

2 **Studies of the photoproduction of isolated
3 photons with and without a jet at HERA.**

4 ZEUS Collaboration

5 **Abstract**

6 Isolated-photon production in photoproduction, both inclusive and together with a jet, has been measured with the ZEUS detector at HERA using an integrated luminosity of 370 pb^{-1} . Differential cross sections are presented in the isolated-photon transverse-energy and pseudorapidity ranges $6 < E_T^\gamma < 15 \text{ GeV}$ and $-0.7 < \eta^\gamma < 0.9$, and for jet transverse-energy and pseudorapidity ranges $4 < E_T^{\text{jet}} < 35 \text{ GeV}$ and $-1.5 < \eta^{\text{jet}} < 1.8$, for exchanged photon virtualities $Q^2 < 1 \text{ GeV}^2$. Differential cross sections are also presented for inclusive isolated photon production as functions of the transverse momentum and pseudorapidity of the photon. Higher-order theoretical calculations are compared to the results.

7 1 Introduction

8 Events in which an isolated high-energy photon is observed can provide a direct probe
9 of the underlying partonic process in high-energy collisions involving hadrons, since the
10 emission of such photons is largely unaffected by parton hadronisation. Processes of this
11 kind have been studied in a number of fixed-target and hadron-collider experiments [1].
12 In ep collisions at HERA, the ZEUS and H1 collaborations have previously reported the
13 production of isolated photons in photoproduction [2–7], in which the exchanged photon
14 is quasi-real, and also in deep inelastic scattering (DIS) [8–11]. In this paper, earlier
15 photoproduction measurements by ZEUS are extended to make use of the full HERA
16 II data set. The statistical precision is much improved owing to the availability of much
17 higher integrated luminosity. Measurements are presented of isolated photon production
18 at high transverse energy with and without an accompanying jet requirement.

19 Figure 1 gives examples of the lowest-order (LO) diagrams for high-energy photon pho-
20 toproduction in quantum chromodynamics (QCD). In “direct” production processes, the
21 entire incoming photon is absorbed by a quark from the incoming proton, while in “re-
22 solved” processes, the photon’s hadronic structure provides a quark or gluon that interacts
23 with a parton from the proton. Processes in which the photon is radiated at the pertur-
24 bative QCD level are commonly called “prompt”¹. Another class of processes, in which
25 a photon is produced in association with a jet, also illustrated in Fig. 1, are referred to
26 as “fragmentation” processes. Photons radiated from the incoming and outgoing electron
27 give rise to an observed scattered electron in the detector, and such events are ignored in
28 this measurement.

29 Perturbative QCD predictions are compared to the measurements. The cross sections for
30 isolated photon production in photoproduction have been calculated to order $O(\alpha^3 \alpha_s)$ by
31 M. Fontannaz *et al.* (FGH) [12, 13]. A calculation based on the k_T factorisation approach
32 has been made by Baranov *et al.* (BLZ) [14].

33 2 Experimental set-up

34 The measurements are based on a data sample corresponding to an integrated luminosity
35 of $370 \pm 1 \text{ pb}^{-1}$, taken during the years 2004 to 2007 with the ZEUS detector at HERA.
36 During this period, HERA ran with an electron/positron beam energy of 27.5 GeV and
37 a proton beam energy of 920 GeV. The sample is a sum of $e^+ p$ and $e^- p$ data².

¹ An alternative commonly-used nomenclature is to refer to “prompt” photons as “direct”; thus Figs. 1a,c would be called “direct-direct” and “resolved-direct” diagrams, respectively.

² Hereafter “electron” refers to both electrons and positrons unless otherwise stated.

38 A detailed description of the ZEUS detector can be found elsewhere [15]. Charged parti-
39 cles were tracked in the central tracking detector (CTD) [16] and a silicon micro vertex
40 detector (MVD) [17] which operated in a magnetic field of 1.43 T provided by a thin su-
41 perconducting solenoid. The high-resolution uranium–scintillator calorimeter (CAL) [18]
42 consisted of three parts: the forward (FCAL), the barrel (BCAL) and the rear (RCAL)
43 calorimeters. The BCAL covered the pseudorapidity range -0.74 to 1.01 as seen from
44 the nominal interaction point. The FCAL and RCAL extended the range to -3.5 to
45 4.0 . The smallest subdivision of the CAL is referred to as a cell. The barrel electromag-
46 netic calorimeter (BEMC) cells had a pointing geometry aimed at the nominal interaction
47 point, with a cross section approximately $5 \times 20 \text{ cm}^2$, with the finer granularity in the Z -
48 direction³. This fine granularity allows the use of shower-shape distributions to distinguish
49 isolated photons from the products of neutral meson decays such as $\pi^0 \rightarrow \gamma\gamma$.

50 The luminosity was measured using the Bethe–Heitler reaction $ep \rightarrow e\gamma p$ by a luminosity
51 detector which consisted of two independent systems: a lead–scintillator calorimeter [19]
52 and a magnetic spectrometer [20].

