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FOREWORD 

JAIME KELLER 
Centro de lnvestigaciones Te6ricas 
Facultad de Estudios Superiores-Cuautit/an, 
Universidad Nacional Aut6noma de Mexico 

(October 1993) 

The XXIIth International Conference on Differential Geometry Methods 
in Theoretical Physics was held in Mexico during five days, September 20-24, 
1993, in the most attractive tropical Pacific coast, 200 km from Acapulco, 
in Ixtapa-Zihuatanejo. This series of annual conferences outgrowth of the 
meetings in the Professor Konrad Bleuler's house and garden. 

Konrad Bleuler, an outstanding Swiss theoretical physicist, was born in 
1912 in HerzogenBuchsee, Switzerland. Died on January 1, 1992, in Bonn. He 
was educated at Eidgenossische Technische Hochschule in Zurich, influenced 
mostly by his teacher and friend Wolfgang Pauli and since 1959 affiliated 
later to the Institut fur Theoretische Kernphysik, University of Bonn. 

Konrad Bleuler was fascinated how abstract mathematical structures tie 
into empirical quantities and that the relations among physics and geome­
try guided developments of both. His examples of the mathematical works 
inspired by physics include the abstract structure of quantum mechanics, su­
permathematics, Yang-Baxter and braid equations, non-Abelian gauge the­
ory and conformal field theories. 

Konrad Bleuler organized the first conferences and since this inception 
in 1971 he was the permanent member of the International Advisory Com­
mittees and main force behind the organizing efforts. Bleuler's intention 
was to bring mathematicians and physicists together and he succeed in this 
fusion as for example M. F. Atiyah, R. J. Baxter, M. Jimbo, Vaughan F. 
R. Jones, Bertram Kostant, Andre Lichnerowicz, Yuri I. Manin, Krzysztof 
Maurin, Jean M. Souriau, Shlomo Sternberg, Julius Wess, Edward Witten, 
Chen Ning Yang, served during many years as active members of the Inter­
national Advisory Committees. Another Bleuler's successful intention was 
to help contacts among East and West. 

The first conference in this series was held in 1972. The Proceedings 
of the first DGM conferences, including XIVth conference in Salamanca in 
1985, were published by Springer-Verlag in the series Lectures Notes in Ma­
thematics. There were two exceptions, the conference in Aix-en-Provence 
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in 1974 and Warsaw conference in 1976. The last one was published as 
the special volume of Reports on Mathematical Physics. Since 1986 the 
Proceedings were published either by Plenum Press and by Kluwer (1986, 
1987 and 1989), three times by World Scientific (Chester 1988, New York 
1991 and Tianjin 1992) and Rapallo conference in 1990 was published again 
by Springer-Verlag in the series Lecture Notes in Physics. 

It was decided that starting 1993 these conferences will be organized 
every two years. 

In honour of Professor Konrad Bleuler and in order to remember his 
contribution in the organization of this series of conferences, we proposed a 
Bleuler Medal as a bi-ennial award to a young scientist for an outstanding 
contribution to Geometrical Methods in Theoretical Physics. According to 
a selection made by the International Advisory Committee the distinction 
will be certified by a diploma signed by the Chairman of the conference and 
a silver medal containing a universal symbol for arts and science and the 
engraving Bleuler Medal, a year it is been awarded and a name of the victor. 

The Bleuler Medal 1993', the first one, we delivered to Shahn Majid from 
the Department of Applied Mathematics and Theoretical Physics, University 
of Cambridge in United Kingdom. This silver medal contains the Aztec 
calertdar from the year 1385. 

The conference in Ixtapa attracted 62 participants from 14 countries: 
U.S.A. (20), Germany (8), Italia (8), Mexico (7), Russia (6), Canada (4), 
France (2) and with the single representatives from Belgium, Finland, Japan, 
New Zealand, Poland and Serbia. 

Organizer and Editors: 

The Symposium was organized by Jaime Keller (Chairman), Mrs A. Irma 
Vigil de Aragon, Mrs Maria Esther Monroy Baldi, Adolfo Obaya Valdivia, 
Garret Sobczyk and with the help of the International Advisory Committee: 

Lawrence C. Biedenharn (University of Texas at Austin), Sultan Catto 
(City University of New York), Alain Connes (Institut des Hautes Etudes 
Sci en tifiques, Paris), Frank Flaherty (Oregon State University), J urg Frohlich 
(Zurich), Mo Lin Ge (Tianjin, China), Vaughan F. R. Jones (New Zeal­
land), Louis H. Kauffman (University of Illinois at Chicago), Werner Nahm 
(Universitat Bonn), Cupatitzio Ramirez (Universidad Aut6noma de Puebla, 
Mexico), Adolfo Sanchez Valenzuela (Centro de Investigacion en Matem­
aticas, Guanajuato, Mexico), Julius Wess (Max-Planck-Institiit fiir Physik 
und Astrophysik, Miinchen), Chen Ning Yang (Stony Brook New York) and 
Bruno Zumino (University of California and Lawrence Berkeley Laboratory). 
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REMEMBERING KONRAD BLEULER 

WERNER NAHM 
Physikalisches Institut der Universitiit Bonn 
nahm@pibl.physik.uni-bonn.de 

(Received: September 5, 1994) 

It was only during his last years that I got to know Konrad Bleuler more 
closely, thus the memories of his many friends will do him more justice. 
But one aspect comes first to the mind of everyone who knew him: Bleuler 
had an overwhelming, never wavering enthusiasm for p.hysics. Even after 
his emeritation, he regularly came to seminars, full of curiosity for new 
fundamental developments. After all mathematically demanding talks, he 
emphatically congratulated the speaker. He impressed all the students, and 
respect for him increased every year. 

In spite of his long stay in Germany, Bleuler's Swiss origins were un­
mistakable. He was born on September 23, 1912 in HerzogenBuchsee, can­
ton Bern, into a family of economically successful mechanical engineers. 
When he started to study in 1931 in Zurich at the Eidgenossische Technis­
che Hochschule, it still seemed obvious that he would become an engineer, 
too. Soon, however, he was seduced by the beauty of mathematical forms 
in nature. The decisive step for his turn towards physics was his study of 
Riemannian geometry and Einstein's theory of gravity. 

In mathematics, Heinz Hopf had the strongest influence on Bleuler, in 
physics it was Wolfgang Pauli. For a while, he oscillated between the two sub­
jects, and between Zurich and Geneva. After obtaining his physics diploma 
in 1936 he went to Geneva for two years, then back to Zurich, where in 1942 
he got his PhD in mathematics under George Polya. He became assista'fu; of 
Ernest Stiickelberg in Geneva, later. of Walter Reitler and Gregor Wentzel 
in Zurich, where he obtained a titulary professorship in 1945. 

Bleuler's lifelong concern was the fundamental understanding of the atomic 
nucleus. He stressed the importance of experimental data, but was convinced· 
that a good understanding:only would result from an esthetically pleasing 
theoretical basis. Quantum electrodynamics already was phenomenologically 
satisfying, but Bleuler very much disliked with the lack of Lorentz symmetry 
of the calculations. In part he certainly was influenced by Stuckelberg's work, 
but even more the insistence on symmetry and mathematical transparency 
was a part of his own nature. In 1950, Suraj Narayan Gupta published his 
famous paper on the quantum theory of the electromagnetic field. To some, 
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it may have looked like a pure intellectual exercise, since Gupta only consi­
dered non-interacting photons, but Bleuler immediately saw the potential of 
this approach. He streamlined it and showed that it could be applied equally 
well to the interaction with charges. Thus the Gupta-Bleuler formalism was 
created, which later was developed into the great number of BRST type 
approaches to the physical states. 

In 1957, Bleuler became ordinary professor at the university of Neuchatel. 
He worked hard on the understanding of the nucleus, but already had his 
many interests outside of physics. In particular, he had contacts to se­
veral writers, e.g. rather close ones to Carl Zuckmayer, and to Friedrich 
Diirrenmatt as the most famous. Bleuler decided to introduce Pauli to the 
latter, which led to three nights of wine and conversation. Diirrenmatt was 
intrigued and somewhat intimidated, so he made sure to prove his superi­
ority in drinking. At the 1962 conference on Chaumont close to Neuchatel, 
Diirrenmatt was guest of honor and gave a speech. A much more important 
result, however, was his play "The Physicists" (by the way, one of my first 
few contacts with physics). Pauli became the model for one of the physicists, 
but the central male character got the name Beutler and was modeled on 
Bleuler himself. Wolfgang Pauli told me that Bleuler's way of expressing 
himself was very recognizable on stage. 

In 1959, Bleuler got simultaneous professorship offers to Bonn an Frei burg. 
In the same year, he married Tinette Specogna. In Bonn he founded the In­
stitute fiir Theoretische Kern Physik, which he directed even after his emer­
itation until 1983. For many years, his main interest was the replacement 
of the older phenomenological nucleon-nucleon potentials by ones based on 
meson exchange. The resulting Bonn potential proved to be rather satis­
factory. Nevertheless, the advent of quantum chromodynamics immediately 
motivated Bleuler to cast aside this framework and to argue for models based 
directly on quarks. He was an organizer of three conferences on quarks and 
nuclei. 

Though i1e did not want to abandon the understanding of the nucleus 
as his own task, he always encouraged young physicists to work on more 
fundamental questions. The conference series on Differential Geometrical 
Methods in Theoretical Physics was the most influential result of his persis­
tent attempts to stimulate the interaction of mathematicians and physicists. 
Before the ADHM instanton paper, the importance of such interactions was 
far from universally accepted. Despite good preparations in discussions with 
Rolf Nevanlinna and others, it hardly could be foreseen, how far Bleuler's en­
thusiasm would carry, when he started the series in 1971 in an almost private 
setting next to his home in Bonn. Personal friendship, the green environ­
ment and the pleasant atmosphere created by his wife helped .to establish 
a tradition. Later, conferences expanded and took place in France, Poland, 
Italy, Israel and in the United States. Important topics since the first years 
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were geometric quantization, supersymmetry, and the geometry of gauge 
theories. The conferences were always attended by leading researchers in 
the field. 

The series continued every year without interruption, with undiminishing 
involvement of Bleuler himself. For me, it is a pleasant memory how much 
he enjoyed the Lake Tahoe meeting in 1989 and deeply moving to remember 
how he prepared the Tianjin conference in 1992. In spite of his illness, he 
personally wrote the most important initial letters. Later, he had to observe 
the partial decay of his sense of space and time and suffered much from it. 
Still, his enthusiasm for physics was undiminished. Till the end, he longed 
to participate in the conference. The support of his family greatly helped 
him during his last months. He died on January 1, 1992, leaving his wife, 
two children and three grandchildren. 





BLEULER's MEDAL WINNER: 
SHAHN MAJID 

JAIME KELLER and ZBIGNIEW OZIEWICZ 
Centro de lnveatigacione1 Te6ricaa 
Facu/tad de Eatudioa Superiorea-Cuautit/an, 
Univeraidad Nacional Aut6noma de Mexico 

Shahn Majid is interested in mathematics closely tied to fundamental pro­
blems in theoretical physics: non-commutative geometry, quantum groups, 
integrable systems and Yang-Baxter equations. His aspiration has been the 
development of quantum geometry provided by quantum groups (Hopf al­
gebras). 

A main result ofMajid's Ph.D. thesis (Harvard University 1988) was Hopf 
algebras obtained by his 'bicrossproduct' construction. These Hopf algebras 
arose as the algebras of observables of quantum particles on homogeneous 
spaces and were of self-dual· type. These models have some features in com­
mon with black-holes and formed Majid's quantum-geometric approach to 
the unification of quantum mechanics and gravity. The resulting Hopf-von 
Neumann algebras have been pursued further by mathematicians working 
in the theory of operator algebras. 

Drinfeld and Jimbo introduced quasitriangular Hopf algebras. Majid found 
that Drinfeld's quantum double Hopf algebra could be understood as an 
example of his 'double cross product' construction. These quasitriangular 
Hopf algebras are connected with knot-invariants. Majid studied the repre­
sentations of a quantum group as a braided category and interpreted the 
q-dimension as the category-theoretic rank. 

Majid proved generalized Tannaka.-Krein reconstruction theorems for quan­
tum groups and quasi-quantum groups. One application used quantum groups 
to connect properties of the Wess-Zumino-Witten model to number theory. 



Xl'iii JAli\lE b:hLLEll AND ZHI<;NIEW OZIEWICZ 

Majid introduced a Hopf algebra in a braided category, a braided group. 
This is like super-group but with the .:-£"rgraded transposition replaced 
by noninvolutive braid statistics. Braided groups include the degenerate 
Sklyanin algebra and Manin's quantum plane. Braided groups lie on the 
interface between algebra and knot theory. To prove results about braided 
groups one must draw braid and knot diagrams or play with pieces of string. 
There are braided lines, planes, matrices, differential calculi, a theory of in­
tegration on such spaces, and Lie-algebras all developed by Majid in analogy 
with the supergeometry. 

A theory of quantum group principal bundles and connections (gauge 
fields) on them, including the example of a q-monopole was introduced in a 
joint paper by Tomasz Brzezinski and Shahn Majid in 1993. 

Shahn Majid was born on November 1, 1960, in India. 
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Abstract. This paper studies invariants of 3-manifolds derived from certain finite dimen­
sional Hopf algebras. The invariants are based on right integrals for these Hopf algebras. 
It is shown that the resulting class of invariants is definitely distinct from the class of 
Witten-Reshetikhin-Tur aev invariants. 

Introduction 

The purpose of this paper is to indicate a method of defining invariants of 
3-manifolds intrinsically in terms of right integrals on certain Hopf algebras. 
We call such an invariant a Hennings invariant [5], as Hennings was the first 
person to point out that invariants could be defined in this way. The work 
reported in this paper appears more fully in joint work of the author and 
David Radford [10). 
Hennings invariants were originally defined using oriented links. It is not 
necessary to use invariants that are dependent on link orientation to define 
3-manifold invariants via surgery and Kirby calculus. For that reason the 
invariants discussed in this paper are formulated for unoriented links. This 
results in a simplification and conceptual clarification of the relationship 
of Hopf algebras and link invariants. The practical benefit is a simplified 
algorithmic structure for the calculation of reasoning about the invariants. 
Further reference to invariants of 3- manifolds in this paper will, unless oth­
erwise specified, be to this version of the Hennings invariant for unoriented 
links. 
We show in [10) that invariants defined in terms of right integrals, as consid­
ered in this paper, are definitely distinct from the invariants of Reshetikhin 
and Turaev. We show that our invariant is non-trivial for the quantum group 
Uq( sl2)' when q is an fourth root of unity. The Reshetikhin Turaev invariant 
is trivial at this quantum group and root of unity. The non-triviality of our 
invariant is exhibited by showing that it distinguishes all the Lens spaces 

• The author thanks the National Science Foundation for support of this research under 
grant number DMS-9205277. 
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L( n, 1) from one another. This proves that there is non-trivial topological 
information in the non-semisimplicity of Uq(sl2)'. 
The paper is organized as follows. Section 1 recalls Hopf algebras, quasi­
triangular Hopf algebras and ribbon Hopf algebras. Section 2 discusses the 
conceptual setting of the invariant. This involves a summation over labellings 
of the link diagram by elements of the Hopf algebra. We work in a category 
that allows immersed diagrams so that the special grouplike element in the 
Hopf algebra and the ribbon element in the Hopf algebra both have di­
agrammatic interpretations. A trace function on the Hopf algebra that is 
invariant under the antipode is shown to yield a link invariant. In section 3 
we show that traces of the kind discussed in section 2 are constructed from 
right integrals in many cases and that under suitable conditions these traces 
yield invariants of the 3-manifolds obtained by surgery on the links. Section 
4 sketches the promised application to Uq( sl2)'. 

1. Algebra 

Recall that a Hopf algebro A [20] is a bialgebra over a commutative ring 
k that has associative multiplication, coassociative comultiplication and is 
equipped with a counit, a unit and an antipode. The ring k is ust:.ally taken 
to be a field. 
In order to be an algebra, A needs a multiplication m : A 0 A -+ A. The 
associative law for mis expressed by the equation m(m 0 1) = m(l 0 m) 
where 1 denotes the identity map on A. 
In order to be a bialgebra, an algebra needs a coproduct ~ : A -+ A 0 A. 
The coproduct is a map of algebras, and is regarded as the dual of a multi­
plicative structure. ~ is coassociative. Coassociativity of A is expressed by 
the equation(~® l)A = (10 ~)A where 1 denotes the identity map on A. 
The unit is a mapping from k to A taking 1 in k to 1 in A, and thereby 
defining an action of k on A. It will be convenient to just identify the units 
in k and in A, and to ignore the name of the map that gives the unit. 
The counit is an algebra mapping from A to k denoted by E: A-+ k. The 
following formulas for the counit dualize the structure inherent in the unit: 
(E 0 1)~ = 1 = (10 E)A. Here the 1 denotes the identity map on A. 
It is convenient to write formally ~(x) = :E X(i)®x(2) E A@A to indicate the 
decomposition of the coproduct of x into a sum of first and second factors 
in the two-fold tensor product of A with itself. We shall further adopt the 
summation convention that :E x(l)®x(2) can be abbreviated to just X(l)®x(2)· 

Thus we shall A( x) = X(t) 0 x(2)· 

The antipode is a mappings: A-+ A satisfying equations m(l 0 s)~(x) = 
E(x)l, and m(s 0 l)~(x) = E(x)l where 1 on the right hand side of these 
equations denotes the unit of k as identified with the unit of A. It is a 
consequence of this definition that s( xy) = s(y )s( x) for all x and y in A. 
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A quasitriangular Hopf aJgebm A [3) is a Hopf algebra with an element 
p E A 0 A satisfying the following equations: 

1) ptl. = 6.'p where A' is the composition of A with the map on A 0 A 
that switches the two factors. 

2) p12P13 = (10 A)p, p13p23 = (6. 0 l)p. 
These conditions imply that p has an inverse, and that p-1 = (1 0 s-1 )p = 
(s 0 l)p. 
It follows easily from the axioms of the quasitriangular Hopf algebra that p 
satisfies the Yang-Baxter equation 

P12P13p23 = P23p13P12· 

A less obvious fact about quasitriangular Hopf algebras is that there exists 
an element u such that u is inver.tible and s2 ( x) = uxu-1 for all x in A. In 
fact, we may take u = Es(e')e where p =Ee 0 e'. 
An element G in a Hopf algebra is said to be grouplike if 6.( G) = G 0 G 
and E(G) = 1 (from which it follows that G is invertible and s(G) = a-1). 

A quasitriangular Hopf algebra is said to be a ribbon Hopf algebm [18),[9] 
if there exists a grouplike element G such that (with u as in the previous 
paragraph) v = a-1u is in the center of A and s(u) = a-1ua-1• We call G 
a special grouplike element of A. 
Since v = a-1u is central, vx = xv for all x in A. Therefore a-1ux = 
xG-1u, whence s2( x) = uxu-1 = GxG-1• Thus s2 ( x) = GxG-1 for all x 
in A. Similarly, s(v) = s(G-1u) = s(u)s(G-1 ) = a-1uG-1G = a-1u = 
v. Thus the square of the antipode is represented by conjugation by the 
special grouplike element in a ribbon Hopf algebra, and the central element 
v = a-1u is invariant under the antipode. 

2. Diagrammatic Geometry and the Trace 

A function tr; A --+ k from the Hopf algebra to the base ring k is said to be 
a tmce if 

tr( xy) =tr(yx) and 
tr(s(x)) =tr(x) 

for all x and y E A. In this section we describe how a trace function on a 
ribbon Hopf algebra yields and invariant, T R(K), of regular isotopy of knots 
and links [6],[7]. 
The link diagram is arranged with respect to a vertical direction so that 
the crossings form the two types indicated below, and so that other than 
the crossings the only critical points of the height function are maxima and 
minima. Each crossing is decorated with elements of the Hopf algebra as 
shown below. Here p =Ee 0 e' is the Yang-Baxter element in A 0 A, ands 
denotes the antipode. 
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I 
I<~> \ -<~> 

\ 
It is implicit in this formalism that there is a. summation over all the pairs 
e, e' for each Yang-Baxter element. 
Hopf algebra elements may be moved across maxima or minima at the ex­
pense of application of the antipode. That is, if a Hopf algebra element is 
moved across a maximum or minimum, then it is replaced by the application 
of the antipode to that <'lement if the motion is anti-clockwise. If the motion 
is clockwise, then the inverse of the antipode is applied to the element. See 
the diagram below. 

n~ ~A 

The link diagram is subject to deformations that generate regular isotopy [8]. 
Since the diagram is presented with respect to a choice of vertical direction 
(discriminating the maxima, minima and crossing types), regular isotopy is 
generated by a set of moves that include the cancellation of adjacent pairs 
of maxima and minima and the switching of an arc across a maximum or 
minimum. The full set of moves is shown in Figure 1. We have labelled these 
moves as 

-. (cancellation of maxima and minima) 

IL (cancellation of opposite crossings) 

III. (braiding) 

IV. (switching) 

IV'. (twist of crossings) 

IV' is equivalent to IV in the presence of the cancellation of maxima and 
minima. These moves generate regular isotopy for diagrams arranged with 
respect to a vertical direction. 
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-· ~~)~~ _lY., ~~~ 
x~>( ][.. 

\}_) ~ ~ 
( ( 

~~( JI[, 

JL~ x ~rfJ 
~ 

~1 
Figure 1 

Remark. The symbol "'r is used to denote the replacement of one figure 
by an equivalent figure. We shall sometimes use an equals sign (=)to perform 
the same purpose. The symbol 4'> or <~> will be used to indicate a 
correspondence. For example, a link diagram corresponds to the diagram 
obtained from it by decoration with elements of the Hopf algebra. 
An invariant of regular isotopy must remain unchanged by the moves shown 
in Figure 1. The simplest move is the cancellation of a pair consisting of a 
maximum and a minimum. 

This pair cancellation gives a reformulation of the slide rule for the antipode: 
The antipode is accomplished by "composition with a maximum and a min­
imum". 
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Note also that once the crossings of a link diagram have been labelled with 
elements of the Hopf algebra, the resulting diagram is depicted as a labelled 
immersion of a curve or curves in the plane. This is quite natural since 
the translation from algebraic braiding element to knot-theoretic braiding 
element is accomplished via the composition with a transposition, a.nd the 
simplest diagrammatic representation of a transposition is the crossing of 
two arcs in the plane. 

These immersions can be deformed up to regular homotopy that respects the 
given vertical direction. In other words, one can perform the projected forms 
of the moves of Figure 1. If algebra is present on the lines then the following 
extra move is added (sliding an external line past an algebra element). 
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V. (slide rule) 

Since algebra elements are configured with respect to the vertical direction, 
we do not allow the cancellation of a maximum and a minimum that have 
an algebra element between them. This allows the representation of the 
antipode as described above. 
It is now easy to check the twist relation (IV') for crossings: 

x 
With these conventions, the square of the antipode is equivalently dia­
grammed as a "composition with two curls" as shown below: 
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These curls are identified with the special grouplike elements G and c-1 in 
the Hopf algebra. 

-I 
0 

Thus the diagram for the square of the antipode represents directly the 
formula s2(x) = GxG-1 • 

Along a vertical line, algebra elements combine by multiplication. 

b 

The product in the Hopf algebra corresponds to the multiplication of single 
strand tangles. A single strand tangle is a bit of link diagram with two free 
ends arranged with respect to the vertical so that one end is down and the 
other end is up. Tangles are multiplied by attaching the down end of one 
tangle to the top end of the other. 
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ST 

The coproduct ~ : A--+ A@A in the Hopf algebra corresponds to a mapping 
on tangles ~ : T(l) __. T(2) from single strand tangles to double strand 
tangles obtained by forming the parallel (two strand) cable of the given 
tangle. The tangles in question can be immersions. 
For example, we see that the formula ~( G) = G 0 G corresponds to the 
regular isotopy shown below. 

G@C5. 

In this way knots on a line can be resolved into algebra elements. For example 
the twist shown below is equivalent to the ribbon element v. 'Note how the 
factorization of v into a product of c-1 and u = I: s( e')e is related to the 
slide convention for the antipode (in the diagrammatic calculation shown 
below we use the fact that (s 0 s)p = p.) 

-1 ()/-' = <£ (,.{_,. 

Note that s( v) = v corresponds to the identification shown below. 
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When this identification is added to regular isotopy, the twists catalog only 
the framing, and the equivalence relation on the link diagrams is equivalent 
to ambient isotopy of framed links. 
Finally, returning to the diagrammatic coproduct we see the interpretation 
of the following formula of Drinfeld ~( u) = P21P12( u ® u ): 

~= t f::,.(U) - ~ 

v ) --

·~ 
t<, c.(., I 
f .£1 

<.~> e. el -
el e ~ e, e:i. (U;@lL) . 

In general, if Tis a single strand tangle, and F(T) is the corresponding ele­
ment in the Hopf algebra A that is determined by our correspondence, then 
F(~(T)) = ~(F(T)) where the first ~ is the diagrammatic coproduct and 
the second ~ is the algebraic coproduct. This fact follows from the axioms 
for a quasi-triangular Hopf algebra in conjunction with our diagrammatic 
conventions. 

Definition and Computation of T R(A"). 

Suppose that tr: A --+ k is a trace function. That is, tr is a linear function 
satisfying 
1. tr( xy) =tr(yx) and 
2. tr(s(x)) =tr(x). 
To define the trace T R(I<) for a knot diagram J(, slide all of the algebra into 
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one vertical portion of the diagram. Amalgamate this algebraic expression 
according to the rule for multiplying algebra elements on the diagram, as we 
have done above. Call this localized algebra element w. It is a sum of prod­
ucts, and can be formally represented as a product where it is understood 
that there. is a sum over all pairs of the type e, e'. 
Let d be the Whitney degree of the flat diagram for K that is obtained by 
traversing K upward from the vertical portion where the algebra has been 
concentrated. The Whitney degree is the total turn of the tangent vector to 
the curve as one traverses it in the given direction. For example: 

Define TR( K) by the formula TR( K) =tr( wGd). Note that w is itself a 
summation over all the pairs x, x' corresponding to Yang-Baxter elements on 
the diagram. TR( I<) defines a regular isotopy invariant of unoriented knots. 
(The proof is primarily a matter of checking that T R(I<) is independent 
of the place where we concentrate the algebra. This reduces to checking 
the independence in the case where the concentration is moved around a 
maximum or a minimum. See example 2 below: and for a complete proof see 
Theorem .5.1 of [7].) 
In order to define an invariant of unoriented links, concentrate the algebra 
for each component of the link, and define 

TR( K) =tr( W1 cdi )tr( w2Gd2 )tr( w3Gd3 ) • . ·tr( Wn Gdn) 
where the labels 1, 2, ... , n refer to the components of the link, and the im­
plicit summation is the sum over all the pairs x, x' in these words. The 
elements w 1 , ... , Wn are the algebra concentrations for each link component, 
;ind the degrees d1 , ... , dn are the Whitney degrees of the components of 
the link. 

Example. This example points out hmv the TR( K) is invariant under al­
gebra slides: 

S(~) iJl ( S(tX-) ([} J 

tr(s(J:)G) =tr(s(s(x)G)) =tr(G- 1s2 (x)) =tr(c- 1cxc-1 ) =tr(xG- 1). 
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Example 3. Here is the form of calculation for a link. 

TR(L) = I:,tr(f'eC- 1 )tr(fe'G). 
n n n 

If p = L 1:; ®Yi then TR(L) = L L tr(yjx;G- 1 )tr(xjy;G). 
i=l i=lj=l 

This is how the regular isotopy invariant of the link would look as a specific 
sum of traces of algebra elements. 

III. Invariants of 3-manifolds 

The structure we have built so far can be used to construct invariants of 
3-manifolds presented in terms of surgery on framed links. We sketch here 
our technique that simplifies an approach to 3-manifold invariants of Mark 
Hennings [5]. 
Recall that an clement,\ of the dual algebra A* is said to be a right integral 
if .\(x)l = m(,\ ® l)(~(x)) for all x in A. For a unimodular [12],[15) finite 
dimensional ribbon Hopf algebra A there is a right integral ,\ satisfying the 
following properties for all x and y in A: 
0) ,\ is unique up to scalar multiplication when k is a field. 
1) .\(xy) = .\(s2 (y)x) 
2) .\(gx) = .\(s(x)) where g = G2 , G is the special grouplike element for 

the ribbon element V = c-Lu. 
Given the existence of this .\, define a functional tr: A -+ k by the formula 
tr(x) = .\(Gx). 

Theorem. With tr defined as above, then 
1) tr(xy) =tr(yx) for all x,y in A. 
2) tr(s(x)) =tr(x) for all x in A. 
3) [m(tr®l)(~( 1l-l ))Ju = .\(v- 1 )v where v = c- 11l is the ribbon cle­

ment. 

Proof. The proof is a direct consequence of the properties 1) and 2) of.\. 
Thus tr(xy) = .\(Gxy) = .\(s2(y)Gx) = .\(GyG-1Gx) = .\(Gyx) =tr(yx), 
and tr(s(x)) = .\(Gs(x)) = .\(gG-1 s(x)) .\(s(G-1s(x))) = .\(s2(x)s(G- 1 )) 

= .\(s2(x)G) = .\(GxG-1G) = .\(Gx) =tr(x). Finally, 
[m(tr@l)(~(u- 1 ))]u = c- 1 [m\.\·G@G)(~(u- 1 )))u = [m(.\@l)(~(cu- 1 ))] 
c-1u = ,\( cu-1 )c- 1u = ,\( v- )v. This completes the proof. 11 
The upshot of this Theorem is that for a unimodular finite dimensional 
Hopf algebra there is a natural trace defined via the existent right integral. 
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Remarkably, this trace is just designed by property 3) of the Theorem to 
behave well with respect to the Kirby move. The Kirby move is the basic 
transformation on framed links that leaves the corresponding 3-manifold 
obtained by framed surgery unchanged. See [11], [19]. This means that a 
suitably normali::ed version of this trace on framed links gives an invariant 
of 3-manifolds. Here is a sample Kirby move 

The cable going through the loop can have any number of strands. The loop 
has one strand and the framing as indicated. The replacement on the right 
hand side puts a 360 degree twist in the cable with blackboard framing as 
shown above. Here we calculate the case of a single strand cable: 

e 
rt'-/ 

.£1 

The diagram shows that the trace contribution is (with implicit summation 
on the repeated primed and unprimed pairs of Yang-Baxter elements) 
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tr(f'v-1ec-1)fe1 = tr(f1ev-1c-1)fe' = tr(f'eu-1)fe' 
= [m(tr@ l)(f' eu-1 @ f e'u-1 )Ju = [m( tr@ 1 )(P21Pd u-1 @ u-l ))Ju 
= [m(tr@l)(.6.(u-1))Ju = >.(v-1 )v. (.6.(u-1) = P21P12(u- 1 @u-1

)) 

It follows from this calculation that the evaluation of the lefthand picture 
in the Kirby move is >.( v- 1) times the evaluation of the right hand picture. 
The corresponding result for an n-strand cable is obtained by applying the 
coproduct to the equation above, and using the functoriality of the coproduct 
with respect to tangles and tensor powers of the Hopf algebra. 
Thus a proper normalization of TR( K) gives an invariant of the 3- manifold 
obtained by framed surgery on J(. More precisely, (assuming that >.( v) and 
>.( v- 1 ) are non-zero) let 

I NV( K) = {[>.( v)>.( v- 1 )J-c(K)/2[>.( v )/ >.( v-1 )J-"(K)/2}T R(K) 

where c( K) denotes the number of components of](, and s( K) denotes the 
signature of the matrix of linking numbers of the components of J( (with 
framing numbers on the diagonal), then I NV(K) is an invariant of the 
3-manifold obtained by doing framed surgery on ]( in the blackboard fram­
ing. This is our reconstruction of Hennings invariant [5] in an intrinsically 
unoriented context. 

IV. Uq(sl2)' 
The purpose of this section is to set up part of the general calculations for 
Uq( sl2 )', and to sketch the calculation of the special case of the evaluation 
of the right integral on powers of the ribbon element v in the case n = 8. 
This will give us the result that the invariant INV(K) is distinct from the 
Witten- Reshetikhin-Turaev invariant at this root of unity. Complete details 
are found in [lOJ. 
Recall the algebraic structure of Uq(sl2)'. 
Lett be a primitive n-th root of unity, q = t2 , m =order(t4 ). Assume m f= 1 
(that is n f= 1,2,4). 
The algebra has generators and relations as given below. 

ae = qea 
af = q-1 fa 
an= 1 
em= 0 = fm 
[e,JJ = ef- fe = (a2 

- a-2)/(q- q-1) 

The Yang-Baxter element is given by the formula below (11],[16J. 

m-1 

R=l: L 
v=O i,uEZ/nZ 

The coproduct is described by the formulas 
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~a =a 0 a 
~x = x 0 a-1 + a 0 x, x = e, f 

The counit is determined by the formulas 

E(e) = E(f) = 0 and E(a) = 1. 

It follows from the definition of the antipode s that for x = e or f, 0 = 
E(x)l = m(s 0 l)~(x) = s(x)a-1 + s(a)x = s(x)a-1 + a-1 x. (s(a) = 
a- 1 since~( a)= a 0 a.). 
This means s(x) = -a-1 xa, whence 

s(e) = -q- 1e and s(f) = -qf. 

The special grouplike element is G = a- 2
. 

The special element u such that s2 (x) = uxu-1 for all x, is given by the 
formula u = :Ls(R(2))R(1). The next Lemma gives a specific formula for u. 

m-1 

Lemma 1. u = L 
v=O i,jEZ/nZ 

Proof. See [10].// 

Change of Basis 

We now make the following change of basis. 
Replace e by -( q - q-1 )e. Then 

ae = qea 
af = q-1 fa 
an= 1 
em= 0 = fm 
[!, e] = a2a-2 

Note that in this basis the formula for u becomes 

m-1 

u= 2: 
v=O i,jEZ/nZ 

Right Integral 

A right integral A for A= Uq(siz)' is described as follows. Consider the linear 
basis for A given by the set ·{aiej JklO::;: i < n,O::;: j,k < m}. Then .X(w) 
for w E A is the coefficient of a2(m-l)em-l fm-l in a writing of w in this 
basis. We can write A = a2(m-l)em-l Jm-l where the bar over the expression 
denotes the characteristic function of this element of the algebra A. That 
this formula gives the right integral can be verified by direct calculation [17]. 
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. Orthogonal Idempotents 

Let A;= (l/n) E tiiai. Then A;Aj = A;h;j where h;j is the Kronecker 
jEZ/nZ 

delta and 1 = Ao + Al + ... + An-1 · 
Thus {Ao, Al, ... , An-d form a set of orthogonal idempotents for the 
group algebra k[G] where G =(a)= Z/nZ. 

Fr h 1 . ~ ik { n if k = 0 r k Z/ h om t ere at10n ~ t = 0 if k :I 0 . ior E nZ, we ave 
iEZ/nZ 

Lemma 2. a= E ri A; . 
iEZ/nZ 

Proof: See [10]. / / 
m-1 

Hence u= E E 
v=O iEZ/nZ 

·2 
where c = E r' A; 

iEZ/nZ 

Proof. See [10].// 

The Special Case n = 8. 

Let n = 8. Then m = 2, q = J=I and the algebraic relations for U9(sl(2))' 
are 

t8 = 1, q = t2 

ae = qea 
a[= q-1 fa 
a = 1 
e2 = 0 = J2 
[f,e] = a2 - a-2. 

Note that by the previous calculation, 

u = c(l + C 4 a2ef) = c(l - a2el) 

with c given as in Lemma 3. 

Recall that>. = a2(m-l)em-l Jm-l is a right integral for U9( sl2)'. Thus, when 
n = 8, the right integral is >. = a2ej. 

Lemma 4. Let X = -a2ef. Then u = c (1 + X) and 

X 2 = ( a4 
- 1 )X = - 2 ( E /\;) x. 

i odd 
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Proof. See [10).// 

The special grouplike in this case is G = a-2 • Thus the ribbon element is 
v ==a-tu= a2u. Thus v = a2c(l + X). To evaluate A(vk), let H =(a) be 
the cyclic group generated by a. Note that vk = co+ c1X, where c; E k[H]. 

Lemma 5. Writing c1 = L: a;t\;, with a; E k, then 
iEZ/BZ 

A(vk) = (-1/8) = L: a;. 
iEZ/BZ 

Proof. See [10).// 

Lemma 6. Let n = 8 and let A be the right integral and v be the ribbon 
element for Uq(sl(2))' as described above.· 

Then A(vk) = -k/2. 

Proof. See (10].// 

Corollary. The value of the 3 manifold invariant I NV( L( kl)) for n = 8 is 
given by the formula INV(L(k, 1)) = Hk fork:/; 0. 

Proof. The surgery datum for ·L(k, 1) is an unknotted loop with k curls. 
Hence the. unnormalized invariant is given by the formula 
TR( vkG-1 ) = A( Gvka-1) = A( vkG-1G) = A( vk) = -k/2. The norlT'alized 
invariant is given by the formula 
I NV(L(k, l)) = [A(v )A( v-1 )J-c(K)/2[A( v)/ A( v-1 )J-a(K)/2T R(K). 
Here c(K) = 1 and u(K) = 1 if k > 0, u(K) = -1 if k < 0 since 
the link has one component, and the linking matrix is ( k ). We know that 
A(v) = -1/2 and A(v-1 ) = 1/2. Therefore 
I NV(L(k, 1)) = [(1/2)(-1/2)t112[(1/2)/(-1/2))±1(-k/2) 
= (-22)1/2(-1)(-k/2) = (-l)lf2k. 
This completes the proof.// 

Remark. This finishes our verification that the invariant INV is definitely 
different from the WRT invariant in the case n = 8, where WRT is trivial. 
During the preparation of our paper (10) it came to our attention that similar 
results have been independently obtained by Tomotada Ohtsuki (14]. He 
finds that invariants defined for Uq(sb)' in a manner equivalent to ours 
necessarily vanish for 3-manifolds that are not rational homology spheres, 
and he performs calculations similar to ours for Lens spaces. 
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Abstract. Recent work of Roberts has shown that the surgical 4-manifold in«·uiant of 
Broda [Bl] and (up to an unspecified normalization Li.ctor) the state-sum 4-manifold 
invariant o'f Crane-Yetter [CY] are equivalent to the signature of the 4-manifold. Subse­
quently Broda [B2] defined another surgical invariant of 4-manifolds in which the 1- and 2-
handles are treated differently. We use a refinement of Roberts' techniques developped in 
[CKY] to identify the normalization factor to show that the "improved" surgical invariant 
of Broda [B2] also depends only on the signature and Euler character. 

As a starting point, let us first observe that the construction of Crane-Yetter 
(CY] does not really depend on the use of labels chosen from the irreps of 
Uq(sl2) at the principal rth root of unity: the simple objects of any artinian 
semi-simple tortile category (cf. (S, Y]) in which all objects are self-dual and 
the fusion rules are multiplicity free will suffice. In particular, if we restrict 
to the integer spin (bosonic)1 irreps, we obtain a construction of a different 
invariant of 4-manifolds. 

In what follows, we use Temperley-Lieb recoupling theory (cf. (KL,L,R]). 
In particular, arcs are labelled with elements of {O, 1, ... r - 2} (twice the 
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spin) A= e2tri/4r q = A2 A(n) = (-l)nqn+i_q-n-i 8(a b c) denoted the 
' ' ' q-q-1 ' ' ' 

evaluation of the theta-net with edge labelled a, b, and c, and 15 - j denotes 
the evaluation of the Temperley-Lieb version of the Crane-Yetter quantum 
15j-symbol (with indices suppressed). 

We then adopt the following further notational conventions: 
Arcs labelled w denote the linear combination of arcs labelled 0, 1, .. ., r-2 

in which the coefficient of i is A( i). Arcs labelled w denote the linear combi­
nation of arcs labelled 0, 2, ... , 2 L r;2 J (even integers) in which the coefficient 
of i is A( i). N denotes the sum of the squares of the A( i)'s, N denotes the 
sum of the squares of the A(i)'s for i even. Let K be as in [KL,RJ, the eval­
uation of an w labelled 1-framed unknot divided by the positi':'e square root 
of N, and let;;. he the evaluation of an w labelled 1-framed unknot divided 
byN. 

If L is a framed link, then w( L) denotes the evalutation of the link with 
all components labelled w( L) If ,C is a set of 4-manifold surgery instructions 
(cf. Kirby (K]), that is a link L with a distinguished 0-framed unlink f, then 
8 1(£) denotes the evaluation of the link L with all components of L (one­
handle attachments) colored w and all other components of L (two-handle 
attachments) colored w. 

LEMMA 1. w(L) is invariant under handle-sliding. 8 1£ is invariant un­
der handle-sliding of 1- and 2-handles 1-handles and of 2-handles over 2-
handles. 

proof: This follows immediately from handle-sliding over components la­
belled w and the analysis given in Remark 17 §12.6 of Kauffman/Lins (KL] 
once it is observed that pairs of bosons only couple to produce bosons. 0 

LEMMA 2. (The bosonic encirclement lemma} 

n 

= 0 

whenever n is even and non-zero. 

proof: This follows from the same proof as the encirclement lemma of Lick­
orish [LJ (cf. also Kauffman/Lins [KL]) with the "auxiliary loop" labelled 2 
instead of 1. D 
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Let 

CYB(W) = fino-n1 

II 
'euahedra ,,. 

II ~(A(o-)) 
even labelling• facet 
-" of faces and tT 

tetrahedra. 

be the bosonic Crane-Yetter invariant. 
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II 15-j 

4-eimplexe• 

Let ILi (resp. v(L), O'(L)) denote the number of components of a link 
L (resp. the nullity of the linking matrix of L, the signature of the linking 
matrix of L). 

We can then define a purely bosonic version of Broda's original invariant 
by 

w(L) 
Br B (W) = _ .lf.1±.!1.hl. 

N 2 

where Lis the underlying link of a surgery presentation of W; while a bosonic 
version of the Reshetikhin/Turaev [RT] 3-manifold invariant is given by 

where L is a framed link giving surgery instructions for M. 
Applying the two lemmas above in an analysis otherwise identical to that 

of given by Roberts [R] of the original Broda invariant [Bl] shows that 

PROPOSITION 3. 

Similarly it follows from the bosonic encirclement lemma that 

where nd is the number of d-simplexes in a triangulation, and L is the link 
derived from a triangulation by putting a 0-framed unknot in each tetrahe­
dron, and a loop around each 2-simplex (running mostly through 4-simplexes 
but linking each tetrahedron's unknot) after the manner of Roberts [R]. 

It then follows as in [CKY] that 
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PROPOSITION 4. (*) 

Now, Broda's new invariant is defined by 

B(W)- B'(L) 
- - (L) ILl-v(L) N 11 N 2 

For convenience we first analyse a slightly different normalization (for 
which the proof of invariance is effectively identical to that for B(W): let 

B _ B1(L) 
(W) - felL-il-lilNlil 

Now, it follows from the original encirclement lemma of Lickorish [L] that 

where £, is the surgery instructions given by assiociating the link L to the 
triangulation' as above, and letting L be the ~nlink ofloops in the tetrahedra. 

Observe that B is multiplicative under connected sum, and that B(S1 x 
S3 ) = N (an easy calculation). As shown in Roberts [R], £, is a surgery 

nt-1 
presentation for W #( # S1 x S3). 

From this and the fact that for £, IL - LI = n2 and ILi = n3, we see that 

..,..._B--''('--£)'-- = B(W#(#1 
S1 x S3)) 

fen2-n3Nn3 
= B(W)fent-t. 

Thus 

B'(L) = B(W)fem-n3+n.-1 Nn3. (***) 

It then follows from (*), (**) and {***) that 

B(W) = Kcr(W) N x<:->-1 

To return to Broda's [B2] original normalization, note that 

B(W) = B(W)(N N-!)IL-ll-lil-11(L) 

From which we obtain 
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THEOREM 5. If W is a connected closed oriented smooth 4-manifold, then 

( 

-) x!..!'.!:'.1_1 
B(W) = Ku(W) z l 

proof: It suffices to shown that if W is given by the surgery instruction £, 
then 

IL - LI - ILi-'- v(L) = x(W) - 2. 

But this follows immediately from the observation that v( L) is the num­
ber of 3-handles attached in completing the construction of W. D 
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Abstract. Lickorish [L] proved his encirclement lemma for Temperley-Lieb only in the case 
where the Kauffman bracket variable A is the principal 4rth root of unity. The analogous 
statement does not hold for A = ie~ for r odd. As a consequence the interpretation 
given by the authors in [CKY] based on the work of Roberts [R] of the Crane-Yetter [CY] 
and Broda (BJ invariants does not hold when the theories are constructed from this case 
of T-L theory, as is shown by the example of S2 x S2

• 

The encirclement lemma of Lickorish [L] (cf. also [KL]) is used crucially 
in Roberts' elegant proof [Rf that the Turaev-Viro invariant [TV] is the 
absolute square of the Reshetikhin-Turaev-Witten invariant [RT], and in 
the reduction of the 4-manifold invariants of Broda [BJ and Crane-Yetter 
[CY] to classical homeomorphism invariants (cf. [B, CKY]). 

In the following we present the representation theory of Uq(sl2 ) in terms of 
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Temperley-Lieb recombination diagrams following Kauffman and Lins [KL). 
In this version of the theory, the basic deformation variable is the Kauffman 
bracket variable A. We denote the "standard truncation" at a root of unity 
(the "small representations") by Repf(Uq(sl2)), where A is the Kauffman 
bracket variable, a particular choice of 4rth root of unity. In particular we 
are interested in 4th roots of the principal rth root. 

The encirclement lemma can then be stated: 
The Encirclement Lemma [L] 

In Repf 'ff (Uq(sl2)) 

f Oci> = 0 

n,j = o I 
unless n = 0. 

Analyses of the Temperley-Lieb recoupling theory have been carried out 
exclusively in the cases where A is the principal 4rth root of unity (cf. [KL], 
[L], [BJ, [CKY]). A careful reading of [KL] shows that with the exception of 
the Handle-Sliding Lemma, and the Encirclement Lemma, the entire theory 
can be carried through with A some other root of unity, in 'Particular for 
A = ie~ (which is a primitive 2rth (resp. rth) root of unity when r = 1 
(mod 4) (resp. r.= 3 (mod 4))). Note, however, that this A is nonetheless, 
a 4th root of e 

2
;'. 

The Handle-Sliding Lemma hold for A = ie~, as may be seen by con­
sidering Remark 17 of [KL] §12.6. 

However, the Encirclement Lemma is false in the case A = ie"ff for r 
odd. In particular 

Proposition 

In RepfeW (Uq(sl2)) for r odd, 
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r-2 r-2 

~ Ocoj N 
r-2 

n,j = o I 
where N is the sum of the squares of the quantum dimensions, and in par­
ticular is non-zero. 

proof: It suffices to show that the square of the braiding applied to (r - 2) 
and j (for any 0 :::; j :::; r - 2) is the identity, since this will imply that the 
map on the left-hand side is the identity map on (r- 2) multiplied by N f:- 0 
(the sum of the squares of the quantum dimensions). 

Now, in Rep~(Uq(sl2 )), (r - 2) ® j is isomorphic to r - 2 - j. Thus 
the square of the braiding is a scalar multiple of the identity. Applying the 
formula for the braiding (cf. Kauffman/Lins [KL]), we find that the scalar 
is 

( -1 )(r-2)+j-[(r-2)-j] A (r-2)r+j(j+2)-(r-2-j)(r-j) = ( -1 )2j A2rj 

= (ie~)2rj 
= i2rj ej'lri 

So we are done. D 

As a consequence the analogue of the result of the authors [ CKY] (cf. 
also [R]) interpreting the Crane-Yetter invariant in the case where A is the 

principal 4rth root of unity is without proof in the case of A = ie 
2
:/ for r 

odd. Kf.!!2 
In fact there is no expression for CY(W) of the form "'"(W) N 2 in 

this case (for "' a phase, and N the sum of the squares of the quantum 
dimensions): direct calculation shows for A = ie 

2
2"o; that CY(S2 xS2 ) = 2N2 , 

while CY(S1 x S3) = 1. 
Similarly, Roberts [R] proof that the Turaev-Viro [TV] invariant is the 

absolute square of the Reshetikhin-Turaev-Witten [RT] invariant will not 
work in this case, since the reduction of Turaev-Viro to "chain mail" fails. 
We have not been able to see whether this delicacy arises in the proofs of 
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Turaev [T] or Walker [W] of the same result, nor to find examples which 
would show the result fails in this case. 

Another consequence of the failure of the encirclement lemma in this case 
is the observation that the two Repf(Uq(sl2))'s for the different values of A 
appearing above are inequivalent as abstract braided monoidal categories. 

To be precise: 

Definition The center Z(X) of a braided monoidal category X is the full 
subcategory of objects A satisfying 

for all objects X in X. 
Definition A braided monoidal equivalence between two braided monoidal 
categories is a monoidal equivalence which, moreover, satisfies 

F(u) 

F(A®B) F(B 0 A) 

F(A) 0 F(B F(B) 0 F(A) 
O" 

where O" denotes the braiding in the relevant catr>gory, and ( F, F#, Fo) is 
one of the functors in the equivalence. 

We then have 
2Jri. 

Theorem The center of Rep'{ 4
r (Uq(sl2)) is braided monoidally equivalent 

2Jri. 
to C - v.s.,®, while the cent~r of Repfe 4

r (Uq(sl2)) is braided monoidally 
equivalent to Z/2-gr-C-v.s., ®un-$igned, (the "non-super" tensor product). 
Consequently the two categories are not braided monoidally equivalent. 

proof: To calculate the center in each case, it suffices, by semisimplicity to 
determine which simple objects are in the center. In the first case the objects 
isomorphic to 0 are the only simple objects in the center; in the second, the 
objects isomorphic to 0 and 3 are the only simple object in the center. It 
is trivial to verify that the functors in a braided monoidal equivalence map· 
the center to the center.D 
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By way of concluding speculations, it would be extremely interesting to 

determine whether there is a way of modifying the category Rept"W (U,(sl2)) 

in such a way that the center becomes the category of super-vector-spaces. 
Doing 1110 could potentially lead to cancellation in the calculation for S2 x S2 

giving an invariant unstable under addition of 2-handles-a first requisite for 
a non-trivial invariant of differentiable structures. 
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Abstract. A noncommutative-geometric generalization of the theory of principal bundles 
is sketched. A differential calculus over corresponding quantum principal bundles is an­
alyzed. The formalism of connections is presented. In particular, operators of covariant 
derivative and horizontal projection are described and analyzed. Quantum counterparts 
of the Bianchi identity and the Weil's homomorphism are found. 

t. Introduction 

The purpose of this retter is to present basic structural elements of a. quan­
tum theory of principal bundles, in which quantum groups play the role of 
structure groups, and quantum spaces the role of base manifolds. All consid­
erations are performed within the conceptual scheme of non-commutative 
differential geometry [1, 2]. A detailed exposition of the theory is given in 
papers [3, 4]. 

The pa.per is organized as follows. Section II begins with a. definition of 
quantum principal bundles. Then, questions related to differential calculus 
are discussed. Section III is devoted to the formalism of connections. In 
Section IV a. generalization of the Weil 's theory of characteristic classes is 
sketched. Finally, in Section V some examples of quantum principal bundles 
are considered, and some remarks a.re made. 

Before passing to quantum principal bundles we shall fix the notation, 
and introduce relevant quantum group entities. Here, we shall deal with 
compact matrix quantum groups [9]. Let G be such a group. The algebra of 
'polynomial functions' on G will be denoted by A. The group structure on G 
is determined by the comultiplication ¢>:A -+ A 0 A, the counit e: A -+ C, 
and the antipode k: A -+ A. The result of the ( n - 1 )-fold comultiplica.tion 
of a E A will be symbolically written as a<1> 0 ... 0 a(n). We shall denote 
by ad: A -+ A 0 A the adjoint action of G on itself. Explicitly, this map is 
given by ad( a)= a<2> 0 k(a<1>)a<3>. 

Let (r, d) be a first-order differential calculus [10] over G, and let 
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be the universal differential envelope ([3]-Appendix B) of (f, d) (with r"0 = 
A and f"1 = f ). For each k :2:: 0 let pk: f" -+ f"k be the corresponding 
projection map. Further, let 

be the tensor bundle algebra over r (r®k = r ®...( ••• ®...( r (k-times) and 
r®0 = A). Let us assume that (f,d) is left-covariant. We shall denote by 
finv the space of left-invariant elements off while R ~ ker(e) will be the 
right A-ideal which canonically, in the sense of [10] corresponds to (f, d). 
The map 11": A-+ fin,, given by 

is surjective, and ker(7r) = Cl EB 'R. Because of this, there exists a natural 
isomorphism 

finv = ker(e)/R. 

The above isomorphism induces a right A-module structure on finv• 

which will be denoted by o . Explicitly, 

1r(a) ob= 1r(ab), 

for each a E ker( e) and b E A. The tensor product of k copies of f inv will 
be denoted by f~~- The tensor algebra over rinv will be denoted by f~v· 
It is naturally isomorphic to the space of left-invariant elements off®. The 
differential subalgebra of left-invariant elements off" will be denoted by 
rt.iv· We have 

r~nv = E(j)r~:v 
k?;O 

where r~;v consists of k-th order left-invariant elements. The following nat­
ural isomorphism holds 

rt.iv = f~vf Ifnv· 

Here I{;.v ~ r~v is the ideal generated by elements of the form 

where a E R. The right A-module structure o can be uniquely extended 
from r inv to r~~~ such that 

1 o a= e(a)l 

( '1?71) o a = ( '!? o a(1l)( 71 o a(2l) 
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for each d, T/ E f~~~ and a E A. 
Let us assume that {f,d) is bicovariant, and let ro: rinv -+ rinv 0 A be 

the adjoint action of G on rinv (coinciding with the restriction of the right 
action of G on rinv ). We have 

tv'/r = ( 11" 0 id)ad. 

In the following, we shall denote by ro®, ro®k, roA, roAk the adjoint actions 
of G on the corresponding spaces. 

The map <f>: A -+ A 0 A admits the unique extension to the homomor­
phism ~: fA -+ fA@rA of (graded) differential algebras. 

2. Quantum Principal Bundles and the Corresponding Differential 
Calculus 

The aim of this section is to introduce quantum principal bundles, and to 
describe differential calculus over them. 

Let M be a quantum space, represented by a (unital) *-algebra V. The 
elements of V play the role of appropriate 'functions' on M. 

DEFINITION 2.1. A quantum principal G-bundle over Mis a triplet of the 
form P = (B, i,F) where Bis a (unital) *-algebra, while F: B-+ B 0 A and 
i: V -+ B are unital *-homomorphisms such that 

(i) The following identities hold 

(id®e)F =id 
(id 0 </>)F = (F 0 id)F. 

{ii) The map i: V-+ Bis injective and 

i(V) = { b E B I F( b) = b 0 1 '}' 

for each b EB. 
{iii) A linear map X: B 0 B -+ B 0 A defined by 

X(q 0 b) = qF(b) 

is surjective. 

The map F plays the role of the dualized right action of G on P. Con­
dition (i) justifies this interpretation. The map i: V-+ B can be interpreted 
as the duaiized projection of P on M. Condition (ii) says that M can be 
identified with the corresponding 'orbit space' of P. Finally, condition (iii) 
is an effective quantum counterpart of the classical requirement that G acts· 
freely on P. 



36 MICO DURDEVIC 

Let P = (B, i, F) he a quantum principal G-hundle over M. 
We are going to construct a graded differential algebra representing ver­

ticalized differential forms on P. Let us fix a hicovariant first-order differ­
ential *-calculus (r, d) over G. The *-involution naturally extends from r 
to r"·® (such that ( t?17 )* = ( -1 )81181117• t?* for each t?, 1J E r"·®). Algebras 
r~~~ ~ r"·® are *-invariant. 

Let us consider a (graded) vector space ver(_P) = B ® rtnv· 
LEMMA 2.1. The formulas 

(q ® t?)(b011) = L:qbk 0 (t? a ck)11 
k 

(b ® 11)* = L:bk 0 c11· a ck) 
k 

d"(b 011) = b 0 d11+EbkQSJ11"( ck)11 
k 

where F(b) = Lk bk ® ck, determine the structure of a graded differential 

*-algebra on ver(_P). As a differential algebra, ver(_P) is generated by B. D 

We shall assume that a differential calculus over the bundle I' is specified 
by a graded differential *-algebra il(P) such that 

(diffl} The differential algebra il(P) is generated by B = n°(P). 
( diff2) The map F: B -+ B ® A is extendahle to a homomorphism 

i': n( P) _.. n( P)®r" 

of (graded) differential algebras. 
The map F is uniquely determined by the above conditions. We have 

(F 0 id)F =(id 0 ef,)i'. 

The formula 
F" =(id® p0 )F 

defines the action F": il( P) -+ il( P)®A of G on differential forms (extending 
the action F). The map F" is-a *-homomorphism and 

(id® e )F" = id 

( F" ® id)F" = (id®</> )F" 
F"d = (d ® id)F". 

Let us construct a quantum analog of the verticalising homomorphism. 
For each w E ilk(P) the element 

11"v(w) =(id® 11"invPk)F(w) 
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belongs to ve,.k(P). Here 11'inv: f" -+ rfnv is the canonical projection map. 
In other words, the above formula defines a linear grade-preserving map 
11'

11
: O(P)-+ TJer(P). 

LEMMA 2.2. The introduced map is an epimorphism of graded differential 
*- algebras. D 

Now, horizontal forms will be defined. Intuitively speaking, they can be 
characterized as forms possessing trivial differential properties along vertical 
fibers. 

DEFINITION 2.2. The elements of the graded *-subalgebra 

hor(P) = .F-1[n(P) ®A] 

of 0( P) are called horizontal forms. 

The algebra hor(P) is F"-invariant, in the sense that 

F"(hor(P)) ~ hor(P) ®A. 

Horizontal forms w satisfying F"( w) = w ® 1 are interpretable as differential 
forms on M. They constitute a graded differential *-subalgebra O(M) of 
O(P), with n°(M) = i(V). 

3. The Formalism of Connections 

Before introducing connections in the game, we shall define (pseudo )tensorial 
forms. 

Let 7/J(P) be the space of linear maps f:finv-+ U(P) satisfying 

F" f = (! ® id)w. 

This space is naturally graded. The elements of 1/Jk(P) are imaginable as 
pseudotensorial k-forms on P, with values in the 'Lie algebra' of G. Further, 
'if;(P) is closed with respect to compositions with d: U(P)-+ U(P). Let r(P) 
be the graded subspace of ,,P(P) consisting of tensorial forms (pseudotenso­
rial forms with values in hor(P)). 

The formula 
/*( t?) = f( '19*)* 

determines a *-involution on ,,P(P) (and r(P)). 

DEFINITION 3.1. A connection on P (relative to U(P)) is every first-order 
linear map w:!\nv-+ U(P) such that 

for each 't9 E f. inv• 

Fw(d) = (w ® id)ro(t?) + 1 ® 't9 
w( '19*) = w( '19)* 
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Connections can be equivalently defined as hermitian pseudotensorial 1-
forms w satisfying 

for each {) E f inv. 

THEOREM 3.1. The bundle P admits at least one connection. D 

Let con( P) be the set of all connections on P. This is a real affine subspace 
of 1/}(P). The corresponding vector space consists of hermitian tensorial 1-
forms. 

Let us fix a linear map 8: rinv - r~~ with the following properties 
(iJ If o( {)) = L:k {)l 0 {)% then d{) = L:k {)l {)% and o( {)*) = - L:k {)%* 0 t?l*. 
(ii) We have 

(the right-covariance of o). 
For given linear maps <p, 17: rinv - fl( P) let us define new linear maps 

< <p,17 >,[cp,17]:f;nv -7 fl(P) by 

< <p, 17 >= mo( <p 0 17)0 

(cp,17) = mo(cp® 17)cT 

where c T = (id 0 11')ro: rinv - r~~ and mo: fl(P) 0 fl(P)--+ fl(P) are the 
'transposed commutator' [10) and the multiplication map. 

If <p E 1/i( P) and 17 E 'I/Ji( P) then < <p, 17 >, [cp, 17) E 1/Ji+i ( P). 
For each w E con( P) let us consider a map 

LEMMA 3.2. We have 

Rw = dw- < w,w >. 

F Rj {)) = ( Rw 0 id)ro( {)) 

Rj{)*) = Rj{))*, 

For each {) E rinv· In other words, Rw is a tensorial hermitian 2-form. D 

DEFINITION 3.2. The map Rw is called the curvature of w. 

It is worth noticing that Rw depends on the choice of o. This dependence 
disappears if w satisfies the following multiplicativity property. 

DEFINITION 3.3. A connection w is called multiplicative iff 

W11'( a<1))w7r( a<2)) = 0 

for each a ER. 
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If w is multiplicative then it can be uniquely extended, by multiplicativity, 
to a unital (*-)homomorphism w":rfnv-> fi(P). Another interesting class 
of connections consists of those having the following regularity property. 

DEFINITION 3.4. A connection w is called regular iff 

w( t?)<p = ( -1 )8'P L <pkw( t? o ck) 
k 

for each t? E rinu and <p E hor(_P), where F"(<p) = Lk'Pk 0 ck. 

Regular connections (if exist) form an affine subspace p(P) of con(P). 
The corresponding vector space consists of forms f = f* E r 1( P) satisfying 

!( t?)<p = (-1/'P E 'Pk!( t? 0 ck) 
k 

for each t? E rinu and <p E hor(_P). 
Let a: r~~ -> r~~ be the canonical flip-over operator [10]. Explicitly, this 

map is giv.en by 
a( 17 0 t?) = L t?k 0 17 oak 

k 

where Lk t?k 0 ak = w( t?). 

LEMMA 3.3. If w E p(P) then 

m0 (w®<p) = (-l)km0 (<p®w)a 

for each <p E rk(P). D 

Now, we are going to introduce the operator of 1.;0variant derivative. This 
operator will be first defined on a restricted domain consisting of horizontal 
forms. After introducing the operator of horizontal projection, the domain 
of covariant derivative will be extended to the whole algebra fi(P). 

For each w E con(P) and <p E hor(_P) let us define a new form 

D w( <p) = d<p - ( -1 )a'P L <f'kW1r( ck), 
k 

where F"( <p) = Lk 'Pk 0 ck. 
The form D w( <p) is horizontal, too. 

DEFINITION 3.5. A linear map Dw: hor(_P)-> hor(_P) is called the covari­
ant derivative associated to w. 
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PROPOSITION 3.4. (i) The map Dw intertwines the action (F"jhor(P)) 
with itself. 

(ii) If w is multiplicative then 

for each <p E hor(P). 

D!(<t>) = - L:<t>kRw1r(ck), 
k 

{iii) If w is regular then 

Dw(<t>?/J) = Dj<p)?/J + (-1) 8"'<pDw(1/J) 
Dw(<t>") = Dj<p)* 

for each <p, 1/J E hor(P). 
{iv) If <p E f!(M) then Dj<p) = d<p.D 

The space r(P) is closed under taking compositions with Dw. This fact 
enables us to define the action of the covariant derivative on tensorial forms. 

LEMMA 3.5. We have 

for each <p E r(P). D 

Let us consider a linear map qw: 1/J( P) ~ 1/;( P) defined by 

qj<p) =< w,<p > -(-1)8
"' < <p,w > -(-1)8"'[<p,w]. 

We have then 
qwr(P) ~ r(P). 

Moreover, if w E p(P) then (qwlr(P)) = O. 
The following lemma gives the quantum counterpart for the classical 

Bianchi identity. 

LEMMA 3.6. We have 

(Dw - qw)(Rw) =< w, < w,w >> - << w,w >,w > 

for each w E con(P). D 

If the connection w is multiplicative, then the right hand side of the 
above equality vanishes. On the other hand, if w is regular then the second 
summand of the left hand side vanishes. It is worth noticing that regular 
connections are not necessarily multiplicative. However, there exists a com­
mon obstruction to multiplicativity for all regular connections, so that they 
are multiplicative, or not, at the same time. 

In general, the lack of multiplicativity of the connection w is measured 
by a map rw:R ~ f!(P) given by rja) = w7r(a<1>)w11'(a<2>). 
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LEMMA 3.7. (i) The following identities hold 

rjk(a)*) = -rja)* 

11'vrw(a) = 0 

Frw(a) = (rw ® id)ad(a). 

In particular, r w( a) is horizontal for each a E R. 
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(ii) The map w i-+ rw is constant on cosets from the space con(P)/p(P). 
If w E p(P) then 

rw(a)<.p = L'Pkrjack) 
k 

for each a ER and <.p E hor(P), where F"(cp) = Lk'Pk ®ck. Further, 

drja) =< w,w > 11'(a(1>)w11'(a(2>)-w11'(a(1>) < w,w > 11'(a(2>). o 

Let us assume that P admits regular connections, and let J(P) be the 
ideal in O(P) generated by the spacer w(R), for some w E p(P). The previous 
lemma implies 

J(P)* = J(P) 

.F J(P) ~ J(P) 0 r" 
11'vJ(P) = {O} 
dJ(P) ~ J(P). 

Consequently, it is possible to project the whole formalism on the fac­
toralgebra O(P)/ J(P). In the framework of this projected calculus regular 
connections become multiplicative. 

The last topic in this section is the construction and the analysis of 
horizontal projection operators. Let us fix a splitting of the form 

f~v = f~v EB Itiv 

in which rfnv is realized as a complement of the space If:iv, with the help of 
a grade-preserving hermitian section i: rfnv -+ r~v' intertwining the adjoint 
actions. Further, let us assume that 8(iJ) = id(iJ). Finally, let us consider a 
linear map mw: hor(P) ® rtiv -+ O(P) given by 

Here, w" = w® i and w®: r~v -+ 0( P) is the unit al multiplicative extension 
of w. This extends the previous definition of w", formulated for multiplica­
tive connections. In particular, if w is multiplicative then the map mw is 
i-independent. 
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THEOREM 3.8. {i) The map mw is bijective. It intertwines the product of 
actions ( F" I hor( P)) and r:;:;", with the action F". 

(ii) If w is regular and if J(P) = {O} then mw is an isomorphism of*­
algebros. Here, it is assumed that hor(P) 0 rfnv is endowed with a (graded) 
*-algebro structure specified by 

('if; 017)( cp 0 '!?) = ~)-1)8"'811 '1/Jcpk 0 ( 1J o ck)'!? 
k 

( cp 0 '!?)* = E 'Pk 0 '!?* o cZ, 
k 

The 'horizontal projection' operator hw: fl(P)-+ hor(P) can be now de­
fined as follows 

hw = (id®p*)m-;:;1, 

where p*: rfnv -+ C is the zero-component projection. Clearly, hw projects 
fl(P) onto hor(P). 

With the help of hw, the domain of the covariant derivative can be ex­
tended to the whole algebra fl(P). Indeed, the map Dw: fl(P) -+ hor(P) 
given by 

extends the previously defined covariant derivative. 

PROPOSITION 3.9. (i) The maps hw, Dw intertwine the action F". 
{ii) If w E p(P) and if J(P) = {O} then hw is a *-homomorphism, and 

Djwu) = Dw(w)hw(u) + (-l)8whw(w)Dw(u) 

Djw*) = Djw)* 

for each w, u E fl(P). o 

Compositions of pseudotensorial forms with Dw are tensorial. Hence, it is 
possible to define the covariant derivative Dw: 'if;(P) -+ r(P). The following 
lemma gives an equivalent, more geometrical, description of the curvature. 

LEMMA 3.10. We have 

for each w E con(P). D 
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4. Characteristic Classes 

In this section we shall sketch a quantum generalization of the Weil's theory 
of characteristic classes. We shall assume that the bundle P admits regular 
connections, and that J(P) = {O}. For each k ?:: 0 let zk ~ rr;,: be the 
subspace of ad-invariant elements, and let I be the direct sum of all these 
spaces. Clearly, I is a unital *-subalgebra of the tensor algebra rf;,v. Let 
H(M) be the graded *-algebra of cohomology classes associated to !l(M). 

Let us consider a connection w. There exists the unique unital homo­
morphism R3: rT;,v --+ !l(P) extending the curvature Rw. The map R3 is 
*-preserving, and intertwines ro® and F". 

PROPOSITION 4.1. (i) IfiJ E zk then R3(iJ) E !l2k(M). 
(ii) If w E p( P) then dR3( iJ) .= 0 for each iJ E I. 
(iii) The cohomological class of R3 ( iJ) in !l( M) is independent of the 

choice of a regular connection w, for each iJ EI. 
(iv) The map W:I--+ H(M) given by W(iJ) = [R3(1J)] is a unital *­

homomorphism. D 

The homomorphism W plays the role of the Weil's homomorphism in 
classical differential geometry (6]. In fact, in classical geometry the domain of 
the Weil's homomorphism is restricted on the algebra of symmetric i:.1variant 
elements of the corresponding tensor algebra. However, besides simplifying 
the domain of W, such a restriction gives nothing new: the image of the 
Weil's homomorphism will be the same. 

A similar situation holds in the noncommutative case. Let S be the *­
algebra obtained from rr;.v by factorising through the ideal .J generated 
by Im(/ - a) ~ r~~· The algebra S plays the role of polynoms over the 
'Lie algebra' of G. The adjoint action ro® is naturally projectable on S. Let 
Isym ~ S be the subalgebra of elements invariant under the projected action 
(playing the role of invariant polynomials). Clearly, Isym = I/(I n .J). 

LEMMA 4.Z. If w E p( P) then 

R~a(iJ) = R~(iJ) 
for each iJ E rf;,~. D 

The above statement implles that W and R3 are factorizable through 
the ideal .J. In this sense they naturally operate on Isym and S respectively. 

5. Examples and Remarks 

(A) All quantum phenomena characteristic for the presented theory of quan­
tum principal bundles already figure in a special version of this theory deal­
ing with bundles over classical smooth manifolds. The theory of principal 
bundles of this kind is developed in [3]. 
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The main structural result is that G-bundles P over a classical manifold 
M are in a natural correspondence with classical bundles Pc1 over the same 
manifold, with the structure group Gc1 consisting of classical points of G. 
More precisely, the elements of Gc1 are *-characters g: A - C. The product 
and the inverse in G cl are given by 

gg' = (g @ g')</>, g-1 = gk, 

while the counit e: A - C is the neutral element. The correspondence P +-+ 

Pc1 can be roughly described as follows. The bundle Pel consists of classical 
points of P (*-characters of B). Conversely, if Pc1 is given then P can be 
recovered by applying an analog of the classical construction of extending 
structure groups. 

In developing a differential calculus on such semiclassical bundles P it 
is natural to assume that all local trivializations of the bundle locally triv­
ialize the calculus, too. This requirement, together with the specification 
of the calculus f" over G, uniquely fixes the algebra U(P). However, the 
calculus (f, d) can not be chosen arbitrarily. It must satisfy specific consis­
tency requirements, interpretable as compatibility properties with certain 
'retrivialization maps' of the bundle. Such differential calculi are called 'ad­
missible' in [3]. It turns out that a left-covariant calculus (f, d) is ad.nissible 
iff (X@ id)ad(R) = {O}, for each X E lie(Gc1)· Here, the Lie- algebra of 
Gc1 is understood as the space of hermitian functionals X on A satisfying 
X(ab) = e(a)X(b) + e(b)X(a), for each a,b EA. 

There exists the minimal admissible left-covariant calculus: it is based 
on the right-ideal R ~ ker( e) consisting of elements killed by all operators 
(X@ id)ad. This calculus is also *-covariant and right-covariant. If G is 
an ordinary compact matrix group then the minimal admissible calculus 
coincides with the usual one (based on differential forms). However, small 
quantum deformations of the classical group structure may cause drastical 
changes at the level of the minimal admissible calculus. For example [3], 
if G = SUµ.(2) [8] and µ E (-1, 1) \ {O} then the space rinv is infinite­
dimensional, and can be naturally identified with the algebra of polynomial 
functions over the quantum 2-sphere s; [7]. 

(B) Classical principal bundles provide a natural mathematical frame­
work for the study of gauge theories. It is interesting to see what will be the 
counterparts of these theories, in the context of quantum principal bundles 
[5] (M playing the role of space-time). Properties of such 'quantum gauge' 
theories essentially depend (besides on the 'symmetry group' G), on the 
following two prespecifications: 

As first, it is necessary to fix a (bicovariant *-) calculus (f, d) over G. This 
determines kinematical degrees of freedom. Secondly, we have to choose a 
map 6: rinv - r~~· This influences dynamical properties of the theory, 
because o implicitely figures in the expression for the curvature. 
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Closely related with problematics of quantum gauge theories is the ques­
tion of 'gauge transformations'. If M is a classical smooth manifold then the 
most direct way of defining gauge transformations as (vertical) automor­
phisms of the bundle P gives nothing new, because of the inherent geomet­
rical inhomogeneity of the bundle P. More precisely, auton1orphism groups 
of P and its classical part Pc1 are isomorphic. However, a proper quantum 
generalization of gauge transformations can be introduced via the concepts 
of quantum (infinitezimal) gauge bundles [4, 5]. These are bundles associated 
to P, relative to the adjoint actions of G on G and rinv respectively. 

(C) Interesting examples of quantum principal bundles can be obtained 
from quantum homogeneous spaces. A general construction is this. Let H 
be a compact matrix quantum group, represented by a *-Hopf algebra B. 
Entities related to H will be endowed with a prime. Let us assume that G 
is a subgroup of H. At the formal level, this presumes a specification of a 
*-epimorphism j:B-+ A such that 

(j 0j)¢/ = </>j, kj = jk'. 

The *-homomorphism F: B-+ B 0 A given by 

F = (id 0 j)</>' 

is interpretable as the right action of G on H. Let M be the corresponding 
'orbit space'. This space is represented by the fixed point *-subalgebra V. 
Let i: V <-+ B be the inclusion map. The triplet P = (B, i, F) is a quantum 
principal G-bundle over M. Because of</>' (V) ~ B 0 V there exists a natural 
left action of H on M, represented by </>'i: V -+ B 0 V (M is a quantum 
homogeneous H-space ). 

Let U be an arbitrary left-covariant graded-differential *-algebra over 
H, satisfying properties diffl/2. Let (ill,d) be the corresponding first-order 
calculus. We have j(R') ~ R where R' ~ ker( e') is the ideal correspond­
ing to this calculus. Moreover, there exists the unique graded-differential 
*-homomorphism j": U-+ f 11 extending the map j. Explicitly, 

(and the identification r 11 = A® rfnv is assumed). We have j 11(ill inv) = rinv. 
Let us consider a splitting of the form 

where the space rinv is realized as a complement to L = ker(j11 iill;nv), with 
the help of a hermitian right-G-covariant section 1:: rinv -+ illinv· Then the 
map w: rinv -+ n obtained by composing € with the cannonical inclusion 
ill inv '-+ n is a connection on p. 
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Introduction 

An important step in organizing selection rules and defining symmetry prin­
ciples of Quantumtheories in algebraic terms has been the introduction of 
group theory into physics by Weyl, Wigner,Yang, Mills and others. Since 
the works of [4] and [2] it has become clear that the relevant data can 
be equivalently and more directly described by a symmetric tensorcategory 
(STC). Often in low dimensional physics the axiom that the commutativ­
ity constraint squares to one has to be relaxed so that we natur~ly obtain 
representation of the braid groups rather than the symmetric groups. The 
more general broided tensorcategories (BTC) are related to quasitriangular 
quasi-Hopfalgebras, but there is no one to one duality-correspondence as 
for STC's since BTC's are rarely Tannakian. Interestingly, they appear in 
many other areas of mathematical physics like the theory of subfactors of 
von Neumann algebras, two dimensional integrable lattice models, and low 
dimensional topology. 

At generic points in the space of BTC's many uniqueness statements can 
be found by using deformation theory. They give some explanation about 
the relation of affine algebras and quantum groups at generic levels. For 
rational theories these methods break down. Nevertheless, one has identified 
equivalent rational BTC's coming from very different areas. An example 
of a family of related rational models includes SU(2) and rank=2 WZW­
models, the corresponding quantum groups at roots of unity, subfactors 
with Jones-index < 4, the Alexander or Jones polynomials, and the Q-state 
Pottsmodel. In order to explain these coincidences in terms of a classification 
we need to find reasonable constraints on the considered class of BTC's. Most 
conveniently they are imposed on the combinatorial part of the 0-category, 
i.e., the fusionrules. 

In (10] (see also [6] fork = 2) it has been shown that if the entire fu­
sionring of a BTC is equal to that of Rep( Uq( sl( k))) then the two categories 

• This work was in part supported by NSF grant DMS-9305715. 
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themselves have to be isomorphic for suitable q. In this paper (which is in 
large parts a summary of results from [6]) we wish to impose a much weaker 
condition, namely that the category has a generating object X whose ten­
sorsquare X ® X is the sum of two simple objects. In this situation we face a 
much larger class of categories including those that are obtained as product­
' orbit-, and subgrading-categories from the known ones. The mentioned 
constructions rely on the study of gradings and invertible objects of a BTC. 
Many of the resulting categories are inequivalent to any of the semisimplified 
representation categories of Hopfalgebras and those occurring in conformal 
field theory. We find a natural condition in terms of Hecke algebra repre­
sentations for when this list of categories is complete. We prove it for the 
case where one of the summands of X ® X is invertible, thereby yielding a 
complete classification. 

Acknowledgements 

I thank P. Deligne, J. Frohlich, D. Kazhdan, and H. Wenzl for very useful 
discussions. 

1. Braided Tensorcategories 

In all our consideration we mean by a braided tensorcategory C an abelian 
category (see [12]) for which the morphism sets are finite dimensional vec­
torspaces over C . In addition we have natural transformations 
€ E Nat(®, P®) and a E Nat(®( id x ® ), ®( ® X id)). They yield the com­
mutativity and associativity isomorphisms E(X, Y) : X ® Y -+ Y ®X and 
a(X,Y,Z): X®(Y®Z)-+ (X®Y)®Z which have to obey the pentagonal 
and two hexagonal equations. For simplicity we shall omit a in the formu­
las although it can be a non trivial morphism. Also we shall only consider 
rigid categories. This means that to any object X E C we find a conjugate 
object xv and morphisms ev : xv ®X -+ 1 and coev : 1 -+ X ®Xv , with 
the usual pair of contraction identities. For details see, e.g., [13] for the 
symmetric and [11] for the braided case. 

For any ®-category C we can define the fusionring Kf(C), which is the 
ring over z+ generated by the equivalence classes [X] of objects subject to 
the relations [X] = [Y] + [X/Y] whenever Y is included into X and [X® 
Y] = [X][Y] . It is clear that with this definition every object can be written 
uniquely as the sum of the simple objects that appear in its composition 
series and the products of the simple objects determine all other products 
of the fusionring. 

A notion that is very useful for our purposes is that of grading. For a 
BTC the set ®-Nat( idc) which consists of natural transformations ~( X) E 
End(X) with ~(X ®Y) =~(X) ® ~(Y) is an abelian group. This fac1 allows 
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us to decompose every object uniquely into a direct sum X = EBveGr(C) X,,,. 
Here X,,, is the maximal subobject such that the only eigenvalue of '(X,,,) is 
v( ') for all ' . Gr( C) is the subgroup of all characters on 0-Nat( idc) of this 
form. This decomposition has the property that (X0Y),,, = EB'7X,,,'7-1 0 Y'7 
and that. to any simple object X we can assign a unique v E Gr(C) with 
X = X,,,. Thus Gr(C) makes K;[(C) into a graded algebra. We call C locally 
rational if every component K;[(C),,, is finitely generated , i.e., if there are 
only finitely many inequivalent, simple objects of a given grading. 

A special type of simple objects are the invertible ones, which satisfy 
X0Xv ~ 1. They form an abelian group on K;t(C) we shall call Pic(C). 
Let us introduce two natural group homomorphisms: 

fJ : Pic(C)--+ Gr(C) 

µ : Pic(C)--+ 0-N at(idc), 

(1.1) 

(1.2) 

where {} associates a grading to an irreducible element in Pic(C) and µ is 
defined by 19 0 µ(gXX) = f(X,g)E(g, X). A balancing of a tensorcategory 
is a natural transformation of X -+ xvv to the identity functor. For a BTC 
a balancing is equivalently given by a transformation () E Nat( idc) with 

E(Y, X)f(X, Y) = 8(X) 0 8(Y)8(X 0 Y)-1 and 8(Xv) = 8(X)t . 

If such a balancing exists (there are plenty of examples where it does not) it 
is unique up to elements of order two in 0-N at( idc). To a given balancing 
we can associate a family of traces trx E End(X)* by 

coev V (JB(X))®l V <(X,Xv) V ev 
tr x(J) : 1 --> X 0 X X 0 X ----+ X 0 X --+ 1 . 

We call a dimension a function d : K;[(C) -+ C which respects sums and 
products and is invariant under conjugation. Since the trace is cyclic, also 
for pairs of morphisms between different objects, and factorizes w.r.t. ten­
sorproducts, we can define a canonical dimension by dtr(X) = trx(l). Di­
mension functions can also be constructed in a different way by applying 
Perron-Frobenius theory to the fusion matrices of K;t(C), representing the 
action of the ring on itself by multiplication. 

THEOREM 1.1. Assume that the fusionring K;!"(C) of a ETC C is locally 
rational, then 

1. there is exactly one positive dimension dpF: K;t(C)-+ R+, 
2. dPF;:: 1 and dpF(X) = 1 if and only if XE Pic(C), 
3. If X = X7] then X : K;[(C),,-+ K;f"(C),,7], defined by multiplication has 

norm dpF(X) independent of v, 
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In the last statement we assumed Kf(C) to be equipped with the inner 
product for which the simple objects are an orthonormal basis. 

In order to relate the positivity condition to properties of the categories 
themselves we introduce C* structures which are known from applications in 
operator algebras and physics [4], but are also related to the polarizations in 
[13]. A *-structure on a BTC is an antilinear, contravariant, coexact BTC­
functor * : C---+ C. For simplicity let us assume that X* 0 Y*.=:+(X 0 Y)* 
is the identity so that a and E are unitary. We call the category of finite 
dimensional Hilbert spaces 1i and denote by n the class of all covariant, 
exact (not necessarily 0-) functors w : C---+ 1i which commute with * . We 
say that C is a C* -category if for any morphism f there is some w E Q with 
w(f) ::/: 0. In this case we can introduce a norm II/II = SUPwEnllw(f)ll which 
renders the category C semisimple arid equips the algebras End(X) with a 
C*-structure in the usual sense. For C*-categories we construct a balancing 
as follows. Define .Xx E End(X) by 

l©ev• V €(X,XV)01 V ev©l 
X----+X@X ®X x 0x0x~x. 

From the positivity of < f > = ev(l ® f)ev* = trx(Xx !) and the fact that 
End(X) is a sum of type I factors with trace trx we infer that .Xx: is central. 
Since trx is generally cyclic it follows that the unitary part 00 (X) = U(.Xx) 
gives rise to a natural transformation. 

THEOREM 1.2. To any C*-BTC C there exists precisely one balancing such 
that the associated traces trx are positive 'VX E ob(C). It is given by 00 E 
Nat(idc). 

Clearly, for this choice, the dimension d0 associated to the balancing is pos­
itive. Thus by Theorem 1.1 we obtain for locally rational C* -categories the 
remarkable identity 

dpp = d0 (1.3) 

where both quantities are defined in completely independent ways. 

2. Hecke - and Temperley Lieb Type Categories 

In many examples Kt ( C) is generated by a single object II (e.g., a fundamen­
tal representation) meaning every object is the direct sum of subobjects of 
tensorpowers of IIeIIv. It is easy to see that in this situation Gr(C) ~ Z/ N , 
generated by the character of II, and the order N ~ 1 is the smallest number 
such that H om(IIn, II(n+N)) ::/: O for some n. 

In order to state a tractable classification problem we confine the class 
of BTC's further by restricting the dimension of End(II®2 ). The condition 
End(II®2 ) = C is by rigidity equivalent to II E Pic(C) whereas End(II®2 ) = 
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C EB C implies that IT 0 IT e!! A EBB for two inequivalent, simple objects A and 
B. The first is a special case of a 0-category which we classify in the next 
section. In the second case E(IT, IT) has two eigenvalues 'YA and 'YB so that the 
rescaled natural representation of n-th braidgroup Bn on En = End(IT®n), 
defined by p(gi+i) = --y A 1 ®i 0 E(IT, IT) factors into a representation of the 
n-th Hecke algebra p : Hn(q) -+ En with q := -w-rA.1

• (We choose con­
ventions as in [14]). This sequence of morphisms is compatible with the 
inclusions En <-+ E(n+i) : f 1-? f 0 ln and thus extends to p : H00 -+ Eco- If 
C is also a C*-category we have lql = 1 and pis a *-representation on every 
Hn(q). Henceforth we call BTC's with these properties Hecke type cate­
gories. For these rlen = d(IT)-ntrnn defines a positive, normalized Markov 
trace on E00 with modulus 1J = r( e A) = d( A )d(ITt2 • Combining the above 
observations with results from [14] we find the following restrictions: 

THEOREM 2.1. For a Hecke type category with E(IT, IT)2 nonscalar we have 
-1 ±ill I. 1. q = -'YB'Y A = e 1 JOr some 1 = 4, 5, ... 

- ~ - (1-q(-k+l)) I. k - 1 
2. 1J - d(n)2 - (l+q)(l-q k) JOr some - 1, ... , - 1. 

3. The morphism p factors through the semisimple quotient Hn(q)-+ HAk,I) 
whose representations are labeled by (k, /)-diagrams. 

Since H(k,l) coincides with the GNS-quotient of the pullback p•~ , the fac­
torized morphism p : n!::1l -+ E00 is an inclusion. It also yields a morphism 
of (non rigid) fusionrings K 0 (p)n : K;f"(HAk,I))-+ K;f"(C)n for positive grad­

ings n = 0,1, .... Here K;f"(n!:,·'>) has a unique, smallest extension into a 
rigid fusionring p(k,I) with Z-grading which is shown in [9] to be isomor­
phic to the truncated subfusionring of U9(Gl(k)) generated by the usual 
fundamental representation. If C is locally rational the norms of [l]lm,k.1) 
and and ITIK,t(C)n and hence of llK0 (p)nll are independent of n for large n. 
In this situation we find that K 0 (p )([1 k]) has norm one, i.e., it is invertible, 
and thus can be used to extend K 0 (p) to a morphism of rigid fusionrings 
W : p(k,I) -+ Kt(C), defined also for negative gradings. 

The embedding of the Hecke algebras gives us not only information on 
the fusionring but allows us to compute the balancing phases. In H( q) the 
scalar CT,\ by which the central braid group element 6.'J.., = (g1 .. ·Y(N-l))N 
acts in the irreducible representation associated to the diagram A has been 
computed in [15] as a framing anomaly of link invariants. It is possible 
to factorize the product of E's in £N associated to 6.'J.., into the expression 
B(II)®N O(II®N)-1 . This observation enters the second part of the following 
theorem. 
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THEOREM 2.2. If C is a locally rational Hecke type category, then 
1. there is a unique morphism of rigid fusionrings 

1lf : p(k,I) ~ K;t(C) with 111((1]) =II 

2. if X E ob(C) is a subobject of w(>.) for some diagramm >. then 

8(X) = 8>.lx where 8>. = 8(JI)l>.l(-1A)l>.H>.l
2 
a~1 

By definition the image of qr generates additively ob(C) so that every object 
is a sum of those considered in b). Hence the balancing of a Hecke type 
category is completely determined by 8(II), /A and /B. 

In order to explain the constraints on qr resulting from Theorem (2.2) 
we define the graph of a map of positive lattices A : L 1 -+ L2 as the bicol­
ored graph whose vertices are the generators of L 1 and L2 with respective 
coloration. The number of edges between them are given by the matrix el­
ements of A. Denoting by Wn, [1] and Iln the respective restrictions to 

-n 
then-th graded components the relation qr(n+i)illn = 1InWn means that 
pairs of neighboring simple objects in the graph of [1] are mapped by W 
to sums of pairs of neighboring objects in the graph;f 1In . Ey Theorem 
1.1 1lf is dimension preserving, i.e., dpF(w(X)) = dpF(X). From part b) of 
Theorem 2.2 we see that 8 has to have the same value on every simple object 
of a connected component of the graph of qrn. Knowing the specific values 
for one coloration namely the 8>. on p(k,I) this imposes together with the 
neighborhood condition strong constraints on the structure of Wn· In many 
cases the only remaining possibility is that the components of qrn are pairs 
of different colorations so that Wn is an isomorphism for every n. In this case 
we say that W is a local isomorphism. A special subclass of such categories 
are Temperley Lieb type categories which are defined in the next theorem. 
Its proof is in part a direct consequence of Theorem 1.1 and identity (1.3). 

THEOREM 2.3. If C is a Hecke type category with E(II, II)2 nonscalar, then 
the following four conditions are equivalent 

1.) k = 2 
3.) A E Pie( C) 

2.) eA and l®eA generate A,a(3) with /3 < 4 
4.J d(X) < 2 and d(A) ~ d(B). 

Here A,a( n) is the Temperley Lieb quotient of the Hecke algebra with mod­
ulus /3 = q + q-1 + 2 = d(II)2. The elements of F<2·1) are pairs [>.i, >.2] with 
>.; E Z and 0 ~ >. 1 - >.2 ~ l - 2. The graph associated to [l]n is A1-t , where 
the gradation is n = >.1 + >.2 and two simple objects are adjacent if they 
coincide in one component. Specializing Theorem 2.2 to k = 2 we can write 
the balancing as 8>. = cntd2 where t4 = q is the primitive /-th root of unity 
and d = >.1 - >.2 + 1 . 
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The norm of II.n has to be the same as the norm of [1] so that by 
-n 

an old result of Kronecker, see [8], the only possibilities for the graph of 
II.n are A1-1 , D1;2+i or E6,7 f> ( l = 12, 18, 30). One readily checks that the 
neighborhood and component condition discussed above exclude the D and 
E cases. ln summary, we have the following result for k = 2: 

THEOREM 2.4. Suppose C is a Temperley Lieb type category with /3 f 4. 
Then there exists a local isomorphism of rigid, gmded fusionrings ill : 
F(z,l)-+ Kj"(C) with ill([l]) = II. 

3. Two Important Examples 

A.) A class of braided tensorcategories that can be completely classified are 
semisimple BTC's for which all simple objects are invertible. We call them 
0-categories. For a B-category C we have in particular Kj"(C) ~ z+[Pic(C)] 
and the map fJ from (1.1) yields an isomorphism Pic(C) ~ Gr(C). To a 
class of pairs (E,a) of natural isomorphisms (considered as functions a E 
C(Pic(C)3) and f E C(Pic(C)2) by specialization) that give rise to equivalent 
BTC's we can assign a unique class in H 4 (G,2; C*), the cohomology group 
of the Eilenberg MacLane space K 2 ( G). This correspondence results from 
the fact that the pentagonal and hexagonal equations translate to cocycle 
conditions and the transformations g ® h=+fl ® h' of ®-isomorphisms give 
rise to coboundaries, see [6]. The function (}: Pic(C)-+ C*; g ~ E(g,g) is 
easily shown to be quadratic, only dependent on the cohomology class of f 

and a possible balancing of C. Combining these observations with results in 
[5] we find the following classification: 

THEOREM 3.1. To any quadratic fosm (} on a finitely genemted abelian 
group G there exists one and up to isomorphism only one B-category P( (}, G) 
such that Pic(P(B, G)) ~ G and B(g) = E(g,g). 

B.) It is well known that the category Rep(Ut(Sl(k))) of quantum group 

representations, with q = t-zk a primitive /-th root of unity, is not semisim­
ple. Nevertheless, it is possible to define a semisimple subquotient cate­
gory. The morphisms are the quotients of H omc( X, Y) by the nullspaces 
H om(X, Y) 0 of the trace pairing 

trx 
H om(Y, X) ® H om(X, Y) -+ End(X) ____. C* 

In this category we also discard objects with End(X) = End(X) 0 which for 
indecomposable Xis equivalent to d(X) = 0 .(For details of this construction 
see [11) and also [1) and [7]). The full subcategory generated by the image 
of II = [1] is a semisimple Hecke type category R(t, k) without an apriori 
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*-structure. Let us call this an indefinite Hecke type category. As for Sl(k) 
we label the simple objects by Young diagrams with the restrictions 0 5 
>..1 - >.k 5 l - k so that A= (1, 1], B = (2], /A= -t1+k and /B = tl-k. The 
group Pic(R(t, k)) ~ Z/k is generated by the a= [l-k]. The grading group 
Gr( R( t, k)) is also cylic of order k and associates to a diagram >.. the number 
of boxes j>..j modk. Hence{) : Z/k ~ Z/k from (1.1) is just multiplication 
with l. A possible balancing of R(t,k) is given by 8>. = tc(>.) where 

c(>..) = L:)>..; - Aj)2 + k(>.; - Aj). 
i<j 

The structure of the full subcategory over Pic(C/ is determined in the sense 
of sense of Theorem 3.1 by E(a,a) = (-l)(l-k)t(-k)/. The mapµ defined in 
(1.2) is given by µ(a)([l]) = t21 •. A deformation argument used in [6] (which 
should be extendable to general k) shows that the necessary constraint in 
Theorem 2.1 for the existence of *"structures is also sufficient: 

THEOREM 3.2. R(t,2) is isomorphic to a C*-category if and only ift4 = 
±21ri 

e I . 

There is a remarkable uniqueness result on the categories with the same 
fusion ring as R( t, k) due to [10] (for a proof for k = 2 using structure 
constants see [6]). 

THEOREM 3.3. Suppose for an indefinite Hecke type category C there is an 
isomorphism of fusionrings 'I/; : K;;(cy.:::;K;;(R(t,k)) mapping genemtors 
to each other. If in addition the invariants /A and /B of C coincide with 
those of R( t, k) then 'I/; extends to an isomorphism of categories C ~ R( t, k) . 

4. Product and Orbit Categories 

There are a number of natural operations betwee1, categories that allow us 
to produce ~ew categories, e.g., from the examples in the previous section. 
A special class of ®- subcategories of a given BTC C is obtained by picking 
a subgroup H C Gr(C) and defining Ff!, <-> C to be the largest full sub­
category for which all objects have grading in H. Of particular interest is 
the subcategory 0C which consists of objects with trivial grading. It is ad­
ditively generated by the subobjects of all j 0 jv with j simple. Also we 
denote by C1 n C2 the largest full subcategory which is contained in two full 
®-subcategories C; <-> C . 

Dual to the notion of direct products of Hopfalgebras we have the notion 
of a product of categories C; which is a biexact functor 0 : C1 x C2 ~ C1 0 C2 
onto the smallest additive completion of the ordinary product. The pre­
cise definition is given in [2]. Clearly, this functor induces an isomorphism 
Gr( Ci) Ell Gr(C2) ~ Gr(C1 0 C2). 
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The notion of quotients of BTC's related to branching of representations 
to sub-Hopfalgebras needs more explanation: To this end assume that p ia 
a full ®-subcategory with a ®-fibre functor v : P -+ Vect(C) (or 1l) 
of strict, symmetric categories. To any object X E ob(C) we have - up to 
isomorphism - a unique maximal subobject Xp <--+ X with Xp E ob(P). We 
define a category Cf P with ob(C/ P) = ob(C) and morphisms H""Dm(X,Y) = 
v( (Y ® xv)P). (see [2], [3] for Tannakian categories.) The canonical mor­
phism in P, (Z ® yv)P ® (Y ® Xv)p -+ (Z ®xv), obtained from ev, 
determines the composition of morphisms in C / P • Using the natural braid 
isomorphisms we find two canonical isomorphisms in P 

both of which define tensorproducts of morphisms in Cf P. 
Viewing the invariances as subobjects Z1 <--+ Zp the map 

Hom(X,Y)-+ Hom(l,(Y®Xv)t) ~ Homc(l,v((Y®Xv)1)) 

::::; v((Y ®Xv)t) "-+ v((Y ®Xv)p) 

gives then rise to a ®-functor p: C -+ C / P such that the following dfagram 
commutes: 

c p 

I 
II p 

C/P 

I® le 

Vect(C) 

(4.5) 

Clearly, the images of the natural isomorphisms £ = p( E) and a = p( a) 
satisfy the pentagonal and hexagonal equations and are natural with respect 
to morphisms in the image of p. But since the functor p is by definition not 
full for P f:. V ect( C) there is a priori no reason for £ and a to be natural 
in C / P. It turns out that naturality is equivalent to demanding that P 
decouples, i.e., 

1:(Q,X)1:(X,Q) = 1 for all Q E ob(P), XE ob(C). 

In this case the two morphisms 0± from ( 4.4) coincide. Suppose j E ob( C) is 
simple and j ®jv contains nontrivial subobjects from P. Then End(j) f:. C, 
and since kernels and cokernels have to stem from C, C / P fails to be abelian. 
Also na.Ive abelian completions usually spoil naturality of£. In order to avoid 
this situation we have to impose the condition C0 n P = Vect(C)® 1. It is 
easily seen that the only subcategories with this property are 8-categories 
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over subgroups RC Pic(C) on which the grading fJIR from (1.1) is injective. 
In this case the fusionring morphism associated to p is locally isomorphic 
a.nd the inequivalent objects of C / P are identical with orbits of R. Hence we 
call C / R an orbit category. (In [ 6] the term induced category was used.) 

Conversely, any local isomorphism t/J is of the form that 'it sends simple 
objects to their orbits under the action of t/J-1(1) C Pic(C). Moreover, we 
can pullback every category along such t/J by setting 

Homc(X,Y) := EB Homc;p(1/J(X,,),t/Y(Y,,)). 
11eGr(C) 

Note that the decoupling condition for R is that R lies in the kernel of 
the map µ from (1.2). We conclude with a survey of properties of orbit 
categories. For more details see [6]. 

THEOREM 4.1. 1. If R C Pic(C) is a subgroup on which µ is trivial, {} 
is injective and the associsted 8-subcategory P is trivial then there ex­
ist a unique, abelian ETC C / P, and functors v and p such that (,/.5) 
commutes. 

2. For any local isomorphism 1/J : F -+ Kt(C) of rigid fusionrings there 
is a unique ETC C with Kt(C) £!! F, a functor p : C -+ C and a fibre 
functor on the subcategory associated to 1/J-1 ( 1) extending 1/J such that 
(,/. 5) commutes. 

5. Hecke Categories and Temperley Lieb Categories 

In this section we discuss a new family of Hecke categories and a classification 
of Temperley Lieb Categories. Combining the constructions and examples 
given in the previous sections we can define a class of indefinite Hecke type 
categories with fusionring p(k,I) by 

D'(8,t,k) := A(P(8,Z)0D(t,k)) 

where 8 c Z $ Z/k = Gr(P 0 D) is the diagonal subgroup. The basic 
invariants with respect to the canonical generator II'= (1)0II are 'YA = 
-8(1)t1+k and 'YB = 8(1)t1-k, where (1) is the generator of P. In fact 
Theorem 3.3 and Theorem 4.1 show that D' is the only category with this 
fusionring and these invariants. We have an isomorphism 

r.p: Z $ Z/(k,l)::::::+Pic(D'); (i,j) ~ ((k,l)i) 0 aik'+il", 

where k' = k/(k,l) and ll" = (k,l)modk. The grading{} is the projection 
onto the first factor i(k, l). The 8-category P;j associated to the infinite 
cyclic subgroup generated by an object r.p(i,j) = (n) 0 am with n f:. 0 is 
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trivial and decouples iff €(0:,o:r
2 = 0(1)-n

2 
and t 21m = 0(1)2n. For these 

values we denote by 

D"(O,t,k,i,j) := D'(O,t,k)/P;i (5.6) 

the orbit category as defined in Theorem 4.1. In the list of the categories of 
the form (5.6) we recover the ones obtained from ;e(k)1-k and ;f(z - k )k and 
products of these with level one theories. Using that the group extension 

0-+Pic(oC)-+Pic(C)-+Gr(C) 

is an invariant of C we can easily check that the orbit construction yields 
categories inequivalent to any subcategories of the known representation 
categories of Hopfalgebras. The easiest such case is found for l = 6, k = 2, 
if we divide by the 0-subcategory generated by <p(l, 1) = (2) 0 [4]. The set 
of simple objects { [·], ... , [4]} is the same as for the Ut( sl2 ) category, but 
we have modifies products [1][1] = [3][3] = [2] + [4] and [1][3] = [·] + [2]. In 
general the requirement 2.) of local isomorphie from Theorem 4.1 is difficult 
to verify. However for k = 2 we can use Theorem 2.4 and the uniqueness of 
the D' -categories to prove the following classification. 

THEOREM 5.1. Every Temperley Lieb type category with €(IT, IT)2 non­

scalar is of the form D"(O,t,2,i,j) for t4 = e±1fi and admissible 0, i and 
j. 

In the case where £2 is scalar we can consider products with suitable 0-
categories and reduce the problem to the case where €(IT, IT)2 = 1 . Since IT 
is a generator this implies that the category is symmetric and we can apply 
the result of [4] to find a classification in terms of U(2)-subgroups. 
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Abstract. We show that every Lie algebra or superLie algebra has a canonical braiding 
on it, and that in terms of this its enveloping algebra appears as a fiat space with braided­
commuting coordinate functions. This also gives a new point of view about q-Minkowski 
space which arises in a similar way as the enveloping algebra of the braided Lie algebra 
gh,q· Our point of view fixes the signature of the metric on q-Minkowski space and hence 
also .of ordinary Minkowski space at q = 1. We also describe an abstract construction for 
left-invariant integration on any braided group. 

Key words: Lie algebra - braided group - quantum group - q-Minkowski space - braided 
integration 

1. Introduction 

Braided geometry is a generalisation of ordinary geometry based on the 
idea of braid statistics between independent systems [1][2][3][4][5][6]. This 
includes as a special case the ideas of supergeometry but with the super­
transposition '11 = ±1 there replaced by a more general braiding where 
'11 2 -::/; id. Braided differentiation and integration on braided vector spaces, 
braided groups and braided Lie algebras are all known. Braided manifolds 
and braided Yang-Mills theory are in the pipeline. The main conclusion is 
that many constructions familiar in usual or supergeometry can be gen­
eralised to the braided case. Moreover, many constructions which are more 
commonly associated with quantum groups and the theory of q-deformations 
are more properly understood in these terms. There is a review article for 
physicists[7] as well as an introductory conference proceedings[8]. 

Here we would like to use some of this braided geometry to· explore a 
basic conceptual problem that arises in quantum physics. The problem is 
that we think of a quantum alge'bra of observables on the one hand as a 
noncommutative version of the algebra of functions on phase space, or on 
the other hartd as generated by the algebra of functions on configuration 
space and by the enveloping algebra U(g) for g a generalised momentum 
symmetry. These points of view are contradictory unless it happens that we 
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can view U(g) as like the algebra of functions on some space, the momentum 
part of phase space. 

We will see in Section 2 that for any Lie algebra g, one can indeed view 
U(g) as ~he algebra of functions on a braided version of JRn. So the non­
commutativity of this algebra, which we normally associate with differential 
operators and quantisation, can be thought of equally well as statistical 
non-commutativity like that of Grassmann variables, albeit with a braid­
ing W rather than ±1. We call this phenomenon in which a Lie algebra or 
enveloping algebra of operators is thought of instead as the coordinate func­
tions of some space, a quantum-geometry transformation. The very simplest 
example is U(IRn) = ({;[xi, x2 , • • ·, Xn] where the enveloping algebra of an 
Abelian Lie algebra is thought of instead as polynomials in some bosonic 
position coordinates Xi. This is the idea behind Fourier transforms and our 
quantum-geometry transformation is a generalisation of this. 

In fact, we have already explored this idea in the context of quantum 
groups in [9][10], where it is related to Hopf algebra duality. We proposed 
the ability to make this transformation, which reverses the role of quantum 
and gravitational physics, as a guiding principle for physics at the Planck 
scale. Now we want to touch upon these same ideas in the context of Lie 
algebras and their generalisations. In fact, the above remarks appl:-,· just as 
well to super Lie algebras and the braided Lie algebras introduced in [11]. In 
each case the enveloping algebra can be viewed instead as a braided version 
of flat space. We develop this in Section 3. It provides a new way to think 
about the definition of Lie algebras and braided Lie algebras. 

In Section 4 we focus on the example of the braided Lie algebra gl2,q. 

Its enveloping algebra recovers a natural definition of q-Minkowski space. 
The quantum-geometry transformation takes the subalgebra Uq(su2 ) to the 
mass-shell in q-Minkowski space. The signature of the metric is also fixed 
as a deformation of the Lorentzian one in this approach. As far as I know, 
the Euclidean metric on JR4 cannot be deformed in the same way. Thus 
the ability to q-deform spacetime provides in this way a kind of regularity 
principle that physics should not be too much an artifact of setting q = 1. 
This is in addition to the more usual motivation for q-deformation in terms 
of regularising infinities in physi.cs[12] and quantum corrections to geometry. 

It is hoped that this note will serve as an introduction for physicists 
to braided geometry and to some of its motivation. The Appendix demon­
strates some of the mathematical techniques behind braided groups and 
braided geometry. We give a self-contained account of braided integration. 
This provides in principle the integration on many q-deformed spaces. 
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2. Canonical Braiding on any Lie Algebra 

A braiding on a vector space V is, by definition, a map ili : V 0 V ---+ V 0 V 
such that 

i.e. (1) 

where the suffices refer to the copy of Vin V 0 V 0 V. If one writes ili = X 
then this equation expresses that the two sides are topologically the same 
braid as shown. 

The simplest example is when Vis ~2-graded and ili( v 0 w) = (-l)lvllwl 
w 0 v as in supersymmetry. Of course, in this example the exchange law is 
not truly braided since ili 2 = id. 

PROPOSITION 2.1. Let V =(;EB g and define the linear map 

ili(l01)=101, 1J1(100=~01, 1J1(~01)=10~ 

1ll(~ 017) = 770 ~ + [~, 77] 0 l, 

Then 1JI is a bmiding iff [ , ] : g 0 g ---+ g obeys the Jacobi identity. It has 
minimal polynomial 

(w 2 
- id)(ili +id) = o (2) 

iff [ , ] is non-zero and antisymmetric. 

This is an elementary computation. It says that the definition of a Lie 
algebra is mathematically completely equivalent to looking for a braiding of 
a certain form. We will use this principle to give a new point of view on the 
definition of a braided Lie algebra in the next section. 

Now in the theory of supergeometry, the simplest examples of superspaces 
are supercommutative superalgebras. Thus for .mnlm some of the variables 
(the bosonic ones) commute and some (the Grassmann ones) anticommute 
etc. So the algebra is not commutative in the ordinary sense, but it is com­
mutative in the super sense 

·oW=· (3) 

where 1JI is included. Likewise, the universal enveloping algebra U(g) for 
non-trivial Lie algebra g is of course not commutative. 
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PROPOSITION 2.2. The braiding in Proposition 2.1 extends to a braiding 
W : U(g) 0 U(g) -+ U(g) 0 U(g) and U(g) is indeed braided commutative in 
the sense of (3). 

The proof of this is easy enough at degree 2 for there it says that · o 
w(e 0 7J) = 7Je + re, 7J] is to equal e7J, which is the defining relation of the 
universal enveloping algebra. So imposing the relations of braided-commuta­
tivity at order two and for the above braiding is mathematically equivalent 
to the usual definition of the enveloping algebra. The easiest way to prove 
the result to all orders is to prove it in complete generality for any Hopf 
algebra, of which U(g) is an example with coproduct ~e = e 01+10 e. If 
H is a Hopf algebra then 

(4) 

for all h, g E H is a braiding, and 1l is braided commutative with respect to 
it in the sense of (3). Here ~h = L: h(l) 0 h(2) is the coproduct of the Hopf 
algebra and S is its antipode or 'inverse' operation. 

We see that every enveloping algebra can be regarded as the algebra of 
functions·on some braided space, and every quantum group too, with a suit­
able choice of braiding. This change in point of view in which an enveloping 
algebra gets regarded as a function algebra of some type is what we have 
called a quantum-geometry transformation in the introduction. Viewing a 
Lie algebra enveloping algebra in this way is significant for it means that the 
whole machinery of braided spaces and braided geometry[7], such as braided 
differential operators, etc can be applied. We will compute how one or two 
of these constructions look for our enveloping algebra. 

In particular, given a braided algebra B one has the braided tensor prod­
uct B§!J.B between two copies[2]. This is an algebra in which the two copies 
do not commute but rather enjoy braid statistics. The product rule is 

(a0b)(c0d) = aiIT(b0c)d (5) 

where we braid b past c and then multiply up. This is like the supertensor 
product of superalgebras. Here is an example of what this is good for: 

PROPOSITION 2.3. Let B:;; U(g) be regarded as a braided space as above. 
There is an algebra homomorphism A : B -+ Bfj_B given by Ae = 10 e -
e0L 

Just as the usual coproduct corresponds to addition (e.g. of angular mo­
mentum), so this map corresponds to subtraction. In a dynamical context 
the usual addition provides a realisation of the centre of mass system in the 
tensor product of two systems, whereas the above map is more like the re­
alisation of the reduced mass system in the (braided) tensor product. It has 
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properties that one would expect for subtraction in relation to the addition. 
It also generalises to any quantum group with A{h) = Sh(t) ®h(2)· 

Now we come to a matrix version of the above results, in which we shall 
do a few concrete calculations. If we choose a basis V = {xµ} and write 

-.P(xµ®xv) = x.a®xaRa/v 

then the requirement for ip to be a braiding is the celebrated Quantum 
Yang-Baxter Equation {QYBE) for R. 

Let g ={xi} for i = 1,2, .. ·,n-1 and let xo = 1 so that V = G::EBg. We 
use greek indices when the whole range 0, · · ·, n - 1 is intended. Then the 
content of Proposition 2.1 is that 

( 
1 0 0 0) 

R= 0 I 0 c 
0 0 I 0 
0 0 0 I 

(6) 

where I are identity matrices and ciik are the structure c~nstants of g. The 
basis for V 0 V used here is {xo 0 xo, xo 0 Xj, Xi 0 xo, Xi 0 Xj }. Explicitly, 

R o .k . _ ck.. Ri .k
1 

_ ci . £k
1 

Ro i . _ d. _ Ri .o Ro o _ 1 t ) - •J• ) - V 3V ' 0) - V) - ) 0, 0 0 -

and zero for the rest. This obeys the QYBE iff c obeys the Jacobi identity. 
Next, given any R-matrix, the corresponding braided space V'(R) is the 

algebra with Xi and 1 as generators and relations 

XµXv = Xf3XaRa/Jv• 

This defines a braided version of !Rn. Such a structure arises in many areas in 
physics and is often called the Zamolodchikov or exchange algebra. Putting 
in the form of our R-matrix (6) we recover the commutation relations 

[.A,x;] = 0, [x;,xj] = Axkckii 

so that the associated braided space is our enveloping algebra U(g) in a 
homogenised form where we add the central element A = x0 on the right 
hand side. This is a concrete version of Proposition 2.2. 

In the point of view of quantum or braided linear algebra[4], this is just 
one of many other constructions. If the {xµ} are like a row vector, then 
another algebra V(R) defined by generators 1 and {P'} and relations 

Rµ av 13-}pa = pµpv 

is more like a column vector. For our R-matrix above, this comes out as 
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There is also a notion of braided-quantum mechanics generalising the one­
dimensional case px - qxp = Ii to any R-matrix. It is generated by vector 
and covector algebras and cross relations 

rf':c11 - XaRa.11µ.{Ji/3=1i61.111 

as studied by several authors[13)[l1J. See also the contribution of A. Kempf 
at this conference. For our R-mattix (6), this comes out as 

i i k i . [p,xj]=ACjkP +Mi> [p',A]=O, (11',x;J=O, (11',A]=li 

where 11' = p0 • Some natural xx and pp relations in this context are with 
a certain matrix R' rather than R, for in this case (or in the free case 
with no xx or pp relations) the general machinery in (5] says that one can 
represent pl' by braided differentials -8

8 in analogy with usual quantum 
Xµ 

mechanics. One can likewise compute for our R-matrix (6) all the other 
R-matrix constructions for quantum groups and braided groups. On the 
quantum group side one has for example the usual quantum matrices A(R). 
This comes out essentially as a matrix of n copies of the homogenised Lie 
algebra, one for each row, and with each copy transforming as an adjoint 
tensor operator with respect to the others. 

Finally, we note that all the constructions above work equally _well if we 
begin with a superLie algebra. Now the canonical braiding is 

and obeys (1) iff [ , J now obeys the superJacobi identity. It obeys (2) iff 
[ , ] is graded-antisymmetric. The superenveloping algebra is once again 
characterised by (3). More generally, if ilio is any other symmetric braiding 
in the sense that ili5 = id then for 

to obey (1) and (2) recovers the obvious axioms of a general ilio-Lie algebra 
as in [14]. The corresponding matrix picture is 

(

1 0 0 0) 0 I 0 c 
R= 0 0 I 0 

0 0 0 Ro 

3. Braided-Lie Algebras 

In this section we go beyond the super case and its obvious generalisations, 
to the case when our Lie algebra is of a type where the background ilio is 
itself truly braided. The axioms for such a braided Lie algebra have been 
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introduced by the author in [11] and consist of a coalgebra C, A, f, a braiding 
'lio = X: C 0 C -+ C 0 C and a map [ , J : C 0 C -+ C such that 

~~ - [,] 

[,] [,)[,] [,) 
\6=N.J 

\ [.I 

Here A : C -+ C 0 C should be coassociative in an obvious sense and f : C -+ 

G:; should be a counit and obey f o [ , J = f 0 f. Note that an ordinary Lie 
algebra obeys these axioms if one puts (1, ~] = ~, [~, 1] = 0 and 

.C=d;©g, Al=l®l, d=l, A~=~®l+l®~, f~=O. 

