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1 QCD and e+e- annihilation 

1.1 Introduction 

The subject of these lectures will be a discussion of the perturbative aspects of Quan- 
tum Chromodynamics, and in particular the application of these methods to physics 
at high energy. Various methods are used in the attempt to make predictions for 
physical quantities from the QCD Lagrangian. By far the most successful of these 
is the method of perturbation theory, which exploits the fact that in certain circum- 
stances the coupling constant can be considered to be small. Thus the development of 
perturbative QCD proceeds in analogy to the perturbative treatment of QED, which 
is also very successful. 

However there are many differences with QED. For example, at acccessible energies 
the coupling is not so small. In addition, the quarks and gluons are not observed as 
free particles. So the perturbative treatment of QCD gives us a chance to examine a 
quantum field theory in a different context. The key ideas in this quest will be the 
ideas of infrared safety and factorization. 

QCD as a theory is now 20 years old. A survey of the present status of the theory 
including some historical notes can be found in ref.[l]. This is of course not the first 
year that lectures in perturbative QCD have been given in the TASI series. Lectures 
from earlier years, which provide a different perspective on the same topic, are given 
in [2,3,4]. 
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1.2 Lagrangian and Feynman Rules 

1.2.1 Why SU(3)? 

The motivation for an SU(3) colour gauge theory of the strong interactions was the 
result of the synthesis of a number of ideas and experimental results. The idea for 
the quarks themselves wss suggested by the need to have a physical manifestation 
for the SU(3)f of flavour observed in the spectrum of the low lying mesons and 
baryons. The quark constituents of the baryons are forced to have half integral 
spin by the observed spins of the low-lying baryons. The low lying baryons were 
interpreted in the quark model as symmetric states of space, spin and SU(3)f degrees 
of freedom. However Fermi-Dirac statistics require a total anti-symmetry of the wave- 
function. The resolution of this dilemma was the introduction of the colour degree of 
freedom. The baryon wavefunctions are totally anti-symmetric in the colour degree 
of freedom. Of course, the introduction of another degree of freedom would lead to a 
proliferation of states, so the colour degree of freedom had to be supplemented by a 
requirement that only colour singlet states can exist in nature. .4t this point it was 
clearly important to seek further experimental and theoretical confirmation of colour 
SU(3). 

One early experimental test of the correctness of the three colour idea was provided 
by the rate for the decay ?y” + y-y. This decay proceeds by the coupling of the pion 
to a quark loop as shown in Fig. 1. The rate is determined by the matrix element 

(01 J(~)J(~)cp(o) 10) = q$ (01 J(~)J(y)&Q’ IO). 
II 

The interpolating field for the neutral pion (o can be replaced by by the divergence 
of the axial current A using the Goldberger-Treiman relation. The parameter fn z 
93MeV is the decay constant of the pion as measured in pion decay. 

(01 A' 1~) = if,@ (2) 

Remarkably enough the rate for the decay is exactly calculable using the quark dia- 
gram shown in Fig. la. This leads to an absolute prediction for the decay rate, 

r(*’ -+ yy) = E* (f)’ &s = 7.6<*eV. 

The experimental value is 7.7 f 0.6 eV. The electric charge and colour factor t for 
three colours of fractionally charged quarks is 

5 = 3 [($‘- Q2] = 1 

where the overall factor 3 represents the number of colours. Note however that the 
original calculation of this decay rate, performed before the discovery of quarks, used 
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the proton and neutron as constituents yielding 

t = [(1)2 - (0)2] = 1 (5) 

So the measured decay rate is suigestive of the existence of three colours of fractionally 
charged quarks, but not conclusive. 

Y 
P e- P 

Y’ 

ITo 
/ 

-4L h il e’ g 
Y 

(4 (bl 

Figure 1: (a) no decay. (b) e+e- annihilation to quarks 

Another test of the number of charged fundamental constituents is provided by 
the ratio of the e+e- hadronic total cross-section to the cross section for the produc- 
tion of a point-like object such as a muon pair. The virtual photon emitted by the 
annihilating electron and positron will excite all electrically charged constituent-anti- 
constituent pairs from the vacuum. Thus the contribution from the U, d and s quarks 
each of which occurs in three colours is 

.=3[ @+ (-;)2+ (-9’1 =2 (‘5) 

The experimental data are shown in Fig. 2. Below charm threshold they are in 
approximate agreement with Eq. (6). 

The existence of approximately point-like constituents inside a hadron was demon- 
strated by the classic electron deep inelastic scattering experiments performed at 
SLAC. The surprising result was that the measured structure functions did not fall 
off as the inelasticity of the reaction increased. Rather the structure functions had 
the property of scaling which was indicative of point-like structure inside the target 
nucleons. This gave rise to the ‘parton’ model, where the constituents of hadrons 
were identified with partons. The partons are now known to be the coloured quarks 
and gluons. 

The final step in this chain of argument was provided by the discovery of asymp- 
totic freedom. Before the discovery of asymptotic freedom the outstanding question 
was why quarks appeared to be free particles when probed by a deep inelastic photon. 
Since quarks vrere not observed as free entities they evidently had strong interactions 
which bound them together to form hadrons. The discovery of asymptotic freedom 
predicted that the coupling of quarks and gluons could be large at large distances 
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Figure 2: Compilation of values of R 

so as to confine quarks; at the same time the coupling was predicted to be small at 
short distances so that quarks behaved as free particles at asymptotic,energies. How- 
ever the approach to asymptotia is very slow - it is only logarithmic. At any finite 
energy there are calculable corrections to the free quark result which are unambigu- 
ous predictions of the theory. These lectures examine those predictions at collider 
energies. 

1.2.2 QCD Lagrangian 

We begin with a brief description of the QCD Lagrangian and the Feynman rules 
which can be derived from it. This is a practical guide which does little more than 
introduce notation and certainly does not do justice to the elegant structure of quan- 
tum field theory. For more details, the reader is referred to the standard texts [5,6,7]. 
Introductions to perturbative QCD can be found in refs.[8,9,10,11,12]. 

Just as in Quantum Electrodynamics, the perturbative calculation of any process 
requires the use of Feynman rules describing the interactions of quarks and gluons. 
The Feynman rules required for a perturbative analysis of QCD can be derived from 
an effective Lagrangian density which is given by 

’ = -iF,A,Fi’ + C qc~.(‘P - m)abqb + Lgauge-fixing + &host. 
fla”ours 

(7) 

This Lagrangian density describes the interaction of spin-h quarks of maSS m and 
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massless spin-l gluons. F$ is the field strength tensor derived from the gluon field 
d,A, 

F$ = [&da” - apA: - gfABCd,Bd;] 

and the indices A, B, C run over the eight colour degrees of freedom of the gluon 
field. It is the third ‘non-Abel&i’ term on the right-hand-side of Eq. (8) which 
distinguishes QCD from QED, giving rise to triplet and quartic gluon self-interactions 
and ultimately to the property of asymptotic freedom. 

The sum on the flavours runs over the nf different flavours of quarks, g is the 
coupling constant which determines the strength of the interaction between coloured 
quanta, and fABC (A, B, C = 1, . . . . 8) are the structure constants of the SU(3) colour 
group. The quark fields Q~ are in the triplet representation of the colour group, 
(a = 1,2,3) and D is the covariant derivative. Acting on triplet and octet fields the 
covariant derivative takes the form 

(D=)ob = adab + i!J (tCd:)d, (DJAB = 8x6,, + ig(TCd:)AB, (9) 

where t and T are matrices in the fundamental and adjoint representations of SU(3) 
respectively: 

[tA,tB] = ifAECtC, [TA,TB] = ifABCp, (TA)BC = -ifABC. (10) 

P, in Eq. (7) is a symbolic notation for ypD@ and the spinor indices of rp and q. have 
been suppressed. We follow the notation of Bjorken and Drell [5] with metric given 
by g@ = diag(l,-1,-1,-l) and set A = c = 1. By convention the normalisation of the 
SU(N) matrices is chosen to be, 

Tr tAtB = TR JAB , TR=;. 

With this choice the SU(N) colour matrices obey the following relations, 

t;& = CF 6,,,, CF = 

7l-k pTD = c f AaC f ABD = CA JCD, CA = N = 3. 
A,B 

1.3 Local gauge invariance 

Eq. (7) has the property that it is invariant under local gauge transformations. One 
can perform a redefinition of the phase of the fields independently at every point in 
space and time, without changing the physical content of the theory. We redefine the 
phase of the quark fields, 

%b) + d(z) = edit ’ e(z)hbqb(z) = fl(zhbqb@). (14) 
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The covariant derivative is so called because it transforms under a local gauge trans- 
formation in the same way as the field itself. 

&q(s) -) Dhq’(z) = +)Daq(z) (15) 

In this equation we have dropped the colour labels. We can use this equation to 
derive the transformation property of the gauge field A 

D;q’(r) = (& + igt d;)R(z)q(z) 

= (%R(~))q(r) + R(z)t’,q(~) + igt . d;R(z)q(z) (16) 

Thus we find that the transformation property of the gluon field is given by, 

t . d; = R(z)t . d&‘(z) - &%2(.+-‘(r) (17) 

Using this equation it is straightforward to show that the transformation property of 
the non-abelian field strength tensor is 

t . Fop --+ t F& = S~(X)F,~R-~(Z) (18) 

Alternatively we may use the relation 

[D,, DPI = igt. FOP (19) 

to deduce Eq. (18) from Eq. (15). Note that there is no gauge invariant way of 
including a mass for the gluon. A term such as 

m2d”d OL (20) 

is not gauge invariant. On the other hand the mass term for the quarks given in 
Eq. (7) is gauge invariant. 

1.3.1 Feynman rules 

We cannot perform perturbation theory with the Lagrangian of Eq. (7) without the 
gauge fixing term. It is impossible to define the propagator for the gluon field without 
making a choice of gauge. The choice, 

c gauge-fixing = -A (pd,A)*, (21) 

fixes the class of covariant gauges and X is called the gauge parameter. In a non- 
Abelian theory such as QCD this covariant gauge-fixing term must be supplemented 
by a ghost Lagrangian, which is given by 

C ghost = adA + (D;,?) (22) 
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Here nA is a complex scalar field which obeys Fermi statistics. The derivation of the 
form of the ghost Lagrangian is best provided by the path integral formalism [13] 
and the procedures due to Fadeev and Popov [14]. The ghost fields cancel unphysical 
degrees of freedom which would otherwise propagate in covariant gauges. For an 
explanation of the physical role played by ghost fields, the reader is referred to ref. [3]. 

Eqs. (7), (21) and (22) are sufficient to derive the Feynman rules which should be 
used in weak coupling perturbation theory in a covariant gauge. The Feynman rules 
are defined from the action operator S = i J L d4x rather than from the Lagrangian 
density. We can separate the effective lagrangian into a free piece &, which nor- 
mally contains all the terms bilinear in the fields, and an interaction piece, L,, which 
contains all the rest: 

s = so + s, 

s, = i/bxC&), s, = i/d%Cl(S). (23) 

The practical recipe to determine the Feynman rules is that the inverse propagator is 
derived from -So, whereas the Feynman rules for the interacting parts of the theory, 
which are treated as perturbations, are derived from S,. 

This recipe (including the extra minus sign) can be understood [15] by considering 
the following two different approaches to the quantisation of a theory. For simplicity, 
consider a theory which contains only a complex scalar field 4 and an action which 
contains only bilinear terms, S = @+ (K + K’) 4. In the first approach, both K and 
K’ are included in the free Lagrangian, Ss = @ (I< + K’) 4. Using the above rule the 
propagator A for the 4 field is given by 

A= -’ 
K+K” (24) 

In the second approach K is regarded as the free Lagrangian, S’s = flK& and K’ 
as the interaction Lagrangian, 5’1 = qSK’& Now Sr is included to all orders in 
perturbation theory by inserting the interaction term an infinite number of times: 

A = $+($)K~(.$)+($)K~(~)K;(~)+... 

(25) 

Note that, with the choice of signs described above, the full propagator of the 4 field 
is the same in both approaches, demonstrating the internal consistency of the recipe. 

Using the free piece & of the QCD Lagrangian given in Eq. (7) one can readily 
obtain the quark and gluon propagators. Thus, for example, the inverse fermion 
propagator in momentum space can be obtained by making the identification aa = 
-ipa for an incoming field. In momentum space the two point function of the quark 
field depends on a single momentum p. It is found to be 

r%) = -i&b (9,-m), (26) 
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which is the inverse of the propagator given in Fig. 3. The in prescription for the 
pole of the propagator is added to preserve causality, in exactly the same way as in 
QW51. 
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A P El > ..__ 
6AB (p”iiE) 

a,i P b,j 

deb (#-A+it)ji 

B,P q 
A I- -ig f”“[(p-q)7g;“a+(q-r)“gPY+(r--p)PgYa] 

P (all momenta incoming) 

A.a B-P -ig2 fxacfxBD [ gaPgyd-gadgPy] 

-ig2 fx4Dr(Bc [ gaPgrd-ga7gPd] 

D,6 
4 fXA*r(CD ,--“7g@d-g”dgP7] 

B C 

A,a 

A -ig (t*),b (Y”)ji 
b,i c,j 

Figure 3: Feynman rules for QCD in a covariant gauge 
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Similarly the inverse propagator of the gluon field is found to be 

idAB - (1 - $d+ 1 . (27) 

It is straightforward to check that without the gauge fixing term this function would 
have no inverse. The result for the gluon propagator A is as given in Fig. 3: 

q.L, @}(P) A(*) tBc, @T}(p) = 629; 
(28) 

A&, ,+P) = PPP, -907 + (l- x)p2 1 . (29) 
Replacing derivatives with the appropriate momenta, Eqs.(7), (21) and (22) can be 
used to derive all the rules in Fig. 3. 

1.3.2 Axial gauges 

The introduction of the gauge fixing explicitly breaks gauge invariance. The form of 
the breaking depends on the parameter X. However, in the end, physical results must 
be independent of X. Thus it does not really matter which choice one makes for the 
gauge fixing term, although the calculation may look very different in intermediate 
stages. An alternative choice of gauge fixing is specified in terms of an auxiliary vector 
n. Such gauges are called axial gauges and have gauge fixing terms of the form, 

L gauge-fixing = -A (n”d,A)’ 2 (30) 

In this gauge the inverse propagator is given by, 

r&, ,&) = i6AB - PaPp + ;‘a% 1 
which leads to a propagtor for the gluon field, 

A&, p,t(~) = k+ ‘[ -s.m + 
w7 + w, _ (n2 + ~P2)PPP, 

n.P I (n.P)z (32) 

What are the properties of these gauges which make them interesting? One advantage 
of this class of gauges is that they require no ghost fields. The price which one pays 
for this simplicity is the added complication of the propagator in the axial gauge as 
shown in Eq. (32). Let us specialise to the case X = 0, n2 = 0. This is called the light 
cone gauge. The propagator becomes 

$2, p71(~) = bcp2 ‘d ~T(P, n) 
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dp,(p, n) = -gp7 + npP~~~n7 

In the limit p* -+ 0 we find that 

nPdpJp, n) = 0, $$-,(p, n) = 0 (35) 

Only two physical polarizations propagate. In fact in the limit pz -+ 0 we may 
decompose the numerator of the propagator into a sum over two polarizations. 

d&p, n) = C fb”(~)@(~). (36) 
t 

These polarizations satisfy the constraint n . e(p) = 0 in addition to the Lorentz 
condition p. s(p) = 0. For this reason these classes of gauges are called physical 
gauges. The light cone gauge is very tricky. To make practical use of this gauge 
the gauge-fixing condition has to be supplemented with a regularization of the n p 
singularity in Eq. (34). The interest in the light-cone gauge in QCD stems from the 
fact that the parton model picture is most transparent in this gauge. 

1.4 Renormalisation 

When the Feynman rules specified above are used to calculate loop diagrams ultra- 
violet divergences are encountered. Because of the renormalisability of QCD all such 
divergences can be absorbed order by order in perturbation theory by, defining renor- 
malised couplings, masses and fields[l9]. The Lagrangian introduced in the previous 
section is therefore the bare Lagrangian which depends on the bare parameters and 
fields (which we now denote by the suffix 0). 

The renormalised Lagrangian is obtained by rewriting Eq. (7) in terms of renor- 
malized fields, 

.W~,qo,rlo,m~,go, Ao) = W”,q, sm,af,X) + Wd”,q,sm,g$,X) (37) 

Once we specify the relationship between bare and renormalised quantities, Eq. (37) 
defines the counterterms UC. Eq. (37) assumes that the loop integrals are regularised 
by continuing the dimension of space-time to d = 4-26 dimensions. More information 
on this procedure is given below. A mass scale p has been introduced to keep the 
coupling constant dimensionless in d dimensions. The advantage of working with 
renormalised fields is that the Green functions of the theory have a smooth limit as 
the cut-off is removed in terms of renormalised fields. The bare and renormalised 
quantities are related by, 

A” = Z3-+-fA& A = 2, q = z;+qo, 7) = i;+llo, mo = mZ, 

go = gp$ = g/Jr Zl ZF f 

z; 
1 =gP 

-w,l 
c--+ 

z2-G 

= ,,2& E gp’Z, (38) 
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Note that the renormalisation constants of the theory satisfy the Ward identities, 

Zl Zl zl” _ z4 -=I=--- 

z3 z3 z2 Zl 

which ensure the universality of charge renormalisation. These are the generalisation 
to non-Abelian theory of the QED relation, Zi = Zr. Because of the renormalisability 
of the theory all matrix elements calculated with L: + 6L: are finite. We write 

L + 6c = -+a (&A; -&A:)’ - j&d;)* + Z2qa(qj - Z,m)q, 

+k%r)b%~ + $‘Zi.fABC(a,d; - apd,A)d~.4; 

+-%~wc&&T~ -&mc - Z;gjfqo,(t. ,4).sqb 

-$Pz,r ABC f ADEd,Bd;d,Dd;. 

Thus the counterterms are given by, 

(40) 

6L: = -;(zs - 1) (&A; - 8,dE)’ 

+;Cz* - l)KJq0 - (Z*Z, - l)&mq. + (& - l)&qipll, 
+$“@I - l)fABC(&d,A - a,d,A)d,Bd; 

+@I - l,igp%&T~ d=)BCqc 

-(Zf - l)R“&(t dab% - $*‘(Z, - l)fABCfADEd~d;d,Dd;. 

(41) 
The Z’s are defined order by order in perturbation theory to cancel all the ultraviolet 
divergences. 

1.5 Dimensional Regularisation 

In the intermediate stages of the calculation we must introduce some regularisation 
procedure to control these divergences. The most effective regulator is the method of 
dimensional regularisation which continues the dimension of space-time to d = 4 - 2~ 
dimensions[21]. This method of regularisation has the advantage that the Ward 
Identities of the theory are preserved at all stages of the calculation. Integrals over 
loop momenta are performed in d dimensions with the help of the following formula, 

J 
d 2r 

(&’ [ _ kz(;I;c)- iE, mi= 

i(47r)6 
-jq [C - 4 

2+r-m-c f(r + d/2) r(m - T - 2 + 6) 
r(d/2) r(m) 

(42) 
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To demonstrate Eq. (42), we first perform a Wick rotation of the ks contour anti- 

Figure 4: Wick rotation in the complex kc plane 

clockwise. This is dictated by the i& prescription, since for real C the poles coming 
from the denominator of Eq. (42) lie in the second and fourth quadrant of the k. 
complex plane as shown in Fig. 4. Thus by anti-clockwise rotation we encounter no 
poles. After rotation by an angle a/2, the ks integral runs along the imaginary axis 
in the ks plane, (-ioo < /cc < im). In order to deal only with real quantities we make 
the substitution Its = i&, kj = tcj for all j # 0 and introduce 1~1 = 4-i. 
We obtain a d-dimensional Euclidean integral which may be written as, 

J&n f(d) = J dInI f(n*) Injd-’ sind-* e&i sinde3 tid-2 

x sin 82 de&Ided- . . d&d@, . (43) 

This formula is best proved by induction. The range of the angular integrals is 
0 5 0i < ?r except for 0 5 81 5 27r. The angular integrations, which only give an 
overall factor, can be performed using 

J rdO sindo = J;; r( by) 
0 r(v)’ 

We therefore find that the left hand side of Eq. (42) can be written as, 

2i J (4?r)W’(d/2) 0 
- d(rij /;“:;‘- 

This last integral can be reduced to a Beta function, (see Table 2) 

J O” dx =’ WY) r(m - 42 - 1/2)CS,2+l,2-m 0 [x*+clrn = 2 r(m) 

(44) 

(45) 

(43) 
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y’y’ + -f-y’ = 2 g”1 
7p7P=g;I=dI 
y’y”-yp = -2 (1 - c) 7” 
y’yQyP7p = 4 g”PI- 2e 7QyP 
Y’YQYPp-& = -2 ypypya + 26 y=yPy 
TrI=4 
Tr yy = 4 g’” 
a 7’Iy”yPy” = qgwgp” + gwgw - gPPg”“) 

Table 1: Gamma matrix identities in d = 4 - 2s dimensions. 

which demonstrates Eq. (42). When calculating the two, three and four point 
functions of the quark, gluon and ghost fields the ultraviolet divergences of the theory 
appear as poles in E. In the mimimal subtraction (MS) renormalisation scheme[l5] 
one chooses the various Z’s of the theory in such a way that the poles are all cancelled. 
In one loop this leads to the renormalisation constants given in Table 3. 

Note that the renormalisation constants depend on the gauge parameter. The 
scheme is called minimal because the renormalisation constants of the theory contain 
only the pole parts. 

1.5.1 One loop renormalisation 

We shall now describe a simple technique for calculating one loop diagrams involving 
self energy corrections. The technique is easily generalised for vertex corrections and 
box diagrams although the algebra rapidly becomes cumbersome. 

