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Abstract In this article, we consider a regular black hole
(BH) surrounded by quintessence in the scalar—vector—tensor
(S—=V-T) version of modified gravity (MOG). We examine
the implications of the presence of a quintessence scalar
field on astrophysical observable such as quasinormal modes
(QNMs), greybody factors (GFs), and thermodynamics. In
the vicinity of the MOG BH with quintessence, we calculate
the effective potential generated by scalar and electromag-
netic field perturbation, and then use the sixth order WKB
method to compute the frequencies of the QNMs under these
perturbations. We also study the impact of the MOG parame-
ter « and the quintessence parameter ¢ on QNM frequencies.
Our investigation reveals that the combined effects of o and
¢ parameters lead to significant decrease in oscillation fre-
quencies, while the imaginary part generally rises. We then
examine the GFs associated with the BH and found that as
the model parameters « and c increase, GF also increases,
and thus less scattering. Additionally, we investigate the
thermodynamic quantities and geometries for asymptotically
expanded MOG BH. Through heat capacities, Helmholtz and
Gibbs free energies, it is observed that this BH shows the sta-
ble behavior for various choices of the state parameter of the
quintessence w. It is also interesting to mentioned here that
Weinhold geometry exhibits the repulsive nature and Ruppi-
ener geometry provides the attractive nature of MOG on the
particles for most of the choices of w.
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1 Introduction

Dark compact objects, from a perspective of phenomenol-
ogy, comprise a wide range of astronomical objects, such as
white dwarfs, neutron stars, and BHs. Theoretically, scenar-
ios incorporating particle physics outside the standard model
and extended gravity theories might both contribute to the
prediction of dark compact objects [1]. Gravitational waves
detected by LIGO/Virgo observations recently demonstrated
the occurrence of binary BH mergers [2,3]. In addition, the
event horizon telescope (EHT) confirmed the presence of
supermassive BHs in the Milky Way and M87 galactic cen-
tres in [4—-6]. Thus, it makes sense to expect that future devel-
opments in the area of gravitational wave astronomy and very
long baseline interferometry is going to open the door to new
compact object species. However, the investigation of dark
compact objects from a mathematical perspective is intrigu-
ing since it helps us understand the mechanism at what limits
an object tends to be a BH by increasing its compactness.
Although Albert Einstein’s general theory of relativity
(GR) has made significant progress in interpreting obser-
vations and foretelling amazing events, it is still not a com-
prehensive theory that describes gravitational interaction and
connecting cosmic events. Among the shortcomings of GR
are the recurrence of the rotation curves of neighbouring
galaxies [7,8], mass profiles of galaxy clusters [9], inher-
ent singularities at the core of black holes, etc. In addition,
the positively accelerated expansion of the universe at late
times cannot be explained by GR without the cosmological
constant factor [10]. Restructuring the geometric component
of general relativity (GR) using various methods is an intrigu-
ing method of reform. This can lead to the development of
the referred to as modified gravity (MOG) theory, which is
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a scalar—tensor—vector (S—T-V) theory formulated by John
W. Moffat that explains gravitational interaction [11]. The
gravitational influences of spacetime in a MOG setup are
expressed by a huge vector field in addition to three scalar
fields: the mass of the vector field, the effective gravita-
tional constant G, and the vector field coupling. In addition
to being compatible with Planck 2018 data [12], the MOG
theory has achieved various successes in explaining astro-
physical phenomena. These include explaining the dynam-
ics of galaxy clusters without dark matter and the rotation
curves of many galaxies [13,14]. Furthermore, within the
framework of MOG theory, a number of BH solutions, such
as rotating and non-rotating ones [15], even with additional
dimensions [16], cosmological solutions [17-19], and non-
stationary solutions for in homogeneity distributions of mass
energy in spacetime [20], have been published recently. Addi-
tionally, a great deal of theoretical and observational work has
been done to comprehend the aspects of the MOG theory and
how it functions in various contexts [21-25]. Ref. [26] offers
an interesting exploration of the solution characterizing the
regular rotating and non-rotating MOG dark compact object.

