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Abstract

Locality in Gravity

by

Fabio Sanches

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Yasunori Nomura, Chair

The research presented in this dissertation is primarily focused around the study of
locality in quantum gravity. The emergence of locality is intimately tied to many important
questions in the field, including the emergence of the bulk in the Anti-de Sitter/Conformal
Field Theory correspondence, and to holography in more general spacetimes, as well as
the contradictions presented in the AMPS argument of the black hole information paradox.
In particular, this thesis starts by studying the gauge redundancy related to the observer
dependence in quantum gravity as well as its implications in the distribution of gravitational
degrees of freedom. This picture is then applied to the black hole information paradox
presenting a picture discussing deviations of local effective field theory around the horizon.
Following the apparent fundamental role taken by the holographic entanglement proposal in
AdS/CFT, I then present a generalization of this proposal to general spacetimes, proving
that the appropriate a generalization satisfies the inequalities associated with von Neumann
entropy. This picture is then used to study the Hilbert space structure of such theories.
In chapter 4, I also present a model that suppressed isocurvature fluctuations present for
interesting parameter ranges for axions in high scale inflation scenarios. Finally, the last
chapter concludes with the reconstruction of bulk operators in AdS/CFT, where such a
reconstruction has no prior knowledge of bulk geometry as a starting point. The result uses
intimate connections to quantum error correction and obtains the bulk conformal metric as
a byproduct of the construction.
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Chapter 1

Introduction

One of the most important open research fields in theoretical physics concerns the quantum
mechanical description of gravity. This thesis presents a collection of papers which study, in
some form, the quantum mechanical description of spacetime and its implications, as well as
a paper discussing the effects of cosmological inflation in phenomenological aspects of high
energy particle physics. The study of quantum gravity is not a recent interest in theoretical
physics, numerous results have contributed to its increase in popularity as a research topic.
While many prior developments were incredibly important, the discovery that black holes
radiate [86, 84] by Stephen Hawking in 1974 and the subsequent information paradox [85]
he pointed out are clearly especially noteworthy in the expansion of the field.

Naturally, there are also many approaches to quantum gravity. Among them, string
theory has produced remarkable results guiding us to our current understanding of gravity.
One of the topics central to the work in this thesis is the idea of holography. The notion
that a quantum description of a d + 1 dimensional spacetime comes from a d dimensional
theory also has its origins in through black hole thermodynamic [22, 86]. The discovery
that the black hole entropy scales with the area, and not volume already indicated that the
degrees of freedom responsible for describing them are localized to their ‘boundary’. This
idea was further developed in [173, 169]. In 1997, however, Maldacena’s result provided an
explicit string theory construction of this idea, the Anti-de Sitter/Conformal Field Theory
correspondence [122].

AdS/CFT has been central to quantum gravity research since its conception, and pro-
vided some remarkable insights into how gravity can be described holographically. Despite
the significant progress made over the past two decades, the dictionary relating quantities
in the AdS bulk and the boundary CFT is still incomplete. One natural entry is the rela-
tionship between bulk and boundary operators, critical to answering many basic questions
for phenomena where gravitational effects become important.

The very nature of holography, however, suggests a difficulty with this issue. In quantum
field theory, field operators are associated with spacetime points, however, in a holographic
setting, such an operator should be represented by objects that are localized to the bound-
ary. This reconstruction process (the representation of bulk operators in terms of boundary
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quantities) is now known to me non-unique and very non-local. This means that a bulk
field has many distinct representations in terms of non-local boundary operators. This non-
uniqueness of bulk reconstruction can be most naturally understood through the language
of quantum error correction, and this will be further elaborated in chapter 7.

Often what is meant by the bulk reconstruction process is the representation of bulk fields
built on a semiclassical background in terms of boundary quantities. Such a construction,
however, assumes a priori knowledge of the bulk geometry. However, a complete entry to
the dictionary would entail the ability to start exclusively with boundary information and
obtain the information about the bulk metric as well as its semiclassical operators.

Nevertheless, obtaining the bulk metric is intimately related to understanding the emer-
gence of the bulk in holography and the notion of locality holding (approximately) in gravity.
While it is clear that locality should fail to hold near the planck scale, the equivalence prin-
ciple, as well as experimental evidence, strongly supports the expectation from effective field
theory that locality holds at low energy scales.