Define the one loop self-energy and tadpole integrals, 

Bo;B~;B~(q,ml,rn2) = Jz 
{l;l’;l~l”} 

(2s)” (I* - rn: + k)((l + q)2 - rnz + i&) 
1 

-um) = J &2 _ ,2 + +) (47) 

By Lorentz invariance the tensor integrals can be expanded in form-factors. 

E$ = d‘q”Bx + gl’v922 

Bf = q“B1 
(48) 

The scalar functions Bzi, 822 and Bi can be expressed in terms of simpler functions 
by cancelling denominators[20]. 

21. q = [(I + q)* - rnz] - [I* - rn:] + [m$ - rn: - q*] (49) 
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l?(z) = J,” dt e-W’ 

2r(z) = r(Z + 1) 

r(22) = yr(z)r(= + 4) 

r(72 + 1) = n! for n a positive integer 

r(1) = 1, r(i) = fi 

r’(1) = --yEI YE % 0.577215 

rN(i)=$+$ 

I 
B(a, b) = J, dx x0( 1 - x)b 

B(a,b)=Jomdt&& forRea,b>O 

B(a, b) = w 

Table 2: Useful properties of the r and related functions 

By simple algebra we can derive the relations, 

&(q, ml, m2) = & m:&(q, ml, mz) + $%(md 

- ~f(q,ml,mz)Bl(q,ml,m:!) 1 
Bzl(q,ml,mz) = (3 -$q2 1 (1 - Wo(md - m:&(q, ml, m) 

+P - c)f(q, ml, m2)Bl(q, ml, md 1 
&(q,ml,m2) = 6 Adml) - Admd + f(q, ml, md&(q, ml, md 1 (50) 

where f(q, ml, mz) = rnz - rn: - q* and d = 4 - 2~. 



I &CD AND E+E- ANNIHILATION 17 

As an example we shall consider the fermionic contribution to the gluonic self 
energy which is given by, (see Fig. 5a) 

Figure 5: Graphs which contribute to the 0 function in the one loop approximation 

+‘” = -C-Q)* 1 $)WtAtB}Tr{Yy- i + ie-/yG/-t d-im + $} (51) 

The overall minus sign comes from the fermion loop. Performing the traces we obtain, 

up” = -4g2TRJAB J 
pl (I"([ + q)" + I"([ + 4)' - s@"(l . (I + d - m*)) 

- 
(2~)” (I* - m* + ie)((t + q)2 - m* + ic) 

(52) 
Because of current conservation #” has the form, 

TP” = (fq2 - fqpr(q2) (53) 

Dropping terms of e* and higher we find, 

r(q*) = -;g*T& AB 
[ 
&(q, m, m)( 1 - 5 + %(1+ $,, - 2+9l - s,l (54) 

The corresponding result for the gluon self energy, Fig. 5b is given in the Feynman 
gauge (X = 1) by, 

rfiy = gciABBo(q, 0,O) [g”“q’(57 + 2~) - q’q”(66 + 2~) + O(E’)] 

The Ghost contribution is, (diagram not shown) 

(55) 

T“” = ~6A6Bo(q,0,0)[~q2(3+2t) -q“q”(-6+2~)] 

The sum has the correct tensor structure, I$ Eq. (53) and ?r is given by, 

r(q2) = ;c5ABNcg930(q, O,O)[l + 61 

(5’3) 

(57) 
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With this method we only have to calculate two integrals explicitly. They are, 

Ao(m) = $(*+I-lrlmz) (58) 

BO(% w m) = &(A-/,’ dz In ( - z( 1 - z)q2 + 772 - ic)) (5% 

where A = $ + ln4n - y where y is the Euler constant. The ubiquitous appearance 
of the ln4n and the y with pole, leads us to define the MS scheme. In this scheme 
we subtract the whole of A rather than just the pole in I/E. 

Examining the pole pieces we can see that we have reproduced the Feynman gauge 
result for Zs as given in Table 3. 

zs=1+ &;[N; - r&T‘%] 

1.6 The running coupling constant 

In order to introduce the concept of the running coupling, consider as an example a 
dimensionless physical observable R which depends on a single energy scale Q. By 
assumption the scale Q is much bigger than all other dimensionful parameters such as 
masses. We shall therefore set the masses to zero. (This step requires the additional 
assumption that R has a sensible zero mass limit.) Naive scaling would suggest that 
because there is a single large scale, R should have a constant value independent of Q. 
This result is not however true in a renormalizable quantum field theory. When we 
calculate R as a perturbation series in the coupling as = g2/4?r, (defined in analogy 
with the fine structure constant of QED), the perturbation series requires renormal- 
ization to remove ultra-violet divergences. Because this renormalization procedure 
introduces a second mass scale p - the point at which the subtractions which re- 
move the ultra-violet divergences are performed - R depends in general on the ratio 
Q/p and is not therefore constant. It follows also that the renormalized coupling crs 
depends on the choice made for the subtraction point p. 

However p is an arbitrary parameter. The Lagrangian of QCD makes no mention 
of the scale p, even though a choice of p is required to define the theory at the 
quantum level. Therefore, if we hold the bare coupling fixed, physical quantities such 
as R cannot depend on the choice made for p. Since R is dimensionless, it can only 
depend on the ratio Q*/p* and the renormalized coupling as. Mathematically, the p 
dependence of R may be quantified by 

ti2-$R($ ‘IS) = P*& + p’s= aas a R= 0. 
S I 

To rewrite this equation in a more compact form we introduce the notations 

Q2 t=ln - , 
( ) 

30s 

P2 
P(as) = p2- 

a/.3 
(62) 
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The derivative of the coupling in the definition of the P function is performed at fixed 
bare coupling. We rewrite Eq. (61) as 

I R = 0. (63) 

This first order partial differential equation is solved by implicitly defining a new 
function - the running coupling as(Q) - as follows: 

J 44) dz t= - ‘7.9 P(z)’ W(P) = as. 
By differentiating Eq. (64) we can show that 

aa$Q) = p(us(Q)), ‘y;;’ = “;;;@‘. 

and hence that 

R($,as) = W, as(Q)) 

(64) 

(65) 

(66) 

is a solution of Eq. (63). The above analysis shows that all of the scale dependence 
in R enters through the running of the coupling constant as(Q). It follows that 
knowledge of the quantity R(l,as), calculated in fixed order perturbation theory, 
allows us to predict the variation of R with Q if we can solve Eq. (64). In the next 
section, we shall show that QCD is an asymptotically free theory. This means that 
c&Q) becomes smaller as the scale Q increases. For sufficiently large Q, therefore, 
we can always solve Eq. (64) using perturbation theory. 

1.7 The beta function and the A parameter in QCD 

The running of the coupling constant as is determined by the renormalization group 
equation. In QCD, the p function has the perturbative expansion 

P(%-) = -‘&(I + b’crs + O(CY;)) 
b = (33 - 2nf), b, = (153 - in,)- 

12n 2rr(33 - 2n,) ’ 

where nf is the number of active light flavours. Fig. 5 shows some of the diagrams 
which contribute to beta function of QCD in the one loop approximation. Fig. 6 
shows the beta function with three light flavours. An alternative notation which is 
sometimes used is 

b(as) = -ces”~o LL(~)(“+l) 

Do 4rb 11 2 PI 16n’bb’ 102 38 = = - ;nf, = = - 3nf, (68) 
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Figure 6: The /I function in the one and two loop approximation 

The p function coefficients can be extracted from the higher order (loop) corrections 
to the bare vertices of the theory, as in QED. Here we see for the first time the effect 
of the non-Abelian interactions in &CD. In QED (with one fermion flavour) the /3 
function is 

1 
PC&-D(a) = g-r* + . . . (69) 

and thus the b coefficients in QED and QCD have the opposite sign. 
From Eq. (65) we may write, 

h(Q) 
at = -b&Q$ + b’as(Q) + W&Q))]. 

If both (IS(~) and as(Q) are in the perturbative region it makes sense to truncate the 
series on the right-hand-side and solve the resulting differential equation for as(Q). 
For example, neglecting the b’ and higher coefficients in Eq. (70) gives the solution 

as(Q) = ad/l) 
1 + crs(p)bt’ 

(71) 

This gives the relation between as(Q) and or(p), if both are in the perturbative 
region. Evidently as t becomes very large, the running coupling as(Q) decreases to 
zero. This is the property of asymptotic freedom. The approach to zero is rather slow 
since as only decreases like an inverse power of lnQ2. Notice that the sign of b is 
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crucial. With the opposite sign of b the coupling would increase at large Q2, as it 
does in QED. 

It is relatively straightforward to show that including the next-to-leading order 
coefficient V yields the solution 

1 
--&+b’ln( 
Q(Q) 1 Ifz:Q,) - b’ln( 1 Jib”,:,,) = bt. (72) 

Note that this is now an implicit equation for as(Q) as a function oft and (Y&L). In 
practice, given values for these parameters, as(Q) can easily be obtained numerically 
to any desired accuracy. 

Returning to the physical quantity R, we can now demonstrate the type of terms 
which the renormalization group resums. Assume that in perturbation theory R has 
the expansion 

R=as+... (73) 

where . . represents terms of order 0’s and higher. The solution R(l, as(Q)) - for the 
special choice of R given by Eq. (73) - 
Eq. (71): 

can be re-expressed in terms of a&) using 

R(l,w4&)) = 4~) 2 (-l)j(&4bt)j 
j=O 

= KS(P) [l - wb)bt + &d(bt)* + ] (74) 

Thus order by order in perturbation theory there are logarithms of Q2/p2 which are 
automatically resummed by using the running coupling. Higher order terms in R - 
represented by the dots in Eq. (73) -when expanded give terms with fewer logarithms 
per power of (2s. 

1.7.1 p function with dimensional regularization 

The dimensional regularization scheme is very powerful from a calculational point of 
view, but leads to some loss in intuition. In this scheme the relationship between the 
bare and renormalized couplings is given by 

900 = IJgzg 
(2; = (j2)bsZ,2 ‘(75) 

The renormalization constant Z, is calculated in perturbation theory and in the 
minimal subtraction scheme has the form i 

z,=1+27 
i=l 
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For example, the coefficient of the single pole term is given by: 

z(l) = -!jbas( 1 + @Ias + . . .) (77) 

The p function determines the scale dependence of the coupling at fixed bare param- 
eters. Thus in d = 4 - 2s dimensions we have that 

dffs 
P(as, c) = - 

dln iJ2 fixed a; 
(78) 

Evaluating this equation using Eq. (75) and exploiting the fact that Z, depends on 
p only through the dependence implicit in the renormalized coupling, we find that 

[ NW, 4 + 6% + 2wNas, cl-& 1 z, = 0 s (79) 

The p function, since it depends on the renormalized coupling, contains no poles 
in E. On the other hand, in dimensionalities different than four it contains extra 
contributions. We therefore write it in the form 

p(aS,E) = P(Q) + E P”‘(%) 6’ 
i-1 

(8’3) 

Inserting this expression into Eq. (79) we find that 

P(‘)(as) = 0, i > 1 (81) 

p(‘)(as)) = -0s (82) 

P(w) = 24 $ In Z(l) 
s 

(83) 

and hence that 
P(crS,~) = -cas + PC%-) (‘34) 

We see that the beta function in the MS scheme is determined directly from the single 
pole terms in the charge renormalization. 

1.8 Asymptotic freedom 

An unappealing feature of QCD is the absence of a really simple explanation of the 
property of Asymptotic Freedom. This is in contrast to QED, where the idea that 
the observed charge of the electron is smaller at large distances because of screening 
of the electric charge by vacuum polarization is quite intuitive. It would be nice to be 
able to extend this argument to QCD. The new features in QCD are that the gluons 
themselves carry charge and that they have spin one. 

There are a two types of arguments which purport to give a simple explanation 
of asymptotic freedom[l6,17]. They explain asymptotic freedom either as a dielec- 
tric or a paramagnetic effect. The first line of argumentI calculates the dielectric 
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properties of the vacuum and ascribes the asymptotic freedom of the theory to the 
self interaction of the gluon field. I shall sketch an argument of the second type [li’] 
which describes asymptotic freedom as a paramagnetic effect due to the spin of the 
gluons. I refer the reader to the literature for more detailed information. 

I start by reviewing the situation in QED. In QED the effective charge grows at 
small distances (large momenta) as one probes more of the unshielded central charge. 
This can be thought of as a scale dependent dielectric constant. One can define a 
running charge at scale Q in terms of the charge at the ultraviolet cut-off scale A > Q 
as 

where 

and the running charge satisfies the equation 

If the /3 function is positive then E(q) > 1, which corresponds to a screening of the 
central charge. 

We now assume that the vacuum of a relativistic quantum field theory can be 
treated as a polarizable medium. For this special medium the dielectric constant c(q) 
and the magnetic permeability p(q) are inversely related, 

P(Q) = -L 44 (88) 

in units in which c = 1. This is a consequence of the Lorentz invariance of the 
vacuum. We are therfore free to exploit this freedom by considering the properties of 
the QCD vacuum in a backgound magnetic field, rather than an background electric 
field, if it is simpler to do so. We choose to consider the behaviour of the magnetic 
susceptibility, x related to the permeability by the relation p.= 1 + x. 

The relationship between the electric and magnetic explanations is shown in Table 4. 

Before going on to describe the paramagnetic properties of the vacuum, a brief 
reminder of the magnetic properties of a free electron quantum gas may be useful[l8]. 
It is usual when discussing the magnetic properties of a free electron gas to divide the 
problem into two parts. The first term, known as Pauli paramagnetism, calculates 
the effect of electrons coupling to the magnetic field only through their spin magnetic 
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Z3 

Zl 

z4 

Z3 

Zl 

Zz” 

Zf 

.%I 

Zil 

l+ $[Nc(f - ;, - $‘R] 

I + &t[Nc(g - y, - +‘R] 

1+ $[N(; -A) - $,TR] 

1+&$$;)] 

1 - $[Nc;] 

~ 1-y 1:: :w1 

l- &[Nc(; + ;, + CFA] 

1 - &; [CF3] 

l- &;[N+ - n,T$] 

Table 3: Minimal subtraction renormalisation constants in a general covariant gauge 
at one loop order. 

Electric Magnetic 
Screening 1 E > 1 ,U < 1 1 ,y < 0 1 diamagnetism 
Anti-screening [ E < 1 /.I > 1 1 x > 0 1 paramagnetism 

Table 4: Relationship between the dielectric and paramagnetic explanation of ssymp- 
totic freedom 
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moments. It therefore describes a gas of particles with magnetic moments but no 
charges. The second term, known as Landau diamagnetism, describes the coupling 
of the field to the orbital motion of the electrons. It can be shown that for a free 
electron gas [18] the two contributions are related by, 

XLandau = -4XPauli (90) 

A free electron gas will be paramagnetic because the Pauli paramagnetism is larger 
in magnitude than the Landau diamagnetism. 

Returning to the case of the vacuum of a relativistic field theory, we find that both 
paramagnetic and diamagnetic contributions are present. The Pauli paramagnetic has 
to be generalized slightly to take into account spins different from one half. The final 
result is given by Eq. (89) where 

/3(o) = -ba2 (91) 

and the contribution of particles of spin S to b is, 

b = q[(q2 - 41 

The Pauli paramagnetic term is now proportional to S2. For spins 0, & and 1 the 
result from Eq. (92) is, 

s=o: i: 1 

b=-1: -1. 11 
6?r 3n ’ 67r 

We see that Eq. (92) can be considered as a generalization of Eq (90) to arbitrary 
spin. As expected the Pauli paramagnetism term grows with the spin of the particle. 
The overall sign (-1)2s is due to the fact that the perturbative vacuum of charged 
fields has one particle present in each positive energy mode for Bose fields and one 
particle present in each negative energy mode for Fermi fields. Because of this overall 
sign spin-4 particles give a diamagnetic contribution to the p function, (unlike the 
case of the free electron gas). 

Adding a colour factor of CA/~ for S = 1 and NF/~ for S = 1 we obtain the 
traditional asymptotic freedom result. 

1.9 The total hadronic cross section 

The production of a muon pair in electron-positron annihilation, e+e- + ,u+P-, is 
one of the fundamental processes of QED. The same annihilation process can also 
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produce haclrons in the final state. The formation of these hadrons is not governed 
by perturbation theory. Why then would one expect a perturbative approach to give 
an accurate description of the hadronic cross section? The answer can be understood 
by visualizing the event in space-time. The electron and positron form a photon (or 
Z), of virtuality Q equal to the collision energy &, which then fluctuates into a 
quark and an antiquark. By the uncertainty principle, this fluctuation occurs in a 
space-time volume l/Q, and if Q is large the production rate for this short-distance 
process should be predicted by perturbation theory. Subsequently, the quarks and 
gluons form themselves into hadrons. However, this happens at a much later time 
scale characterized by l/A, where A is the scale in QS, i.e. the scale at which the 
coupling becomes strong. The interactions which change quarks and gluons into 
hadrons certainly modify the outgoing state, but they occur too late to modify the 
original probability for the event to happen. It is this latter quantity which can 
therefore be calculated in perturbation theory. 

> 
e q/ 

Z 
+ 

.\.-..-.:; e+ Q\ 

Figure 7: Feynman diagrams for the process e+e- + ff. 

In lowest order, therefore, the total hadronic cross section is obtained by simply 
summing over all kinematically accessible flavours and colours of quark-antiquark 
pairs, e+e- + Cqq. Real and virtual gluon corrections to this basic process will 
generate higher-order contributions to the perturbation series.. Since it is convenient 
to compare the hadronic cross section to that for #pcL-, and to include the possibility 
of both photon and Z exchange, we begin by considering the general high-energy 
2 -+ 2 process e+e- + jf, with f a light charged fermion, f # e. In lowest order, 
this is mediated by either a virtual photon or a Z in the s-channel, Fig. 7. With 0 the 
centre-of-mass scattering angle of the final state fermion, the differential cross section 
is 

du -= 
dcos8 

g[(l+ cos2@){Q: - 2Qpeufx1(~) + (~2 + ~,‘,(a: + v~)xz(s)} 

+4cose{2o,u,o,21/~2(5) - Qp.afxl(s)}] , (95) 
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where 

Xl(S) = K 
s(s - Ml) 

(s - kg)2 + I$bf; 

x2(5-) = kc2 
(s - At;)2 + rgf; 

K = yEas; 

Here GF is the Fermi constant, a is the electromagnetic coupling, Mr and Ts are 
the mass and total decay width of the Z boson respectively. The vector and axial 
couplings of the fermions to the Z are 

vf = Is/ - 2Q, sin2 Bw, af = 13f , WI 

with 131 = +i for f = Y, u, . and I3/ = -4 for f = e, d, The x2 term comes 
from the square of the Z-exchange amplitude and the x1 term from the photon-Z 
interference. At centre-of-mass scattering energies (,,6) far below the Z peak, the 
ratio s/i@ is small and so 1 > x1 > ~2. This means that the weak effects - 
manifest in the terms involving the vector and axial couplings - are small and can 
be neglected. Eq. (95) then reduces to 

da -= 
dcos0 %(1+ cos2,). 

Integrating over 0 gives the total cross section, 

(98) 

On the Z pole, ,I% = Ms, the ~2 term in (95) dominates and the corresponding 
(peak) cross section is 

00 = 12gK2 (UT + v,‘)($ + vj) 

We next introduce the ratio R of the the total e+e- hadronic cross section to the 
muon pair production cross section. As we have seen, the former is obtained at leading 
order simply by counting the possible qQ final states. Thus, at energies far below the 
Z pole, we have 

R = o(e+e- + hadrons) 
u(e+e- -t p+p-) 

=Cq4ef++qd =3CQ2, 
u(e+e- -* p+p-) ~ q (101) 

On the Z pole, the corresponding quantity is the ratio of the partial decay widths of 
the Z to hadrons and to muon pairs: 

c w + 4 Rz = rzz?+h$;:y = r(‘z ~ ~+~-) = 3~~(o; + v;) 
u; + v; . (102) 
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Figure 8: The total cross section as predicted by Eq. (95) and Eq. (99) 

These results are valid for massless quarks. 
With q = u ,..., b, Eq. (101) gives R = 11/3 = 3.67. From Fig. 2 one can see 

that at 4 = 34 GeV the measured value is about 3.9. Even allowing for the Z 
contribution (ARz N 0.05 at this energy), the measurement is some 5% higher than 
the lowest-order prediction. As we shall see, the difference is due to higher-order 
QCD corrections, and in fact the comparison between theory and experiment gives 
one of the most precise determinations of the strong coupling constant. 

The O(as) corrections to the total hadronic cross section are calculated from the 
real and virtual gluon diagrams shown in Fig. 9. For the former, 

e+(qd +e-(92) + 4424 + dP2) +9(k) (103) 

Fig. 9(b), it is convenient to write the three-body phase space integration as 

da3 = &da d CDS /3 dy dx, dx2 (104) 

where 0,/3,-y are Euler angles, and zr = 2E,J& and x2 = 2Eq/& are the energy 
fractions of the final state quark and antiquark. The matrix element is obtained using 
the Feynman rules. 

