequence, points to a mathematical structure.
Clifford algebra is used as the basic tool.

We show that an extended representation of the Multivector Clifford algebra allows,
first, a series of factorizations of the Laplacian operator, and, second, generates 3 families
of elementary particles with the experimentally observed lepton and quark content for
each family and the experimentally observed electroweak color interactions and other

related properties. The factorizations V? = (rg‘,)aﬁ"))'(r( ,)aﬁ:‘)) and the related Dirac-
like equations

d
Tt 0 W4,y = 0

are studied, its symmetries given. The I‘f‘ 1) 8enerate the 3 families, the af;’) generate the

observed lepton and quark content of the families.

In contrast to the usual approach to the standard model the properties for the different
fields of the model are consequences of the relative properties of the equations, among
themselves and in relation to spacetime, and therefore, they do not need to be postulates
of the theory.

1. Introduction

In the years 1980-1983 it became apparent that besides the accepted

SU(3)®SU(2)®U(1) structures of the elementary fields corresponding to a
family of elementary particles, there were 3 possible families, and perhaps
more, each one repeating the group structure of the fundamental family. All
the experimental analysis, in the decade elapsed since that time, confirms
that scheme. The construction of the basic field as composite of other, more
fundamental fields, pointed to the need of combining the gauge, or interac-
tion, fields with the study of the basic fields and moreover to the need of
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incorporating basic concepts like “confinement” and “colorless composites”
together with the consequences of the basic group. Of paramount impor-
tance is violation of parity in weak interactions, the massless character of
neutrinos and their associated left (right) handedness.

For us all the phenomenological concepts and models fit together in such
a way that, if an appropriate mathematical framework is used, we could
develop a theory of elementary particles and their interaction fields which
should then be the foundation of the set of phenomenological laws.

Here we show that this task is now possible and that a useful mathemat-
ical tool which reduces the need for additional, or ad hoc definitions, is the
Clifford algebra approach to the mathematical formulation of spacetime and
the basic fields.

In fact a usual approach in mathematical physics is to use the concept
of spacetime as a frame of reference for the description of the matter and
their interaction fields. Spacetime, having a multivector structure and con-
taining a spinor (and dual spinor) space, not only describes our perception
of the physical nature but is also a powerful mathematical tool. Adopting
spacetime as a basic frame of reference for physical phenomena should imply
that its structure and symmetries corresponds to the observed characteris-
tics of the matter and interaction fields. If a contradiction or insuficience
were found a wider reference frame should then be constructed and used,
but this does not seem to be the actual case.

We have several motivations for the analysis presented here which follow
from studies we have performed in the last 14 years [Keller 1991]:

1. Given spacetime and its multivector Clifford algebra, C¢; 3 or its com-
plexification Cfp 5, we can ask: which fields may exist in it obeying the
Klein-Gordon wave equation Ay = —a?y , with: (e* > 0)? Introducing
the fields from first principles and guiding our analysis of thore fields
(to make connection with experiment) from the accepted form of the
rtandard phenomenology.

2. In the standard model, if we consider the fields that may exist in space-
time according to 1): do we need to add isospace to spacetime? After all
the natural tangent space Ths to spacetime R'( contains 16 elements
and the T to the complex spacetime Clg 5 contains 32 elements.

The elements y4 of Ry 3 are the dimentionless Grassmann numbers

1, Yur YuVv = Guv + Yuvy Guv = dz'ag(l, "1’—11 —1)?
Yuv = —Yous YoYuv = GouTv = GovVu + Youv
and  YaVuvp = GuTvp = I3 Vup + PAoTuw + 95 OF Y5 = Yo123,
all {p,v,A,p} =0,1,2,3.

The complexification of C¢; 3 — Cfgs can be denoted by
{v4 +iv*; 44 C Cty3}. All multivectors act as operators among them-
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selves and on the ’s describing the matter and interaction fields, the def-
initions are such that 4°,iy'? and iy® are hermitian. Multivectors are de-
fined from the vectors 4# through their Grassmann outer product y#V =
4% A4” A ... (See Chisholm and Common (1986) or Micali, Boudet and
Helmstetter (1992)).

We have discussed elsewhere the use of multivectors as generators of Lie
groups, see for example [Keller and Rodriguez-Romo 1990, 1991a] where we
analyse the construction within C¢q 5 of frequently used groups as for exam-
ple $0(2,3), SU(3) or SU(2). Also the integration of spinors and multivectors
into a geometric superalgebra [Keller and Rodriguez 1992].

Here we show that the basic phenomenology, and the essential lefthand-
edness of the neutrino, can all be combined in a generalization of the Dirac
equation and the postulate that all physical possibilites implied should be
included.

2. Chiral symmetry in spacetime

We assume that a local observer describes spacetime by an orthonormal
tetrad a) (%)% = -(71)? = —-(9?)? = ~(7®)? = 1. In this frame b)
4% = 49414243 is both the duality transform operator and the pseudoscalar
(7®)? = —1. It is important that if another observer uses a differcnt co-
ordinate system, related by a Lorentz transformation L, the fundamental
properties (17%)2 = 1 and y°y* = —v#45 are also preserved, together with
a).

The handedness operator H = i7% can be used to construct the chirality
projectors Pg and Pp:

Pp+ P =1, PRPp = Pg; PLP, = P, PRP;, = PLPg =0,

where Pr = (14 i7°%), Pp = }(1 - i7®) or, as discussed here below,

Ppr = %(1 + H).

If a coordinate transformation v® — (¥°)' is allowed where a), and con-
sequently b), is not preserved (that is if the determinant ¢ of the transfor-
mation is not ¢ = +1) then H # i(y°) showing that a chirality operator
H = i(v%) [s,with H? = 1 in all frames has to be used.

H is in fact an invariant dimentionless quantity, it obeys H? = 1 in all
frames of reference. Even if the handedness of the frame F’ is changed rel-
ative to frame F’ because (7°)' = ¢4°. Given that ¢ = ¢2g and then the
effect of the sign of ¢ is lost, we cannot define H in terms of \/[g], we have
to define it in relation to the “handedness (F)” of a given frame F and then
the use of ¢ ensures that in a change to F' we obtain
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handedness(F') = sign(c)e handedness(F'). In terms of this, relative, hand-
edness definition we could write

H = handedness (F)ir*/1/lg| (A1)

which is equivalent to our definition H = iy% when and only when the
conditions mentioned in the text are satisfied. v° and /[g[ could both, si-
multaneously, be considered to have (length)* dimention and H still would
be a dimentionless quantity.

Here we will assume H = 7%, because of the restriction a) and the
assumption that we have selected a “right” handeded frame of reference,
The Pr and P;, can better be considered numbers of a new mathematical
field, with basis 1 and H, in an hypercomplexification of the Clifford algebra.
H(= H) is coordinate invariant.

3. Chiral symmetry theory of elementary particles

Using spinors, vectors and multivectors [Fock and Ivanenko (1929), see also
Keller 1991, Keller and Rodriguez-Romo 1991b, Hestenes 1966, Casanova
1976, Keller and Viniegra 1992, Keller and Rodriguez 1992] we will now
construct a theory for lepton and quark fields using the possible multivec-
tor generalization of the Dirac factorization of the Laplacian (d’Alembert
operator V2 = 8#0,). We start, as a guiding concept, by considering the
Klein-Gordon equation operator and its factorization

(00, + m?) = (D' 4+ mi)(D - mi) (1)

which requires that

-D'm4mD=0 and D'D=0"9, =V? (2)

we can have then a set of choices, either
1. any value of m and Dt = D (the standard Dirac operator Dy), or
2. for the case where m = 0 the possibility D! # D also becomes
acceptable. Here we will use the field generated by 1 and H.

In multivector algebra the Dirac operator is the standard vector operator
(using the vectors v#) D — Do = 4#9,,. (Sometimes D — y°Dy = 7%49,, is
used).

The basic requirement D'D = DD' = 9#8,, limits the choices of D, it
can be taken to be written in the Lorentz invariant form

D,y =T(ol", also Dy pdas =0, 3)
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in order to show the relation to the Dirac’s original factorization in the
simplest possible form. Here the I“(‘f) are operators on the ¢ which can be
represented by generalized Dirac ¥# matrices, see below. The limitation is
so strong that the only possible choice is where the multivector iy® (or the
invariant H), which has the same action on all 4#, that is iy3y# = —y#i75,
is used see [Keller 1982, 1984, 1986 and 1991, pag. 158 and following], this
is particularly interesting because chirality comes naturally into the theory.

We construct the following (Lorentz invariant but coordinate system de-
pendent) operator

a‘(‘d) = {1 cos(n + tﬁ)g- + Hsin(n + t‘:‘)g-} oy - (4)

condition (2) requires n and t2 integer and it results in the simplest multi-
vectors. Here, to take the electron as reference we use n = —1.
With this choice of presentation we can have the “diagonal” structure:

8, ifn+ 4 are even
oh = { ’ 5)

%0, if n+ tf, are odd

The standard ¥# = T}, matrices which correspond to an irreducible
representation of C'f¢y 3 are found to be useful to write the wave equations
of the first or fundamental family (eg,ef,vr,{uL,dr;color}) of elementary
particles. The electron requires a combination of two fields e™ = (eg,er)
for the standard phenomenology of electroweak-color interactions.

The study of families other than the electron family suggested that, a
more general, non reducible representations of C; 3, could in fact be needed.
They are collectively denoted by I‘z‘ 1) In Clifford algebra their Lorentz trans-

formations I'; — (T%)' do not change the, 99 From our basic postulates

the T# can all be written as exterior products of the y#,7% i7® and 1, . A
fundamental representation would be for example [see Krélikowski 1990]

P‘; —- ‘y” ® (1 ® 1 ®.. -)2(f—l)products (6)

other equivalent, but different, representations, being also possible. We call
these representations of the Clifford algebra “capital representation” [see
Keller 1993]. The corresponding spinors would then be the, totally antisym-
metric, exterior products

Il/)(f) = ¢(z) A (d)l Ao A ')2(f—1)p1'oducts'

For a local theory (assumed here) the first factor ¢(z) is the only one
that carries spacetime position dependence.
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Then the i; are 2(f — 1) non null, normalized constant Dirac spinors
which correspond to extra, mathematical, internal degrees of freedom of the
diracon fields. For the fundamental s = 1/2 fields their spin should add to
zero (f odd integer). The total antisymmetry of ¢y limits the value of f
to f =1,2,3 otherwise the exterior product is null.

The degeneracy ns of the representations of the I'f 1) Bives statistical
weight to each family: ny = 1, ng = 4 and nz = 24. This will result in
factors for the terms of the mass matrix.

The elementary fields thus described are mathematically composite, but
still elementary in the sense that they cannot be decomposed experimentally
into their components. No size of the particle is required by the theory, they
are representations of the basic elementary fermion equations, no spacetime
structure is involved, there is only the mathematical complexity of the wave
function. Each family has an internal relationship identical to the funda-
mental family f = 1 and the same SU(3)cotor ® SU(2) @ U(1) symmetry. No
additional gauge interaction field is needed to relate the different families.
They are algebraic families of otherwise structureless leptons and quarks.
The algebra of the I‘é‘f) has been developed and studied by Krélikowski
(1990), as well as the consequences for the phenomenology of the elemen-
tary particle families. ¥

4. Chiral geometry theory of charge isospin and color

For the quarklike diracons, an introductory analysis to study the conse-
quences of (3), we use a reference frame F in such a way that a local reference
direction is defined to be ¢ = (1 + 72 +73)v3 and the notation 7}? = 1757,
is used. Such that we can explicitly exhibit the vector-(imaginary) axial vec-
tor momentum admixture and show that it is a constant (independent of
the “color” of the diracon field).

Let us write in detail the “energy momentum multivector” p of every
diracon field d, including the different “colors” red (r), blue (b), or green (g)
of the quarks, according to Table I, (pair = p%y0 + p%7§"):
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electrone: pe = p%y0 + /(71 + 72 + 73)/V3
p; =70+ (P +72+73)/V3
quark @:  py =00+ p(n + 77 +73)/V3
P =+ (n+n+18)/V3
p; =r"n+r'm+17+13)/V3
quarkd:  pg =70 +p (00 +72+95)/V3
P =1+ (" + 1P +73)/V3
neutrinov: py, = p"y0+p' (W + 98 +8)/V3 M

Here p? is the three-momentum and p° is the energy. We can see that
the energy-momentum vectors are all in different phases of the p, — pB
rotations, with none, one, two or three vector rotations.

Let us now consider a gauge energy-momentum vector field A#7,, in the
Coulomb gauge A° = 0, added to the diracon fields with coupling constant
proportional to @, modifying the vector part of the momentum, with the
energy-momentum components given in the same proportion to the time
part and to the spatial parts (calling 7 a vector perpendicular to the di-
rection of motion 7,). For the electron

P’ =70+ (0" + QAW + QAL (8)
has components

timelike 7o - p = p°, spacelike parallel 7, - p’ = p’ + Q. A%,
spacelike perpendicular v, - p’ = Q.A™*. (9)

All of them are scalar quantities.
However, for a @ quark (taking, for example, a red quark, the result being
invariant with respect to color),

Ve v = %(71 +72+73)" %(”f{) +124+7) = % + %i"ls (10)
the scalar components will be affected by a factor of 323-, and following the
same procedure for a down quark, the scalar components will be affected by
a factor of :}5-, and for a neutrino the scalar components will be affected by a
factor 0.

Then if we make the obvious definition that the scalar part of the gauge
field, treated on an equal basis for the electrons and for the quarks of the
neutrino, is to be considered as gauged by the electromagnetic field A, the
“electric charges” have to be Q,, %Qe, %Qe, and 0, respectively. The pseu-
doscalar (proportional to iys) parts are to be treated on a different basis,
and will be shown to correspond to the weak and color interactions.
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In the full Lagrangian, introduced and discussed in [Keller 1991}, a first
term equivalent to the standard Dirac matter-field Lagrangian

Lo = ipy" D, (here 8, — D after gauging) (11)

is to be replaced by the corresponding expression for diracons:

Lq= i"l_”Y:i‘Dud’ (12)

It is in this term of the Lagrangian where we have to introduce an elec-
tromagnetic gauging with a coefficient e for the electron field, 2¢/3 for the
(anti) up-quark field, e/3 for the down-quark fiéld, and 0 for the neutrino
field. Then in the gauge theory we are constructing, the charges for the
U(1) part of the gauge fields are the (postulated usually) integer, fractional,
or zero values of the standard theory. In general our method will allow us
to develop a gauge theory instead of postulating it as in the standard ap-
proaches. In this form we are showing the physical origin of the various
couplings of the gauge fields, and the role played by 75 in it, as a part of
the symmetry-constrained Dirac particle theory.

For this purpose the A field discussed above will have to be enlarged and
split into contributions, usually called B and W3 in the literaturz, and new
“charges” T3 and Y are introduced with the standard notation

Q=T3+Y/2 (13)

but the assignment of 72 and Y to give our values of Q will be straightfor-
ward and its physical origin clear.

It is convenient to start with a rearrangement of the set of diracon fields
in groups which will show an explicit SU(2) x SU(3) C spin(8) symmetry
as shown in Table I on page 387.

To start, we explore the SU(2) relations; for each given family we can see
that the addition of a set of symmetry coefficients {W~} = (0,-1,-1,-1),
modulus -2, to the first row produces the last row and tieir addition to any
one of the first group of three up-quark fields produces one of the group of
three down-quark fields. That is: the same chiral phase change that takes
the neutrino field into a left electron field will change an up quark into a
down quark. The reverse process proceeds in the corresponding way. The
“neutral” interaction will arise from a change in the phaseé of one of the
partner fields canceling that of the change of the other.

In the language of bilinear spinor operators, creation-anihilation, we could
write all these processes in terms of spinors: if {X,, Xu) Xd; Xe} = Xa represent
the neutrino, up-quark, down-quark, and electron fields, respectively, and
their respective dual fields are {x},x}, xL, xt} = x!, with the orthogonality
condition x{ 1 = 6,5, then the processes above can be described by
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W™ = w” (xex} + xaxh) (14)
Wt = wt (xuxt + xuxd) (15)

and the neutral interaction (to be combined with the electromagnetic) is

W3 = W35 (WHW™ - W-W) (16)

provided that, in order to account for the spin h/2x of the gauge fields,
in all cases the spins of each spinor operator of the product are opposite,
i.e., that the spinor of the electron field created is opposite to that of the
neutrino field annihilated, etc. Then these processes correspond to vector
interactions with total spin one, equal to the change in spin of the field
during the interaction.

What we will show below is the correspondence between the interaction
fields and each product of an interaction operator, written here in a formal
way. We should add at this stage that, besides spin, energy-momentum is
being exchanged during the interaction; for example, a photon interacting
with an electron, with energy-momentum exchange ¢, could be written

A= Z)Ze(p+q,$ail))2et(p$ ZFS) (17)
P

stating that the electromagnetic interaction annihilates an electron of mo-
mentum p and spin component s and creates an electron of momentum p+q
and of opposite spin.

The color interaction will change oné of the spacelike ¢¢ indexes of the
quarks from the value 1 to 0 and produce a value 1 for one of the other
indexes (which was zero previously), or change the axial vector momentum
of two of those indexes simultaneously to a total of the eight operations
{1-21 - 32-32->13->13- 211 - 22,22 — 33},
corresponding to the SU(3) color symmetry; we can also write these results
in a formal operator way if we add a color subindex to the quark fields; then

CA;'ab = )Zq,agz,b (18)

will correspond to a gluonic interaction changing color b into color a.
All these interactions in our diracon fields and in our chiral phase lan-
guage correspond to a change in the free particle wave function

Py = uexp(pd cz+ ¢3) = uexp(pq) (19)

with u a spinor and the de Broglie phases ¢4 being the sum of the scalar and
the pseudoscalar parts of the products of the vector  with the momenta
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given by equations (12). The de Broglie phases are gauged by the ¢3 which
also contain scalar and pseudoscalar parts. For the leptons the de Broglie
phases are

Pelectron = P“il?u + ¢2 s (20)

Preutrino = Poxo + i’)’spkxk + ¢37 k=123 (21)

The spinor u for the electron can be left- or right-handed, whereas for
the neutrino, in order to satisfy equations (2-3), only the left-handed field
is possible.

In order to preserve rotational symmetry, for each one of the quarks
we need to show explicitly the gauge phase ¢2,a ensuring that the overall
de Broglie phase is space-symmetric. This requires a complicated vector
notation. If a space index is k (with values 1,2,3), a references space index
is 7 = 1,2,3, and a color index is a or b (with values r,b,g), we have a set
of three multivectors [vector +i axial vector, i = (—=1)!/?],

el = cg’ ¥r; cg” = coswyk[cos (mtf [2) + i sin (ntd /2)] (22)

for each color @ of a given quark, direction & in space, and quantum number
t* in Table I, for reference space direction r, this reference space direction at
an angle w,; with the observer’s space coordinates k. This is a more general
notation than that of equation (7), where, for simplicity, the particle was
taken to move in a direction with all cosw,, = 1 /\/5 The ¢}” are then the
sum of a scalar and (¢ times) a pseudoscalar.

For the purpose of our formalism we need a duality-symmetric set of
coefficients b" such that ¢}” + bf" = cosw,k, the ordinary cosine directors
(no axial vector mixing).

In terms of the multivectors (22) the de Broglie phases for the quarks are

up quark  ¢u,e = P00 + cf'pFz, + b Pk, + 41, (23)

down quark  ¢qp = peo + ' pFz, + O ke, + b4 (24)

The constants ci” are different for up quarks and for down quarks, corre-
sponding to the t3 quantum numbers.

Now, the phase angles ¢J can either change the scalar-pseudoscalar struc-
ture of the de Broglie phases or leave them with the same structure. In the
first case we have a change of the particle’s nature (the resulting wave func-
tion will obey a different wave equation), and in the second case we have
a type-conserving interaction. For this purpose we construct a Lagrangian
which is invariant to the changes of the phase structure of the different
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TABLE 1. Allowed Sets of Symmetry-Constfained Quantum Numbers {tﬁ‘ = tf, + n}
for Chiral Fields Corresponding to the Electron Family. Satisfying the Generalized Dirac
Equation D(s,a)¥(s,4) = 0. The quantum numbers n, tﬁ, and operator Dy q) are defined
in equations (3)-(4) in the text. They correspond to the choice of e™ as reference. The
charges are given by the average value {t] + 5 4 3)/3t; as described .bs' the explanativn
of (72) in [Keller 1991]. The isospin pairs are connected by a change in the ¢, such that
Itﬁ' —~ 4] = (2,1,1,1) mod 2, and the color triplets by a change in the t}, such that

g d' d
d.._tg =1, —1,.

ty
t ty 4 tn Q 20 Color Name
-1 -1 -1 -1 -1 -1 - electron
1 0 1 1 +% 1 r
1 1 0 1 +2%2 1 b up quark
1 1 1 0 +% 1 g
-4 -1 6 0 -3 0 r
-1 0 -1 0 - -;- 0 b down quark
-1 0 o0 -1 -1 0 g
1 06 o0 0 0 0 - neutrino

#d.= pixu + ¢3 shown above. We have done this in [Keller 1991] using ma-
trix notation for isospin to conform to the usual expression of the standard
theory.