Current astronomical discoveries provide compelling evi-
dence of the universe’s accelerated expansion [27-29], sug-
gesting the existence of an appealing scenario under nega-
tive pressure. There are two potential reasons for the negative
pressure. First, there is the cosmological constant, and sec-
ond, there is the termed quintessence, whose state equation
is defined by the correlation between pressure p, as well as
energy density p,. This implies that at w, o, = w at w in the
interval -1 < o < — 1/3, which leads in acceleration.
The cosmological constant term is explained by the border
case of w = —1 of the remarkable quintessence. The outer
horizon, which prevents the emergence of the observable S-
matrix with respect to asymptotic past and future states, pro-
vides an issue to the consistent theory of quantum gravity,
as was noted [30-32]. The inner horizon of a BH, which
possesses asymptotically flat space distant from the BH, is
very different from the outer horizon of de Sitter space. In
[30], the Robertson—Walker metric’s future horizon with the
accelerating scale factor brought on by the quintessence was
examined.

The early research on the temperature and entropy of the
event horizon by Bekenstein and Hawking is referenced in the
thermodynamic description of BHs [33,34]. Basically, they
established that the BH’s temperature and entropy are corre-
lated with the event horizon’s area as well as surface gravity,
respectively. We can study the first rule of thermodynamics in
relation to the total energy (mass) of the BH by examining the
conserved charge correlated with the time-translation sym-
metry, employing the same analogy as with standard systems.
In a plausible scenario, we ought to examine the BH’s robust-
ness to minor disturbances. In other words, we have to investi-
gate both the dynamic as well as thermodynamic consistency
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of the solutions. The QNMs of the solutions can be employed
to investigate thermodynamic stability, whereas the reaction
of a system to fluctuations in temperature, energy, and var-
ious other thermodynamic parameters close to equilibrium
might be used to evaluate dynamic stability. Through the
utilization of micro-canonical, canonical, along with grand
canonical ensembles, the thermodynamic viability of a BH
might be probed via perturbative parameters. The prereq-
uisites of thermal stability along with BH thermodynamics
have been explored in the literature in recent times [35-38].

The initial step in viewing a typical BH as a thermody-
namic system would be to search for thermodynamic param-
eters. The Smarr relationship to the scaling method, in addi-
tion to the fundamental principle of thermodynamics, can be
useful in this context. In the referred to as extended phase
space, one must modify the first rule of thermodynamics
depending on the Smarr connection of BHs. There is a van
der Waals-like phase transition involving AdS charged BHs
and the extended phase space, in which the cosmological
constant can be defined as a dynamical pressure. One of the
fascinating techniques for studying the BH phase transition
is geometrical thermodynamics. This approach enables one
to describe a phase space via thermodynamical potentials
and the related quantities. The divergence points of the Ricci
scalar, that form the thermodynamic metric, provides signif-
icant details concerning a potential phase transition of the
BH system. Weinhold and Ruppeiner thermodynamical met-
rics have been the most frequently utilized. The initial one is
defined on the space of equilibrium state of thermodynamic
structures which was introduced by Weinhold [39]. Follow-
ing that, in 1979, Ruppeiner defined an additional the metric
[40]. The drawbacks of both the Weinhold as well as Rup-
peiner metrics stem from the fact that these metrics tend to
not be invariant under Legendre transformation.

In this work we have discussed the QNMs and GF of
MOG BH surrounded by quintessence along with the ther-
modynamic geometry. The organisation of this paper is as
following. In Sect. 2, we write down the MOG BH solution
in the presence of a quintessence field and briefly review this
spacetime. Section 3 is devoted to investigate the scalar and
electromagnetic perturbation and associated QNMs using 6th
order WKB method. In Sect. 4, the QNM frequencies at the
eikonal limit is calculated via circular null geodesics. Section
5, is reserved for the analysis of the greybody radiation. In
Sect. 6, we study the thermodynamics of the regular MOG
BH surrounded by a quintessence. Finally, we summarize
our results and discuss some open issues in the conclusions
section.
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2 Regular MOG BH surrounded by a quintessence
2.1 A brief review of the spacetime

This section begins by describing the metric of a static BH in
the S—V-T (MOG) gravity model with a quintessence scalar
field, with the aim of analyzing its implications of this mod-
ified gravity theory on QNMs, GFs, and thermodynamics
of massive astrophysical objects. The regular MOG, static
spherically symmetric solution surrounded by quintessence
can be written as [41-43]

ds® = = f (1) di*+ {71 (r)dr? 402 (467 + sin? 0dg?) (1)

where

2(1-|-06)Mr2
(P2 +a (1+a) M2)*?
o (1 4+ a) M?3r? c(l+a) 5
(P ta(d+ay M)’ o @

fry=1-

in which, M is the mass parameter of the gravitating object,
« is the enhancement (MOG) parameter, ¢ is a normalization
factor and w is the state parameter of the quintessence which
has the range —1 < w < —1/3. We will refer to the BH
described by metric (1) as a MOG BHQ.