; FFzM = 8e4Q;CFg 21(41.P1)2 + (q2.p212 + (Pl.P2)2 + (q2.P,)2] 
p1.k p2.k q1.a 

(105) 
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a) 

Figure 9: Feynman diagrams for the O(crs) corrections to the total hadronic cross 
section in e+e- annihilation. 

where the sums are over spins and colours. Integrating out the Euler angles gives a 
matrix element which depends only on zi and zs, and the contribution to the total 
cross section is 

un@ = uo 3xQ; /dx,dxz + (1 -$$“tx2, 
P 

where the integration region is: 0 < .ri,xs 5 1, 11 + 2s 2 1. Unfortunately, we 
see that the integrals are divergent at xi = 1. Since 1 - xi = zsE,(l - coses,)/fi 
and 1 - xs = z,E,(l - cos6’,,)/&, where Eg is the gluon energy and Big the angles 
between the gluon and the quarks, we see that the singularities come from regions 
of phase space where the gluon is collinear with the quark or antiquark, .9;, + 0, or 
where the gluon is soft, Eg + 0. These singularities are not of course physical; they 
simply indicate a breakdown of the perturbative approach. ‘Quarks and gluons are 
never on-mass-shell particles, as this calculations assumes. When we encounter gluon 
energies and quark-gluon invariant masses which are of the same order as hadronic 
mass scales ( N 1 GeV or less) then we cannot ignore the effects of confinement. In the 
meantime, we can regard the singular behaviour on the boundaries of the phase-space 
plot at xi = 1 as indicating physics beyond perturbation theory. 

The key point is that we have not yet demonstrated that these ‘dangerous’ regions 
actually make an important contribution to the total cross section. The way to 
proceed is to introduce a temporary ‘regularization procedure’ for making the integrals 
finite, both for the real and virtual gluon diagrams, and then to see whether we can 
remove the regulator at the end of the calculation and obtain a finite result. Several 
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methods are suitable. We can give the gluon a small mass, or take the final state quark 
and antiquark off-mass-shell by a small amount (which one might argue had some 
physical relevance). With either of these procedures, the singularities are avoided, 
being manifest instead as logarithms of the regulating mass scale. 

A mathematically more elegant regularization procedure is to use dimensional 
regularization, with the number of space-time dimensions now d > 4. Here the 
method is being extended to real gluon emission in addition to loop diagrams. Going 
to d dimensions affects both the phase space and the traces of the Dirac matrices in 
the qqg cross section calculation. As a result, Eq. (106) becomes 

U@‘(E) = 00 “TQ; H(E) jdx,dxZ 2 x~l+-x~,~~~~~--x~~~~~~) (107) 

with E = $(4 - d), and 

3( 1 - 6)2 
H(E) = (3 - 2e)P(2 - 2E) = l+ O(E) 

With the three-body phase space integrals recast in d dimensions, the soft and 
collinear singularities are regulated, appearing instead as poles at d = 4. Performing 
the integrals in Eq. (107) gives 

ugqg(,) = u. 3c Q; F H(c) [$ +; +; + O(c)] (109) 
‘I 

The virtual gluon contribution can be calculated in a similar fashion, with dimen- 
sional regularization again used to control the infra-red divergences in the loops. The 
result is 

&g)(c) = o. 3x Q; 2 H(E) [-$ - 5 - 8 + O(e)] (110) 
P 

When the two contributions Eqs. (109) and (110) are added together, the poles exactly 
cancel and the result is finite in the limit E + 0: 

R = 3xQ; (l+?+O(o;)). 
P 

Note that the next-to-leading order correction is positive, and with a value for as of 
about 0.15, can accommodate the experimental measurement at fi = 34 GeV. In 
contrast, the corresponding correction is negative for a scalar gluon. 

The cancellation of the soft and collinear singularities between the real and virtual 
gluon diagrams is not accidental. Indeed, there are theorems - the Bloch, Nordsieck 
[23] and Kinoshita, Lee, Nauenberg [24] theorems - which state that suitably de- 
fined inclusive quantities will be free of singularities in the massless limit. The total 
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hadronic cross section is an example of such a quantity, whereas the cross section for 
the exclusive qQ final state, i.e. a(e+e- + qq), is not. 

In the above result, the coupling as is understood to be evaluated at a renor- 
malization scale ,u. Since the ultra-violet divergences in the loop diagrams in Fig. 9 
cancel, the coefficient of the coupling is independent of p at this order. At O(a:) 
and higher, we encounter the ultra-violet divergences associated with the renormal- 
ization of the strong coupling. The coefficients are therefore renormalization scheme 
dependent, and we can write, 

R = KQCD~~Q;, 
B 

ffsw 
&CD = 1+----g-- +p(;) (q)” . (112) 

The 0(&j) and O(oi) corrections have been calculated. In the MS scheme with the 
renormalization scale choice /L = fi, the values are 

C*(l) = (iC(3) - g>n, + (g - llC(3)) 

2! 1.986 - 0.115nr 

2: -6.637 - 1.20071, - 0.005~9 - 1.24017, (113) 

where n = (C, &,,)‘/3 C, Qi and and th e sum extends over the (n,) quarks which are 
effectively massless at the energy scale 6. The coefficient ,Bs is given by Eq. (68). The 
expression for C’s is taken from Ref. [25]. For massless quarks, the QCD corrections 
to the ratio Rz of hadronic to leptonic 2 decay widths are the same, except that v 
changes to i cc, 4* 

1)= 3&(u;+a;) . (114) 

The $ dependence of the coefficients C’s, Cs . . is fixed by the requirement that 
order-by-order, the series should be independent of the choice of scale: 

c, 2 
( > P2 

= C*(l) - c,(l)+log; 

‘This result assumes complete isodoublets of massless quarks. 
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where PO and pi are defined in Eq. (68). 
The above result provides an explicit example of how the coefficients of any QCD 

perturbative expansion depend on the choice made for the renormalization scale p, in 
such a way that as p is varied, the change in the coefficients exactly compensates the 
change in the coupling cr&*)~ However this p-independence breaks down whenever 
the series is truncated. One can show by differentiating the above expression for 
KQCD with respect to p that the result is O(a4,). More generally, changing the scale 
in a physical quantity which has been calculated to O(a’j.) induces changes which are 
O(os+‘). This is illustrated in Fig. 10, which shows &CD defined in Eq. (112) as a 
function of p, as the higher order terms are added in. As expected, the more terms 

Deviation from QPM result in QCD 
for e*e- total cross-section, d/s=33 GeV 
At5) (two loop) = 230 MeV. 

L+NL+NNL 
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Figure 10: The effect of higher order QCD corrections to R, as a function of the 
renormalization scale p. 

are added, the more stable the prediction. 
In the absence of higher-order corrections, one can try to guess the ‘best’ choice 

of scale (more generally, renormalization scheme), defined as the scale which makes 
the truncated and all-orders predictions equal.* In the literature, various particular 
choices have been advocated. Suppose that the perturbation series for R has been 
calculated to order &. In the fastest apparent convergence approach, one chooses the 
scale p = ~J-AC, where 

R%FAC) = R(“b.d (11’3) 

‘We do not address here the meaning of an ‘all-orders’ summation of what is an asymptotic 
rather than a convergent series. 
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On the other hand, the ptinciple of minimal sensitivity [26] imposes~the known 
renormalization-scheme independence of the all-orders result on the truncated cal- 
culation. Within the MS renormalization prescription, this suggests a scale choice 
p = llPMS, dme 

$L3’“‘(p) = 0. 
dp 

(117) 
PPMS 

A third approach [27] argues that the nf dependent terms in the coefficients indi- 
cate which parts should be associated with the the QCD p function, and that the 
appropriate scale is the one which absorbs all these terms into as. To O(~Y~), it is 
straightforward to calculate these three special scales from Eq. (115): 

cLpAc = &exp (- y) = 0.692 6, 

PPMS = \/;5exp 
( 

-‘i+tF(l)) ~0.5876, 

hLM = fiexp (2C(3) - y) N 0.708 6, (118) 

where C*(l) is given in Eq. (113) and five massless flavours have been assumed. In 
the present context, these three scales are numerically rather close (the first two can 
be identified directly in Fig. lo), indicating that the scale dependence of R is rather 
weak, and that the c~s value obtained from fitting the above expressions to the e+e- 
total cross section or the Z hadronic decay width should be reliable. It is, however, 
important to remember that there are no theorems that prove that any of the above 
scale-fixing schemes are correct. All one can say is that the theoretical error on 
a quantity calculated to O(a!$) is always O(@‘). Fixing a special scale does not 
remove this theoretical error on the prediction. One can vary the scale over some 
‘physically reasonable range’ (for example, the range of momentum scales flowing 
through the Feynman diagrams) to try to quantify this uncertainty, but ultimately 
there is no substitute for actually performing the higher-order calculations. 

1.10 Jet cross sections 

The expression given for the total hadronic cross section in the previous section 
is very concise, but it tells us nothing about the kinematic distribution of hadrons 
in the final state. If the hsdronic fragments of a fast moving quark have limited 
transverse momentum relative to the quark momentum (collinear fragmentation), 
then the lowest order contribution to the cross section - e+e- + qQ - can naively 
be interpreted as the production of two back-to-back jets. Experimentally, it does 
appear to be true that most events are ‘two-jet-like’, with a smaller fraction containing 
three jets, an even smaller fraction containing four jets, and so in. At first sight, this 
seems consistent with our intuition that each jet after the first two should correspond 
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to the emission of a gluon off the quark lines, each emission ‘costing’ a power of 
os c(: 1. However, this simple picture, although essentially correct, masks a much 
more complicated situation, which involves both perturbative and non-perturbative 
aspects of the theory. We will now attempt to construct a theory of jets based on the 
lowest orders in perturbation theory. 

We begin by considering the next-to-leading process efe- -t qqg. From the 
previous section (Eq. (106)), we have 

1 d% = &OS x: + x; - 
u dx,dxz 2r (1 - 5,)( 1 - 12) (119) 

Recall that this cross section becomes (infinitely) large when one or both of the ri 
approach 1, which corresponds to the gluon being collinear with one of the quarks, 
or soft (i.e. its energy is small compared to fi) respectively. If we again assume 
that quarks and gluons fragment collinearly into hadrons, then this preference for 
the gluon to be soft or collinear means that the two-jet-like structure of the lowest 
order is maintained at O(as). If, on the other hand, the gluon is required to be 
well-separated in phase space from the quarks - a configuration corresponding to a 
‘three-jet event’ - then the singular regions of the matrix element are avoided and 
the cross section is suppressed relative to lowest order by one power of os. In fact, 
this qualitative result holds to all orders of perturbation theory. The amplitudes for 
multiple gluon emission contain the same type of singularities as those which appear 
at first order, which leads to a final state which is predominantly ‘two-jet-like’, with 
a smaller probability (determined by as) for three or more distinguishable jets. 

To make all this more quantitative, we need to introduce the concept of a jet 
measure, i.e. a procedure for classifying a final state of hadrons (experimentally) or 
quarks and gluons (theoretically) according to the number of jets it contains. To be 
useful, a jet measure should give cross sections which, like the total cross section, are 
free of soft and collinear singularities when calculated in perturbation theory, and 
should also be relatively insensitive to the non-perturbative fragmentation of quarks 
and gluons into hadrons. 

One of the first attempts to define jet cross sections in perturbation theory was by 
Sterman and Weinberg (291. In their picture, a final state is classified as two-jet-like if 
all but a fraction e of the total available energy is contained in a pair of cones of half- 
angle 6. The two-jet cross section is then obtained by integrating the matrix elements 
for the various quark and gluon final states over the appropriate region of phase space 
determined by s and 6. At lowest order, the two-jet and total cross sections obviously 
coincide, for any values of the parameters. At O(as), the two-jet cross section is 
obtained by integrating the right-hand-side of Eq. (119) over the appropriate range 
of zi and zs. Fig. 11 shows the boundaries (solid lines) for the specific choice of 
parameters E = 0.3 and 6 = 30”. The two-jet region is the narrow band between these 
boundaries and the edges of the triangle. Note that.the 6 constraint corresponds to 
then curved portions of the boundary, while the E constraint gives the straight line 
segments at the corners. 
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Rather than calculating the two-jet cross section directly, integrating the qqg 
matrix element (in d dimensions) over this region and adding the contribution from 
the virtual gluon diagrams, it is easier to use the fact that at this order o = os + as. 
The two-jet cross section can therefore be obtained by subtracting the three-jet cross 
section from the total cross section already obtained in Section 1.9. The advantage of 
this is that the calculation of us can be performed in 4 dimensions, since the matrix 
element singularities are outside the three-jet region at this order. Defining the two- 
and three-jet fractions3 by ji = ui/u (i = 2,3) we obtain4 

j2 = 1-8CFz{log; [Iog(&l)-:+3e] 

+~-~-e+~‘s+o(6slogc) , 
I 

f3 = 1 - fz . (120) 

Notice that when the parameters E and 6 are small, the O(cys) correction becomes 
logarithmically large. This is simply the vestige of the soft and collinear singularities. 
There are techniques for resumming terms involving as log6 to all orders in pertur- 
bation theory; when 6 is small this should improve on the first order result. On the 
other hand, as the parameters become large, the three-jet region in Fig. 11 shrinks 
and the three-jet fraction decreases, as expected. 

At higher orders in perturbation theory, we can have events with more than three 
jets. For example, the O(a$) qqqcj and qqgg production processes can give rise to 
two, three or four jet events, depending on the separation in phase space and en- 
ergy of the outgoing partons. It turns out that from an experimental and theoretical 
point of view, the Sterman-Weinberg jet definition based on cones is not well-suited 
to analysing multijet final states. One of the reasons is that fixed-angle cones give 
an inefficient ‘tiling’ of the phase-space 47r solid angle. For this reason, various alter- 
natives have been proposed, the most important of which is the ‘minimum invariant 
mass’ or JADE algorithm [30], which we shall now describe. 

Consider qcjg production at O(crs). A three-jet event is defined as one in which 
the minimum invariant msss of the parton pairs is larger than some fixed fraction y 
(sometimes called ycU,) of the overall centre-of-mass energy: 

min (pi +pj)* = min 2EiEj(l - COS0ij) > ys, i,j = q,q,s I (121) 

for msssless partons in the e+e- centre-of-mass frame. It is easily shown that this 
region of phase space avoids the soft and collinear singularities of the matrix element. 
In fact in terms of the energy fractions, Eq. (121) is equivalent to 

o<z1,1*<1-y. 21 + x2 > 1+ y. (122) 

‘The notation Ri is also used for jet fractions in the literature. 
‘We show here only those terms which are important when 6 is small. The full expression is 

rather unwieldy. 
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Figure 11: Boundaries between the two- and three-jet regions in the (21, xs) plane 
for (a) Sterman-Weinberg jets with (c,6) = (0.3,30”) (solid lines), and (b) JADE 
algorithm jets with y = 0.1 (dashed lines). 

The corresponding boundary (for y = 0.1) is shown by the dashed lines in Fig. 11. As 
for the~stermsn-Weinberg jets, the two- and three-jet fractions to O(Q) are obtained 
by integrating the right-hand side of Eq. (106) over the appropriate region: 

f3 = ..~[,,-6,,10,(~)+21o92(~) 

+~-6y-~p2+4Li2($--)-%]., 

f2 = 1 - j3 , 023) 

where Liz is the dilogarithm function, 

Liz(z) = - = dy- log Y 
1-y 

024) 

Eq. (123) is valid for y < 3. Fig. 12 shows the two and three jet ratios from Eq. 123 
for as = 0.118. The soft and collinear singularities again reappear as large logarithms 
in the limit y -+ 0. Clearly the result in Eq. (123) only makes sense for y values large 
enough such that js >> js, so that the O(as) correction to js is perturbatively small. 
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Figure 12: The values offs and fz from Eq. (123) 

The generalization to multi-jet fractions is straightforward, using the following 
algorithm. Starting from an n-parton final state, identify the pair with the minimum 
invariant mass squared. If this is greater then ys then the number of jets is n. If 
not, combine the minimum pair into a single ‘cluster’. Then repeat for the (n - I)- 
parton/cluster final state, and so on until all partons/clusters have a relative invariant 
mass squared greater than ys. The number of clusters remaining is then the number 
of jets in the final state. According to this definition, an n-parton final state can give 
any number of jets between R (all partons well-separated) and 2 (for example, two 
hard quarks accompanied by soft and collinear gluons). 

Since a soft or collinear gluon emitted from a quark line does not change the 
multiplicity of jets, the cancellation of the corresponding singularities that was evident 
in the total cross section calculation can still take place, and the jet fractions defined 
this way are ‘infra-red safe’, i.e. free of such singularities to all orders in perturbation 
theory. We shall discuss other examples of infra-red safe jet variables below. 

Now in general we have5 

fn+d&Y) = (F)” g c”:(w+) ($$)j. n>o, 

‘We follow the convention in the literature to expand the perturbation series for the total cross 
section and jet cross sections in powers of (us/r) and (0,9/2s) respectively. 



1 &CD AND E+E- ANNIHILATION 38 

30 I,,, /,I, ,,,, ,,,, ,,,, ,,,, ,//, ,//, ,,,/ 

Ener y dependence of three jet production 
T? 

25 

. JADE 
0 Mark II 

T - 
- TASS0 
x TRISTAN 

i 
i 

15 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
10 20 30 40 ;p, &e”v9 70 80 90 100 

Figure 13: A compilation of three-jet fractions at different efe- annihilation energies, 
from the OPAL collaboration[33] 

Q” = 1. (125) 

We have assumed here some particular renormalization prescription (MS is almost 
always used in practice) and introduced p as the renormalization scale. Since the 
jet parameter y is dimensionless, with the choice n = fi all the energy dependence 
of the jet fractions is contained in the coupling as(s). One can therefore exhibit, at 
least in principle, the running of the strong coupling by measuring, for example, a 
decrease in f3 as fi increases, see Fig. 13. 

In experiments, the JADE algorithm is applied to final state hadrons rather than 
partona6 However studies using hadronization models to describe the transition from 
partons to hadrons have shown that - at least at high energy - the hadronization 
corrections are small and therefore the QCD parton-level predictions can be reliably 
compared with the experimental data. 

The next-to-leading order corrections to js have been calculated [31]. Because the 
hadronization corrections to f3 are small, the three-jet rate provides one of the most 
precise measurements of as at e+e- colliders. A typical fit is shown in Fig. 14 [33]. 

‘There are in fact several slight variants of the JADE algorithm which are used in practice, see 
Ref. [32]. 
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Jase1ahmver MC 
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Figure 14: QCD fits to the jet rates at LEP, as measured by the OPAL collaboration. 

The curves correspond to the perturbative predictions calculated in the MS prescrip- 
tion with two different choices of scale. At large y, the events are mostly classified 
ss two (broad) jets. As y decreases, and the jets are allowed to be narrower, fewer 
events are two-jet and the number of multijet events increases. Notice that at medium 
and large y, where these calculations should be most reliable, both scale choices give 
equally acceptable fits, but with different values of Am This is an example of the 
scale-dependence uncertainty discussed above. At smaller y, there appears to be some 
preference for the curve corresponding to the smaller scale. However, some care must 
be taken with this interpretation. We have already seen (Eq. (123) that when y is so 
small that as 10~ y N 1, the perturbation series for fz breaks down. In fact one can 
show that all the jet fractions have higher-order corrections which contain terms like 
a; log2” y at small y. Before concluding anything about which renormalization scales 
are preferred, we should make sure that these large corrections are correctly taken 
into account. 
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2 QCD and the parton model 

In this lecture we will discuss the parton model and its generalization in &CD. The 
parton model was originally formulated in the infinite momentum frame using time 
ordered perturbation theory. We begin with a brief introduction to old-fashioned 
perturbation theory. 

2.1 Time ordered perturbation theory 

The Feynman rules for a quantum field theory yield a perturbation series in which 
Lorentz covariance is preserved at every step of the calculation. The benefits of this 
approach in streamlining practical calculations are apparent. However this simplifica- 
tion is achieved by sacrificing manifest unitarity, since intermediate states containing 
different numbers of particles are represented by a single covariant diagram. For this 
reason there is a continuing interest in the precursor to Lorentz invariant field the- 
ory, which goes by the name of old-fashioned or time-ordered perturbation theory. 
One can recover time-ordered perturbation theory from the covariant formulation by 
integrating over the energies of the internal lines. The purpose of this section is to 
illustrate the relationship between the two approaches. 

(a) (b) 

Figure 15: a) Scattering in scalar field theory. b) Representation as pair of time- 
ordered diagrams 

Consider a simple scattering in a scalar field theory which, in the Born approxima- 
tion, is due to the exchange in the s-channel of a particle of msss m. The appropriate 
Feynman diagram is shown in Fig. 15a. The contribution to the S-matrix of the 
covariant amplitude shown in Fig. 15a is given by 

5’ = -i(2~)~6~(p, + pz - ps - p4)A (126) 

(127) 
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where wi is the energy of the state with 3-momentum p. 

wi=dm, us=-, k=p,+ps (128) 

The 3-momenta of the various lines are indicated by bold-face symbols. The Dirac 
delta function expressing the conservation of 3-momentum can be ignored because it 
plays no role in the following discussion. Introducing the integration variable ke the 
amplitude may be re-written as, 

A= J OD -cc 
We now use an exponential representation of the Dirac delta functions to re-write 
Eq. (129) as 

A = &$t/dt’/dko 
exp[-i(wi + ws - ko)t] exp[-i(ko - ws - w4)t’] 

k; - w: + ic 

‘&ko-:t+ie- ko+:+t] (130) 

where the integrals over t,t’ and ko run from -cc to co. The variables t and t’ are 
the times at which the two interactions occur. We now perform the k. integral using 
Cauchy’s theorem (closing the contour in the lower half plane for t - t’ < 0 and in 
the upper half plane for t - t’ > 0). The result for A is, 

A= 2 mdt J J 27r -cc 
“&.!.s. 

-m 2Wk 

[ 
Ott’ - t) exp[-i(wt + w2 - wk + is)t] exp[-i(ws - ws - w4 - is)r’] 

@ct - t’) exd-i(wl + w2 + wk - ic)t] eXp[i(Wr, + w3 + w4 _ i<)f]] 

(131) 

The integrals over the times are easily performed to give, 

A=b(w1+w2-w3-w4)- 
1 1 

‘=l+w2-“&+i~ 
+ 

-WI - ‘d2 - wk + i6 1 (132) 

The two terms correspond to the two temporal orderings of the interactions shown 
in Fig. 15b. Thus we see that one covariant diagram is equal two (time-ordered) old- 
fashioned perturbation theory diagrams. The denominators are of the energy deficit 
type, expressing the energy difference between the initial state and the intermediate 
state and are familiar from non-relativistic quantum mechanics. It is self-evident that 
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Eq. (132) is equivalent to Eq. (127). The route which we have followed for our simple 
example illustrates the role of the time-ordering. Our procedure for this simple graph 
is an example of a more general result. One can recover time-ordered perturbation 
theory from covariant perturbation theory by performing the energy integrals. 