53 3 Event selection and reconstruction

54 A three-level trigger system was used to select events online [15, 21, 22] by requiring well
55 isolated electromagnetic deposits in the CAL. The trigger efficiency was approximately
56 flat above a photon transverse energy of 4.5 GeV and had an absolute uncertainty in
57 its value of 5%. Events were initially selected offline by requiring a high-energy pho-
58 ton candidate of transverse energy $> 3.5 \text{ GeV}$ recorded in the ZEUS BCAL. To reduce
59 background from non- ep collisions, events were required to have a reconstructed vertex
60 position, Z_{vtx} , within the range $|Z_{\text{vtx}}| < 40 \text{ cm}$. No scattered beam electron was permit-
61 ted, and photoproduction events were selected by the requirement $0.2 < y_{JB} < 0.7$, where
62 $y_{JB} = \sum_i E_i (1 - \cos \theta_i) / 2E_e$ and E_e is the energy of the electron beam. Here, E_i is the
63 energy of the i -th CAL cell, θ_i is its polar angle and the sum runs over all cells [23].

64 Energy-flow objects (EFOs) [24] were constructed from calorimeter-cell clusters, associ-
65 ated with tracks when appropriate. Photon candidates were identified as trackless EFOs
66 for which at least 90% of the reconstructed energy was measured in the BEMC. EFOs with
67 wider electromagnetic showers than are typical for a single photon were accepted to allow

³ The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the proton beam direction, referred to as the “forward direction”, and the X axis pointing left towards the center of HERA. The coordinate origin is at the nominal interaction point. The pseudorapidity is defined as $\eta = -\ln(\tan \frac{\theta}{2})$, where the polar angle, θ , is measured with respect to the proton beam direction.

68 evaluation of backgrounds. The reconstructed transverse energy of the photon candidate,
69 E_T^γ , was required to lie within the range $6 < E_T^\gamma < 15$ GeV and the pseudorapidity, η^γ ,
70 had to satisfy $-0.7 < \eta^\gamma < 0.9$. The upper limit on the reconstructed transverse energy
71 was selected to ensure that the shower shapes from the hadronic background and the
72 photon signal remained distinguishable.

73 Each event was required to contain a photon candidate. Jet reconstruction was performed
74 on all EFOs in the event, including the electron and photon candidates, using the k_T clus-
75 tering algorithm [25] in the E -scheme in the longitudinally invariant inclusive mode [26]
76 with the R parameter set to 1.0. The jets were required to have transverse energy, E_T^{jet} ,
77 between 4 and 35 GeV and to lie within the pseudorapidity, η^{jet} , range $-1.5 < \eta^{\text{jet}} < 1.8$.
78 One of the jets found by this procedure corresponds to or includes the photon candidate.
79 An additional accompanying jet was required; if more than one was found, that with the
80 highest E_T^{jet} was used.

81 To reduce both the background from photons and neutral mesons within jets and the
82 fragmentation contribution, the photon candidate was required to be isolated from the
83 reconstructed tracks and other hadronic activity. Photons radiated from beam leptons are
84 also suppressed by requiring no observed scattered lepton in the apparatus. The isolation
85 from tracks was achieved by demanding $\Delta R > 0.2$, where $\Delta R = \sqrt{(\Delta\phi)^2 + (\Delta\eta)^2}$ is
86 the distance to the nearest reconstructed track with momentum greater than 250 MeV
87 in the $\eta - \phi$ plane, where ϕ is the azimuthal angle. This selection was applied only at
88 the detector level, and not in hadron or parton level calculations. Isolation from other
89 hadronic activity was imposed by requiring that the photon candidate possessed at least
90 90% of the total energy of the reconstructed jet of which it formed a part.

91 The sample at this stage was dominated by background events. The largest source of
92 background came from events in which one or more neutral mesons such as π^0 and η ,
93 decaying to photons, produced a photon candidate in the BEMC.

94 4 Theory

95 The LO QCD processes relevant here are the direct and resolved photoproduction pro-
96 cesses (Fig. 1), in which there is a coupling to the incoming and outgoing photon and
97 a single QCD vertex. Higher-order processes include the next-to-leading-order diagrams
98 and fragmentation processes, in which a photon is produced within an outgoing jet. A
99 box diagram term also contributes significantly at next-to-next-to-leading order.

100 Two theoretical predictions are compared to the measurements presented in this paper.
101 In the approach of FGH [12, 13], the LO and NLO diagrams and the box diagram term are
102 calculated explicitly. Fragmentation processes are calculated in terms of a fragmentation

103 function in which a quark or gluon gives rise to photon. Theoretical uncertainties arise
104 due to the choice of factorisation and fragmentation scales, and were estimated by vary-
105 ing these scales by factors of 0.5 and 2.0. The k_T factorisation method used by BLZ [14]
106 makes use of unintegrated parton densities in the proton, and gives a quark-radiated
107 contribution that is enhanced relative to the leading-order collinear approximations. Frag-
108 mentation and box terms, which contribute around 20% to the FGH calculation, are not
109 included. Other uncertainties of up to 20% in the BLZ calculation are due mainly to the
110 procedure of selecting jets from the evolution cascade in the factorisation approach.