It is worth noting that Moffat [15] ignores the matter sec-
tor’s momentum tensor when building his MOG version of
BHs. Under the assumptions of the S-T-V theory, the line
element of the Schwarzschild-MOG BH solutions can be
obtained using the action [11]:

1 1
S=— | d*x/=g(R—-B"B , @3

16nGN(1+a)/ g g( 4 W) ©
where G y is the Newtonian constant. Variation of this action
with respect to g"" results in the following field equations
[11]:

G/w =8rGy (1+ ) T;w, 4

where the Einstein tensor G, = Ry, — %g,wR. In the
Einstein field equation, the energy momentum tensor can
be decomposed into two distinct components to obtain the
metric of the MOG BH surrounded by quintessence [43]

Tuw = Tih + Tl )
where T,il,, for the quintessence part and T,‘fv describes the
vector field. Based on [43], the metric (1) (where we set
Gn = 1) of the regular MOG, static spherically symmetric

solution surrounded by quintessence is obtained by introduc-
ing the matter sector as a quintessence scalar field.
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Fig. 1 Metric function f(r) of MOG BHQ for different values of the
MOG parameter «. Here o = —2/3,¢c =0.02and M = 1

It is possible for such a static spherically symmetric MOG
spacetime without quintessence to have two, one or no event
horizon(s), depending on the parameter, « [44]. Nevertheless,
several authors have observed (such as [48,49]) that cos-
mological horizons become apparent when the quintessence
term is taken into account. Based on this, the spacetime of
MOG BHQ (1) could have three horizons as shown in Fig. 1.
Moreover, it shows how the number of the horizons in the
MOG BHQ usually decreases from three to two or even to
one as the parameter « increases.

3 QNMs of MOG BH surrounded by a quintessence

Accordingly, the QNM ringing stage corresponds to the BH’s
QNM, which typically exhibits damped oscillations repre-
sented by discrete complex frequencies, where the real part
represents the frequency and the imaginary part represents
the decay rate of the oscillation. Because QNMs are inde-
pendent of the initial perturbation and are dependent only
on the BH parameters, they are important tools for study-
ing BHs and gravity theories. The BH can be perturbed by
either adding test fields (Klein—Gordon or Dirac fields) to the
background or by perturbing spacetime itself. In any case, the
perturbation equation for a static and spherically symmetry
line element can be reduced to the following like-Schrddinger
equation [45]:

d*U
dr?

+(k2—V)U=0, 6)

where the tortoise coordinate r, is defined as % = fi
and V (r) is the effective potential given by:

_ 2
+f/(1 s )> 7

r

[({+1
V(r)=f< 2
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where s = 0, 1, 2 is the spin of the perturbing field. In this
section, we shall consider s = 0 for scalar field and s = 1
for electromagnetic (EM) field.

Based on different values of MOG BHQ parameters,
Figs.2 and 3 show how the potentials (7) vary. Figure2
demonstrates that as c increases, the potential curves of scalar
field decrease significantly, indicating that quintessence has
the effect of lowering the peaks of these potentials. Figure 3
depicts a similar trend in which potentials decrease as the
parameter « increases. According to this analysis, the effects
of parameters ¢ and « on potential behaviour are comparable.
As aresult, they may have similar effects on QNMs. It worth
to mention that the potentials in EM fields behave similarly
to those in scalar fields.

To obtain QNM frequencies, there are several strategies
that can be used. We will, however, apply the 6th WKB
approximation [46] first presented in Ref. [47] to study scat-
tering around BHs, for the sake of efficiency in computing
the quasinormal frequencies. We focus on the fundamental
mode with/ = 2 and n = 0, 1 due to its dominant ingredi-
ent of gravitational waves in order to study the influence of
the parameters ¢ and « on the quasinormal frequencies. The
complex frequency formula in the 6th order WKB approxi-
mation has the form [46]

2 6
,-M_ZAZ:HI (8)

V2Vo =

where Vj is the maximum of the effective potential V (r),

V! = 2V (ry) ro is the position of the peak value of
0 = dr? r*:m’ 0 p p

the effective potential, and A;’s are 2nd to 6th order WKB
corrections that have been given in Refs. [46,47].