The procedure generalizes to more complicated graphs. Thus for any Green’s 
function the sum over covariant Feynman graphs is equivalent to a sum over a (larger) 
number of time ordered graphs. We may formulate a series of rules to generate the S- 
matrix for any transition using time-ordered perturbation theory[l]. This procedure 
is entirely analogous to the normal prodedure for covariant Feynman diagrams. We 
want to construct the S-matrix for a transition a -+ p. 

s,, = a,, - i(2*)4M&$(P, - Pa) (133) 

where Pa(Pp) is the 4-momentum of the initial (final) state. The rules for a scalar 
theory are as follows[l], 

1. Draw all possible time-ordered diagrams for the transition in question. In ath 
order perturbation theory one will need to draw every Feynman diagram n! 
times corresponding to the R! different time orderings of the vertices. Label 
each line with a three dimensional momentum ki. 

2. For each internal line include a factor (2?r)-3(2wk;)-1 where 

wk; = ,,w 

3. For every vertex (except the last) include a factor 

CW3J3(~ k) 

(134) 

(135) 

to express the conservation of three momentum at every vertex. Energy-momentum 
conservation for the whole process, Eq. (133), ensures three momentum conser- 
vation at the last vertex. 

4. For each intermediate state y include an energy denominator. 

where E, = C w is the total energy of the intermediate state and E, is the total 
energy of the initial state. 

5. Integrate the product of these factors over the internal momenta and sum over 
all diagrams. 
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2.1.1 The infinite momentum frame 

In our simple example, shown in Fig. 15b, the two diagrams are not separately Lorentz 
invariant, but their sum is. Since the diagrams are not separately Lorentz invariant it 
suggests that there might be a reference frame in which the diagrams are particularly 
simple. The infinite momentum frame is an example of such a frame. 

Let us evaluate an arbitrary time-ordered diagram in a frame in which the total 
momentum is very large in the .z direction and equal in magnitude to P. In this frame 
the momentum of the ith particle can be written 

pi = XiP + ti 

where the vectors ti are transverse to the large momentum P 

ti . P = 0 

and subject to the constraints 

(137) 

(138) 

yi =o, pi = 1. 

We shall show that in the limit P -+ 0~) the diagrams either have a finite limit or 
vanish. In order to distinguish the two classes of diagrams we will begin by evaluating 
the energy denominators. The energies of the individual particles are given by, 

t;+m2 1 
= hip+ 2~li(p+o F ( > 

The total energy of the intermediate state is given by, 

where 

Thus we may write 

x = c IZil t 

(141) 

042) 

(143) 

044) 

If all of the 5; are positive then using Eq. (139) we find that X = 1 and energy 
denominator becomes 

1 2P 
E,-E,+ic = s, - ST + is (145) 
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If on the other hand some of the momentum fractions are negative, the cancellation 
of the leading term no longer occurs and we find that the contribution is a factor of 
P2 smaller. . . I 

Et - .Z, = P(11 X,) (146) 

Let us consider an Nth order diagram with N - 1 intermediate states in wh,ich 
all the Ii’S are positive. In addition to the N - 1 energy denominator factors of 
order P as shown in Eq. (145), we will have (N - 1) delta functions expressing the 
conservation of momentum in the z direction, each of which scales as l/P. All other 
factors are independent of P and the net result for this class of diagrams is finite in 
the limit P + m. Diagrams involving internal or external particles with negative 
z;‘s are zero in this frame, because of the large energy denominators, Eq. (146) 

We have shown that in the IMF that any diagram involving intermediate states 
with particles travelling backward in time are zero. It is this fact which makes the 
infinite momentum frame an attractive frame in which to formulate the wave function 
of a hadron. Our treatment has been valid for a scalar theory. For applications of 
the IMF technique in gauge theories we refer the reader to ref. [2]. 

2.2 The naive parton model 

The naive parton model(3] pre-dates the invention of QCD. It has a special status 
as a model, because much of the motivation for the model came from field theory 
but with additional assumptions added from the phenomenonology of hadronic inter- 
actions. Later in this lecture we will consider the full QCD description of inelastic 
interactions. With slight modifications, much of the structure of the naive parton 
model will survive. 

The basic assumption of the naive parton model is that the interactions of hadrons 
are due to the interactions of partons; in certain types of reactions the structure of 
the hadrons may be described by an instantaneous distribution of partons present at 
any time. A necessary condition for such a picture to make sense is that changes in 
the number and momenta of the partons should be negligible during the time which 
they are probed. An analogy with diffraction studies of a crystal may be useful here. 
An X-ray diffracted off a crystal reveals the detailed structure of the crystal, because 
the atoms in the crystal lattice can be considered to be at rest during the transit time 
of the X-ray across the crystal. In hadronic systems we ensure that the transit time 
across the target is less than the interaction time by moving to an infinite momentum 
frame. 

Let us now examine deep inelastic scattering in a frame in which the proton is 
moving very fast. In this frame the 4-momentum of the target and the incident virtual 
photon may be written as 

p = (P+$,P) 
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Q = (qo,&,O) (147) 

In this frame the constituents of the proton will have a wave function. Consider 
the amplitude that a constituent with 3-momentum (&,I,,) decay into a state of 
two partons with 3-momenta (&,ri) and (&,x2). The momenta & are transverse 
to the large momentum P. The amplitude for this process to occur in time ordered 
perturbation theory will contain an energy denominator 

1 1 
-= 
AE Eo - El - E2 

where 

AE = ~~-&FGFf-~~ 

limp,, 3 
x2 I 

The lifetime of the fluctuation is AT = l/AE. 

(149) 

(150) 

On the assumption that the x’s are finite and the Gs bounded this time scale is very 
large in the infinite momentum frame. It is Lorentz dilated and so is very much larger 
than the time scale of the deep inelastic interaction, t. 

AT>>t (151) 

The two assumptions are both important. Reactions in which arbitrarily soft partons 
play a role cannot be described by the parton model. Large transverse momentum 
partons cannot be considered free particles during the time of the inelastic scattering. 

How does a proton look in the infinite momentum frame? Because of the Lorentz 
contraction the longitudinal size of the proton is contracted. by a factor m/P with 
respect to its size in the rest frame. Partons with finite values of I and fixed transverse 
size distributed on this disk as shown in Fig. 16 and the number of partons per unit of 
rapidity is rather small. Partons with very small values of x, such that x N lGeV/P 
are called wee partons. Because’of their very small momentum they are not confined 
to the Lorentz contracted disk. Their spatial extent can be determined using the 
uncertainty principle. 
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Figure 16: Proton as viewed in the infinite momentum frame 

2.3 Deep Inelastic Scattering 

2.3.1 Kinematics of deep inelastic scattering 

Consider the scattering of a high energy charged lepton off a hadron target. If we 
label the incoming and outgoing lepton four-momenta by kp and k’p respectively, the 
momentum of the target hadron (assumed hereafter to be a proton) by PJ’ and the 
momentum transfer by qJ’ = k’ - k”, then the standard deep inelastic variables are 
defined by: 

Q* = wq2, P2=M2 

Q2 Q2 
’ = %=2A4(E-E’) 

q.p 
’ = k.p -=I-E’/E, 

where the energy variables refer to the target rest frame. If the lepton is an electron 
or muon, then thescattering is mediated by the exchange of a virtual photon, Fig. 17. 

The structure of the lepton vertex is assumed to be completely understood. The 
hsdronic tensor contains all the information about the interaction of the electromag- 
netic current with the target. 

W&P,q) = k C (P(j~(O$f) (XljdO)(P) (2n)4J4(q + P - Px) 
X 

= $Jd’rei9.’ (PJjJ(z)j,(O)lP) 

m ~/d4zei9.‘(P~[j~(z),j.(0)]lP) (154) 
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Figure 17: Deep inelastic charged lepton-proton scattering 

Because of the conservation of the electromagnetic current we may write 

W@(P, q) = (f@ - $)Wl(x,Q2) + (P” + &q’=)(P@ +$f) wz$,Q2’ (155) 

where M is the mass of the struck hadron and x = -q2/2v = Q2/2u where Y = P. q. 
The lepton scattering cross section is defined in terms of the structure functions 

Fi(x, Q2). For charged lepton scattering, lp + IX, we have 

d% 8ra2ME -= 1 + (I- Y)~ 
dxdy Q4 K 2 > 

2zF 
I 

+(l - Y)@ - 24) - (W/Wxyh], 

where 

Fi(x,Q’) = WI(X,Q~) 

&(x,Q2) = 
vWz(x, Q2) 

M* 

(156) 

(157) 

2.3.2 DIS in naive parton model 

We shall consider the dynamics of DIS in a frame in which the struck proton is moving 
very fast. In order to specify this frame it is convenient to introduce two light-like 
vectors p and n which have their 3-momenta directed along the positive and negative 
z-axis. The vector p can be thought of as the four momentum of the target in the 
approximation in which we ignore its mass. By convention we choose n.p = 1 so that 
n has the dimensions of an inverse mass. In this frame we have that, 

p2=n2=..kT=p.kT=0 (158) 
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where kT is any vector in the transverse plane. An explicit representation for the 
vectors p and n is 

p” = (P,O,O,P) 

nr = (&,O,O,-&) (159) 
The important vectors in DIS can be written as, 

P’ = y+$p 

fl = unr +flT (160) 

For simplicity we will ignore the mass M in the following so that p and P are taken 
to be identical. In the frame given by Eq. (160) we may project out the components 
of the hadronic tensor. 

vn”dW,p = VW2 
-p = F2 (161) 

2xW, = F2 - 2zFl (162) 

Now consider the simple handbag diagram shown in Fig. (18) in this frame. 

Figure 18: Handbag diagram 

W”%,q) = e2~~[7a(61+~YB]ij[B(k,p)]ji J((k +d2) (163) 

where B(k,p) is the forward hadron-quark amplitude. We now perform a Sudakov 
decomposition of the momentum of k, 

k’=W+ 
k* + kT2 

2F n’+k+ (164) 
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The assumption of the parton model is that the transverse momentum k= and the vir- 
tuality k2 are limited, presumably by the behaviour of the function B(k,p). Imposing 
this constraint the delta function may be simplified to give. 

6((k + q)2) = b(k2 + 2@ - 2m.kT + q2) = 6(2@ - Q*) = &6(< - x) (165) 

Hence we may write the result for W2 for a single flavour of quark as, 

VW, - = ~l~[lc(Y+~~lijB,i(k,P)a(F-x) M2 

= e2x/ &$[lI]ij~jdktP)J(C - 2) 

= e*xq(x) (166) 

where the quark distribution is given by, 

q(x)=/& W(k,p)l J(n. k - ~1 

We therefore see that in the naive parton model the structure functions scale, i.e. 
they depend only on the dimensionless variable z: 

E(x, Q2) - E(x). w3) 

In addition we find the Callan-Gross relation F2 = 2xF, which is indicative of the 
spin 4 nature of the constituents. 

One can give an operator representation for the quark distribution. In the light- 
cone gauge two quark fields separated by a light-like distance along the n direction 
defines a gauge invariant operator. The string connecting the two quarks is unneces- 
sary because n. A = 0. The quark distribution is given by the Fourier transform of 
this correlation function. 

4x1 = / $eiAz (PJWW1L(~n)JP) 
The identification of q(x) with a number density is only valid in a particular frame, 
(the infinite momentum frame). Taking the first moment of the quark density with 
respect to I we find, 

jdxq(4 = (+@)&@)(p) = (pl~+WN-‘)lf’) (170) 

where the approximate relation is only valid in a fast moving frame when 

4r”s = w1L (171) 

Thus the first moment of the quark distribution counts the number of quarks. 
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2.3.3 Experimental results on DIS 

The Bjorken limit is defined as Qz,p . Q + 00 with I fixed. In this limit the structure 
functions are found experimentally to obey an approximate scaling law. i.e. they 
depend only on the dimension&s variable z: 

E(z, Q*) - Fi(S). (172) 

This is illustrated in Fig. 19, where data on the electromagnetic structure function 
F2, measured with a proton target, are displayed. The data span nearly two decades 
of experiments, from the original SLAGMIT measurements [IO] to the most recent 
measurements from the BCDMS collaboration [Ill. Only a representative sample of 
data points is shown. Note that even though the Q* values vary by two orders of 
magnitude, to a good approximation the data lie on a universal curve. 

1 I 1 I , I 
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Figure 19: The Fz structure function from the SLAC-MIT and.BCDMS collaborations 

Bjorken scaling implies that the virtual photon scatters off pointlike constituents, 
since otherwise the dimensionless structure functions would depend on the ratio Q/Q,,, 
with l/Q0 some length scale characterizing the size of the constituents. Feynman 
called these fundamental constituents partons. The above ideas are incorporated in 
what is now known as the ‘naive parton model’ [3]: 

l q([)de represents the probability that a quark q carries momentum fraction 
between < and ( + d( 

l the virtual photon scatters incoherently off the quark constituents 
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Thus 

53 

Fz(z) = c 1’ 4 q(t) &$5(x - El 

= $ eixq(x). 073) 

and so for the scattering of a charged lepton off a proton target, 

F*(z) = x[$x) + id(x) + is(x) + f&x) + . .I. (174) 

For neutrino scattering - vp + IX - the virtual W+ probe measures the quark 
distributions weighted by the weak charge: 

F,“(x) = Zx[d(x) + s(x) + a(x) + E(x) + .I. (175) 

A complete list of the most commonly encountered structure functions is given below. 

F; = 2x[d+s+ti+c] 

IF; = 2x[d + s - ii - c] 
F; = 2x[u + c + 6+ s] 

xF3” = 2x[u+c-d-s] 

F;” = x[$(u+u+c+t)+;(d+6+s+s)] 

2xFl = F2. (176) 

This last result follows from the spin-? property of the quarks. 
With sufficient number of measured structure functions, the above relations can be 

inverted to give the quark distribution functions themselves. From such an analysis, 
the following picture emerges. The proton consists of three valence quarks (uud) 
which carry the electric charge and baryon quantum numbers of the proton, and an 
infinite sea of light qq pairs. When probed at scale Q, the sea contains all quark 
flavours with rnr < Q. Thus at a scale of O(1 GeV) we have 

with the sum rules 

u(x) = U”(E) +vqx) 

d(x) = d”(x) +2(x) 
. 

(177) 

J o1 dxpv(x) = 2 

(178) 
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The last of these is an experimental result. It indicates that the quarks only carry 
about 50% of the proton’s momentum. The rest is attributed to gluon constituents. 
Although the gluons are not directly measured in deep inelastic lepton hadron scatter- 
ing, their presence is evident in other hard scattering processes such as large transverse 
momentum jet and prompt photon production. Fig. 20 shows a typical set of quark 

lOL, , I I I I I I, !, / 1, I 

MRSA, p*= 10 GeV” 1 
3 

0 .2 .4 .6 .a 1 
x 

Figure 20: Quark and gluon distribution functions at QZ = 10 GeV’ 

and gluon distributions extracted from fits to deep inelastic data, at p* = 10 GeV*. 
Closer examination of Fig. 19 reveals a systematic deviation from exact Bjorken 

scaling: the structure function decreases with increasing Q* at large x and has the 
opposite behaviour at small x. In the following section, we discuss how these scaling 
violations are understood in perturbative QCD. 

2.4 The QCD parton model 

We shall now consider the case the status of the parton model when we have gluon 
radiation. We shall find that the transverse momentum of the partons is not bounded. 
So we do not expect the parton model to be exactly true in perturbation theory. In 
fact since there is no scale in the problem it is clear that the transverse momentum 
will extend up to the kinematic limit which is of the order of Q*. 

To establish the normalization we calculate the scattering of a virtual photon off 
a free quark, Fig. 21a 

Y’(Q) + P(P) + q(l) (179) 
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(b) 

Figure 21: Amplitudes for Deep Inelastic Scattering 

The momenta of the lines are shown in brackets. The invariant matrix element is 

M, = -ieti(l)yau(p) (180) 

leading to a squared matrix element (summed and averaged over spins and colours) 

nQnP~ IMl$ = 4eZ (181) 

We have taken the quarks to be maesless. The one dimensional phase space is 

PS1 = 2a6( (p + q)3) (182) 

Inserting a ‘flux factor’ of 1/47r from Eq. (154) we obtain the overall result 

F*(x) = e26( 1 - Z) (133) 

Having established the free result we now investigate the more complicated parton 
process, Fig. 21b 

Y’(¶) + q(P) + c?(r) + d4 (184) 

The squares of the four diagrams involving real radiation are shown in Fig. 22. We 
shall start by considering the graph of Fig. 22a in which the hadron quark ampli- 
tude of the previous section, (B(p, k)), is represented by a particular model, single 
gluon exchange. The Lorentz invariant phase space for the diagrams with real gluon 
emission is, 

J d4r d41 
ps2 = (2n)3 (2n)3 

---6+(?)6+(P)(2+4(p + q - T - I). (185) 

Introducing the momentum k to denote the momentum of the struck parton line we 

get 

PS*=-&j d4k h+((p - k)*) 6+((k + q)*) (W 
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Figure 22: Real graphs contributing to Deep Inelastic Scattering 

Performing a Sudakov decomposition 

k’ = &t” + ” ;jklzn* +k; 

&k = d’ 2Fdk2d2kT 

we find in the frame specified by Eq. (160) 

(p-k)2 = (l-&f-~ 

(187) 

(188) 

(189) 

(k + q)’ = 2Eu - Q2 - lk12 - 2qT.kT (190) 

In this frame the phase space can be written as, 

P4=& /d.$dk’dk;dtl S (k; - (1 - 0 Ikl’) 6 (< - z - ‘lc’* +2”,” ’ kT) (191) 

where the 0 < 0 < ?r. Now let us consider the matrix element 

M” = -igea(l)r”$tAu(p) (192) 

Squaring and averaging over colours and spins we obtain 

z IMl$ = h2g2 c CF‘W?(dc + ~)Y”MHY~~ 
PO1 

093) 

where CA(tAtA)ij = CFbij. 
We will perform the sum over the polarization of the real gluon using the projector 

(194) 
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Thus in addition to the Lorentz condition E.T = 0, the gluon satisfies the gauge 
condition c.n = 0. Thus we have only two physical polarizations propagating. This 
is important and would not be true if we performed the sum over polarizations using 
another method, (such as the Feynman trick). An important property of the quark 
gluon amplitude is that it vanishes in the forward direction. This is easy to see because 
helicity is conserved in the vector interaction. A positive helicity quark cannot decay 
to a collinear quark and a transverse gluon and conserve both the helicity of the quark 
and the component of (spin) angular momentum along the direction of travel. In fact 
the amplitude vanishes like, 

4q + 4’s) - kT W) 
The argument depends on the spin of the produced gluon, therefore it is only true in 
a physical gauge in which only physical degrees of freedom propagate. 

We can project the virtual photon components out with the vector n to calculate 
F2 as shown in Eq. (161). Using the kinematic rel~ations implicit in the phase space 
we find 

$‘rsP~ IMl$ = 
8e2as 
TWO Ikl (196) 

where P(t) is a property of the qqg vertex known as the known as the Altarelli-Parisi 
splitting function. The l/k4 factor in Eq. (193) has been cancelled to l/k2 by the 
two amplitude factors in Eq. (195) and for P we find, 

(197) 

Putting the whole thing together and performing the kg and 0 integrations we obtain. 

(198) 

where 
<*(y,z) =s+y-2yzfJ41(1 -Z)Y(l -y) (199) 

In order to simplify the notation we have introduced the variable y = lkl* /(2v). The 
necessity that we have real roots limits 0 < y < 1. The first thing to notice is that 
the transverse momentum is not limited. This was predictable since we have no small 
scale at which it could be limited, but lk12 can be as big as 2~. In addition the Ik(’ 
integral is logarithmically divergent at small Ikl. Let us isolate the coefficient of the 
logarithmical divergence. In the limit y tends to zero, & both become identically 
equal to z and the range of integration vanishes. Thus were it not for the divergence 
in the denominator of the integrand the integral would vanish. We therefore find that 
the coefficient of the logarithmical divergence is, 

F2 = 
2~ dlkl’ c+ 

w ~- J 4 
1 

JKc - E)(C - E-J 



2 &CD AND THE PARTON MODEL 58 

2 

= ZzP(z) /,‘” y$- @W 

So in our concrete example we have learnt two things. The first is that the 
virtuality (transverse momentum) integral is not cut-off at large k. The integral 
extends all the way to 2~. If the integral went like 

(201) 

the conditions of the parton model would be satisfied. Instead we have found that 
6 = 0 and since the integral is logarithmic it receives contributions from all values 
of k2. The second feature which we have found is the divergence at small virtuality. 
It is interesting to go back and review this divergence from the standpoint of old- 
fashioned perturbation theory. Let us calculate the energy denominator in Fig. 23a 

/ (4 -/ (b) 

for the intermediate state 

Es - Ei = 

= 

= 

Figure 23: Two time orderings 

WI + Wk - wp 

((1 - SIP + 

kg 
2(1 - SKP 

The vanishing of the denominator as kT + 0 leads to an energy degeneracy of the 
initial and intermediate states. So by the standard uncertainty principle argument 
this is a fluctuation which has an extremely long life. The other time ordering is of 
order P and is suppressed as P + M. 