Here we should remember that the idempotents 1(1+i7°) correspond to
the operators selecting handedness (or chirality) in spacetime algebra. The
set of tﬁ are then restricted forms of handling the chiral symmetry of the
different fields. The relative chiral symmetries of the fields are the rele-
vant quantities. The properties are relative properties, only the relations are
meaningful not the actual components which are frame of reference depen-
dent (or even coordinate dependent if general transformations are allowed).
The group of these relations (see Table I) is the mathematical structure of
physical interest. It is a SU(2) ® SU(3). structure for each f. The U(1)
additional symmetry is related to the standard gauge freedom of the wave
function.
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In Table I Q = charge and I = isospin. Color and name refer to standard
nomenclature. See [Close 1979 , Field 1979, Okun 1982, or Halzen and Martin
1984].

The basic equations for the set of spinor fields being (with D4, ;) explicitly
defined above)

D(d’j)‘lﬁ(d'f) =0 y ¢(d,f) = ‘Dzd,f)¢ and 3“6”(1) =0 (25)

where the subindex d stands for symmetry constrained Dirac fields
(Diracons), it is given the values (electron )z, electronyigns,
Uy, Uby Ug, dr,dp,dg and v, for the first family, to conform to standard phe-
nomenology and the subindex f refers to the family number.

We have shown [Keller 1991] that they constitute a set with all the known
properties of each elementary particle’s family, the fields they represent can
be:

— massless or massive in the particular case of ef, + eg
— charged (integer or fractional).
and it is discussed in [Keller 1991, pages 158 and following], that the collec-

tion of the fields constructed with (5( and (6) have weak charge and color,
and in general the characteristics usually postulated on phenomenological
basis, like composites being colorless, confinement, etc. these being immedi-
ate consequences of the defining equations.

Because of the appearance, or not, of the i7® factors in (5), the fields
have definite chiral properties. Only one type (for each family) of field in
the theory may have simultaneously both chiralities and therefore can be,
as a free field, massive, charged (reference charge + 1) and weak charged:
this is, for the first family, identified as the electron field.

We should stress, again, that in Table I properties are not assigned they
are relative and are properties of the gauged Lagrangian. See [Keller 1991
pages 161 and following] for a full discussion of this point.

— The resulting theory is a chiral geometry theory of charge, isospin
and color.

The theory has a Lagrangian formulation that reproduces all aspects of
the standard theory. Higgs particles have not, in its first approximation (see
below) the same motivation as in the standard theory. Confinement results,
within the theory, from the requirement that the Lorentz symmetry should
not be broken even at local level. The same requirement gives rise to the
colorless condition for hadrons, the new feature is that hadrons should be
both globally and locally colorless. Fractional charges are also a natural
consequence of the gauging properties of the Lagrangian.
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Mass results from vector and axial vector gauging, this procedure con-
serves the succesfull role of the Higgs field in the standard theory, weak
bosons acquiring the same mass.

The theory shows the reason for chirality being a basic property of nature
as shown by the set of elementary particles. This can be clearly seen with
the gauging of the diracons equations

e
Dag) = T{,[08 - Iz Afy ()] (26)

the gauging fields having the multivector composition

Blae) — A# ]
Ad(z) - Ad,scalar (electromagnetic) + vy As,pseudosc&lar (weak, color) ( )
27
5
+A‘o‘1ﬁ,tensor(gmvity)7aﬂ +7 Agypoincaré +7 7[3 Ag, poincaré
That is, the gauging has electromagnetic, weak, color and gravity parts.
Then the wave function becomes upon gauging (¢ a reference spinor).

Ya(e) = Bexp{I(pgz, + da(2))}p (28)

with the phase factor being a multivector

¢d(z) = ¢d,scalar(x)1 + ¢d,pseudosc&lar($)i75 + d’d,aﬁ(z)'raﬁ + ¢d, poincaré (29)

the particular, relative, combinations for the phase factor of the iy terms
generate isospin and color and the v*# generate the local Lorentz transfor-
mations which are a consequence of gravity. To get a more common for-
mulation of the theory we take first I = 4% and second replace it by its
eigenvalues + i. The usefullness of 75 stems from the fact that it com-
mutes with 1, v*# and i7®, (or H = handededness (F)iv®/\/]g]). The
symmetries of @gecalar(Z) + Pd pseudoscalar(T) 17° generate the well known
SU(3)c ®[SU(2)® U(1)]ew standard theory. The mass matrix for the f > 1
families of elementary particles has a very interesting form in its first ap-
proximation:

(s,4) = Nymq(5.75 + effect of nondiagonal terms) (30)

with Ny = nyc} and mq = my(n.)4Q3, where ny is the degeneracy of the
family’s wave function, ¢; = 2f — 1 the number of spinors in the outer prod-
uct of 4, m, the electron mass, n, the number of color degrees of freedom:
1 (for v and e~) and 3 (for the quarks) and Q4 the charge of the lepton
or quark field. Then the masses are all, in a first approximation, propor-
tional to the electron mass. The factor Q3 suggests that the mass matrix is
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directly related to the electromagnetic, gauge, field as of a self interaction
origin. The creation of a pair of elementary particles at a given point, and
its subsequent separation, involves the creation of their gauge fields, Q% is
the factor for the energy required to create the particle’s electromagnetic
field, an inseparable field from the concept of the existence of the particle,
whereas Q§ should correspond to self interaction.

The phase factor (29) may contain additional terms in the vector + axial
vector part of the Clifford algebra. In particular the possibility of a vector
contribution (m/4)yy#x, will result in the term called the “frame field® by
Chisholm and Farwell (1992) generating the mass of the matter field.

5. The basic set of equations

It is interesting that the fundamentals of the theory can be summarized in
the set of equations (25 and 26) labeled by (f,d) which should be treated
together and with the corresponding equations for the gauge fields.

The comparison of the matter fields to see their relative properties is
mathematically a spin (8) @ spin (1) model for each family of elementary
particles. This substantiates the work of Chisholm and Farwell as a further
evidence that we have presented here a theory of elementary particles.

6. Conclusions

In the theory we have presented here the physical properties are now a
constitutive part of the wave equations. The relative properties are clearly
shown [Keller 1991] when supermatrices describe a collection of fields. Off
diagonal terms couple them among themselves.

We have seen that spacetime and its Tps (complex) allows enough de-
grees of freedom to construct a theory of elementary particles and their
interactions. Specially important is that all known interactions are properly
described. No additional isospin space is therefore needed.

Nucleons like proton or neutron and mesons are, within this theory, com-
posite fields but elementary particles. In fact these composite “elementary”
particles cannot, even if enough energy is available, be split into smaller
components; the requirement of rotational invariance forces the “colorless”
combination of quarks, even to the smallest possible experimental probe size.
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Abstract. Multiplication of spinors leads to triality (weak triality) and then to Lie (Jor-
dan) superalgebras, which form the basis of our understanding of the exceptional geome-
tries. Together with the corresponding Dirac operator, these algebras shine a light on the
geometry of manifolds and can also be used to describe particles.

On the algebraic side, this talk is devoted to versions of triality in low dimensions (due
to E. Cartan and N. Jacobson) as well as the structure group of the exceptional Jordan
algebra. Using the idea of genralized multiplication on the geometric or analytic side,
a variety of Dirac operators can be investigated. With some mild curvature conditions
harmonic sections are parallel, (The vanishing theorem). Moreover the vanishing theorem
gives one information on the index of the Dirac operator, which also has ramifications in
particle physics.

1. Introduction

Spinors admit a variety of multplications. Although spinors form a module
over the Clifford algebra, the operation of the tensor product is the most
obvious internal product rule. Moreover representation theory produces a
multiplication of spinors by decomposing the tensor product. These prod-
ucts are sensitive to the parity of the dimension of the vector space. In low
dimensions there are several fortuitous coincidences that allow the construc-
tion of certain non-associative algebras. The path followed will develop the
triality algebra of Chevalley and then sketch the exceptional algebra of A.
A. Albert. Along the way octonians arise from the triality algbera.Finally,
a Dirac operator is introduced and the existence of harmonic sections is
examined.

The talk is organized around a number of examples.

Warning If no specific mention is made, the underlying ground field is
the complex numbers. If confused, complexify!
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2. Example 1

Let V be a vector space of dimension eight with a quadratic form ¢. Denoting
the Clifford algebra of V' by
CL(V)

recall that CL(V) is obtained from the full tensor algebra by dividing by
the two-sided ideal generated by elements of the form

v@v—gv)veV
The fundamental relation in CL(V) is then
v’ = g(v)

There are several important observations to be made.
(1) From general considerations the space of spinors § is defined to be an
irreducible representation of CL(V) and as such has the property that

CL(V) = End(S)

(2) There is no unique way to choose S. For example, in this lecture, you
may think of polarizing V:

V'—'V’@V”

in which the spaces V’, V" are maximal null spaces and choosing S to
be the left ideal
S =NV

where ¢ is a product of basis elements in V"

(3) The spinor representation in this case is just the regular representation
arising from left multiplication.

(4) The reduced representation of the even Clifford algebra C L(V)o yields
the decomposition

S =55

into even and odd spinors. Since the dimension of § is sixteen, the even
and odd spinors each have dimension eight.
Fundamental bilinear for spinors. For u,v € § define the bilinear form
B on S as follows:

B(u,v)y = homogeneous component of deg four of u'v

where 9 is the product of a basis of V/ and u — u! is the transpose anti-
automorphism.
(1) B is non-degenerate.
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(2)
B(zu,zv) = ¢(2)B(u,v) z€V wu,v€eS
B(su,sv) = N(8)B(u,v) s € Clifford group
where N(8) = u'u is the spinorial norm defined on the Clifford group.

3)
B(zu,v) = B(u,zv)

(4) B is symmetric. (That V is eight dimensional enters here)
The Chevalley triality algebra. Consider the vector space
A=VRS5=VdSds

provided with the quadratic form which is the direct sum of 3 and ¢q. The
space A has dimension twenty-four and carries a cubic form.

(z,u,v) = p(zu,v)

which gives rise to a symmetric trilinear form ® on A via the process of
polarization. Using the quadratic form on A one obtains a product:

%(4,B,C) = (40 B,C)

This is the same way that the cross-product is introduced in the calculus of
R3.

Theorem.The vector space A with the o-product forms a commutative,
non-associative algebra satisfying;

(1
AoB=0 ifA; B € same summand

(2)
So08; CV and cyclically

(3)

zou=zu €V, u€S§ Clifford multiplication
zo(zou)=gq(z)u,
,B(l‘ ou,yo u) = q(x’ y)ﬁ(”” v)'
Remark. The form ¢(z,y) is defined as the bilinear form associated with
the quadratic form in the following manner
(z,9) = ¢(=,9) = o(z + y) - a(z) - ¢(y).

Note that a factor of two has been suppressed in the definition of ¢(z,y),
following the convention of Chevalley. ,
This example ends with a discussion of the triality principle of E. Cartan.
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The Clifford group acts on the algebra A in the following way:
s(z’ U, v) = (X(s)z’ p(s)u, p(s)v)

in which p is the spinor representation and x is the vector representation
which actually defines the Clifford group, I'; indeed

I'={seCL* such that szs' €V for any ze€V}
and x is then defined by
x(8)z = sxs™! forz € V.

Note that the action of s on A is an automorphism. Now choose some
. . 3 . e s d,
special automorphisms by fifst fixing a base point in §_; ef V; call the base

point u_y and make sure that

g(u-1) = 1.

To insure that spinorial norms play no role, restrict attention to the group
Spin(8) which is the set of even elements in I' whose spinorial norm satisfies

N(s)?=1.

In other words, T' is the conformal spin group.
Triality. First define a map

Hu-1) = (B(u-1),p(u-1),p(u-1))

where B(u_1) is minus the mirror through u_;. Now define the triality map
T as

T = L(’u_l )L(UQ)

where ug is a unit even spinor.
Principle of triality. The triality mapping T is an automorphism of the
algebra A which has order three and which has the property that

T S; — Siy1 (modulo 3)

Remark. All of the automorphisms of A that fix one of the summands can

now be described using triality. More succinctly, every automorphism of A

which fixes a summand is up to triality an element of the Clifford group I.
This ends the first example.
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3. Example 2

This example is a corollary to example 1. Triality helps to define a restricted
type of product on the vector space V, making V into a composition algebra.
Of course this is the algebra of octonians or Cayley numbers and is really a
trivial application of triality. So for z,y € V

z-y=(zou)o(you)=T(Z)oT*7)

where u; = u_j o ug and the bar indicates mirror reflection through the
vector ¥—1. The bar operation so defined is the conjuagation operator of the
octonians.

One may ask the purpose of introducing the octonians this way but the
proof of all the properties of the octonians now become transparent. More-
over, one does not have to refer to a particular choice of basis for anything
but computation.

4. Example 3

The group Spin(9) has a 25 dimensional representation on the direct sum

of a vector space
W=V8@E}

and the spinor space S just as the Clifford jgroup acts on A, that is, compo-
nentwise. Define the space B as

B=W o S5(9)
Note that 5(9) is 16 dimensional and that restricting to Spin(8)
5(9) = 5(8)o® 5(&)

From representation theory $(9) ® S(9) contains W as a summand. As a
result B forms a kind of loop, in the sense of binary systems. In less formal
terms, a spin invariant product can be introduced on § with values in W in
the following manner:

u-v = g o vy + uy 0vg + (B(uo) — Bur))e
in which ¢ is a basis element for E; and 3 denotes the quadratic form
associated with the fundamental bilinear on 5(8).
5. Example 4

Next consider the direct sum
AOP
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in which A is the triality algebra and P is the plane in IR3 defined by the
equation:

z-1+%o+21=0.
The plane P is the reduced representation of the permutation group on three

letters, Ss.
Denote this new space by J’, that is,

J=A®P.

J' is called the restricted Albert algebra and is 26 dimensional.
Construction. The space J' carries the structure of an algebra.
(1) You already know the multiplication on A

(2) On P® S; ® S;, or any permutation thereof, map

(25,15, v5) = 2;8(u;j, ;)
(3) On (P)®3 take
z®y®2z— S(x;y;2)
Remarks.
(1) Some account of signs must be taken.
(2) J' can be represented by order three matrices with real diagonal entries,

trace zero, and symmetric octonionic entries, otherwise.
This matrix representation appears as:

T 0 a0
ay Zo a_i
ay a1y T_j

where z; € IR, Xz; = 0 and a; € §;. Note that the resulting algebra
is not assocjative but after a change of multiplication and extension, J’
does satisfy a weaker relation, namely, power associativity, which flows from
the fact that the larger algebra, discussed in the next example is a Jordan
algebra.

6. Example 5

The full Albert algebra is obtained by adding a unit element to the restricted
algebra. In terms of the matrix representation above the identity matrix is
thrown in. In more precise terms let

T=R®A
and extend the multiplication to J by requiring

(eirejo6x) > 1 for i=j=k
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and zero otherwise, with ¢; a basis for IR>.
Going back to the octonians and recalling that

tr(s) < g(z,u_1)

you can easily see that
tr(z -y) = ¢(%,9)

and the elements of J can be represented as

T @ a
ay Zg a.1
G a-1 T

where the multiplication between matrices is defined in terms of octonianic
multiplication. Multiplication on So,.S; is carried over from S..; by means
of triality. The Jordan product is defined then in the usual manner

2AxB=A-B+B-A

where A - B is octonianic matrix multiplication.

7. Differentiating spinors

Start with a spin manifold M and use a local frame field ¢; to define the
Dirac operator on spinor fields, locally by

D =Xe; Dy

The assumption that M is a spin manifold implies that the Leibniz rule
applies for the Clifford multiplication on the spinors.
Note that the principal symbol of the Dirac operator at a contangent
vector v is given by:
symb(D) v = L,

where L indicates the operation of left Clifford multiplication.
For sections, X, of the bundle of restricted Albert algebras one may also
define a Dirac operator:
DX = Ye;D; X

with the principal symbol for the operator square:
symb(D?) = g(v)(1 - M,)

where as usual M, is the mirror through v.
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Sideremark Using the bimultiplication on the octonians there is a second
order differential operator whose principal symbol is bimultiplication:

symb(6) - v = B,.
It then follows from the Moufang identities that
B,=L,R,=R,L,

and so § is similar to the Laplace operator in the case of a Kdhler manifold.
Indeed, since
B, = —q(v)M,

it is clear that é is an elliptic operator. In local co-ordinates
6(f) = X(e;D;f)Diei

where the sum is over ¢, and multiplication is in the octonians.
Harmonic sections. A cross section X of the bundle of restricted Albert
algebras is called harmonic iff

DX =0.

Vanishing theorem. Let M be a compact manifold supporting a bundle
J' of restricted Albert algebras. If suitable curvature functions are non-
negative then every harmonic section is parallel. Moreover, if the curvature
condition is strict at a point then there are no non-trivial harmonic sections.
Proof: This is a Lichnerowicz-Hopf type argument.

(1) One proves an identity involving the Laplacian

(2) One looks at the remaining terms which are dominated by a quadratic

curvature form.

Remark. The curvature calculations are forthcoming in the Ph. D. thesis
of Troy Warwick of Oregon State University.

8. Questions and discussion

Two questions posed at the lecture were:

(1) Do harmonic sections have anything to do with string theory?

(2) In dimension eight, points, simple even spinors, and simple odd spinors
are all on an equal footing. Does this mean anything physically or does
this mean anything for strings?

The discussion indicated that the triality algebra may lead to a low di-
mensional or toy model conformal field theory (L. Dolan, UNC). Werner
Nahm (Bonn) commented that the numbers 24 and 26 had already entered
physics and that an earlier article by Dyson on missed opportunities pointed
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out the occurendce of 24 as the power to which the eta-function must be
raise to obtain Ramanujan’s 7-function. Strings themselves can be looked
upon as mappings of circles into a space so perhaps the ideas in this note can
be recast in that light (A. Voronov, Princeton). Finally, P. Budinich (SISSA,
Trieste) noted that the real compactified Minkowski space requires eight di-
mensions to find its place and that perhaps the eight dimensional theory as
presented here is the next logical step in Penrose’s twistor program.

Due to lack of time the discussion of nine dimensional tgiality was deleted.
That discussion will appear in the expanded version of this note.

9. References

The main reference for this note is Chevalley’s book on the algebraic theory
of spinors from 1954. In addition, the article by J. F. Adams on spin and tri-
ality from the Nuffield conference on superspaces and supergravity (Hawking
and Rocek, 1981) proved invaluable in the preparation of this article.
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" Abstract. We consider the Yang-Mills and the Klein-Gordon equations in the external
Yang-Mills fields in the spaces IR". Using the generators of the Clifford algebra, we con-
stract the ansatze for the Yang-Mills potentials and for the scalar field. New classes of
solutions of the Klein-Gordon and Yang-Mills equations in the spaces IR" with n > 4 are
described.

1. Introduction

We will show that the Clifford algebras may be used in constructing the
solutions of the Yang-Mills (YM) equations in IR™. Qur goal is to find some
solutions of the equations for a pure classical YM theory in the Euclidean
space IR™ with the metric 6.3, a,b,... = 1,...,n. Let A, be the YM poten-
* tials with values in the semisimple Lie algebra G of the Lie group G and
Fop = 0, Ay — Oy Aq + [Aq, Ap] be the curvature tensor for A,.
The YM equations for the gauge potentials A, have the form

0aFp + [As, Fap) = 0. (1.1)

The Einstein summation convention is used throughout, if not stated oth-
-erwise.

Some solutions of Eqgs.(1.1) in the spaces IR7, IR® and IR** were obtained
in (1, 2, 3,.4, 5, 6] (see also [7]). In what follows we shall show that it is
possible to obtain other classes of solutions of the YM equations in the
spaces of dimension n > 4 using the properties of Clifford algebras.