The QNMs of the massless scalar and EM perturbation are
presented in Table 1 with several values of ¢ using the follow-
ing model parameters: « = 0.2, M = 1,] = 2, and overtone
number n = 0, 1. Similarly, Table 2 presents the QNMs of
the massless scalar and EM perturbation with several val-
ues of o using the following model parameters: ¢ = 0.02,
M = 1,1 = 2, and overtone number n = 0, 1. According to
the Tables, all BH frequencies obtained have a negative imag-
inary part, indicating their stability. The real and imaginary
QNDMs have been explicitly plotted with respect to the model
parameters in order to see how the model parameters affect
the QNM spectrum. In Figs. 4 and 5, we show the variation of
real and imaginary QNMs with respect to the model param-
eters ¢ and « for both massless scalar perturbation and EM
perturbation respectively. It is observed that, with an increase
in ¢ and o, real QNMs or oscillation frequencies decrease sig-
nificantly. However, the imaginary part of the quasinormal
frequencies generally rises, with an increase in ¢ and «, indi-
cating a smaller damping rate. In Figs.6 and 7 we plot the
QNM frequencies in complex frequency plane. Figures show

N3
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that increasing ¢ and o decreases both frequency and decay
rate. In general, the system experiences weak oscillations and
slow decays.

4 QNM frequencies at the eikonal limit calculated via
circular null geodesics

Cardoso et al. [50] proposed the circular null geodesic
method to calculate the QNM frequencies of a static spheri-
cally symmetric BH at the eikonal limit / >> 1. The formula
for calculating the QNM frequencies through unstable null
geodesics is [50]:

1
frequency =1Q —i <n + 5) [A]. )

The real and imaginary components of the QNM frequencies
are determined by €2 and A, which are respectively the angu-
lar velocity and Lyapunov exponent. The angular velocity is
given by,

Q:Vf(rc), (10)

I'e

and the Lyapunov exponent is

b=\ [1 0o f 00 —r2f o) an

where r, is the circular orbit of the unstable null geodesics
where it is determined by:

2 =] =0, (12)

=rc

By substituting Egs. (2) into (10) and (11), graphs of €2 and
A with respect to ¢ and « can be drawn. Figures8 and 9
represent the angular velocity 2 and the Lyapunov expo-
nent A with respect to the parameters ¢ and « respectively.
There are notable similarities between Figs.8, 9 and 4, 5.
As a result, the Cardoso et al. [50] approach and the high-
order WKB approximation produce results which correspond
directly with those of the analysis of unstable null geodesics.

5 Greybody factors

In this section, we aim to analyse the transmission coefficient
or the GF for the regular MOG BHQ. The GF describes how
much radiation near a BH is trapped or reflected by the BH.
The GF estimates the likelihood of an outwardly travelling
wave reaching an observer at infinity without being absorbed,
or the likelihood of an incoming wave being absorbed by the
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Fig. 3 Plot of effective potentials (7) for scalar field for specific choices of @ (M = 1, ¢ = 0.02)

Table 1 The QNM of MOG BHQ for scalar and EM perturbations for specific choices of c. Here, M = 1,/ =2, w = —=2/3 and @« = 0.2

EM perturbation

n=20

n=1

Scalar perturbation

c n=20 n=1

0 0.42821 — 0.07535i 0.39634 — 0.2073i
0.01 0.39948 — 0.06939i 0.37105 — 0.1911:
0.02 0.36957 — 0.06326i 0.34461 — 0.1744i
0.03 0.33820 — 0.05693i 0.31677 — 0.1573i
0.04 0.30499 — 0.05036i 0.28713 — 0.1396i
0.05 0.26933 — 0.04347i 0.25509 — 0.1211i
0.06 0.23017 — 0.03616i 0.21963 — 0.1014i
0.07 0.18547 — 0.02819i 0.17870 — 0.0799i
0.08 0.12988 — 0.01893i 0.12687 — 0.0546i
0.09 0.021619 — 0.0029i 0.0216 — 0.00894i

0.40655 — 0.07337i
0.38083 — 0.06747i
0.35385 — 0.06144i
0.32533 — 0.05526i
0.29485 — 0.04887i
0.26179 — 0.04223i
0.22506 — 0.03521i
0.18255 — 0.02757i
0.12878 — 0.01866i
0.02161 — 0.00298i

0.36996 — 0.19765i
0.34804 — 0.18173i
0.32501 — 0.16563i
0.30056 — 0.14929i
0.27430 — 0.13259i
0.24556 — 0.11532i
0.21324 — 0.09714i
0.17517 — 0.07728i
0.12565 — 0.05365i
0.02159 — 0.00893i

