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Abstract: The gauge covariance of the quark gap equation is compared for the case of

three different quark–gluon vertices: the bare vertex, a Ball–Chiu-like vertex constrained

by the corresponding Slavnov–Taylor identity, and a full vertex including the transverse

components derived from transverse Slavnov–Taylor identities. The covariance properties

are verified with the chiral quark condensate and the pion decay constant in the chiral limit.
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1. Symmetries: When to Break, When to Preserve

One of the great achievements of hadron physics in the past decades has been the

demonstration that dynamical chiral symmetry breaking is overwhelmingly responsible for

the masses of nucleons and atoms [1,2]. Indeed, while the Brout-Englert-Higgs mechanism

is the source of explicit chiral symmetry breaking, expressed by current-quark mass terms

in the Standard Model Lagrangian, the symmetry breaking due to gluon dynamics is

incomparably more efficient in generating the mass scales we observe in nuclear physics.

This is possible because in describing strong interactions with a relativistic quantum field

theory, namely Quantum Chromodynamics (QCD), we also deal with the implicit Einstein

formula E = mc2. In other words, most of the visible mass we observe is due to radiation

energy. It seems as though Nature is telling us in a twisted manner that perfect symmetry is

not always what she aims at.

On the other hand, gauge symmetry and its preservation have been the leitmotif

in developing relativistic quantum field theories during the past century and are still

guiding physicists in the pursuit of Standard Model extensions. This is a natural demand

for any theory, as one can redefine the fields and particles by a gauge transformation

in such a way that the physical laws remain the same. Simply put, gauge symmetries

are nothing else but redundant degrees of freedom or an over-complete description of

a physical system. One may do whatever one wishes with the superfluous degrees of

freedom, as the physics of a given system remains the same and any measurable quantities

cannot depend on how we choose them. This is commonly called gauge invariance and

is also intimately related to the renormalizability of a quantum field theory. For instance,

the Ward-Green-Takahashi identity (WGTI) [3–5] that describes current conservation in

Quantum Electrodynamics (QED) implies that the wave function renormalization of the

electron and its vertex renormalization constant are equal. This identity is crucial to the

cancellation of the ultraviolet divergences that occur in loop calculations to all orders in

perturbation theory.
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Now, while we insist on gauge symmetry to be preserved at all times, we still have to

deal with the freedom to redefine fermion and gauge fields. The consequence is that their

equations of motion, or their Green functions, are altered. This brings gauge covariance into

play, which means that the Green functions are not gauge invariant though they obey well-

defined transformations with respect to the local gauge group. How these Green functions

specifically transform under gauge variation is described by the Landau-Khalatnikov-

Fradkin transformations (LKFT) [6,7] within the class of linear covariant gauges. If these

transformations are correctly applied, physical observables derived from Green functions

in any given gauge should be identical. This is exactly what we call gauge invariance. We

recall that the Nielsen identities also provide a means to relate variations of Green functions

under a gauge parameter change [8,9].

In practice, the application of the LFKT is rather cumbersome, as they are written in

coordinate space. One must first obtain a nonperturbative solution for a Green function

in a given gauge, for instance the quark propagator in Landau gauge, and then Fourier

transform this solution to coordinate space. After this one applies the LFKT and Fourier

transforms this gauge-transformed propagator back to the momentum space for any arbi-

trary covariant gauge. This is an arduous and nontrivial task and the procedure was shown

to be feasible with analytical expressions in leading truncation schemes in QED [10]. In an

SU(N) gauge field theory and for covariant Rξ gauges, the transformation law for the quark

propagator was derived with a perturbative expansion of the SU(N) gauge transformation

of the quark field to O(g6
s ) in the corresponding two-point Green function [11]. Another

derivation of the LFKT in non-Abelian theories was given in Ref. [12].

On the other hand, since the LFKT are nonperturbative in nature, the initial propagator

should also be the solution of the nonperturbative gap equation. The latter is described

by a Dyson-Schwinger equation (DSE) which involves, besides the boson and fermion

propagators, the fully-dressed fermion-boson vertex. The LFKT themselves do not tell

us anything about the general form of this vertex, but we can make use of the WGTI

identity in QED or of the Slavnov-Taylor identity (STI) in QCD [13,14] to constrain at least

its non-transverse parts, and also of transverse WGTIs [15–19] and STIs [20] to deduce the

transverse vertices [21,22].