2. Ansatz for Gauge Potentials

Let us suppose that in the space IR™ with metric §,; there are g constant
tensors J%,,...,J?, that are antisymmetric in indices a and b and obey the
relations

Joudye = 6°%8a + 237, (21)
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where E:f are some constant antisymmetric in a and b tensors, a, §,... =
1,...,q. From (2.1) it follows that

JeJE + JBIG = —289F5,,

i.e.,, J* = (J%) give a real matrix representation for the generators J of
the Clifford algebra for the space IR? with the metric g,g = —0,p-
We shall look for solutions of the YM equations (1.1) in the form

A = =I5 Ta(#)0cp, (22)

where the real antisymmetric tensors J$j satisfy (2.1); ¢ is an arbitrary
function of coordinates z, € IR®; Ti,...,T, depend only on ¢, take values
in the Lie algebra G and satisfy the Rouhani-Ward (RW) equations (see
[4,5, 6,7, 8, 9]):

faﬂ7T7 + [Ta,Tﬁ] =0. (23)

Here f, 3 is some totally antisymmetric three-index tensor in IR? satisfying
fansfons = 26ap and Ty = dT,/dyp. If q coincides with the dimension of
the simple compact Lie algebra H, then as f,3, 6ne may take the structure
constants of H.

It may be shown that after substituting (2.2) into (1.1) and using the
identities (2.1), the YM equations are reduced to the following system of
linear equations:

15, 580:84p — 2J50:0ap + 2£5,JET7.0:0ep + IS0 = 0, (2.4)

where O = §,0,.

PROPOSITION: I tensors J& satisfy the relations (2.1) and ¢ = dimH,
then to each solution of system {(2.3),(2.4)} one may correspond the so-
lution (2.2) of the YM equations (1.}1) for gauge fie'ds A, of an arbitrary
semisimple Lie group G in the Euclidean space IR™.

3. Explicit Form of Tensors Jg;

To find solutions of Eqgs. (2.4), one should give the concrete expr-ssions to
the tensors J&, and E:f . The theory of Clifford algebras gives the examples
of such tensors.

Let us denote by CI(0,q) the Clifford algebra for the space IR? with the
metric g, = —648, @,05,... = 1,...,q. It has been known for a long time
that the algebra CI(0,¢) can be realized in terms of matrices. In particular,
C1(0,6) = M(8,IR) and CI(0,8) = M(16, IR)(see, e.g., [10]), where through
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M(s, IR) the full s X s matrix algebra over IR is denoted. Let us give some
examples of tensors JJ .

Ezample 1: Consider the algebra CI(0,2) with generators 4! and 2. It is
well-known [10] that CI(0,2) is isomorphic to the algebra of fuaternions H,
and elements 71,7%,4% = 4142 can be realized in terms of real antisymmaetric
4 x 4 matrices 7', 7%, 77 with components: 7§, = €3, 15, = -1, = 85 ,
where €43, are structure constants of SU(2), o,8,7,6 = 1,2,3; p,v,... =
1,...,4. Tensors 7},,72, and 73, coincide with the well-known ’t Hooft
tensors that obey the relations (2.1) with 558 = e*fryy,

Now, let us introduce the tensors

Iy i) = biit (3.1)
with the double indices (m'),(uj), ..., where 1,7,... = 1,...,p. If we denote
the double indices by a, b, . .,4p, then it is not difficult to verify that

the tensors J2 will satisfy the relatxons (2.1) with Eaﬂ = P17, . Thus, in
the spaces IR“P one may always introduce three tensors IS satlsfymg (2. 1)
Ezample 2: Let us consider the algebra Ci(0,6) with generators 7%,...,9%

and also introduce 77 = y'4%42y*¢58. It is known [10] that y* (a =
1,...,7) can be realized in terms of real antisymmetric 8 X 8 matriccs. The
components 75, (#,7,... = 1,...,8) of these matrices satisfy the relations

(2.1) with T2f = ;7;[3\’7;,,\ = 2(7;5/\711/\ 75,\’73’,\)-
Now we mtroduce the tensors

J(o;(ti)(uj) = 5"]'7;:1/’ (32)
where p,v,...=1,...,8; i,7,... = 1,...,p. Numbering the components of
these tensors by the indices a,b,... = 1,...,8p, in the space IR®? we obtain

seven tensors Jj satisfying (2.1) wnth E“ﬂ lJ,[,cJ c] . It is clear that for

ansatz (2.2) one can choose not all seven tensors but only ¢ of them with

4<q¢<T.

Ezample 3: Let us consider the algebra C1(0,8) with generators v%, a,f3,

oo =1,...,8. It is known [10] that v* can be realized in terms of real an-

tisymmetric 16 X 16 matrices. The components 75, (g,v,... = 1,...,16)
[

of these matrices satisfy (3.1) with Dof = 27“,\7112\ Let us also introduce
the tensors J(""d)(yj) defined by (3.2) but with g,»,...=1,...,16; i,5,... =
1 .yp. Numbering the components of these tensors by the indices a, b, .
.,16p, we obtain eight tensors J%. In the space IR6P all these tensors

satlsfy the relations (2.1) with Eab = J [“J A and can be used in construct-
ing of the ansatz (2.2).

And finally, we point out that in the spaces IR™ one may introduce ¢
tensors J satisfying (2.1) in the following cases:
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n=p2?*tim™ = 1 4+ 8m < ¢ < 3+ 8m, (3.3a)
n=p2®*" = 44 8m < ¢K T+ 8m, (3.3b)
n = p24tim o q=8+8m, (3.3¢)

where m = 0,1,2,...; p=1,2,.... Proof may be obtained with the help of
formula [10]:

CI(0,s + 8m) = CI(0, ) ® CI(0,8) ®...8 CI(0,8), (3.4)
m times

where 1 < s < 8. Using the recurrence relations given in [10], one can easily
obtain the explicit form of tensors J};,...,JJ, in the spaces of dimension n
indicated in (3.3).

4. Constructing of Solutions for the Scalar Field Equations

Substituting the explicit form of J into Egs.(2.4), one may try to solve
(2.4). Solutions exist. Rather then make an exhaustive study of all the pos-
sibilities we shall restrict ourselves to the case of n = 4p and ¢ = 3.

So, let us substitute (3.1) into Eqs.(2.4) where €,5, are taken instead of

fapy and 2P = €117, We use the following identities for 7%, [11]:

oy = 608, + P11, (4.1a)

egwn‘,iana = 6#”"30’ = 611077/0\lu - 61\117730 + 6)\07721:/’ (41b)

and obtain the equations:
205,(0xi0y 5 — 0x;0ip) — 205 (0r;Ouitp — 02i0ujp)

+6,m3,(02i005¢ — 0j05i0)+
+13, (202055 + 60¢) = 0, (4.2)

where 9); = 0/8z>. It is clear that Eqs (4.2) are satisfied if ¢ obeys the
following equations

040y = OujOvip, Oribrjip = 0, (4.3)

where p,v,... = 1,...,4; 4,j,... = 1,...,p. Equations (4.3) are simpler then
Egs.(2.4) and appear in study of the hyper-Kahler manifolds of dimension
4p (see [12]). In principle, for Egs.(4.3) one may write a general solution (see
[12]), but we shall not do this here. As an emeple, we write out one of the
particular solutions of Egs.(4.3) (and Egs.(4.2)):
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2

_1+Z(X C,)(X —cny (4.4).

where X, = Z.ip;, p;=const, N is any integer number, B; and C[‘ are
arbitrary constants. For a special case of the space IR® and group G = SU(2)
the solution of this type was obtained by Ward [1].

Equations (2.3) with ¢ = 3 and H = su(2) coincide with the well-known
Nahm equations (see [8, 9] and [13, 14]). These equations appeared in con-
structing the solutions of the YM equations in IR* [14, 15, 16] and of the
model of chiral fields in /R? [17]. Nahm’s equations have a Lax-type repre-
sentation with a spectral parameter, and in terms of theta functions one can
write a general solution of Nahm’s equations for any semisimple Lie alge-
bra G (see [13] and [9]). The explicit form of particular solutions of Nahm’s
equations may be found in [15] and [16]. We shall not write it here.

5. Solutions of the Massless Klein-Gordon Equation

In IR™ let us consider the massless scalar field x with values in the adjoint
representation of the Lie algebra G. The Klein-Gordon equation for x in the
external field A, has the form

(80 +[4a, 1) (0 + [4a, ))x =0, (5.1)

where a,...=1,...,n.

Now, substitute the ansatz (2.2) for A, into (5.1). Suppose that To(¢p)
and ¢ obey the equations (2.3) and (2.4). For x let us consider the following
ansatz:

X = XaTal®), Xo = const. (5.2)

In this case, the Klein-Gordon equation (5.1) is reduced to the following
equation:

XaTa0p + XaBepBoip{To = [T, [T Tyl } = 0. (5.3)

Here we have used the identities (2.1); 1% = d?T,, /d¢?.
Thus, if T,(¢) satisfy the equations

T — [T, [T Ty = 0. (5.4)
and ¢ satisfies the Laplace equation

Op =0, (55)
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then the ansatz (5.2) gives the solution of the massless Klein-Gordon equa-
tion (5.1).

It is easy to see that each solution of the RW equations (2.3) satisfies
Egs. (5.4). Indeed, if one multiplles Egs. (5.4) by fugs and differentiates
these equations once more, then obtains

TO‘ = "-faﬁ’Y[Tﬁv T“l]

At the same time, from Eqs.(2.3) it follows that

[Tﬁ’ (Te, Tﬁ]] = — fap+(Ts, T’y]

Therefore, if T, satisfy Egs.(2.3), then T, satisfy Egs.(5.4). Remind that
the function ¢ must satisfy Eqs.(2.4). Comparing Egs.(2.4) with Eq.(5.5),
we obtain the following system of equations:

£3,2810.0yp — 2J5.0:0a¢0 + 2£3,JE.T}.0.000 = 0, (5.6a)
Dy = 0. (5.6b)

Equations (5.6) have solutions. Some of them have been written out in Sec-
tion IV (see also [6, 7]).

6. Conclusion

An example for n = 4p and ¢ = 3 shows that Eqs.(2.4) may have not
only solution linear on coordinates % , but also more complicated solutions.
It is interesting to study Egs. (2.4) in the spaces IR™ with ¢ tensors JJ
and n > 4p from (3.3) in the case when ¢ coincides with the dimension of
some simple Lie algebra H. In this case, as f,gy in Eqs.(2.3) one may take
structure constants of H.

We have considered the case of Example 1 when n = 4p, ¢ = 3 and
H = su(2). If one takes eight tensors J% in IR'®? from Example 3, then as
fapy one may choose the structure constants of the Lie algebra su(3). In
particular, from (3.3c) it follows that in spaces of dimension n = 4096p one
may introduce 24 tensors JS satisfying the relations (2.1), and as f,p, one
may take the structure constants of the Lie algebra su(5). All these cases
need a special investigation.

Thus, we have shown that in constructing the solutions of the Yang-
Mills equations in the spaces of dimension greater than four the technique
of Clifford algebras plays an importent role. It permits one to reduce these
equations to more simple system {(2.3), (2.4)}. Our results show strong evi-
dence for detailed study of the integrability of the Rouhani-Ward equations
(2.3) and Egs.(2.4) for scalar field ¢.
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Introduction

The Hurwitz problem stated by him in 1898 [1] and its further development
[2] were the motivation to introduce and to study the so-called Hurwitz
pairs (see [9, 10] for an extensive literature).

In our works [6, 7] the precise relation between Hurwitz pairs and Clifford
algebras has been established. Two canonical algorithms have been described
for constructing an irreducible representation of a certain Clifford algebra for
a given Hurwitz pair and, conversely, for constructing all possible Hurwitz
pairs for given Clifford algebra and its irreducible representation.

All this has been inspired by our wish to develop the so-called Hurwitz
analysis initiated in [3, 4].

The present article gives our vision of the situation, that is, which ana-
lytic theories can be related to a given Hurwitz pair. Our previous studies
[6, 7], see also Section 1) show that a Hurwitz pair generates two types
of multiplication which are essentially different, in general. In accordance
with this fact, in Section 2 we introduce two types of generalized Cauchy-
Riemann operators and show that all main formulas for the functions from
their kernels can be obtained in the traditional way.

We stop our considerations at the place where it is perfectly clear how to
develop both corresponding theories. We are going to explain how they are
connected with the Clifford analysis elsewhere.

* This work was partially supported by CONACYT project 1821-E9211
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1. Algebraic fundamentals of Hurwitz pairs

1.1 Let S be a (p+1)-dimensional real vector space with basis {ea},a €
{0} U Ny, N, := {1,2,...,p}, and let the R-bilinear form

(-,*)s:SXS-—»R
be defined by the following metric matrix
= [nes] := [(earep)s] = diag (1,...,1;=1,...,-1),
N := [Nap] := [(€ar€p)s] = diag ( : )
r+ 3

where p = r + s.
Introduce also the n—dimensional real vector space V with the basis
{e;},j € Ny, provided with an R-bilinear form

(-,-)V:V)( V - R,
which is defined by the following nonsingular metric matrix
K 1= [Krj] := [(exs €5)v]-

We assume also that the form (-,-)y in V is either symmetric: k = &%, or
antisymmetric: kK = —«k!, where “4” means transposition.
Let
0:§x V-V

be an R-bilinear mapping. We call it (see, for instance [5]) a Hurwitz multi-
plication (of elements from V' by elements of S on the left-hand side) if the
following axioms are fulfilled:

H.1forall {f,g} CVandalla€e§

(ava)S(f’g)V = (a of,a Og)v;

H.2 there exists the unit element ¢ € § with respect to the mapping “o”,

ie. foral feV
eof=f;

H.3 the mapping “o” does not leave invariant any proper subspace of V.
The set (5, V,0) is called a Hurwitz pair.

1.2 Introduce the R-linear isomorphisms
vs:S — Rrt!

and
vw:V - R?
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by the rules

o
P ay 1
usza=Zaaear——+¢”z= . | € rPY
a=0 :
a4
and
n fi
W:f:ijejf-——)f: € R".
i=i A

For each basis elements ¢, € S and e; € V' we have e 0¢; € V. Thus for

some real constants c!;j:

n
k
Ea0€ = Z Coj€ks
k=1

and for every f = f: fie; €V
i=1

eao S = (Do ckiiden

k=1 j=1
Applying the isomorphism vy to the both sides of this equality we obtain
W(anf)z Ca’VV(f)7

where Co 1= [ck]7, ;.
Thus, each element ¢, € 5 determines uniquely the matrix C, (and vice
versa), and the following diagram

y 2=l y
vy vy
Rn m(Cq) Rn

is commutative. Here m(eq) : f > €q 0 f and m(Cy) : fCo-f.

1.3 Without loss of generality we may assume that the unit element (=
identity € € ) coincides with &q.
Under this assumption we have (see [6]): for each {a,3} C N,

Co - Cp+Cps-Co = =241
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1.4 Consider a fixed Hurwitz pair (5,V,0) with the unit element ¢ = go.
Each element a € S generates in a natural way the operator of “Hurwitz
multiplication by a” acting on V by the rule

fe€EVrrsaofeV.

p
Denote this operator by m(a). It is clear that for a = }_ aséq
a=0

»
m(a) = Z aoam(Eq),

az=0

where m(go) = I, the identity operator on V.
The mapping
g ar— p(a) € Hom (V,V)

gives a linear isomorphism between the space S and some linear subspace
of Hom(V,V).

Denote by Al(S,V,0) the algebra generated by all operators m(a) acting
on V. We have obviously

u(S) C Alg(S,V,0) C Hom(V,V) = R(n),

and in general both inclusions are proper.

All above said can be found in [6, 7], but to construct the corresponding
function theory we need to complement the algebraic part of those works
with some new results.

1.5 The algebra Alg(S,V,0) allows us to introduce a multiplication on ele-
ments of S in such a way that the algebra § generated by this multiplication
becomes isomorphic to Al(S,V,e). The corresponding isomorphism will be
an extension of the linear mapping p from S onto the algebra S.

Let us describe this procedure.

Denote by S the free algebra generated by the elements of S and let

ji: 8 — Alg(S,V,o0)

be the real algebra homomorphism which is generated by the following map-
ping of the generators a € § of the algebra S:

fi:a €8+ ji(a) := p(a) = m(a) € Hom (V,V),

i.e. the mapping i is an extension (up to a real algebra homomorphism) of
the mapping
S — Alg(S,V,o0).
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Now introduce the algebra § := § /kerfi and the mapping
fi: § — Alg(8,V,0) (1.1)
which is defined by the rule
i< [a] — (@),

where [@] 1= & + kerjifor a € §. _

We will denote by “x” the multiplication symbol in §. 5

The described procedure provides a natural imbedding of S into 5. Iden-
tifying, as usual, § and its image under this imbedding, we can say now that
S is a subset (and a linear subspace) of the algebra S. It is clear that

S = p.

The mapping [i gives now a real algebra isomorphism of S onto Alg(S,V,0) C
Hom(V, V), and thus also a representation of the algebra S on the space V.

Moreover, we have a well-defined extension (from S x V onto § x V) of
the Hurwitz multiplication, also denoted by “o”, as follows:

for each s€S and feV
so fi=[(s)(f) e V.

1.6 Remark. For any elements s1,3; € S and f € V the following “asso-
ciativity law” is true

(s1*s2)0f=s10(s30f),

and thus we can write sy %320 f := 810820 f:= (81%382)0 f =31 0(s20 f).

2. Conceptions of Hurwitz analyses
2.1 Given a Hurwitz pair ($,V,0) (with no restrictions on 7), denote

by I any integer with the condition 2 < I < p, and let §2 be a domain in
R!*1. For any set of vectors (¥°,%',...,%') =: ¥ € S$'*! we can write the
formal expression

Z¢“ o (2.1)

where 32— denotes the operation of the usual partial derivation of a given

(.S'-valued or V-valued) function defined in Q. Depending on the type of
function the expression (2.1) allows to introduce two kinds of operators.
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2.2 For an arbitrary function f e cl(a,v) deﬁne the operator Dy by the

rule ;
Zz/)"o——- ]::ogz/)"‘oa—x;. ‘ (2.2)

a=0

The operator D,/, becomes later the Cauchy-Riemann operator in the anal-
ysis of V-valued functions. It is necessary to emphasize strongly that just
here we see the consequence of the Hurwitz multiplication asymmetry: in
contrast with the usual hyperholomorphic settings we can introduce the left
operator only, not the left and the right ones (compare with what will be
done below).

2.3 Consider an arbitrary g € C(€, 5). Introduce the left ”l’D and the right
DY analogs of the operator Dy, by the rules:

Z P * -——-[g] Z Pk (2.3)

a=0 az=0

and
Z 5_ * m(Y*)g Z * Y7, (2.4)
a=0 a-—O

where m is the map defined in 1.6.

2.4 Using the notion of the “natural conjugation” on § we introduce the
“conjugate” operators ’Dt, YD# and D¥#:

DHA = Y w0,

a_O Oz4

YD¥[g] := }: ¥ « ——-[g], (2.5)
o:-O

D’J!#[y] = Z (%;a 1/)0#,

where “#” is a linear mapping on S defined on the basis elements ¢; by the
rule
ek# = —¢;, KEN,

2.5 Remark. To develop the corresponding function theory it is necessary
to be able to multiply the above defined operators.

The following peculiarities arise from the asymmetry of the Hurwitz mul-
tiplication. We have sets of S—valued functions, of V-valued functions, of
S-valued operators (that is, differential operators with coefficients from §),
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etc. We can “multiply” V-valued functions on the left-hand side by S-valued
operators obtaining in V-valued functions: YDo f:= ¥D[f].

We can “multiply” various S—valued operators on both sides resulting in
G-valued operators: YD« ¥D# := ¥D. ¥D# with the “” denoting the
usual operator product. We should take into account that, according to the
definition of ¥D and ¥YD#, the result of the multiplication is an operator
acting on S—valued {not on V-valued) functions.

Finally we can “multiply”, in the sense of the Hurwitz multiplication,
operators of the type of Dy:

Dy oDy : f > Dyo(Dyo f) =Dy [Dy[f]]-
The operator D oDy acts on V-valued functions and in this sense Dy, *’Die #
YD ¥ D#
2.6 For a fixed set 9 introduce the differential [-form
!
o) = 3 (=1 y*dayy (2.6)
az=0

where dz [y is the differential I-form de := dzo A ... Adx; with dz, omitted.

The operator of exterior differentiation d acts on such S—valued differential
forms as a S-linear mapping. Then, if g € C1(22, S) f € CHQ,V), an easy
calculation gives:

d(g*oQ, o f) = (Dlglo f +9%Dy[f]) dz. (2.7)
And analogously, for g,k C C}(Q, 5)

d (g * ag')x * h) = (D“’[g] *h+gx* "’D[h]) dz. (2.8)

2.7 If now we assume that Q is a bounded domain with smooth enough
boundary I' = 99, then application of the Stokes formula results immedi-
ately in the following equalities:

Ag*a(’) of = / D1/1 f+g*D¢[f]) de, (2.9)

/g*a(l) xh= / D‘/’[g J*h+gx ’/’D[h]) dz. (2.10)

2.8 Up to now we assumed no restrictions on 7. But if we want to have
a good function theory, we should limit ourselves to the cases where n =
Lpiorn=(y _ 12). Let one of these conditions be fulfilled. Denote by
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A1(8) and A41(V) the usual (I + 1)-dimensional Laplace operator acting
on C*(Q,5) and C*(Q,V), respectively.
Then

YD*« YD = YD« YD¥ = D¥* « D¥ = DV « D¥¥ = A;;1(5), (2.11)

Dy x D% = DE « Dy = ALa(V). (2.12)
It is easy to describe all ’s with the properties (2.11)-(2.12).