In the light-cone gauge the crucial role is played by the diagram of Fig 22a. This 
is -reason for using the light cone gauge. The correspondence with the parton model 
is clear because Fig 22a is a handbag type of diagram. The other diagrams only give 
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finite corrections to the cross-section. Consider for example Fig 22b. Instead of the 
l/k4 present in Fig 22a, this graph contains only one propagator which can vanish. 
The other propagator is equal to (p + q)2. B ecause of Eq. (195) the numerator factors 
at the gluon emission vertex contribute another factor of kT N v@, in the light cone 
gauge. This graph gives only a finite contribution to the deep-inelastic scattering 
cross-section. 

2.4.1 Factorization 

QCD overcomes the divergent result found above by a procedure known as factoriza- 
tion. The idea of factorization is that we can separate the short and long distance 
parts in a multiplicative way. The property of factorization is proved in perturba- 
tion theory, although, because the idea of separating low and high frequency parts is 
rather simple, one hopes that the factorization is more generally true. One example 
of factorization is the operator product expansion. 

Jl(S)JZ(O) !‘i c c”(~*Pm 
n 

where Ji and Jz are two operators. The Ci are C-number functions which contain all 
of the physics of the short distances. 

The essence of the parton model is the impulse approximation which states that 
there are two time scales which characterize a high energy scattering. A short time 
scale of order of the large momenta in the problem, (Q,v) characterizes the hard 
scattering. A long time scale of order of the hadron radius characterizes the binding 
and recombination of the constituents. The short time scale physics depends on the 
particular process but is calculable. The long time scale physics depends on the 
complexity of hadronic binding but is independent of the particular process. 

Explicitly the required factorization takes the following form. Let do(p) be an 
inclusive differential cross section involving an incoming parton of type j. The result 
for the hard process calculated in perturbation theory is, 

dcj(P) = c i’ dczk(6P)rkj((Ev f) 
k 

All of the singularites are contained in the factor r which can now be absorbed into 
distribution function. Note that F is a matrix in the space of quarks and gluons. 
C({p) is an effective cross section in the re-scaled momentum evaluated at p2 = 0. 5 
is normally referred to as the short distance cross section. For an incoming hadron 
the hadronic cross section is related to the parton cross section by, 

do(P) = C /cj(Ep).fj(Odt j 
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where f is some bare quark distribution. Combining Eqs. (204) and Eqs. (205) we 
get, 

W’) = c / *k(tP)jk(t)ti 
k 

(206) 

where f is a ‘renormalized’ parton distribution function. 

The factorization assures us that r? is finite and calculable perturbatively. Equations 
of the type shown in Eq. (207) can be simplified by taking moments. If we define the 
moments of any function f by 

f(j) = i1 d&-‘f(O (208) 

we find that Eq. (207) may be written as 

ik(i) = c rkl(i dff(j) 
j 

(209) 

2.4.2 Regularization 

In calculating the radiative corrections to the matrix element we have encountered a 
divergence and interpreted that divergence as a part of the long time physics. However 
in order to calculate this term and factor the divergence we must regulate it so that 
we have control over the finite parts. The method of preference is the method of 
dimensional regularization. The use of dimensional regularization for UV divergences 
is common. In the present context it is also used to control IR divergences. The 
Lorentz invariant phase space in d dimensions is 

/ 
&r 81 

ps2 = @)d-I (zr)d-l s+(rZ)s+(l*)(2a)ds4(p+ q- r - I) (210) 

After performing the integration over irrelevant angles, we find that the generalization 
of Eq. (191) is, 

1 J;;(47r) 
P.92 = - 

16v?rz r( 4 - e) / 
d<dk’dk$db’ (k; sin’ B)-’ 

6(k$-(I +)Ikl’) +-z-y- +cosl?) (211) 

where the 0 < 0 < ?r. Performing the 0 and kT integral we obtain 

ps2 = 1 Jii(47rY 53 L 
igyq+)($ jdk’f4 [CC+-EWE-)]+ (212) 
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Note that the < integral can be performed by making the change of variable 
t = (5+ - E-P + t-9 

I = 1” 4 [cc+ - CM -c-p 

= (<+ - (-)-” i’dt (t(1 - t)]+ = (<+ - F_)-2’;;;+--2:; (213) 

The matrix element in n dimensions is given by Eq. (196) with P(t) generalized to 

p(e) = CF(S - 41 - 0) (214) 

Putting everything together we find that the expression for the singular part in O(as) 
is, 

Fz=e2~xP(x)(~~)fr(ll~)~idyy-1-f(1-y)-’ (215) 

Thus the corrected expression for the quark distribution function due to real radiation 
is, 

g(z) = j dx& r(x, 4dy)4~ - XY) (216) 

=/ [ 
dxdy 6(1 -x) - zP(x)i]q(y)S(z - xy). (217) 

This is almost the complete answer for q. The full result requires the inclusion 
of virtual radiation, specifically the inclusion of self energy insertions on the legs 
of the ladder. The treatment of these graphs in the light cone gauge is somewhat 
delicate. In the light cone gauge with a principal part regularization the self energy 
contains ultraviolet divergences in the terms proportional to $ as well in the terms 
proportional to #. These latter divergences require a counterterm proportional to $ 
which is not present in the original lagrangian. We shall finesse these problems by 
noting that these graphs can only contribute at z = 1 and determine the endpoint 
contribution by a physical argument. In physical predictions of the QCD parton 
model r is factored into the physical parton distribution. In order to preseve the 
conservation of quark number we must have. 

/ 

1 

0 
dx rqp(x, E) = 1 

The full answer for lYqs can hence be written ‘Hs 

(218) 

(219) 
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where the ‘plus’ distribution is defined so that its integral with any sufficiently smooth 
distribution f is 

I 
‘dx f(x) = 

0 (l-x)+ / 
‘,fb) -f(l) 

0 (1 -xl (220) 

The function Ppp is the lowest order term of the qq entry in the Altarelli-Parisi matrix 

P,,=cF[(y;;+ +q,,1-r)] (221) 

2.5 Deep inelastic scattering in the laboratory frame 

To conclude this lecture we shall consider deep inelastic scattering in the laboratory 
frame. This is a slight digression from the main topic of the lectures, but it provides 
a fascinating application of parton dynamics when used to describe deep inelastic 
scattering off nuclei. 

The treatment of deep inelastic scattering in the previous section was performed in 
a frame in which the target was fast moving. In this frame the deep inelastic photon 
acts as a probe of the parton structure of the target. However in certain circumstances 
it may be appropriate to consider DIS in a frame other than the infinite momentum 
frame. Of course, the predictions of the model should be independent of the frame, 
although clarity of the physical picture may vary depending on the frame. As a test 
of our understanding we shall therefore consider deep inelastic scattering in the frame 
in which the virtual photon is fast moving and the target is at rest. This has the 
added advantage of being the frame in which most experiments are performed. 

In the lab frame the parton structure of deep inelastic photon is important and 
the target proton acts as an absorber of the constituents of the photon. 

4) b) 
Figure 24: DIS in a) infinite momentum frame, b) laboratory frame at small z 

The kinematics of DIS can be descibed in the rest frame of target of mass m by, 
(I 7 -q2/(2mfi, F = P q/m)) 

Q = (9-mx,O,O,D) (222) 
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P = (m,O,O,O) (223) 

Let us first consider the case when the virtual photon penetrates the nucleus, which 
occurs when the x of the virtual photon is large. Because the highly virtual photon 
is very small, (in a sense which I will make clear later) it traverses the nucleus until it 
encounters a wee par-ton and transfers all of its momentum G to it. Immediately after 
the collision the debris will consist of the original collection of wee partons (minus the 
struck parton). The struck parton is now separated in rapidity from the remains of 
the target by a large rapidity InD. The struck parton has such a large rapidity and is 
unable to interact with the wee partons in the time available. Another way of saying 
of expressing the same concept is to view the event from the point of view of the 
struck parton. In its rest frame the remainder of the nucleus is Lorentz contracted to 
a thin disk which flies by in an instant. This describes the scenario which occurs at 
normal values of x. 

There exists another possibility which is important at small values of z. The 
virtual photon can fluctuate into a hadronic state. Since energy is not conserved in 
this interaction, the lifetime T of this fluctuation is finite. It is determined by the 
standard uncertainty principle argument by calculating the energy difference between 
the the virtual photon state and the hadronic state of the same momentum (and mass 
M,) ,into which it transforms. 

AE = ~i72+M~-(~-nzmz) (224) 
1 1 

T=aE = - 
FTfm 

At N - 
X 

Thus for sufficiently small x the time for which the fluctuation exists and consequently 
the distance which the virtual photon travels in its hadronic guise can be bigger than 
the radius of the target. The fluctuation occurs upstream of the target and the virtual 
photon arrives at the front surface of the target in the form of a shower of quarks 
and gluons. If the target is a nucleus this can give rise to the the phenomenon of 
shadowing. 

2.5.1 Shadowing 

One context in which it is useful to consider deep inelastic scattering in the laboratory 
frame is in the discussion of scattering of nuclei in the small x region. We wish to 
apply the methods of the par-ton model to deep inelastic scattering off a nuclear 
target. It is well known that the cross section u for the scattering of a real photon 
off a nucleus is not A times bigger than the cross section for scattering off a nucleon, 
~0. We rather find that 

u = uoA” (225) 
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where Q < 1 implies the existence of a phenomenon known as shadowing. 
The important time scale (or equivalently the distance scale) is given by Eq. (224). 

Thus if r > R the virtual photon presents itself at the face of the hadron as a hadronic 
state. In the naive parton model one therefore expects shadowing for I < 1/(2Rm). If 
z < 1/(2Rm) hsdronic state is formed before the virtual photon reaches the nucleus 
and the incoming state should interact with the nucleus much as a hadron would. 
The scattering cross-section goes like nR*, and the effective value of LL is 2/3. 

The nuclear radii are normally parameterised by R = T-oA’/~ with rs = 1.12 fm. 
Thus, for example, the nuclear radius of D* is R = 1.4 fm, for CU”~ we have R = 4.5 fm 
and for Xei31 we have R = 5.7 fm. Thus for a heavy nucleus such as copper or xenon 
we expect shadowing for I < 0.02. Experimental data from E665 and NMC are 
shown in Fig. 25. The first plot shows the onset of shadowing in the small 5 region. 
The second plot shows that the ratio of structure functions in different nuclei is 
approximately independent of Q* in the shadowing region, I < 0.01. Experiment 
seems to indicate that shadowing is a scaling phenomenon. 
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Figure 25: a) Shadowing ss a function of z. b) The slope in Q* of the dependence 
cross section ratio as a function of I. 

2.5.2 Theory of Shadowing 
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Figure 26: Interaction of virtual photon with a nucleus a) Equipartition of longitudi- 
nal momenta b) Unequal partition of longitudinal momenta 

We now consider a fluctuation of our deep inelastic photon into a qcj pair with mo- 
menta ki and k2. We are working in the context of the parton model in which all 
transverse momenta are considered bounded at a hadronic scale which we will denote 
by m. 

q = (L7-mml,o',P) 

h x (k,+ “,+,m*,kT.k,) 

k2 z 
i;+772 

(~-k,+2(0-k),-k~,~-k,) 
I 

(226) 

(227) 

(228) 

when k, > k=. Hence the energy denominator corresponding to this fluctuation is 

A&k;-2 k++m* 

2k + 2(fi - k,) - mx (229) 

Given the existence of the energy denominator and limited kT N m, we can now 
ask what is the preferred value of k,. If k, is very small, k, < m/x the energy 
deficit will be large and the fluctuation short-lived. If k, is large, k, > m/x then the 
transverse spatial extent of the qcj pair on arrival at the target will be 

AXT = Azb’ = A+ N L+ 
I m k, (236) 
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3 Parton distributions and small x physics 

3.1 Derivation of GLAP equation 

In the last lecture we saw that the property of factorization allows us to separate 
the low momentum physics from the high momentum physics in a multiplicative 
way. This separation is performed at a scale p, which is completely arbitrary and 
no physical prediction can depend on it. In this section we investigate the constraint 
provided by this condition. For simplicity, we will consider a non-singlet cross section 
which can only be initiated by a quark. We therefore have the factorized result, 

4Q2~clZ~4~*),4 = &:p(Q2,p2,as(p2)) 8 r,,(c&~*),~) (233) 

The symbol @ indicates a convolution integral over longitudinal momentum fractions 
of the type given in Eq. (204). If we take moments (cf. Eq. (209)) on both sides of 
Eq. (233) it reduces to a simple product. 

4d = qi %+*)7P*)r,,(i 4/l*), 6) (234 

5 is the short distance cross section from which all singularities have been factor- 
ized. l? contains the mass singularities which manifest themselves as poles in E. The 
independence of the full cross section from p implies that 

(235) 

and hence that 

&lnr(i&4,0 = - &ln%(Q2~~*,CIS(CLP)) = r(i4~~)) (236) 

The function y is known as the anomalous dimension, because it measures the devia- 
tion of 8 from its naive scaling dimension. It must be finite and can only depend on 
o&*) because these are the only variables common to both I. and 5. The anomalous 
dimension is extracted from Eq. (236) by an argument similar to the one given in Sec- 
tion 1.7.1. Because the /I dependence of r enter only through the running coupling 
we have that, 

& lnr(i US, 4 = Ph 4& In w, C&U*), 4 S (237) 

In the minimal subtraction scheme r is given by a series of the form, 

00 r(yj, as) 
r(h,f) = 1+x 

i=l 
Ei (238) 
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and P(as, e) is as given by Eq. (84). Comparing the coefficient of the term of order 
e” we find that 

r(j, as) = - &r(%. as) (239) 

The lowest order result for r.&) can be derived from Eq. (219). 

r&as) = 2 J,’ dz zj-‘Pps(z) (240) 

We therefore find the lowest order non-singlet equation for the ‘renormalized’ quark 
distribution function 

4(j) - = r.&wMj) dlnp2 
d@(l) =s 1 
- = ;z;; o dy Old2 P,,(Y)~(z) J(z - ~2) dln$ / i (241) 

(242) 

where 
G(i) = c /@d~r,,(k%W4~ - EP) 

j 

3.2 The GLAP equation 

In the ‘naive’ parton model the structure functions scale, i.e. F(r, Q2) + F(z) in 
the asymptotic (Bjorken) limit: Q2 -+ co, r fixed. In &CD, this scaling is broken by 
logarithms of Q. 

Exactly as for the renormalization of the coupling constant, we can regard n(z) 
as an unmeasureable, bare distribution. The collinear singularities are absorbed into 
this bare distribution at a ‘factorization scale’ ,r~e, which plays a similar role to the 
renormalization scale. There is therefore no absolute prediction for the ‘renormalised’ 
distribution q(s, p). What the theory does tell us, however, is how the distribution 
varies with p2. 

as(t) 1 4 
&qw = x 1 -pwP(~). (244) 

This equation - known as the Gribov-Lipatov-Altarelli-Parisi equation - is the ana- 
logue of the p function equation describing the variation of as(t) with t. 

The full prediction of the theory is most easily cast in terms of the moments 
(Mellin transforms) of the distributions: 

q(j, t) = 1’ dz &’ q(x, t). (245) 

In terms of these moments, the t dependence of the quark distribution function is 
given by 

ddi, t) 
dt = h (j, dt)) q (i t) . (246) 
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We next define Pqq as the inverse Mellin transform of ys4: 

2 P-N ( I, as) = 1 2mr I c 4 x-j -di as), (247) 

where the integration contour C in the complex j plane is parallel to the imaginary 
axis and to the right of all singularities of the integrand. Taking the inverse Mellin 
transform of Eq. (246), we obtain in x space, 

dq(x, t) as(t) l 
dt = 7 o dt o1 I / dr 4~ - @)Pq,(~t Mt)M,t) 

Ppp has a perturbative expansion in the running coupling, 

P&z,as) = P$O’(r) + ZPg’(z) + 

(248) 

(249) 

Retaining only the first term in this expansion gives precisely the result in Eq. (244), 
with P c Pi:). 

In fact the above derivations are strictly only correct for difleerences between quark 
distributions, q = qi - qj. In general, the Altarelli-Parisi (AP) equation is a matrix 
equation, 

The AP kernels P/j?‘(x) have an attractive physical interpretation as the probability of 
finding parton i in a parton of type j with a fraction z of the longitudinal momentum 
of the parent parton and a transverse momentum much less than p. The interpretation 
as probabilities implies that the AP kernels are positive definite for I < 1. They 
satisfy the following relations: 

/ 

1 

0 
dxP(‘)(x) = 0 w 

/,‘dx x[P$‘(x) + Pj,“‘(x)] = 0 

i’dx x[2n,P$(x) + P;;‘(x)] = 0. (251) 

These equations correspond to quark number conservation and momentum conserva- 
tion in the splittings of quarks and gluons. 

The kernels of the AP equations are calculable as a power series in the strong 
coupling as. Both the lowest order terms [2] and the first correction [4] to the evolu- 
tion kernels have been calculated. The lowest order approximations to the evolution 
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kernels are: 

p;;)(x) = CF (;;I;+ +$(I -I) , 
[ 1 

e;‘(x) = TR z*+(l -x)~ , TR = %, 
[ 1 

p;,“yz, = cF[‘+(‘z-x)2], 

P;;‘(x) = 2N 
l-x 

+- x +x(1-2) +6(1- 
1 

x) (1~ - 4nfTR) 
6 

(252) 

The ‘plus prescription’ on the singular parts of the kernels is defined as 

/ol dx f(l)[g(x)l+ = i’dx (f(x) - f(l)) g(x). (253) 

The plus prescription is defined under the integral sign, and defines a distribution. 
In terms of moments these four evolution kernels take the form 

-,$(j) = CF 

r(o)(j) = TR w 
y"'(j) = cF[(i&i+;)2)], 99 

y(‘)(j) = 2N 9s - & i] - +,TR. 

(254) 

In general the AP equation is a (2nf + 1) dimensional matrix equation in the space 
of quarks, antiquarks and gluons. However not all of the evolution kernels are distinct 
so the matrix equation can be considerably simplified. Because of charge conjugation 
we have that, 

Pqp = P@, P,, = P@. (255) 

At lowest order we have in addition the following relations, 

P$)=O, P$!$=O (i+j). (256) 

The solution of the AP equation is simplified by considering combinations which are 
non-singlet (in flavour space) such as qi - gi or qi - qj. In this combination the mixing 
with the flavour singlet gluons drops out and we have, (V = qi - qj), 

-$V(x: t) = $ lp,,(O @ V(z,t)l 1 (257) 
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where @ is a shorthand notation for the convolution integral of Eq. (248). Taking 
moments, this equation becomes 

Wit) 

dt = Fif,, (3) (J!Q as(t) (0) v 
(258) 

Inserting the lowest order form for the running coupling, we find the solution 

W t) = V(j, 0) d,,(j) - -6?(j) 
2irb (259) 

It is straightforward to show that d&l) = 0 and that d,,(j) < 0 for j 2 2. 
This in turn implies that ss p increases the distribution function decreases at large 
I and increases at small zr. Physically, this can be understood as an increase in the 
phase space for gluon emission by the quarks as p increases, with a corresponding 
degradation in momentum. The trend is clearly visible in the data. 

We now turn to the flavour singlet combination of moments. Define the sum over 
all quark flavours to be given by C, 

C = C (Qi + qi). (260) 

From Eq. (250), which holds for all flavours of quarks, we derive the equation for the 
flavour singlet combination of parton distributions, 

dC 
zt= 
4 
z= $ [PJ,” @ c + Pjj’ c3 g] + 0 (O’s (t)) (261) 

This equation is most easily solved by direct numerical integration in z space starting 
with an input distribution obtained from data. 

We can illustrate some simple properties of the distributions using the moments. 
Taking the second (j = 2) moment of Eq. (261) we find that 

-g ;;g+c$ ;y‘J $)( ;;;;>. (262) 

The eigenvectors and corresponding eigenvalues of this system of equations are 

o+(2) = C(2) +g(2) Eigenvalue : 0 

o-(2) = C(2) - -$g(2) Eigenvalue : - 
F ( (263) 

Note that the combination O+, which corresponds to the total momentum carried by 
the quarks and gluons, is independent oft. The eigenvector O- vanishes at asymptotic 
t: 

---) 0, d-(2) = -(“Fnb’ ?) 
(264) 
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Figure 27: Elements of the anomalous dimension matrix and its eigenvalues vs j 

So that asymptotically we have 

C(2) n/ Nn/ 
9(2) = E = 2(N2 - 1)’ (265) 

The momentum fractions carried by the quarks and gluons in the 1-1 + 00 limit 
are therefore 

qt=_ = (4&J 3 9(2)1*=_ = (4c”F”;J. (266) 

Note, however, that the approach to the asymptotic limit is controlled by t N In/.? 
and is therefore quite slow. The Q2 dependence of the momentum fractions are shown 
in Fig. 28. 

For a tabulation of the eigenvectors and eigenvalues of the moments of Eq. (261) 
we refer the reader to reference 13). The expected scale dependence of some of the 
distributions are shown in Figs. 29-32. 
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Figure 28: Momentum fractions carried by the quarks and gluons as functions of the 
scale 
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Figure 29: The scale dependence of the gluon distribution 
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Figure 30: The scale dependence of the valence up distribution 
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Figure 31: The scale dependence of the valence down distribution 
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Figure 32: The scale dependence of the anti-up quark distribution 
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3.3 QCD fits to deep inelastic data 

In the the previous section we saw that perturbative QCD predicts the Q2 evolution 
of the structure functions, rather than the size and shape of the functions themselves. 
Quantitatively, the variation with Q2 is controlled by as(Q) and hence by the QCD 
scale parameter A. Deep inelastic scattering data provide one of the ‘precision’ tests 
of QCD and, arguably, the most accurate determination of AZ. 