Recently, an alternative path to the LFKT was taken comparing the solutions of the

quark DSE in different covariant Rξ gauges [23]. The gauge dependence in this gap

equation is twofold, for the dependence on ξ enters directly via the gluon dressing function

in Rξ gauges, obtained in lattice QCD simulations [24] up to ξ = 0.5, and the strong

coupling α
ξ
s . Indirectly, the dressed quark-gluon vertex also contributes to this dependence

and this feature will be exploited in the present study. The numerical data of the ξ-

dependent gluon propagators was fitted with a Padé approximant which revealed that the

fit parameters exhibit a nearly linear dependence on the gauge parameter. This feature

was taken advantage of and the gluon propagator was then extrapolated to Feynman

gauge. Employing the full quark-gluon vertex derived from Slavnov-Taylor identities

and gauge covariance in Ref. [22], the quark’s mass and wave renormalization functions

were computed in the range ξ ∈ [0, 1]. The quark condensate derived therefrom exhibits

a modest dependence on the gauge parameter within the error estimates of the lattice

predictions for the gluon, in agreement with a prediction of the LKFT in QCD [11].

We here take the opportunity to extend the study of Ref. [23] by including simpler

truncations of the DSE for comparison and to highlight their effect on the gauge covariance

of the gap equation. As we shall see, the functional ξ-dependence of the quark-mass

function is diametrically opposed when the DSE is solved in either the rainbow truncation

or with the full vertex structure. Moreover, the quark condensate and pion decay constant,

the gauge-parameter dependence of the latter presented here for the first time, decrease as
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functions of ξ in this leading truncation scheme in disagreement with the gauge-invariance

predictions of the LFKT. To a certain extent this is expected, as the rainbow-ladder trun-

cation badly violates the WGTI and STI and is therefore commonly employed in Landau

gauge to “minimize” the error. Nonetheless, we here explicitly demonstrate the failure of a

simpler truncation to satisfy gauge covariance.

2. Quark Gap Equation: Truncation Schemes

In QCD, two-point Green functions, in particular the nonperturbative dressing of a

current quark, are described by DSEs which are the relativistic equations of motion in

that theory [1]. For arbitrary gauge and written in Euclidean space, the DSE of the quark

propagator is given by:

S−1
ξ (p) = Z2 i γ · p + Z4 m(µ) + Z14πα

ξ
s

∫ Λ d4k

(2π)4
∆ab

µν(q) γµta Sξ(k) Γ
bξ
ν (k, p) . (1)

In this DSE, Z1(µ, Λ, ξ), Z2(µ, Λ, ξ) and Z4(µ, Λ, ξ) are the vertex, wave function and mass

renormalization constants, respectively, and m(µ) is the renormalized current-quark mass.

In the self-energy integral, Λ is a Poincaré-invariant cut-off, whereas µ is the renormaliza-

tion point chosen such that Λ ≫ µ.

The quark-gluon interaction is described by the dressed vertex Γ
aξ
µ (k, p) = Γ

ξ
µ(k, p)ta,

where ta = λa/2 are the SU(3) color-group generators in the fundamental representation,

p is the incoming and k the outgoing quark momentum, respectively, while q = k − p is the

gluon momentum. The gluon propagator in Rξ gauge,

∆ab
µν(q) = δab

(

δµν −
qµqν

q2

)

∆ξ(q
2) + δab ξ

qµqν

q4
, (2)

is characterized by a transverse dressing function, renormalized as ∆ξ(µ
2) = 1/µ2. The

gauge-parameter dependence of this dressing function has been studied with lattice-QCD

and functional approaches [24–26].