111 In evaluating the predictions for the present data, both calculations have incorporated the
112 experimental selections and photon-isolation procedure at the parton level. Hadronisation
113 corrections were evaluated (see Section 5) to enable the predictions to be compared to
114 the experimental data which are corrected to the hadron level.

115 5 Monte Carlo event simulation

116 Monte Carlo event samples were generated to evaluate the detector acceptance and to
117 provide signal and background distributions. The program PYTHIA 6.416 [28] was used
118 to simulate isolated photon emission for the study of the event-reconstruction efficiency.
119 PYTHIA generates the direct and resolved processes at LO, next-to-leading-order (NLO)
120 processes where a hard outgoing quark radiates a photon, and processes in which a frag-
121 mentation photon is radiated within a jet. The exchanged photon was required to have
122 a virtuality of less than 1 GeV². As a check and to enable systematic uncertainties to be
123 estimated, event samples were also generated using the HERWIG program.

124 The generated MC events were passed through the ZEUS detector and trigger simulation
125 programs based on GEANT 3.21 [34]. They were reconstructed and analysed by the same
126 programs as the data.

127 Backgrounds to the isolated photons arise from decays of neutral mesons in hadronic
128 jets, in which the fragmentation by chance produces an energy cluster in the BCAL that
129 passes the selection criteria for a photon. Samples of dijet events were generated using
130 PYTHIA to enable background events to be extracted and used in the analysis. Events in
131 which a high-energy photon was produced in either an NLO or a fragmentation process,
132 as modelled by the MC, were excluded from the background sample.

133 Hadronisation corrections to the theory calculations were evaluated using PYTHIA and
134 HERWIG, and typically lowered the theoretical prediction by about 5% with typical un-
135 certainties of a few percent. They were calculated by running the same jet algorithm and
136 event selections on the generated partons and on the hadronised final state in the MC
137 events, apart from the removal of charged tracks close to the photon.

138 6 Extraction of the photon signal

139 The event sample selected according to the criteria described in Section 3 was dominated
 140 by background; thus the photon signal was extracted statistically following the approach
 141 used in previous ZEUS analyses [2–4, 10, 11].

142 The photon signal was extracted from the background using the width, measured in the
 143 Z -direction, of the BEMC energy-cluster comprising the photon candidate. This was
 144 calculated as the variable $\langle \delta Z \rangle = \sum_i E_i |Z_i - Z_{\text{cluster}}| / (w_{\text{cell}} \sum_i E_i)$. Here, Z_i is the Z
 145 position of the centre of the i -th cell, Z_{cluster} is the centroid of the EFO cluster, w_{cell} is
 146 the width of the cell in the Z direction, and E_i is the energy recorded in the cell. The
 147 sum runs over all BEMC cells in the EFO.

148 The global distribution of $\langle \delta Z \rangle$ in the data and in the MC are shown in Fig. 2 for inclusive
 149 photon events and those containing a jet. The $\langle \delta Z \rangle$ distribution exhibits a double-peaked
 150 structure with the first peak at ≈ 0.1 , associated with the photon signal, and a second
 151 peak at ≈ 0.5 , dominated by the $\pi^0 \rightarrow \gamma\gamma$ component of the background.

152 The number of isolated-photon events in the data is determined by a χ^2 fit to the $\langle \delta Z \rangle$
 153 distribution in the range $0 < \langle \delta Z \rangle < 0.8$. This is illustrated in Fig. 2, and a corresponding
 154 fit was performed for each measured cross section bin, with χ^2 values of typically 1.1
 155 per degree of freedom. In performing the fits, the relative fractions of the signal and
 156 background components were varied. Of the 18249 and 12396 events selected in the
 157 inclusive-photon and the jet samples, respectively, 8530 ± 161 and 6284 ± 132 correspond
 158 to the extracted signal.

159 For a given observable Y , the production cross section was determined using

$$\frac{d\sigma}{dY} = \frac{\mathcal{A} N(\gamma)}{\mathcal{L} \Delta Y}, \quad (1)$$

160 where $N(\gamma)$ is the number of photons extracted from the fit, ΔY is the bin width, \mathcal{L} is the
 161 total integrated luminosity, and \mathcal{A} is the acceptance correction and was calculated using
 162 Monte Carlo from the ratio of the number of events generated to those reconstructed in
 163 a given bin. Its value was typically around 1.2.