Despite this expectation, the recent emphasis on the inconsistencies at the heart of the
black hole information paradox [10] suggest that understanding the emergence of locality
and the applicability of local effective field theory will, at the very least, shine more light
into one of the first, and still unresolved, questions in quantum gravity. The argument shows
that the equivalence principle, local effective field theory, and unitarity are inconsistent in
the black hole evaporation process. Studying this problem in the context of AdS/CFT has
also failed to yield a satisfactory answer, in part due to the incomplete dictionary.

While AdS/CFT has given us a precise setting to study gravity, it is ultimately limited to
spacetimes that are asymptotically anti-de Sitter. Part of the work presented in this thesis
discusses a proposal that generalizes holography to general spacetimes. This work presented
in chapter 5, based on the holographic screens initially presented by Raphael Bousso [28],
shows that certain features present in AdS/CFT are more general than previously thought.
The evidence presented for the holographic screen entanglement proposal is also at the
heart of the emergence of locality in holography. The relationship between entanglement
and geometry in the AdS/CFT correspondence is also largely believed to be critical to
understanding the emergence of the bulk. The von Neumann entropy of a CFT subregion
was proven to be equal to the area of a codimension two extremal surface anchored to
the boundary to leading order proven in the context of the AdS/CFT correspondence. It
turns out, this entangling surface is also extremely important in the reconstruction of bulk
operators mentioned above.

It is clear that locality in gravity is intimately tied to numerous important phenomena
and open questions. Studying the emergence of locality can be undertaken in many different
ways, and such a multi-directional approach will likely be more fruitful in extracting the
key mechanism underlying local physics as well as its failure in gravitational systems. With
the exception of chapter 4, every topic contained in this thesis studies locality in gravity in
through some lens.

The chapters in this thesis are organized in the following manner,
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• The following chapter studies the observer dependence in quantum gravity and its
relationship to the distribution of degrees of freedom associated with the quantum
mechanical description of spacetime. This observer centered view proposed in [170] in
the context of the information paradox, but shown to be insufficient. It is, nevertheless,
intimately tied to the gauge redundancies present in quantum gravity.

• Chapter 3 presents a coherent picture for the black hole evaporation process that avoids
the contradictions outlined in [10].

• In chapter 4, I present work related to the implications of large scale inflation and
potential cosmological observations thereof to axions. In particular, it presents a con-
sistent model that effectively suppresses otherwise large isocurvature fluctuations for
axions in inflationary scenarios

• The holographic screen entanglement proposal discussed above is presented in chapter
5. There, the past or future holographic screens are used to present strong evidence
for the proposal. In particular, it proves that the area of codimension two extremal
surfaces anchored to subregions on past or future holographic screens satisfies the same
inequalities as von Neumann entropy respects.

• Based on the holographic entanglement proposal presented, chapter 6 then studies its
implications to the Hilbert space structure of such holographic theories for general
spacetimes. In particular, it also studies the popular speculation of whether spacetime
can be constructed from entanglement.

• The work presented in chapter 7 studies true reconstruction of the bulk, starting with
purely boundary information. Ultimately, it presents a theorem which addresses what
a local operator looks like within the context of the AdS/CFT correspondence. In
doing so, the conformal metric for the spacetime is also obtained.
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Chapter 2

Relativeness in Quantum Gravity:
Limitations and Frame Dependence of
Semiclassical Descriptions

2.1 Introduction

In the past decades, it has become increasingly apparent that the concept of spacetime must
receive substantial revisions when it is treated in a fully quantum mechanical manner. The
first clear sign of this came from the study of black hole physics [154]. Consider describing
a process in which an object falls into a black hole, which eventually evaporates, from
the viewpoint of a distant observer. Unitarity of quantum mechanics suggests that the
information content of the object will first be stored in the black hole system, and then
emitted back to distant space in the form of Hawking radiation [174, 165]. On the other
hand, the equivalence principle implies that the object should not find anything special at
the horizon, when the process is described by an observer falling with the object. These two
pictures lead to inconsistency if we adopt the standard formulation of quantum field theory
on curved spacetime, since it allows us to employ a class of equal time hypersurfaces (called
nice slices) that pass through both the fallen object and late Hawking radiation, leading to
violation of the no-cloning theorem of quantum mechanics [191].