The covariant decomposition of the DSE solutions is generally written in terms of two

amplitudes, namely Aξ(p2) and Bξ(p2),

Sξ(p) =
1

iγ · p Aξ(p2) + Bξ(p2)
=

Zξ(p2)

iγ · p + Mξ(p2)
= −iγ · p σ

ξ
v(p2) + σ

ξ
s (p2) , (3)

where the flavor- and gauge-dependent mass and wave renormalization functions can be

expressed by the two momentum dependent amplitudes:

Mξ(p2) = Bξ(p2, µ2)/Aξ(p2, µ2) , Zξ(p2, µ2) = 1/Aξ(p2, µ2) . (4)

The renormalization scale we employ is low, µ = 4.3 GeV, as it is the scale at which

the transverse dressing function ∆ξ(q
2) in Rξ gauge is renormalized [24] and allows for

comparison of Mξ(p2) and Zξ(p2, Λ2) with lattice QCD at this scale [27]. We therefore also

impose the following conditions: Zξ(µ
2) = 1 and Mξ(µ

2) ≡ m(µ2) = 25 MeV [28,29].

Coming back to the quark-gluon vertex introduced in Equation (1), its most general

covariant decomposition is not unique. For all that, one can express this vertex most

generally as [30],

Γ
ξ
µ(k, p) = Γ

Lξ
µ (k, p) + Γ

Tξ
µ (k, p) =

4

∑
i=1

λ
ξ
i (k, p)Li

µ(k, p) +
8

∑
i=1

τ
ξ
i (k, p)Ti

µ(k, p) , (5)
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where we stress the gauge dependence of the so-called longitudinal and transverse form

factors, λ
ξ
i (k, p) and τ

ξ
i (k, p), respectively. The transverse vertex is naturally defined by

iq · ΓTξ(k, p) = 0. The 12 vector structures Li
µ(k, p) and Ti

µ(k, p) are build upon the three

available vectors, namely γµ, kµ and pµ and variations thereof, with the constraint that

Γ
ξ
µ(k, p) should exhibit the same transformation properties as the bare vertex γµ under

charge conjugation C, parity transformation P and time reversal T.

In Section 3 we will observe the impact of a given truncation of Equation (1) on gauge

covariance. To this end, we consider three cases, namely the leading rainbow truncation, a

ghost-corrected Ball-Chiu vertex that satisfies the “longitudinal” STI [28,31,32], and the full

longitudinal and transverse vertex structure derived with an additional transverse STI [22].

In the following, we present the form factors λ
ξ
i (k, p) and τ

ξ
i (k, p) considered in each case,

while the common basis elements Li
µ(k, p) and Ti

µ(k, p) are listed in the Appendix A.

Rainbow truncation

Γ
ξ
µ(k, p) = γµ: the bare vertex, successfully employed with phenomenological inter-

action models to describe light hadrons carries neither dynamical nor gauge information:

λ
ξ
1(k, p) = 1, λ

ξ
2,3,4(k, p) = τ

ξ
1−8(k, p) = 0. This truncation is commonly employed with an

interaction model or an artificially scaled-up strong coupling to compensate for the lack of

support in the DSE kernel [29]. Simple extensions include a flavor dependent coupling in

the treatment of heavy-light mesons and heavy quarkonia [33–37].

STI Ball-Chiu vertex

Γ
ξ
µ(k, p) = ∑

4
i=1 λ

ξ
i (k, p )Li

µ(k, p): this vertex is constructed to satisfy the STI, how-

ever the quark-ghost scattering amplitude that enters this identity is modeled in a

dressed-propagator approach and only the leading form factor X
ξ
0(k, p) is kept; see

Refs. [28,31,32,38] for details.

λ
ξ
1(k, p) = 1

2 G(q2)X
ξ
0(q

2)
[

Aξ(k
2) + Aξ(p2)

]

, (6)

λ
ξ
2(k, p) = G(q2)X

ξ
0(q

2)
Aξ(k

2)− Aξ(p2)

k2 − p2
, (7)

λ
ξ
3(k, p) = G(q2)X

ξ
0(q

2)
Bξ(k

2)− Bξ(p2)

k2 − p2
, (8)

λ
ξ
4(k, p) = 0 . (9)

The dressing function G(q2) we use [39] is defined by the ghost propagator Dab(q2) =

− δabG(q2)/q2 and renormalized as G(4.32 GeV2) = 1. Moreover, τ
ξ
1 (k, p) = τ

ξ
2 (k, p) =

. . . = τ
ξ
8 (k, p) = 0.