2.9 It is well-know that most part of the usual one-dimensional com-
plex analysis (i.e. the theory of holomorphic functions of one complex vari-
able) can be constructed starting from only two facts: a) factorization of the
Laplace operator by the conjugate Cauchy-Riemann operators and b) the
Green’s (or 2-dimensional Stokes) formula. Some multidimensional gener-
alizations, such as the quaternionic and the Clifford analysis, are based on
these two facts (one can find the detailed substantiation of this point of view
in [8], for example).

Formulas (2.9) and (2.11), as well as (2.10) and (2.12) show that we can
develop the corresponding theories for V-valued and S-valued functions in
the same way. We will show the initial part of this procedure just to illustrate
the idea.

We shall use the notations

ker Dy =: Ny(Q,V); ker YD =¥ M(Q,§); ker D¥ =: M¥(Q, §), (2.13)

and call the elements of these sets V-valued and S-valued hyperholomorphic
functions, respectively (in the latter case adding sometimes the word “left”
of “right”).

2.10 Let 84, denote the fundamental solution of Ary4 in R je. Arp1(0i41) =
6,

1
041 i+1 — g 14
i+1:T€ER \{0}—’(1_1)l51l |27 (2.14)
where |S'| is the area of the unit sphere in R'*!, We cannot identify 84,
in a natural way with a V-valued function, but we can identify it with the

S-valued function 0141 - €0. Hence we can introduce the function

Ky@)i=  YD*[Biua(a) = D*[Biual(e) = (2.19)
- R :S_o’p

which will play the role of the Cauchy kernel for both theories. It has the
following important properties:
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a) Ky € C°(R*1\ {0},5)
b) Ky € YM(RH1\ {0},5)n MY(R*1\ {0}, 5),
¢) Let y € R+, Ky () := Ky(y — 2); then

Kyy € PM(BH\ {g})n MY(RH\ {y}).

2.11 Theorem (Borel-Pompeiu formula). Let f € C}(Q,V), g € C}(9, 3 ),
then for Yz € §,

@) = [Kulr=2)rolhof(r)- [ Kylr=2)xDylfl(rr (216)

g(z) = ./FK:,/,(T —z)* 0(1,)7 *g(r) - /{;KZ,;,(T —z)* YDlg)(r)dr (2.17)

- /F o(r) + 0+ Ky(r - z) - /Q DY[g) + Ky(r — z)dr.  (2.18)

Proof. Cut out a small ball centered in z, apply (2.9) and (2.10) to the rest
of 2; substitute Ky, instead of g or f. Standard routine calculations give the

answer.

2.12 Theorem (Cauchy integral theorem). Let f € Ny, V), g € M¥Y(Q,5),
h € YM(Q,S), then

/I‘g*ag,)‘rof = 0

/Fg*ag')f*h = 0. (2.19)

Proof. Directly from (2.9)-(2.10).

2.13 Theorem (Cauchy integral formula). Let f € Ny (Q,V),
g€ M¥(Q,5), h e YM(RQ,§), then for Yz € Q

1@ = [[Kyr=2)2al, 0 ),
h(z) = /F Ko(r - 2) 0« h(r),
o@) = [o(r) 4ol +Ky(r - )

Proof. Directly from Theorem 2.11.
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Abstract. In this paper we give a description of some basic operations on Clifford tensors
involving symmetrization and alternation. We also define monogenic tensors and establish
the so called monogenic decomposition of tensors.

Key words: Clifford analysis, tensors, group representations

1. Introduction

Clifford algebras arise in many areas of mathematics and mathematical
physics, especially in connection with the Dirac operator. Clifford analy-
sis studies function theory of Clifford algebra-valued operators, suci as the
Dirac operator acting on functions with values in spinor spaces or Clifford
algebras. An introduction to this field of research may be found in the recent
books [3] and [5], while a number of related topics was treated in [6] and other
- works. Clifford algebras do contain the representation spaces of the basic ir-
reducible representations of the spin group Spin(m) as subspaces, namely
the spaces RE of k-vectors and the spinor spaces, which may be realized as
minimal left ideals of the Clifford algebra. This motivates the consideration
of Clifford algebra-valued functions. But all the other irreducible representa-
tions of Spin(m) are not realized on subspaces of the Clifford algebra and so,
other analytic tools are needed to represent them. From an abstract point of
view one can construct all irreducible representations of Spin{m) out of the
basic ones by Cartan composition. But then the theory of the Dirac operator
acting on functions with values in representation spaces remains rather ab-
stract (see [12] for a definition of the Dirac operator). Both from a theoretical
and from a computational point of view it seems better to work with “simple
analytic tools” such as polynomials P(u), u = Y u;e; being a vector variable
and differential operators P(8y), 8, = 3_ 8,,e; being a Clifford Dirac oper-
ator, also called vector derivative. In [10] e.g. we considered spin-invariant
differential operators acting on functions with values in special spaces of so
called spherical monogenic polynomials (Clifford polynomials P(u) satisfy-
ing 0, P(z) = 0). Similar operators acting on functions with values in sphe-

* Senior Research Associate, NFWO, Belgium
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rical harmonics of a vector or matrix variable were considered in [5] and [13].
But these are just examples of function theory with values in representation
spaces of Spin(m) and none of these examples contains all representation
spaces. However, if instead of one vector variable u and vector derivative 9,
we consider polynomials P(u,, u,, ...) depending on several vector variables
and the corresponding vector derivatives 8 , Oy,,... we have a rich enough
calculus to represent all irreducible representations of Spin(m) analytically.
In fact it is possible to realise all irreducible representations of Spin(m) on
the space of Clifford tensors (multilinear Clifford polynomials P(x;,...,u)
of several vector variables) on which only two basic Spin(m)-representations
are defined, one corresponding to representations with integer weight and the
other to representations with half integer weight. In a previous paper [8] we
studied all the Spin(m)- and Gl(m)-invariant operators acting on Clifford
tensors (see also our related papers [4] and [9]). In the present paper we first
give a description of how tensors are related to polynomials of several vec-
tor variables and study the basic symmetrization and alternation operators,
including Young tables and Young symmetry operators (see also [6], [14] ).
The second section deals with so called “monogenic tensors”, i.e. multilinear
functions P(uy,...,u;) satisfying the equations ang(ul, ceoydig) = 0 as well
as the monogenic decomposition of tensors (decomposition into monogenic
pieces).

Both the Young symmetry operators and the operators of monogenic
decomposition are essential for the decomposition of Clifford tensors into
irreducible pieces.

2. Clifford polynomials and tensors

Let {e1,...,em} be the standard basis of R™, then R,, denotes the Clifford
algebra determined by the relations

eie; +eje; = —26;;.

A vector variable & € R™ is just a variable Clifford vector, also expressed
as the polynomial u = 3" uje;. The Dirac operator or vector derivative
is then given by 9, = 3°0y¢;.

A Clifford tensor F on R™ is a multilinear map F : (1;,...,u4) —
F(uy,...,u;) from R™ into the Clifford algebra (see also [6]). We think of it
as a multilinear polynomial F(u,,...,u%;) depending on k vector variables.

The tensor product F'G of two tensors is then represented by the poly-
nomial product

FG(-uh" "uk«H) = F(-ul"' -,uk)G(ﬂk+1,-- -11lk+l)'

T} denotes the space of Clifford k-tensors. T' denotes their algebra. At present
one might consider tensors merely as multilinear polynomials of a sequence
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u; of vector variables. But the tensor product requires a shift of indices, so
the tensor product is not merely a polynomial product. To be more pre-
cise, let P{u} denote the algebra of polynomials of an infinite sequence
{u;, Uy, ...} of vector variables and let Lin{u} be the subspace of multilin-
ear polynomials. Then for any a; < ... < a3 and multilinear polynomial
P(ttg,y--+1%s,) € Lin{u} we consider the tensor t(P) with “standard poly-
nomial representatlon P(uy,...,u). Hence T is a quotient of Lin{u}.

Next, let R™' be the “dual of R™”, i.e. the space of linear functions
z — (¢,z), z € R™. Then we may thmk of R™ as another copy of R™
and represent g (u ,z) by the Clifford vector &'. A dual I-tensor is a
I-linear map from R™ into R™. Hence if T’ (resp T,) denotes the space of
dual tensors (resp. of degree ), then G € T is represented by a multilinear
polynomial G(uj,...,%) € Lin{w'} C P{x'}.

Tensors and dual tensors can only be distinguished by their transforma-
tion properties under the group Gl(m). The action of Gl(m) on Clifford
tensors was studied in our previous paper [8]. One can also consider the
spaces Ty @ T of tensors of mixed type represented by multilinear polyno-
mials of the form

F(ug, ..., m;9,...,4) € Lin{u,v'} C P{u,u'}

where Lin{u,u'} is the subspace of multilinear polynomials of the space
P{u,u'} of polynomials in the sequences {u,,...;u],...} of vector variables.
Note that the tensor product F'G of F € T}, and G € TJ is given by

FG: (Uyy- Upi Uty ) = Fug,.. )Gy -, )

so there is no index shifting here.
Next let F € Ty and G' € T} with I < k. Then the tensor contraction
G - F is the (k — I)-tensor given by

G- F(lﬁ],»-- 71‘./:-—1) = G(ayl"“’ag‘)F(Ql"' wﬂu’-‘-ls---uuk—-l)'

For | = k we can consider the bilinear form (G, F) = [G - FJo, where for
a € R,,, [a]o denotes the scalar part of a. This bilinear form can be seen to
be Gl(m)-invariant and determines the duality between Ty and T}.

In this paper we are more interested in the action of Spin(m) on the
spaces T} of Clifford tensors and decompositions of T} in invariant subspaces.
Recall that

Spin(m) = {s =w;--wy 1 w; € 5™}

Moreover, consider on R,, the main involution a — @ and the main anti-
involution a — @ determined by

(ZI;)::&S, ab=bd, 1=%=-y, w€R™

L4 =3
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Then for s € Spin(m), the map h(s) : £ — sz3 is a rotation and the map
8 — h(3) is the double covering of Spin(m) on SO(m). The map h(s) can
be extended to the whole Clifford algebra R.,. Moreover, let R%, be the
space of k- vectors and denote by [a]; the projection of ¢ € R,, on RE,.
Then []; commutes with h(s) and so R, are invariant subspaces under
this representation of Spin(m), which for k¥ < [m/2] are irreducible. The
“Hodge star map” a — €;._,a determines an isomorphism between RX and
R™~* which commutes with h(s). Hence Spin(m) acts in the same way on
R™** as on RX,. For m = 2p, R2, splits into two inequivalent irreducible
subspaces, namely the eigenspaces of the Hodge star map.

Of course the standard spin representation is simply given by I(s)a = sa,
a € R,, and under this representation R, splits into so called spinor spaces
which are irreducible and representable as minimal left ideals of Clifford
algebras (see [1], [3], [7]). These are the basic irreducible representations
of Spin(m) from which all others may be obtained by Cartan composition,
However, this procedure cannot be carried out in the Clifford algebra setting.
For functions f: R, — R, we consider the representations

L(s)f(a) = sf(3as), H(s)f(a)= sf(3as)3.

One can of course extend the definition of L and H to functions f(ay,...,ax)
of several Clifford variables and in particular to polynomials P(uy,...,u)
of several vector variables. From this follow the representations of L and H
on the spaces T (resp. T}, Ty ® T}) of Clifford tensors:

L(s)F (w1, .- u) = sf(3ws8, ..., 8u),

H(s)F(u1,...,%) = 8f (318, .. ., 3u;3)3.
A natural inner product on T} is defined as follows. Let F € T}, then we
consider F™* € T} given by

F*: (u),y...,uf) = Fy,...,u).

The inner product on T} is then given by
(G’ F) = [G*' F]O = [6(8217'")a_qk)F(Ql,"‘vgk)]@

It is clear that this inner product is invariant under both L(s) and H(s),
s € Spin(m).

Apart from the groups Gl(m) and Spin(m) we also consider the action
of the permutation group Sym(k) of {1,...,k} on the space Tj (resp. T})
of Clifford tensors. Let = € Sym(k), then we put

T(F) (815, 2) = FUn)s- -2 Unir))-
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In this way, we have a representation of Sym(k) on tensors, which allows
us to think of 7 € Sym(k) as an operator and to consider the operator al-
gebra A(k) generated by Sym(k), which is in fact the algebra of the group
Sym(k) (see also [14}). Note that the elements of A(k) are GI(m)-invariant,
i.e. they commute with the action of Gi(m) on Clifford tensors. In the rep-
resentation theory of both groups Sym(k) and Gli(m) on tensors, a crucial
role is played by A(k) and in particular by operators of symmetrization and
alternation which are natural projection operators belonging to A(k). The
simplest examples are the operators Sym and Alt given by

1 1
Sym F = 2l EW(F), At F = o ngn(w) 7(F),

leading to the subspaces Sj and Ly of T} of symmetric resp. alternating k-
tensors. Similarly, one can define Sym and Alt on T}, leading to subspaces
Si and Lj. The space Sk is naturally isomorphic to Pr{u} of homogeneous
polynomials of degree k in one vector variable u and the isomorphism is the
restriction of Sy to the so called “polynomial projection” on T}, given by

P: F(uy,...,ux) = P(F)(u) = F(g,...,u).

Let @ : Pi{u} — Sk be the right inverse of P, then the operator Sym
is clearly given by Sym = @ P. Let F,G € Si, then the symmetric tensor
product F o G is given by F o G = Sym(F G). It is immediately clear that
P(F o G) = P(F)P(G). Next let 4 € R™; then y determines an element
T{ = S, namely (u,-) : 2 — (u,2) and the contraction (u,-)- F is given by
(u,0,)F(v, g, .,Uk_1) so that

P(()+ F)®) = (5,0 P(F)@).

More generally, the space S}, of symmetric dual tensors is the dual space of
Sk and the duality is determined by the contraction

G- F= %P(G)(@E)P(F)(u), FeS, GeS,
Note that the inner product on T." restricted to Sy is given by
(6,1) =[6" Flo = HFGI0P(F)wl = (P(G), P(F)),
where for P, P’ € Pi{u}, (P, P’) denotes the Fischer inner product %[P(dy)
P'(u)lo (see also [3], [10]). Next consider the spaces Ly of alternating k-

tensors and their duals L}; then the definitions introduced for the spaces Sy
have an “alternative analogue”. Instead of the symmetric tensor product we
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can introduce the “cup product” of F € Lyand G€ L1by FAG = At FG
which turns the direct sum L = Lg+ Ly + ... + L» into the so called
algebra of Clifford forms on R™ (do not confuse the cup product with the
wedge product of Clifford numbers). Next let again ¥ € R™ and consider the
corresponding element (u,-) € T{ = Lj; then we can define the contraction
(u,+)] F of a k-form F with a “vector” (u,-)by (u,-)] F = k(u,-)- F. This
notion of contraction is the one usually introduced for differential forms. Let
v = (%,-), then we have that for F € Ly and G € Ly,

2|(FAG)=2|FAG+ (-1)FFA2]G,

which is an anticommutative analogue of the usual law of differentiation of
a product. More generally one can consider the duals L} of the spaces Lj for
which one can also introduce the cup product, and the contraction G| F is
given by 3" esG 4| F, where G 4 are the scalar components of G and where for
scalar valued elements Gy € L, and G2 € L}, we put (G1AGz)| = G2| G1].
Note that like for the Fischer inner product for F,G € L, G* € L}, and

(G,F)=[G"" Flo= 56| Fl.

Forms can be represented as linear functions on multivector space (see also
[6]). Indeed, note that any linear function F(u; A ... A u;) defined on the
space RE, of k-vectors is interpretable as an element of L;. Moreover, as the
dimensions are the same, every element of Ly can uniquely be represented by
such a linear function. One may of course also use the standard differential
form notation, whereby one makes use of “differential form variables” like
dz = Y dzje;, where dz; are anti-commuting (see e.g.[2], [3]). But in the
context of this paper, the polynomial Frepresentation of tensors will be quite
sufficient.

In tensor analysis we need more general types of symmetrization and
alternation operators. Let A be a subset of {1,...,k}; then we put

1 1
Symg F = AT Y m(F), AltgF= Tl Y sgn(x)x(F),

where the sum runs over all permutations 7 of the set A. Let ky,...,kn
be numbers such that k = 3 k; and let A4y = {1,...,k}, A2 = {1 +
1,...k1+k2}, ...,

A, ={k-k,+1,...,k}; then we can consider the operators

Symp,. .k, = Syma, ...Syma,,, Altg, .k, = Alts, ... Alty,.

Moreover, let S, . i, resp. S ;. be the subspace of T} resp. T} of elements
of the form Symy, i, F, F € T} resp. T{ and let Py, x,{u} be the space of
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polynomials of the form P(u,,...,%,) that are homogeneous of degree &, in
u,, kg in u, etc. Then we can consider the canonical polynomial projection

P: F(uy,...,u;) = P(F)(uy,.. oy 8y) = F(Ugy ooy yye ey Uy s ly)

of T on Py, k.{u} which is an isomorphism on Sy, . &, . Moreover, for
G € 8, 1, we have that

G- F = G(8y,»-+,0u ) F(uy,--. %)
1 1
= m...E—!-P(G)(a_ql,...,By_")P(F_)(ul,...,un)
and in particular for F, G € Sk, 4.,
(G, F) = (P(G), P(F))

1
= [P(G)(an 10y JP(F)(t1y - - 2n )o-
Similarly, let Ly, x, resp. L}, be the subspace of Tj resp. T}, of elements
of the form Alty, . F, F € Ty resp. T}; then F € Ly, , may be repre-
sented by a multilinear polynomial of the form F(u;A.. Ay, 5 o0y Uy an/\
. A u;) and the contraction operator G- corresponding to G € L},
ma,y be thought of as a differential operator of the form G(dy, A . /\
aﬁh . 6!,‘_,‘" aheA 0y, ). Finally we consider so called Young symme-
try operators and Young tables. For most of the results mentioned here we
refer to [14]. Let again k1,...,k, be numbers such that k = k1 +...+k, and
ordered in such a way that k; > ... > k. Then the tuple K = (ky,...,ky)
constitutes a so called Young table. Let A4; = {1,...,ki}, 42 = {k1 +
kit k) ..., An = {k—k, +1,...,k} as before; then we consider
for n’ = |A;| the “dual sets” Aj},..., A}, where A’ consists of the elements
on the j-th position in the sets A;,..., A, (which are ordered lexicographi-
cally). The basic Young symmetry operator Y, , is then given by

Yk = SymA; coSymy Alty, .. Alty,,.

Of course one could start with arbitrary ordered sets A,..., A, with car-
dinality ky,...,k, and form the corresponding Young symmetry operator.
Such symmetry operator would still correspond to the same Young table and
it is readily seen that any other Young symmetry operator corresponding to
the same Young table has the form Y = Y, i, 771, = € Sym(k). This
suggest to consider the sum

-1
Chyvkn = I_1Yky kT
T

which is a canonically defined operator only depending on the Young table
K itself. These operators Cx = Cy,. i, satisfy some interesting properties,
the proof of which can be found in [14].
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(1) the operators Ck are permutation invariant, i.e. ¥*Cx = Ck7®, ® €

Sym(k).
(2) if K and K’ are different tables, then CxCgr = Cx:Ck = 0.
(3) 1= Y 1kCk, for suitable positive numbers Ig.
The Young operators Yy, . i, themselves do not satisfy these nice properties
and are not even self-adjoint w.r.t. the Fischer inner product. As the opera-
tors Sym and Alt are orthogonal projectors, the adjoint operator to Y, &,
is given by

Ylé:...kn = Alty, ... AltA"Sy’mArl ees SymA:".

Yet we have that

(4) the operators Ck are self-adjoint, i.e. Cf = Ck.

Note that the operators xx = [xCk form a system of mutually orthogonal
projection operators, one for each Young table, such that 1 = 3 xx. More-
over, each of the operators xx is permutation invariant and hence commutes
with each Symy4 or Alt4.