BH. In fact, many researchers have already studied reflection
coefficients and transmission coefficients (GFs) in various
scenarios [51-63]. To evaluate the GF, we will use the general
semi-analytic bounds method. This method requires that GFs
(or transfer coefficients) around a BH be greater or equal to
the following formula: [58,61,64]

1 [roo
T (w) > sec h® (%/ Veffdr*> ) (13)
T,

h

To calculate the GF of massless scalar we will use potential
given in Eq. (7). Hence

T (w) > sech? (2i [ (”’—ﬁl) " é) dr> a9

w Jy, r

The analytical solution of Eq. (14) is

T (w) > sec h? |:l (—M
w h

ery 7 (14 30) (1 + @)
24+ 3w
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Table 2 The QNM of MOG BHQ for scalar and EM perturbations for specific choices of «. Here, M = 1,1 =2, w = —2/3 and ¢ = 0.02

Scalar Perturbation

EM Perturbation

o n=0 n=1 n=0 n=1
0 0.43507 — 0.07893i 0.38580 — 0.20164i 0.41405 — 0.07614i 0.35681 — 0.18620i
0.1 0.40029 — 0.07067i 0.36514 — 0.18839i 0.38211 — 0.06842i 0.34137 — 0.17674i
0.2 0.3695 — 0.063265i 0.34461 — 0.17449i 0.35385 — 0.06144i 0.32501 — 0.16563i
0.3 0.34203 — 0.05654i 0.32442 — 0.16033i 0.32845 — 0.05506i 0.30819 — 0.15359i
0.4 0.3170 — 0.050387i 0.30462 — 0.14611i 0.30533 — 0.04917i 0.29117 — 0.14098i
0.5 0.29406 — 0.04468i 0.28520 — 0.13191: 0.28402 — 0.04368i 0.27407 — 0.12802i
0.6 0.27272 — 0.03935i 0.26610 — 0.11772i 0.26416 — 0.03852i 0.25692 — 0.11479i
0.7 0.25268 — 0.03431i 0.24718 — 0.10349i 0.24544 — 0.03362i 0.23965 — 0.10127i
0.8 0.23365 — 0.02950: 0.22827 — 0.08904i 0.22759 — 0.02890i 0.22210 — 0.08730i
0.9 0.21539 — 0.02481i 0.20900 — 0.07397i 0.21038 — 0.02427i 0.20393 — 0.07247i
— n=0 — n=1
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C

Fig. 4 Plot of QNM frequencies with real and imaginary parts (Table 1) versus the parameter c. Scalar perturbation (up), EM perturbation (down).
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Fig. 6 Complex frequency plane for scalar perturbation showing the behavior of the quasinormal frequencies

To illustrate the picture, we plot Eq. (15) for the choose
o = —4/9 in Fig. 10. As can be seen in the Figure, when
the frequency of the wave is low, GF is zero, while when
it is high, GF is one, which demonstrates that when its fre-
quency is low, the wave can be entirely reflected, but at high
frequencies it cannot. According to the Fig. 10, as the MOG
parameter « increases, GF also increases, and thus less scat-
tering. The right panel Fig. 10 shows similar plot for varying
the parameter c.

6 Thermodnamics of Regular MOG BH surrounded by
a quintessence

Rao [65] gave the idea of informational geometry [66] and
on the basis of it, Weinhold [67] generated the metric frame-
work for a thermodynamic system. Weinhold has developed
the thermodynamic function differentials as a vector space
element and then explain an inner product. It is suggested that
the metric components g;; can be obtained through the sec-
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@ Springer



Eur. Phys. J. C (2024) 84:115

Page9of 14 115

ond derivative of the internal energy concerning the extended
parameter. The geometry in this formulation is based on the
lowest energy principle for an isolated system, which indi-
cates the tensor and Euclidean properties of g;;. Despite the
fascinating features of this approach, which permits the geo-
metric hypothesis to be applied to figure out the fundamental
rules of equilibrium thermodynamics, it failed to yield any
major findings.