Full STI vertex

Γ
ξ
µ(k, p) = ∑

4
i=1 λ

ξ
i (k, p)Li

µ(k, p) + ∑
8
i=1 τ

ξ
i (k, p)Ti

µ(k, p): the transverse STI con-

strains the vertex structures that are transverse to the gluon momentum and in addition to

Equations (6) to (9) one finds, with the same approximation for the quark-ghost kernel [22],

the following transverse form factors:
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τ
ξ
1 (k, p) = −

Y1

2(k2 − p2)∇(k, p)
, (10)

τ
ξ
2 (k, p) = −

Y5 − 3Y3

4(k2 − p2)∇(k, p)
, (11)

τ
ξ
3 (k, p) =

1

2
G(q2)X

ξ
0(q

2)

[

Aξ(k
2)− Aξ(p2)

k2 − p2

]

+
Y2

4∇(k, p)
−

t2(Y3 − Y5)

8(k2 − p2)∇(k, p)
, (12)

τ
ξ
4 (k, p) = −

6Y4 + YA
6

8∇(k, p)
−

t2YS
7

8(k2 − p2)∇(k, p)
, (13)

τ
ξ
5 (k, p) = −G(q2)X

ξ
0(q

2)

[

Bξ(k
2)− Bξ(p2)

k2 − p2

]

−
2Y4 + YA

6

2(k2 − p2)
, (14)

τ
ξ
6 (k, p) =

(k − p)2Y2

4(k2 − p2)∇(k, p)
−

Y3 − Y5

8∇(k, p)
, (15)

τ
ξ
7 (k, p) =

q2(6Y4 + YA
6 )

4(k2 − p2)∇(k, p)
+

YS
7

4∇(k, p)
, (16)

τ
ξ
8 (k, p) = −G(q2)X

ξ
0(q

2)

[

Aξ(k
2)− Aξ(p2)

k2 − p2

]

−
2YA

8

k2 − p2
, (17)

where Yi ≡ Y
ξ
i (k, p) and the Gram determinant is defined by: ∇(k, p) = k2 p2 − (k · p)2.

In Equations (10) to (17), the Y
(A,S)
i functions are the form factors of the most general

decomposition of a Fourier transformed four-point function in coordinate space. The latter

involves a non-local vector vertex along with a Wilson line to preserve gauge invariance

and contributes to the transverse STI. Since we deal with a rather complex object for which

no calculations exist yet, we refer to the discussion in Ref. [20] and note that the Y
(A,S)
i

were constrained [21] with a vertex ansatz guided by pQCD and multiplicative renormaliz-

ability [40]. We do stress the fact, however, that the functions Y1(k, p), YA
6 (k, p) and YS

7 are

massive, i.e., they are proportional to the mass function B(k2). The contribution to DCSB of

the vertex form factors in Equations (6) to (17) that depend directly on B(k2) or indirectly

via these functions is therefore crucial and we observe that no mass-function solutions are

found if all Yi(k, p) are zero, regardless of the value of the strong coupling αs(µ). The same

occurs if one chooses τ4(k, p) = τ7(k, p) = 0. Indeed, these two transverse form factors are

responsible for the overwhelming contribution to DCSB in the gap equation [22].

The gauge dependence of the strong coupling has been studied with the Schwinger

mechanism in the three-gluon vertex, which is crucial to the generation of an effective

gluon mass in the infrared domain [41]:

α
ξ
s = α0

s + 0.098ξ − 0.064ξ2 . (18)

The coupling α0
s = 0.29 is used for the ghost-corrected Ball-Chiu and the full STI vertices

at µ = 4.3 GeV. On the other hand, solving the DSE with this coupling in the rainbow

truncation generates a very modest mass: Mu,d
ξ (0) ≈ 70 MeV. In analogy with effective

interaction models we therefore inflate the coupling strength to α0
s = 1.0 and obtain a

constituent mass similar to that found with the full STI vertex.