164 To evaluate the acceptances, allowance must be made for the different acceptances of the
 165 direct and the resolved processes, as modelled by PYTHIA. These components can be
 166 substantially distinguished by means of events containing a photon and a jet, in which
 167 the quantity

$$x_\gamma^{\text{meas}} = \frac{E^\gamma + E^{\text{jet}} - p_Z^\gamma - p_Z^{\text{jet}}}{E^{\text{all}} - p_Z^{\text{all}}}. \quad (2)$$

168 is a measure of the fraction of the incoming photon energy given to the final state photon and jet, at a lowest-order approximation. The energies and longitudinal momentum
169 components of the photon (γ), the jet and all of the EFOs are combined as indicated.
170 Fig. 3 shows the numbers of events contributing to different bins of x_γ^{meas} ; a peak close to
171 unity is seen, which can be attributed to direct events, and a tail at lower values due to
172 resolved events. The data are compared to a 50:40 mixture of PYTHIA-simulated direct
173 and resolved events with a 10% admixture of NLO and fragmentation events, normalised
174 to the data. The acceptance factors were calculated using this model. Acceptance factors
175 calculated in this way were applied both to the inclusive and to the jet data.
176

177 7 Systematic uncertainties

178 The most significant sources of systematic uncertainty were taken into account as follows.

- 179 • The cross sections were recalculated using HERWIG to model the signal and back-
180 ground events. The ensuing changes in the results correspond to an uncertainty of
181 typically up to 8%, rising to 30% in the lower bins of x_γ^{meas} .
- 182 • The energy of the photon candidate was varied by $\pm 2\%$. At the same time, the energy
183 of the jet, when measured, was varied in the same direction by an amount varying
184 from $\pm 4\%$ to $\pm 1.5\%$ as E_T^{jet} varies from 4 GeV to above 10 GeV. This gave variations
185 in the measured cross sections of typically 5-10%, or 5% for the inclusive photon
186 measurements.
- 187 • The uncertainty in the acceptance due to the estimation of the relative fractions of
188 direct, resolved and fragmentation events was typically $\pm 3\%$.

189 Further systematic uncertainties were evaluated as follows:

- 190 • the dependence on the modelling of the hadronic background by the MC was investi-
191 gated by varying the upper limit for the $\langle \delta Z \rangle$ fit in the range [0.6, 1.0], giving variations
192 that were typically $\pm 2\%$.

193 The background from DIS events was found to be negligible. Other sources of systematic
194 uncertainty were found to be negligible and were ignored; these included the modelling of
195 the ΔR cut, the track momentum cut, the cut on $E - p_Z$, the Z_{vtx} cut, and the cuts on
196 the electromagnetic fraction of the photon shower and the photon isolation. Except for
197 the HERWIG uncertainty, the major uncertainties were treated as symmetric and added
198 in quadrature. The common uncertainties of 1 fb^{-1} on the luminosity measurement and
199 5% on the trigger efficiency were not included in the tables and figures.

200 **8 Results**

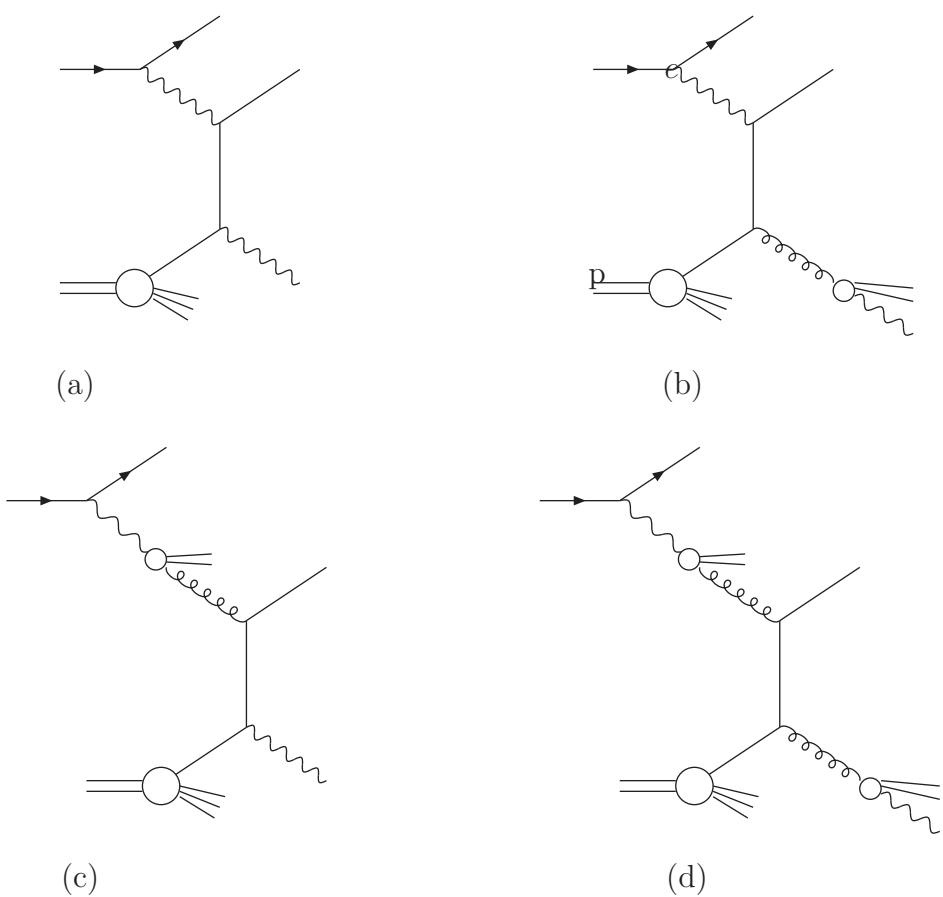
201 Differential cross sections for the production of an isolated photon with and without at
202 least one additional jet, $ep \rightarrow e'\gamma + \text{jet}$, were measured in the kinematic region defined
203 by $Q^2 < 1 \text{ GeV}^2$, $0.2 < y_{JB} < 0.7$, $-0.7 < \eta^\gamma < 0.9$, $6 < E_T^\gamma < 15 \text{ GeV}$, $4 < E_T^{\text{jet}} < 35$
204 GeV and $-1.5 < \eta^{\text{jet}} < 1.8$ in the laboratory frame. The jets are formed according to the
205 k_T -clustering algorithm with the R parameter set to 1.0, and photon isolation is imposed
206 such that at least 90% of the energy of the jet-like object containing the photon belongs
207 to the photon. If more than one jet is found within the designated η^{jet} range, that with
208 highest E_T^{jet} is taken.