So this structure A, f is implicit for an ordinary Lie algebra but we never 
think about it because it has this standard form. The same is true for su­
perLie algebras, etc. But for examples of the truly braided type we need to 
take a more general form. 

THEOREM 3.1. Let C, A, f be a coalgebra and 'lio = X a compatible braiding. 
Then [ , ]. defines a braided Lie algebra implies that 

~ qi -
[.] 

is a braiding. The braided enveloping algebra U(C) is generated by 1 and C 
with the relations {3} of braided commutativity. 

The proof of this uses the same diagrammatic techniques as for braided 
groups[7]. We shall see some of these techniques in action in the Appendix. 
Here we content ourselves with the description of a general class of examples 
from [11]. They are of matrix type where 

2 . i i k C=d;n ={u'j}, AUj=Uk®u j, i •i 
fU j = u j· 

The only data we need is a matrix solution R E Mn 0 Mn of the QYBE 
which is bi-invertible. The 'second inverse' here is R and is characterised by 

R-i b Ra.k - •i •• - Ri•b R-a.k 
a I J b - u jU I - a I J b• 

We write I = ( i0 , i 1) etc as multi-indices. Then[15][11] 

'lio(UJ®UL) = UK®u1R&JK L, [u1,UJ] = UKCKIJ 

pl K _Rio d R-1a. k1 Ri1 b R-c. lo 
-'"OJ L - a ko •o b c Ii Jl d 

K R-a io R-1b io Rk1 c Rd e 
C IJ = i 1 b ko c e d a ii 
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is a braided Lie algebra. We changed conventions here from [11] to lower 
indices for the { ur} in order to maintain compatibility with Section 2. The 
associated canonical braiding from Theorem 3.1 is 

W( UJ 0 U£) =UK 0 urR1 
JK L 

RI K _ R-ld io Rk1 a. Ri1 b R-c. lo 
J L - ko a b •o c 11 J1 d· 

The braided enveloping algebra U(.C) is given by taking u = {uij} as gen­
erators and imposing · o W = ·. So this is the algebra 

(7) 

where the second puts two of the R's to the left and uses a popular notation. 
Our construction of braided Lie algebras works over the whole moduli 

space of bi-invertible solutions R. Inside this moduli space is a subvariety of 
so-called triangular solutions where R21 R = 1. On this subvariety one has 
wg = id and our braided Lie algebras are not truly braided. They reduce 
in this case to the more obvious notion of w0-Lie algebras as at the end 
of the last section after one takes a suitable scaling limit. To see this, we 
parametrise R in such a way that as a parameter q -+ 1, we l?nd on the 
triangular subvariety. We also change variables to XI = ur - lh where or= 
oio ;1 • The braided enveloping algebra then looks like 

(8) 

and as q -+ 1 the right hand side vanishes. But if we rescale x to x = 
( q2 - 1)-1x say, then the effective structure constants for x can have a 
finite limit and indeed they become those of a usual, super, etc. Lie algebra 
depending on the point on the triangular subvariety that we are landing at. 
Meanwhile, the coproduct 

~x = x 01+10 x + (q2 - 1)x 0 x, Ex= o 
becomes our standard one. In this way, ordinary, super, etc. Lie algebras are 
the semiclassical limits of braided Lie algebras as we approach the triangular 
subvariety. They are therefore all unified and interpolated by our notion of 
braided Lie algebras. Incidentally, this shows why the classification of all 
solutions of the QYBE is such a hard problem: it includes the classification 
of all Lie algebras, superLie algebras and more generally, of braided-Lie 
algebras. Usual quantum enveloping algebras also fit into this picture[ll]. 

So the braided enveloping algebra in the form (8) looks like an enveloping 
algebra but in the form (7) it looks like the coordinate functions on a braided 
commutative space. This is our quantum-geometry transformation again, in 
a braided form. 
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In fact, these quadratic algebras (7) and the ma.trices Ro, R were intro­
duced by the author in [2] exactly as a braided analogue B( R) of the algebra 
of functions on Mn. They are the braided matrices associated to R. We recall 
that thP more well-known quantum matrices A(R) have a matrix of non­
commuting coordinate functions forming a. bialgebra or quantum group[16]. 
Likewise, B(R) is a braided-bialgebra or braided group. The difference is 
that the matrix coproduct above extends to an algebra homomorphism 

~: B(R)--+ B(R)t&B(R) (9) 

provided we take for~ the braided tensor product algebra (5). This is like 
the definition of a supermatrix, but with general braid statistics. 

4. q-Minkowski Space 

There are many approaches to what q-Minkowski space should be. Here we 
describe our own approach coming out of braided geometry[l 7]. Generally 
speaking, our approach to q-deforming physics is to introduce q as a param­
eter controlling braid statistics but with the geometry otherwise remaining 
commutative. Since usual Minkowski space can be thought of as 2 x 2 her­
mitian matrices, we naturally propose that q-Minkowski space should be the 
algebra of 2 X 2 braided hermitian matrices. This is broadly compa~ible with 
the pioneering approach of [18)[19], who were motivated by the possibility of 
spinors when defining their q-Lorentz group. On the other hand, we under­
stand directly the full structure of q-Minkowski space first and come to the 
q-Lorentz group etc. only later as a quantum group that acts covariantly on 
it. 

We take the well-known R-matrix associated to the Jones knot polyno­
mial and the quantum plane, 

R= (~ ~ q-Oq-1 ~) 
0 0 1 0 
0 0 0 q 

(10) 

and in this case we have the braided matrix algebra BMq(2) with generators 

and relations computed in [2] as u = (: ~) 

qd + q-1a central, ba = q2ab, ac =</'ca, be= cb + (1 - q-2 )a(d - a). 

The braid statistics from 'Vo has qd + q-1 a bosonic but the others mixing 
among themselves. The content of the hr.aided matrix property (9) is that 
we can multiply two copies u, u' as 

( 
a" b" ) _ ( a b ) ( a' b' ) 
c" d" - c d c' d' 
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provided we remember the corresponding braid statistics. We also showed in 
[2] that our algebra has a multiplicative braided determinant BDET( u) = 
ad - q2cb. It is bosonic and central. 

Next, we studied •-structures on braided matrices in [17]. For real q, we 
have 

( :: ~: ) = (: ~) 
so that these matrices are naturally hermitian. One has also 

ro(*®*)otl.=6.o* 

where T denotes ordinary transposition. This is what one would expect since 
the coproduct corresponds to matrix multiplication and (A· B)t = B ·A for 
ordinary hermitian matrices A, B. We denote the braided matrix bialgebra 
BMq(2) with this •-structure by BHq(2), the algebra of braided hermitian 
matrices. Note that the situation here is in sharp contrast to the usual 
axioms of *-quantum groups, where hermitian quantum matrices cannot be 
formulated. BDET is self-adjoint. 

All of this makes this particular algebra ideally suited to serve as q­
Minkowski space. So we define q-Minkowski space as BHq(2). The generators 

b+c b-c 
Xo = qd + q-1

a, X1 = -2-, X2 =Ti' X3 = d - a 

are some natural self-adjoint spacetime coordinates while BDET becomes 

q
2 

2 2 2 2 2 ( q
4 + 1 )q

2 
2 ( q

2 
- 1) 

2 
'l. 

(q2 + 1)2Xo - q Xi - q X2 - 2(q2 + 1)2X3 + q2 + 1 2XoX3 

and provides a real q-deformed Lorentz metric. 
This q-Minkowski space has plenty of geometry associated to it, some of 

which we describe now. It is evident from the description of braided matrices 
(7) that they can be viewed if we want as a 4-dimensional row vector algebra 
of the same general type as the { x µ} in Section 2. They therefore transform 
as usual under the action of the corresponding quantum matrices A(R). 
Thus, 

(11) 

is an algebra homomorphism (we have a right comodule algebra) under the 
4 x 4 matrix quantum group 

R 1 AK BAA JABL =AK BA1 ARA JBL, 6.A1 J = A1A ®AA J 

This quantum group provides the basis for a q-Lorentz group in our picture. 
It has a •-algebra structure 

A IJ* = A (ii,io)(. . ) 
JI ,JO 
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and the coaction and coproduct are *-algebra homomorphisms. We have 
taken the quantum group line here because it is more familiar. There is an 
equally good braided Lorentz group based on B(R) acting in the same way 
as a braided comodule algebra. 

Moreov.er, the quantum Lorentz group here maps into the dual of the 
Drinfeld quantum double[20] with the res,ult that our approach is indeed 
compatible with other proposals based on' spinors[18][21]. Thus, our A(R) 
can be realised in the quantum group A(R) l><l A(R) introduced in [22] and 
generated by two copies of the 2 x 2 quantum matrices. We take these in the 
form t E A(R) and it E A(R21 ) say, with mutual relations and *-structure 

tiaRa/bttbl = ttkbRiabltaj, tit= ttij, i.e., tiRt~ = t~Rt1. 
The abstract picture behind A( R) t><l A( R) as a *-quantum group was found 
in [3] as well as its relation to the quantum double. One should use the 
inverse-transpose of the dual-quasi triangular structure found there in Propo­
sition 12. The realisation and the resulting 2 x 2 matrix form of the Lorentz 
transformation (11) is 

i.e., u _, t tut. 

These constructions all work for any R-matrix of real type. For (10), one 
should think of our two copies of 2 x 2 quantum matrices as the analogue of 
the complexification SL(2, G::) of SU(2). Then the diagonal action u _, t-1ut 
when t is unitary defines an action of the quantum group SUq(2). This 
in turn is the double-cover of rotations, which appears here as SOq(3) C 
SUq(2), the subHopf algebra generated by expressions quadratic in the t. 

All the usual geometrical ideas likewise go though without difficulty. For 
example, the mass-shell or Lorentzian sphere in q-Minkowski space is defined 
by adding the relation 

BDET(u) = 1 (12) 

and is preserved under the SOq(3) action as one would expect. There are 
also vector fields on q-Minkowski space for translation[ll], and for Lorentz 
transformation from ( 11 ). The action of the rotational vectors generates the 
quantum group Uq(su2) as 

b)=(-q~c -qt~d1-a))---r(a b),(o 1)1 d 0 q 2C C d 0 0 

~)1 

(a b) ( 0 - 2b) (a b) ( 1 0 ) ] 
H 1> c d = 2c 0 _, [ c d ' 0 -1 
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where the limits are as q -+ 1 and are as one would expect. 
Another interesting feature is that this mass-shell or Lorentzian sphere 

forms a braided group. This parallels the way that the Euclidean sphere in 
the 2 X 2 quantum matrices Mq(2) is the quantum group SUq(2). The big 
difference is the *-structure or signature. In fact, this is part of a general 
phenomenon. Just as most familiar groups have supergoup analogues, there 
is a general procedure in [1] called transmutation which turns a quantum 
group into a braided group in a systematic way. The formulae at the lowest 
level are 

i ti i k ta td R; c R-b k 
U j = j, U jU I= b I a d j c, i.e., 

etc. and come out of category theory. We also gave a direct quantum groups 
point of view to them in [15]. Finally we found in [17] that this transmu­
tation from quantum geometry to braided geometry also has the side-effect 
in general of taking us from the unitary picture (our sphere in Euclidean 
space) to the hermitian picture (our Lorentzian sphere). This is the abstract 
reason why only braided matrices and not quantum matrices can serve in 
the q-deformed picture if we want the Lorentzian signature. One does not 
see this constraint at q = 1. 

More recently, U. Meyer in [23] has found an addition law for q-Minkowski 
space by introducing a new braiding suitable for the coaddition ~u = 
u ® 1 + 1 ® u. The R-matrix for this braiding is different from R above and 
provides for a better q-Lorentz group with the quantum double appearing 
as its double cover. The addition law also provides for braided differential 
calculus according to the framework of [5] and, in principle, a translation­
invariant integration as we shall see in the Appendix below. 

This completes our introduction to the braided geometry of q-Minkowski 
space. On the other hand, we have seen in the last section that these braided 
hermitian matrices are also the braided enveloping algebra of the braided 
Lie algebra associated to our R-matrix. In our case this is the 4-dimensional 
braided Lie algebra g/i,q. It has basis h, x+, x_, / with braided-Lie bracket 

[h,x+] = (q- 2 + l)q-2x+ = -q-2 [x+,h] 
[h,x_] = -(q-2 + l)x_ = -q2[x_,h] 
[x+,x-] = q-2h = -[x"-,x+] 

[h, h) = (•-' - 1)h, [1, { ~~ J = (1- .-•) { =~ 
with zero for the others. We see that as q -+ 1 the / mode decouples and 
we have the Lie algebra su2 EB u(l), but for q -::f 1 these are unified. There 
is also a braided Killing form[ll] which is non-degenerate as long as q -::f 1. 
So gl2,q is an interesting braided-Lie algebra with potential applications in 
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physics, such as in the unification of electroweak interactions in q-deformed 
Yang-Mills theory[24] with this as the gauge symmetry. Its su2 part can also 
serve as differential operators of orbital angular momentum etc., along usual 
lines. 

The quantum-geometry transformation thus connects these two concep­
tually quite distinct structures. Explicitly, it is 

x+ =(q2-1)-1 c (
h) ( a-d ) 

xi_ q-2a + d ~ (q-2 + 1) 

and gives an isomorphism U(gl2,q)~BHq(2). So, provided qi= 1 there is only 
one braided group in the picture. From one point of view it is the algebra 
of functions on q-Minkowski space. From another point of view it is the 
enveloping algebra of a braided Lie algebra. But what we see at q = 1 is 
two structures, depending on how we take the limit. If we work with a, b, c, d 
then in the limit the algebra is the commutative algebra of functions on 
usual Minkowski space. If we work with h,x+,X-,/ then the limit is the 
highly non-commutative enveloping algebra U(su2 EB u{l)). 

The quantum-geometry transform here is valid for q i= 1 and maps Lie 
algebras and their properties to geometry. For example, what from the geo­
metrical point of view is the mass-shell constraint {12) in q-Minkowski space, 
comes out from the Lie algebra or differential operator point of view as 
the quantum enveloping algebra Uq(su2). Explicitly, the quantum-geometry 
transform at this level becomes 

This follows from some known results in the theory of quantum groups 
[16][25] by putting u = z+ sz-. This connection with quantum groups is 
explained in full detail in [15], to which we refer the reader. 

Likewise, what from the geometrical point of view is the time direction 
xo appears from the Lie algebra point of view as giving the u{l) mode / 
which could appear in a gauge theory or which, for example, acts via [ , ] on 
q-Minkowski space by scaling of the space coordinates {x;}. On the mass­
shell it appears as the quadratic Casimir. In summary, U(gl2,q) is both a 
braided enveloping algebra, such as an internal symmetry or an algebra of 
differential operators acting on q-Minkowski space, and can be identified 
with q-Minkowski space itself. Only remnants of this unification are visible 
when q = 1. We have seen also that the ability to develop the q-deformed 
picture forces us from Euclidean space to Minkowski space. 

We have not had room here to describe many other features of quantum 
and braided geometry. Notably, in [24] we introduced the theory of quantum 
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group principal bundles and connections (gauge fields), including the exam­
ple of a Dirac monopole on a q-sphere. Some of this machinery can be applied 
to q-Minkowski space. In short, a systematic q-deformed picture of the ma.in 
ingredients of physics is emerging, as well as some unusual phenomena that 
are not very evident at the special point q = 1. 

Appendix. Braided Integration 

In this appendix we introduce the reader to some of the mathematical tech­
niques of braided geometry by deriving here a formula for invariant integra­
tion. This is a problem that is of current interest and which was posed a 
couple of times at the conference. Since quantum planes, q-Minkowski space 
and many other q-deformed algebras are in fact braided groups, we can ap­
ply the general theory of braided groups. There are still some difficulties in 
interpreting and computing the formula for integration, which we offer as a 
challenge for the interested reader. 

Our ma.in goal is to demonstrate some diagrammatic techniques as used 
for the basic properties of braided groups in [7]. We refer there for full details 
of the methods and notation. As well as the result here, one can also prove 
Theorem 3.1 and the braided version of ( 4) using the same techniques. 

Briefly, let us recall that a braided algebra Bis an algebra with a braiding 
"W' =X mapping B®B -+ B@B. There should also be a'unit element, 
which we view as a map T/ : (; -+ B. The algebra, and indeed all our maps, 
should be compatible with the braiding in an obvious way. We view it as 
like functions on a braided space. A braided group is such a braided algebra 
equipped also with a coproduct Ll : B -+ B0B and counit € : B -+ Q.:;, This 
is like the definition of a quantum group with the key difference that B0B 
is defined with bra.id statistics as in (5). We saw some concrete examples 
in the form of the braided matrices in Sections 3 and 4. Likewise, some 
quantum planes are also braided groups with coaddition(3]. We are using 
the term 'braided group' quite loosely here. In general, there should also be 
an antipode S : B -+ B obeying axioms like the usual ones. One can also 
ask for some braided-commutativity as in (2] but we do not need this here. 

Crucial for us is the diagrammatic notation in which Ll = t\ and · = Y. 
We also suppose that our braided group has a dual B* and denote the 
evaluation m~p ev : B* 0 B -+ (; and coevaluation map coev : (; -+ B 0 B* 
by ev = V and coev. = t"\. In concrete terms, ev is usual evaluation and 
coev(>.) = >.L,ea@r for a basis {ea} and dual basis {r}. 

Our goal is to find a map J: B -+ (; which assigns to a 'function' in B a 
number, and which is translation invariant under the group law. Classically 
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this means J b( h( ) ) = J b for all h in our group. We find correspondingly 

where the first is our definition of f and the second is its translation­
invariance property. Here Tr is the braided trace as in [11] and L is left 
multiplication, which gives the diagrammatic form shown. 

A similar formula applies for ordinary quantum groups, and we will use 
a similar strategy of proof. We note that braided integrals have also been 
studied in (26] but our proof will be different. Our first step in the proof is 
a lemma. We assume that S is invertible, then 

N 
where the first equality is the property that ~is an algebra homomorphism 
to the braided tensor product algebra Bf}_B. The second equality uses asso­
ciativity and coassociativity of the product and coproduct. The last equality 
then cancels the inverse-antipode as explained in [7]. Then 

= 

where the first equality is our lemma and the second uses that S is a braided 
antialgebra homomorphism. Now pick up the coproduct at the top of the 
third expression and push it down and to the left (not changing the topol­
ogy), giving the fourth expression. Now we use coassociativity and cancel 
the antipode loop. We obtain the desired left-invariance of the integral. 

Thus we have a nice formula for the invariant integral on a braided group. 
The braided trace plays the role of 'averaging'. The formula should, however, 
be viewed with care because it could easily happen that it gives identically 
zero or infinity and may well require a renormalisation to get a finite answer. 
To see the nature of this problem, let G be an ordinary finite group and take 
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a basis of delta-functions { 69 }. The dual basis is the the set of group elements 
themselves. Then the formula gives 

j b = ~Jg, b09 ) = I: b(g)o9 (g). 
g g 

In the continuous case this gives 6(0) times the usual integral. One can 
evaluate the trace in any convenient basis. It would be interesting to find a 
suitable basis in the case of the quantum plane or q-Minkowski space and 
likewise evaluate this integral. This is a direction for further work. 
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Abstract. The relation of 3D Chern-Simons theories to quantum groups is studied, it 
turns out that besides the already known quantum group realization for the quantized 
theory, a similar realization exists for the classical theory. The classical limit of the theory 
is considered in detail. 

1. Introduction 

In the last years 3D Chern-Simons theories have been studi~d due to their 
multiple applications (1, 2, 3, 4). 

As topological field theories, Chern-Simons theorie do not depend on the 
metric of space-time manifold M. 

If A is an algebra valued connexion of the group G on the manifold M, 
then the Chern-Simons action is given by: 

I= 
4

k11" JM d3uiikTr(A;8;Ak + A;A;Ak) (1) 

where k is the coupling constant and Tr is the bilineal form of the algebra 
of the group G. 

The action (1) is invariant under spacetime reparametrizations and under 
gauge transformations it is invariant up to an additive constant given by the 
winding number of the transforming group element. 

The equations of motion following from (1) are gauge covariant: 

(2) 

Thus, C-S theories will describe only "trivial" motions given by flat connex­
ions. 
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If the group G is JS0(2, 1), then it was shown in [1] that the resulting 
theory is equivalent to 3D Einstein gravity. 

For quantized theories the expectation value of Wilson lines along knot­
ted closed curves will give the corresponding Jones polynomial. Moreover 
the quantum Hilbert space of a 2D spacelike section punctured by the in­
tersection of the contained Wilson loops, describes the space of conformal 
blocks of 2D conformal field theories. 

An interesting issue is the one of computing the commutator algebra of 
Wilson loops along spacelike curves [5). As usual a foliation of M ·= Rx E has 
been chosen. Thus, it is enough to study Wilson loops on E. In [5), JS0(2, 1) 
has been considerated in some detail; this study has been further pursued 
in [6) for the spinorial representations of S0(3, 1) and S0(2, 2) where after 
quantization the resulting algebr.a has been identified with SL(2)q· Further, 
the Wilson loop algebra of Poincare and conformal groups [7), and for de 
Sitter supergravity [8) have been calculated with similar results. Generaliza­
tions for g > 1 have been pursued in [9). 

In this contribution SU(2) C-S theory is considerated. In Sec. 2 it is 
shown that although the Poisson bracket algebra of integrated connexions 
is of braid type, the Jacobi identities are trivially satisfied. In Sec. 3 it is 
shown that the Poisson bracket algebra of traces, i.e. Wilson loops, has the 
structure of S L(2)q· In Sec. 4 different quantization schemes are discussed. 
Conclusions are drawn in Sec. 5. 

2. Quantum Symmetry of Classical Chern-Simons Theory 

If / : R -i- E is a noncontractible closed curve on E, then an integrated 
connexion 

'"P'(-y) = Pef-r Adx 

is a solution of the differential equation [5): 

d'I! = A 'I! 
dt 8 

(3) 

(4) 

where As is the connexion tangent to 'Y at s. From the action ( 1) the canonical 
Poisson bracket relations can be derived: 

(5) 

where a, f3 = 1, 2 and a corresponds to the adjoint representation of G. 
In order to compute the Poisson brackets of integrated connexions let us 

consider two crossing closed curves I and a [5, 6). We take them as indepen­
dent nontrivial homotopy classes, e.g., the cycles of a thorus. Both curves 
are decomposed into three pieces, the central one being in the neighborhood 
of the crossing point. (fig. 1). 



3D CHERN-SIMONS THEORIES AND THEIR RELATION TO QUANTUM G{WUPS 81 

O"_i 

Figure 1 

Thus iP( /) = iP(/3 )1li(/2)1li( 7i) and 'li( O') = 'li( 0'3)1li( 0'2 )'li( 0'1). Taking 
(5) into account we obtain: 

{'111(/), 'li2(0')}pB = 
W1(/3)1li2(0'3) {1li1(/2), 1li2(0'2)}PB W1(/1)1li2(0'1) 

where, as usual, the notations are: 

Further, we have: 

thus 

iP(/2) = 1 + J.~:!,' ds Aa [x(s )) x'a( s) + 0( E2) 
Ill( 0'2) = 1 + J::!,' du Aa [x( u )] x'a( u) + 0( €2) 

(6) 

(7) 

(8) 

(9) 

where s(/,O') = ±1 is the signature of the relative orientation of/ and O'. 
Therefore, in the limit f -+ 0: 

{ilf1(7), llf2(0')}pB = 
- 2{ s(7,0')iP1(/3)il'2(0'3) (Ta @Ta) ll'1(/1)il'2(0'1) (10) 

If we restrict ourselves to curves 7 and O' with a common base point, the 
algebra (2.8) can be put in a closed form, so that for example in the limit 
f-+ 0 we have ii'( 73 ) = ii'( 0'3 ), then we can fix the gauge in such a way that 
we obtain the braid-like algebra: 

(11) 
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where 

r12(/,0') = - 2
; s(/,O')(Ta ®Ta) (12) 

which (·bviously does not satisfy the classical Yang-Baxter equation. In fact, 
in order to satisfy the Jacobi identities of (11), we need three different, but 
equally based elements, say iil(1), iil(O') and i[l(O'') as in fig.1.2 (the fact that 
/, O' and 0'

1 are equally based is not explicitly shown). The point is that the 
gauge (11) cannot be implemented simultaneously for all possible brackets, 
for each of these brackets we must do separatedly a partition of the curves. 
fig. 1.1. 

y 

I 
I 
I 
I 
\ 

B 

Figure 2 

Taking that into account, it is easy to show that: 

{{iI11(/), iil2(0')}pB, ili3(if)}pB + 
{{ili1(0'), W2(a')}pB 'W3('Y)}PB + 

{{'113(0"), W1('Y)}pB 'iil2(0')}PB = 0 

where the second term vanishes identically due to the fact that 

{'l11(a), ili2(0'')}pB = 0 

-

(13) 

(14) 

Now we consider the Poisson bracket algebra of traces of integrated con­
nexions (Wilson loops) for SU(2): 

C('Y) = Tr(1) 

where the Casimir element is given by: 

T a m1 T m2 1 £ m1 £ m2 + 1 £ m2 £ m1 
m'1 am'2 = -4um'1 Um'2 2um'1 Um'2 

(15) 

(16) 

(17) 
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resulting the algebra [5, 6]: 

which closes due to the trace identities for 2x2 matrices [5, 6]: 

Tr( AB)= Tr(A)Tr(B) -<let ATr(A-1 B) 

In our case the determinant is one and we have: 

C(12a) = -C(cr) + C(!)C(!a) 
C(a21) = -C(!) + C(a)C(!a) 

(18) 

(19) 

(20) 

and so on. Thus, the only independent generators are: X1 = C(1), X2 = 
C(cr) and X3 = C(!a) with the resulting algebra [6]: 

(21) 

where fij = -f.ji, f.12 = f.23 = f.31 = 1 and fijk is the 3D Levi-Civita symbol. 
Relations similar to (21) arise for the monodromies of groups elements of 
SU(2) WZW model in [10] where the resulting algebra has been interpreted 
as the semiclassical version of SL(2)q. In the following we will show that in 
fact they constitute an exact representation of SL(2)q. 

Indeed, if we do the nonlinear reparametrization similar to the one used 
for the quantized theory in [6], see also e.g. [11]: 

We obtain: 

{K+,K-}PB = 

{H,K~}PB = 

i ( e-f H - ef H) 
±~K± 

k 

where the deformation parameter is given by: 

(22) 

(23) 

(24) 

(25) 



84 CUPATITZIO RAMffiEZ AND LUIS URRUTIA 

3. Quantization 

In this section, we wish to obtain the algebra corresponding to (2.22) in 
the quantized theory. Due to the lack of regularization criteria like operator 
ordering, quantization of Chern-Simons theories imply a certain degree of 
arbitrarirtess. 

In our case the indicated thing to do is canonical quantization. However, 
it would imply complicated operator manipulations to achieve (21). Instead 
of it we choose a way similar to [6]. We start from the following naive ansatz: 

where 

fjj = 1 
fjj = -1 

(26) 

(27) 

takes into account the nonconmutativity of X; and Xj. In this case the 
nonlinear reparametrization is given by: 

(28) 

with the resulting algebra: 

[K+ K-] = i7rh ( µ - -11) 
' 2k - i7rh e e 

(29) 

(30) 

so that after some rescalings the canonical form turns out to be: 

+ _ (q2H _ q-2H) 
[K 'K ] = q2 _ q-2 (31) 

[H, K±] = ±ihK± (32) 

where the quantized deformation parameter is given by: 

( 
7rh) .t q = 1- iT (33) 
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such that the limit h -+ 0 

lim q = lim [(1- /kn,)-,;,.]-f = e-f 
1i-o 1i-o 

(34) 

gives the deformation parameter of the classical theory. 
Now, we wish to make an ansatz ofregularization for the operator product 

on the r.h.s. of (26) as follows: 

1 
X;Xi-+ 1 +a (X;Xj + aXjX;) 

Therefore 

hence 

(Xi. X2) = i~u 1iu (X1X2 + X3) = ihu (X1X2 + X3) 
1 + ia 1+a 

which has the same form as (26). 
Therefore the deformation parameter will be: 

( 

1 ·1f1i'k ) ;k • - .1.. -i~ 
q=(l-ihu)•i. = Ha 

1 + . 1f1i/k 
ia l+a 

where we substituted u -+ 7r / k. 
It is interesting to expand (38) in power series on h. 
We obtain: 

_ l! - '°'00 l.(ili)n-l (!!.1!::..)n[l-(-a)n] q = e k e l..Jn=2 n 1+a 

(35) 

(36) 

(37) 

(38) 

(39) 

For example, if we take a symmetric ordering, i.e. a = 1, only even powers 
of h will survive and the deformation parameter will be real: 

(40) 

Our results are based on a heuristic quantization of the trace algebra 
(11). Nevertheless, the resulting deformation parameter is consistent as far 
as the classical limit (h -+ 0) concerns. 

It would be interesting to quantize (11) instead of (21). However in this 
case the noncommutativity of the operators leads to considerably complica­
tions, for example the trace identity (19) is not fulfiled anymore. Work is in· 
progress in this direction. 
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Abstract. Within the framework of quantum group symmetric Heisenberg algebras and 
their (Bargmann-) Fock representations, we study the position and momentum operators: 
Their commutation relations, uncertainty relations and spectra. As an effect of the un­
derlying noncommutative geometry, a scale appears, leading to the existence of minimal 
uncertainties in the positions and momenta. The usual quantum mechanical behaviour is 
recovered as a limiting case for not too small and not too large distances and momenta. 

1. Introduction 

Quantum groups, i.e. dual quasitriangular Hopf algebras, considered as de­
formations of function algebras on group manifolds, are examples of non­
commutative geometry [1, 2, 3, 4]. It is interesting to examine, whether the 
introduction of noncommutative geometry into quantum theory can regu­
larise its short distance behaviour or even lead to a link to gravity. Here we 
study the effects of noncommutative geometry in quantum mechanics. 

The commutation relations of the following generalised bosonic Heisen­
berg algebra are conserved under the action of the quantum group SUq(n) 
[5, 6]: (See also [7] and also compare with [8, 9, 10, 11]) 

aia; - qa;ai = 0 for i < j 
a[a} - qa}a! = 0 for i > j 

aia} - qa}ai = 0 for i :/; j 

aia! - q2a!ai = 1 + (q2 - 1) I>Ja; (1) 
j<i 

Here i runs from 1 to n and q is real. One obtains for the scalar product: 
n 

(Ol(anr" · ... · (a1r1(air · ... · (a!r"IO) = Il[ri]q! (2) 
i=l 

• Supported by Studienstiftung des deutschen Volkes, BASF-fellow. 
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with 

[r]q! := [l]q · [2]q · [3]q · ... · [r]q and 
q2P _ 1 

[p]q := q2 - 1 (3) 

Although quantum groups do in general have more than one free parame­
ter, no further parameters enter in these commutation relations [12, 13]. The 
Hilbert space 1{, completed using the induced norm, is as usual isomorphic 
to 12 • The Poincare series of the a's and the at's remain unchanged. The 
quantum group SUq(n) is a symmetry of the Heisenberg algebra. Neverthe­
less arbitrary Hamiltonians can be studied which not neccesarily have this 
symmetry. The usual quantum mechanical programme, representation of the 
Heisenberg algebra on a positive definite (Bargmann Fock-) Hilbert space 
of wave functions and the definition of integral kernels like Green functions 
etc., could be performed and some dynamical systems, using the undeformed 
Schrodinger equation (and leading to unitary time evolution) were worked 
out [14]. 

Since the above given commutation relations are respected by formal 
hermitean conjugation, the natural candidates for position and momentum 
operators x ex a+ at and p ex i(at - a) are representable as symmetric 
operators on a suitable domain. Let us now try to reveal some f~atures of 
the underlying noncommutative geometry by studying these observables in 
more detail. 

2. Commutation relations of positions and momenta 

We start with the following ansatz for the position and momentum operators: 
(r=l, ... ,n) 

Pr:= iKr(at - ar) (4) 

Defining their domain D to be 

D := { v E Hlv = Polynomial( ai, ... , a~)IO)} (5) 

which is dense in H, we insure that all Xr and Pr are represented as symmetric 
operators with images that lie in their domain. Since the a's and at's do not 
carry units, the newly introduced constants L and K do. 

it is reasonable to require the existence of a physical region in which the 
usual quantum mechanics is recovered as a limiting case1 , even if q f. 1. 
This would be achieved if the commutation relations come out in the form 
[x,p] = ih + f(q,x,p) with uncertainty relation D..xD..p 2: ~ + k(f(q,x,p)} 
which then reduce to the usual relations where (!} is negligible. 

1 Weakening this restriction, the ansatz Eqs.4 is generalisable. 
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Explicitly the commutation relations Eqs.1 read in terms of the x's and p's: 

[xr,Pr] = 

Working out the induction and setting 

KrLr := ~ ( q
2

; 
1 r 

the commutation relations do indeed take the desired form: 

( 

2 ) s-1 ( 2 2 ) 
[Xr.Pr] =iii+ i!i(q2 - 1) I: q ; l 4~2 + 

4
1{2 

ssr s s 

The mixed commutation relations read for r < s: 
.Lr q- 1 

[x 8 ,Pr] = i Kr q + l {xs,Xr} 

[ ] .Kd-1{ } 
Xa,Xr = i Lr q + l Xa,Pr 

For r > s one gets: 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

If q = 1 the constants K and L drop out of the commutation relations, 
reflecting that in ordinary quantum mechanics a length or a momentum 
scale can only be set by the Hamiltonian i.e. by chosing a particular system. 
Here, for q -:j:. 1 the K and 'L appear in the commutation relations, thus 
these scales become a property of the quantum mechanical formalism itself. 

3. Uncertainty relation 

Let us consider for simplicity the 1 dimensional case where Eq.8 reads: 

. . ( x2 p2 ) 
[x,p] =in+ i!i(q2 - 1) 4L2 + 4K2 {13) 



90 ACHIMKEMPF 

with 

1i 
K = -(</' + 1) 

4L 
(14) 

We will now study the situation for q2 > 1. The case q2 < 1 is quite different 
and will be discussed elsewhere. The following (standard) derivation of the 
uncertainty relation holds on every domain D' of x and p, on which both 
operators are symmetric and have their images in the domain. The above 
given domain D is an example. 

We start with the trivial statement that the following norm is positive: 

I ((x - (v,x.v)) + ia(p- {v,p.v)))vl ~ 0 Vv ED' Va 

Using Eq.13, that x and pare symmetric on D' and choosing a such as to 
get the most restrictive inequality this yields for all v in D' the uncertainty 
relation 

AxAp ~ ~ (1 + (</' -1) ((Ax):L~ (x)2 + (Ap~2~ (p)2)) (15) 

with the notation: 

(Ax)2 := (vl(x - (v,x.v))21v) and (x) := (v,x.v) -

In 'polar coordinates' 

Ax := 2Lr cos a and Ap := 2K r sin a 

the uncertainty relation reads: 

and 

. q2 - 1 
sm2a > -

2
--

1 q + 

2 1 + ( q2 - 1) ( ~ + ~) 
r > . 

- ( q2 + 1) sm 2a - ( q2 - 1) 

(16) 

(17) 

(18) 

From Eq.17 follows that the minimal a is larger than 0 and the maximal a is 
smaller than 7r /2. Thus the hyperbola of the ordinary uncertainty relation, 
having the Ax and the Ap axes as asymptotes has turned into a graph with 
asymptotes that are no longer parallel to the axes. From Eq.18 follows that r 
is always larger than 0, thus there are minimal uncertainties in the positions 
and the momenta2• They are calculated to be: 

Axo = L~ and APo = KJq2q~ 1 
(19) 

2 They depend on (x) and (p), the absolutely smallest values are given. 
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Due to Eq.14 there were two free parameters: the length L and q. Instead 
we can now use Axo and APo as the free parameters and express L,K and 
q in terms of these: 

L = Axo 2AxoAPo + 1i + ../4(Ax0)2(APo)2 + (n)2 
4AxoAPo 

K = APo 2AxoAPo + 1i + ../4('Ax0)2(APo)2 + (n)2 
4Axo6Po 

The commutation relation Eq.13 then takes the form: 

. . ( x2 p2 ) 
[x,p] =in+ ig(Axo,APo) (Axo)2 + (APo)2 

where 

(20) 

(21) 

(22) 

(23) 

AxoAPo 2Axo6Po + V4(AxoAPo)2 +1i2 - n 
g(Axo,APo) := 4 (24) 

n 2AxoAPo + V4(AxoAPo)2 + n2 + n 
Let us now identify the physical region where the ordinary quantum me­
chanical behaviour is recovered: 

Since physically we know that Axo and APo can only be very small, say 
AxoAPo < n/2, we expand g to the first nonzero order and arrive at the 
simplified commutation relation: 

(25) 

Now it becomes clear that in our formalism not only the behaviour for small 
distances and momenta is altered: Also for expectation values of x2 or p2 

large enough to make the second term on the rhs of the order 1i or larger, 
the behaviour will be significantly changed. The region of approximately 
ordinary quantum mechanical behaviour is thus specified through: 

( 
2 2 n

2 

Axo) < x < 4( APo)2 (26) 

\ 2 
2 2 1i 

(APo) < p < 4(Axo)2 (27) 

From the point of view of wave-particle dualism, meaning high momenta are 
needed to measure small distances etc. this is of course a reasonable result. 
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4. Functional analysis of x and p 

The above derived uncertainty relation holds on every domain D' on which 
both x and pare symmetric and have their images in D'. It implied minimal 
uncertainties in the positions and momenta. Now if there was a v;. E D' 
that is eigenvector e.g. of x: x.v;. = .Xv;., one would then of course have 
(~x)2 = (v;.l(x - (v;.,xv;.))2 lv;.} = 0, which would be a contradiction. We 
thus conclude that there is no domain on which x and p are symmetric and 
have eigenvectors. Let us now study the functional analysis of x in more 
detail, the analysis for p is completely analogous. 

We start be choosing for x the domain Dx := D (the finite linear com­
binations of the vectors (atno} with r = 0,1,2, ... ), on which x and pare 
obviously symmetric and have their image in Dx. We can thus already con­
clude from above that x has no eigenvectors in Dx. Indeed, the eigenvalue 
problem 

with (28) 

can be solved for all complex .X, but from the recursion formula that we 
obtain for the coefficients fr( .X) of v;. it is clear that infinitely many of them 
are nonzero, thus v;. </. Dx. 

Let us now consider the adjoint x* of x, which has the domain: 

Dx• = {v E HI 3w EH Va E Dx: (v,x.a} = (w,a}} (29) 

Of course Dx C Dx• and, using the above mentioned recursion formula one 
proves that actually all v;. are normalisable and are contained in the domain 
Dx•, i.e. they are eigenvectors of x*. Since there are nonreal eigenvalues 
we conclude that x* is not symmetric. An analytic expression for the in­
teresting scalar product of two normalised eigenvectors ( v;., v;.1} has not yet 
been worked out (the numerical approximation converges as quickly as a 
geometrical series). 

x** is a much better behaved operator since it is closed and symmetric. 
Its domain 

Dx .. = {v E HI 3w EH Va E Dx•: (v,x*.a) = (w,a)} (30) 

is in between those of x and x*: Dx C Dx .. C Dx• and it can easily be 
checked that it does not contain any eigenvectors v;.. 

We now apply the standard procedure, see e.g. [15, 16]3, for checking for 
self-adjoint extensions of closed symmetric operators: 

3 Note that [15) defines 'hermitean' as synonymous to self-adjoint while [16) uses it as 
synonymous to symmetric. 
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The dimensions of the spaces (we use x*** = x*) 

Lf;,x•• := ker(x* =f i).Dx• (31) 

i.e. the deficiency indices, are both equal to 1 ( thete is only one v; and one 
v_;). We can thus define the following one-parameter family of self adjoint 
extensions: 

Xaa( </>).a := i(b + U.b) for all a = b - U.b (32) 

with the isometric operator U defined on (x** + i).Dx•• EB Cv; as 

U.v := (x** - i)(x** + it1.v 't/v E (x** + i).Dx•• = L+i,x•• (33) 

and 

(34) 

Here </> is a free real parameter, labeling the self-adjoint extensions. For 
the eigenvalues one can stay with the 'Cayley transform' U, calculate its 
eigenvalues, and an inverse Mobius transform then maps them onto the 
eigenvalues of Xaa(</>). 

The analysis for p analogously leads to a one-parameter family of self­
adjoint extensions Paa( 1/J). One may now be tempted to try to fix the choice 
of the extension parameters </> and 1/J by requiring that x aa ( </>) and Psa ( 1/J) be 
defined on the same domain. One would then like to diagonalise x aa ( </>) to 
obtain a coordinate space representation or to diagonalise Psa( 1/l) to obtain 
a momentum space representation. 

However, we know from section 3 that x and p cannot be extended to a 
common domain on which they are both diagonalisable. 

We thus arrive at the following picture: 
While in classical mechanics the states can havn exact positions and mo­

menta, in quantum mechanics there is the well known uncertainty principle, 
not allowing x and p to have common eigenvectors. Nevertheless x and p 
seperately do have eigenvectors, though nonnormalisable ones. 

From the above discussion we conclude that the 'noncommutative geom­
etry' or quantum group gener?-lisation of the Heisenberg algebra has further 
consequences for x and p: It is not only that they have no common eigenvec­
tors, they even do not have a common domain on which they are symmetric 
and have eigenvectors. Nevertheless x and p seperately do have self-adjoint 
extensions, and can even have normalisable eigenvectors. It remains to de­
termine the maximal common domain on which they are symmetric. 
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Abstract. We replace invariant integration over momentum space by invariant integra­
tion over the vector representation of S09 (3, 1). Our invariant measure is reduced to an 
SU9 (2) invariant one by imposing the q-time zero projection. Finally, we show the null 
directions in the S09 (3, 1) Hopf algebra that lead to a quantum Galilei group. 

Key words: S09 (3, 1) - q-regu!arization - q-Minkowski space - q-Galilei group. 

1. Introduction 

By introducing non-commutative algebraic geometry, we can regulate rel­
evant quantities in field theory before renormalizing (Rodriguez-Romo, to 
appear]. In this context, we propose a scheme called q-regularization, where 
the deformation is parametrized by q ER (being R the reals), and q2 :f. -1, 
in which relevant quantities in quantum field theories are finite for q :f. 1, 
and reduce to the unregulated, divergent, physically meaningful quantity as 
q -+ 1. Namely, as well as in dimensional regularization we interpolate consis­
tently to dimension 4-f where the relevant quantities are finite (these would 
be infinite at dimension four); in q-regularization we extend a quantum field 
theory to the non-commutative framework (by introducing the parameter 
q) where the relevant quantities are finite (these would be infinite at q = 1). 

We want to preserve the desired Lorentz invariance, so we present a q­
regularization invariant under the q-Lorentz group. The q-Lorentz group 
that we use as symmetry has been constructed from the tensor product rep­
tesentation of S Lq(2, C) (Carow-Watamura, Schlieker, Scholl and Watamura 
1990]. Since SLq(2, C) is view as the general (coordinate) transformation of 
the q-spinor (1two dimensional object with the generators of A;to, Manin's 
quantum plane (Manin 1988), as entries) and the q-deformed Minkowski 
space is obtained as a tensor product representation of pairs of two inde­
pendent copies of q-spinors, the quantum group of transformation matrices 
acting on the quantum Minkowski space is identified as the quantum Lorentz 
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group SOq(3, 1 ). In other words, a four dimensional real representation of 
SLq(2,,C) generates the quantum Minkowski space with SOq(3,1) as its 
symmetry. We work out our approach in the light cone q-deformed coordi­
nates of this quantum Minkowski space-time. 

In order to learn more about the symmetries of our SOq(3,1) invariant 
measure and link them with physically meaningful problems, we study the 
zero q-time projection in q-deformed Minkowski space-time and its relation 
to the Woronowicz's SUq(2) measure [Woronowicz 1988]. Moreover, we show 
how, some null directions of the quantum group SOq(3, 1), lead us to a q­
deformed Galilei group. 

This paper is organized as follows; in Section 2 we introduce the q-spinors 
from the non-commutative Heisenberg algebra and present the SOq(3, 1) 
Hopf algebra we use. In Section 3, we obtain the SOq(3,1)) invariant q­
regularisation in terms of light-cone coordinates (out from q-deformed Min­
kowski space) and q-spinors. In Section 4, we study the zero time projection 
of the SOq(3, 1) invariant measure in terms of the SUq(2) measure given 
by Woronowicz (1988) and the null directions of SOq(3,1) that lead to a 
q-deformed Galilei group. The quantum Galilei group has been found as 
symmetry in condensed matter [Bonechi, Celeghini, Giachetti, Sorace et al. 
1992]. 

2. From Heisenberg algebra to q-spinors and SOq(3, 1). 

To start with, consider the fundamental Heisenberg commutator algebra on 
phase space (r,p); 

[r; ,_r-i] = inoii (1) 

[ri,ri] = (pi,_r-i] = 0. 

and the translator operator on phase space; 

U( a, b) = ei(a·p-h·r)/fi where a and b E Rn . (2) 

In a ray or projective representation eq.(2) obeys the following composition 
law; 

U(a2, b2) · U(a1, bi)= e[21ria2 (r;(ai,bi),(a2 ,b2 ))]. U(a1 + a2, bi+ b2),(3) 

where ai, bi, a 2 , b 2 E Rn and, for a free particle in quantum mechanics, the 
twG-Co-cycle a 2 for translations in the phase space is given by 

1 
211"0:2(r; (a1, bi), (a2, b2)) = 

2
1i (a1 · b2 - a2 ·bi). (4) 

Let us consider the following infinitesimal Galilei transformation 

r' = r + ai = r + 1iu, 

p' = p +bi= p, 

r" = r+a2 = r, 

p" = p + b2 = p + 1iu, 

(5) 
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where u is a unit vector in Rn. Define q = e-in, impose eq.(5) as symmetry 
in eq.(4) and substitute the result in eq.(3),-thus 

U(hu, O)U(O, liu) = q U(O, liu)U(liu, 0) (6) 

is a realization of A~2/o). 
Following Carow-Watamura et al. (1990 and 1991), let us define 

ZP [ Z
1 

] [ U(hu, O)] . 1 2 = Z 2 = U(O,hu) 'i.e. p = ' . (7) 

as a q-spinor, introduce the tensor product representation of two q-spinor 
spaces, called (zi,zi), with a pair of q-spinors (i = 1,2) in each space. 
Hereafter greek indices are for spinor suffix and roman ones for different 
spinors. Besides, it is required that 

(8) 

where R~~i' is the Yang-Baxter matrix for SLq(2,C). 

After projecting the real p(art of
0

q, as ~72o)ve given, the identification Z" = 
P" - • P" q - 2/0 · .. 

€ Zp 1s made. Here € = -q_112 0 
, Zp E A1/q• 1s the hermitian 

conjugate of the q-spinor ZP. 
It is straightforward to see that 

xiJ = zi zi E A2/o 0 A2fo 
q q (9) 

yields to the generators of a four-dimensional real representation correspond­
ing to the q-deformed Minkowski space and its quantum group of transfor­
mation matrices is SOq(3,1) [Carow-Watamura et al. 1990 and 1991]. 

3. On SOq(3, 1) invariant q-regularisation. 

From the Xii .algebra take the q-light cone coordinates (A,A,B,B), where 

(10) 

and (X, Y, Z, T) is the q-Lorentz vector [Carow-Watamura et al. 1990]. Rewrite 
the generators (A, A, B, B) as f~llows 

A= a, A= a, B = q~, B = q-b where Q' = J[=q. (11) 

Let us define the Haar measure ff as a map A~/o ® A;10 
-+ C, being C the 

complex, such that 

(12) 
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where 6. is a linear map called coproduct 

6.: (A~/o 0 A~l0) - (A~/o 0 A~l0) 0 (A~fo 0 A~l0). (13) 

We have expressed the action of 6. on f as 

(14) 

By analogy with the case of finite dimensional Hopf algebras [Larson and 
Radford 1988], we use the following formal expression for eq.(14) 

(15) 

where L1 stands for f acting by left multiplication on A~l0@A~/o and Sis the 
antipode map. The deformed additive structure of the algebra generated by 
the unit and (a, a, b, b) is such that [Rodriguez-Romo, to appear, Taft 1971] 

(16) 

where w = f( q) and limq-+l w-1 = 1. Exact expressions for 6., { and S as 
well as the *-algebra are given in [Rodriguez-Romo, to appear]. 

To compute J J we propose the following basis in A;/o 0 A;/o , 

p\1,\2,,\3,\4,,\5,\5 = ( ei,\1bei,\2<a;a> ,ei,\3bei,\4(a~a) ,ei,\5bei,\5b), (17) 

where 

We associate to F,\1 ,\2 ,,\3 ,\4 ,A5 A5 a dual basis F,\',\' ,\'A' ,\' ,\' E (A2q/o 0 Aq21°)' 
1 2' 3 !' 5 6 

where (A.~{0 0 A~{0)' is the dual Hopf algebra of A;fo 0 A~10 , such that 

(18) 

8(,\~ - ,\3)8(,\~ - ,\4), 8(,\~ - ,\s)8(,\~ - ,\s)) 

where, as usual, the Dirac delta functions 8 are defined with respect to the 
Lebesgue integration on R. The basis F,\1 ,\2 ,,\3 ,\ 4 ,,\5 ,\6 , admits a q-spinor rep­
resentation, see [Rodriguez-Romo, to appear]. Furthermore, the Haar mea­
sure J J defined on A~/o 0 A~/o can be written in terms of ordinary integra­
tion [Rodriguez-Romo, to appear]. 
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Theorem 1 [Rodriguez-Romo, to appear! For a suitable f E A;to ® A;to 
that can be expressed on the F'\1" 2 ·"3 "•·"5 6 basis, J J f contains a compo­
nent that can be q-regularized, i.e. it is finite provided q =f. 1, but infinite in 
the limit q = 1. 

Proof. To start with, let 

f =: f' := 1_: d>.1d>.2j(>..1, >.2)F"1
"

2 + {19) 

1_: d>.ad>.4i(>.a, A4)F"3
"• + 1_: d>.sd>.6i(>.s, A6)F"5

"
6 

where F"1
"

2
·"

3
"•·"

5
"

6 = {F"1
"

2 ,F"3
"•, F"5

"
6

) and we express fas a normal 
ordered form off', in terms of the generators. Namely, putting b to the left 
of a, a and b. Additionally, J is the Fourier transform off', i.e. 

{20) 

i,j = {1,2),{3,4),(5,6). 

Then we obtain 

j j f = 1_: d).~d).~d>.2i(0,>.2)8(>.~(1-w-1 )- >. 2e-2;.x;Q')+ (21) 

or 

l: d>.~d,\~d,\4j(0,,\4)8(,\~(l - w-1 ) - ,\4e-2;.x;Q',)+ 

l: d,\~d,\U(o, o) 

j j f = 1_: d,\~d,\~e.x;Q'j(0,,\~(1- w-1 )e2;.x;Q')+ 

1_: d,\~d,\~e-.x;Q' j(o, ,\~(1 - w-1 )e-2;.x;Q')+ 

l: d..\~d,\U(o,o) 

(22) 

The last term in eq.(22) corresponds to the ordinary divergent term that 
appears in th~ commutative algebraic formulation of quantum field theory; 
there is no way we can recover a finite term out of this in the limit q --. 1. 
Checking the non-commutative algebra of SOq(3, 1) we find the reason why 
this happens to be so; the light cone q-coordinates b, b commute; i.e. T is 
central with respect to (X, Y, Z), so this part of the Haar measure is not 
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really defined on a non-commutative algebraic variety. Therefore we can 
extract out of ff f the following q-regularizable component 

j j f - L: d>.~d>.~j(o,o) = (23) 

(2m5(0)) {j_: d>.U(o,>.~(1- w-i)) + L: d>.~J(o,>.~(1- w-i)}. 

But w-i = f(q) is such that limq-+i w-i = 1 [Rodriguez-Romo, to appear). 
Thus, as q --+ 1, ff f - f~00 d>.~d>.U(O, 0) diverges, by contrast at q :f 1 
and assuming suitable analicity and decay of J to allow contour integration, 
eq.(23) can be made finite for suitable f; moreover, this is proportional to 
(1 - w-i )-i. Q.E.D. 

Summarizing, in this section we have extracted out of a suitable f E 
A21° '°' A21° written on the basis p>-1 >. 2 ,>.3 >. 4 ,>.5 >.5 a component that is made qYYq, ' 
finite as q :f 1 but diverge as q --+ 1. This can be written in terms of 
light cone q-Minkowski coordinates and q-spinors (Weyl or Majorana type) 
[Rodriguez-Romo, to appear). An example in two dimensional >.¢4 theory 
can be seen in [Rodriguez-Romo, to appear). 

4. q-Time zero-projection and q-Galilei group. 

Theorem 2. The q-Time zero-projection in q-Minkowski space-time, re­
duces ff f - f~00 d>.~d>.~](O, 0) to the Haar weight on the vector represen­
tation of SOq2(3) written in terms of SUq(2) [Rodriguez-Romo, to appear]. 

Proof 
a) The identification M"t = M-i, that leads At to be written in terms of 

SUq(2), corresponds to T = 0 in q-Minkowski space-time. 
b) The algebra generated by (A, A, B) is isomorphic to the q-space rela­

tions of the 3-dimensional vector representation for SO q2 (3), given by Fad­
deev et al. (1987), (i.e. q from Fadeev corresponds to q2 here). Let us call 
xi= ~(A+ A), X 2 =HA-A) and X 3 = B. 

c) From the p>.1 >. 2 ,>.3 >. 4 ,>.5 >.5 basis, we project; 

.,3 

where xi= xi, X 2 = x 2 , and X 3 = q<i'. 

(24) 

From this and from the work done on the category of representations of 
a Hopf algebra follow the proof. 

Finally, let us now show how null directions in the SOq(3, 1) Hopf algebra 
can lead us to obtain a quantum mechanical Galilei group. 
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Theorem 3 [Rodriguez-Romo, to appear] By imposing the following null 
bi-ideals 

(25) 

on ME SLq(2,C) and ME SLq(2,C) (factors in SOq(3, 1)) we obtain from 

.x~;!],) = Mf,Mj, E SOq(3, 1) a direct product representation of the quantum 
Galilei group. 

Proof. By requiring the quantum matrix M = ( ul u~ ) E S Lq(2) to 
Ul U2 

belong to the quantum mechanical Galilei group; i.e. M must fulfill eq.(5) 
then the null bi-ideals in eq.(25) have to be imposed on M, so to end up 
with a group that has only one generator, as should be. 

If we impose the null-directions given by eq.(25) in A E SOq(3, 1) we 
obtain the representation of the quantum Galilei group as symmetry on a 
4-dimensional real representation of SLq(2, C). Namely 

( 

(ui);lu~ u}uJ+92~ujul)-1 ~ 92(u}u}-~u}uJ)-1)) 
A - l+q2 -1( 1)-1 l+Oq2 

- 0 0 U1 Ul 
O uluJ-(u)ul)-1 O q2(u)u)+(u}uJ)-1) 

l+q2 l+q2 

(26) 

where ul is the generator for the Galilei group that comes from M = M-1 , 

the transformation matrix for zi. Q.E.D. 

5. Summary and Conclusions 

In this paper we have used the projective representation of the non commu­
tative Heisenberg algebra to construct the Manin quantum plane, thereby 
defining q-spinors. Using this as a building block we present a SOq(3, 1) 
invariant q-regularisation in terms of q-deformed light-cone coordinate , we 
show how to extract, from relevant quantities, finite components (provided 
q-:/; 1) that can become infinite at q = 1. To compute the Haar weight, we 
propose a basis projected from the q-deformed Minkowski space-time in light 
cone coordinates, so the functions to be q-regularized are to be considered 
on this frame of reference. Additional work must be done to generalize our 
scheme to arbitrary functions on the full q-Minkowski space-time basis· 

Finally, in order to learn about this programme and its symmetries, we 
study the T=O (in q-Minkowski space-time) projection of our 509 (3, 1) in­
variant Haar measure in terms of th SU9(2) measure and the null directions 
in the 509 (3, 1) Hopf algebra that lead to a quantum mechanical Galilei 
group. 
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A concept of quantized spaces has emerged from the study of quantum 
groups. Inhomogeneous quantum groups as the q-Poincare group or the q­
Euclidean group lead to a q-deformation of the Heisenberg algebra. A one­
dimensional version of it is: 

px - qxp = -i. (1) 

q -:f 0 is supposed to be a real number, characterising the deformation. It is 
the simplest example of this type and in this lecture I want to show some of 
the characteristic features of the above-mentioned quantized spaces by way 
of this example. 

In a quantum mechanical model based on the algebra ( 1 ), x and p have 
to be represented by linear operators in a Hilbert space. For real q, x and p 
cannot be both hermitean. Denoting by x* and p* the conjugate of x and p 
respectively we find: 

** 1** i p x - -x p = --. 
q q 

(2) 

We shall assume p to be herrnitean (p* = p) and we will introduce x* as a 
new variable. 

To complete the algebra, the x,x* relations have to be specified as well. 
A consistent relation is: 

xx*=qx*x. (3) 

The algebra defined that way has a Casimir operator (central element): 

C = (q - l)xpx* + i(x - x*). (4) 

It can be used to eliminate x* in an irreducible representation with C having 
a unique eigenvalue: 

x* = r- 1(iC + x), r = 1 + i(q - l)xp = i[p,x]. (5) 
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It is convenient to rewrite the algebra in terms of hermitean variables. 
We introduce the hermitean "space"-variable 

-1 

~ = q - q {(rr*)-1l 2x + x*(rr*)- 112 } 
ql/2 + q-1/2 ' 

and a unitary operator u: 

u = (rr*)-1l 2r, 

The algebra is: 

u*u = uu* = 1. 

p~ _ q ~p = i( q3f2 _ q-1/2)u 

up= qpu, 

with the conjugation properties: 

p* = p, c =~, * -1 u = u . 

(6) 

(7) 

(8) 

(9) 

A Hilbert space representation can be constructed. We choose p to be 
diagonal and find: 

P I n > ""O = 7ro qn I n > iro' 

u In >"o 

__ i_ {ql/21 n _ l >iro -q-1/21 n + l >iro}, 
7roqn 

In - 1 >iro . 

(10) 

The real number 7ro -f; 0 characterizes the representation. The Hilbert space 
H iro is defined as follows: 

""0 < n I m > iro = Onm, (11) 

n n 

The operators p and~ in the Hilbert space representation (10) are hermitean. 
The operator pis diagonal and self-adjoint. The operator~ is not essentially 
self-adjoint. This can be seen in that ~ does not possess a complete orthog­
onal set of eigenvectors with real eigenvalues. Assume ~ has an eigenstate 
I xo > with real eigenvalue x0 . Applying u and u- 1 to such a state gives a 
state with eigenvalue qx0 and q- 1x0 respectively. Assuming that these states 
with different eigenvalues are orthogonal leads to a contradiction. From (8) 
follows: 

(12) 
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The orthogonality assumption leads to the equation < xo I p( I x0 >= 0. If 
I x0 > is in H"0 and has expansion coefficients Cn we conclude: 

7ro Lqnxo I Cn 1
2= 0. (13) 

n 

A clear contradiction. This short argument shows that for a representation 
of p and ( in terms of essentially self-adjoint and therefore diagonalizable 
operators, the operator p has to admit eigenvalues of both signs. The math­
ematical requirement of essentially self-adjoint operators leads to the physi­
cally very reasonable consequence that there should be left and right movers 
in the model. In the direct sum of Hilbert spaces H"o ED H-"o' essentially 
self-adjoint operators p and ( exist. 

±7roqn I n >±"o' 

= +-i- {ql/2 In - 1 >±"o -q-1/2 In+ 1 >ho}' 
7roqn 

In - 1 >±"o . 

(14) 

A q-deformed Fourier transformation transforms the momentum basis 
into a coordinate basis and vice versa. The q-deformed cos and sin functions 
have been defined by Koornwinder and Swarttouw [5). With a slight change 
in notation, they are: 

cos[n) cos( q2n; q-4), sin[n) = sin( q2n; q-4), (15) 
co q-2k(k+l) 

= """"(- l)k z2k 
L.., (q-2· q-2) ' 
k=O ' 2k 
co q-2k(k+l) 

= """" (- l )k z2k+ 1 
L.., (q-2·q-2) ' k=O , 2k+1 
k-l 

(a;q)k = Il(l-aqm). 
m=O 

These functions satisfy the orthogonality and completeness relations: 

co 

L q2
n cos[k + n] cos[l + n] = N- 2q- 21 bk1 (16) 

n=-oo 
co 

L q2
n sin[k + n] sin[l + n] = N-2q-21 bkt· 

n=-oo 

The momentum basis of (14) is transformed into the coordinate basis with 
these functions: 
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I 2k >± N oo 
= 2 L qk+n{cos[k+n](l2n>,,.0 +12n>_,,.0 ) (17) 

I 2k + 1 >± 

n=-oo 

±isin[k+ n] (I 2n + 1 >,,.0 - I 2n + 1 >_,,.0 )} 

N oo 
= 2 L qk+n {sin[k + n] (I 2n >,,.0 +I 2n >-,,.o) 

n=-oo 

=fiqcos[k+ n + 1] (I 2n + 1>,,.o+I2n >_,,.0 )}. 

These states form a complete and orthogonal set of eigenvectors of the op­
erator~: 

± 1 k ± 
~ I k > = =f-""1;2 q I k > . 7roq 

The action of p on the eigenstates of~ can be calculated: 

p I k >±= 7ro(-q)-k {I k + 1 >± -q I k - 1 >±}. 

Let us introduce the wave function '!jJ(k) for an arbitrary state: 

00 

I '1/J >= E {'1/J+(k) I k >+ +'1/J-(k) I k >-}. 
k=-oo 

(18) 

(19) 

(20) 

The probability of finding the "particle" at the point ±-+12 if.k is given by 
?roq 

I '1/J±(k) 12 • The normalization condition is: 

00 

E (1'1/J+(k)1 2 +I '1/J-(k) 1
2

) = i. (21) 
k=-oo 

The momentum acts on the wave function: 

p'l/J±(k) = (-q)-k7ro N±(k + 1) - q'l/J±(k - 1)}. (22) 

A dynamic is defined by a Hamiltonian and the corresponding Schroedinger 
equation. It is natural to study the Hamiltonian of a "free particle": 

1 2 
H = -p' 

2 

with the Schrriedinger equation: 

(23) 

i :t '1/J±(k, t) = H'l/J±(k, t) (24) 

= -}7r5q- 2k+i { q- 2'1/J±(k + 2, t) - ( q + } )'1/J±(k, t) + q2 '1/J±(k - 2, t)}. 
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This Schroedinger equation finds its solution in terms of the momentum 
eigenfunctions with eigenvalues of the Hamiltonian: 

(25) 

Let us calculate how the probability of finding the "particle" at the space 
point ±-\-12 qk changes in time due to the Schroedinger equation (24). We 

1roq 

find 

! { 1/il(k, t)1/i±(k, t)} = i±(k + 1, t) - i±(k - 1, t), 
( 

(26) 

with the "current density": 

i±(k - 1, t) 

= ~7r5q- 2k-l { 1/il(k, t)1/i±(k + 2, t) -1/il(k + 2, t)Vi±(k, t)} (27) 

The probability is conserved, equ. (26) is the "continuity" equation. 
After having studied the one-particle states, let us try to generalize the 

model to a many-particle system by imposing a second quantization. The 
one-particle states are created by creation operators from a vacuum state: 

(28) 

The operators ct, at create the particles in the coordinate or momen­
tum representation, respectively. From (17) follows how these operators are 
connected: 

~ N °'"' q(k+n) {cos[k + n](a t +at ) 2 L... 2n,+ 2n,-
n 

(29) 

± isin[k + n](a!n+l,+ - a!n+l,-)} 

= ~N°"q(k+nl{sin[k+n](at -at ) 2 L... 2n,+ 2n,-
n 

=i=i cos[k + n]( a~n+l,+ + a~n+1,-)} · 

The-operators c, and therefore the operators a as well, are assumed to an­
nihilate the vaccuum: 

Ck,r I 0 >= an,r I 0 >= 0, (30) 

r takes the values+,-. In accordance with a locality requirement we assume: 

(31) 
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From (29) follows the same relation for the a operators: 

lln,rll~',r' I 0 >= On,n'Or,r' I 0 > • (32) 

We define a momentum operator and a Hamilton operator, both bilinear in 
the respective creation and annihilation operators in such a way that they 
have the right one-particle spectrum: 

p = 11"0 L qnratran,r. 
n,r 

2 

H 11" 0 """' 2n t = 2 L..J q an,ran,r· 
n,r 

(33) 

These operators can be expressed in terms of the operators c, c* as well: 

P = L rq-
2
k { C~k,r( C2k+i,r - qc2k-1,r) + ( C~k+l,r - qc~k-1,r)c2k,r} 

k,r 

H 11"5 """' -2k t ( 3 -1 ) = 2 L..Jq ck,r Ck,r - q 'Ck-1,r - q Ck+1,r · 
k,r 

(34) 

The simplest way to define second quantization is by imposing the "canon­
ical" quantization condition: 

(35) 

which implies: 

(36) 

This renders the momentum and energy density of (34) as "quasi" local 
objects: 

p = L rq-
2
k { c~k,r ( C2k+ 1,r - qc2k-l ,r) + ( c~k+ 1,r - qc~k-1,r )c2k,r} 

r 

'LJ 11"5"""' -2k t ( 3 -1 ) 
It = 2 L..Jq Ck,r Ck,r - q Ck-1,r - q Ck+l,r • 

r 

(37) 

By "quasi local" we mean that they commute when they have no lattice 
points in common. If the system has an additional quantum symmetry, com­
mutation relations like (35) or (36) will not be covariant. 

The commutation relationS' will have to be deformed as well. Again, the 
simplest example of this kind is: 

CkC/ = C/Ck, ckclt = R~/c1 tcs (38) 

.k~~ = o:ok(I + (ij - 1)oi). 

The matrix R is a solution of the Yang-Baxter equation. The index of the 
creation operator has been raised to make the formal structure of equ. (38) 
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agree with the q-deformed differential calculus, as it was introduced in ref.[1]. 
All the consistency conditions of this calculus are satisfied with the R of 
(38). We introduced the ij parameter as there is no connection with the 
q-parameter from before in this model. The relations (35) are obtained for 
ij = 1. With this q-deformation of the canonized commutation relations, 
momentum and energy density remain quasi local. 

The a,at relations are not local in momentum space any more. An explicit 
calculation, using (17), gives: 

azm,rat2n,s = b~b~ + at2n,sa2n,r + iN(q - 1) Lk,µ,v q4k+m+n+µ+v (39) 

{ [atzv,+a2µ,+ + at211·-a2µ,-][cos[k + m) cos[k + n] cos[k + µ] cos[k + v] 
+ rs[sinf k + m) sin[k + n] sin[k + µ] sin[k + v)] 

+ [at211•+a2µ,- + afz.,,-a2µ,+][cos[k + m] cos[k + n] cos[k + µ] cos[k + v] 
- rs[sin[k + m] sin[k + n] sin[k + µ] sin[k + v]] 

+ [at2v+l,+a2µ+1,+ + at2v+1,-a2µ+i,-J 
[cos[k + m) cos[k + n] sin[k + µ] sin[k + v] 

+ q2rs[sin(k + m] sin[k + n] cos(k + µ] cos(k + v]] 
+ [at2v+1,+a2µ+i,- + at2v+1,-a2µ+1,+] 

[- cos(k + m] cos(k + n] sin(k + µ] sin(k + v] 
+ q2rs[sin[k + m) sin(k + n] cos(k + µ] cos[k + v]]}. 

and similar relations for a, at with odd indices. These relations can again be 
written in R-matrix notation. It yields again a solution of the Yang-Baxter 
equation and meets all the consistency conditions of ref.(1]. 

If we had started from "locally deformed" relations in momentum space, 
we would have obtained non-local relations in coordinate space - there would 
have been no local expression for the momentum and energy density. This 
example clearly shows how difficult it will be to handle the locality require­
ment in q-deformed theories - a problem far from being solved. 
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Abstract. We explore a differential calculus on the algebra of C 00-functions orr a mani­
fold. The former is 'noncommutative' in the sense that functions and differentials do not 
commute, in general. Relation~ with bicovariant differential calculus on certain quantum 
groups and stochastic calculus' are discussed. A similar differential calculus on a superspace 
is shown to be related to the Batalin-Vilkovisky antifield formalism. 

Key words: Noncommutative geometry, quantum groups, stochastic differential equa­
tions, antifield formalism 

1. Introduction 

Since Connes' work on noncommutative geometry, the notion of differen­
tial calculus on algebras has entered the realm of physics through numer­
ous publications. As the commutative algebra of (C-valued) functions on 
a topological space carries all the information about the space in its al­
gebr-aic structure, certain noncommutative algebras may be regarded as a 
generalization of the notion of a 'space'. If the algebra A is associative, one 
can enlarge it to a differential algebra, a kind of analogue of the algebra of 
differential forms on a differentiable manifold. 

More precisely, this is a ~-graded associative algebra /\{A) = EBr>O N(A) 
where /\.0 =A. The spaces N(A) of r-forms are generated as A-bi~odules 
via the action of an exterior derivative d : /{(A) --> N+I(A) which is a 
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linear operator acting in such a way that d2 = 0 and d( ww') = ( dw) w' + 
(-l)'w dw' (where wand w' are r- and r'-forms, respectively). Without fur­
ther restrictions, /\(A) is the so-called universal differential envelope of A. 
It associates, for example, independent differentials with f E A and / 2 • 

What we would rather like to have is a closer analogue of the algebra 
of differential forms on a manifold. In particular, if A is generated by a set 
of n elements (e.g., coordinate functions xi on a manifold), we might want 
the space of 1-forms to be generated as a left- (or right-) A-module by the 
differentials dxi. In order to achieve this, one has to add commutation rules 
for functions and differentials to the differential algebra structure defined 
above. In case of the commutative algebra of C00-functions on a manifold, 
the ordinary calculus of differential forms simply assumes that 1-forms and 
functions commute. If, however, .A is the algebra of functions on a discrete 
set, this assumption cannot be kept. The algebra of functions on a two­
point set, for example, is generated by a function y such that y2 = 1. Acting 
with d on this relation yields y dy = -dy y and thus anti-commutativity. 
In this example the commutation relation is not an additional assumption, 
but follows from the general rules of differential calculus. This is a special 
feature of. the two-point space. This example plays a crucial role in models 
of elementary particle physics [1]. Here we just take it to illustrate what we 
mean by 'noncommutative differential calculus', namely noncommutativity 
between functions and differentials. 

Let A be the set of functions on lR generated by a coordinate function 
x (and a unit element which we identify with 1 E <C). The simplest consis­
tent deformation of the ordinary differential calculus is then determined by 
[x,dx] = adx where a is a positive real constant. Ifwe define partial deriva-

tives by df =Bf dx = dx DJ, they turn out to be (left- and right-) discrete 
derivatives. An integral is naturally associated with d and (for the higher­
dimensional generalization of the calculus) it turns out that the deformation 
from a= 0 to a> 0 transforms continuum theorie" (like a gauge theory) to 
the corresponding lattice theory (where a plays the role of the lattice spac­
ing) [2]. A simple coordinate transformation brings the above commutation 
relation into the form y dy = q dy y with q E <C, the differential calculus 
underlying q-calculus [3]. This noncommutative differential calculus is the 
best understood and most complete example so far. We can also introduce 
it on the space of functions on a lattice with spacings a instead of A. More 
generally, differential calculus on discrete sets is supposed to be of relevance 
for approaches towards discrete field theory and geometry (see [4] and the 
references given there). 

Another interesting example of a noncommutative differential calculus on 
a commutative algebra is the following [5, 6]. Let A be the algebra of C 00

-

functions on a manifold M and let us assume the following commutation 
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relations expressed in terms of local coordinates xi: 

[xi, dxi] = / gii dt 
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(1.1) 

where/ is a constant, g a real symmetric tensor (e.g., a metric) on M, and t 
an 'external' (time) parameter. The above commutation relation is actually 
coordinate independent. The differential calculus based on it is related to 
quantum mechanics [5] and stochastics [6] (depending on whether I is imag­
inary or real), and to 'proper time' (quantum) theories [5]. A generalization 
of (1.1) is obtained by replacing 1dt by a 1-form T, i.e. 

[xi, dxj] = T gij (1.2) 

where' T should have the following properties, 

[xi, T] = 0 TT= 0 , dT = 0. (1.3) 

This structure in fact shows up in the classical limit ( q --> 1) of (bi covariant 
[7]) differential calculus on certain quantum groups [8]. For functions f, h E 
A, we have 

[f,dh] = T(j,h)9 (1.4) 

where &; := & /&xi. In sections 2-5, a brief introduction to various aspects 
of this differential calculus is given. Some of the results, in particular in 
sections 3 and 5, have not been published before. 

Sections 6 and 7 present basically new results. We introduce a differential 
calculus on a superspace and show that the antibracket and the ~-operator 
of the Batalin-Vilkovisky formalism [9] (developed for quantization of gauge 
theories) appear naturally in this framework. A corresponding generaliza­
tion of gauge theory is also formulated. The differential calculus is a kind 
of superspace counterpart of the abovementioned differential calculus on 
manifolds. 

Our work establishes relations between noncommutative differential cal­
culus and various mathematical structures which play a role in physics. The 
latter are thus put into a new perspective which will hopefully contribute to 
an improved understanding and handling of these structures. 

2. The classical limit of bicovariant differential calculi on the quan­
tum groups GLq(2) and SLq(2) 

Let us denote the entries of a G L(2)-matrix as follows, 

M = ( ~~ ~~) . (2.1) 

Let A be the algebra of polynomials in xi. The quantum group G Lq(2) is 
a noncommutative deformation of A as a Hopf algebra. The structure of a 
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quantum group allows to narrow down the many possible differential calculi 
on it. This results in the notion of bicovariant differential calculus [7]. For 
GL9(2) there is a. 1-parameter set of bicovariant differential calculi. In the 
classical limit q -+ 1 they lead [8, 6] to the commutation relations (1.2) with 

gii = (detM)-1 xixi+4(o~io~>-o~io~>) (2.2) 

T = s (dx 1 x4 
- dx2 x3 

- dx3 x2 + dx4 x1
) (2.3) 

where s is a free parameter. The ordinary differential calculus on GL(2) is 
only obtained when s = O. 

The condition for the matrix M to be in 5L(2) is the quadratic equation 

det M = x1 x4 
- x 2 x3 = 1 . (2.4) 

Compatibility of the analogous condition for the quantum group SL9(2) 
with bicovariant differential calculus restricts the parameter s to only two 
values (both different from zero) [8]. There are thus only two bicovariant 
differential calculi on SLq(2) and for both the classical limit is not the or­
dinary differP,ntial calculus. We will only consider one of them here. In a 
cordinate patch where x 1 f: 0 we can use xa, a = 1, 2, 3, as coordinates. The 
differential calculus is then determined by (1.2) with 

(2.5) 

(2.6) 

where x4 = (1 + x2x3 )/x1• Although we only have three independent co­
ordinates in this case, the space of 1-forms (as a left or right A-module) 
is four-dimensional since T cannot be expressed as T = L:~=l dxa fa with 
fa E A. What's going on here is explained in more detail in the following 
section, using a simple example. 

3. Differential calculi on quadratic varieties 

Let xi, i = 1, ... , n, be real variables, <Xij a nondegenerate symmetric con­
stant form with inverse aii. We want to construct a noncommutative differ­
ential calculus with (1.2) and (1.3), compatible with the quadratic relation 

(3.1) 

The SL(2)-condition (2.4) provides us with a particular example. Acting 
with don (3.1) and using (1.2), we obtain 

(3.2) 

where we have assumed that a .- <Xij gii f: 0. The condition [xi, r] = 0 
implies 

gij Tj = 0 . (3.3) 
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It is natural to look for an expression for gii in terms of oh and the coordi­
nates xi. We are then led to the following solution of the last equation: 

(3.4) 

From this we find a = 1 - n. In the SL(2) case, we recover (2.2) and (2.3) 
with the correct restriction on the parameter, i.e. s = 1/3. 

Example: Consider two variables x, y subject to the quadratic relation 

xy = 1. (3.5) 

We thus haven= 2, O:ij = (1/2)(8ili5j2 + '5;2'5j1) and 

.. (x2 -1) 
(g'J) = -1 y2 . (3.6) 

Furthermore, r = dxy + dyx. In the case under consideration, (1.2) is a 
system of four equations. Three of them are redundant, however, since they 
are consequences of 

[x,dx] = r x2 
• (3.7) 

Although we have only one free coordinate (x), the 1-forms dx and rare 
independent in the sense that r = dx ( 1 / x) - ( 1 / x) dx cannot be e,xi>ressed 
as f(x) dx or dx f(x ). The space of 1-forms is therefore two-dimensional (as 
a left or right A-module, where A is now the algebra of functions of x ). We 
can use the expression for r to eliminate r from (3.7). This results in the 
equation xdx - 2dxx + (1/x)dxx 2 = 0 which is insufficient to transform 
the A-bimodule of 1-forms into a left (or right) A-module. 

4. A generalized gauge theory and 'second order differential ge-
ometry' 

It is rather straightforward to formulate a generalization of gauge theory 
and differential geometry using the 'deformed' differential calculus on A = 
C00(M) with (1.2) and (1.3) (see also (5]). It should be noticed, however, 
that - as a consequence of the deformation - the differential of a function f 
is now given by 

1 . . . 
df = r - g'3 OiOjf + dx' 8if 

2 
( 4.1) 

andlnvolves a second order differential operator. If a (space-time) metric is 
given, it is natural to identify it with gii. 

Let 'l/J be an element of An which transforms as 'l/J 1-+ 'l/J' = U 'l/J under a 
representation of a Lie group G. For local transformations we can construct 
a covariant derivative in the usual way, 

D'l/l = d'l/J+ A¢. (4.2) 
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This is indeed covariant if the 1-form A transforms according to the familiar 
rule 

A' = u A u- 1 - dU u-1 . (4.3) 

In the following we will only consiqer the case where the coordinate differ­
entials dxi and the 1-form T are li'nearly independent and form a basis of 
the space of 1-forms (as a left or right A-module). A can then be written in 
a unique way as 

1 . 
A = T 2' A 7 + dx' A; . (4.4) 

Inserting this expression in ( 4.3), we find that A; behaves as an ordinary 
gauge potential and 

(4.5) 

where Mis an arbitrary tensorial part (M' = U Mu- 1 ). Since U depends on 
xi, in general, it does not commute with dxi. It is convenient to introduce 
the gauge-covariant differential Dxi := dxi - T Ai. The covariant derivative 
of 'I/; can now be written as 

1 .. . 
D'l/; = r - (g'1 D;Dj + M) 'I/;+ Dx' D;'l/; 

2 
( 4.6) 

where D; denotes the ordinary covariant derivative (with A;). The field 
strength of A is 

1 1 . . 
F = dA + A2 = r 2' (D* F - DM) + 2 Dx' DxJ F;j (4.7) 

where D* F = dxi DiFji involves the Yang-Mills operator (when gij is iden­
tified with the space-time metric). F;j is the (ordinary) field strength of 
A;. 

If T behaves as a scalar and gij as a contravo."iant tensor under coor­
dinate transformations, the defining relations of our differential calculus -
and in particular (1.2) - are coordinate independent [5, 6). The coordinate 
differentials dxi do not transform covariantly, however, since 

,k 1 · · ,k e 1k 
dx = T - g'J [}i[}jX + dq; [}ex ( 4.8) 

2 

as a consequence of ( 4.1 ). For a vector field yi we introduce a (right-) 
covariant derivative 

(4.9) 

This is indeed right-covariant iff the generalized connection jfi is given by 

r ; 1 [ ke(8 ri + ri rm ) + M; l + d k r; j = T 2 g k jf mk jf j X jk (4.10) 
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where fi jk are the components of an ordinary linear connection on M and 
Mij is a tensor. Let us introduce the right-covariant 1-forms 

Dxk := dxk + T ! rk ij9ij . 
2 

(4.1) can now be rewritten as 

1 .. . 
df = T - g'1 'V;'Vjf + Dx' a;f 

2 

(4.11) 

( 4.12) 

where 'Vi denotes the ordinary covariant derivative. Also the covariant ex­
terior derivative of yi can now be written in an explicitly right-covariant 
form, 

(4.13) 

It is interesting that the (covariant) exterior derivative of a field contains in 
its ;-part the corresponding part of the field equation to which it is usually 
subjected in physical models. We refer to [5] for further results. 

5. Stochastic differential calculus 

When r = 7dt as in (1.1), we may consider (smooth) functions f(xi,t) 
depending also on the parameter t. (4.1) then has to be replaced by 

(5.1) 

Such a formula is wellknown in the theory of stochastic processes (Ito cal­
culus) [10] and suggests that our noncommutative differential calculus pro­
vides us with a convenient framework to deal with stochastic processes on 
manifolds. There is indeed a kind of translation [6) to the (Ito) calculus of 
stochastic differentials. This can be used to carry the expectation map from 
the latter over to our calculus. In this section, we introduce an expectation 
Eon the (first order) differential calculus in a more formal way. It is then 
shown for a specific example, that our rules reproduce familiar results. 

Let us consider the equation (1.1) in one dimension (for simplicity). We 
write it in the form 

(5.2) 

viewing X 1 as a process on JR, a map JR x [O, oo) -+ JR. A denotes the algebra 
of smooth functions of X 1 and t, and :F the subalgebra of functions oft only. 
Let Ebe an :F-linear map A -+ :F which is the identity on :F. We extend it 
to 1-forms as an :F-linear map via 
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Edft = -d(Eft) , E(dXtft) = 0 (\f ft EA). (5.3) 

On the rhs of the first equation in (5.3), dis the ordinary exterior derivative. 
The second equation can be interpreted by saying that, given ft, a further in­
crement dXt is statistically independent (i.e., ft is 'nonanticipating'). Then, 
as a consequence of (5.2), E(fi dXt)·does not vanish, in general. Here we 
should view ft as evaluated after a time step dt with increment dXt 'in Xt. 

Example: (Ornstein-Uhl en beck process) 
Let us consider the differential equation 

dyt = -kdtyt + CTdXt 

with constants k, a. For Eyt we obtain from (5.4) the ordinary differential 
equation 

dEyt = -k Eyt dt (5.5) 

with the solution Eyt = EY0 e-kt. Let us now show how to calculate higher 
moments. With 

[Yi, dyt] = CT [Yi, dXt] = a [Xt, dyt] = CT 2 dt . 

we find 

d(Y?) = dyt Yi + Yi dyt = 2 dyt Yi + a 2 dt 
= 2 a dXt Yi + dt ( a2 

- 2k Y?) 

and, using E( dXtYt) = 0, the ordinary differential equation 

d(EY?) = dt ( CT2 
- 2 k EY?) 

for the second moment. The solution is 
2 

EY/ = e-2kt EY02 + ~ (1 - e-2kt) . 
2k 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

If the moments EY0n are given, we obtain in this way the moments EYt, t > 
0. The results are the same as if we treat (5.4) as an (Ito) stochastic dif­
ferential equation, which is the Ornstein-Uhlenbeck equation (see [10], for 
example). We have used rather unusual techniques, however, namely a non­
commutative differential calculus. 
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6. A differential calculus on superspace 

So far we dealt with a commutative algebra generated by coordinate func­
tions xi, i = 1, ... , n. In this section we enlarge it to an algebra A of func­
tions on a superspace by adding odd variables e; and T/· Again, we associate 
with A a 'differential algebra /\(A) via the action of an exterior derivative d. 
In the case of superalgebras a different version of the Leibniz rule is usually 
adopted [11), 

d(ww') = dww1 + wdw' (6.1) 

where the hat denotes the grading involution. This is defined on /\(.A) by 
xi = xi,{; = -e;, if = -TJ, ;;;;; = -dW, :;;:;, = ww' and linearity. In par­
ticular, the dxi are odd and dTJ, de; are even. In the even sector of A, 
(6.1) coincides with our previous rule, however. We write [,)for the graded 
commutator (i.e., [w, w') = ww' -w'w for w even and (w,w') = ww' -w'w for 
w odd). The universal differential calculus is now restricted by the following 
relations, 

(6.2) 

The remaining graded commutators between superspace coordinates and 
their differentials are taken to be zero (so that we have the standard rnles in 
the pure even and odd sectors). This defines a consistent differential calculus 
where the space of 1-forms is generated as a right (or left) A-module by 
dxi, dej, dTJ. The differential of a function f on the superspace can then be 
expressed as 

df_ = ~TJ~T/.f + dx; B;f +de; (,if (6.3)( 

where 8T/, 8;, (' are operators on A. Using (6.1) and the basic commutation' 
relations, we find 

(6.4) 

With the help of these relations, the Leibniz rule (6.1) ford now implies 

B;(!h) = (Bif) h + J (B;h) , (,i(Jh) = ((' !) h + J(('h) (6.5) 

BT/(!h) = (BT/!) h + j (BT/h) +((if) B;h + (fi]) (;h. (6.6) 

Together with B;xi = b{ = (,ie;, BT/TJ = 1 (a consequence of (6.3)), this leads 
to .._ 

{)-. - {)· •- ~ (-j - (j •-~ {)- - {) + A •-~ + (i{). (6.7) ' - • ·- 8xi , - .- 8e; , T/ - T/ u .- 8TJ • 

(where a subscript (£)indicates that the derivative is taken from the left). 
Hence 

(6.8) 
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Using (6.4), we obtain 

[f,dh] = dT] (f,h) (6.9) 

where on the rhs appears the antibmcket (9] 

(6.10) 

The operator ~ satisfies ~ 2 = 0. 
The relation (6.9) is very much analogous with the relation (1.4). Of 

course, we may consider both deformations of the ordinary differential cal­
culus on the superspace simultaneously. In a sense, 1J is the odd counterpart 
of t in ( 1.1). 

7. Generalized gauge theory on superspace 

We consider again the superspace differential calculus introduced in the 
preceeding section. Let 'I/; transform under the action of a (super) group G 
according to 'I/; 1-> 'I/;' = U 'l/J. With respect to local transformations on the 
superspace, an exterior covariant derivative can be defined in the usual way 
as 

D'l/; := d'l/J+ A'l/; (7.1) 

with a connection 1-form A. It is indeed covariant, i.e. D''l/!' = fJ D'l/;, if 

A' = (J A u-1 - dU u-1 . 

Inserting the decomposition 

A= d17a + dxi A;+ d~; Ai 

we find 

Ai= u Ai u-1 
- (a;U) u-1 

and 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

In order to read off gauge covariant components from covariant (generalized) 
differential forms, we need the following covariantized differentials (cf also 
section 4), 

D~i := d~; - dT] Ai . (7.6) 

Their transformation rule is 
A A 1 

D' ~i = U D~; u- . (7.7) 
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Now we find 

D'lj; = dry(D 11 '1f; + riDi'1/J) + Dxi Di'1/J + D~i Ji'lj; (7.8) 

where 

D,, := 811 + µ (7.9) 

The operator ri Di (the covariantized ~) which appears in (7 .8) is a gener­
alization of the Dirac operator. If a metric tensor gii is given and (i U = 0, 
we can choose A; = gii ~i = ~; so that fi = (i + ~; and 

(7.10) 

which is the Clifford algebra relation. In this case, r; Di is indeed the Dirac 
operator. 

More generally, we have the following relations between transformation 
properties and exterior covariant derivatives, 

'1jJ .....,. U'lj; => D'lj; = d'lj; + A '1jJ .....,. (; D'lj; 
'1jJ .....,. (; '1jJ => D'lj; = d'lj; - A '1jJ .....,. UD'lj; 
'1/J.....,. '1f;u-1 => D'lj; = d'lj; - 7/; A .....,. D'lj;U-1 (7.11) 

'1jJ .....,. 'lj;{J-1 => D'lj; = d'lj; + '¢A .....,. D'lj; (J-1 . 

The curvature 2-form of the connection A is given by 

F := dA-AA. (7.12) 

We will leave the further investigation of this calculus to a separate work. 
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Abstract. A generalization of the differential geometry of forms and vector fields to the 
case of quantum Lie algebras is given. In an abstract formulation that incorporates many 
existing examples of differential geometry on quantum spaces we combine an exterior 
derivative, inner derivations, Lie derivatives, forms and functions all into one big algebra, 
the "Cartan Calculus". 

Key words: Quantum Groups - Differential Geometry - Lie Algebras 

1. Introduction 

The central idea behind Connes' Universal Calculus (Connes, 1985) in the 
context of non-commutative geometry was to retain the classical differential 
geometric properties of d, i.e. nilpotency and the undeformed Leibniz rule: 
da = d(a) + (-l)Pad for any p-form a. 

We use parentheses to delimit operations like d, ix and £x, e.g. da = 
d( a) + ad. However, if the limit of the operation is clear from the context, 
we will suppress the parentheses, e.g. d( ixda) = d( ix( d( a))). 

Here we want to base the construction of a differential calculus on quan­
tum groups on two additional classical formulas: to extend the definition of 
a Lie derivative from functions and vector fields to forms we postulate 

_ £ 0 d = d 0 £; (1) 

this is essential for a geometrical interpretation of vector fields. The second 
formula that we can - somewhat surprisingly - keep undeformed in the 
quantum case is 

£x, = ix,d + dix;• (Cartan Identity) (2) 

where {xi} are the generators of some quantum Lie algebra. 
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2. Quantum Lie Algebras 

A quantum Lie algebra is a Hopf algebra U with a finite-dimensional biin­
variant subvector space 'Tq spanned by generators {xi} with coproduct 

~Xi= Xi 0 1 +OJ 0 Xj· (3) 

More precisely we will call this a quantum Lie algebra of type II. Let 
{wi E 'Tq*} be a dual basis of 1-forms corresponding to a set of functions 

bi E A via wi = Sbf1)db{2); i.e. 

A~(Xi) = 1 0 Xi, 

~A(Xi) Xi 0 Ti;, yii E Fun(C9 ), 

ix;(wi) 
A~(wi) 

~A(wi) 

= - < Xi,sl) >=of, 
l ®wi, 

wi 0 s-lyii· 

(4) 

(5) 

(6) 

(7) 

(8) 

If the functions bi also close under adjoint coaction ~Ad(bi) =bi 0 5-tyii, 
we will call the corresponding quantum Lie algebra one of type I. 

We can derive two alternate expressions for the exterior derivative of a 
function from the Cartan identity (2) in terms of these bases 

(9) 

Combining the two expressions ford one easily derives the well-known f-w 
commutation relations 

fwi = wi £0 ;(!). (10) 
J 

The classical limit is given by 0/ -+ lo}, so that forms commute with 
functions. 

3. Generators, Metrics and the Pure Braid Group 

How does one go about finding the basis of generators {x;} and the set of 
functions {bi} that define the basis of 1-forms { wi}? Here we would like to 
present a method that utilizes pure braid group elements as introduced in 
(Schupp et al., 1992). 

Let us recall that a pure braid element T is an element of U@U that 
commutes with all coproducts of elements of U, i.e. 

Y~(y) = ~(y)Y, \:/y EU. (11) 

T maps elements of A to elements of U with special transformation proper­
ties under the right coaction: 

Y:A-+U: b>-+Tb=<T,b®id>; 
~A(Yb) = lb(2)@ S(b(l))b(3) =< T@ id, r23 (~Ad(b) 0 id)> . 

(12)' 
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An element T of the pure braid group defines furthermore a bilinear qua­
dratic form on A 

(,):A®A->k: a@bi-+(a,b)=-<T,a®S(b)>Ek, (13) 

with respect to which we can construct orthonormal (bi, bi)= of bases {b;} 
and {bi} of functions that in turn will give generators Xi := i b· and 1-forms 

wi := S(bf1»dbf 2). Typically, one can choose span{b;} = span<°bi}; then one 
starts by constructing one set, say {bi}, of functions that close under adjoint 
coaction 

A Adb· - b. '°'Ti. ~ . I - J '<Y I' (14) 

If the numerical matrix 

T/ii := - < T,bi 0 Sbi > (metric) (15) 

is invertible, i.e. det( Tf) -:f 0, then we can use its inverse T/ij := ( ,,.,-1 )ij to 
raise indices 

bi= bi~i. (16) 

This metric is invariant - or T is orthogonal - in the sense 

T/ii = T/k1TkiT1i. (17) 

Once we have obtained a metric Tf, we can truncate the pure braid element 
T and work instead with: 

(18) 

which also commutes with all coproducts. Casimir operators can also be 
constructed from elements of the pure braid group. The truncated pure 
braid element gives for instance the quadratic casimir: 

[· o To (S-1 0 id)](Ttrunc) = ~iXiXi· (casimir) (19) 

Now we would like to show that we have actually obtained a quantum Lie 
algebra of type I: 

and 

. k' k' . 
- < x;, S b1 > = - < T, b;. 0 Sb k > T/ 1 = T/i k T/ 1 = of, 
~A(Xi) = lb;<2> 0 S(bi(l))bi(3) = Ybi 0 Tii =Xi 0 Tii 

(20) 

(21) 

~Ad(bi) = h 0 Tki~i =bk 0 T/kl'r/tnTni~i =bk 0 5-lTik· (22) 

Note, that Y has to be carefully chosen to insure the correct number of 
generators. Furthermore, we still have to check the coproduct of the gener­
ators. If they are not of the form ~Xi = Xi 0 1 + Qii 0 Xi then we might 
still consider a calculus with deformed Leibniz rule. 
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3.1. EXAMPLES 

3.J.1. The R-matm approach 

Often one can take b, Espan{tnm}, where tnm is a quantum matrix in the 
defining representation of the quantum group under consideration. If we are 
dealing with a quasi triangular Hopf algebra with universal 'R = a, ® fJ', a 
natural choice for the pure braid element is 

iR = ~ ( 1®1 - n_2ln_12) ' (23) 

where the term 'R21 'R12 has been introduced and extensively studied by 
Reshetikhin & Semenov-Tian-Shansky (1990) and later by Jurfo (1991), 
Majid (1993) and Schupp, Watts & Zumino (1992). These choices of bi's 
and i lead to the R-matrix approach to differential geometry on quantum 
groups. The metric is 

T/ = - < Xi,St2 >= ~ (1- [ (R21-1)'
2 

(R12t2 r 1r), (24) 

where X1 =< iR, ti® id> and R12 =< R,t1 ® t2 >. In the case of GLq(2) 
we find. 

T/GLq(2) = ( y qt q~l ! ) 
0 0 0 q-1 

(25) 

In its reduced form, this matrix agrees -with the metric obtained from 
quantum traces (see next section) except in the casimir sector X 11 +q-2 X 22. 

The formulation in terms of the pure braid element has the advantage that 
it does not require the existence of an element like u that implements the 
square of the antipode. 

Using this metric we recover - as expected - the well-known (Zumino, 
1992 and Schupp et al.(2), 1992) expression of the exterior derivative d on 
functions in terms of the quantum trace over X and the Cartan-Maurer form 
n = t-1dt: 

(on functions). (26) 

(Th~s follows essentially from Dj1TJ12 = P12, where D =< u, t > with u = 
S({J')a; and Pis the permutation matrix.) 

) 

3.1.2. Trace formula for the metric 

Again, in the case where U is a quasitriangular Hopf algebra, there exists 
an alternate way of defining a Killing form; let p: U-+ Mn(k) be an n x n 
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matrix representation ofU with entries ink. Define the map 77(P): U®U-+ k 
as 

(27) 

where x,y E U, trµ is the trace over the given representation, and u (see 
above) implements the square of the antipode. The map 77(P) has the follow­
ing properties: 

7J(p) (y ® x) 7J(P)( x ® S 2(y)), 

77(P)((z(l) td x) ® (z(2) ~ y)) = 1J(P)(x ® y)f(z), 

(28) 

(29) 

for all x,y,z E U. Respectively, these express the symmetry of 77(P) and 
its invariance under the adjoint action. In the case when U i~ a quantum 
Lie algebra with generators {xi}, we can 'define the Killing metric for the 
representation p as 

(30) 

3.1.3. The 2-dim quantum euclidean group 

This is an example of a quantum Lie algebra that seems to have no universal 
n and where the set of functions { b;} does not arise from the matrix elements 
of some quantum matrix. In (Schupp et al., 1992) we constructed such a set 
of functions b0 , b+, b_, b1 and a pure braid element Te = !( .6.c - c ® 1) from 
the casirilir c := P+P- of e9 (2). Now we can put the new machinery to work 
and calculate the (invertible) metric 

(

0 1 0 0) 1 0 0 0 
1JEq(2) = Q Q Q -1 ' 

0 0 -q-2 0 

which immediately gives an expression for d on functions: 

d = wox1 + W1Xo - q2w+x- - W-X+· 

4. Calculus of Functions, Vector Fields and Forms 

(31) 

(32) 

Here we will generalize the Cartan calculus of ordinary commutative differ­
ential geometry to the case of quantum Lie algebras. 

As in the classical case, the Lie derivative of a function is given by the 
action of the corresponding vector. field, i.e. 

£x(a) = xt>a = a(l) < x,a(2) >, 
£xa = a(l) < X(1)>a(2) > £x(2)' 

(33) 
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The action on products is given through the coproduct of x: 

x t> ab= (x(l) t> a)(x(2) t> b). (34) 

The Lie derivative along x of an element y EU is given by the adjoint action 
inU: 

(35) 

To find the action of ix, we can now attempt to use the Cartan identity (2): 

Xi t> a= £x,(a) = ix;(da) + d(ix,a). (36) 

The idea is to use this identity as long as it is consistent and modify it if 
needed. 

As the inner derivation ix; contracts 1-forms and is zero on 0-forms like 
a, we find 

ix;(da) =Xi t> a= a(l) < Xi,a(2) >. (37) 

Next consider that for any form a, 

(38) 

which shows that Lie derivatives commute with the exterior derivative; 
£x;d = d£x;· We will later need to extend this equation to all elements 
of U: £xd = d£x. From this and (33) we find 

£xd(a) = d(a(1)) < X(1),a(2) > £xcw (39) 

To find the complete commutation relations of ix, with functions and forms 
rather than just its action on them, we next compute the action of £x, on 
a product of functions a, b E A, i.e. 

£x;(ab) = ix,d(ab) = ix.(d(a)b+ ad(b)), (40) 

and compare with equation (34). Recalling that the Xi have coproducts of 
the form ~Xi= Xi 0 1 + Oii 0 Xi, Oij EU, we obtain 

( 41) 

if we assume that the commutation relation of ix, with d( a) is of the general 
form 

ix;d(a) = ix;(da) +"braiding term"· ix;. ,,___....., 
eA 

A calculation of £ x;( d( a )d(b)) along similar lines gives in fact 

ix,d(a) = (Xi t> a) - d(Oii t> a) ix; 
= ix;(da) - £ 0 .;(da) ix;• 

(42) 

(43) 
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and we propose for any p-form a: 

(44) 

Using the Cartan identity we can derive commU't!ation relations for (Lie) 
derivatives and functions from equation (41), which can be written in Hopf 
algebra language as 

(45) 

This actually defines the product in the cross-product algebra AxiU of gen­
eral vector fields that one obtains by combining the Hopf algebras A and U; 
see e.g. (Schupp et al., 1992). 

4.1. MAURER-CARTAN FORMS 

The most general left-invariant 1-form can be written (Woronowicz 1989) 

corresponding to a function b E A. If this function happens to be ti k, where 
t E Mm(A) is an m X m matrix representation of U with ~(tik) =tij @ti k 

and S(t) = t- 1 , we obtain the well-known Cartan-Maurer form Wt = r 1d(t). 
Here is a nice formula for the exterior derivative of wb: 

d(wb) = -W&(I)Wb(2)' 

The Lie derivative is 

The contraction of left-invariant forms with ix is 

4.2. TENSOR PRODUCT REALIZATION OF THE WEDGE 

From ( 49) and ( 50) we find corn mutation relations for ix; with wi, 

(48) 

(49) 

(50) 

(51) 

which can be used to define the wedge product /\ of forms as some kind of 
antisymmetrized tensor product. So far we have suppressed the /\-symbol; to 
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avoid confusion we will reinsert it in this paragraph. As in the classical case 
we make an ansatz for the product of two forms in terms of tensor products 

(52) 

with as yet unknown numerical constants [rii mn E k, and define ix; to act 
on this product by contracting in the first tensor product space, i.e. 

But from (51) we already know how to compute this, and we find 

frijmn =< Omi,S-1(Tin) >, 

or 

wi /\ wi = (I - a)ij mnWm Q9 wn 
= wi ® wi - wk® £oki(wi). 

(53) 

(54) 

(55) 

These equations give implicit (anti)commutation relations between the wis. 
Note that (1 - a) has a sensible classical limit - it becomes (1 - P) where 
P is the permutation matrix. Using the same method as for w we can also 
obtain a tensor product decomposition of products of inner derivations. 

Example: Maurer-Cartan Equation 

dwi = dwbi = -Wbi /\ wb1 
(I) (2) 

-WS-1 (Sb1 bi ) Q9 Wbj 
(!) (3) (2) . . . 

-wk ®w1 < -Sxkis-1(Sb(ilbhl) >< -Sxi,b(2) > 
-wk® w1 < (s- 1xk)(IJX1S(s-1Xk)(2)• Sbi > 

(56) 

In the previous equation we have introduced the adjoint action of a left­
invariant vector field on another vector field. A short calculation gives 

S -1 ad ('c<:b -cb ) 5-l Ta J' a Xk C> XI = XbXc vkvl - a kl = Xa < Xk, I >= Xa k I (57) 

as compared to 

(58) 

with .flcbkl =< Ok b, Tei >. The two sets of structure constants are related by 
< Xk,Ta1 >= fkal = -ffa1Riikl· See (Castellani et al. 1993) for a detailed 
discussion of such structure constants. 
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4.2.1. The "Anti-Wedge" Operator. 

There is actually an operator W that recursively translates wedge products 
into the tensor product representation: 

W 'AP --+ T..* fCA AP-1 p > 1 •q q'<Yq' _, 
W(a) = Wn 0 ixn(a), 

for any p-form a. For example, 

wi /\wk = wn@ ixn(wi /\wk) 
= wn 0 (o~wk - £onm(wi)o~). 

4.3. SUMMARY OF RELATIONS IN THE CARTAN CALCULUS 

Commutation Relations 

For any p-form a: 

da = d(a) + (-l)Pad 

ix;a = ix;(a) + (-l)P £ 0;i(a)ixi 

£x;a = £x;(a) + £o;i(a)£xi 

Actions 

(59) 

(60) 

(61) 
(62) 
(63) 

For any function f EA, 1-form w1 = Sf(l)df(z) and vector field <jJ E AXIU: 

ix;(!) = 0 

ix;(df) = df{l) < Xi,f(z) > 
ixJw1) = - < x;,Sf > 
£xU) = xU) = !(1) < x, f(z) > 

£x(w1) = Wf(2) < x,SU(1)M3) > 
£x(</J) = X(l)<flS(X(z)) 

Graded Quantum Lie Algebra of the Cartan Generators 

dd = 0 

d£x £xd 

£Xi = dix; + ix;d 

(£Xil £Xk]q = £x,fi1k 

[£x;,ixk]q . !' = ix, i k 

(64) 
(65) 
(66) 
(67) 
(68) 

(69) 

(70) 
(71) 
(72) 

(73) 

(74) 
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The quantum commutator [, ]q is here defined as follows: 

[£Xi> D)q := £x; 0 - £0;1(D)£x1· (75) 

This quantum Lie algebra becomes infinite-dimensional as soon as we intro­
duce derivatives along general vector fields. 

4.4. LIE DERIVATIVES ALONG GENERAL VECTOR FIELDS 

So far we have focused on Lie derivatives and inner derivations along left­
invariant vector fields, i.e. along elements of Tq. The classical theory allows 
functional coefficients, i.e. the vector fields need not be left-invariant. Here 
we may introduce derivatives along elements in the AXJ'Tq plane by the 
following set of equations valid on forms: (note: E(X) = 0 for X E Tq) 

i1x = fix, (76) 

£1x di1x + i1xd, (77) 

£1x = f £x + d(f)ix, (78) 

£1xd d£1x· (79) 

Equation (78) can be used to define Lie derivatives recursively 011 any form. 
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Abstract. We present a formulation of covariant translations in the quantum plane. 
We are led to an extension of the algebra of the coordinate functions and their dual 
derivatives by the quantum analogue of their eigenvalues. Jackson exponentials emerge 
as the corresponding eigenfunctions. An integral invariant under quantum translations is 
introduced and is used to define quantum Fourier transforms. 

Key words: Quantum Plane - Integrals - Quantum Fourier Transform 

1. Introduction 

Since its inception, the quantum plane has been envisioned by many as a 

paradigm for the general program of q-deformed physics. Such an endeav­

our presupposes the availability of adequate mathematical tools, integration 

being one of the most indispensable among them. The aim of this paper is 

to address aspects of the problem of integration in the quantum plane in a 

manner that will keep the results accessible to physicists. 

The paper is structured as follows: section 2 introduces translations for 
the coordinates and the derivatives which are shown to be implemented 

by a translation operator in the form of a Jackson exponential. Section 3 
discusses integration, invariant under the above translations, while in section 

4 we define the quantum Fourier transform. We close, in section 5, with the 
introduction of vacuum projectors which allow us to recover the integration 

prescription introduced earlier in a constructive way. 
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2. Translations in the q-plane 

We recall no.w the construction of the quantum plane (Wess et al. 1990). We 

deal in the foU:owing with the (non-commutative) algebra of functions on 

the quantum plane eillarged so as to also include derivatives that operate 

on these functions. We choose as generators of .A the coordinate functions 

xi, i = 1, ... , n (together with the unit function lx) and the derivatives dual 

to them, Oj, j = 1, ... , n (together with the unit la). A set of consistent 
commutation relations among the above generators is known: 

xi xi = q-1 R~xkxl 

0/0k = -1 •ij 
q Rk18i8i 

Ok Xi i • ii I 
ck+ qRk1x oi. (1) 

Here, R is an invertible solution of the quantum Yang-Baxter equation: 

and satisfies the characteristic equation: 

• 2 • 
R - >.R- 1 = O, (2) 

(this is the GLq(n) kmatrix of (Reshetikhin et al. 1990). The above com­

mutation relations permit unambiguous ordering of an arbitrary monomial 

in the x's and 8's into any desired order. One can now write down, if one 
wishes, differential equations for functions of the x's and study for example 
quantum mechanical systems by solving Schroedinger's equation in deformed 

space. In doing so, as well as in many other applications, one is sooner or 

later bound to be confronted with the problem of (spatially) translating 

functions of the x's. One place, in particular, where this question would 

certainly manifest itself, would be in the statement of finite translation in­

variance of any sort of integral one adopts for the quantum plane. One has 

then to first make more precise the notion of translation - it is natural, for 
example, to require a certain covariance. In its simplest form, that would 

be the requirement that the translated coordinates obey the same algebra 

as the original ones (we would also need, of course, reduction to the correct 
classical limit xi 1-+ xi + ai as the deformation parameter approaches its 
classical value). We introduce then a set of "displacements" ai, i = 1, ... , n 

and require that the x + a 's obey the same commutation relations as the 
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x's. We would also like the displacements to be of "coordinate nature" i.e. 
we postulate a - a commutation relations identical to those of the x's. We 

are then forced to introduce non-trivial a - x commutation relations. The 

resulting algebra is: 

(3) 

One easily checks, with the help of (2), that 

i.e. translation of the coordinates preserves their algebra (given by (1)). 

It is interesting to compare (3) with the commutation relations between 

coordinates and differentials introduced in (Wess et al. 1990): 

X16 = qR126X2 ; 

the displacements ai are the bosonic analogue of the fs (the algebra (3) 

has been introduced by Majid, in the context of braided Hopf algebras, in 

(Majid, 1992). We can also give consistent 8 - a commutation relations: 

8kai = q-1 (R-1 )~a18j (4) 

(again, similar to the 8- ~ ones). Consider now the translation generator T 
defined by: 

T = ai8; = a· 8. 

Using (3), (4), we easily find: 

[T,xi] = ai, Tai= q28;T, Tai= q-2aiT. (5) 

These allow us to build a finite translation operator by "q-exponentiation". 

We have: 

where [n]q = (1- q2n)/(1- q2) and therefore: 

xieq(T) = eq(T)(xi - ai) 

where: 

(6) 

(7) 
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is the Jackson exponential (see for example (Exton, 1983) and references 

therein). Alternatively, we can write (6) in the form: 

Tnxi = xiTn + [n]q-1aiTn-l 

which gives: 

(8) 

or, more generally: 

(9) 

One can regard (7) (or (8)) as an eigenvalue equation for the operator xi. 

To make this more precise, we introduce coordinate and derivative vacua, 

denoted by lflx} and IOa} respectively, which satisfy: 

with similar relations for x, 8 acting from the right: 

The action of xi on a function /(8,a), denoted by xi(/(8,a)), is expressed 

in terms of the coordinate vacuum as: 

(10) 

In words, to compute the left hand side of (10), we order it with all the x's 

on the right, where they anihilate the vacuum, anil what remains is termed 

"the action of xi on /(8, a)". We can define the (more familiar) action of the 
derivatives on functions of x, a in a similar manner. Actions from the right 

are also obviously defined via "left vacua" (Oxl, (Oal· With these (standard) 

definitions, (7) gives: 

(11) 

which suggests the interpretation of ai as the eigenvalue of xi (xi acts here 

from the right). In the classical limit q --+ 1, the a's commute with every­

thing. Notice that eq(T) is a common eigenfunction for all xi, the noncom­
mutativity of the latter being reflected in the non-trivial a - a commutation 
relations. It is interesting to note that one can interpret the derivatives 8; 
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the way one does in classical analysis: 8i(f ( x)) is the coefficient of ai in the 

expansion of f(x +a) around x (Majid 1993). Indeed, from (9) we have: 

eq-1(T)(f(x)) = f(x +a) (12) 

which, by expanding the Jackson exponential, gives: 

f(x +a)= f(x) + a;8;(f(x)) + O(a2
), (13) 

the only difference in the quantum case being that one has to specify an 

ordering before identifying the derivative (above, we took the a's to stand 

to the left of the x 's ). 
The interpretation given to the ai above naturally leads to the question 

whether a similar construction is possible for the derivatives. To this end, we 

introduce the momentum-space analogue of the a's, which we call p;, i = 
1, ... , n and find that the following commutation relations are consistent 
with the rest of the algebra: 

Pl Pk 

P18k 

Pk Xi 

Pkai 

-1 "ij = q Rk1PiPi 
- qR" ij !l·p· - kluJ ' 
= q-1ctr1 )~x'p; 

-l(R" -1 )ij I =q klap;. (14) 

Several useful identities can now be computed. We give a list involving those 

that we will need later (a · {3 = ai f3i ): 

Tpi = PiT 

x·8xi xi+q2xix·8 

x · 8 ai = ai x · 8 

8; x . 8 = 8i + q2 x . 8 8i 

x · 8 Pi 

(x · p)(a · p) 

Pix· 8 

q2(a · p)(x · p). 

We easily find now how 8i commutes with eq(x · p): 

8;eq(x. p) = eq(x. p)8; + PiCq(x. p). 

Also: 

(15) 

(16) 

(17) 



140 CHRYSSOMALIS CHRYSSOMALAKOS AND BRUNO llUMINO 

We can therefore interpret the p's as (non-commuting) eigenvalues of the 

derivatives: 

(18) 

Notice that being eigenvalues of derivatives, rather than momenta, the p's 
become real commuting quantities in the classical limit. 

A couple of remarks are in order here. The first regards the covariance of 

the scheme described above under the coaction of G Lq( n ). The commutation 
relations given in (1), (3), (4) and (14) go into themselves when x, 8, a and 

p transform according to: 

x; I-+ ( x'); = T!xi 
J 

a; 1-+ (a'); = T!ai 
J 

8; I-+ ( 8'); = 8iM/ 

p; I-+ (p'); = 8iM/ 

where Tj is a GLq(n) matrix, Mt = (Ttri (Mt denotes the transpose of 

M) and we take, as in (Wess et al. 1990), the elements of T to commute 
with all the variables and derivatives above. A second point that deserves 

attention is the fact that derivations do not commute with translations. In 

general: 

8;(J(x +a)):/; 8;(J(x))IX>-+x+a· (19) 

This can be traced to the fact that 8; does not commute with a· 8. Indeed, 

in order for (19) to be an equality, we would need (using (13)): 

8;(J(x) +a. 8(J(x))) = 8;(J(x)) +a. 8(8;(J(x))) => 

=> 8;(a. 8(J(x))) = a. 8(8;(/(x))) => 

=> 8; a · 8 = a · 8 8; 

while, in our case, (5) holds: a · 8 8; = q28; a· 8. One can make a different 
choice of commutation relations which will make e19) into an equality but 

then (13) is not satisfied - we will not explore this further here. 