3. Gauge Dependence of the Mass and Wave Renormalization

We now discuss the solutions, Mξ(p2) and Zξ(p2), of Equation (1) for the three cases

considered in Section 2. Henceforth, we make use of the gluon and ghost dressing functions



Symmetry 2025, 17, 110 6 of 12

from lattice QCD, ∆ξ(q
2) [24] and G(q2) [39] respectively, renormalized at µ = 4.3 GeV and

parametrized with a Padé approximant [42],

∆ξ(q
2) = Z

q2 + M2
1

q4 + M2
2q2 + M4

3

[

1 + ω ln

(

q2 + M2
0

Λ2
QCD

)]γgl

, (19)

where ω = 11Nc αs(µ)/12π, ΛQCD = 0.425 GeV and γgl = (13 − 3ξ)/22 is the 1-loop

anomalous gluon dimension. This parametrization is tantamount to a renormalization-

group improved Padé approximation and is motivated by the refined Gribov-Zwanziger

tree-level gluon propagator in the infrared region. The parameters Z, M0, M1, M2 and M3

were determined in a least-χ2 fit in Ref. [23] and exhibit a nearly linear dependence on the

gauge parameter ξ when fitted to the lattice data for the six values, ξ = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

This feature was used to extrapolate the gluon propagator up to Feynman gauge [23].

The ghost propagator [39] is parametrized with a similar expression,

G(q2) = Z
q4 + M2

2q2 + M4
1

q4 + M2
4q2 + M4

3






1 + ω ln







q2 +
m4

1

q2+m2
0

Λ2
QCD













γgh

, (20)

and is assumed to be independent of ξ [43]. The anomalous ghost dimension is given by

γgh = −9/44 while ω, ΛQCD and µ are as in Equation (19). The fit parameters are also

found in Ref. [23].

In Figure 1 we plot the mass and wave-renormalization functions and their gauge-

parameter dependence for the bare vertex. As mentioned earlier, with α0
s ≈ 0.3 the

dynamical mass generation is insufficient to produce a true constituent-quark mass for

any gauge parameter. Hence, we inflate the constant to α0
s = 1.0, as this will allow us to

compare quark condensates and weak decay constants obtained with the full STI vertex

later on. The gauge dependence of Mξ(p2) is pronounced and the mass steadily decreases

as a function of the gauge parameter. This behavior was also observed in mass and wave-

renormalization functions solving the DSE in quenched QED3 with Γ
ξ
µ(k, p) = γµ [10].

Likewise, Zξ(p2) also decreases with ξ in the range considered here.
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Figure 1. Gauge-parameter dependence of the Mξ(p2) and Zξ(p2) functions of light quarks

(mu = md) in the rainbow truncation of the DSE. Note that the strong coupling is large: α0
s = 1.0.

Solving the DSE (1) with the non-transverse vertex defined by Equations (6) to (9), we

obtain the mass and wave-renormalization functions of Figure 2. We observe that the gauge

dependence of the gap equation leads to a behavior of Mξ(p2) opposed to that in Figure 1:
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the effect of the additional gauge dependence in the vertex is an increase of Mξ(p2) up

to ξ = 0.5, at which point the function seemingly freezes. The functional behavior of

Zξ(p2) exhibits the characteristic behavior of the Ball-Chiu vertex, with a local minimum

at p ≈ 1 GeV and a sudden rise in the infrared, though the gauge dependence is more

pronounced than in the rainbow truncation of Figure 1. We remark that the solutions of the

mass and wave-renormalization functions with the STI Ball-Chiu vertex are increasingly

unstable for ξ > 0.5. We therefore do not include the Feynman-gauge solutions in Figure 2

and for comparison’s sake we also refrain from doing so in Figures 1 and 3.
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Figure 2. The gauge-parameter dependence of Mξ(p2) and Zξ(p2) of the light quark employing the

STI Ball–Chiu vertex, Equations (6) to (9), in the DSE (1).
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Figure 3. Mξ(p2) and Zξ(p2) as functions of the gauge parameter ξ DSE (1) of the light quarks when

the DSE (1) is solved with the full STI vertex Γ
ξ
µ(k, p), Equations (6) to (17).