209 The differential cross sections as functions of x_γ^{meas} , E_T^γ , η^γ , E_T^{jet} and η^{jet} are shown in
210 Figs. 4, 5, 6, and 7, and given in Tables TTT. The theoretical predictions described in
211 Section 4 are compared to the measurements; theoretical uncertainties are indicated by
212 the width of the respective shaded areas. The predictions from FGH [12] describe the
213 shape of all the distributions reasonably well but tend to be lower than the data, especially
214 for the inclusive cross sections. Those of BLZ [35] also describe the shape of the data
215 reasonably well for most distributions, but the sharpness of the direct peak in the x_γ^{meas}
216 distribution is overestimated and the jet distributions are described less well than those of
217 the photon. For most distributions, the comparisons with theory are qualitatively similar
218 to those obtained by H1 in their measurements [7].

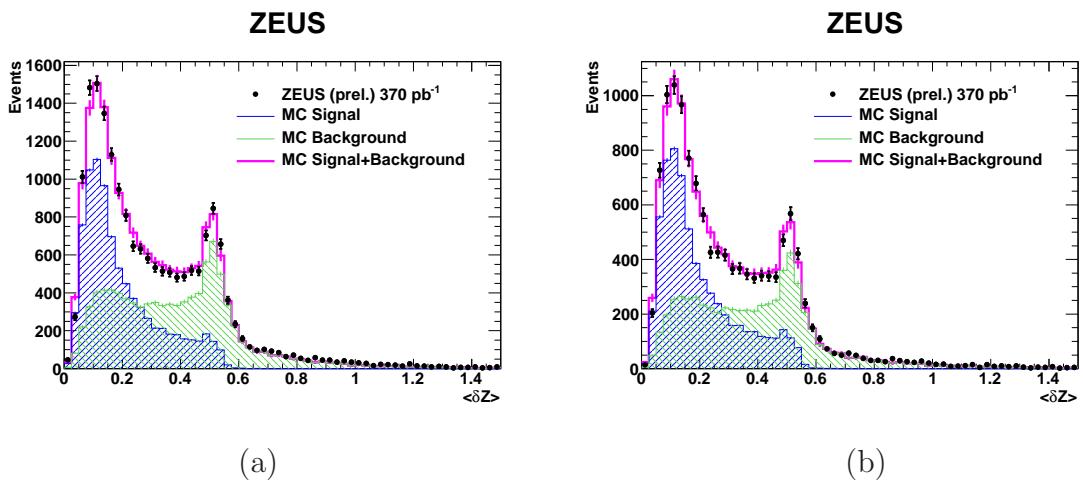
219 **9 Conclusions**

220 The production of inclusive isolated photons and photons with an accompanying jet has
221 been measured in photoproduction with the ZEUS detector at HERA using an integrated
222 luminosity of $370 \pm 7 \text{ pb}^{-1}$. The present results improve on earlier ZEUS results [2, 10]
223 which were made with integrated luminosities of 38 and 77 pb^{-1} . Differential cross sections
224 as functions of several variables are presented within the kinematic region defined in the
225 laboratory frame by: $Q^2 < 1 \text{ GeV}^2$, $0.2 < y_{JB} < 0.7$, $-0.7 < \eta^\gamma < 0.9$, $6 < E_T^\gamma < 15 \text{ GeV}$,
226 and, where a jet is required, $4 < E_T^{\text{jet}} < 15 \text{ GeV}$ and $-1.5 < \eta^{\text{jet}} < 1.8$. The order
227 $\alpha^3 \alpha_s^2$ predictions of Fontannaz *et al.* reproduce the shapes of the measured experimental
228 distributions reasonably well, as do the predictions of Baranov *et al* in most cases.