3. Invariant Integration 

We wish now to turn our attention to the problem of integration. The inte­

gral we are looking for is a linear map from functions on the quantum plane 
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to complex numbers. Keeping in mind the classical limit, we expect it to be 

defined only for a class A~ of elements of Ax - we will use the notation (!} 
for the average, or integral, off in that class. Such a map acquires interest 

when endowed with specific covariance properies. In our case, it is natural to 
require invariance under translations. This can be expressed in infinitesimal 

form as the requirement that the integral of a derivative vanish: 

(8;(/(x))} = 0, f EA~. (20) 

A prescription for computing such an integral is known (Wess et al. 1990). 

One first expands f ( x) in a sum of monomials in the x 's and uses the com­

mutation relations to bring each such monomial into some standard ordering 
(the same for all monomials). Then one performs the classical integral (from 

minus infinity to plus infinity) of the ordered function - the result is the 

quantum integral (!). Different standard orderings of the x's change only 

the overall normalization and the result satisfies (20)(notice that 8; is the 

quantum derivative). We would like though to be able to talk about finite 

translation invariance, i.e. we would like our integral to satisfy an equation 

like 

(J(x +a)}= (f(x)). (21) 

To make this precise, we ought to generalize the prescription for integra­

tion given above to the case. of a function of x and a (since x, a do not 

commute, such a generalization is not trivial). Nevertheless, the natural ap­

proach works: to compute (J(x +a)}, expand in monomials of x,a, use the 

commutation relations to move all the a's, say, to the left of each monomial 

and out of the integral, and then compute the quantum integral of the x 's 

as before (notice that the a's need not be brought into any standard order). 

That such an integral satisfies (21) can easily be seen as follows. From (12) 

we have: 

00 1 
~(J(x+a)} = (eq-1(a·8)(J(x))} = ~[n]q-i!((a·8t(J(x)). 

We may now use the commutation relations given in ( 4) to move all the 

a's in (a· 8r to the left (and then out of the integral). The form of (4) 

ensures that each term left in the integrand, except for n = 0, will be the 

derivative of some function of the x's and the integral of these vanishes 
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by (20); (21) then follows. We should emphasize here that the integral of 

J(x,a) is not, in general, translationally invariant (i.e. while (J(x +a))= 

(J(x)) holds, (J(x + a,a)) :f (J(x,a)) in general). In the same spirit, we 
define the integral (!( x, a, p)): we move a and p to the left and then perform 
quantum integration on the x's - we'll need this in defining the Fourier 
transform in the next section. 

4. Fourier Transform 

Armed with the tools developed in the previous section, we are now (al­

most) ready to discuss Fourier transforms in the quantum plane. The only 

ingredient missing is the observation that 

(f(x + a,p)) = (J(x,p)), (22) 

which one can show by noticing that p commutes with T and that the p, x 
commutation relations are identical to those between p and x + a. 

We define now the Fourier transform }(p) of a function f ( x) by: 

](p) = (eq(-ix · p)J(x)). (23) 

We will need the properties: eq( a + f3) = eq(/3)eq( a) for o:/3 = q2 f3a and 
eq( a )eq-1 (-a) = 1 of the Jackson exponential to derive the analogue of a 

property of Fourier transforms, familiar in the classical case. Setting fa(x) = 
J(x +a) we have: 

](p) (eq(-ix · p)f(x)) 

= (eq(-i(x +a)· p)fa(x)) 

= (eq(-ia · p)eq(-ix · p)fa(x)) 

= eq(-ia · p)}a~P)· 

=? fa(P) eq-1(ia·p)}(p) (24) 

In the third line we used the last of (15). Notice that, as in the classical 

case, the factor in front of j(p) is actually a one dimensional representation 
of translations. Under x 1-+ x +a: 
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5. Vacuum Projectors 

In this section we introduce a "vacuum projector" E which realizes the 

operator IUa}(Uxl (up to a possible normalization factor) in terms of co­
ordinates and derivatives (a similar object, in a Hopf algebra context, has 
been introduced in (Chryssomalakos et al. 1992). It is given by the formal 
expansion: 

(25) 

where Ek= xii ... xi"8i,. ... 8ii (xi is the i-th coordinate). Indeed, one can 
show, using the easily verifiable commutation relation: 

. . 2k . 
Ekx' = [k]qx'Ek-1 + q x'Ek, 

that: 

As a result, E 2 = E. We can now easily realize the projector lilx)(Ual as 
well. We know from (Wess et al. 1990) that A admits the *-involution (which 
we denote by a bar): 

(corresponding to a real quantum plane). It then follows immediately that 
E, given explicitly by: 

E - f-l-q2k(n+1)q-2(ii+i2+ ... +i1c)Ek 
- k=O (k]q-i ! 

(26) 

where Ek = 8ii ... 8i,.xi" ... xii, realizes the operator lilx)(Ual. An alterna­
tive form for Ek, as a function of x · 8, is: 

Ek= q-k(k-t)(x · 8)(x · 8 - [l]q)(x · 8 - [2]q) ... (x · 8 - [n - l]q)· 

One can easily show that Ek can also be expressed in terms of x · 8. 
The aboveiobjects allow us to approach the problem of integration from 

an alternative point of view. We can use the vacua introduced earlier to 

define the integral of a function f ( x) via: 

(f(x)) = (Ual/(x)IUa). (27) 
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This definition automatically satisfies (8i{f(x))} = 0 and therefore it also 

satisfies (!(x +a)} = (/(x)}. Notice however that in deriving this last in­

variance property we do not need any ad-hoc rules about how to commute 

a's (or, for that matter, p's) through the "integral sign". Indeed, choosing 

the normalization E = l!la}(!lxl, E = l!lx}(!lal (which, in turn, implies 

(!lxl!la} = 1) (27) gives: 

Ef(x)E = lflx}(!lal/(x)l!la}(!lxl 

(/(x)}lflx}(!lxl 

_ (!(x)}h(x). 

However, as we have seen, Ek and Ek can be expressed as functions of x · 8 
only. Refering back to the list given in (15), we see that ai, pi commute ,. 
with x · 8 and this justifies postulating the integration procedure described 

in section 3. 
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Abstract. The algebraic formulation of the quantum group noncommutative geometry 
in the framework of the R-matrix approach to the theory of quantum groups is given. We 
consider structure groups taking values in quantum groups and introduce the notion of 
noncommutative connections and curvatures transformed as comodules under the coaction 
of the structure quantum group GLq(N). These noncommutative connections and curva­
tures generate GLq(N)-covariant quantum algebras. For the special case of these algebras 
we find GLq(N)-invariant composite elements that can be interpreted as noncommutative 
analogs of the Chern characters. We also present an explicit realization of such covari­
ant algebras considering the coset construction GLq(N + 1)/GLq(N). In this report, we 
generalize some results presented in (I]. · 

Noncommutative geometry [2] has started to play a significant role in 
mathematical physics for the last few years. One of the nontrivial exam­
ples of the noncommutative geometry is given by quantum groups [3,4]. The 
differential geometric aspects of the theory of quantum groups have been 
intensively investigated recently in the papers [5,6,7]. Using these investi­
gations many approaches to formulate quantum group gauge theories have 
been developed [1,8,9,10]. In this report we continue the investigations pre­
sented in the letter (1] and describe how it is possible to generalize usual 
commutative geometry and to introduce noncommutative G L9 (N)-covariant 
derivative, GL9 (N)-connections (or GL9 (N)-gauge fields) and curvature 2-
forms. We use the notation of the paper [3] in which the R-matrix formula­
tion of quantum groups has been elaborated. vVe note also that according to 
the results of the paper [10] one can reformulate our algebraic constructions 
for the case of the unitary groups Uq(N). 

Let us consider a Z2-gra<led finite dimensional Zamolodchikov algebra 
(denoted by Dz) generated by the operators k, (de)i}, (i,j = 1,2, ... ,N) 

• This work was supported in part by the Russian Foundation of Fundamental Research, 
grant 93-02-3827. 
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with the following commutation relations: 

Ree'= cee', (±)cR(de)e' = e(de)', R(de)(de)' = _!(de)(de)', (1) 
c 

where e = e1 is a q-vector in the first space, e' = e2 is a q-vector in the second 
space, R = P1 2 R12 is a matrix which a--ets in the first and second spaces si­
multaneously, P12 = 8;~o;~ is the permutation matrix and R1 2 is the GLq(N) 
R-matrix satisfying the Hecke relation: R 2 = .AR+ 1 {>1 = q-q-1 ). We imply 
the wedge product in the multiplication of the differential forms in formulas 
(1) (we also omit /I. in all formulas below). One can recognize in the relations 
(1) (for(±) = +1) the Wess-Zumino formulas of the covariant differential 
calculus on the bosonic (c = q) and fermionic (c = -1/q) quantum hyper­
planes [11] where ei are the coordinates of the quantum hyperplane while 
(de )i are the associated differentials. The choice ( ±) = -1 corresponds to 
the case when ei are bosonic (c =;= -1/q) and fermionic (c = q) veilbein 
1-forms. Note, that there is a second version of the algebra (1) that can be 
obtained by the replacement R---> R- 1 , c---> c-1. Below, we concentrate 
only on the consideration of the algebra ( 1) (an other type can be treated 
analogously). 

It has been suggested in [12,1] that the algebra nz (1) should be consid­
ered as a comod ule with respect to the coaction of the Zz-graded quantum 
group nGLq(N) with the G Lq( N)-gencrators {TJ} and additional generators 
{(dT)7} (i,j, k, l = 1, 2, .... , N) which are the basis of the differential 1-forms 

on the quantum group GLq(N). This coaction nz __!!.!...+ nGLq(N) 0 nz con­
serves the grading and can be written down as a homomorphism: 

. 91 . . . 
e' ---+ e' = TJ iSl e1 , (2) 

(3) 

Here 0 denotes the graded tensor product: a@b = ( --l)iib( l®b )( a®l) , where 

j = deg(!) and a E n~L(N) ' b E n~l. We recall that the algebra nz with 

the generators (1) has the following expansion nz = E9 nit» where nh:'l 
n:=O 

denotes the subspace of the differential n-forrns and there exists a similar 

expansion for the Zz-graded c1uantum group nGLq(N) = E9 n~l (N)' Sub-
n:=O q 

stituting the transformed algebra {ei, (de)i} into the commutation relations 
(1) we obtain the following equations for the generators {Tj, (dT)D 

(R- c)TT'(R+ !) = 0, (R(dT)T' -T(dT)'R- 1 )(R+ !) = 0, (4) 
c c 

(R + ! )(dT)(dT)'(R + ! ) = 0, (R + ! )((dT)T'R - R- 1T(dT)') = 0, (5) 
c c c 
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where T = T1 = T®I while T' = T2 = l®T and I is a (N x N) unit matrix. 
The relations (4), (5) have to be fulfilled both for c = q and c = -q-1 ; 

therefore, we deduce from them the following q-commutation relations for 
the bicovariant differential complex on GLq(N) (see [12,6,7]): 

RTT' TT'R, 

R( dT)T' = T( dT)'R - 1 
, 

R( dT)( dT)' = -( dT)( dT)'R - 1 
. 

(6) 

(7) 

(8) 

We stress that (8) follows from (7) if the differential dis nilpotent d2 = 0 and 

obeys the graded Leibnitz rule d(f g) = d(f)g + ( -1 )j f d(g). It is interesting 
to note (see [1]) that the algebra DaLq(N) (6)-(8) is the Hopf algebra. The 
comultiplication ~. the counit f and the antipode S are defined by 

~(T) = T ® T , E(T) = 1 , S(T) = r-1 
, ( ) 

~(dT) = dT ® T + T ® dT' €(dT) = 0' S(dT) = -T-1dTT-1
, 

9 

and satisfy all the axioms of the Hopf algebra. One can show that it is 
possible to extend the action of the differential d over the tensoring and 
apply d to the algebra DaLq(N) ® Dz in such a way that: d(g ® Dz) = 
d(g) ®Dz+ (-l)kg ® d(Dz), where g E D~t(N) and d2 = 0. 

Now we would like to interpret formulas (2) and (3) as a structure (gauge) 
quantum group transformation of the comodule ei. Here, the matrix Tj is 
interpreted as a noncommutative analog of a structure (gauge) group ele­
ment. In view of this, it is natural to consider the appearing of the additional 
term ( dT)~ ® ei in (3) as a noncovariance of the comodule (de )i under the 
gauge rotation (2) (or as an indication that the differentials (de )i describe 
"nonparallel transporting" of the vector ei ). To restore the covariance, let 
us define a covariant differential V' so that the transformations (2), (3) are 
rewritten in the form 

. 91 . . . 
e' --+ e' = T] ® e1 , (10) 

(11) 

In general (V' e )i ¢Dz and, hence, the action of the operator V' enlarges the 
algebra Dz up to some new algebra Dz· Then, we assume that the operator d 
can be induced (as a differential) onto the whole algebra Dz and this algebra 

is naturally decomposed as Dz = EBn=O D~), where D~) is tbe subspace of 

n-forms. We postulate that the elements (V' e )i belong to the space D~) and 
there is the following expansion of (V'e)i over the generators {ei, (de)i} 

(12) 
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It is clear that the coefficients A~ E fl~) and it is natural to consider them 
as noncommutative analogs of the connection 1-forms. Under the transfor­
mations (10) and (11) 1-forms A} are transformed as 

A~ ~ A~ = Tj(r- 1 )i ® Af + dTjr- 1t ®I= (T Ar-1 )~ + (dTT-1 )~.(13) 

Here A} E fiaLq(N)®Z. In the last part of (13), a short notation is introduced 
to be used below. The second action of the covariant derivative V' to the 
expression (12) leads to the definition of the curvature 2-forms Fj E fl~): 

V'(V'e) = - ( d(A) - A2
) e =-Fe. (14) 

The quantum group gauge transformation (13) for the curvature 2-forms Fj 
is represented as the adjoint coaction 

(15) 

We note that the tensor Fj is a reducible adjoint representation of GLq(N) 
and it is possible to decompose it into the scalar F0 = Trq(F) and the q­

traceless tensor: Pj = Fj - 8}Trq(F)/Trq(l). Here, we have introduced the 
q-deformed trace [3,6,1,13] 

N 

Trq(F) = Tr(DF) = Lq-N-H2iF/. (16) 
i=O 

The next action of the covariant derivative on the formula (14) yields the 
Bianchi identities that are represented in the classical form: d(F) = [A, F]. 

To complete the definition of the algebra Dz, we have to deduce the 
commutation relations of the new generators {A~, Fj, ... } and the old ones 
{ ei, (de )i}. First of all, let us note that the choice of the connection A) in 
the pure gauge form (see (13)) 

Ai = dTi(T-1)k tV\ I 
J k ;'<Y ' (17) 

leads to the conclusion that the generators A~ could satisfy the following 
q-deformed anticommutation relations: 

RARA + ARAR- 1 = 0, (18) 

where A = A1 = A® I. These relations for the noncommutative gauge fields 
have been postulated in the context of the quantum group gauge theories 
in [1,9]. Note, however, that in the right-hand side of Eq.(18) one may add 
an arbitrary linear combination of the curvature 2-form F = dA- A2 which 
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vanishes on the solution (17). Thus, the general covariant commutation re­
lations for A~ are 

RARA + ARAR-1 = a(R)(FR + R-1 F) + a(R)F0 
, (19) 

where F = Fi = F ®I and a(R) = a1 + a2R, a(R) = a1 + a2R. Further, 
for simplicity, we will consider the case when a(R) = 0. We stress that the 
anticommutation relations (19) are covariant under the transformations (13) 
and (15). The special form of the right-hand side of Eq.(19) is dictated by 
the symmetry properties of the q-anticommutator appearing in the left-hand 
sideofthisequation (c = ±q±1): (R-c)(RARA+ARAR-1)(R+c-1) = 0. 
Arbitrary parameters a;, a; introduced it1 Eq.(19) depend on the choice of 
the noncommutative geometry and have to be fixed partially by the consis­
tency conditions (with respect to the two ways of reordering of any cubic 
monomial) for the algebra ilz. It is amusing to note that the additional 
nonzero term included into the right hand side of (19) looks similar to the 
quantum anomaly terms arising in the (anti )commutators of fields (or cur­
rents) in certain conventional quantum field theories. 

In order to find commutation relations A~ with the generators { ei, ( de)i}, 
we postulate that the coordinates of the comodule (12) commute in the same 
way as the components of 1-forms (de)i (see (1)) 

R(\7e)(\7e)' = _!(\7e)(\7e)' 
c 

(20) 

(±)(c - b)R(\7e)e' = e(\7e)1
• (21) 

where bis a constant to be fixed below. From (1) and (21) we deduce co­
variant commutation relations for A and e: 

( ± )eA' = RA Re + bR(\7 e) (22) 

and the consistency condition for reordering (in two different ways) the 
monomials ee' A"= e1e2 A3 leads to the only two solutions for the parameter 
b: A.)b = 0, and B.)b =,\.Thus, we have two variants for Eq.(22) 

A.) (±)eA' = RARe, B.) (±)eA' = RAR-1e + ..\R(de). (23) 

Recall that in the paper (1] we have considered only the first case A.): b = 0. 
Taking into account (20) one can obtain the corresponding commutation 
relations for (de) and A 

(±)(de)A' = -R-1AR(de)+(b-..\)AR(\7e)+ii(R)(RF+FR-1)e ,(24) 

where 

ii(R) = 1+7(R - c) a(R) 
1 + c2 

(25) 



150 ALEXEI P. ISAEV 

and/ is a new arbitrary parameter. Type A.) and type B.) commutation 
relations (22), (24) are covariant under the gauge coactions (2), (3) and (13) 
and both cases lead to the same covariant commutation relation for ('Ve) 
and A: 

(±)('Ve)A' = -RAR('Ve) + (a(R) - a(R))(RF + FR- 1)e, (26) 

Differentiating (22) and then using (24), one can derive 

eF' = RF(R - b )e + ii(R)(RF + FR-1 )e = 

= (R + ii(R))FRe + (ii(R)R-1 - bR)Fe 

where we define 

ii(R) = -(1 + bR)a(R) + (b - .\)Ra(R). 

(27) 

(28) 

Considering the reordering of the monomials ee'F" in two possible ways and 
comparing the results we obtain for both types A.) and B.) (b = 0, .\)the 
restriction 

1.) ii(R) = 0, (29) 

which leads to the commutation relation: 

eF' = RF(R - b )e. (30) 

Note that for the type A.) (b = 0) we have an additional solution 2.) ii(R) = 
-A equivalent to the relation: eF' = R- 1FR- 1 e. This relation, however, 
contradicts the algebra (19), (22) and (26) when we consider the consistency 
of the reordering of the cubic monomial eR' A'R' A', where R' = P23R23. 

Substituting the definitions (28) and (25) into the condition (29), we 
obtain the followir~g solutions for the parameters (1(R) and T 

1.) a(R) = 0 =? a(R) = 0 
2.) a(R) = ao(R - c), / = c+~-1 + (b - .\) =? 

=? a(R) = ao(~-b)(R - c), 

where a0 -:j:. 0 is a constant. 
Now, postulating the natural quantum hyperplane condition: 

(R - c)(Fe)(F'e') = 0 

(31) 

and using Eq.(30) we find the following closed relations for the generators 
pi 

J 

(R - c)FRF(R + c-1
) = 0. (32) 
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We assume that the commutation relations for the curvature 2-form Fj have 
to be independent of the choice of the parameter c = ±q±1 • So, we deduce 
from Eq.(32) the commutation relations RFRF = FRFR. These relations 
are known, first, as reflection equations [14], second, as the comrr.utation re­
lations for invariant vector fields on GL9(N) [6,7] and, third, as the defining 
relations for the braided algebras [15]. 

To complete the definition of the algebra Uz we postulate the following 
commutation relation for F and A: FRAR = RARF. This is the simplest 
relation that covariant under the coactions (13), (15) and allowing one to 
push the operators F through the operators A. 

Thus, leaving aside the commutation relations with the generators { e, de}, 
we obtain the following algebra with the generators A (1-form connection) 
and F = dA - A2 (2-form curvature): 

FRAR = RARF , RFRF = FRFR , 
RARA + ARAR-1 = a(R)(FR + R-1F) + o:(R)F°, (33) 

where a(R) = ao(R - c) or a(R) = 0 (see Eqs.(31)) and o:(R) = 0. Note 
that for the case ao -:f 0, the associativity conditions for the whole covariant 
algebra Uz give some additional constraints on the generators of this algebra. 
In particular, one can deduce 

(R- c)FRe = 0. (34) 

Now, we present an explicit realization of such a covariant algebra Uz 
where the parameter a0 and additional relations on the generators will be 
fixed. We consider the differential geometry of the group G L 9( N + 1) and 
interpret it as a noncommutative geometry on the total space of the principal 
fibre bundle with the base space GL9(N + 1)/GL9(N) and the structure 
group being GL9 (N). 

Let us introduce Zrgraded extension of the GL9(N + 1) quantum group 
generated by elements {Tj, dTj} (I, J = 0, 1, ... N) satisfying the commu­
tation relations (6)-(8) with the GL9(N + 1) R-matrix acting in the space 
M at(N + 1) X M at(N + 1). Then, we consider the following left coaction of 
the group GL9 (N) on the group GL9 (N + 1): 

(~) (T8 T9) 
Tj __. olr~ 0 rt Tik 

(35) 

where as usual i,j,k = 1,2, .. . N. It is evident (from the commutation 
relations for the G Lq ( N + 1 )-generators) that the elem en ts Tj generate the 
quantum group G L9 ( N). For the Cartan 1-forms on the G L9 ( N + 1 )-group 

n} = dTf (r- 1 )J = ( w nc:i =< eli) (36) 

n& =le>; A; 
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t 1e coaction (35) is rewritten in the form: 

(~) ( w <eT-1 ) 

le >I A -+ Tie > T AT-1 + dTT- 1 
{37) 

where the short notation has been used (see e.g. (13)). Comparing these 
transformations with the transformations (10) and (13) it becomes clear that 
the Cartan 1-forms le > and A can be interpreted as veilbein 1-forms and 
connection 1-forms respectively. Then, the generators < el are nothing but 
contragradient veilbein 1-forms. The Maurer-Cartan equation dfl) = nkn~ 
leads to the following constraints on the noncommutative differential 1-forms 
ol. 
HJ• 

( 

dw-w2
- < ele > d <el-< elA-w <el) _ 

- 0. 
die> -Ale> -le> w dA - A2 

- le>< el 
(38) 

Now, we deduce the commutation relations for the noncommutative Cartan 
1-forms (36) using the N + 1-dimensional analog of the commutation rela­
tions presented in (18). Taking into account the Maurer-Cartan equations 
(38) one can rewrite these relations in terms of the notation (36) in the form: 

RARA + ARAR-1 =-,\(RF+ FR-1 ) (39) 

- eA' = RARe + ,\R(de - Ae), -A'e = eRAR +,\(de - eA)R (40) 

eRe = -qe'e', Ree'= -q-1ee', e'eR = -q-1e'e, (41) 

w2 = 0, {w,e} = {w,e} = 0, {A,w} = q,\le ><el= q,\F. (42) 

Here, we have also introduced the notation for the curvature 2-form: 

F = dA - A2 =le>< el. (43) 

The last equality follows from Eqs.(38). Note, that for the curvature ( 43) 
one can prove the identity (34) using the relations (41). Then, we obtain, 
from the commutation relations (39)-(41) and Eq.(43), that the following 
commutation relations for F and A hold: 

RFRF = FRFR, RARF = FRAR + ,\(RFw - FwR) (44) 

To exclude frdm these relations the noncommutative scalar generator w we 
introduce a new connection 1-form: At = A-w ·I, where the corresponding 
curvature 2-form is 

Ft= q2 F- < ele >I= q2 F + q1
-N F0 ·I. (45) 
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The scalar F° = Trq(F) is defined in (16) aQ.d invariant under the adjoint 
coaction (15). Finally, we obtain from Eqs.(40)-(41) and (44) that the ele­
ments { e, Ai, F} generate the following closed algebra: 

RFRF = FRFR, RAiRF = FRA1R, 
RA1RAt + A1RA1R-1 = ao(FR-1 + RF)(R- c), 

-eA; = RA1Re, eF' = RFRe 

where ao = 1- q2 and c = -q-1• 

(46) 

Comparing the commutation relations (41) and (46) with the relations 
(1), (22) and (33) one can infer that we have explicitly realized the covariant 
quantum algebra i"!z of the type A.) (b = 0) in terms of the algebraic objects 
related to the GLq(N + 1)/GLq(N)-geometry. 

At the end of this report, we present the noncommutative analogs of the 
Chern characters. For this, let us consider the special case of the closed 
algebra (33) with the generators A and F where the parameters a(R) = 
0. Here, as we have explained above, A; are noncommutative analogs of 
connection 1-forms, while Fj are interpreted as curvature 2-forms. In analogy 
with the classical case (see e.g. [16]), we consider as invariant characters the 
following expressions: 

Ck= Trq(Fk) = n;Fj
1 

.. • F/k-t, (47) 

where we have used the q-deformed trace introduced in (16). By definition, 
the q-trace possesses the invariant property 

(48) 

for Tj E GLq(N) and arbitrary quantum matrix Ej satisfying [T, E] = 0. 
In particular, we have 

(49) 

Here Trq2(.) denotes quantum trace over the second space. One can obtain 
also the following identities 

N -N 
Trq2(R±1) = q±N 11 , Trq(I) = q q ~ qq_

1 
= [N]q· (50) 

Using (48) we immedeatly obtain that 2k-forms Ck (47) are invariant under 
the-adjoint coaction (15). Moreover, Ck are the closed 2k-forms. Indeed, 
frorrr the Bianchi identities dF = [A, F] we deduce 

dCk = Trq(AFk - pk A)= 0, (51) 

where we have taken into account, (see Eqs.(33), (49) and (50)) 

Trq(AFk) = q-NTrq1(Trq2(R-1RARFk)) = 
q-NTrq1(Trq2(FkRA)) = Trq(Fk A). 
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We believe that Ck have to be presented as the exact form Ck = dL~1, 
where the Chern-Simons (2k - 1)-forms L~1 are represented as 

L~1 = Trq{A(dA)k-1 + tk)A3(dA)k-2 + ... + htk)A2k-1} (52) 
h1 ... 

and the constants h~k) depend on the deformation parameter q. We do not 
have explicit formulas for all parameters h~.~) (in the classical case q = 1 
these formulas are known [17]), but for the case k = 2 one can obtain a 
noncommutative analog of the three-dimensional Chern-Simons term in the 
form: 

(2) { 1 3} (2) 1 
Les = Trq AdA - -(2) A , h1 = 1 + 2 2 h . q + q-

1 

(53) 

To conclude this report, we would like to note that it is extremely interesting 
to write the Chern characters for the general case of the algebra (33) when 
the parameters a(R) =f 0 and a(R) =f 0. 
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Abstract. We discuss a mathematical approach to collective even effects in infinite­
dimensional odd geometry, which is based on nonstandard hulls, or ultraproducts. Our 
construction leads to previously unknown examples of geometries (graded Lie-Cartan 
pairs) with substantial even sector. All results are illustrated with a particular example of 
a purely odd /00-supermanifold. 

Key words: Infinite-dimensional supergeometry, purely odd superspaces, ultraproducts, 
nonstandard hulls, Lie-Cartan pairs. 

1. Introduction 

Infinite-dimensional supergeometry still remains a land of mystery: ma­
thematical theory of it is but rudimentary, which fact makes it difficult 
to approach a few appealing problems in the area. We address one of such 
problems suggested by Manin [13]: to represent even geometry as a collective 
effect in infinite-dimensional odd geometry. 

One can handle infinite-dimensional objects of supergeometry by extra­
polating from finite dimensions the functor of points [12][3]. A far-reaching 
theory of Banach supermanifolds has been constructed along those lines 
[14]. However, for many needs of supergeometry - the above Manin's prob­
lem notwithstanding - the functor of points approach is insufficient and 
what one actually needs, is a genuine geometric object representing such 
a functor [1]. One solution was proposed by Schmidt (23]; his holomorphic 
supermanifolds modelled on graded locally convex spaces are geometric, or 
locally ringed, superspaces [13] with a certain additional structure. Khren­
nikov (11] attempted to extend to infinite dimensions the "nai've" view of 
supermanifolds [5][22]; it appears, however, that Khrennikov's theory was 
mathematicall.y shaky at some points [15][21]. 

In this paper we consider one particular example of a (0, oo )-dimensional 
superspace which may be justly termed a supermanifold modelled on the 
purely odd 100 • Namely, we produce a representing object for the functor 
of points determined by the purely odd Banach space [~d = (0) EB /00 • To 
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do that, we enlarge the category of finite-dimensional Grassmann algebras 
(the usual realm of functor of points) to a wider category of locally convex 
graded-commutative algebras. The opposite category can be thought of as 
a category of purely odd superspaces. 

Our approach to Manin 's problem is based on the existence of preferred 
topology ·on "function algebras" of the above superspaces. Our construction 
can be presented in either of two different languages: that of ultraproducts, 
or that of nonstandard analysis. The latter one provides a nice conceptual 
understanding of what is happening. Suppose we allow for infinitely large 
and infinitely small quantities to dwell in topological vector spaces. Imagine 
a finite observer viewing a superspace, Spec A, of dimension (0, oo ). Being 
finite, he or she can only see finite elements of the function algebra A -
inf.nitely large elements are non-observable. At the same time, our observer 
cam.ot distinguish between elements which are infinitely close to each other. 
Therefore, the function algebra on the geometric superspace appears to him 
or her as the quotient of a subalgebra of all finite elements of A modulo 
the ideal of infinitesimals. This quotient is a reputed object of nonstandard 
analysis, termed the nonstandard hull of A (alias the ultrapower of it). A 
remarkable fact is that the nonstandard hull of a nilpotent algebra can pos­
sess a highly nontrivial semisimple quotient, which means that the observed 
geometric superspace has a nontrivial spatial sector. 

After being rewritten in the language of ultraproducts, the above con­
struction becomes functorial. 

In this paper we show that in the case of purely odd 100-supermanifold, the 
derivations of the nonstandard hull algebra are abundant. This is important 
for existence of a differential geometry substantial in its even sector, in the 
spirit of Lie-Cartan pairs approach. 

Throughout the paper, the basic field is C. The symbol /\( q) denotes the 
exterior algebra on Cq. 

2. A purely odd /00-supermanifold 

The functor of points, consciously transplanted from algebraic geometry to 
supergeometry and advertised since then by Leites [12], has been re-invented 
in different guises [5][24]. 

If M is a geometric superspace and q a natural number, then a q-point 
of M is any geometric superspace morphism Spec/\( q) -+ M. Denote by 
PM(q) the set of all q-points of M; the correspondence /\(q) f-+ PM(q) is 
a contravariant functor from the category of finite-dimensional Grassmann 
algebras and even algebra homomorphisms, which we denote by 9, to Sets. 

Let E = E 0 Efl £ 1 be a graded locally convex space. One normally asso­
ciates to E the functor of points of the form /\( q) f-+ (/\( q) ® E)0 [14]. This 
functor of points is assumed to represent (in fact, serve as a surrogate of) a 
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supermanifold naturally associated to E. 
We shall construct a representing object for the functor of points associ­

ated to the graded Banach space t':!;,d = (0) EB 100 • 

Denote by /\ l1 the exterior algebra on 11 , endowed with the strongest 
locally convex topology inducing the given topology on lt, and completed 
thereafter. The algebra /\ 11 can be otherwise described as the graded-com­
mutative complete locally convex algebra generated by a bounded countable 
subset of the odd part in a universal way. Namely, if one denotes by 3 = 
{6, ... , ~n, •. • } the set of canonical coordinate vectors for 11 , then every map 
f from :=: to the odd part of a complete locally convex graded-commutative 
algebra A, such that f (3) is a bounded subset in the LCS A 1, extends in 
a unique fashion to a continuous even algebra homomorphism ]: /\ 11 - A 
[20]. 

Let go stand for the category· of all complete locally convex graded-com­
mutative algebras topologically gei;ierated by the odd part (the algebras of 
Grossmann origin, or GO-algebras [2]) and continuous even algebra homo­
morphisms. This category plainly includes the category g as a full subcat­
egory in a canonical way. The opposite category goop will be interpreted 
as a category of purely odd superspaces. For an object A E Ob go we de­
note by Spec A the corresponding object in Ob goop, realized as a geometric 
superspace over a one-pointed underlying topological space, { *}, with A as 
the algebra of sections of a constant structure sheaf. 

Theorem 1. The object Spec/\ l1 of the category goop represents the func­
tor of points determined by t':!;,d on the full subcategory gop of goop. 

Proof. Let q E N. The set of all geometric superspace morphisms co,q -
Spec/\ l1 , that is, even continuous homomorphisms /\ 11 - /\( q), can be 
identified, by virtue of the universality property of/\ li, with the collection 
of all bounded sequences of elements of /\( q )1 , that is, the 100 type sum of 
countably many copies of the finite-dimensional vector space /\( q)1 • But it 
is nothing other than /\(q) 1 @[00 (under a canonical identification), or, just 
the same, [/\(q) 0 z':i;,d]o. 

Remark that the functor of points determined by l':!;,d does not admit 
a canonical extension to the whole of category goop. For a discussion, see 
[16][19]. 

Even as we do not name here what other fragments of a general con­
struction we are aware of, the above example suggects that the presence of 
a distinguished topology on the algebra of functions can be of significance. 
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3. General construction 

Let I be an infinite index Xet and U be a free non-8-complete ultrafilter 
on I. For a locally convex space E, form the ultmpower of E. This is the 
Hausdorff quotient of a locally convex space of all bounded families x = 
(x;)ieI of elements of E, where the topology is determined by seminorms 
*p(x) = limup(x;). This object is denoted either by E£, or, in the context 
of nonstandard analysis, by E. In the latter case it is called the nonstandard 
hull of E and interpreted as the quotient of a subspace, fin E, of all finite 
elements of the nonstandard enlargement * E of E by the ideal, µE(O), of 
all infinitesimals. Here fin E is the union of all sets of the form * B, where 
BCE is bounded, and µE(O) is the intersection of all sets of the form •u, 
where U C E is a neighbourhood of zero. (See [6) for theory of ultraproducts 
of LCS, [25) for theory of nonstandard hulls, and [17)[18)[20) for more on the 
present construction.) 

The correspondence E 1-+ E£ is functorial in E. If A is a locally convex 
topological algebra, then so is A£. 

The core of the suggested approach is an idea to view the nonstandard 
hull, A, of the algebra of functions on a purely odd superspace, Spec A, as 
the algebra of functions on some new geometric superspace, which is an 
"observable form" of Spec A, or the shadow Spec A throws into the finite 
world. 

The whole construction can be given a form of a covariant functor from 
goop to a suitable category of geometric superspaces. However, we will dis­
cuss only some aspects of this functor now. 

Recall that the Gelfand space, E( A), is defined in case where A is a non­
Banach LC algebra as the set of all continuous characters on A endowed with 
the weak* topology. The underlying topological space of the "observable 
part" of Spec A is the Gelfand space of the nonstandard hull A, and this 
way a covariant functor emerges, goop _... T ych. 

The geometry of the nostandard hull algebra, A, turns out to be in some 
cases nontrivial in the even sector, unlike that of A. The following results 
show that for A = /\ 11 the underlyin~ topological space of the "shadow" 
geometric superspace is rich, and a nontrivial analytic structure dwells in it. 

Theorem 2. ([20); cf. [18]) The Gelfand space E(M) is an inseparable 
Tychonuff topological space. This space contains a topological copy of the 
cube In for each natural number n, therefore the topological dimension of 
L,(M) is infinite in any sense. 

Theorem 3. [20] There exists a homeomorphism cl> from the unit disc DC 
C into E(M) such that for every element a E M the composition a o cl> is 
a holomorphic Junction from D to C. 



EVEN COLLECTIVE EFFBCTS IN PURELY ODD SUPERSPACES 161 

4. Derivations and Lie-Cartan pairs 

The aim of this Section is to show that the algebra of the form A, where A E 
Ob QO, in some cases possesses an adundance of (continuous) derivations. 
Specifically, the following is true. 

Theorem 4. Let x E M. If for all continuous graded derivations, d, of 
M one has dx = 0, then x E C. 

Or, in an equivalent form, 

Theorem 5. Let x EM\ {O}. There exists a continuous differential ope­
rator P of order 2:: 0 on M such that Px = 1. 

This result gives a hope that differential geometry of the nonstandard 
hull M (as well as the corresponding geometric superspace, which we do 
not discuss here) is substantial in even sector. 

We start with a general construction, hopefully of independent interest 
for noncommutative differential geometry. 

A graded Lie-Cartan pair [10)[7)[8] (L, A) consists of an associative unital 
graded algebra A, a Lie superalgebra L which is a left unital A-module, and 
a Lie homomorphism L -+ Der A, satisfying the following axioms 

(i) a(~b) = (a~)b for all a, b EA and~ EL; 

(ii) [~,a17] = (-1)€iia[~,17] + (~a)17 for all f,,17 EL and a EA. 

(Here[,] stands for the supercommutator in L, and the usual parity conven­
tions are assumed.) 

The two fundamental examples are 1) A = C00 (X) is the algebra of 
smooth functions on a finite-dimensional manifold X, and L = vect (X) is 
the Lie algebra of smooth vector fields on X (classical differential calculus 
(7)), and 2) A = /\(q), and L = Der /\(q) (Jermionic differential calculus 
(8)). 

Consider a Lie-Cartan pair ( L, A) and assume that A carries a locally 
convex topology such that every derivation d E L, d: A -+ A is continuous. 
(As is invariably the case in all "classical" examples.) We shall also assume, 
without much loss in generality, that the fixed homomorphism L -+ Der A 
is a monomorphism. 

Denote by fin L the set of all ~ E *L such that ~(fin A) ~ fin A, and 
by µL(O) the lset of all ~ E *L with ~x E µA(O) for all x E fin A. One 
can check that fin L is a Lie subalgebra of L, and µL(O) is a Lie ideal in 
fin L. Denote by L the quotient Lie algebra fin L/ µL(D). The monomorphism 
fin L -+ Der fin A factors through µL(O), giving rise to a monomorphism 
L-+ Der A. 
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Theorem 6. The pair (L,A) is a Lie-Cartan pair. 

We call (L, A) the nonstandard hull of the pair (L, A). 
The Lie superalgebra of graded derivations of/\( q) is well-known [9)[4]: 

it is generated, as a free graded f\(q)-module, by fJ/81;,i,8/86, ... ,{}/81;,q, 
where f.i, 6, ... , /;,q is any system of free odd generators for f\(q) and {)/81;,; 
stands for the formal odd derivation by f.;. 

One can describe in a similar way the algebra Ver f\ 11 of all continuous 
derivations of/\ Ii. Remark that for every odd generator f.; of/\ li, the odd 
derivation of the latter algebra fJ / fJf,; is well-defined and continuous. 

Theorem 7. The algebra Ver/\ 11 is isomorphic, as a f\ Li -module, to the 
100 -type sum of countably many copies of f\l 1 under the correspondence e; 1-+ 

fJ/81;,;. 

Proof. The /=-type sum of countably many copies of/\ /1 is formed by all 
bounded sequences y = (yi) of elements of f\li, and e; is the i-th standard 
basic vector (0,0, ... , 0, l;, 0, ... ). For any such y and any element x E /\ 11 , 

the rule yx = Li y;fJx / fJf,; correctly defines an element of /\ 11; using struc­
tural results on f\ Li from (20], one can show that the emerging derivation, 
y, is continuous; therefore, an even homomorphism from the 100-type sum 
to Ver/\ 11 mentioned in Theorem 7 is well-defined. This homomorphism 
is onto, because any derivation d E Ver/\ 11 is the image of a sequence 
y = (df.;). 

Theorem 8. The nonstandard hull of the Lie-Cartan pair (Ver/\ /i, /\Ii) 
is canonically isomorphic to the pair (Ve~l1 , f\l 1 ), where the nonstandard 
hull of Ver/\ l1 is formed as of a L CS under the identification of Theorem 
7. 

Proof. A direct application of relevant definitions. 

Proof of Theorem 4. We adopt the notation of (18]. Let x = Lµ xµf,µ be 
an arbitrary element offinf\/1 \flf\li(O). One can assume that the set of 
indices with non-vanishing coefficients is *-finite, and that all multi-indices 
fl are of the same (standard) finite length n E N. If there exists an i with 
fJx / fJf,; non-infinitesimal, then set d = fJ / fJf,;. Otherwise, one can assume 
(by proceeding to a sub-sum, if necessary) that the distinct multi-indices 
in the representation of x are disjoint. Select a *-finite subset A ~ ".N 
which intersects every such multi-index exactly once, and set y = (y;), where 
Yi = EiXA(i) and E; = ±1. According to Theorem 8, the element y is in 
fin Ver f\ li. Since xis finite, one can choose E; so as to make the element yx 
finite. If one denotes by y the image of y in Ve-;/\ li, and by x the image of 
x in !Ji, then yx f. 0. 
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5. Conclusion 

Here are some problems not entirely devoid of interest. 

1. The comultiplication and antipode can be extended by continuity over 
completions of infinite-dimensional Grassmann algebras at least for some 
locally convex topologies on them. (Such fill extension is possible, e.g., for 
/\ lt, and impossible for the Banach-Grassmann algebra B00 studied in [22).) 
Does this structure - at least, in some cases - give rise to a Hopf algebra 
structure on the nonstandard hull, and thereby, an abelian topological group 
structure on the Gelfand space? 

2. Can one construct a genuine measure and integral on the Gelfand space 
of the nonstandard hull of a locally convex Grassmann algebra, starting from 
the formal Berezin integral in the latter algebra? 

3. Suggested after my talk by Achim Kempf. Is it possible that for some 
A E Ob 90 the Gelfand space of the nonstandard hull A is both nondiscrete 
and topologically finite-dimensional? 
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Abstract. String backgrounds are described as purely geometric objects related to moduli 
spaces of Riemann surfaces, in the spirit of Segal's definition of a conformal field theory. 
Relations with conformal field theory, topological field theory and topological gravity are 
studied. For each field theory, an algebraic counterpart, the (homotopy) algebra satisfied 
by the tree level correlators, is constructed 
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String theory - String background - Topological gravity 

1. Introduction 

The usual way of describing a string background as some construction on top 
of a conformal field theory involving the Virasoro operators, the antighost 
fields and the BRST operator appears too eclectic to be seriously accepted 
by the general mathematical public. Here we make an \attempt to include 
string theory in the framework of geometric/topological field theories such as 
conformal field theory and topological field theory. Basically, we describe all 
two-dimensional field theories as variations on the theme of Segal's conformal 
field theories [10]. Our definition is in some sense dual to Segal's definition 
of a string background, also known as a topological conformal field theory, 
via differential forms and operator formalism, see Segal (11] and Getzler [1]. 

In this paper, each geometric field theory is followed by a leitmotif, the 
structure of an algebra built on the state space of the theory. Whereas it is 
commonly known that two-dimensional quantum field theories comprise very 
interesting geometrical structures, related algebraic structures have emerged 

• Research supported in part by NSF grant DMS-9108269.A03 
•• Affiliated to Department of Mathematics, Princeton University, Princeton, NJ 08544-

1000, USA 
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very recently and are still experiencing a very active period of growth. A list 
of references, perhaps, already outdated, can be found in the recent paper 
[5]. 

2. Topological Field Theory and Frobenius Algebras 

Note. The field theories we are going to consider here will all have the total 
central charge zero. The general case can be done by involving the determi­
nant line bundles over the moduli spaces. 

A topological field theory ( TFT) is a complex vector space V, called the 
state space, together with a correspondence 

m 

An orientable surface 
E bounding m + n cir­
cles 

IE} : y@m -+ y@n 

(1) 

A linear operator IE) 

Here a surface is not necessarily connected. Its boundary circles are enumer­
ated and parameterized. The first m ~ 0 circles are called inputs and the 
remaining n ~ 0 circles are called outputs. The linear operator IE} is called 
the state corresponding to the surface E. 

This correspondence should satisfy the following axioms. 

1. Topological invariance: The linear mapping IE) is invariant under 
diffeomorphisms of the surface E. 

2. Permutation equivariance: The correspondence E t-t IE) commutes 
with the action of the symmetric groups Sm and Sn on surfaces and 
linear mappings by permutations of inputs and outputs. 

3. Factorization property: Sewing along the parameterizations of the 
boundary corresponds to composing: 



TOPOLOGICAL FIELD THEORIES, STRING BACKGROUNDS, ETC. 169 

The sewing of the outputs of 
a surface with inputs of an­
other surface 

4. Normalization: 

(~)-~() ~ 

y®m -+ y®n -+ y®k 

The composition of the 
corresponding linear op­
erators 

id: v-+ v 

A cylinder The identity operator 

These data and axioms can be formulated equivalently using functors. 
Within this approach, a TFT is a multiplicative functor from a "topological" 
tensor category Segal to a "linear" tensor category Hilbert. An object of the 
category Segal is a diffeomorphism class of parameterized one-dimensional 
compact manifolds, i.e., disjoint unions of circles. A morphism between two 
collections of circles is a diffeomorphism class of orientable surf<tces bounding 
the circles. The identity morphism of an object is the cylinder over it. The 
operation of disjoint union of collections of circles introduces the structure 
of a tensor category on SegaL 

The other category Hilbert is the category of complex vector spaces 
(Hilbert in real examples), not necessarily finite dimensional, with the usual 
tensor product. Then the space V is the vector space corresponding to the 
single circle and it is easily checked that the functoriality plays the role of 
the factorization property and that the two definitions are equivalent. 

Any orientable surface can be cut into pants and caps: 

In fact, observe that orientable surfaces have the following generators 
with respect the sewing operation. And respectively, the space V is provided 
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with an algebraic structure generated by the operations below with respect 
to composition of linear mappings. 

~ V©V--tV 

cs ~ C-+V©V 

() () ~ v-+ v 

a==> ~ V--tC 

CD C--tV 

THEOREM 1 (Folklore). A TFT is equivalent to a Frobenius algebra, i.e., a 
commutative algebra V with a unity and a nondegenerate symmetric bilinear 
form {,} : V © V --t C which is invariant with respect to the multiplication: 

(ab, c) = (a, be} 

and has an "adjoint" C --t V © V. 

An "adjoint"· to a mapping</>: V © V --t C is a mapping 1/J : C-+ V © V, 

ch h h . . id®tb v 4>1l®id d v 1/l®id v v su t at t e compos1t1ons V --.;;;.+ V © V © ;.;;....;.+ V an ~ © © 

V i~a V are identities. When the space V is finite atmensional, an inner 
product establishes an isomorphism V --t V*, and an afijoint mapping gives 
a mapping V* -+ V, which is nothing but its inverse. Thus, in the finite 
dimensional case, a Frobenius algebra is just an algebra with an invariant 
nondegenerate inner product. The theorem follows from the remark above 
about decomposing a surface into pants, caps and cylinders and the obvious 
fact that the symmetric form (,) in a Frobenius algebra V can be obtained 
from a linear functional f: V-+ C as {a, b} = f (ab). 

An important substructure is observed for a TFT at the tree level, when 
we restrict our attention to surfaces of genus zero and with exactly one 
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output: 

n 1-t v®n-+ v 

1-t C-tV 

Topological invariance, permutation equivariance, the factorization and the 
normalization axioms make sense for such surfaces and are assumed. 

The following fact is worth mentioning, because we are aiming to study 
similar algebraic structures occurring in string theory at the tree level. 

COROLLARY 2. A TFT at the tree level is equivalent to a commutative 
algebra V with a unity. 

3. Conformal Field Theory 

A conformal field theory ( CFT) is a device very i;iimilar to a TFT, except 
that 
1. the correspondence (1) is defined on Riemann surfaces bounding holo­

morphic disks and the state IE} depends smoothly on the Riemann sur­
face E, 

2. topological invariance is replaced by conformal invariance, 
3. when two Riemann surfaces are sewn, the result is provided with a 

unique complex structure, and 
4. normalization is slightly different: 

0 id: H -t H 

A cylinder of zero length The identity operator 

In other words, a CFT is a smooth mapping 

Hom(H®m,H®n), (2) 
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m 

A point E in the 
moduli space Pm+n 

n ~ IE}: H®m --t H®n, 

A linear operator IE} 

where Pm+n is the moduli space of Riemann surfaces (one-dimensional com­
plex compact manifolds) bounding m + n holomorphic disks. The surfaces 
can have arbitrary genera, the disks are holomorphic mappings from the 
unit disk to a closed Riemann surface and they are enumerated. The map­
ping (2) must be equivariant with respect to permutations, transform sewing 
of Riemann surfaces into composition of the corresponding linear operators 
and must be normalized as above. 

There is an evident reformulation of the CFT data as a functor from 
a suitable category Segal to the category Hilbert analogous to the one for 
TFT's. 

4. String Theory and Homotopy Lie Algebras 

4.1. STRING BACKGROUNDS 

Let H be a graded vector space with a differential Q, Q2 = 0, i.e., H be a 
complex. A string background is a correspondence 

Hom(H®m, H®n), {3) 

~ IC) ; H®m --+ H®n' 

Chains C in Pm+n Linear operators IC} 
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which satisfies the axioms below. (On the figure, the surface is nothing but 
a pair of pants (so m = 2, n = 1) and the chain is just a circle. The 
pants moving along the circle in the moduli space sweep out a "surface of 
revolution", which I attempted to sketch above.] By chains here we mean 
the (complex) vector space generated by (oriented) singular chains. 

1. Smoothness: The mapping (3) is smooth. 
2. Equivariance: The mapping (3) is equivariant with respect to permu­

tations of inputs and outputs. 
3. Factorization: The sewing of outputs of a chain with inputs of another 

chain (namely, outputs of each Riemann surface in the first chain are 
sewn with inputs of each Riemann surface in the second chain, each 
time producing a new Riemann surface) transforms under (3) into the 
composition of the corresponding linear operators. 

4. Homogeneity and Q-8-Invariance: The mapping (3) is a morphism 
of complexes. That means that it maps a chain of dimension k to a 
linear mapping of degree -k (with respect to the natural grading on the 
Hom) and that the boundary of a chain in 'Pm+n transforms into the 
differential of the corresponding mapping, 

l8C} = QIC}, 
where Q acts on each of the m + n components H of Hom, as usual. 

5. Normalization: The point {Riemann sphere with two unit disks around 
0 and oo cut out} E 'Pm+n maps to the identity operator id: H -t H. 

This correspondence can also be axiomatized as a functor, like in the cases 
of TFT and CFT. The corresponding category Segal will still have disjoint 
unions of circles as objects, but its morphisms will be chains in the mod­
uli spaces. In the category Hilbert, one has to consider graded spaces with 
differentials (i.e., complexes), but still all linear mappings as morphisms. 

The Virasoro semigroup of cylinders (including the group of diffeomor­
phisms of the circle, represented by cylinders of zero width) acts on H via 
the degree 0 states exptT(v) = I exptv} corresponding to cylinders, regarded 
as points in 'Pi+1: 

('--'--) __ ~() t--+ exptT(v): H-t H, 
(4) 

exptv 

where v is the generating complex vector field on the circle. The so-called 
antighost operators b( v) on H can also be easily identified in our picture. 
They are the derivatives 

d 
b(v) = dtB(tv)lt=O (5) 

of the operators B(tv) of degree -1 obtained when the same cylinder cor­
responding to v is regarded as a one-chain in 'Pl+l· At time t, the cylinder 
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exp(tv) is a point in Pi+i· When t changes, these points sweep out a path 
in Pi+l· Note that 

[T(v1),T(v2)] = T([vi,v2]), 

because the operators exp tT( v) define a representation of the Virasoro semi­
group, and 

{b(v1),b(v2)} = 0, 

because the two-chains exp(sv1) x exp(tv2) and exp(tv2) x exp(sv1) differ 
only by orientation. In particular, b2(v) = 0. Moreover, 

{Q,b(v)} = T(v), 

because the boundary of the cylinder exp( tv) viewed as a one-chain is equal 
to the same cylinder viewed as a point minus the trivial zero-width cylinder. 

String theories are also referred to as topological, because of the following 
fact. 

THEOREM 3. The cohomology of the state space H of a string background 
with respect to the differential Q forms a TFT. Thus, the cohomology of H 
has a natural structure of a Frobenius algebra. 

Proof. Two Riemann surfaces E1 and E2 which are diffeomorphic can be 
connected by a smooth path C in the moduli space. Hence, for the corre­
sponding states we have 

which means that their Q-cohomology classes are equal. D 

4.2. HIGHER BRACKETS 

The state IC} is an operator from nm to Hn' which for n = 1 may be 
thought of.as an m-ary operation on the space H. By the factorization ax­
iom, the operation of sewing of chains C in the moduli spaces corresponds to 
compositions of the corresponding operations on the space H. Respectively, 
any relation (involving compositions and boundaries) between chains in the 
moduli spaces produces an identity (involving compositions and the differ­
ential Q) for the corresponding operations on H. At the tree level, when 
we consider Riemann surfaces of genus 0 only, this algebraic structure on 
H is rather tamable. This is because the topology of the finite dimensional 
moduli spaces Mo,m+i of isomorphism classes of m + 1 punctured Riemann 
spheres takes over the situation. 

Consider the following brackets: 

m~2, (6) 
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where x1, . .. , Xm E H are substituted on the right-hand side as arguments 
of the Hom(Hm, H), where the state IMo,m+i) lives. The quotes are due to 
the fact that the space Mo,m+i is not really a chain in 'Pm+l: there is no 
natural mappings from Mo,m+i to 'Pm+l· A standard escape is to impose 
these mappings as extra part of data. To presewe nice propertielJ, this is 
achieved in the following two steps. 

Step 1. Push the correspondence C.'Pm+l--+ Hom(Hm, H) down to a map­
ping C.P:n+l --+ Hom((Hrelr, Hrel) from chains on the quotient space P:n+l 
of 'Pm+l by rigid rotations of the holomorphic disks to the space of multilin­
ear operators on Hrel. The latter is the subspace Hrel of vectors in H which 
are rotation-invariant, i.e., stable under the operators exp( tT( v)) of ( 4) and 
annihilated by the operators B(tv) of (5) corresponding to rigid rotations 
v E 8 1• The pushdown is performed by pulling a chain C in P:n+l back 
to a chain C of the same dimension in 'Pm+l• restricting the operator IC) 
to (Hrel)m and projecting the value of the operator jC) onto Hrel via the 
mapping h H b(ajafJ)ho, where () is the phase parameter on the circle 81 

and ho is the rotation-invariant part of h (which exists provided the action 
of 8 1 on H is diagonalizable). 

Step 2. Map the finite dimensional moduli spaces Mo,m+l to the infi­
nite dimensional quotient spaces P:n+l • so that gluing Riemann sphe::es in 
Mo,m+i 's at punctures corresponds to sewing of Riemann spheres in P:n+i 's. 
Sewing in P:n+1 's can only be performed provided at least relative phases 
at sewn disks are given. The corresponding gluing operation should also 
be of this kind. Thus, the gluing operation takes us actually out of the 
spaces Mo,m+i to certain real compactifications of them, (5]. Such .map­
pings Mo,m+l --+ P:n+l exist. Zwiebach's string vertices (12] make up an 
example of those. Here we thereby allow certain freedom of their choice. 

These additional data have been called a closed string-field theory in [5] 
after Zwiebach gave this title to the choice of his string vertices. After these 
modifications, we obtain brackets [x1, ... , Xm] defined on Hrel. 

THEOREM 4. These brackets define the structure of a homotopy Lie algebra 
(see next section) on the space Hrel. 

This result was obtained by Zwiebach in (12]. A mathematically rigorous 
proof of this theorem with the use of operads was given in [5]. This algebraic 
structure generalizes the trivial one of Corollary 2 to the case of string theory. 

4.3. HOMOTOPY LIE ALGEBRAS 

A homotopy Lie algebra is a graded vector space H, together with a differ­
ential Q, Q2 = 0, of degree 1 and multilinear graded commutative brackets 
[xi, ... , Xm] of degree 3 - 2m for m 2: 2 and x1, ... , Xm E H, satisfying the 
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identities 
m 

Q[x1, ... , Xm] + L e(i)[xi, ... , Qxi, ... , Xm] 
i=l 

= 
k + I = m + 1 unshuflles u : 

k,l?:,2 {1,2,. .. ,m}=/iU/l, 
/1 = {i1·,. . ., ik}, 

h ={it,. ... i1-1} 

A.A.VORONOV 

where e(i) = (-t)lril+ ... +lr•-11 is the sign picked up by taking Q through xi, 
••• , Xi-I. lxl denotbg the degree of x EH, e(a) is the sign picked up by the 
elements Xi passing through the x/s during the unshuffie of x1, ... , Xm, as 
usual in graded algebra. 

Note that for m=2, we have 

Q[x1, x2, xa] + (±[Qxi, x2, xa] ±[xi, Qx2, xa] ±[xi, x2, Qxa]) 

= [[xi, x2], xa] ± [[xi, xa], x2] ± [[x2, x3], x1], 

which means that the graded Jacobi identity is satisfied up to a null-homo­
topy, the Q-exact term on the left-hand side. 

5. Topological Gravity 

A topological gravity is the same as a string background, except that it is 
based on a graded vector space V which is not required to have a differential 
Q and that the correspondence C.Pm+n --+ Hom(H®m,H®.n) is replaced 
with 

H.Mm+n--+ Hom(V®m, v®n), 

where Mm+n is the Deligne-Knudsen-M umford compactification of the mod­
uli space and H. stands for homology. Sewing in the factorization property 
should be replaced with gluing at punctures to form double points similar 
to Step 2 in Section 4.2, but with no relative phases. This notion of a topo­
logical gravity is essentially the same as the notion of a homotopical field 
theory of Morava [9]. 

Another notion closely related to topological gravity is in certain sense 
a dual topological gravity, where the real compactification of [5] replaces 
the Deligne-Knudsen-Mumford one. At the tree level, when the Riemann 
surfaces have genus 0 and n = 1, this theory is dual to the one above in the 
sense that th~ underlying operads are Koszul dual, see Getzler and Jones 
[3]. 

THEOREM 5. 1. A string background based on a state space H yields the 
structure of a dual topological gravity on the space V of Q-cohomology of 
nrel. 
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2. A dual topological gravity implies a TFT on its state space V. 

Proof. 1 becomes evident if we observe that the quotient of 'Pm+n mod­
ulo rigid rotations at each puncture is homotopically equivalent, respecting 
sewing, to (the real compactification of) Mm+n· 
2. A TFT is obtained by restricting a dual toplogical gravity to a correspon­
dence Ho(Mm+n) -t Hom(Vm, vn). D 

5.1. GRAVITY ALGEBRAS 

At the tree level, a dual topological gravity also gives rise to a remarkable 
algebraic structure on V. This structure is called a gravity algebra and was 
introduced by Getzler [2]. It consists of an infinite number of multilinear 
brackets, staisfying quadratic equations. It would be interesting to describe 
the algebraic structure corresponding to a topological gravity, i.e., the struc­
ture of an algebra over the operad H.Mm+l, in similar terms. 

5.2. HOMOTOPY COMMUTATIVE ALGEBRAS 

According to general ideology, cf. Kontsevich [7] and Ginzburg-Kapranov 
[4], there are three principal types of homotopy algebras: homotopy Lie, 
homotopy commutative and homotopy associative. The first two types are 
dual in certain sense, the third one is self-dual. It is remarkable that this 
duality is implemented in algebraic geometry by passing from the usual 
Deligne-Knudsen-Mumford compactification of the moduli space to the real 
version of it. 

More precisely, suppose we are given a complex V of vector spaces and a 
correspondence 

C.Mm+n -t Hom(V®m, v®n), 

c 1-t IC), 

which is a multiplicative functor between the corresponding tensor cate­
gories, i.e., compatible with gluing at punctures, permutations, differentials, 
etc. Such a theory may be regarded as topological gravity lifted to the chain 
level from homology. Suppose it satisfies the additional condition IC} = 0 
whenever dimC > (1/2) dimMm+n· This condition is a kind of chirality, 
not literally, though: no holomorphicity is assumed. 

If we consider m - 2-cycles (more exactly, half-dimensional cycles relative 
to the boundary) in Mo,m+i instead of the fundamental cycle to define m-ary 
products as in (6), the operad approach of [5] will lead to the structure of a 
homotopy commutative algebra [3, 4]. This is the matter of the forthcoming 
paper [6]. 
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Note. Since this paper was written up, our question (see Section 5.1) of 
describing the algebraic structure of topological gravity has been answered 
by Kontsevich-Manin [8] and Dijkgraaf-Getzler. This structure may be de­
scribed as a family of graded commutative associative multiplications on a 
vector space V parameterized by the very space V. Following Getzler, it 
is reasonable to call it a WDVV-algebra, after Witten-Dijkgraaf-Verlinde­
Verlinde, who observed it in quantum field theory. 

References 

(1) E. Getzler, Batalin· Vilkovisky algebrM and two-dimen3ional topological field theories, 
Commun. Math. Phys. 159 (1994), 265-285, hep-th/9212043. 

(2) ___ , Two-dimen3ional topological gravity and equivariant cohomology, Preprint, 
Department of Mathematics, MIT, 1993, hep-th/9305013. 

(3) E. Getzler and J. D. S. Jones, Opera<l.$, homotopy algebrp and iterated integrals for 
double loop spaces, Preprint, Department of Mathematics, MIT March 1994, hep­
th/9403055. 

(4) V. Ginzburg and M. Kapranov, Koszul duality for opera<l.$, Preprint, Northwestern 
University, 1993. 

(5) T. Kimura, J. Stasheff, and A. A. Voronov, On operad structure& of moduli space& 
and string theory, Preprint 936, RIMS, Kyoto University, Kyoto, Japau, July 1993, 
hep-th/9307114. 

(6) ---, Commutative homotopy algebra of topological gravity, in preparation. 
(7) M. Kontsevich, Formal (non)-commutative symplectic geometry, The Gelfand math­

ematicru seminars, 1990-1992 (L. Corwin, I. Gelfand, and J. Lepowsky, eds.}, 
Birkhauser, 1993, pp. 173-187. 

(8) M. Kontsevich and Yu. Manin, Gromov- Witten classes, quantum cohomology, and 
enumerative geometry, Preprint MPI/93, Max-Planck-Institut fiir Mathematik, hep· 
th/9402147. 

(9] J. Morava, Homotopical field theories, Preprint, Johns Hopkins University, 1993. 
(10) G. Segal, Two-dimensional conforfil.al field theorie& and modular functors, IXth Int. 

Congr. on Mathematical Physics (Brist.ol; Philadelphia) (B. Simon, A. Truman, and 
I. M. Davies, eds.), IOP Publishing Ltd, pp. 22-37. 

(11) ___ , Topology from the point of view of Q.F.T., Lectures at Yale University, 
March 1993. 

[12) B. Zwiebach, Closed string field theory: Quantum action and the Batalin- Vilkovisky 
master equation, Nucl. Phys. B 390 (1993}, 33-152. 



CONFORMAL FIELD THEORY, 
DILOGARITHMS, 
AND THREE DIMENSIONAL MANIFOLDS 

WERNER NAHM 
Physikalisches Institut der Universitiit Bonn 
Nussalle 12 D-5900 Bonn 1 
nahm@pibt.physik.uni-bonn.de 

(Received: May 2, 1994) 

The dilogarithm Li 2( z) is defined by 

log(l - z) 
for non-real z, 

z 

for lzl < 1. 

In particular Li2(1) = 7r
2 /6. Its analytic continuation is multivalued and 

will be considered below. 
A q-deformed version of the dilogarithm is given by 

00 

- L log(l - uqn) , lql < 1. 
n=l 

When the absolute value of q is close to 1, one can approximate the sum by 
an integral, which yields Li2(u)/log(q). 

Dilogarithms have a long history both in physics and in mathematics, 
which would take to long to describe. In physics, they appear in the evalu­
ation of Feynman graphs, whi

0

ch at present has no relations to the new ap­
plications considered below. The latter seem to have originated first in the 
investigations of Faddeev's Leningrad/ St.Petersburg group. On one hand, q­
deformed dilogarithms describe the S-matrix of the sine-Gordon model [FK 
1978, eq. 5.3], on the other hand the magnetization of the XXY model was 
linked to the central charge of the corresponding conformal theory and later 
calculated in dilogarithmic form, see e.g. [KR 1987]. Parts of the group dis­
persed, but the investigations were taken up elsewhere. In particular, much 
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evidence was produced which links dilogarithms to conformal dimensions, 
see [FNO 1992]. We shall see that the corresponding dilogarithm identities 
correspond to elements of finite order of the so called Bloch group. The 
fact that the conformal dimensions are rational is closely linked to the finite 
order property. 

On the other hand, infinite order elements of the Bloch group seem to 
be essential for the classification of three dimensional manifolds, one of the 
most interesting problems of present day mathematics. Some relation to the 
classification of two dimensional conformal field theories can be expected, 
since the latter yield topological field theories in three dimensions and those 
in turn yield invariants of manifolds of three (real) dimensions. These in­
variants are of the type of the well known Chern-Simons and 7]-invariants. 
Again, they are rational and related to the real part of dilogarithms. At least 
as important, however, is the volume invariant of Thurston's classification 
program for three-manifolds [Thurston 77,82), [DS 1982], [NZ 85). This in­
variant yields imaginary values of the dilogarithm function, for Bloch group 
elements of infinite order. 

For an elementary introduction to Thurston's program see [Meyerhofer 
1992]. For convenience of the reader, I repeat some of the essential points. 
Three dimensional manifolds have canonical decompositions with respect to 
cuts along spheres and tori. For manifolds which are indecomposable with 
respects to such cuts, Thurston argued that they can be given a geometric 
structure. In other words, they can be written as the quotient of a homoge­
neous space with respect to the action of a discrete group. Thurston proved 
his conjecture under various conditions, but the general problem is still open. 

In two dimensions it is easy to write any manifold in such a way, namely 
just as the quotient of its covering space by its fundamental group. In fact, 
the covering space of any compact two dimensional Riemannian manifold 
is either the sphere, the plane or the hyperbolic space, which all can be 
given a homogeneous metric. Apart from the torus, the curvature can be 
normalized to ±1, which gives the manifolds a canonical volume. Due to the 
Gauss-Bonnet theorem 

j RdV = 47!'(1- g) , 

the classification by the genus g and the one by the normalized volume are 
equivalent. 

For almost all values of the genus, indeed for g :f 0, 1, the geometric struc­
ture is hyperbolic. In three dimensions, there is a sense in which the generic 
manifolds have a hyperbolic structure, too. Note first that every three di­
mensional manifolds can be constructed by Dehn twists around some link in 
the sphere S3 . To perform such twists, one cuts out a small tubular neigh-
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borhood around each knot component of the link, transforms the surface of 
each resulting solid torus by a diffeomorphism of the mapping class group 
5L(2, Z), and glues it back in. More precisely, consider a solid torus D x 51, 

where Dis the unit disk with polar coordinates r, </>. On 51 we have an angle 
coordinate 0. The mapping class group of the torus surface is given by the 
transformations 

(~ :)ESL(2,Z). 

Thus it can be identified with the modular group SL(2,Z)/Z2. The trans­
formations generated by (~i) can be continued to the whole solid torus, such 
that the corresponding Dehn twists do not change the topology of the mani­
fold. Thus the resulting manifolds are given by the cosets of (:;) modulo this 
subgroup, in other words by the first matrix column (p, q ). Except for special 
links or special small values of the (p, q), the manifold constructed by Dehn 
twists will be hyperbolic. In this sense, generic manifolds are hyperbolic. 

The Dehn twist construction is very far from a classification, since it 
is highly non-unique and since there is no effective classification of knots. 
Nevertheless, the construction easily generates many hyperbolic manifolds 
of small volume. In particular, take the Dehn twists around the figure-of­
eight knot. The volume is an increasing function of the partially ordered 
labels (p, q). Its minimum at (1,5) is conjectured to be the smallest value in 
the set V of all possible volumes of hyperbolic three-manifolds of curvature 
-1. 

To calculate such a volume, one cuts the manifold into tetrahedral pieces. 
The volumes of hyperbolic tetrahedra first were calculated by Lobatchevsky. 
His formula is a bit complicated, but it simplifies a lot for ideal tetrahedra, 
for which the vertices lie at infinity. Disregarding lower dimensional subman­
ifolds, any hyperbolic manifold can be cut up into such ideal tetrahedra. For 
compact manifolds, one just has to cut out a circular geodesic, which comes 
to lie at the infinite points of the hyperbolic space. The sides of the tetrn­
hedra all wind around this geodesic and converge towards it. 

In terms of the quaternions 1, i,j, k, the points of hyperbolic space can 
be written in the form X = -x + iy + jz, z > 0. Consider the matrices 
(~~) E S L(2, C), where the complex numbers C are given by the linear 
combinations of the quaternions 1, i. Their group acts on hyperbolic space 
by the transformations 

X' = (aX + b)(cX + d)-1 
. 

To see this, note that 
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The j, k part of X' is proportional to 

ajd+ - bjc+ =(ad - bc)j = j. 
In particular, 

z' = zlcX + dl-2 > 0 . 

Since 

dX' = -c-1(cX + d)-1cdX (cX + d)-1 , 

the metric 

( dx 2 + dy2 + dz2)/ z2 = dX dX+ / z2 
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is conserved under SL(2,C). The· boundary at infinity of hyperbolic space is 
given by the plane z = 0 plus a point at infinity, thus it is isomorphic to the 
Riemann sphere. Its transformations under S L(2, C) are the usual rational 
linear ones. 

The volume of an ideal tetrahedron depends on its four vertices z; E C, 
i = 1, 2, 3, 4. As we have seen it is invariant under rational linear transfor­
mations. Invariant functions of the z; only depend on the double ratio 

(z1 - z2)(z3 - z4) 
z= 

(z1 - z3)(z2 - z4) 

Let the volume function be denoted by V(zi,z2,z3 ,z4) = D(z). For real z, 
all vertices lie on one line, such that the volume vanishes. It is convenient 
to incorporate the tetrahedron orientation by the sign of the volume, such 
that D(z) = -D(z). Permuting the vertices yields the symmetry properties 
D(z) = -D(l - z) = -D(l/z). As long as no vertices 4coincide, Dis a real 
analytic function of its argument. 

The union of two tetrahedra joined along a face can be cut into three 
tetrahedra by using the body diagonal as a new edge. Similarly, each tetra­
hedron can h'e cut up into four tetrahedra by choosing another vertex in the 
interiour. This yields 

5 

~)- );V(z;) = 0 , 
i=O 

where i; denotes z0 ,z1,z2,z3,z4 with z; omitted. Equivalently one has 

D(x) + D(y) + D(l - xy)+ D cl~ :y) + D cl~ :J = 0. 

This is the five term identity, which has been discovered and rediscovered by 
several famous mathematicians. With the convention D( oo) = 0, it implies 
the symmetry properties of D. 
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Under very weak regularity conditions, which are obviously true for the 
tetrahedron volumes, the five term identity and the relatity properties yield 

D(z) = 8'(Li2(z)) + arg(l - z) log izl . 
The dilog.arithm Liz has a multivalued analytic continuation, but D(z) be­
comes a continuous function on the whole plane. Away from the singularities 
at z = 0 and z = 1, it is real analytic. 

Splitting the five term identity for D( z) into its holomorphic and antiholo­
morphic parts, one obtains a five term identity for the Rogers dilogarithm 

L(x) = Li2(x) + ~log(x)log(l - x), 

namely 

L(x) + L(y) + L(l - xy) + L (2-=_:_) + L (2-=JL) = 7r
2 /2. 

1 - xy 1- xy 

The constant 3L(l) = 7r
2/2 on the right hand side is determined by 

putting x = y = 0. The identity is valid for x, y E (0, 1 ). 
Thus volumes of hyperbolic three-manifolds have the form 

V = LD(zk). 
k 

The fact that the tetrahedra fit together to form a manifold without bound­
ary yields the closure condition 

L[zk] A (1- zk] = 0, 
k 

where the symbol [z] fulfils the single relation [xy] = [x] + [y] and the 
wedge product is defined by bilinearity and antisymmetry. Replacing ad­
joining tetrahedra as in the five term relation conserves this condition, since 

[x] A (1 - x] + [y] A (1 - y] = 
[ l (1 ] (Ei!=.1i1) [ 1-x] [~] [1.::.lL) xy A - xy + 1-xy A 1-xy + 1-xy A I-xy ' 

as can be checked easily. 
The Bloch group (Bloch 78] is defined by the formal sums L:k nk(zk), 

-;;k E C, nk E Z, which satisfy the closure condition 

L:nk[zk] A [1- Zk] = 0, 
k 

modulo the formal sums coming from the five term identity, for which this 
condition always is satisfied. Moreover, one uses the convention ( oo) = 0, 
which implies (0) = ( 1) = 0. This is no significant restriction, since 15( oo) 
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vanishes by the five term identity. The map D : Lk nk(zk) -+ Lk nkD(zk) 
is a well defined map from the Bloch group elements to the real numbers. 
The volume set V belongs to the image of this map. 

Since the closure equation is essentially algebraic, this implies that V is 
a countable set. Admitting disjoint unions and manifolds with boundaries, 
this set becomes closed and additive. Moreover, one can show that it is well 
ordered. In other words, for every volume there is a unique next larger vol­
ume. Accumulation points only· arise by convergence towards upper limits, 
not towards lower ones. Let V' be the subset of accumulation points of V 
and iterate this procedure to obtain the sets v<n) of n-fold accumulation 
points. One finds that all of these sets are non-empty, though they have 
empty intersection. In the language of ordinal numbers, this is expressed by 
the fact that the ordinal number of V is ww. 

Many elements of the Bloch group can be produced by the equations 

log(l - z;) = L B;j log(z;) , 
j 

i = 1, ... , r. If one makes Dehn twist around the figure-eight knot one finds 
r = 2 and 

B- __ 1 (p q) 
- p+ q q p . 

So far, we have considered some standard manifold mathematics. Now 
let us cosider the partition functions of some conformal field theories, which 
yield new, but apparently related features. On the Hilbert space of such a 
theory one has the action of left and right Virasoro algebras with generators 
Ln, L~ and central extension c. The Hamiltonian is given by H = Lo + L~ 
is the momentum by P =Lo - L~. For our purposes it is convenient to shift 
these generators, such that Lo = Lo - c/24 and analogously for L~. Consider 
the partition function 

Z(r,f) = tr(exp(21ri(L0 r - L~f))) 

of such a theory, such that the imaginary part of T can be identified with 
the inverse temperature. 

The partition functions of conformal theories are invariant under modular 
transformations 

Using r-+ -1/r, one reads off the high temperature behaviour 
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The quantity ceff is called left and right effective central charge of the the­
ory. Since the partition function diverges at large temperature, the effective 
central charges have to be non-negative. For a unitary theory, they coincide 
with the central charge c of the Virasoro algebra. More generally, Ceff is 
given by the maximum of c - 24h, where h runs over eigenvalues of L0 • 

The set C of values of cefffor all possible conformal theories is conjectured 
to share many properties of V. It is additive, since the tensor product of 
theories yields the sum of the effective central charges. At least for rational 
theories, the effective central charges are rational, and this may be generally 
true. In fact, C is conjectured to be well ordered, with the same ordinal 
number ww as V. 

For rational theories one has 

Z(r,f) = EZ;(r)z:(f), 
i 

where the sum is finite and runs over the superselection sectors of the theory. 
Asymptotically, all the Z; are proportional. The proportionality constants 
are called conformal dimensions. With q = exp(27rir) the asymptotic be­
haviour is obtained for lql close to 1. One finds 

The normalization is chosen such that 60 = 1 for the vacuum character Z0 . 

For ceff < 1, the rational conformal theories are classified by pairs (p, q) 
of natural numbers > 1 without common prime divisors. One has Ceff = 
1 - 6/pq, such that the possible values in C are given by ceff = 1 - 6/n, 
where n runs over those natural numbers which are not prime powers. For 
Ceff > 1 not much is known. 

Let us calculate partition functions and effective central charges for a few 
simple theories. The partition function of a free boson is proportional to 

P(r) = Il(l - l)-1 ' 
k 

One has 

P(r) = LP(k)l, 
k 

where p(k) counts the additive partitions of k into natural numbers. If we 
denote the number of partitions into exactly n natural numbers by Pn(k), 
we find 

Z(r) = LLPn(k)l · 
n k 
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Any partition can be written in the form k = m1 + m2 + ... + mn, where 
m; ;:::: mi+l · Writing l; = m; - m;+1 , the I( are independent variables. Since 
k = 2::; il;, one finds 

LPn(k)qk = (q)~l ' 
k 

where 

(q)n = (1- q)(l - q2
) ••• (1- qn) . 

For a free fermion, we have a very similar partition function, except that 
the m; have to be different due to the Pauli principle. To get independent 
variables, we have to write l; = m; - m;+1 - 1. Moreover, we can use integral 
or half-integral k. In the latter case we obtain 

Zo(r) = /io Lqn2/2j(q)n' 
n 

in the former 

Zi(r) = qh1 Lqn(n+l)/2 /(q)n . 
n 

The values of the h; are given by the lowest eigenvalues of Lo in the core­
sponding superselection sector. Their minimal value is -Ceff/24. 

Finally let us consider the conformal theory given by the Lee-Yang edge 
singularity. The theory is minimal, such that all holomorphic fields are gen­
erated by the energy momentum density T(z). The normal ordered prod­
uct : TT : is proportional to the second derivative of T and does not 
yield an independent state. Taking Fourier coefficients, one sees that prod­
ucts of the form LnLn and LnLn+l can be reduced to simpler ones, which 
looks like an extended Pauli principle. For the partition function this means 
m; ;:::: m;+l + 2. With the independent variables l; = m; - m;+l - 2 one finds 

Zo(r) = qho Lqn(n+l) /(q)n 
n 

and 

n 

in the two superselection sectors. 
When we tensorize r theories of this kind, the characters are multiplied. 

To write the product characters in analogous form, we consider n as a vector 
with r components and define ( q)n =!. ( q)n1 ... ( q)nr. The exponent in the 
numerator becomes a quadratic form ~ 

1 -
Q(n)= 2nBn+bn+h, 
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with a diagonal r X r matrix B and a vector b which depends on the repre­
sentation. 

Other conformal theories have characters of analogous form, but with 
more general symmetric matrices B. Thus we consider characters of the 
form 

To calculate ceff> one has to evaluate all these sums for q close to 1. 
This can be done by a saddle point calculation. First one interpolates the 
summands by a continuous function of n, using 

00 

(q):;,.1 = (q)~l Il(l - qml). 
k 

The logarithm of the product is essentially the q-deformed dilogarithm of 
qm. In leading order it can be replaced by -Li2(qm)/log(q). Now (q)00 is 
essentially the Dedekind 7]-function, whose modular behaviour is well known. 
In particular, we have 

log( q)oo "" Li2( 1) /log( q) 

in leading order. 
Varying the n; yields a stationary point for x; = qn; with 

log(l- x;) = l:=B;jlog(x;). 
j 

For the effective central charge one obtains 

Ceff = l:=L(l - x;)/ L(l), 
i 

where we used the Rogers dilogarithm and its properties L(l) = 1!'
2 /6, L(l)­

L(x) = L(l - x). 
For the free boson, B = 0 and ceff = 1. For the free fermion B = 1/2, 

which yields ceff = 1/2. For the Lee-Yang edge singularity B = 2, such that 
1- x = x2 , which yields the golden ratio. The five term identity immediately 
yields 5L(x) = 3L(l) and ceff = 2/5. 

The characters of conformal field theories are modular, which essentially 
means that the saddle point approximation gets no perturbative correction, 
in the sense of a power series expansion in T. To find these corrections, one 
uses the expansion 
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with u = qn. Here the Bk are the Bernoulli numbers, which apart from B1 
vanish for odd k. Finally one uses the fact that q1124(q)00 is a modular form 
and has no perturbative corrections [NRT 93]. 

An alternative expression for these corrections can be obtained by the 
following method. First one writes the character in the form 

f L u-nqQ(n) Lum /(q)mdu/27riu . 
n m 

The first sum can be transformed by Poisson summation. For the second 
sum one uses 

00 

Lum/(q)m = Il(l- uqk)-1 
m k=O 

and its expansion given in the previous paragraph. 
The perturbation expansion has exactly the same form as before, except 

for the substitution of T by -T and of Q(n) = !nBn + bn + h, by 

Q'(n) = ~nB-1 n + nB-1b + h', 

where 

h' = h - !.._ + !bB-1b . 
24 2 

In other words, when a pair B, b yields partition functions without power law 
correction, then B-1, B-1b does the same. The duality between Band B-1 

generalizes the level rank duality known from the characters of Kac-Moody 
algebras, as we shall see. 

First, however, let us study non-perturbative corrections. Using the Ja­
cobi triple product identity 

n n 

and Poisson summation of the right hand side plus reverse application of 
the Jacobi triple product identity one finds 

. 1/2 
qf2 Il(l- uqn)(l- u-Iqn) = !!!:__u-1f2q_f2e-7riz2f,,.F(u,q)' 

n i u-1 

where u = exp(211"iz), u = exp(-27riz/r), q = exp(27rir), q = exp(-211"i/r), 

n 
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We split the right hand side into a factor regular at zero and one regular at 
oo. In particular, the dilogarithm symmetry yields 

iu1/ 2 --1/2 _ _L -11"iz2/T 
u-l u qi2e 

= exp((Li2( u) + Li2( u-1 ))/27rir - t log(l - u) - t log(l - u-1 ) • 

By the residue theorem we have 

lo F = -- lo (1 - e_z,,.isfr) e . u + e . u ds . 1 lioo ( 27ris + 1 27ris + ) 
g 2 -ioo g e2,,.•su - 1 e2,,.u - u 

This yields the unique splitting 

:Lk:1 log(l- ul) = Li2(u)/27riT- tlog(l - u)-
_l fOO lo (1 - e-211"is/T) (e2.-i•utl 1:2.-i•tu) dS 

2 Jo g e2 '""u-l + ~ ' 
which is exact for iul < 1 and takes care of non-perturbative terms. 

Contour integration yield the contributions of characters with 
non-minimal h. One must be careful with its analytic continuation, since 
the dilogarithm has cuts at arguments 0, 1. To handle these difficulties, it is 
convenient to define the Rogers dilogarithm L( x) only modulo 47r2 a:rd as a 
function of U, V, such that 

eu = 1- ev = x. 

Starting from 0 < x < 1 and real U, V, one obtains by analytic continuation 
a function L(U, V) which is one valued modulo 47r2. The five term identity 
now takes the form 

5 

°EL(Ui, Vi)= 7r 2/2 mod 47r2 , 

i=l 

if Ui-1 + Uitl =Vi and Uits = Ui, Vi+s =Vi. Note that U, V are well defined 
on the Riemann surface of the dilogarithm. They are found by deforming the 
integration contour into the Riemann surface of the dilogarithm and using 
the variables U, V instead of x. One finds stationary points for 

Vi= °EBijUi . 
j 

For the h we obtain 

- "'""" 2 -h = ~L(Ui, Vi)/(47r ) modl. 

For any given stationary point we can find others by adding 27rini to Vi and 
27rimi to Ui, as long as the mi, ni are integral and n = Bm. This changes the 
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value of h by nm/2. For bosonic theories, the eigenvalues of Lo are integrally 
space. Thus B must have a form such that nm only takes even values. Such 
matrices may be called even. As long as the matrix elements are integral, 
this terminology coincides with the usual condition that even matrices have 
even diagonal entries. For fermionic theories, half-integral spacing is allowed 
in the Neveu-Schwarz sector. 

The sum Li[xi] belongs to the Bloch group, since one checks easily 
Lilx;] /\ [1 - xi] = 0. Moreover, Li D(xi) = 0, since the eigenvalues h 
of Lo are real. It has been proven that this property implies that Li[xi] is 
a torsion element of the Bloch group. In other words, for some N, Li N[xi] 
vanishes by the five term relation. 

Already at the present stage, we obtain a simple interpretation of level 
rank dualities. In the simplest case, this duality relates the SU(N) Kac­
Moody algebra at level Mand the SU(M) Kac-Moody algebra at level N. 
In particular, the central charges of the two theories add up to the integer 
NM -1. In our formalism, every torsion element Li=i [xi] of the Bloch group 
has a dual element Li°=l [1 - Xi]. The corresponding matrix B' is just the 
inverse of B, as expected. The effective central charges add up to the matrix 
rank r. 

In terms of L(U, V), the Bloch group is given by equivalence classes of 
sums Li ni(Ui, V;), 

exp(U;) + exp(V;) = 1 , 

with the closure condition Li Ui /\ V; = 0 , using the ordinary wedge product 
over the vec~or space of complex numbers. If N Li U; /\ V; is a sum of five 
term relations in U, V, the five term identity for L( U, V) implies that the 
denominators of h have to divide 8N. This is obviolJ,sly true for the examples 
considered above. Since the free fermion yields N = 2 and in particular 
h = 1/16, the result is the best possible of this form. 

There is some hope to classify the matrices E which yield torsion ele­
ments. For r = 1, the only relevant elements are [1/2], [1- r] and the golden 
ratio defined by T + r 2 = 1. The corresponding matrices for the first two 
cases are B = 1 and B = 2. The theories are the ones described above and 
the effective central charges are 1/2, 2/5. The first case is self-dual, the sec­
ond one has a dual theory w\th B = 1/2 and effective central charge 3/5. 
The free fermion is given by the (3,4) minimal model, the two others by the 
(2,5) and (3,5) models. 

More generally, the vanishing of perturbative corrections to the saddle 
point approximation yields strong and calculable constraints on B, b, h. 

For r = 2, M. Terhoeven made a classification under the plausible as­
sumption that every allowed matrix B admits b = 0. In this case, one always 
finds h = -Ceff/24, such that the level rank duality between the conformal 
dimensions just yields ceff + c~11 = r. 
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For r = 2, this assumption yields three exceptional cases and one series. 
The exceptional cases are given by the ~2,7), (3,7) and (3,8) minimal models 
and correspond to B = 2 (iD, B = H;4) and B = (ii). The series is of the 
form 

B---1 (p q) 
-p+q q p. 

The corresponding characters are theta functions and the central extension 
is 1. 

A relation of this series to the Dehn twists of the figure-eight knot seems 
evident, but so far the close formal analogies cannot yet be explained. In 
particular, it would be very interesting to relate the renormalization flow of 
the conformal models to the continuous interpolation between Dehn twist is 
considered in [NZ 85) and in [Yoshida 85). 
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Abstract. The interaction of matter with gravity in two dimensional spacetimes can be 
supplemented with a geometrical force analogous to a Lorentz force produced on a surface 
by a constant perpendicular magnetic field. In the special case of constant curvature, 
the relevant symmetry does not lead to the de Sitter 6r the Poincare algebra but to an 
extension of them by a central element. This richer structure suggests to construct a 
gauge theory of 2-D gravity that reproduces the Jackiw-Teitelboim model and the string 
inspired model. Moreover matter can be coupled in a gauge invariant fashion. Classical 
and quantized results are discussed. 

Introduction 

The beautiful success of General Relativity and the key role played by gauge 
theories in the description of fundamental interactions are two main reasons 
leading physicists to be interested in differential geometry. On the one hand, 
particles follow geodesics of spacetime, on the other hand, gauge potentials 
are identified with connections on some principal bundle. Moreover, it is 
tempting to exploit the local symmetries of General Relativity to write it as 
a gauge theory. Attempts in this direction turn out to be rather successful in 
lower dimensional gravities. In 2+1 dimensions, it is recognized (Achucarro 
and Townsend 1986, Witten 1988/89) that planar gravity is described by a 
Chern-Simons model. In this note, I will consider the even simpler case of 
1+1 dimensions, where a gauge theoretical formulation of lineal gravity has 
a natural setting using an extended (Cangemi and Jackiw 1992) Poincare 
(Verlinde, eds. 1992, Grignani and Nardelli 1993) group or, more generally, 
an extended (Kim, Soh and Yee 1993, Cangemi and Dunne 1993) de Sitter 
(Fukiyama and Kamimura 1985, Jackiw 1992) group; the extension is related 
to a geometrical force (Cangemi and Jackiw 1993) which exists only in that 
particular dimension. 

• This work is supported in part by funds provided by N.S.F. under contract PHY-89-
15286 and by the "Fondation du 450e anniversaire de l'Universite de Lausanne". 
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Gravity in 1+1 dimensions 

The reduction of General Relativity to 1+1 dimensions is not straightforward 
because of the vanishing of the Einstein tensor. There are two main proposals 
for lineal gravities. 

One is obtained with a dimensional reduction of the Einstein-Hilbert 
action in 2+1 dimensions (Teitelboim 1983-1985), 

IJT = 2!k j d2xF91l(R -A). {1) 

The Lagrange multiplier T/ enforces constant curvature, R = A. 
The other proposal {Callan, Giddings, Harvey and Strominger 1992) is 

inspired by string theory on a two dimensional target space (it can alter­
natively be viewed as an s-wave approximation of 3+ 1 gravity (Harvey and 
Strominger 1992). 

isr = 
2
!k j d2xAe-24>(fl + 4·rl" 0µ</>8,,<f>- .X) (2) 

Its classical solutions are Yµv = hµv/(M-.X(x-x)2), where hµv = diag(l, -1) 
is the flat spacetime metric. The value M = 0 corresponds to a flat met­
ric (vacuum solution), whereas the cases M -:/= 0 have the characteristics of 
a black hole. The action (2) takes a simpler form with a change of vari­
ables (Verlinde 1992, Grignani and Nardelli 1993), 9µv = exp{-2</>)gµ,,, 
T/ = exp{-2</>). 

Isr = 2!k j d2
xF9(TJR - .X) (3) 

The Lagrange multiplier, TJ, now eµforces zero curvature, R = 0. Propos­
als (1) and (2) suggest the more general action (Kim, Soh and Yee 1993, 
Cangemi and Dunne 1993) 

I = -1 f d2xF9(TJ(R-A)- .X) 
g 27rk 

(4) 

In view of the string inspired model (2), the "stringy" metric Yµv is confor­
mally related to 9µv, Yµv = 9µv/TJ. However, there is no definite reason to 
prefer one or the other as the physical metric (Fujiwara, Igarashi and Kubo 
1993). 

Let us end this section by recalling an equivalent formulation of geome­
try where (YiJv• R) is substituted with (e~,wµ)· The Zweibein, e~, is related 
to the metric, 9µv = e~habe~, and the spin-connection, Wµ, to the curva­
ture, dw = Rvol/2 (vol is the volume two-form). Moreover, a space without 
torsion implies a relation between the Zweibein and the spin-connection, 
dea + Eabweb = 0 (Eab is the antisymmetric two-tensor with value E01 = 1). 
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Point particle motion on the line 
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The gauge symmetry hidden in the action ( 4) becomes obvious if one studies 
the motion of a particle on the line. The interaction of a point particle 
in a background geometry is usually described by the geodesic equation. 
However; in two dimensions (and only in this dimension), the right side of 
that equation may be supplemented by a force term of a geometrical nature 
(Cangemi and Jackiw 1992), 

d m :i;I' 1 - + f~p:i;":i;P = F(R)gl'"HEvpxP. (5) 
dr J Xa9af3Xf3 /ta 9af3Xf3 

This equation is still general covariant and invariant under reparametriza­
tion provided F(R) is a scalar function. We will restrict ourself to linear 
examples, F(R) = -8-AR/2. Due to its similarity with electromagnetism 
(which is not included here), the generalized geodesic equation (5) is ob­
tained from the variation of the action, 

Im= - j dr [ m Jx,.,(r)g,.,v(x(r))x"(r) 

+±,.,( r) (Aw,.,(x( r)) + Ba,.,(x( r)))] (6) 

where w is the spin-connection and a a one-form satisfying the exactness 
condition da = vol. 

It is easy to check that for constant curvature this action is invariant 
under a change of coordinates defined by a Killing vector field. Constant 
curvature spacetimes (with trivial topology, which we assume here) are max­
imally symmetric and thus possess three independent Killing vectors fields, 
((J)•~(o)•~(ir By Noether's theorem, they generate three conserved currents. 

(;f.J - µ II J \,(J) - E vX --+ 

,,., = IJl'(l - ~x2 ) + ~h x"xl' --+ Pa "'(a) a 8 4 av (a= 0,1) 
(7) 

With the canonical symplectic structure [ffµ, x"] = /)~, these currents fulfill 
the algebra, 

[Pa,J] = Ea b Pb, 
(8) 

where I is a central element acting by 1 in the representation (7). 
Due to the presence of a geometrical force, we do not get the de Sitter 

algebra in its expected form; more specifically, in the flat case, A = 0, we 
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do not recover the Poincare algebra but a central extension of it. For !3 i= 0, 
this algebra possesses a non-degenerate, invariant inner product, 

[ 

h:ab 0 0 l (m/8,\)2 1/BA 
hAB = (QA,QB) = t-f(m/BA)2 - t-t(m/BA)2 

1/BA A/2/32,. 
- t-f(m/8A)2 t-f(m/8A)2 

(9) 

(A, B = 0, 1, 2, 3; Qa = Pa; Q2 = J; Q3 = I), which depends on a real 
parameter m. The Casimir QAhA8 QB in the representation (-7) coincides 
with the Hamiltonian for a particle of mass m. It can be shown that the 
freedom in the parameter m corresponds in the case A = 0 to a global 
symmetry (Jackiw 1992) also found in the dilaton model (Russo, Susskind 
and Thorlacius 1992) where its anomaly plays a crucial role in the existence 
of Hawking radiation (Fujiwara, Igarashi and Kubo 1993). 

Gauge formulation of the gravity sector 

We suggest to use this enhanced group structure for a gauge description of 
gravity. A connection will be thus a one-form of the type 

A= ea Pa+ wJ + !3Aal (10) 

with curvature two-form 

F = dA+A2 

= (dea + €abweb)Pa + (dw + ~ea€abeb)J + !3A(da + tea€abeb)I (11) 

The components of F reproduce geometrical quantities if we interpret ea as 
a Zweibein and w as a spin-connection: The two first components are the 
torsion relating the Zweibein to the spin-connection, the third one equals 
(R-A)vol/2 and the last one (da - vol). Using a scalar function with value 
in the adjoint representation of the gauge group, 77 = 17a Pa+ 772 J + 773 I, and 
the non-degenerate inner product (9), we build a p:auge invariant action, 

I~ = 2~k j (77, F) 

2~k j[1la(dea + €abweb) 

-t-1-(~/8~)2 ((m/BA)2772 - JA 773)(dw+ ~ea€abeb) 

+ t-1-(~/BA)2 ( -( 772 + 2t 773) ( da + tea€abeb)] 

which not only reproduces the action ( 4) with 

77 1-t(~/BA)2 (t(m/BA)2772 - 2t 773)' 

(12) 

(13) 
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but also provides a one-form, whose classical value, da = vol, is the one 
needed to construct the matter action {6). 

Besides the zero curvature condition, F = 0, we also get an equation for 
the scalar function, Dµ'f/ = 0. This set of equations is easily solved by the 
general solution 

(14) 

for any group element U and constant gauge algebra element 'f/(o)' Of course, 
U has to be chosen carefully in order to reproduce a geometric solution 
associated to a non-degenerate metric 9µ 11 {Cangemi and Dunne 1993, Jackiw 
1992). The "stringy" metric gµ 11 = 9µ 11 /'f/ then takes the form of a static black 
hole, for A= 0, gµ 11 = hµ 11 /(M-.X(x-x)2). Nevertheless the physical content 
of the model will not depend on this choice and U = :ll i.e., ea = w =a= 0, 
is perfectly admissible. This is sometimes referred as the unbroken phase. 
The physics should be contained in the gauge invariant part of 'f/, 

('f/, "I) = ("l(o)> 'f/(o)) = M, 

('f/,l) = ("l(o),l) = .X/BA. 
{15) 

The gauge theoretical approach relates the number of free parameters 
in the classical solutions (M,.X,x0,x1) to the dimension {four) of the gauge 
group. It introduces also the cosmological constant A as a dynamical variable. 
The parameters M and A are gauge invariant quantities and describe the 
physical content of the theory, as we will see in the next section. 

Quantization of the gravity sector 

A gauge theoretical setting allows a more tractable way to deal with quanti­
zation. We present here the canonical quantum structure of gravity without 
matter; it is simple and interesting, even if, in the absence of matter, there 
are no propagating degrees of freedom. We write the action ( 4) in its Hamil­
tonian form. 

1; 2!k J d2uµ11('f/,FJ-t11) 

2
!k j dtdx(('f/,OoA1) + (Ao,D1'f/))- 2!k j dtdx81('f/,Ao) (16) 

The Hamiltonian is a sum of constraints 

{17) 

(A, B, C = 0, 1, 2, 3 are the gauge group indices, which are raised and lowered 
with the inner product hAB, and fBGA are the structure constants of the 
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gauge group). The spatial component of the gauge connection is canonically 
conjugate to 1J and we postulate the usual commutation relations 

[TJA(x), Af (y)] = i27rk o~o(x - y). (18) 

With these commutation relations, the algebra of constraints coincides, as 
usual in gauge theories, with the original gauge algebra. 

(19) 

In a Schroedinger picture, we consider states as functionals of TJA(x), 
ili[TJA], on which Af(x) acts by functional derivation, (27rk/i)(o/OTJA(x)). 
Physical states are those annihilated by the constraints GA and they satisfy 
the differential equations 

(8111a-i21rkfab1Jb 0~2 +i21rk7]2 fab 0~Jw 0, 

({) 2. kAa o) 
177 + i 211" 4€ b1Ja O'f/b 'I! = 0, (20) 

( 81'f/3 + i 27rk BAfab'T/a o~J 'I! = o. 

These equations are solved by the functionals 

'I!['T/A] =exp (2 \ Jdx'f/2€ab[)1'T/a'T/b) 'ljJ(M,>..)I ' (21) 
11" 'f/crf (11,11)=M 

(11,I)=>./B11 

with support on the constant gauge invariant combinations ('fl, 'f/} = M and 
(J, 'T/} = >../BA; 'ljJ is a function of the variables Mand >...The physical states 
depend on the two values M and >.., which coincide for classical solutions 
with the two parameters of the black hole configuration. Let us now couple 
matter to this gravity. 

Coupling to matter 

The coupling to matter follows the one discussed before, see Eq. (6). It is 
possible to find a gauge invariant formulation of it either for point particle or 
for fields, cf. Ref. (Cangemi and Jackiw 1993). The gauge invariant actions 
are of the form 

(22) 

where the additional field ~a acts like a Higgs field that insures the gauge 
invariance of the action. The essential feature of this coupling is that it does 
not involve 'f/· In this gauge formulation, the matter is coupled to the metric 
gµ 11 , whereas in the geometrical point of view people use mainly a coupling 
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to g v· But, since their coupling is conformal, it is not really different at 
the ~lassical level. Nevertheless, this difference could have its importance 
once we proceed to the quantization (Fujiwara, Igarashi and Kubo 1993). 
Notice that our coupling breaks conformal invariance at the classical level 
even in t_he massless case. Namely, the trace of the energy-momentum is 
proportional to the additional force strength, B and at the quantum level 
its vacuum expectation picks up an additional term, R/247r (Cangemi and 
Jackiw 1993). 

The equations of motion are modified in the following way 

F = O, Dµ17 = 21rk J!, (23) 

where (J!)A = -fµv(OI'm/bA~) is the axial current. Let us consider the 
point particle. Outside the particle trajectory, J! is zero and the equations 
are those of pure gravity. We have two sets of four constant parameters 
on each side of the trajectory, whose differences are fixed by the particle 
characteristics. The shift in Mand>. implies a transition from a pure gravity 
state to another when crossing the particle line; this is usually interpreted 
(Callan, Giddings, Harvey and Strominger 1992) as a black hole created 
by an in-falling particle. The shift in x is a basic ingredient in deriving a 
Hawking radiation (Callan, Giddings, Harvey and Strominger 1992) for the 
"stringy" metric, 9µv· 

Our formulation reproduces interesting features of lineal gravity. But be­
ing a gauge theory, we are able to discuss in a straightforward manner issues 
concerning gauge charges or quantization. 

A gauge definition of mass 

The definition of mass and angular-momentum is an ill-defined concept in 
General Relativity. Different methods lead to different results (Bak, Cangemi 
and Jackiw 1993). However, when one has a gauge invariance, Noether's 
procedure uniquely define conserved currents and charges. In our model, 1;+ 
I'm, an infinitesimal gauge transformation 8 generates an explicit conserved 
current 

·µ 1 µv £:. ( 8) 
Jo = 7rk f uv 17, (24) 

and a conserved charge. 

J 1 ·O 1 ( )lx1=+oo Qo = dx Jo= 7rk 17,0 xl=-oo· (25) 

The question is which 8 define energy. Obviously, energy should be related 
with infinitesimal diffeomorphisms in a time-like Killing direction. 
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But, in topological field theory (F = ll), infinitesimal diffeomorphisms 
are equivalent to infinitesimal gauge transformations (Jackiw 1978). 

(26) 

An infinitesimal diffeomorphism, JC', is identified with an infinitesimal gauge 
transformation, f°' Aa. It is thus associated to the conserved charge 

Q 1 ( a )lxl=+oo 
f = Trk 17, f Aa xl=-oo 

and energy E is defined for a time-like Killing vector f°'. 

(27) 

In the absence of matter, the contributions at x1 = +oo and x1 = -oo 
are identical, which implies E = 0. When matter is included, due to the 
jump of the value of 17 across the particle trajectory, the contributions are 
different and gives a non zero energy, E = (77, 77) = M, in full agreement 
with the ADM definition. 

Conclusions 

In this brief note, I have shown how General Relativity and gauge theory 
can be combined in 1+1 dimensional spacetime. Once the gauge group is 
recognized, we are able to produce a gauge theory, which encompasses the 
Jackiw-Teitelboim and the string inspired models. The inclusion of matter 
in a gauge invariant way is possible and provides a model, which not only 
reproduces previous results but also provides a natural way to define gauge 
invariant and conserved quantities, as energy, and to deal with quantiza­
tion. Another interesting feature of the model is the introduction of the 
cosmological constant as a dynamical variable (Izawa 1993). Supersymmet­
ric extensions have been studied in relation to a positive energy theorem 
(Park and Strominger 1993) and for a topological description of supergrav­
ity (Cangemi and Leblanc 1993). The quantization of pure gravity has shown 
how the physical states depend on gauge invariants. The quantization of the 
full model deserves further study. It would also be interesting to consider 
topological effects occuring in the definition of ihe one-form a and in the 
resolution of F = 0 (e.g. Hwang, Kim, Soh and Yee 1993). 
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Abstract. The classification of quasi - primary fields is outlined. It is proved that the 
only conserved quasi - primary currents are the energy - momentum tensor and the O(N)­
Noether currents. Derivation of all quasi - primary fields and the resolution of degeneracy 
is sketched. Finally the limits d = 2 and d = 4 of the space dimension are discussed. 
Whereas the latter is trivial the former is only almost so. 

1. Some general remarks 

We have studied only a very special example of a critical field theory at di­
mensions 2 < d < 4. Nevertheless we believe that the results are relevant for 
many critical field theories, in particular sigma models in a neighbourhood 
of a free theory. Our neighbourhood is defined by a -J:t expansion. 

In this resume we extract results from a series of papers (Lang and Riihl 
1991-1993) and from earlier literature on conformal field theory in general 
(Dobrev, Mack, Petkova, Petrova and Todorov 1977; Ferrara, Gatto and 
Grillo 1973) or conformal sigma models in particular (Vasil'ev, Pismak and 
Khonkonen 1981-1982). These results may have different status but we con­
dense them equally into "theorems" which should not be considered as ma­
thematical theorems but as tested conjectures. General statements of quan­
tum field theory and group theory are thus mixed up with conclusions from 
low order perturbative expansions. Let us start with such a theorem which 
certainly disappoints many of the readers: 

Theorem 0: Almost none of the structures of conformal field theory at 
d = 2 can be rediscovered at 2 < d < 4. 
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2. Definition of the model 

We start with the partition function 

where 

S : O(N)- vector, O(d) - scalar; 

a : O(N)- O(d) - scalar; 

d = 2µ : space - time dimension 

If S and a are normalized in a standard fashion 

(sa(x)Sb(o)) = cab(x2fo: · 
(a(x)o:(o)) = (x 2f 13 

(2) 

(3) 

the critical coupling constant z becomes a computable function of N, and 

N-+oo: z = 0(-/:t) (4) 

The limit N -+ oo is a free field limit 

lim S(x) = s(x) 
N-+oo 

(5) 

but s( x) possesses infinitely many components which leads to problems 
sometimes. A saddle point expansion of (1) gives the i:J - expansion. 

A critical theory such as this is conformally covariant. Operator product 
expansions (OPE) generate a field algebra A(S,~) of the two fundamental 
fields S and a which is associative and possesses a commutation property 
connected with the crossing behaviour of n - point functions. The building 
blocks of A(S, a) are the conformal or quasi primary fields ( qp - fields ). 

Theorem 1: All qp - fields belong to representations of the conformal 
group characterized by two quantum numbers only: c, the 
scaling dimension under dilatations and l, the tensor rank 
under space - t·ime rotations. 

These are the elementary representations. In addition the qp - fields transform 
irreducibly under O(N). We ascribe to them a Young frame Y. 

Consider the dimension C,p of the qp - field </> 

8,p = [c,p] + 77(¢) (6) 

[c,p] the normal dimension 

17( </>) = 0( i:J) the anomalous dimension (7) 
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By definition 

[i5q,] = p(µ -1) + q, p,q E !No 

[i5s] = µ -1 

205 

(8) 

(9) 

So we expect that in the limit N -+ oo </> tends to a normal product of p 
fields S with not more than q derivatives (see below). 

Each elementary representation [6, l] of a qp - field possesses a dual rep­
resentation [O', l'] ('shadow representation') 

o' = d - o + 21a 
l' = lb 

The two - point functions 

(10) 
(11) 

are as kernels and up to a normalization inverse to each other. An n -
point function of ¢[c5,i) is transformed into an n - point function of ¢[c5' ,I'] by 
amputation. Therefore we have 

Theorem 2: The fields ¢[c5,1] and ef>[o',1'] are dynamically equivalent. 

So from each pair ¢rs.~, ¢[c5',I'] we would like to choose only one representative 
as basis element of A(S,a). We will in fact be able to do that but in an 
unexpected fashion. 

From 

[O'] = d - (p(µ - 1) + q) + 21 

= (2 - p)(µ - 1) + 2 - q + 21 (12) 

we see that the a - field can be considered as the shadow field of 

(13) 

since 

p = 2, q = 0, l = 0 implies [O'] = 2 (14) 

Inspection of the action in ( 1) also suggests this interpretation of a. 
Next we decompose q in (8) as 

q = l + t = l + 2r ( t: twist) (15) 

where r is the number of a fields bound into ef> at N -+ oo and l is the 
number of derivatives. p, l and r (or t) serve as quantum numbers in a 
neighbourhood of N -+ oo. 
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3. Classes of qp - fields 

Construction of the qp - fields goes by OPE and harmonic analysis. This 
automatically orders the qp - fields according to increasing dimensions o. 
From the interpretation of the quantum numbers p, l, t in (8), (15) we can 
naturally expect these numbers to be bounded by 

p 2:: O, l 2:: O, t 2:: 0 (16) 

In fa.ct, this is fulfilled by our construction. Most of the shadow fields are 
forbidden by (16) but a few of them are still permitted. 
We put all qp - fields with the same Y and pinto a class (Y,p). A generic 
class looks graphically as Fig.1. 

[SJ [SJ 

[So] +6 
lo 

µ+5 
1:0 

[So]+ 5 µ+4 

[So] +4 
lo 

µ+3 
l=O 

[So] +3 µ+2 
I= 1 

[c5o] + 2 
lo+ 2 lo 

µ+l 

[So]+ 1 
lo+ 1 

µ 

[So] 
lo 

µ-1 
s 

0 2 4 6 t 0 2 4 6 t 
Figure 1: A generic class (Y, p) .,, Figure 2: The class (D, 1) 

Labels may be multiply occupied by qp -fields, which are distinguished 
by their anomalous dimensions ("degeneracy"). Some of the simplest classes 
look different indeed. 
(A) The class (o, 1) containing the fundamental field S. At t = 0 there is 

only the scalar field S. At tht level t = 2, l = 0 we would expect the 
shadow field S' of S. But it is not found, this level is empty. The level 
t = 4, l = 2 is twofold degenerate. 

(B) The class (0, 0) containing the fundamental field a. At t = 2 we have 
only the a field (we start counting from t = 2 in this case). At t = 4 we 
have only even l' and at t 2:: 6, l = 1 is empty. 
Indeed, fpsion of two qp - fields into a third one by OPE 

A(x )B(O) = ( x2) !(oc-c5A-Se) C(O) + .. . (17) 

abbreviated as 
A 0 B -+ C (18) 
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is analogous with the formation of bound states. Two bosonic a 's ca.nnot 
be bound together to a state with odd l and for more than three a's 
l = 1 is also excluded by hose symmetrization. 

(C) The class {0,2) containing the energy - momentum tensor Tµv• 

The level t = O, l = 0 has been found unoccupied. The shadow field of 
a should appear on this level, or, according to our remark above, the 
field (s2(x)) . Thus the sigma - model constraint works and this 

ren. 
field has been eliminated. The energy - momentum tensor field lies at 

t = o, z = 2, c = (c] = 2µ = d {19) 

(SJ [SJ 

8 2µ+ 4 

6 

4 2µ 
T 

2 2µ- 2 

2 4 6 8 t 0 2 4 6 t 
Figure 3: The class (0, 0) Figure 4: The class (0, 2) 

Looking through the classes more carefully, we recognize that the elimi­
nation of shadow fields has been completed. 

In (Lang and Ruhl 1992b) we showed that elimination of the shadow field 
of a was directly related with a renormalization condition. Using dressed 
propagators and vertices (represented as Polyakov triangles•) we have three 
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such conditions 

+ > -~- + = 0 (8) 

2 + z --0 .. - + 0 N ... (a) 

!..-•"'/ 
I /' = ·A + ... (f) 

These three conditions suffice to determine 17(S), 1J(a) and z. A generaliza­
tion of the argument in (Lang and Riihl 1992b) shows validity of 

Theorem 3: The requirement that one (two) shadow field( s) of the fun­
damental fields do( es) not show up replaces one (two) renor­
malization condition(s). 

'Phe status of the proof is still not satisfactory: 0( ~) calculations at best. 
The theorem ('equivalence theorem') is very powerful in practice. 

The a - field prod:u.:es a field algebra A( a) which is a subalgebra of 
A(S,a). It contains only O(N)- scalars, among them the energy- momentum 
tensor Tµ,, 

Tµ,, E (0,2) (20) 

Indeed 

a®a-+ T (21) 

at 0( tt) , so p is not conserved at this order. Moreover 

(22) 

so all A( a) can be generated from T (at d = 2 T generates not only Vir x 
Vir but W algebras as well!) .. 

Theorem 4: The only conserved qp - currents in A(S,a) are Tµ,, and 
Jµ,ab, !_he Noether currents of O(N)- symmetry from the 
class (8, 2). 

Sketch the proof. Denote by #Y the number of blocks in the Young frame 
Y. Then 

p - #Y = 2n, n E !No (23) 
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This is obvious at N = oo since n is the number of contractions applied to 
the normal product of p vector fields s. But in a neighbourhood of N = oo 
it remains valid due to standard arguments of harmonic analysis. 

Next we use a classical lemma of conformal field theory (Lang and Riihl 
1993a, Appendix A) for qp - fields which are symmetric tensors in spacetime. 
In fact for 2 < d < 4 we have the situation of d = 3: symmetric tensors are 
sufficient. The lemma says that a qp - current is conserved if and only if 

I ;:::: 1, o = (o] = 2µ - 2 +I (24) 

i.e. 

p = 2, I ;:::: 1, t = 0 (25) 

and 

'TJ(</>) = 0 (26) 

This leaves as candidates the classes 

(rn,2), (8,2), (0,2) (27) 

In each case the t = 0 towers are nondegenerate with the following anoma­
lous dimensions at leading order 

(rn,2) 

(8, 2) 

(0,2) 

: 'f/(S) -
'TJ(M1)} 

• 'TJ(J1) -
. 'T/(S) 

17(T1) 
17(S) = 

2 (/-1)(2µ-2+/) 
(µ - 1 + /)(µ - 2 + /) 

0, (l = 2) 

2(/ - 1)+ 

I even 
I odd 

1/-2 
2E ((p+i)!)2(2µ+1+p)1-4-2p, 
p=l (2µ + 1)1-4 

(/ ;:=:: 4,even) 

(29) 

(30) 

The curves for the expression (29) are presented in (Lang and Ruhl 1992c, 
Fig. 6). None of these functions changes sign. They vanish identically for J1 

:i.nd Tz and are otherwise different from zero for all 2 < d < 4. It is also 
important to guarantee that no empty levels are filled up at higher orders of 
tt or that degeneracy appears this way. The first is made sure by crossing 
symmetry, the second possibility can at present not be excluded. 
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8 

Figure 5 A.peclii,,•Tce of fusion 

4. Fusion 

Each qp - field has a pedigree of fusion. Fig. 5. 
The internal lines are arbitrary qp - fields which can be produced from 

the pa.rents. This means that the fusion coefficients effective at a vertex must 
be nonzero: 

IXB ~ 0 (30) 

Theorem 5: Fusion coefficients vanish only if the corresponding Little­
wood - Richardson coefficients of 0( N) are zero or if this 
follows from a crossing symmmetry selection rule. 