In the early 90’s, a remarkable suggestion to avoid this difficulty—called complementarity—
was made [170]: the apparent cloning of the information occurring in black hole physics
implies that the internal spacetime and horizon/Hawking radiation degrees of freedom ap-
pearing in different, i.e. infalling and distant, descriptions are not independent. This signals
a breakdown of the naive global spacetime picture of general relativity at the quantum level,
and it forces us to develop a new view of how classical spacetime arises in the full theory of
quantum gravity. One of the main purposes of this paper is to present a coherent picture of
this issue. We discuss how a series of well-motivated hypotheses leads to a consistent view of
the effective emergence of global spacetime from a fundamental theory of quantum gravity.
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In particular, we elucidate how this picture avoids the recently raised firewall paradox [10,
9, 126], which can be viewed as a refined version of the old information paradox [85]. Our
analysis provides a concrete answer to how the information can be preserved at the quantum
level in the black hole formation and evaporation processes.

A key element in developing our picture is to identify the origin and nature of the “entropy
of spacetime,” first discovered by Bekenstein and Hawking in studying black hole physics [22,
86]. In a previous paper [141], two of us argued that this entropy—the Bekenstein-Hawking
entropy—is associated with the degrees of freedom that are coarse-grained to obtain the
semiclassical description of the system: quantum theory of matter and radiation on a fixed
spacetime background. This picture is consonant with the fact that in quantum mechanics,
having a well-defined geometry of spacetime, e.g. a black hole in a well-defined spacetime
location, requires taking a superposition of an enormous number of energy-momentum eigen-
states, so we expect that there are many different ways to arrive at the same background for
the semiclassical theory within the precision allowed by quantum mechanics. This implies
that, when a system with a black hole is described in a distant reference frame, the informa-
tion about the microstate of the black hole is delocalized over a large spatial region, since it
is encoded globally in the way of taking the energy-momentum superposition to arrive at the
geometry under consideration. In particular, we may naturally identify the spatial distri-
bution of this information as that of the gravitational thermal entropy calculated using the
semiclassical theory. This leads to a fascinating picture: the degrees of freedom represented
by the Bekenstein-Hawking entropy play dual roles of spacetime and matter—they represent
how the semiclassical geometry is obtained at the microscopic level and at the same time
can be viewed as the origin of the thermal entropy, which is traditionally associated with
thermal radiation in the semiclassical theory.

The delocalization of the microscopic information described above plays an important
role in addressing the firewall/information paradox. As described in a distant reference
frame, a general black hole state is specified by the following three classes of indices at the
microscopic level:

• Indices labeling the (field or string theoretic) degrees of freedom in the exterior space-
time region, excited over the vacuum of the semiclassical theory;1

• Indices labeling the excitations of the stretched horizon;2

• Indices representing the degrees of freedom that are coarse-grained to obtain the semi-
classical description, which we will collectively denote by k. The information in k
represents how the black hole geometry is obtained at the microscopic level, and can-
not be resolved by semiclassical operators. It is regarded as being delocalized following

1Note that the concepts of the breakdown of a semiclassical description and that of semiclassical field
theory are not the same—there can be phase space regions in which an object can be well described as a
string (or brane) propagating in spacetime, but not as a particle.

2The stretched horizon is located at a microscopic distance outside of the mathematical horizon, and is
regarded as a physical (timelike) membrane which may be physically excited [170].
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the spatial distribution of the gravitational thermal entropy, calculated using the semi-
classical theory.

In a distant reference frame, an object falling into the black hole is initially described by the
first class of indices, and then by the second when it hits the stretched horizon. The infor-
mation about the fallen object will then reside there for, at least, time of order Ml2P ln(MlP)
(the scrambling time [88, 161]), after which it will be transmitted to the index k. Here,
M and lP are the mass of the black hole and the Planck length, respectively. Finally, the
information in k, which is delocalized in the whole zone region, will leave the black hole
system through the Hawking emission, or black hole mining, process.

Since the microscopic information about the black hole is considered to be delocalized
from the semiclassical standpoint, the Hawking emission, or black hole mining, process can
be viewed as occurring at a macroscopic distance away from the stretched horizon without
contradicting information conservation. In this region, degrees of freedom represented by
the index k are converted into modes that have clear identities as semiclassical excitations,
i.e. matter or radiation, above the spacetime background. This conversion process, i.e. the
emission of Hawking quanta or the excitation of a mining apparatus, is accompanied by
the appearance of negative energy excitations, which have negative entropies and propagate
inward to the stretched horizon. As we will see, the microscopic dynamics of quantum gravity
allows these processes to occur unitarily without violating causality among events described
in low energy quantum field theory. This picture avoids firewalls as well as information
cloning.