Although the theoretical predictions appear simplest when expressed in terms of 
structure function moments, it is very difficult to extract such moments from the data. 
This is because the measurements do not extend to very large and very small I, and 
some form of ad hoc extrapolation is required to construct the moment integrals. A 
more practical and accurate m&hod is to choose a reference value Qo and parametrise 
the parton distributions at that value, e.g. q(z, Qo) = Az”(l-z)*. These distributions 
are then evolved numerically, using the Altarelli-Parisi equations, to obtain values for 
the F;(z,Q2) in the kinematic regions where they are measured. Note that in this 
approach the rate of change with Q* of the structure function at a given I depends 
only on the structure function evaluated at < > 2, cf Eq. (250). Finally, a global 
numerical fit is performed to determine the ‘best’ values for the parameters, including 
A. The extent to which the measured value of A depends on the other parameters 
can also be quantified and used to derive a systematic error. 

The above procedure is not, however, without problems. The most serious of these 
are: 

. In &CD, the structure functions have ‘higher twist’ power corrections, which 
are much more difficult to estimate quantitatively: 

F(x,Q*) = F'2'(x,Q2) + 
F(Yx> Q*) + 

Q* ’ (267) 

where the superscripts on the right-hand-side refer to the ‘twist’ = (dimen- 
sion - spin) of the contributing operators. To avoid these complications, the 
analysis must be performed at large Q2 where the power suppressed terms are 
negligible. 

l The structure function Fz can be decomposed into singlet and non-singlet (‘sea 
quark’ and ‘valence quark’) parts, which dominate at small and large x respec- 
tively. Hence, except at large I, the Q* dependence of F2 is sensitive to the 
a priori unknown gluon distribution and there is potentially a strong A-gluon 
correlation. 

. Non-singlet structure functions do not suffer from the gluon correlation problem 
(see Eq. (257)), but these are only measurable experimentally by constructing 
differences between cross sections, e.g. u“P - up”. This inevitably introduces 
additional systematic and statistical uncertainties. 
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Figure 33: Data on the structure function F2 in muon-deuterium scattering from 
Virchaux[7] 

The most recent generation of deep inelastic experiments partially solve these 
problems by collecting high statistics data at large z and Q’..In fact the precision of 
contemporary data demands that the next-to-leading order QCD predictions are used 
in the fits. Beyond leading order a specific renormalization scheme must be chosen, 
and in practice this is usually the MS scheme. For this reason the results quoted in 
the literature almost always refer to AZ. 

Some of the most precise recent data comes from the BCDMS collaboration 
[6,7,11]. As an example, Fig. 33 shows the structure function Fz measured in deep 
inelastic muon-deuterium scattering. The measurements extend up to I values of 0.65 
and Q* values of several hundred GeV’. Fig. 34 shows the corresponding logarithmic 
QZ derivative of 1ogFz as a function of 5. Note that the derivatives in this region 
are negative, consistent with a structure function which decreases with increasing QZ. 
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Figure 34: Logarithmic Q2 derivative of the Fz structure function with QCD fits from 
BCDMS 

Also shown are the predictions of next-to-leading order QCD for three different values 
of AZ. A detailed fit gives [6] 

Afi = 220 h 15 f 50 MeV 
MS (268) 

The result for as(M,) derived from Deep Inelastic Scattering is compared with de- 
terminations from other processes in Fig. 35 (taken from ref. [8]). 

Deep inelastic experiments measure quark densities over a broad range in z up to 
about Q = 15 GeV. Knowing A=, these can then be evolved to higher ,n and used for 
hadron collider phenomenology. Instead of laboriously integrating the Altarelli-Pa&i 
equations each time a parton distribution is required, it is useful to have an analytic 
approximation, valid to a sufficient accuracy over a prescribed (2, p) range. Several 
such parametrizations are available. 

The widely used Duke and Owens parametrizations 191, for example, are of the 
form 

q(z, Q) = Az”( 1 + cz)(l - z)* 

A = Ao+Als+A2s2 etc. 

s = ln 14Q2/A2) 
( > 

, o 
ln(QVA*) ’ 

(269) 
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Figure 35: Table of values of CIS( M,) 

with the parameters Ao, Al, . . . fitted to an exact leading order evolution to give 
an accuracy of a few per cent. Because deep inelastic scattering does not signifi- 
cantly constrain the gluon distribution, it was usual - in the past - to include in 
the parametrizations a choice of gluon distributions, typically a ‘hard gluon’ and a 
‘soft gluon’, each with its own A value. Nowadays, high precision fixed-target prompt 
photon experiments are able to constrain the gluon, particularly in the medium 1: 
range, and ‘hard gluon’ parametrizations are ruled out [lo]. The most recent gen- 
eration of parton distributions - for example the MRS sets (111 - are obtained from 
next-to-leading order QCD fits to a wide variety of deep inelastic data, as well as 
data from prompt photon and lepton pair production. The distributions cover a wide 
range in x and p, and are ideal for making quantitative predictions for present and 
future hadron-hadron and lepton-hadron colliders. 

3.3.1 AP equation and small z 

Prom Fig. 29, we see that the gluon distribution grows rapidly at small I. In the 
asymptotic limit where x + 0 and p + 03 it is possible to determine the behaviour 
of the distributions directly from the Altarelli-Parisi equations. 

The x -) 0 limit of the parton distributions is controlled by the behaviour of the 
anomalous dimensions r(j) near j = 1. Considering the gluon only we have 

&di t) = ff@$yj)g(j, t) 
2a gg 
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where from Eq. (254), 
p’(j) z 2N. 

9g j-l 

In this limit the solution for the moments of the gluon distribution is, 

s(i 4 = s(i to) exp ( ,b(~~ 1$, 

81 

(271) 

(272) 

and < is defined by, 

E = b~otdfus(t’). (273) 

To return to x space we perform the inverse Mellin transform (cf. Eq. (247)), 

qx, t) = xg(x, t) = & / dj x-(j-l)g(j, t) (274) 

= & Jdj g(j,to)w [f(j)] (275) 

where the exponent f is, 

f(j) = [(j - 1) ldl/x) + rib(;t I)]’ (278) 

In the limit in which both ln( l/x) and < tend to infinity we can estimate this integral 
by expanding about the saddle point of the exponential: 

y = $ ln( l/z). (277) 

We therefore find for the asymptotic solution 

G(x, 4 = dj,, to) exp fi, 

which expressed in the original variables yields 

(278) 

g(x) - kexp{v, N = 3, b =-t33iznf). (279) 

Notice that the dependence on the starting distribution enters via the j,th moment 
of g. Therefore at fixed t/y the initial information enters only as an overall factor. 

The derivation of Eq. (279) contains an important technical assumption which 
we have glossed over. In order that the dominant small z behaviour of the integral, 
Eq. (274), is given by the saddle point mettiod there must be no singularities to the 
right of the saddle point in the complex plane. Let us assume that in the small I 
region the gluon distribution has a behaviour of the form, 

g(x, to) = Ax-j’. (280) 
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With this form we find that 

dit0) = A 
(3 - j0) 

(281) 

Thus if the distribution at the starting point is steep and je > j, the above assumption 
is violated. In this circumstance we expect that the dominant small x behaviour of 
the integrand is given by closing the contour about the pole in the initial distribution. 
The estimate of the integral is given by[12], 

dx, t) = 4x, to) exp [ rb$ l)]’ 

The x behaviour remains as given by the initial distribution. In either case we expect 
a rapid growth of the gluon distribution at small x. Measurements of the structure 
function Fz from HERA[13,14] indeed show a rapid rise at small x as shown in Fig. 36. 
This shows that the quark distributions are growing at small 2. 
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Figure 36: Data on Fz at small ,” compared with QCC predictions[l2] 

A topic which is presently under active investigation (151 is the mechanism which 
limits the growth of the gluon distribution. In the infinite momentum frame the gluon 
momentum distribution G(x, t) gives the number of gluons per unit of rapidity with 
a transverse size greater than l/p. If the number of gluons grows so large that the 
partons start to overlap inside the nucleon new effects will come into play. A crude 
estimate of when this begins to happen is provided by, 

G(x, t) = 
Area of hadron 2 2 
Area of parton - ’ r 

- p2 25 GeV-‘, (283) 
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where r N l/m, is the radius of the hadron. At presently attainable values of I 
the value of G(z,t) does not exceed 3 or 4, so, if the above estimate is correct, the 
saturation limit is beyond the range of the present colliders. 

3.4 BFKL equation 

The asymptotic behaviour of high energy scattering is usually discussed in terms of the 
Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation[l’?]. In this section we discuss an 
alternative formulation[l8,19] of high energy scattering, which reproduces the BFKL 
equation, but is simpler to explain. The treatment is expressed in terms of light-cone 
multiparton wave-functions. The wave function is assumed to be confined in a small 
transverse distance so that perturbation theory is applicable. In leading order in the 
number of colours N, the cross-section is given by the product of the light-cone wave 
function for a particular Fock state and the interaction cross-section for that state. 

Let us consider a colour singlet state which has a non-zero wavefunction to exist as 
a qq state, and let this state be specified by the longitudinal momentum fraction of the 
quark, .z and the transverse momentum k. We want to calculate the wave function 
of soft gluons emitted from this state. For simplicity, we will consider a qq state 
produced by a charmonium state, so that the quarks are localized in a transverse 
region of order l/M. The first fact to establish is that the transverse separation 
of the quark-antiquark into which the charmonium fluctuates has a fixed transverse 
separation during the time of emission of a soft gluon. Calculate the energy difference 
between the state before and after the emission of the gluon. We are interested in 
the emission of a gluon such that zi < .z, (1 - z) and kl of order k in order to 
get the leading logarithms. The kinematic labelling is shown in Fig.37. The energy 
denominator of the first diagram is 

By the uncertainty principle the lifetime of the intermediate state is of order, 

The transverse velocity of separation of the intermediate qtj pair is 

‘WI = / (1 - * -“*$ + z,)P (286) 
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Figure 37: a) Emission of soft gluon. b) Representation as pair of dipoles in large NC 
limit 

In this time the qrj state separates a transverse distance, Ab = vrAt, 

gh. 21 
b - z(1 - 2) 

< 1, (k, e k N ;) 

Thus at least for the leading logs of t we may consider the transverse separation of 
the the qrj pair to be fixed during the time of emission of the soft gluon. So we may 
write the general cross section for the interaction of the charmonium state with an 
external probe as the sum over the various Fock states at fixed transverse separation 
b 

C(b; z) = &(b)@,,-(b; z) + /dz#b&(b, b,)@&b, bl; z, 21) + (288) 

The function @,y(b, {bi}; z, {Zi}) is the light cone probability density for the state 
X with i gluons specified by the transverse coordinates {bi} and longitudinal mo- 
mentum fractions {Zi}. In the large NC limit the cross section b&b, bl) simplifies, 
because the gluon has the colour structure of a qQ pair. The qqg state scatters like 
the sum of two colour dipoles. 

k&b) = 6.,(b) 
&jg(h h) = b(h) + k&z) (289) 

The probability density @ is calculable for very soft gluons. We will consider first 
of all the state with one additional gluon. In the soft approximation @$,(b, bl; z, tl) 
is calculable in terms of @$(b; z) which is the zeroth order LC probability density for 
the qcj state. 
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Consider a q@ state, where the momentum of the antiquark is labelled by k, z. 
The light cone wave function for the qQ state may be written as, 

(290) 

The corresponding expression in the fourier conjugate space, (the impact parameter) 
is 

*$(b; z) = / $$‘u$(k; z)d’“‘” (291) 
where the quark is at the origin and the anti-quark is separated from it by a transverse 
distance b. 

The light cone wave function after the gluon emission is, 

@#i, &. * .q) = -%A , I -y~~(c;%)[$$ - +y] (292) 
where b, and b:! are the transverse separations of the gluon from the quark and anti- 
quark as shown in Fig. 38. 

Figure 38: Position in tranverse plane 

The corresponding expression in momentum space is more complicated, but can 
be derived by from the normal covariant amplitude, using the tricks of Lecture 2. 

@$(k, ICI; z, zl) = -2igtA[@$(k; z) - @i(k + i,; z)] 9 (293) 

The relationship between the two is demonstrated using 

I &k c.k ik.b- a’ 6.b 
(2s)ZicZe -2?r-F 

We define the LC probabilities as 

‘@(b; t) = c j@$(b; z)j2 

@$,(b, bl; z, q) = 

(294 

(295) 
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Using Eq. (292) we can show that the LC probability density for the qqg state is, 
(W = N/2), 

@!$(b, bl; z, zl) = ~~[&]Q%W (296) 

The change in the qQ probability density due to the’existence of the qqg state is, 

f@&(g(b; z) = l; dzl /d2bl@#g(b, bl; .z, zI) (297) 

The variable zs is a cut-off. In order to maintain the normalization of the wave 
function we must remove this amount from the radiationless qQ state. 

@“!(b; z) = @[g(b z) - @[l! (b z) w 99 1 999 1 (298) 

Therefore using Eq. (288) we find that the result for the cross section is 

C(b,z) = &(b)‘#(b;z) + /d+ld*b,[cqb& + @,j(b2)]@!$(b,bl; z,q) (299) 

where the cross section of the qfg state is represented as the sum of two dipoles as 
appropriate in the large N, limit. Using Eq. (297) we may write this as, 

E(b, t) = c+.d(b)+#(b; z) +/d&b, [c?,j(bl) + &&) - &,4(b)]Q;$(b, bl; z, 21) (300) 

where b2 = b, - b. 
We therefore find that the dipole cross section may be written as 

C(b,z) = u(b,&‘!(b;t) ‘IP 

where o(b, [) is an effective dipole cross section and E = In z/20. 

(301) 

db, 5) = h(b) + gEd*b, [&d(h) + St&z) - h(b)] [&] (302) 

The soft gluon emits softer gluons so that in higher orders in &s we may write this as 

where K is the kernel in the transverse plane given by Eq. (302). We have thus derived 
a differential equation for the z dependence of the cross section for the interaction 
of the state. The growth of the cross section with energy is due to the growth of 
the number of dipoles. Eq. (303) is the BFKL equation for the effective dipole cross- 
section. 
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3.4.1 Solution of BFKL equation 

We seek solutions of this equation which have a power behaviour as a function of b*. 
This is most easily accomplished by taking moments. 

S(7, S) = Lrn ~(bz)-‘4W 

4b,5) = & /, dr @*)‘S(r, 0 

The equation becomes 
WY, 0 

dt 
= 4r)S(rt 0 

leading to a solution of the form 

S(7,5) = s(r,O) exd47)51 

The function K is given by, 

47) = 
New 
-y-X(Y) 

x(7) = & ,d2b@)‘+($)‘-I]& 
I 2 

Setting ]q = b,& = b - Z and b2 = b(Z - Z) we find that the expressiorrfor x 

X(-Y) = & J d*z ,;;&,:, 

(304) 

(305) 

(306) 

(307) 

(308) 

The evaluation of the integral in Eq. (308) requires some care and the introduction 
of a regulator in the intermediate stages, to deal with the ultra-violet divergences 
which occur in the individual terms at bl = 0 and b2 = 0. We choose to regulate the 
integral by continuing to d dimensions. 

~(7) = $2 & J [ ddZ 
2 1 

[3]‘-‘[(5 - r?)‘] - [q[(2 - Z)‘] 1 (309) 
We now introduce Feynman parameters using, 

1 r(P+q) l J 
yP-‘(1 - y)V’ 

apbs = Iyp)lyq) 0 dy[ay + b(1 - y)]*‘l 

After performing the shift 2’= jr - (1-y)n’weobtaint=t’2,2p=d-2 

x(y) = $3 /~j)l,~-dtt+ [It;‘;(;:‘;;:-~ - [i+y(:-y)]*] 

(310) 

x(7) = )i 
rv + p) 

P [ 

r(p + 7)~(1 - 7 - P) _ r(l + a-v - P) 

r(2p + 7)w - 7) r-0 + 2~) 1 (311) 
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The result for x is, 
X(Y) = W(1) - +(-/I - w - Y). (312) 

Here 111 is the digamma function, G(z) = r’(z)/r(z) for which $(l) = -7s. The 
function x has a minimum at y = $ and is plotted in Fig. 39. The function x has the 
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Figure 39: The function x(y) ( a on the real axis. (b) parallel to the imaginary axis. ) 

following limiting behaviors: 

x(y) + 4ln2 + 14~(3) (y - 4)’ + 0 ((Y - i)“) , when Y -t $; (313) 

X(Y) + i + 2C(3)r2 + O(y4), when Y -+ 0, (314) 

where C(3) = 1.20206. 
The growth of the cross section with energy is fixed by taking the inverse Mellin 

transform of Eq. (306) 

4b, 0 = t& /, dy expI@(-r) + 7 ln b%‘(-r, 0) (315) 

The contour is in parallel to the imaginary axis, for 0 < Re y < 1. For large e this 
integral may be calculated by saddle point method, 

@ <) = (b$ exp[-l In2 b2 
(316) 



REFERENCES 89 

There are two features of this formula which are remarkable. First the behaviour goes 
like a. Second the behaviour with energy goes like s6, where 

6 = ~(1) = 12:ln2 (317) 

We now should make the connection with the normal gluon distribution function. 
The gluon distribution function is related to the cross section a(b, 0. In fact let’ us 
define the unintegrated gluon distribution 

z&, Q2) = P 1 dk2f(z, k2) 
f is the number density of gluon per unit of rapidity with a transverse momentum 
k2. We have that 

f(z, b2) - 9 (319) 
Hence we derive the asymptotic result that 
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4 Applications of perturbative QCD 

4.1 Fragmentation functions 

The methods of the QCD improved parton model can also be applied to the decay of 
a parton. In this case it is appropriate to define a decay function 0," which describes 
the fragmentation of a parton i into a hadron H which carries a fraction z of the 
longitudinal momentum of the incoming parton. These fragmentation functions are 
most easily extracted from e+e- annihilation. If 4 is the timelike four momentum of 
the virtual photon, q2 = Q2, the pion inclusive cross-section may be written as 

g =3aoCe:[D,"(z,t)+Dg(z,t)], 
I 

2p.q 
z=QZ> 

Q2 t=lns. (322) 

~0 is the cross-section for the production of a single colour of quark-antiquark pair. In 
magnitude it is equal to the muon pair production cross section weighted by the square 
of the charge, Eq. (99). Because of the effects of collinear radiation the fragmenta- 
tion functions satisfy the timelike modification of the Gribov-Lipatov-Altarelli-Parisi 
equation, 

$WJ) = 9 [D," @ Pqp + 0," @ Pgq] 

&W) = F [(D; + D,") @ Pqg + D; @ Pgg] (323) 

In the leading logarithmic approximation, (lowest order in as), the GLAP kernels 
are the same as for the space-like parton distribution case. The first perturbative 
corrections to the timelike GLAP kernels are given in Ref. [I]. Corrections to the 
short-distance cross-section are discussed in Ref. [2]. 

Note that the multiplicity of hadrons in the final state is given by, 

The total multiplicity is related to the first moment of the fragmentation function. 

4.1.1 Multiplicities in jets 

An important problem for the design of experimental detectors is the multiplicity of 
hadrons to be expected in a high energy jet. A high energy jet can be thought of as a 
highly virtual timelike parton which decreases its virtuality by parton bremsstrahlung 
leading to a parton shower. At some low virtuality the methods of perturbation 
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theory cease to be valid and the partons fragment into hadrons. In QCD the hadron 
multiplicity of a gluon jet is not perturbatively calculable because this last phase of 
jet evolution is not described by perturbation theory. However the growth of the 
multiplicity with the energy of the jet is determined by the parton shower and is a 
reliable prediction of perturbative &CD. We take as our starting point the GLAP 
evolution equation for the gluon fragmentation function. We work in the moment 
representation where N is the moment variable. 

$4 (N,t) = dQ*) 
21r D,(Nhm(N) + . 1 (325) 

The driving term is the growth of the multiplicity of the gluons so we neglect the effects 
of mixing with quarks. From Eq. (254) the anomalous dimension corresponding to 
the gluon splitting function contains a singularity for N = 1. Retaining only this 
most singular term we see that, 

dD,(N, 4 
dt - &$~lf?(W (326) 

The singularity at N = 1 is due to the emission of soft gluons. Because of this 
singularity it would appear at first sight that the growth of the multiplicity is not 
calculable in &CD. 

This is not correct. The energy dependence of the multiplicity is calculable be- 
cause of an interplay of kinematic and dynamic effects as we shall now demonstrate. 
Remember that the GLAP equation in lowest order corresponds to a summation of 
ladder diagrams with each rung containing a single gluon exchange. 

In I space we may write the GLAP equation as, 

dQ(Q*,p*,x) = a~(&*) 1 dz 
dlnQ* 2?r J! -$WDg (9% ;) (327) 

where DJQ’,p*,z) is the fragmentation function of a gluon of all virtualities up 
to scale Q2. p2 is some lower cut-off at which the fragmentation becomes non- 
perturbative. Let us introduce the unintegrated fragmentation function d (?, ,u2, I) 
which describes the fragmentation of gluons of virtuality r2. 