Years later, Ruppeiner [68] was able to design a thermo-
dynamic geometry with a precise physical interpretation by
switching from the energy to the entropy representation. He
stated the metric tensor as the Hessian of the entropy density
and observed that the derived line element, i.e. the infinites-
imal distance between adjacent equilibrium states, has an
inversely proportional relationship with the classical theory’s
fluctuation probability. In infinite-time thermodynamics, the
increase in entropy caused by non-equilibrium facets can be
related to the geodetic distance between a standard process’s
end and beginning states [69]. Many exciting advancements
emerged from the earlier concept of thermodynamic metric.
Furthermore, Weinhold and Ruppeiner’s measures have been
shown to be conformal [70] and to be limiting cases of Rao’s
metric [71]. Jawad and Usman [72] have Studied the ther-
modynamic geometry of Einstein Gauss Bonnet BH. They
have also tried to associate the thermodynamic geometry of
BH with the deflection angle.

The metric function in asymptotic form can be written as

(@4 De  ale+1DHM? _ 2(e+ DM

S =-—37 ) + 1L

(16)

r

Hawking temperature palys a crucial rule in BH thermody-
namics. To calculate the Hawking temperature we can use
the given expression /47w, which takes the form as

T (o + 1)p 3@t (c(3rw +7) —2Mr3° (M — r))

4
(17)

Another important aspect of BH thermodynamics is the
thermodynamic features. As we know that due to absence of
the cosmological constant so cannot use the expression of
P = %. To derived the thermodynamic pressure for MoG
BH, we can use the given relation

aS
p=r1(2%")

av
where V represents the volume of the BH and the volume of
the BHis V = %nr3.

(18)

GRS 1) —3@+h-1 (c(3ra) +7) = 2Mr3° M — r))

8

P

19)

0.0 0.5 1.0 1.5 2.0

r

Fig. 11 Plot of Cy of MoG BHQ versus r in Bekenstein entropy

Bekenstein proposed in the early 1970s that the second
principle of thermodynamics might be violated if BHs pos-
sesses no entropy. The entropy of a BH has been suggested as
amonotone growing function of its area, because the area of a
BH never decreases under classical theory [73]. The simplest
monotone rising function of area is a proportional function
and its expression given as,

Spn = A/4, (20)

where A = 4mr? is the area of the BH at its event hori-
zon. Entropy measures the level of uncertainty in a physical
system. In general, more detail shows less uncertainty [74],
which is often expressed clearly in a quantitative statement:
Information exhibits a negative entropy. A system has less
entropy or uncertainty the more information it possesses.

Thermal stability is quite fascinating topic in BH thermo-
dynamics. Many scientist work in this direction to check the
local and global stability of the BHs. To investigate the local
stability we use heat capacity in which we have specific heat
at constant volume, specific heat at constant pressure while
the third one is the ratio between these two heat capacities.
First, we investigate the specific heat at constant volume by
using the following relation

Cy = <2na(a +Der’Bo — 1) —4xreB3 ey + 1))
X ( —a(x+ 1ecOw

-1
X(@+1) —4) + 872y + 20 + 4)r3“’+1) :
2h

(a+ 1) (a(a+Der 30 +4r)
. .

where ¥ = \/ .

The behavior of Cy is clearly showed a negative behavior
throughout the horizon radius which is observed in Fig. 11. It
is also observed that the conduct of Cy of the MOG BH with
respect to the horizon radius is unstable for the all the ranges.
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Fig. 12 Plot of Cp of MOG BHQ versus r in Bekenstein entropy
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Fig. 13 Plot of y of MOG BHQ versus r in Bekenstein entropy

To discuss thermal stability more deeply, we now analyze the
specific heat at constant pressure Cp and it is given as

Cp = (4m3w+2(rY +1) —2ma(a + DerBo — 1))

12

x ((((a + Da(a+ Der ™2 + 1) (r%))

x(—a(a + DeOw(w + 1) — 4) + 8r3@+2
-1

+2(a + 4)r3w+1Y)) )

The conduct of Cp shows a positive behavior throughout
the horizon radius which is presented in Fig. 12. It is deduced
from the Fig. 12 that the behavior of Cy of the MOG BH
against the horizon radius is stable for the all the . Now, we
will discuss the heat capacity ration which can be observed
from the ratio between the heat capacities and it is given as

1
- ’ 22
e o
3

r

Behavior of heat capacity ratio is very interesting and
its trajectories showed negative behavior along the horizon
radius that is presented in Fig. 13. One can notice that all the

@ Springer

Fig. 14 Plot of G of MOG BHQ versus r in Bekenstein entropy

trajectories coincide at a common point whichis at» = 1 for
all the values of w that is quite surprising. Overall, Behavior
of the heat capacity ratio is unstable throughout the horizon
radius.