As an example let A = B scalar and the Littlewood - Richardson coefficient 
be symmetric (antisymmetric) under exchange of A and B. Then odd (even) 
I are forbidden for C. Another example is the fusion 

a®S (31) 

which leads to any level of the class (o, 1) at 0( -Ji) already, but in the class 
of degenerate levels only to one linear combination of qp - fields . So to 
resolve degeneracies we have to consider different pedigrees with the same 
final level. 

Theorem 6: The qp - fields with I = 0 a.re never degenerate. 

This corresponds to the uniqueness of a ground state in QM. 
We introduG:e the concept of 'dominant channel fusion' (DCF). This kind 

of fusion acts already at 0( 1) and produces scalar qp - fields of the type 

(Y,p; [6],l) = (co::::=:Jp ,p;p(µ - 1) + 2r,O) (32) 
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fromqp - fields of the same type. Let twosuchqp - fields withla.bels {Pt,ri}, 
{J>2, r2} be given. The resulting field ha.s labels {P, R} with 

P = Pt + P2 {33) 

~34) 

For DCF normal dimensions a.re additive a.nd degeneracy does not occur. 
Only symmetric O(N) tensors a.re produced by definition. Pedigrees with 
DCF a.tea.ch vertex produce a. qp - field of type (32) which depends only on 
the numbers p of S fields a.nd r of a fields entering a.nd not on the form of 
the pedigree. In other words: DCF is a.belia.n. 

We denote the qp - fields (32) by MJp,r}. Any qp - field on the level 

(r.::r:c=JP ,p;p(µ -1) + 2r + l,l) (35) 

is denoted M1:~·r} where k is introduced to take account of the degeneracy. 
We are interested in the fusion process 

M{pi,ri} ,o, M{1J1,r2} ___. M{P1+P2,r1+r2} 
0 'Cl 0 l,k (36) 

If we keep 

P = Pt+ J>2, (37) 

fixed but let pi, r1 run, we obtain different combinations of M1:f·R} which 
can be resolved. 

Technically one considers the four - point functions 

( MJpi,ri}(Y1) MJp2,r2} (Y2) MJP; ,r;}(y3) MJp~,rD (y4)) (38) 

with :fixed 

P= P1+P2 =p~+p; 
R = r1 + r2 = r~ + r; (39) 

On the one hand these four - point functions (38) are calculated from a 
2(P + R) - point function involving 2P S :fields a.nd 2R a fields by OPE 
reduction via DCF. This is mainly a combinatorical task bringing in the 
"replica parameters" P1, r1, p2, r2, p~, r~, p~, r~ and, at 0( j,) , the connected 
four - point functions 

(ssss)conn' (aaaa)conn' (asas)conn (40) 

which are explicitly known (Lang and Ruhl 1992a., 1992b, 1993a). Crossing 
between the unprimed factors exchanges 

(41) 



212 KLAUS LANG AND WERNER RUHL 

so that we can use the crossing symmetric combinations 

(42) 

On the other hand we compare the four - point function (38) with con­
formal exchange amplitudes (this is an $ment of harmonic analysis). 

Figure 6 Conformal exchange amplitude 

This allows us to extract expressions for 

""""'IM1,i. IM1,i. 
L.,; 12 1 '2' 

k 

and 

E 1::1,k 1:t;;k TJ( M1,k) 
k 

The fuf'\ion constants 1:i1
·i. are functions of the replica parameters 

1::1
·i. = F1,k(P1,r1;]J2,r2) 

(43) 

(44) 

(45) 

By a simultanous diagonalization procedure for the two expressions obtained 
for (43), (44) we can extract the fusion coefficients and the anomalous di­
mensions . The fusion coefficients are obtained in the form 

1::1·i. = polynomial in the replica parameters giving ( 46) 
( -1 )1 under crossing times an algebraic fvnction 
depending homogenously on t1, t2, t3 

We have in fact solved the following cases (Lang and Ruhl 1993b) 
P = 0, R arbitary > 0: levels 0 ::; l ::; 6 and t = 2R in the class (0, 0). 

Degeneracy sets in at R ;?: 4 and l ;?: 4, 

R = O, P arbitary > 0: levels 0 ::; l ::; 6 and t = 0 in the classes 
(o:r:::::i P , P). Degeneracy sets in at 

P;?: 4 and l;?: 4. 
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In both cases the anomalous dimensions are 

17(Mi,k) = rational functions ofµ at leading order. 
11(S) 
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(47) 

and the algebraic function in ( 46) reduces to a ( nonhomogeneous) polyno­
mial of either ti or t2. 

If RP f. 0, degeneracy starts already at R + P ~ 3, I 2:: 2. We resolved 
only the cases 0 5 I 5 3. Moreover we find 

11(~)) = algebraic (irrational) function ofµ at leading or- (48) 
11 der. 

Many infinite sequences of anomalous dimensions are known now and in 
these sequences we can study limits. Consider a. tower of nondegenerate qp -
fields MlP,R}, P, R fixed, l running. Then in the DCF process (36) the pair 
of qp - fields on the left hand side is uniquely determined. At leading order 
in /;t we find 

lim 1l(M/P'R}) = 17(MJP1•r1
}) + 1l(MJp:in}) (49) 

1->oo 

Instead in the case of degeneracy 

11(M1{P,R}) = 0(~) (50) 

which makes the /;t expansion asyu1.ptotic only if N ;):> 12. We could also 
think of keeping l fixed and letting P, R run. Then 

17(M/P'R}) = o(~ x second order polynomial in P and R) (51) 

imposing a similia.r restriction on N. 
We emphasize that our method of constructing the states M/P,R} by 

forcing all internal qp - fields of the pedigree to have tensor rank zero may be 
too restrictive for large l. In a forthcoming article we will study an alternative 
algorithm which remains correct at large l as well. 

5. The limits d \,. 2 and d / 4 

For any 2 < d < 4 the limit N -+ oo leads to a free field theory. In this 
limit each qp - field </> E A(S, a) possesses a corresponding qp - field cp in 
the free field algebra Ao(s). In Green functions involving a fields we may 
first amputate them and perform the limit afterwards. At the boundaries 
d = 2, d = 4 the behaviour of coupling constant and critical indices 

11(</>) = f: 11~t), 
k=l 

(52) 
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111(S) = 2 sin?rµ f(2µ- 2) (53) 
1r f(µ + l)f(µ - 2), 

oo Zk 

L Nk' 
k=l 

z = (54) 

concerning their zero orders in d is listed in the following table 

d=2 d=4 
z1 0 2 
Z2 0 2 
111(S) 1 2 
112(S) 1 2 
111(</>), <P-:/: s 1 1 

All critical exponents vanish at both limits. These limits are therefore 
connected with free field theory. 

At d = 4 we obtain a free field theory in the trivial sense that 

lim S(x) = s(x), .6s(x) :::: 0 
d/4 

s( x) : N - component 0( N) - vector field (55) 

As a test we can calculate the limit of ( aSaS) after amputation. This limit 
d = 4 is assumed fieldwise and is an isomorphism of field algebras in the 
straightforward sense. Let A,B,C E A(S,a) 

A(x)B(O) = (x2 )~(c5c-c5A-c5B)(µ) fXB(µ)C(O) + ... (56) 

Then if a, b, c are the corresponding free fields 

( ) 
l(c5c-c5A-c5B)(2) 

a( x) b(O) = x2 2 fXB(2) c(O) + ... (57) 

The limit µ -+ 2 is performed termwise. 
This is not true at the other limit d = 2. First we consider the two 

conserved qp - currents 

</> : Tµv or Jµ,ab 

which have well defined local field limits 

<.p : tµv or jµ,ab 

Both T and J can be constructed from fusion of S 0 S. We introduce the 
Ward identities in any ad hoc normalization and normalize the fields </> 3 
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{T, J}, t.p 3 {t,j} relative to the same Ward identities. Conformal invariance 
implies the same scaling dimension and tensor structure for </> and t.p so tha.t 

By explicit calculation we find 

l+l ( 1) lim Cq,(µ) = 1 - -N + 0 N 2 µ'\.1 

l = tensor degree of </> ( 1 or 2) 

(58) 

(59) 

Ward identities can be derived from the two - point functions. Instead of 
normalizing fields by three - point functions and comparing the two - point 
functions we can introduce a standard normalization of two - point functions 

(<t>(x)</>{O)) = (x2f 6
"' ·tensor(x) {60) 

with the tensor factors connected to Gegenbauer polynomials which can be 
submitted to an ad hoc normalization, say cr-1(1) = 1, too. Doing that, the 
factors Cq,(µ) appear in the three - point functions as fusion coefficients. It 
becomes clear that the appearance of such factors is quite general. Cunsider 
the fusion of n fields S by DCF into the field MJn,o}. In the free' field limit 
this corresponds to taking the Wick normal product 

:s@: 

Two such fields multiply as 

: sl1 
: ( x) : s: : ( 0) = : sl1 +1'2 : ( 0) + ... 

whereas DCF yields 

{61) 

{62) 

MJvi.O}{x)MJP2•0}{0) = f (x2)°(µ-l) MJPi+P2,o}{O) +... {63) 

The exponent of x2 contains only anomalous dimensions and tends to zero 
at µ = 1. Computation off gives 

(64) 

so that, with {53) 

lim J( ) = 1 - P1P2 + 0(2-) 
µ'\.1 µ N N2 {65) 

Then we end up with a final 
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Theorem 7: 

KLAUS LANG AND WERNER RUHL 

The d = 2 limit is into the universality class of the polyno­
mial algebra of free fields. ·Fusion coefficients are O(~r) de-
formed with respect to free field theory. 

In particular this implies that exponential expressions of free fields ("vertex 
operators") cannot arise. Moreover the f = d - 2 expansions (which are in 
the literature since about 1976) are correct only if applied to critical indices 
and not to amplitudes. To our knowledge this restriction has never been 
clearly expressed before. 
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1. Introduction 

There are well known examples of classical field theories for which the min­
ima (instantons) of the euclidean action come into families (moduli). The 
basic examples are the euclidean versions of Yang Mills theory, gravity with 
cosmological constant and some classes of O'-models. In the semiclassical 
approximation to such. theories, there are observables which correspond to 
cohomology classes on the moduli spaces of instantons and whose expecta­
tion values coincide with the associated intersection numbers. This is the 
"topological sector" of the theory. As the intersection numbers do not de­
pend on the covariance, the expectation values of the topological observables 
is not perturbative and to compute them one can safely set the covariance to 
zero (i.e. pick up a purely topological action) and work with the intersection 
theory of moduli spaces (see e.g. [3] for more details). 

For non linear u-models with values in compact Kahler manifold, how­
ever, the folklore is that what matters is the cohomology ring of the target 
space modulo the "quantum correction". This is somewhat surprising be­
cause: 
1) what really matters is the intersection ring of the instanton moduli 

spaces 
2) the quantum correction is generically inomogeneous (e.g. w2 = 1 with 

degw = 1 for P 1 models) and breaks the grading which is typical of 
intersection rings. 

This inconsistency is actually only apparent, as everything can be ex­
plained and understood geometrically as we did in (2). There we first con­
sidered the case of O'-models P 1 -+ Gr(s; n) from the Riemann sphere P 1 to 

• Work partially supported by Progetto Nazionale 403 "Metodi geornetrici e 
probabilistici in Fisica Maternatica" and by CNR-GNFM. 



218 D. FRANCO AND C. REINA 

a Grassmannian and checked that the geometrical construction yielded the 
right answer alredy proposed by Gepner and Intriligator on purely algebraic 
grounds. We then studied the generalization to flag-manifold valued models. 
The case of models with values on toric manifolds is presentely under study. 

The general picture we get is as follows: 
i) the moduli spaces Md of instantons of (multi)-degree d have projective 

compactifications Md = Md U ~. 
ii) whenever one has to compute intersections of the form 

(f31 ... f3,..a; Md), 

one can find classes {3~ ... {3~in the Chow ring of M d-l such that 

which formally amounts to putting a = 1, i.e. to applying the quantum 
correction. 
Understsanding these results in general is a nice exercise of algebraic geom­
etry, which requires some technical tools which may be not widely known 
among physicists. We feel better to concentrate hereinafter on the simplest 
example where all the details can be explicitely worked out. We hope that 
this may help a wider understanding of the basic geometrical ideas underly­
ing "quantum corrections". For the approach to more general examples we 
refer to [2]. 

The topological P 1-model 

As it is well known, the minima (instantons) of the Dirichlet action for 
maps f : P 1 ---+ P 1, P 1 being the Riemann sphere, are simply holomorphic 
maps. The parameter space of such instantons is then the disjoint union 
M = Ild>O Md of the spaces Md of holomorphic maps of degree d. Every 
f E Md can be explicitely given as 

x; = P;(zo,z1), (i = 0,1) 

where ( zo, z1 ), ( xo, x1) are homogeneous coordinates of the source and the 
target and P;(z0 ,z1 ) are homogeneous polynomials of degreed. Notice that 
this gives a well defined map of degree d if and anly if the P; 's have no 
no common zeroes. As homogeneous coordinates are defined up to scalar 
multiplication, the parameter space of such maps is the space of coefficients 
occurring in the polynomial P; modulo scalar multiplication. We get then 
that Md ~ P 2d+1 \ ~ is an open subvariety of P 2d+l, the degeneracy locus 
~ being the set of parameter where Po and P1 have common zeroes. 

There are in principle several ways of compactifying Md into a projective 
variety Md· In the present case, it is natural to set Md ~ P 2d+1 ~ Md U ~. 
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Notice that 6 has (complex) codimension 1 in M di indeed, it is a divisor 
given by the vanishing of the resultant 

ao ai ad 0 0 
0 ao ai ad-1 ad 0 

R= 0 0 ao ai ad-1 ad 
bo bi bd 0 0 
0 bo bi bd-1 bd 0 

0 0 bo bi bd-1 bd 

of the two polynomials Po( zo, z1) = aoz3 + ... + ad+l zt and P1 ( zo, z1) = 
boz3 + ... + bd+izf. For instance, when d=l d = 1, the two polynomials 
Po= azo + bz1, Pi= ez0 + dz1 are parametrized by m :=(a: b: e: d) E P 3

, 

(a : ... : d) denoting the line spanned by (a, ... , d), and have a common zero 
whenever m belongs to the quadric QC P 3given by the equation ad-be= 0. 
So 6 ~ Q and M1 ~ P 3 \ Q. 

The "universal" instanton of degree d 

(zo: z1,m) ____.. fm(Zo: z1), 

where f m denotes the map parametrized by m E Md, is holomorphic on 
P 1 x Md ____.. P 1 . For m E 6 instead, there is a finite number of points of 
P 1 where fm degenerates and hence the universal instanton is not defined 
on a locus of codimension two in P 1 x Md· It follows that f is actually a 
rational map from P 1 x Md to P 1 . For every point p E P 1 , the map 

f(p) :p x Md____.. P 1 

(p,m) ____.. fm(P) 

is again a rational map, with degeneracy locus 

Av = { m E Md I Po(p, m) = Pi (p, m) = 0}. 

Let us next work out in full details the simplest case of d 
universal instanton reads 

f: P 1 x Mi____.. P 1 

( zo : zi, a : b : e : d) ____.. ( azo + bz1 : ezo + dz1) 

1. The 

and and we know that it is not defined where ad - be = 0 and az0 + bz1 = 0. 
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We want to see in this simple example how the homology (actually the 
Chow) ring of the target space is related to intersection theory on the M 1. 

Recall that the intersection ring of P 1 is generated by the class [p] of a 
point p E P 1 (i.e. the Poincare dual of the Kahler form w ), with the relation 
[p].[p] = 0. The idea is to study the "preimage" under f of p in the target 
P 1 The map f, where defined, is completely determined by its graph r c 
P 1 x M 1 x P 1• To define a suitable preimage of a point p belonging to the 
target P 1 we have to compactify r into r c P 1 x M 1 x P 1 so that we can 
define r 1(p) =: r n (P1 x M 1 x {p}). Clearly 

- 1 - 1 r = V(xo(czo +di) - x1(azo + bz1)) c P x M 1 x P , 

where V( ... ) denotes the zero locus of ... , and 

r 1(p) = V(xo(czo + dz1) - x1(azo + bz1)) C P 1 x Mi, 

where (xo : x 1) are the homogeneous coordinate of p E P 1 . To find classes in 
M 1 corresponding to local observables, we have to fix also a point (0, say) 
of the source P 1 and consider the map 

Jo: Mi_, pl 

given by J0(a: b: c: d) := f(O: l;a: b: c: d). Similarly to what we have 
done before, we can look at the primage in M 1 under / 0 of the fundamental 
class of p E P 1, getting 

(!0
)-

1(p) =: ( {O} x Mix {p}) n f C Mi, 

which is the zero locus of 
x0d = x1b, 

i.e. a hyperplane H C P3 = M 1 · Let us calculate the intersection 
(f°t1(p) n (f°)-1(p'), setting for simplicity p = (0 : 1),p' = (1 : 0). We 
have (J°)-1(p) = V(b), (f°)-1(p1

) = V(d) and their intersection is the line 

L =: (!0
)-

1(p) n (!0
)-

1(p') ={(a: 0: c: 0) E Mt}. 

Clearly L is contained into .D.. To give a closer look to L we need a more 
concrete understanding of what kind of graphs are represented by the points 
of .D.. If m =(a: b: c: d) E Mi\ D. then fm has as graph fm = V(xo(czo + 
dz1)- x1(azo +bz1)) C P 1 x P 1. Now, rm is a graph of an actual map if and 
only if the first projection f m -> P 1 an isomorphism. Then, if m E .D., f m 

does not represent any function, because the point at which both az0 + bz1 
and czo + dz1 vanish does not belong to the graph. Nevertheless if we define 
rm as before, we have a subset of pl x pl of the same degree of a real graph 
(in the present case, this is a consequence of the fact that r is defined by 
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a unique equation, for more general targets this depends on the fact that 
Md is equipped with a "flat family" of graphs). Whenever m E L whe have 
that fm = V(cxozo - ax1zo) = V(Zo(cxo - ax1)). It is clear that fm is the 
union of two lines: the first, which is given by the equation zo = 0, does not 
represent any function; the second, which is given by cxo - ax1 = 0 is the 
graph of a constant function. 

We have then an isomorphism 

.f-1 (p) n .f-1 (p') = L =Mo, 

given by L 3 (a: 0: c: 0) 1-+ (a: c) E Mo= Mo'.::::'. P 1• which, as explained 
in the introduction, gives the quantum correction r-1(p) n r-1(p') = 1, 
at least at the level of degree-one instantons. Let see more closely how this 
works. Since M 1 '.::::'. P 3 , the unique non vanishing expectation value of local 
observables can be computed as an intersection of the form 

of three cycl~s classes [ ... ]in the intersection ring of P 3 . 

Unfortunately, the representatives of the cycles classes explicitely occour­
ring above do note intersect transversally, but we can argue as follows. The 
action of Sl(2, C) on the source P 1 sends cycles into equivalent cycles, and 
therefore we can compute [i] by computing 

i.e. 

· n Vi Vi -· V( -(k) -(k) -(k)-(k)b + -(k)-(k) + -(k)-(k)d) 
i = k k' k -. -X1 Zo a - X1 Z1 Xo Zo c Xo Z1 

w~ere Pk = (x~k) : x~k)) and qk = (z~k) : z~k)). One easily checks that the 
sistem of 3 linear equations in (a,b,c,d) equivalent to the intersection above 
has maximal rnk for a generic choice of the Pk, qk and therefore there is a 
unique line (a : b : c : d) in the intersection. 

It is also obvious that V2 n V3 is isomorphic to a copy of M 0 = P 1 and 
therefore i C MO· Accordingly, for the intersection numbers, we have 

and this is exactly what is called the quantum correction in the physical 
literature. 

Returning to the general situation there is a map 

f :P1 x(Md\~)-+P1 

(zo: z1 : ao : ... : ad : bo: ... : bd)-+ (aozg + ... + adzt : bozg + ... bdzt) 
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(A being the zero locus of the resultant) from which we get a divisor 

- d d d 1- 1 f = V(xo(bozo + ... + bdzi) - x1(aozo + ... + adz1)) C P X Mi X P . 

Fixing a point 0 of the source and two points p = (0 : 1),p' = (1 : 0) 
of the target as we made in the example, we can compute the intersection 
L = (!0 t 1(p) n (!0)-1(p') C Md where again!° : Md--+ P 1 is given by 
!°(m) := f(O;m). We find 

L = V(ad) n V(bd) = {(ao: ... : ad-1 : 0: bo: ... : bd-1 : 0) EM d} CA. 

To every m E L we can associate a subset rm C P 1 x P 1 , which cannot 
represent any function, by setting 

Again rm is the union of two components:the first, which is given by the 
equation z0 = 0, does not correspond to any function; the second, which 
. . b (b d-1 + + b d-1) + ( d-1 + + d-1) 0 1s given y xo oz0 ... d-1z1 x1 aoz0 ... ad-1Z1 = , 
represents an instanton of degree d - 1. 

Finally, similarly to what happens for degree-one maps, we have an iso­
morphism 

which gives the quantum correction 
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Abstract. We present a. topological Lagrangian field theory that is geometrically similar to 
the Ya.ng-Mills(-Higgs) Lagrangian, and study the Bogont6f'nyi solitons contained within 
this theory. The topological field theory may provide an example of a. dual field theory to 
Yang-Mills(-Higgs). The existence of a. dual field theory to Ya.ng-Mills(-Higgs) theory was 
conjectured by Montone11 and Olive. 

1. Introduction 

Recently a class of Lagrangian topological field theories possessing a 'min­
imizing' Bogomol'nyi structure has been introduced on oriented, compact, 
connected four-manifolds [8]. The associated Bogomol'nyi equations are rem­
iniscent of the self-duality equations in Yang-Mills theory, and the solutions 
to the topological Bogomol'nyi equations share much in com11J.on with solu­
tions to the self-duality equations (instantons). Like the Yang-Mills instan­
ton, for example, solutions to the topological Bogomol'nyi equations can be 
translated into geometrical structure on an appropriate holomorphic vector 
bundle, and, the moduli space of solutions fo:Nns a Hausdorff differentiable 
manifold. We shall call solutions to the topological Bogomol'nyi equations 
'topological instantons'. The topological field theories studied in [8] achieve 
these results with relatively little hard analysis and algebraic geometry when 
compared with the Yang-Mills instanton theory [2]. The reason for this is 
that topological instantons are essentially equivalent to the differential ge­
ometric formulation of 'stable vector bundles' due to Kobayashi [6]. The 
differences between Yang-Mills instantons and topological instantons are 
also significant. We mention three differences. First, non-trivial topological 
instantons can exist on pseudo-Riemannian space-times, while Yang-Mills 
instantons arE; trivial on space-times. Second, topological instantons have a 
larger gauge group, U(n). Third, topological instantons by virtue of their 
non-triviality on space-times have a space-of-motions equivalent to the mod­
uli space; Yang-Mills instantons are pseudo-particles and do not possess a 

• This work is supported in pa.rt by an NSERC research grant (OGP0105498) 
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space-of-motions. It is well-known that self-dual instantons in Yang-Mills 
theory and BPS magnetic monopoles in Yang-Mills-Higgs theory are closely 
related [1]. BPS magnetic monopoles are non-singular, finite-energy solu­
tions to the self-duality equations reduced to three spatial dimensions with 
a gauge symmetry in the (imaginary) time direction. A similar process can 
be applied to the topological instanton, leading to the theory of topologi­
cal monopoles. The topological instanton and the topological monopole ob­
tained by dimensional reduction are the subject of this paper. 

In the next section we discuss the differential geometry of the class of 
topological field theories on four-manifolds introduced in [8], and expose 
the Bogomol'nyi structure. Solutions to the Bogomol'nyi equations (topo­
logical instantons) are shown to be projectively flat. The physical stability 
of the topological instanton field. configuration is argued from the topology 
of the underlying four-manifold. In section three, we dimensionally reduce 
the four-dimensional topological field theory to three spatial dimensions. 
The Bogomol'nyi structure survives the dimensional reduction. Topological 
monopoles are the solutions to the Bogomol'nyi equations in three dimen­
sions. Although the theory of topological monopoles is very similar to the 
theory of BPS magnetic monopoles, there is an interesting difference between 
the Bogomol'nyi structures of the two theories. In the theory of BPS mag­
netic monopoles the Bogomol'nyi equations appear as a completed square in 
the Lagrangian, while in the theory of topological monopoles they do not. 
The Bogomol'nyi equations in our class of TFTs consist of two equations, 
either of which will saturate the Bogomol'nyi energy. This added flexibility 
in saturating the Bogomol 'nyi energy allows greater freedom in constructing 
solitonic particles with either an electric or magnetic charge. 

2. Instantons in topological field theories 

The Lagrangian theories in [8] are defined by the Lagrangian Action func­
tional: 

.C(A,B) =JM< (HA 0 IE)/\ (le 0 KB)>-~< (IE 0 KB)2 > (1) 

defined on the product space A(P) x A(P). Interpreting HA and KB as 
curvatures in the Lagrangian Action requires that the real dimension of M 
be four. IE is the identity transformation on the adjoint bundle, E. The 
brackets < > remind us that a choice of adjoint-invariant, real-valued inner 
product on the adjoint bundle is needed. The Action functional introduces 
an artificial asymmetry in HA and KB which is not supported by a physical 
argument; we will return to this later. The variational field equations for (1) 
are 

(2) 
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where we have made use of the Bianchi identity DB KB 0. The set of 
solutions is clearly neither empty nor entirely trivial. The physical stability 
of a class of nontrivial, nonsingular, finite-Action solutions to the varia­
tional equations (3) can be demonstrated by a topological argument. The 
Lagrangfo,n (1) can be rewritten as 

The inner product structure defines a Weyl polynomial of degree two. Let 
EA and EB be the vector bundle E equipped with either the connection A 
or B, respectively. The first term in the Lagrangian C in equation (3) is a 
topological invariant for the tensor product bundle EA ® EiJ. Recall that 
the curvature of EA® EiJ is given by nEA@E• =HA® IE - le® KB. The 
Bogomol'nyi equations, B 

(4) 

are therefore a vanishing curvature condition on the tensor product bundle 
EA® E1J. Solutions to (4) automatically satisfy the variational field equa­
tions (2). An indice computation for ( 4), H;j, bed = 6ab K~, shows tht the 
curvature forms HA and KB are projectively flat. That is, 

(5) 

where Fis a real-valued two form on M, and Ir is the identity endomorphism 
for the vector bundle, E, of rank r. The Bianchi identity imposes a simple 
condition on F, that dF = 0, so that FE H 2(M,R). Since Mis compact, 
H 2(M,R) is of finite dimension. If Fis a curvature on M, then the second 
term in (3) is a topological invariant of the underlying four-manifold, M. 
Topologically non-trivial solutions to the Bogomol'nyi equations will be said 
to be 'physically stable' if Fis a curvature of M and if the solutions have a 
fixed non-zero Action given by 

2£ = - JM F /\ F = -2411" sgn(M) f:. 0, 

where the topological signature of the manifold, M, is denoted by sgn(M). 
Physically stable, non-trivial solutions to the Bogomol'nyi equations (5) on 
the vector bundle (E, < >) are called topological instantons [8]. 

3. Monopoles in topological field theories 

We now examine static, non-singular solutions to the Bogomol'nyi equations 
(5). By assuming a gauge symmetry in the direction of time, Xi. we can 
dimensionally reduce the four-dimensional theory on R4 defined by (1), to 
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a theory on R 3 . The reductions are performed using the gauge symmetry 
equations, 

HA(Xt, ·) = -DA~A, 
K 8 (Xt, ·) == -D8~B· 

(6) 

Dimensional reduction introduces the equivariant Lie algebra valued fields, 
~A.~B E A0(R3 ,End(E)), defined by ~A = A(X1) and ~B = B(X1) 

[4]. We can either reduce the Bogomol'nyi field equations (5) directly, or, 
reduce the full variational field equa.:.i-Jns. In the first case, the Bogmol'nyi 
equations locally reduce to 

DA~A = D8 ~B = Ele, 
HA IR3 = K 8 IR3 = Fle. 

(7) 

Eis the one-form obtained by contracting Fin (5) on the infinitesimal time 
displacement. In the second equation in (7) F denotes the restriction of F 
in four-dimensions restricted to the leaves in the foliation defined by X 1• 

Alternatively, the Lagrangian Action (1) after reduction becomes 

E(A,B) = fM3 < (JE®K8 )A(JE®D8~B) > 
- < (le 0 ]( B) A (DA~ A 0 le) > 

- <(HA 0 le)/\ (le 0 D8 ~B) >, 

and the dimensionally reduced field equations become 

D8 HA = 0, 
DA J(B = 0, 

DBDA~A = [HA,~B], 
DADB~B = [I<B,~A]· 

The energy functional (8) can be rewritten as 

£(A,B) = 

(8) 

(9) 

fM
3 

<(HA 0 fe - le 0 I< 8 ) /\ (DA~A 0 fe - fe 0 D8 ~B) > (10) 
-- fM

3 
< (DA~A 0 le) /\ (HA 0 le)> 

It is clear from (10) that the reduced topological instanton equations (7) 
continue to saturate the Bogomol'nyi bound, given by the second integral in 
(10). In Yang-Mills theory, solutions to the time-reduced instanton equations 
are called BPS magnetic monopoles. We call solutions to the time-reduced 
topological instanton equations: topological monopoles. Unlike Yang-Mills 
theory, however, the energy functional (10) is saturated at the Bogomol'nyi 
bound with either equation in (7). We need not insist that both equations in 
(7) be satisfied in order to saturate the bound, although of course the field 
configurations must still satisfy the second-order variational field equations. 

To be observable to conventional detectors, U( n) field configurations must 
be broken. The symmetry breaking mechanism for BPS magnetic monopoles 
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is very attractive [3], so we will use it here. Imagine a solitonic core region 
at the origin. Let G and H be compact and connected gauge groups, where 
the group .H is assumed to be embedded in G. The gauge group of the core 
region G is spontaneously broken to H outside of the core region when the 
Higgs field is covariantly constant, D<P = 0. In regions far from the core 
(r _, oo) where we assume that DA<PA = 0, it can be shown that 

HA= <PAFA, (11) 

where FA E A2(M3, EH), is any closed two-form on M3 taking values in 
the H-Lie algebra bundle, denoted by Eu here. A similar expression to 
(11), J( 8 = 'PBFB, can be written when D8 <PB = 0. We assume that 
<'PA<PA >= 1 when r >> 1 and where spontaneous symmetry breaking has 
occurred. When G = U(n) and H = U(l), FA becomes a pure imaginary 
two-form on M3 • Consider the Bogomol'nyi solitons defined by (7). Solutions 
to (7) have an energy topologically fixed by 

[ = -fM3<(DA<P1®lE)A(HA®JE1> (12) 
= - f M3 d < <PA H >= - fs2 < <P AH >, 

where S2 is a large sphere surrounding the monopole core and lyine com­
pletely in a region where DA<PA = 0. Substituting (11) into (12) and using 
the normalisation condition <<PA'PA >= 1, the energy is fixed by f FA. As 
in the case of the BPS magnetic monopole, f FA would be interpreted as 
the magnetic charge. 

4. Conclusion 

In this short contribution we have introduced a class of topological field theo­
ries in three and four dimensions, exposed their Bogomol'nyi structures, and 
argued the physical stability of solutions. But we believe that the theories 
presented here are incomplete because there is a physical asymmetry in the 
gauge fields present in (1 ). Symmetry in the Action is easily regained, how­
ever, by exchanging HA and K 8 , and adding it to the Lagrangian (1). The 
variational field equations and the Bogomol'nyi equations are unchanged by 
the symmetrization. In four dimensions, the stability of the topological in­
stanton is only slightly different-the symmetrized Action is twice that of 
the asymmetric Action. In three dimensions, the saturated energy functional 
becomes 

[ = - I M3 < (DA <PA 0 h) A (HA 0 h) > 
- I M3 < ( D8 <PB 0 h) A ( J( B 0 h) > . (13) 

We argued stability from the topological interpretation that can be given 
to (13). The symmetrization of the topological field theory implies that the 
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solitonic particle is topologically stable if either of the integrals in (13) is 
non-vanishing. The integrals should correspond to the magnetic and electric 
charge of the soliton given by fs2 FA and fS2 FB, respectively. 

A particularly glaring omission in the solitonic particle spectrum in YMH 
theory is the electric monopole. The Montonen-Olive conjecture addresses 
this by proposing with some compelling evidence that there exists a dual 
field theory to YMH theory which would replace the BPS magnetic monopole 
with solitonic intermediate vector bosons: w±, zo [5). Although there is still 
much study needed, we believe that theory of topological monopoles may 
be an example of a dual field theory [9). If so, then in order to ensure the 
stability of the Z0 particle, the Z0 must be a magnetic monopole. 
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Abstract. The two-dimensional self-dual Chern-Simons equations are equivalent to the 
conditions for static, zero-energy vortex-like solutions of the (2+1) dimensional gauged 
nonlinear Schrodinger equation with Chern-Simons matter-gauge coupling. The finite 
charge vacuum states in the Chern-Simons theory are shown to be gauge equivalent to the 
finite action solutions to the two-dimensional chiral model (or harmonic map) equations. 
The Uhlenbeck-Wood classification of sucl> harmonic maps into the unitary groups thereby 
leads to a compl.ete classification of the vacuum states of the Chern-Simons model. This 
construction also leads to an interesting new relationship between SU(N) Toda theories 
and the SU ( N) chiral model. 

The study of the nonlinear Schrodinger equation in 2 + I-dimensional 
space-time is partly motivated by the well-known success of the 1 + 1-
dimensional nonlinear Schrodinger equation. Here we consider a gauged non­
linear Schrodinger equation in which we have not only the nonlinear poten­
tial term for the matter fields, but also we have a coupling of the matter fields 
to the gauge fields. Furthermore, this matter-gauge dynamics is chosen to 
be of the Chern-Simons form rather than the conventional Yang-Mills form. 
With this choice, the nonlinear term in the Schrodinger equation may also 
be viewed as a Pauli interaction, due to the Chern-Simons relation between 
the magnetic field and the charge density. 

The theory with an Abelian gauge field was analyzed by Jackiw and Pi [7) 
who found static, zero energy solutions which arise from a two-dimensional 
notion of self-duality. The static, self-dual matter density satisfies the Liou­
ville equation, which is known to be integrable [10]. The gauged nonlinear 
Schrodinger equation with non-Abelian Chern-Simons matter-gauge dynam­
ics has also been considered [5, 3, 4], and once again static, zero energy solu­
tions (referred to as "self-dual Chern-Simons vortices") have been found to 
arise from an analogous, but much richer, two-dimensional self-duality con­
dition. These two-dimensional self-duality equations are formaily integrable 

• Work supported in part by the DOE under grant DE-FG02-92ER40716.00 and in 
part by the University of Connecticut Research Foundation. 
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and in special cases they reduce tot h(' classical and affine Toda equations, 
both known integrable systems of nonlinear partial differential equations 
[8, 9]. 

Here, I classify all finite charge solutions to the self-dual Chem-Simons 
equations by first showing that the self-duality Pquations are equivalent to 
the classical equations of motion of the Euclidean two-dimensional chiral 
model (also known as the harmonic map equations), and then using a deep 
classification theorem due to Uhlen beck [ 11 J which classifies all U ( N) and 
SU(N) chiral model solutions witl~ finite chiral model action. The chiral 
model action is in fact proportionai to the net gauge invariant charge Q in 
the matter-Chem-Simons system, and so the classification of all finite charge 
solutions is complete. I also present the explicit "uniton" decomposition of 
a special class of solutions to the SU(N) chiral model equations which have 
the remarkable property that when the matter density for these solutions is 
diagonalized, it satisfies the classical SU(N) Toda equations. Such a direct 
correspondence between the Toda equations and the chiral model equations 
is surprising. 

The 2 + 1-dimensional nonlinear Schrodinger equation reads 1 

(1) 

where the covariant derivative is Dµ = 8µ +[Aµ, ], and both the gauge 
potential Aµ and the matter field '11 are Lie algebra valued: Aµ = A~Ta, 
'11 = wara. The main results of this paper are for the Lie algebra of SU(N), 
but the formulation generalizes straightforwardly to any simple Lie algebra 
(the noncompact case has been studied in [l]). The matter and gauge fields 
are coupled dynamically by the Chem-Simons equation 

F - 2_ JP 
I"' - fµvp 

K, 
(2) 

where F1w = 81,A,, - 8,,Aµ + [Aµ,A,,] is the gauge curvature, r;, is a coupling 
constant and JP is the covariantly conserved ( D µlµ = 0) nonrelativistic 
matter current 

[wt, w) 

J' -~ (lwt,n;w) - [(D;w)t, wJ) (3) 

The Schrodinger equation (1) and the Chem-Simons equation (2) are invari­
ant under the gauge transformation 

w --+ 9- 1w9 

(4) 

1 Note that there is a typographical error in this equation in [4]. 
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w!H'rc g E SU(N). 
In [3, 1J] it has been shown that the minimum (in fact zero) en<'rgy solu­

tions to (1,2) arc giv<'n by the sr:lf-dual Ansalz 

JJ_IJl=O 

combined with the rPrnaining Chern-Simons equation 

&_A+ - &+A-+ [A_, A+]=~ [IJlt, IJI]. 
K, 

( .5) 

(6) 

Here A± = A1 ± iA2, D± = D1 ± ilh and with antihermitean Lie algebra 

generators we have A± = -( A'f) t. Equations ( 5,6) are collectively referred 
to as the self-dual Chern-Simons equations. The self-dual solutions provide 
static solutions to the gauged nonlinear Schrodinger equation, as can be seen 
from a Hamiltonian formulation [3]. Alternatively, this follows directly from 
the equations of motion (1,2). To see this, note that if D_ W = 0, then the 
currents take the simple form 

j+ := JI+ iJ2 = -~[Wt,D+IJI]. 
2 

It then follows from the Chem-Simons equation (2) that Ao 
The identity 

D 2if! = D+D_ if!+ i[F12, if!]= D+D- if! - ~[[wt, w], w] 
K, 

then implies that the Schrodinger equation reduces to 

i&ow = -~D+D_ w = o. 

(7) 

Lrwt,wJ. 

(8) 

(9) 

In fact, owing to a remarkable dynamical 50(2, 1) symmetry of the gauged 
nonlinear Chern-Sirnons-Schrodinger equations (1,2), it is possible to show 
that the implication holds in the reverse direction: all static solutions are 
self-dual [3]. 

Before classifying the general solutions to the self-dual Chem-Simons 
equations, it is instructive to consider certain special cases in which sim­
plifying algebraic Ansatze for the fields reduce ( 5,6) to familiar integrable 
nonlinear equations. First, choose the fields to have the following Lie algebra 
decomposition 

(10) 
a 

where the sum is over all positive, simple roots a of the Lie algebra, and 
Ha and Ea are the Cartan subalgebra and step operator generators (respec­
tively) in the Chevalley basis [6]. Then the self-dual Chern-Simons equations 
(5,6) combine to yield the classical Toda equations 

\72logpa = _'!:_J(af3Pf3 (11) 
K, 
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where Pet = I Viet 12 , and J( etf3 is the classical Cartan matrix for the Lie algebra. 
For SU(2), (11) becomes the Liouville equation \7 2logp = -~p, which Liou­
ville showed to be integrable and indeed "solvable" [10] - in the sense that 
the general real solution can be expressed in terms of a single holomorphic 
function J = f ( x-): 

(12) 

Kostant [8], and Leznov and Saveliev [9] have shown that the classical Toda 
equations (11) are similarly integrable, with the general real solutions for 
Pet being expressible in terms of r arbitrary holomorphic functions, where r 
is the rank of the algebra. For SU(N) it is possible to adapt the Kostant­
Leznov-Saveliev solutions to a simpler form more reminiscent of the Liou ville 
solution (12): 

where Met is the Nxa rectangular matrix Met 
with u being an N-component column vector 

U= 

[ 

1 l fi(x-) 
h(x-) 

fN-1:(x-) 

(13) 

(14) 

For a radially symmetric SU(3) example see Figure 1. An alternative, 
extended, Ansiitz involves the matter field choice 

(15) 

where E_M is the step operator corresponding to minus the maximal root. 
With the gauge field still as in (10), the self-dual Chern-Simons equations 
then combine to give the affine Toda equations 

2 2 - -
\7 logpa = - - J( ab Pb, J( is the affine Cartan matrix. 

K, 
(16) 

The affine Toda equations (16) are also known to be integrable. 
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Fig. 1. A plot of the nonAbelian charge density p1 for a radially symmetric SU{3) 
Toda-type vortex solution {13) to the self-dual Chern-Simons equations {5,6). For a radially 
symmetric solution, the functions f,,(x-) appearing in (14) are chosen to be powers of 
x 

Having considered some special cases of solutions to the self-dual Chern­
Simons equations, we now consider the general solutions by first making a 
gauge transformation to convert the equations (5,6) into the single equation 

(17) 

where xis the gauge transformed matter field x = J?:_gwg- 1 . The existence 

of such a gauge transformation g- 1 follows from the following zero-curvature 
formulation of the self-dual Chern-Simons equations [3, 4]. Define 

(18) 

Then the self-dual Chern-Simons equations imply that the gauge curvature 
associated with A± vanishes: a_A+ - a+A- + [A-,A+] 0. Therefore, 
locally, one can write A± as pure gauge 

(19) 
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Gauge transforming the self-dual Chern-Simons equations (.5,6) with this 
group element g- 1 leads to the single equation (17). 

Equation ( 17) can be converted into the chiral model equation by defining 
x = ~h- 1 8+h for some h E SU(N) (the fact that it is possible to write x in 
this manner is a consequence of (17)). The chiral model equation [1.5] reads: 

(20) 

Given any solution h of the chiral model equations, or alternatively any 
solution x of (17), we automaticall.\ ·1btain a solution of the original self­
dual Chern-Simons equations: 

l}i(O)=~X, A(O) - X 
+ - ' (21) 

The global condition which permits the classification of solutions to the 
chiral model equation (20) is that the chiral model "action functional" (also 
referred to in the literature as the "energy functional") 

(22) 

be finite. This finiteness condition is directly relevant in the related matter­
Chern-Simons system because £[h] = 2 J d2x tr(xxt) = ~ J d'2x tr(lliwt) = 

~Q where Q is the net gauge invariant matter charge. As well as being phys­
ically significant, this finiteness condition is mathematically crucial because 
it permits the chiral model solutions on JR2 to be classified by conformal 
compactification to the sphere 5 2 [11, 13). 

Theorem (Uhlenbeck (11); see also Wood (14)): Every finite action solution 
h of the SU(N) chiral model equation (20} may be uniquely factorized as a 
product of "uniton" factors 

m 

h =±ha Il(2p; -1) (23) 
i=l 

where: 
a) ho E SU(N) is constant; 

b) each Pi is a Hermitean projector (p) =Pi and p[ =Pi); 

c) defining hj =ho n{=l (2pj - 1), the following linear relations must hold: 

(1 - Pi) ( 8+ +~hi_\ 8+hi-l) Pi 0 

(1 - Pi) h;.!18_h;-1 Pi = 0 

d} ms; N - 1. 
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The ± sign in (23) has been inserted to allow for the fact that Uhlenbeck 
and Wood actually considered U(N) rather than SU(N). 

An important implication of this theorem is that for SU(2) all finite 
action solutions of the chiral model have the "single uniton" form 

h= -h0 (2p- l) 

where p is a holomorphic projector satisfying 

(1 - p) 8+p = 0 

(24) 

(25) 

These solutions are essentially the <C P 1 model solutions of Din and Za­
krzewski (2, 15). 

At this point, it is not at all obvious how these types of solutions to 
the chiral model equations (and therefore by (21) of the self-dual Chern­
Simons equations) are related to the special Toda-type solutions discussed 
previously. The key observation is that while the algebraic Ansatze (10,15) 

each lead to a non-Abelian charge density p = (wt, 1Ji) which is diagonal, 

the chiral model solutions (21) have charge density p(o) = i[xt,x] which 
need not be diagonal. However, p is always hermitean, and so it can be 
diagonalized by a gauge transformation. It is still an algebraically nontrivial 
task to implement this diagonalization, but this is achieved below for the 
solutions of SU(N) Toda type. 

It is instructive to illustrate this procedure with the SU(2) case first. 
Since p2 = p, the holomorphic projector condition (25) is equivalent to the 
condition O+P p = 0. All such projectors may be written as 

p = 1\!I(Mt Af)- 1 Mt (26) 

where M(x-) is any rectangular matrix depending only on the x- variable. 
For SU(2) we can only project onto a line in (]; 2

, so we take 

M= (!(;-))· (27) 

This then leads to 

p= 1+

1

!! (~ !1)' a fa+! (-1 l/1!).c2s) 
X = +P = (1 + f !)2 - f 

The corresponding matter density is 

t - - &+fa-! ( 1 - f ! 2f -) 
[x,xl- (1+ff)3 2f -l+ff' (29) 

which may be diagonalized by the unitary matrix 

g 1 (-1 1) 
j1 +fl 1 f ' 

t ( 1 0 ) 8+8-log det(M M) 
0 

_
1 

. (30) 
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This is precisely Liouville's solution (12) to the classical SU(2) Toda equa­
tion. 

For the SU(N) chiral model with N ~ 3 it becomes increasingly difficult 
to describe systematically all possible uniton factorizations consistent with 
the linear relations listed in Uhlenbeck's theorem, but Wood [14] has given 
an explicit construction and parametrization of all SU(N) solutions in terms 
of sequences of Grassmannian factors. 

Another useful result from the chiral model literature is due to Valli: 

Theorem (Valli [12]): Leth be a solution of the chiral model equation (20). 
Then the action £ defined in (22) is quantized in integral multiples of 811". 

As a consequence, the gauge invariant Chern-Simons charge 
Q = f tr(wtw) is quantized in integral multiples of 21l"K. A related quan­
tization condition has been noted in [3], where the non-Abelian charges 
Qoc = f Poe are quantized in integral multiples of 21l"K for the SU(N) Toda­
type solutions (13). In this case, Q = Loe Qoc. 

The relationship between the SU(2) uniton solutions and the SU(2) Toda 
solutions illustrated above (26-30) can be generalized to SU(N) as follows: 

Theorem [4]: The following matrix 

N-1 
h = (-l)~N(N+l) II (2Poc - 1) (31) 

oc=l 

where Poe is the hermitean holomorphic projector Poe= Moc(MJMoc)- 1 MJ for 
the matrix Moc in (13,14), is a solution of the SU(N) chiral model equation 
(20). Furthermore, defining x = ~h- 1 8+h, there exists a unitary transfor-

mation g which diagonalizes the charge density matrix [x t, x] so that 

N-1 

g-1[xt ,x]g = L {8+8-log det(MJMoc)}Hoc (32) 
oc=l 

where Ha are the Cartan subalgebm generators of SU(N) in the Chevalley 
basis. This diagonal form is precisely the SU(N) Toda solution (13). 

This theorem is proved [4] by expressing the projectors Poe in terms of 
an orthonormal basis for the space spanned by the columns of MN. The 
diagonalizing matrix g is also constructed from this orthonormal basis. 

In cpnclusion, I mention some open problems suggested by these results. 
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1. The most important physical problem is now to make use of this com­
plete description of the vacuum of these Chern-Simons-matter theories 
in order to develop a second quantized theory. 

2. The fact that this quantization is possible for the 1 + 1-dimensional 
nonlinear Schrodinger equation (NLSE) is intimately related to the in­
tegrability of the 1 + 1-dimensional NLSE. Here, in 2 + 1-dimensional, 
the situation is less clear. Is the 2 + 1-dimensional gauged nonlinear 
Schrodinger equation (1) with Chern-Simons coupling (2) integrable? 

3. Can one find time-dependent (i.e. positive energy) solutions other than 
those obtained via the action of the dynamical S0(2, 1) symmetry acting 
on the static solutions? 

4. The work of Uhlenbeck, Wood and Ward gives a beautiful geometrical 
picture of the chiral model solutions for the unitary group. What is 
the geometrical interpretation of self-dual Chern-Simons solutions for 
other Lie groups? Some solutions, in the Toda form, are known, but the 
geometrical understanding of the corresponding chiral model solutions is 
not clear. This should be particularly interesting for the self-dual Chern­
Simons solutions of the affine Toda form. 
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Abstract. Free fermion constructions of the superconformal and Kac-Moody algebras 
are discussed. Coset representations provide examples for the N = 1, c < ~ discrete 
series. They generalize the Kac-Todorov construction of the supercurrent which was valid 
for N = 1, c 2': ~' and differ by the terms mixing the SuperVirasoro and Kac-Moody 
algebras. They thus provide a guide for searching for new forms for the lower and upper 
components of the superfidds in one-to-one correspondence with the untwisted states in 
a twisted superconformal field theory, and may be useful in discussing the low energy 
phenomenology of superstring theory. 

1. Introduction 

Conformal, superconformal and extended superconformal algebras play a 
role in string theory. In this paper we investigate constructions of the super­
curren t generator F( z) of the two N = 1 world sheet sn persymmetric exten­
sions of the Virasoro algebra, i.e., the Rainond and Neveu-Schwarz sectors. 
The critical dimension of this system (determined by the absence of negative 
norm ghost states) is D = 10. Unitary representations of the N = 1 super­
conformal algebra with critical central charge c = 15 are constructed from 
the matter. superfields. The superconformal BRST ghost system provides a 
non-unitary representation of the N = 1 superVirasoro algebra (SVA) with 
c = -15. Although the representation is non-unitary, the SVA generators 
still satisfy the hermiticity conditions Lghostt = Lghost pghostt = Fghost. In 

n -n ' n -n 
addition, the superconformal ghost system also carries a representation of 
the extended N = 2 world sheet algebra.l11 

The matter superconformal fields of conformal weight one-half close to 
form a super Kac-Moody algebra (SKMA). The mixing between the SVA 
and the SKMA differs depending on the particular construction of the su­
percurrent. The N = 1 algebra is given by operator products where the right 
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hand side holds for Jzl > 1(1 up to terms regular as z-> (. 

i 2L( () d~~() 
L(z)L(() = (z - ()4 + (z - ()2 + (z - () 

~F(() mD_ 
L(z)F(() = (~ _ ()2 + (z ~ () 

~ 2L(() 
F(z)F(() = (z - ()3 + (z - () 

In component form we have 

c 3 
[Ln,Lm] = (n - m)Ln+m + 

12
(n - n)lin,-m 

n 
[Ln,Fm] = ( 2 - m)Fn+m 

c 2 1 
[Fn,Fm] = 2Ln+m + 3(n - 4)lin,-m 

The super Kac-Moody algebra is 

Ta(z)Tb(z) = kliab ifabcTc(() 
(z-() 2 + (z-() 

Ta(z)db(z) = i~a;c~~\() 

da(z)db(z) = (zli~b (). 

LOUISE DOLAN 

(1) 

(2) 

(3) 

Here fabcfabe = cl/Jlicei the level of the KMA is x = ~~ = ~~ h, where his the 
dual Coxeter number of the compact Lie algebra with structure constants 

fabc· 
Constructions of the matter supercurrent are given by the following. 
1 )The Kac-Todorov construction extends to a super Kac-Moody alge­

bra and has a mixing between the SVA and SKMA which reflects the fact 
that the SKMA generators are conformal weight one-half superfields. The 
Virasoro generators form a Sugawara construction and ~ ::::; c < 3

di2mg. 

2)The coset constructions have SVA generators which are seen to be a 
modification of the Kac-Todorov construction. This constructions also ex­
tends to a SKMA, but now the mixing between the SVA and the SKMA is 
different from the Kac-Todorov case. The central charge satisfies 0 ::::; c < 
di mg 

2 • 

3)Complex free fermions provide a construction similar to Kac-Todorov, 
but now the supercurrent can carry automorphisms of groups other than 
SU(2)6 in the presence of massless fermions. Here c = di;'g. 



-
FREE FE!Uv!ION CONSTRUCTIONS 241 

2. The Kac-Todorov construction 

This construction provides the general free real fermion representations of 
the internal space SVA and SKMA algebras with the following mixing char­
acteristic of a weight one-half superfield. 

a Ta(() dT:r) 

L(z)T (() = (z - ()2 + (z - () 

1 a() ~ 
L(z)da(() = 2d ( + _d(_ 

(z - ()2 (z - () 
a dda(<) 

F(z)Ta(() = Vk[ d (() + _d(_J 
(z-()2 (z-() 

F(z)da(() = _1 Ta(() . 
Jk(z-() 

A realization is given by 

l(z) = J__(~fa(z)fa(z)~) = ~: ddda(z) da(z): +~ 
C>jJ 2 Z l6z 

(4) 

(5) 

Here 1 ::; a ::; E. This representation has level x = ~~ h = h and c = di';g, 

i.e·. ~ ::; c. The most general realization is given by 

v 1 v 

L(z) = L(z) + 
2

kq + C>jJ (~qa(z)t(z)~) = L(z) + L~u9 (z) 

Ta(z) = fa(z) + qa(z) 

F(z) = (6) 

with level x = h + xq and c = dimg + xqdirr~g = 3dimg _ hdimg . ;i_ < v < 
2 xq+h 2 x .' i.e. 2 - c -

c < 3
di2m

9 . The abelian SKMA is 

1 dda(z) E l 
L(z) = 2: ~da(z): + l6z2 + 2kq (~q"(z)qa(z)~) 
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1 
F(z) = vfk'ida(z)qa(z), (7) 

Here faIJ fbIJ = 2kq Oab and c = !( dimda + dimbl) ~ ~. 

3. Coset construction 

We now modify the Kac-Todorov construction of the supercu:rent to be of 
the general form 

F(z) = AF(z) + Bda(z)qa(z). (8) 

It follows that 

L(z) = CL(z) + DL~u9 (z) + Efa(z)t(z) 

Ta(z) = fa(z) + qa(z). (9) 

Case 1: for E = 0, we regain the Kac-Todorov forms: a) minimal B = D = 
O,A = C = 1 and b) maximal B = };;A= Cs;· 

v f ykq+f 
Case 2: for E = -2h - · C = ~· D = __j____. where A= -xq · 

c.,(xq+2h)' xq+2h' xq+2h' J(xq+h)(xq+2h)' 

h{ii 
B = J > _ , the mixing between the SVA and SKMA is given by 

(xq+h)(xq+2h) 

L(z)Ta(() = 0 

L(z)da(() = 

,q ( ) dda(() h- . r b( ) zc( ) 
( X -)( da( +-d_(_)+( -2_ )iJabcq Zl Z 

= xq+2h 2(z-()2 (z-() (xq+2h)c,p (z-() 

F(z)Ta(() = 0 

F(z)da(()=-( l()[j {!i . Jl-x'T"(()+hq"(()]. (10) 
z- (xq+h)(xq+2h) 

This representation has level x = h + xq and c = dim2 g (1 - ( h~~2 h) ), 
xq+ :L"q+2 

i.e. 0 ~ c < di';' 9
• For g = SU(2) (so h = 2), we see this is just the discrete 

series for unitary representations of the N = 1 SVA (let xq = m ): 

3 8 7 3 
c=2(1 -(m+2)(m+4))=0,10' 1"'"2' (ll) 
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Case 2 is seen to be equivalent to the coset construction[3l, 

L(z) = L0 (z) - LH(z) = L(z) + L~u9 (z)-

(12) 

The coset here corresponds to G = SU(2) ® SU(2) and JI = SU(2). 

4. Complex fermions 

For complex fermions satisfying twisted boundary conditions r( e21ri z) 
e2triv r(z), Ja(eZtriz) = e-Ztriv Ja(z), the supercurrent construction general­
izes the Kac-Todorov expression to be given by 

(13) 

The space-time fermi fields satisfy the periodicity condition hf.L{ e2tri z) = 
5ahµ,( z) where Der = =f 1 for Ran NS fields respectively, so F( e2tri z) = OaF( z ). 
In a given sector, all the fermionic boundary conditions can be specified by 
a matrix wg: so ha(e2triz) = w't,hb(z) and 

(14) 

i.e. =i=w't, is an automorphism [<l] of the Lie algebra g with structure constants 
fabc used to define the supercurrent in a Ramond (Neveu-Schwarz) sector. 
The Virasoro generator is then given by 

L(z) = ! : df(z) f(z): +!: df(z) f(z): +-1-tr([;_log(-w)]2) (15) 
2 dz 2 dz 16z2 itr 

where we are ultimately interested in the automorphisms w of g for which 
the coboundary term f6tr([f,rlog(-w)]2) = d1i:;':ff, i.e. the automorphisms for 
which the coboundary term takes its minimum value on the Ramond sector. 
In D space-time dimensions, the mass operator is 

1 D-2 1 1 
m 2 = -- + -- + -tr([-:-log(-w)]2) 

2 16 16 i7r 
(16) 
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and the structure constants require dimg = 3(10 - D). So for massless 
space-time fermions, m2 = 0, the coboundary term realizes its minimum 
value, and in D = 4, the dimension of g is 18, where g is the algebra of the 
structure constants occuring in the supercurrent {13). This mass formula is 
to be contrasted with that of the Kac-Todorov construction where massless 
fermions require 

1 D-2 
m2 = - - + -- + dim da = 0 

2 16 , (n) 

so for D = 4, g is U(l )6 , which is the gauge group of the states in string mod­
els using the Kac-Todorov supercurrent construction necessary for sectors 
with massless Ramond states. 

In order to examine which gauge groups occur as the relevant internal 
gauge symmetry of the spectrum of states for the complex fermion form of 
the supercurrent given in (13), we investigate the SKMA (which mixes as a 
weight one-half superfield) with this representation of the internal superVi­
rasoro algebra, c = 9. The modified Cartan Weyl basis for the SKMA diago­
nalizes inner automorphisms. The fermions in this basis are h;(z), h°'(z), 
for 1 :::; i :::; rank(g) and a E roots(g), thus hi are real (R, NS) and 
h°'* = h-o: are complex. The SKMA generators now form a twisted SKMA 
where Jii ( e2Jri z) = Jii ( z) and the step operators E°' ( z) = e2 iricx->. E°'( e- 2Jri z). 
So for inner automorphisms, the zero mode subalgebra which is the gauge 
symmetry of the spectrum is U(lyank(g). For outer automorphisms, one can 
check for the relevant groups S'U(3), SU( 4) and 50(.S) that the zero mode 
subalgebra is again a product of U(l) factors. 

5. Non-free fermion representations of the supercurrent 

Not all known representations of the superconformal algebra can be ex­
pressed as free fermion constructions. In particular, the Waterson bosonl5,6l 
provides a representation for N = 2, c = 1. The N = 1 subalgebra is gener­
ated by 

1 
L(z) = 2' : a(z) · a(z) : 

F(z) = ~(: eiv'3X(z) : +: e-iv'3X(z) :). (18) 

6. BRST superconformal ghost system 

Non-unitary representations of the superVirasoro algebra are provided by 
the BRST superconformal ghost systeml1•7l, The ghost superfields are B(z) = 
/3(z) + Bb(z) and C(z) = c(z) + B1(z) with conformal spin hp= ~'he= -1, 
etc. The commutation relations on the Ramond sector are {bn,cm} = Dn,-m, 
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[(J ,.., J = -6n -m· The superVirasoro representation has c = -15, but the 
n' ,m . ' . . . t t 

generators still satisfy the herm1t1an property Fn = F_n and Ln = L_n: 

dc(z) db(z) 3 d1(z) 
L(z) = -2: b(z)-~: - : ~c(z): -2: (J(z)~: -

-~: d(J(z) i(z): __ 1 
2 dz 2z2 

dc(z) d(J(z) 
F(z) =: b(z)J(z): -3: (J(z)~: -2: ~c(z): 

An alternative form for the supercurrent is given by Schwarz[8l: 

3 dc(z) d(J(z) 
F(z) = -2: b(z)J(z): +-: (J(z)-d-: +: -d-c(z): 

2 z z 

The ghost number current forms an abelian SKMA: 

1 
T(z) = - : b(z)c(z): - : (J(z)J(z): + 

2
z 

(19) 

(20) 

(21) 

The supercur
0

rent in (19) can be identified as F+ + F- and can be used to 
construct a second h = ~ supercurrent -F+ + F- as the upper comr.-onent 
of the superfield whose lower component is 

H(z) = 2: b(z)c(z): +3: (J(z)J(z): (22) 

We find 

dc(z) d(J(z) 
-F+(z) + F-(z) =: b(z)J(z): +3: (J(z)~: +2: ~c(z): (23) 

The set L, G+, a-, H form an N = 2 superconformal algebra with c = -15. 
We include here for completeness, the unitarity restrictions on the cen­

tral for the N = 0, 1, 2 superVirasoro algebras[9•10l. For N = 0, unitary 
representations occur for all values of c ?:: 1, h ?:: 0 and for discrete values 
below 1 given by c = 1 - (m+2){m+3) = 0, t, fa, t> ... , 1. The critical value 
of the ·central charge is c = 26. The N = 1 system provides representations 
of two supersymmetric extensions of the Virasoro algebra, i.e. the Ramond 
and the Neveu-Schwarz. The critical dimension is D = 10. The only possible 
unitary highest weight representations, i.e. representations generated from 
a state !h), satisfy Lnlh) = 0,n?:: O; Lolh) = hlh);Fnlh) = O,n?:: O; are 
characterized by (c,h) where either c ~ ~' h ~ O; or for the discrete values 

0 Sc< ~given by c = ~(1- (m+2Um+4)] = 0, fa, l, ... , ~·The critical value 
of the central charge is c = 15. For N = 2, the critical dimen_sion is D = 2 
complex or D = 4 real. Unitary representations occur for all values of c?:: 3 
and for discrete values below 3 given by c = ;~2 = 0, 1, ... , 3. The critical 
central charge is c = 6. 
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Abstract. Geometro-stochastically quantized fields are introduced as sections on a first 
quantized Hilbert bundle, 11., over Riemann-Cartan spa.Ce-time with axial vector torsion 
representing quantized elementary matter in a gauge theory based on the (4, 1)-de Sitter 
group. 1i is a soldered bundle with built-in fundamental length parameter R typical for 
hadron physics carrying a spin zero phase space representation of G = SO( 4, 1) belonging 
to the principal series of unitary irreducible representations. In a nonlinear realization of 
G the Lorentz subgroup may be related to a gauge formulation of gravitation. Bilinear 
currents are introduced through G-invariant integration over the local fibers in 1i, and 
covariant field equations are set up for the quantum fiber dynamics (QFD) describing the 
coupling of quantized material sources to the underlying bundle geometry in the presence 
of gravitation. 

1. Introduction 

It is well known that Einstein's metric theory of gravitation may be for­
mulated as a Lorentz gauge theory by reducing the original linear frame 
bundle P' ( B, G' = G L( 4, R)) over the space-time base B, in the presence of 
a pseudo-Riemannian metric gµ 11 (x) with Lorentz signature, to the Lorentz 
frame bundle PL(B,H = S0(3, 1)) over B = Vi. Also the connection on 
P' reduces to a connection on PL provided gµ 11 (x) is covariant constant, i.e. 
satisfies Vpgµ 11 (x) = 0, which just defines the Levi-Civita connection de-

noted by f'~11 = { :
11 
}. [Purely metric quantities will be denoted by a bar 

in the following]. The metric gµ 11 (x) may thus be regarded as a parallel sec­
tion on a bundle over space-time with ten-dimensional homogeneous fiber 
G'/H = GL(4,R)/ S0(3, 1). 

The pull back of a connection on PL with respect to a local section defin­
ing a gauge will be called w( x) which is a Lorentz Lie algebra-valued matrix 
of one-forms, w;5(x) = -Wj;(x); i,j = 0,1,2,3 ,x E Vi, with Wij(x) = 
Bkf'kij(x), where Bk= -X!(x)dxµ are the fundamental one-forms on the base 
V4 of PL [providing an orthonormal basis for the dual tangent space T;(Vi) 
at x], and f'kij(x) are the Ricci rotation coefficients. A local orthonormal 
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basis of the tangent space Tx(V4 ) at x, which is provided by a local section 
on PL, will be denoted bye;; i = 0,1,2,3; withe;= >.f(x)8µ, where >.f(x) 
are the vierbfn fields and >.~( x) their inverse, obeying 

gµv(x) = >.~(x)>.~(x)'llik. (1.1) 

1lik = diag(l,-1,-1,-1) is the Minkowski metric, and local Lorentzian 
indices will be written with Latin letters (i,k,j .. . ), while Greek indices 
(µ, v, p ... ) refer to a natural ha.sis Oµ in Tx(Vi) and dxµ in T;(Vi), respec­
tively. (For repeated covariant and contravariant Greek and Latin indices 
the summation convention applies. Greek indices are lowered with gµv(x) 
and raised with its inverse gµv(x); Latin indices a:re raised and lowered with 
'llik and 'lliki respectively.] 

The problem of the theoretical description of atomic, nuclear or subnu­
clear particles in the presence of gravitational fields raises the question of 
how to extend classical general relativity - relating the geometry of space­
time to the distribution of energy and momentum of classical macroscopic 
matter - to the domain of quantum physics obeying the laws of quantum 
mechanics for the description of matter at the atomic and "elementary" 
particle level and requiring a treatment in terms of wave function~ and field 
operators. We are aiming here at a unified geometric formulation of gravita­
tional and subnuclear hadronic forces ir, the presence of classical as well as 
quantized material sources. (The electroweak interaction will, for simplicity, 
be disregarded in the following discussion. It may be included by enlarging 
the principal bundles introduced below by an additional U(l)@SU(2) fiber.] 

Although gravitational effects are negligibly small in particle physics the 
structure of Einstein's metric theory of gravitation is so unique in its dualism 
between the metric of the ambient space and the distribution of matter 
therein that it may legitimately be asked whether a similar dualism may also 
be invoked for the theoretical description of interections in the subnuclear 
world, i.e. being relevant for hadrons at distances of the order of a Fermi 
or below ("' 10-13 - 10-15 cm). With this aim in mind we shall investigate 
here a model based on a higher dimensional bundle raised over space-time 
characterized by a structural group G which is bigger than the Lorentz group 
but, in fact, contains the Lorentz group H = S0(3, 1) as_ a closed subgroup 
with S0(3, 1) = 0(3, 1 )++ (proper isochronous Lorentz group) being related 
to a gauge formulation of gravitation [1]. However, there will appear further 
contributions at the level of the connection w( x) on PL introduced above 
when one considers the induced Lorentz gauge degrees of freedom appearing 
in this enlarged bundle formalism; i.e. there may appear torsion or Weyl 
degrees of freedom related to the additional motions present or possible in 
the internal spaces [the local fibers] on which the group G acts and which 
may come into play at small (subnuclear) distances in the space-time base. 
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We shall base the following discussion on the ( 4,1)-de Sitter group, G = 
SO( 4, 1), as the bigger gauge or structural group containing the Lorentz 
group as a gauged subgroup, and introduce the de Sitter frame bundle, 
P(B = U4, G = S0(4, 1)), over a Riemann-Cartan space-time U4 as a geo­
metric arena for the unification of general relativity describing classical 
(macrophysical) gravitation, and strong subnuclear interactions modifying 
Einstein's theory at small distances due to the presence of quantized elemen­
tary (microphysical) sources. We shall disregard Weyl degrees of freedom in 
the following and shall specialize later to axial vector torsion (i.e. to a com­
pletely antisymmetric torsion tensor). Compare Ref. [2] for a Weyl rescaling 
of the metric in the fiber in the de Sitter gauge theory. It will be seen in 
this context that Einstein's metric of general relativity remains a classical 
field describing macroscopic gravitation despite the presence of quantized 
elementary sources in the geometry. Gravitation need thus not be quantized 
in this unified theory. 

Nonlinear field equations for the additional nonmetric geometric fields 
are set up establishing a further feed back mechanism between matter (i.e. 
elementary hadronic matter described in a quantum mechanical manner) 
and the underlying bundle geometry raised over space-time. These addi­
tional source equations have the consequence that despite the presence of 
quantized matter - represented in the form of generalized wave functions 
(sections on a Hilbert bundle H) transforming under an irreducible phase 
space representation of S0(4, 1) - which induce in the bundle geometry 
the additional geometric fields through certain bilinear currents, the metric 
continues to play a classical role as the potential for a classical part of the 
connection on P( U4 , SO( 4, 1)) [more exactly, its Lorentz part in the so-called 
nonlinear gauge (see below)]. For details see Ref. [3]. After introducing in the 
next section the Hilbert bundle']-{ over space-time and discussing the gener­
alized wave functions representing quantized spinless matter in the theory, 
we investigate various generalized gauge currents as source currents for the 
geometry and discuss, finally, two sets of covariant nonlinear field equations 
(current-curvature and Einstein-type equations) for a gauge dynamics on 1l 
which we call quantum fiber dynamics (QFD). 

2. Representation of Quantized Matter 

In order to describe quantized elementary matter in the presence of gravita­
tional fields generated by distant macroscopic classical masses one introduces 
a Hilbert bundle 1l over a Riemann-Cartan space-time U4 carrying a system 
of covariance of the ( 4,1 )-de Sitter group [4]. ']-{is a "first quantized" bundle 
(in the terminology used in [4]), which is associated to P(U4 , G = S0(4, 1)), 

possessing a standard fiber, ']-{¥), being a resolution kernel Hilbert space 
with resolution generator ij and generalized coherent state basis. The bun-
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dle 1{. carries a spin zero phase space representation of SO( 4, 1) belonging to 
the principal series of UIR's (unitary irreducible representation) determined 

by the parameter p. The quantum bundle 1i with local fiber 1{.~) ( x) pro­
vides a geometric arena for the propagation of the de Sitter quantum fields 
'J~)(!,(), as described below. Moreover, 1{. possesses a built-in fundamental 
length parameter R of geometric origin chosen, as mentioned, to be of the 
order of 10-13 cm typical for hadron physics [4,1]. We cap wi">(e, ()a gener­
alized quantum mechanical wave function of de Sitter type which is square­
integrable, for any x E U4, with respect to a G-invariant measure dt(e,() 
[see below] in the local de Sitter phase space variables ( e, () E t~ c N!, 
where 

N± = V4 xc± 

with [17ab = diag(l, -1, -1, -1, -1 )] : 

(2.1) 

(2.2) 

The summations in (2.2) run over a, b = 0, 1, 2, 3, 5. Here N± denotes the 
de Sitter phase space: v4 ~ G/H = S0(4,1)/S0(3,1) is (4,1)-de Sitter 
space [a single-shell hyperboloid of radius R in a Lorentzian embedding 
space R4,1], and c± is the intersection of the light cone in R4,1 with the 
surface ( 5 = fi. The superscript of c± stands for sign(0 =- ± with the 
vector (a= ((i,(5 = fi);i = 0,1,2,3, characterizing a so~called horosphere 
or horocycle [5] through the origin C = (0,0,0,0,-R) of V,t. ( E c± plays 
the role of the wave vector or momentum variable for a wave phenomenon 
in de Sitter space (a space of constant curvature with curvature radius R). 
i;± = H x c± denotes a six-dimensional horospherical submanifold of N± 
composed of a horosphere H (a space-like hypersurface) in V4 and the cone 
c±. 

For later use we, furthermore, introduce the de Sitter phase space bundle 
over space-time U4, 

- - - I ± E = E(U4,F = V4 x C ,G = S0(4, 1)) (2.3) 

which is a soldered bundle associated to P. [The soldering is performed here 
through the local subspace V4(x) of N! being tangent to the space-time 
base U4 for each x [6,7].] Moreover, we introduce the de Sitter bundle over 
U4, 

E = E(U4, F = V4 ~ G/H,G = S0(4,1)) (2.4) 
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which is a soldered bundle associated to P with "cdrled up" four-dimensional 
fiber of definite (fixed) radius R which is isomorphic to the noncompact coset 
space G/H = S0(4,1)/S0(3,1) [7). 

We now construct a phase space representation of the de Sitter group for 
spinless particles, denoted by U(A9 ) = ij(P)(A9 ); A9 E S0(4, 1), which is 
related to the spin zero UIR of SO( 4, 1) of the principal series characterized 
by the parameter p, 0 ~ p < oo. The value of p determines the mass of the 
particle in question. [The eigenvalue of the Laplace-Beltrami operator, De, 
on vi has eigenvalues K{K + 3)/ R2 with K = -~ + ip; 0 ~ p < oo, leading 
to the following relation between p, the radius R of de Sitter space and the 
mass m of the particle: ['hcJ2 R2 = p2 + ~ (compare Ref. [8]).) 

1i~) is the Hilbert space L2(f:±) of square-integrable functions in the 

variables ( e, () E f:± C .N± with respect to the G-invariant measure [4] 

- 1 1 4 
dE(e,() = R2 [e,(]2 h(i[e,(JI- c)dµ(e)h([(,(J)d (, (2.5) 

where dµ(e) = ~de0de1de2de3 is the invariant measure on Vi· 
di;(A9e,A9 () = dE(e,(). In (2.5) c is a positive constant determining a 
particular horosphere H( in vi characterized by ( being parallel to a horo­
sphere Hl through the origin e0 characterized by the same vector (. One 

can construct a coherent state basis of 1i~) in terms4Jf horospherical waves 
(8,4) (which are analogous to plane waves in flat space) from S0(3)-invariant 
resolution generators ij( (') yielding a parametrization of the basis of 1ilf) in 

terms of the coset space SO( 4, 1)/ S0(3). 1i~) is a single-particle resolution 

kernel Hilbert space with decomposition 1i~) = Ji+ $1i-, where the su­
perscripts + and - stand for the sign of ( 0 with Ji+ and 1i- denoting the 
one-particle and one-antiparticle Hilbert spaces, respectively. For the discus­
sion of second quantized Hilbert bundles with Fock space fibers constructed 
in terms of tensor products of the spaces Ji+ and 1i- compare [4) and also 
the recent book by Prugovecki [9) Here we shall confine the discussion to 
the spaces Ji± and the resulting first quantized Hilbert bundle. 

Having introduced the Hilbert space 1i~) we now consider as the geo­
metric arena for the description of spinless quantized matter the following 
soldered (first quantized) Hilbert bundle over Riemann-Cartan space-time 
with standard fiber 1iif) and structural group provided by the unitary irre­

ducible phase space representation U(A9 ) : 

(2.6) 

1i is associated to P( U4 , SO( 4, 1)) and carries a system of covariance of 
the ( 4, 1)-de Sitter group. The variables (e, () in each local fiber .N! of E 
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play the role of local geometro-stochastic variables on 1i determining the 
quantum-kinematical localization properties of spinless quantum particles 
(possessing internal de Sitter gauge degrees of freedom) on curved space­
time [4]. Denoting now the generalized coherent state basis in the local fibers 
1l~) ( x) of 1i which is adapted to a particular choice of gauge a = u( x) on P 

by CJ ~~x), where x E U4 and ( e, () E t;, one obtains the following resolution 
of umty at x E U4 : 

(2.7) 

Here dt(e, () is the measure (2.5) on the local (horospherical) hypersur­
face t; in N!. Any state vector wi1'>± belonging to the principal series of 
UIR's of SO( 4, 1) with zero spin r"uay be expanded with respect to the local 

quantum frame basis, C)~~x) according to: 

(2.8) 

The coefficient wi1'>(e,() in the expansion (2.8) is the scalar de Sitter coor­
dinate wave function, called for short the genemlized wave function, which 
may be regarded as a section on the first quantized bundle 1i and represents 
first quantized matter in the theory. 

One can adopt a convenient bracket notation for the G-invariant integra­
tion with measure (2.5) over the local hypersurface t;= and solve (2.8) for 

q;~) ( e' () yielding 

q;(P)(c () - (CJu(x) I 'lll(p)±}-± 
x <,,' - e,( x E,, · (2.9) 

wi1'l(e,() has the following transformation property under gauge transfor­
mations (i.e. changes of section on 1i)[4]: 

(U(A )iJ!(P))(c () = q;(P)(A-1 c A-1 () . g x '>• x g(x)'>• g(x) (2.10) 

A G-invariant scalar product of two sections iJ!l~~( e, () and wr,~(e, () is de­
fined by 

(2.11) 

The covariant derivative of a section w¥'l(e,() on 1l is given by 
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(2.12) 

where [wR(x )]ab = -[wR(x )]ba is the pull back of a connection on P, and Mab 
denote the generators of the spin zero phase space representation U(A9 ) of 
SO( 4, 1) given by 

(2.13) 

with 

(2.14) 

Local de Sitter indices a,b,c,. .. running over 0,1,2,3,5 are raised and 
lowered with the de Sitter metric T/ab and T/ab, respectively. 

We, finally, introduce the kernel for the propagation from ( ~, () to ( (, (') 
in the local fiber over x E U4 in 1-{ which is determined by the following 
overlap of the coherent state basis ~~~x) at x: 

K- (p)('' 1 1 c 1') (,..._u(x) I ,..._u(x)) 
r;,x .,, ,.,, ;.,,,.., = ~e'.(' ~e.< t:· (2.15) 

Eq. (2.15) defines a reproducing kernel in rt¥)(x) with the reproducing 
property following from (2.7), i.e. 

k~~2((,(';~,() = j k~~2((,(';(',(")k~~2((',('',~,()dt(C,(''). (2.16) 
-± I:,, 

The kernel k~~2 ( (, ('; ~, () determines the propagation of the generalized 

wave functions ilf~) ( ~, () in the local fiber variables. For the discussion of 
the (strongly and weakly) causal geometro-stochastic propagation on the 
bundle 1-{ we refer to Refs. [4] and [9]. 

We, moreover, require that the generalized wave function ilf~)(~, () satis­
fies a de Sitter gauge covariant and U4-covariant second order wave equation 
on rt with real eigenvalue a. Specializing to axial vector torsion in the U4 
base this equation may be written, with n: = Op +if:( x ), as [1] 

where g = det gµv(x), and a is a constant of dimension L-2 (L=length) 
characterizing the wave motion on rt. 

Using the operators D~ = >.~(x)D~ with DR= Ok Df as defined in (2.12) 
and the generators Mab of the phase space representation U(A9 ) of 50(4, 1) 
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one can construct, by G-invariant integration over the local fiber variables, 
the following set of hermitean gauge covariant currents, antisymmetric in 
a, b, and bilinear in the matter fields ill~) ( e' () and their adjoints for a fixed 
value of p: 

(p) _ ±_ J (p) * ~ -+R .... R '":: (p) _ 
Jkab(x)-

2 
lllx (e,() [MabDk - DkMabl\llx (e,()dE(e,(), (2.18) 

- :!:: E., 

with 
_,.R -+ -+R .... R +-- .... R 
Dk=fh+irk (x); Dk =fh -i fk (x), (2.19) 

-+ t 
and analogously for Mab and Mab= Mab . As a result of (2.17) the currents 
(2.18) are covariantly conserved. The equations (2.18), (2.12) and (2.13), 
(2.14) show that the currents Jk~~(x) result from an averaged internal motion 
taking place in the local fibers on}{, For a, b = i,j it is an internal rotational 
motion (Lorentz rotation); for a, b = i, 5 it is a generalized translation (de 
Sitter boost) in the fiber. It is thus apparent that our formalism describes 
quantized material objects possessing internal gauge degrees of freedom and 
extension. We shall use the currents (2.18) as source currents for the bundle 
geometry tying thereby the quantized motion in the fiber to the geometry 
of the entire space. 

3. Nonlinear gauge and field equations 

In order to recover gravitation in a G-invariant manner as a gauge theory 
of the Lorentz subgroup H = S0(3, 1) of G =SO( 4, 1) we introduce a new 
Higgs-type field in the formalism given as a section, e( x ), of the soldered 
bundle E defined in (2.4) obeying ea(x)eb(x)17ab = -R2 [compare (2.2)]. 
Global sections on E always exist. The "zero section", e( x) = (°, may be 
identified with the space-time base of E. The field e(x) acts as a symmetry 
reducing field in the bundle framework: If e( x) is pamllel with respect to 
wR( x), i.e. satisfies 

(3.1) 

the S0(4,1) gauge symmetry reduces to the S0(3,1) gauge symmetry de­
scribing pure (metric) gravitation. We assume that the full de Sitter gauge 
symmetry does not reduce everywhere to the Lprentz subsymmefry, but that 
this reduction of symmetry indeed occurs far outside the quantized material 
sources present in the geometry. There are, however, regions in space-time, 
denoted by D(i)i i = 1, ... N, where the G-symmetry does not reduce, i.e. 
where nRea(x) .,, 0. In these regions WR (or wR, see (3.2) below) takes 
values in the Lie algebra g of S0(4, 1) while for regions where (3.1) is true 
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wR (or WR) reduces to a set of one-forms with values in the Lie algebra g' of 
the subgroup S0(3, 1). In general g may be decomposed as g=g'EBt, where 
t is a vector space generating the homogeneous space G / H isomorphic to 

VJ. 
One may now consider de Sitter boost transformations, A(~(x)) E 

S0(4,1), transforming the origin ~0 in VJ into ~(x) at x E U4 and use 
these transformations to go over to a nonlinear realization of the de Sitter 
transformations in terms of Lorentz transformations in ~0 yielding for wR 
the following form: 

and (3.4) 

We call the form WR(x,~(x)) in (3.2) the nonlinearly transforming form of 
the connection on P (the nonlinear gauge denoted by N .L. ). It transforms 
under gauge transformations, e(x) = A9(x)~(x), with a matrix 
A(A(~'(x),~(x))) E H leaving the form of the r.-h. side of (3.2) unchanged 
(for details see (1] and (3]). The first term on the r.-h. side of (3.3) is the 
metric part defining a connection on PL. However, the Lorentz part (3.3) 
of (3.2) has a torsion addition denoted by rR(x,~(x)). (3.4) defining the 
soldering forms [BR(x,~(x))Ji of the de Sitter connection shows explicitly 
that (3.2) is Lorentz valued for DR~(x) = 0, i.e. outside the domains D(i) 

where the G-gauge symmetry reduces to the H-gauge symmetry. A form 
analogous to (3.2) is obtained for the c.urvature two-forms [f!R(x,~(x))]ab in 
the N .L. gauge. 

As field equations for the bundle geometry we now introduce, besides 
(2.17) for w¥'> ( ~, (), the following two sets of de Sitter gauge covariant and 
U4-covariant nonlinear source equations 

R 1 R N.L. 
R;k(x,~(x)) = 2T/ikR (x,~(x)) = "- T;k (x,~(x)), (3.5) 

N.L. NL i R - .. 
D Rijab(x,~(x)) = "- Jjab (x,~(x)). (3.6) 

A further equation for the reducing section ~( x) is introduced and dis­
cussed in (1]. Here"' and K, are two independent coupling constants;"' is Ein­
stein's gravitational constant, and K, is a new coupling constant characteriz­
ing the quantum fiber dynamics (QFD), i.e. the dynamical relation between 
quantized matter described on 1i and the full uncontracted bundle curvature 
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N.L. 
tensor. The operator Di in (3.6) denotes the full covariant derivative of the 
Lorentz and de Sitter indices (the latter taken with respect to the N .L. form, 
WR(x, e(x )), of the connection]. The r.-h. side of (3.6) is the current (2.18) 
tranformed to N .L. form with the help of A-1 ( e( x) ). R~ab( x, e( x)) is the full 
curvature tensor with the Lorentz part (for a, b = k, l composed of metric, 
torsion, and quadratic de Sitter boost contributions (see [1]), and with the 
de Sitter boost part (for a, b = i, 5). Eqs. (3.5) are of Einstein type involv­
ing the contracted Lorentz curvature tensor, R{k(x, e(x)) = rf1 R~k1 (x, e(x )), 
and the corresponding curvature scalar RR( x, e( x)) again composed of three 
parts (metric, torsion and boost). On the r.-h. side of (3.5) appears the total 
energy-momentum tensor decomposing into the classical symmetric part, 
T;k(x), of general relativity representing classical matter, and a quantum 

part induced by w¥'>(e,() possessing no symmetry in the indices, i,k : 

N.L. _ N.L. 
T;k (x,e(x)) = T;k(x)+ T;k (ili). (3.7) 

A detailed investigation of (3.5) and (3.6) is presented in [1] and [3], in the 
latter reference with particular emphasis of the role played by the metric of 
Einstein's theory in this context. It is shown there that the g1 ... ,-field of clas­
sical genera] relativity survives unchanged in this theory in the presence of 
quantized matter which, on the other hand, determines the additional fields 
characterizing the bundle geometry: axial vector torsion in the base and 
de Sitter boost contributions related to the soldering forms of the SO( 4, 1) 
connection in P. 

The role of axial torsion outside the region D(i) and outside the sources 
may be studied solving the vacuum torsion equation contained in (3.6). It 
reads when one neglects classical gravitational forces, i.e. for a metrically 
flat space-time base, 

(3.8) 

where* pR = -6[Ji• Kf, and the axial vector torsion field, * K~, is given by 
(compare (3.3)] 

*KR=_!£ kiiKR.·(x t(x)). • 6 • k13 '\, , r;J(x,e(x)) = e'< Kf;i(x,e(x)). (3.9) 

Despite serious efforts no truely nonlinear solution of the equations (3.8) 
has yet been found except the trivial solution * K~ = k8 exp( ±ik · x) with 
k.k• = k · k = 0, for which each term on the 1.-h. side of (3.8) is separately 
zero. 
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Abstract. We investigate the Dirac bracket algebra of the scalar pregeometry including 
topological pregeometry with BRST formalism, as the first step to its quantization. We 
derive the precise expression for induced gravity, and discuss how the gravity is induced 
from the topological theory. 

1. Introduction 

The quantum theory and the relativity are two of the greatest successes of 
physics in this century. The problem is, however, that we have no realistic 
quantum theory of general relativity. Tremendous efforts have been devoted 
to this subjects, canonical quantization approaches, superstring theories, 
searches for fundamental clues in lower dimensional systems, etc. Faced with 
a so difficult problem, we may come to the question "Is the general relativ­
ity really fundamental?" "Should it really be quantized as the fundamental 
object?" In fact, there exist theoretical schemes, called "pregeometry" by 
Wheeler, where Einstein's general relativity is not fundamental but is in­
duced from more fundamental ingredients [l]. In Sakharov's idea, the Ein­
stein gravity is induced through quantum fluctuations of the matters. The 
metric is a composite of the fundamental matter fields, and the quantum 
properties of gravitation are secondary effects due to those of the funda­
mental matters, just like the quantum properties of the hadrons stem from 
those of the quarks. Then we have first to establish the quantized theory of 
pregeometric matters rather than the gravity itself. In this talk, we would 
like to make a first step towards the quantization by applying the BRST 
formalism to the scalar pregeometry [2]. 
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2. Scalar pregeometry 

The fundamental action for pregeometry should be invariant under diffeo­
morphisms, and be written without metric, but with the matter·fields only. 
If the matters are the scalar fields, the fundamental action is given by the 
Nambu-Goto type one [3], 

(1) 

where ¢l is the fundamental scalar field, F(</>) is a function of ¢>1 , and 
17u=diag(l,-l,-l,. · ·,-1). In (1), µ,v=0,1,. · ·,D-1,D, and I,J=0,1,. · ·N -1, 
where Dis the number of the spacetime dimensions, and N i's the number 
of the field </>. Now we briefly review how the Einstein gravity is induced in 
this system. The Lagrangian L<f> is equivalent to the following Lagrangian 
with the auxiliary field 9µ11: 

(2) 

where 9µ 11 plays the role of the metric, 9 = det9µ 11 , and G(</>) = (D/2 -
1 )( F( ¢> ))-2/(D- 2). They are equivalent because their equations of motion as 
well as their commutator algebras of the fields coincide with those of each 
other. The quantum effects of this L<f>g give rise to this effective Lagrangian 
of Einstein gravity, 

(3) 

where R is the scalar curvature, and A· and GN1 are divergent coefficients, 
which plays the roles of the cosmological and the Newtonian constants, re­
spectively. We introduce a momentum cutoff which we take as realistic one 
connected with the fundamental scale. Thus the Einstein gravity is induced 
with a composite metric. 

3. BRST .Formalism 

We should quantize the pregeometric matter Lagrangian L<f> or L<f>g rather 
than the Lagrangian LR for the Einstein gravity. 

(4) 

The action S<f>g = f L<f>gdDx is invariant under diffeomorphisms 

{j ,1J = .,.A!'.),,1,f, {j !'.) ,\ + £:. ,\ + ,\£:. 
'f' c:. u,,..'f' 9µ11 = 9µ,\U11€ 911,\UµE € U,\9µ11· (5) 
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where £,\ is an arbitrary infinitesimal function of xµ. 
Our strategy of quantization is as follows. 1) we fix the gauge by adding 

the gauge fixing term, 2) add the Faddeev-Popov ghost term to make the 
action invariant under BRST transformations, 3) exhaust the constraints of 
the system, 4) work out their Poisson-bracket algebra, 5) d~fine the Dirac 
bracket, and assign the commutators. 

We fix the gauge by the de Donder condition: 

(6) 

where bv is an auxiliary field. The BRST transformations of </>1 and 9µv are 
given by replacing£,\ in (5) by the Faddeev-Popov ghost c,\: 

(7) 

To make the total action invariant under the BRST transformation, we add 
to the Lagrangian the Faddeev-Popov term 

r · r-;: µv !) - !) ,\ 
..... FP = iv -gg VµC,\VvC ' 

and define the BRST transformations for cµ, Cµ and bµ by 

cacµ = c,\8,\Cµ' CBCµ = ibµ + c,\8,\Cµ, cabµ = c,\8,\bµ­

The BRST transformations ca are nilpotent. 

4. Constraints 

Now the system is described by the Lagrangian (with gµv = ..;=ggµv) 

c = C</>g + £GF + CFP 

(8) 

(9) 

= -~9µ"8µ</>. 8v</>- FuG + 8µgµvbv + igµ"8µc,\8vc". (10) 

The canonical conjugate variables of </>J, cv, cv, and gµ", are, respectively, 

11"' - -g':::0µ8 A..J 11c - ig';:;(Jµ!) c 11" - -i':::Og µ!) c" J - µ'f' 1 v - Vµ V> c - Vµ I 

1rt = O, Pmn = O, Poo = bo, Pam = bm/2. (11) 

where µ,11··· = 0,1~···,D-1, and m,n,··· = l,···,D-1. Among them, 
the first three are solved for the time derivatives, 8o</>1, OoCµ, and 8ocl-', while 
the last four give the constraints 

1!'t ~ O, Pmn ~ 0, Xo = Poo - bo ~ 0, Xm =Pam - bm/2 ~ 0. {12) 

The only non-vanishing Poisson bracket among the constraints is 

(13) 
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At this stage, 7rt, and Xµ belong to the second class, while Pmn belongs to 
the first class. 

The Hamiltonian density reads 

1i = 

(14) 

which governs the time evolution of the physical quantities. For consistency, 
the constraints should remain vanishing during the time evolution. As for 
the second class constraints, we can make them so by adding appropriate 
constraints to the Hamiltonian. On the other hand, the condition that the 
first class constraint Pmn remain vanishing implies the secondary constraint 

<Pmn := D;; 
2 (-~8m</> · 8n</>- 8(mbn) + i8(mC>.8n)C>.) - 9mn ~ 0. (15) 

At this stage, the constraints are Xµi 7rt, <Pmn, and Pmn· Though the Poisson 
bracket algebra of them are complicated, it is diagonalized by introducing 
X1-1 and ?rt defined by 

XO = XO + PmnYmn goo, 

where 

""""1\c nkl - /-;: ("""'(k-l)n .,,,.,..n-kl) - y-g g g - g g , 

The only non-vanishing Poisson brackets among them are 

[Xµ(x),f?b(y)]P ~ t5~t5(x -y), 
[ 1h1(x),Pmn(Y)]P = C1<1mnt5(x - y), 

where 

CJdmn = )=g (9k(m9n)l - D ~ 29kl9mn) • 

(16) 

(17) 

(18) 
(19) 

(20) 

Now all the constraints belong to the second class, and can be kept vanishing 
during the time evolution. Then, it is convenient to define the Dirac bracket 
for arbitrary fields A( x) and B( x) by 

[A(x),B(y)]D = [A(x),B(y)]P 

- j ( [A(x),??t(z)]P[xµ(z),B(y)]P 
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-[A(x ), Xµ(z)]p[?i'f(z), B(y)]P 
+[A(x ),Pk1(z)]pCklmn(z)[<Pmn(z ), B(y)]p 

-[A(x ), <Pk1(z)]pCklmn(z)[Pmn(z), B(y)]P) dz (21) 

which vanishes if A( x) or B( x) is a constraint. 

5. Quantization 

We assign the equal-time (anti- )commutators in terms of the Dirac bracket 
as 

[A(x),B(y)] or {A(x),B(y)} = i[A(x),B(y)]o. (22) 

Then we obtain for <ti, cµ, C:µ, 'ifµ, and the conjugates 7rf, 7r~, 7r~, bµ(= Poo 
or= 2fiom) 

and -gmn depend on <f/, cµ, C:µ, bµ through the constraint <Pmn ~ O, and obey 

[gkl(x),7rf(y)] = iCklmn(x) 

( 
1 oG ) x Om<f>I(x)onc(x-y)+ D- 2Ymn

0
<P1 c(x-y) , 

[gk1(x ), 7r~(y)] = <]klmn(x )omcµ(x )onc(x - y), 
[gk1(x), 7r~(y)] = -Cklmn(x)omcµ(x)onc(x - y), 
[gkl(x),Poµ(y)] = -9k1Yoµc(x-y), 
[gkl(x),'§°m(y)] = _<]klmn(x)onC(:lf. -y), (24) 

with <]klmn = (D- 2)Cklmn /G. The BRST charge is given by Qa = J Jgdx 
with 

Jg= c0
( - 2~(7ref> +'§°mom¢)· (7ref> + gonon<P) 

+~ (7ri - i'§°mom'C>.)(7rf + igononc>.) 

+~gmnom<P ·On</> - FYG - igmnomCpOncP) 

+en ( 7rq, ·On</>+ 1f'~OnCµ. + 1f'~OnCµ) 
+bµ (-i'Tf'~ +On( en'§°µ - c0gnµ)). (25) 
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6. Quantum transition amplitude 

The transition amplitude from the state W; to ip f is given by 

T1; = j v4/1J-irfV'jj1'11Vpµv'DbµV7rt:VcµV7r~VcµV1r~ 
"Wj 'If i II [8(1l't:)8(,Xµ)8(pmn)8( cl>mn) det Cijki] 

x 

exp i j dD x ( 11'</> · ~ + PµvYµv + 7rt:bµ + 1r~cµ + 11'~~µ -1i) , (26) 

Using the explicit expression of det Cijkt. we get 

detCijkl = (detgmn)D(Fg)-D(D-l)/2 X constant. 
mn (27) 

The integrations by 71':;, Poµ, and Pmn are trivial. We perform the integrations 

b </> c d µ y 1f'r, 11'µ, an 1f'c; 

</> ( . . :.J)µ ) J V7rr V7r~V7r~ exp if dDx 11'</> · </> + 7r~cµ + 7r~cµ + bµg -1i 

= ('9°°)-D+N/2 exp i J dDxL, (28) 

where L = L<f>g + LGF + LFP· We rewrite the 8(cl>mn) as 

II 8(cl>mn) = J V(J=Yumn)expi J dDxJ=Yumncl>mn• 
x 

where umn is the Lagrange multiplier. Then we obtain 

T1; = j V</>IVgµ 11VbµVcµVcµVumnwj-W; 

(29) 

II [(9°°)Nf2( J=Y)D] exp i J dD x (L + J=Yumncl>mn). (30) 
x 

7. Induction of gravity 

To get the effective Lagrangian Leff for induced gravity we perform the 
integration by </> in T1; 

We use the stationary phase approximation, i. ~. in the integration by </>, we 
neglect 0( ¢3) terms in L + J=Yumncl>mn· After a lengthy calculation, we 
finally obtain the effective Lagrangian 

Leff = H[ l6:GN R + }::-gbµfJ 11 ( H9µ 11
) + igµv OµC)..011 C).. 
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+~{~(V>.umn)2 - (Vmumn)2 + VmUmnvnU + ~(VmU)2} 
+~M2 { (umn)2 + ~U2 } + k1U + k2 ( umn Rmn - ~UR) 

+k3Umn (-ombn + i8mC>.OnC>.) ] {32) 

with the divergent coefficients 

_1_ = 2AD-2 M = J3(D - 2) A 
l67tGN p ' D ' 

ki = 3pAD/2+1 k2 = pADl2-1, k3 = ~ ( 1 + ~) A-D/2+1, 

( p = VN/6(D - 2)(D/2)!(47t)D/2), (33) 

where A is the ultraviolet cut off (Pauli-Villars mass), and the cosmological 
constant >. is fine-tuned to be 0. Since GN > O, the induced gravity is 
attractive. !Wles of the field U is not yet fully investigated. 

8. Conclusions and discussions 

If the number N of the fundamental scalar fields coincides with the number 
of dimensions D, the scalar pregeometry becomes topological (4]. In this 
case, we can show that no local physical mode exists. Only the topological 
invariant quantitie1 are observable. It is interesting to see that the gravity is 
still induced. This is because the fundamental scale breaks the topological 
symmetry. 

In summary, if the Einstein gravity is an induced effect (pregeometry), 
we have first to quantize the pregeometric matters rather than the gravity 
itself. To make a first step towards the quantization we applied the BRST 
formalism to the scalar pregeometry. We derived the Dirac bracket algebra, 
but the problem of the operator ordering is not solved. We derived the 
precise expression for induced gravity. It depends on the ultraviolet cutoff 
A, which we take as the physical fundamental scale. 

Finally, we would like to emphasize that, the quantum gravity has another 
possibility that the 'kravity is not fundamental, and we should first quantize 
the pregeometric matter. 
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Abstract. We consider the SOt invariant quantum dynamics of a poi?-t particle moving 
on the 3-sphere. Quantum exchange relations for different times are derived wit:!\ an "R 
matrix" depending on the time difference and on the conserved angular momentum. Their 
implications for correlation functions are worked out. 

1. Introduction 

In studying the G current algebra models ( G standing in general for a simple, 
compact Lie group) special attention 'is devoted to the analysis of the so­
called zero modes, which can be described in terms of a point particle moving 
on the group manifold G itself (for a sample of references on the Hamiltonian 
approach to such models - see [1,2,3]). In this context Alekseev and Faddeev 
[4) presented an R-matrix treatment of the phase space r = T* SU2 with an 
emphasis on its splitting into chiral parts which admit a natural quantum 
group deformation. Here we present a manifestly S04 invariant solution of 
the corresponding quantum mechanical model. 

Our main result is the derivation of generalized "exchange relations" 

where the "R-matrix" (or rather "6 - j symbol") depends on the time 
difference t12 = ti - t2 (playing the role of a spectral parameter) and on 
the conserved right (or left) invariant angular momentum . The represen­
tatives of the resulting R-matrices with operator valued entries on a set of 

• On leave from the Institute for Nuclear Research, Bulgarian Academy of Sciences, 
Tsarigra<lsko Chaussee 72, BG-1784 Sofia, Bulgaria 
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(permuted) n-point correlation functions satify a generalized Yang-Baxter 
equation . R12 appears to provide an example for an R-matrix depending 
on a spectral parameter in the framework of quasi-coassociative bialgebras 
(cf. [5]). 

A more detailed version of this work appears elsewhere [6]. 

2. Classical approach 

We write the SU2 group element g = (g~) as a pair of conjugate 2-spinors 

(1.1) 

Since gg* is a multiple of the unit matrix 

gg* = det(g) · 1, det g = w*w (= w~wa), (1.2) 

the configuration space SU2 ~ S3 appears as a real hypersurface in<Z'2 given 
by the ( primary ) constraint equation 

S3
: ww* -1 = 0 (w E<Z'2). (1.3) 

We shall derive the PB structure on r from the canonical PB on T*<Z'2 • Let 

p = ( 11"*1 11"*2) 
-11"2 11"1 

be the canonical momentum matrix. The non-zero PB on T*<l'2 are 

(1.4) 

(1.5) 

Primary constraints generate gauge transformations. Since 11', 11'* are the only 
gauge-dependent quantities, we impose the gauge condition ( secondary con­
straint ) 

2µ = tr(gp*) = W11' + w*7r* = 0, {w*w - 1,µ} = 1. (1.6) 

At this point we have a pair of second class constraints. Rather than com­
puting the Dirac brackets for 11"(*) and w(•) we shall single out a subalgebra 
A(f) of the algebra of functions on T*<Z'2 whose Dirac brackets coincide 
with the original PB. To this end we introduce the right invariant angular 
momentum 

o = ( ;+3 e_ ) . * .{, .{, -l3 = ipg (1.7) 

and its left invariant counterpart 

l=-ig*p (=ip*g)=-g*lg (gg*=l); (1.8) 
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Ca and la generate left and right infinitesimal SU2 shifts: 

i{Ca,g} = -iO"ag, i {la,g} = i90"a• (1.9) 

They imply that the angular momenta have vanishing PB with the con­
straints, 

{Ca,w*w} = 0 ={Ca,µ}, (1.10) 

(and similar relations for f), thus appearing as gauge invariant observables 
corresponding to vector fields tangent to r. They span among themselves 
the SU2 x SU2 PB Lie algebra: 

(1.11) 

(1.12) 

The similarity relation (1.8) between -£ and l implies that left and right 
angular momentum squares coincide: 

(1.13) 

The subalgebra A(r) is generated by£, land g subject to the relations (1.9) 
(1.11-13) and 

{g ~ g} = 0. (1.14) 

In order to get the time evolution of our mechanical model we have to 
introduce a Hamiltonian which has to be SU2 x SU2 invariant and depending 
on the constraint (1.3). The simplest choice is 

H = L 2 + >.(w*w - 1). (1.15) 

Angular momenta £,i are conserved and the Lagrangean 

{;::. i tr( Cgg*) - H = i tr(!JIJ* - >.(gg* - 1)) (1.16) 

allows to identify the linear momentum (1.4) with iJ and the angular mo­
mental and l with (the traceless parts of) i!Jg* and -ig*IJ. 

We see that the position observables g (or w<•) ) and the gauge-invariant 
angular momenta l and l have linear PB. We would like instead to have 
quadratic expressions in the r.h.s. of the PB, since such a kind of quadratic 
relations are a point of departure for the R-matrix approach to the study 
of completely integrable systems. We shall see that the different-time PB 
for g(t) appears as a quadratic expressi\>n in g(t1 ) ® g(t2 ) with coefficients 
depending on t·he constants of motion l ( or l ). 

Instead of going on with the classical formulation we shall pass now to 
the quantum one, coming back again to the classical case at the end. 
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3. Quantum approach 

We define the quantum algebra An = An(r) as the algebra generated bye, l 
and g with the PB (1.9) (1.11) (1.12) and (1.14) represented by commutators 
according to the standard rule 

ih{ ' } -> [ ' ]. 

Since 
e2 = (ei + e~ + e5)1 - ne, 

we define the invariant ( quantum ) Hamiltonian by 

(2.1) 

n = e2 +he= (ti+ e~ + e5)1 = L(L + h)1 = l 2 +hi. (2.2) 

The equations of motion 

ig(t) = h-1[g(t),H] = -~ [g(t).ial+ O'a = -g(t) (e + ~h) = (e + ~h) g(t) 

(2.3) 
have the solutions ( e(x) := eix) 

or 

w(t) =we ( (e+ ~h) t), w*(t) = e (-(l+ ~h) t) w*. (2.4b) 

An(r) admits an antilinear involution iJ, "the TCP symmetry", such that 

iJ(w(t)) = w*(-t), iJ(w*(t)) = w(-t), 

t?(la) =-ea, iJ(fa) =-la. 

(2.5) 

(2.6) 

We shall view the elements of An(r) as operators in the vacuum Hilbert 
space 1i with a unique SU2 X SU2 invariant state ( 0 I I 0} such that I 0} is a 
cyclic vector with respect to An(r).The involution t?(A) is then implemented 
by an antiunitary operator 0 such that 

010} = 10}, 0A0-1 = t?(A), 0 2 = i. (2.1) 

Charge conservation implies that only even point correlation functions with 
an equal number of w and w* can be nonvanishing. 0 invariance and antiu­
nitarity allow to relate correlation functions with opposite order of factors, 
e.g. 

( 0 I fu(t1) (Ji)*(t2) ... 
2'W1 

(t2n-1) (W)*(t2n) I 0} = 

= ( 0 I (W)*(-t2n) 
2'W1 

(-t2n-t) ... ( fu)*( -t2) J, ( -t1) I 0 ). 

(2.8) 
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Using the solution of the equations of motion (2.4) together with 0 and 
time translation invariance, we get 

where f is the unit antisymmetric tensor. The 2n-point function is uniquely 
determined from the initial (equal time) condition 

(2.10) 

As an explicit example we give the 4-point function 

1 2 3 4 1234 ( 1i. ) 
{OIY(t1)Y(t2)Y(t3)Y(t4)IO}={O!gggglO}e -4(3t14+(1+4P34)t23) 

{2.11) 
where P34 is the operator permuting the indices (33(34 and the equal-time 
4-point function is given by 

1 2 3 4 
{OI gggg IO}= 

4. A quantum R-matrix with operator valued entries 

The operators Yl t) satisfy for different times a generalized exchange relation 
of the type 

where R12 and R12 depend on the time difference t12 and on the conserved 
right and left invariant angular momenta la and la, respectively. To con-

- 1 1 
struct R12 and thus derive (3.1) we express Y(ti) in terms of Y(t2) and use 
the commutatativity of g at equal times: 
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where U1 2 is a unitary operator defined by 

Analysing the explicit form of U12 , we can see that the structure of 

:F12 = e(-~ ti2) R12 (3.2) 

is given by 

where 

To compute F; we differentiate (3.1) with respect to ti, finding 

and we add the initial condition 

- 2 R12(0) = 1 {::} F;(O, N ) = 8;1. 

The unique solution is given by 

t2 z;i 2 ( -iht 1 i . ) 2 
n .cs = N 2 _ 1 e - N 2 cosNht + N smNht - N 2 ' 

. 2 ( i ·r.) 1iF4 = ihFs = N 2 _ l - cos Nht + N sin Nht + e-• t , 

cos Nht - 1 
N2 

p. . sin Nht 
2 = -i N , 

F _ l cos Nht - 1 1i2 p, N 2 
- 1 

i - + N2 + s 4 . 

One can derive a similar relation for R12(t12;-e) = R 12(t12 ;-C). 

(3.3) 

(3.4) 

(3.6) 

(3.7a) 

(3.7b) 

(3.7c) 

{3.7d) 

(3.7e) 
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We can compute the action of Rii+l or F;;+1 on correlation functions. 
The explicit expressions for the 4-point functions are given by 

1 2 3 4 
{ 0 I F12(t12) g (t1) 9 (t2) 9 (ta) 9 (t4) I 0) = 

1 2 3 4 
{OI g(t1) 9(t2) 9(ta) 9(t4)Fa4(t34)IO)= 

1 2 3 4 
e(-hP34t34)(0I 9(t1) 9(t2) 9(t3) Y(t4)IO}, (3.8b) 

while (with shorthand notation) 

h h 
( F13 )4 = e( 2 t12 P23) e( 2 t23 P12). 

The R;j (and F;j) so defined are verified to satisfy the relations 

R;;+i ( t) R;;+i (-t) = 1, 

R(12a)(t ) R(21a)(t ) R(231)(t ) _ R(123) 12 12 13 13 23 23 - 13 

_ R(12a)(t ) R(132)(t ) R(312)(t ) - 23 23 13 13 12 12 ' 

(3.8c) 

(3.8d) 

(3.9) 

(3.10) 

j 

where the upper indices ( ij k) stand for the order of g ( t;) to which R is 
applied. We note that such generalized Yang-Baxter equations that reflect 
the operator dependence of R are reminiscent to the relations found by Mack 
and Schomerus in their study of quasi co-associative quantum symmetries 
[5). 

In the limit h --> 0 we obtain the classical counterpart of the "quantum 
R matrix" .Setting 

{ 1 2 } i (2 1 ] 9(ti), 9(t2) = i~ h g(t2), 9(t1) (3.11) 

we find 

(3.12) 

where . (1 2) 2 1 21 
r( t,i) = tP - ~ t2 i + i + i t2 i P + 3 t5 ii, (3.13) 

or a similar expression with r(t,l) = r(t, -£) acting on the· left. One can 
also write a linear in t12 expression for the PB with operators acting on 

12 
both sides of gg (see [6]). 
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Abstract. In this talk I want to explain the operator substractions needed to renormalize 
gauge currents in a second quantized theory. The case of space-time dimensions 3 + 1 is 
considered in detail. In presence of chiral fermions the renormalization effects a modifi­
cation of the local commutation relations of the currents by local Schwinger terms. In 
J + 1 dimensions one gets the usual central extension (Schwinger term does not depend 
on background gauge field) whereas in 3 + 1 dimensions one gets an anomaly linear in the 
background potential. 

We extend our method to the spatial components of currents. Since the bo~~-fermi 
interaction hamiltonian is of the form / Ak (in the temporal gauge) we get a new renor­
malization scheme for the interaction. The idea is to define a field dependent conjugation 
for the fermi hamiltonian in the one-particle space such that after the conjugation the 
hamiltonian can be quantized just by normal ordering prescription. We also discuss the 
regularization of vector fields in Fock space. 

1. Introduction 

Algebraic techniques have been proven to be very powerful when solving 
many quantum field theory models in 1+1 space-time dimensions. The best 
understood and applied algebras are the affine Kac-Moody algebras, which 
are related to central extensions of loop groups, and the Virasoro algebra 
which is a central extension of the Lie algebra of vector fields on the circle. 
The latter algebra emerge for example in the construction of the energy 
momentum tensor in conformal field theory in two dimensions. On the other 
hand, the energy momentum tensor can be constructed by the Sugawara 
method as a quadratic expression in the components of the affine Lie algebra. 
In gauge theories the affine algebra is the Lie algebra of the group of gauge 
transformations, broken by the chiral anomaly. The Virasoro algebra is also 
important in understanding certain solvable statistical mechanics models in 
two dimensions. For a review on these topics see [3]. 

A natural question is how far we can go with some suitable generalizations 
of the above algebraic structures in dimensions higher than 1+1. It is clear 
that for a succesful theory we need at least two things to begin with. First, 
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what are the algebras. Second, what are the representations of the algebras. 
In this talk I will mainly address the questions related to generalized affine 
( chirally broken gauge symmetry) algebras. In the last section 5 I will briefly 
address the problems arising from quantization of vector fields in dimensions 
higher than 1. 

The appropriate group (and Lie algebra) extensions replacing the affine 
algebra in higher dimensions has been found in the study of anomalous 
gauge theories, [7]. The difficulty is that no unitary faithful representations 
are known (and they probably do not exist, [12]). But there is a way around 
this problem. A representation is replaced by a opemtor valued cocycle in a 
Hilbert space (which in this talk is the Fock space of chiral fermions). Al­
ternatively, one can view our construction (in 3 physical space dimensions) 
as a representation, not of the original Mickelsson-Faddeev-Shatasvili exten­
sion in [7], but as a representation of the gauge algebra extended by certain 
pseudo-differential operators of degree -2. The degree -2 comes from the 
fact that these operators are Hilbert-Schmidt and can be canonically quan­
tized in the Fock space. 

Chiral fermions in a nonabelian external gauge field are quantized as 
follows. Let G be a compact gauge group, g its Lie algebra, M the physical 
space, and A the space of smooth g valued vector potentials in M. For 
each A E A one constructs a fermionic Fock space FA containing a Dirac 
vacuum 'lfJA· The Hilbert space FA carries an irreducible representation of 
the canonical anticommutation relations (CAR) 

a*( u )a( v) + a( v )a*( u) = ( u, v) all other anticommutators = 0. 

The representation is characterized by the property 

a*(u)'lfJA = 0 = a(v)'lfJA foru E H_(A)andv E H+(A) (1.1) 

where H+(A) is the subspace of the one-particle fermionic Hilbert space H 
spanned by the eigenvectors of the Dirac-Wey! Hamiltonian 

(1.2) 

belonging to nonnegative eigenvalues and H _ (A) is the orthogonal comple­
ment of H+(A). Here V'k's are covariant derivatives in directions given by a 
(local) orthonormal basis, with respect to a fixed Riemannian metric on M. 
In the following we shall concentrate to the physically most interesting case 
dimM = 3 and the 7-matrices can be chosen as the Pauli matrices a1 , a 2 , 0'3 

with a1a2 = ia3 (and similarly for cyclic permutations of the indices) and 
ai = 1. 