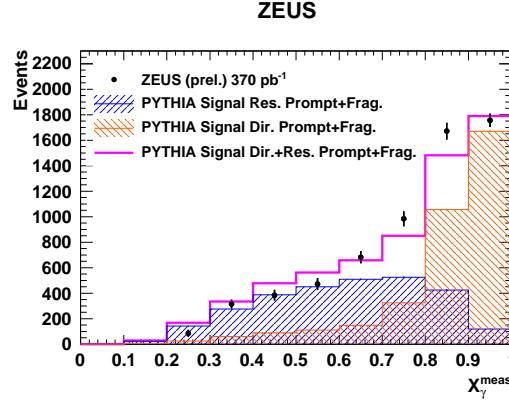
229 **Acknowledgements**

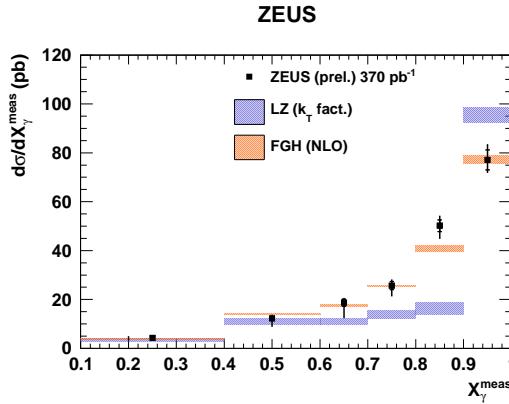

230 We appreciate the contributions to the construction and maintenance of the ZEUS de-
231 tector of many people who are not listed as authors. The HERA machine group and the

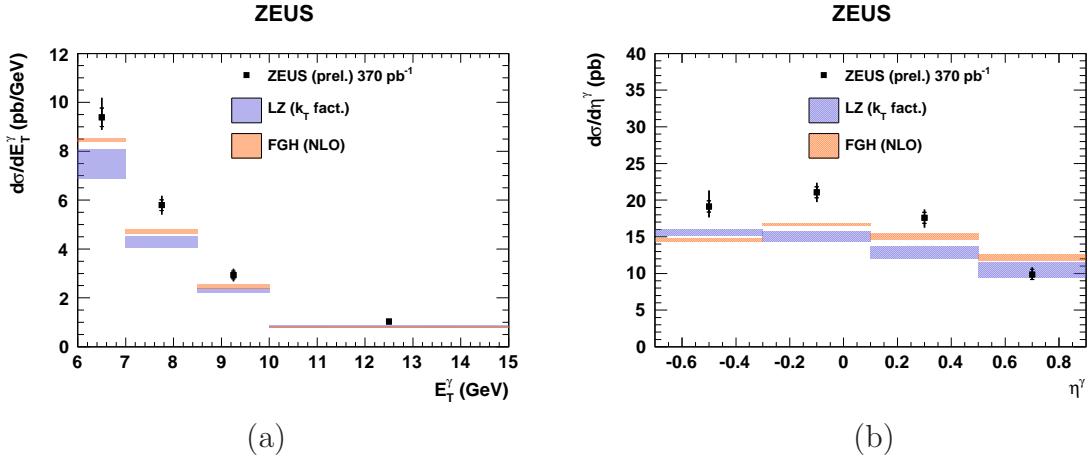
232 DESY computing staff are especially acknowledged for their success in providing excel-
233 lent operation of the collider and the data-analysis environment. We thank the DESY
234 directorate for their strong support and encouragement. We also thank M. Fontannaz, G.
235 Heinrich and N. Zotov for providing assistance and theoretical results.