In Figure 3 we present our solutions for Mξ(p2) and Zξ(p2) with the full gauge-

dependent STI vertex defined by Equations (6) to (17). Clearly, the trend of a rising mass

function and a dropping wave renormalization in the low-momentum region, observed

with the ghost-corrected Ball-Chiu vertex, is corroborated when the transverse vertex is

included. The contrast with the functional behavior in Figure 1 is evident, in particular

that of Zξ(p2) which now decreases steadily with ξ and saturates in the infrared domain.

Moreover, the quark-ghost scattering form factor, X
ξ
0(k, p), is calculated in a dressed ap-

proximation [28,31,32] and dynamically generated in consistency with Mξ(p2) and Zξ(p2).
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We abstain from discussing the gauge-dependent solutions here and refer to Ref. [23]

for details.

To conclude our comparison of gauge dependent quark propagators, we ought to

ask which is the correct one. This question can only be answered by computing a gauge-

invariant quantity with the given quark propagators. A simple quantity that does not

require the solutions of a Bethe-Salpeter equation is the quark condensate in the chiral limit

(Λ = 1 GeV),

−⟨q̄q⟩0
ξ ≡ Z4Nc

∫ Λ d4k

(2π)4
trD

[

S0
ξ(k)

]

, (21)

which we can express as a function of ξ. As can be inferred from Figure 4, the condensate

calculated with the full STI vertex is the central line in the blue-shaded, fairly horizontal

band. The latter depicts our error estimate due to the statistical error of the gluon propa-

gator [24]. A systematic error is not included, but we allow for uncertainties of the ghost

dressing function and of α
ξ
s (18) by varying ∆ξ(q

2) by ±5%. In this light, one can argue

that the QCD condensate exhibits a moderate dependence on ξ of the order of 7–8%, rising

initially from Landau gauge to ξ ≈ 0.3 where the condensate seems to level off. This is in

accordance with an invariance proof for any SU(N) theory derived in Ref. [11] and based on

the LKFT. The same figure also demonstrates that this is not the case for a quark condensate

computed in the rainbow truncation of the DSE. In fact, while an extrapolation beyond

ξ = 1.0 of the gluon propagator must be taken with a grain of salt, we verified that the

condensate in this simplest truncation keeps falling off with the gauge parameter. This

functional behavior expresses the lack of gauge covariance in this leading truncation not

constrained by the STI and multiplicative renormalizability.

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(−
<

q̄
q
>

0 ξ
)1

/
3
[G

eV
]

0.0 0.2 0.4 0.6 0.8 1.0

ξ

RL
STI

Figure 4. Gauge dependence of the chiral quark condensate obtained with two different quark–gluon

vertices in the DSE. The pink-, green-, and blue-shaded error bands stem from the statistical errors of

the lattice QCD predictions for the gluon and ghost propagators [24] on which the gauge-dependent

solutions of Aξ(p2) and Bξ(p2) depend via Equations (1) and (2). The pink horizontal band indicates

the region of a gauge-independent quark condensate as implied by the LKFTs in QCD, where the

uncertainty is due to the statistical error of the gauge propagators in Landau gauge.

We can also calculate the weak decay constant of the pion in the chiral limit following

Ref. [44], as fπ does not vanish in this limit whereas the pion’s mass does in truncations

that preserve the axialvector WGTI. The weak decay constant in the chiral limit can be

expressed by the integral,

(

f 0
π

)2
=

Nc

8π2

∫ ∞

0
dp2 p2 B2(p2)

(

σ2
v − 2

[

σsσ′
s + p2σvσ′

v

]

− p2
[

σsσ′′
s − (σ′

s)
2
]

− p4
[

σvσ′′
v − (σ′

v)
2
])

, (22)
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with σ′
s,v ≡ dσs,v(p2)/dp2 and where we dropped the gauge-dependence label. As we are

constrained by a low renormalization point due to the quenched lattice-QCD input for the

gluon and ghost propagators we employ, we set m(µ) = 0 MeV at µ = 4.3 GeV, which

allows for a sensible approximation for σs(p2) and σv(p2) in Equation (22).