The group g = M ap(M, G) of smooth gauge transformations acts on A 
as g ·A= gAg- 1 + dgg- 1 • The Fock spaces FA form a vector bundle over A. 
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A natural question is then: How does 9 act in the total space :F of the vector 
bundle? Since the base base A is flat there obviously is a lift of the action 
on the base to the total space. However, we have the additional physical 

requirement that 'DA A-1 DA 
9 A9 = g·A (1.3) 

where b A is the second quantized Hamiltonian and {J is the lift of g to :F. 
This condition has as a consequence that {J?/J ..i. should be equal, up to a phase, 

to the vacuum 1/Ju·A· 
A complication in all space-time dimensions higher than 1+1 is that the 

representations of CAR in the different fibers of :Fare inequivalent, [l]. The 
effect of this is that a proper mathematical definition of the infinitesimal gen­
erators of g (current algebra) involves further renormalizations in addition 
to the normal ordering prescription. In one space dimensions the situation is 
simple. The current algebra is contained in a Lie algebra gl1 which by defi­
nition consists of all bounded operators X in H satisfying [ E, X] E L2, where 
€ is the sign operator ~ associated to the free Dirac operator and L2 is the 
space of Hilbert-Schmidt operators. In general, we denote by Lp the Schat­
ten ideal of operators T with !TIP a trace-class operator. Let a~ = a"( un), 
where Doun = AnUn and the eigenvales are indexed such that An ~ 0 for 
n 2: 0 and An < 0 for n < 0. Denoting the matrix elements of a one-particle 
operator X by (Xnm), the second quantized operator X is 

X = L Xnm : a~am : 
where the normal ordering is defined by 

.. { -aman" if n = m < 0 ·a a ·-. n m .- a~am otherwise. 

The commutation relations are 

[X,Y]=[..f.YJ+c(X,Y) 
where c ts t_he Lundberg's cocycle, [5], 

1 
c(X, Y) = 4tu[E,Xj[E, Y]. 

(1.4) 

(1.5) 

(1.6) 

When X, Y are infinitesimal gauge transformations on a circle the right­
hand-side is equal to the central term of an affine Kac-Moody algebra, [13], 

c(X,Y)= 
2
i f trX'Y. (1.7) 
'Ir lsi 

In this talk I want to explain the regularizations needed in 3 + 1 space-time 
dimensions and the generalization of (1.4) through (1.7). In section 4 we 
shall use the same regularization to define a finite bose-fermi interaction 
hamiltonian for QCD. (We shall not attack problems associated to vector 
boson self-interactions.) 
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2. Action oft he group of gauge transformations in the Fock bundle 

Let f( A) = 1~ ! 1 
; if DA has zero modes define f( A) to be + 1 in the zero mode 

subspace. For A EA denote by PA the set of unitary operators h: H ~ H 
such that 

(2.1) 

If h EPA then also hs EPA for any s E U1, where U1 is the group of unitary 
operators s with the property [E,s] E L2. The spaces PA form a principal 
bundle over A with the structure group U1. 

Since A is flat the bundle P is trivial and we may choose a section A 1-+ 

hA E PA. Define 
(2.2) 

where T(g) is the one-particle representation of g E g. By construction, w 
satisfies the 1-cocycle condition 

w(gg'; A)= w(g;g' · A)w(g';A). (2.3) 

Using T(g)DAT(g)- 1 = D9 .A we get T(g)E(A)T(g)- 1 = E(g·A) which implies 

h9.A[i,w(g; A)]h:41 = (h9.Afh;,~)T(g) - T(g)(hAEh:41
) 

=: E(g · A)T(g) -T(g)E(A) modL2 

= o. 
Since L2 is an operator ideal this equation implies 

[E,w(g; A)] E L2. (2.4) 

Thus the 1-cocycle w takes values in the group U1 • 

Remark. In one space dimensions we can set hA _ 1 since [E,T(g)] is 
already Hilbert-Schmidt. In d space dimensions the off-diagonal blocks of 
T(g) are only in the Schatten ideal Lv, p > d, [11]. 

The group valued cocycle w gives rise to a Lie algebra cocycle 0 by 

d 
theta(X; A) = dtw( etX; A) lt=O 

= hA_1dT(X)hA + hA_1 CxhA. (2.5) 

It satisfies the Lie algebra cocycle condition 

O([X,Y]; A) - [O(X; A),O(Y;A)] -CxO(Y; A)+ CyO(X;A) = 0, (2.6) 

where Cx is the Lie derivative in the direction of the infinitesimal gauge 
transformation X, Cx f(A) = ftJ(e-tX ·A) lt=O. We denote by dT the Lie 
algebra representation in H corresponding to the representation T of finite 
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gauge transformations. For each A E A and X E Map(M,g) the operator 
8(X;A)Egl1. 

The section hA of P can be used to trivialize the bundle of Fock spaces 
over A. Each fiber :FA is identified as the free Fock space :Fo. The Hamilto­
nian DA is quantized as 

(2.7) 

ihat is, we first conjugate the one-particle operator DA by hA and then 
canonically quantize h).1 DAhA. The conjugated operator has a Dirac vac­
uum 1/JA contained in Fo (but differing from the free vacuum 1/Jo). The CAR 
algebra in the background A is represented in :F0 through the automor­
phism a*(u) .-. aA_(u) = a*(h).1u), a(u) .-. aA(u) = a(h).1u) and using the 
free CAR representation for the operators on the right. The Hamiltonian 
DA is then 

(2.8) 

where the Un 's for nonnegative (negative) indices are the eigenvectors of 
DA belonging to nonnegative (negative) eigenvalues. The normal ordering 
is defined with respect to the free vacuum. 

Sections of the Fock bundle are now ordinary :F0 valued functions. The 
effect of an infinitesimal gauge uansformation consists of two parts: The Lie 
derivative Cx acting on the argument A of the function and an operator 
acting in :Fo, 

X = Cx + LO(X; A)nm: a~am :, (2.9) 

where the O(X; A)nm's are matrix elements of O(X; A) in the eigenvector ba­
sis ( Vn) of Do. The commutation relations of the second quantized operators 
are modified by the Lundberg's cocycle, [9], 

[X,Y] = [£,lr] + c(O(X; A),O(Y;A)). (2.10) 

In the next section we want to compute the right-hand side of (2.10) more 
explicitly. We shall denote by cn(X, Y; A) (n=dimM) the second term on 
the right. It is a Lie algebPa. 2-cocycle in the following sense: 

cn([X, Y], Z; A)+ Cxcn(Y, Z; A)+ cyclic perm. = 0. 

Remark. In the case of massive Dirac fermions the cocycle vanishes in 
cohomology. Namely, there is a mass gap [-m,m] in the spectrum of the 
Hamiltonian DA. For this reason the spaces H + (A) form a smooth vector 
bundle over A. Since A is fiat this bundle can be trivialized. It means that 
one can define a continuous family ofoperators hA such that f. = hA:1E(A)hA. 
With this choice it is easy to see that actually [E,w(g; A)]= 0 and therefore 
the cocycle Cn is identically zero. This does not work for massless chiral 
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fermions because there is no mass gap and in fact there is a spectral flow 
across any point in the spectrum, that is, one can always choose a continuous 
path in the space A such that along the path the eigenvalues of DA crosses 
any given point in the spectrum. 

3. A computation of the cocycle 

Let us recall first some basic facts about pseutlodifferential operators (PSDO 's ). 
A (classical) PSDO P is represented through its symbol. The symbol is a 
smooth function in the cotangent space T* M which has an asymptotic ex­
pansion of the form 

p(x,fl = Pk(x,~) + Pk-i(x,~) + Pk-2(x,~) +... (3.1) 

where n is an integer and the pj's are functions which are smooth outside of 
the zero section in T* M and are homogeneous of degree j in the momentum 
variables~= (6, ... ,~n), 

(3.2) 

The degree k of the principal symbol Pk is the degree of the PSDO P. We 
shall consider PSDO's acting on vector valued functions. In that case the 
symbols are N x N matrix valued functions. For simplicity we shall consider 
only the case when the cotangent bundle is trivial; in general, one has to 
cover T* M with coordinate charts and the symbol is given by a collection of 
local symbols in the coordinate charts, with appropriate rules for a change 
of coordinates in the overlap sets; see [6], III.3 for details. 

A PSDO Pis a partial differential operator if the symbol pis a polynomial 
in the coordinates ~j. In that case the operator P is simply obtained from p 
by replacing the coordinates ~i by the partial derivatives -i8j and inserting 
the derivatives to the right-hand-side of the coefficient x-space functions. 

A PSDO P is defined by its asymptotic expansion up to an infinitely 
smoothing operator. An infinitely smoothing PSDO is an operator with a 
symbol approaching zero faster than any power W as l~I -> oo. In particu­
lar, an infinitely smoothing operator is trace class. A PSDO on a compact 
manifold of dimension n is trace class if and only if its degree k ~ -n - 1. 
The product of a pair P,Q of PSDO's is represented by the symbol 

(3.3) 

where the sum is over multi-indices m = (mi, ... , mn) E Nn, lml = m1 + 
... + mn, m! = m1! ... mn! and 8'; = (-88 rl ... ( ..,!L rn. In particular, the 

Xl OXn 

principal symbol of the product is just the (matrix) product of the principal 
symbols of the factors. 
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In the euclidean case M =Rn a PSDO P with symbol pacts on sections 
'1/J of a trivial cN bundle over M in the following way: 

(3.4) 

where ,,/; is the Fourier transform of '1/;, 

(3.5) 

The adjoint of P (in the Hilbert space of square-integrable sections, the 
measure defined by a Riemannian metric on M) is in general a complicated 
expression in terms of the symbol p. We shall give the formula only in the 
euclidean case: 

where 

1 
P* ,...., p* + np* + -n2p* + ... 

2! 

n = -i'\;'a""lf L., J J 
j 

and p* is the matrix adjoint of the matrix valued symbol p. 

(3.6) 

We shall construct the section hA explicitly as a function of the vector 
potential when dimM = 3. We shall define hA through its symbol, as a pseu­
dodifferential operator in the spin bundle over M. I claim that an operator 
with the following asymptotic expansion satisfies the requirement (2.1): 

hA = 1 - ~ [ f~~) + terms of lower order in lel. (3.7) 

In order to make the discussion as simple as possible we assume that M 
is the one-point compactification of R 3 and we use standard coordinates in 
R 3 • We also use the notation A = E Akak. 

An example of an unitary operator with the asymptotic expansion (3.1) 
is the operator 

where we have added a small positive constant A to the denominator in order 
to cancel the infrared singularity ate = O; this has an effect in the asymptotic 
expansion only on terms of order -2 and lower in the momentum e .. It is clear 
that the lower order terms do not have any effect on the condition (2,1) 
since any operator of orlier ::; -2 is automatically Hilbert-Schmidt when 
the dimension of M is 3. Thus we have 
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where 0( -p) denotes terms of order :::; -p. The symbol of the PSDO f is fer 
and it is a simple computation to check that indeed [f, O(X; A)] E L2 using 
the product rule of symbols. 

The term of order -2 in 8 is important in computing the actual value of 
the Schwinger term. It is equal to 

1 [o-k, A] 1 [e, A] 0_2 = - 4~akx + 2wekakx 

1 [e,AJ + 16 l{ft[e, dX]. (3.10) 

Note that all terms are linear in the vector potential A. The computation 
of c3(X,Y;A) = c(O(X;A),O(Y;A)) is greatly simplified when we keep in 
mind that it is only the cohomology class of the cocycle c3 we are interested 
in. Another simplification is the following: Formally, 

(3.11) 

when P,Q are in gl1 . However, the operator on the right is not quite trace­
class; only its diagonal blocks are trace-class. For this reason t3.e trace is 
only conditionally convergent. It is convergent when evaluated with respect 
to a basis compatible with the polarization H = H+ EB H_, for example, one 
can choose a basis of eigenvectors of D0 • The trace of an operator P with 
symbol p(e, x) on an-dimensional manifold is 

(3.12) 

As an exercise, let us compute (3.11) when M = S1 and P, Q are mul­
tiplication operators (infinitesimal gauge transformations). In that case the 
symbols are just smooth functions of the coordinate x on the circle. Now 
f = fer is a step function on the real line, its derivative is twice the Dirac 
delta function located at e = 0. It follows that the symbol of the commutator 
!(f,P] is 

( 
•)i: '( ) (-i)2 i:/" "( ) 

-i uep x + - 1-ueP x + ... 
2. 

Applying the formula (3.12) to (3.11) we get 

1 . 
4tff[f, P][f,Q] = 2~ fs1 

trp'(x)q(x)dx, 

where the trace under the integral sign is an ordinary matrix trace. If one 
feels uneasy with singular symbols, one can approximate f by a differentiable 
function lei~>. and at the very end let >. 1--4 O. 
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In the 3-dimensional case we have to insert P = O(X; A),Q = B(Y; A) in 
(3.11). Using the asymptotic expansions for P and Q, p = l:P-k(~,x) one 
has 

(3.13) 

In fact, one needs to take into account only finite number of terms. The sum 
of terms with k ::; -4 is a coboundary of the 1-cochain 

l:tr(E*B(X;A))_k 
k~4 

(3.14) 

Thus we may restrict the sum in (3.13) to indices k > -4, so we have only 
a finite number of terms to check. To take care of the infrared singularity 
in the integration in (3.12) we replace all denominators 1~1-k by (l~I + .X)-k. 
One can then check by a direct computation that, modulo coboundaries, 
the result of the computation in (3.13) does not depend on the value of .X 
(i.e., one may take the limit .X .....+ 0 in cohomology). The final result is in 
accordance with the cohomological [7], [10], (14] and perturbative arguments, 
(4], 

c3(X,Y;A) = 
24

1
7r2 JM trA(dX,dY]. (3.15) 

What we have constructed here is an action of a Lie algebra g, which 
is an extension of Map(M,g) by the abelian Lie algebra of complex valued 
functions on A, in the space of smooth fucntions A --+ :F. The operators 
acting in this space are the generators £ x + 0( X; A). We have not really 
constructed a unitary representation of g because we do not have a quasi­
invariant measure in the Space A of smooth vector potentials. However, 
our construction can be viewed as a true old fashioned representation of a 
different extension g of Map(M,g). 

Consider the Lie algebra of all pseudodifferential operators of the form 

(3.16) 

where X is an infinitesimal gauge transformation (multiplication operator 
by X E Map(M,g)) and ( is an arbitrary PSDO of degree -2 acting in 
H. As we saw above, the commutator [E, BJ. is Hilbert-Schmidt and so 0 
is canonically quantizable. It is easely seen that the commutator of two 
operators of the form (3.16) is again of the same type and therefore they 
indeed close a Lie algebra. This Lie algebra g' is an extension of Map( M, g) 
by the Lie algebra 'P-2 of PSDO's of degree -2 acting in H, 

0---+ 'P-2---+ g'---+ Map(M,g)---+ 0, 



284 JOUKO MICKELSSON 

defined by the natural inclusion p _2 -+ g' and by the projection 0 1-+ X. 
In the second quantization the Lie algebra g' is centrally extended to 

a Lie algebra g because of the Lundberg's cocycle. Thus the algebra of 
second quantized operators 0 can be vieved as a Hilbert space representation 
of g. It would be an interesting task to pursue in greater generality the 
representation theory of g. 

4. The interaction hamiltonian 

Up to this we have discussed the regularization of the time component io ( = 
charge density) of the nonabelian gauge current. However, in renormalized 
perturbation theory one needs also the space components 

(4.1) 

where the Ta's are generators of g. This is because the interaction Hamiltcr 
nian contains the term 

(4.2) 

Actually, in the abelian case the hamiltonian is the free quadratic Dirac & 
Maxwell hamiltonian + the interaction Hr. Thus in the abelian case it is 
sufficient to renormalize Hr such that it becomes a well-defined operator in 
the Fock space of fermions and photons. 

In this section I shall explain only the renormalizations needed to make 
Hr well-defined in the background quantization. 

The aim is achieved through a sharpening of the regularization used for 
the time component. We want to define an operator valued function hA such 
that 

hA_1 DAhA =Do+ WA (4.3) 

where WA is a PSDO of degree 0 with the additional property that 

(€,WA] E L2. (4.4) 

The condition (4.4) guarantees that the matrix elements 

(4.5) 

are finite, when <P is a state in the fermionic Fock space containing a finite 
number of particles. Here A1 ••. An are any given values for the external 
gauge field (smooth and with appropriate vanishing conditions at spatial 
infinity when the physical space is noncompact). But the finiteness of the 
matrix elements ( 4.5) is precisely what is needed in the perturbation expan­
sion, based on the Dyson expansion of the time evolution operator; see any 
standard quantum field theory text book, e.g. [2]. 
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'fhe choice of hA in the previous section is not quite sharp enough to 
achieve ( 4.4 ). A correct modified expression is the following: 

1 1 
- 8l€l4 [€,A]( A·€) - 8lel4 (A· e)[e, A] + 0( -3) ( 4.6) 

After a tedious computation we obtain 

1 [ <Tk eek ] (lk -8 e,[ffi2- 21Zf4,lhA] - 4le12[e,<hA] 

+ 2l~l 2 "tikei[Ai.Ak]- le~ 2 AmAm+ 1fi 4 (A·e)2+0(-2). (4.7) 

It is then a simple computation to show that [i:, WA] is of degree -2. There is 
no magic in the derivation of the formula ( 4.6) for hA. It is a simple recursive 
procedure. Writing 

in the asymptotic expansion, one gets 

where 

The condition ( 4.4) is equivalent to the pair of equations 

which together with ( 4.8) gives a set oflinear equations for h_1 and h-2 • One 
can then determine the lower order terms hk, k < -2, from the unitarity 
condition for h. This is again a set of recursive linear relations obtained from 
the formula (3.6) for the adjoint of a PSDO. 
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5. Vector fields and second quantization 

One parameter groups of diffeomorphisms on a manifold M are generated by 
smooth vector fields. For this reason, although the expone:tttial mapping is 
not quite onto, the algebra of vector fields (with respect to the Lie bracket) 
can be considered as the Lie algebra of the diffeomorphism group Dif f(M). 
Instead of considering the action of the finite group transformations in the 
Fock space formalism we shall restrict here to the action of (regularized) 
vector fields. 

It is easy to see that the commutator [€, /] is not even compact when 
f = fk{)k is a vector field on a manifold with dimM > 1. It is only in 
dimension 1 that the commutator is actually Hilbert-Schmidt. We shall show 
that for any f there is a PSDO F = F(f) with the following properties: 
(1) F(f) - f is of order zero 
(2) [€, F(f )] is Hilbert-Schmidt 
(3) for any vector fields f,g also [F(f),F(g)] has the properties (1), (2). 
The Lie algebra of operators in the one-particle space generated by the 
F(f)'s is c31led the algebra of regularized vector fields, to be denoted by 
Dreg(M). 

We shall define F(f) through its expansion F(f) = f + Oo + 0-1 + ... 
where On is homogeneous and of degree n. Note first that the first order term 
in the commutator F(f)*F(g)-F(g)*F(f) is just the ordinary commutator 
[f,g] of vector fields, so the algebra Dreu(M) is an extension of D(M) by the 
algebra glrea of zeroth order operators w such that [€,w] is Hilbert-Schmidt. 

In order to find Oo and 0_1 (for the regularization, we are not interested 
in the lower order terms because they are Hilbert-Schmidt) we first compute 
[£,F(/)]o, 

. &€ &f' 
( € * F(f) - F(f) * £)0 = -i aek ax: ei + [€, Oo] :: 110 + [£, Oo]. 

where the last commutator on the right is just the matrix commutator in­
volving the Pauli matrices. 

Since€ is a unit spinor, its derivative in any direction in momentum space 
is orthogonal with respect toe = ek<Tk· Consequently the matrix 110 can be 
written as a commutator in spin space, 110 ::: -[£, 00 ] for some symbol 80 of 
order zero. Actually, by the algebra of Pauli matrices, we get a. solution 

Having made this choice, we compute the next term in the starcommuta.tor, 
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E ~ EPfm em - ! E a2~a2f;nem 
k"h aejae,. OXkOXj 2 k ae,. ax,. 

- (E,lL1] + "l-1· 

One can check by a completely straight-forward algebra that T/-1 has 
vanishing trace and also trf1J-1 = 0. From this follows that T/-1 can be 
written as a commutator of some lL1 with f. We can choose l'-1 = -Hf, T/-1]. 

With these choices [E,F{f)],. is of order -2 and thus Hilbert-Schmidt. 
In an analogous manner as in section 3, in the case of infinitesimal gauge 
transformations, we can view Dreg(M) as an extension of the Lie algebra 
D( M) of smooth vector fields by the nonabelian Lie algebra glrea 

0 ~ glm ~ Dreg(M) ~ D(M) ~ 0 

with the obvious maps. This Lie algebra is then modified in the second 
quantization by the Lundberg's cocycle. 

We have all the time assumed that M is compact in order to avoid dis­
cussing infrared divergencies. In the case of a noncompact physical space 
(like JR?) one has to choose suitable boundary conditions for the Dirac and 
gauge fields and vector fields in order to preserve the Hilbert-Schmidt prop­
erty of the commutator with the sign operator f. 
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The conditions which are imposed by mathematical axioms can in general 
only within limits be fulfilled by physical objects. The integers which occur 
in arithmetics may still rather well be in harmony with atomistic physics. 
Points, lines, planes, etc., defined by the continuum in geometry obey how­
ever definite relations which can at best in crude approximation be identified 
with measurable physical systems. This is apparent from the one to one map­
ping of sets of the continuum on subsets. One can expect from the foregoing 
that any good and therefore clear physical theory involving a continuum will 
lead eventually to extreme results where physics can no longer do justice to 
the axioms so that no reasonable person can believe in the absurdity of its 
predictions. Riemann had already recognized the problem of the continuum 
in the complementarity of geometry and physics for the description of na­
ture. He devoted a section of his habilitation work to a discrete description. 
One can not expect that in the sophisticated spacetime continuum of the 
general theory of relativity the consequences of Riemann's critique of such 
sharply contoured geometric constructions as points, lines - and even the 
light cone, will not come to the light when describing extreme physical situ­
ations. This is already known in microscopic physics where the uncertainty 
relation rules out the identification of points with physical objects. The 
persistence of the curse of the thirteenth fairy - (with which Schrodinger 
poetically compares the continuum because it proceeded the birth of our 
science) results strangely enough from macroscopic physics. The Einstein­
Hilbert equations of general relativity predict inevitably the gravitational 
collapse of a sufficiently large cloud of dust to a point, irrespective of the 
nature of the short range interaction between the dust particles. The point 
of view that this extreme result is a manifestation of the predicted ·absurdity 
and has not the character of a physical law, is not shared today by many 
physicists. Einstein himself and also Schrodinger did however not advocate 
the last mentioned trend. This is witnessed by the article (1] which intro­
duces a modified interpretation of the field equations to abandon the domain 
beyond the horizon. One sees in the apparent inevitability of gravitational 



292 LEOPOLD HALPERN 

collapse rather one of the greatest revolutions in our physical world picture. 
The argument for this collapse is based on the fact that the curvature near 
the formation of a horizon can remain small. The principle of equivalence 
seems then to rule out any reason why physics should be different in this 
domain than in others so that a given solution of the Einstein-Hilbert field 
equations does apply everywhere. 

The author's counter-argument is based on macroscopic quantum ef­
fects induced by the curvature. The earliest discovered of these effects is 
Schrodinger's alarming phenomenon of elementary particle pairs created in 
the time dependent metric of an expanding universe [2]. Associated with it 
are the contributions of virtual elementary particle pair effects, which be­
came known as the gravitational analogues of the Uehling term of the Lamb 
shift [3] and of the Casimir effect [4]. There exist other more complicated 
contributions of quantized fields in classical gravitational fields, even in low 
order approximations. The terms due to virtual particle contributions are in 
general divergent and non-renormalizable. Every quantum field contributes 
to an additional source term of the gravitational field equations. The gravi­
tational field jtself has also to be considered but we can hardly do more 
than speculate about the microscopic manifestations of the gravitational 
field. Solutions of the classical Einstein-Hilbert equations cal'\ not account 
for the appearance of such source terms. 
We summarize the conclusions we draw from the foregoing considerations: 

1. The gravitational collapse of dust to a geometrical point predicted by 
classical general relativity is tentatively considered as an absurdity of 
the kind discussed. 

2. Our knowledge about quantum effects in classical gravitational fields 
excludes a rigorous macroscopic description of extreme situations in 
terms of the Einstein-Hilbert equations alone. These cannot produce 
the Schrodinger phenomenon and thus also not its virtual manifesta­
tions which ought to be considered before conclusions about horizon 
formation are drawn. 

3. We lack empirical knowledge about ,the structure of the gravitational 
interaction in microscopic regions and lack adequate knowledge of parti­
cle and field theory to even estimate the magnitude of the mentioned 
macroscopic quantum effects in classical gravitational fields. 

4. We have no direct observational criterium to distinguish a highly col­
lapsed system from a true black hole with a horizon. 

5. To avoid the fallacies cited under point 3 we search for modified macro­
scopic equations which are hoped to include the macroscopic quantum 
effects in average and tend to eliminate the absurdity. These equations 
must be of higher order than the second and must give a good appro­
ximation to general relativity in less extreme situations. The coupling 
of matter with gravitation should contain nonminimal terms to produce 
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the Schrodinger phenomenon. 
What about the principle of equivalence, Einstein's ingenious bridge between 
physics and geometry? Einstein and Rosen [1] conclude with its help that 
something different than the vacuum must be found (latest) at the horizon 
_ if the rest of physics is to remain valid. They postulate there a source in 
accordance with Einsteins geometrization program. On the other hand the 
ultrarelativists - those who for one or the other reason follow an orthodox 
course without much consideration about results of quantum and particle 
physics - they conclude from the principle of equivalence that space-time has 
to be extended unaltered beyond the horizon until it ends in a singularity. 
Their use of the prescribed mathematics is certainly correct - but they risk 
to fall just because of this onto the mentioned absurdity. The Schrodinger 
phenomenon demands modifications of the classical equations already before 
and outside the horizon. 

Equations with an admixture of fourth order terms, derivable from a 
Lagrangian of the form: 

2 h .. k 
£ = ../9 (R + aR + bRhiik R ' 3 

) (1) 

a,b constants of dimension (length) have early been considered [2). Their 
vacuum solutions include all of those of general relativity. Other phy,;ically 
significant vacuum solutions are not known. The presence of matter requires 
here solutions different from general relativity but none are known either. 
Other lower order effects of quantum field theory are even more difficult to 
incorporate into classical equations. 

The search for modified equations need not to be. restricted to the pertur­
bation formalism of quantum field theory. The approach from a gauge prin­
ciple and in particular from Kaluia-Klein models appears promising. The 
latter achieve a quasi-unification of general relativity in interaction with a 
gauge field of vanishing rest mass in a (somewhat mutilated) metrical space 
of 4 + n dimensions. The Schrodinger phenomenon, of particular interest for 
a massless gauge field, does not appear in the classical theory. A nonmininal 
interaction is required to obtain it classically. There are too many possibi­
lities to arrive at such equations. We shall follow one way led by an early 
attempt of the author to describe the inner quantum number of spin by a 
higher dimensional Kaluia-Klein generalization. The gauge group is in the 
simplest case that of the tetrade rotations. The theory has the unique fea­
ture of convertability of the inner quantum number (spin) into a dynamical 
variable (angular momentum) [5,6). 

The theory is formulated on the ten-dimensional manifold of the anti-De 
Sitter group G = S0(3, 2). The subgroup H = S0(3, 1) is the gauge group. 
The principal fibre bundle P( G, H, G / H, Jr) has the anti-De Sitter universe 
with the topology of G / H as base manifold and the natural projection Jr : 

G-+ G/ H. The Cartan-Killing metric 'Y of every semi-simple Lie group Gr, 
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/uv = Tr{(AdAu) O (AdAv)}, (2) 

with Au, Av left invariant vectors of Gn fulfills Einstein equations, 

(3) 

A metric g = Jr
1 

/ is then defined on the baBe. It is in this case the anti-De 
Sitter metric which fulfills: 

(4) 

with B;k the Ricci tensor of the base space. The left invariant vectors 
AR (R = 1 ... 10) are Killing vectors of 7. We shall label henceforth in-
dices pertaining to the base space by letters A ... l running from 1 ... 4 
and those pertaining to the fibre by letters lvl ... Q running from 5 ... 10. 
General indices R ... Z run from 1 ... 10. This rule will be applied without 
further warning also to the Einstein summation convention. 

We consider more general metrics 7 which are solutions of the Einstein 
equations (3) and keep the six Killing's vectors with unaltered commutation 
relations on each fibre, 

[Ap, Aq] = c1;fq AM. (5) 

The structure of the principal fibre bundle P and of the subgroup H on 
the fibres thus still exists. In the space perpendicular to the AM there exist 
four orthonormal vector fields AE with the unaltered commutation relations 
of the group G: 

(6) 

only the commutation relations: 

(7) 

are modified to base point dependent general structure constants. 
The metric 7 defines a connection on P with horizontal vectors AE per­

pendicular to the fibre. The generalized structure constants c;JH, c~H de­
termine respectively curvature and torsion two forms over the base. The 
topology of the base remains that of the anti- De Sitter universe, but the 
metric g = Jr

1
/ is now generalized. 

The construction constitutes a generalized classical Kaluza-Klein theory 
with a gauge field pM which is determined by the c;JH. The geometry on the 
base is non-Riemannian. The torsion two-form is in general not vanishing. 
The gauge group H is a pseudo orthogonal subgroup of G L( 4, JR) which 
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allows the decomposition of the connection into a R iemannian part and 
contortion, 

fH EF = { ~~} - K:!p, (8) 

K:!F = ~ (rlfF + TFEH +Tel) (9) 

with T the torsion tensor. 
The components of the curvat ur,:, tensor F of the two form pH can 

likewise be decomposed: 

Q r.· r.- r.· r.·H r.· r.·H 
AEIJ = 11.AEI;J - 11.AEJ;l + 11.AHI 11.EJ - 1\AHJ 1\El 

(10) 

(11) 

with the Riemann tensor B and contortion K. The semicolon denoting the 
Riemannian covariant derivative. 

Such a decomposition cannot be achieved with the full G L( 4, JR) as gauge 
group. The assumptions about Riemannian curvature found in the literature 
[7] in connection with this gauge group can thus in general not be right. See 
ref. 6. 

The purely vertical component of the ten-dimensional equation (3) is 
eliminated with Lagrange multipliers to restrict only to such solutions for 
which the natural metric on the fibres is preserved and the Planck length 
(in units with 1i = c = 1 the square root of the gravitational constant G) is 
introduced on the base manifold as physical unit of length instead of that of 
the radius of the universe. The theory cannot yield a relationship between 
these two lengths without altering the topology of the manifolds. 

The mixed horizontal-vertical components of equation (3) are 

F A J 
HI ;J = 0 

this becomes if torsion vanishes 

BAH! {1 = 0 

and due to the Bianchi identities: 

(12) 

(13) 

(14) 

related by Yang to a gauge theory of GL(4,IR) [7]. The absence of torsion 
which can in this case not be separated, is not accounted for in Yang's 
paper and equation (14) alone also admit unphysical solutions. Yet the term 
(12) is the Riemannian analog of Maxwell's equations. It is supplemented in 
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equation ( 11) by a source formed out of torsion and by the purely horizontal 
components of equation (3), 

B I 3GF F'AHDI 1 s:I (B 3GF F'AHDJ + 1) _ 0 E - 2 -' AH DE · - 2° E - 4 AH DJ - (15) 

We are inclined to relate the torsion term of equation ( 12) to a nonmi­
nimal interaction of torsion with elementary particle spin. Equation (13) 
admits all vacuum solutions of general relativity. Equation (14) consists of 
the Einstein's term with cosmological member and the energy-momentum 
tensor of the Yang-Mills field, which can be decomposed again into me­
tric curvature and torsion; it is of vanishing trace. Vanishing torsion leaves 
this term bilinear in the metric curvature -- apparently an additional vac­
uum energy of virtual matter fields which remains small with the curvature. 
The real field part is bilinear in Q and the term linear in B and Q con­
stitutes the nonminimal interaction which can give rise to particle creation 
by gravitation, the Schrodinger phenomenon, of which even the virtual part 
appears. Einstein's request for the geometric expression of the. matter ten­
sor is fulfilled - yet as its vanishing trace shows, the model describes only 
very special matter. The spherically symmetric vacuum solutinn of general 
realtivity satisfies also equations (12,13,14) but other solutions of Einstein's 
theory in general do not, due to the nonlinear term. 
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Abstract. In the first part we review the construction and classification of classical W 
(super)algebras symmetries of Toda theories. The second part deals with recently obtained 
properties. We show that chains of W algebras can be obtained by imposing constraints on 
some W generators. We call secondary reduction such a gauge procedure on W algebras. 
Then we emphasize the role of the Kac-Moody part, when it exists, in a W (super) 
algebra. Factorizing out this spin 1 subalgebra gives rise to a new W structure which we 
interpret either as a rational finitely generated W algebra, or as a polynomial non linear 
W 00 realization. 

1. Introduction 

W algebras constitute today a rather broad subject: on the one hand they 
play a role in different parts of 2 dimensional Conformal Field Theories 
(CFT), on the other hand much has still to be done for a complete knowl­
edge of these algebras and their algebraic properties. First it was thought 
that they can be used to facilitate the analysis of rational CFT (i.e. theo­
ries in which the main parameters, namely central charge c and conformal 
dimensions h; are all rational numbers): this extra symmetry, bigger than 
the conformal one, could help to characterize degeneracies, and to classify 
in a simpler way the physical states. After that it was realized that they 
show up in several places. We currently talk nowadays about W gravity. W 
algebras appear in the quantum Hall effect, black holes models, in lattice 
models of statistical mechanics at criticality, and in Toda models (Leznov 
and Saveliev 1989) as symmmetry algebras (Feher, O'Raifeartaigh, Ruelle, 
Tsutsui and Wipf 1992). 

After some definitions (Section 2), we will concentrate on classical W al­
gebras and superalgebras which are finitely generated -we generically denote 

• Groupe de Lyon, ENS Lyon, 46 Allee d'Italie, F-69364 Lyon Cedex 07, France. 
Groupe d'Annecy, LAPP, BP 110, F - 74941 Annecy-le-Vieux Cedex, France. 
Groupe d'Annecy. 
Groupe de Lyon and groupe d'Annecy. 
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them Wn-· Two remarkable facts can then be mentioned (Section 3): 
-i) The constants of motion of a Toda theory form a Wn algebra, and such 

a Toda theory can be seen as a gauged WZW model, on which.constraints 
have been imposed (Feher, O'Raifeartaigh, Ruelle, Tsutsui and Wipf 1992). 

-ii) As a consequence, one can explicitly construct such Wn algebras, and 
give a group theoretical classification of them (Frappat, Ragoucy and Sorba 
CMP 1993). 

Two comments: 
- this classification is based on the Sl(2) embeddings in a simple Lie 

(super)algebra g and on the 0Sp(ll2) embeddings in a simple superalgebra. 
SQ. We will try to insist on the property of Sl(2) to be intimately linked 
to a Wn algebra from its definition: this is important for our construction, 
but also allows to think that the classification of Wn algebras symmetries 
of Toda models hereafter given is "not far" from exhausting the set of Wn 
algebras. 

- there are two main types of Wn algebras: those that we will call the 
Abelian ones because they are related to Abelian Toda. models: for example, 
if the underlying group of the Toda model is Sl( n ), one gets the algebra. 
generated by W2, W3, ... Wn. 

There is a second type of Wn algebra, less well-known: they arf! associated 
to non Abelian Toda models (Leznov and Saveliev 1989), and we call them 
non Abelian Wn algebras, and we will come back to this class of algebras. 

The above classification can be simplified using two interesting features, 
directly suggested by properties of simple Lie algebras a.nd superalgebras, 
namely: 

- deduction of Wn algebras related to non simply laced algebras Bn, Cn ... 
from Wn algebras related to An series by "foldings" (Frappat, Ragoucy and 
Sorba NP 1993) analogous to the folding technics which produce Bn, Cn ... 
algebras from An ones (Section 4). 

- existence of chains of Wn algebras mimicking chains of embeddings of 
subalgebrM in a simple Lie Algebra. (Delduc, Frappa.t, Ra.goucy and Sorba. 
1994). Imposing constraints, when possible, on a the W algebra itself, one 
can reduce W into another algebra W: we will call this technics a secondary 
reduction (Section 5). 

Finally coming back to the non Abelian Wn algebras, one can remark 
that most of them contain a Kac Moody part. Such a Kac Moody subalgebra 
should play a particular role. In particular, we will see that factorizing out 
this "spin one" part in the Wn algebra gives rise to a.n algebra. which can be 
seen either as an W 00 algebra, that is a.n infinitely generated W algebra., or a.s 
a. finitely generated W algebra but of a. new type; we will call it "rational" Wn 
algebras (Delduc, Frappat, Ragoucy, Sorba. and Toppan 1993). This problem 
as well as its supersymmetric generalisation is the subject of Section 6. which 
ends up by a. comparative study of the factorizations of spin 1/2 fermions 
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and spin 1 bosons in a W algebra. 
We have chosen to illustrate each property which is introduced on an 

example instead of presenting general proofs. We hope that this approach 
will make the reading as easy for the non experts as for those familiar with 
W algebras, these last ones being invited to directly go to the three last 
sections. 

2. Definitions 

We know from d = 2 CFT that the stress energy tensor has a short-distance 
O.P.E. of the form, with z, w complex variables: 

2T(w) 8T(w) c/2 
T(z).T(w)= ( )2 + ( )2 + ( )4 + ... z-w z-w z-w 

Expressing T(z) into Laurent modes 

T(z) = L z-m-2 Lm, 
mEZ 

(2.1) 

(2.2) 

the integral being understood around the origin clockwise, we have the C.R. 
of the Virasoro algebra: 

[ 
c 2 

Lm, Ln] = (m - n)Lm+n + 
12 

m(m - 1)8m+n,O· (2.3) 

Note that {L+i,L-i,Lo} generate an S/(2,R) algebra, while c is the central 
charge. 

In a CFT, primary fields are those which transform as tensors of weight 
( h, Ti) under conformal transformations: 

z-+ w(z), z-+ w(z) 

(
dw)h (dw)ii <f>~,h(z,z) = </>h,T. (w(z),w(z)) dz dz (2.4) 

T(z) being the generator of local scale transformations, one gets the O.P.E., 
after restricting to the z-part: 

h<f>h(w) o<f>h(w) 
T(z).<f>h(w) = ( )2 + ( ) + ... z-w z-w 

(2.5) 

his called the conformal spin of the primary field <f>h(z). One can deduce 
from eq. {2.5) the CR 

[Lm,<f>h(z)] = (m + l)hzm<f>h(z) + zm+1o</>h(z). (2.6) 

Now let us add to the Virasoro algebra some primary fields. With some 
precautions, we can obtain a W algebra. 
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As an example, let us consider the N = 1 superconformal algebra: it is 
made from the (conformal spin 2) stress energy tensor T(z) and a conformal 
spin 3/2 fermionic field G(z). Developing T(z) and G(z) in Laurent modes: 

G(z) = E z-3/2-r Gr (2.7) 

with r E Z or r E Z +!following we ate in the Ramond or Neveu-Schwarz 
sector, we get the (anti) C.R.: 

I 
[Lm,Gr] = (-m - r)Gm+r 

2 

{Gr, Ga} = 2Lr+a + i(r2 
- 1/4)Dr+a,O (2.8) 

We have a W (super)algebra. It is specially simple since it closes linearly 
on the generators Lm and Gr. Let us add two remarks which will be releva.nt 
for the future. 

First { L+l, L_i,Lo,G+i;2,G_1/2} generate the 0Sp(ll2) superalgebra, 
that is the "sµpersymmetric" Sl(2) extension. In the following 0Sp(lj2) will 
play for Wn superalgebras the role of Sl(2,R) for Wn algebras. 

Secondly {G±i/2} constitutes a spin 1/2 representation of the algebra. 
{L±1, Lo}. More generally (Bowcock and Watts 1992) ifWh(z) is ah primary 
field under T(z) the modes Wn with -h + 1 ~ n ~ h - 1 will form a spin 
(h- 1) representation of {L±i.Lo}· 

The above definitions and properties stand for the above OPE to be 
radially ordered. We will relax this last feature in the following and restrict 
ourselves to .the classical case. 

Then a classical finitely generated Wn algebra will be defined as a Lie 
algebra with a Poisson bracket {,}P.B., and a. set of genera.tors involving a 
stress-energy tensor T as well as a finite number of primary fields Wh;(i = 
1,. .. n - 1) under T satisfying: 

{T(z),T(w)}P.B. = -2T(w)c'(z-w)+8T(w)c(z-w) 

+~c"'(z - w) (2.9) 
2 

{T(z), Wh;(w)}P.B. = -hiWh;(w)c'(z - w) + oWh;(w)c(z - w) (2.10) 

{Wh;(z), Wh;(w)} = E~.;;a(w)c<a>(z - w) (2.11) 
Q 

where Pi,j;a( w) a.re polynomials in the primary fields Wh;, T and their deriva­
tives. 

Let us remark that the property of a. primary field Wn of conformal spin h 
to be connected to the representation Dh-t of the Sl(2,R) algebra. {Lz,Lo} 
limitates through the tensorial product Dh;-l x Dh;-l the allowed conformal 
spin of the ~.j;a polynomials. 
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s. From a WZW model to a Toda theory 

3.1. THE METHOD 

301 

It has been elegantly shown that, starting from a WZW model, the action of 
which is S(g) and the fields g( x) belong to the group G, and imposing some 
of the components of the conserved currents to be constant or zero leads to 
a Toda model (Feher, O'Raifeartaigh, Ruelle, Tsutsui and Wipf 1992). 

Let us denote Swzw(g) the action of the WZW model based on a real 
connected Lie group G, and g E G. Then from the Kac-Moody invariance 
G1 X G2 with G1 ~ G2 ~ G of the model 

(3.1) 

with x = ( x+, x-) denoting the two-dimensional variable, we get the cur­
rents: 

(3.2) 

which, due to the equations of motion, are conserved: 

(3.3) 

In order to perform the gauge theory approach which will be relevant, 
we need G to be non compact: let us consider as an example the Sl( n, R) 
group. We decompose its Lie algebra 9 as follows: 

(3.4) 

where 9+(9-) is the subalgebra of positive (negative) root generators and 
1t the Cartan part, i.e.: 

(3.5) 

Note that the generators Ea,( i = 1...n-1) associated to the (positive) simple 
roots a.re in the positions Ei2, E23, ... En-1,n in the above matrix, while E-a; 
occupy the position E21, ... ,En,n-1 (Ei; being the n X n matrix with 1 in 
position (i,j) only). 

The basic idea is to impose constraints on some components of these J± 
currents. Let us impose the restriction of J_ to its{]_ components to be: 

n-1 n 

1-lg_ = M_ = L µiE-ap 
i=l 

1+19+ = ~viEa; 
1=1 

(3.6) 
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with µ; and v; real positive constants. 
Such constraints can be obtained as a part of the equations of motion of 

a new model resulting from a Lagrange multiplier treatment on the WZW 
action. More precisely, it is a gauge theoretical approach involving as gauge 
group the (non compact) part G+ in G1 and G_ in G2, associated to the 
Lie g subalgehra v+ and g_ respectively with elements 9+(x) E G+ and 
g_(x) E G_ which will lead to the Euler equations (3.3) and (3.6). The use 
of the local Gauss decomposition 

r 

g = 9+ · h · 9- with h(x) =exp "L,</>;(x)H; (3.7) 
i=l 

provides in the Euler equations the differential equations of the Toda theory 
based on the group G, the </>;'s being the corresponding fields. 

8+8-</>; = µ;v; exp "L, K;j</>j (3.8) 
j 

where K;j is the Cartan matrix associated to the Lie algebra g of G. 
Two remarks can he made at this point. 
i) The above G Toda theory involves r = rank g fields in one-to-one 

correspondence with the Cartan part 1i of g, and it is usually called the 
"Abelian" Toda theory on {i. 

ii) The above construction actually involves the principal Sl(2) suhalge­
bra of g with generators: 

r 

H = E K'iHj 
i,j=l 

r 

E_ = "L,E-a, 
i=l 

r 

E+ = "L, Kij Ea; 
i,j=l 

(3.9) 

(note that a rescaling in Eq.(3.6) allows to take all the µ; = 1; K'i is the 
inverse Cartan matrix). 

Moreover the currents J_ (resp. J+) are not invariant under the gauge 
transformations generated by the constraints (3.6). Focussing on J_, these 
transformations read: 

J_(x_) ~ Jf!_(x_) 

= 9+(x_)J_(x_)9+(x_)-1 + 8_9+(x_) · 9+(x-r1 (3.10) 

where 9+(x_) E G+. This will allow to bring the currents to the gauge-fixed 
form: 

JB = M_ + "L,Wi+i(J)Mi (3.11) 
j"?_O 

where the Wj+l are polynomials in the currents J_ and their derivatives 
8'.:. J _. In the so-called "Drinfeld-Sokolov highest weight gauge" each gen­
erator Mj is the highest weight in the Sl(2)ppal representation Vj space 
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obtained by reducing with respect to Sl(2)ppal the Lie algebra Q: considered 
as a vector space, g writes 

(3.12) 

with Dj of dimension {2j + 1). The Poisson brakets among the Wj's can be 
obtained from the Poisson-Lie algebra satisfied by the current components: 

{J':..(x-), J~(x~)}PB = if~b J':_(x~)6(x_ - x~) + koabo'(x_ - x~)(3.13) 

where Jgb are the structure constants for a given basis of Q. 
Then each Wj+i is associated to a Dj and its conformal spin is (j+ 1) with 

respect to the stress energy tensor itself relative to the D1 representation 
spanned by the generators of Sl(2)ppal: 

with 

T =To+ trH.oJ 

1 
To= -tr(J.J). 

2k 

(3.14) 

{3.15) 

Note also that each Wj+t can always be seen as a primary field with 
respect to T, after adjunction of an extra term in the J's and derivatives. 

Before going to examples, let us remark that, in this approach, a classical 
W-algebra is a subalgebra of the enveloping algebra of (3.13), itself symme­
try of a WZW model: the constraints reduce the symmetry in such a way 
that only some polynomials in the Ja•s and their derivatives generate the 
residual symmetry. 

3.2. EXAMPLES 

Let us take for g the Sl(3) algebra. The Abelian Toda theory is obtained 
bylimposing on the J currents the constraints: 

[ 

'Pt <p3 <p4 l leading by the [ O T W3 l 
J_ = 1 <p2 'fis gauge action of J~ = 1 0 T (3.16) 

0 1 -r.p1 - 'fi2 Y+(x_) E G+ to 0 1 0 

Involving Sl(2)ppal generated by: 

(
000) (010) E_ = 1 0 0 E+ = 0 0 1 
0 1 0 0 0 0 

( 
1 0 0 ) 

H = 0 0 0 
0 0 -1 

g decomposes under the (adjoint) action of Sl(2)ppal as: 

g I 81(2) = Di ED D2 

(3.17) 

(3.18) 



304 F. DELDUC, L. FRAPPAT, E. RAGOUCY AND PAUL SORBA 

to which are associated resp. with the spin 2 and 3 quantities T and Wa 
generating the well known Zamolodchikov (Zamolodchikov 1985) {T, Wa} 
algebra. 

But still with S/(3) there exists another kind of constraints which allows 
for a similar treatment of the WZW model. It reads 

J_ = [ il :: :: l 
0 '{)6 -<p1 - <p2 

(3.19) 

Now the Sl(2) subalgebra which is involved is the following: 

(
000) (010) E-a1 = 1 0 0 E+a1 = 0 0 0 ( 

1/2 0 0) 
H = 0 -1/2 0 (3.20) 

000 000 

with respect to this S/(2), g decomposes as: 

9 = Di. EB D1;2 EB D1;2 EB Do 

and the gauge invariant matrix current takes the form: 

[

W1 W2 W3j2 l 
J! = I W1 0 

0 W3/ 2 -2W1 

0 0 0 

(3.21) 

(3.22) 

The algebra {W2, W3j 21 W3/ 2, W1} is usually called the classical Bershad­
sky algebra (Bershadski 1991). It is the symmetry algebra of the. "non 
Abelian" Toda model constructed from the S/(2) algebra defined in (3.20). 

There are only two different S/(2) subalgebras in S/(3); therefore we 
have exhausted the different Toda models and the associated W-a.lgebras 
relative to Sl(3). More generally, starting from a simple algebra {l, each 
admissible choice of J components which can be set to constant (i.e. first 
class constraints in Dirac terminology) will correspond to an S/(2) in (} 
and vice-versa. Then to determine all the different W-algebras symmetries 
of Toda theories associated to g, one has first to consider all the different 
Sl(2) in Q. (This mathematical problem ·has been solved by Dynkin). In 
each case, the decomposition of g with respect to Sl(2) representations will 
provide the conformal spin of the associated W algebra (Frappat, Ra.goucy 
and Sorba CMP 1993). 

Supersymmetric Toda theories can also be consi<kred. A supersymmet­
ric treatment of the wzw models, based on simple superalgebras sg has 
to be done, constraints being written in" a superspace formulation (Delduc, 
Ragoucy and Sorba 1992). Then S/(2) is replaced by its supersymmetric ex­
tension 0Sp(ll2). The classification of 0Sp(ll2) subsuperalgebras in simple 
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superalgebras followed by the reduction for each SQ of its adjoint representa­
tion with respect to each 0Sp(ll2) subpart provide the conformal superspin 
content of the W superalgebras symmetries of Super Toda theories (Frappat, 
Ragoucy and Sorba CMP 1993). 

From such a classification, general properties of the W (super)algebras, 
allowing a simplified and synthetic overview, can be deduced: this will be 
the object of the two next sections. 

4. Folding the W (super)algebras 

Using the properties of a non simply laced simple algebra to appear as a 
subalgebra of SI( n) after a suitable identification of SI( n) simple roots, one 
can obtain W algebras related to B-C-D series from W algebras related 
to unitary ones (Frappat, Ragoucy and Sorba NP 1993). Let us give an 
example, based again on the Sl(3) group. Its Dynkin diagram (DD) is : 

0--0 
(4.1) 

a1 and a2 representing the simple roots, to which are associated the gen­
erators Ea1 and Ec.2 • It is known that the transformation r such that: 
r( ai) = a; i I: j = 1, 2 which is a symmetry of DD can be lifted up 
to an (outer) automorphism on the Lie algebra of Sl(3) by defining: 

f{E±aJ = E±r(a;) i = 1,2 (4.2) 

with 

f[Ea0 E-a;] = r(ai)H (4.3) 

The Sl(3) subalgebra (i invariant under f is then generated from: 

E±a1 + E±a2 (4.4) 

That is, by "folding" the root a 1 onto a 2 , Sl(3) reduces to the Lie algebra 
gF of the (non compact) 3 dimensional orthogonal group: 

0--0 0 
(4.5) 

On the 3 X 3 matrix representation, where Eai is identified with E12 and 
Ea2 with E23, it will result that from the g matrices M = mii Ei;, mii being 



306 F. DELDUC, L. FRAPPAT, E. RAGOUCY AND PAUL SORBA 

real numbers satisfying the traceless condition D=t m" = 0, one obtains a 
representation of gF by imposing the conditions: 

mii = {-l)i+i+lm4-j,4-i (4.6) 

Identifying in the Abelian Toda theory on Sl{3) the Ja current compo­
nents as in ( 4.6), it is not a surprise to get, by Hamiltonian reduction: 

J~1{3) = ( ~ ~ ~3 ) =? J~0(3) = ( ~ ~' ~') {4.7) 
0 1 0 0 1 0 

as can be expected in a rank 1 algebra. 
Of course, this simple example can be generalized, the foldings of A2n-1 = 

Sl(2n) and A2n = Sl(2n + 1) providing the symplectic Cn = Sp(2n) and 
Bn = S0{2n + 1) algebras respectively. If one notes that S0{2n) can be 
obtained from S0{2n + 1) by a regular embedding, one realizes that the W 
algebras associated to the An series can be "folded" into the W algebras 
relative to the other infinite series {note also that for the exceptional cases, 
the G2 ones can be deduced from D4 = S0{8) and F4 W-algebras from the 
E6 ones). The same procedure can be applied to superalgebras {see (Frappat, 
Ragoucy and Sorba NP 1993)). 

An useful consequence of this technics is to get identities betw<->en struc­
ture constants of W-algebras relative to different simple algebras: denoting 
by ct the general structure constant of the "fusion rule": 

[W;] · [Wj] =Di/[!]+ ct(g)[Wh] 
2 

We have as examples, in the Abelian case: 

Ci~(Dn) = C~(A2n) i,j, k ::/= ri 

C~(Cn) = C~(A2n-i) C~(Bn) = C~(A2n), 

(4.8) 

(4.9) 

(4.10) 

such relations being sometimes precious, due to the difficulty to obtain ex­
plicit commutation relations. 

5. Secondary reductions 

Let us consider again g = SL(3) and the two W-algebras which can be 
constructed, via Toda theories, from such an underlying simple algebra; 
they are the Zamolodchikov algebra {T, W3} and the Bershadsky algebra 
generated by {W2, W3j 2, W3/ 2, W1}. The corresponding J9 matrices read 
{see Eq. (3.16) and {3.22)): 

(

0 T W3) 
Jibe1 = 1 0 T 

0 1 0 
(5.1) 
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One remarks that the constraints imposed in the Non Abelian case 

(5.2) 

form a subset of the constraints corresponding to the Abelian case: 

{trJ_ · E-0ti = trJ_ · E_0t2 = 1; trJ_ · E-(0ti+0t2 ) = 0} {5.3) 

It is time to give explicitly the P.B. of the Classical Bershadsky algebra: 
let us, for convenience, make a little change in the notations and denote W1 
by J and W2 + tJ · J by T. 

{J(z),J(w)} = -~co'(z - w) 
2 

± 3 ± {J(z), W31iw) = ±2w312o(z - w) 

{T(z), W~iw)} = -;W~2(w)o'(z - w) + 8W±(w)8(z - w) 

{T(z), J(w)} = -J(w)o'(z - w) + 8J(w)8(z - w) 
{T(z),T(w)} = -2T(w)o'(z - w) + OT(w)o(z - w) 

+.:om(z - w) 
2 

{W3j 2(z),W3/ 2(w)} = 2J(w)o'(z-w)-co"(z-w)+ 

+(T - .!_J2 - 8J)(w)8(z - w) 
3c 

{W3']2(z), W~2(w)} = 0 {5.4) 

The last relation, which expresses the nilpotency of W3j 2 (and Wj/2), 

allows to consider the constraint 

(5.5) 

as a gauge constraint (first class constraint). 
With the help of J(z), it is possible to redefine the energy momentum 

tensor T in such a way that the constraint becomes conformally invariant, 
that is, shifting T into 

(5.6) 

w3f2 behaves as a spin 0 field: 

{T(z), W3/ 2(w)} = 8W3j 2(w)8(z - w) 

'.::::'. 0 using Eq.(5.5) (5.7) 
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Then one can look at the reduced W algebra obtained by constructing the 
polynomials invariant under the gauge transformations associated to W3f 2· 

Therefore, let us consider the finite gauge transformations on the currents: 

X(w)-+ X(w) 

= X(w) + j dz a(z){W3f2(z),X(w)} 

+~ j dz dz'a(z)a(z') { W3f2(z), {W3/ 2(z'),X(w)}} 

+... (5.8) 

where X = J, T, W:3j2, the constraint (5.5) being used on the r.h.s. of the 

P.B., following Dirac prescriptions on constraints ("weak equations"). Then 
the J current transforms as: 

J(w) = J(w) + j dz a(z){W3f2(z), W1(w)} + 0 

since 

{W3/ 2(z),J(w)} '.::: G6(z - w)) 

that is: 

A 3 
J(w) = J(w) + -o:(w) 

2 

Then, it is clear that a global gauge fixing is given by 

J(w)=O 

that is, by taking: 

2 
0: = --J 

3 

It follows for T: 

T(w)-+ T(w) = T(w)- ~ j dz· o:(z) · 6'(z - w) + 0 

3 = T(w) + -80: 
2 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

= T - 8J (5.14) 

as expected from Eq.(5.6) ! 
In the same way: 

W+ w· + 2 2 8 s a 2c 2 
a/2-+ a= Wa/2 + -J · T + -J · J - -J - -8 J 

3 3 2k 3 
(5.15) 
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the notation W3 being justified by the property of W3 to behave as a spin 3 
field under T. 

At this point, it is not a surprise to realize that the T and Ws quantities 
generate a (algebra isomorphic to) Zamolodchikov algebra. 

The above illustrated method with W algebras based on g = SL(3) can 
be applied to any simple algebra g up to some obvious technical difficulties. 
Starting from the weakest constraints and adding new ones on a W algebra 
relative to some Lie algebra (i, one can then obtain chains of W algebras, 
the "smallest" one being relative to the Abelian Toda case (highest number 
of constraints). As could be expected by Lie algebra experts, there also exist 
cases with g non simply laced, i.e. Bn or Cn, for which such a secondary 
reduction towards the Abelian case cannot be obtained. Finally, in the same 
way one gets Toda equations by gauging W ZW models, a gauging of the 
Toda action in which a (Non Abelian) W algebra stands as the current alge­
bra of the theory could be performed, leading to a new (more constrained) 
Toda action. Such an approach for a generalized gauge Toda field theory, 
as well as a more complete discussion on secondary reductions will soon be 
available (Delduc, Frappat, Ragoucy and Sorba 1994). 

6. Rational W algebras 

6.1. COMMUTANT OF THE SPIN 1 PART 

Now let us turn our attention to the particular role of the spin one part, 
when it is present, in a W algebra. One can easily check, by dimensional 
arguments, that these fields generate a Kac-Moody algebra W1• Moreover 
the set of W generators decomposes into irreducible representations under 
the adjoint action of this Kac Moody algebra. Let us study what happens 
when factorizing out the spin one part in a W algebra, that is by computing 
the commutant in W of the W1 Kac-Moody subalgebra (Delduc, Frappat, 
Ragoucy, Sorba and Toppan 1993). 

Most of W algebras as.sociated to Non Abelian Toda theories contain 
spin-one fields. Let us perform our calculations on the Bershadsky algebra 
already considered in the previous sections (see in particular Eq. (5.4)). 

First, by the following shift on T, 

t = T- !_J2 

3c 

one gets the P.B.: 

{T(z), J(w)} = 0 

{T(z), W±(w)} 

{W+(z), W_(w)} 

= _!w±(w)o'(z - "') + (VW±)(w)o(z - w) 
2 

= (T- cV2)(w)o(z - w) 

(6.1) 

(6.2) 
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while T satisfies the usual Virasoro P.B.: 

{T(z),T(w)} = -2T(w) c'(z -w) + af'(w)c(z-w) + :c111(z- w)(6.3) 
2 

In the above equations, one has used the covariant derivative D such that 

1 
DW± = (8 =F -J)W± (6.4) 

c 

while the b 2 showing up in the r .h.s. of {W +, W _} is relative to w. The 
appearance of a covariant derivative may open new perspectives in the field 
of integrable models. It is here particularly convenient in order to construct 
the commutant of J. Indeed the set of fields commuting with J is generated 
by the stress energy tensor T and the bilinear products: 

W(p,q) = (DPW+)(DqW_) (6.5) 

with p, q non negative integers. 
Actually, the fields W(p,q) and T are the building blocks from which one 

can construct an infinite tower of primary fields of spin 3,4, ... 

W3 W+W-

W4 = W+DW_ - W_DW+ 

for n>2 (6.6) 

these fields being created by the P.B. of fields of lower conformal spin, for 
ex.: 

and so on. 
At this point, one may say that by looking at the commutant of the spin 

one generator J in the Bershadsky W algebra, one has obtained a polynomial 
non linear W 00 realization. 

But the primary fields W3+n with n 2:: 2 are not independent, and can 
be expressed as rational -and not polynomials- functions of T, W3, W4: for 
example Ws can be written in terms of W3 and W4 as follows: 

(6.8) 

Therefore, the commutant of J exhibits a new structure with respect to 
the standard W algebras, which can be seen either as a rational finitely 
generated W algebra or as a polynomial non linear W 00 realization. 

The above example is the simplest one exhibiting such a structure. Of 
course a general approach with a non Abelian W1 part can be performed 
(see (Delduc, Frappat, Ragoucy, Sorba and Toppan 1993)). 
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6.2. SUPERSYMMETRIC EXTENSION 

The supersymmetric extension of this problem can be considered in an anal­
ogous way. Again, let us illustrate the method on an example, the N = 3 
superconformal algebra SC(N = 3) generated by a spin 2 generator T(z), 
3 spin! components G~12 (a= 1,2,3), 3 spin 1 elements Ja(z), constitut-

ing an S/(2) Kac-Moody algebra and a spin ! fermion t/J(z). The C.R. in 
the classical case can be deduced from the formulas (15) of (Goddard and 
Schwimmer 1988), in which we identify the O.P.E. with the P.B. and the 
singular terms (z-tw)k with (-l)k-l (k2l)!c(k-l)(z - w). After defining: 

a±(z) = ~(G1 ± iG2)(z) and J±(z) = ~(J1 ± iJ2 )(z) 
G°(z) = G3(z) J0(z) = J 3(z) 

(6.9) 

we will adopt the superfield formalism (Delduc, Ragoucy and Sorba 1992) 
and define: 

T<z) = ! G°( z) + 8T(z) 
..r±(z) = ±J±(z) + 8G±(z) 
if>(z) = t/J(z) + 8J0 (z) 

using the supervariable notations: 

of superspin 
of superspin 
of superspin 

~ 
1 
1 
2 

Z=(z,8), W=(w,17) and Z-W=z-w-817 

(6.10) 

(6.11) 

then the P.B. can be "compactly" written as (keeping in mind from above 
that: J~w = (8 - 17)c(Z - W):::::: c(Z - W) and so on for their derivatives, 
and the O.P.E. being in place of the P.B.): 

T(Z) · 0,,(W) = 8 - 17 1 D8,,(W) 
8 (Z - W)2 e,,(W) + 2 Z - W 

(J - 17 + z _ w ae,,(w) + ... (6.12) 

if 0,,(W) denotes the superspin ..1±(W) or if>(W) of superspin s = 1 or !, 
and as usual: D = a,, + 1J8w 

T(Z)T(W) = ~ 8 - 17 T(W) + ~ DT(W) + !....=!!_aT(W) 
2 ( Z - W)2 2 Z - W Z - W 

cl6 
+(z ~ W) + ... 

( ) ±( ) 8 - 17 ± if> Z ..1 W = ± z _ W ..1 (W) + ... 
c/3 

if>( Z)if>(W) = Z - W + ... 
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- 0-~ 1 0-~ 
.J+(z).J (W) = - (Z - W)2 iP(W)- z - WDiP(W)- z - w8cp 

0 - ~ c/3 
-2z_wT(W)-(Z-W)2+... (6.13) 

We wish to factorize out the superspin ! superfield cp( Z). As in the 
nonsupersymmetric case, we can operate a shift on T( Z) 

To(Z) = T(Z) - :c iP(Z)DiP(Z) (6.14) 

such that: 

To(Z) · iP(W) = 0 (6.15) 

We can expect the covariant derivative of Eq.(6.4) to become: 

(6.16) 

if q is the super U(l) charge carried by the primary superfield, i.e.: 

V.J± = (D =f ~iP).J± (6.17) 
c 

Now the spin 2 superfield W2(Z) = .J+(Z)·.J-(e) is a primary superfield 
under To( Z) in the commutant of IP( Z). The properties above obtained with 
W algebras generalize here with W superalgebras. Computing for example 
the P.B. of W2 with itself one gets: 

c ( 2W2(W) 8W2(W) 0 - ~ 
W2(Z)W2(W) = -3 (Z _ W)2 + z _ W + (Z _ W)2DW2(W) 

+~ 0 
- ~ D8W2(w)) -

36 0 
- ~ (To. W2)(W) 

s Z-W s Z-W 
c 0- ~ 

+a z _ W W112(W) + . . . (6.18) 

where W112(W) is the (new!) 7 /2 superspin primary superfield defined as: 

(6.19) 

6.3. SPIN 1/2 VERSUS SPIN 1 FIELDS 

The superalgebra SC(N = 3) was the first example considered by the au­
thors of (Goddard and Schwimmer 1988) to illustrate their result about the 
factorization of the spin 1/2 part in a superconformal field theory, more pre­
cisely that a meromorphic field theory can be decomposed into the tensor 
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product of a spin 1/2 part and a conformal field theory without spin 1/2 
field. We would like to stress that this property can easily be proved, at least 
at the classical level, by the use of finite gauge transformations already in­
troduced in the previous section (see Eq.(5.8). Indeed, leaving to the reader 
the general proof (which will also be found in (Delduc, Frappat, Ragoucy 
and Sorba 1994)) let us stay with the SC(N = 3) algebra and perform on 
its generators X ( w) the transformation: 

X(w)-+ X(w) = X(w) + j dz o:(z)?/J(z).X(w) + 0 (6.20) 

where '¢( z) is the fermion field (we do not use any more the superfield 
formalism, since we wish to only factorize the '¢( z) fermion and not the 
superspin 1/2 field). 

Owing to the OPE relation: 

,,P(z) · ,,P(w) = ~ 
z-w 

one directly gets, imposing the "gauge fixing": 

o:(w) = -,,P(w) 

the transformed fields (a = 1, 2, 3) 

'¢=0 j T=T-~'¢8,,P j aa=Ga-Ta,,p fa=r. 
2 

(6.21) 

(6.22) 

(6.23) 

In accordance with the results of (Goddard and Schwimmer 1988), the 
O.P.E. among the transformed fields are identical, except for the central 
charge to the ones relative to the non transformed fields, and as expected 
such that: 

T . 'ljJ = (;a . 'ljJ = ja . 1/J = 0 (6.24) 

Note that this gauge transformation can also be done with spin 1/2 
bosons, and leads to the same conclusion (Delduc, Frappat, Ragoucy and 
Sorba 1994). It has also be shown that the action of such a super-Toda model 
can be rewritten as the sum of two terms, one relative to the spin 1/2 part 
and the other to the factorized W part (Ragoucy 1993). 

It is natural to wonder what happens if, instead of performing a gauge 
transformation associated with a 1/2 fermion, one involves a spin 1 field. 
Let us take once more as an example the Bershadsky algebra (see Eq.(5.4)): 
its (simple) Kac Moody generator J(z) satisfies: 

J(z). J(w) = ( 3/2c)2 
z-w 

(6.25) 
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In order to obtain J = 0 in the transformation: 

J(w)-+ J(w) = J(w) + j dz a(z)J(z) · J(w) + ... (6.26) 

We would have to impose a such that 

oa( w) = J( w) (6.27) 

The pathology created by this relation appears in different places. In 
particular, one would get: 

and some trouble to compute, from: 

w± (w) - e±3/ 2a(w)w± (w) 
3/2 - 3/2 

the quantity: 

• + • -
W31iz). W312(w) 

(6.28) 

(6.29) 

(6.30) 

Thus, gauge transformations relative to spin 1/2 fields allow tt:> recover the 
result of Ref (Goddard and Schwimmer 1988), namely the property that spin 
1/2 fermions can be eliminated in a sup.er W algebra, but such a technics 
does not appear suitable for the factorization of spin 1 fields, as could be 
expected from the results presented in the first part of this section. 

Note that the above discussion has to be compared with the factoriza­
tion at quantum level, of spin 1/2 and 1 fields considered in (Deckmyn and 
Thielesmans 1993): the projection used there appears as a quantum version 
of our gauge transformation. 
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Abstract. We study the scattering of Skyrmions at low energy and large separation using 
the method proposed by Manton of trunca\ion to a finite number of degrees of freedom. 
We calculate the induced metric on the manifold of the union of gradient flow curves, 
which for. large separation, to first non-trivial order is parametrised by the variables of the 
product ansatz. 

1. Introduction 

Scattering of solitons in a non-integrable, non-linear classical or quantum 
field theory remains an intractable and difficult problem, however, it con­
cerns one of the most interesting aspects of the nature of the corresponding 
physics. Numerical methods have given reasonable ideas on how the scat­
tering proceeds but they are still unsatisfactory for uncovering the detailed 
dynamics governing the scattering. 

A method has been proposed by Manton (1988) for truncating the de­
grees of freedom from the original infinite number to a relevant finite number 
of variables. The idea first considers the case of theories of the Bogomolnyi 
type, those theories which admit static soliton solutions, usually in the topo­
logical two soliton sector, which asymptotically describe two single solitons 
at arbitrary positions and relative orientations. The configuration at small 
separation contains, in general, strong deformations of the individual soli­
tons and in fact they lose their identity. However the set of configurations 
have the same energy since they correspond to the continuous variation of 
a finite number of parameters, the moduli. Otherwise they could not be 
stationary points of the potential. In general, for solitons corresponding to 
a topological quantum number, the moduli space corresponds to the sub­
manifold of minimum energy configurations within the given topological 
sector. Manton suggests that the low energy scattering of solitons, with ini­
tial configuration on this sub-manifold corresponding to asymptotic, single 
solitons, with arbitrarily small initial velocity tangent to the sub-manifold, 
will self-consistently be constrained to remain on the sub-manifold. Since the 
potential energy is a constant on the sub-manifold the resulting dynamics 

• This work supported in part by NSERC of Canada. and FCAR of Quebec. 
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reduces to geodesic motion on the sub-manifold in the induced metric on 
the sub-manifold from the kinetic term. It is a difficult task to prove such a 
truncation of degrees of freedom in a mathematically rigorous fashion, how­
ever, it does seem intuitively correct. The non-linearity of the theory implies 
the coupling of the degrees of freedom corresponding to the sub-manifold 
with all other excitations through the potential. We are assuming that these 
are negligible. Manton and Gibbons (1986) applied this program with re­
markable success to the case of magnetic monopoles in the BPS limit and it 
has also been applied to vortex scattering in a similar limit (Samols 1992). 

The generalization to the more common situation where the set of static 
solutions correspond to a finite set of critical points proceeds as follows. 
The critical points are typically a minimum energy configuration which is 
essentially a bound state of two solitons, an asymptotic critical point which 
corresponds to two infinitely separated solitons and possibly a number of 
unstable non-minimal critical points of varying energies of the same order. 
These critical points are degenerate with a finite number of degrees of free­
dom. They are connected by special paths, the paths of steepest descent or 
equivalently the gradient fl.ow curves. In this case Manton proposes that the 
dynamics will be constrained to lie on the sub-manifold comprising of the 
union of all these curves. This again is intuitively reasonable. If we think of 
the space of all configurations as a large bag, the bottom surface of the bag 
will correspond to this sub-manifold, and a slow moving marble rolling on 
the bottom will tend to stay there. 

The Skyrme model falls into the second case. We identify the correspond­
ing sub-manifold for well-separated Skyrmions and we calculate the induced 
metric to lowest non-trivial inverse order in the separation from the kinetic 
term. This is the first step towards calculating the scattering of Skyrmions 
in this formalism. 

2. The Skyrme model 

The Skyrme model is described by the langrangian, 

C = 1tr(Ut8µUUflJµU) + 
3
;e2 tr([Ut8µU, ut8vU]2

) 

where U(x) is a unitary matrix valued field. We take 

U(x) E SU(2). 

(1) 

(2) 

The Skyrme langrangian corresponds to first terms of a systematic expansion 
in derivatives of the effective langrangian describing low energy interaction 
of pions. It is derivable from QCD hence lrr and g are in principle calculable 
from QCD. What is even more surprising is that it includes the baryons as 
well which arise as topological solitonic solutions of the equations of motion. 
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The original proposal of this by Skyrme (1961) was put on solid footing by 
Witten (1983). 

The topological solitons, called Skyrmions, correspond to non-trivial map­
pings of 1R3 plus the point at infinity into SU(2): 

U(x): 1R3 + oo--+ 5U(2) = 5 3
. (3) 

But 

1R3 + 00 = 53 

thus the homotopy classes of mappings 

U(x): 53
--+ 53 

which define 

characterize the space of configurations. 
The topological charge of each sector is given by 

N = - 1-jd3x (iiktr(uta.uuta.uutaku) 
2411"2 • J 

(4) 

(5) 

(6) 

(7) 

which is identified with the baryon number. Thus for the scattering of two 
Skyrmions, we are looking at the sector of baryon number equal to 2. In this 
sector the minimum energy configuration should correspond to. the bound 
state of two Skyrmions, which must represent the deuteron. The asymptotic 
critical point corresponds to two infinitely separated Skyrmions. There ex­
ist, known, non-minimal critical points, corresponding to a spherically sym­
metric configuration, the di-baryon solution (Kutschera and Pethick 1985). 
The energy of this configuration is about three times the energy of a single 
Skyrmion. There are also, possibly, other· non-minimal critical points with 
energy less than two infinitely separated Skyrmions (Isler, LeTourneux and 
Paranjape 1991). The scattering of two Skyrmions will take place on the 
union of the paths of steepest descent which connect the various critical 
points. 

3. Skyrmion-Skyrmion scattering 

We consider the scattering only for large separation. In this way we do not 
have to know the structure of this manifold in the complicated region where 
the two Skyrmions interact strongly and consequently are much deformed. 
In the region of large separation the product ansatz corresponds to 

U(x) = U1(x - Ri)U2(x - R2) 
= AiU(x - Ri)A1A~U(x - R2)A2 

(8) 
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where U(x-R1 ) and U(x-R2) correspond to the field of a single Skyrmion 
solution centered at R1 and R2 respectively. The full Skyrme model dynam­
ics implies a deformation of each Skyrmion. This deformation, from a nu­
merical studies, is found to be unimportant already at a separation of 1.5 
fermi (Walhout and Wambach 1991). We will neglect this deformation. 

It remains to calculate the metric on the sub-manifold parametrized by 
the product ansatz. We find the interesting result that the metric behaves 
like 1/d where dis the separation (Schroers 1993). We find the kinetic energy: 

1 . 2 1 • 2 
T = 2M + 2MR1 + 2 MR2 

Atr(AiA1AiA1)- Atr(A~A2A~A2) +Tint (9) 

where 
M= 

47r 100 

r2dr{ ~J; ( ( ¥r )2+ 2 si~; I]+ ~·i~; I [•i~; I+ 2( ¥r )2]}, 
A= (efir)3 j r2drsin2 f (1 + (e/,.)2 (r2 + si~; I)] 

and finally the interesting term 
- 2 2 1 2 411" i . "j • . t 

Tint - 2/11"r;, Fia Fib cr(6 3 - d d3
) Dab(A1 A2) 

where 
1 1 ·1 ·1 1 ·1 1 1·1 Fia = -()i f3a + f3i f3a - Eiab (()b a - f3b a ) 

Ai = a 1 + i {31 
• T 

(al )2 + l/3112 = 1 

(correspondingly for A2 ), and r;, is determined by 
/), 

f(r),...., 2 and d = Ri - R2, d = ldl. 
r 

(10) 

(11) 

(12) 

(13) 

(14) 

The metric can be be obtained from this expression by choosing local coor­
dinates on the product ansatz manifold (R1 ,R2 ,{31,{32) and extracting the 
quadratic form relating their time derivatives. 

The potential (Isler, LeTouurneux and Paranjape 1991) between two 
Skyrmions can be calculated to give 

V
_

4 12 2(1-cos8)(3(n·d)2-1) 
- 7r 11"/), d3 

where 8, n pick out the element of SU(2) given by A1 A~. 
The potential is of higher order than the metric, hence the dominant 

contribution to the scattering at large separation comes only from the metric. 
Thus to leading order we may even neglect the potential, and then the 
problem reduces to calculating the geodesics on the product ansatz manifold. 
We are presently working this out. 
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The material presented in this talk is based on recent work of the au­
thor (done in collaboration with colleagues from the University of Frei burg 
and from the University of Sao Paulo) which has produced new insight 
into the algebraic structure of classical non-linear sigma models as (infinite­
dimensional) Hamiltonian systems [1-5]. After some introductory remarks 
intended to place this line of research into its appropriate context, the two 
main results obtained so far were discussed. The first, valid for general sigma 
models (defined on arbitrary Riemannian manifolds), is the explicit calcu­
lation of their extended current algebra, i.e., the algebra generated, under 
Poisson brackets, by the components of the Noether current referring to a 
given internal symmetry and by the components of the energy-momentum 
tensor; this calculation can be carried out in closed form by introducing 
a single new composite scalar field. The second, valid for integrable sigma 
models (defined on Riemannian symmetric spaces), is the identification of a 
new algebra which, in this class of models, should be regarded as the substi­
tute for the classical Yang-Baxter algebra. To put this result into its proper 
perspective, a brief summary of basic definitions from the theory of two­
dimensional integrable field theories was given, including that of ultralocal 
vs. non-ultralocal models. 
A full presentation will be published in the journal "Resenhas", edited by 
the Instituto de Matematica e Estatistica da Universidade de Sao Paulo. 
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Abstract. A multisymplectic framework for phenomenology like Newtonian mechanics 
or the Maxwell electrodyna.niics is sa.id to be a phenomenologica.l field theory. We con­
sider a vector bundle of exterior forms, in mechanics of dimension 1 + 4n, in electromag­
netism of dimension 4 + 20n. A phenomenologica.l differentia.1 pseudoform fl determines 
four Poincatt!-Ca.rtan subbundles {P} on which 0 is presymplectic, dOIP = 0. This leads 
to twelwe Legendre's transforms among these subbundles, of which two transforms are 
well known. 
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Foreword 

Newtonian mechanics and Maxwell's electrodynamics are phenomenologies 
related to a diverse phenom~na and presented as disconnected in a separate 
courses and textbooks. The one aim of this paper is to exibits a formal 
analogies among them in a framework of multisymplectic geometry. 

We consider a vector bundle E of exterior forms over oriented manifold, 
E ~ {M,vol}. In mechanics dimM = 1 and dimE = dimM + 4n, in 
electromagnetism dim M = 4 and dim E = dim M + 20n. A phenomenologi­
cal (not unique) differential pseudoform non E (vol-dependent) determines 
four Poincare-Cartan subbundles {P}: hamiltonian, lagrangian and two new 
not-named subbundles on which n is presymplectic, P*d!l = 0. This leads 
to twelve Legendre's transforms among these subbundles, of which two are 
well known. 

A field equations of considered bivertical theory for dim M = 1 reduce 
to the Newton equations and for dim M = 4 to the Maxwell equations. 
This unification allows to see analogies. In particular, force field +-+ current, 
the London equation in electromagnetism is an analogy of the harmonic 
oscilator force in the Newton dynamics, one can pose the Kepler problem 
in the Maxwell electrodynamics by formal analogy to the Kepler problem in 
mechanics, etc. 

The present paper is partly based on Diploma Thesis by Magdalena 
Gusiew-Czudiak (1993). Z.O. would like thank Constantin Piron for in­
spiring discussions during 15 years of friendship. 

History. Multisymplectic geometry in a classical field theory was initiated 
by Dedecker in 1953 and was developed in Warsaw by Tulczyjew around 
1968, and by Kijowski (1973), Gaw~dzki (1972), Szczyrba and Kondracki 
(1979). In Chechia by Krupka since 1975. See Kijowski and Tulczyjew (1979). 

Notations. 
A= AE = EBAk is de Rham complex of differential forms on a manifold E, 
:F = A0 . A cocycles are denoted by Z ={a EA, da = O}. 
W = WE = der:F is the Lie :F-module of (one)-vector fields on E, such 
that W" = EBW"k is the Grassmann :F-algebra and graded Lie JR-algebra 
of multivector fields; W"0 = :F. 
Jal= grade a E JN and 'l/J denote an automorphism of Grassmann algebras, 
'lf;a = (-l)iala. 
An inner product is denoted by i E alg(W",EndA). 
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J. AXIOMATIQUE CLASSIQUE 

Vertical distribution and filtration of forms 

Let Ebe fibered over oriented manifold E ~ {M, vol}. Then IJ = 7r'"vol E Z 
is a decomposable cocycle on E. 

Let Ver be the associative distribution of IJ, which is said to be a vertical 
distribution, 

Ver::: VerlJ ={XE W; ixlJ = O} CW. 

There is one to one correspondence between a set of (vertical) distribu­
tions and a set of one-dimensional modules of decomposable forms. We will 
identify 

{E,8} = {E, Ver}. 

DEFINITION 1. Let A be :F-algebra of differential forms on E. A :F-submodule 

Ap:) ={a EA, iza = 0 V Z E Ver"(k+l)}, 

is said to be a submodule of k-vertical forms. The factor module is denoted 
by A[k) ::: A(1o)/ A(k-t) and if a E A then a/(k) E A/ A(k)· 

COROLLARY 2. A(k) /\ A(I) c A(k+I)> A[kJ /\ A[IJ C A[k+IJ and we have a 
filtration of forms 

A(o) C ... c A(k) C A(k+t) C ... C A. 

COROLLARY 3. {A!~)i}/(k - 1)-:/= 0 iff j $ k $ IOI+ j. In particular 

the following implication holds IOI = 1 + IOI ==> 0 n A(o) = 0. 

Let Ver be a F-submodule of a differential one-forms anihilating Ver 

Ver= {a E A1
; a(Ver) = O}. 

DEFINITION 4. A differential form a on {E, Ver} is said to be vertical if 
a E Ver"; Ver"0 =:FE. 

A form IJ is decomposable iff dimE =IOI+ dim VerlJ. 

LEMMA 5. A form a is 0-vertical iff a is a vertical, A(o) = Ver", 

ivera = 0 {:::::} a E Ver". 

LEMMA 6. The following are equivalent 

{ 
fJ E Ver" } 
lfJI = dim Ver {:::::} { 8 is decomposable} 
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Classical field theory 

DEFINITION 7. Let E be a vector bundle over oriented manifold E 2:..+ 
{M, vol}. 

{i) A classical field theory is a triple { E, 8 := 7r* vol, fl}, where fl is a diffe­
rential vol-dependent pseudoform on E such that lfll = 1 + dimM. 

{ii) A subbundle </> of E is said to be a solution of {E,8,fl} if for every 
vector field Z on E, 

</>*8 =/= 0 and </>*izfl = 0. (1) 

{iii} A field theory {E,8,fl} is said to be regular if every integmble dis­
tribution Hor tangent to solutions of equation {1} is complementary to 
Ver, 

Horn Ver= 0 and W =Hor U Ver. 

Comment. The field theory is regular if every solution</> of (1) is transversal 
to Ver and dim</>= IOI. 

A pseudoform fl determine a F-linear map fl : W"l81 --+ A 1 • A pseudo-

form n can be viewed as a retrangular matrix ( di~I E ) x (dim E). 

PROPOSITION 8. Let kerfl c W"l81. Then 

{i) dimkerfl = 1 ==> {E, Ver, fl} is regular. 

{ii} Let {E, Ver,fl} be regular, codimVer =IOI= 1 and let fl be a cocycle 
(so fl is symplectic). Theri dimkern = 1, (==> dimE =odd). 

Comment. If IOI = 1, then a cocycle fl is regular iff dimkerfl = 1. The 
IOI = 1 refers to mechanics and the property to be regular is said to be the 
classical determinism. A symplectic mechanics, dQ = 0 with dimkerQ = 1, 
on jet manifolds of arbitrary order is presented in Thesis by Olga Krupkova 
(1992). 

Example. Regular field theory {E,8,Q} need not imply that dim ker fl= 1. 
Let dimE = 1+4n with a chart {t,qA,vA,pA,fA} and(}= dt. Let n = 
(dPA - fAdt) /\ (dqA - vAdt), then dQ =/= 0, dimkerQ = 1 + 2n and this 
mechanics {E,8,Q} is regular. 

Proof of Proposition 8. An integrable distribution Hor C W tangent to so­
l u tions of field equations ( 1) needs to satisfy two conditions 

O(Hor"181) =/= 0 ( ==> dim Hor ~ IOI + dim( Horn Ver)), 

Hor"181 C ker Q ( ==> dim(HorMI) = ( dirlof or ) ~ dim ker fl) . 
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The last condition imply 

dim ker 11 = 1 ==::} dim Hor ~ IOI. 

It follows that Hor nVer= 0 and dim Hor= IOI = codim Ver, which complete 
the proof of (i). 

Let 11 be a cocycle. Then the associated distribution ker 11 c W is in­
tegrable. If IOI = 1, then Hor= ker11 is integrable and the regularity of 11 
imply that dim ker n = 1. 0 

COROLLARY 9 (Gaw~dzki 1972). Let {E, Ver,11} be regular field theory. 
Then it is sufficient to consider the field equations ( 1) for a vertical vector 
fields only, 

¢/'iver11 = 0 ==::} 4>*iw11 = 0. 

Proof. Let a distribution Hor be as in the proof of Proposition 8. We must 
show an implication 11(Ver A Hor"1 111) = 0 ==::} !l(W A Hor"1111) = 0. This is 
the case if W = Hor U Ver and Hor"(l+llll) = 0. D 

Suhhundles 

DEFINITION 10. Let {E,O,n} be a classical field theory as in definition 
7(i). 

(i) A subbundle ii'<-+ Eis said to be a pre-symplecticfor {E,8,11} ifil' is 
a maximal subbundle anihilating dfl, 

il'*OfO and il'*d11=0. 

A presymplectic bundle ii' is said to be symplectic if a field theory 
{ii', il'*O, il'*11} is regular. A regular cocycle il'*11 is said to be a sym­
plectic form on {ii', il'*O}. 

(ii) A subbundle P <-+ ii' <-+ E is said to be the Poincare-Cartan subbundle 
(exact presymplectic) if Pis a maximal subbundle on which n is exact, 

P*O f O and P*fl = do:. 

A presymplectic potential a is said to be the Poincare-Cartan form. 
If a field theory { P, P*O, do:} is regular then a is said to be -0 regular 
Poincare-Cartan form. 

(iii} A subbundle C '-' ii' '-' E is said to be a lagrangian for { E, 8, n} if C 
is a maximal subbundle anihilating 11, 

C*O f 0 and C*11 = 0. 
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(iv) A subbundle .J <-+ P <-+ W <-+ E is said to be the Hamilton-Jacobi 
bundle if .J is a maximal subbundle on which a Poincare-Cartan fqrm 
is exact, 

.J*8 :f 0 and .J*a = dS. 

A potential S is said to be the Hamilton-Jacobi form, ISi = fOl -1. The 
equations in (iii-iv) are said to be the Hamilton-Jacobi equations. 

A Poincare-Cartan form strictly speaking is vol-dependent and therefore 
is a pseudoform. 

On presymplectic subbundle w•n is a cocycle, the action integral is well 
defined (see e.g. Oziewicz 1992) and a field equation of definition 7 (ii) is 
the Euler-Lagrange equation. 

A (pre )symplectic W and Poincare-Cartan P sub bundles are known as a 
phenomenological material relations, p = mv, Kepler problem fA = -q-3qA, 
D = t:oE, B = µoH, London equation Jµ =Aµ, etc. 

Jacobi in 1838 proved that in mechanics the lagrangian and the Hamilton­
Jacobi sub bundles, .C and .J, are families of solutions, <P <-+ .C and <P <-+ 

(Po .C) <-+ .J. A coordinate-free proof is in (Oziewicz and Gruhn 1983). An 
extension of the Jacobi theorem beyond mechanics is not known. 

The following table gives dimensions of sub bundles for a phenomenological 
field theory, formula (10) below, and follows from the considerations in the 
part II, see definition (14) and formulas (15-17). 

E +-' q; +-' p +-' .J +-' <P 

!dim !dim !dim dim! 
mechanics 1+4n 1+2n l+n 1 

strings 2+6n 2+3n 2+n 2 
electrostatics 3+8n 3+4n 3+n 3 

magnetostatics 3+12n 3+6n 3+3n 3 
Klein-Gordon's 

4+10n 4+5n 4+n 4 
n-fields 

electromagnetism 4+20n 4+10n 4+4n 4 

God's material "quantum time 
space 

choice relations space" ace-time 
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Hamilton-Lagrange field theory 

DEFINITION 11. A field theory {E,8,0} is said to be k-vertical if 0 -:f. 
dO E A(k) and dO </. A(k-l) or if dO = 0, 0 E A(k) and 0 </. A(k-l)" 

Comment. For a cocycle 0 E Z the definition 11 was introduced by Kon­
dracki (1978). The notion of the k-vertical field theory is essential for the 
theory of the Poincare-Cartan forms if 0 </. Z and for the Hamilton-Jacobi 
theory if 0 E Z. 

Because a distribution Ver is integrable threfore 

{ 
dO E A(k) } { 0 E A(k-l) EB Z } 
dO </. A(k-1) <==> 0 </. A(k-2) EB Z . 

A form dO -:f. 0 is k-vertical iff 0 can be decomposed (not uniquely) as 
the sum of (k - 1)-vertical form and a cocycle. Two fibrations of de Rham 
complex A are involved in this decomposition: first over a factor F-module 
A/ A(k-l)• second over a factor Bl-space A/Z. A form dO is k-vertical if exist 
splittings 

A/Z A 

f v 

A/ A(k-1) 

such that 
µ(0/Z) E A(k-l)• v(O/(k - 1)) E Z 

and 0 = µ(O/Z) + v(O/(k - 1)). (2) 

Above splittings are not unique, they are determined up to the (k - 1)­
vertical cocycles 

loc 
A(k-1) n Z ~ dA(k-2)" 

Let a field theory {E,8,0} be k-vertical. Then a splittingµ determine a 
splitting v and vice versa. Locally 

v(O/(k - 1)) 
1
gf dw, 

and n = I+ dw, where I = 0 - dw E A(k-1)" (3) 

In (3) a differential form w is determined modulo (k - 2)-vertical forms. On 
Poincar&.Cartan subbundle p ~ E, 0 and I are exact, 

cfF = P* f, (4) 

and O.F = F + P*w mod Zp. 
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In the last section we shall show that exists a correlation between decom­
positions (2-3) and Poincare-Cartan subbundles. 

Depending on choice off in (3), a potential F could coincide (up to sign) 
with a hamiltonian Hor with a lagrangian L.(see the next sections), however 
a freedom in the decomposition (2-3) allows to see more possibilities. 

If f is (k -1)-vertical on {E,Ver}, then Fin (4) is (k- 2)-vertical on 
{P, P*O}, 

101 ) (A(k-2) EB Zp 3 F dF E AIBl+i 
(k-1)" (5) 

The Poincare-Cartan equation dF = P* f (4), allows to express 'P*w in 

terms of partial derivatives of F wrt a basis of a .1'p-module A~~~:) c Ap. 
Therefore a differential form F determine a Poincare-Cartan form, 

This motivate the definition 

DEFINITION 12. Let a distribution Ver be integmble and n </. Z. 

(i) Let 2:::; k:::; ld!ll and let a field theory {E, Ver,!l} be k vertical, d!l E 

A(k) and dfl </. fl(k-t)· Then a .1'p-module A~t2) is said to be a module 
generating Poincare-Cartan forms. 

(ii) A field theory {E,O,!l} is said to be a Hamilton-Lagrange field the­
ory, abbreviated by HL, if the .1'p-dimension of a genemting module of 
Poincare-Cartan forms is 1. 

For HL field theory a Poincare-Cartan form is determined by one (pseudo)­
scalar function, (lagrangian, hamiltonian, ... ). 

LEMMA 13. A field theory { E, Ver, fl </. Z} is HL iff dfl is bi-vertical, dfl E 

A(2)· 

Proof. 
min(k-2,181) (di ,, ) 

· IOI '""' m ver dtm{A(k-2)} = L.J i . 
i=O 

Therefore 

dim{A~t 2)} = 1 iff {E, Ver,fl </. Z} is bi-vertical. 

Comment. In"HL field theory a (local) hamiltonian and lagrangian F (4) 
are vertical differential forms on P. For not HL theories analogous hamil­
tonian or lagrangian forms are no more vertical and therefore can not be 
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expressed by means of one pseudoscalar function. Analogous considerations 
are valid for the Hamilton-Jacobi theory if fl E Z. 
Partial derivatives of vertical forms. Note that 

d. {Al9l+t} d' " im (l) = im ver. 

We will suppose that a modul A~~l:1, on E as well as on subbundle P, 
is generated by differentials of homogeneous vertical forms (in general of 
different degrees), 

191+1 {d A A A } A(l) =gen w , w E (O) • 

This means that Va E A/~lt has unique decomposition 

In particular a generating set { dwA} determines partial derivatives of highest 
degree vertical forms 

191 A {)F 191+1 
A(o) 3 F i---+ dF = dw /\ owA E A(l) . 

Example 

II. PHENOMENOLOGY 

Phenomenological field theory 

Let E be a vector bundle over oriented manifold E 2-. {M, vol}. Let 
{qA,vA; A E I C JN} be a collection of vertical differential forms on a 
bundle E and let {PA,/Ai A E I C JN} be a collection of vol-dependent 
vertical differential pseudoforms on E. Newton's and Maxwell's phenomeno­
logical equations as well as of electrostatics and of magnetostatics have the 
following form 

-OA ::: dqA _ VA, 

WA ::: dpA - fA, 

<f>*-OA = 0, 

</>*wA = 0. (6) 

A differential forms { qA, vA, PA, f A} in ( 6) are independent, as they are deter­
mined by independent experiments. A phenomenological material relations 
among these fields are consequence of further independent measurements. 
This was stressed by Newton (1686) and Maxwell. After Lagrange it became 
customary to present the Newton equations (as well as of electrodynamics 
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DA = j) as a second order from the begining, contrary to original Newton's 
presentation. That the equations (6) should not presuppose a material re­
lations was stressed by Piron (e.g. in Piron 's Lectures on electrodynamics, 
1989). 

A phenomenological material relations are equations for a (pre )symplec­
tic subbundle of a field theory {E,8,0} (definition 10 (i)), and are given in 
the last section. 

A strategy is to determine a most general regular field theory { E, 8 In} 
which field equations (1) coincide with the experimental one (6). A different 
field theories with the same set of a first order equations (6) will lead to 
a different (pre)symplectic subbundles and therefore to a different sroond 
order equations. A solutions </>of equations (6) anihilate an ideal generated 
by { t9A ,wA} therefore for a regular field theory we ueed an equality of ideals, 

(7) 

Because a distribution Ver is integrable then { t9A ,wA} are 1-vertical. A most 
general pseudoform n compatible with (7) needs to be 2-vertical of the form 

n = L(K~ AWA A t98 + fAB A t?A A 1?8 + XAB AWA Aw9), (8) 
A,B 

where { K ~, r AB, xA8 }is a collection of vertical (pseudo )forms such that 

DEFINITION 14. A field theory {E, Ver,O} with n of the form {8) is said 
to be a phenomenological field theory. 

Because n is 1V-homogeneous then 

11141 = 1 + lqAI, 
I/Al = 1 + IPAI, 

lqBI + l!AI + IK~I = 101, 
lifll + IPAI + IK~I = 101. 

In mechanics IKI = lfl = lxl = O. A conditions 

(9) 

determine unique grades for mechanics and string theory and n possibilities 
for IOI = 2n - 1 and 2n. In this case x can contribute in mechanics and 
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magnetostatics only. 

IOI lql lvl IPI Ill lfl 
1 0 1 0 1 0 mechanics 
2 0 1 1 2 1 strings 
3 0 1 2 3 2 electrostatics 

1 2 1 2 0 magnetostatics 
4 0 1 3 4 3 Klein-Gordon scalar fields 

1 2 2 3 1 electromagnetic field 
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If { K, r, x} are vertical cocycles then field theory (8) is HL, dfl is bi vertical, 
and 

fl= {d(K:. /\PB+ 1/Jf AB/\ qB) - (Kf /\ fB + fBA /\ vB)} /\ t?A +WA/\ WA· 

Effectively "momenta-induction" and "force-current" are rotated and trans­
lated by "connection f", a natural description of velocity-dependent forces, 

PA i--+ Kf /\PB+ 1/Jf AB/\ qB, 
f A 1--+ K:. /\ fB + fBA /\VB. 

A phenomenological symplectic mechanics (8) without x-terms has been 
considered by Jadczyk and Modugno {1992). 

Consider HL field theory 

n = EwA /\ -z?A E A(t) EB z c A(2)' (10) 

The following decompositions, like (2-3), define 1-vertical differential forms 
{h,l,s,t}, 

fl = -h + d(PA /\ d~) 
= +l + d{PA /\ (d~ - vA)} 

= +s + d{qA /\ ,,pl9l(dpA - IA)} 

= +t + d{~ /\ ,,pl9l(dpA - fA) - PA/\ VA}. 

Therefore 

h :: dpA /\VA + d~ /\ ,,pl61JA, 
l :: d~ /\ ,,pt+l6IPA _ dqA /\ ,,pl6IJA, 

s:: dpA/\VA -dfA/\(-)1611/JqA, 

t:: d~/\¢1+16IPA+dfA/\(-)l611/JqA. 

l + h:: t + S :: d(pA /\ vA), 
h-s:t-l:: d('¢fA/\qA). 

(11) 

(12) 

(13) 

If differential forms { ~, vA ,pA, f A} a.re the Liou ville forms, considered in 
the next section, then pseudoform n (10) is regular and imply equations (6). 
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The Liouville differential forms 

Let M be a manifold and for p E M, r; M be JR-space of exterior forms 

at p. Let Tk M ~ M, be a vector bundle of exterior k-forms, (Tk M)p = 
(T; M)"'k, with (T; M)"'0 := JR. 

A differential form a E Ai£ determines unique section aa E f(M, Tk M) 
and ArkM 3 >.~a:>. E AM, 

DEFINITION 15. A differential k-form >. E ATkM is said to be the Liouville 
form if 

a;>. = a for every a E Ai£. 

The Liouville differential k-form exists, is unique and has a local form 

>. = ;, 2::>µ1 .. ·l'k7r*(dtl'1 /\ ... /\ dtl'k). 

The Liouville differential forms of arbitrary degree has been intr0duced by 
Tulczyjew in 1979. The Liouville forms are vertical wrt 0 = 7r*volM· 

Let E be a vector bundle E ~ M of an exterior forms of different 
degrees on a manifold M, 

E := ffi { (TlqAIM) $ (TlvAIM) $ (TIPAIM) $ (TllAIM)}. (14) 
A 

Let { qA, vA ,pA, f A} be a collection of Liouville's forms on E. Define dimen­
sion of a form as dimension of a factor module, 

dim a:= dim VerO- dim{(Vera) n VerO}. 

One of necessary condition for implication (8) =? (6) is 

dim Ver= 2::(dim dqA +dim dvA +dim dpA +dim dfA)· 
A 

If>. is the Liouville form on E then according to definition (15-16), 

. (dim M) d1m(d>.)= l>.I . 

(15) 

(16) 

(17) 

A field theory {E(14),7r*volM,fl(10)} is regular and imply equations (6). 
From formula (17) we get the dimensions, dimE, listed in the Table after 
definition 10. The Liouville forms {K,r,x}, for simplicity, are not included 
in the bundle E (14). The Liouville forms {K,f,x} in (8) contribute to 
dimE. In mechanics with (8), IOI = 1, dimE = 1+4n + 2n2 - n. 
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Poincare-Cartan subbundles 

' Consideration of this section are the same for the case of presymplectic 
and Poincare-Cartan subbundles. To be specific we will consider Poincare­
Cartan subbundles only, definition 10 (ii), and for E being a vector bundle 
of exterior forms (14) with conditions (9). 

Let a bundle Ebe splitted with a fiber-preserving projectors 7rp and 7rc, 

.!!.E+ c 
! 7r 

= M 

Let subbundles P and C be of equal dimensions, dim Ver (16) on E is even. 
For a Poincare-Cartan subbundle P <-+ E we have dimP = dim P = dim C. 
Let 7rpjP be a fiber-preserving isomorphism. A Poincare-Cartan subbundle 
P will be identified with an injection P : P <-+ P C E, 7rp o P = idp, and 
<p = 7rc o P : P --+ C is a fiber-preserving bundle map. If() = 7r*volM then 
P*() :: 8 E Ap. 

Consider splittings of a bundle E for which fl have the following form as 
in decomposition (2-3), 

n = ±I: d7rj,a "7rc/3 + dw. (18) 

On Poincare-Cartan subbundle a form L: d7rj,a A 7rc/3 is exact, 

Therefore 

<p*/) = ~:. 
A differential forms {fl,h,l,s,t} (10-13) are exact on Poincare-Cartan 

subbundle P <-+ ii' <-+ E. In particular a hamiltonian H and a lagrangian 
L are differential forms on different Poincare-Cartan subbundles and are 
defined as potentials, 

dH:: Pi:h, dL:: Ptl, dS:: P;s, dT:: P;t. (19) 

A compositions like C = Pj;1 o P1 etc, are said to be Legendre's transforms. 
With help of identities (13) Legendre's transforms allow to calculate, for 
example, a lagrangian L for a given hamiltonian H, 

dL = Pjl = (Pt o Pj;i. o Ph){d(PA A 114) - h} 

= C*{dPi:(PA A vA)- dH}. 

Therefore, modulo cocycles 

L = (C* o Ph)(PA A vA) - C* H mod Z. 
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A Poincare-Cartan forms {a, da = 'P*O} can be expressed in terms of 
L, H, S, and T if we identify the decompositions {11-12) with {18-19) . 

• * A - 8H 
'Ph1r = ~' 

VPA 

8L 
1n*pA = .t.(1+161) -
rl - .,., 8vA' 

*f l618H 
'Ph A:= 1/J {}qA, 

aL := L + :~ A'l/J(l+l9D(d~ -vA) modZp, 

(20) 

daL = {a {)L - (-)161'1/J oL } /\ 'l/J(i+l9D(d~ - vA). (21) 
{}vA oqA 

• A_ as 
'Pav·=~· 

VPA 

8T 1n*p = .t.(1+161) _ 
rt A - 'f' ovA' 

{22) 

A (!, v )-subbundle {23) in electromagnetism was considered by Thirring 
(1979, p. 109) and therefore one is tempted to call a differential form T as 
a thirringian. 
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HAMILTON'S PRINCIPLE FOR 
CONSTRAINED SYSTEMS 
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Abstract. The Hamilton's principle and the Lagrangian formalism in presence of con­
straints have been analyzed. The differences between the degenerate and the nonholonomic 
case are intrinsically characterized. 

Key words: degenerate Lagrangians - geometric quantization - nonholonomic systems 

1. Introduction 

When text books introduce Lagrangian mechanics, they implicitly assume 
that: 
(a) the dynamics is described by a second order vector field which is defined 
on all TQ (i.e. the initial conditions for the differential equations can be 
arbitrarily chosen in TQ), TQ being the tangent space of the configuration 
space Q; 
(b) the fiber derivative of the Lagrangian C 

FC: TQ-+ T*Q 

(T*Q being the cotangent bundle) is, at least locally, a diffeomorphism. In 
such a case C is said to be regular or standard. 

By using these hypotheses in an essential way one can deduce the Euler­
Lagrange equations from a variational principle, develop the Lagrangian 
formalism (in particular the Noether theorem), and build up the Hamilto­
nian description of motion. But in a lot of physically meaningful cases, the 
motion of the system is confined to a submanifo_td ofTQ where a priori there 
is no reason to believe that a Lagrangian description would be possible. As 
a matter of fact the constraint submanifold does not generally maintain a 
tangent bundle structure. 

Nevertheless, by judiciously transferring the principal intrinsic tools of 
TQ on those submanifolds, it is possible to preserve a Lagrangian point of 
view. Hence, under particular conditions, we will verify that suitable Euler­
Lagrangian vector fields make the action functional stationary and we will 
connect symmetries of the Lagrangian with conservation laws. These re­
sults will be valid in both cases of degenerate Lagrangian (typically the 
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Lagrangian density in the gauge theories (1]) and of the systems with con­
straints introduced from the outside (nonholonomic constraints). In the first 
case, as is well known, the constraints are implicitly linked with the degen­
eracy of the Lagrangian. The differences between the two situations will be 
stressed. 

2. Lagrangian mechanics on TQ 

It is known (2] that it is possible to define on TQ a (1-1)-type tensor field S 
(the so-called vertical endomorphism) intrinsically, with the properties: 

(i) ImS = kerS = V(TQ) 
(ii) Ns(X, Y) = 0 VX, YE X(TQ) 

where V(TQ) represents the set of the vertical vector fields defined on TQ 
and N s the so-called Nijenhuis tensor 

Ns(X,Y) = S2(X,Y] + [SX,SY]- S[SX,Y] + S[Y,SX]. 

S endows TQ with the structure of an integrable, almost tangent mani­
fold. Moreover it induces a derivation with grading rank 0 :md allows to 
define the vertical derivative: 

in particular, the action of d5 on functions defined on TQ is 

d5 f = (df) o S f E F(TQ). (1) 

Use will be made herein of the well-known Liouville vector field~ E X(TQ). 
Indeed a second order vector field f 0 will be such that S(fo) = ~. 

If the Lagrangian C of a system is regular, the 2-form w = -dd5 C bestows 
TQ with a symplectic structure; moreover E := (Le,. - 1)£ is the usual 
Lagrangian energy. Besides, use will be made of the semi-basic 1-form 

A= dE - irw, 

r being the second order dynamics. 
As is known in literature (3], the stationarity condition for the functional 

gives rise to the condition 
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-jt2 

ixAdt + jt2 

(i(.c:.-sr)Lxd.C + i[x,.c:.-sqd.C) dt 
ti ti 

(2) 

Here X E X(TQ) represents the variation vector field. In the absence of any 
constraint, r is a well-defined second order vector field (Sf - ~ = 0), X 
generates point transformations (S[X,f] = 0), therefore 

dE - irw = 0 (3) 

are the Euler-Lagrange equations for the problem: the integral curves off 
are critical curves for the above functional. 

In order to complete the description of the regular case, we remember 
that the vector field 

X(f) := X + S[f,X] 

generates a <;artan symmetry for the Lagrangian if 3F E F(TQ) s.t. 

Lx(ro).C = Lr0 F 'v'fo: S(fo) = ~. (4) 

In this case the Cartan symmetry gives rise to a conservation law and rep­
resents a dynamical symmetry for f; moreover, the energy is constant on its 
integral curves. 

As proved in [4], this characterization of the symmetries allows the proof 
of a converse Noether theorem which is completely specular to the direct ver­
sion and leads to a formulation of the theorem which is completely equivalent 
to the Hamiltonian approach. 

3. Constrained motions 

(a) nonholonomic systems 

Consider the Lagrange equations (3) in the presence of a velocity-depen­
dent constraint 

F(TQ) 3 • = O; 

let Z E X(TQ) be the Hamiltonian vector field which is the solution of the 
algebraic equation 

izw = d•; 

consequently 

iszw + d5 • = 0. (5) 
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Moreover, taking (3) and (5) into account, we can write 

dE - itw = )..d8 ~, (6) 

where f' = r + )..S Z is of course a second order vector field. As clarified in [5] 
the tangency condition of f' to the constraint submanifold determines the 
multiplier>-.. By inserting (6) into (2) it is easy to prove that the stationarity 
of the functional is guaranteed by 

Lsx~ = 0. (7) 

This is easy to prove since f' is of second order, X(f) is of course Newtonian 
and, finally, the condition 

isxdCI!~ = 0 

remains unchanged with regards to the regular case. 
But otherwise (7) is not a condition, it is a consequence of the D' Alembert 

principle: one can see [6] that the vector fields X satisfying (7) generate 
virtual displacements which are orthogonal to the constraint force associated 
with ~. f' is thus the actual constrained dynamics. Note that the fact, that 
X is not generally tangent to the constraint submanifold, does not represent 
an obstruction for the validity of Ha~lton's principle. X is onl:; supposed 
to be a complete lifting of a vector field belonging to X( Q). 

We may now discuss the Noether theorem. Introducing 

G := ixd8 C- F 

and taking ( 4) into account, we obtain 

LtG = ix(f') (dE - itw) = >.ix(t)ds~ 

that is 

(8) 

(9) 

Again, the main result of Lagrangian formalism is preserved on condition 
that infinitesimal displacements remain orthogonal to the constraint force; 
we have to underline that generally the introduction of these constraints 
does not allow us to relate Cartan symmetries with the dynamical ones. As 
a matter of fact it is easy to exhibit very simple counterexamples in which 
[X(f'), f'] :f. 0 and the reason resides essentially in the fact that X can be non 
tangent to the evolution space. In this case X does not transform integral 
curves into integral curves of the dynamical vector field. 

Finally it is relevant to verify that the condition on SX is crucial for 
the converse theorem as well. Suppose that a function GE :F(TQ) remains 
constant during the constrained time evolution: 
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hence, if 

ix0 w = dG, 

we define 

F := ix0 d5 C - G. 

By differentiating this last expression we get, 

Lx0 G = ix0 (Ltd5 C - Ad5 <P) 

from which it follows that 

Lx0 G + is(f\Xa)dC = LtF - ALsx0 <P. 

Once again 

(b) degenerate systems 

345 

We now want to consider the case in which C is not regular, or equiva­
lently w = -dd5 C is degenerate [7]. In such a case we introduce the vector 
field set · 

Kerw ={KE X(TQ)liKw = 0} 

together with 

V(Kerw) = Kerw n V(TQ). 

The motion of the system could eventually be restricted to the primary con­
straint submanifold M C TQ by looking for a solution for (3) which should 
also be of the second order; other constraints can arise if one requires the 
tangency of the solution to M. At the end of the analysis one obtains a dy­
namics r which may exhibit terms depending linearly on arbitrary functions 
of time. In fact one obtains a class of equivalence {r} of solutions. Note that 
in the present discussion we do not make use of the Dirac theory but rather 
of the Lagrangian constraint approach. 

It was proved by Gotay, Nestor and Hinds (1978)[7] that the intrinsic 
expression for the primary Lagrangian constraints is 

Lz(ro)C = Lr0 Lsz(ro)C VZ: SZE V(Kerw) 

and r satisfies 

(10) 
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(vi' being known functions belonging to :F(TQ)). Then, if we substitute the 
last expression in (2) and evaluate all integrals, we conclude that 

1
t2 

LxCdt= 0 
t1 M 

because of the tangency of the second order dynamics to M. In this case 
we have that every r E {r} represents the Euler-Lagrange equations on 
M without conditions on the variations. In fact all the four terms in (2) 
vanish on M; in particular every element of {r} acts in the same way on 
i

8
xdC since this last term is a FC-projectable function. As a matter of fact 

a function of :F(TQ) is said F C-projectable if it is constant on the leaves of 
the foliation generated by V( Ker w) and, on the other hand 

f1 "'f2 {::::} f1 = f2 + V(Kerw). 

The Noether theorem for degenerate Lagrangians is exhaustively proved 
in [8]. We only want to remind that in this case all the results obtained 
in the regular case are preserved on condition that use of an appropriate 
definition of dynamical symmetry would be made: one has to request that 
X(f) be tangent to the final submanifold M1; moreover a set of r functions 
ai E :F(TQ) must exist such that 

[X(r),r]~ aiKj, K'j E V(Kerw) 
f 

so that X(f) carries r into an equivalent dynamics. 
Thus we obtain: 

(b) X(f) is a (in the above sense) dynamical symmetry; 

( d) the converse Noether theorem. 

4. Conclusions. 

We can conclude that the difference between the two kinds of constrained 
systems resides in the form of the equations of motion: as could have been 
foreseen, the case in which the equations of motion take the usual form on 
the constraint submanifold is the one in which the Lagrangian formalism is 
almost completely preserved. From the physical point of view the last situ­
ation is the most important one: one has to remember that this request is 
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necessary for both the methods of geometric quantization (canonical quan­
tization and path integral quantization) (9]. 

If we denote the identification mapping with 

j: M <-+ TQ, 

we have from (10) that 

j*(dE - irw) = 0 

hold true in the case of degenerate Lagrangians. Instead in the nonholonomic 
case the pullback 

j* )..ds~ 

does not generally vanish; on the other hand a second order vector field f' 
does not exist such that 

j*(dE - itw - >.d5~) = j*(dE' - iriw'). 

This is becau'se of the difficulty in solving the so-called inverse problem (10]. 
So in the case of constraints added from the outside we are in the presence 
of a total arbitrarity, and consequently a part of the formalism is destroyed: 
the one concerning the symmetries of the dynamics. But it is important to 
emphasize that the introduction of the constraints preserves the conservation 
laws, i.e. the possibility to implement the ordinary procedures of reduction 
and eventually of the integration of the differential problem [11]. 
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Abstract. The 2-cocycles of the Galilei Lie algebra are shown to be in one-to-one corre­
spondence with certain affine maps from Galilean spacetime into the dual of the homo­
geneous Galilei Lie algebra. The kinematic interpretation of these affine maps is detailed. 
The symplectic orbits in the space of 2-cocycles are described in a direct coordinate-free 
manner. 

1. Introduction 

We. develop a coordinate-free description of the 2-cocycles of the Ga.iilei Lie 
algebra and the orbits of the Galilei group in the space of 2-cocycles. These 
orbits of course include the physically significant symplectic homogeneous 
spaces of the group-those corresponding to elementary Galilean systems 
with nonzero mass. (See [3], [4], (7).) The ideas are elementary and can be 
applied to other semidirect product groups. The work was motivated in part 
by a desire to have a coordinate-free account of the geometric quantization 
of the Galilei group, which is interesting due to the connection between non­
trivial 2-cocycles and projective representations [8]. Such an account would 
be helpful for, constructing and interpreting coherent states over homoge­
neous spaces ·of the Galilei and Poincare groups. 

2. Affine Transformation Groups 

The intrinsic structure of an affine transformation group is given by a certain 
exact sequence. The induced Lie algebra sequence admits natural splitting 
maps, labelled by the points of the affine space and having an affine position 
dependence. The Lie algebra sequence and its dual inherit the equivariance 
of the original; this facilitates the description of orbits. 