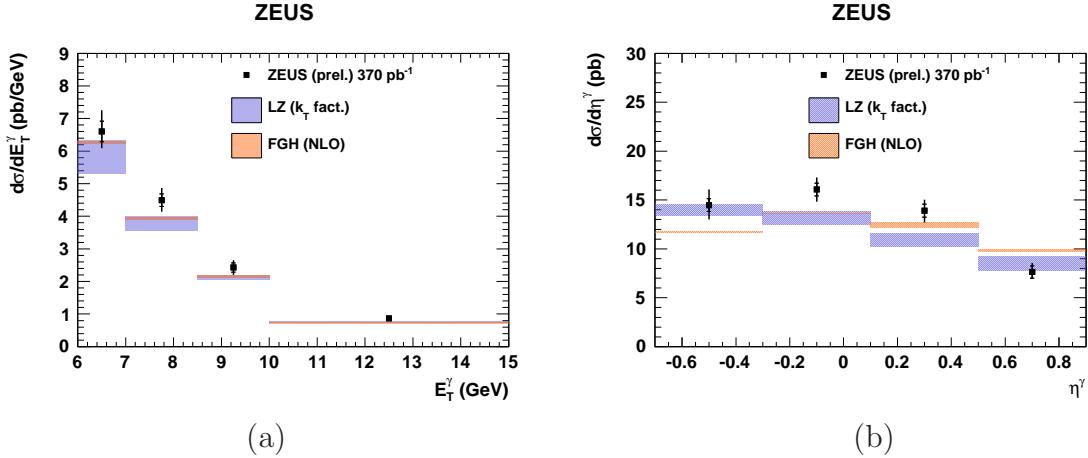

236 **References**

- 237 [1] E. Anassontzis et al., Z. Phys. C 13 (1982) 277;
238 WA70 Collaboration, M. Bonesini et al., Z. Phys. C 38 (1988) 371;
239 E706 Collaboration, G. Alverson et al., Phys. Rev. D 48 (1993) 5;
240 CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 73 (1994) 2662;
241 CDF Collaboration, D. Acosta et al., Phys. Rev. Lett. 95 (2005) 022003;
242 DØ Collaboration, B. Abbott et al., Phys. Rev. Lett. 84 (2000) 2786;
243 DØ Collaboration, V.M. Abazov et al., Phys. Lett. B 639 (2006) 151.
- 244 [2] ZEUS Collaboration, J. Breitweg et al., Phys. Lett. B 413 (1997) 201.
- 245 [3] ZEUS Collaboration, J. Breitweg et al., Phys. Lett. B 472 (2000) 175.
- 246 [4] ZEUS Collaboration, S. Chekanov et al., Phys. Lett. B 511 (2001) 19.
- 247 [5] ZEUS Collaboration, S Chekanov et al., Eur. Phys. J. C 49 (2007) 511.
- 248 [6] H1 Collaboration, A. Aktas et al., Eur. Phys. J. C 38 (2004) 437.
- 249 [7] H1 Collaboration, F.D. Aaron et al., Eur. Phys. J. C 66 (2010) 17 .
- 250 [8] H1 Collaboration, F.D. Aaron et al., Eur. Phys. J. C 54 (2008) 371.
- 251 [9] ZEUS Collaboration, H. Abramowicz et al., Phys. Lett. B 715 (2012) 88.
- 252 [10] ZEUS Collaboration, S. Chekanov et al., Phys. Lett. B 595 (2004) 86.
- 253 [11] ZEUS Collaboration, S. Chekanov et al., Phys. Lett. B 687 (2010) 16.
- 254 [12] M. Fontannaz, J.Ph. Guillet and G. Heinrich, Eur. Phys. J. C 21 (2001) 303) .
- 255 [13] M. Fontannaz and G. Heinrich, Eur. Phys. J. C 34 (2004) 191) .
- 256 [14] S. Baranov, A. Lipatov and N. Zotov,, Phys. Rev. D 81 (2010) 094034.
- 257 [15] ZEUS Collaboration, U. Holm (ed.), *The ZEUS Detector*. Status Report
258 (unpublished), DESY (1993), available on
259 <http://www-zeus.desy.de/bluebook/bluebook.html>.
- 260 [16] N. Harnew et al., Nucl. Inst. Meth. A 279 (1989) 290;
261 B. Foster et al., Nucl. Phys. Proc. Suppl. B 32 (1993) 181;
262 B. Foster et al., Nucl. Inst. Meth. A 338 (1994) 254.
- 263 [17] A. Polini et al., Nucl. Inst. Meth. A 581 (2007) 656.
- 264 [18] M. Derrick et al., Nucl. Inst. Meth. A 309 (1991) 77;
265 A. Andresen et al., Nucl. Inst. Meth. A 309 (1991) 101;
266 A. Caldwell et al., Nucl. Inst. Meth. A 321 (1992) 356;
267 A. Bernstein et al., Nucl. Inst. Meth. A 336 (1993) 23.