In the description based on a distant reference frame, a falling object can be described by
the semiclassical theory only until it hits the stretched horizon, after which it goes outside
the applicability domain of the theory. We may, however, describe the fate of the object
using the semiclassical language somewhat longer by performing a reference frame change,
specifically until the object hits a singularity, after which there is no reference frame that
admits a semiclassical description of the object. This reference frame change is the heart of
complementarity: the emergence of global spacetime in the classical limit. We argue that
while descriptions in different reference frames (the descriptions before and after a comple-
mentarity transformation) apparently look very different, e.g. in locations of the degrees of
freedom representing the microscopic information of the black hole, their predictions about
the same physical question are consistent with each other. This consistency is ensured by an
intricate interplay between the properties of microscopic information and the causal structure
of spacetime.

It is striking that the concept of spacetime, e.g. the region in which a semiclassical
description is applicable, depends on a reference frame. This extreme “relativeness” of the
description is a result of nonzero Newton’s constant GN. The situation is analogous to what
happened when the speed of light, c, was realized to be finite [133]: in Galilean physics
(c = ∞) a change of the reference frame leads only to a constant shift of all the velocities,
while in special relativity (c = finite) it also alters temporal and spatial lengths (time dilation
and Lorentz contraction) and makes the concept of simultaneity relative. With gravity
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(GN 6= 0), even the concept of spacetime becomes relative. The trend is consistent—as we
“turn on” fundamental constants in nature (c = ∞ → finite and GN = 0 → 6= 0), physical
descriptions become more and more relative: descriptions of the same physical system in
different reference frames appear to differ more and more.

The organization of this paper is the following. In Section 2.2, we discuss some basic
aspects of the breakdown of global spacetime, setting up the stage for later discussions.
In Sections 2.3 and 2.4, we describe how our picture addresses the problem of black hole
formation and evaporation. We discuss the quantum structure of black hole microstates and
the unitary flow of information as viewed from a distant reference frame (in Section 2.3),
and how it can be consistent with the existence of interior spacetime (in Section 2.4). In
particular, we elucidate how this picture addresses the arguments for firewalls and provides
a consistent resolution to the black hole information paradox. In Section 2.5, we give our
summary by presenting a grand picture of the structure of quantum gravity implied by our
analysis of a system with a black hole.

Throughout the paper, we adopt the Schrödinger picture for quantum evolution, and
use natural units in which ~ = c = 1 unless otherwise stated. We limit our discussions to
4-dimensional spacetime, although we do not expect difficulty in extending to other dimen-
sions. The value of the Planck length in our universe is lP = G

1/2
N ' 1.62 × 10−35 m. A

concise summary of the implications of our framework for black hole physics can be found
in Ref. [136].

2.2 Failure of Global Spacetime

As described in the introduction, semiclassical theory applied to an entire global spacetime
leads to overcounting of the true degrees of freedom at the quantum level. This implies that
in the full theory of quantum gravity, a semiclassical description of physics emerges only in
some limited sense. Here we discuss basic aspects of this limitation, setting up the stage for
later discussions.

The idea of complementarity [170] is that the overcounting inherent in the global space-
time picture may be avoided if we limit our description to what a single “observer”—
represented by a single worldline in spacetime—can causally access. Depending on which
observer we choose, we obtain different descriptions of the system, which are supposed to
be equivalent. Since the events an observer can see lie within the causal patch associated
with the worldline representing the observer, we may assume that this causal patch is the
spacetime region a single such description may represent. In particular, one may postulate
the following [133, 132]:

• For a single description allowing a semiclassical interpretation of the system, the space-
time region represented is restricted to the causal patch associated with a single world-
line. With this restriction, the description can be local in the sense that any physical
correlations between low energy field theoretic degrees of freedom respect causality in
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spacetime (beyond some microscopic quantum gravitational distance l∗, meaning that
possible nonlocal corrections are exponentially suppressed ∼ e−r/l∗).

Depending on the worldline we take, we may obtain different descriptions of the same system,
which are all local in appropriate spacetime regions. A transformation between different
descriptions is nothing but the complementarity transformation.