We finish this section by giving a Clifford analytic representation of Yy, &, F,
F € Tg. First note that a tensor of the form Alty, ... Alts, F(uy,...,ux)
may always be written into the form G(uy A ... A, U1 A -0 A
Uky kg » v+ » Ykkp41 A -.. A ). Moreover, the further symmeirization
Sym A, - Sym Al ,G of this is determined by the polynomial projection ob-
tained by equating u; = w41 = .00 T Up poq1r e Up T Ugpg = ... =
Ug—k,+2 etC. ,i.e. by the polynomial G(uy A ... Adtgy, A ooo Allgyyen oy g A
..« Ay ). It is a very good costum to rewrite this polynomial as a polyno-
mial of theform G(uy,u; Attg,y... 4y A...AL,,), of degree (ty,...,ty,) in the
simplicial variables u;,u; Auy,...,2; A...Al,,, where ¢; is the occurence of
j in the Young table (kq,...,k,). Unfortunately, this representation depends
on the operator Yk, , and cannot be used for Ck F.

3. Monogenic decomposition of tensors

Similar to spherical monogenics and monogenic or “primitive” forms (see
[3]) one can introduce in general so called “monogenic tensors” as follows.

DEFINITION 3.1. A tensor F is called monogenic k-tensor if its polynomial
representation F'(uy,...,1;) is monogenic in each of the variables u;, that
is if

8y_jF(y_1,...,y_k) =0, j=1,...,k. By MT, we denote the space of mono-
genic k-tensors.

The main motivation for monogenic tensors is the so called Fischer decom-
position, also called the monogenic decomposition of tensors.
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THEOREM 3.1. Every F € T}, admits a canonical decomposition of the form
F = M(F)+ ML(F), where M(F) is spherical monogenic and ML(F) has
the form

ML(F)(-ula' --’ﬂk) = ulal(u% e ’ﬂ-k) +...+ I&ka(ﬂly v ’uk-—l)‘

Moreover, the space of spherical monogenic k-tensors is the orthogonal com-
plement of the space of tensors of the above form, hence denoted by M TkJ'.

Proof. Let G = ;G (41, - -+ 1, Uj415- -, Ug); then for F € Tk,

(G, F) = ~[C;(8yyr-- 104, -0

Ujp17° "

’ ’akk)aqu]o = _(Gj7aﬂjF)‘

Hence the condition (G, F) = 0 for all G; € T clearly means that 9y F =
0. This is true for all j, if and only if F € MT}. ]

The orthogonal projection operator M : Ty — MT} is called the mono-
genic projection operator. It is clear that the monogenic projection is uniquely
determined. The question is whether also the polynomials G; are uniquely
determined. We have the following

LEMMA 3.1. Let m > 2 and G; and G; be multilinear of degree (k — 1) in
their variables and let for i #

y:iGi(y'-l""’ii—l,ﬂi+la--"y'.k) = ﬂjGj(-u-l"")y_j—-l,%{-lv"'agk)v
then G; =G; = 0.

Proof. It suffices to prove this for ¥ = 2. Indeed, one can derive the above
equation w.r.t. all variables u;,, where n is different from ¢ and j. If the
lemma holds for k = 2 it then follows that each of these derivatives of G;
and G; vanish. But they determine G; and Gj so that also G; = G; = 0.

Now let u;G1(23) = u3G2(ny), then symmetrization ¥ = u, = u, leads
to G1(u) = Ga(u) = G(u). Next, u;G(z,;) = u;G(z,) means that ;G; =
e;Gi, G; = G(e;) or, after multiplication with e;;, €;G; = —e;G;. Form > 2
this only has the nullsolution. For m = 2 one could have that G; = 1, G =
—e13 8o that G(u;) = u11 — e1ou12 = —e1 4. Note that uyeiuy = ypeyy ! O

Hence in case m > 2 we can apply the Fischer decomposition recursively,
leading to the following

THEOREM 3.2. For m > 2, every F € T} has a unique decomposition of

the form
F = Zy‘“l .. .%,Mal...al(F%

where the sum is taken over all ordered subsets (ay ... a;) of the set {1,...,k}
and M,, . o, (F) is a monogenic (k — l)-tensor in the remaining variables.
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Although unique, the above Fischer decomposition is far from being orthog-
onal. Already tensors of the form u, F(,) need not be orthogonal to tensors
of the form uyG(u, ). For example, if M;(z) and Ma(x) are linear monogenic,
then

(1 M1(22), up Ma(1y) = (M1(22), Ma(22)),

which vanishes only seldom. Hence, next question is whether certain parts
of the decomposition are orthogonal to others. And to verify this we have
to compute expressions of the form

62jy-a1 .. 'y’-axMalmal(ybl 3. 'Iy’-bk_()’

where {1,...,k} = {a1,...,a;,b1,...,bp—;}. If j is one of the elements
{a1,...,a;} we use the relations w,u; = —u;u; — (us,u;) together with
Oy,u; = —m and Oy (u,%;) = u; at many places to see that the above
expressmn has the form

Ual...j...a( ai.. a;(ﬂbp 73&6;‘_1)

where Ual...j;...a, is a sum of products of Ug, - Uqpy With u; not included.
Secondly, if j belongs to the set {by,...,br.;}, then we make use of the
relations Oy_jyk = ~gk6§j - (gk,é),_‘j) together with 6!].M,,1,,,a, = 0 and

(ﬂk, auj)Mal.‘.ag(ﬂbp subk__,)
= May..a (¥, s - - » U, )lu;—~y, to see that the above expression is a sum of
terms of the form

ﬂai .. ua,’_l Ma;...al’_l (ﬂb; yore ’ub;g—l-n)
where {a}...a]_;} is a subset of {a;...a;}. This leads to

THEOREM 3.3. Let m > 2; then every k-tensor F € Tj admits a unique
orthogonal decomposition of the form

k
F =) M(F),
=0

where Mo(F) = M(F) is the monogem'c projection of F and where
M(F) = Y u,, ... 15 Ma,. o,(F) is called the I-monogenic projection of F.

Proof. Let I’ > I; then we have that the Fischer inner product
(ya; . .ya: a}..a] (F)’—dl ﬁa(Mal...ax(F))
vanishes for { = 0 while for [ > 0 it equals

~(Uay + - Uat, Myt (F), 0 t Yay + -+ Yoy Moay...ai(F))-
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But in view of the above computations, Bﬁa; gy o Uy,

M,,. 4 (F)is a sum
of terms of the form

Yy - Yot May. ol -
Hence, by induction on /, the above inner product vanishes. m]

Whereas the space M(T}) was also the space of all tensors F' satisfying
the first order equations 9, F = 0, we have more in general

LEMMA 3.2. The space of F € T} satisfyinig the system 81‘_“1 v Oy \ F=

=9
0, where each (ay,...,a;41) is an ordered subset of {1,...,k}, is the direct
sum M(Ty) + ...+ M(Ty).

Proof. Both spaces are the orthogonal complement of the space of tensors
of the form 3" u,, -~-ﬂa.+1Ga1,m,a:+1(ﬂbu - ’l‘-ak_:_l)' 0

Important is also the interaction between monogenic decomposition and
symmetrization and alternation operators.

LEMMA 3.3. Let r € Sym(k), then m commutes with the orthogonal mono-
genic decomposition, that is, n(M(F)) = Mi(x(F)), F € T.

Proof. It is immediately clear that the spaces of tensors of the form
ok, - -ﬂa,Ma,...a,(F ) are permutation invariant, while the operators M
are the orthogonal projectors onto these spaces. u]

COROLLARY 3.1. The operators Sym4 and Alty commute with the mono-
genic projectors M. The same is true for the Young operators ixCk. Thus
every k-tensor F' € Ty has a unique orthogonal decomposition of the form

F =Y IkCx M(F),
LK

which refines both the monogenic and the Young decompositions.

It is this decomposition which plays a fundamental role in the decomposition
of tensors into irreducible pieces under SO(m). We hence call it the Fischer
decomposition. Next let us apply this to the decomposition of polynoemials.
First, let P(u;,...,u%,) € Pk,..k,{u} be a polynomial in vector variables
Uy,y. .., %, and homogeneous of degrees ky up to k,,. f k = ky + ...k, this
space is the polynomial projection of Symy, . ,Tk. From theorems 2 and 3
we readily obtain (see also [11])

THEOREM 3.4. Every P € Py, x,{u} admits a unique decomposition of
the form

Py, 2,) = ZH (-'!a‘vﬂjyij Hy-i"Mﬁj.ﬁ(P)’

i<j i
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where My, 5,(P) are homogeneous polynomials satisfying the monogenicity
conditions a_qu(_ul, e t,)=0,7=1,...,n.

Proof. Let F(uy,...,u;) € Symi,. x, Tk be the symmetrical tensor whose
polynomial projection is P; then we can apply theorem 2 to F and apply
the polynomial projection %y = 2 = ... =Yg yev vy lhn = Vpmkpp1r = -+ = Uk
on the result. (=]

THEOREM 3.5. Every P € Py, ..,{u} admits a unique orthogonal decom-
position of the form P = Y M|(P), where Mi(P) consists of terms of
the form wg ...u4, f(%1,...,2,), a; € {1,...,n} with 6ujf(-y_1,...,u,‘) =
0,7=1,...,n.

Proof. Let again F be the symmetric tensor with P as polynomial projection,
then due tolemma 3, Symy, i, Mi(F) = M;(F), which is a symmetric tensor
with polynomial projection denoted by P(M;(F)) = M;(P) belonging to
Pry..kn {2} Mi(P) is clearly determined by the above stated properties and
the polynomial projection preserves orthogonality. (]

Interesting is of course the fact that

LEMMA 3.4. The space of polynomial solutions P € Py, i {u} of the sys-
tem of equations agal ...0y P =0, a; € {1,...,n} is the direct sum

-~a,

M(E)+ My(E) + ... + M(E), E = Pyy 1. {u).

This lemma leads to the analogue of the notion of k-monogenicity for func-
tions of several vector variables. Next, let us consider forms, Let F =
Alty, . k. F, then we know that F can be represented as a multilinear func-
tion of the form F(uy A... A, .., % k. +1 A ... A2). On the other hand,
due to lemma 3, we know that Mi(F) = Alty, i, Mi(F) is again a differen-
tial form of the same type, where M;(F') is as in theorem 3.

Finally note that if P is a Young-type polynomial of the form P(u,;,u; A
Ugyereyly Aol Aly) of degree ¢y in 2y,...,8, in 2y A... Ay, coming
from the polynomial projection of a Young-type tensor F, then from lemma
3 we again know that Mi(F) = Y4,  x, Mi(F), so that M;(F') projects to a
polynomial M;(P)(u;,u; Atig,...,% A...A%,) of the same form, where at
the same time M;(P) still has the form stated in theorem 5. M;( P) is hence
also characterized by

(i) Mi(P) has the form Mij(P)(%1,%; AUgy-vyg Ao Ally)

(ii) 63&01 . --aua,+1Ml(P)(ﬂ1,ﬂl Adgye oy Ug A AL, ) =0

(iii) M(P) is Fischer orthogonal to every M;_,(P)

The study of functions satisfying conditions (i) and (ii) forms a very inter-
esting topic in analysis. Of particular interest are the homogeneous solutions
because they lead to irreducible representations of Spin(m). So far we only
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have obtained a description of the monogenic decomposition of polynomials,
not the complete Fischer decomposition, which also in%)lves the operators
Cx. This however seems to require the translation of po ynomials into ten-
sors followed by the Fischer decomposition of tensors.
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Abstract. Multivector quantum mechanics utilizes wavefunctions which are Clifford ag-
gregates (e.g. sum of scalar, vector, bivector). This is equivalent to multispinors con-
structed of Dirac matrices, with the representation independent form of the generators
geometrically interpreted as the basis vectors of spacetime. Multiple generations of par-
ticles appear as left ideals of the algebra, coupled only by now-aliowed right-side applied
(dextral) operations. A generalized bilateral (two-sided operation) coupling is proposed
which includes the above mentioned dextrad field, and the spin-gauge interaction as partic-
ular cases. This leads to a new principle of poly-dimensional covariance, in which physical
laws are invariant under the reshuffling of coordinate geometry. Such a multigeometric su-
perfield equation is proposed, which is sourced by a bilateral current. In order to express
the superfield in representation and coordinate free form, we introduce Eddington E-F
double-frame numbers. Symmetric tensors can now be represented as 4D “dyads”, which
actually are elements of a global 8D Clifford algebra. As a restricted example, the dyadic
field created by the Greider-Ross multivector current (of a Dirac electron) describes both
electromagnetic and Morris-Greider gravitational interactions.

Key words: spin-gauge, multivector, clifford, dyadic

1. Introduction

Multivector physics is a grand scheme in which we attempt to describe all ba-
sic physical structure and phenomena by a single geometrically interpretable
Algebra. A conservative approach recognizes the Dirac algebra as belonging
to a Clifford manifold having both spin and coordinate aspects. The spin
gauge theory approach to grand unification makes use of a spin Clifford al-
gebra which necessarily commutes with coordinate geometry. We propose a
direct projection from this abstract space into concrete coordinate geomet-
ric algebra. Ultimately we eliminate spin space entirely by using Clifford
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aggregates of coordinate geometry to replace ‘spinors’. Spin gauge theory,
an artifact of spin geometry therefore vanishes. However, we gain in having
multiple generations of particles appear which are coupled by new dextrad
(right-sided multiplication) gauge transformations.

To accommodate all the known couplings we must{ somehow recover the
spin-gauge formalism. This requires transformations which literally reshuffle
the geometry, i.e. the basis vectors for one observer might be the trivec-
tors for another observer. This leads us to propose that the general phys-
ical laws are invariant under these transformations, a new principle called
poly-dimensional covariance. We postulate a single multigeometric super-
field equation, which will require two commuting coordinate Clifford al-
gebras, analogous to Eddington’s E-F ‘double frame” numbers [7]. This
dyadic Clifford algebra can be reinterpreted as a single 8D multigeometric
space. Multivector Dirac theory expressed in this full algebra potentially
has enough degrees of freedom to represent all the fermions of the standard
model.

2. Geometric Algebras and Multi-Spinors

We present at first the standard view that abstract entities (e.g. spinors)
exist outside of the realm of concrete coordinate geometry. Dirac algebra
belongs to a Clifford manifold which has both spin and coordinate features.
We propose a direct projection between spin space and coordinate geometry
in eq. (2) below.

2.1. SPACETIME AND THE MAJORANA ALGEBRA

Factoring the second-order meta-harmonic Klein-Gordon equation to the
first order meta-monogenic Dirac form requires four mutually anticommut-
ing algebraic elements {v*,7%,73,7%},

(02 - m?)&(z) = (O - m)(0 + m)&(=), (1a)
¥(z) = (0 +m)B(z) = (1 V. + m)d(a), (16)
(1Y, - m)¥(a) = 0, (1¢)

where V, = @, in flat spacetime. Requiring the formulation to be Lorentz
covariant imposes the defining condition of a Clifford algebra, %{7,,,7,,} =
guv = €, 0 €,, where e, are the coordinate basis vectors. If the use of the
abstract ¢ is excluded, the above factorization of eq. (1a) only works in the
metric signature of (+ + +—). The lowest order matrix representation of
the {v,} is IR(4), i.e. 4 by 4 real (i.e. no commuting ¢) matrices, commonly
known as the (16 dimensional) Majorana algebra. The explicit matrix form
of the algebra generator 'ylf‘p can be determined from the Riemann space

metric g, up to a similarity spin transformation: v, = Sv,5-1.
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2.2. SPIN SPACE

The solution of the Dirac eq. (1c) is usually taken to be a four component
column bispinor ¥, belonging to the left linear space for which the endo-
morphism algebra is the Majorana matrices. This spin space is transcenden-
tal, i.e. the postulates of quantum mechanics ordain that some attributes
(e.g. quantum phase) of the wavefunction cannot be directly observed. The
principle of representation invariance states that tangible results should be
invariant under a spin transformation: ¥’ = §%,¥P. It should therefore be
possible to express the theory in a form which eliminates any reference to
a particular representation without sacrificing any “physics”. To this end
we introduce the spinor basis £, as carriers for the representation. A spin
transformation can now be interpreted as a passive change in spinor basis,
which leaves the spin vector ¥ = ¥*£, unchanged.

The dual spinor basis &, is defined such that £,£3 = 7,4, where the spin
metric 744 has the diagonal signature (+ + ——) in the standard matrix rep-
resentation. We propose to interpret the representation independent form,

€, = £a7paﬁ£_ﬂa (2(1)

as the “observable” basis vector of coordinate space. Mathematically this
can be viewed as a map or projection from the Clifford manifold to the
coordinate manifold. Hence we get a Dirac equation completely independent
of spin basis or matrix representation: (O — m)¥ = 0, where ¥ = ¥%£, and
0 = e#d, is now the coordinate gradient.

2.3. GEOMETRIC INTERPRETATIONS OF GAUGE ALGEBRAS

There is a long standing tradition which views i as only “existing” in spin
space, as the internal U(1) generator of unobservable quantum phase. Fac-
tors of ¢ are included as needed to make operators Hermitian (e.g. v4) so
that expectation values will never contain a non-observable “imaginary”
number. The usual Dirac matrices are the complexified Majorana algebra:
@(4) =@ ® IR(4). This can be geometrically reinterpreted as a 5D geometric
(anti de-Sitter) space, where the unit pseudoscalar (5-volume) plays the role
of the ¢ = y1y243y%95, only if the fifth basis vector has positive signature.
The obvious question would be the physical interpretation of the new fifth
dimension, and the identification of its associated coordinate variable and
conjugate momenta (mass?). We will address this question briefly below.
To represent an isospin doublet of bispinors (e.g. u & d quark) requires a
commuting isospin Pauli {¢;} algebra. The wavefunction can be expressed
as a matrix set of components ¥* contracted on a product basis £, .
There are only two elements to the isospinor basis {Ay, A2} which necessar-
ily commute with the spinor basis &,. The direct product of a commuting
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Majorana “spin” algebra and a Pauli “isospin” algebra can be reinterpreted
as a 7D geometric algebra with metric signature (+ + + — — — —). The
column spinor for which the endomorphsim algebra is €(8) = €(2) ® IR(4)
would now have 8 components.

To represent two observers in real spacetime requires a pair of coordinates,
each with their own Clifford algebras [5]. The direct product of these two
commuting algebras-can be geometrically reinterpreted as a 8D space with
a mother algebra [14] IR(16) = IR(4) ® IR(4). This encompases all the above
algebras, where the ‘second frame’ IR(4) algebra commutes with that of the
‘first frame’. Hence the ‘second’ algebra is the ‘internal’ gauge algebra for
the ‘first’ frame observer and visa versa.

3. Spin Covariant Dirac Theory

The special theory of relativity requires the Dirac equation to have the same
form under Lorentz transformations: dz# = a#,dz”. It is usually argued [10]
that the generators 4# are invariant scalars, i.e. the same for all observers,
at the cost of forcing the bispinor wavefunction to obey a compensating spin
transformation: ¥*' = S"ﬂz/)@ , where ST19#8 = a# 4¥.

3.1. CooRDINATE COVARIANT DirAC THEORY

The general principle of covariance will require the spin transformation to be
local (different at each point in spacetime). This introduces a spin connection
Q, to the derivative V, of the Dirac eq. (Tc),

V“ - 6}‘ + n;n (3(1)

aufa = nufa = eﬁﬂuﬁon (3b)
ﬂ“ = Q(-L) E(]) = Q(‘L) I‘(?)afﬁf—a = Q“ﬂa fﬂga, (36)
Q,=59,5"+59,5 (3d)

One of the 16 basis elements E(;y of the geometric Clifford algebra is given
by the generalization of eq. (2a),

E(]) = I‘(J‘;{ﬁ Eagﬂv (2b)

where I'(;) is the corresponding basis element of the Dirac matrix algebra.
Under the general coordinate transformations required by the equivalence
principlé, one must replace v# — y%h #(z) where the tetrad (vierbein) field
h(z) transforms as a vector. This is equivalent to introducing position
dependent 7#(z) which transform like basis vectors.
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For this reason and others, we adopt the “nontraditional” view that both
e* and ¥* of eq. (2a) transform as vectors, while £ and {, transform as
coordinate scalars [9]. With this definition of constant spin basis, the spin
connection is everywhere zero, hence the generally covariant Dirac equation
is simply eq. (1c) with Dirac matrices which are a function of position.
However, when the coordinate space is curved, one cannot have the spin
connection vanish everywhere. The geometric definition of eq. (2a) forces
the following relations:

61'7# = Cuuw Tw — n({l)[r(_))?‘),#]’ (40,)
[Kwa ] eﬂ] = Rway,uellv (46)
Kuo = K&Q E(j) = [Vw,va]a (40)

The coordinate connection coefficient C, (Christoffel symbol) is directly
-related to the spin connection by eq. (4a). Restricting our discussion to
real spacetime algebra (no commuting 7), the spin curvature K, is forced
by eq. (4b) to be a bivector. Clearly it must be nonzero if the coordinate
space is curved, i.e. described by the Riemann curvature tensor: R, /e, =
[0.,0-]e,. It follows from eq. (4c) that the spin connection (which appears
in the spin covariant derivative V,) must have a nontrivial bivector part,
commonly called the Fock-Ivanenko coefficient [9].