D, (Q2,~2,~) = l;’ $d (+*,z) 

In terms of d, the GLAP equation can be rewritten as, 

d (k’,p*,z) - /,‘$F’(r) jyy $Fd (r’&) (329) 

In Eq. (329) we have dropped a homogeneous term which vanishes for k2 >> p2. In 
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);: 

r 

(4 s 

Figure 40: (a) Kinematics of parton cascade. (b) Angular ordering in QED 

this form the ladder structure of the equation is manifest. Since we are interested 
in the emission of very soft gluons it is important to consider the kinematics of the 
gluon splitting in detail. A gluon of momentum k splits into two gluons of momenta 
r and s as shown in Fig. 40(a). We now introduce the Sudakov decompositions for 
k, r and s. 

k’=p”+$‘, r’=zfl+ 
r* -I- I$ 

22 
np++r$, sp =(l-2)fl+ s2+r ; 

2(1 -Z) 
gmrg (330) 

The maximum value of r* comes from the region T$ = s2 = 0 and is limited by 

zk2 > r2 (331) 

Correctly including this kinematic constraint Eq. (329) becomes, 

d(k*,p*,z) N f $P(z$‘$qd (r*,/& ;) 

In terms of the original fragmentation function D, this can be written as, 

k*-&D, (k*,r) N a(;nk2) 1’ $:Dg (k*z, ;) 

(332) 

(333) 

Note that the resealing of k2 + k*.z would be non-leading were it not for the singu- 
larity of Pgg at z = 0. For simplicity we first consider the case of a fixed coupling 
constant, defined as d = N=as/rr. Taking moments of Eq. (333) we obtain, 

&&(“, k*) = 61’ $t”-‘D,(N, zk*). 
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If D, has the anomalous dimension y(N), then D,(N) - (k2)7(N). With this ansatz 
D, satisfies. 

d 
- -y(N) 
dlnk* 1 D,(N) = 0 

and from Eq. (334) y is given by, 

-dN)= N&N)’ 
Solving the quadratic equation we obtain the following answer for y. 

+V)Z-(~;~) *jpq=(N:l)-(N:1)3+... (337) 

Note that the resummed y(N) is finite for N = 1 although every term in the power 
series expansion is infinite. The emission of very soft gluons has been inhibited by 
kinematics and the divergence at N = 1 has been tamed. 

Eq. (337) is still the wrong answer for the anomalous dimension in &CD, because 
for very soft gluons it is not sufficient to consider only the ladder graphs which are 
included in the GLAP equation. The GLAP equation treats correctly all logarithms 
of Q* but not all logs of l/x. Interference graphs are as important as ladder graphs. 
Remarkably it turns out in explicit calculation[3] that the net effect of the interference 
graphs is to remove all the contributions of the ladder graphs in all regions in which 
the emission angles are not ordered down the cascade. 

The correct answer in QCD is given by the ladder graphs with a dynamical con- 
straint that the gluons are emitted at ever decreasing angles as we proceed to lower 
virtualities. The result for y(N) is, 

y(N) = -‘N; ‘) + 
1)3 + “’ (338) 

Solving Eq. (325) we obtain, 

QJQ*, N) - exp I InQ2 
-iN (fis (t)) dt (339) 

which for the first moment gives, 

D,(Q’,N=l)-exp /InQZ&dt-exp 2/G (340) 

A heuristic explanation of the reason for angular ordering can be obtained[4] 
by using an analogy from QED. Consider an incoming virtual photon which decays 
into an electron-positron pair as shown in Fig. 40(b). An additional soft photon 
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of momentum k is subsequently radiated from the electron-positron pair. In old- 
fashioned perturbation theory the virtual state consisting of an electron and a positron 
differs in energy from the final state containing an electron, a positron and a soft 
photon by an energy AE, 

AE = (Ei + Ej + Ek) - (Et+k + Ej) 

= ~~+lil-J~. ’ (341) 

In the limit of very large p’i and small eik this becomes, 

AE N ]I?]@~. (34’4 

By the uncertainty principle the virtual electron state lives for a time At which is 
approximately given by 

1 XT 

At”j$pg (343) 

where &N l/kT N l/(kBik) is the transverse wavelength of the emitted soft photon, 
In this interval of time At the electron and positron separate a transverse distance 
given by 

Ad = AtO, = 9. (344) 

If Bik > Bij, the separation of the electron and positron is less than the transverse wave- 
length of the emitted soft photon. The emitted soft photon perceives the electron- 
positron pair as an unresolved charge neutral object and no radiation occurs. If, on 
the other hand, the emitted photon lies within the cone described by the electron 
positron pair, eik > 6ij, the radiation is uninhibited. 

This example indicates the reason for angular ordering in QED. The generalisation 
of this argument to QCD is complicated by the fact that the gluons themselves carry 
colour charge, but the angular ordering result persists. 

4.1.2 Colour coherence 

For the case of three jet events in e+e- annihilation the coherence of the radiation 
from the hard partons leads to the string efect [5,6]. In the language of perturbative 
&CD, the string effect is a result of constructive and destructive interference. Of 
course, it is entirely unremarkable that such interference effects should be observed 
in quantum field theory. However, it is interesting to note that the experimental 
evidence indicates that such interference effects survive the hadronisation process, a 
phenomenon which the authors of ref.[6] call local pm-ton-hadron duality. 

At sufficiently high energy, the colour structure of the hard final state partons will 
determine the pattern of associated radiation. Because the distribution of this radia- 
tion is not significantly altered by hadronisation, the observed pattern of the hadrons 
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which lie between the jets will depend on the colour of the partons participating in 
the hard scatter. 

We illustrate the derivation of the angle ordered approximation in the process 
e+e- + qqg. Soft gluons are emitted only inside certain angular regions around 
the directions of the hard partons q, Q and g. We introduce the angular variables 
ci = 1 - cos&, where Bi is the angle between the soft gluon and the hard parton i, 
and cij = 1 - coseij where 0+ is the angle between hard partons i and j. In terms of 
these variables the eikonal factor which describes the emission of soft radiation may 
be written, 

where Ik( represents the energy of the soft gluon. The lines i and j are colour con- 
nected. The eikonal factor in Eq. (345) is the same as the factor obtained in the soft 
photon approximation in QED[7]. The expression in braces contains the collinear pole 
at C = 0 but not that at cj = 0. Furthermore, when averaged over the azimuthal 
angle 6; around the direction of hard parton i, it vanishes outside the cone ci = cij. 
In fact [3,6], 

J 1 $ 2 + + - ; ‘I 1 I 
= ;e(cij - fi). 

I : (346) 

Hence, averaging each term with respect to azimuth around its direction of singularity, 
we may write, 

‘* T-O(fij - (j). 14 Ci 
Eq. (347) has the same form as the incoherent radiation emission result but with a 
dynamically imposed angular constraint on the phase space. 

An elegant way to examine the pattern of soft radiation associated with a hard 
scattering event is to compare e+e- annihilation into three jets with annihilation into 
two jets and a photon. The parton final states are qqg and qqy. From Eq. (347) we 
deduce that the soft radiation (and hence the particle flow) is dynamically constrained 
by angular ordering to lie between the colour connected lines. For the purposes of this 
argument the colour degrees of freedom of the gluon can be approximately regarded 
as a qcj system, with the quark part connected to the outgoing antiquark line and the 
antiquark part connected to the outgoing quark line as shown in Fig. 41(a). The soft 
radiation in the qqg event is then expected to lie predominantly between the gluon 
and the quark and the gluon and the antiquark. In contrast for the q@y event the 
radiation occurs predominantly between the quark and the antiquark. Data from 
the TPC collaboration[8] are shown in Fig. (42). The jets are ordered in energy 
El > E2 > E3 and the third jet is assumed to be the gluon. In the angular regions 
near the cores of jets 1 and 2, the distributions of the qqg and qq-y events agree very 
well. In the region between jets 1 and 2, opposite the gluon jet or the photon, the 
data show a depletion in particle production in qqg compared to qq7. 
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(b) 
Figure 41: Colour structure of (a) qqg event (b) qqy event 

Figure 42: Particle flow on a logarithmic scale as a function of angle in the plane of 
the event for qqy, (open points) and qqg, (closed points). 

It is an interesting property of the theory that the emission of gluons in the 
final state can, to a good approximation, be represented by a semi-classical parton 
‘branching’ or ‘cascade’ picture, i.e. the quarks emit gluons which in turn emit more 
gluons etc. This property is evident, for example, in Eq. (347) where it is shown 
that the eikonal factor obtained from the interference of Feynman diagrams can be 
approximately represented as a sum of probabilities. The quarks produced at the 
photon vertex after an efe- annihilation have ‘virtuality’ (i.e. are off mass shell) 
of the order of the total centre-of-mass energy. Parton branching then takes place, 
reducing the virtualities, until all the final state partons have virtualities of the order 
of the hadronic mass scale (0(1 GeV)). This first stage of the fragmentation can 
be described in terms of QCD perturbation $heory. Finally, the partons ‘hadronise’ 
to give final states made up of pions, kaons and other hadrons. The hadronisation 
of the partons cannot be described perturbatively, but instead can be modelled, the 
parameters being determined by fitting to the data. In this way jet fragmentation 
Monte Carlos are constructed. Different ways of performing the non-perturbative 
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hsdronisation lead to different models [9] which can be compared with experimental 
data. 

4.2 Factorization in -hadron-hadron collisions 

We now turn from processes involving hadrons in the final state to processes with 
hadrons in the initial state. The property of factorization allows us to use the QCD 
parton model to describe inelastic processes involving hadrons. In this section we 
shall present a simple classical model that illustrates why the factorization property 
holds and when it should fail. As an example of a hard process we consider the 
production of a massive vector boson V - in practice a massive photon, W or 2 - in 
the collision of two hadrons, 

Hl(Pl) + H2(P2) + V + X. (348) 

This is in many respects the simplest hard process involving two hadrons, since the 
observed vector boson in the final state carries no colour and its leptonic decay prod- 
ucts are observed directly. It is therefore the easiest to analyse and consequently has 
received the most theoretical attention. 

A very important theoretical issue in this process is whether the partons in hadron 
HI, through the influence of their colour fields, change the distribution of partons in 
hadron Hz before the hard scattering occurs, thus spoiling the simple parton picture. 
Soft gluons which are created long before the collision are potentially troublesome in 
this respect. 

We shall argue that soft gluons do not in fact spoil the parton picture, using 
a simple model [lo] from classical electrodynamics. The vector potential due to a 
current density J is given by [ll] 

A”(& F) = / dt’d? ;;(y’$, a(t’+Iz-q-t), c=l, (349) 

where the delta function provides the retarded behaviour required by causality. Con- 
sider a particle with charge e travelling in the positive z direction with constant 
velocity p. The non-zero components of the current density are 

J’(t,i) = e6(Z- F(t)) 

J’(t,Z) = e&5(5- fit)), F(t) = pti, (350) 

where i is a unit vector in the z direction. The charge passes through the origin 
at time t = 0. At an observation point (the position of hadron Hz) described by 
coordinates 2, y and Z, the vector potential at time t due to the passage of the fast 
moving charge is obtained by performing the integrations in Eq. (349) using the 
current density of Eq. (350). The result is 

A’(t, 2) = J[$ + g &pt _ r)2] 
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A=(t,Z) = 0 
AY(t,5) = 0 

A’(4 3) = J[=2 + g y;2(pt _ z)‘] ’ 

99 

(351) 

where y2 = l/(1 - 02). The observation point can be taken to be the target hadron 
Hz which is at rest near the origin, so that y z s/m2. Note that for large y and fixed 
non-zero (Pt - Z) some components of the potential tend to a constant independent 
of y, suggesting that there will be non-zero fields which are not in coincidence with 
the arrival of the particle, even at high energy. However at large y the potential is a 
pure gauge piece and hence does not lead to E or B fields. The implication of this 
result is that a covariant formulation which uses the vector potential A will not be 
the most efficient method to handle this problem, since we will have large fields which 
ultimately have no physical effect. 

To show that these large terms in the vector potential have no effect we compute 
the field strengths from Eq. (351). The leading terms in y cancel and the field 
strengths are of order l/y2 and hence of order m 4 /s 2. For example, the electric field 
along the z direction is 

8A’ aAL 
E’(t,Z)=F”y-+x= em - 2) 

[z2 + y* + rypt - *,*p. (352) 

Thus the force experienced by a charge in the hadron Hz, at any fixedtime before the 
arrival of the quark, decreases as m 4 /s . 2 There are residual interactions which distort 
the distribution of quarks in hadron Hz, but their effects vanish at high energies. A 
breakdown of factorization at order l/s2 is therefore to be expected in perturbation 
theory and has been demonstrated explicitly in ref. [12]. Note that these effects are 
due to the long range nature of the vector field. In the realistic case of an incoming 
colour neutral hadron there are no long-range colour fields. It is therefore possible 
that the factorization property is even better in the full theory than in perturbation 
theory. 

4.3 Jet Physics 

4.3.1 Kinematics and jet definition 

The scattering of two hadrons provides two broad band beams of incoming partons. 
These incoming beams have a spectrum of longitudinal momenta determined by the 
parton distribution functions. The centre of mass of the parton-parton scattering is 
normally boosted with respect to the centre of msss of the two incoming hadrons. 
It is therefore useful to classify the final state in terms of variables which transform 
simply under longitudinal boosts. For this purpose we introduce the rapidity y, the 
transverse momentum pi and the azimuthal angle 4. In terms of these variables, the 
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four components of momenta of a particle of mass m may be written as 

$‘= (~~cosh(gr),prsin~,prcos~,~~sinh(y)). (353) 

The rapidity y is therefore defined by 

(354) 

and is additive under the restrictive class of Lorentz transformations corresponding 
to a boost along the z direction. Rapidity differences are boost invariant. 

In practice the rapidity is normally replaced by the pseudorapidity 7, 

7] = -Intan( (355) 

which coincides with the rapidity in the m -P 0 limit. It is a more convenient variable 
experimentally, since the angle 0 from the beam direction is measured directly in the 
detector. It is also standard to use the transverse energy rather than the transverse 
momentum for similar reasons. Many methods can be used to define what is meant 
by a jet. There is no best definition, but one must be sure that both theoretical and 
experimental analyses use the same definition. A commonly used definition of a jet 
is a cluster of transverse energy ET in a cone of size AR, where 

AR = \/[@d2 + (W)‘]. (3-W 

In the two-dimensional y, r$ plane, lines of constant AR describe a circle around the 
axis of the jet. The cone size can be chosen at the experimentalist’s convenience, and 
the measured jet cross-section will depend on the value chosen. 

4.3.2 Two-jet cross sections 

In &CD, two-jet events result when an incoming parton from one hadron scatters off 
an incoming parton from the other hadron to produce two high transverse momentum 
partons which are observed as jets. From momentum conservation the two final state 
partons are produced with equal and opposite momenta in.the subprocess centre- 
of-mass frame. If only two partons are produced, and the relatively small intrinsic 
transverse momentum of the incoming partons is neglected, then the two jets will 
be back-to-back in azimuth and balanced in transverse momentum in the laboratory 
frame. 

For a 2 -+ 2 parton scattering process 

Partoni + Partonj(pz) -) Partonbb3) + Partcqh), 

described by a matrix element M, the parton cross section is 

E3E4d% 
@P#P4 

= i&c IN 64(Pl + Pz - P3 - P4L 

(357) 

WV 
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(b) 

Cd) 
Figure 43: Diagrams for jet production 

All parton processes which contribute in lowest order can be derived from the dia- 
grams shown in Fig. 43 by including other diagrams which are related by crossing. 
Expressions for the leading order matrix elements squared TIMI’, averaged and 
summed over initial and final state spins and colours are given in Table 5 in the no- 
tation i = (PI + p2)*, t^ = (pi - ~3)~ and ti = (pz - ~3)~. The value of these matrix 
elements at 90 degrees, also shown in Table 5, gives an idea of the importance of the 
subprocesses. 

The two-jet cross section may be written as a sum of terms each representing the 
contribution to the cross section due to a particular combination of incoming (i,j) 
and outgoing (k, I) partons. Using Eq. (358) the result for the two jet inclusive cross 
section is, 

d3a 
&dy&; 

where the fi(rtp) represent the number distributions for partons of type i (i = 
u, ti, d, d,g, . etc.), evaluated at momentum scale p, and r~s and q4 represent the 
laboratory rapidities of the outgoing partons. For massless partons the rapidities 
and pseudorapidities may be used interchangeably. The Kronecker delta function 
introduces the statistical factor necessary for identical final state partons. If we 
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Process I YlMIZld I 8’ = ?rl2 

qd-qd 4 9 + ?P 
.G i2 

2.22 

qq-*qq ~(~2;~2+~)-;~ 3.26 

PTi-+4f;7 -- 4 tL+cz 
9 s2 

0.22 

qV+qT 2.59 

32 p + C2 8t?+u2 
ET-jT I 

1.04 

1 tr+G 3i2+ti2 
----- 
6 tti 8 .G2 

4 s2 + G2 72.2 + 2 -- 
9 i73 

+ 
i2 

0.15 

6.11 

99+99 93+-;-g) 30.4 

Table 5: The invariant matrix elements squared r/MI2 for two-to-two parton sub- 
processes with msssless partons. The colour and spin indices are averaged (summed) 
over initial (final) states. 

assume that the detector and jet algorithm are 100% efficient, the rapidities and pr 
of the outgoing jets may be identified with those of the outgoing partons. 

We now consider the kinematics of the two produced jets in detail. The laboratory 
rapidity (y~,,,,,*~) of the two-parton system and the equal and opposite rapidities (&y*) 
of the two jets in the parton-parton centre-of-mass system are given in terms of the 
observed rapidities by: 

Ybcmt = (Y3+Y4)/21 Y’ = (Y3 - Y4)/2. 

For a massless parton the centre of mass scattering angle ~9’ is given by, 

(360) 

COS 8’ = g = ;o”s;;;‘, = tanh( y3 2 Yd ), 

where y’ = y3 - ybwsr. The measurement of the rapidity difference of the two jets in 
the laboratory frame determines the subprocess centre of mass scattering angle 0’. 
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The longitudinal momentum fractions of the incoming partons 11 and ze in 
Eq. (359) are given in terms of pr, ys and y4 by momentum conservation: 

21 = ITeMoaR cosh(y*), 12 = zrebYbmt cosh(y’), ?Jborvt = 2 l,,? , z 
2 

(362) 

where zr = 2p~/Js. Lastly, the invariant mass of the jet-jet system can be written 
=, 

M;, = i = 4p$ cosh*(y’). (363) 

Given a knowledge of the parton distributions from deep inelastic scattering ex- 
periments, Eq. (359) may be used to make leading order QCD predictions for jet 
production in hadron-hadron collisions. For example, the inclusive jet cross section 
at the parton level may be obtained by integrating Eq. (358) over the momentum of 
one of the jets. 

Ed38 d3ci 
- = - = ~&~~M~2~(~+i+~), fiP W% 

(364) 

where t^ and c are fixed by i and the centre of mass scattering angle, 

i = -; (1 -cod’) 

ij = -; (1 + COSV). (365) 

Again assuming that the detector and jet algorithm are 100% efficient, so that set = 
p’ parton the single jet inclusive cross section is obtained from Eq. (364) by folding in 
the psrton distribution functions: 

EJd36 -= 
@PJ &ij,$, 1’ 22 fi(zltP)fj(z2,P) 1 1 , 

rb”W --* k412 &$(s + i + 6). 

Note that this result corresponds to massless quarks and gluons and that no distinc- 
tion is made between quark and gluon jets. 

4.3.3 Comparison with experiment 

Although large pi jet production has been studied at different machines over a period 
of many years, the definitive data are from the high energy pp colliders, i.e. from 
the UAl and UA2 collaborations at the CERN pp collider (fi = 546 GeV and 
630 GeV) and from the CDF and DO collaborations at the FNAL Tevatron collider 
(& = 1.8 TeV). It appears that only at these very high collision energies does the 
identification and measurement of large pr jets become relatively unambiguous. At 
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Figure 44: Jet ET distribution from the CDF collaboration, compared with a next- 
to-leading order QCD prediction from [13]. 

lower energies it is difficult to separate the jets from the other ‘underlying’ hadrons 
in the event. 

Two quantities are particularly useful for comparing theory with experiment. The 
first is the jet pr distribution, obtained from the inclusive cross section by 

Ed3a d% 1 d-c7 -z 
@P @mdy - !i&dETdq 

(367) 

where the third term follows if we assume that the jets are approximately massless. 
Fig. 44 shows the jet ET distribution in pf~ collisions at fi = 1.8 TeV, from the 

CDF collaboration. The curve is the QCD prediction, calculated in next-to-leading 
order (i.e. O(CY~)) by S. D. Elliset al. [13] an d using the HMRSB parton distributions 
from reference [14]. The next-to-leading order contributions considerably reduce the 
dependence on the scale parameter Jo, and allow a more precise treatment of effects 
due to the finite width of the jet. The agreement is excellent, especially considering 
that there are essentially no free parameters in the theoretical prediction. Note that at 
this energy about half the cross section comes from quark-gluon scattering, the other 
half coming from gluon-gluon scattering at the lower ET end, and quark-(anti)quark 
scattering at the high ET end. 

The second quantity of interest is the jet angular distribution. In the parton- 
parton centre of mass, the angular distribution is sensitive to the form of the 2 --f 2 
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matrix elements. The differential cross section for a jet pair of msss MJJ produced at 
an angle 0’ to the beam direction in the jet-jet centre of mass can readily be obtained 
from Eq. (359) using the transformation 

to give 

d&dy3dy4 = ;dzldzzd cos 0’ (368) 

d-b 
dMj,d cos 8’ 

= g y dLi$i;vP) dff:ee, 
t 

with TJ = Mj, /s and 

d& 
dcos8’ 

(36% 

Note that for each subprocess the d5/dcose’ is symmetrised in t^ and 6 (unless k = I). 
Thus, for example, 

d&U” = 
d cos 8’ 1 (371) 

Numerically the most important subprocesses are gg -+ gg, gq + gq and q@ + qq. For 
each of these, the 6” distributions have the familiar Rutherford scattering behaviour 
at small angle, characteristic of the exchange of a vector boson in the t-channel: 

It is convenient to plot the data in terms of the variable x, which removes the Ruther- 
ford singularity [ 151, 

i + cOse- 
x= l-case-’ (373) 

In the small angle limit (x + co) the cross section differential in x is then 

d& 
dx N constjmt. 