To implement Hamiltonian quantum mechanics, we must introduce a time variable. This
corresponds to foliating the causal patch by equal-time hypersurfaces, with a state vector
|Ψ(t)〉 representing the state of the system on each hypersurface.3 Let x be spatial coordi-
nates parameterizing each equal-time hypersurface. Physical quantities associated with field
theoretic degrees of freedom can then be obtained using field theoretic operators φ(x) and
the state |Ψ(t)〉. (Excited string degrees of freedom will require the corresponding opera-
tors.) In general, the procedure of electing coordinates (t,x), which we need to define states
and operators, must be given independently of the background spacetime, since we do not
know it a priori (and states may even represent superpositions of very different semiclassical
geometries); an example of such procedures is described in Ref. [140]. In our discussions in
this paper, however, we mostly consider issues addressed on a fixed background spacetime
(at least approximately), so we need not be concerned with this problem too much—we
may simply use any coordinate system adapted to a particular spacetime we consider, e.g.
Schwarzschild-like coordinates for a black hole.

In the next two sections, we discuss how the complementarity picture described above
works for a dynamical black hole. We discuss the semiclassical descriptions of the system in
various reference frames, as well as their mutual consistency. In these discussions, we focus
on a black hole that is well approximated by a Schwarzschild black hole in asymptotically
flat spacetime. We do not expect difficulty in extending it to more general cases.

2.3 Black Hole—A Distant Description

Suppose we describe the formation and evaporation of a black hole in a distant reference
frame. Following Ref. [174, 165], we postulate that there exists a unitary description which in-
volves only the degrees of freedom that can be viewed as being on and outside the (stretched)
horizon. To describe quantum states with a black hole, we adopt Schwarzschild-like time slic-
ings to define equal-time hypersurfaces.4 We argue that the origin of the Bekenstein-Hawking

3In general, the “time variable” of (constrained) Hamiltonian quantum mechanics may not be related
directly with time we observe in nature [48]. Indeed, the whole “multiverse” may be represented by a state
that does not depend on the time variable and is normalizable in an appropriate sense [134]. Even if this is
the case, however, when we describe only a branch of the whole state, e.g. when we describe a system seen
by a particular observer, the state of the system may depend on time. In this paper, we discuss systems with
black holes, which are parts of the multiverse so their states may depend on time.

4Strictly speaking, to describe a general gravitating system we need a procedure to foliate the relevant
spacetime region in a background independent manner, as discussed in the previous section. For our present
purposes, however, it suffices to employ any foliation that reduces to Schwarzschild-like time slicings when
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entropy may be viewed as a coarse-graining performed to obtain a semiclassical description of
the evolving black hole. We then discuss implications of such a coarse-graining, in particular
how it reconciles unitarity of the Hawking emission and black hole mining processes in the
fundamental theory with the non-unitary (thermal) view in the semiclassical description.

Microscopic structure of a dynamical black hole

Consider a quantum state which represents a black hole of mass M located at some place
at rest, where the position and velocity are measured with respect to some distant reference
frame, e.g. an inertial frame elected at asymptotic infinity. Because of the uncertainty
principle, such a state must involve a superposition of energy and momentum eigenstates.
Let us first estimate the required size of the spread of energy ∆E, with E measured in the
asymptotic region. According to the standard Hawking calculation, a state of a black hole
of mass M will evolve after Schwarzschild time ∆t ≈ O(Ml2P) into a state representing a
Hawking quantum of energy ≈ O(1/Ml2P) and a black hole with the correspondingly smaller
mass. The fact that these two states—before and after the emission—are nearly orthogonal
implies that the original state must involve a superposition of energy eigenstates with

∆E ≈ 1

∆t
≈ O

(
1

Ml2P

)
. (2.1)

Of course, this is nothing but the standard time-energy uncertainty relation, and here we
have assumed that a state after time t�Ml2P is not clearly distinguishable from the original
one, so that the uncertainty relation is almost saturated.