3.2. SrIN GAUGE THEORY

The principle of local matriz representation invariance or equivalently a prin-
ciple of spin basis covariance is invoked to induce via minimal coupling a
non-trivial spin connection [4]. This is a gauge theory where the generators
I'(;) of the general spin transformation are usually restricted to be Dirac
bar-negative in order to preserve the spin norm ¥¥ (i.e. the spin metric
£l = Nap is invariant). The standard (5D) Dirac algebra which has the
bar negative pseudoscalar i, would contain the 16 element group structure
U(2,2). Electromagnetism is associated with ¢, which by itself would force
the space curvature to be zero. It is tempting to interpret the 10 bivec-
tors (of 5D) with group structure SO(4,1) as the gauge fields which cause
gravitational curvature through eq. (4b).

Grand unification is approached by Chisholm and Farwell [1] by resorting
to higher dimensions (e.g. 11D) to introduce more fields. They only consider
spin transformations of the form: 4# = y%h #(z), generated by bivectors or
the pseudoscalar i. They avoid those bivectors which would rotate spacetime
into a higher dimension (e.g. ¥°7!). The remaining bivectors which operate
on spacetime form the 6 element Lorentz group SL(2,0), potentially insuf-
ficient to accommodate a full description of gravitation.
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3.3. LoCAL AUTOMORPHISM INVARIANCE

Alternatively, the entire automorphism group U(2,2) of the Dirac algebras
is allowed by Crawford [2]. Previously, the non-bivector generators were
excluded by equations (4a) & (4b). These constraints are relaxed because
Crawford does not require the geometric interpretation of eq. (2ab). This
allows him to consider generalized spin transformations of the form: I'¥) =
I*A9)(z), where TV) is a basis element of the full “spin” (Dirac) Clifford

algebra. The drehbein fields AL )(x) (“spin-legs”) reshuffle multivector rank
in the Clifford spin manifold (e.g. vector « bivector) without doing the same
to the “observable” coordinate geometry.

A Lagrangian formulation can show that the field equation is,

K, B[O K = = j(:;) T, (5a)
Gy L= 1 =
5 = SHTO,1,}¥ = STr(RHTO,,)), (55)

The current j, is similar to the spin gauge connection £, in being a coor-
dinate vector while also a Clifford aggregate over the spin algebra I'¥). The
spin curvature K can be geometrically interpreted as a dyad of a coordinate
geometric bivector and a spin algebra Clifford aggregate.

K =K' e, e, T0). (5¢)

Elements of the coordinate geometry E(;) commute with the spin algebra r
because Crawford does not postulate the geometric connection of eq. (2ab).
Note that the bivector part of the spin curvature is no longer constrained
by eq. (4b) to be related to the space curvature.

4. Multivector Gauge Theory

The basic difference from standard theory is the replacement of column
spinors by algebraic wavefunctions, i.e. Clifford aggregates of Dirac matri-
ces [6]. Most authors only consider restricted combinations called minimal
ideals, which have the same degrees of freedom as a single column spinor.
In our approach, the form of the multivector wavefunction is unrestricted,
having the same number of degrees of freedom as the elements of the Clifford
group. The complete solution can be interpreted as a geometric multispinor:
V= W(‘)E(;) = W“”Ea/\g. Here the £, is no longer a basis spinor, but an ele-
ment of a left ideal, hence eq. (3b) is no longer valid. The isospin element is
part of the same algebra: Ag = £3, which does not commute with £, whereas
it did in standard formulation. In 4D spacetime algebra (no commuting )
the geometric multispinor has been shown [11] to be an isospin doublet of
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Dirac bispinors, where the role of i is played by right-side applied (i.e. dez-
trad multiplication) time basis vector e4. In 5D (standard Dirac algebra) one
has enough degrees of freedom to represent four quarks (i.e. u,d,s,c), where
the {u,d) and (s,c) isospin doublets are uncoupled.

4.1. DEXTRAL GAUGE THEORY

The generally covariant multivector Dirac equation (e*d, — m)‘I'(‘)E(;) =0,
where e,(z) are the local coordinate basis vectors, is manifestly matrix rep-
resentation independent. We have in fact completely eliminated spin space,
specifically spin basis {4 and spin algebra 7, o8 in favor of there being only
the geometrically interpretable coordinate Chfford algebra E(;). Hence, spin
gauge theory, an artifact of spin space, is now inaccessible!

The multiple particle generations in the multivector wavefunction can be
coupled by now-allowed right-side applied deztral gauge tmnsformation [3].

The new gauge fields enter as a deztrad connection: D, = Dﬂ(')E(,-),
Vu(¥)=0,.¥ + ¥D,, (6a)
coupling to the multivector parts of Greider’s current [6],
79 = Tr(EW e, ¥) = Tr(YED Te,). (6b)

A Lagrangian formulation [11] will require the geometric generators E(;) of
the dextrad connectionD to be bar negative. In 4D spacetime, the subset
which is also unitary generates the electroweak group: U(1) ® SU(2), where
isospin rotations are generated by spacelike bivectors and the role of ¢ played
by right-sided (dextrad) multiplication of the time basis element e4.

4.2. PoLy-DiMENSIONAL COVARIANCE

The spin gauge formalism can be recovered by proposing that the automor-
phism transformations operate on the very real, concretely observable space-

time coordinate Clifford algebra: E(') = E(J)A ()(9:) The geobein fields

A(z) (“geometry-legs”) are completely analogous to Crawford’s drehbeins
[2] except that now we are reshuffling observable geometry. We are tau-
tologically committed to propose a new principle of local poly-dimensional
covariance. By this we mean that the basis vectors of a coordinate frame dis-
placed from the origin may be “ratated” in dimension, e.g. be a multivector
that is part vector plus part bivector relative to the reference geometry.

The generalized poly-dimensional connection A(‘.)(j ) is defined,

OE;) = A(;)(j) E(;). (7a)
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The right side of this equation is recognized as a linear transformation on
the full Clifford algebra IR(4). In general A('.)(J ) belongs to the endomorphism -
algebra End IR(4) & IR(4)® IR(4), hence it is an element of the mother alge-
bra IR(16) [14]. This leads to a new generalized poly-dimensional covariant
Dirac equation,

(O = m)¥® + ¥OA DIE, =0, (7b)

where the coordinate gradient in eq. {7b) is understood now NOT to op-
erate on E(;). This is not a particularly useful form, as it is expressed in
terms of the multivector basis E(;) instead of an ideal basis which would
more closely resemble standard spinor form. The main annoying feature is
that each multivector piece of the wavefunction couples to a different con-
nection coefficient. Further, the poly-dimensional connection cannot itself
be expressed as a multivector within the IR(4) spacetime algebra.
Alternatively, the linear trdhsformation can be written entirely within
the smaller original IR(4) spacetime algebra using two-sided multiplication
[13]. We re-express eq. (7a) in terms of a new bilateral connection QU*),

OE() = Q9B By Eq). (8a)

The advantage of eq. (8a) over eq. (7a) is that the connection is now com-
pletely form independent of the operand element E;). This allows us to
rewrite the interaction term of the Dirac equation in terms of the full multi-
vector wavefunction W instead of having to consider each multivector com-
ponent %) separately as was done in eq. (7b). The resulting Dirac equation
has the bilateral interaction term which was proposed earlier to empirically
fit known mesonic couplings {12],

(0 - m)¥ = ~E(; TE(; 2, (8b)

where again it is understood that the gradient does not operate on the
multivector basis (as that has already been included on the right side of the
equation). From a multivector Lagrangian formulation [12] it can be shown
that the gauge connection Q07 of eq. (8a) couples to the bilateral current,

) = :1;Tr(~i:E<‘>\1:E<f>) = %TT(‘I’E""\PE“’), (8c)

where E() and E() must both be bar-positive or both bar-negative. The
dextral interactions of eq. (6a) are the special case where the sinistrad [12]
(left-side applied) interaction element of eq. (8b) is the set of basis vectors:
E(;) = e,. When the deztrad (right-side applied) element E; of eq. (8b) is
either 1 or ¢, the interactions are of the same form proposed by Crawford

[2].
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4.3. MULTIVECTOR FIELD THEORY

In order to have a fully geometric description of symmetric tensors, Greider
[8] introduced a second commuting Clifford algebra F(x) in analogy with Ed-
dington’s E-F double-frame numbers [7]. A product of two elements E(;)F )
is a geometric dyad which is an element of a global 8D mother [14] algebra:
IR(16) = IR(4)® IR(4). Potentially this allows us to write a single superfield
equation which is completely coordinate and poly-dimensional covariant in
form. In the particular case of dextrad connection of eq. (6a), the superfield
equation can be written in a sourced monogenic form,

oF =J, (9a)

where J = j*UM,E ;) is the vector-multivector supercurrent made from
eq. (6b). The coordinate derivative is in the F;) algebra vector basis: O =
£#8,. The superfield F = F#U), A f,E(;) is a bivector in the “first-frame
coordinate algebra” F (), while a Clifford aggregate in the “second-frame
charge algebra” E ;).

The Morris-Greider [8] theory of gravitation was based upon the partic-
ular case where E(;) is limited to be a vector, the supercurrent then being
a vector-vector dyad. The case where E(;) is a trivector was expiored by
Differ [5]. It appears that the spin-gauge field eq. (5a) can also be written
in this general form, where the commutator term is built into the equation
if assumptions are made about the generalized connection coefficient of eq.
(7a). The field equation for the general bilateral interaction of eq. (8b) has
yet to be fully formulated.

5. Summary

Our development was based upon an underlying theme of using only alge-
bra that is based on concrete spacetime geometry. This has led us to elim-
inate spin space, the principle of local spin covariance and ultimately spin
gauge theory. In its place we propose the more grand scheme of local poly-
dimensional covariance. While the results are promising for Dirac, gauge and
classical field theory, it remains to be seen if its domain can be extended to
classical mechanics. Further, the interpretation of the 8D geometry needed
is not completely clear, although it appears to be connected with the clas-
sical symmetric tensor objects of 4D which are needed for formulations of
gravitation.
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Abstract. The tensor product of the division algebras, which is a kernel for the structure
of the Standard Model, is also a root for the Clifford algebra of (1,9)-space-time. A con-
ventional Dirac Lagrangian, employing the (1,9)-Dirac operator acting on the Standard
Model hyperfield, gives rise to matter into antimatter transitions not mediated by any
gauge field. These transitions are eliminated by restricting the dependéncies of the com-
ponents of the hyperfield on the extra six dimensions, which appear in this context as a
complex triple.

This article is an extension of my work on applying the tensor product of the
division algebras to the lepto-quark Standard Model [1-4] and beyond. Al-
though it is selfcontained, many results derived previously are not rederived
here.

Applications of the division algebras to particle physics [5-10] are not
new, nor are all the same. This application, to the best of my knowledge,
while owing a debt to the work of Giirsey and Giinaydin, is the only one of
its kind. Like all applications of these algebras, however, it is motivated by
the attractive notion that the special structures of mathematics play a role
in the design of reality. Most theorists share a faith - or at least a hope - of
this sort; here it has been allowed to become a guiding principle.

In this article I present the first radical extension of my ideas beyond
the Standard Model and its foundation. Because it combines the Standard
Model with (1,9)-space-time (R!®), it may well prove a step toward the
development of a connection to, and a narrowing of, string theory, the initial
euphoria to which has - in the fashion of GUTs and SUSY - succumbed to
the curse of multiple realities.

The nontrivial real division algebras with unity are the complexes, C,
quaternions, Q, and octonions, O. They are 2-, 4-, and 8-dimensional, Mul-
tiplication tables for Q and O are constructable from the following elegant
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rules:
Division
Algebra Q 0

Imaginar, .

U%lits y ¢,t=1,2,3, €s,a=1,..,7,
Anti-
commutators §i% T 9% = 265, eaer +evea = 2648, (1)

Cyclic
Rules 9igi4+1 = ¢i-1 = Qi4+2, €a€at1 = €a—2 = €g45,

Index g = qp => €a€p = € =—>
Doubling 920)9(25) & —9(2k)» €(2a)€(2b) = €(2¢)

where Q-indices run from 1 to 3, modulo 3, and O-indices run from 1 to 7,
modulo 7.

C®Q is spanned by the 8 elements {1,1,¢;,ig;}. It is isomorphic to the
Pauli algebra, C(2), which is the Clifford algebra of R3? space. Represented
by C(2), the spinors of that Clifford algebra are 2 X 1 over C, the so-called
Pauli or Weyl spinors. The spinor space of CQQ, however, is 1x1 over CRQ,
hence is C®Q itself. In this case, to distinguish the Clifford algebra from
its spinor space, we denote the former C; ® Qr, the subscript indicating
action from the left on the spinor space, which we ‘denote C®Q.

C®Q is twice as large as it needs to be. It is the direct sum of two
2-dimensional (over C) Weyl spinor spaces unmixed by Cr ® Qr (just

as {2 z;} in C(2) is the direct sum of the Weyl spinor spaces x; 8]
and [g z;]) If x € Q satisfies x> = —1, then multiplication from the

right on C®Q by the idempotents 15(1 + ix) projects two such Weyl spinor

spaces (just as multiplication from the right by the idempotents %( [ (1) (1)] +

[(1) _01]) on [2; Z;] projects the C(2) Weyl spinor spaces above). Qgr,
which acts from the right on C®Q, mixes these two independent spinor

spaces. Qp commutes with Cr, ® Q,, so it is an “internal” algebra, where
the Clifford (geometric) algebra is “external”. The elements of unit length
of Qg form the group SU(2), which in previous work along these lines was
manifested as the isospin gauge symmetry [1].

The octonion algebra is generally considered ill-suited to Clifford algebra
theory because O is nonassociative, and Clifford algebras are associative.
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This problem disappears once we identify O as the spinor space of O, the
adjoint algebra of actions of O on itself from the left. O is associative. Of
is linear in actions of the form

eLab...c{z] = ea(eb(-~-(ecm§'"))a (23

z € O. For example, although eje; = eg,

er12[z] = e1(ezz) # esz = epglz]

in general; and although e;(eze4) = ez,

er124[z] = e1(ex(eqz)) # erz = epaz]

in general. These are consequences of nonassociativity. The elements ef4s...
satisfy

€Labcc...d = —€Lab...dy
€Lab...c = iequ...ra (3)

pq...r an even-odd permutation of ab...c, and

€Lab...c€Ldf...g = €Lab...cdf...9* (4)

It is also not difficult to prove that eyrgs4321[2] = 2 for all z in O. Therefore,
for example, using (4) and (5) one can easily prove

€14567 = €L[4567€L7654321 = €L321. (5)

That is, any element of Oy, with four or mcre indices can be reduced to an
element with three indices or less. So a complete basis for O, consists of the
elements

1, €Lay €Laby €Labe: (6)

Therefore O, is 14+7421+35=64-dimensional, and O, ~ R(8). The embed-
ding of parentheses in the definition (2), implying (4), trivially implies Oy,
is associative.

Oy is isomorphic to the Clifford algebra of the space R%S, the spinor
space of which is 8-dimensional over R. In .this case the spinor space is O
itself, the object space of Oy. It is significant that the dimensionality of O
is correct in this case. This is tied to the remarkable fact that the algebra
OR of right adjoint actions of O on itself is the same algebra as Op. Every
action in OR can be written as an action in Oy,

A 1-vector basis for Oy, playing the role of the Clifford algebra of R%¢,
is {erp,p = 1,...,6}. The resulting 2-vector basis is then {erpq,p,¢ = 1,...,6,
P # q}. This subspace is 15-dimensional, closes under the commutator prod-
uct, and is in that case isomorphic to so{6). The intersection of this Lie
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algebra with the Lie algebra of the automorphism greup of O, G, is su(3),
with a basis

su(3) = {eLpq — €Lrsy P, ¢, 1,8 distinct, and from 1 to 6}. (N

The group SU(3) generated by these elements arises as the color gauge group
in applications [1] (note that SU(3) is the stability group of ez, hence the
index doubling automorphism of O is an SU(3) rotation).

Finally we let C® Q® O play the role of spinor space to C, ® QL ® Of,,
which is isomorphic to C(16), hence isomorphic to the Clifford algebra of the
space R%°. With respect to the gauge symmetry SU(2) x SU(3) outlined
above, which expands to U(2) x U(8) (in [1] this symmetry is derived; it
is associated with the inner product on C ® Q ® O, specifically with a
set of projection operators (associative idempotents) from which the inner
product is constructed), the spinor space C® Q ® O transforms exactly like
the direct sum of a family and antifamily of lepto-quark Weyl spinors. That
is, various algebraic bits of the spinor space are identifiable by their U(2) x
U(3) transformation properties as being quark or lepton. Quantum numbers
for the (family) spinors can be manifested in two ways, one corresponding
to righthanded particles, one to lefthanded. They can be simultaneously
incorporated by expanding C1 ® QL ® OL to C, ® QL ® Or(2) (2 x 2 over
Cr®Qr®0L), the “Dirac” algebra for R!® space-time (just as Cr,®Qr(2),
isomorphic to C(4), is the Dirac algebra for R13). The spinor space in this
caseis 2X lover C® Q® O.

Let ¥ be such a spinor, and give it a functional dependence on R!/®
space-time, Let

px = (1 £ ier)/2, (®)

a U(3) invariant component of the projection operator set mentioned above.
Then p4+¥ is the matter half of ¥, and p_¥ the antimatter half. p; ¥p,
is an SU(2) lepton doublet, and p4¥p_ is a quark SU(2) doublet, SU(3)
triplet (reverse signs for antimatter).

Define in R(2):

e (1O ao(t OY g (0 1) (0 2
TA\0 1) 7T\0 -1/ \1 07 T\~-1 0/
A 1-vector basis for the Clifford algebra of R!? consists of the elements:

Yo = B, Y; = gjeLrw,J = 1,2,3, i = tepoaw,h =4,...,9. 9
These satisfy:
v+ 1 = 2ue,

N diagonal (1(+),9(-)). In particular note that the set {y;,h = 4,...,9} are
not SU(3) invariant, from which we infer that the extra 6 space dimensions
carry SU(3) charges.
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The (1,9)-Dirac operator is #; o = 7707, f = 0,1,...,9, and I define g 5 =
’7,;3“,# =0,1,2,3, fos =ﬁ1,9— ﬁ1,3. Define

pre = (1L ier7)/2 (10)

(the left adjoint version of p+). Using these adjoint idempotents we can
decompose @, g into its (1,3} and (0,6)-Dirac operator parts, one of each
for both matter and antimatter:

?1,9 = PL+ ﬁ1,9PL+ + pL-~ 31,9PL— +pL+ ﬂl,gpL— +PL- f’1,9PL+

= pr+P1,3PL+ + PL-P1,30L- + PL+ o 6PL— + PL-PoePL+s

= #1300+ + P1,30L- + PoePL- + PoePL+ (11)

(note that @;,pr+ are the matter/antimatter Dirac operators for (1,3)-
space-time, and that because ep7pr+ = FipLs, the partials of the latter are
space-reflected relative to the former). Therefore,

P10¥ = (D1 300+ + P130L- + PogPL— + PoePL+)¥

= $13(p+¥) + P13(p-¥) + Pos(p-¥) + Poelr+¥)- (12)

To form a Lagrangian for the field we use the inner product of C® Q® O

(1}
L=<V, ﬂl'gw >

=< p4 ¥+ p- ¥, P 3(p+ ¥) + P1,3(p-¥) + Pos(p-¥) + Poe(p+¥) >
=< p3¥,'P13(p+ ¥) > + < p-¥, B 3(p-¥) >

+ <p4¥, Joo(p-¥) > + < p-¥, Py 6(p+ ¥) > (13)

(the last equality arising from the algebra of the inner product). The
first two terms after the last equality in (13), < p+¥, @ 5(p+¥) >, are
ordinary. One can obtain a list of viable particle transitions from such La-
grangians, as each Weyl component of ¥ has an obvious particle identifi-
cation. For example, after gauging U(2) x U(3), algebraic combinations of
spinor and gauge fields that survive the inner product correspond to viable
transitions, and these are just those that are built into the Standard Model
on phenomenological grounds, the major difference being the presence of
noninteracting righthanded neutrino terms (this aspect won’t be developed
further here; see [1], [11]). These first two terms connect matter/antimatter
to matter/antimatter (p4+¥= matter/antimatter), hence they are in that
sense conventional. They conserve lepton and baryon numbers.