- 268 [19] J. Andruszków et al., Preprint DESY-92-066, DESY, 1992;
 269 ZEUS Collaboration, M. Derrick et al., *Z. Phys. C* 63 (1994) 391;
 270 J. Andruszków et al., *Acta Phys. Pol. B* 32 (2001) 2025.
- 271 [20] M. Heilbich et al., *Nucl. Inst. Meth. A* 565 (2006) 572.
- 272 [21] W.H. Smith, K. Tokushuku and L.W. Wiggers, *Proc. Computing in High-Energy*
 273 *Physics (CHEP), Annecy, France, Sept. 1992*, C. Verkerk and W. Wojcik (eds.),
 274 p. 222. CERN, Geneva, Switzerland (1992). Also in preprint DESY 92-150B.
- 275 [22] P. Allfrey, *Nucl. Inst. Meth. A* 580 (2007) 1257.
- 276 [23] ZEUS Collaboration, M. Derrick et al., *Phys. Lett. B* 303 (1993) 183.
- 277 [24] ZEUS Collaboration, J. Breitweg et al., *Eur. Phys. J. C* 1 (1998) 81;
 278 ZEUS Collaboration, J. Breitweg et al., *Eur. Phys. J. C* 6 (1999) 43.
- 279 [25] S. Catani et al., *Nucl. Phys. B* 406 (1993) 187.
- 280 [26] S.D. Ellis and D.E. Soper, *Phys. Rev. D* 48 (1993) 3160.
- 281 [27] J. Pumplin et al., *JHEP* 0207 (2002) 012.
- 282 [28] T. Sjöstrand et al., *JHEP* 0605 (2006) 26.
- 283 [29] K. Charchuła, G.A. Schuler and H. Spiesberger, *Comp. Phys. Comm.* 81 (1994) 381.
- 284 [30] A. Kwiatkowski, H. Spiesberger and H.-J. Möhring, *Comp. Phys. Comm.*
 285 69 (1992) 155.
- 286 [31] L. Lönnblad, *Comp. Phys. Comm.* 71 (1992) 15.
- 287 [32] T. Sjöstrand, *Comp. Phys. Comm.* 39 (1986) 347.
- 288 [33] T. Abe, *Comp. Phys. Comm.* 136 (2001) 126.
- 289 [34] R. Brun et al., GEANT3, Technical Report CERN-DD/EE/84-1, CERN, 1987.
- 290 [35] N. Zotov (private communication) .


Figure 1: Examples of direct-prompt (a), direct-fragmentation (b), resolved-prompt (c), and resolved-fragmentation (d) contributions at leading order in QCD in the photoproduction of high-energy photons.


Figure 2: Distributions of $\langle \delta Z \rangle$ for (a) inclusive photon events, (b) events with a jet, showing the fitted signal and background components.


Figure 3: Events detected for different values of x_γ^{meas} , compared to a mixture of PYTHIA-generated direct and resolved events, using the model described in the text. The kinematic range of the photon candidate and the jet are described in the text. The simulated events were passed through the detector simulation, but no acceptance corrections have been applied at this stage.

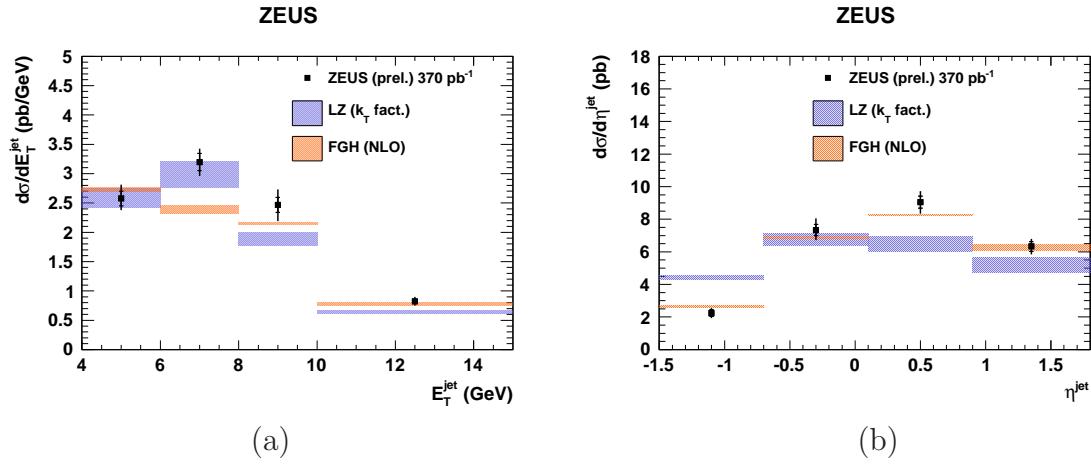

Figure 4: Cross sections as a function of x_γ^{meas} , for events containing an isolated photon and a jet, compared to predictions from FGH and LZ. The kinematic region of the measurement is described in the text. Inner and outer vertical bars respectively denote statistical uncertainties and statistical combined with systematic.

Figure 5: Cross sections as a function of (a) E_T^γ and (b) η^γ , for events containing an isolated photon compared to predictions from FGH and LZ. The kinematic region of the measurement is described in the text. Inner and outer vertical bars respectively denote statistical uncertainties and statistical combined with systematic.

Figure 6: Cross sections as a function of (a) E_T^γ and (b) η^γ , for events containing an isolated photon accompanied by a jet (a, b) compared to predictions from FGH and LZ. The kinematic region of the measurement is described in the text. Inner and outer vertical bars respectively denote statistical uncertainties and statistical combined with systematic.

Figure 7: Cross sections as a function of (a) E_T^{jet} and (b) η^{jet} , for events containing an isolated photon accompanied by a jet compared to predictions from FGH and LZ. The kinematic region of the measurement is described in the text.