In analogy with the condensates presented in Figure 4, the rainbow truncation of the

DSE yields a weak decay constant that decreases relatively fast, as can be appreciated in

Figure 5. If we solve the DSE with the full STI vertex, we observe an initial increase of fπ

from ξ = 0 to ξ ≈ 0.5 after which the decay constant appears to saturate. The variation

between Landau and Feynman gauge is about 10%, larger than the 7% increase of the quark

condensate as function of ξ. However, this moderate effect is not yet conclusive, as we

ought to compute fπ with the complete Bethe-Salpeter amplitude of the pion in this much

more challenging truncation.

60

70

80

90

100

110

f
π
[M

eV
]

0.0 0.2 0.4 0.6 0.8 1.0

ξ

RL vertex
STI vertex

Figure 5. Gauge dependence of the pion decay constant for two different quark–gluon vertices in the

DSE (1). The error estimates represented by the green and blue bands are as in Figure 4, while the

horizontal pink line represents the experimental reference value.

4. Final Remarks

We have shown that within a functional approach to QCD the transverse quark-gluon

vertex plays an eminent role in the dynamics of mass generation and the emergence of

a constituent quark mass scale. Regarding the gauge parameter dependence of the gap

equation, we find a running mass function that increases with ξ and a quark wave function

which is mostly sensible to the gauge parameter in the infrared domain. More precisely,

Z(0) drops from about 0.94 in Landau gauge to 0.83 for ξ = 0.5, a 7% effect. As far as

gauge invariance is concerned, despite the limitations of the setup used herein, a variation

of about 6% is observed in the quark condensate when the full vertex is taken into account

in the gap equation. This contrasts with the outcome of the rainbow approximation which

yields a condensate that decreases with ξ. Likewise, fπ rapidly falls off as a function of the

gauge parameter. These results illustrate, once more, the important role of the transverse

vertex in the nonperturbative dynamics of the gap equation.
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Abbreviations

The following abbreviations are used in this manuscript:

QCD Quantum chromodynamics

QED Quantum electrodynamics

DSE Dyson–Schwinger equation

LFKT Landau–Khalatnikov–Fradkin transformations

WGTI Ward–Green–Takahashi identity

STI Slavnov–Taylor identity

Appendix A

For the longitudinal vertex we employ the common Ball-Chiu decomposition,

L1
µ(k, p) = γµ , (A1)

L2
µ(k, p) = 1

2 tµ γ · t , (A2)

L3
µ(k, p) = −i tµ , (A3)

L4
µ(k, p) = −σµνtν , (A4)

where t = k + p and σµ ν = i
2

[

γµ, γν

]

in Euclidean space. The transverse vertex can

generally be decomposed into eight independent vector basis elements. For the kinematical

configuration discussed below Equation (1), they are given by,

T1
µ(k, p) = i

[

pµ(k · q)− kµ(p · q)
]

, (A5)

T2
µ(k, p) =

[

pµ(k · q)− kµ(p · q)
]

γ · t , (A6)

T3
µ(k, p) = q2γµ − qµ γ · q , (A7)

T4
µ(k, p) = iq2

[

γµγ · t − tµ

]

+ 2qµ pνkρσνρ , (A8)

T5
µ(k, p) = σµ νqν , (A9)

T6
µ(k, p) = − γµ

(

k2 − p2
)

+ tµ γ · q , (A10)

T7
µ(k, p) = i

2 (k
2 − p2)

[

γµγ · t − tµ

]

+ tµ pνkρσνρ , (A11)

T8
µ(k, p) = − iγµ pνkρσνρ − pµ γ · k + kµ γ · p , (A12)

We use a slightly modified basis [45] with respect to the Ball-Chiu vertex [30] with the

effect that all transverse form factors are independent of kinematic singularities in one-loop

perturbation theory and arbitrary covariant gauge.
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