The last two terms of (13), < pzV¥, Poe(p+¥) >, are a problem, even
without gauge fields, for they imply matter/antimatter (p1¥) into anti-
matter/matter (p3¥) transitions, mediated algebraically by gy¢. As such
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transitions are unobserved, the rest of the article will be devoted to getting
rid of the last two terms of (13).

The 2-vector basis for the Clifford algebra of R, derived from the 1-
vectors in (8), is

q;€, ;€7 ieLpa’ z'qjeL;ﬂf’ €Lpq€, (14)

=1,2,3, p,q€ {1,...,6}. This 45-dimensional subspace closes under the com-
mutator product and is in that case isomorphic to so(1,9). The first six
elements, {gj€, gjerra}, form a basis for so(1,3), the last fifteen, {erpq€}, a
basis for so(6). This is the same so(6) we saw earlier, and it contains color
su(3) (see (7)). That is, the space R%5, hence @y, carry color charges (one
consequence of these charges: in none of the unwanted transitions implied by
(13) can a particle make a transition to its own antiparticle; hence, for exam-
ple, quarks may mix with anitleptons, violating baryon and lepton number
conservation).

Consider the element @y o(p+¥) which appears in the last term of (13).
Because

pier = Fipy, pres = Fipyey, prez = Fipies, preg = Fiprey, (15)
p+¥ may be decomposed into
p+¥ = U9 + Tler + Uley + Whey), (16)

where the ¥7', m=0,1,2,4, are 2 X 1 over C ® Q. These four fields can be
designated lepton, red-, green-, and blue-quark.
Now consider Ppe(p4+¥), and in particular, for example, the term (sum

p=1,...,6)

Pos(p+Ther) = iwe,07+3[p4 When]

= iw(p-e10* + p1e20° + p1e3d® + presd” + p_es?® + pyeed®) ¥l €]

= iw(p-e1(0* + 10%) + pjeg(85 —i8%) + pres(87 - i0%) [V} e4]
iw(ey(0* + i0°) + e3(0° — i0°%) + €4(07 — i0%))[p4 ¥ e4]
Por--[p+¥}ei] » 17
(in the second line the nonassociativity of O plays a part in altering the sign
subscripts of p,; in general nonassociativity plays an essential role in keeping
the mathematics consistent with phenomenology). fe4-- (generalized be-

low) is defined in the penultimate line. In like manner one can demonstrate
that

Il

Per+ WS =Por+4+0+ 95,
Po(p+¥ie2) =Fo-1-(p+¥3e2)
Po(p+¥ies) =Po——4(p+¥ied) (18)



DIVISION ALGEBRAS, (1,9)-SPACE-TIME, MATTER-ANTIMATTER MIXING 453

(no parentheses are needed in the first of these equations (lepton term), for
nonassociativity only becomes an issue on the quark terms). For any real
variables x and y, and differentiable f: (8, + i9,)f(« + iy) = 0. Therefore,
ignoring R coordinates, if

¥ = ¥4 (24 + iz, 75 + iz6, 27 + i29),
V. = Wi (4 + izs, 5 — iT6, 27 — i2g),
% = V2 (4 — iz, 25 + i%6, 27 — iT9),

¥ = ‘I"_‘,_(a:.; - izg, 25 — %6, T7 + iTg), (19)
then
Pos(p+¥) =0 (20)
identically.

The antimatter fields of p_ ¥ would have functional dependencies con-
jugate to those above. Apny fluctuation from these would give rise to so far
unobserved matter-antimatter mixing.

Under U(3) the lepton term ¥9 is supposed invariant, but its 3 complex
coordinates in (19) are not. In making U(3) a local gauge symmetry, de-
pendent upon R!? coordinates, the complex coordinates of ¥9 also acquire
a functional dependence on R'3. The orbit of U(3) is S°, the 5-sphere.
Because ¥9 is dependent on 3 complex coordinates, and not 6 real, this
precludes a variation of ¥4 by even so much as a phase factor under U(3).
It would seem then that the colorless lepton term ¥3 must be independent
entirely of the color-carrying coordinates of RS,

The complex triple associated with ¥} in (19) has a more complicated
SU(3) transformation, further complicated by the fact that ¥} is itself si-
multaneously transformed. However, ¥} is invariant under the action of the
SU(2) subgroup of SU(3) that leaves e; and es invariant. Following the same
reasoning used above we now conclude that ¥} must be independent, not
of all of R%® as was ‘Ilg_, but of z,, r=5,6,7,9.

In general we may now conclude, inorder to preserve (20), that

L AR S C I §
VL = Ul (2,24 + izs, .ovy o),
V2 =¥ (z,,...,25 + ize,...),
UL = T4 (2, ey ey 7 + i29), 4 (21)

where (,...) indicates independence of the complex coordinate in that slot,
and z, denote the coordinates of R+,

Does any of this have anything to do with string theory? I confess myself
not a string theorist, so I can not supply a definitive answer to that ques-
tion. String theory uses R}, and it deals with the extra 6 dimensions by
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balling them up into a complex 3-manifold too small to be observed. My
route to R} is certainly different, but in requiring (20) the space R%® is
forced to appear in the guise of a complex 3-space. It has not yet been inves-
tigated if some specific compactification is required of the model, much less
if there is an associated SU(3) holonomy group [12]. As to its unobservabil-
ity, everything in this model (specifically quarks and R%®) associated with
the octonion units e,,p = 1,...,6 (alsé associated with nonassociativity) is
unobserved. There may be some nice algebraic/quantum mechanical expla-
nation for this, but even so one finds such subtlety is generally manifested
by more prosaic explanations as well, like infrared slavery, and, presumably,
compactification.
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Abstract. Let End(IR.) be the algebra of endomorphisms on the real 2"-dimensional
Clifford geometric algebra IR, of the n-dimensional Euclidean space JR". In this work we
study the structure induced by a family of derivations on the algebra End(IR,). The shape
and curvature bivectors of a projection with respect to a given structure are defined. The
concept of a structure allows us to lift the local properties of a vector manifold to the
algebra End(R,).

1. Algebraic Framework

Let End(iR,) be the algebra of endomorphisms on the real 2"-dimensional
Clifford geometric algebra IR, of the n-dimensional Euclidean space IR™. As
has been shown in [1, p.3656], the algebra End(IR,) is itself isomorphic to
a Clifford geometric algebra, namely the 22"-dimensional geometric algebra
IR, 5, and also to the algebra of 2" x 2" real matrices. Although the matrix
algebra formalism is fully isomorphic to the corresponding geometric algebra,
the great advantage of latter is its comprehensive geometric significance.
Geometric algebra can also be nicely formulated in an infinite dimensional
setting, but we will not consider this here.

A familiar subalgebra of End(IR,) is End(IR™) the algebra of all linear
operators on the Euclidean space IR™. Let f € End(IR"™). The characteristic
equation of f is det(A — f) = 0, and in general can have both real and
complex eigenvalues as roots. If the minimal polynomial of f is known, then
f can be put in the eigenprojector form:

f=Y i+
2

where the p;,q; € End(IR") are respectively idempotents and nilpotents,
2], [3].

One disturbing question when reformulating linear algebra in terms of
geometric algebra [4], has been the lack of a suitable geometric interpretation



456 GARRET SOBCZYK

of the complex eigenvalues of f in the geometric algebra IR,,. The difficulty
is in the interpretation of the “imaginary” unit i.! ;

In IR, each unit bivector has square —1, but bivectors do not algebraically
commute with all the other elements of IR,,. In IRz the unit pseudoscalar
has square —1 and commutes with all other elements, and therefore is an
attractive choice in this algebra, as well in the similar algebras Ryxq3 for
k = 1,2,.... We shall use this as the guiding principle for the selection of
the geometric interpretation of the complex eigenvalues of f € End(R"):
We are looking for an encompassing geometric algebra containing IR, whose
pseudoscalar element commutes with all other elements and has square —1.

We have noted that End(IR,)=IR,, », so it is natural to look in this larger
geometric algebra which contains R,. The unit pseudoscalar of IR, , com-
mutes with all elements of R, », but has square —1 only when 7 is odd. This
situation is at least an improvement over the previous values of n = 4k 4+ 3
in the case of the algebras IR,.

The solution to this search for the elusive ¢ is to note the isomorphism

Rn,n(i)gmn,ni-l

between the formal complexification R, (i) of R, , and the geometric al-
gebra IR, .41 of the signature (p,q) = (n,n + 1). The pseudoscalar of this
algebra has all of the desired algebraic properties for all n = 0,1,2,....

Let @* = IR"(:) denote the formal complexification of the Euclidean n-
space IR", and @), = IR,(¢) the corresponding complexification of the real
geometric algebra IR,. Complex vectors ¢ € " are of the form ¢ = a + b
where a,b € IR™. The algebra

End(@,) = End*(€y) ® End= (€)= Rnns1,

is the direct sum of all complex linear operators End*((,) and complex
antilinear (sesquilinear) operators End~((,), and is isomorphic to Ry n41.
Complex linear and antilinear operators have been studied for n = 3,4 in [6],
[7]. The remainder of this paper is concerned with the algebra of complex
linear operators End*((,), the special case of the real operators in End(IR,)
being naturally included.

2. Structures

Each element C' € €, can be written in the form C = A+ iB for A, B € IR,,.
We can also decompose C € @, into the sum

C=Y <C>

e

! See [5] for a related discussion of this point.
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of complex homogeneous k-vector parts < C >;. For what follows we will
need an orthonormal basis of complex 1-vectors {e;,...,e,} which satisfy
the usual relations e; - ex = 6;; fg}r jrk=1,2,...,n. In general, the complez
linear inner product between two complex 1l-vectors in @, is a complex
scalar.

One of the most fundamental identities for the geometric product of a
complex 1-vector a and a complex k-vector A for k > 1, is

aA=a-A+ahNhA

where a- A is a complex (k — 1)-vector, and aA A is a complex (k+1)-vector.
Let f,g € End*(C,). Then f+g, fg € End*(C,) is respectively the sum

and product (composition) of these elements in the algebra End*((,). For

complex elements A, B € @,,, the mixed sums and products such as

f(A)?9(B) + f9(AB) € €,

are also well'defined in terms of the operations of addition and multiplication
in both End*(C,) and in @, itself.
Let f,g € End*(C,),a € €, and A, B € C,.

DEFINITION 1. A structure is a bilinear mapping ¢ : € x End*(C,) —
End*(€,), where ¢(a, f) = f, € End({,), that satisfies the following prop-
erties

1. Ifid € End(@,) is the identity operator, then id, = 0.

2. {f+g]a = fa + Gas

3. {fg]a = fag + f9a.

4. [f(A)g(B)a = fa(A)9(B) + f(A)ga(B).

There are many different ways of extending the operators in End*(@")
to operators in End*(@,). We mention here the “outermorphism” rule [4,
p. 67], and the “derivation” rule (8, p.107-110]. Given f € End*(€%), f is
extended to an outermorphism f € End*((,) by defining

flaterAcg A Ae)=a+ fler)A...A fler)
for each complex scalar a € €, and each r-vector ¢; Aca A ... A ¢;. The
definition of f on all of @, is completed by enforcing complex linearity.

The determinant of f € End(€") can be nicely defined in terms of its
outermorphism f,

det(f)y=(ex A---Aen) ' fler A...Aeg).
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Given f € End*(@"), f is extended to a derivation fe End*(C,) by
defining

.
flateaAcaA. . Ae)=) aah...AciaA f(e))Acipa A A
=1

for each complex scalar a € @, and each r-vector ¢; Aca A ... A ¢r. The
extension of f on all of @, is completed by enforcing complex linearity.

3. Shape and Curvature

Let ¢ be a structure on End*({,), and P be a projection in End*(C,)
satisfying P? = P. A projection is automatically an outermorphism, and
therefore satisfies the property P(A A B) = P(A) A P(B). Using definition
1, we get the basic identity

P,(AA B) = P,(A) A P(B) + P(A) A P,(B).

This identify is useful in proving properties about the shape and curvature
bivectors whose definitions are given below.

DEFINITION 2. The shape bivector S : @ — < @, >2 of the projection
P € End*(@;) is given by

S(a) = Ee,’ A Py(e;).

=1

Of course, the shape bivector of the projection P is defined with respect to
the structure ¢.

We can also define a curvature bivector of the projection P with respect
to the structure ¢.

DEFINITION 3. The curvature bivector R : <@,>2 — <@,>2 of the projec-
tion P is given by

R(aAbd) = iei A P, Py(e;) = Ps(S(b)).
j=1

4. Discussion

Many other objects from differential geometry can be defined in terms of
a structure ¢ on End*({,), such as k-forms, k-fields and the bracket of
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fields?. The main idea of this paper is to lift the local structure of these
objects to the very rich End*(@,) by utilizing the concept of a structure
given in definition 1. Many of these ideas have been developed in the context
of a vector manifold in [4, Chapter 4].
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Abstract. The paper provides an introduction to Clifford algebras and spinors for an
arbitrary braid. Braided Clifford algebras are defined as Chevalley-Kihler deformations
of braided exterior algebras (the Woronowicz algebras). Spinor representations are intro-
duced, following classical Cartan’s approach.

1. Introduction

The alm of this contribution is to present an incorporation of classical the-
ory of Clifford algebras and spinors into a braided framework, starting from
Chevalley-Kahler interpretation of Clifford algebras, as deformations of ex-
terior algebras. A detailed exposition is given in (Durdevi¢ and Oziewicz
1994).

Woronowicz introduced in 1989 a braided exterior algebras (the Woronow-
icz algebras). In the next section the main properties of the Woronowicz
algebras are collected. Section 3 deals with inner products. Section 4 is
devoted to the construction and general analysis of braided Clifford alge-
bras. The construction conceptually follows classical Chevalley approach.
We shall introduce a new product in the exterior algebra space. This prod-

* On leave of absence from University of Wroclaw, Poland. Research of the second
author partially suported by State Committee for Scientific Research, Poland, KBN grant
# 2 P302 023 07.
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uct is expressible in terms of the exterior product, and various “relative”
contractions, which are constructed from the corresponding scalar product
on the vector space. In such a way the Clifford algebra becomes a Cheval-
ley’s deformation of the exterior algebra. We shall also introduce an analog
of the Crumeyrolle map (Crumeyrolle 1990) connecting Clifford and exterior
ideals in the tensor algebra. This allows to define braided Clifford algebras
as a quantization of the Woronowicz exterior algebras.

In Section 5 we study counterparts of algebraic spinors, conceptually
following Cartan’s geometrical approach, and varying and generalizing a
construction given by Bautista at al. (1994). Spinors are defined as elements
of braided exterior algebras over certain isotropic subspaces of the initial
vector space. The spinor space is a left Clifford module, We shall prove that
(under certain assumptions concerning the braid) the spinor representation
is irreducible and faithful, as in the classical theory.

2. The Woronowicz algebras

Woronowicz introduced in 1989 exterior algebras for an arbitrary braid op-
erator. In this section we collect the main properties of the Woronowicz
algebras. Let W be a (complex) finite-dimensional vector space, and let
oW @W — W QW be a bijective map satisfying the braid equation

(c@id)(id ®@ 0)(0 ®id) = (id ® 0)(c @ id)(id ® o). (1)

Let A:W® — W® be the total antisymetrizer map. Its components
A,: We" — W®" are given by

An = Z (_l)xar
7€Sn
where 0,: W®" — W®" are maps obtained by replacing transpositions fig-

uring in a minimal decomposition of = by the corresponding o-twists. The
following identities hold

An+k = (An®Ak)Ank (2)
Anpr = Bo(A4, ® 4;) (3)
where
Ank = E ("1)”‘71"1
TESnk
Bnk = Z (-—1)”0‘,‘,
TESnk

and S, C S, is the set of permutations preserving the order of sets
{1,...,n} and {n+1,...,n 4+ k}.
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The Woronowicz algebra (braided exterior algebra) W* is the factoral-
gebra of the tensor algebra W® modulo the ideal ker A (Woronowicz 1989).

The algebra W” can be naturally realized as a subspace imA in W9.
This realization is given by

[6+ ker A > Ay )
In terms of the above identification the exterior product is given by
YAp=B, (v ®y), forpe WA and p € WA, (5)

In general ker A and imA are not mutually complementary subspaces
and W is generally not a quadratic algebra, although in the case when
o is a Hecke braiding W* is quadratic and A, are projectors, up to scalar
factors (modulo some singular cases, giving A2 = 0). Moreover, it is possible
to construct examples with the trivial second-order constraint ker A,, and
non-trivial higher-order constraints.

3. Inner Products

For each f € W* and £ € WA, let fU & € W1 be an element given by

fué=(f®id"1)(¥). (6)
In the above formula, it is assumed that W” is embedded in W® (as de-
scribed in the previous section). The fact that f U £ belongs to W* easily
follows from (2).

In such a way we have constructed a map U: W* @ WA — W* (a coun-
terpart of the standard contraction operation). For each f € W* we shall
denote by Li;:W" — W the corresponding contraction map.

We will assume that ¢ is naturally extended to a braiding on WA @ WA,
by requiring

o(m®id) = (id® m)(c ®id)(id® o) (N
o(id®@m) = (m®id)(id ® ¢)(e ® id), (8)
where m: WA @ WA — W is the product map.
LEMMA 1. The following braided Leibniz rule holds
Us(&n) = Ug(On + (-1)%mo~ (U, @ id)o(€ ® 7). 0

4. Braided Clifford Algebras

Let F:W @ W — C be a scalar product on a space W. Let ¢F: W — W* be
a map given by

[£F(2))(v) = F(z,9).
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Let (F:W x W” — W” be a contraction map given by
Lff = KF(.’L') ue.

In what follows it will be assumed that F' and o are mutually related
such that the following “functoriality property” holds

(F®id)(id® o) = (id ® F)(o ®id). 9

Then the contraction operator ¢* satisfies the following braided variant of
the Leibniz rule

i (9m) = (O + (1% 3 g, (n)
k

where Zkﬂk Rz, = o(z @ F).
We can trivially extend the introduced contraction operator, to the map
of the form F: W® x W — W such that

F _ FF
l’u®v"’ul’u

for each u,v € W9,
LEMMA 2. Ifu € ker A then £ =0. D

Therefore, we can pass from W® to W” in the first argument of .F. In
such a way we obtain a contraction map of the form JF: WA x WA — WA
(we use the same symbol for different contraction maps, because the domain
is clear from the context).

Let us define “relative” contraction operators { ), : W" x WA — W as
follows

;) = Z"/{,‘ A (ngf)

Here, it is assumed that { € W™ and Zjd)j Ap; = [An__kkf]", where

{ € W satisfies [(]" = ¢, and p; € WAk, Consistency of this definition
follows from (2). If n < k we define (), = 0.

Now, we can define a new product on W*, in the spirit of classical Cheval-
ley’s construction. This product is defined by the following formula

Vo= Ae+ Y (¥, o)

k>1

In particular for 2 € W,

eV =z Ap+E(y).
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THEOREM 3. Endowed with V, the space W becomes a unital associative
algebra, with the unity 1 € WH. O

Definition. The algebra cf(W) = (W, V) is called the braided Clifford
algebra (associated to {o, F}).

The constructed algebra can be understood as a deformation of the exte-
rior algebra WA, The graded algebra associated to the filtered algebra cf(W)
naturally coincides with W”. The exterior algebra W is in fact a special
case of the constructed Clifford algebra, when F = 0.

The algebra cf(W) can be viewed as a factoralgebra c¢f/(W) = W®/Jp,
where Jp is the kernel of the canonical epimorphism jg: W® — cf(W) ex-
tending the identity map on W. Now, we shall describe this ideal in an
independent way, using a generalization of the construction presented by
Crumeyrolle (1990).

A linear map Ap: W® — W@ defined by

Ar(D) =1 Ap(e®@F)=2@Ap(P) +LAp(9), z€W, deW®

is said to be the Crumeyrolle map. In the above formula, Lf is considered as
a braided antiderivation on W®. The Crumeyrolle map A is bijective. Let
V be a new product in W®, given by

IV 0= Ap(AF(9) ® AF' (n))-
By construction the space ker A is a left ideal in W®, relative to this new
product. Condition @) ensures that ker A4 is also a right V-ideal.

THEOREM 4. We have (W®,V)/ker A = c¢f{(W).O

In other words, the factorization map [[*:W® — WA is also a homo-
morphism of corresponding deformed algebras. The map Ay is a braided
counterpart of the map introduced by Crumeyroile (1990).

LEMMA 5. We have Ag'[ker A] = Jp.O

5. The Spinor Representation

This section is devoted to a braided generalization of classical Cartan theory
of spinors (Cartan 1938). Let us assume that the space W is splitted into a
direct sum

where W,, W, are F-isotropic subspaces. Furthermore, let us assume that
this decomposition is compatible with the braiding o in the following way

(W, 8 W,) = W, 8 W, (10)
W ew,) & W ow,)} =id. (11)
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Finally, it will be assumed that (F|W, ® W,) = 0 and that F|W, @ W,
is nondegenerate. In this case, W, = WY, in a natural manner. The duality
is given by F(f,z) = f(z), for f € W, and z € W,.