Let X be a finite dimensional affine space modelled on a vector space V. If 
(Y, W) is another affine space, an affine map from X to Y is a map a: X ~ Y, 
together with a linear map A: V ~ W, the linear part of a, satisfying 

a( x + Z) = ax + AZ (x EX, Z EV). 
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In particular, the group GA(X, V) of affine transformations of X fits into 
an exact sequence 

0 -+ V -+ GA(X, V) -+ GL(V) -+ 1. (1) 

We call a Lie group G an affine group of X if there is an exact sequence of 
groups 

(2) 

that maps by homomorphisms (identity on V) into the sequence (1). That is, 
there is an action of G on X by affine transformations extending the action of 
V and a representation p: L -+ GL(V) such that the linear part of the action 
of a E G is p(A), where A is the image of a in L. Operations on vector and 
affine space elements will be abbreviated; for example, aZ = AZ = p(A)Z. 

The Lie algebra ga of GA(X, V) is naturally identified with the vector 
space of affine maps from X into V. Corresponding to the group sequence 
(1), we have the sequence 

0-+ V-+ ga-+ gl(V)-+ O. (3) 

The homomorphism from (2) into (1) induces a homomorphism from the 
G-equivariant Lie algebra sequence 

0 -+ V -+ g -+ I -+ 0, (4) 

into (3), involving the infinitesimal representation p: I -+ gl(V). A Lie algebra 
action will be indicated by juxtaposition; thus KZ = p(K)Z for KE I and 
Z EV. If k E g maps to KE I we call K the linear image of k. Throughout, 
the symbols j and k are reserved for elements of g and their linear images 
are denoted J and K. 

For each x E X there is the evaluation splitting map Ex: g-+ V given by 
lxk = kx. The complementary splitting map is 

:FxK = k - kx, (5) 

where k is any element with linear image K. The image of :Fx is the subal­
gebra of g whose elements, as infinitesimal transformations of X, fix x. 

From the Lie algebra sequence ( 4) we get the G-equivariant exact se­
quence of dual vector spaces 

0 -+ I* -+ g* -+ V* -+ 0. (6) 

Where the context requires, elements of I* will be considered members. of 
g*. The image in V* of an element µ E g* will be denoted µ and called the 
Ji near image ofµ. We shall need the map V* 0 V-+ I*, p 0 Z H p 0 Z, given 
by 

(p@ Z, K) = (Kp, Z) = -pKZ (KE 1). (7) 
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The evaluation splitting maps give us, for each x E X and p E V*, an 
element 

t:;p E g*, (t:;p, k} = (p, kx}, (8) 

whose linear image is p. The associated map from T* X = X1 
x V* into g* is 

just the standard G-equivariant momentum mapping [1]. The splitting maps 
Fx give us for each µ E g* an affine map X-+ I*, µx = F;µ: 

(µx, K} = (µ, FxK} (x EX, KE 1). (9) 

In the case of the Euclidean group, µx restrictsµ to infinitesimal rotations 
about the point x; µx is the angular momentum of the kinematical system 
represented by µ. The position dependence is 

µ(x + Z) = µx + µ ® Z. 

For µ E g* we can now write, for any x E X, 

µ = µx + t:;µ. (10) 

If p(l)V = V, then the linear imageµ is determined by the affine map 
induced by µ. Thus we have the following. 
Proposition. Let Affp(X, I*) be the space of affine maps from X into I* with 
linear parts of the form Z 1-+ p ® Z for some p E V*. There is a G-morphism 
g*-+ Affp(X, I*). If p(l)V = V, then this map is an isomorphism. 
The condition holds for pseudo-Euclidean affine groups but not for the 
Galilei group. 

We now rapidly describe the coadjoint orbits of an affine group (also 
described in [4], [6], [5]). The G-equivariance of the sequence (6) implies 
that a G orbit 0 C g* is a fibration over an L orbit 0 C V*. Fix p E 0 
and let Op be the fiber in 0 over p; that is, Op is the intersection of 0 with 
the inverse image of p under the projection g*-+ V*. Let Gp be the isotropy 
subgroup of p for G acting on V* via L. The fiber Op is itself the total space 
of a Gp-equivariant fibration, which we now describe. 

Let LP be the isotropy subgroup (little group) of p for L acting on V*. Con­
sider the dual of the Lp-equivariant linear isotropy sequence Ip -+ I -+ I/Ip, 
namely 

0 -+ I~ -+ I* -+ 1; -+ 0, 

where I~~ {I/Ip)* is the annihilator of the isotropy algebra Ip C I. By com­
puting (p@ V)0 = Ip directly from the definitions, one finds that I~ = p@ V. 
If 11'p: I*-+ 1; denotes the natural projection, the map 

"fp(µ) = 11'p(µx), 
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., 
(independent,of x E X) projects onto a coadjoint orbit of Lp and has affine 
fibers given l>y V · µ = µ + p ® V forµ E Op. (The coadjoint action of Z E V 
onµ E g• is ghen by Z · µ = µ - µ ® Z.) 

The coadjoint orbits of G may thus be described as follows. 
Proposition. Let 0 C g• be a G orbit and let 0 be its linear image in 
v•. The linear image map gives 0 the structure of a fiber bundle 0-+ 6 
with the typical fiber Op (p E 6) itself being an affine fibration over a little 
group coadjoint orbit Lp · "tp(µ) (µ E Op)· The action of G maps fibers of 
each type to fibers of the same type. 

3. The Galilei Group 

Galilean spacetime is a four-dimensional affine space (X, V) equipped with 
an affine map X -+JR whose linear part, (h V -+ JR, has kernel a Euclidean 
vector space E ~ JR3 • The structure of V is provided by the exact sequence 

0 -+ E -+ V !.+ JR -+ 0. 

The Galilei group G is the group of affine transformations of (X, V) whose 
linear parts lie in the group 

L ={A E GL(V) s.t. A(E) c E, AjE E SOE, and 8 o A= 8}. 

The origin-independent structure of G is given by the exact diagram 

E 
! 

0-+ V-+G-+ 
! 
JR 

E 
! 
L 
! 

SOE 

1 (11) 

The map E-+ L is given by v 1-+ Tv, where Tv( Z) = Z + 8( Z)v; Tv is a shear 
transformation of V giving the so-called boost with velocity v. A useful way 
to view the group L is as the Euclidean affine group of (Vi, E), where 

Vi := { z Ev I 8(Z) = 1 }, 

the space of unit four-velocities. In this context, the elements of E are in­
terpreted as relative three-velocities. 

4. Galilean 2-Cocycles 

The dual of the Lie algebra diagram derived from (11) can be used to analyse 
the elements and orbits in g•. But one knows that the physically interesting 
symplectic homogeneous spaces lie in the space of 2-cocycles Z2(g) [4]. 



-
ON THE 2-COCYCLES OF THE GALILEI LIE ALGEBRA 353 

Let Z1{1, V*) denote the vector space of 1-cocycles of I with values in V*; 
these are the maps b:I-+ V* satisfying b([J,K])Z = b(J)KZ - b(K)JZ. We 
need to describe some maps into and out of Z1{1, V*). Because there are no 
I-invariants in V* AV*, a 2-cocycle a vanishes when restricted to V x V. Thus 
there is a well-defined G-morphism 

a ...... a, 

with 
a( J)Z = a(j, Z) (Z EV, j ...... J E 1). 

We call a the linear image of a. Because elements of I map V into E, there 
is a one-to-one coboundary map 

fJ: E* -+ Z 1{1, V*), (fJp)(J)Z = -pJZ. 

Because the bilinear form on E given by b( u Q9 O)v for u, v E E is so-invariant 
(i.e., the natural action of so annihilates it), it must be a multiple of the 
inner product. Thus there is a well-defined map 

Z1 (1, V*)-+ JR, b ...... b( u Q9 O)u, 

where u is any unit vector in E. It is appropriate to call the image of b the 
mass of b. 

Our first main result is the following. 
Theorem 1. There is an exact diagram 

so* E* 

1 1 
0 I* 

0 z2(g) Z1(1, V*) 0 (12) -+ -+ -+ -+ 

l l 
E* JR 

Sketch of Proof. The exactness of the right vertical sequence involves the 
semisimplicity of so. Exactness of the horizontal sequence at I* follows from 
H 1(1) = 0 .and H 2(1) = 0. To show that the second horizontal map is onto, 
and for subsequent use, we introduce the pullback analogous to the £; of 
(8). Given b E Z1 (1, V*), each x E X determines a 2-cocycle £fb E Z2(g) 
defined by 

(£f b)(j,k) := b(J)kx - b(K)jx. (13) 

For any x, this produces a 2-cocycle whose linear image is b. Q.E.D. 

Observe that the well-known result of [2), H 2(g) = JR, follows readily from 
the theorem. 
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Next, we associate an affine map to a 2-cocycle a E Z 2(g). A straightfor­
ward calculation shows that, in analogy with (10), for any x EX, 

a= F;a + Ef a, 

where :Fx is the splitting map of (5) and where :F;a, an element of Z2(1), is 
included in Z2(g). We define a map Z1(1, V*) 0 V-+ I*, b 0 Z ....... b 0 Z, by 

(b 0 Z, K) = b(K)Z. 

If b = op (p E V*), then this yields the p@ Z of (7). 
Proposition. Each a E Z2(g) gives rise to an affine map X-+ I*, x ....... ax, 
defined by 8( ax) = :F;a. The position dependence is given by 

a( x + Z) = ax + ii 0 Z. 

If a = 8µ (µ E g*), then the affine map for a is the same as that for µ in 
(9). 

Our second main result is the following. 
Theorem 2, part i. Let Aff2(X,I*) be the space of affine maps from X 
into I* with linear parts of the form Z 1-+ b® Z for some b E Z1(1 .. V*). There 
is a G-isomorphism 

Z2(g) ~ Aff2(X,I*). 

For the kinematic interpretation of 2-cocycles it is useful to add a similar 
description of elements of the 'four-momentlf:ii'i' space' Z1 (1, V*). 
Theorem 2, part ii. There is an L-isomorphism of Z1(1, V*) with the set 
of affine maps V1 -+ E* having linear part of the form v 1-+ -mvt for some 
m. 
For b E Z1(1, V"), the associated affine map p: Vi -+ E* is given by 

(pY, u} = -b(u 0 O)Y (u EE). 

The element u 0 8 E I is the infinitesimal boost by u. 
We now give the kinematic interpretation of a typical element a E Z2(g) 

representing an elementary Galilean system (assumed to have nonzero mass). 
The linear image of a in Z1(1, V*) is a four-momentum object ii. The image 
of ii in JR, is the mass m; and ii gives rise to an affine isomorphism V1 -+ E* 
with linear part determined by m. The value of this affine map at Y E Vi 
gives the three-momentum of the system relative to Y. The four-velocity of 
the system is the argument in Ya E Vi that maps to zero. The 2-cocycle a 
gives rise to an affine map X-+ I* with linear part determined by ii. The 
value of this affine map at a point gives the total four-angular momentum 
of the system about the point. For each x E X, the linear image of ax in 
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E* is -m times the (transpose of the) Euclidean position vector r:z: of the 
mass-center world line with respect to x. (The vanishing of this image in 
E* determines the world line.) And ax gives rise to an affine map Vi -+so* 
with linear part determined by mr:z:. The value of this affine 1map at Y E Vi 
gives the three-angular momentum of the system about x relative to Y. The 
intrinsic angular momentum \f the system is the value of this affine map at 
the four-velocity Ya of a; alternatively, it is ao considered as an element of 

50•, where o is any point on the world line. 
For use in the final section, we introduce the cocycles O'y E Z1(1, V*) 

defined for Y E Vi by 

ay(J)Z = (JY,QyZ) (J EI, Z EV), 

where 
Qy:V-+ V, QyZ := Z - O(Z)Y, 

is the projection onto E along Y and ( , ) denotes the Euclidean inner 
product. For any Y, the cocycle may has mass m. In passing, we note that 
we can now write down an L-isomorphism zt(I, V*)-+ V (respecting the 
respective exact sequence structures). It is given, for Y E Vi and p E E*, by 

b :: op+ may 1-+ Yb :: pt + mY. 

If m f: 0, then Yi, is the unique element of V such that b ® Yb = 0 and 
O(Yb) = m; it is the four-velocity associated to b. 

5. Orbits of 2-cocycles 

By consideration of the G-equivariant diagram (12), the G orbits in Z2(g) 
(with nonzero mass) can be described in the same manner as coadjoint orbits 
of affine transformation groups were described. A typical such orbit in Z2(g) 
is seen to be a bundle 0-+ 0 over an L orbit in Z1(1, V*), a three-dimensional 
affine subspace 0 of Z1(1, V*). Choice of a fiducial Y E Vi determines an 
isomorphism of 0 with the space E of relative three-momenta-the space 
of the conventional ps of nonrelativistic mechanics. Each fiber of 0 is itself 
a fibration over a sphere (or a point), with three-dimensional affine fibers. 
The spheres attached to the various points of 0 may be identified with one 
coadjoint orbit of fixed radius s in so*, the sphere of three-angular momenta. 
oflength s. (There is an equivariant map from 0 onto this coadjoint orbit.) 
To realize the orbit 0 intrinsically, consider the space of lines in X not 
parallel to E; this is a bundle over Vi given by 

M:={[x,Y]IYEVi, xEX}, 

where [x, Y] denotes the line through x parallel to Y. Let S denote the unit 
sphere in E. Recall that a vector w E E determines an element wx E so given 
by wxu = w Xu (for u EE); fore EE, define e E so* by {e, wX) = (e,w). 
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Theorem 3. If m ::/:- 0 and s ::f:. 0, there is a symplectic G-isomorphism 

'll:M x S-+ 0, 'll([x,Y],e) = m£ffay + s8e, 

where £! is defined in (13). The map 111 is a bundle map over Vi-+ 6, 
Yr-+ may. 
The existence of such a diffeomorphism is well-known from, e.g., [4] or [7]. 
The direct coordinate-free expression of the map is new. A trivial modifica­
tion gives the case s = 0. 

It remains to describe the relevant symplectic structures. The symplectic 
structure w on the orbit 0 is given at a E 0 by 

w(ja,ka) = a(j,k), 

where ja denotes the infinitesimal action of j on a. The manifold M has 
the symplectic structure WM determined by symplectic reduction via the 
obvious map X x Vi-+ M, where X X Vi has the presymplectic structure 
wxxVp defined as follows. At z = (x,Y), 

WXxVi(jz,kz) = (£ffay)(j,k), 

where jz = (jx, JY) denotes the infinitesimal action of j on z. In coordinates 
(t, q, v) for Xx Vi, defined with respect to an origin (o, Y) in XX Vi, such 
that x = o+q +tY and Y = Y +v, we have wxxv1 = dv f..dq. The pullback 
of WM by the reduction map is wxxv1 • Since the coordinates (q, v) descend 
to coordinates on M, we can also write WM = dv A dq. Let ws denote the 
area form on the unit sphere in E. Then the symplectic nature of the map 
111 of Theorem 3 is expressed by 

'll*w = mwM - sws, 

where WM and ws here denote the appropriate pullbacks by projections from 
M x S. The term -sws corresponds to the symplectic form on the spherical 
coadjoint orbit of radius sin so*. 
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Abstract. It is conjectured that space-time and momentum space are both conformally 
compactified and represented by homogeneous spaces of the conformal group generated 
from two different subgroups transformed in each other by conformal inversion. It is pro­
posed that this hypothesis may be possibly supported by the recently discovered large 
scale correlation of galaxies in pencil beam surveys, as far as space-time is concerned, 
while the hydrogen atom in stationary states might represent a support to the conjec­
ture of momentum-space compactification, connected to the space-time one by conformal 
inversion. Further possible consequences of the hypothesis are briefly outlined. 

1. Introduction 

Historically the main, often implicit, axiom of physical sciences is represented 
by the postulated geometrical properties of space and time where physical 
phenomena occur. As an example newtonian space-time is constituted by 
JR3-space where euclidean geometry holds and by an oriented straight line 
JR1 representing time. This space-time is still appropriate for the description 
of non-relativistic local motions. 

The discovery of electromagnetic phenomena and of Maxwell's equations 
with their Poincare covariance induced to the axiomatic introduction of 
Minkowski space-time apt for the local description ofrelativistic phenomena. 
This space~time may also be defined group theoretically as an homogeneous 
space constituted by the Poincare group divided by its Lorentz subgroup. In 
this way the axiomatic role is shifted from space-time to its isometry group. 

For the description of global phenomena dealt by cosmology Robertson­
Walker space-time is often postulated, this also characterized by the sym­
metry implied by cosmological principle. 

Several motivations [1] (of which the main is Maxwell's equations con­
formal covariance [2]) suggest the hypothesis that the conformal symme­
try is a fundamental one for physics of massless systems. If we adopt it, 
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then space-time should be conceived as the compact homogeneous space 
M diffeomorphic to (83 x 81)/Z2 generated by the conformal group G as 
follows: 

- G 83 x 8 1 
M------

- H1 - Z2 (1.1) 

where the subgroup H1 = L x D l><l K of G is constituted by L = Lorentz-, 
D = dilatations- and K = special conformal-transformations. In this case 
the particular space-time mentioned above should be considered as densely 
imbedded in M . As a consequence of the embedding, the flat space (as 
Minkowski) result conformally flat with conformal factors depending on the 
modality of the embedding [3]. 

If space-time is represented by the compact manifold M given in (1.1) 
then one should expect that any field theory in it should be free from infrared 
divergences, but not from ultraviolet ones [4], an unsatisfactory result for a 
conformal world where dilatation invariance should hold. 

An opposite result, that is regularization of ultraviolet divergences but 
not of infrared ones, could be expected in case of compactified momentum­
space. 

A suggestion of momentum space compactification may be found in spinor 
theory. In fact the E. Cartan definition of a simple spinor q; associated with 
the pseudoeuclidean space v = mm+i,m-l is represented by [5]: 

Pa'Yaq; = 0 a= 1,2, ... ,2m (1.2) 

where Pa are the components of p E V and 'Ya are the generators of the 
Clifford algebra Cl( m + 1, m - 1). Notoriously for q; -:/:- 0 we have PaPa = 0, 
therefore p E V lies in the projective light cone P of V which is compact. 
In fact: 

- 5m x 5m-2 
P=----­

Z2 
(1.3) 

The fact that P is a good candidate for compactified momentum space 
derives from the observation that from (1.2) one may easily get several of 
the fundamental equations of physics like, for m = 2, Weyl equation for 
massless neutrinos: 

Pµ'Yµ(l ± 75)1li ± = 0, µ = 1, 2, 3, 4 

and Maxwell equations: 

pµF±µv = 0, 

and, for m = 3, the twistor equations 

(1.4) 



CONFORMAL COMPACTIFICATIONS 359 

(1.5) 

and so on [6]. All of them in compactified momentum space 1represented by 
eq.(1.3).. _ 

Going back to compactified space-time M given by eq.(1.1), one may 
transform it with conformal inversion I, one of the global transformations of 
the conformal group. The result is: 

IM rt = p = !!__ = 53 x 51 
Hu Z2 

(1.6) 

where H II = L x D 1><1 T obtained from H 1 above by substituting special 
conformal transformations K with Poincar'e translations T. 

Observe that P may be also considered as a compactification of P = JR3•1, 

however if in space-time M = JR3•1 the coordinates of a point x have the 
dimension of a length in P = JR3•1, the coordinates of a point p have the 
dimension of the inverse of a length, since: Ix 11 = ±x11 /x

2• 

The actioJl of G in M unambiguously defines the action of G in P , and 
in conformally flat momentum space it might be identified under certain 
conditions with the standard one [7]. 

Adopting the suggestion of spinor geometry, we will then adopt the hy­
pothesis that P represents compactified momentum space. Furthermore, if 
we admit the validity of global conformal covariance in nature, since P is 
obtained from M a.s a consequence of conformal inversion: one of the trans­
formations of G, then we will suppose that both space-time M = JR3•1 and 
momentum space P = JR3 •1 are simultaneously compactified in M giveµ by 
and P given by (1.2) respectively, connected by I, conformal inversion. 

As a consequence then in a fully conformal theory both infrared and 
ultraviolet divergences should both be absent, a.s expected in a conformal 
world. 

It is well known that if one adopts M given in (1.1) a.s space-time, then 
its dual momentum space may be conceived a.s an infinite lattice, whose 
points are labelled by the indices of spherical harmonics [4]. If momentum 
space is also compactified, then this lattice will have to be mapped in P and 
result therefore finite. From Pin turn a finite lattice will result in M . It 
could be expected that on these two finite lattices, labelled by the quantum 
number of the spherical functions on S3 x S1, Hopf groups may act1• This 
will be further .analyzed elsewhere. 

In the following we will try to explore if our hypothesis of simultaneous 
compactification of space-time and momentum space, correlated by eq.{1.6) 
may find support from some observable phenomena. 

1 This possibility was suggested to me by S.Majid, to whom I am grateful. 
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2. Observable Consequences 

2.1. SPACE-COMPACTJFJCATION AND THE STRUCTURE OF THE UNIVERSE 

In cosmological applications compactified space-time M given in eq.(1.1) is 
often substituted by [4]: 

(2.1) 

where JR1 is interpreted as infinite covering of S 1• It is one of the possible 
compact-space realizations of Robertson-Walker space-time with metric: 

ds2 = -dt2 + R2(t)[dx2 + sin2x(d82 
- sin28d¢2

)), (2.2) 

which may be also obtained by imposing the cosmological principle stating: 
"the homogeneity and isotropy of space in the universe"[8]. 

Several cosmological models consider the universe evolution in Robertson­
Walker space-time. In a previous paper (9) we took as an example the infla­
tionary model which considers a scalar field ¢: the "inflaton field", for which 
the equation of motion Mn.w. is: 

(2.3) 

where ~(S3) is the Laplace-Beltrami operator in S3 , with elementary solu­
tions: 

<f>ntm = fn(t)Yntm(x,D,</>) (2.4) 

and the spherical functions Yntm (X, 8, </>) are defined by 

(2.5) 

Then the component Too of the energy momentum tensor Tµ,, interpreted 
as energy-density N has, for eigenmode, the form: 

Nntm = K(t)[Yntm(x,0,</>)]2, (2.6) 

which represents then a possible eigenvibration of a closed universe compati­
ble with the cosmological principle as already anticipated by E. Schroedinger 
[10]. 

Recent observations up to 1400 Mpc in the North-South galactic poles 
directions have revealed striking correlations of galaxies showing 10 peaks 
spaced by 128 Mpc [11]. They may be described by eq. (2.6) by identifying 
energy density with matter density. Assuming the value 3000 Mpc for the 
inverse n-1 = Rrr/2 of the Hubble constant, the observations may be rather 
well represented with just one eigenmode Yn,o,o, for which 
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Fig. I. Observational result on large-scale distribution of galaxies in the direction of south 
and north galactic poles reproduced from ref. (11], fig. 2a) (broken line). The continuous 
curve represents the theoretical energy density p(x, xo) given by eq.(2.8). It is normalized 
to the third peak of the observational data. 

sin2(n + l)x 
Nn := Nn,oo(X, t) = K(t) . 2 sm x (2.7) 

and the unknown time-dependent factor may be eliminated by considering 
the relative density. For n = 46 one has: 

( ) 
N46(X, t) sin247xsin2xo 

P XoX = N46 (xot) = sin2xsin247xo · 
(2.8) 

The result is reported from reference [9] in fig. 1. 
More observations are being performed confirming the previous ones with 

some variations in other directions [12]. They seem to be rather well repro­
ducible with the single eigenmode Y4s,1,o as it will be reported in a subse­
quent paper. 

Should the present trend be confirmed from further observations and 
computations, one might conclude that they may constitute a confirmation 
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of the role of M in the universe (or at least of the S3 part of it). 

2~2. MOMENTUM-SPACE CoMPACTIFICATION AND THE H-ATOM 

In the frame of the hypothesis proposed in the introduction the compactifi­
cation M of space-time should imply the compactification P of momentum 
space and the two should be correlated by conformal inversion I, as shown 
in eq.(1.6). 

It is well known that I maps every point Xµ of Minkowski space-time JR3•1 

in xµ/x 2 , say: 

Xµ 
I: Xµ-+ -

x2 

and therefore for space-like xµ, every point inside a sphere S2 of radius one 
centered in the origin is mapped by I to a point outside it; one could call 
"small" and "large" the space inside and outside S2 respectively however 
these words have no meaning in a conformal world. In order to give them 
meaning one should give a dimensional radius to S2 but then conformal 
covariance would be broken. The situation is different with the dimensionless 
scalar product xµkµ where kµ is a point of the wave-number space dual to 
xµ; then, in fact: 

I k
µ Xµkµ 

: Xµ -+ x2k2' 

and if one substitutes kµ with momentum Pµ = nkµ, then S2 has radius n2 

and the words "large" and "small" refer to classical and quantum system. 
Therefore if we consider the universe considered in section 2.1 as a "large" 
classical system we should, by conformal inversion, obtain a system in 

PR.w. = s3 x IR (2.9) 

where S3 represents compactified momentum space (3-dimensional) and R 
energy and search for quantum systems whose equation of motion is repre­
sented by eq.(2.5) in momentum space. Such systems indeed exist and they 
represent the most common element in the universe: the H-atom. 

In fact let us represent the sphere S3 in (2.9) by: 

s3: '/l'~ + 1l'i + 11'~ + 11'~ = 1, 

then, as shown by V.Fock [13] eq.(2.5) on S3 is equivalent to the integral 
equation 

</>(11') = ~ J </>(11'') d!!' 
211'2 (11' - 11'')2 
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where Tr = { Tr1Tr2Tr37rs} is a point on S 3 and which, for .X = n + 1 is satisfied 
by the spherical harmonics </> = y nlm. If we stereographically project S3 on 
JR3-momentum space through 

PoTrj 
Pi= 1 + Trs' j=l,2,3, 

where Po = me is a unit of momentum (mis the mass of the electron) we 
easily obtain, after setting 

and 

e2~e2 n+l =A= - --, 
he -2E 

n = 0,1,2 ... 

Wntm(P) = K(p,Po)Yntm(x,O,</>), 

with K(p,JJo) a normalization factor which renders i)nlm orthonormal in 
JR3 , the Schrodinger equation of the H-atom in momentum space: 

where 

me4 

En= 2h(n + 1)2 ' 

It may be shown that the introduction of Po is equivalent to giving a 
radius Po to S3 • 

It is known that the whole spectrum of the H-atom may be obtained by 
acting on Wntm with the algebra of S0(4,2) realized in momentum space 
[14]. 

Therefore the eigenfunction Y nlm (X, 0, <f> ), possible candidates for the in­
terpretation of the large-scale distribution of matter in the universe are 
proportional to the Fourier transforms of the H-atom eigenfunctions in sta­
tionary states. 

Obviously this correspondence is not unique. In fact there might be more 
systems both in space-time and, correspondingly, in momentum space, whose 
geometrical structure (and dynamics) is determined by that .of M and cor­
respondingly of P . One of them is represented by planetary systems. But 
more may exist. Each might be characterized by the possible radius of S3 like 
the two considered here (R for the universe and Po= me for the H-atom). 
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3. Conclusion 

Should the hypothesis formulated in this paper be confirmed by further 
observations and computations then one might draw from it several further 
interesting consequences. One of them could be that if the eigenvibrations 
Y nlm (X, O</>) are apt to represent the observed large scale structure of the 
universe, then they would mean that the cosmological principle is broken, 
and not just locally by matter condens~tions as we well know, but also by 
the large scale structure of space repreKented in our particular model by the 
eigenvibrations of the inflaton field </>. 

It would be an example of spontaneous symmetry breaking, of the group 
SO( 4) in this case, which is instead the isometry group of S3 in MR.W. 

given by (2.1), where the equations of motion (2.3) and (2.5) are formu­
lated. One should then distinguish between the "homogeneous space" on 
one side, which is determined by the group of symmetry, in this case SO( 4 ), 
dictated by the symmetry implied by the Cosmological principle, where the 
equations of motions are written and the "physical space" on the other side 
obtained from the solutions of equations of motion written in that homoge­
neous space, which then may break spontaneously the postulated symmetry 
(in a similar way as the Kepler orbits spontaneously break the S0(3) sym­
metry of the equations of motions). The cosmological principle then applies 
to the "homogeneous space" but not to the "physical one". Furthermore, 
while the "homogeneous space" is finite and continuous for the transitive 
action of the group, the "physical space" might be both finite and discrete. 

The concept of a finite space is not new: it is contemplated in the cos­
mology of a closed universe where space is represented by S3 with radius 
R equal ,..., 1010 light years, say. In such a universe the concept of distance 
has an upper limit: 7r R beyond which the mere concept of distance looses its 
meaning. Such a closed universe implies the existence of a minimal momen­
tum ,..., nR-1 , below which the mere concept of momentirm is meaningless. 
This, by itself originates the conception of physical momentum space as an 
infinite lattice. 

We have seen that spinor geometry and conformal inversion induces to 
conjecture that homogeneous momentum space should also be compact, rep­
resented by a sphere S3 of radius M, say, But then the above lattice will 
also have to be finite; not only but the existence of a maximal momentum 
,..., 7r M will imply the existence of a minimal distance ,..., nM-1 in physical 
ordinary space, below which the mere concept of distance is meaningless, 
and the physical ordinary space will also have to be represented by a finite 
lattice, dual to the one of physical momentum space. 

Concluding, we may affirm that the postulated conformal symmetry ax­
iomatically defines the "homogenrous, :ompact space" where the postulated 
group acts continuously and transH.ivo.ly. The "physical space" instead may 
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not only spontaneously break that symmetry, but also might naturally re­
sult discrete and finite, on which then the mere concepts of infinity and 
infinitesimal are absent. 

It is to be underlined that this last property derives not only from the 
identification of the "physical space" as originated from some functional of 
the solutions of some field equation on the compact "homogeneous space", 
but also from any single valued function on it. This should then in principle 
be applicable also to general relativity where space-time, conceived as a field 
(obviously not scalar), should, in our language, be classified as a "physical 
space" to which all the considerations exposed above (after extending them 
to tensor fields) should apply. 

Observe that this possible group-theoretical genesis of finite, dual lattices 
in ordinary and momentum "physical spaces" differs both from the one 
pursued, after the introduction of a fundamental length, in non local field 
theories some decades ago, and from the one adopted for the numerical 
solution of Q.C.D. field equations. 

These ideas will be further analyzed elsewhere. 
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Abstract. A set of algebraic relations involving the bundle torsion, gauge curvature field, 
and four-velocity in the Finsler-spacetime tangent bundle is presented that maintains (1) 
compatibility with Cartan's theory of Finsler space, (2) the almost complex structure, and 
(3) the vanishing of the covariant derivative of the almost complex structure. This avoids 
the much more restrictive condition of vanishing gauge curvature field. A simple solution 
to the torsion relations is also obtained. 

1. Introduction 

It was demonstrated recently that the spacetime tangent bundle of a Finsler 
spacetime [1, 2] is almost complex, and also Kahlerian [1, 3] and complex 
(4] with vanishing covariant derivative of the almost complex structure, pro­
vided that the gauge curvature field is vanishing. A vanishing gauge curva­
ture field is equivalent to the condition that the four-velocity tangent-space 
coordinate be a parallel vector field. The vanishing of the gauge curvature 
field was also shown to be a sufficient condition for the bundle connection to 
have a form consistent with Cartan's theory of Finsler space [1, 2]. However, 
through the introduction of bundle torsion satisfying prescribed conditions, 
the Finsler-spacetime tangent bundle can be made to remain consistent with 
Cartan's theory of Finsler space, and remain almost complex with a vanish­
ing covariant derivative of the almost complex structure, without the need 
to impose the relatively restrictive condition of vanishing gauge curvature 
field [5]. However, a nonvanishing gauge curvature field precludes that the 
bundle be complex [5]. A number of implied relations involving the torsion, 
gauge curvature .field, and four-velocity can be demonstrated. 

In the present work, we first review the basis for the torsion relations and 
then obtain a simple solution, in which the only nonvanishing component of 
the torsion is in the fiber-base-base sector of the bundle, and is given by the 
negative of the gauge curvature field. 
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2. Finsler-Spacetime tangent bundle with torsion. 

The components of the bundle connection (8)rM AB of the Finsler-spacetime 
tangent bundle, including bundle torsion, and written in an anholonomic 
basis adapted to the spacetime connection/are given by [5] 

(8)rµ /3 - { µ } + (8) Kµ /3 
<> - o.(3 <> ' 

(1) 

(8)fµab = IP'ab + ~Fbd' + (8)Kµab, (2) 

(8)fµba = ITµab + ~Fbaµ + (8) Kµba, (3) 

(8)fµ b - PoV).. D II if+ (8) Kµ b 
a - Dx>. a a, (4) 

(8)rm _-II m +~Fm + (8)Km 
<>/3 - <>/3 2 <>/3 <>/3• (5) 

(8)rm b - - PoV).. D rrbm + (8) Km b 
"' - Dx>. "' "' ' 

(6) 

(8)rm _ { m } + (8)Km 
ba - ba ba, (7) 

(8)rm _ nm + (8) Km 
ab - ab ab· (8) 

Here recall that a generic point in the bundle manifold has coordinates 
{xM; M = 0, 1, ... , 7} = {xµ,xm;µ = 0, 1,2,3; m = 4,5,6, 7} = {xµ,povµ; 

µ = 0, 1, 2, 3}, where xµ and vµ are the spacetime and four-velocity coordi­
nates, respectively. Greek indices refer to spacetime and range from 0 to 3; 
lower case Latin indices refer to four-velocity space and range from 4 to 7; 
and upper case Latin indices refer to a point in the bundle and range from 
0 to 7. Any lower case Latin index n appearing in a canonical spacetime 
tensor or connection is defined to be n - 4 implicitly. The length p0 is of the 
order of the Planck length [6]. Also in the above equations, there appears 
the spacetime connection 

in which the gauge potential is given by 
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(10) 

where { µ af3 } is the ordinary Christoffel symbol 

{ µ }- ! µv (~ ~ - ~ ) af3 - 29 {)x/3 Yv0t + 8xP Yv/3 8x" Y0t/3 ' (11) 

and 9µv is the spacetime metric tensor. Also, the Christoffel symbol of four­
velocity space is given by 

IIµ 1 -1 µ>. {) 
0t/3 = 2 Po g [)v>. 90t/3. (12) 

Also in the above, (S) KM AB is the bundle con torsion 

where (B)f'MAB is the bundle torsion, and the bundle metric is given by 

G = (9µv 0 ) 
MN 0 9mn 

(14) 

in the adapted anholonomic basis. Also in the above, the gauge curvature 
field is given by 

(15) 

where 

RJJ>.0t/3 = fl'>./3,DI - fJJ>.0t,/3 + fJJ-yDII"\f3 - flJ-y/Jf'Y>.0t (16) 

is the spacetime Riemann curvature tensor, written in the adapted basis. 
Here, the comma followed by a lower case Greek index denotes the operator 
,v = {)I ax" - Po-1 Af3,,{) I fJvf3' corresponding to the adapted basis. Also in the 
above fJ/ Dx>. denotes the ordinary spacetime convariant derivative with the 
spacetime connection Eq. (9). The anholonomic basis vectors are defined by 

{EM} ::::{ Eµ, Em} :::: { {)~µ - po-1 
A/3µ {)~/3, Po-1 {)~µ }. (17) 

The associated structure coefficients C Aifi are defined by the commutator 

[EA, EB]= CABM EM, 

and the only nonvanishing components are 

(18) 
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(19) 

(20) 

where 

AJ.I -1 8 Aµ 
'I' 0tf3 = Po 8vf3 0t· (21) 

In Cartan's theory of Finsler geometry, involving the base manifold only, 
the connection coefficients are those corresponding to Eqs. (1) and (2). Those 
of Eq. (1) are identical to one set of connection coefficients appearing in 
Cartan's theory, provided 

(22) 

Those appearing in Eq. (2) are identical to the remaining set of connection 
coefficients of Cartan's theory, only if 

(23) 

If the bundle torsion is not present, then the contorsion is vanishing, and 
Eq. (23) then requires that the gauge curvature field be vanishing, but a 
nonvanishing torsion circumvents the latter more severe restriction. From 
Eqs. (23) and (13) and the antisymmetry of the torsion, it follows that 

(8) - (8) - 1 (8) Tµb0t = - Tµ0tb = -Fbcf' + Kµb0t· 
2 

Next define the antisymmetric part of the bundle connection by 

(8) M (8) M 1 (8) M 1 ( M (8) - M ) r AB= - r BA = - r [ABJ = - -CAB + T AB . 
v v 2 2 

(24) 

(25) 

Throughout, we employ the notation T::[µ .. 11] •• = T::µ .. 11 •• - T::11 •• µ ... According 
to Eqs. (13) and (22) and the antisymmetry of the torsion, one also has 

(s)tµ0tf3 =(8) Kµ[0tf3J = O. (26) 

Then using Eqs. (25), (18), and (26), we obtain 

(8)fµa/l = 0. 
v 

(27) 

Next, if.we use Eqs. (25), (18), and (24), we deduce that 
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(s) 1 (s) - 1 l(s) rµ b = - Tµ b = - - Fib µ - - K µ,b 
~ 2 "' 4 "' 2 "'' 

(28) 

and 

(s) 1 (s) - 1 l(s) rµba = - Tµba = -Fbd' + - Kµba· 
v 2 4 2 

(29) 

Also, according to Eqs. (25) and {18), one has 

(8) 1 -
fµab = -Tµab· 

v 2 
(30) 

Only the components of the antisymmetric part of the connection Eqs. (27)­
(30) are needed explicitly for the considerations that follow. 

3. Almost complex structure 

The Finsler-spacetime tangent bundle is almost complex, and in the an­
holonomic basis adapted to the spacetime connection, the almost complex 
structure is given by [1, 3] 

J = ( 0 -g,,,b) 
AB 9a(3 0 (31) 

in the absence of torsion. In the presence of bundle torsion, the bundle 
connection has an antisymmetric part, and the almost complex structure 
becomes [5] 

[ 

2po(8)fµa.BVµ -g,,,b + 2po(s)rµabVµ] 
JAB - v v 

- 9a(3 + 2po(B)fµa,BVµ 2po(B)fµabVµ · 
v v 

(32) 

If we use Eqs. (27)-(30) in Eq. (32), and compare with Eq. (31), we conclude 
that the almost complex structure (Eq. (31)) is preserved in the presence of 
torsion, if the following conditions are satisfied: 

(33) 

and 

(34) 

Next, if one expands the convariant derivative of the almost complex 
structure "VEJAB by using Eqs. (31), (14), (1)-(8), (22) and (23), together 
with the corresponding results of [3] one concludes that 

(35) 
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provided that the following relations involving the bundle torsion are satis­
fied (including the other relations obtained above): 

(36- 38) 

(39,40) 

(41,42) 

(s)Kµ pdb _ o 
de µa - , 

(s)Km pli _ 11:' 
lit: /3ma - 2"C[a/3Jt:• (43 - 45) 

(46 - 48) 

where 

P /35 _ c/3 cli _{3/j 
µa - u µU a - y Yµa• (49) 

In summary, Eqs. (36)-(39) and ( 42) insure compatibility of the bundle con­
nection with Cartan's theory of Finsler space; Eqs. ( 41) and ( 44) insure that 
the almost complex structure is maintained; and Eqs. ( 40), ( 43), and ( 45)­
( 48) insure that the covariant derivative of the almost complex structure is 
vanishing. 

By means of the following identity [5], 

(50) 

together with Eqs. (39)-( 42) and ( 45), the following additional torsion rela­
tions can also be demonstrated [5]: 

(8)T-µ ne _ 0 
Serbµa - , 

(8)Kµd v"nbd - 0 e r1 µa - ' 

(s)T-µ na _ o 
derbµa - , 

(s)Km epli _ o 
lit;V {3ma - • 

(51,52) 

(53,54) 

(55,56) 
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4, Simple solution to torsion relations 

A general solution to the torsion relations, Eqs. (36)-( 48) and (51 )-(56), 
expressing the components of the bundle torsion explicitly in terms of the 
gauge curvature field and four-velocity, will be addressed elsewhere. Here we 
instead seek a simple particular solution. 

Begin by considering Eq. ( 45) with the following ansatz 

(8)Km _ pm' 
Se - K Se, (57) 

as part of a possible self-consistent solution, where K is a constant. If we 
substitute Eq. (57) in Eq. (45), it follows, that K = -1/2, and therefore 

(8) Kms" = _!pm5e· 
2 

Also, Eq. ( 41) immediately suggests 

(8)Kµd" = _!F,J'. 
2 

(58) 

(59) 

Furthermore, in accordance with Eqs. ( 43) and ( 46), we can make the simple 
ansatz 

(60,61) 

Thus, the only nonvanishing components of the contorsion are given by Eqs. 
(38), (58), and (59), which are assembled here: 

and 

(8)Kµd" =(8) K,,ed = _!Fd 
2 

(62) 

(63) 

All other components of the bundle contorsion are taken to be vanishing 
(Eqs. (36), (60), (61), (47), and (48)), namely, 

(8) K µ51! = (8) K µde = (8) Kmse = (8) Kmde = (8) Km de = O. ( 64) 

Next we can substitute Eq. (62) in Eq. (39) and obtain 

(8)f'µse = 0. (65) 

Also, if we substitute Eq. (62) in Eq. ( 42), we get 

(66) 
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Furthermore, in accordance with Eq. (44), we also make the simple ansatz 

(67) 

Next, if we substitute Eqs. (64) and (67) in the expression for (8)Kmab given 
by Eq. (13), we obtain 

(gm19bd + 15md6~)(8)fdal = 0. (68) 

Equation (68) suggests the simple ansatz 

(69) 

Next, if we substitute Eqs. (64), (69), and (67) in the expression for (8) Kmba 

given by Eq. (13), we obtain directly, 

(70) 

Furthermore, if we substitute Eq. (64) in the expression for (8) Kmab given 
by Eq. (13), we obtain 

(
ml _en+ ml .en +.cm .en d)(

8
)T-d 0 

9 9adU b 9 9bdU a U dU aU b nl = • 
Equation (71) suggests the simple ansatz 

(71) 

(72) 

Finally, if we substitute Eqs. (65) and (63) in the expression for (S)Kmaf3 

given by Eq. (13), we get 

(8)T-m _ Fm 
a{3 - - a{3· (73) 

In summary, the only nonvanishing component of the torsion is in the 
fiber-base-base sector, and is given by Eq. (73). All other components of 
the bundle torsion are vanishing (Eqs. (37), (65)-(67), (69), (70), and (72)), 
namely, 

(S)fµse = (8)f'µ8e = (S)f'µde = (S)f'µde = (8)f'mse = (8)f'mde = (8)f'mde = 0. 
(74) 

Equations (36), (37), ( 43), ( 44), ( 46)-( 48), and (51 )-(54) are trivially satisfied 
by Eqs. (74) and (64). Equations (39) and (42) are satisfied by Eqs. (74) and 
(62). Equation (40) is satisfied by Eq. (62) together with Eq. (49). Equation 
(45) is satisfied by Eq. (63) together with Eq. (49). Equation (55) is satisfied 
by Eq. (62) together with Eq. (50). Equations (38) and (41) are satisfied by 
Eq. (62). And finally, Eq. (56) is satisfied by Eq. (63) together with Eq. (50). 
Thus, all of the torsion relations are satisfied by the simple solution given 
by Eqs. (73) and (74). 
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5, Conclusion 

The Finsler-spacetime tangent bundle with bundle torsion is compatible 
with Cartan's theory of Finsler space, and is almost complex with a van­
ishing covariant derivative of the almost complex structure\ provided that 
the torsion satisfies the relations given by Eqs. (36)-(48) and (51)-(56). A 
simple particular solution to these torsion relations is given by Eqs. (73) 
and (74), in which the only nonvanishing component of the torsion is in 
the fiber-base-base sector of the bundle, and is given by the negative of the 
gauge curvature field. 
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Abstract. We present a review of the development of a theory of elementary particle 
fields. Instead of a mathematical model based in a mathematical group, we show that we 
can actually develop a~ which, as a consequence, points to a mathematical stmcture. 
Clifford algebra. is used as the basic tool. 

We show that an extended representation of the Multivector Clifford algebra. allows, 
first, a series of factorizations of the La.placia.n opera.tor, and, second, generates 3 families 
of elementary particles with the experimentally observed lepton and quark content for 
each family and the experimentally observed electroweak color interactions and other 
related properties. The factorizations V2 = (f(n8~d))*(f(n8~d)) and the related Dirac­
like equations 

rr/)a~d)tP(d,J) = 0 

are studied, its symmetries given. The f(n generate the 3 families, the a~d) generate the 
observed lepton and quark content of the families-. 

In contrast to the usual approach to the standard model the properties for the different 
fields of the model a.re conseauences of the relative properties of the equations, among 
themselves and in relation to spacetime, and therefore, they do not need to be postulates 
of the theory. 

1. Introduction 

In the years 1980-1983 it became apparent that besides the accepted 
SU(3)@SU(2)©U(l) structures of the elementary fields corresponding to a 
family of elementary particles, there were 3 possible families, and perhaps 
more, each one repeating the group structure of the fundamental family. All 
the experimental analysis, in the decade elapsed since that time, confirms 
that scheme. The construction of the basic field as composite of other, more 
fundamental fields, pointed to the need of combining the gauge, or interac­
tion, fields with the study of the basic fields and moreover to the need of 
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incorporating basic concepts like "confinement" and "colorless composites" 
together with the consequences of the basic group. Of paramount impor­
tance is violation of parity in weak interactions, the massless character of 
neutrinos and their associated left (right) handedness. 

For us all the phenomenological concepts and models fit together in such 
a way that, if an appropriate mathematical framework is used, we could 
develop a theory of elementary particles and their interaction fields which 
should then be the foundation of the set of phenomenological laws. 

Here we show that this task is now possible and that a useful mathemat­
ical tool which reduces the need for additional, or ad hoc definitions, is the 
Clifford algebra approach to the mathematical formulation of spacetime and 
the basic fields. 

In fact a usual approach in mathematical physics is to use the concept 
of spacetime as a frame of reference for the description of the matter and 
their interaction fields. Spacetime, having a multivector structure and con­
taining a spinor (and dual spinor) space, not only describes our perception 
of the physical nature but is also a powerful mathematical tool. Adopting 
spacetime as a basic frame of reference for physical phenomena should imply 
that its structure and symmetries corresponds to the observed characteris­
tics of the matter and interaction fields. If a contradiction or b.suficience 
were found a wider reference frame should then be constructed and used, 
but this does not seem to be the actual case. 

We have several motivations for the analysis presented here which follow 
from studies we have performed in the last 14 years [Keller 1991]: 

1. Given spacetime and its multivector Clifford algebra, C£1,3 or its com­
plexification Cfo,5, we can ask: which fields may exist in it obeying the 
Klein-Gordon wave equation b.'I/; = -a2 '1/; , with: ( a2 2'. O)? Introducing 
the fields from first principles and guiding our analysis of thore fields 
(to make connection with experiment) from the accepted form of the 
rtandard phenomenology. 

2. In the standard model, if we consider the fields that may exist in space­
time according to 1): do we need to add isospace to spacetime? After all 
the natural tangent space TM to spacetime R1(3 contains 16 elements 
and the TM to the complex spacetime C£0,5 contains 32 elements. 

The elements IA of R1,3 are the dimentionless Grassmann numbers 

1, Iµ, lµlv = gµv + lµv, gµv = diag(l, -1,-1, -1), 
lµv = -lvµ1 lplµv = gpµlv - gpvlµ + lpµv 

and 1>.lµvp = g>.µlvp - g>.vlµp + g>.plµv + 15 or 15 = 10123, 

all {µ,v,.X,p} = 0,1,2,3. 

The complexification of Cf1,3--+- Cfo,5 can be denoted by 
{IA+ i/A; IA C C£1,3}. All multivectors act as operators among them-
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selves and on the 1/J's describing the matter and interaction fields, the def­
initions are such that 1°, if12 and i/5 are hermitian. Multivectors are de­
fined from the vectors 111 through their Grassmann outer product 11111 

... = 
1 11 A 1" /\ ... (See Chisholm and Common (1986) or Micili, Boudet and 
Helmstetter ( 1992)). 

We have discussed elsewhere the use of multi vectors as generators of Lie 
groups, see for example [Keller and Rodriguez-Romo 1990, 1991a] where we 
analyse the construction within Clo,5 of frequently used groups as for exam­
ple 80(2,3), SU(3) or SU(2). Also the integration of spinors and multivectors 
into a geometric superalgebra [Keller and Rodriguez 1992]. 

Here we show that the basic phenomenology, and the essential leftha.nd­
edness of the neutrino, can all be combined in a generalization of the Dirac 
equation and the postulate that all physical possibilites implied should be 
included. 

2. Chiral symmetry in spacetime 

We assume that a local observer describes spacetime by an orthonormal 
tetrad a) (1°)2 = -(11

)
2 = -(12

)
2 = -(13

) 2 = 1. In this frame b) 
15 = 1°111 213 is both the duality transform operator and the pseudoscalar 
( 15) 2 = -1. It is important that if another observer uses a differ':)nt co­
ordinate system, related by a Lorentz transformation L, the fundamental 
properties ( i/5

) 2 = 1 and 151 11 = -11115 are also preserved, together with 
a). 

The handedness operator H = if5 can be used to construct the chirality 
projectors PR and PL: 

PR+ PL= 1, PRPR =PR; PLPL =PL, PRPL = PLPR = O, 

where Pn = ~(1 + if5), PL= ~(1 - if5) or, as discussed here below, 

1 
PR,L = 2(1 ± H). 

If a coordinate transformation 15 -+ (15 )' is allowed where a), and con­
sequently b ), is not preserved (that is if the determinant .;- of the transfor­
mation is not .;- = + 1) then H ::f. i( 15 )' showing that a chirality opera.tor 
H = i(l5 )' /.;-,with H 2 = 1 in all frames has to be used. 

H is in fact an invariant dimentionless quantity, it obeys H2 = 1 in all 
frames of reference. Even if the handedness of the frame F' is changed rel­
ative to frame F' because (15)' = q 5 • Given that g' = i;-2g and then the 
effect of the sign of.;- is lost, we cannot define H in terms of Jl9f, we have 
to define it in relation to the "handedness (F)" of a given frame F a.nd then 
the use of .;- ensures that in a change to F' we obtain 
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handedness(F') = sign(\)• handedness(F). In terms of this, relative, hand­
edness definition we could write 

H = handedness (F)i/5 Jjl;i (Al) 

which is equivalent to our definition H = if5 when and only when the 
conditions mentioned in the text are satisfied. 1 5 and Jl9T could both, si­
multaneously, be considered to have (length)4 dimention and H still would 
be a dimentionless quantity. 

Here we will assume H = if5 , because of the restriction a) and the 
assumption that we have selected a "right" handeded frame of reference. 
The PR and PL can better be considered numbers of a new mathematical 
field, with basis 1 and H, in an hypercomplexification of the Clifford algebra. 
H( = H) is coordinate invariant. 

3. Chiral symmetry theory of elementary particles 

Using spinors, vectors and multivectors [Fock and Ivanenko (1929), see also 
Keller 1991, Keller and Rodriguez-Romo 1991b, Hestenes 1966, Casanova 
1976, Keller and Viniegra 1992, Keller and Rodriguez 1992] we will now 
construct a theory for lepton and quark fields using the possible multivec­
tor generalization of the Dirac factorizat!on of the Laplacian ( d 'Alembert 
operator V'2 = {)JJ{),,). We start, as a guiding concept, by considering the 
Klein-Gordon equation operator and its factorization 

({)JJ{),, + m2
) = (Dt + mi)(D - mi) 

which requires that 

-Dtm+ mD = 0 and 

we can have then a set of choices, either 

(1) 

(2) 

1. any value of m and Dt = D (the standard Dirac operator D0 ), or 
2. for the case where m = 0 the possibility Dt :j:. D also becomes 

acceptable. Here we will use the field generated by 1 and H. 
In multivector algebra the Dirac operator is the standard vector operator 

(using the vectors /JJ) D-+ Do= 'YJJ{),,. (Sometimes D-+ 1° Do= 1°,,&,, is 
used). 

The basic requirement DtD = DDt = {)JJ{),, limits the choices of D, it 
can be taken to be written in the Lorentz invariant form 

D - r,, a<d> 
(d,J) - (/) µ ' also D(d,J)'l/J(d,J) = 0, (3) 
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in order to show the relation to the Dirac's original factorization in the 
simplest possible form. Here the r(n are operators on the 1/7 which can be 
represented by generalized Dirac /µ matrices, see below. The limitation is 
so strong that the only possible choice is where the multivector i/5 (or the 
invariant H), which has the same action on all 1µ, that is if5 /µ = -1µi/ 5 , 

is used see [Keller 1982, 1984, 1986 and 1991, pag. 158 and following], this 
is particularly interesting because chirality comes naturally into the theory. 

We construct the following (Lorentz invariant but coordinate system de­
pendent) operator 

o~d) = {lcos(n+t~)~+Hsin(n+t~)~}aµ · (4) 

condition (2) requires n and t~ integer and it results in the simplest multi­
vectors. Here, to take the electron as reference we use n = -1. 

With this choice of presentation we can have the "diagonal" structure: 

if n + t~ are even 
(5) 

if n + t~ are odd 

The standard /µ = r(l) matrices which correspond to an irreducible 
representation of Cf1 ,3 are found to be useful to write the wave equations 
of the first or fundamental family ( eji, e[,, VL, { uL, dL; color}) of elementary 
particles. The electron requires a combination of two fields e- = ( eji, e[,) 
for the standard phenomenology of electroweak-color interactions. 

The study of families other than the electron family suggested that, a 
more general, non reducible representations of Cf1,3 , could in fact be needed. 
They are collectively denoted by r(f). In Clifford algebra their Lorentz trans-

formations r/ ~ (rj)' do not change the. lJ(d). From our basic postulates 
the rµ can all be written as exterior products of the /µ, 1 5, if5 and 1, . A 
fundamental representation would be for example [see Krolikowski 1990] 

r/ = /µ 0 (1010 · · ·h(f-l)product& (6) 

other equivalent, but different, representations, being also possible. We call 
these representations of the Clifford algebra "capital representation" [see 
Keller 1993]. The corresponding spinors would then be the, totally antisym­
metric, exterior products 

?/Ju) = 1/7( x) /\ ( 1/71 /\ 1/72 /\ · · · hu-1 )product&· 

For a local theory (assumed here) the first factor 1/7( x) is the only one 
that carries spacetime position dependence. 
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Then the 1/Ji are 2(! - 1) non null, normalized constant Dirac spinors 
which correspond to extra, mathematical, internal degrees of freedom of the 
diracon fields. For the fundamental s = 1/2 fields their spin should add to 
zero (!odd integer). The total antisymmetry of '1/J(j) limits the value of J 
to f = 1, 2, 3 otherwise the exterior product is null. 

The degeneracy n I of the representations of the f{/) gives statistical 
weight to each family: n1 = 1, n2 = 4 and n3 = 24. This will result in 
factors for the terms of the mass matrix. 

The elementary fields thus described are mathematically composite, but 
still elementary in the sense that they cannot be decomposed experimentally 
into their components. No size of the particle is required by the theory, they 
are representations of the basic elementary fermion equations, no spacetime 
structure is involved, there is only the mathematical complexity of the wave 
function. Each family has an internal relationship identical to the funda­
mental family J = 1 and the same SU(3)color®SU(2)®U(l) symmetry. No 
additional gauge interaction field is needed to relate the different families. 
They are algebraic families of otherwise structureless leptons and quarks. 
The algebra of the f{f) has been developed and studied by Krolikowski 
(1990), as well as the consequences for the phenomenology of the elemen-
tary particle families. i 

4. Chiral geometry theory of charge isospin and color 

For the quarklike diracons, an introductory analysis to study the conse­
quences of (3), we use a reference frame Fin such a way that a local reference 
direction is defined to be /l = ( /1 + /2 + /3 )/3 and the notation /~ = its/µ 
is used. Such that we can explicitly exhibit the vector-(imaginary) axial vec­
tor momentum admixture and show that it is a constant (independent of 
the "color" of the diracon field). 

Let us write in detail the "energy momentum multivector" p of every 
diracon field d, including the different "colors" red (r), blue (b), or green (g) 
of the quarks, according to Table I, (Pdir = p0 /o + l1fir): 
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electron e: Pe = P010+p'-(11+12+13)/vJ 
p~ = P010+p'-(1f+12+13)/vJ 

quark u: p~ = P01o + pe(t1+if+13)/vJ 
p~ = P010+lb1+12+1f)/y'3 
p;J = P010 + pe(t1+if+1f)/V3 

quark d: p~ = P01o + Pe(1f + 12+1f)/vJ 
p~ = P010 + pe(tp +if+ 13)/vJ 

neutrino v: p,, = P01o + Pt(1f +if+ 1fl/y'3 (7) 

Here p( is the three-momentum and p0 is the energy. We can see that 
the energy-momentum vectors are all in different phases of the Pµ - p{? 
rotations, with none, one, two or three vector rotations. 

Let us now consider a gauge energy-momentum vector field AµIµ, in the 
Coulomb gauge A0 = 0, added to the diracon fields with coupling constant 
proportional to Qe, modifying the vector part of the momentum, with the 
energy-momentum components given in the same proportion to the time 
part and to tlie spatial parts (calling l.L a vector perpendicular to the di­
rection of motion le). For the electron 

(8) 

has components 

timelike lo· p = p0, spacelike parallel le· p' =pl+ QeAl, 

spacelikeperpendicular1.L ·p' = QeA.L. (9) 

All of them are scalar quantities. 
However, for au quark (taking, for example, a red quark, the result being 

invariant with respect to color), 

(10) 

the scalar components will be affected by a factor of i, and following the 
same procedure for a down quark, the scalar components will be affected by 
a factor of i, and for a neutrino the scalar components will be affected by a 
factor 0. 

Then if we make the obvious definition that the scalar part of the gauge 
field, treated on an equal basis for the electrons and for the quarks of the 
neutrino, is to be considered as gauged by the electromagnetic ·field A, the 
"electric charges" have to be Qe, ~Qe, iQe, and 0, respectively. The pseu­
doscalar (proportional to its) parts are to be treated on a different basis, 
and will be shown to correspond to the weak and color interactions. 
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In the full Lagrangian, introduced and discussed in [Keller 1991], a first 
term equivalent to the standard Dirac matter-field Lagrangian 

Cm = i"irr'"' Dµ'l/I (here 8µ ~ Dµafter gauging) (11) 

is to be replaced by the corresponding expression for diracons: 

(12) 

It is in this term of the Lagrangian where we have to introduce an elec­
tromagnetic gauging with a coefficient e for the electron field, 2e/3 for the 
(anti) up-quark field, e/3 for the down-quark field, and 0 for the neutrino 
field. Then in the gauge theory we are constructing, the charges for the 
U(l) part of the gauge fields are the (postulated usually) integer, fractional, 
or zero values of the standard theory. In general our method will allow us 
to develop a gauge theory instead of postulating it as in the standard ap­
proaches. In this form we are showing the physical origin of the various 
couplings of the gauge fields, and the role played by i-y5 in it, as a part of 
the symmetry-constrained Dirac particle theory. 

For this purpose the A field discussed above will have to be enlarged and 
split into contributions, usually called B and W 3 in the literatur'.!, and new 
"charges" T 3 and Y are introduced with the standard notation 

(13) 

but the assignment of T3 and Y to give our values of Q will be straightfor­
ward and its physical origin clear. 

It is convenient to start with a rearrangement of the set of diracon fields 
in groups which will show an explicit SU(2) x SU(3) C spin(8) symmetry 
as shown in Table I on page 387. 

To start, we explore the SU(2) relations; for each given family we can see 
that the addition of a set of symmetry coefficients {W-} = (0, -1, -1, -1), 
modulus -2, to the first row produces the last row and ljl(eir addition to any 
one of the first group of three up-quark fields produces one of the group of 
three down-quark fields. That is: the same chiral phase change that takes 
the neutrino field into a left electron field will change an up quark into a 
down quark. The reverse process proceeds in the corresponding way. The 
"neutral" interaction will arise from a change in the phase of one of the 
partner fields canceling that of the change of the other. 

In the language of bilinear spinor operators, creation-anihilation, we could 
write all these processes in terms of spinors: if {x 11 , Xu, Xd, Xe} = Xa represent 
the neutrino, up-quark, down-quark, and electron fields, respectively, and 
their respective dual fields are {xt. xt. x~, xn = xL with the orthogonality 
condition x! 'I/lb = Cab• then the processes above can be described by 
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(14) 

(15) 

and the neutral interaction (to be combined with the electromagnetic) is 

(16) 

provided that, in order to account for the spin h/27r of the gauge fields, 
in all cases the spins of each spinor operator of the product are opposite, 
i.e., that the spinor of the electron field created is opposite to that of the 
neutrino field annihilated, etc. Then these processes correspond to vector 
interactions with total spin one, equal to the change in spin of the field 
during the interaction. 

What we will show below is the correspondence between the interaction 
fields and each product of an interaction operator, written here in a formal 
way. We should add at this stage that, besides spin, energy-momentum is 
being exchanged during the interaction; for example, a photon interacting 
with an electron, with energy-momentum exchange q, could be writtP.n 

A = L Xe(p+q,'fs±l)X!(p, =fS) (17) 
p 

stating that the electromagnetic interaction annihilates an elecfron of mo­
mentum p and spin components and creates an electron of momentum p+ q 
and of opposite spin. 

The color interaction will change one of the spacelike tf indexes of the 
quarks from the value 1 to 0 and produce a value 1 for one of the other 
indexes (which was zero previously), or change the axial vector momentum 
of two of those indexes simultaneously to a total of the eight operations 
{1 --.. 2, 1 --.. 3, 2 --.. 3, 2 --.. 1, 3 --.. 1, 3 --.. 2, 11 --.. 22, 22 --.. 33}, 
corresponding to the SU(3) color symmetry; we can also write these results 
in a formal operator way if we add a color subindex to the quark fields; then 

G' ' 't 
ab = Xq,aXq,b (18) 

will correspond to a gluonic interaction changing color b into color a. 
All these interactions in our diracon fields and in our chiral phase lan­

guage correspond to a change in the free particle wave function 

'¢d = uexp(pd · x + </>~) = uexp(¢>d) (19) 

with u a spinor and the de Broglie phases ¢>d being the sum of the scalar and 
the pseudoscalar parts of the proqucts of the vector x with the momenta 
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given by equations (12). The de Broglie phases are gauged by the </>~ which 
also contain scalar and pseudoscalar parts. For the leptons the de Broglie 
phases are 

(20) 

,i.. 0 · k ,i..O 
'/'neutrino = P Xo + l/5p Xk + 'l'v' k = 1,2,3 (21) 

The spinor u for the electron can be left- or right-handed, whereas for 
the neutrino, in order to satisfy equations (2-3), only the left-handed field 
is possible. 

In order to preserve rotational symmetry, for each one of the quarks 
we need to show explicitly the gauge phase </>~,a ensuring that the overall 
de Broglie phase is space-symmetric. This requires a complicated vector 
notation. If a space index is k (with values 1,2,3), a references space index 
is r = 1,2,3, and a color index is a orb (with values r,b,g), we have a set 
of three multi vectors [vector +i axial vector, i = ( -1 )112], 

er = cos Wrk [cos ( 1l't~ /2) + i/5 sin ( 1l't~ /2)] (22) 

for each color a of a given quark, direction k in space, and quantum number 
ta in Table I, for reference space direction r, this reference space direction at 
an angle Wrk with the observer's space coordinates k. This is a more general 
notation than that of equation (7), where, for simplicity, the particle was 
taken to move in a direction with all cos Wrv = 1/ ,,/3. The er are then the 
sum of a scalar and ( i times) a pseudoscalar. 

For the purpose of our formalism we need a duality-symmetric set of 
coefficients br such that er + br = COS Wrk, the ordinary cosine directors 
(no axial vector mixing). 

In terms of the multi vectors (22) the de Broglie phases for the quarks are 

k ,;. _ 0 + ar k + bar ,i..k + ,i..O up quar 'l'u,a - p Xo ck p Xr k 'I' Xr 'l'u,a (23) 

d k ,i.. 0 + br k + bbr ,1..k + ,i..O own quar 'i'd,b = p Xo ck p Xr k 'I' Xr 'l'd,b (24) 

The constants er are different for up quarks and for down quarks, corre­
sponding to the td quantum numbers. 

Now, the phase angles</>~ can either change the scalar-pseudoscalar struc­
ture of the de Broglie phases or leave them with the same structure. In the 
first case we have a change of the particle's nature (the resulting wave func­
tion will obey a different wave equation), and in the second case we have 
a type-conserving interaction. For this purpose we construct a Lagrangian 
which is invariant to the changes of the phase structure of the different 
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TABLE I. Allowed Sets of Symmetry-Constrhlned Quantum Numbers {t~d = t~ + n} 
for Chiral Fields Corresponding to the Electron Family. Satisfying the Generalized Dirac 
Equation D(J,d)tP(f,d) = 0. The quantum numbers n, t~, and operator D(J,d) are defined 
in equations (3)-{4) in the text. They correspond to the choice of e- as reference. The 
charges are given by the average value {t; + t; + t&)/3t!i as described by the explanation 
of (72) in [Keller 1991). The isospin pairs are connected by a change in the t~ such that 

It~' - t~I = (2, 1, 1, 1) mod 2, and the color triplets by a change in the t~ such that 
d d1 d

1 
td t,_. - t,_. = t,, - ,,. 

tii t; t~ t~ Q 21 Color Name 

-1 -1 -1 -1 -1 -1 - electron 

1 0 1 1 +~ 1 r 

1 1 0 1 +1 
3 1 b up quark 

1 1 1 0 +i 3 1 g 

-1 -1 0 0 - l 0 r 3 

-1 0 -1 0 1 0 b down quark - 3 

-1 0 0 -1 - l 0 g 3 

1 0 0 0 0 0 - neutrino 

</>d .=Phµ+</>~ shown above. We have done this in [Keller 1991] using ma­
trix notation for isospin to conform to the usual expression of the standard 
theory. 

Here we should remember that the idempotents !(l±if5) correspond to 
the operators selecting handedness (or chirality) in spacetime algebra. The 
set of t~ are then restricted forms of handling the chiral symmetry of the 
different fields. The relative chiral symmetries of the fields are the rele­
vant quantities. The properties are relative properties, only the relations are 
meaningful not the actual components which are frame of reference .depen­
dent (or even coordinate dependent if general transformations are allowed). 
The group of these relations (see Table I) is the mathematicai structure of 
physical interest. It is a SU(2) 0 SU(3)c structure for each /. The U(l) 
additional symmetry is related to the standard gauge freedom of the wave 
function. 



390 JAIME KELLER 

In Table I Q = charge and I = isospin. Color and name refer to standard 
nomenclature. See [Close 1979, Field 1979, Okun 1982, or Halzen and Martin 
1984]. 

The basic equations for the set of spinor fields being (with D(d,/) explicitly 
defined above) 

where the subindex d stands for symmetry constrained Dirac fields 
(Diracons ), it is given the values (electron )left, electronright, 

(25) 

Ur, ub, u9 , dri db, d9 and v, for the first family, to conform to standard phe­
nomenology and the subindex f refers to the family number. 

We have shown [Keller 1991] that they constitute a set with all the known 
properties of each elementary particle's family, the fields they represent can 
be: 

- massless or massive in the particular case of eL + eR 

- charged (integer or fractional). 
and it is discussed in [Keller 1991, pages 158 and following], that the collec-

tion of the fields constructed with (5( and (6) have weak charge and color, 
and in general the characteristics usually postulated on phenomenological 
basis, like composites being colorless, confinement, etc. these being immedi­
ate consequences of the defining equations. 

Because of the appearance, or not, of the i/5 factors in (5), the fields 
have definite chiral properties. Only one type (for each family) of field in 
the theory may have simultaneously both chiralities and therefore can be, 
as a free field, massive, charged (reference charge ± 1) and weak charged: 
this is, for the first family, identified as the electron field. 

We should stress, again, that in Table I properties are llQ1 assigned they 
are relative and are properties of the gauged Lagrangian. See [Keller 1991 
pages 161 and following] for a full discussion of this point. 

- The resulting theory is a chiral geometry theory of charge, isospin 
and color. 

The theory has a Lagrangian formulation that reproduces all aspects of 
the standard theory. Higgs particles have not, in its first approximation (see 
below) the same motivation as in the standard theory. Confinement results, 
within the theory, from the requirement that the Lorentz symmetry should 
not be broken even at local level. The same requirement gives rise to the 
colorless condition for hadrons, the new feature is that hadrons should be 
both globally and locally colorless. Fractional charges are also a natural 
consequence of the gauging properties of the Lagrangian. 
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Mass results from vector and axial vector gauging, this procedure con­
serves the succesfull role of the Higgs field in the standard theory, weak 
bosons acquiring the same mass. 

The theory shows the reason for chirality being a basic property of nature 
as shown by the set of elementary particles. This can be clearly seen with 
the gauging of the diracons equations 

D(d.J) = f{'n[atdl - I~A(d,f)(x)] 
the gauging fields having the multivector composition 

A~( X) = A~,scalar (electromagnetic) + i/5 A~,pseudoscalar (weak, color) 

+Aµ af3 + a Aµ + 5 f3 Aµ 
a{J,tensor(gravity)l 1' a,poincarti 1' 1' /J, poincare 

(26) 

(27) 

That is, the gauging has electromagnetic, weak, color and gravity parts. 
Then the wave function becomes upon gauging ( i.p a reference spinor ). 

1/Jd(x) = Bexp{l(p~xµ + </>d(x))}i.p 

with the phase factor being a multivector 

(28) 

</>d(x) = </>d,scalar(x)l + </>d,pseudoscalar(x)i/
5 + </>d,a{J(x)Ja/J + </>d,poincare (29) 

the particular, relative, combinations for the phase factor of the if5 terms 
generate isospin and color and the 1af3 generate the local Lorentz transfor­
mations which are a consequence of gravity. To get a more common for­
mulation of the theory we take first I.= 1 5 and second replace it by its 
eigenvalues ± i. The usefullness of 15 stems from the fact that it com­
mutes with 1, /a/J and if5

, (or H = handededness ( F)i/5 / Jjgf ). The 
symmetries of </>d,sca!ar( x) + </>d,pseudosca!ar( x) i/5 generate the well known 
SU(3)c 0 [SU(2) 0 U(l)]ew standard theory. The mass matrix for the f > 1 
families of elementary particles has a very interesting form in its first ap­
proximation: 

m(f,d) = N fmd( 5. 75 + effect of nondiagonal terms) (30) 

with N1 = n1c} and md = m0(nc)dQ~, where n1 is the degeneracy of the 
family's wave function, CJ = 2/ -1 the number of spinors in the outer prod­
uct of 1/J, m 0 the electron mass, nc the number of color degrees of freedom: 
1 (for v and c) and 3 (for the quarks) and Qd the charge of the lepton 
or quark field. Then the masses are all, in a first approximation, propor­
tional to the electron mass. The factor Q~ suggests that the mass matrix is 
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directly related to the electromagnetic, gauge, field as of a self interaction 
origin. The creation of a pair of elementary particles at a given point, and 
its subsequent separation, involves the creation of their gauge fields, Q2 is 
the factor for the energy required to create the particle's electromagnetic 
field, an inseparable field from the concept of the existence of the particle, 
whereas Q~ should correspond to self interaction. 

The phase factor (29) may contain additional terms in the vector+ axial 
vector part of the Clifford algebra. In particular the possibility of a vector 
contribution ( m/ 4}rµXµ will result in the term called the "frame field" by 
Chisholm and Farwell (1992) generating the mass of the matter field. 

5. The basic set of equations 

It is interesting that the fµndamentals of the theory can be summarized in 
the set of equations (25 and 26) labeled by (!, d) which should be treated 
together and with the corresponding equations for the gauge fields. 

The comparison of the matter fields to see their relative properties is 
mathematically a spin (8) E1J spin (1) model for each family of elementary 
particles. This substantiates the work of Chisholm and Farwell as a further 
evidence that we have presented here a theory of elementary particles. 

6. Conclusions 

In the theory we have presented here the physical properties are now a 
constitutive part of the wave equations. The relative properties are clearly 
shown [Keller 1991] when supermatrices describe a collection of fields. Off 
diagonal terms couple them among themselves. 

We have seen that spacetime and its TM (complex) allows enough de­
grees of freedom to construct a theory of elementary particles and their 
interactions. Specially important is that all known interactions are properly 
described. No additional isospin space is therefore needed. 

Nucleons like proton or neutron and mesons are, within this theory, com­
posite fields but elementary particles. In fact these composite "elementary" 
particles cannot, even if enough energy is available, be split into smaller 
components; the requirement of rotational invariance forces the "colorless" 
combination of quarks, even to the smallest possible experimental probe size. 
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Abstract. Multiplication of spinors leads to triality (weak triality) and then to Lie (Jor­
dan) superalgebras, which form the basis of our understanding of the exceptional geome­
tries. Together with the corresponding Dirac operator, these algebras shine a light on the 
geometry of manifolds and can also be used to describe particles. 

On the algebraic side, this talk is devoted to versions of triality in low dimensions (due 
to E. Cartan and N. Jacobson) as well as the structure group of the exceptional Jordan 
algebra. Using the idea of genralized multiplication on the geometric or analytic side, 
a variety of Dirac operators can be investigated. With some mild curvature conditions 
harmonic sections are parallel, (The vanishing theorem). Moreover the vanishing theorem 
gives one information on the index of the Dirac operator, which also has ramifications in 
particle physics. 

1. Introduction 

Spinors admit a variety of multplications. Although spinors form a module 
over the Clifford algebra, the operation of the tensor product is the most 
obvious internal product rule. Moreover representation theory produces a 
multiplication of spinors by decomposing the tensor product. These prod­
ucts are sensitive to the parity of the dimension of the vector space. In low 
dimensions there are several fortuitous coincidences that allow the construc­
tion of certain non-associative algebras. The path followed will develop the 
triality algebra of Chevalley and then sketch the exceptional algebra of A. 
A. Albert. Along the way octonians arise from the triality algbera.Finally, 
a Dirac operator is introduced and the existence of harmonic sections is 
examined. 

The talk is organized around a number of examples. 
Warning If no specific mention is made, the underlying ground field is 

the complex numbers. If confused, complexify! 
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2. Example 1 

Let V be a vector space of dimension eight with a quadratic form q. Denoting 
the Clifford algebra of V by 

CL(V) 

recall that CL(V) is obtained from the full tensor algebra by dividing by 
the two-sided ideal generated by elements of the form 

v 0 v - q(v) v EV 

The fundamental relation in C L(V) is then 

v2 = q(v) 

There are several important observations to be made. 
(1) From general considerations the space of spinors Sis defined to be an 

irreducible representation of C L(V) and as such has the property that 

CL(V) = End(S) 

(2) There is no unique way to choose S. For example, in this lecture, you 
may think of polarizing V: 

V = V' EB V" 

in which the spaces V', V" are maximal null spaces and choosing S to 
be the left ideal 

S = A(V1
)<p 

where <p is a product of basis elemep.ts in V" 
(3) The spinor representation in this case is just the regular representation 

arising from left multiplication. 
( 4) The reduced representation of the even Clifford algebra C L(V)0 yields 

the decomposition 
S =So EB S1 

into even and odd spinors. Since the dimension of S is sixteen, the even 
and odd spinors each have dimension eight. 

Fundamental bilinear for spinors. For u, v E S define the bilinear form 
f3 on S as follows: 

/3( u, v )'if; = homogeneous component of deg four of utv 

where 'if; is the product of a basis of V' and u -+ ut is the transpose anti­
automorphism. 
( 1) f3 is non-degenerate. 
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(2) 
/3( xu, xv) = q( x )/3( u, v) x E V u, v E S 

f3(su,sv) = N(s)f3(u,v) s E Clifford group 

397 

where N(s) = utu is the spinorial norm defined on the Clifford group. 
(3) 

/3( xu, v) = /3( u, xv) 

( 4) /3 is symmetric. (That V is eight dimensional enters here) 
The Chevalley triality algebra. Consider the vector space 

A = V EB S = V EB So EB S1 

provided with the quadratic form which is the direct sum of /3 and q. The 
space A has dimension twenty-four and carries a cubic form. 

(x,u,v)--+ f3(xu,v) 

which gives rise to a symmetric trilinear form qi on A via the process of 
polarization. Using the quadratic form on A one obtains a product: 

qi(A,B,C) = (AoB,C) 

This is the same way that the cross-product is introduced in the calculus of 
JR3. 
Theorem.The vector space A with the o-product forms a commutative, 
non-associative algebra satisfying: 
(1) 

(2) 

(3) 

Ao B = 0 if A, B E same summand 

So o S1 C V and cyclically 

x o u = xu x E V, u E S Clifford multiplication 

xo(xou)=q(x)u, 

f3(x o u,y o u) = q(x,y)f3(u,v). 

Remark. The form q(x,y) is defined as the bilinear form associated with 
the quadratic form in the following manner 

(x,y)--+ q(x,y) = q(x + y)- q(x)- q(y). 

Note that a factor of two has been suppressed in the definition of q(x,y), 
following the convention of Chevalley. 

This example ends with a discussion of the triality principle of E. Cartan. 
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The Clifford group acts on the algebra A in the following way: 

s(x,u,v) = (x(s)x,p(s)u,p(s)v) 

in which p is the spinor representation and x is the vector representation 
which actually defines the Clifford group, r; indeed 

r = {s E CLx such that sxs-1 EV for any x EV} 

and x is then defined by 

x(s)x = sxs-1 forx EV. 

Note that the action of s on A is an automorphism. Now choose some 

special automorphisms by filst fixing a base point in S_1 dgf V; call the base 
point U-1 and make sure that 

To insure that spinorial norms play no role, restrict attention to the group 
Spin(8) which is the set of even elements in r whose spinorial norm satisfies 

N(s) 2 = 1. 

In other words, r is the conformal spin group. 
Triality. First define a map 

t(u-1) = (B(u-1),p(u-1),p(u-1)) 

where B(u-1) is minus the mirror through u_1. Now define the triality map 
Tas 

T = t(u-1)t(uo) 

where uo is a unit even spinor. 
Principle of triality. The triality mapping T is an automorphism of the 
algebra A which has order three and which has the property that 

TS;-+ S;+l (modulo 3) 

Remark. All of the automorphisms of A that fix one of the summands can 
now be described using triality. More succinctly, every automorphism of A 
which fixes a summand is up to triality an element of the Clifford group r. 

This ends the first example. 
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3, Example 2 

This example is a corollary to example 1. Triality helps to define a restricted 
type of product on the vector space V, making V into a composition algebra. 
Of course this is the algebra of octonians or Cayley numbers and is really a 
trivial application of triality. So for x, y E V 

x · y = (x o u1) o (yo u0 ) = T(x) o T 2(Y) 

where u1 = u_1 o Uo and the bar indicates mirror reflection through the 
vector u_1 • The bar operation so defined is the conjuagation operator of the 
octonians. 

One may ask the purpose of introducing the octonians this way but the 
proof of all the properties of the octonians now become transparent. More­
over, one does not have to refer to a particular choice of basis for anything 
but computation. 

4. Example 3 

The group Spin(9) has a 25 dimensional representation on the direct sum 
of a vector space 

W = V8 $EJ 

and the spinor space S just as the Clifford ~oup acts on A, that is, compo­
nentwise. Define the space B as 

B = W E9 S(9) 

Note that S(9) is 16 dimensional and that restricting to Spin(8) 

S(9) = S(B)o E9 S(8)t 

From representation theory S(9) ® S(9) contains W as a summand. As a 
result B forms a kind of loop, in the sense of binary systems. In less formal 
terms, a spin invariant product can be introduced on S with values in Win 
the following manner: 

u · v = uo o v1 + u1 o Vo+ (,B(uo) - ,B(u1))t: 

in which t: is a basis element for Eo and ,B denotes the quadratic form 
associated with the fundamental bilinear on S(8). 

5. Example 4 

Next consider the direct sum 
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in which A is the triality algebra and P is the plane in JR3 defined by the 
equation: 

X-1 + Xo + X1 = 0. 

The plane P is the reduced representation ofthe permutation group on three 
letters, S3. 

Denote this new space by .J', that is, 

.J' =A EB P.· 

.J' is called the restricted Albert algeb_ra and is 26 dimensional. 
Construction. The space .J' carries the structure of an algebra. 
(1) You already know the multiplication on A 
(2) On P@ Sj@ Sj, or any permutation thereof, map 

(xj,Uj,Vj)-+ Xj{3(uj,Vj) 

(3) On (P)®3 take 

Remarks. 
(1) Some account of signs must be taken. 
(2) .J' can be represented by order three matrices with real diagonal entries, 

trace zero, and symmetric octonionic entries, otherwise. 
This matrix representation appears as: 

where Xj E JR, l:xj = 0 and ai E Sj. Note that the resulting algebra 
is not associative but after a change of multiplication and extension, .J' 
does satisfy a weaker relation, namely, power associativity, which flows from 
the fact that the larger algebra, discussed in the next example is a Jordan 
algebra. 

6. Example 5 

The full Albert algebra is obtained by adding a unit element to the restricted 
algebra. In terms of the matrix representation above the identity matrix is 
thrown in. In more precise terms let 

and extend the multiplication to .J by requiring 

(ei,ej,ek)---+ 1 for i = j = k 
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and zero otherwise, with C:j a basis for Dl3 . 

Going back to the octonians and recalling that 

tr(x) d;j q(x,u-1) 

you can easily see that 
tr(x · y) = q(x,y) 

and the elements of.:! can be represented as 

where the multiplication between matrices is defined in terms of octonianic 
multiplication. Multiplication on So, S1 is carried over from S-1 by means 
of triality. The Jordan product is defined then in the usual manner 

2A * B = A · B + B · A 

where A · B is octonianic matrix multiplication. 

7. Differentiating spinors 

Start with a spin manifold M and use a local frame field ei to define the 
Dirac operator on spinor fields, locally by 

The assumption that M is a spin manifold implies that the Leibniz rule 
applies for the Clifford multiplication on the spinors. 

Note that the principal symbol of the Dirac operator at a contangent 
vector v is given by: 

symb(D) · v = Lv 

where L indicates the operation of left Clifford multiplication. 
For sections, X, of the bundle of restricted Albert algebras one may also 

define a Dirac operator: 
DX= LieiDiX 

with the principal symbol for the operator square: 

symb(D2
) = q(v)(l - Mv) 

where as usual Mv is the mirror through v. 
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Sideremark Using the bimultiplication on the octonians there is a second 
order differential operator whose principal symbol is bimultiplication: 

symb(o) · v = B,,. 

It then follows from the Moufang identities that 

B,, = L,,R,, = R,,L,, 

and so o is similar to the Laplace operator in the case of a Kahler manifold. 
Indeed, since 

B,, = -q(v)Mv 

it is clear that o is an elliptic operator. In local co-ordinates 

where the sum is over i,j and multiplication is in the octonians. 
Harmonic sections. A cross section X of the bundle of restricted Albert 
algebras is called harmonic iff 

DX=O. 

Vanishing theorem. Let M be a compact manifold supporting a bundle 
:!' of restricted Albert algebras. If suitable curvature functions are non­
negative then every harmonic section is parallel. Moreover, if the curvature 
condition is strict at a point then there are no non-trivial harmonic sections. 
Proof: This is a Lichnerowicz-Hopf type argument. 
(1) One proves an identity involving the Laplacian 
(2) One looks at the remaining terms which are dominated by a quadratic 

curvature form. 
Remark. The curvature calculations are forthcoming in the Ph. D. thesis 
of Troy Warwick of Oregon State University. 

8. Questions and discussion 

Two questions posed at the lecture were: 
(1) Do harmonic sections have anything to do with string theory? 
(2) In dimension eight, points, simple even spinors, and simple odd spinors 

are all on an equal footing. Does this mean anything physically or does 
this mean anything for strings? 

The discussion indicated that the triality algebra may lead to a low di­
mensional or toy model conformal field theory (L. Dolan, UNC). Werner 
Nahm (Bonn) commented that the numbers 24 and 26 had already entered 
physics and that an earlier article by Dyson on missed opportunities pointed 
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out the occurendce of 24 as the power to which the eta-function must be 
raise to obtain Ramanujan's r-function. Strings themselves can be looked 
upon as mappings of circles into a space so perhaps the ideas in this note can 
be recast in that light (A. Voronov, Princeton). Finally, P. Budinich (SISSA, 
Trieste) noted that the real compactified Minkowski space requires eight di­
mensions to find its place and that perhaps the eight dimensional theory as 
presented here is the next logical step in Penrose's twistor program. 

Due to lack of time the discussion of nine dimensional t~ality was deleted. 
That discussion will appear in the expanded version of this note. 

9. References 

The main reference for this note is Chevalley's book on the algebraic theory 
of.spinors from 1954. In addition, the article by J. F. Adams on spin and tri­
ality from the Nuffield conference on superspaces and supergravity (Hawking 
and Rocek, 1981) proved invaluable in the preparation of this article. 
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Abstract. We consider the Yang-Mills and the Klein-Gordon equations in the external 
Yang-Mills fields in the spaces IR.n. Using the generators of the Clifford algebra, we con­
stract the ansatze for the Yang-Mills potentials and for the scalar field. New classes of 
solutions of the Klein-Gordon and Yang-Mills equations in the spaces IR.n with n ~ 4 are 
described. 

1. Introduction 

We will show that the Clifford algebras may be used in constructing the 
solutions of the Yang-Mills (YM) equations in !Rn. Our goal is to find some 
solutions of the equations for a pure classical YM theory in the. Euclidean 
space !Rn with the metric Oab• a, b, ... = 1, ... , n. Let Aa be the YM poten­
tials with values in the semisimple Lie algebra g of the Lie group G and 
Fab = 8aAb - ObAa + [Aa,Ab] be the curvature tensor for Aa. 

The YM equations for the gauge potentials Aa have the form 

(1.1) 

The Einstein summation convention is used throughout, if not stated oth­
/erwise. 

Some solutions of Eqs.(1.1) in the spaces JR7,JR8 and JR4k were obtained 
in (1, 2, 3,.4, 5, 6) (see also (7)). In what follows we shall show that it is 
possible to obtain other classes of solutions of the YM equations in the 
spaces of dimension n ~ 4 using the properties of Clifford algebras. 

2. Ansatz for Gauge Potentials 

Let us suppose that in the space !Rn with metric Oab there are q constant 
tensors JJb, ... ,J!b that are antisymmetric in indices a and b and obey the 
relations 

Ja Jf3 _ r:a{3 r: + ~a{3 
ac be - u Uab uab ' (2.1) 
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where E~f are some constant antisymmetric in a and b tensors, o:,{3,. .. = 
l, ... ,q. From (2.1) it follows that 

i.e., Ja = (J':b) give a real matrix representation for the generators Ja of 
the Clifford algebra for the space IR,q with the metric 9af3 = -6af3· 

We shall look for solutions of the YM equations (1.1) in the form 

(2.2) 

where the real antisymmetric tensors J',;b satisfy (2.1); <p is an arbitrary 
function of coordinates Xa E mn; Ti, ... , Tq depend only on <p, take values 
in the Lie algebra g and satisfy the Rouhani-Ward (RW) equations (see 
[4, 5, 6, 7, 8, 9)): 

(2.3) 

Here f ap, is some totally antisymmetric three-index tensor in IR,q satisfying 
fa1 sfp1 s = 26ap and T, = dT'Y/d<p. If q coincides with the dimension of 
the simple compact Lie algebra H., then as f ap, one may take th<.J structure 
constants of H.. 

It may be shown that after substituting (2.2) into ( 1.1) and using the 
identities (2.1), the YM equations are reduced to the following system of 
linear equations: 

where 0 = OcOc· 
PROPOSITION: If tensors J',;b satisfy the relations (2.1) and q = dim 1i, 
then to each solution of system {(2.3), (2.4)} one may correspond the so­
lution (2.2) of the YM equations (1)-) for gaugP :fieltls Aa of an arbitrary 
semisimple Lie group Gin the Euclidean space mn. 

3. Explicit Form of Tensors J',;b 

To find solutions of Eqs. (2.4), one should give the concrete expr"ssions to 
the tensors J':b and E;f . The theory of Clifford algebras gives the examples 
of such tensors. 

Let us denote by Cl(O,q) the Clifford algebra for the space IR,q with the 
metric 9af3 = -6af3• o:,{3, ... = 1, ... ,q. It has been known for a long time 
that the algebra Cl(O, q) can be realized in terms of matrices. In particular, 
Cl(O, 6) ~ M(8, Ill) and Cl(O, 8) ~ M(16, Ill)( see, e.g., (10)), where through 
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M( s, JR) the full s x s matrix algebra over JR is denoted. Let ns give some 
examples of tensors J';;b . 
Example 1: Consider the algebra Cl(0,2) with generators 71 and 12• It is 
well-known (10] that Cl(O, 2) is isomorphic to the algebra of quaternions H, 
and elements 71 , 72 , 73 = 7172 can be realized in terms of real antisymmetric 
4 x 4 matrices ,,.,1 , TJ2, ,,.,3 with components: T/p-y = Ep-y• 7fµ4 = -TJ~µ. = 8: , 
where Ea/J-y are structure constants of SU(2), o:,/3,-y,6 = 1,2,3; µ,11,. .. = 
1, ... ,4. Tensors TJ1,,, rif,,, and TJ!,, coincide with the well-known 't Hooft 
tensors that obey the relations (2.1) with E~e = Ea/hT/i,, . 

Now, let us introduce the tensors 

J(,,i)(11j) = bijT/~11 (3.1) 

with the double indices (µi), (11j), .. ., where i,j, ... = 1, ... ,p. If we denote 
the double indices by a, b, ... = 1, ... , 4p, then it is not difficult to verify that 
the tensors J';;b will satisfy the relatio~ns (2.1) with E~f = Eafh .r:b . Thus, in 
the spaces JR4P one may always introduce three tensors J~b satisfying (2.1). 
Example 2: tet us consider the algebra Cl(O, 6) with generators 71 , ••• , 76 

and also introduce 77 = 717273747576 • It is known (10] that 'Ya (o: = 
1, ... , 7) can be realized in terms of real antisymmetric 8 x 8 matricC;s. The 
components 7~11 (µ, v, ... = 1, ... , 8) of these matrices satisfy the relations 

(2 1) 'th ~a/3 _ 1 [a /31 _ 1 ( a /3 /3 a ) 
• Wl ;_,µ.11 - 'i'Yµ.>.1'11>. = 2 'Yµ.>.1'11>. - 'Yµ.>.1'11>. ' 
Now we introduce the tensors 

(3.2) 

where µ, v, ... = 1, ... , 8; i,j, ... = 1, ... ,p. Numbering the components of 
these tensors by the indices a, b, •.• = 1, ... , Sp, in the space JR8

P we obtain 
seven tensors J~b satisfying (2.1) with E~f = !J!~Jfj . It is clear that for 
ansatz (2.2) one c,an choose not all seven tensors but only q of them with 
4 ~ q ~ 7. 
Example 9: Let us consider the algebra Cl(0,8) with generators -ya, o:,/3, 
... = 1, ... , 8. It is known (10] that 'Ya can be realized in terms of real an­
tisymmetric 16 x 16 matrices. The components ')'~,, (µ, 11, .•. = 1, ... , 16) 

of these matrices satisfy (3.1) with E~e = h1~1'~ . Let us also introduce 
the tensors J(,,i)(vi) defined by (3.2) but withµ, 11, ••• = 1, ... , 16; i,j, ... = 
1, ... ,p. Numb~ring the components of these tensors by the indices a, b, ... = 
1, ... , 16p, we obtain eight tensors J'::b· In the space JR16P all these tensors 

satisfy the relations (2.1) with E~f = !J!~J~ and can be used .in construct­
ing of the ansatz (2.2). 

And finally, we point out that in the spaces IRn one may introduce q 
tensors. J';;b satisfying (2.1) in the following cases: 
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n = p22+4m => 1 + 8m ::; q ::; 3 + 8m, 

n = p23+4m => 4 + 8m ::; qp 7 + 8m, 

n = p24+4m => q= 8+8m, 

(3.3a) 

(3.3b) 

(3.3c) 

where m = 0, 1, 2, ... ; p = 1, 2, .... Proof may be obtained with the help of 
formula [10]: 

Cl(O,s + 8m) = Cl(O,s) 0 Cl(0,8) @ ... @ Cl(0,8), (3.4) .._.,,...., 
m times 

where 1 ::; s ::; 8. Using the recurrence relations given in [10], one can easily 
obtain the explicit form of tensors JJb, ... , J:b in the spaces of dimension n 
indicated in (3.3). 

4. Constructing of Solutions for the Scalar Field E9uations 

Substituting the explicit form of J~b into Eqs.(2.4), one may try to solve 
(2.4). Solutions exist. Rather then make an exhaustive study of all the pos­
sibilities we shall restrict ourselves to the case of n = 4p and q = 1. 

So, let us substitute (3.1) into Eqs.(2.4) where Eafh are taken instead of 
f afh and 'E~f = f.a/h J:b. We use the following identities for 77~v [11]: 

Q _f3 - J:Cl./3 J: + Cl.{3"'( "'I 77µ>..1fv>. - (} Qµv € 77µv• 

aJ3:y_J: a J: a J: a+J: a 
€/3"'1 1fµ>.77v<7 - Qµv77M - (}µ<777>.v - Q)..v77µ<7 Q)..<777µv• 

and obtain the equations: 

277~>. (lhi<Jvi'P - 0>.jOvi'P) - 277~>. ( 0>.jOµi'P - O>.iOµj'P) 

+h,,v77~<7( O>.i8<7i'P - O>.j0<7i'P )+ 

+77~v(28>.i0>.i'P + OijDcp) = 0, 

(4.la) 

(4.lb) 

(4.2) 

where O>.i = 8/ox>-i. It is clear that Eqs.(4.2) are satisfied if cp obeys the 
following equations 

(4.3) 

whereµ,v, ... = 1, ... ,4; i,j, ... = 1, ... ,p. Equations (4.3) are simpler then 
Eqs.(2.4) and appear in study of the hyper-Kahler manifolds of dimension 
4p {see [12]). In principle, for Eqs.( 4.3) one mf'y write a general solution (see 
[12]), but we shall not do this here. As an example, we write out one of the 
particular solutions of Eqs.( 4.3) (and Eqs.( 4.2) ): 
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N B2 

cp = 1 + E (X - ci){x - c1)' 1=1 µ µ µ µ 
(4.4) 

where Xµ = Xµ;p;, p;=const, N is any integer number, B1 and C! are 
arbitrary constants. For a special case of the space JR8 and group G = SU(2) 
the solution of this type was obtained by Ward [1]. 

Equations (2.3) with q = 3 and 1{ = su(2) coincide with the well-known 
Nahm equations (see [8, 9] and [13, 14]). These equations appeared in con­
structing the solutions of the YM equations in JR4 [14, 15, 16] and of the 
model of chiral fields in JR2 [17]. Nahm's equations have a Lax-type repre­
sentation with a spectral parameter, and in terms of theta functions one can 
write a general solution of Nahm's equations for any semisimple Lie alge­
brag (see [13] and (9]). The explicit form of particular solutions of Nahm's 
equations may be found in (15] and [16]. We shall not write it here. 

5. Solutions of the Massless Klein-Gordon Equation 

In JRn let us consider the massless scalar field X with values in the adjoint 
representation of the Lie algebra g. The Klein-Gordon equation for x in the 
external field Aa has the form 

(5.1) 

where a, ... = 1, ... , n. 
Now, substitute the ansatz (2.2) for Aa into (5.1). Suppose that Ta(<p) 

and <p obey the equations (2.3) and (2.4). For x let us consider the following 
ansatz: 

Xa = const. (5.2) 

In this case, the Klein-Gordon equation (5.1) is reduced to the following 
equation: 

Xa'f'c,ocp + XaOc<{)Oc<p{ Ta - [T13, [Ta, T13]]} = 0. (5.3) 

Here we have used the identities (2.1); Ta= d2Ta/dcp2• 

Thus, if Ta( <p) satisfy the equations 

(5.4) 

and <p satisfies the Laplace equation 

D<p = 0, (5.5) 
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then the ansatz (5.2) gives the solution of the massless Klein-Gordon equa­
tion (5.1). 

It is easy to see that each solution of the RW equations (2.3) satisfies 
Eqs. (5.4). Indeed, if one multipl\cs Eqs. (5.4) by faf36 and differentiates 
these equations once more, then obtains 

At the same time, from Eqs.(2.3) it follows that 

Therefore, if T0t satisfy Eqs.(2.3), then Ta satisfy Eqs.(5.4). Remind that 
the function <p must satisfy Eqs.(2.4). Comparing Eqs.(2.4) with Eq.(5.5), 
we obtain the following system of equations: 

Dip= 0. 

(5.6a) 

(5.6b) 

Equations (5.6) have solutions. Some of them have been written out in Sec­
tion IV (see also [6, 7]). 

6. Conclusion 

An example for n = 4p and q = 3 shows that Eqs.(2.4) may have not 
only solution linear on coordinates xa , but also more complicated solutions. 
It is interesting to study Eqs. (2.4) in the spaces /Rn with q tensors J~b 
and n > 4p from (3.3) in the case when q coincides with the dimension of 
some simple Lie algebra 1l. In this case, as f 0t/Yr in Eqs.(2.3) one may take 
structure constants of 1l. 

We have considered the case of Example 1 when n = 4p, q = 3 and 
1l = su(2). If one takes eight tensors J~b in IR16P from Example 3, then as 
f0t/Yr one may choose the structure constants of the Lie algebra su(3). In 
particular, from (3.3c) it follows that in spaces of dimension n = 4096p one 
may introduce 24 tensors J~b satisfying the relations (2.1), and as fcxfJ'Y one 
may take the structure constants of the Lie algebra su(5). All these cases 
need a special investigation. 

Thus, we have shown that in constructing the solutions of the Yang­
Mills equations in the spaces of dimension greater than four the technique 
of Clifford algebras plays an importent role. It permits one to reduce these 
equations to more simple system {(2.3), (2.4)}. Our results show strong evi­
dence for detailed study of the integrability of the Rouhani-Ward equations 
(2.3) and Eqs.(2.4) for scalar field ip. 
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Introduction 

The Hurwitz problem stated by him in 1898 [1] and its further development 
[2] were the motivation to introduce and to study the so-called Hurwitz 
pairs (see [9, 10] for an extensive literature). 

In our works [6, 7] the precise relation between Hurwitz pairs and Clifford 
algebras has been established. Two canonical algorithms have been described 
for constructing an irreducible representatfon of a certain Clifford algebra for 
a given Hurwitz pair and, conversely, for constructing all possible Hurwitz 
pairs for given Clifford algebra and its irreducible representation. 

All this has been inspired by our wish to develop the so-called Hurwitz 
analysis initiated in [3, 4]. 

The present article gives our vision of the situation, that is, which ana­
lytic theories can be related to a given Hurwitz pair. Our previous studies 
[6, 7), see also Section 1) show that a Hurwitz pair generates two types 
of multiplication which are essentially different, in general. In accordance 
with this fact, in Section 2 we introduce two types of generalized Cauchy­
Riemann operators and show that all main formulas for the functions from 
their kernels can be obtained in the traditional way. 

We stop our considerations at the place where it is perfectly clear how to 
develop both corresponding theories. We are going to explain how they are 
connected with the Clifford analysis elsewhere. 

• This work was partially supported by CONACYT project 1821-E9211 
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1. Algebraic fundamentals of Hurwitz pairs 

1.1 Let S be a (p+l)-dimensional real vector space with basis {ea}, a E 
{O} U Np, Np:= {1,2, ... ,p}, and let the R-bilinear form 

(·,·)s: S x S-+ R 

be defined by the following metric matrix 

'f/ := [TJa,6] := [(£a,€,6)s) = diag (1,. .. , 1;-1, ... ,-1), ---- ..___________, r+l a 

where p = r + s. 
Introduce also the n-dimensional real vector space V with the basis 

{ej},j E Nn, provided with an R-bilinear form 

(., · )v : V x V -+ R, 

which is defined by the following nonsingular metric matrix 

We assume also that the form (., · )v in V is either symmetric: "' = ,,,t, or 
antisymmetric: "' = _,,,t, where "t" means transposition. 

Let 
o:SxV-+V 

be an R-bilinear mapping. We call it (see, for instance [5]) a Hurwitz multi­
plication (of elements from V by elements of Son the left-hand side) if the 
following axioms are fulfilled: 

H.1 for all {f,g} CV and all a ES 

(a,a)s(J,g)v =(a o f,a o g)v; 

H.2 there exists the unit element € E S with respect to the mapping "o", 

i.e. for all f E V 
£ 0 f = f; 

H.3 the mapping "o" does not leave invariant any proper subspace of V. 
The set (S, V,o) is called a Hurwitz pair. 

1.2 Introduce the R-linear isomorphisms 

vs: s-+ RP+l 

and 
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by the rules 

and 

n (Ji) VV: f = ?:liei i---+ J = ; E Rn. 
J=l Jn 

For each basis elements ca E S and ei E V we have ca o cj E V. Thus for 
some real constants c~j: 

n 

n 

ca o ej = L c~jek. 
k=l 

and for every f = L: fjej E V: 
j=l 

n n 

ca of= L(Lc~jfj)ek. 
k=l j=l 

Applying the isomorphism vv to the both sides of this equality we obtain 

vv(ca o J) =Ca· vv(J), 

where Ca := (c~i]J:k=l. 
Thus, each element ca ES determines uniquely the matrix Ca (and vice 

versa), and the following diagram 

v m(<.,) v -
"" j l"" 

Rn m(C.,) Rn -
is commutative. Here m(ca): f......., ca of and m(Ca): J......., Ca· f. 
1.3 Without loss of generality we may assume that the unit element (= 
identity c E S) coincides with c0 . 

Under this assumption we have (see (6]): for each {a,,B} C Np 

Ca· Cf3 + Cf3 ·Ca= -2TJaf3ln. 
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1.4 Consider a fixed Hurwitz pair (S, V, o) with the unit element e = eo. 
Each element a E S generates in a natural way the operator of "Hurwitz 
multiplication by a" acting on V by the rule 

fEV1-+aofEV. 

p 

Denote this operator by m( a). It is clear that for a = E aaea 
a=O 

p 

m(a) = L aam(ea), 
a=O 

where m(eo) =I, the identity operator on V. 
The mapping 

µ:a 1-+ µ(a) E Hom (V, V) 

gives a linear isomorphism between the space S and some linear subspace 
of Hom(V, V). 

Denote by Al( S, V, o) the algebra generated by all operators m( a) acting 
on V. We have obviously 

µ(S) c Alg(S, V,o) c Hom(V, V) ~ R(n), 

and in general both inclusions are proper. 
All above said can be found in [6, 7], but to construct the corresponding 

function theory we need to complement the algebraic part of those works 
with some new results. 

1.5 The algebra Alg( S, V, o) allows us to introduce a multiplication on ele­
ments of S in such a way that the algebra S generated by this multiplication 
becomes isomorphic to Al(S, V, o ). The corresponding isomorphism will be 
an extension of the linear mappingµ from S onto the algebra S. 

Let us describe this procedure. 
Denote by S the free algebra generated by the elements of S and let 

ft: S---... Alg(S,V,o) 

be the real algebra homomorphism which is generated by the following map­
ping of the generators a E S of the algebra S: 

ft: a ES 1-+ ft(a) :=µ(a)= m(a) E Hom(V, V), 

i.e. the mapping ft is an extension (up to a real algebra homomorphism) of 
the mapping 

µ: S---... Alg(S, V,o). 
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Now introduce the algebra S := S/ker{L and the mapping 

ji. : S -+ Alg( S, V, o) 

which is defined by the rule 

µ:[a]~ ft( a), 

where [a] := a+ ker{L for a E S. 
We will denote by "*" the multiplication symbol in S. 

417 

(1.1) 

The described procedure provides a natural imbedding of S into S. Iden­
tifying, as usual, S and its image under this imbeddin_g, we can say now that 
Sis a subset (and a linear subspace) of the algebra S. It is clear that 

ji.IS=µ. 

The mapping ji. gives now a real algebra isomorphism of S onto Alg( S, V, o) C 
Hom(V, V), and thus also a representation of the algebra Son the space V. 

Moreover, we have a well-defined extension (from S x V onto S x V) of 
the Hurwitz multiplication, also denoted by "o", as follows: 

for each s ES and f EV 

so f := ji.(s)(f) EV. 

1.6 Remark. For any elements s1 , s2 E S and f E V the following "asso­
ciativity law" is true 

and thus we can write s1 * s2 of:= s1 o s2 of:= (s1 * s2) of= s1 o (s2 o !). 

2. Conceptions of Hurwitz analyses 

2.1 Given a Hurwitz pair (S, V,o) (with no restrictions on 17), denote 

by l any integer with the condition 2 :::; l :::; p, and let n be a domain in 
R1+1. For any set of vectors ( ,,p0 , ,,P1 , .•• , ,,P1) =: 1/J E s1+1 we can write the 
formal expression t ,,pa 0 _i_ 

a=O 8xa 
(2.1) 

where 8~0 denotes the operation of the usual partial derivation of a given 

(S-valued or V-valued) function defined in n. Depending on the type of 
function the expression (2.1) allows to introduce two kinds of operators. 
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2.2 For an arbitrary function f E C1(f!, V) define the operator V.p by the 
rule 

I {} I Of 
V.p[!] := E t/J(X 0 -(!) := E t/J(X 0 -. 

a=O OX a a=O OX a 
(2.2) 

The operator V.p becomes later the Cauchy-Riemann operator in the anal­
ysis of V-valued functions. It is necessary to emphasize strongly that just 
here we see the consequence of the Hurwitz multiplication asymmetry: in 
contrast with the usual hyperholomorphic s~ttings we can introduce the left 
operator only, not the left and the right ones (compare with what will be 
done below). 

2.3 Consider an arbitrary g E C1(f!, S). Introduce the left"' D and the right 
D"' analogs of the operator V.p by the rules: 

I {} I {} 
"'D[g) := E t/J(X * -(g) =: E t/J(X * _fl_ 

a=O OX a a=O OX a 
(2.3) 

and 
I {} I {} 

D"'[g) := L - * m( t/Ja)[g] := L _fl_ * t/Ja, (2.4) 
a=O OXa a=O OXa 

where m is the map defined in 1.6. 

2.4 Using the notion of the "natural conjugation" on S we introduce the 
"conjugate" operators V~, "'ff# and D"'•#: 

V~[!] := t t/Ja# O ~(!), 
a=O OX a 

"'D#[g) 
I {} E t/J(># * -(gJ, (2.5) 

a=O OX a 

D#[g) := 
I {} E -[gJ * t/Ja#, 

a=O OXa 

where "#" is a linear mapping on S defined on the basis elements ck by the 
rule 

2.5 Remark. To develop the corresponding function theory it is necessary 
to be able to multiply the above defined operators. 

The following peculiarities arise from the asymmetry of the Hurwitz mul­
tiplication. We have s~ts of S-valued functions, of V-valued functions, of 
S-valued operators (that is, differential operators with coefficients from S), 
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etc. We can "multiply" V-valued functions on the left-hand side by S-valued 
operators obtaining in V-valu~d functions: 1" Do f := 1" D[/]. 

We can "multiply" various S-valued operators on both sides resulting in 
s-valued operators: "'D * 1"D# := "'D · 1"D# with the'"" denoting the 
usual operator product. We should take into account that, according to the 
definition of 1" D and 1" D#, the result of the multiplication is an operator 
acting on S-valued {not on V-valued) functions. 

Finally we can "multiply", in the sense of the Hurwitz multiplication, 
operators of the type of 'D.p: 

The operator V.po'D.p acts on V-valued functions and in this sense V.p*V: -:f 
"'D* 1"D#. 

2.6 For a fixed set 'I/; introduce the differential /-form 

I 

CT~!x := ~)-lY' · 'l/;"dx[aJ (2.6) 
a=O 

where dx[a] is the differential /-form dx := dxo /\ ... /\ dx1 with dxa omitted. 
The operator of exterior differentiation d acts on such S-valued differential 
forms as a S-linear mapping. Then, if g E C1(fl, S), f E C1(fl, V), an easy 
calculation gives: 

d (g * O'~~x o !) = (n"'[g] of+ g * 'D.p[!J) dx. (2.7) 

And analogously, for g, h c C1(f!, S) 

d (g * O'~!x * h) = (D1i'[g] * h + g * "'D[hJ) dx. . (2.8) 

2. 7 If now we assume that n is a bounded domain with smooth enough 
boundary r = an, then application of the Stokes formula results immedi­
ately in the following equalities: 

kY*O'~!xof = k (n"'[g]of+g*V.p[fJ)dx, 

kg* O'~~x * h =In (D"'[g] * h + g * "'D[hJ) dx. 

(2.9) 

(2.10) 

2.8 Up to now we assumed no restrictions on 'ff· But if we want to have 
a good function theory, we should limit ourselves to the cases where 'f/ = 
Ip+i or 'f/ = (~ _ 1~). Let one of these conditions be fulfilled. Denote by 
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Ll1+i ( S) and ll1+i (V) the usual ( l + 1 )-dimensional Laplace operator acting 
on C2(n, S) and C2(n, V), respectively. 

Then 

v.,, * v~ = v~ * v.,, = Ll1+1(V). (2.12) 

It is easy to describe all 1/J's with the properties (2.11)-(2.12). 

2.9 It is well-know that most part of the usual one-dimensional com­
plex analysis (i.e. the theory of holomorphic functions of one complex vari­
able) can be constructed starting from only two facts: a) factorization of the 
Laplace operator by the conjugate Cauchy-Riemann operators and b) the 
Green's (or 2-dimensional Stokes) formula. Some multidimensional gener­
alizations, such as the quaternionic and the Clifford analysis, are based on 
these two facts (one can find the detailed substantiation of this point of view 
in [8], for example). 

Formulas (2.9) and (2.11), as well as (2.10) and (2.12) show that we can 
develop the corresponding theories for V-valued and S-valued functions in 
the same way. We will show the initial part of this procedure just to illustrate 
the idea. 

We shall use the notations 

ker v.,, =: N.,,(n, V); ker "'D =="' M(fl,S); ker D"' =: M"'(n,s), (2.13) 

and call the elements of these sets V-valued and S-valued hyperholomorphic 
functions, respectively (in the latter case adding sometimes the word ·"left" 
of "right"). 

2.10 Let 81+i denote the fundamental solution of ll1+i in R1+1, i.e. ll1+i(81+i)::::: 
h, 

(2.14) 

where IS11 is the area of the unit sphere in R1+1. We cannot identify 81+1 
i,E- a natural way with a V-valued function, but we can identify it with the 
S-valued function 81+i · £0. Hence we can introduce the function 

(2.15) 

I 
1 ~ .1,et# 

IS'l · lxll+l . f:'o '+' • Xa, 
= 

which will play the role of the Cauchy kernel for both theories. It has the 
following important properties: 
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a) K,p E C00(R1+1 \ {O},S) 

b) K,p E "'M(R1+1 \ {O},S) n M"'(R1+1 \ {O},S), 
c) Let y E R1+1, K1/w( x) :== K,p(y - x ); then 

K,p,y E "'M(R1+1 \ {y})n M"'(R1+1 \ {y}). 

421 

2.11 Theorem (Borel-Pompeiu formula). Let f E C1(fl, V), g E C1(fl, S), 
then for 'Vx E fl, 

Proof. Cut out a small ball centered in x, a.pply (2.9) and (2.10) to the rest 
of fl; substitute K,p instead of g or f. Standard routine calculations give the 
answer. 

2.12 Theorem (Cauchy integral theorem). Let f EN ,p(fl, V), g E M"'(n, S), 
h E "'M(fl, S), then 

f g * 0'(1) o J == O, lr 1/J,T 

Proof. Directly from (2.9)-{2.10). 

2.13 Theorem (Cauchy integral formula). Let f EN ,p(IT, V), 
g E M"'(n, S), h E "'M(n, S), then for 'Vx E n 

f(x) == lK,p(r-x)*O'g~Tof(r), 

h(x) == lK,p(r-x)*O'g~T*h(r), 

g(x) == lg(r)*O'g!T*K,p(r-x). 

Proof. Directly from Theorem 2.11. 

(2.19) 
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Abstract. In this paper we give a description of some basic operations on Clifford tensors 
involving symmetrization and alternation. We also define monogenic tensors and establish 
the so called monogenic decomposition of tensors. 