Next, we consider the spread of momentum ∆p, where p is again measured in the asymp-
totic region. Suppose we want to identify the spatial location of the black hole with precision
comparable to the quantum stretching of the horizon ∆r ≈ O(1/M), i.e. ∆d ≈ O(lP), where
r and d are the Schwarzschild radial coordinate and the proper length, respectively. This
implies that the superposition must involve momenta with spread ∆p ≈ (1/MlP)(1/∆d) ≈
O(1/Ml2P), where the factor 1/MlP in the middle expression is the redshift factor. This value
of ∆p corresponds to an uncertainty of the kinetic energy ∆Ekin ≈ p∆p/M ≈ O(1/M3l4P),
which is much smaller than ∆E in Eq. (3.1). The spread of energy thus comes mostly from
a superposition of different rest masses: ∆E ≈ ∆M .

How many different independent ways are there to superpose the energy eigenstates to
arrive at the same black hole geometry, at a fixed position within the precision specified by

the black hole exists. Note that macroscopic uncertainties in the black hole mass, location, and spin caused
by the stochastic nature of Hawking radiation [146, 139] require us to focus on appropriate branches in the
full quantum state in which the black hole in a given time has well-defined values for these quantities at the
classical level. The relation between the Schwarzschild-like foliation and a general background independent
foliation is then given by the standard coordinate transformation, which does not introduce subtleties beyond
those discussed in this paper. The effect on unitarity by focusing on particular branches in this way is also
minor, so we ignore it. The full unitarity, however, can be recovered by keeping all the branches in which
the black hole has different classical properties at late times [139].
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∆r and of mass M within an uncertainty of ∆M? We assume that the Bekenstein-Hawking
entropy, A/4l2P, gives the logarithm of this number (at the leading order in expansion in
inverse powers of A/l2P), where A = 16πM2l4P is the area of the horizon. While the definition
of the Bekenstein-Hawking entropy does not depend on the precise values of ∆M or ∆p, a
natural choice for these quantities is

∆M ≈ ∆p ≈ O

(
1

Ml2P

)
, (2.2)

which we will adopt. The nonzero Bekenstein-Hawking entropy thus implies that there are
exponentially many independent states in a small energy interval of ∆E ≈ O(1/Ml2P). We
stress that it is not appropriate to interpret this to mean that quantum mechanics introduces
exponentially large degeneracies that do not exist in classical black holes. In classical general
relativity, a set of Schwarzschild black holes located at some place at rest are parameterized
by a continuous mass parameter M ; i.e., there are a continuously infinite number of black
hole states in the energy interval between M and M + ∆M for any M and small ∆M .
Quantum mechanics reduces this to a finite number ≈ eS0∆M/M , with S0 given by5

S0 =
A
4l2P

+O

(
Aq

l2qP

; q < 1

)
. (2.3)

This can also be seen from the fact that S0 is written as Ac3/4l2P~ when ~ and c are restored,
which becomes infinite for ~→ 0.

As is clear from the argument above, there are exponentially many independent mi-
crostates, corresponding to Eq. (3.2), which are all black hole vacuum states: the states that
do not have a field or string theoretic excitation on the semiclassical black hole background
and in which the stretched horizon, located at rs = 2Ml2P +O(1/M), is not excited.6 Denot-
ing the indices representing these exponentially many states collectively by k, which we call
the vacuum index, basis states for the general microstates of a black hole of mass M (within
the uncertainty of ∆M) can be given by

|Ψā a afar;k(M)〉. (2.4)

Here, ā, a, and afar represent the indices labeling the excitations of the stretched horizon,
in the near exterior zone region (i.e. the region within the gravitational potential barrier

5Of course, quantum mechanics allows for a superposition of these finite number of independent states,
so the number of possible (not necessarily independent) states is continuously infinite. The statement here
applies to the number of independent states, regarding classical black holes with different M as independent
states.

6These states can be defined, for example, as the states obtained by first forming a black hole of mass
M and then waiting sufficiently long time after (artificially) switching off Hawking emission. Note that at
the level of full quantum gravity, all the black hole states are obtained as excited states. Any semiclassical
description, however, treats some of them as vacuum states on the black hole background.
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defined, e.g., as r ≤ RZ ≡ 3Ml2P), and outside the zone (r > RZ), respectively.7 As we have
argued, the index k runs over 1, · · · , eS0 for the vacuum states ā = a = afar = 0. In general,
the range for k may depend on ā and a, but its dependence is higher order in l2P/A; i.e., for
fixed ā and a

k = 1, · · · , eSāa ; Sāa − S0 ≈ O

(
Aq

l2qP

; q < 1

)
. (2.5)

We thus mostly ignore this small dependence of the range of k on (ā, a), i.e. the non-
factorizable nature of the Hilbert space factors spanned by these indices, except when we
discuss negative energy excitations associated with Hawking emission later, where this aspect
plays a relevant role in addressing one of the firewall arguments.

