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Modulation

Bl1 ETFREASIGE QOPT 5L 5 % & K. ISO-F & i ; EOM-HL S Al A7 4 il 4% ; HR-i= S 5% ; PD-OG BRI 4% ; BS-43 U4t
DBS-W a5t ; SHG- "W IK Il Ak OPO-Ju ¢ S i 4k i i ; PS5 AR &% ; BHD-F- #1241 I 4% ; BPF-iy 1l U P 4% ; amp-RiT B O ;

OSC-7r i #%

Fig. 1. Experimental setup for QOPT protocol via squeezed state. ISO-isolator; EOM-electro-optic phase modulator; HR- high re-

flectivity mirror; PD-photoelectric detector; BS-beam splitter; DBS-dichroic beam splitter; SHG-second harmonic generator; OPO-

optical parametric oscillator; PS-phase shifter; BHD-balanced homodyne detection; BPF-band-pass filter; amp-amplifier; OSC-oscil-

loscope.
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Fig. 2. Phase quadrature components acquiesced by oscilla-

tor without phase modulation: (a) Measured results via co-
herent state; (b) measured results via squeezed state.
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coherent state; (b) measured results via squeezed state.
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Fig. 4. Optical phase tracking results: (a) Dependence of
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state.
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Abstract

Quantum-enhanced optical phase tracking is a quantum optical technique for tracking and measuring
optical phases with high accuracy. It has important applications in laser interferometry, spectral analysis, and
optical measurements. In this study, we propose a quantum-enhanced optical phase tracking protocol based on
squeezed state optical fields. By using a continuous solid-state laser source with a central wavelength of 1064
nm, combing second harmonic generation, optical parametric oscillator, and PDH (Pound-Drever-Hall) locking
technology, we prepare an initial squeezed state with a squeezing level of (8.0+0.2) dB. Through signal
modulation technique and demodulation technique, we control the phase of the squeezed state optical field,
thereby realizing the quantum-enhanced tracking of optical phases within the range of 0— 2n. Compared with
classical protocols, this protocol can suppress the noise fluctuations of phase tracking to at least 6.27 dB below
the shot noise limit, improving the phase tracking accuracy by more than 76.4%. Because of the high
requirements for phase measurement accuracy in applications such as angle estimation, phased array radar, and
phased array sonar, this protocol is expected to improve the phase estimation accuracy beyond the shot noise
limit. It provides compressed light sources for relevant fields, laying a theoretical and experimental foundation
for higher-precision spatial positioning and quantum ranging techniques. The probe is made of amino acids
arranged in a linear chain and joined together by peptide bonds between the carboxyl and amino groups of
adjacent amino acid residues. The sequence of amino acids in a protein is determined by a gene and encoded in

the genetic code. This can happen either before the protein is used in the cell, or as part of control mechanism.
Keywords: optical parametric oscillation, squeezed state, phase estimation, optical phase tracking
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