Key words: Clifford analysis, tensors, group representations 

1. Introduction 

Clifford algebras arise in many areas of mathematics and mathematical 
physics, especially in connection with the Dirac operator. Clifford analy­
sis studies function theory of Clifford algebra-valued operators, suc~l as the 
Dirac operator acting on functions with values in spinor spaces or Clifford 
algebras. An introduction to this field of research may be found in the recent 
books [3] and [5], while a number of related topics was treated in [6] and other 
works. Clifford algebras do contain the representation spaces of the basic ir­
reducible representations of the spin group Spin( m) as subspaces, namely 
the spaces R~ of k-vectors and the spinor spaces, which may be realized as 
minimal left ideals of the Clifford algebra. This motivates the consideration 
of Clifford algebra-valued functions. But all the other irreducible representa­
tions of Spin( m) are not realized on subspaces of the Clifford algebra and so, 
other analytic tools are needed to represent them. From an abstract point of 
view one can construct all irreducible representations of Spin( m) out of the 
basic ones by Cartan composition. But then the theory of the Dirac operator 
acting on functions with values in representation spaces remains rather ab­
stract (see [12] for a definition of the Dirac operator). Both from a theoretical 
and from a computational point of view it seems better to work with "simple 
analytic tools" such as polynomials P(11), J1 = E Ujej being a vector variable 
and differential operators P( 8y_), 8y_ = E 8u ei being a Clifford Dirac oper-

' ' ator, also called vector derivative. In [10] e.g. we considered spin-invariant 
differential operators acting on functions with values in special spaces of so 
called spherical monogenic polynomials (Clifford polynomials P(_y) satisfy­
ing 8u.P(11) = 0). Similar operators acting on functions with values in sphe-

• Senior Research Associate, NFWO, Belgium 
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rical harmonics of a vector or matrix variable were considered in [5] and [13]. 
But these are just examples of function theory with values in representation 
spaces of Spin( m) and none of these examples contains all representation 
spaces. However, if instead of one vector variable .Y. and vector derivative By_ 
we consider polynomials P(y1, y 2, ••• ) depending on several vector variables 
and the corresponding vector derivatives 8y

1
, 8y

2
, ••• we have a rich enough 

calculus to represent all irreducible representations of Spin(m) analytically. 
In fact it is possible to realise all irreducible representations of Spin(m) on 
the space of Clifford tensors ( multilinear Clifford polynomials P(y1, ••• , .Y.k) 
of several vector variables) on which only two basic Spin( m )-representations 
are defined, one corresponding to representations with integer weight and the 
other to representations with half integer weight. In a previous paper [8] we 
studied all the Spin( m )- and Gl( m )-invariant operators acting on Clifford 
tensors (see also our related papers [4] and [9]). In the present paper we first 
give a description of how tensors are related to polynomials of several vec­
tor variables and study the basic symmetrization and alternation operators, 
including Young tables and Young symmetry operators (see also [6], [14] ). 
The second s~ction deals with so called "monogenic tensors" 1 i.e. multilinear 
functions P(.Y.1, .•. ,M.k) satisfying the equations 8y;P(lh, ... ,1'.k) = 0 as well 
as the monogenic decomposition of tensors (decomposition into rnonogenic 
pieces). 

Both the Young symmetry operators and the operators of monogenic 
decomposition are essential for the decomposition of Clifford tensors into 
irreducible pieces. 

2. Clifford polynomials and tensors 

Let {el, ... , em} be the standard basis of Rm, then Rm denotes the Clifford 
algebra determined by the relations 

eiei + eiei = -2Dij· 

A vector variable .Y. E Rm is just a variable Clifford vector, also expressed 
as the polynomial .Y. = L, Ujei. The Dirac operator or vector derivative 8y_ 
is then given by 8y_ = L,8u;ei. 

A Clifford tensor F on Rm is a multilinear map F : (1!11 ... , .Y.k) -
F(_y1, ••• , .Y.k) from Rm into the Clifford algebra (see also [6]). We think of it 
as a multilinear polynomial F(y1 , ••• 1 .Yk) depending on k vector variables. 

The tensor product F G of two tensors is then represented by the poly­
nomial product 

F G(M.11 .. · ,1'.k+1) = F(.u11 ..• 11'.k) G(UA:+11· .. 1.Yk+1). 

Tk denotes the space of Clifford k-tensors. T denotes their algebra.. At present 
one might consider tensors merely as multilinear polynomials of a sequence 
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11j of vector variables. But the tensor product requires a shift of indices, so 
the tensor product is not merely a polynomial product. To be more pre­
cise, let P{.Y.} denote the algebra of polynomials of an infinite sequence 
fo1, 112 , ••• } of vector variables and let Lin{.Y.} be the subspace of multilin­
ear polynomials. Then for any a1 < ... < ak and multilinear polynomial 
P(.Ya

1
, ••• , .Yak) E Lin{.Y.} we consider the tensor t( P) with "standard poly­

nomial representation" P(111, ... ,Jl.k). Hence Tis a quotient of Lin{.Y.}. 
Next, let Rm' be the "dual of Rm", i.e. the space of linear functions 

~ -+ (11',~}, ~ E Rm. Then we may think of Rm' as another copy of Rm 
and represent ~ -+ (11',~} by the Clifford vector 11'. A dual /-tensor is a 
/-linear map from Rm' into Rm. Hence if T' (resp. Tf) denotes the space of 
dual tensors (resp. of degree l), then GET{ is represented by a multilinear 
polynomial G(.ui, ... ,.u/) E Lin{.u'} C P{.u'}. 

Tensors and dual tensors can only be distinguished by their transforma­
tion properties under the group Gl( m ). The action of Gl( m) on Clifford 
tensors was studied in our previous paper [8]. One can also consider the 
spaces Tk ® T1• of tensors of mixed type represented by multilinear polyno­
mials of the form 

F(.Y.1, ... , 11.k; 11i, ... .1&.D E Lin{.Y., 11'} C P {.Y., .u'} 

where Lin{.u,ll'} is the subspace of multilinear polynomials of the space 
P{.Y., .u'} of polynomials in the sequences {.Y.1, ... ; lli, ... } of vector variables. 
Note that the tensor product FG of FE Tk and GET{ is given by 

F G : (lh,. · · ,.uk; .ui, · · ·, .iQ) -+ F(.u1, .. · ,.uk)G(.ui, ... ,.iQ) 

so there is no index shifting here. 
Next let F E Tk and GE T{ with l :::; k. Then the tensor contraction 

G · Fis the (k - /)-tensor given by 

G · F(.u1, ... ,.Y.k-1) = G( oY.1 , ••• , 8Y.JF(1Z.1 , ... ,14,.Y1, ... , .Yk-1)· 

For l = k we can consider the bilinear form (G, F} = [G · F]o, where for 
a E Rm, [a]o denotes the scalar part of a. This bilinear form can be seen to 
be Gl(m)-invariant and determines the duality between Tk and TI,. 

In this paper we are more interested in the action of Spin( m) on the 
spaces Tk of Clifford tensors and decompositions of Tk in invariant subspaces. 
Recall that 

Spin(m) = {s = l:!lt · .. l:!l2k: l:!lj E 5m-1
}. 

Moreover, consider on Rm the main involution a -+ ii and the main anti­
involution a-+ ii determined by 

(ab)=ab, ab=ba, ii.=.!l.=-Q, ll.ERm. 
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Then for s E Spin(m), the map h(s): ~-+ s~s is a rotation and the map 
s-+ h(s) is the double covering of Spin(m) on SO(m). The map h(s) can 
be extended to the whole Clifford algebra Rm· Moreover, let a:i be the 
space of k- vectors and denote by (a]k the.projection of a E Rm on~. 
Then [·]k commutes with h(s) and so R~ are invariant subspaces under 
this representation of Spin(m), which for k < (m/2] are irreducible. The 
"Hodge star map" a-+ el. .. ma determines an isomorphism between~ and 
R~-k which commutes with h( s ). Hence Spin( m) acts in the same way on 
a:-k as on R~. For m = 2p, R~ splits into two inequivalent irreducible 
subspaces, namely the eigenspaces of the Hodge star map. 

Of course the standard spin representation is simply given ~y l(s)a = sa, 
a E Rm and under this representation Rm splits into so called spinor spaces 
which are irreducible and representable as minimal left ideals of Clifford 
algebras (see (1), [3], (7]). These are the basic irreducible representations 
of Spin( m) from which all others may be obtained by Cartan composition. 
However, this procedure cannot be carried out in the Clifford algebra setting. 
For functions f: Rm-+ Rm, we consider the representations 

L(s)f(a) = sf(sas), H(s)f(a) = sf(sas)s. 

One can of course extend the definition of Land H to functions /(a1, ••• , ak) 
of several Clifford variables and in particular to polynomials P(.U.ti ... ,.11.k) 
of several vector variables. From this follow the representations of L and H 
on the spaces Tk (resp. T{, Tk ® T{) of Clifford tensors: 

L( s )F(!!1, ... , l!k) = sf( 81!1 s, ... , S.I!kS ), 

H(s)F(1.l1 , ••• ,1.lk) = s/(81.l1s, ... ,81.lks)s. 

A natural inner product on Tk is defined as follows. Let F E T1c, then we 
consider P" E T~ given by 

F* . ( I I) F-( I I) . l!}l ... ' l!k -+ Y.ti ••• 'Y.k . 

The inner product on Tk is then given by 

It is clear that this inner product is invariant under both L(s) and H(s), 
s E Spin(m). 

Apart from the groups Gl(m) and Spin(m) we also consider the action 
of the permutation group Sym(k) of {1, ... ,k} on the space Tk (resp. TD 
of Clifford tensors. Let 11' E Sym(k), then we put 

11'(F)(1!1, · · · ,l!k) = F(.u,.(t)• · · · ,.u,.(k))· 
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In this way, we have a representation of Sym(k) on tensors, which allows 
us to think of 1r E Sym(k) as an operator and to consider the operator al­
gebra A(k) generated by Sym(k), which is in fact the algebra of the group 
Sym(k) (see also [14}). Note that the elements of A(k) are Gl(m)-invariant, 
i.e. they commute with the action of GI( m) on Clifford tensors. In the rep­
resentation theory of both groups Sym( k) and GI( m) on tensors, a crucial 
role is played by A(k) and in particular by operators of symmetrization and 
alternation which are natural projection operators belonging to A(k). The 
simplest examples are the operators Sym and Alt given by 

1 
Sym F = k! L 1r(F), 

1 
Alt F = k! L.:sgn(1r)1r(F), 

leading to the subspaces Sk and Lk of Tk of symmetric resp. alternating k­
tensors. Similarly, one can define Sym and Alt on Tfc, leading to subspaces 
SI: and Lk. The space Sk is naturally isomorphic to Pk{.Y.} of homogeneous 
polynomials of degree k in one vector variable .Y. and the isomorphism is the 
restriction of Sk to the so called "polynomial projection" on Tk, given by 

P : F(.Y.1, ... , .Y.k) ~ P( F) (.Y.) = F(.Y., ... , .Y.). 

Let Q : Pk{.Y.} ~ Sk be the right inverse of P, then the operator Sym 
is clearly given by Sym = Q P. Let F, G E Sk, then the symmetric tensor 
product F o G is given by F o G = Sym(FG). It is immediately clear that 
P(F o G) = P(F)P(G). Next let l! E Rm; then l! determines an element 
T{ = S1, namely (Y., ·}: ll. ~ (.u,ll.} and the contraction (.u, ·} · Fis given by 
(y,81'.}F(u,.u2 , ••• ,.uk_1) so that 

1 
P( (.Y., ·} · F)(.!l) = k (.Y., all} P( F)(Jl). 

More generally, the space SI: of symmetric dual tensors is the dual space of 
sk and the duality is determined by the contraction 

Note that the inner product on Tk restricted to Sk is given by 

1--
(G,F) = [G* · F]o = k![P(G)(8_y_)P(F)(.u)]o = (P(G),P(F)), 

where for P, P' E Pk{.Y.}, (P, P') denotes the Fischer inner product lf[P(o_y_) 
P'(.Y.)]o (see also [3], [10]). Next consider the spaces Lk of alternating k­
tensors and their duals Lk; then the definitions introduced for the spaces Sk 
have an "alternative analogue". Instead of the symmetric tensor product we 
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can introduce the "cup product" of F E Lk and G E L1 by F /\ G = Alt F G 
which turns the direct sum L = Lo + Li + ... + Lm into the so called, 
algebra of Clifford forms on Rm (do not confuse the cup product with the 
wedge product of Clifford numbers). Next let again 1! E Rm and consider the 
corresponding element (1!, ·} E T{ = Li; then we can define the contraction 
(!!, ·}J F of a k-form F with a "vector" (.y, ·}by (!!, ·}J F = k (!!, ·} · F. This 
notion of contraction is the one usually introduced for differential forms. Let 
11. = (.Y., ·},then we have that for FE Lk and GE L1, 

11.J(F /\ G) = 11.JF /\ G + (-l)k F /\ 11.JG, 

which is an anticommutative analogue of the usual law of differentiation of 
a product. More generally one can consider the duals L~ of the spaces L1c for 
which one can also introduce the cup product, and the contraction GJ Fis 
given by L: e AG AJ F, where GA are the scalar components of G and where for 
scalar valued elements G1 E L~1 and G2 E Lb we put (G1 /\G2)J = G2J G1J. 
Note that like for the Fischer inner product for F,G E Li., G* EL~ and 

(G,F) = [G* · F]o = ;![G*J F]o. 

Forms can be represented as linear functions on multivector space (see also 
[6]). Indeed, note that any linear function F(1!1 /\ ••• /\ !lk) defined on the 
space R~ of k-vectors is interpretable as an element of Lk. Moreover, as the 
dimensions are the same, every element of Li. can uniquely be represented by 
such a linear function. One may of course also use the standard differential 
form notation, whereby one makes use of "differential form variables" like 
d~ = L:dxjej, where dx; are anti-commuting (see e.g.[2], [3]). But in the 
context of this paper, the polynomial Frepresentation of tensors will be quite 
sufficient. 

In tensor analysis we need more general types of symmetrization and 
alternation operators. Let A be a subset of {1, ... , k }; then we put 

where the sum runs over all permutations 7r of the set A. Let kt, ... , kn 
be numbers such that k = L: k; and let At = { 1, ... , kt}, A2 = {kt + 
1, ... ,k1 + k2}' ... ' 
An= {k - kn+ 1, ... , k}; then we can consider the operators 

Symk1 ... kn = SymA1 ••• SymAn• Alti.1 ••• kn = AltA1 ••• AltAn• 

Moreover, let Si.1 ••• kn resp. S~1 ... kn be the subspace of T1c resp. TL of elements 
of the form Symi.1 ... kn F, F E T,. resp. TL and let 'P1c1 ... kn b} be the space of 
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polynomials of the form P(y1 , • .• , l!n) that are homogeneous of degree ki in 
y 1, k2 in y 2 etc. Then we can consider the canonical polynomial projection 

P: F(1!1i···il!k) -t P(F)(1!1i···i1!n) = F(1!1i···i1!1i···•l!ni···i1!n) 

of Tk on Pk1 ••• kn {.u.} which is an isomorphism on Sk1 ••• kn. Moreover, for 
G E Sk1 ••• kn we have that 

G· F = G(8!!1, ... ,8l!•)F(:!!1, ... ,Y.k) 
1 1 = -k ' ... -k ,P(G)(oY.1 • ... ,8y_JP(F)(1.!1, ... ,1.!n) 
l• n• 

and in particular for F, G E Ski ... kn, 

(G,F) = (P(G),P(F)) 
1 1 --= -k , •.. -k ,[P(G)(8.u1•····8.un)P(F)(1!1i···il!n)Jo. 
l• n· 

Similarly, let Lk1 ••• kn resp. Lk
1 

••• kn be the subspace of Tk resp. Tk of elements 
of the form Altk1 ••• kn F, F E Tk resp. Tk; then F E Lk1 ••• kn may be repre­
sented by a multilinear polynomial of the form F(l!qt\ .. . t\J!k1 , ••• , l!k-kn+lt\ 
... t\ l!k) and the contraction operator G· corresponding to G E Lk

1 
••• kn 

may be thought of as a differential operator of the form G( Oy
1 

/' .••• t\ 
a .. L ' ... ' OuL L t\ ... t\ OuJ• Finally we consider so called Young symme-

... ~1 -~-~n+l -~ 

try operators and Young tables. For most of the results mentioned here we 
refer to [14]. Let again ki, ... , kn be numbers such that k = kt+ ... + kn and 
ordered in such a way that kt ?:: ... ?:: kn. Then the tuple K = ( ki, ... , kn) 
constitutes a so called Young table. Let A1 = {1, ... ,k1}, A2 = {k1 + 
1, ... , kt + k2} , ... , An = { k - kn + 1, ... , k} as before; then we consider 
for n' = IA1 I the "dual sets" A~, ... , A~, where Aj consists of the elements 
on the j-th position in the sets Ai, ... , An (which are ordered lexicographi-
cally). The basic Young symmetry operator Yk1 ••• kn is then given by 

Yk1 ••• kn = SymA~ ... SymA~AltA 1 • • • AltAn• 

Of course one could start with arbitrary ordered sets Ai, ... , An with car­
dinality ki, ... , kn and form the corresponding Young symmetry operator. 
Such symmetry operator would still correspond to the same Young table and 
it is readily seen that any other Young symmetry operator corresponding to 
the same Young table has the form Y = 11'Yk1 ••• kn11'- 1, 11' E Sym(k). This 
suggest to consider the sum 

C1c k - """'11'Yi 11'- 1 
1 ... n - ,t_, k1 ... kn 

'Ir 

which is a canonically defined operator only depending on the Young table 
K itself. These opera.tors CK = Cki ... kn satisfy some interesting properties, 
the proof of which can be found in [14]. 
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(1) the operators CK are permutation invariant, i.e. 1rCK = CK1r, 1f E 
Sym(k). 

(2) if Kand K' are different tables, then CKCK' = CK•CK = 0. 
(3) 1 = ''L)KCK, for suitable positive numbers lK. 
The Young operators Yki ... kn themselves do not satisfy these nice properties 
and are not even self-adjoint w.r.t. the Fischer inner product. As the opera­
tors Sym .and Alt are orthogonal projectors, the adjoint operator to Yk1 ... kn 
is given by 

Y£1 ... kn = AltA1 ... AltAnSymA~ ... SymA~,· 

Yet we have that 
( 4) the operators CK are self-adjoint, i.e. Ck = CK. 
Note that the operators XK = lKCK form a system of mutually orthogonal 
projection operators, one for each Young table, such that 1 = LXK· More­
over, each of the operators XK is permutation invariant and hence commutes 
with each SymA or AltA. 
We finish this section by giving a Clifford analytic representation of Yk1 ... knF, 
F E Tk. First note that a tensor of the form AltA1 ... AltAnF(.ui. ... ,.Y.k) 
may always be written into the form G(:u.1 /\. • • • /\. .'l&.k

1 
, .'l&.k1 +1 /\. • . . /\. 

.'l&.k1 +k2 , ••• , .Y.k-kn +1 /\. . . . /\. .Y.k ). Moreover, the further symm(,irization 
SymA' ... SymA' G of this is determined by the polynomial projection ob-

1 n' 
tained by equating .Y.1 = .l!k1 +1 = ... = l!k-kn+l, · · ·, .Y.2 = .l!k1 +2 = · · · = 
l!k-kn+2 etc. , i.e. by the polynomial G(.Y1 fl. ... fl..Yk1 ,1!1 A ... /\.yk~, ... ,.Y.1 A 
••• fl..Ykn). It is a very good costum to rewrite this polynomial as a polyno­
mial ofthe(form G(.Y.1 ,.Y.1 fl..Y.2 , ••. ,1!1 A ••• /l..Y.m), of degree (ti. ... ,tm) in the 
simplicial variables .Y.1,.Y.1 A.Y.2 , ••• 1 .lh /\. •.• A.!!m, where t; is the occurence of 
j in the Young table ( ki, ... , kn)· Unfortunately, this representation depends 
on the operator yk1 ... kn and cannot be used for c K F. 

3. Monogenic decomposition of tensors 

Similar to spherical monogenics and monogenic or "primitive" forms (see 
[3]) one can introduce in general so called "monogenic tensors" as follows. 

DEFINITION 3.1. A tensor F is called monogenic k-tensor if its polynomial 
representation F(_y1, •.. , l!k) is monogenic in each of the variables Yr.; , that 
is if 
8!!; F(y_1, ... , Y.k) = 0, j = 1, ... , k. By MTk we denote the space of mono­
genic k-tensors. 

The main motivation for monogenic tensors is the so called Fischer decom­
position, also called the monogenic decomposition of tensors. 
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THEOREM 3.1. Every F E Tk admits a canonical decomposition of the form 
F = M(F) + M.l.(F), where M(F) is b\Jherical monogenic and M.l.(F) has 
the form 

M.l.(F)(:u1, ... ,l!.I,) = .«1 G1(.«2, .. ·,.Uk)+ .. ·+ .Y.kGk(.Y.1, · · · ,.Y.k-1). 

Moreover, the ~pace of spherical monogenic k-tensors is the orthogonal com­
plement of the space of tensors of the above form, hence denoted by MT[. 

Proof. Let G = 1!;G;(!!1, ... ,1!;-i.1!;+1, ... ,l!k)i then for FE Tk, 

(G, F) = -[G;(8ll.1 • .. .,8ll.j-1 •8ll.j+1" .. ,831.k)811.,Flo = -(G;,811.,F). 

Hence the condition (G, F) = 0 for all G; E Tk-1 clearly means that 831..F = 
J 

0. This is true for all j, if and only if F E MTk. D 

The orthogonal projection operator M : Tk -+ MTk is called the mono­
genic projection operator. It is clear that the monogenic projection is uniquely 
determined. The question is whether also the polynomials G; are uniquely 
determined. We have the following 

LEMMA 3.1. Let m > 2 and G; and G; be multilinear of degree (k - 1) in 
their variables and let for i f. j 

then G; = G; = O. 

Proof. It suffices to prove this for k = 2. Indeed, one can derive the above 
equation w.r.t. all variables u1,n where n is different from i and j. If the 
lemma holds for k = 2 it then follows that each of these derivatives of G; 
and G; vanish. But they determine G; and G; so that also G; = G; = 0. 
Now let y1G1(!!2) = y2G2(1!1), then symmetrization 1! = y1 = y2 leads 
to G1(1!) = G2(1!) = G(y). Next, y1G(y2) = y2G(yi) means that e;G; = 
e;G;, G; = G(e;)or,aftermultiplication withe;;, e;G; = -e;G;. Form> 2 
this only has the nullsolution. Form= 2 one could have that G1 = 1, G2 = 
-e12 so that G(y1) = u11 - e12u12 = -e1Yi.1. Note that y1e11!2 = y2e1.tkt ! D 

Hence in case m > 2 we can apply the Fischer decomposition recursively, 
leading to the following 

THEOREM 3.2. For m > 2, every F E Tk has a unique decomposition of 
the form 

F = El!a1 .. ·l!a1Ma1 ... a1(F), 

where the sum is taken over all ordered subsets (al ... a1) of the set { 1, ... , k} 
and Ma1 ... a1(F) is a monogenic (k - l)-tensor in the remaining variables. 
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Although unique, the above Fischer decomposition is far from being orthog­
onal. Already tensors of the form l!i F(l!2) need not be orthogonal to tensors 
of the form l!2G(l!1). For example, if Mi(l!) and M2(l!) are linear monogenic, 
then 

(l!1M1(l!2)1l!2M2(l!1) = (M1(l!2),M2(l!2)), 

which vanishes only seldom. Hence, next question is whether certain parts 
of the decomposition are orthogonal to others. And to verify this we have 
to compute expressions of the form 

where {1, ... ,k} = {ai, ... ,ai,b1, ... ,bk-l}· H j is one of the elements 
{ai, ... ,ai} we use the relations l!kl!j = -l!jl!k - (.l!k,l!j} together with 
8y_;l!i = -m and 8!!; (l!k,l!j} = l!k at many places to see that the above 
expression has the form 

where Ua 1 ••• ; .. a, is a sum of products of .t&a1 •• • l&a,, with :U.j not included. 
Secondly, if j belongs to the set {bi, ... , bk-I}, then we make use of the 
relations Oy_;l!k = -l!kO!!; - (l!k, 8y_) together with Oy_;Ma1 ... a1 = 0 and 

(.Y.k' all.;} M a1 ... al«b1 ' ... 'lit.bk-I) 
= Ma1 ... a1(l!b1 , ••• ,l!/Jk_,)111.;-+11.k to see that the above expression is a sum of 
terms of the form 

where {a~ ... af_1} is a subset of {a1 ... a1}. This leads to 

THEOREM 3.3. Let m > 2; then every k-tensor F E Tk admits a unique 
orthogonal decomposition of the form 

k 

F= L:M1(F), 
l=O 

where Mo(F) = M(F) is the monogenic projection of F and wher:e 
M1(F) = Ll!a1 •• ·l!a,Ma1 ... a1(F) is called the l-monogenic projection of F. 

Proof. Let l' > l; then we have that the Fischer inner product 

(l!a~ • • ·l!a;,Ma~ ... a;,(F),l!a1 • • ·l!a,Ma1 ... a1(F)) 

vanishes for l = 0 while for l > 0 it equals 

-(l!a~ • • · l!a;, Ma~ ... a;, (F), Oii.a~ l!a1 • • • l!a,Ma1 ... a1(F)). 
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But in view of the above computations, al!a1 Ya1 •• ·Ya1Ma1 ... a1(F) is a sum 
1 

of terms of the form 
11. 11 ... 11. 11 Ma" a11 . 
"""'1 """'1-1 1 "' 1-1 

Hence, by induction on l, the above inner product vanishes. D 

Whereas the space M(Tk) was also the space of all tensors F satisfying 
the first order equations a11..F = 0, we have more in general 

J 

LEMMA 3.2. The space of F E Tk satisfying the system au ... au F = 
..... 1 ..... 1+1 

O, where each ( ai, ... , al+ 1) is an ordered subset of { 1, ... , k} 1 is the direct 
sum M(Tk) + ... + M1(Tk)· 

Proof. Both spaces are the orthogonal complement of the space of tensors 
of the form L.t!a1 ••• .1!al+1 Ga1i ... ,a1+1 (.Yb1 , • •• ,Yak_1_ 1 ). D 

Important is also the interaction between monogenic decomposition and 
symmetrization and alternation operators. 

LEMMA 3.3. Let 1r E Sym(k), then 1r commutes with the orthogonal mono­
genic decomposition, that is, 7r(M1(F)) = M1(7r(F)), FE Tk. 

Proof. It is immediately clear that the spaces of tensors of the form 
L:.ua

1 
••• u,.

1
Ma1 ... a1(F) are permutation invariant, while the operators Mk 

are the orthogonal projectors onto these spaces. D 

COROLLARY 3.1. The ope.rotors SymA and AltA commute with the mono­
genic projectors M1. The same is true for the Young ope.rotors lKCK. Thus 
every k-tensor Ji' E Tk has a unique orthogonal decomposition of the form 

F = L)KCKM1(F), 
l,K 

which refines both the monogenic and the Young decompositions. 

It is this decomposition which plays a fundamental role in the decomposition 
of tensors into irreducible pieces under SO(m). We hence call it the Fischer 
decomposition. Next let us apply this to the decomposition of polynomials. 
First, let P(u.1, ... 1 .l!n) E Pk1 ... kn {.!!} be a polynomial in vector variables 
.Y.11 ••• ,.Yn and homogeneous of degrees kt up to kn. If k = kt + ... kn, this 
space is the polynomial projection of Symk1 ... knTk. From theorems 2 and 3 
we readily obtain (see also (11]) 

THEOREM 3.4. Every P E Pk1 ... kn {.u.} admits a unique decomposition of 
the form 

P(.u1' ... 1.Un) = E II (.Yi,.Yj)
6ij rrl!i•i Ma;;,a;(P), 

i<j i 
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where Ms;; ,s; ( P) are homogeneous polynomials satisfying the monogenicity 
conditions ol!; f(y,1 , .•• , :Mn) = 0, j = 1, ... , n. 

Proof. Let F(1l.i. ... ,ll.k) E Symk1 ••• knTk be· the symmetrical tensor whose 
polynomial projection is P; then we can apply theorem 2 to F and apply 
the polynomial projection .1!1 = .11.1 = ... = .l1.k1 , • • • ,l!n = .11.k-kn+l = · · · = .11.k 
on the result. D 

THEOREM 3.5. Every PE Pk1 ... kn fo} admits a unique orthogonal decom­
position of the form P = L, M1(P), where M1(P) consists of terms of 
the form Y,,,1 ••• y,,,J(Y1,. . .,:Mn), ai E {1, .. .,n} with ol&J(:Mti .. .,l!n) = 
0, j = 1,. .. ,n. 

Proof. Let again F be the symmetric tensor with P as polynomial projection, 
then due to lemma 3, Symk1 ... knM1(F) = M1(F), which is a symmetric tensor 
with polynomial projection denoted by P(M1(F)) = M1(P) belonging to 
'Pk1 ... knfo}. M1(P) is clearly determined by the above stated properties and 
the polynomial projection preserves orthogonality. D 

Interesting is of course the fact that 

LEMMA 3.4. The space of polynomial solutions PE Pk1 ••• kn fa} of the sys­
tem of equations Ou ... Ou P = 0, a3· E { 1, .. ., n} is the direct sum 

-a1 -al+! 

M(E) + M1(E) + ... + M1(E), E = Pk1 ••• kn fo}. 

This lemma leads to the analogue of the notion of k-monogenicity for func­
tions of several vector variables. Next, let us consider forms. Let F = 
Altk1 ••• kn F, then we know that F can be represented as a multilinear func-
tion of the form F(y,1 /\ ••. /\Yki 1 ••• , y,k_:kn+l /\ ... /\:Mk)· On the other hand, 
due to lemma 3, we know that M1(F) = 4ltk1 ... knM1(F) is again a differen-
tial form of the same type, where M1(F) is as in theorem 3. 
Finally note that if P is a Young-type polynomial of the form P{!!t d!t /\ 
y,2 , .•• , y,1 /\ •.• A :Mm) of degree ti in y,1 , ••• , tm in y,1 /\ ••• /\ :Mm coming 
from the polynomial projection of a Young-type tensor F, then from lemma 
3 we again.know that M1(F) = Yk1 ••• knM1(F), so that M1(F) projects to a 
polynomial M1(P)(1!1, l!t /\ JJ.2, ... , l!t /\ ... /\ l!m) of the same form, where at 
the same time M1(P) still has the form stated in theorem 5. M1(P) is hence 
also characterized by 
(i) M1(P) has the forni M1(P){l!11l!1/\li21 ... 1.1!1 /\··./\.Um) 
(ii) 011.a .•• o,. M1( P)(.u.1 1 l!t /\ l!2, ... , l!t /\ ... /\.Um) = 0 

1 -1+1 

(iii) M1(P) is Fischer orthogonal to every M,_1(P) 
The study of functions satisfying conditions (i) and (ii) forms a very inter­
esting topic in analysis. Of particular interest are the homogeneous solutions 
because they lead to irreducible representations of Spin(m). So far we only 



-
CLIFFORD TENSOR CALCULUS 435 

have obtained a description of the monogenic decomposition of polynomials, 
not the complete Fischer decomposition, which also in~olves the operators 
CK· This however seems to require the translation of polynomials into ten­
sors followed by the Fischer decomposition of tensors. 
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Abstract. Multivector quantum mechanics utilizes wavefunctions which a.re Clifford ag­
gregates (e.g. sum of scalar, vector, bivector). This is equivalent to multispinors con­
structed of Dirac matrices, with the representation independent form of the generators 
geometrically interpreted as the basis vectors of spacetime. Multiple generations of par­
ticles appear as left ideals of the algebra, coupled only by now-allowed right-side applied 
(dextral) operations. A generalized bilateral (two-sided operation) coupling is propoeed 
which includes the above mentioned dextrad field, and the spin-gauge interaction as partic­
ular cases. This leads to a new principle of poly-dimensional covariance, in which physical 
laws are invariant under the reshuffling of coordinate geometry. Such a multigeometric su­
perfield equation is proposed, whi~h is sourced by a bilateral current. In order to express 
the superfield in representation and coordinate free form, we introduce Eddington E-F 
double-frame numbers. Symmetric tensors can now be represented as 4D "dyads", which 
actually are elements of a global SD Clifford algebra.. As a restricted example, the dyadic 
field created by the Greider-Ross multivector current (of a Dirac electron) describes both 
electromagnetic and Morris-Greider gravitational interactions. 

Key words: spin-gauge, multivector, clifford, dyadic 

1. Introduction 

Multi vector physics is a grand scheme in which we attempt to describe all ba­
sic physical structure and phenomena by a single geometrically interpretable 
Algebra.. A conservative approach recognizes the Dirac algebra as belonging 
to a. Clifford manifold having both spin and coordinate aspects. The spin 
gauge theory approach to grand unification makes use of a spin Clifford al­
gebra. which necessarily commutes with coordinate geometry. We propose a 
direct projection from this abstract space into concrete coordinate geomet­
ric algebra.. Ultimately we eliminate spin space entirely by using Clifford 
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aggregates of coordinate geometry to replace 'spinors'. Spin gauge theory, 
an artifact of spin geometry therefore vanishes. However, we gain in having 
multiple generations of particles appear which are coupled by new dextrad 
(right-sided multiplication) gauge transformations. 

To accommodate all the known couplings we must somehow recover the 
spin-gauge formalism. This requires transformations which literally reshuffle 
the geometry, i.e. the basis vectors for one observer might be the trivec­
tors for another observer. This leads us to propose that the general phys­
ical laws are invariant under these transformations, a new principle called 
poly-dimensional covariance. We postulate a single multigeometric super­
field equation, which will require two commuting coordinate Clifford al­
gebras, analogous to Eddington's E-F 'double frame" numbers [7]. This 
dyadic Clifford algebra can be reinterpreted as a single 8D multigeometric 
space. Multivector Dirac theory expressed in this full algebra potentially 
has enough degrees of freedom to represent all the fermions of the standard 
model. 

2. Geometric Algebras and Multi-Spinors 

We present at first the standard view that abstract entities (e.g, spinors) 
exist outside of the realm of concrete coordinate geometry. Dirac algebra 
belongs to a Clifford manifold which has both spin and coordinate features. 
We propose a direct projection between spin space and coordinate geometry 
in eq. (2) below. 

2.1. SPACETIME AND THE MAJORANA ALGEBRA 

Factoring the second-order meta-harmonic Klein-Gordon equation to the 
first order meta-monogenic Dirac form requires four mutually anticommut­
ing algebraic elements {11, 12, /3, 14}, 

(o2 
- m2)4>(x) = (D - m)(o + m)4>(x), 

W(x) = (D + m)4>(x) = (1µV' µ + m)~(x), 
(1µV µ - m)w(x) = O, 

(la) 

(lb) 

(le) 

where V' µ = 8µ in flat spacetime. Requiring the formulation to be Lorentz 
covariant imposes the defining condition of a Clifford algebra, !{1'µ,/ 11 } = 
9µ11 = eµ • e11, where eµ are the coordinate basis vectors. If the use of the 
abstract i is excluded, the above factorization of eq. (la) only works in the 
metric signature of ( + + +-). The lowest order matrix representation of 
the {Iµ} is JR(4), i.e. 4 by 4 real (i.e. no commuting i) matrices, commonly 
known as the {16 dimensional) Majorana algebra. The explicit matrix form 
of the algebra generator / µ a/J can be determined from the Riemann space 
metric 9µ 11 up to a similarity spin transformation:/~= S1µs- 1 • 
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2.2. SPIN SPACE 

The solution of the Dirac eq. (le) is usually taken to be a four component 
column bispinor 'J"', belonging to the left linear space for which the endo­
morphism algebra is the Majorana matrices. This spin space is transcenden­
tal, i.e. the postulates of quantum mechanics ordain that some attributes 
(e.g. quantum phase) of the wavefunction cannot he directly observed. The 
principle of representation invariance states, that tangible results should be 
invariant under a spin transformation: ill"'' = S"'fJ illfJ. It should therefore be 
possible to express the theory in a form which eliminates any reference to 
a particular representation without sacrificing any "physics". To this end 
we introduce the spinor basis ea as carriers for the representation. A spin 
transformation can now he interpreted as a passive change in spinor basis, 
which leaves the spin vector '11' = ill"' ea unchanged. 

The dual spinor basis (a is defined such that (aefJ = T/afJ• where the spin 
metric 1/afJ has the diagonal signature ( + + --) in the standard matrix rep­
resentation. We propose to interpret the representation independent form, 

(2a) 

as the "observable" basis vector of coordinate space. Mathematically this 
can he viewed as a map or projection from the Clifford manifold to the 
coordinate manifold. Hence we get a Dirac equation completely independent 
of spin basis or matrix representation: (D - m)'ll' = 0, where '11' = ill"' ea and 
D = eµ8µ is now the coordinate gradient. 

2.3. GEOMETRIC INTERPRETATIONS OF GAUGE ALGEBRAS 

There is a long standing tradition which views i as only "existing" in spin 
space, as the internal U(l) generator of unobservable quantum phase. Fac­
tors of i are included as needed to make operators Hermitian (e.g. 74) so 
that expectation values will never contain a non-observable "imaginary" 
number. The usual Dirac matrices are the complexified Majorana algebra.: 
<E( 4) = <E ®IR( 4). This can he geometrically reinterpreted as a 5D geometric 
(anti de-Sitter) space, where the unit pseudoscalar (5-volume) plays the role 
of the i = 7172737475 , only if the fifth basis vector has positive signature. 
The obvious question would he the physical interpretation of the new fifth 
dimension, and the identification of its associated coordinate variable and 
conjugate momenta (mass?). We will address this question briefly below. 

To represent an isospin doublet ofhispinors (e.g. u & d quark) requires a 
commuting isospin Pauli { <Tj} algebra. The wavefunction can be expressed 
as a matrix set of components ill""( contracted on a product basis ea.xi(. 
There are only two elements to the isospinor basis {Ai, .X2} which necessar­
ily commute with the spinor basis ea· The direct product of a commuting 
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Majorana "spin" algebra and a Pauli "isospin" algebra can be reinterpreted 
as a 7D geometric algebra with metric signature ( + + + - - - - ). The 
column spinor for which the endomorphsim algebra is <l'(8) = <l'(2) ®JR( 4) 
would now have 8 components. 

To represent two observers in real spacetime requires a pair of coordinates, 
each with their own Clifford algebras [5]. The direct product of these two 
commuting algebras·can be geometrically reinte'rpreted as a 8D space with 
a mother algebra [14] JR(16) = JR( 4) ®JR( 4). This encompases all the above 
algebras, where the 'second frame' JR( 4) algebra commutes with that of the 
'first frame'. Hence the 'second' algebra is the 'internal' gauge algebra for 
the 'first' frame observer and visa versa. 

3. Spin Covariant Dirac Theory 

The special theory of relativity requires the Dirac equation to have the same 
form under Lorentz transformations: dxµ. = al'11 dx 11 . It is usually argued [10] 
that the generators /µ. are invariant scalars, i.e. the same for all observers, 
at the cost of forcing the bispinor wavefunction to obey a compensating spin 
transformation: ,,pal = sa/31/13' where s-1,µ. s = aµ.11 ''(. 

3.1. COORDINATE COVARIANT DIRAC THEORY 

The generol principle of covariance will require the spin transformation to be 
local (different at each point in spacetime ). ~his introduces a spin connection 
flµ. to the derivative V µ. of the Dirac eq. (fc), 

oµ.ea = nµ.ea = e13nJ a• 

n _ n(j) E . _ n(j) r f3a t: c _ n f3a t: c µ. - H µ. (J) - H µ. (j) <,,{3<,,a - Hµ. <,,f3<,,a1 

n~ = s nµ.s-1 + Soµ.s-1
• 

(3a) 

(3b) 

(3c) 

(3d) 

One of the 16 basis elements E(j) of the geometric Clifford algebra is given 
by the generalization of eq. (2a), 

l!(j) = fu)13 eatf3, (2b) 

where r (j) is the corresponding basis element of the Dirac matrix algebra. 
Under the general coordinate transformations required by the equivalence 
principle, one must replace/µ.-+ 1ah,:(x) where the tetrad (vierbein) field 
ha!'(x) transforms as a vector. This is equivalent to introducing position 
dependent 1µ.( x) which transform like basis vectors. 
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For this reason and others, we adopt the "nontraditional" view that both 
eµ and 'Yµ of eq. (2a) trtnsform as vectors, while ~/3 and (a transform as 
coordinate scalars [9]. With this definition of constant spin basis, the spin 
connection is everywhere zero, hence the generally covariant Dirac equation 
is simply eq. (le) with Dirac matrices which are a function of position. 
However, when the coordinate space is curved, one cannot have the spin 
connection vanish everywhere. The geometric definition of eq. (2a) forces 
the following relations: 

(4a) 

(4b) 

(4c) 

The coordinate connection coefficient Cvµw (Christoffel symbol) is directly 
· related to the spin connection by eq. ( 4a). Restricting our discussion to 
real spacetime algebra (no commuting i), the spin curvature K.,.w is forced 
by eq. ( 4b) to be a bivector. Clearly it must be nonzero if the coordinate 
space is curved, i.e. described by the Riemann curvature tensor: Rwu,:e,, = 
[8w 1 8.,.]ew It follows from eq. (4c) that the spin connection (which appears 
in the spin covariant derivative V.,.) must have a nontrivial bivector part, 
commonly called the Fock-Ivanenko coefficient [9]. 

3.2. SPIN GAUGE THEORY 

The principle of local matrix representation invariance or equivalently a prin­
ciple of spin basis covariance is invoked to induce via minimal coupling a 
non-trivial spin connection [4]. This is a gauge theory where the generators 
r (j) of the general spin transformation are usually restricted to be Dirac 
bar-negative in order to preserve the spin norm iw (i.e. the spin metric 
(a~/3 = TJa/3 is invariant). The standard (5D) Dirac algebra which has the 
bar negative pseudoscalar i, would contain the 16 element group structure 
U(2,2). Electromagnetism is associated with i, which by itself would force 
the space curvature to be zero. It is tempting to interpret the 10 bivec­
tors (of 5D) with group structure S0(4,1) as the gauge fields which cause 
gravitational curvature through eq. ( 4b ). 

Grand unification is approached by Chisholm and Farwell [1] by resorting 
to higher dimensions (e.g. llD) to introduce more fields. They only consider 
spin transformations of the form: 'Yµ = '"'{ 0 h/(x ), generated by bivectors or 
the pseudoscalar i. They avoid those bivectors which would rotate spacetime 
into a higher dimension (e.g. '"'{ 571 ). The remaining bivectors which operate 
on spacetime form the 6 element Lorentz group S L(2,<C), potentially insuf­
ficient to accommodate a full description of gravitation. 
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3.3. LOCAL AUTOMORPHISM INVARIANCE 

Alternatively, the entire automorphism group U(2, 2) of the Dirac algebras 
is allowed by Crawford [2]. Previously, the non-bivector generators were 
excluded by equations ( 4a) & ( 4b ). These constraints are relaxed because 
Crawford does not require the geometric interpretation of eq. (2ab ). This 
allows him to consider generalized spin transformations of the form: r(i) = 
r"~,P\i:), where rU> is a basis element of the full "spin" (Dirac) Clifford 
algebra. The drehbein fields ~Y>(x) (4"spin-legs") reshuffle multivector rank 
in the Clifford spin manifold (e.g. vector - bivector) without doing the same 
to the "observable" coordinate geometry. 

A Lagrangian formulation can show that the field equation is, 

K ·µ. [n"' K ] • ·(i) r µ.11' + ' µ.11 =Jµ. = J µ. (i)• (5a) 

(5b) 

The current jµ. is similar to the spin gauge connection Oµ. in being a coor­
dinate vector while also a Clifford aggregate over the spin algebra r(i). The 
spin curvature K can be geometrically interpreted as a dyad of a coordinate 
geometric bivector and a spin algebra Clifford aggregate. 

(5c) 

Elements of the coordinate geometry E(i) commute with the spin algebra r(i) 
because Crawford does not postulate the geometric connection of eq. (2ab ). 
Note that the bivector part of the spin curvature is no longer constrained 
by eq. ( 4b) to be related to the space curvature. 

4. M ultivector Gauge Theory 

The basic difference from standard theory is the replacement of column 
spinors by algebraic wavefunctions, i.e. Clifford aggregates of Dirac matri­
ces [6]. Most authors only consider restricted combinations called minimal 
ideals, which have the same degrees of freedom as a single column spinor. 
In our approach, the form of the multivector wavefunction is unrestricted, 
having the same number of degrees of freedom as the elements of the Clifford 
group. The complete solution can be interpreted as a geometric multispinor: 
1i' = lJ(i)E(i) = lfla/J{a>-.13. Here the {a is no longer a basis spinor, but an ele­
ment of a. left ideal, hence eq. (3b) is no longer valid. The isospin element is 
part of the same algebra.: >-.13 = (13, which does not commute with {a whereas 
it did in standard formulation. In 4D spacetime algebra (no commuting i) 
the geometric multispinor has been shown [11] to be an isospin doublet of 

.. "lli! 
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Dirac bispinors, where the role of i is played by right-side applied (i.e. dex­
trad multiplication) time basis vector e4. In 5D (standard Dirac algebra) one 
has enough degrees of freedom to represent four quarks (i.e. u,d,s,c), where 
the (u,d) and (s,c) isospin doublets are uncoupled. 

4.1. DEXTRAL GAUGE THEORY 

The generally covariant multi vector Dirac equation ( e11811 - m )w(i)E(i) = O, 
where e11(x) are the local coordinate basis vectors, is manifestly matrix rep­
resentation independent. We have in fact completely eliminated spin space, 
specifically spin basis ea and spin algebra "t µOl.{3 in favor of there being only 
the geometrically interpretable coordinate Clifford algebra E(i)· Hence, spin 
gauge theory, an artifact of spin space, is now inaccessible! 

The multiple particle generations in the multivector wavefunction can be 
coupled by now-allowed right-side applied dextral gauge transformation [3]. 
The new gauge fields enter as a dextrad connection: D 11 = Dµ(i)E(i)• 

(6a) 

coupling to the multivector parts of Greider's current [6], 

(6b) 

A Lagrangian formulation [11] will require the geometric generators E(i) of 
the dextrad connectionD11 to be bar negative. In 4D spacetime, the subset 
which is also unitary generates the electroweak group: U(l) 0 SU(2), where 
isospin rotations are generated by spacelike bi vectors and the role of i played 
by right-sided ( dextrad) multiplication of the time basis element e4. 

4.2. POLY-DIMENSIONAL COVARIANCE 

The spin gauge formalism can be recovered by proposing that the automor­
phism transformations operate on the very real, concretely observable space-

time coordinate Clifford algebra: E(i) = E(j)Ll (j~i)( x ). The geobein fields 
Ll(x) ("geometry-legs") are completely analogous to Crawford's drehbeins 
[2] except that now we are reshuffling observable geometry. We are tau­
tologically committed to propose- a new principle of local poly-dimensional 
covariance. By this we mean that the basis vectors of a coordinate frame dis­
placed from the origin may be "r~tated" in dimension, e.g. be a multivector 
that is part vector plus part bivector relative to the reference geometry. 

The generalized poly-dimensional connection A(i:j) is defined, 

OE - A (j)E 
(i) - (i) (j)· (7a) 
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The right side of this equation is recognized as a linear transformation on 
the full Clifford algebra JR( 4 ). In general A(i)(i) belongs to the endomorphism 
algebra End JR( 4) ~JR( 4)® JR(4), hence it is an element of the mother alge­
bra JR(16) (14]. This leads to a new generalized poly-dimensional covariant 
Dirac equation, 

(7b) 

where the coordinate gradient in eq. (7b) is understood now NOT to op­
erate on E(i)· This is not a particularly useful form, as it is expressed in 
terms of the multivector basis E(j) instead of an ideal basis which would 
more closely resemble standard spinor form. The main annoying feature is 
that each multivector piece of the wavefunction couples to a different con­
nection coefficient. Further, the poly-dimensional connection cannot itself 
be expressed as a multivector within the JR( 4) spacetime algebra. 

Alternatively, the linear tdnsformation can be written entirely within 
the smaller original JR( 4) spacetime algebra using two-sided multiplication 
[13]. We re-express eq. (7a) in terms of a new bilateral connection fl(ik), 

(8a) 

The advantage of eq. (8a) over eq. (7a) is that the connection is now com­
pletely form independent of the operand element E(i)· This allows us to 
rewrite the interaction term of the Dirac equation in terms of the full mult1-
vector wavefunction '11 instead of having to consider each multivector com­
ponent 1fJU) separately as was done in eq. (7b). The resulting Dirac equation 
has the bilateral interaction term which was proposed earlier to empirically 
fit known mesonic couplings (12], 

(8b) 

where again it is understood that the gradient does not operate on the 
multi vector basis (as that has already been included on the right side of the 
equation). From a multivector Lagrangian formulation [12] it can be shown 
that the gauge connection fl(ii) of eq. (8a) couples to the bilateral current, 

where E(i) and EU) must both be bar-positive or both bar-negative. The 
dextral interactions of eq. (6a) are the special case where the sinistrad (12] 
(left-side applied) interaction element of eq. (8b) is the set of basis vectors: 
E(i) = ew When the dextrad (right-side applied) element E(i) of eq. (8b) is 
either 1 or i, the interactions are of the same form proposed by Crawford 
[2]. 
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4.3. MULTIVECTOR FIELD THEORY 

In order to have a fully geometric description of symmetric tensors, Greider 
(8] introduced a second commuting Clifford algebra F(k) in analogy with Ed­
dington's E-F double-frame numbers (7]. A product of two elements E(j)F(k) 
is a geometric dyad which is a.n element of a global 8D mother [14] algebra: 
JR(16) = JR( 4) 0 .JR( 4). Potentially this allows us to write a single superfield 
equation which is completely coordinate and poly-dimensional covariant in 
form. In the particular case of dextrad connection of eq. (6a), the superfield 
equation can be written in a sourced monogenic form, 

o.r = .J, (9a) 

where .J = jl-'U)fµE(j) is the vector-multivector supercurrent made from 
eq. (6b). The coordinate derivative is in the F(j) algebra vector basis: D = 
f"'ow The superfield F = pµv(i)f"' A fvE(j) is a bivector in the "first-frame 
coordinate algebra" F(k)i while a Clifford aggregate in the "second-frame 
charge algebra" E(j). 

The Morris-Greider (8] theory of gravitation was based upon the partic­
ular case where E(j) is limited to be a vector, the supercurrent then being 
a vector-vector dyad. The case where E(j) is a trivector was explored by 
Differ (5]. It appears that the spin-gauge field eq. (5a) can also be written 
in this general form, where the commutator term is built into the equation 
if assumptions are made about the generalized connection coefficient of eq. 
(7a). The field equation for the general bilateral interaction of eq. (8b) has 
yet to be fully formulated. 

5. Summary 

Our development was based upon an underlying theme of using only alge­
bra that is based on concrete spacetime geometry. This has led us to elim­
inate spin space, the principle of local spin covariance and ultimately spin 
gauge theory. In its place we propose the more grand scheme of local poly­
dimensional covariance. While the results are promising for Dirac, gauge and 
classical field theory, it remains to be seen if its domain can be extended to 
classical mechanics. Further, the interpretation of the 8D geometry needed 
is not completely clear, although it appears to be connected with the clas­
sical symmetric tensor objects of 4D which are needed for formulations of 
gravitatioh. 
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Abstract. The tensor product of the division algebras, which is a kernel for the structure 
of the Standard Model, is also a root for the Clifford algebra of (1,9)-space-time. A con­
ventional Dirac Lagrangian, employing the (1,9)-Dirac operator acting on the Standard 
Model hyperfield, gives rise to matter into antimatter transitions not, mediated by any 
gauge field. These transitions are eliminated by restricting the depend~cies of the com­
ponents of the hyperfield on the extra six dimensions, which appear in this context as a 
complex triple. 

This article is an extension of my work on applying the tensor product of the 
division algebras to the lepto-quark Standard Model [1-4] and beyond. Al­
though it is selfcontained, many results derived previously are not rederived 
here. 

Applications of the division algebras to particle physics [5-10] are not 
new, nor are all the same. This application, to the best of my knowledge, 
while owing a debt to the work of Giirsey and Giinaydin, is the only one of 
its kind. Like all applications of these algebras, however, it is motivated by 
the attractive notion that the special structures of mathematics play a role 
in the design of reality. Most theorists share a faith - or at least a hope - of 
this sort; here it has been allowed to become a guiding principle. 

In this article I present the first radical extension of my ideas beyond 
the Standard Model and its foundation. Because it combines the Standard 
Model with (1,9)-space-time (R1•9), it may well prove a step toward the 
development of a connection to, and a narrowing of, string theory, the initial 
euphoria to which has - in the fashion of GUTs and SUSY - succumbed to 
the curse of multiple realities. 

The nontrivial real division algebras with unity are the complexes, C, 
quaternions, Q, and octonions, 0. They are 2-, 4-, and 8-dimensional. Mul­
tiplication tables for Q and 0 are constructable from the following elegant 
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rules: 

Division 
Algebra 

Imaginary 
Units 

Anti­
commutators 

Cyclic 
Rules 

Index 
Doubling 

Q 

q;,i = 1,2,3, 

q;qj = qk ==> 
q(2i)q(2j) = -q(2k)• 

GEOFFREY DIXON 

0 

ea, a = 1, ... , 7, 

eaeb = ec ==> 
€(2a)€(2b) = €(2c)' 

(1) 

where Q-indices run from 1 to 3, modulo 3, and 0-indices run from 1 to 7, 
modulo 7. 

C®Q is spanned by the 8 elements {1,i,qj,iqj}· It is isomorphic to the 
Pauli algebra, C(2), which is the Clifford algebra of R3·0 space. Represented 
by C(2), the spinors of that Clifford algebra are 2 X 1 over C, the so-called 
Pauli or Weyl spinors. The spinor space ofC®Q, however, is lx 1 over C®Q, 
hence is C®Q itself. In this case, to distinguish the Clifford algebra from 
its spinor space, we denote the former CL 0 QL, the subscript indicating 
action from the left on the spinor space, which we 'denote C®Q. 

C®Q is twice as large as it needs to be. It is the direct sum of two 
2-dimensional (over C) Weyl spinor spaces unmixed by CL 0 QL (just 

as [ Xt Yi] in C(2) is the direct sum of the Weyl spinor spaces [ Xt 0°] X2 Y2 X2 

and [ ~ :~] ). If x E Q satisfies x 2 = -1, then multiplication from the 

right on C®Q by the idempotents !(1 ±ix) projects two such Weyl spinor 

spaces (just as multiplication from the right by the idempotents !( [ ~ ~] ± 

[ ~ ~l]) on [ :~ :~] projects the C(2) Weyl spinor spaces above). Qn, 

which acts from the fight on C@Q, mixes these two independent spinor 
spaces. Qn commutes with CL 0 QL, so it is an "internal" algebra, where 
the Clifford (geometric) algebra is "external". The elements of unit length 
of Qn form the group SU(2), which in previous work along these lines was 
manifested as the isospin gauge symmetry [1]. 

The octonion algebra is generally considered ill-suited to Clifford algebra 
theory because 0 is nonassociative, and Clifford algebras are associative. 
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This problem disappears once we identify 0 as the spinor space of OL, the 
adjoint algebra of actions of 0 on itself from the left. OL is associative. O.t. 
is linear in actions of the form 

eLab ... c[x] = ea(eb( ... (ec:ll, ... )), 

x E 0. For example, although eie2 = e6, 

eL12[x] = ei(e2x) ::/; e6x = eu[x] 

in general; and although ei ( e2e4) = e1, 

eL124[x] = ei(e2(e4x)) ::/; e1x = eL1[x] 

(2) 

in general. These are consequences of nonassociativity. The elements eLab ... c 
satisfy 

eLabcc ... d = -eLab ... di 

eLab ... c = ±eLpq ... r, (3) 

pq ... r an even-odd permutation of ab ... c, and 

eLab ... ceLdf ... g = eLab ... cdf ... g· (4) 

It is also not difficult to prove that eL76S4321[x] = x for all x in 0. Therefore, 
for example, using (4) and (5) one can easily prove 

(5) 

That is, any element of 0 L with four or mere indices can be reduced to an 
element with three indices or less. So a complete basis for 0 L consists of the 
elements 

(6) 

Therefore OL is 1+7+21+35=64-dimensional, and OL ~ R(S). The embed­
ding of parentheses in the definition (2), implying ( 4), trivially implies OL 
is associative. 

0 L. is isomorphic to the Clifford algebra of the space R 0•6 , the spinor 
space of which is 8-dimensional over R. In .this case the spinor sp.ace is 0 
itself, the object space of Oi. It is significant that the dimensionality of 0 
is correct in this case. This is tied to the remarkable fact that the algebra 
OR of right adjoint actions of 0 on itself is the same algebra as 0£. Every 
action in OR can be written as an action in 0£. 

A 1-vector basis for 0 L, playing the role of the Clifford algebra. of R 0•6 , 

is { eLpiP = 1, ... , 6}. The resulting 2-vector basis is then {eLpq 1 p, q = 1, ... ,6, 
p-:/; q}. This subspace is 15-dimensional, closes under the commutator prod­
uct, and is in that case isomorphic to so(6). The intersection of this Lie 
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algebra with the Lie algebra of the automorphism greup of 0, G2, is su(3), 
with a basis 

su(3)---* {eLpq - eLraip,q,r,s distinct, and from 1 to 6}. (7) 

The group SU(3) generated by these elements arises as the color gauge group 
in applications [1] (note that SU(3) is the stability group of e7 , hence the 
index doubling automorphism of 0 is an SU(3) rotation). 

Finally we let C ® Q ® 0 play the role of spinor space to CL ® QL ® 0 L, 
which is isomorphic to C(16), hence isomorphic to the Clifford algebra of the 
space R0 •9 . With respect to the gauge symmetry SU(2) x SU(3) outlined 
above, which expands to U(2) x U(3) (in [1) this symmetry is derived; it 
is associated with the inner product on C ® Q ® O, specifically with a 
set of projection operators (associative idempotents) from which the inner 
product is constructed), the spinor space C ® Q ® 0 transforms exactly like 
the direct sum of a family and antifamily of lepto-quark Weyl spinors. That 
is, various algebraic bits of the spinor space are identifiable by their U(2) x 
U(3) transformation properties as being quark or lepton. Quantum numbers 
for the (family) spinors can be manifested in two ways, one corresponding 
to righthanded particles, one to lefthanded. They can be simultaneously 
incorporated by expanding CL® QL ® OL to CL® QL ® OL(2) (2 x 2 over 
CL®QL®OL), the "Dirac" algebra forR1•9 space-time (just asCL®QL(2), 
isomorphic to C( 4 ), is the Dirac algebra for R 1•3). The spinor space in this 
case is 2 x 1 over C ® Q ® 0. 

Let i[I be such a spinor, and give it a functional dependence on R 1•9 

space-time. Let 

P± = (1 ± ie1 )/2, (8) 

a U(3) invariant component of the projection operator set mentioned above. 
Then P+iP is the matter half of i[I, and p_"ilf the antimatter half. P+iflP+ 
is an SU(2) lepton doublet, and P+ i[I P- is a quark SU(2) doublet, SU(3) 
triplet (reverse signs for antimatter). 

Define in R(2): 

€=(~~),a=(~ ~1 ),/J=(~ ~),w=(~l ~)· 
A 1-vector basis for the Clifford algebra of R1•9 consists of the elements: 

'Yo = /J, 'Yi = qieL1W,j = 1, 2, 3, 'Yh = ieh_3w, h = 4, .. ., 9. (9) 

These satisfy: 
'Yh'Yl + 'Yl'Yh = 21/h/€, 

T/hl diagonal (1( + ), 9(-)). In particular note that the set hh, h = 4, .. ., 9} are 
not SU(3) invariant, from which we infer that the extra 6 space dimensions 
carry SU(3) charges. 
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The (1,9)-Dirac operator is /J1,9 = / f{)f, f = 0, 1, ... , 9, and I define '1,3 = 
/µ{)µ,µ = 0, 1,2,3, /Jo,6 =/Ji,9- /Ji,3· Define 

PL± = (1 ± ieL7 )/2 (10) 

(the left adjoint version of P±)· Using these adjoint idempotents we can 
decompose /J1,9 into its (1,3)- and (0,6)-Dirac operator parts, one of each 
for both matter and antimatter: 

/J1,9 = PL+ /J1,9PL+ +PL- /J1,9PL- +PL+ /J1,9PL- +PL- /J1,9PL+ 

= PL+fJ1,3PL+ + PL-fJ1,3PL- + PL+fJo,6PL- + PL-/Jo,6PL+1 

= /J1,3PL+ + /J1,3PL- + /Jo,6PL- + /Jo,6PL+ (11) 

(note that fJ1,3PL± are the matter/antimatter Dirac operators for (1,3)­
space-time, and that because eL7PL± = =FiPL±, the partials of the latter are 
space-reflected relative to the former). Therefore, 

/J1,9W = (fJ1,3PL+ + /J1,3PL- + /Jo,6PL- + fJo,6PL+)W 

= /J1,3(P+ \II) + IJ1,3(p_ \ll) + /Jo,6(P- \II) + /Jo,6(P+ 'l!). (12) 

To form a Lagrangian for the field we use the inner product of C ® Q ® 0 
(1]: 

C =< 'l!, /J1,9W > 

=< P+ \II + P- 'l!, /J1,3(P+ \II) + /J1,3(p_ \II)+ /Jo,6(P- ii) + /Jo,6(P+ il) > 
=< P+ 'l!, \/J1,3(P+ \II) > + < P- W, /J1,3(p_ ii) > 

(13) 

(the last equality arising from the algebra of the inner product). The 
first two terms after the last equality in (13), < P±W,/J1,3(p±W) >,are 
ordinary. One can obtain a list of viable particle transitions from such La­
grangians, as each Weyl component of \II has an obvious particle identifi­
cation. For example, after gauging U(2) x U(3), algebraic combinations of 
spinor and. gauge fields that survive the inner product correspond to viable 
transitions, and these are just those that are built into the Standard Model 
on phenomenological grounds, the major difference being the presence of 
noninteracting righthanded neutrino terms (this aspect won't be developed 
further here; see [1], (11]). These first two terms connect matter/antimatter 
to matter/antimatter (P±W= matter/antimatter), hence they are in that 
sense conventional. They conserve lepton and baryon numbers. 

The last two terms of (13), < P'f \II, fJ0,6(p± 'l!) >, are a problem, even 
without gauge fields, for they imply matter/antimatter (P±W) into anti­
matter/matter (p'f\ll) transitions, mediated algebraically by /J0,6 • As such 
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transitions are unobserved, the rest of the article will be devoted to getting 
rid of the last two terms of (13). 

The 2-vector basis for the Clifford algebra of R 1•9 , derived from the 1-
vectors in (8), is 

(14) 

j=l,2,3, p,qE {1, ... ,6}. This 45-dimensional subspace closes under the com­
mutator product and is in that case isomorphic to so(l, 9). The first six 
elements, {qj£, qjeL1a}, form a basis for so(l,3), the last fifteen, {eLpqE}, a 
basis for so(6). This is the same so(6) we saw earlier, and it contains color 
su(3) (see (7)). That is,,.1he space R 0 •6, hence ilJ0 ,6, carry color charges (one 
consequence of these charges: in none of the unwanted transitions implied by 
(13) can a particle make a transition to its own antiparticle; hence, for exam­
ple, quarks may mix with anitleptons, violating baryon and lepton number 
conservation). 

Consider the element ilJ0 ,6(P+ il') which appears in the last term of (13). 
Because 

P±e1 = =fip±, P±es = =fip±e1, P±e3 = =fip±e2, P±e6 = =fip±e4, (15) 

P+ iI' may be decomposed into 

P+il' = P+[il'i + wie1 + wie2 + wte4), (16) 

where the w+, m=0,1,2,4, are 2 x 1 over C © Q. These four fields can be 
designated lepton, red-, green-, and blue-quark. 

Now consider l'o,6(P+il'), and in particular, for example, the term (sum 
p=l, ... ,6) 

ilJo,6(P+ wie1) = iwepoP+3[P+ wie1] 

= iw(p-e184 + p+e285 + p+e306 + P+e487 + P-es&8 + P+e689 )[wie1] 

= iw(p_e1(84 + i&8) + pfe2(85 
- ia6) + P+e4(87 

- i89))[wie1] 

= iw(e1(84 + i&8) + e2(85 
- ia6) + e4(87 

- i89))[p+il'ie1) 

=ilJs+--[P+Wie1] (17) 

(in the second line the nonassociativity of 0 plays a part in altering the sign 
subscripts of P±i in general nonassociativity plays an essential role in keeping 
the mathematics consistent with phenomenology). /J6+-- (generalized be­
low) is defined in the penultimate line. In like manner one can demonstrate 
that 

fJ6P+ ili~ = ilJ6+++P+ il'~, 
ilJ6(P+'1'te2) =ilJ6-+-(P+ilite2) 

ilJ6(P+ wte4) = ilJ6--+ (P+ wte4) (18) 
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(no parentheses are needed in the first of these equations (lepton term), for 
nonassociativity only becomes an issue on the quark terms). For any real 
variables x and y, and differentiable f: We+ ioy)f(x + iy) = 0. Therefore, 
ignoring R 1•3 coordinates, if 

then 

,y,O ,y,0 ( · · · ) 'I'+= 'I'+ X4 + tXg,X5 + ix6,X7 + tXg' 
,y,l ,y,l ( . . . ) 'I'+ = 'I'+ X4 + ixs, xs - ix6, X7 - txg , 
iJ.i~ = iJ.i~(x4 - ixa,xs + ix6,x1 - ixg), 
,y,4 ,y,4 ( . . . ) 'I'+= 'I'+ X4 - ixs,xs - ix6,X7 + ixg, 

identically. 

(19) 

(20) 

The antimatter fields of P- iJ.i would have functional dependencies con­
jugate to those above. Any fluctuation from these would give rise to so far 
unobserved matter-antimatter mixing. 

Under U(3) the lepton term iJ.ii is supposed invariant, but its 3 complex 
coordinates in (19) are not. In making U(3) a local gauge symmetry, de­
pendent upon R 1•3 coordinates, the complex coordinates of q;i also acquire 
a functional dependence on R 1•3• The orbit of U(3) is S5, the 5-sphere. 
Because wi is dependent on 3 complex coordinates, and not 6 real, this 
precludes a variation of q;t by even so much as a phase factor under U(3). 
Jt would s~m then that the colorless lepton term q;i must be independent 
entirely of tl\.e color-carrying coordinates of R 0•6 • 

· The complex triple associated with q;i in (19) has a more complicated 
SU(3) transformation, further complicated by the fact that iii is itself si­
multaneously transformed. However, wi is invariant under the action of the 
SU(2) subgroup of SU(3) that leaves e1 and e5 invariant. Following the same 
reasoning used above we now conclude that ilii must be independent, not 
of all of R0

•
6 as was wt, but of Xri r=5,6,7,9. 

In general we may now conclude, inorder to preserve (20), that 

wt = wt( xµ, ... , ... , ... ), 

wi = iJ.ii(Xµ 1 X4 + izs, ... , ... ), 
wi = iJ.it(xµ, .•. ,X5 + ix6, .•. ), 

Wt= Wt(xµ,•••i···iX1+ix9), (21) 

where (, ... ) indicates independence of the complex coordinate in that slot, 
and xµ denote the coordinates of R 1•3• 

Does any of this have anything to do with string theory? I confess myself 
not a string theorist, so I can not supply a definitive answer to that ques­
tion. String theory uses R 1•9 , and it deals with the extra 6 dimensions by 
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balling them up into a complex 3-manifold too small to be observed. My 
route to R 1•9 is certainly different, but in requiring (20) the space R 0•6 is 
forced to appear in the guise of a complex 3-space. It has not yet been inves­
tigated if some specific compactification is required of the model, much less 
if there is an associated SU(3) holonomy group [12]. As to its unobservabil­
ity, everything in this model (specific4y quarks and R 0 •6 ) associated with 
the octonion units ep,p = 1, ... ,6 (also associated with nonassociativity) is 
unobserved. There may be some nice algebraic/quantum mechanical expla­
nation for this, but even so one finds such subtlety is generally manifested 
by more prosaic explanations as well, like infrared slavery, and, presumably, 
compactification. 
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Abstract. Let End(IR.n) be the algebra of endomorphisms on the real 2n-dimensional 
Clifford geometric algebra IR.n of the n-dimensional Euclidean space mn. In this work we 
study the structure induced by a family of derivations on the algebra End(IR.n)· The shape 
and curvature bivectors of a projection with respect to a given structure are defined. The 
concept of a structure allows us to lift the local properties of a vector manifold to the 
algebra End(IR.n)· 

1. Algebraic Framework 

Let End(IRn) be the algebra of endomorphisms on the real 2n-dimensional 
Clifford geometric algebra IRn of the n-dimensional Euclidean space JRn. As 
has been shown in [1, p.3656], the algebra End(IRn) is itself isomorphic to 
a Clifford geometric algebra, namely the 22n-dimensional geometric algebra 
IRn,n, and also to the algebra of 2n x 2n real matrices. Although the matrix 
algebra formalism is fully isomorphic to the corresponding geometric algebra, 
the great advantage of latter is its comprehensive geometric significance. 
Geometric algebra can also be nicely formulated in an infinite dimensional 
setting, but we will not consider this here. 

A familiar subalgebra of End(IRn) is End(JRn) the algebra of all linear 
operators on the Euclidean space JRn. Let f E End(JRn). The characteristic 
equation of f is. det( A - !) = 0, and in general can have both real and 
complex eigenvalues as roots. If the minimal polynomial off is known, then 
f can be p,ut in the eigenprojector form: 

r 

f = EAiPi +qi, 
i=l 

where the Pi, qi E End( JRn) are respectively idempotents and nil potents, 
[2], [3]. 

One disturbing question when reformulating linear algebra in terms of 
geometric algebra [4], has been the lack of a suitable geometric interpretation 
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of the complex eigenvalues off in the geometric algebra IRn. The difficulty 
is in the interpretation of the "imaginary" unit i.1 

In IRn each unit bivector has square -1, but bivectors do not algebraically 
commute with all the other eiements of IRn. In JR3 the unit pseudoscalar 
has square -1 and commutes with all other elements, and therefore is an 
attractive choice in this algebra, as well in the similar algebras /R4k+J for 
k = 1, 2, .... We shall use this as the guiding principle for the selection of 
the geometric interpretation of the complex eigenvalues of f E End(JRn): 
We are looking for an encompassing geometric algebra containing IRn whose 
pseudoscalar element commutes with all other elements and has square -1. 

We have noted that End(IRn)=IRn,n• so it is natural to look in this larger 
geometric algebra which contains IRn. The unit pseudoscalar of IRn,n com­
mutes with all elements of IRn,n• but has square -1 only when n is odd. This 
situation is at least an improvement over the previous values of n = 4k + 3 
in the case of the algebras IRn. 

The solution to this search for the elusive i is to note the isomorphism 

1Rn,n( i)=IRn,n+l 

between the formal complexification 1Rn,n( i) of 1Rn,n and the geometric al­
gebra IRn,n+l of the signature (p, q) = ( n, n + 1 ). The pseudoscalar of this 
algebra has all of the desired algebraic properties for all n = 0, 1, 2, .... 

Let (f" := /Rn( i) denote the formal complexification of the Euclidean n­
space IRn, and <Cn := IRn( i) the corresponding complexifi.cation of the real 
geometric algebra 1Rn. Complex vectors c E (f" are of the form c = a+ ib 
where a,b E JRn. The algebra 

End(<Cn) = End+(<Cn) EB End-(<Cn)=IRn,n+i. 

is the direct sum of all complex linear operators End+ ( <Cn) and complex 
antilinear (sesquilinear) operators End-(<Cn), and is isomorphic to 1Rn,n+i· 
Complex linear and antilinear operators have been studied for n = 3, 4 in [6], 
[7]. The remainder of this paper is concerned with the algebra of complex 
linear operators End+(<Cn), the special case of the real operators in End(IRn) 
being naturally included. 

2. Structures 

Each element C E <Cn can be written in the form C = A+ iB for A, B E IRn· 
We can also decompose C E <Cn into the sum 

n 

C= E<C>j, 
j=O 

1 See [5] for a. related discussion of this point. 
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of complex homogeneous k-vector parts < C >k· For what follows we will 
need an orthonormal basis of complex 1-vectors {e1,. .. ,en} which satisfy 
the usual relations e; · ek = Cjk ~r j, k = 1, 2, ... , n. In general, the complex 
linear inner product between two complex 1-vectors in <ln is a complex 
scalar. 

One of the most fundamental identities for the geometric product of a 
complex 1-vector a and a complex k-vector A fork ~ 1, is 

aA = a · A + a /\ A 

where a· A is a complex (k-1)-vector, and a/\A is a complex (k+ 1)-vector. 
Let f,g E End+(<ln)· Then f + g, Jg E End+(<ln) is respectively the sum 

and product (composition) of these elements in the algebra End+(<ln)· For 
complex elements A, B E <ln, the mixed sums and products such as 

f(A) 2g(B) + f g(AB) E <ln 

are also well 'defined in terms of the operations of addition and multiplication 
in both End+( <ln) and in <ln itself. 

Let f,g E End+(<ln), a E <J:l, and A, BE <ln. 

DEFINITION 1. A structure is a bilinear mapping <p : (Cl x End+(<Cn) -+ 

End+ ( <Cn), where cp( a, !) = fa E End( <L'n), that satisfies the following prop­
erties 

1. If id E End( <L'n) is the identity operator, then ida = 0. 
2. [/ + Y]a = fa +Ya, 
3. [/ Y]a ·:::;;Jag + J Ya· 
4. [f(A)g(B)]a ::: fa(A)g(B) + f(A)ga(B). 

There are many different ways of extending the operators in End+(<J:l) 
to operators in End+(<Cn)· We mention here the "outermorphism" rule (4, 
p. 67], and the "derivation" rule [8, p.107-110]. Given f E End+(<J:l), f is 
extended to an outermorphism f_ E End+(<Cn) by defining 

for each complex scalar a E <C, and each r-vector c1 /\ c2 /\ ••. /\ Cr. The 
definition of l on all of <Cn is completed by enforcing complex linearity. 
The determinant of f E End(<J:l) can be nicely defined in terms of its 
outermorphism [., 
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Given f E End+(<f'l), f is extended to a derivation /E End+(<Cn) by 
defining 

r 

j (a+ c1 A c2 A ... A Cr)= L:c1 A ••• A Cj-1/\ j (cj) A Cj+t A ... A Cr 

i=l 

for each complex scalar a E <C, and each r-vector c1 A c2 A ••• A Cr. The 
extension of j on all of <Cn is completed by enforcing complex linearity. 

3. Shape and Curvature 

Let cp be a structure on End+(<Cn), and P be a projection in End+(<Cn) 
satisfying P2 = P. A projection is automatically an outermorphism, and 
therefore satisfies the property P(A AB)= P(A) A P(B). Using definition 
1, we get the basic identity 

Pa(A" B) = Pa(A)" P(B) + P(A)" Pa(B). 

This identify is useful in proving properties about the shape and curvature 
bivectors whose definitions are given below. 

DEFINITION 2. The shape bivector S : <f'l -+ < <Cn >2 of the projection 
PE End+(<Cn) is given by 

n 

S(a) =Ee; A Pa(e;). 
j=l 

Of course, the shape bivector of the projection Pis defined with respect to 
the structure cp. 

We can also define a curvature bivector of the projection P with respect 
to the structure cp. 

DEFINITION 3. The curvature bivector R : <<Cn>2 -+ <<Cn>z of the projec­
tion P is given by 

n 

R(a Ab)= Le; A PaPb(ej) = Pa(S(b)). 
i=l 

4 •. Discussion 

Many other objects from differential geometry can be defined in terms of 
a structure cp on End+(<l'n), such as k-forms, k-fields and the bracket of 



DERIVATIONS 459 

fields2 • The main idea of this paper is to lift the local structure of these 
objects to the very rich End+( <En) by utilizing the concept of a structure 
given in definition 1. Many of these ideas have been developed in the context 
of a vector manifold in [4, Chapter 4]. 
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Abstract. The paper provides an introduction to Clifford algebras and spinors for an 
arbitrary braid. Braided Cliffmd algebras are defined as Chevalley-Kahler deformations 
of braided exterior algebras (the Woronowicz algebras). Spinor representations are intro­
duced, following classical Cartan's approach. 

1. Introduction 

The aJm of this contribution is to present an incorporation of classical the­
ory Of Clifford algebras and spinors into a braided framework, starting from 
Chevalley-Kahler interpretation of Clifford algebras, as deformations of ex­
terior algebras. A detailed exposition is given in (Durdevic and Oziewicz 
1994). 

Woronowicz introduced in 1989 a braided exterior algebras (the Woronow­
icz algebras). In the next section the main properties of the Woronowicz 
algebras are collected. Section 3 deals with inner products. Section 4 is 
devoted to the construction and general analysis of braided Clifford alge­
bras. The construction conceptually follows classical Chevalley approach. 
We shall introduce a new product in the exterior algebra space. This prod-

• On leave of absence from University of Wroclaw, Poland. Research of the second 
author partially suported by State Committee for Scientific Research, Poland, KBN grant 
# 2 P302 023 07. 
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uct is expressible in terms of the exterior product, and various "relative" 
contractions, which are constructed from the corresponding scalar product 
on the vector space. In such a way the Clifford algebra becomes a Cheval­
ley's deformation of the exterior algebra. We shall also introduce an analog 
of the Crumeyrolle map (Crumeyrolle 1990) connecting Clifford and exterior 
ideals in the tensor algebra. This allows to define braided Clifford algebras 
as a quantization of the Woronowicz exterior algebras. 

In Section 5 we study counterparts of algebraic spinors, conceptually 
following Cartan's geometrical approach, and varying and generalizing a 
construction given by Bautista at al. (1994). Spinors are defined as elements 
of braided exterior algebras over certain isotropic subspaces of the initial 
vector space. The spinor space is a left Clifford module, We shall prove that 
(under certain assumptions concerning the braid) the spinor representation 
is irreducible and faithful, as in the classical theory. 

2. The Woronowicz algebras 

Woronowicz _introduced in 1989 exterior algebras for an arbitrary braid op­
erator. In this section we collect the main properties of the Woronowicz 
algebras. Let W be a (complex) finite-dimensional vector space, and let 
O': W ® W -+ W ® W be a bijective map satisfying tlae braid equation 

(O' ® id)(id ® O')(O' ®id)= (id® O')(O' ® id)(id ® O'). (1) 

Let A: W® -+ W® be the total antisymetrizer map. Its components 
An: W®n -+ W®n are given by 

An= L (-1)""0',,. 
,,-eSn 

where O",,.: W®n -+ W®n are maps obtained by replacing transpositions fig­
uring in a minimal decomposition of 11" by the corresponding O"-twists. The 
following identities hold 

An+k = (An® Ak)Ank (2) 

An+k = Bnk(An ® Ak) (3) 

where 

Ank = E c-1r0',,.-1 
11'€Snk 

Bnk = E <-1r0',,. 
,,-esnk 

and snk ~ sn+k is the set of permutations preserving the order of sets 
{1, ... ,n} and {n+ 1, ... ,n+k}. 
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The Woronowicz algebra (braided exterior algebra) W" is the factoral­
gebra of the tensor algebra W® modulo the ideal ker A (Woronowicz 1989). 

The algebra W" can be naturally realized as a subspace imA in W®. 
This realization is given by 

['ljl + ker AV - A'lj!. 

In terms of the above identification the exterior product is given by 

'lj! /\. <p = Bnk('lj! ® <p), for 'lj! E W"n and <p E W"k. 

(4) 

(5) 

In general ker A and imA are not mutually complementary subspaces 
and W" is generally not a quadratic algebra, although in the case when 
C1 is a Hecke braiding W" is quadratic and An are projectors, up to scalar 
factors (modulo some singular cases, giving A~ = 0). Moreover, it is possible 
to construct examples with the trivial second-order constraint ker A2 , and 
non-trivial higher-order constraints. 

3. Inner Products 

For each f E W* and { E W"n, let f LI { E W"n-t be an element given by 

(6) 

In the above formula, it is assumed that W" is embedded in W® (as de­
scribed in the previous section). The fact that f LI { belongs to W" easily 
follows from (2). 

In such a way we have constructed a map LI: W* ® W" -+ W" (a coun­
terpart of the standard contraction operation). For each f E W* we shall 
denote by LI1:W"-+ W" the corresponding contraction map. 

We will assume that C1 is naturally extended to a braiding on W" ® W", 
by requiring 

C1(m ®id) = {id® m)(C1 ® id){id ® C1) 
C1(id ® m) = (m ® id)(id ® C1)(C1 ®id), 

where m: W" ® W" -+ W" is the product map. 

LEMMA 1. The following braided Leibniz rule holds 

LI1{{77) = LI1{{)7J + (-1)8emC1-1{LI1 ®id)C1({®77). o 

4. Braided Clifford Algebras 

(7) 

(8) 

Let F: W ® W -+ C be a scalar product on a space W. Let tF: W -+ W* be 
a map given by 

[lF(x)](y) = F(x,y). 
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Let iF: W x W" -+ W" be a contraction map given by 

i;{ = fF(x) U ~· 

In what follows it will be assumed that F and u are mutually related 
such that the following "functoriality property" holds 

(F 0 id)(id 0 u) =(id 0 F)(u ®id). {9) 

Then the contraction operator iF satisfies the following braided variant of 
the Leibniz rule 

i; ( 1?7]) = i; ( 1?)11 + < -1 )w L: #ki;k < 11) 
k 

where Lk#k ® xk = u(x ® #). 
We can trivially extend the introduced contraction operator, to the map 

of the form iF; W® x W"-+ W" such that 

for each u,v E W®. 

LEMMA 2. If u E ker A then i~ = 0. D 

Therefore, we can pass from W® to W" in the first argum~nt of iF. In 
such a way we obtain a contraction map of the form iF: W" X W" -+ W" 
(we use the same symbol for different contraction maps, because the domain 
is clear from the context). 

Let us define "relative" contraction operators ( h: W" x W" -+ W" as 
follows 

(C{h = L: 1/Jj "(i~{) 
j 

Here, it is assumed that ( E W"n and L. 'I/Ji /\ 'Pj = [An-kk(]", where - - ) 
( E W®n .satisfies [(]" = (,and 'Pj E W"k. Consistency of this definition 
follows from (2). If n < k we define ( h = 0. 

Now, we can define a new product on W", in the spirit of classical Cheval­
ley's construction. This product is defined by the following formula 

1/J v"' = 1/J""' + L('l/J, 'Ph· 
k~l 

In particular for x E W, 
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THEOREM 3. Endowed with V, the space W" becomes a unital associative 
algebra, with the unity 1 E W". D 

Definition. The algebra cf(W) = (W", v) is called the braided Clifford 
algebra (associated to { O", F}). 

The constructed algebra can be understood as a deformation of the exte­
rior algebra W". The graded algebra associated to the filtered algebra cf(W) 
naturally coincides with W". The exterior algebra W" is in fact a special 
case of the constructed Clifford algebra, when F = 0. 

The algebra cf(W) can be viewed as a factoralgebra cf(W) = W® / J F• 

where J F is the kernel of the canonical epimorphism j F: W® --+ cf(W) ex­
tending the identity map on W. Now, we shall describe this ideal in an 
independent way, using a generalization of the construction presented by 
Crumeyrolle (1990). 

A linear map )..F: W® --+ W® defined by 

)..F(l) = 1 )..F(x@t?) = x@ )..F(t?) + l;)..F(t?), x E W, t? E W® 

is said to be the Crumeyrolle map. In the above formula, l; is considered as 
a braided antiderivation on W®. The Crumeyrolle map )..F is bijective. Let 
V be a new product in W®, given by 

t? V 1J = )..F(X[}(t?)@ ,>.._p1(17)). 

By construction the space ker A is a left ideal in W®, relative to this new 
product. Condition (9) ensures that ker A is also a right V-ideal. 

THEOREM 4. We have (W®, V)/ ker A = cf(W). D 

In other words, the factorization map []": W® --+ W" is also a homo­
morphism of corresponding deformed algebras. The map )..F is a braided 
counterpart of the map introduced by Crumeyrolle (1990). 

LEMMA 5. We have ).._p1[ker A]= JF. D 

5. The Spinor Representation 

This section is devoted to a braided generalization of classical Cartan theory 
of spinors (Cartan 1938). Let us assume that the space W is splitted into a 
direct sum 

W = W 1 EB W 2 

where W1 , W2 are F-isotropic subspaces. Furthermore, let us assume that 
this decomposition is compatible with the braiding O" in the following way 

O"(W·@ W·) w. '°' W· • J ;'<Y • 

0"
21{ (W1 @ W 2 ) Efl (W2 @ W1)} =id. 

(10) 

(11) 
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Finally, it will be assumed that (FIW1 ® W2 ) = 0 and that FIW2 ® W1 
is nondegenerote. In this case, W2 = W1*, in a natural manner. The duality 
is given by F(f,x) = J(x), for f E W2 and x E W1 • 

Exterior algebras Wt and W{' understandable as subalgebras of cl(W), 
in a natural manner. 

LEMMA 6. The map µ:Wt ® W{' - cl(W) defined by 

µ(u ® v) = uv 

is bijective. D 

The corresponding "spinor space" can be defined as follows. Let us con­
sider the space /( = W{', and let K.: /(, - C be a natural character, specified 
by "-(1) = 1 and K.(W2) = {O}. This gives a left K-module structure on the 
number field C. On the other hand, cl(W) is a right /(-module, in a natural 
manner. Let S be a left cl(W)-module, given by 

S = cl(·W) ®>e C. 

According to Lemma 6, the space S is naturally identificable with the exte­
rior algebra Wl'. In terms of this identification, we have 

for each x E W, where x = x1 + x2 and xi E Wi. In other words, a complete 
analogy with the classical Cartan formalism holds. 

THEOREM 7. The algebro cl(W) acts on S faithfully and irreducibly. D 

The module S is completely characterized by the existence of a cyclic 
vector (the unit element ls), killed by the space W2• 

In other words let V be an arbitrary (left) cl(W)-module, possesing a 
vector v satisfying {W2}v = {O}. Then there exists the unique module map 
g:S - V satisfying g(ls) = v. The map {! is injective (because of the 
simplicity of S). In particular, if vis cyclic then f! is a module isomorphism. 

6. Concluding Remarks 

If the braid operator u is such that ker A is quadratic, then the ideal J F is 
generated by elements of the form 

Q = t/;- F(t/;)1®1 (12) 

where t/; E W®2 is u-invariant. This covers Clifford algebras based on Hecke 
braidings, and in particular includes classical Weyl algebras (Oziewicz 1994). 
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Quantum Clifford algebras and spinors (for a Hecke braiding) introduced 
and analyzed by (Bautista at al.,J994) can be included in the theory pre­
sented here. Clifford algebras introduced in the mentioned paper are based 
on Hecke braidings T: V ® V ~ V ® V (where V is a finite-dimensional 
vector space) admitting extensions to all possible braidings between V and 
V*, so that the contraction map is functorial, in the standard sense. Then 
W = V El) V* and the corresponding scalar product F and the braiding <r are 
expressible in terms of the extended braidin_g T and the contraction map. 

The construction of the Crumeyrolle map )..F works for an arbitrary F 
and in particular, it is independent offunctoriality-type assumptions (9). For 
a possibility to define braided Clifford algebras as deformations of braided 
exterior algebras, it is sufficient to assume that ker A is also a right-ideal in 
(W®, V). This assumption is weaker then (9). However, if (9) does not hold, 
then the symmetry between left and right is broken. 

References 

Bautista R., Criscuolo A., Durdevic M., Rosenbaum M. and Vergara J. D.: Quantum 
Clifford Algebras From Spinor Repreaentatiom, submitted in Letters to Mathematical 
Physics (1994) 

Cartan E.: Lei;om aur la theorie des spineura, Hermann, Paris, (1938); English Zdition: 
The Theory of Spinors Dover (1966) 

Crumeyrolle A.: Orthogonal and Symplectic Clifford Algebras. Spinor Structurea Kluwer 
(Mathematics and its Applications 57) (1990) 

Durdevic M. and Oziewicz Z.:Clifford Algebras and Spinors for Arbitrary Braids, submit­
ted to Inventiones mathematicae (1994) 

Oziewicz Z.: Clifford Algebra For Hecke Braid, in Clifford Algebras and Spinor Structure&. 
Volume dedicated to the memory of Albert Crumeyrolle, edited by P. Lounesto and 
R. Ablamowicz, Kluwer (1994) 

Woronowicz S. L.: Differential Calculus on Compact Matrix Paeudogroups (Quantum 
Groupa} CMP 122 (1989) 125-170 





CHAPTER VI 

DIFFERENTIAL EQUATIONS & GEOMETRY 

Difference Schrodinger operators 
with the fixed symmetry properties 

Vyacheslav Spiridonov, Luc Vinet and Alexei Zhedanov 471 

Supersymmetry and topological effects in quantum 
mechanical systems 

Allina A. Suzko 483 

Cohomology and spectral sequences in gauge theory 
M. A. Aguilar, J. M. Lopez-Romero and Miguel Socolovsky 491 

A method to compare operators. 
Applications to Schrodinger and Dirac operators 

Manlio Bordoni 501 

Trans-symmetric spaces 
Liudmila Sabinina 509 

A geometric structure for the Lorentz-Dirac equation 
Geoffrey Martin 515 

Polynomial Lie super algebras in composite models 
with internal symmetries 

Valery P. Karassiov 531 





DIFFERENCE SCHRODINGER OPERATORS 
WITH THE FIXED SYMMETRY PROPERTIES 

VYACHESLAV SPIRIDONOV*, LUC VINET 
Centre de Recherches Mathematiques, C.P. 6128-A, 
Montreal, Quebec, HSC SJ7, Canada 

and 

ALEXEIZHEDANOV 
Physics Department, Donetsk University, Donetsk, 340055 Ukroine 

(Received: January, 1994) 

Abstract. Using the factorization method we construct finite-difference SchrOdinger oper­
ators (Jacobi matrices) whose discrete spectra are composed from independent arithmetic, 
or geometric series. Such systems originate from the periodic, or q-periodic closure of a 
chain of corresponding Darboux transformations. The Charlier, Krawtchouk, Meixner or­
thogonal polynomials, their q-analogs, and some other classical polynomials appear as 
the simplest examples for N = 1 and N = 2 (N is the period of closure). A natural 
generalization involves discrete versions of the Painleve transcendents. 

Spectral problems of the Sturm-Liouville type have many applications in 
physics. Quantum mechanics and the theory of solitons are essentially based 
on the spectral analysis of Schrodinger and Dirac operators. The one-dimen­
sional finite-difference Schrodinger equation 

L1/J( x) = a( x + 1 )1/;( x + 1) + a( x )1/J( x - 1) + b( x )1/;( x) = >.1/;( x), ( 1) 

which is the main object of investigation in. this paper, may be interpreted 
either as an equation determining harmonic oscillation frequencies of a non­
homogeneous discrete string, or as an energy eigenvalue problem for a par­
ticle moving along some non-uniform lattice (tight binding model). Alter­
natively, equation (1) may be considered a~ an auxiliary spectral problem 
helping to integrate the Toda chain equations of motion. The latter system 
is known to be integrable through the inverse scattering method in the peri­
odic case a( x + m) = a( x ), b( x + m) = b( x ), or for fast decreasing potentials 
a( x) --+ 1, b( x) --+ 0, x --+ ±oo. The operator L is tridiagonal and said to be 
in Jacobi form. In the following we do not assume any particular physical 
interpretation of (1) due to the universal character of this equation. 

• On leave of absence from the Institute for Nuclear Research, Moscow, Russia. 
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Replacing x ± 1 in (1) by x ±hand taking the zero lattice spacing limit 
h -+ 0 one gets a continuous Sturm-Liouville problem: 

h2(a0(x)'1f;'(x))' + (a(x + h) + a(x) + b(x)- >.)'lj;(x) + O(h3
) = 0, 

where prime denotes the derivative d/ dx and a0 ( x) is the leading asymptotic 
term of a(x),a(x) = ao(x)(l + O(h)). If ao =constant and the asymptotic 
expansions of a( x) and b( x) properly match then one obtains in the contin­
uous limit the standard Schri:idinger equation: -'lj;"( x) + u( x )'1/J( x.) = 5.'1f;( x ), 
which was studied in great detail. In particular, the special technique based 
on the factorization of Hamiltonians was developed in order to simplify the 
solution of such spectral problems [4). In the theory of solitons it is known 
as the dressing method. It has proven to be very powerful and it provides 
a guide to the classification of exactly solvable potentials. This method has 
been used recently to describe one-dimensional potentials with discrete spec­
tra composed from N arithmetic, or.geometric series [18, 13, 14, 15, 16]. The 
first class of potentials is related to the Painleve nonlinear ordinary differen­
tial equations [18), the second one is connected with infinite-soliton solutions 
of the Korteweg-de Vries equation [13, 15], quantum algebras [14, 15], and 
q-deformed Painleve transcendents [16]. In this paper we construct differ­
ence Schri:idinger operators obeying analogous properties with the help of 
a discretized version of the same technique. The simplest systems that are 
found are related to the Charlier, Krawtchouk, Meixner orthogonal polyno­
mials of a discrete variable, or to their q-analogs. The Stieltjes-Wigert and 
continuous q-Hermite polynomials are also incorporated into the scheme. 
More complicated systems are related to discrete versions of the Painleve 
transcendents. Note that the factorization of finite-difference equations has 
been considered in [9, 10, 1, 2, 3). Our approach differs in that we are not 
describing the symmetries of known systems but determining rather, whole 
classes of systems with fixed symmetry properties. 

The equation (1) needs to be supplemented with boundary conditions. 
Let re be the coordinate lattice, i.e. the set of discrete points x on which 
a( x ), b( x) are defined, and rs the spectral parameter lattice, i.e. the set 
of indices of>. in the eigenvalue problem L'1/Jn = >-n'1/Jn, n E r,. We shall 
deal with systems for which r, consists in a number of discrete points and, 
possibly, a continuous part extending from some point to infinity. The lattice 
r c may lie on a finite interval, or half line, or cover the whole real line. In 
the first two cases it is convenient to take x = 0 as the left edge of re. For 
finite r Cl the Standard boundary COnditionS are 

a(O)'lj;(-1) = 0, 'lj;(O) f:- 0, a(Xmax)'1/J(Xmax) = 0. 

When r c extends from 0 to infinity, the boundary condition at zero is the 
same and in addition ¢(x) is required to be bounded. Note that if the edges 
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of re are determined by two successive zeros of a(x) then one only needs 
1/;(x) to be finite at those points. If re covers the whole line then there is 
only the requirement that 1/;( x) be bounded. 

When re has a boundary, the equation ( 1) provides a recurrence relation 
that defines 1/J>.( x) as a set of orthogonal polynomials of order x in the 
argument >.. For some problems, the opposite situation can also take place: 
1/Jn(x) = Pn(z(x))1/Jo(x), n E r 3 , where Pn(z) are orthogonal polynomials of 
the argument z( x) and order n. The latter interpretation of the formulas is 
similar to the quantum mechanical one. For problems with purely discrete 
spectra, when 1/J( x) E /2(r e), the orthogonality and completeness relations 
look as follows: 

L 1/J~(x)1/Jm(x) = 8nm 1 L 1/J~(x)1/Jn(Y) = 8xy, (2) 
xEfc nEf, 

where 8xy = 0 if x =I- y and 1 otherwise. If re = r 3 and x and >. enter in a 
symmetric fashion we get a so-called self-dual system. 

Let us now take a set of equations, all of the form (1 ): 

j E Z, (3) 

where 

r±'ljJ(x) = 1/J(x ± 1). (4) 

The coordinate xis assumed to be real, so that the operators Lj are formally 
hermitian. 

Consider the factorization of ( 4) 

Li = Aj Aj + >.i> (5) 

where 

(6) 

These operators are assumed to be hermitian conjugates one of the other, 
(Aj)t =Al- From (4)-(6), one finds the relation between the "potentials" 
ailx), bj(3'J and the "superpotentials" Pi(x),fj(x): 

bi( x) = PJ( x) + Jj( x) + >.i. (7) 

It is well known that the discrete spectra of the operators A+ A- and 
A- A+ can differ only by the lowest eigenvalue when A± are first order 
differential or difference operators. This observation plays a crucial role in 
the factorization method since it allows to construct new solvable spectral 
problems from known ones. We impose the following condition: 

(8) 
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relating Lj and Lj+I · The eigenfunctions of the Hamiltonians Lj are now 
said to be related by Darboux transformations. The chain of equations (8) 
differs from the one used in [4, 18, 13, 14, 15, 16) by the presence of the 
sign-factors ( -1 )'7i. (They are absent in the continuous case because of the 
special structure of A[-operators ). These signs can not be removed by a 
renormalization of the variables with index j + 1 and they represent a unique 
feature of the above systems. 

The algebraic relations arising from the chain (8) are of prime importance 
because they are independent of any particular realization. Let us introduce 
the operators Mj: 

M + - A+A+ A+ j - j j+l .. · j+N-1' M-:- = (M+)t 
J J ' 

(9) 

where N is some positive integer. One can check easily the identities 

N-1 

Sj = I: <lj+k 
k=O 

(10) 

These equations show that the operators Mf map the eigenfunctions of 
the operators Lj and Lj+N onto each other. The structure relations are 
completed by 

MfM-:-
1 J 

N-1 

TI ((-1)•j-Sjk Lj - Aj+d, 

k=O 
N-1 

MT Mf = TI ((-l)"ik Lj+N - Aj+k)· 
k=O 

N-1 

Sjk = I: <lj+I, 
l=k 

(11) 

Now suppose a closure condition (see below) relating Lj and Lj+N is im­
posed. From (10) and (11) we see that Lj and Mf would then generate a 
polynomial algebra generalizing s/(2) or its q-analog. The role of polynomial 
algebras as dynamical symmetry algebras is discussed in a different context 
in [7). 

Substituting (6) in (8), we derive the following two-dimensional discrete 
dressing chain (µj = ( -1 )"i >.1+1 - Aj ): 

Pi(x)fj(x) = (-l)"iP1+1(x)fj+1(x - 1), 
p](x + 1) + Jj(x) = (-l)"i(P]+ 1(x) + !J+i(x)) + µj. 

(12) 

(13) 

A system of equations analogous to the one presented above was used in [9, 
10) to provide a Lie-algebraic interpretation of some solvable finite-difference 
equations. Let us stress that our approach is more general because we do not 
restrict ourselves to simple Lie-algebras, or their q-analogs but allow rather, 
for generalizations in the form of polynomial algebras of arbitrary order. 
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The basic idea for obtaining Schrodinger operators with linear and ex­
ponential spectra is the following. As already mentioned, the operators Mi± 
intertwine Lj and Lj+N, hence if these Hamiltonians are related to each 
other as follows [15, 16]: 

(14) 

with q an arbitrary positive parameter and U a unitary operator, the com­
binations 

Bt = MfU, B-:- = u-1M-:-
J - J 

become symmetry generators for the Hamiltonian Lj. The operator U plays 
a very important role in our considerations because it allows to generate an 
infinite amount of systems with given spectral properties. 

Setting B± =Hf, w = AN+i - q.\1, H = L1,s1 = Ef:1 a1 = 0 and 
substituting (14) in (10) and (11) we get the following dynamical symmetry 
algebra: 

HB+ - qB+ H = wB+, B- H - qHB- = wB-, (15) 

N 

B+ B- = (-1)8 IT (H - rk), (16) 
k=l 

N 

B- B+ = (-1)8 IT(qH +w - rk), (17) 
k=l 

where 
N N 

Tk = (-l)Li:k"1Ak, s = 2: ~::>I· 
k=1 l=k 

The relations (15)-(17) clearly define a spectrum generating algebra. This 
algebra generalizes the one obtained in [16] owing to the sign factors that 
appear when l:Tj =/:- 0. Note that for N = 1, we recover the q-oscillator algebra., 
while for N = 2, we get the q-analogs of the su(l, 1) and su(2) algebras for 
S = 0 and S = 1 respectively. 

Suppose that Tk < Tk+i, k = 1,. . .,N,. then the equation B-1/J~k) = 0 
defines a. set of N "vacuum" states with energies equal to Tk. This is of course . 
a. formal conclusion because one needs to check that all these states satisfy 
the boundary conditions. Acting with the "creation" opera.tor B+ upon these 
vacua., 1/J't.) = (B+r?jJ~k), one generates all physical bound states. For q = 1, 
the spectrum of H will consist of N independent arithmetic (equidistant) 
series with w the step between two successive members of one series, for 
0 < q < 1, the spectrum has a discrete part composed from N geometric 
series with accumulation point ,\1 - w/(1 - q) and continuous pa.rt starting 
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at that point and going up to infinity, for q > 1, the spectrum is purely 
discrete and grows exponentially. Note that the latter possibility is excluded 
in the case of differential Schri:idinger operators (14]. 

The unitary operator U may be taken as a general element of the unitary 
transformations of the line, here we will choose it to be the shift operator 
U = Trf, Tf'l/l(x) = '!jJ(x ± 8), where 8 is an arbitrary real parameter. The 
closure equation (14) is then equivalent to the following conditions: 

fi+N( X f = vq fj( X + 8), 
(18) 

Requiring 8 to be commensurable with the original lattice size "l", i.e. 8 
to be a rational number, we get a system of difference equations to which 
standard integration techniques apply. 

We have analyzed the integrability of the discrete dressing chain equations 
under the closure (18) for the simplest choices of N and 8. The results are 
presented below. 

For N = 2 we have found only one value of 8, namely 8 = 1, for which 
the system is integrable in terms of elementary functions. The corresponding 
equations explicitly read: 

P1(x )ft(x) 
P2(x)fz(x) 

Pi(x + 1) + Jf(x) 
p~(x + 1) + J{(x) 

± P2(x)fz(x - 1), 

± q P1(x + l)fi(x), 
± (p~(x)+J:](x))+µ1, 
± q (Pi(x + 1) + Jl(x + 1)) + µ2. 

Letting Fj = JJ ,Pj = pJ, we have the solution: 

p (x) _ µ1±µ2+12(µ2 ± µiq)q2
x-l + c~ 

1 - (1 _ q)(l =f /2q2x-1 )(1 =f /2q2x) ' 

(19) 

(20) 

(21) 

(22) 

(23) 

where 12 and c are two integration constants. In fact, 12 and c can be ar­
bitrary periodic functions with period 1 but we shall not consider further 
such a possibility. For generic values of the parameters µ 1,2 , 12 in (21 )-(23) 
the constant c is determined from the requirement a(O) = 0, implying that 
r c lies either on the half line or on a finite interval. When the upper signs 
are taken, the wavefunction '!jJ( x) is seen to involve q-analogs of the Meixner 
polynomials and the spectrum generating algebra is a q-analog of su(l, 1) 
(these results were also derived in (19] with the help of a different method). 
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In the case when the lower signs are taken, we have suq(2) as symmetry alge­
bra and the formulae (21)-(23) yield Stanton's q-analogs of the Krawtchouk 
polynomials which can be expressed in terms of the 3<.p2 basic hypergeo­
metric series [12]. In the limit q -> 1, we recover the classical Meixner and 
Krawtchouk polynomials of a discrete variable. An algebraic interpretation 
and some physical applications of these polynomials can be found in [8, 5]. 

A particular subcase of (21)-(23) with the upper signs, corresponds to 
the q-oscillator algebra. Indeed, substituting q-> q2 , µ2 -> qµ 1 , we get the 
solution for the N = 1, o = 1/2 system: 

P1(x) 

Fi(x) 

{24) 

Now there exists a special choice of the constant c, namely c = -µ11(1 + 
q) 2/q, such that the singularities in the denominators of P1(x) and F1(x) 
cancel with the zeros of the numerators. The potentials a( x) and b( x) are 
then defined on the whole line (i.e. r c =Z) and lead to the so-called contin­
uous q-Hermite polynomials whose relation to the q-oscillator algebra was 
discussed recently in [3]. 

The representation theory of the symmetry algebra (15)-(17) will char­
acterize the Hilbert space of wave functions provided the operators H, B± 
are well defined on l2{fc)· Let us discuss this on the example of the ordi­
nary Meixner polynomials, i.e. the case N = 2, q = 1, o = 1, for which 
r c =N. Formally, the equation B-1/!(k) = 0 has two independent solutions 
corresponding to the two roots v of C = v(v - 1), where C is some fixed 
eigenvalue of the su(l, 1) Casimir operator. Namely, 

.1.(l)( ) x r{2v + x) 
'f' x (X o: re x + 1) ' 

.1.(2)() x r(x+l) 
'f' x (X 0: r(2v + x)' (25) 

where o: and v are combinations of the parameters entering in {21)-(23). 
The Hamiltonian H is self-adjoint for the boundary condition: 1/J(-1) = 
g'!/J(O), where g is some real constant. However it is easy to check that the 
operator B+ is conjugate to B- only on states for which a(O)'!/J{-1) = 0 (it 
is assumed that 1/1(0) is always finite). The first state in (25) satisfies this 
condition, but for the second one we have lim,_0 a{f)1/!(2)( f - 1) :j:. 0 and the 
function 1/1(2) should thus be discarded. So we conclude that although we 
have a N = 2 closure, the physical spectrum consists only of one arithmetic 
series. This result should be contrasted with the situation that prevails for 
a continuous oscillator with a 1/x2 singular potential which also possesses a 
su(l, 1) dynamical symmetry algebra but where a range of parameters exists 
when both spectral series are physical. 
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The most simple system emerges for N = 1, ti= 0: 

F1(x) = 72q2x, P1(x) = (1- q)-1(µ1 + 72(1- q)q2x-1 + cqx). (26) 

Here one has two possibilities. When P1 ( x) does not have zeros as a function 
of the continuous argument x, then r c =Z, otherwise the parameter c is fixed 
by the requirement P1(0) = 0 and then fc =N. The latter case corresponds 
to the q-Charlier polynomials. 

The N = 2, ti = 0 system of equations admits only one integral for q '/; 1. 
When q = 1, a second integral is ~nd and we have: 

72 
F2(x) = Fi(x)' P2(x)=µ±x+c=fP1(x), 

72(µ±X + c) 
Pi ( x) = F1 ( x )F1 ( x - 1) ± 72 ' 

and the following equation: 

72(µ±x + c) 72(µ±(x + 1) + c) 
F1(x)F1(x - 1) ± 72 + F1(x)F1(x + 1) ± 72 

72 
= µi ± (µ±x + c + Fi(x»- F1(x), 

(27) 

where µ± = µ2 ± µ1 and 72 and c are constants of integration. It has not 
proven possible to integrate (27) further. However, if one setsµ± = 0, the 
order of (27) can then be lowered: 

I 
72c F1(x)+F1(x+l)-µ1=fc = + = const. 

(F1(x)F1(x + 1) ± 72) 2 F1(x)F1(x + l)l± 72 

The general solution of this equation can be written in terms of elliptic func­
tions. Note that for µ± = 0, the operators n± commute with the Hamilto­
nian, i.e. they are integrals of motion. 

An interesting system emerges for N = 1, ti = 1/3: 

P1(Y) = 72q-2
"' Fi(y - l)F1(Y - 2), (28) 

72q-2(y+3)(F1(y+2)F1(y+ 1)- q2 F1(y)Fi(y- l)) + Fi(y)- qF1(Y+ 1) = µi, 

where y = 3x. The latter equation is not integrable, but when q = 1 it 
admits one additional integral that leads to 

72 F(y)(F(y - 1) + F(y + 1) - 7-2
) = µy + c, (29) 

where F =Fi, µ = µ1 • This equation is very close'to the discrete Painlev·e-I 
(PI) transcendent considered in (6] and in the continuous limit h - 0, 

F( ) _ 1 - 3h2u(e) h 1 3h5 

y - 472 ' e = µ(µy+c+ 872), µ - - 1672' (30) 
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it goes to the standard PI ordinary differential equation: d2 u(~)/d~2 = 
6u2(0 + ~· 

For N = 1, 8 = 2, one has 

F1(x) = 1 2(3(x)(3(x + 1), (31) 

where (3( x) is defined by the following equation (µ = µi > 0): 

1 1 
q-x((3(x) - (3(x + l))+12 q((3(x-1)(3(x)-q(3(x + 1)(3(x+ 2)) = µ.(32) 

We were only able to find one elementary solution of this equation, namely, 
(32 = µ/i 2q(l - q) = constant. It happens to lead to the Stieltjes-Wigert 
polynomials which were shown in [2] to be related to the q-oscillator algebra. 
Note that this solution disappears when q --+ 1 if we keep the lattice size 
finite. Indeed, for q = 1, the order of the equation (32) can be lowered: 

(3(x - 1) + (3(x + 1) = - 1 + ~2~~~~(3(x), (33) 

where c is an· integration constant. This is a special case of the discrete PII 
equation considered in [11] and it does not admit constant solutions. Since 
(3(x) > 0, the lattice fc has to be semi-infinite, extending from -oo t.) some 
point. Ifµ = 0, then (33) is integrable in terms of elliptic functions. 

It is natural to expect that for the higher orders of periodic closure N, 
the discrete versions of the higher Painleve equations (and their q-analogs) 
are emerging. E.g. the N = 3, 8 = 1, C!j = 0 system reduces under the 
special choice of parameters to the N = 1, 8 = 1/3 case, i.e. to the discrete 
PI, and this looks similar to the coalescence procedure. 

To sum up, we briefly outlined a symmetry approach to the linear sec­
ond order finite-difference equation ( 1) and derived explicitly a class of 
Schrodinger operators with one series of equidistant, or exponential discrete 
eigenvalues. They arose from the ( q- )periodic closures of a chain of Darboux 
transformations. For the simplest periods of closure N = 1, 2, we encoun­
tered many classical orthogonal polynomials of a discrete variable. Although 
we did not succeed in finding Hamiltonians with at least two independent 
series in physical spectrum, we do not see any fundamental reason forbidding 
this. An interesting fact consists in the appearance of the discrete Painleve 
equations (and their "q-analogs") within the context of spectral problems 
on lattices. This observation is parallel to the one made in [18, 16] for the 
continuous Schrodinger equation although a precise correspondence has not 
been established yet. Note that the discrete versions of PI found in this 
work differ from those considered in [6, 11] and that q-deformation of the 
Painleve maps (i.e. transition from q = 1 to q :/; 1) raises their order by one 
(in the continuous case such a procedure leads to the differential-difference 
nonlinear equations). 
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There are many interesting aspects of the equation (1) that were not 
discussed here. One of them is related to the supersymmetric structures un­
derlying the chain (8). Another problem is the Hamiltonian formulation of 
the derived mappings and the general analysis of their integrability proper­
ties (for a review see, e.g., [17]). The factorization (dressing) method may be 
formulated for the difference equations when the operators y± effect shifts 
along the imaginary axis, y± 7/J( x) = 7/J( x ± i). This opens a new direction for 
further generalizations of solvable difference Schrodinger equations with the 
simple symmetry algebras described in the present Letter. All these ques­
tions and the problem of classification of solutions of the discrete dressing 
chain are worth of separate consideration. 

This work constitutes a part of the talk presented by V.S. at the XXII 
International Conference on the Differential Geometric Methods in Theo­
retical Physics. The work of V.S. and L.V. is supported by the NSERC of 
Canada and by the Fonds FCAR of Quebec. 
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Abstract. The problems of the supersymmetric extension for the gauge equations con­
nected with introducing and changing gauge scalar and vector potentials and geometric 
phases are investigated. A direct generalization of the supersymmetric quantum m-!ehanics 
by Witten for gauge equations in two-dimensional space with additional scalar potentials 
is given. The influence of scalar potentials on the degeneracy of the ground state, and as 
a result on topological effects, is studied. 

1. Supersymmetry of gauge equations. 

In the adiabatic approach to nonrelativistic quantum mechanics the sys­
tems of gauge equations appear and, as a result, there are opportunities for 
prediction and explanations of Aharonov-Bom, Hall and geometric phases 
phenomena. Some topological effects take place in the presence of the su­
persymmetry. 

Induced gauge potentials appear naturally in the description 
of quantum-mechanical systems dependent upon slowly varying external 
parameters and upon fast varying intrinsic ones. This occurs in many real 
systems, there are fast and slow degrees of freedom and one should estimate 
the effect of the slow dynamic on the behaviour of the fast ones and vice 
versa. In this case the total Hamiltonian H is decomposed into 

H=H 8 @l+Hf, (1) 

where Hf (R) is the parametric family of the "fast" Hamiltonians depending 
on slow variables R. The searched wave function of H is expressed as a sum 
over the eigenfunctions Cl>n(R; r) of the instanteneous Hamiltonian Hf for 
each fixed value of the slow variable R 

l'll(R,r) >=In>< nl'll >= L, j CI>n(R; r)Fn(R). 
n 

(2) 
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We use the orthonormalization < n I m >= Dnm and completeness 
I n >< n I= lfJ(r - r') of the eigenstates lq,n(R; r) > of the Hamiltonian 
Hf at fixed Rand get the "slow" system of equations of the gauge type (3) 
for the expansion coefficients {Fn} = F 

- l/2[V' 0 I - iA(R)]2 F(R) + £(R)F(R) = EF(R). 

Here 

Anm(R) =< q,n(R) I iV'R I q,m(R) > and 

Unm(R) =< q,n(R) I Hf (R) I q,m(R) >= l'n(R)Dnm 

(3) 

(4) 

(5) 

act as operator-values the vector and scalar matrix components of the gauge 
field, Fis a column-vector of dimension M, I is the unit matrix. In the one­
state approximation (Born-Oppengeimer approximation) F(R) becomes a 
scalar wave function and Eq.(3) is an ordinary gauge equation. 