Exterior algebras W)* and W' understandable as subalgebras of c£(W),
in a natural manner.

LEMMA 6. The map p: W @ W)t — cf(W) defined by
wu®v)=uv
is bijective. O
The corresponding “spinor space” can be defined as follows. Let us con-
sider the space K = W}, and let k: K — C be a natural character, specified
by k(1) = 1 and x(W,) = {0}. This gives a left K-module structure on the

number field C. On the other hand, cf(W) is a right K-module, in a natural
manner. Let S be a left ¢f(W)-module, given by

S = Ce('W) ®x C.

According to Lemma 6, the space S is naturally identificable with the exte-
rior algebra W . In terms of this identification, we have

=z, A{+3,UE,

for each ¢ € W, where z = z, + z, and z; € W,. In other words, a complete
analogy with the classical Cartan formalism holds.

THEOREM 7. The algebra cf(W) acts on S faithfully and irreducibly. O

The module § is completely characterized by the existence of a cyclic
vector (the unit element 1g), killed by the space W,.

- In other words let V be an arbitrary (left) c¢f{(W)-module, possesing a

vector v satisfying {W,}v = {0}. Then there exists the unique module map

- 0:8§ — V satisfying g(1g) = v. The map p is injective (because of the

simplicity of §). In particular, if v is cyclic then p is a module isomorphism.

8. Concluding Remarks

If the braid operator ¢ is such that ker A is quadratic, then the ideal Jp is
generated by elements of the form

Q=9¢-F@)lel (12)

where ¢ € W®? is o-invariant. This covers Clifford algebras based on Hecke
braidings, and in particular includes classical Weyl algebras (Oziewicz 1994).



BRAIDED CLIFFORD ALGEBRAS 467

Quantum Clifford algebras and spinors (for a Hecke braiding) introduced
and analyzed by (Bautista at al.,.i994) can be included in the theory pre-
sented here. Clifford algebras introduced in the mentioned paper are based
on Hecke braidings V@V — V @ V (where V is a finite-dimensional
vector space) admitting extensions to all possible braidings between V and
V*, so that the contraction map is functorial, in the standard sense. Then
W = V@ V* and the corresponding scalar product F and the braiding o are
expressible in terms of the extended braiding 7 and the contraction map.

The construction of the Crumeyrolle map A, works for an arbitrary F
and in particular, it is independent of functoriality-type assumptions (9). For
a possibility to define braided Clifford algebras as deformations of braided
exterior algebras, it is sufficient to assume that ker A is also a right-ideal in
(W9, V). This assumption is weaker then (9). However, if (9) does not hold,
then the symmetry between left and right is broken.
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Abstract. Using the factorization method we construct finite-difference Schrédinger oper-
ators (Jacobi matrices) whose discrete spectra are composed from independent arithmetic,
or geometric series. Such systems originate from the periodic, or g-periodic closure of a
chain of corresponding Darboux transformations. The Charlier, Krawtchouk, Meixner or-
thogonal polynomials, their g-analogs, and some other classical polynomials appear as
the simplest examples for N = 1 and N = 2 (N is the period of closure). A natural
generalization involves discrete versions of the Painlevé transcendents.

Spectral problems of the Sturm-Liouville type have many applications in
physics. Quantum mechanics and the theory of solitons are essentially based
on the spectral analysis of Schrédinger and Dirac operators. The one-dimen-
sional finite-difference Schrédinger equation

L(z) = alz + (= + 1) + aeyb(z - 1) + b(ab(z) = M(z), (1)

which is the main object of investigation in this paper, may be interpreted
either as an equation determining harmonic oscillation frequencies of a non-
homogeneous discrete string, or as an energy eigenvalue problem for a par-
ticle moving along some non-uniform lattice (tight binding model). Alter-
natively, equation (1) may be considered as an auxiliary spectral problem
helping to integrate the Toda chain equations of motion. The latter system
is known to be integrable through the inverse scattering method in the peri-
odic case a(z + m) = a(z), b(z + m) = b(z), or for fast decreasing potentials
a(z) — 1, b(z) — 0, £ — Loo. The operator L is tridiagonal and said to be
in Jacobi form. In the following we do not assume any particular physical
interpretation of (1) due to the universal character of this equation.

* On leave of absence from the Institute for Nuclear Research, Moscow, Russia.
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Replacing z 4 1 in (1) by = + h and taking the zero lattice spacing limit
h — 0 one gets a continuous Sturm-Liouville problem:

h?(ao(2)¥'(2))" + (alz + k) + a(z) + b(z) = N)¥(2) + O(h%) = 0,

where prime denotes the derivative d/dz and ao(z) is the leading asymptotic
term of a(z),a(z) = ao(x)(1 + O(h)). If ap = constant and the asymptotic
expansions of a(z) and b(z) properly match then one obtains in the contin-
uous limit the standard Schrédinger equation: —¢"(z) + u(z)¥(z) = AY(z),
which was studied in great detail. In particular, the special technique based
on the factorization of Hamiltonians was developed in order to simplify the
solution of such spectral problems [4]. In the theory of solitons it is known
as the dressing method. It has proven to be very powerful and it provides
a guide to the classification of exactly solvable potentials. This method has
been used recently to describe one-dimensional potentials with discrete spec-
tra composed from N arithmetic, or geometric series [18, 13, 14, 15, 16]. The
first class of potentials is related to the Painlevé nonlinear ordinary differen-
tial equations [18], the second one is connected with infinite-soliton solutions
of the Korteweg-de Vries equation [13, 15}, quantum algebras [14, 15}, and
g-deformed Painlevé transcendents [16]. In this paper we construct differ-
ence Schrédinger operators obeying analogous properties with the help of
a discretized version of the same technique. The simplest systems that are
found are related to the Charlier, Krawtchouk, Meixner orthogonal polyno-
mials of a discrete variable, or to their g-analogs. The Stieltjes-Wigert and
continuous ¢-Hermite polynomials are also incorporated into the scheme.
More complicated systems are related to discrete versions of the Painlevé
transcendents. Note that the factorization of finite-difference equations has
been considered in [9, 10, 1, 2, 3]. Our approach differs in that we are not
describing the symmetries of known systems but determining rather, whole
classes of systems with fixed symmetry properties.

The equation (1) needs to be supplemented with boundary conditions.
Let T, be the coordinate lattice, i.e. the set of discrete points « on which
a(z), b(z) are defined, and T, the spectral parameter lattice, i.e. the set
of indices of A in the eigenvalue problem L, = Ay, n € I';. We shall
deal with systems for which T'; consists in a number of discrete points and,
possibly, a continuous part extending from some point to infinity. The lattice
I';. may lie on a finite interval, or half line, or cover the whole real line. In
the first two cases it is convenient to take ¢ = 0 as the left edge of ['.. For
finite I';, the standard boundary conditions are

CL(O)'[/)(—l) =0, ¢(0) # 0, a(xmaz)t/)(zmaz) =0.

When I'; extends from 0 to infinity, the boundary condition at zero is the
same and in addition () is required to be bounded. Note that if the edges
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of I are determined by two successive zeros of a(z) then one only needs
¥(z) to be finite at those points. If I'; covers the whole line then there is
only the requirement that ¢(z) be bounded.

When I'. has a boundary, the equation (1) provides a recurrence relation
that defines ¥,(z) as a set of orthogonal polynomials of order « in the
argument A. For some problems, the opposite situation can also take place:
Pn(z) = pn(2(z))¥o(z), n € I's, where p,(2z) are orthogonal polynomials of
the argument z(z) and order n. The latter Interpretation of the formulas is
similar to the quantum mechanical one. For problems with purely discrete
spectra, when ¥(z) € I3(T), the orthogonality and completeness relations
look as follows:

Z ?ﬁ;(l‘)d)m(ﬂt) = bnm, Z 7/’2(@%(29) = 61‘1/, (2)
z€ll. nel,

where 0,y = 0if 2 # y and 1 otherwise. If ', = I'; and z and A enter in a
symmetric fashion we get a so-called self-dual system.
Let us now take a set of equations, all of the form (1):

LipW(z) = xpl)(z),  je€Z, (3)
where
Li = aj(z + )T + a;(&)T™ + bi(2),  THP(a) = (e £1).  (4)

The coordinate z is assumed to be real, so that the operators L; are formally
hermitian.
Consider the factorization of (4)

L= ATA] + ), (5)
where
Af = pi(@)T + fi(®), AT =pis + DT + fi(o). (6)

These operators are assumed to be hermitian conjugates one of the other,
AT) = AF. From (4)-(6), one finds the relation between the “potentials®
( , P

aj(a:), bj(agj and the “superpotentials” p;(z), f;(z):

aj(z) = pi(2)fi(z ~ 1), bi(z) = pi(2) + f1(z) + A;. (M

It is well known that the discrete spectra of the operators AT A~ and
A~ AT can differ only by the lowest eigenvalue when A% are first order
differential or difference operators. This observation plays a crucial role in
the factorization method since it allows to construct new solvable spectral
problems from known ones. We impose the following condition:

AT AT 4 Xy = (1) (Af AT + ), (8)
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relating L; and L;41. The eigenfunctions of the Hamiltonians L; are now
said to be related by Darboux transformations. The chain of equations (8)
differs from the one used in [4, 18, 13, 14, 15, 16] by the presence of the
sign-factors (—1)%4. (They are absent in the continuous case because of the
special structure of A% -operators). These signs can not be removed by a
renormalization of the variables with index 7+ 1 and they represent a unique
feature of the above systems.

The algebraic relations arising from the chain (8) are of prime importance
because they are independent of any particular realization. Let us introduce
the operators M;:

M+ = A“LA+

fooAfvon M7= (MDY (9)

where N is some positive integer. One can check easily the identities

LM} = (=1)"M}Lisn,  s;= ) ik

ML = (-1)YLjunM; . (10)

These equations show that the operators M f map the eigenfunctions of

the operators L; and L; N onto each other. The structure relations are
completed by

N-1 N-1
MPM; = =097 = Mya)s sk = Y 04w,
k=0 1=k
N-—-1
MM} = T (1™ Ljsn = Ajs)- (11)
k=0

Now suppose a closure condition (see below) relatmg L; and Ljyn is im-
posed. From (10) and (11) we see that L; and M ; would then generate a
polynomial algebra generalizing s/(2) or 1ts g-analog. The role of polynomial
algebras as dynamical symmetry algebras is discussed in a different context
in [7].

Substituting (6) in (8), we derive the following two-dimensional discrete
dressing chain (g; = (—1)% A\j41 — Aj):

pi(=)fi(z) = (1) pjr1(z) fiv1(z - 1), (12)
plz + 1)+ fi(z) = (-1)(p2ya(2) + fHa(2)) + 1j. (13)

A system of equations analogous to the one presented above was used in [9,
10] to provide a Lie-algebraic interpretation of some solvable finite-difference
equations. Let us stress that our approach is more general because we do not
restrict ourselves to simple Lie-algebras, or their g-analogs but allow rather,
for generalizations in the form of polynomial algebras of arbitrary order.
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The basic idea for obtaining Schrédinger operators with linear and ex-
ponential spectra is the following. As already mentioned, the operators M Ji
intertwine L; and L;4n, hence if these Hamiltonians are related to each
other as follows (15, 16]:

Litn = qULjU_l + Ajen — qA;, (14)

with ¢ an arbitrary positive parameter and U a unitary operator, the com-
binations J
B} =M}U, By =U"'M]

become symmetry generators for the Hamiltonian L;. The operator U plays
a very important role in our considerations because it allows to generate an
infinite amount of systems with given spectral properties.

Setting B = BY, w = Any1 —qh, H = Li,s; = YN, 0, = 0 and
substituting (14) in (10) and (11) we get the following dynamical symmetry
algebra:

HBY - ¢B*H =wB*, B H-q¢HB™ =wB~, (15)
N
Bt*B™ = (-1)° [[(H - ), (16)
N
B~B* = (-1)° [[(¢H +w - ), (17)
k=1
where

Mz

N N
UEICNEELOMENEESY
k=1
The relations (15)-(17) clearly define a spectrum generating algebra. This
algebra generalizes the one obtained in [16] owing to the sign factors that
appear when o; # 0. Note that for N = 1, we recover the g-oscillator algebra,
while for N = 2, we get the g-analogs of the su(1,1) and su(2) algebras for
S =0and S = 1 respectively.

Suppose that 7 < 7k41, £ = 1,..., N, then the equation B‘d)g‘) =0
defines a set of N “vacuum” states with energies equal to 7. This is of course
a formal conclusion because one needs to check that all these states satisfy
the boundary conditions. Acting with the “creation” operator Bt upon these
vacua, S,’f ) = (B+)”‘1/J(()k), one generates all physical bound states. For ¢ = 1,
the spectrum of H will consist of N independent arithmetic (equidistant)
series with w the step between two successive members of one series, for
0 < ¢ < 1, the spectrum has a discrete part composed from N geometric
series with accumulation point A; — w/(1 — ¢) and continuous part starting

ay.

o~
i
=
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at that point and going up to infinity, for ¢ > 1, the spectrum is purely
discrete and grows exponentially. Note that the latter possibility is excluded
in the case of differential Schrédinger operators [14].

The unitary operator U may be taken as a general element of the unitary
transformations of the line, here we will choose it to be the shift operator
U= T6+, Tg:dl(a:) = 9Y(z £ §), where é is an arbitrary real parameter. The
closure equation (14) is then equivalent to the following conditions:

pien(z) = Vapi(z+6),  fizn(z) = Vafi(z +6),

BitN = Q5 TN = 05 (18)

il

Requiring § to be commensurable with the original lattice size “17”, i.e. §
to be a rational number, we get a system of difference equations to which
standard integration techniques apply.

We have analyzed the integrability of the discrete dressing chain equations
under the closure (18) for the simplest choices of N and 4. The results are
presented below.

For N = 2 we have found only one value of §, namely § = 1, for which
the system is integrable in terms of elementary functions. The corresponding
equations explicitly read:

pi(z)fi(z) = + pa(z) faz - 1),

p2(z) fo(z) = £ ¢ pi(z + 1) fi(z), (19)
piz + 1) + fi(z) = £ (93(=) + f3(2)) + w1,
pi(z + 1)+ fi(z) = £ q(pi(z + 1) + fi(z + 1)) + pa. (20)

Letting F; = f?, P; = p?, we have the solution:

g pg + Y (e £ 11@)g* 7 + ef®

h@) = T F ree D1 T ) @1)
_ 2 9z B2 R g+ Y  pa) P f o '

A =7 S aE e 7 ) @)

Fy(z) = 2Pz 1),  Py(2) =772 ¥ Fi(2), (23)

where 72 and ¢ are two integration constants. In fact, ¥? and ¢ can be ar-
bitrary periodic functions with period 1 but we shall not consider further
such a possibility. For generic values of the parameters p; 2,72 in (21)-(23)
the constant ¢ is determined from the requirement ¢(0) = 0, implying that
T'; lies either on the half line or on a finite interval. When the upper signs
are taken, the wavefunction 9(z) is seen to involve g-analogs of the Meixner
polynomials and the spectrum generating algebra is a g-analog of su(1,1)
(these results were also derived in [19] with the help of a different method).
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In the case when the lower signs are taken, we have su,(2) as symmetry alge-
bra and the formulae (21)-(23) yield Stanton’s g-analogs of the Krawtchouk
polynomials which can be expressed in terms of the 3p2 basic hypergeo-
metric series [12]. In the limit ¢ — 1, we recover the classical Meixner and
Krawtchouk polynomials of a discrete variable. An algebraic interpretation
and some physical applications of these polynomials can be found in [8, 5].

A particular subcase of (21)-(23) with the upper signs, corresponds to
the g-oscillator algebra. Indeed, substituting ¢ — ¢2, p2 — qu1, we get the
solution for the N = 1, § = 1/2 system:

m(l+ 72" D+ ed®(1+¢)7?

Pi(z) = , 24
R () (P () &9

Fi(z) = 7" Pi(z + §).
Now there exists a special choice of the constant ¢, namely ¢ = —p3y(1 +

q)%/q, such that the singularities in the denominators of P(z) and Fi(z)
cancel with the zeros of the numerators. The potentials a(z) and b(z) are
then defined on the whole line (i.e. I'c =Z) and lead to the so-called contin-
uous ¢-Hermite polynomials whose relation to the g-oscillator algebra was
discussed recently in [3].

The representation theory of the symmetry algebra (15)-(17) will char-
acterize the Hilbert space of wave functions provided the operators H, B
are well defined on l;(T;). Let us discuss this on the example of the ordi-
nary Meixner polynomials, i.e. the case N = 2, ¢ = 1, § = 1, for which
I'. =N. Formally, the equation B~4{¥) = 0 has two independent solutions
corresponding to the two roots v of C = v(v — 1), where C is some fixed
eigenvalue of the su(1,1) Casimir operator. Namely,

P(z) x o7 /%%%{)l, P (z) x aq/ F—F(%%% (25)

where a and v are combinations of the parameters entering in (21)-(23).
The Hamiltonian H is self-adjoint for the boundary condition: ¥(-1) =
g¥(0), where ¢ is some real constant. However it is easy to check that the
operator B* is conjugate to B~ only on states for which a(0)y(-1) = 0 (it
is assumed that 1(0) is always finite). The first state in (25) satisfies this
condition, but for the second one we have lim,_,o a(¢)(?(e —1) # 0 and the
function ¥(2) should thus be discarded. So we conclude that although we
have a N = 2 closure, the physical spectrum consists only of one arithmetic
series. This result should be contrasted with the situation that prevails for
a continuous oscillator with a 1/z? singular potential which also possesses a
su(1,1) dynamical symmetry algebra but where a range of parameters exists
when both spectral series are physical.
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The most simple system emerges for N =1, § = 0:

FA(2)=17%", P(2)=(1-9 (ki +7(1 - 9¢™ " +cg%). (26)
Here one has two possibilities. When P;(z) does not have zeros as a function
of the continuous argument z, then I'. =Z, otherwise the parameter c is fixed
by the requirement P;(0) = 0 and then I'. =N. The latter case corresponds
to the ¢-Charlier polynomials.

The N = 2, § = 0 system of equations admits only one integral for ¢ # 1.
When ¢ = 1, a second integral is found and we have:

Fy(z) = Py(z) = pxz + c F Pi(z),

T
Fi(z)’
2
_ sz to)
B = mome Dz
and the following equation:

72(/‘:1:“’ t+¢) 72(/‘3:(37 +1)+¢) (27)
F(z)F(z -1) 142 F()F(z+1)+4?2

2
= Ty
—”1i(l‘ix + C+ F](z)) F](.'D),

where gy = pg + y; and 4% and ¢ are constants of integration. It has not
proven possible to integrate (27) further. However, if one sets py = 0, the
order of (27) can then be lowered:

. 7 F(z)+ Fi(z+1) - Fe
(Fi(z)Fi(z + 1) £ 42)? F(z)Fi(z + 1)t 42

The general solution of this equation can be written in terms of elliptic func-

tions. Note that for uy = 0, the operators B¥ commute with the Hamilto-

nian, i.e. they are integrals of motion.
An interesting system emerges for N =1, = 1/3:

Pi(y) = Y% F(y - )Ry -2), (28)

¢ MR (y+2) Ry +1) - SRy F(y - 1)+ A(y) - eFi(y+1) = p,

where y = 3z. The latter equation is not integrable, but when ¢ = 1 it
admits one additional integral that leads to

TFF@Y-D+Fy+1) -7 =py+c (29)

where F = Fy, p = p;. This equation is very close to the discrete Painlevé-I
(PI) transcendent considered in [6] and in the continuous limit A — 0,

1 - 3h%u(f) h 1 345
F(y)-——j;;;‘“, f—;(#y+c+w), vl (30)

= const.
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it goes to the standard PI ordinary differential equation: d?u(£)/d¢? =

6u?(€) + ¢
For N = 1,6 = 2, one has
Fi(z)=71"A(e)B(z +1),  Pi(z) =q "B (2), (31)
where ﬁ(z) is defined by the following equation (u = p1 > 0):
(g~ ar ) 7 a(B(z — 1)B(z) ~ gB(z + 1)B(2 + 2)) = p(32)

ﬂ(w) ﬂ(x +1)

We were only able to find one elementary solution of this equation, namely,
6% = u/v%q(1 — q) = constant. It happens to lead to the Stieltjes-Wigert
polynomials which were shown in [2] to be related to the g-oscillator algebra.
Note that this solution disappears when ¢ — 1 if we keep the lattice size
finite. 