Since we are mostly interested in physics associated with the black hole region, we also
introduce the notation in which the excitations in the far exterior region are separated. As
we will see later, the degrees of freedom represented by k can be regarded as being mostly
in the region r ≤ RZ, so we may write the states of the entire system in Eq. (3.3) as

|Ψā a afar;k(M)〉 ≈ |ψāa;k(M)〉|φafar
(M)〉, (2.6)

and call |ψāa;k(M)〉 and |φafar
(M)〉 as the black hole and exterior states, respectively. Note

that by labeling the states in terms of localized excitations, we need not write explicitly the
trivial vacuum entanglement between the black hole and exterior states that does not depend
on k, which typically exist when they are specified in terms of the occupation numbers of
modes spanning the entire space.

How many independent quantum states can the black hole region support? Let us label
appropriately coarse-grained excitations in the region rs ≤ r ≤ RZ by i = 1, 2, · · · , each of
which carries entropy Si. Suppose there are ni excitations of type i at some fixed locations.
The entropy of such a configuration is given by the sum of the “entropy of vacuum” in
Eq. (3.2) and the entropies associated with the excitations:

SI = S0 +
∑
i

niSi. (2.7)

The energy of the system in the region r ≤ RZ is given by the sum of the mass M of the black
hole, which we define as the energy the system would have in the absence of an excitation
outside the stretched horizon, and the energies associated with the excitations in the zone.
Note that excitations here are defined as fluctuations with respect to a fixed background, so
their energies Ei as well as entropies Si can be either positive or negative, although the signs

7Strictly speaking, the states may also have the vacuum index associated with the ambient space in which
the black hole exists. The information in this index, however, is not extracted in the Hawking evaporation or
black hole mining process, so we ignore it here. (For more discussions, see, e.g., Section 5 of Ref. [141].) We
will also treat excitations spreading both in the r ≤ RZ and r > RZ regions only approximately by including
them either in a or afar. The precise description of these excitations will require more elaborate expressions,
e.g. than the one in Eq. (2.6), which we believe is an inessential technical subtlety in addressing our problem.
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of the energy and entropy must be the same: EiSi > 0. The meaning of negative entropies
will be discussed in detail in Sections 2.3 and 2.3.

Since excitations in the zone affect geometry, spacetime outside the stretched horizon,
when they exist, is not exactly that of a Schwarzschild black hole. We require that these
excitations do not form a black hole by themselves or become a part of the black hole at the
center; otherwise, the state must be viewed as being built on a different semiclassical vac-
uum.8 The total entropy S of the region r ≤ RZ, i.e. the number of independent microscopic
quantum states representing this region, is then given by

S = ln
(∑

I

eSI
)
, (2.8)

where I represents possible configurations of excitations, specified by the set of numbers
{ni} and the locations of excitations of each type i, that do not modify the semiclassical
vacuum in the sense described above. As suggested by a representative estimate [173], and
particularly emphasized in Ref. [142], the contribution of such excitations to the total entropy
is subdominant in the expansion in inverse powers of A/l2P: S = S0 +O(Aq/l2qP ; q < 1). The
total entropy in the near black hole region, r ≤ RZ, is thus given by

S =
A
4l2P

, (2.9)

at the leading order in l2P/A.

Emergence of the semiclassical picture and coarse-graining

The fact that all the independent microstates with different values of k lead to the same
geometry suggests that the semiclassical picture is obtained after coarse-graining the degrees
of freedom represented by this index; namely, any result in semiclassical theory is a statement
about the maximally mixed ensemble of microscopic quantum states consistent with the
specified background within the precision allowed by quantum mechanics [141]. According
to this picture, the black hole vacuum state in the semiclassical description is given by the
density matrix

ρ0(M) =
1

eS0

eS0∑
k=1

|Ψā=a=afar=0;k(M)〉〈Ψā=a=afar=0;k(M)|. (2.10)

Because of the coarse-graining of an enormous number of degrees of freedom, this density
matrix has statistical characteristics.