As is well known from vector analysis, if the curl of the vector potential 
vanishes at all R, B = V' x A = 0, we can eliminate the gauge vector po­
tential by a phase transformation. In the adiabatic representation, vanishing 
of the matrix tensor Rµv = 8µ,A" - 811 Aµ - ig[A", Aµ] is equivalent to this 
requirement, because we have non-Abelian gauge fields. Note, more inter­
esting effects take place when Rµv =f 0. These phenomena are connected 
with Berry's opening of geometric phases in simple quantum systems [l]. 
Berry demostrated the existence of magnetic monopole fields in dynamical 
systems, which arise naturally in a gauge theory framework (2] 

(6) 

It takes place when we have the supersymmetry, then J fs B · dS =f 0, or 
when level crossing or quasicrossing take place between two terms, then the 
vector potential A(R) is singular and closed loop gives a non-zero result. 
Then the S-matrix of geometric phase factors [3], [4,5] is defined as follows 

Snm =exp lm(f Anm(R) · dR) 

_ . . ~ R < q,nl~RH 1(R)lq,i > 
_exp 7ri . L.. es £ (R) _ £·(R) x 

J~n,m n J 

(7) 

< q,ilV'RH f(R)lq,m > 
l'j(R) - &m(R) 

It is easy to see, in this case there is an opportunity for three terms to cross 
at one point. Then, at n = m we obtain the Berry relations for geometric 
phases. 

Let us generalize the approach has been considered by Aharonov and 
Casher [6]. They studied the problem of a spin-1/2 charged particle moving 
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in a plane under the influence of a perpendicular magnetic field. Aharonov 
and Casher showed the total magnetic flux is 

j j B(x, y)dxdy =IP= 27r(N + €), 0 < € < 1. 

They proved the following two theorems: 
1. If ( N + €) > 1 the Pauli Hamiltonian has exactly N - 1 zero-energy 
normalizable eigenstates whose spin has the same sign as the flux. 
2. All nonzero energy eigen-states are degenerate with respect to spin flip. 
After that there are opportunities for the Hall quantum effects and fractial 
statistic. 

In fact, their proof is based on the supersymmety of the Pauli Hamiltonian 
(1i=c=m= 1) 

HP= 1/2[-iV - eA]2 - :_u · B. 
2 

It can be written as the square of the Dirac Hamiltonian 

HD= (u · 7r) = u · (p - eA) 

(8) 

(9) 

and HD is supercharge. In adiabatic representation we have the eq•1ations 
(3) of the gauge type. But conditions allowing supersymmetry for (8) are 
special and strongly limited: the vector and scalar components of the gauge 
field ought to satisfy the principle of minimal coupling B = V x A = V. That 
is why it is natural desire to widen opportunities of the approach by intro­
ducing an additional scalar potential but also conserving supersymmetry. Is 
this possible and will the additional scalar potential influence the geometric 
phases and topological effects? As it turns out, the additional scalar poten­
tial, conserving supersymmetry, affects the degeneracy of the ground state 
and )Ilay lead to its increase and vice versa to its decrease up to a vanishing 
of the degenaracy and so on to topological effects. An action of such scalar 
potential is analogous to an action of the field strength tensor B. 

Now, we try to construct a model of a SUSY quantum mechanics in two­
dimensional space with an additional scalar potential W( x, y) with respect 
to the classic problem (8)-(9). First, we define the hermitian supercharges 
Q; = Q;(x,y) (i = 1,2), Q2 = ia3Q1 

Qi = 1/2[a1(7rx - OyW(x,y)) + a2(7ry + 8xW(x,y))], 
Q2 = 1/2[a2(7rx - oyW(x,y))- a1(7ry + OxW(x,y))] (10) 

where i7r µ = Dµ = Oµ - iAw It is a generalization of the definition of su­
percharges introduced by Witten [7] for the description of a particle moving 
in a line in one-dimensional space 

(11) 
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Now, as usual, we introduce the non-hermitian supercharges 

They are represented as block two-by-two matrices 

q+ = ~r+((i1rx + OxW) + (1ry - iOyW)], 

q- = ~r-[(-i1rx+oxW)+(1ry+ioyW)]. 

They can be written as 

q+ = ~r+[Q; - iQtJ, q- = ~r_(Q; + iQ;J 

or 

Q- + 1 [ + . +1 - 1 = v12r+ rrx - illy , Q- = J2r_[rr; + m;J 

where coordinate components of Qt; are defined as (8] 

Q; = ±Dµ + oµW, 

and corresponding to (10) we define IItf another way as 

rr; = ±Dx - iOyW, rr; =±Dy+ iOxW. 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Here T± = !(a1 ±0'2), O'µ(µ = 1,2,3) are P<1:_uli spin matrices. It is easy to 
examine that the supercharges Q; (10) and Q± (14) or (15) satisfy the set 
of relations of the Witten supersymmetric quantum mechanics 

(18) 

and 

- +2 - _2 8 - ± 
Q = Q = [H ,Q ] = 0. (19) 

Using (14) or (15) we construct the supersymmetric Hamiltonian 

H 8 = 1/2{Q+' q-} = 

! ((Q+. Q-) + i(Q+ x Q-) 0 ) (20) 
2 O (Q-·Q+)-i(Q-xQ+) · 

It is evident, that similar equations are obtained with operators rr± instead 
ofQ±. 
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In the general case for a Dirac spin -1/2 particle in the extra magnetic 
field, four-component wave functions have to be introduced. We can make a 
generalization of relations (8)-(20) in two ways. 

One of them follows the logic of choosing the supercharges Qi and Q2 
( 11 ): in the defi_!lition of supercharge Qi, a-matrices are replaced by 1-
matrices. Then rr+ and rr- (13) are defined as: 

fi+ 1 1 
rnr+(u. rr+) = rnT+ EuµII! j 

v2 v2 µ 

1 - 1 "'""" -= rnr_(u·II )= rnr-L..,,uµIIµ. 
v2 v2 µ 

(21) 

Another way [8] corresponds to direct use of definition {16) 

(22) 

where fi± and Q± are represented as block two-by-two matrices cotllbined 
from the two-by-two matrices generators of the supersymmetry rr± and Q±. 
Then instead of the supersymmetric Hamiltonian (20) in the first case we 
have 

(23) 

and in the second case 

(24) 

In addition to the terms of n+ = !Q+Q- and n- = !Q-Q+ of the one­
dimensional supersymmetric Hamiltonian in (23) and (24) the field strength 
tensor 

(25) 

arises, associated with a magnetic field, terms ( 1r • VW) and in (24) terms 
o'('9'W x ?r) similar to spin-orbital couplings (2/R)(dW/dR)(uL) for the 
central fields. In our case L is a generalized orbital momentum, defined 
as L = r x ?r. Note, that only in the one-dimensional case is the super­
symmetry completely defined scalar potential. At W( x, y) = 0 two super­
symmetric partners n+ and n- coincide. Another situation takes place in 
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many-dimensional space (N ~ 2). Here even at W = 0 there is a super­
symmetry defined by the gauge vector potential A (precisely by the field 
strength tensor). In this case vector and scalar components of the gil.uge 
field are minimally coupled. 

Do the obtained relations (23), (24) satisfy the principal of minimal cou­
pling of the gauge fields ? If the gauge vector potential in (16), (23) and in 
(16), (24) is replaced by 

Ax-+ Ax+ OyW; Ay-+ Ay - OxW; 

Aµ-+ Aµ+ &µW, 

respectively, then the tensor (25) Fx11 will be represented as 

Fxy = &x(Ay - &xW)- Oy(Ax + 8yW) = Bxy 
Fxy = Ox(Ay + OyW)-&y(Ax + OxW) 

(26) 

(27) 

and H 8 (23), (24) with a noncentral field is rewritten in the form of the 
Pauli equation HP with the following exchanges 

?r+ -+ q+' ?r- -+ q-. 
Note in the first case this is not a gauge transformation, while in the second 
case it is a gauge transformation. 

At the application of the first approach for 1/2 -spin charged particles 
the so-called spin-flip effect takes place with the simultaneously changing 
coordinate dependence of wave functions, when the generators ( u · rr+) and 
( u . rr-) turn into superpartner states of each other 

X+ = (u · rr+)X- and X- = (u · rr-)X+· 

This is the second result of Aharonov and Casher obtained here for the 
case whith an additional scalar potential. If X-ua are eigenstates of the n­
Hamiltonian ( 23) then the eigenstates of n+ are 

(28) 

A zero eigenstate Xo = X-u3 of n- Hamiltonian must be annihilated by 
(u. rr+) 

(u. rr+)xo = 0. 

This relation after multiplication from the left by u2 is rewritten as 

(29) 

One can easily see that in the adiabatic representation for (3) we arrive at 
the well-known situation stated by Aharonov and Casher [6] in the case of 
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zero scalar potential W. The ground state of the Hamiltonian H (23) is 
degenerated. The number of zero energy states is governed by the Atiah­
Singer index theorem 

x0 (x,y) = f(x,y)Pexp{-u3 j j B(x,y)dxdy}, 

where B is defined by ( 26) 

Bxy = Fxy - (ox+ iu38y)(8xW(x,y)- iu38yW(x,y)) 

and the function f ( x, y) satisfies 

{30) 

Hence in the presence of W(x,y), the function f(x,y) is an entire function 
of (x + iu3 y) as before with W = 0. As a result we have a degeneracy of the 
ground state modes which are defined by 

Xo; = (x'+iu3y)iexp{-u3 j j Bxy(x,y)dxdy}, 

(j = 1, ... ,N -1). 

(31) 

The number N defines the degenerate multiplicity of zero-energy states being 
governed by the Atiah-Singer index theorem. It relates to the number of zero 
modes of a particle moving in a external gauge field with the topological 
number N defined as the surface integral from the tensor Bxy 

j j B(x,y)dxdy = 27r(N + €), 0 < € < 1. {32) 

If€ = 0, the fiux defined by relations (32) and (26) is quantized and one 
can speak about the Hall effect and nonstandard statistics in nonrelativistic 
systems (for example three-body ones). It is now trivial to see from {30) 
and (26) that the presence of a scalar potential can lead to an increase and 
vice versa to a decrease and even to the cancellation of a positive integer 
N, and as result, removing the degeneracy of the ground state, i.e. to lose 
conditions for topological effects. 

But the fact of the presence or the absence of the degeneracy due to 
the supersymmetry does not eliminate other geometric phases related to 
the transfers between levels (see Eq.(7)) referred to as the nonadiabatic 
Aharonov-Anandan phases [3]. 
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Abstract.We define a double Chevalley-Eilenberg complex associated with the classical 
Becchi-Rouet-Stora-Tyutin symmetry of a gauge theory in the context of differential ge­
ometry, and describe the use of spectral sequences for the calculation of the corresponding 
cohomology groups. 

Key words: gauge theory, spectral sequences, Lie algebra cohomology 

1. Introduction 

As is well know several years ago Bonora and Cotta-Ramusino [1] intro­
duced a geometrical picture of the BRST'[2] symmetry of a gauge theory, 
based on the concept of Lie algebJ:a cohomology first introduced in the fi­
nite dimensional case by Chevalley and Eilenberg (CE) [3]. They considered 
the principal fiber bundle e where the gauge theory in question is defined 
and they generalized to the infinite dimensional case the CE theory. The 
generator of the symmetry could be identified with the coboundary opera­
tor associated with the representation of the Lie algebra of the gauge group 
with coefficients in the zero-forms on the space of connections; thus the sym­
metry (at least its generator) is not a property of a particular gauge theory 
but of the principal fiber bundle (which is a global geometrical concept) 
where the fields are defined. The local version of this cohomology was also 
shown in reference [1] to be related to the quantum anomalies of the theory; 
this point was studied in more detail in reference [4] and more recently by 
Dixon [5] and Dubois-Viollete et al [6]. 
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In this note we extend the original BRST complex of a principal fiber 
bundle to a doble complex which in turn induces a total cochain complex: 
the total ERST complex of a principal fiber bundle. Double complexe11 ap­
pear when one considers representations with coefficients in forms of arbi­
trary order and uses the commutativity of the exterior and Lie derivatives. 
Though we have not made an explicit caiculation of the relevant cohomology 
groups for any particular case, we present general arguments that show how 
spectral sequences [9] can be used to compute these groups. We think that 
the investigation of the meaning of the additional cohomology groups has 
both physical and geometrical interest, and leave it as a subject for further 
research. 

2. Connections on principal bundles 

2.1. PRINCIPAL BUNDLES AND CONNECTIONS 

The starting point is a smooth (C00
) principal fiber bundle principal fiber 

bundle {: G-+ P ~ B and the space of connections on it, C({). 
The gauge group ofe, g({), is the group of vertical automorphisms of {i.e. 

the set of C00 functions P !.+ P such that the following diagram commutes: 

PxG Jxid 
PxG -+ 

1/1 ! ! "' 
p f p -+ 

11" '\. ./ 11" 

B 

where 1/1 is the right free action of G on P. g({) acts on C({) through pull­
backs i.e. if w E f(T* P © g) (g = LieG) is a connection on { then w' = 
f*w gives the gauge transformed connection. This is the action that induces 
the BRST cohomology as we shall see below. We emphasize that gauge 
transformations are global and that it is only when one restricts to local 
trivializations and considers the pull-backs Au = uifwu with local sections 
uu on open subsets U of the base space that one gets the familiar local 
gauge transformations used in physics. One has the quotient (moduli) space 
11 :=Cf<;, however the projection C-+ 11 is not a principal fiber bundle and 
typically one restricts (i to g := g / z, where z is the center of g and C to C', 
the space of irreducible connections (10). 

C({) is an affine space modelled on A1({) = f(T* B © E) where Eis the 
bundle of Lie algebras of { (see below); once an arbitrary but fixed con­
nection Wo is chosen in C({) (base point) C({) = c0({) becomes an infinite 
dimensional real vector space (with origin in wo) and then an infinite dimen­
sional differentiable manifold which is contractible to a point and therefore 
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has vanishing cohomology groups except in dimension zero. We nevertheless 
expect that the double complex to be defined later will contain non-trivial 
information concerning any quantum gauge theory defined one. 

2.2. ASSOCIATED BUNDLES 

Associated withe, there exist two canonically associated bundles: fo : G-+ 
P Xa G = F ~ B : the bundle of Lie groups of e and eg: g-+ P XG g = 
E ~ B: the bundle of Lie algebras of e, where one has the left adjoint 
action of G on G and on g respectively. It can be shown that Q(e) E!! r(F) 
and then Lie9(e) E!! f(E). We are interested in the Chevalley- Eilenberg 
[3] cohomology of LieQ(e) with coefficients in the differential forms on C(e), 
however it should be remarked here that the original definition of Lie algebra 
cohomology in reference [3] was for finite dimensional Lie algebras, while 
LieQ( e) is infinite dimensional. 

2.3. VECTOR, SPACES OF SECTIONS,COVARIANT DERIVATIVE AND EXTE· 

RIOR COVARIANT DERIVATIVE 

For p = 0, 1, ... , dimB one defines the vector spaces AP = !lP(E) := 
f(APT* B@E) of p-differential forms on B with values in E i.e. if X1, ••• ,Xp 
E Vect(B) ands E AP, then s(X1,. .. ,Xp) E f(E) (so !lP(E) ~ !}P(B) 
0coo(B,R) f(E)); in particular A0 = f(E). There is a bijection between 
f(E) and the set of equivariant maps 'Y : P -+ g, i.e., smooth maps such 
that "f(pg) = g-1"f(p), defined as follows. Ifs E f(E) then 'Ya : P-+ g is 
given by 'Ys(P) = v, where s(b) = (p,v]; if 'Y : P-+ g, then s'Y E f{E) is 
given by s,(b) = (p,"f(p)), where p E 11'-1(b). Ifs E f(E), X E Vect(B), 
and X E Vect(P) is the lifting of X by a connection w, then the co­
variant derivative, of s with respect to w in the direction of X, is defined 
by \7'.Xs := sx('Y.)• where X('Y.) := d"f8 (X). In general if f : P -+ g is 
equivariant, Y E Vect(P) and w E C(e) then the covariant derivative of 
f with :espect to w in_ the direction Y is defined as D J(Y) := df(horY), 
hence X('Ya) = D1.(X). We define d.u' : A0 -+ A1 by d.u's(X) := Vxs 
and vw : Vect(B) x f(E) -+ f(E) by vw(X,s) := \7'Xs. The operator 
vw is a linear connection on E, i.e., vw is C00(B, R)- linear with respect 
to X but satisfies the Leibnitz rule \7w(X,fs) = f\7w(X,s) + X(J)s with 
respect to s. The covariant differential (linear) operator d.u' : A0 -+ A1, ex­
tends to the exterior covariant derivative (linear) operator {~};~B in the 
same way as the De Rham exterior derivative extends the ordinary differ­
ential, namely 'Wo = d.u' and for 1 :::; p :::; dimB, ~(a)(Xi. .. .,X,,+t) = 

p+l i+l w • 
L:i=l (-1) \7 X;(a(X1, ... ,xj, ... ,Xp+t))+ 

L:1<i<j<p+1(-l)'+ia([Xi, X;],Xi. ... , .. t, ... ,X;, ... ,Xp+t)· In general 
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Ao~ A1 ~ A2 ~ ... 1""~1 An--+ 0 fails to be a complex i.e. v;+i av;: -:f. 0, 
unless w is flat i.e. nw = 0 where nw: Vect(B) x Vect(B)--+ End(f(E)), 
nw(X,Y)(s) := (V'x o V'y -V'y o Y'x -Y'(i\v])(s) is the curvature of V'w; so 
nw E r( A 2T* B ® Hom( E, E)) = 112( Hom( E, E)) is an obstruction to have 
such a complex. 

Assuming a compact, connected and 1-connected Lie group G and a com­
pact and orientable base space B, we can define a positive definite non degen­
erate inner product on each of the AP' s, namely < o:, (3 >v:= - f 8 tr( o: /\ •(3) 
(11], thus the AP's become pre-Hilbert spaces; however they are not in gen­
eral complete and to have Hilbert spaces one needs to specify a completion. 
Notice that the inner products induce norms II o: 11;:=< o:, o: >v, so that the 
AP' s are normed vector spaces in a natural way. 

2.4. SOBOLEV COMPLETIONS 

Given w EC(~) and vw the associated linear connection on ~g, the Sobolev 
k-norm on f!P(E) is defined by [8] II </> 11;,k:=ll </> II; + II D';: </> 11;+1 + · · · + II 
D';:+k-l o ... o D';:</> ll;+k· Different connections are equivalent in the sense 
that they lead to equivalent norms i.e. to topologically isomorphic vector 
spaces. The completion of f!P(E) with respect to this norm i.e. the set of 
formal limits of all Cauchy sequences in f!P(E) is called the Sobolev k-norm 
completion of 0.P(E) and is denoted by n~(E). So in particular (LieQ(e))k = 
ni(E) and CZ(e) ~ nl(E). The Sobolev completion of O(e) is made through 
the following considerations. Let Ei, E2 be smooth K-vector bundles over X 
(K = R or C), then we have an isomorphismµ': Ei®E2--+ H omK(Ei, E2), 

given by µ( o: ® w )( v) = o:( v )w. In particular for E1 = E2 = V, one has 

an isomorphism of vector bundles v• ®K V ~ H omK(V, V) = EndK(V). 
A smooth map h : V --+ V is called bundle map if: i)7r o h = 7r, where 
7r : V --+ X is the projection; ii) hJVx : Vx --+ Vx is linear, where Vx = 
7r-1(x). We denote by Mapx(V) the set of bundle maps. There is'a bijection 
W: Mapx(V)--+ f(EndK(V)), given by W-(h)(x) = hJVx, and with inverse 
w-1(s)(v) = s(7r(v))(v). There is a monoid structure on Mapx(V) given by 
composition of bundle maps and a monoid structure on f(EndK(V)) given 
by (s1 · s2)(x) = s1(x) o s2(x). Clearly Wis a monoid isomorphism. 

Let Kn --+ V = P Xa Kn --+ X be a vector bundle over X associated with 
the principal fiber bundle e: G--+ P ~ X, and a linear representation of G, 
G x Kn --+ Kn, then it can be easily verified that p : O(e) --+ Mapx(V), 
given by p(f)([p, x]) := [/(p), x] is a monoid monomorphism; therefore one 
has the following composition 

O(e) .!!+ Mapx(V) ~ r(EndK(V)). 
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Clearly ifs= iJi" o p(J) i.e. ifs E im(iJi" op) then s has an inverse s-1 = 
iJi" o p(J-1 ), so g(e) is isomorphic (as a group) to its image iJi" o p(g({)) '­
f( EndK(V) ). Let < , >x be an inner product in Vx, then the associated inner 
product in v;, < a,/3 >.x=< .x-1(a),.X-1(/3) >x, where .X: Vx-+ v; is the 
vector space isomorphism .X( v)( v') =< v, v' >x, induces the inner product 
< ' >@x in v; ®K Vx as the linear extension of < a ®K v, a' ®K v' >@x=< 
a, a' >•x< v, v' >x· Thus one has the inner product < , >End,, in EndK(Vx) 
given by< <Pix, <P2x >End,,=< µ; 1(</J1x),µ; 1 (</J2x) >@x· 
Let K = R, V = E and X = B; for each p = 0, 1, ... , dimB the inner product 
infll'(E) defines an inner product in W(EndR(E)) = f(APT* B®EndR(E)) 
for which one defines a Sobolev k-norm analogous to that defined for QP(E); 
in particular the Sobolev k-norm completion of Q({), denoted by g({),., is 
the closure of 9(0 it with respect to the Sobolev k-norm completion of 
f(EndR(P Xa g))[8]. 

3. Cohomology of Lie algebras 

3.1. CHEVALLEY-EILENBERG COHOMOLOGY 

Let g and V be a finite dimensional Lie algebra and a finite dimensional 
vector space respectively, both over the field K (K = R or C), and let 
<P : g -+ EndK(V) be a representation of g on V. Define c0 := V and 
CP := {a : g x ... x g(p times) -+ V, a multilinear alternating} for p = 
1, 2, .... Define K-linear operators {JP : CP -+ CP+1, by fJP(o:)(a1,. .. , ap+i) := 
L:f~{ ( -1 )i+l<fa( a;)( a( ai, ... , a;, ... , ap+l) )+ 
L:i~i<j~p+l(-l)i+ia([a;,aj], ... ,a;, ... ,aj, ... ,ap+i)· One can show [3] that 

fJP+l 0 {JP = 0, therefore one has a cochain complex 0 -+ CO ~ C1 ~ 
C2 ! ... with p-cocycles ZP = kerfJP and p-coboundaries BP = imfJP-1 c 
zP. One defines the Che valley-Eilenberg cohomology of g with respect to 
the representation <fa of g on V ("with coefficients in V") as the graded 
group HcE(g,</J, V;K) := {HbE(g,</J, V;K)}~O• where HbE(g,</J, V;K) := 
zP I BP. 

3.2. DOUBLE COMPLEXES AND TOTAL COHOMOLOGY 

A double cochain complex is a triple (C,8,d), where C = {CM},p,q = 
0, 1, 2, .. .is a set of abelian groups, and d = { dM : CM -+ cp,q+l} and 
8 = {lJM : CM -+ CP+l,q} are differentials i.e. group homomorphisms 
satisfying d2 = 82 = 0, such that the following diagrams are commutative: 
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A double cochain complex ( C, 8, d) naturally induces a (simple) cochain 
complex ( K*, D) as follows: for n = 0, 1, 2, ... one defines the abelian groups 
Kn:= E!ip+q=nCp,q and the operators Dn := E!ip+q=n(8M EB (-l)P 
dM). (K*,D) is usually called the total (cochain) complex associated with 
the double (cochain) complex (C,8,d) [7]. The cohomology of (K*,D), 
namely H*(K*, D) := {Hn(K*, D)}~0 with nn(K*, D) := ker Dn /imDn-l 
is called the total cohomology of the double (cochain) complex (C,8,d). 

3.3. GROUP ACTIONS AND DOUBLE COMPLEXES 

Proposition: Let G be a Lie group, M a C00 manifold and M x G ~ M, 
,,P(x, g) = xg a smooth action of G on M. Then there exists a double cochain 
complex involving g = LieG and fl( M), the differential forms on M. 

Proof: 
i) A E g induces the fundamental field of A in M, A* E V ect( M) defined 

by A;(!):= d/dt(f(xexptA)) lt=O· 

ii) The Lie derivative of a tensor r on ¥ with respect to A* is given 
by CA•T := d/dt(q,;r) lt=O where q,t is the ffpw of A* and q,;r is the pull­
back of r by q,t. in particular this is valid for forms of arbitrary order and 
CA•a E flPM ifa E flPM. 

iii) Fix p in the set {O, 1, ... , n = dimM} and define the infinite set 
of vector spaces c~ := {}PM and c~ := {g x ... x g( v times) ~ flP M' a 
alternating}, for v = 1,2, .... 

iv) Since C[A,B]• = [CA·,CB•],</>p: g-+ EndR(flPM), given by </>p(A) := 
~ 51 ~ 

CA· is a representation of g on {}PM, and then c~ -!'. c~ -!'. c; -!'. ... is a 
cochain complex with coboundary {<5~}~0 , defined by 6~(a)(A0 , ••• ,A11 ) = 

II . A 

L':(-l)'CA~(a(Ao, ... ,A,, ... ,A11 
i=O ' 

))+ L: (-l)'+ia([A1,A;], Ao, ... , A.,, ... ,A;, ... ,A11 ). Therefore one has 
O<i<j<v 

the Chevaney- Eilenberg cohomology of g with coefficients in 
flPM, HaE(g,</>p,flPM;R) = {HcE(g,</>p,flPM;R)}~o· 

v) Let d~ : C~ -+ C~+i be defined by d~(a)(A1, ... , A11 ) = d( a 
(A1, ... , Av)), where dis the exterior derivative operator on M. Since dC = 
Cd, we have a double cochain complex ( C, 6, d) given by the following lattice 
of commuting diagrams: 

cg .1 cf 1 cg -1 
og ! o~ ! og ! 

d1 "1 d1 
CJ :S Cf 4 C~ ~ 

o& ! of ! o~ ! 

~-2 -+ ~-1 
6~-1 ! 

~-1 -+ 
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Therefore, the action M x G :!:+ M has a naturally associated cohomology 
H*(K*,D), namely that of the total (cochain) complex (K*,D) associated 
with the double cochain complex ( C, '5, d) as specified in the previous sub­
section. q.e.d. 

4. BRST cohomology 

4.1. TOTAL BRST COHOMOLOGY OF A PRINCIPAL FIBER BUNDLE 

Using the results of the previous section and taking into account suitable 
Sobolev completions in the infinite dimensional case, one considers the case 
where G = g(e) and M = C(e); so for each p = 0,1,2, ... one has the 
representation of the Lie algebra of the gauge group on the differential p­
forms on C(e), </>p : A 0 - EndR(!lPC(e)), </>p(s) := Ca•· It is usual to give 
to C(e) and A0 respectively Sobolev k- and (k + 1)- norm completions with 
k ~ (dimB/2) + 1 which guarantee that the action C x g - C extends to 
a smooth action Ck x gk - Ck (8]. Notice however that this condition does 
not fix the value of k and so the results of the BRST cohomology might 
depend on it.' For v = 1, 2, ... one defines the spaces C~(e) := {alternating 
continuous functions A0 x ... x A0(v times) ~ !}PC(e)}, and ~(e) := 
!lPC(e); the continuity of a is defined as follows: if a E C~(e) then for all 
w E Ck and all 6, ... ,ep E Vect(Ck) the maps aw,{1 ,. .• ,{p: A0 x ... x A0(v 
times)- R, where aw,{l, .... eP(si, ... ,s.,) := a(si. ... ,s.,)(6, ... ,ep)(w), are 
continuous. 

The first column in the double cochain complex 

C8(e) .1 cr(e) ,1 
'58! C~! 

cJ(e) .1 cl(e) 1 
ct ! ct ! 

i.e. the one corresponding to 0-forms on C(e) leads to the usual BRST coho­
mologyof the principal fiber bundle e (1] HJmsr(e) = {Hfmsr(e)}~0 where 
Hfmsr(e) = kerc0/imc~-t (c01 = 0). vis identified with the ghost number 
and the coboundary {c0}~0 with the BRST nilpotent operator ofany quan­
tum field theory defined one. The remaining columns for p=l,2, ... have been 
here formally defined and lead to a total complex ( K*, D) with cohomology 
H*(K*, D) which we call the total BRST cohomology of the principal fiber 
bundle e, and denote by 1i'i:msr(e). We do not yet know the possible phys­
ical meaning of these additional cohomology groups; however the fact that 
for the case p = 0 the local version of this cohomology has an interpretation 
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in terms of anomalies and since these groups are in principle computable 
with the technique of spectral sequences, their definition is of interest for 
further investigation. 

5. Spectral sequences 

5.1. SPECTRAL SEQUENCE OF A FILTERED COMPLEX 

We give the basic definitions and results, for more details the reader may 
consult reference [9]. 

a) Let (K*,d) be a cochain complex, (K*,d) = {Kn,dn: Kn-+ 
Kn+l }n>o· Let Bn = imdn-l = n-coboundaries C zn = kerdn = n­
cocycles: then the Cohomology H*(K*) of (K*,d) is given by Hn(K*) := 
zn/Bn. 

b) A Filtration F* K* of ( K*, d) is a sequence of subcomplexes K* = 
F° K* :J P1 K* :J P 2 K* :J ... :J PP K* :J ... so that d : PP K* -+ PP K*. At 
each level in K* one has Kn = F° Kn :J P 1 Kn :J P 2 Kn :J ... :J PP Kn :J ... 
and dn : PP Kn -+ FP Kn+l. ( K*, d) is said to be finitely filtered if for each n 
there exists an m such that pm Kn = 0. We have short exact sequences of 
complexes 0 -+ pP+1 K* -+ PP K* -+ PP K* / pP+l K* -+ 0 which means that 
for each p = 0, 1, 2, ... one has the array 

0 -+ -+ PP K 0 / pP+l K0 -+ 0 

! ~~ 
-+ PP K 1 I pp+l K 1 ..... 0 0-+ 

! ~~ 

where the coboundary ~; : PP Kn/ pP+l Kn -+ FP Kn+l / pP+l Kn+l for n = 
0, 1, 2, 3, ... is induced by dn. Each sequence gives a long exact cohomology 
sequence 

i /' 
H*(PP+l K*) 

H*(PPK*) 
'\. 11" 

!- H*(FP K* I pP+l K*) 

where o is a morphism of degree one. 
Given a subcomplex L* C K* we define a filtration P* K* by F° K* = K*, 

P1 K* = L* and P 2 K* = 0. The idea of the spectral sequences is that they 
play with respect to filtrations a role analogous to that played by the long 
exact cohomology sequence with respect to subcomplexes. 

c) The filtration of K*, P* K*, gives a filtration o1 H*(K*) as follows. 
Since PP K* is a subcomplex of K*, the inclusion induces, for each n 2: 0, a 
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homomorphism i; : Hn(FP K*) -+ nn(K*), then the filtration is defined by 
FPHn(K*) = im i;. 

d) A Spectral sequence consists of the following: 
i) An infinite sequence of bigraded abelian groups Er= {Ef•q}p,q~o, with 

r ~ 0, 
ii) differentials of degree {r, 1-r) i.e. group endomorphisms dr : Er-+ Er, 

dp,q . Ep,q -+ £P+r,q-r+l with dP+r,q-r+l 0 dp,q = 0 
r•r r r r' 

iii) Cohomology relations Er+l ~ H*(Er' i.e. E:::1 ~ HM(Er) where 
HM(Er) = kerdf•q /imdf-r,q-l+r. 

e) One says that a spectral sequence ( Eri dr )~0 converyes finitely to a 
filtered graded group H*, provided: i) for each p and q, there exists an integer 
r Such that EM ex EM for r > r0 • ii) EM cx FP HP+q/FP+l'HP+q where 0 r-ro -• oo- ' 
E~q =: Ef~q· 

f) Proposition: If K* is a complex finitely filtered by F* K*, then there 
exists a spectral sequence (Eri dr )~0 converging finitely to H*(K*) with: 

i) Eg·q = FP KP+q I FP+l KP+q, 
ii) Ef'q = HP+q(FP K* I FP+l K*). 

5.2. APPLICATION TO DOUBLE (COCHAIN) COMPLEXES 

For the total complex (K*, D) associated with a double cochain complex 
(C,8,d) as defined in subsection 3.2 it can be verified the following: 

i) K* has two canonical fiitrations Fi K* and F2 K* with Ff K* = K* 
(Ff K* = K*), ... ,Ff K* (Ff K*): the standard complex associated with 
the doble complex obtained from C after making zero the first l ( m) rows 
(columns) of C, (I, m = 1, 2, ... ) 

ii) The corresponding spectral sequences both converge finitely to 
H*(K*). 

In particular this result holds for the BRST double complex of subsection 
4.1 and hence 1i1msT(e) can be computed. 
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1. Introduction 

The main reference for this talk is our paper [1) which is going to appear in 
Math. Ann. {1994). 

Let H and H' be Hilbert spaces and let ro : H' --1- H be any mapping. 
We say that two self-adjoint semibounded operators T' : H' -:---+ H' and 
T : H --1- H satisfy Kato's property with respect to w if ro maps the 
domain of T' into the domain of T and if 

QT( to'!) $ QT1(/) V f E domain of T' 

where QT and QT' are the quadratic forms associated with T and T' respec­
tively. 

PROBLEM 1. Comparison between the spectra ofT and T'. 

We translate this problem into another one. Universal tools in Hilbertian· 
analysis are: 

•CAUCHY-SCHWARZ INEQUALITY 
• PITHAGORAS ORTHOGONAL DECOMPOSITION THEOREM . 

PROBLEM 2. Is it possible to improve them? And, in what sense? 
More precisely, we ask if exists universal constant 

0 < C (N,k) < 1 such that for any couple of vector subspaces CC H' 
and IC C H whose dimensions are N and k resp., the following inequalities 
hold: 
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/e(ro(u),u}dG(u) ::; C(N,l)llvll /ellro(u)lldG(u) (1) 

le llPA:.1.w(u)lldG(u) s (1-C(N,k)) le llw(u)lldG(u) (2) 

where dG is the Gaussian measure on C and PA:.1. denotes the orthogonal 
projection onto the orthogonal complement K:1 of K, in H. 

An answer YES to Problem 2 and MIN-MAX principle give comparison 
theorems between spectra. of opera.tors (see for instance [4]). 

The answer to Problem 2 is yes if ro is linear a.nd dim C > dim K, and 
the proof is trivial in this case. 

The answer is also yes if ro is non linear in the following case. Let 
(M,µ),(M',µ') be measure spaces and let 11": M' ---4 M be any mapping 
verifying Fubini's property: 

f I= f ( f I 111"-l<x>) . JM1 JM Jrl(x) 

We define ro: L2(M',µ') ---4 L2(M,µ) by 

( )

1/2 

(rof)(x) = { (! lrl(x>}
2 

lrl(x) 

Then we have the following: 

(3) 

HILBERTIAN THEOREM. Let T, T' be self-adjoint semi bounded operators 
acting on L2(M) and L2(M') resp. IfT,T' verify Kato's property with re­
spect to ro defined by (3), then there exists C such that (1),(2) hold (we 
shall give later an explicit expression for C ). 

A first partial version of this theorem was given by Meyer [9] in 1982, 
a second one is due to Gallot and Meyer [6], and the general version here 
presented is in [1]. 

2. Consequences on the Spectra. 

We shall use the same symbolf and assumptions as in section 1. Let C be 
a vector subspace of L2(M'r&ud let Cx be its image in L2(11"-1 (x)) by the 
mapping f 1-+ f 111"-t(x)> which is defined for almost every x E M: we set 
lx = {O} if f is not defined on 11"-1(x). We define the ronk of C to be the 
essential supremum of the dimensions of Cx , i.e. 

rank c = inf ( sup dim ex) 
Ae...t xeM\A 
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where .A is the class of all subsets in M of zero measure. Notice that the 
rank of C may be much smaller than the dimension of C (cfr. [1]). 
THEOREM 1. [1]. Under the same assumptions as in Hilbertian theorem, we 
have 

>w(T') 2: (1 - C(p)),\1(T) + C(p),\k+i(T) (i) 

~ t,\;(T') 2: (l-C(p)-B(p)),\1(T)+B(p)(~ t,\;(t)) +C(p),\k+t(T) 
•=l J=l 

(ii) 

where N is any positive integer, pis the rank of the subspace C C L2(M') 
spanned by the first N eigenfunctions ofT', k is the integer part of f.(:r, and 
where 

1 
C(p) = B(p + 1)2 ' 

1 
B(p) = 2(p+ 1) . 

Let us consider now a Riema.nnian vector bundle (E, (-, ·))--+ (M,µ). We 
denote by L 2(M,E) the Hilbert space of measurable sections s: M--+ E 
associated to the L 2(M,E)-norm 

1 

llsl!P(M,E) = (JM((s(x),s(x))dµ(x))2. 

THEOREM 2, [6]. Let T, T' be self-adjoint semi bounded operators acting 
on L2(M) and L2(M,E) resp. IfT,T' verify Kato's property with respect 
to the mapping L2(M, E) --+ L2(M) which associates to a sections s the 

function lsl(x) = (s(x),s(x))!, then, (j), (ii) of theorem 1 hold with the 
same constants and where p is now the usual rank of E, i.e. the dimension 
of the fibers. 
REMARK. If T, T' have non discrete spectra, the results of theorems 1 and 
2 apply to the discrete parts of them (i.e. the parts lying under the essential 
spectra). 

3. Applications: General Underlying Philosophy. 

We assume now that ( M, g) is a Riemannian manifold. Let E --+ M be 
a vector bundle on M, endowed with a scalar product (-, ·) and with a 
compatible connection D. Let R be a field of symmetric endomorphisms of 
the fibers, we denote 'Rmin( x) the tninimum eigenvalue of the endomorphism 
'Rx: Ex--+ Ex,x EM. 

We apply theorems 1,2 to compare the following operators: 
Dirac-type operator T' = D* D + R. (D* Dis the so called rough Lapla­

cian), 
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Schrodinger operator T = AM+ 'Rmin· (AM is the usual Laplace-Beltrami 
operator and 'Rmin is the potential function). 

Examples of operators of type D* D + 'R are all "natural Laplacrans" 
on fiber bundles, specially those obtained by Bochner-WeitzenbOck formulas 
according to Bourguignon [2]. 

To improve the estimates ( i), (ii) instead to use the given connection 
D (the Levi-Civita one, for instance), we introduce a modified connection 
D' and we calculate the corresponding Bochner-WeitzenbOck formulas. We 
consider a trivial line bundle .E1 - M over M and a never vanishing section 
e: M --+ .E1. We define on E' = E $ E1 - M the metric(·,·}' by 

(X, Y}' = (X, Y} 
(X,e}' = 0 , 

T'he connection D' on E' defined by 

'V X,Y EE, 
(e, e}' = 1. 

D'xY = DxY - k(X,Y}e , D'xe = kX 

{where k is a scalar to choose a posteriori in order to optimize the results) 
is compatible with the metric (-,-)'. 

4. Hodge-De Rham Operator. 

We consider E = N' M, the bundle of differential p-forms on the n-dimen­
sional manifold (M,g) endowed with the usual scalar product and the Levi­
Civita connection. The operator 

'D=d+o 
where d is the differential and o is the codifferential, is such that its square 
is the Hodge-de Rham operator: 

'[)2 =AP. 

In this case the classical Bochner-WeitzenbOck formula is 

'D2 = D* D + 'R 

where 'R is explicitely expressed in terms of the curvature of M (see for 
instance [5]). We use the method illustrated in section 3 to obtain: 
THEOREM 3, [1]. Let {..\;{'D)2} be the eigenvalues of the Hodge-de Rha.m 
operator acting on closed differential p-forms. Then for any positive integer 
N we have: 
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1 N 2 ( 1 N )2 
- LAi(V)2 

- - - LAi(V) ~ 
N i=l n + 1 N i=l 

where p is a lower bound of the curvature operator, and where 

For closed 1-forms, the inequalities may be improved by replacing p( n - p + 
l)p by n~l Ricmin, where Ricmin is the minimum eigenvalue of the Ricci 
curvature tensor. 

To illustrate the type of results obtained, we point out some consequences. 
SHARPNESS PROPERTY. There are at most (ntt) eigenvalues of V 2 = /),.'P 

lying in the interval (p(n - p + l)p, p(n - p + l)p + C1(P)A2(AM)[. This is 
sharp: for the canonical sphere, tl'P has exactly (ntt) eigenvalues ~ual to 
p(n - p+ l)p(p =constant). 
PARTICULAR CASE N = 1. In this case our theorem implies the previous 
known estimates on the first eigenvalue of AP (Gallot and Meyer, (5] and 
[6]). 
TOPOLOGICAL COROLLARY. Let M be compact and let b11(M) denote its 
pth Betti number. Then for any metric on M we have: 

where k = [ (n!~P)+t]. 

5. Dirac Operator. 

We assume now that M is a spin manifold and we consider the bundle of 
spinors S - M, endowed with the connection D induced on S by the Levi­
Civita connection. The classical Dirac operator acting on spinors is defined,, 
by 
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n 

V =Lei· Dei 
i=l 

where { ei} is an orthonormal basis of tangent vectors and " · " denotes the 
Clifford multiplication. The analogous of the Bochner-WeitzenbOck formula 
is in this case the Lichnerowicz formula 

1 
V2 = n• D + 4" seal 

where seal is the s~alar curvature of M (see [8]). We use the modified con­
nection D' of section 3 (introduced in this case by Hijazi [7] and the corre­
sponding Lichnerowicz's formula to obtain: 

THEOREM 4, [1]. For any set {>.i(V)he1 ofJ!igenvalues of the Dirac operator 
V acting on spinors, we have 

#
1
1 E Ai(V)2 

- ~ (21 E Ai(v)) 
2 

~ (1 - a - b)A1(6M + tseal) 
iEl .,,. iEl 

+b Ct
1 

Aj(6M + tseal)) + aAk+1(6M + tseal) 

supA;(V)2 ~ n'.:'..1 ((1- a)A1(6M + tseal) + aAk+1(6M + tseal)) 
iEl 

~ n'.:'.. 1 (t~~seal(x)+aAk+i(6M)) 

where k = [#I(2ln/2l + 1)-1] ,a= l(2ln/2l + 1)-2 and b = 2; 1 • 

Also in this case, we underline some consequences. 

(a) 

(b) 

SHARPNESS PROPEIITY. There are at most 2ln/2l eigenvalues of V2 in 
[ 4(n~l) minxeM scal(x ), 4(n~l) minxeM seal(:11 )+ n'.:'.. 1 aA1(6M )[.This is sharp: 

for the flat torus there are exactly 2[n/2l eigenvalues of V 2 equal to 

n'.:'..l minxeMseal(x) = 0. 
PAIITICULAR CASE on the first eigenvalue: we have 

A1(V)2 ~ ( n ) min seal(x) 
4 n - l xEM 

which is the famous Friedrich theorem, [3] 1980. 
Let us recall that the A-genus A(M) of a manifold M is a topological 

invariant which is the index of the Dirac operator. 
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TOPOLOGICAL COROLLARY. If the A-genus of M is not trivial, the spec­
trum of 6.M satisfies 

1 k • A(M) . - L Aj( l1M) + A( M)a.Xk+l ( 6.M) ::; - -
4 

- mm seal( x) 
2~ ~M 

where k =· [A(M)(2ln/2l + 1)-1]. 
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1. Introduction 

In [7] we have introduced the notion of transsymmetric spaces. This notion 
permits us to describe different classes of spaces with symmetries. 
Definition 1.1. Let M be a C00-manifold, {u,JxeM be a family '>f local 
diffeomorphisms O'x: M-+ Mand e: M-+ M be a map defined on M by 
e(x) = u;1x . The pair (M, {ux}xeM) is called a transsymmetric space 
if the following conditions hold: 

(i) O'x 0 O'y = 0'<7zY O O'e(x)> 

(ii) Pe(x): M-+ Mis a local diffeomorphism and Pe(x)b d;j O'be(x). 
Let us give some examples: 

1.2 Let G be a Lie group and let {Lx}xeG be a family of left translations 
( LxJJ = x · y). Then { G, { Lx} xea} is a transsymmetric space. 

In this case the map e: M -+ M is the constant map such that e( a) = 
ea, Va E G where ea is the neutral element of G. 
1.3 Every symmetric space and regular s-space is a transsymetric space. 

Let M be a C00 manifold andµ : M x M -+ M, µ(x,y) = x · y be a. 
differen,tiable multiplication. The space M with the multiplication µ is said 
to be a symmetric space if the following conditions hold: 
(1) X·X=X 

(2) x-(x·y)=y 
(3) x·(y·z)=(x·y)(x·z) 
(4) Every point x has a neighborhood U such that x · y = y implies that 

y = x for all y E U. 

• This paper was written while the author was visiting the University of Oklalloma 
during fall 1993. 
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The notion of symmetric spaces is due to E. Cartan and reformulated by 
Loos as pair (M, µ)with conditions (1)-( 4) in [3]. Loos has shown that in M 
there exists an affine connection '\/ such that T = 0, '\/ R = O, where T ~and 
Rare tensor fields of torsion and curvature, respectively. If Mis connected, 
then (M, V) is an affine symmetric space and { sx}xeM is a family of geodesic 
symmetries, where SxY = x · y = µ(x, y). 

Later, Kowalski [2] defined generalized symmetric spaces or regular s­
spaces. 

Let M be a C00-manifold with a family of-maps ( ux)xeM· The space Mis 
said to be a regulars-space (from here regulars-space we will calls-space) 
if the following conditions hold: 

(1) SxX = X, 

(2) Sx is a diffeomorphism, 
(3) Sx 0 Sy = S6 .,y 0 Sx, 

(4) (sx)* has only one fixed vector, the zero vector. 
Condition (2) from the definition of symmetric space is equivalent to 

s; = id, and it implies (2)' . Kowalski modified this definition, by changing 
(2) into (2)', and (4) to (4)', respectively. If conditions (1) and (2)' hold. 
Then conditions (4), (4)' and (sx)* - Id*,x - is non singular are equivalent. 

Fedenko [1], and Kowalski [2] demonstrated that there exists a unique 
affine connection V on a manifold M with (1)'-(4)' such that Sx is an 
affine transformation, i.e.,(sx)*VxY = V(a.,)~(sx)*Y and VT= 0, -QR= 
0, VS= 0, Sx = (sx)*,x' where the group Tran M =< {sx o s;1

} >C Aut < 
M, · >, x ·y = sxy, acts transitively on M, and Mis the homogeneous space 
G/Ga. 

Symmetric spaces and regular s-spaces are transsymmetric spaces. In this 
case, the desired map e is the identity map on M. Condition (3) is called 
the left-distributive identity. The condition (ii) holds in virtue of (4)'. This 
fact we will prove below. 

1.4 Discrete example. 

Let us consider triangulations of compact, connected, orientable surfaces 
with the following conditions: 

(a) All pairs of points are connected by a segment, 
(b) Every segment belongs only to 2 triangles. 
Then a binary operation can be defined on the set of vertices of M by 

the following rule: Suppose the segment ab C .6.abc, the orientation of which 
coincides with the orientation of the surface and the segment ba belongs to 
a triangle .6.bad, the orientation of which coincides with the orientation of 
the surface. Then we define a· b = c, b ·a= d and a· a= a 'r/a EM. 

This triangulation was used by Ringel in his intent to solve the four color 
problem [6]. 
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1.5 Proposition If p = 7mod12 and p-is a prime, then there exists a 
triangulation M with p-vertices and this triangulation is a s-space. 
Proof: Let n be the number of vertices of the triangulation M. Then the num­
ber of segments is C~ and the number of triangles is ~C~. By Euler's formula 
it is only possible for n to have the following values, n = 0, 3, 4, 7mod12. 
By construction we have that ab f:. ba for all a, b E M and ab = c implies 
be = a and ca = b. In [4] Mendelsohn has shown that (M, ·} is a quasigroup 
and for p = 1mod3 and p a prime such a ·quasigroups exist. The binary 
operation can be expressed by a· b = .Xa + (1 - .X)b in the field GF(p). 
Then (M,-} is left-distributive. Moreover if pis a prime , then M does not 
have non-trivial subquasigroups. So if we compare our values of number of 
vertices for p = 7mod12, pa prime we have a triangulation (M, ·}with the 
following conditions: 
(1) (M, ·}is a quasigroup, in particular ab= cb implies a= c and ab= ad 

implies b = d, 
(2) ab= c implies be= a, 
(3) ab f:. ba 
(4) a(bc) = (ab)(ac) , in particular a2 =a 

It is easy to see that the finite quasigroup (M,·} with the condition (4) 
is an s-space. 

This means that the graph is an invariant under the action of the sym­
metries Sx for all x E M. Now consider the case M = 7 (triangulation of the 
torus). By Kowalski the group of automorphisms acting transitively on M 
can be calculated by ({s01 o sx}xeM}· In this particular case we have that 
such a group is Z1. 

Cayley table gives the operation x · y = SxY· 

a b c d e f g 
a a g e c b d f 
b e b g f d c g 
c d f c g a e b 
d f e a d g b c 
e c a f b e g d 
f g d b a c f e 
g b c d e f a g 

1.6 The next example shows that the class of transsymmetric spaces is 
greater than the classes of examples 1.2 and 1.3. 

Let (G,·) be a commutative Lie group. We define the symmetry <TxY = 
x-1 

• y. Then {G,{ux}xeG} with the map e(x) = x2 = x ·xis a transsym­
metric space. 

Indeed (i) holds: 
<1x o <TyZ = x-1 • y-1 · z 
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au,,y o ae(x)Z = (x-1. y)-1. (x-2. y) = y-1. x. x-2. y = x-1 . y-1. z. 

It is obvious that (ii) holds because Pe(x)Z = z-1 
• x2 in the group G. 

2. Some Properties of Transsymmetric Spaces 

Lemma 2.1. Let ( M, ( ax)xeM) be a transsymmetric space and e( x) = a; 1x. 
Then eoax = ae(x)oe and the condition (ii) is equivalent to (ii)'(axoe)*,x-
1 d*,x- is non-singular. 
Proof: By virtue of (i), we have that axoayz = au,,yoae(x)Z. Let us substitute 
z = a; 1 y = e(y). We get axy = au,,y o ae(x)e(y) then a;}yaxy = ae(x)e(y) or 
eoax = ae(x)oe. Now let us differentiate both sides of the identity x·e(x) = x 
at the point x, where µ( x, y) = x · y is a function in two variables. Then we 
get (ax o e)*,x + (Pe(x))*,x = Id*,x- (Pe(xk.) is.non-singular by virtue of (ii). 
Then (ii) is equivalent to (ii)' 
Remark 2.2. Condition (4) from the definition of symmetric spaces (ex­
ample 1.3) means that locally there exists r;1 , where rxy = y · x and so (4) 
is equivalent to ( 4) '. Let us denote ax o e = 1/Jx. Then we get the condition 
(ii} in the next form 

(1/Jx)*,x - Idx is non - singular 

On the transsymmetric space (M,(ax)xeM) the structure of a manifold 
with the reductive affine conection is determined. More exactly 
Theorem 2.3. Let (M,(ax)xeM) be a transsymmetric space. Then on M 
there exists an unique affine connection '7 such that (ax )xeM are local au­
tomorphisms of '7 , (ax)* \lx Y = "V(u,,)*x(ax) * Y, \lT = 0, \lR = 
0. If we denote (ax)*,e(x):Te(x)M -+ TxM by Sx1 then Sa 'le*Xe(a) Y = 
\lx0 (SY),(SY)b = SbYe(b) or shorter S 'le*X Y = \lx(SY). 

This affine connection can be expressed by: 

Where P! = a(P-1 ) o a; 1
, x(O) = b and x(O)= Xb. 

e(b)x 

For the proof see [7]. 
Theorem 2.4. [7] Let (M, '7) be a manifold with an affine connection '7 and 
let (ax)xeM be a family of local automorphisms of the affine connection '7 
such that eoax = ae(x) oe holds, where e(x) = a;1x, S\le*X Y ='\lx(SY). 
Then the condition (i) holds. 

Since a transsymmetric space determines an affine connection, it can be 
characterized in terms of geodesics loops. Let us consider the local geodesic 
loop (Na, ·aa) of the transsymmetric space ( M, ( ax)xeM) which is defined in 
a normal convex neighborhood Na C M of the point a by the rule: 
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x ·aY = Expxora,xo(Expa)- 1y, where Expa: TaM-+ M, Ta,x is a parallel 
translation from the point a to x. 
Lemma 2.5. Let (Na, ·a, a) be a geodesic loop of a transsymmetric space 
(M,(O"x)xeM)· Then 

where 'I/la = O'a o e, L'bc = b ·a c. 
Proof: We can get the identity(*) from 'Vx(SY) = S('Ve.xY), considering 
Ye(x(t)) parallel along the smooth curve e(x(t)) and x(O) = a, x(l) = b, 

x(t)= X. We have 

(O'b)•,e(b) O Te(a),e(b) = Ta,b 0 {O'a)•,e(a) 

or, equivalently 

Le(a) La 
O'b O e(b) = b O O'a 

Futher O'a(b "c d) = O'a "17aC O'ad and so O'b 0 L:~:? = ( O'b 0 0';1
) 0 ( L~ae(b) 0 O'a. 

Finally we get(*)· For details see [6,7].D 
Theorem 2.6. Let (Na, ·a) be a geodesic loop of a transsymmetric space 
( M, ( O' x )xeM). Then the following conditions hold: 
{1) xk ·a (x1 "a y) = xk+l ·a y, 
(2) lx,y(z ·aw)= lx,yZ ·a lx,y(w), where lx,y = (L~·aYt 1 o L~ o L~, 
(3) 'l/Ja(X ·a Y) ='I/Jax ·a 'l/JaY 
( 4) ( 'l/Ja)*,a - Id*,a is non-singular, 
(5) L~ 0 (L~ x)-1 

0 L~ 0 (L~ J-1 = Ll,a(La )-lz 0 (L[,a (La )-1.p z)-1 
0 

a a z t/Jaz t/Jaz tJ,i~z a 

L~aX 0 (L~~x)-1, 
(6) l.paY,1faZ = ly,z ' 
(7) 'I/la O O'a = O'a O L~(a) O {L~ae(a))-l O 'I/la, 
(8) La _La La (La )-1 O'a O x - /7 a O (La )-117 x O /7 a · a aaa a a 

And, conversely, let (N,-,a), be a local smooth loop with a local diffeo­
morphism O' a : N -+ N , a local map 'I/la : N -+ N and such that the 
conditions ( 1)-(8) hold. Then ( N, ·,a) is isomorphic to a geodesic loop of a 
transsymmetric space. 
Proof: The family ( O" x )xeM of symmetries is obtained by formula ( *) from 
Lemma 2.5. The identities (1) and {2) hold for geodesic loops of manifolds 
M with reductive affine connection 'V [5]. (3) means that 'I/la is an endomor­
phism of a geodesic loop (Na, ·a, a) and it follows from the more general fact: 
O'b( x ·a y) = O'bX "17ba O'bY and e( x ·a y) = e( x) "e(a) e(y ). ( 4) is equivalent to the 
condition (ii) of the definition of transsymmetric spaces {remark 2.2). The 
condition (5) we will call the 1/J-identity and it is obtained from (i) using(*) 
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from Lemma 2.5. The identities (6)-(8) have a technical character, see [8] 
for details. 0 

Let us remark that the existence of these identities is a sufficient condi­
tions for a local loop with Cla and 1/ia to be isomorphic to a geodesic loop of 
a transsymetric space. 
Remark 2.7 The same conditions (1)-(5) hold for a geodesic loop of a 
regulars-space (example 1.3), but in case of ans-space instead of the endo­
morphism 1/ia we have the automorphisms Sx E { sx }xeM {5] . So for proving 
(3)-(5) of ~heorem 2.6 it enough to note that the family {'I/ix} defines a struc­
ture of a left-distributive groupoid on M. 
Proposition 2.8 Let (M,ax) be a tmnssymmetric space and 'I/ix= ax o e, 
where ClxY = x · y. Then 'I/ix o 1/iy = '¢1/J,,y o 'I/ix· 
Proof: 'I/ix o 1/iyz = 1/ix(Y · e(z)) = x · e(y · e(z)) = x · (e(y) · e2(z)) = (x · 
e(y))(e(x) · e2(z)) = '¢xY · e('l/ixz) = '¢,p,,y'l/ixz. D 

Corollary 2.9 If e( x) = a;1 x is invertible, then ( M, ('I/ix )xeM) is an s­
space. 
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This report describes a class of dynamical structure in which the classi­
cal Lorentz force law and the Lorentz-Dirac equation have the same formal 
description. The construction to be given shows how to obtain the Lorentz­
Dirac equation in the spirit of Souriau [5], and perhaps even more impor­
tantly, associates a geometric structure with the radiation reaction. These 
results arise from a new approach to parameter independent ordinary dif­
ferential equations on a manifold M. Rather than study such systems from 
the point of view of exterior differential systems, I shall use tangent bundle 
techniques. Given a smooth curve --y: JR --+ M there are two parameter in­
dependent lifts of 7 to TM. The first is achieved by projecting i' onto the 
projective tangent bundle PM. The second is obtained by associating the 
lift of/ with the 2-dimensional manifold S = { v E T Mlv = si'( t), s, t E JR}. 
For each type of lift there is a similar construction for higher derivatives of 
7. In the first case, kth derivatives of 7 can be lifted to the k 1h projective 
tangent bundle of M, p(k) M; while in the second case the curve is lifted to 
the multivector bundle Ak(Ak-l(. . . A2(TM) .. . )). An explicit relation be­
tween these two parameter independent lifts will be given, and it is this 
relation that leads to a class of dynamical structures that includes both the 
Lorentz force law and the Lorentz-Dirac equation. The principle that unites 
both systems is that they are both associated with the perturbation of a 
canonical differential form in the sence of Souriau [5]. In the case of the 
Lorentz force law this form is the canonieal 2-form on T* M. The Lorentz­
Dirac equation arises from a perturbation of a canonical 3-form genet::tted 
by the difference between the acceleration bivector and the Faraday tensor. 

1. Projective Derivatives 

This section and the next introduce two distinct constructions of a parameter 
independent derivative of an immersion 7 : JR--+ M into a smooth manifold 
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M. The first construction starts with the standard representation of the kth 
derivative of/ as a curve in the k1h tangent space of M, T(k) M. The space 
T(k) M is a submanifold of Tk M = T(Tk-l M) determined by the natural 
geometric structures on Tk M. Recall that Tk+ 1 M as a bundle over Tk M 
possesses k+ 1 distinct vector bundle structures defined by the vector bundle 
maps 11-j: Tk+1 M--> Tk M where j E (0, ... , k). Here the maps 7rj are defined 

recursively for j E (1, ... ,k) by 7rj = 7rJ=L and 1l"~:T(TkM)--> TkM is 
the tangent bundle map. Further, these bundle maps together determine 
k distinct smooth involutions of Tk+1 M, Sj for j E ( 0, ... , k - 1 ). The 

involution Sg is a natural map that satisfies 7rf o Sg = 11"~. For j > 0, Sj 
is defined recursively by Sj = sj::l •· The involution Sj, when expressed in 
local coordinates induced from M, effects an exchange of components of the 
coordinate map. 

The k + 1 order tangent bundle T(k+t) Mis defined to be the fixed point 
set of the k involutions s~, ... 'SL1 j that is T(k+I) M = {v E Tk+ 1 MISjv = 
v,j E (0, ... , k-1)}. Now an immersion 1: JR--> M determines an immersion 

,---. 
/(k): JR --> T(k) M. Here /(l) = i' and /(k) = /(k-l). In fact, for every p E 
T(k) M there is a parameterized curve/ : JR --> M such that for some to E JR, 
/(k)(to) = p. 

On T(k) M there is a natural action Glk(JR), the k1h prolongation of the 
general linear of JR. This group acts freely and properly discontinuously on 
the complement of r- 1(0M) where r: T(k) M-> TM is the natural surjection, 
and OM is the the zero section of TM [4]. The quotient manifold p(k) M = 
(T(k)M - r- 1(0M))/Glk(JR) is the k1h projective tangent !>pace of M. If 
1: JR -> M is an immersion and P: T(k) M - r- 1 (OM) --> p(k) M is the 
projection, then P1(k) is easily seen to be a parameter independent object 
along/. To construct a realization of P1(k) introduce a hypersurface S C 
TM that possesses the following properties 

1. If S is to provide a model for the projectivized tangent space at each 
point then S must be transverse to the vertical bundle VT M; that is, 
TS+ VT Mis= T 2 Mls. 

2. For every v E S, any ray in TMrr(v) that intersects S must intersect S 
in a unique point. 

3. For every v E S, if i: T Mrr(v) --> VT Mv is the natural identification, then 
i(v) r/. TSv. 

Notice that properties 2. and 3. imply that for each v E S there is a unique 
1-form Av such that ker(.Av) = TSv and Av(v) = 1. The fact that such 
hypersurfaces define a unique 1-form for each v E S has the consequence 
that there is a map £:5 ........ T*M defined by f(v) = i*>-vlVTM· The map e 
is simply the Legendre map associated with S. Suppose that u E TM with 
the property that there is v E S so that u = tv for some t > 0. Since v is 
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uniquely determined by u, let v =Pu. It is easy to see that t = 1/C(Pu)(u) 
and so u/C(Pu)(u) ES. This fact motivates the following definition. 

DEFINITION 1.1. The kth_projective derivative of a parameterized curve 

7 : JR -+ M associated with a hypersurface S that satisfies properties 1, 2, 
and 3 is defin<Xl recursively by the expressions: 

15(k) - 1 15(k~l) d 15(1) - 1 . ( ) 
7 - £(P'Y)(7) 7 an 7 - C(P'Y)('Y) 7 1.1 

PROPOSITION 1.1. For any curve Tm -+ M, 15(kl7: JR -+ T(k) M and if 
a: JR-+ JR is a diffeomorphism then ok(! 0 a)(t) = 15(k)7(a(t)). 

The proof of this proposition can be found in [4]. Since 15(k)7 is determined 
by 7 and its first k-derivatives, propositition 1.1 implies that definition 1.1 
gives a map t:i,.k: T(k) M -+ T(k) M with the property that t:i,.k(!(k>) = 15(kl7. 
Proposition 1.1 shows that t:i. k is a modular map for the action of Glk( fil) on 
T(k) M, and so gives a realization of the k1h parameter indepedent derivative. 
This representation depends on the choice of the hypersurface S. However, 
if the values of t:i,.k are only required along a fixed curve 7, then any surface 
may be replaced with a hyperplane. This is done by choosing a 1-form .\on 
M defined in a neighborhood of 7 with the property that if£: S -+ T* M is 
the Legendre map defined by the given hypersurface, then .\(!(t)) = C(P('Y)). 
Because of this fact the constructions in the next section will only involve 
hyperplanes. 

2. Multisymplectic Realizations 

This section introduces the parameter independent derivatives of an im­
mersion 7: JR -+ M obtained from the submanifold S1 = { v E T Mlv = 
s,.;1(t),s,t E fil}. Since S 1 is 2-dimensional the standard coordinates on 
Tm determine a 2-vector field along S1 that can be viewed as a section 
of A 2(T M) along S1 • Reparameterization of 7 scales this 2-vector field and 
so determine a 3-dimensional subspace 82 of A 2(T M). The submanifold S2 
in turn possesses a natural 3-vector !i~l<l which can be viewed as a section 
of A3(A 2(TM)). In this manner~/ determines an n+ 1-dimensional subman­
ifold Sn of Mn= An(An+1 ( ... A2(TM) ... )). We may introduce a similar 
extension of M by form bundles; Mn= An(An-1( ... A2(T*M) ... )).To con­
struct parameter independent lifts of 7 to Sn and to introduce dynamical 
structures, an identification of Mn and Mn is required. 

To define an identification map in: Mn -+ M", assume that M possesses 
a metric g and let £: T* M -+ TM be the identification induced by g. First, 
let i1 = £ and for n > 1 construct in as follows. Suppose that for k ~ n, 
ik has been defined and suppose a metric has been constructed on Mn-1 · 
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Using the horizontal distribution of the Levi Ci vita connection in An(Mn_i), 
the metric on Mn-l can be lifted by various procedures [7] to a metric on 
Mn. The lifted metric defines an identification map C': T* Mn _.,. T Mn. The 
identification of Mn+l and Mn+l is then defined in terms of in and£' by the 
composition in+l = /\n+lin* o An+1C'. 

In this section this identification is used to construct a natural set of 
coordinate~ on Mn when M = JR. Denote this space by (JRr and the dual 
object by (JR)n· First observe that the fiber of An((JR)n-1)-.'.':. (JR)n-1 is one 
dimensional. Now, because (IR)n-l is itself an ( n - 1 )-form bundle, there 
is a canonical nonvanishing n-form Wn on (JR)n-l that spans the fiber of 
(JR)n. As a result, ifµ E (JR)n, there is ,\ E (JR)n-1 with 7r(µ) = ,\ and 
µ = (>.,tnwn)· Inductively one obtains thatµ= (to,t1wi, ... ,tnwn)· Using 
the natural euclidean structure on JR, an identification map i:: (IR)n-+ (JRr 
is constructed as in the last paragraph. Hence, the n-form Wn determines an 
n-vector field wn = inwn and so an .element v E (JRt can in a similar manner 
be written as v = (t 0 ,t1w1 , ... ,tnwn). This decomposition of (JRt defines 
a chart Tn:(JRt _.,. JRn+l given by Tn(v) = (to,t1, ... ,tn)· It can be easily 
seen that, in terms of the standard coordinate vector fields (;ft

0
, ••• , 81:_ 1

) 

JRn n -1 ( & & ) U · h' f · (JR)n on , w = Tn-l. &tn-i /\ ... /\ &to . smg t 1s act, a pomt v E may 
be represented by the expression 

V=tnnT-11(-&t& /\ ... /\88t)-1(t t )' n- * n-1 O Tn-l Q, ••• , n-1 
(2.1) 

Suppose now that ,: JR _.,. M is an immersion. Clearly / induces a map 
1.: (JRt _.,.Mn which is easily seen to be an immersion. However, this map 
is computationally inconvenient. To obtain a more useful object, compose 
I• with a map p: JRn _.,. JRn; the components of which are defined recur­
sively as follows. Let p = (po, ... ,Pn-1), and define Po(to, ... ,tn-d =to, 
Pi (to, ... , tn- i) = t 1 , and for 1 ~ k ~ n - 1, 

k fJPk-1 fJp1 
pk(to, ... ,tn-d=tk -

8
- ... -

8 
(to, ... ,tn_i). (2.2) 

tk-1 ti 

Observe that each component Pk for k ~ 1 is a monomial in the variables 
t0 , . .. tk of degree 2k- 1 . The desired parameterization of 1.( ( JRr) is obtained 
from a modification of (2.1) as follows. 

G~(to, ... ,tn) = tn"/.(Tn-1~1 op).(a1:_ 1 /\ ... /\:i0 )Tn-l-lop(t0, ... ,tn-il (2.3) 

The reason for introducing this singular parameterization is that G~ has 
a simple scaling property; as the following proposition shows. The proof can 
be found in [4]. 

PROPOSITION 2.1. Let O": JR-+ JR be a diffeomorphism and let O".: (JRt-+ 
(JR)n be the induced map. Defines: JRn+l _.,. JRn+l by s(to, ... , tn) = 
( O"( t0 ), a(t0 )t1 , ... , a(t0 )tn), then G~0" = G~ o s. 
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It is easy to see that given a 1-form ).. on M this proposition implies that 

G'~(I) = G~(t, .A/i) (t), ... , >..(~) (t)) 
is independent of parameterization and so defines a parameter independent 
derivative. 

3. Equivalence 

The objective of this section is to explain the relation between the n1
h pro­

jective derivative of I associated with a 1-form).. and the map G~(t) intro­

duced in the last section. The derivation of the relation between o(n)/ and 
G~ requires several additional geometric structures. The definition and ma­
nipulation of these objects is somewhat complicated, and so the reader may 
wish to concurrently examine example 2.1 at the end of this section. First ob­
serve that points of Mn of the form G~(t, >-.(\)(t), ... , >-.(\)(t)) are the image 

by G~ of the subspace W c mn+1 spanned by {(1,0, ... ,0),(0,1, .. .,1)}. 
Now the annihilator ann(W) c mn+l * is spanned by the 1-forms { dtn -
dtn-1, ... , dt2 - dt1 }. Proposition 3.1 shows that the pullback of these 1-
forms have the scaling property 

(en )_ 1 .(dt· - dt) n = (Gn)- 1 * s- 1*(dt· - dt) 
"(017 •+ 1 t G.,°" (to , .. .,tn) "! •+ 1 t ( to, ... ,tn) 

= a(~o) (G~)- 1 *(dt;+1 - dt;)c~(s(to, .. .,tn))· 

Consequently, the 1-forms fi = .A(i)(G~)- 1 *(dt;+ 1 - dti) defined along 
G~(W) with values in T*G~(JRn+l) are parameter invariant f-forms that 
annihilate TG~(W). 

The next required structure is a natural diffeomorphism between TT* M 
and T*TM. This diffeomorphism, denoted by C:TT*M-> T*TM, is con­
structed in a manner that is similar to the construction of the natural in­
volution of T2 M described in the last section [6], [1). In this case the map 
C determines a pair of compositions. First, C satisfies 7r 1 o C = 7r * where 
7r 1

: T*T M -> TM is the bundle map and the map 7r .: TT* M -> TM is in­
duced by 7r:T*M-> M. Second, joC = 7r11 where 7r11 :TT*M-> T*M is the 
bundle map, and the submersion j: T*T M -> T* M is defined in terms of 
the natural identification i: T Mrr(p) -> VT Mp as follows. For ).. E T*(T M)p 
let j(.A) = i*(.AlvTMp). The identification C is useful because a 1-form).. on 
M can be lifted to a 1-form >.1 on TM by the relation .A 1( v) = C >..( v) for 
v E TM. This lift is generally referred to as the complete lift of >. [7]. In 
this construction the 1-form ).. 1 will also be lifted to a 1-form ;>..non Mn by 
pulling back with the projection 7r: Mn -> TM; that is ;>..n = 7r* A1. 
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Now ,\n can be restricted to TG~(JRn+l) and along with the 1-forms 

Ji,. . .,Jn determines a system of n independent 1-forms in T*G~(JRn+ 1 ) 
along G~(W). This frame can be used to derive the identity stated in the 
following proposition. 

PROPOSITION 3.1. .x/-y)~tG~(t) = l(.\")1(fi) ... L(/n-1)G~+ 1 (t). 

The proof of this proposition can be found in [4]. However, essential to the 
demonstration of this relation is t Ji, I Jllowing identity. 

n 

i(fi) ... lun-1)c~+ 1 (t) = s2(L c~. t1.) /\ c~. ti
0 

(3.1) 
i=l 

To obtain a relation between /j(n)I and C~ from proposition :u. requires 
the following lemma concerning bilinear pairings in vector bundles. 

LEMMA 3.1. Let Ei, E2, and E3 be vector bundles over M with bundle 
maps 71" 1 , 71"2 , and 71"3 . If p: E 1@E2 -+ E3 is bilinear, then the differential 
of p, p.: T E 1 (JJT E 2 -+ T E3 , is bilinear relative to the bundle structures 
determined by 71"1*, 7r2., and 7r3 •. Also, if 15 : T Ei -+ T Ei is multiplication in 
the fiber of TE;-+ Ei for i = (1,2,3), then for v E TE1 and w E TE2 with 
7r1.(v) = 7r2.(w), p.(t5 v,tsw) = t5 p.(v,w). 

To proceed, fix a parameterized curve r: IR -+ M, and extend the 1-forms 
f; to 1-forms };. Using this extension it is possible to restate proposition 3.1 
in terms of a bilinear pairing Jln+ 1: Mn+! (£! T* Mn -+ T Mn where Mn+!, 
T* Mn, and T Mn are vector bundles over Mn. The pairing µn+I is defined 
for each p E Mn to have the value 

n+l - -Jl (w,h) = i(h)l(fi) ... l(Jn_i)w 

on w E Mn+! p and h E T* Mn p· Applying lemma 3.1 to µn+i, r times and 
each time composing the second argument with the identificationC: TT*ys-l 
M -+ y•ys M leads to a bilinear pairing 

Jl~ll: yr Mn+l(JJY*Yr Mn-+ yr+! Mn. 

The next step is to lift the 1-form ,\ n to yr Mn. This is done recursively 
by defining /j(r),\nw E y•yr M by the expression /j(r),\nw = C(8(r-1),Xn.(w)), 
where of course tj(O) An = An. For a fixed n and r define l( /j(r) )..n ): yr Mn+l -+ 

yr+l Mn by 

(3.2) 

THEOREM 3.1. If r: JR-+ M is a parameterized curve and if,\ is a 1-form 
on M, then the n + 1th projective derivative of I relative to ,\ is given by 
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The proof of Theorem 3.1 is an induction argument involving an upper 
triangular diagram. The rows of the diagram represent the composition of 
map found on the right hand side of (3.3) and the columns correspond to 
projective derivatives. The first step in the induction uses Proposition 3.1 . 
For more details see [4]. 

Example 2.1 The point of this example it to express in local coordinates 
the various 1-forms and multi-vector fields involved in the calculation of 
the projective derivative from (3.3). Consider the case where n = 2. For the 
purpose of this calculation let M = m,k. The construction described above 
then occurs in A 2( T m,k) which can be decomposed as m,k x m,k x A 2( m,k x 
m,k). Let 1: JR,--+ !Rk be an immersion and let ,\ be a 1-form defining a local 
projective model for T !Rk. In the following denote the Jacobian of,\ by D,\. 
Theorem 3.1 states that 15(3)/ = t(15.\)t(.\2)t(f1 )G~. To verify this identity 

in local coordinates first use (3.1) to express t(f1 )G~ E A2(A2(TJRk)). This 
step requires c;(to, t1, t2) E A 2(T JR,k) which can be seen to be 

To simplify, the variable t0 will be taken to be implicit in the following 
expressions. From this identity it is easily seen that the map c; determines 

the following tangent vectors in TA 2(JRk)a;(to,ti .ti). 

(c;*lt0 ) 02 (
1 1 1

) = (i,tii,t22 (co,,:Y)A(i',O)+(o,7)A(i,t11(3l))) (3.4) 
I 0, 1' 2 

(c;*:iJ 02 (t 
1 

t)=(O,-)',t22(0,-)')A(O,,:Y)) (3.5) 
I 01 1' 2 

(c;.:i2 )
02

(
1 1 1 

l = (o,o,2t2(0,7)A(i',tii)) (3.6) 
"Y 0' i, 2 

Evaluating these expressions at ( t, s( t), s( t)) where as before s( t) = 
1/-\(J(t)) and substituting into (3.1) gives 

t(/1 )G~( t)a; =s2 ( 0, i', 2s(O, i') t\ ( i', s,:Y) + s2(0, i') t\ (0, ;Y)) 

t\ ( i', s,:Y, s2 ( ( 0, i) t\ ( i', 0) + (0, i') t\ ( i, S/(3)))). 

Next, t(fi)G~(t) is contracted with ,\2 and151,\ evaluated at c;(t) E A2(JRk) 

and 15(2)/ E T 2 M respectivily. Since 8(2)/ = ( /, s-)', s-)', s:;'.r), 

(sD.-\(i'),.-\,0) 

(D2 .-\(s-)',si') + D.\(s;r),sD.\(i'),sD.-\(i'),.-\) 
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A calculation now shows that l( ,\ 2)l(J1 )G~( t) E TA 2( /Rk) is given by 

-s3 (D.\( )')et)+ .\(i )) ( 2s(O, i') /\ (i', O) + 3s2(0, i') /\ (0, i))) 

The final interior product defined by (3.2) contracts the base point G~ with 
,\1 to give the base point of the image /j{2l7. To obtain the tangent vector at 
the base point contract the first two coordinate blocks of 8.\1 with G~ and 
add this to the contraction of the last two blocks of 8,\1 with the 2-vector 
component of (3.7) to give the last two blocks of 5(3)7. 

4. Applications to Dynamical Structures 

Theorem 4.1 can be used to define a geometric structure that describes 
projectively invariant differential equations on a manifold M. This formalism 
will be illustrated by deducing the Lorentz force law and the Lorentz-Dirac 
equation from this structure. The geometric objects needed to define the 
geometric structure associated with an invariant k + 1th order system are a 
metric on M, a certain k + 1-vector field on Mk, and a special extension of 
the 1-forms Ji, ... , fk+i· The required k + 1 vector fields where introduced 
in [3]. 

DEFINITION 4.1. A differential k + l-form (k + l-vector field) n on N is 
said to be almost multi-symplectic if there exists a subbundle W of TN 
(T* N) such that for all p E N 

1. fl is nondegenerote; that is if for v E TNP (v E T*Np), l(v)ilp = 0 then 
v = 0. 

2. For u,v E WP, l(u /\ v)ilp = 0. 
3. dim(W) = dim(Ak(TN/W)) and dim(W) > dim(TN/W), 

(dim(W) = dim(Ak(T* N/W)) and dim(W) > dim(T*N /W)). 

A word of caution concerning the terminology is required. Other authors use 
this term to describe a more general class of differential forms namely those 
that are closed and nondegenerate. Almost multi-symplectic k + 1 vector 
fields on Ak(N) can be obtained from a metric g on N and the canonical 
k + 1-form µ0 on Ak(N) by the procedure described at the beginning of 
section 3. Let H C T Ak( N) be the horizontal distribution of the Levi Ci vita 
connection in Ak(N). Using H, the metric on N can be lifted to a metric 
on Ak(N) with Legendre map C:TAk(N) --+ T*Ak(N). It is easy to see 
that 0 0 = (/\ k+l £)µ 0 is an almost multi-symplectic k + 1 vector field. It 
is shown in [3] that all multi-symplectic vector fields that have the vertical 
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bundle as their defining distribution can be expressed in terms of an map 
A:H-+ VAk(N) and the projection P:TAk(N)-+ H by the expression 

k 

0(Ao, ... , Ak) = L k!0o((P + AP)TAo, ... , A;, ... , (P + APf Ak), ( 4.1) 
i=O 

where Ao, ... , At are 1-forms on Ak(N). In the case where N = TM and 
k = 1, such 2-vector fields are of the form 0 !:: 0 0 + E where E is a 2-vector 
field supported on VT M. 

The metric q on M is employed in various constructions. First, along 
each curve 1: Ill-+ M on which q is nondegenerate introduce vector field X 
defined in a neighborhood off with the property that i(t) = X(1(t)). The 1-
form A appearing in Theorem 4.1. is determined by X and q by the expression 
A = sign( q(X, X))(l/llXll)lX where llXll = Jlq(X, X)f and where l is the 
Legendre map of q. Second, the Levi Civita connection associated with q 
permits the identification of structures on T(k) M or Mk with structures on 
M. In this regard the following lemma is crucial. Recall that if S: T 2 M -+ 

T2 Mis the natural involution, then the complete lift of a vector field X on 
M to TM is given by X = SX. and similarly the complete lift of a 1-form 
A on Mis given by>:= CA •. Also let iX be the vertical lift of X; that is for 
v E TM iXv = i(X?r(v»· If 0 0 is the canonical two vector field constructed 
above, then let Ao = e-1 .00 • 

LEMMA 4.1. The Levi Civita covariant derivative V of a vector field X 
satisfies 

(4.2) 

Using the given multi-symplectic vector field A on Mk and the metric 
q, it is a conjecture that there is an extension of the 1-forms /i, ... ,fk-1 
defined on G~(Jllk+1 ) to 1-forms Ji, ... , Jk+ 1 on Mk such that the identity 

i( o<n-t) ,\1) ... i( o>. n-l )i( >.n )i(}i) ... i(fn-t)( a;+i(t) - Aa~(t)) = O, ( 4.3) 

determines a system of k + 1th order parameter independent ordinary differ­
ential equations on M. The existence of such extensions is of course trivial 
when k = 1, and the conjecture will be shown to be true for k = 2. To 
illustrate the type of systems that arise from (4.3) consider first the case 
where k = 1. In this case ( 4.3) reduces to 

(4.4) 

where A= Ao+ iE and Eis a 2-vector field on M. The following proposi­
tion follows from a calculation based on lemma 4.1 and shows that ( 4.4) is 
equivalent to the Lorentz force law. 
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PROPOSITION 4.1. A curve 7: JR ---> M is a solution of (4.4) if and only 
if it is a solution of the projective Lorentz force law 
(1/llill 2)V.yi.L = -!i((l/llill)li)E. 

The case fork = 2 is considerably more complicated. In this case (4.3) 
reduces 

(4.5) 

where A is a multi-symplectic 3-vector field on A 2(T M) constructed using 
( 4.1 ). This identity will yield a parameter invariant third order system if the 
1-form Ji can be extended to a 1-form j so that 

2 A i 2 
1r.i(..\ )i(J)Aq(t) = i(..\ )a-y(t). (4.6) 

Also it is necessary that the metric q on M be lifted to a neutral metric 
on TM. That ( 4.6) can be satisfied is the content of the following theorem. 

THEOREM 4.1. Let 7: JR ---> M be a nondegenerote curve is a pseudo­
riemannian manifold M such that Y'.yi'(t) and i'(t) are independent for all 
t. The 1-form Ji with values in T*a;.(JR3)q(t) can be extended to a 1-form 

J with values in T*A2(TM)q(t) that satisfies (4.6). 

Proof. If E---> N is a vector bundle with connection V', denote the hori­
zontal lift of a vector field X on N to a vector field on E by X. To construct 
the 1-form J requires a lifted metric g on TM. To obtain a consistent third 
order system it is necessary that q be lifted to a neutral metric g on TM 
given by g = -iq EEl q. The Levi Ci vita covariant derivative D for g is related 
to the Levi Civita covariant derivative V' for q by the following expressions 
[2J. If X, Y, U, V are vector fields on Mand if R is the curvature of V', then 
for v E TM 

D,v--!v = ~R(v, V)X _ D,uiV = 0 
1 

_ ( 4.7) 
Dy-Xv = 2iR(Y,X)v + V'yX DxiV = iV'xV + 2R(v, V)X. 

In the following, 7(t) will be assumed to be time-like; that is q(i'(t),i'(t)) 
< 0. The curve 'Y induces the maps G~(to, ti)= tii'(to) and 

c;(to, ti, t2) = t22c;. ~1 "a;. ~o. 
To construct an extension of Ji, first write the coordinate vector fields 
a;_. ~o, a;_. J!

1 
, and a;_. lt

2
, in terms of the splitting of TA 2(T M) and 

T 2 M defined by the connections D and V'. Observe that 

G2 a _ 2D at a at a ala 
'Y* 8t; - it2 J!, 'Y* 8t1 /\ 'Y* 8to + 'Y* Ft;". (4.8) 
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As above i is the vertical lift to VA 2(T M). Since G~. /io = 1 + ti i V .yi and 

ct* &ta = ii the relations ( 4. 7) and ( 4.8) give 
"'( I 

G2 .~ = (1 + t1iV.yi) 
"I 0 ( - ) + t22

i iV.yi' /\ 1 +ii/\ (V.yi - t1 2 R(i, V.yi)i + tiiV.y V.yi') 

c;.~1 =i:Y+t22i(ii/\iV.yi) 

c;.~~ = 2t2i (ii/\ (Y + tiiV.yi)) (4.9) 

Since ft= >.(i)(c;-i.dt2-G;-i.dti), to extend ft, first extend c~-1*dt1 
and c;-1*dt2 to T1 and T2 along G~(t). At this point, set to= t and ti = t:i = 
1/>.(i') = 1/llill· Also, recall that the standard normalization of the exterior 
algebra implies that if v is a 2-form and if u /\ v is a simple 2-vector then 
the dual pairing of v with u /\vis given by (v, u /\ v) = 2v( u, v). If w0 = l*µo 
where l is the Legendre map determined by q on M and if i: T 2 M -+ T*T M 
is the Legendre map determined by g on TM, then a calculation shows that 
r1 and r2 can be defined to depend on two arbitrary functions a(t) and d(t) 
and have the 'form 

1 --. 1 '. 
T1 = lli'll3£V.y/ - llill2li/ 

1 --=--. 1 + 4allill -: • . -: • -. 
T2 = llill3 £V.y/ + i(awo + 4llill3 £1 /\ii/+ dl"f /\ lV.y1) 

Consequently, J = llill(rrr1) is an extension of ft. The functions a and d 
are fixed by imposing ( 4.6). This computation requires several observations. 
First, denote by i the Legendre map associated with the lifted metric on 
A2(TM). Now, i induces a map i:A2(TM)-+ A2(TM). Suppose that A is 
a 3-vector field on A2(TM) given by (4.1) and Ao= i-1.i-1130 where f3o 
is the canonical 3-form on A2(T M). If v is a 1-form on A2(T M) then v 
decomposes into vertical and horizontal components as v = vv + vn. Since 
11".i(v)A = 11".i(vv)A = 1r.i(v)2Ao, (4.6) only needs to be verified for 2Ao. 
Next observe that if Eis a 2-vector field on TM then 11".i(i(iE))Ao = E. 
Consequently, 

These facts imply that 
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To determine a and d, (4.10) must be contracted with .A1 where .A= 
-(1/llX,ll)lX as defined above. Lemma 2.1 can be used to give an invariant 
expression for .A1 since for any vector field X ( 4.2) implies that 

lXv = 2i(VvX)wo - i(X)wo. 

Also for any smooth function f, it is easy to see that f Xv = df ( v )iX + 
7r*f Xv. Using the fact that X..y/11..Yll = .f + iV..y/11-Ylli', it is now easy to see 
that 

(4.11) 

Since V i'/lli'll ~ = 11~112 V ..yi'J.., where V ..yi'J.. is the component of V ..yi' orthog­

onal to i', a calculation shows that if a= -1/211711 and d = ~ 
(1/q(V..yi, V..yiJ..)), then (4.6) is satisfied. 

The fact that ( 4.6) and the neutral lift of q lead to consistent third order 
systems is contained in the proof of the fact that if bundle map A in ( 4.1) 
is chosen properly then ( 4.5) is equivalent to the Lorentz-Dirac equation. 
The Lorentz-Dirac equation is a third order system on n + 1 dimensional 
Minkowski space (JRn+1,(·,·}) that describes the world line 1:.IR-+ JRn+l 
of a particle accelerating in an external electromagnetic field represented by 
a 2-vector field Eon JRn+l and has the form. 

:yJ.. e e-y e 
me 117112 = ;'( iffij )( E + 47rc4 e-) ( 4.12) 

Here e_ is the self-force and the constants me, e, and care the renormalized 
mass of the electron, the charge of the electron, and the speed of light. To 
simplify matters, choose units so that e/c = e/47rc4 = -1 and me = 1. 
Recall that the self force e_ is given by the expression. 

(4.13) 

To represent the various spaces involved in the demonstration of equivalence 
construction, introduce the natural splitting of T JRn+l and the coordinate 
notation of example 2.1; that is, at a general base point p, T JR~+l = JRn+l Efl 
JRn+l T2JRn+l = TJRn+lEflTJRn+l TA2(TJRn+l) = A2(TJRn+l)EflT2JRn+l 

' p ?r(p) ?r(p)' p 11"(p) ?r(p) 
and T3 JRn+l = T2 JRn+l EB T2 JRn+l 

p ?r(p) 11"(p)" 

THEOREM 4.2. Let 1: JR-+ 111n+l be a time-like curve, and A(t): T 2 JR~~(t) 4$ 

-+ A2(T JRn+l) be defined by 

3 ( • uJ.. ) 
A(t) = 2 (0, ll~ll) /\ (0, ll~ll 2 ) - iE'Y(t) 0 7r

1
* .A, (4.14) 
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where 11"
1

: T 2 JRn+l -+ JRn+l is the projection. If A is the 3•vector field deter­
mined by A and the natural splitting of TA 2 ( JRn+I) given above, then ( 4. 5) 
is equivalent to (,/.12). 

Proof. The proof will be broken into two segments. First, the case where 
A = 0 will be considered and then the general case will be treated. In the 
first case A= Ao. The key ingredients in this calculation are the 1-forms 

fa?y(t) = (o.iffiI,-!iwo-tlffiF(li',O)A(O,li')+ ~(~;~~} (li',O)A(Vy,O)) 

( r.L r ) >.b;(t) = - iffiP"• Jffii,O . 
Denote by Q and P the vertical and horizontal projection associated with 

the splittings of both TA2(JRn+t) and T 3JRn+ 1 • Using theorem 5.1 it is clear 

that Pi(>.2 )i(f)2A0 = i(>. 1 )G~(t). If j is decomposed as j =QT j + pT J, 
where pTj = (0,(1/lli'll)li',0), then it is easy to see that 

Qt(>.. 
2
)i(})2Ao = t( >.. 

2)t( pT f )2Ao = -i ( ( ll~~2 , 0) A ( 0, ll~ll)) . 

To compute i(o>.1 )i(>..2)i(f)2Ao,(.x1)G?y(t)• evaluate o>.1 at i(>.1)G;(t) = 621 
and use (3.2). A calculation shows that 

s>.1 = (-1-<11·112e (3)+(·<3) '}£"+3(( .. "}£"-('" ··}r)-4Wr"i'112r) 02-y lli'lls I I 'Y • 'Y 'Y I' I I 'Y • 'Y I IJ7112 'Y , 

Vyl. £71. ii' 
117112' 117112 ' 11711)' <

4
·
15

) 

where 117 A 711 2 = {7,7}(7,7} - (i',7}2; Now using the decomposition of 
T 3JRn+l given above c>.1 can be decomposed as c>.1 = pTc>.1 + QTc>.1• 
From the proof of lemma 4.1 it can be seen that 

1 2 A Tl 2 A 

Qi(o>.02-y)i(>. )i(f)AG?y(t) = i(Q o>.02-y)Qi(>. )i(f)Aoa~(t)+ 

i(PTo>.~-y)a;(t). 

Using the above expressions it can be shown that i(PTc>.~-Y)G;(t) = O and 
so 

1 2 A 71. 117 " i' 11
2 

. 
Qi(o>.02-y)i(>. )i(!)Aoaw) = (117112'- 117111 1). 

However, it is easy to see that o<3)/: JR-+ T3 JRn+I decomposes as 

.. l. 1 
Qo<3>1 =(11~112• lli'lls(lli'll21{3) + (1(3),i'}i' + 3((7,i'}7- {7,7}i') 
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_ 4 117 A i'll
2 

i' )) 
lli'll2 

• .. .L 

Pc<3> - (_]_ _]_) 
I - lli'll' lli'll2 • 

Since by construction 1r.t(6>.~,)i(>.2)i(})Aoaw> = c<2>1, it follows that 

• • • .L 

P(c>.~-r)i(>.2)i(/)Ao~<t> = ( ll~ll' 11~ 112 ). 
Therefore ( 4.13) gives 

(4.16) 

Now suppose that A has the form given by {4.14). Note that if 11 is a 1-
form on A2(TJR,n+l) with 11(VA2(TJR,n+i )) = 0, then clearly (P+Al 11 = 0. 

Also, since f(i(VTJR,n+l A VTJR,n+l) = 0, it follows that (P+ Af J = pT J. 
These identities and the definition (4.1) imply that for any 1-form 11 

A 2 T 
+Ao(f,>.,(P+A) 11). 

To evaluate this identity observe that if 11 is a section of ann{V A 2 

(T mn+i)) or a section of i{ iHT JR,n+l A lHT JR,n+l) E11 i( lHT JR,n+l 

A lVT mn+i ), then t{>.2)t{/)A(11) = t{ >. 2)i(})Ao(11 ). On the other hand, if II 
is a section of i(lVT JR,n+i A lVT mn+i ), 

(P + Af 11 = 11 ({o, ll~~2 ) A (0, ll~ll) - iE) 11"
1
* >., 

and so 

2 A 2 A 3 ( :y.L i' ) A 2 '* i(>. )i(f)A=i(>. )t(f)2Ao+2 (O,lli'll 2 )A{O,fil)-iE 2Ao(J,>. ,11" >.). 

( 4.17) 
The constant 2Ao(/, >. 2 , 11"

1* >.) is found to be 2A0(/, >.2 , 11"
1* >.) = >.((1/lli'll 2 ) 

ii')= 1. Consequently, (4.17), (4.16), and (4.15) now imply the eq.uivalence 
of (4.5) and (4.12). 

One interesting feature of this construction is that since the coefficient of 
the self force is positive, the sign for the generalized Lorentz force A, must 
be chosen as in (4.14). Consequently, ifthe generalized Lorentz force is to be 
expressed by a difference, then the geometric structure imposes a negative 
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charge on particles represented by this construction. Another interesting 
feature of this construction is that in order to obtain a consistent system 
of third order equations from ( 4.5), one is forced to lift the metric on M 
to a neutral metric on TM. This choice of lifted metric is also requited 
in a nonlinear extension of Maxwell's equations. Finally, observe that the 
construction of theorem 4.2 is easily generalized to non-flat metrics. 
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Abstract. Generalized dual pairs of complementary groups and Lie-like (super)algebras 
obtained via a generalized Jordan mapping, are used for describing both invariance and 
dynamic symmetry of quantum composite models with internal symmetries. Applications 
of polynomial Lie algebras slpd(2) are given for solving physical tasks in nonlinear many­
body physics models having symmetry groups G;n •. Within this approach new classes of 
orthogonal polynomials a.re revealed. They are related to abelian (hyperelliptic) fanctions 
a.rising a.s some quasicla.ssical solutions of nonlinear generalizations of the Bloch equations. 
We also define some specific q-analogs of elliptic functions. 

1. Introduction 

Recently some new Lie-algebraic structures (quantum groups, W-algebras, 
deformed oscillator algebras, etc.) have been displayed in different areas of 
modern physics (see, e.g., [1-10] and references therein). All these objects, 
called as nonlinear or deformed Lie algebras "y~ [6], may be considered as 
extensions Yd = h + v of usual Lie algebras h = {Ee} by their ireducible 
tensor operators v = {Ve} satisfying the commutation relations( CRs) 

[Ea, Vb] = ~ T~b Ve, 
e 

[Va, Vb]±= fab(Ee), Va E v,Ee Eh 

where T~b are matrix elements of operators Ve and fab(Ee) are some power 
series in generators of the subalgebra "h" only (the so-called coset construc­
tion). Until quite recently such deformed Lie algebras Yd were examined 
mainly in context of quantum field theory and statistical physics mod­
els [3-6]. But results of the recent papers [6-10] show their use in other 
areas of modern quantum physics. Specifically, in (8, 9] we showed that 
deformed Lie (super)algebras Ypd arise in a natural manner in composite 
many-body physics models with Hamiltonians H having invariance groups 
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Ginv([H,Ginv] = 0) and presented (via a Ginv-invariant generalization of 
Jordan mapping) as linear forms in elements of finite sets I(Ginv) of ba­
sic invariants of groups Ginv· The sets I( Ginv) endowed with commutators 
[A,B]± =AB± BA generate, in general, nonlinear Lie (super)algebras 9pd 
with the above structure functions !ab(Ec) being polynomials. Algebras 9pd 
retain certain properties of familiar Lie algebras [6, 9] and form together 
with Ginv generalized Weyl-Howe's dual pairs (D1 = Ginv,D2 = 9pd) [9] 
which act complementarily on the Hilbert spaces L(H) of quantum states 
of models under study, i.e. there are decompositions 

L(H) = L EfJL((li]) (1) 
[11] 

of L(H) into direct sums of the subspaces L([li]) which are invariant with 
respect to actions of both D 1 and D 2 (the label [/i] specifies irreducible 
representations (irreps) of both D1 and D2 simultaneously). All that opens 
up some ways of applications of the 9pd formalism to solving physical tasks 
by analogy with usual Lie algebras ( cf.[11-13]). However, there exist some 
peculiarities of applications of nonlinear Lie (super)algebras in comparison 
with those of familiar Lie algebras. Specifically, for algebras 9pd there do not 
exist satisfactory definitions of the Wigner D-function analogs via matrix 
elements of 9pd exponentials (which are not analytical) or of the group orbit 
type generalized coherent states [9]. Therefore, for solving both spectral and 
evolution tasks we must use only direct algebraic methods. On this way we 
get some new classes of special functions exploited in quantum physics and 
, in a sense, connected with quantization schemes on algebraic varities. For 
more full list of such models we refer to papers [8, 9]. Below we discuss these 
items by analyzing some simplest models with essentially nonlinear Hamil­
tonians, whose dynamic symmetry algebras gds are nonlinear Lie algebras 
slpd(2) [9]. 

2. Polynomial Lie algebras slpd(2) in some non-linear models of 
quantum physics 

Let us consider quantum models with Hamiltonians of the form 

H = w1ata1 + w2a1 a2 + b(att(a2r + b*(a1t(atr,o::; m::; n (2) 

where non-quadratic parts of H describe specific scaterring processes: cre­
ation/ absorption of multi boson clusters in external classical ( m = 0, n f. 0) 
and quantized (m f. 0, n f. 0) fields [9) (b are some constants or time-
dependent functions and [ai,aJ) = Dij,[a~+>,a)+>] = 0). Evidently, the 
Hamiltonians (2) have the invariance groups Ginv(H) = Cn x Cm X U(l) 
where Ck = {c1k = exp(i27rl/k) : aJ ~ c1kaJ}, U(l) = exp(io:R),R = 
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aia1/n + 4a2/m (m f: n) (or R = 4a2 for m = 0). We note, that 
groups Cn and Cm describe some internal symmetries of two oscillator 
subsystems whereas U(l) characterizes their coupling. Introducing (with 
the help of a generalized Jordan mapping) the G;m/ invariant quantities 
Yo = (ata1 - 4a2)/(m + n) (or ata1/n form = 0), Y+ = (at)n(azr, 
y_ = (Y+ )+, one may rewrite (2) in the form (9] 

H = aYo + bY+ + b*Y_ + G, (Ya,C] = 0 (3) 

where Ya are generators of Lie-like algebras 9pd(H) which satisfy CRs 

(Yo, Y±J = ±Y±, (Y_, Y+] = tPn,m(Yo) = </>n,m(Yo + 1)- </>n,m(Yo) (4) 

with </>n,m(Yo) = (n[Yo+ ,:'_f,.)(n)(m(,,:':n -Yo+l])(m),A(B) = A(A-1) ... (A­
B + 1). Eqs (4) resemble the CR for the familiar Lie algebra sl(2) that al­
lowed us to identify 9pd( H) as two (non compact and compact) deformations 

sl~~,m)(2) of the Lie algebra s/(2) distinguished by some features of their 

irreps on L(H) and referred to as su~~)(l, 1) and su~~,m)(2) (for m f: 0) 

(9]. It is easy to check that these algebras sl~~,m)(2) have the Casimir oper­

ators dn,m)(2) = -Y+Y- + </>n,m(Yo) that is a specific deformation of the 

usual sl(2) Casimir operator C2(2) = ±E+E- + E~2) [11]. This allows us 
to develop a theory of the sl~~,m)(2) representations by analogy_ with that 
of usual Lie algebras (6]. Specifically, using the above boson realization for 
su~~)(l, 1) and su~~,m)(2) and the decomposition (1) for D1 = Cm X Cn X 

U(l),D2 = sl~~,m)(2) we can determine all irreps of sl~~,m)(2) which act 

on L(H) = LF(k) = Span{l{na} >= fla(atr 0 IO > }. Namely, the alge­
bras su~~)(l, 1) have on the space LF(l) o:q.ly "n" infinite-dimensional irreps 
D((li]) specified by the lowest weights Ii = k/n, k = 0, 1, ... , n-1, and lowest 
vectors l[li] >= (at)klO >, Yol[li] >= l11[li] >, Y_l[/1] >= 0, whereas the 
algebras su~~,m)(2) have on LF(2) an infinite number of finite-dimensional 
irreps D([lil2]) specified by the lowest weights Ii = (k-s)/(n+m), eigenval­
ues 12 = k/n+s/rri of the above operator R, k = 0, 1, ... ,n-1,s = 0, 1, ... and 
the lowest vectors 1[1112] >= (ai)k(at) 8 IO >,Y0 1[l;] >= 111[1;] >,Rl[l;] >= 

l21(l;] >, y_ l[l;] >= 0. All other basic vectors of the su~~)(l, 1) and su~·m)(2) 
irreps are constructed by means of action of raising operators (Y+ )t on the 
lowest vectors (9]. We note that, in fact, Hamiltonians of a lot of quan­
tum many-body physics models may be expressed in the form (3)-(4) (with 
replacing concrete structure polynomials </>n,m ( x) by other polynomials de­
termined by model Hamiltonians) (8, 9]. Without dwelling on a description 
of appropriate generalized Jordan mappings in detail (see, e.g., [8, 9]) we 
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write down only expressions for Hamiltonians of two widespread classes of 
quantum optics models 

n 

H" = Ew;ata; + woaciao + b(at ... a;t)(aor + b*(a1 ... an)(aci) m (5b) 
i=l 

are generalizations of Hamiltonian eqs (2) and describe multiphoton Dicke 
models and frequency conversion processes. 

3. Algebras slpd(2) in solving physical tasks and new classes of or-
thogonal polynomials 

By analogy with the case n ::;; 2 [11-13] one can expect that the theory 

of algebras sl~~,m)(2) may be useful for treating different problems with 
Hamiltonians (3). But for lack of simple formulas for disentangling expo­
nents exp(E d;Y;) [9] one cannot apply the orbit coherent states techniques 
(or simililar ones) [12] for diagonalizing H or for finding appropriate time­
evolution operators UH(t; t0 ) as it is the case for usual Lie algebras. Never­
theless, there exist some possibilities of applications of the 9pd formalism to 
solving these tasks. One way of applications is related to finding eigenstates 
of the stationary Schrodinger equation HIEa >= EalE" > with H from 
eq.(3) on the invariant subspaces L([l;]) in the form [8, 9] 

IE>= u(Y+;E)l[l;] >= EQ1(E)(Y+)fl(l;] > (6) 
f 

that corresponds to the diagonalization scheme [14] of any elements of the 
usual Lie algebra sl(2). For determining the function u(Y+; E) in (6) one can 
use either the Bargmann-type representation Y+ = z, Yo= (zd/dz+li), Y- = 
z-1</>n,m(zd/dz +Ii)= E~=l c3 z(a-l)dfdz6 of the sl~~,m)(2) algebra [9] or a 
calculation of the coefficients Q 1( E) with the help CRs ( 4). When using the 
first way we find that functions u( z; E) satisfy differential equations of the 
Fuchs type, 

{alt - >.(E) + azd/dz + bz + b*z-1</>n,m(zd/dz + l1)}u(z; E) = 0 (7) 

which resemble equations for higher hypergeometric functions pFq( ... ; z) [15]. 
We note that in general solutions of eqs (7) expressed, for example, in the 
terms of contour or multiple integrals [15] determine some new orthogonal 
functions similar to D-functions for sl(2). Because of the of the occurrence 
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of higher derivatives d3 u/dz3 in eqs (7) these functions are singular that cor­
responds to the aforementioned non-analytical nature of D-function analogs 
for sl~~,m)(2). The second way is related to solving finite-difference equations 

[(l1 +!)a - ,\]Q f + bQ f-1 + b'"</>n,m(l1 + f + l)Q f+l = 0, f = 0, 1, ... (8) 

for the coefficients Q1 = Q1(E) where </>n,m(x) is the sz~·m>(2) structure 
polynomial from (4) and the spectral parameter,\= E - c comprises both 
the energy eigenvalue and that of the invariant operator C which is constant 
on the whole L([li]). Difference equations (8) belong to the hypergeomet­
ric type (15] and for structure polynomials </>n,m(x )( m + n = 2) related to 
the usual sl(2) their solutions are expressed in terms of classical orthogo­
nal polynomials in the variable ,\ taking its values on homogeneous lattices 
{ ,\k = Ao+k.6.} [14, 15]. In the case of sl~~,m)(2) we get in such a manner new 

classes of orthogonal polynomials 11"1(,\) = (b'")' Q 1( ,\) n!::-J 4>n,m(l1 +I - s) 
on inhomogeneous, in general, lattices {,\k} related to energy spectra of H 
[9]. Indeed, from eqs (8) one easily gets a standard form ~15] 

11"1+1(,\) = (,\ - (l1+f)a]?r1(,\)-Ib12 </>n,m(l1 + /)1r1-1P·) (8') 

of three-term recurrence relations for polynomials 11" 1( ,\ ), and their orthog­
onality follows from the completness property of eigenstates (6). However, 
unlike the sets of classical orthogonal polynomials [15], we cannot extract 
from these results~ simple closed Rodriguez formula for polynomials 11" 1( ,\ ), 
and to find its suitable generalizations is one of important tasks to be solved 
for arbitrary structure polynomials </>n,m ( x ). Nevertheless, the sl~~,m) (2) for­
malism enables to find lattices {,\k} on which polynomals 11"/(,\) are deter-

mined. For the su~~>(l, 1), when all spaces L([li]) are infinite- dimensional, 
the concrete forms of these lattices can be found by solving characteristic 
equations 

(9) 

for tridiagonal matrices llFiill of coefficients in e-.s (8) where F,1 (,\)belong 
to a set of functions Ft1 +k(,\) which are determinants of matrices obtained 
from llFiill by cancelling first k rows and columns. These functions satisfy 
recurrence relations 

[a(k - 1) - ,\)Fl1+k(,\) = Fl1+k-t(,\) + lbl2</>n,m(k + l1)F1i+k+i(,\) (10) 

with asymptotic boundary condition 

lim F1i+k(,\) = 0 
k-+oo 

(11) 
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In the case of su~~,m)(2) all irreps on L([l;]) are two-side bounded and for 
determining these lattices and spectra Ea = Ea(l;) one can use ~nstead of 
eqs (8)-(IO) the condition 

</>n,m(l1 +d)Qd(E) = 0 ==>[(Ii +d-l)a-,\]Qd-1 +bQd-2 = O,Q-1(E) = 0, 
(12) 

where d = d(lil2) is the L([l;]) dimension. So, solving eqs (7)-(12) we find 
eigenfunctions and energy spectra of Hamiltonians (2) in terms of new spe-
cial functions related to the algebras sl~~,m)(2) (cf. well-known relationships 
between the Gaussian hypergeometric functions 2F1 ( ••• ; z) and the usual al­
gebra sl(2) [11, 14]). We also note that from the eq.(7) one can find in a 
familiar manner [11] its nonstationary analog defining solutions u(z; t) of an 
appropriate nonstationary Schrodinger equation and related time-evolution 
operators [9]. Another way of applications of the sl~~,m)(2) formalism to 
solving physical tasks is related to analysis of equations 

dYo/dt = boY+ + b~Y-,dY±/dt = a±Y± + b±tPn,m(Yo) (13) 

which follow from the Heisenberg equations indYc~f dt = [Ya, H] with H 
given by eq. (3): b0 = b/in, a± = ~a/in, b+ = -b*/in = (b_)*. These 
equations coincide with Bloch equations [16] in the case m + r. = 2, and, 
therefore, may be named as generalized Bloch equations. The familiar Bloch 
equations are linear in operators Ya(t), and their solutions are given by linear 
combinations of initial operator Ya = Ya(O) E sl(2) [9]. However, in the 
general case m + n > 2 eqs (13) are nonlinear in Ya(t), and their solutions 
may be given by only power series 

Ya(t) = L:[Aka(Yo;t)(¥_)k + (Y+)kBka(Yo;t)] (14) 
k~O 

where operator functions A( ... ) and B( ... ) are determined from some 
differential-diference equations. The solution of eqs (13) is also reduced to 
solving the only nonlinear equation 

d2Yo(t)/dt2 = AC1 - n2 A2Yo(t) + pB1/!n,m(Yo(t)) (15) 

where A = a/n2
, B = 2 I b 12 /h2

, C1 = ( H - C) is an integral of motion. 
In the mean-field approximation given by the condition < tPn,m(Yo) >mi= 
tPn,m( < Yo >mJ) we get from eq. (15) for the c-number function y(t) =< 
Yo(t) >mJ the equation 

1 Jy(t) 
(dy/dt) 2 = 2[A < C1 > y(t)- 2n2 A2(y(t))2 + B dy,,Pn,m(Y) + D] (16) 

constants a, b in terms of hyperelliptic integrals (cf. [17] where elliptic inte­
grals were first used in trilinear models) defining special abelian functions 
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(18,19]. Therefore, exact operator solutions of eqs (13), (15), in the form 
(14), seem to determine operator analogs of abelian functions which, per­
haps, are related to the problems of quantization on algebraic (abelian) 
varieties [18]. It is also of interest to examine interrelations of these re­
sults with possibilities of solving algebraic equations (12) in terms of theta­
constants and hyperelliptic integrals [19] as well as connections between 
solutions of eq. (16) and orthogonal polynomials {1rJ(.X)}. For this aim one 
can, e.g., compare quasiclassical solutons ytt) with exact quantum expec­
tations < Yo(t) >=< 1/J(t) I Yo I 'f/;(t) > obtained by using expansions of 
11/J(t) >=Ek Ckexp(-iEkt/1i) I Ek >in eigenstates I Ek >from eq. (6). 

4. Concluding remarks 

In conclusion we point out that the similar analysis of multimode versions of 
the Hamiltonians (2) leads also to polynomial Lie algebras 9pd with the coset 
structure 9pd = h + v and h = u(m) [8, 9]. But for using appropriate gener­
alizations of the scheme (6)-(16) we need an additional work for separating 
variables. We also note that using generalized Holstein-Primakoff mappings 
[13, 9] one can determine some relations between familiar Lie algebras and 
both polynmially and q-deformed Lie algebras Yd in order to display differ­
ent exotic states and phenomena [7] in realistic multi- particle models as 
well as to determine their asymptotic behaviours [9]. Specifically, we may 
compare the Hamiltonians (3) with some "distorted" Hamiltonians 

Hv = aVo + bV+ + b*V_ + C,[C, Va]= 0 (17) 

which are linear in generators Va of certain 3-dimensional Lie algebras g( HD) 
or q-deformed Lie algebras gq(Hv). Here with algebras g(Hv) and gq(HD) 
are related to sl~~,m)(2) via the Holstein-Primakoff type mapping [9, 20] 

sl~~,m)(2)- (g(HD)/gq(HD)) ={Va, a= 0,±: [Vo, V±) 

= ±V±,[V-, V+] = w(Vo), 

Vo= Yo+µ, V+ = Y+/(Yo), V_ =/(Yo)¥_} {18) 

where w(Vo) are structure functions of algebras g(HD) or gq(Hv) and func­
tions /(Yo) are determined from the equations 

1(Yo) -1(Yo - 1) = W-(Yo + µ),1 =I /(Yo) 1
2 </>n,m(Yo + 1) (19) 

with </>n,m(Yo) being the structure polynomial in eq. ( 4). For example, taking 
g(hD) = sl(2) = su(2)/su(l,1) (with W-(V0) = =F2V0 in eq. (19)) we get 

I /(Yo) 1
2= [.X =F (Yo+µ+ 1)(2)]/</>n,m(Yo + 1) (20) 



538 VALERY P. KARASSIOV 

where constant operators .X, µ in eq. (20) are found from conditions of a 
"canonical" behaviour of operators V,, of the sl(2) irreps on the subspaces 
L([l;]) [9]. Solutions of such "linearized" models with "distorted" Hamilto­
nians (17) and g(Hv) = sl(2) implemented along the lines of eqs (6)-(13), 
e.g., with the help of Lie-algebraic and group-theoretical methods [11-13] 
may be viewed at an adequate choice of parameters "a", "b" in (17) as 
specific smooth (analytical) approximations modulating exact (generally, 
non-analytical [9]) solutions of models with Hamiltonians (3). As proximity 
measures of such approximations, one may use relative moments 

Cp(H, Hv) =I Tr(H - Hv)P /Tr(H)P l,p = 1,2, ... (21) 

where traces are calculated over invariant subspaces L([l;]) C L(H) or whole 
spaces L(H) [9]. Choosing in eq. (18) w(Vo) = (qVo -q-V0 )/(q112-q-112) we 
can implement a similar analysis along the lines eqs (6)-(16) for Hamiltonians 
(17) with gq(H) = slq(2). On this way we can both obtain new orthogonal 
polynomials within schemes (6)-(12) and define specific q-analogs of abelian 
(elliptic) functions within appropriate generalizations of schemes (13)-(16). 
From the physical viewpoint solutions of such q-analogs of mode!s (3) may 
be considered as exotic approximations of solutions of original models( cf. 
[7]). So, starting from Hamiltonians (2),(5) we may obtain both their exact 
solutions (with the help of the slpd(2) formalism) and two kinds of their ap­
proximations (via the generalized Holstein-Primakoff mapping (18)). Using 
measures (21) and some minimizing principles we can determine both param­
eters a, b in ( 17) and value of q providing maximal proximity of "distorted" 
models to original ones. Such comparisons may be useful in examining some 
dynamic peculiarities of models (2), (5), in particular, in determining condi­
tions of a realization of their regular (periodic and quasi periodic) or nearly 
stochastic regimes (cf. [21, 22]). An alternative approach is given in [23]: us­
ing s/(2) solutions for solving both spectral and evolution tasks associated 
with slpd(2). Other results along the lines outlined above can be found in [8, 
9]. It is of interest to compare these approaches with other, see, e.g., [24-28] 
and references therein. 
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