Data on the angular distribution from the CDF collaboration are shown in Fig. 45, 
with the leading order QCD prediction. Again, there is excellent agreement. Note 
that these data automatically rule out certain other quark scattering mechanisms. 
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Figure 47: Comparison of the CDF point with the theory. 

Fermi constant. In the limit in which m, >> MW the total t width is given by, 

qt + L&v) = f$$ II&J* x 1.73 C,V( 174mieV)3. 

When the top quark is so heavy that the width becomes bigger than a typical hadronic 
scale the top quark decays before it hadronises. Hadrons containing the top quark do 
not have time to form. Gluon radiation associated with the top and bottom quarks 
is considered in ref. [19]. 

Although not strictly related to my topic, I would like to insert here a parenthetical 
remark on the relative size of the errors in the measurement of rnw and m,. One way 
of estimating the importance of the errors in these measurements is the role which they 
play in constraining the mass of the standard model Higgs. This is shown in Fig. 48, 
kindly provided for me by Takeuchi. Fig. 48 shows that in the ‘metric’ provided by 
the sensitivity to the standard model Higgs boson, we may already consider the top 
quark mass to well measured relative to the mass of the W. 

4.4.2 Bottom quark production 

Results for bottom quark production at CDF[20] are shown in Fig. 49. Results on 
bottom quark production have also been presented by D0[21]. The first thing to notice 
about the bottom quark cross-section is that it is large at collider energies. Roughly 
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For example, a model in which quarks scatter by exchanging a scalar gluon would 
give a less singular behaviour (sin-‘(0*/2)) at small angle. 

It is also interesting to note that the angular dependences of the dominant sub- 
processes are very similar. Fig. 46 shows the cos0’ dependence of the qg + ~g and 
qQ -+ qq subprocesses normalised to gg -+ gg. These.ratios are evidently rather con- 
stant at the numerical values 4/9 and (4/9)2 respectively. This can be understood 
in terms of the colour structure of the Feynman diagrams. Thus to a good apprbx- 
imation the gg + gg subprocess can be used as the ‘universal’ subprocess in the 
result given in Eq. (369), i.e. the angular dependence effectively factors out leaving 
a convolution of parton distributions. This is called the single effective subprocess 
appmination [ 151. 

4.4 Experiments on heavy quark production 

4.4.1 Top quark production 

The CDF collaboration working at the Fermilab collider at v’?? = 1.8 TeV has pre- 
sented evidence for production of the top quark[l6]. Although the observed events 
present many of the features expected of the top quark there are a number of as- 
pects of the data which are not yet understood by the top quark hypothesis. The DO 
collaboration (as of July 1994) observes no significant signal above background[l7]. 

On the assumption that the events observed by CDF are due to the production 
of the top quark, the value found for the top quark mass is[16] 

m, = 174 f 10::; GeV (375) 

Using this value of the mass, CDF find that the value of the top quark cross section 
is 

atr(mt = 174 GeV) = 13.9:::: pb (376) 

The theoretical expectation for this cross section, calculated in second order QCD, 
is shown in Fig. 47 as a function of mt. The measured cross section is somewhat 
above theoretical expectation. In the remainder of this lecture I will review the 
calculation of theoretical cross section in order to assess itS reliability. Of course 
it would be especially interesting if the experimental cross section were significantly 
bigger than the theoretical expectation. We know very little about the top quark and 
phenomena not foreseen in the standard model could be occurring. Candidates for 
such phenomena are described in refs. [18]. 

For the rest of this lecture I shall consider the top quark to be described by the 
minimum standard model and to decay to a W and a b-quark. When the mass of 
the top is much larger than the mass of the W it decays to an on-shell W boson and 
a b quark. This process has a semi-weak decay rate involving only one power of the 
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Figure 48: Mw vs. rnt compared to the standard model 

one event in a thousand contains a bottom quark. At a luminosity of lq31 crnd2s-l, the 
rate of production of b quarks with apT greater than 5 GeV is 100 Hz. This enormous 
flux of 6 quarks offers the possibility to do much b physics at a hadron collider. It 
is important to emphasize that hadron machines produce many types of hadrons 
containing b quarks. The physics topics which they can observe are complementary 
to the physics at a dedicated e+e- collider. 

From Fig. 49 we see that the cross section for bottom quark production as mea- 
sured by CDF lies somewhat above the theoretical prediction. The DO data (not 
shown) lies closer to the theoretical prediction[21]. Fig. 49 also gives some idea of the 
time evolution of the measurement. The major reason for the change in the measured 
cross-section has been the measurement by CDF of the fraction of J/$‘s coming from 
b quarks. In the analysis of the earlier data this fraction was assumed to be 63%. 
The number measured with the help of the Silicon Vertex detector is close to 30%. 
The Silicon Vertex (SVX) detector performs a precise measurement of tracks and can 
determine whether or not vertices are displaced from the primary interaction point. 
The prompt production of J/$‘s (i.e.the production not coming from the decay of a 
B-meson) is an interesting theoretical and experimental topic in its own right, but it 
will not be be discussed further[22]. 

Since both the production of top and bottom seem to lie above the theoretical 
prediction it is interesting to go back and review the theoretical status of these pro- 
cesses. We shall see that, despite the superficial similarity, they are in fact rather 
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Figure 49: Bottom cross section from CDF 

different processes with completely different theoretical errors. 

4.5 The theory of heavy quark production 

The leading order processes for the production of a heavy quark Q of mass m are, 

(4) dP1) + V(P2) + Q(P3) + cYP4) 
W g(m) + dpz) + Q(p3) + Q(P~) 7. 

(378) 

where the four momenta of the partons are given in brackets. The Feynman diagrams 
which contribute to the matrix elements squared in O(g4) are shown in Fig. 50. The 
invariant matrix elements squared [23,24] which result from the diagrams in Fig. 50 
are given in Table 6. The matrix elements squared have been averaged (summed) 
over initial (final) colours and spins, (as indicated by z ). In order to express the 
matrix elements in a compact form, we have introduced the following notation for the 
ratios of scalar products, 

s = (Pl + P2j2. 
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b) 

Figure 50: Lowest order Feynman diagrams for heavy quark production 

Process ] 
I 

gg-Q& (& 

Table 6: Lowest order processes for heavy quark production. TIM]* is the invariant 
matrix element squared. The colour and spin indices are averaged (summed) over 
initial (final) states. 

In leading order the short distance cross section is obtained from the invariant 
matrix element in the normal fashion [7]: 

(330) 

The first factor is the flux factor for msssless incoming particles. The other terms 
come from the phase space for two-to-two scattering. 

Consider first the differential cross section. Let us denote the momenta of the 
incoming hadrons, which are moving in the z direction, by Pl and P2 and the square 
of the total centre of mass energy by s where s = (PI + P2)*. 

du(Pl,P2) =x/d XI 22 t xltPL)Fj(x2vP) d~ij(as(~),xlPl,x*P2) d F.( 
ii 

(331) 
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The functions Pi are the number densities of light partons (gluons, light quarks and 
antiquarks) evaluated at a scale CL. The short distance cross section in Eq. (381) is 
to be evaluated for parton momenta pl = ZIPI, pz = x2P2 and hence the square of 
the total parton centre of mass energy is d = rrxss, if we ignore the masses of the 
incoming particles. The rapidity variable for the two final state partons is defined in 
terms of their energies and longitudinal momenta as, 

(382) 

Using Eqs. (380) and (381) the result for the invariant cross section may be written 

do 
&dw% = ~~x1Fi(x1~~)x2Fj(X*~~)~~~ij~22 (383) 

*l 

The energy momentum delta function in Eq. (380) fixes the values of z1 and x2 if we 
know the value of the pr and rapidity of the outgoing heavy quarks. In the centre 
of mass system of the incoming hadrons we may write the components of the parton 
four momenta as (E,p,,p,,p,) 

Pl = ~b4~1,0,0,~*) 
P2 = 4d+2,0,0?--22) 

m = (w cash YS,PT, 0, v sinh ~3) 
~4 = (mTcoshy4,-p~,O,mTsinhy4). (384) 

Applying energy and momentum conservation we obtain, 

x1 = $(ey3 + eY4), 12 = z(emy3 + emy4), i = 27&l + cash Ay). (385) 

The transverse mass of the heavy quarks is denoted by mr = J(m* + p+) and 
Ay = ys - y4 is the rapidity difference between the two heavy quarks. 

Using Eqs. (383) and (385), we may write the cross section for the production of 
two massive quarks calculated in lowest order perturbation theory as, 

do 1 
dyzdy&pT = 64?rzm+(l + cosh(Ay))* ij C XlFi(Xl,ll) X2Fj(X2tP)CIM~j12. (386) 

Expressed in terms of m,mr and Ay the matrix elements for the two processes in 
Table 6 are, 

~bkI’= T(, +co;h(ay))(COSh(AY)+ $) (387) 

E IM,,I’ = $( “,c;;E;‘)$) (cosh(Ay) + 2% - 2s). (388) 
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Note that, because of the specific form of the matrix elements squared, the cross 
section, Eq. (386), is damped as the rapidity separation Ay between the two heavy 
quarks becomes large. It is therefore to be expected that the dominant contribution 
to the total cross section comes from the region Ay 5 1. Heavy quarks produced 
by qQ annihilation are more closely correlated in rapidity than those produced by 
gluon-gluon fusion. 

We shall now illustrate why it is plausible that heavy quark production is described 
by perturbation theory [25]. We consider the propagators in the diagrams shown in 
Fig. 50. In terms of the above variables they can be written as, 

(PI+ p# = 2~1.~2 = 2m$( 1 + cash Ay) 

(PI - ~3)~ - m* = -2~1.~3 = -mg( 1 + e-*“) 

(P2 -Id* - m* = -2pr.p3 = -mt(l + e*r). (389) 

Note that the denominators are all off-shell by a quantity of least of order m*. It is 
this fact which distinguishes the production of a light quark from the production of 
a heavy quark. When a light quark is produced by these diagrams the lower cut-off 
on the virtuality of the propagators is provided by the light quark mass, which is less 
than the QCD scale A. Since propagators with small virtualities give the dominant 
contribution, the production of a light quark will not be calculable in perturbative 
&CD. In the production of a heavy quark, the lower cut-off is provided by the mass 
m. It is therefore plausible that heavy quark production is controlled by as evaluated 
at the heavy quark scale. 

Note also that the contribution to the cross section from values of pi which are 
much greater than the quark mass is also suppressed. The differential cross section 
falls like l/m+ and as mr increases, the parton flux decreases because of the increase of 
ri and 1s according to Eq. (385). Since all dependence on the transverse momentum 

. appears m the transverse mass combmation, the dominant contribution to the cross 
section comes from transverse momenta of the order of the mass of the heavy quark. 

Thus for a sufficiently heavy quark we expect the methods of perturbation theory 
to be applicable. It is the mass of the heavy quark which provides the large scale 
in heavy quark production. The heavy quarks have transverse momenta of the or- 
der of the heavy quark mass and are produced close in rapidity. The production is 
predominantly central, because of the rapidly falling parton fluxes. Final state inter- 
actions which transform the heavy quarks into the observed hadrons will not change 
the size of the cross section. A possible mechanism which might spoil this simple 
picture would be the interaction of the produced heavy quark with the debris of the 
incoming hadrons. However these interactions with spectator partons are suppressed 
by powers of the heavy quark mass [26]. F or a sufficiently heavy quark they can be 
ignored. 
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4.6 Higher order corrections 

The results of a next-to-leading calculation are also available [27,28]. The standard 
perturbative QCD formula for the inclusive production of a heavy quark Q of mo- 
mentum p and energy E, : 

HA(&) + &3(p2) * Q(p) +x (390) 

determines the invariant cross-section as follows, 

F = g/“, dx2 [ Ed3~ij(zlP~,x2P2,~,m,~) d3p ] C-%,,P) F:(xz,P). (391) 

The symbol 5 denotes the short distance cross-section from which the mass singular- 
ities have been factored. Since the sensitivity to momentum scales below the heavy 
quark mass has been removed, 6 is calculable as a perturbation series in crs(p*). The 
scale p is a priori only determined to be of the order of the mass m of the produced 
heavy quark. The corrections to Eq. (391) are suppressed by powers of the heavy 
quark mass. 

At this point we list the parton sub-processes which contribute to the inclusive 
cross-sections. 

q+v- Q+8> &a; 

9+9-+ Q+s, &,a: 

q+8- Q+V+g, a”s 

9+9--’ Q+&+g, 0”s 

9+q+ Q+Q+q, 0”s 

9+ii- Q+p+q, a;. (392) 

Note the necessity of including both real and virtual gluon emission diagrams in order 
to calculate the full O(oi) cross-section. Examples of diagrams required for a full 
O(ai) calculation are shown in Fig. 51. 

Integrating Eq. (391) over the momentum p we obtain the total cross section for 
the production of a heavy quark pair, 

o(S)=x/d d XI X2 6.ij(X1X2Svm2,P2) F,P(X,,p)Fjp(Z*,/J) 
ij 

(393) 

where S is the square of the centre of mass energy of the colliding hadrons A and B. 
The total short distance cross section 6 for the inclusive production of a heavy 

quark from partons i,j can be written as, 

(394) 
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a) b) C) 

Figure 51: Examples of diagrams contributing beyond the leading order 

with p = 4m*/s, and s the square of the partonic centre of mass energy. p is the 
renormalisation and factorisation scale. In ref. [27] a complete description of the 
functions fij including the first non-leading correction is provided. These may be 
used to calculate heavy quark production at any energy and heavy quark mass. 

Eq. (394) completely describes the short distance cross-section for the production 
of a heavy quark of mass m in terms of the functions fij, where the indices i and j 
specify the types of the annihilating partons. The dimensionless functions fij have 
the following perturbative expansion, 

.fij((pt $) = f$‘(P) + 9*(/J*)[f!~)(P) +7$‘(p) In($)] + 4g4) (395) 

In order to calculate the fij in perturbation theory we must perform both renormal- 
isation and factorisation of mass singularities. The subtractions required for renor- 
malisation and factorisation are done at mass scale p. The dependence on p is shown 
explicitly in Eq. (395). The energy dependence of the cross-section is given in terms 
of the ratio p, 

p=F, p=Jiq. (396) 

The running of the coupling constant (YS is determined by the-renormalisation group, 

dw4~*) = 9* 
dlnp* -‘a”: - ha; + o(a$), as = 4n 

b = (33 - 2v), bl = (153 - 19rrf) 
12a 24r* (397) 

where n, is the number of light flavours. 
The quantities f(i) depend on the scheme used for renormalisation and factorisa- 

tion. The results of ref. [27] are obtained in an extension of the MS renormalisation 
and factorisation scheme. They display interesting features which control the size of 
the O(o$) corrections. 
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The functions jg’ defined in Eqs. (394,395) are, 

j;;‘(p) = $! 2+p 1 1 (398) 

f’%) = 99 $$ $(p* + 16p+ 16)ln(z) - 28 -31~1 (399) 

f(O)(p) = f’!‘(p) = 0 S-9 9q (496) 

We now turn to the higher order corrections in Eq. (395) which are separated into 
two terms. The f(‘)(p) terms are the coefficients of ln(p*/m*) and are determined by 
renormalisation group arguments from the lowest order cross-sections, 

fl,f’(P) = & br h f,‘jO’(~) - l1 dzlfif)( t)Phi(zl) - /pl dZ*f,:O’( c)P,(*.)]. (401) 

The quantities f(l) in Eq. (395) can only be obtained by performing a com- 
plete O(czt) calculation. The functions f(‘),f(l) and f”’ are shown plotted in 

Quark Antiquark 

t i III1111 I I11111 11 / ll!II/ II 1 //III III Ii IIII d 
! 

-.',()D 10' lo2 103 10’ lo5 
l/P 

Figure 52: Quark antiquark contributions to short distance cross-section 

Figs. 52,53,54 for the cases of quark-antiquark, gluon-gluon and gluon-quark fusion 
respectively. Notice the strikingly different behaviour of the gluon-gluon and gluon- 
quark higher order terms in the high energy limit, p -) 0. These latter processes 
allow the exchange of a spin one gluon in the t-channel and are therefore dominant 
in the high energy limit. 
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Figure 53: Gluon gluon contributions to short distance cross-section 

A preliminary idea of the size of the corrections can be obtained from Figs. 52, 53 
and 54 even before folding with the parton distribution functions. Taking a typical 
value for g* = 2, we see that the radiative corrections are large, particularly in the 
vicinity of the threshold. The significance of the constant cross-section region (gg, gq) 
at high energy will depend on the rate of fall-off of the structure functions with 
which the partonic cross-section must be convoluted. We now describe the analytic 
structures responsible for the behaviour of the higher order terms. 

4.6.1 Behaviour near threshold 

Near threshold,( p -+ 0), the analytic structure of the higher order terms is given by, 

j$’ + N,c[ - $f + p(y ln* (8p*) - F ln(SP*)) + O(P)] 

f(l) + N 99 gg g + P(121n2 (8/3*) - yln(8p*)) + O(o)] 

f$) + O(P). (402) 

The normalisation, Nj of the expressions in Eq. (402) is determined as follows, 

N,,= 1 f!jo’o 
11 - 

8aZ p o=o’ NC= 7:$ JG=&. (403) 
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Figure 54: Gluon-quark contributions to the parton cross section 

Notice that in this order in perturbation theory the cross-section is finite at threshold. 
This is due to the l/p singularity which is responsible for the binding in a coulomb 
system. The coulomb attraction tends to increase the cross-section when the incoming 
partons are in a singlet state (gg), and decrease the cross-section when the incoming 
partons are in an octet state (gg,qij). This results in a net positive term for the 
gg case. For top production at m, = 174 GeV the overall correction due to this 
effect even after resummation is sma11[29] (of order a few %), because of cancellation 
between gg and qq. 

4.6.2 Behaviour at high energy 

As shown in Figs. 53 and 54 the gg and qg cross sections tend to a constant at high 
energy. The lowest order cross section for gg involves fermion t-channel exchange and 
therefore falls off at large s as can be seen from Fig. 53. For the higher order terms 
a constant behaviour is found, 

f:J) + 61c + O(pln’ p) 

$’ * gk + O(pln*p) (464) 

The constant behaviour leads to large corrections especially in b production. Attempts 
have been made to resum the large effects by including the effects of Lipatov ladders 
in [30]. 
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4.7 Estimates of rates 

In this section we examine the effect of the radiative corrections on the production of 
heavy quarks at the energies of current pjI~ colliders. The total cross section is obtained 
by integrating the product of the short distance cross sections and the parton fluxes. 
We use the parton distribution functions of MRS[31]. 

To assess the significance of the radiative corrections and the relative importance 
of the various kinematic regions we must know the flux of incoming partons. We 
define the parton flux function @, 

@ij(rfP) = rl’dzl l1 dxz CACnr #‘jB(xzr cl)J(x~xz - ~1. 

In terms of these parton fluxes the hadronic cross-section is given by, 

(405) 

do(S, m’) 
In r (406) 

The cross section calculated in Eq. (406) is shown in Figs. 55 and 56 for the case 

.6 - 

.6 - 

.4 - 

2 - 

Bottom quark production at \IS=I.BTeV 
1 
I\ 
I\. 

‘cl 
01 ” ’ “1 11 ’ 11 11 1 I t, I 

0 2 .4 .6 .6 1 
7 = XI xp 

Figure 55: Contributions to bottom cross-section 

of bottom and top production at 1.8 TeV. The heavy curves are the O(a2,) contri- 
butions and the lighter curves are the O(ai) contributions. Note that bottom quark 
production at collider energies is predominantly due to gluons with quite small values 
of x. By contrast top quark production is due to quark-antiquark annihilation. The 
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Figure 56: Contributions to top cross-section 

horizontal scales are logarithmic, so that the areas in the figures are proportional to 
the size of a given contribution to the total cross section, (see Eq. (406)). The higher 
order corrections are found to be moderate in the case of top, but very large for the 
bottom quark. 

The rapid rise of the cross section near threshold is due to the logarithmic terms 
displayed in Eq. (402). These corrections are more important for smaller top quark 
mass, when gluon-gluon processes which have inherently larger corrections are more 
important. The resummation of these large logarithmic corrections has been per- 
formed in ref. [36]. The resummation is hard to control without treatment of order 
l/m effects. 

We now turn to numerical estimates. Recent predictions for charm and bottom 
production are given in ref. [32]. Turning to top quark production, earlier estimates 
are given in [33,34,35]. The sensitivity of the prediction for the total top cross section 
to the shape of the parton distribution functions is quite small. For the MRS(Db) 
distribution the result for m = 174 GeV is u(p = m) = 4.93 pb; the corresponding 
result for the MRS(D’_) distribution is 4.91 pb. The effect of (2,s uncertainty is more 
important. Increasing as by lo%, as(Ms) + 0.124 the cross section changes by 
23% to 6.04 pb. This may be an overestimate since it does not take into account the 
increased shrinkage of the quark distribution functions for larger a, in the evolution 
from lower energy. The scale dependence uncertainty is small as shown in Fig. 57. 
Fore m/2 < ,u < 2m we find that 5.1 > u > 4.4 pb for m = 174 GeV. I find that. at a 
fixed top mass, the cross section is unlikely to be uncertain by more than 30%. For 
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Figure 57: The p dependence of the theoretical top cross section 

mt = 174 GeV the top cross section is 35% bigger at & = 2 TeV and more than 
100 times bigger at LHC as shown in Fig. 58. 

The result for the bottom cross section is shown in Fig. (59). As anticipated 
above, the O(cri) corrections are large and lead to a doubling of the prediction for 
the cross section. The matching of the finite order calculation shown in Fig. (59) 
with a resummed cross cross section with better control of the high energy behaviour 
remains an open question in bottom production. 

In conclusion, we have seen that bottom and top quark production are governed by 
rather different mechanisms. The top cross section is expected to be rather reliable. 
The bottom cross section is still rather uncertain. 
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