Now, we will discuss the Gibss free energy (GFE) and
also discuss its graphical representation. GFE of the MOG
BH system is considered as its Global stability. GFE can be
derived from the given expression

G= M~— TSy, + PV, (23)

by inserting values in the Eq. (23), we have

-1
G = <12(x(a + 1)> ((x(oc +1)?

c(1 = 3w0)r > 4+ 2(a + Dr?Y + 14(a + 1)r>.
(24)

Examining the heat capacity’s positivity when a system’s
equilibrium state corresponds to the global minimum of the
GFE is one way to look into the local thermodynamic stability
of a system. To determine a potential thermodynamic phase
transition and its order, one must understand the behavior of
GEFE. Plotting the GFE allows one to examine the behavior of
GFE with respect to horizon radius. Behavior of the GFE is
decreasing but with positive behavior throughout the horizon
radius that can be observed in Fig. 14. The positive behavior
of the GFE indicates the stable behavior of MOG BH.

Helmholtz free energy (HFE) is another technique to
examine the global stability of the BH. HFe can be calcu-
lated by using the given relation

Fo.= M — TSy, (25)

by substituting the values of M, T and Sy, in the Eqn. (25),
then we have

F, = <a(a + D2 (—0)Bw — Dr3° 4+ 2(a + 3)rY
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Fig. 15 Plot of F, of MOG BHQ versus r in Bekenstein entropy

-1
X + 6(a + l)r) <4a(a + 1)) . (26)

Plotting the HFE permits one to investigate the conduct of
HFE in terms of the horizon radius. Behavior of the HFE is
Increasing with positive behavior for all ranges of the horizon
radius that can be observed in Fig. 15. The positive conduct
of the HFE predicts the stable behavior of MOG BH.

6.1 Thermodynamic geometry

This section’s goal is to use the Bekenstein-Hawking entropy
to examine the thermodynamic geometry of MOG BHQ. To
do this, we use Eqgs. 16 and 20 to compute the mass of the
MOG BH in terms of entropy. This produces

M(S, @) = (Vrale+1)7'(S ((a +1)§2I@+D
x (oo + e T3 4 5%%))”2
+a+ 1) x V/S) @7

In order to explain the quantum presence of gravity in Hawk-
ing radiation, BH thermodynamics is crucial [75]. Hawk-
ing highlighted the usual behavior of black bodies, which is
emitting thermal radiation, in thermodynamic terms. Equa-
tion (28) provides the Hawking temperature in terms of
Bekenstein—Hawking entropy.

-1
T(S, a) = <4ﬁaYS> (Sé(—3)(a)+1)
x(25% (S(Ys +/5) —a(e + Den T+

X Bw — 1))), (28)
where Yg =

<(a + DSV (g 4+ Denr T +

172
3w 1 . .
S 2+2)) . To compute heat capacity in terms of entropy,

use Eq. (28)
3w 1 3w 1 3w
C@S, a) = <4S(a(a +Der 22 4+ 852T2)(282
X(SYs 4+ v/S) — a(a + Den 22 Bw — 1)))

x <3a2(a + D27 (w + DGw — 1)

3ﬂ+l 3&_’_1
—do(a+ Der 272827 Yg+ 6a(a + 1)c

x7E 3 @+ DBw — ST+

-1
_4§3+3yg _ 4S3“’+1> . (29)

We now analyze the phase transition for MOG BHQ in
light of the geometric structures addressed in the Weinhold
and Ruppeiner formalism [67]. Weinhold constructs a pur-
posed Riemannian metric in the form of the second derivative
of internal energy and a geometrical basis for comprehending
the thermodynamics of the BH [76]. Ruppeiner [68] created a
Riemannian thermodynamic entropy metric in order to clar-
ify thermodynamic fluctuation theory in the wake of Wein-
hold [67]’s groundbreaking work. He also found a structured
method for determining the Ricci curvature R of the Rup-
peiner metric. Weinhold’s and Ruppeiner’s thermodynamic
metrics are not consistent under Legendre transformations,
based on arelationship between phase space and metric struc-
tures of the space of equilibrium states. It has been found that
there is an association between the type of inter-particle con-
nection and the symbol of R. The weinhold geometry can be
written as

8p = 0pduM (S, @), (30)
the line element of Weinhold metric for MOG BHQ is
dS% = MssdS* + Mygda® + 2Ms,dSda, 31)

and the corresponding metric to this line element is given as

W ( Mss Msq )
&= Mys Myo .

Ruppeiner geometry was employed in [77] for investigat-
ing the microscopic structure of BHs. The Ruppeiner metric’s
curvature scalar can provide information about the type and
strength of particle interactions as well as other aspects of the
system’s microscopic behavior. Now, we study the Ruppeiner
formalism which is proposed in the system of thermodynam-
ics [78,79] is

dSk,, = 1/TWdSy,;,). (32)

and the corresponding metric is

gRup — 1 <MSS MSoz)
Mys Myq ’

~
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Fig. 17 Plot of R¥“? of MOG BH versus r in Bekenstein entropy

The curvature scalar which we obtained from Weinhold
g" and Ruppiener metric RW cannot be presented in this
paper due to their length. We are only going to show their
graphical representation.

Heat capacity and curvature scalar obtained from Wein-
hold and Ruppiener metric is presented in Figs. 16 and 17.
As one can observed that the trajectories for heat capacity
depicted the negative behavior for all the values of the horizon
which indicates the instable conduct of MOG BHQ. Curva-
ture scalars depicted quite interesting behavior for different
variations of the w. For w = —1/3, —2/3, — 1, curvature
scalar showed positive behavior which reflects the interaction
between the particles of the MOG BHQ is repulsive which
can be seen in Fig. 17. In case of ruppenier metric, Ricci
scalar reflects the almost similar behavior for o = —1/3
while for o = —2/3, — 1 it showed negative behavior that
can be observed in Fig. 17. The heat capacity’s divergence
points and the Ricci scalars of the Weinhold and Weinhold
metric in the Figs. 16 and 17 do not coincide.

@ Springer

7 Conclusion

In this paper we aimed to investigate the impact of the MOG
field and the quintessence scalar field on the astrophysical
observable surrounding a regular static spherically symmet-
ric BH. To achieve this goal, we conducted extensive research
on QNMs, GFs, and thermodynamics.

We first derived the master equations of scalar field and
electromagnetic perturbations of MOG BHQ and calculated
the QNM frequencies using the 6th order WKB approxima-
tion method. We draw the graphs of real and imaginary parts
of quasinormal frequencies of the perturbations with respect
to the parameters « and c, respectively. In addition, we calcu-
late the quasinormal modes at the eikonal limit using the null
geodesic method. Finally, we arrive at the following conclu-
sions: The imaginary part is negative in all of the obtained
BH frequency modes, indicating their stability. Real QNMs
or oscillation frequencies are observed to decrease signifi-
cantly as ¢ and « increase. Gravitational wave damping or
decay rates, on the other hand, increase as ¢ and « increase.
Furthermore, ¢ exhibits almost linear variation, whereas «
does not. We calculated the GFs associated with the BH met-
ric and plotted transmission probability versus frequency for
different model parameters. Our analysis revealed that as the
MOG parameter « increases, GF also increases, and thus less
scattering. The impact of quintessence parameter c¢ is same as
MOG parameter. This is consistent with the effective poten-
tial.

We have also investigated the thermodynamic quantities
and geometries for MOG BH with quintessence region. It is
evident that MOG BH exhibits locally unstable behaviour,
but globally displayed stable conduct, as shown in Figs. 11,
12, 13, 14, 15. Additionally, this work explored the MOG
BH’s microscopic structure for variations in w, resulting in
some very intriguing results predicted. Employing the Hawk-
ing Bekenstein entropy, we have examined the thermody-
namic geometry of the MOG BH. The conduct of the Ricci
curvature scalars for MOGBH for —1/3 < w < —1isillus-
trated graphically in Figs. 16 and 17. We have noticed that
the Weinhold’s curvature scalar exhibited positive behavior,
demonstrating a repulsive interaction among the MOG BH
particles. But in the instance of Ruppiener’s curvature scalar,
we learned that it demonstrated negative forw = —2/3, —1,
revealing that particle interaction amo
ng the MOG BH molecules is attractive. Our results are
intriguing because they suggests that, depending on how the
quintessence parameter o fluctuates, the behavior of the two
Ricci scalars will alter significantly. Future research could
look into Dirac field perturbation and other thermodynamic
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geometric formalisms to study particle behaviour in the MOG
BHQ, which would be fascinating.

Data availability This manuscript has no associated data or the data
will not be deposited. [Authors’ comment: This is theoretical study, and
no experimental data has been listed.]
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