8More precisely, we regard two geometries as being built on different classes of semiclassical vacua when
they have different horizon configurations as viewed from a fixed reference frame. On the other hand, if two
geometries have the same horizon, they belong to the same “vacuum equivalence class” in the sense that one
can be converted into the other with “excitations.” For more discussions on this point, see Ref. [140] and
Section 2.3.
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In order to obtain the response of this state to the operators in the semiclassical theory,
we may trace out the subsystem on which they do not act. As we will discuss more later,
the operators in the semiclassical theory in general act on a part, but not all, of the degrees
of freedom represented by the k index. Let us denote the subsystem on which semiclassical
operators act nontrivially by C, and its complement by C̄. The index k may then be viewed
as labeling the states in the combined CC̄ system which satisfy certain constraints, e.g. the
total energy being M within ∆M . The density matrix representing the semiclassical vacuum
state in the Hilbert space in which the semiclassical operators act nontrivially, C, is given
by

ρ̃0(M) = TrC̄ ρ0(M). (2.11)

Consistently with our identification of the origin of the Bekenstein-Hawking entropy, we
assume that this density matrix represents the thermal density matrix with temperature
TH = 1/8πMl2P in the zone region (as measured at asymptotic infinity):

ρ̃0(M) ≈ 1

Tr e−βHsc(M)
e−βHsc(M); β =

{
1
TH

for r ≤ RZ,

+∞ for r > RZ,
(2.12)

where Hsc(M) is the Hamiltonian of the semiclassical theory in the distant reference frame,
which is defined in the region r ≥ rs on the black hole background of mass M .9 (The
meaning of position-dependent β is that the expression βHsc(M) should be interpreted as β
times the Hamiltonian density integrated over space.) Note that this procedure of obtaining
Eq. (3.6) from Eq. (3.4) can be viewed as an example of the standard procedure of obtaining
the canonical ensemble of a system from the microcanonical ensemble of a larger (isolated)
system that contains the system of interest. In fact, if the system traced out is larger than
the system of interest, dim C̄ & dimC, we expect to obtain the canonical ensemble in this
manner (see Ref. [144] for a related discussion). Below, we drop the tilde from the density
matrix in Eq. (3.6), as it represents the same state as the one in Eq. (3.4)—ρ0(M) must be
interpreted to mean either the right-hand side of Eq. (3.4) or of Eq. (3.6), depending on the
Hilbert space under consideration.

In semiclassical field theory, the density matrix of Eq. (3.6) is obtained as a reduced
density matrix by tracing out the region within the horizon in the unique global black hole
vacuum state. Our view is that this density matrix, in fact, is obtained from a mixed state
of exponentially many pure states, arising from a coarse-graining performed in Eq. (3.4);
the prescription in the semiclassical theory provides (merely) a useful way of obtaining the
same density matrix, in a similar sense in which the thermofield double state was originally
introduced [176]. We emphasize that the information in k is invisible in the semiclassical
theory (despite the fact that it involves subsystem C) as it is already coarse-grained to obtain
the theory; in particular, the dynamics of the degrees of freedom represented by k cannot

9The Hilbert space of the semiclassical theory for states which have a single black hole at a fixed location
at rest may be decomposed as H = ⊕MHM , where HM is the space spanned by the states in which there is a
black hole of (appropriately coarse-grained) mass M . In this language, Hsc(M) is a part of the semiclassical
Hamiltonian acting on the subspace HM .
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be described in terms of the semiclassical Hamiltonian Hsc(M).10 As we will see explicitly
later, it is this inaccessibility of k that leads to the apparent violation of unitarity in the
semiclassical calculation of the Hawking emission process [85]. Note that because ρ0(M)
takes the form of the maximally mixed state in k, results in the semiclassical theory do not
depend on the basis of the microscopic states chosen in this space.

A comment is in order. In connecting the expression in Eq. (3.4) to Eq. (3.6), we have
(implicitly) assumed that |Ψā=a=afar=0;k(M)〉 represent the black hole vacuum states in the
limit that the effect from evaporation is (artificially) shut off.11 With this definition of vac-
uum states, the evolution effect necessarily “excites” the states, making a 6= 0, as we will
see more explicitly in Section 2.3. As a consequence, the density matrix for the semiclassical
operators representing the evolving black hole deviates from Eq. (3.6) even without matter
or radiation. (In the semiclassical picture, this is due to the fact that the effective gravita-
tional potential is not truly confining, so that the state of the black hole is not completely
stationary.) If one wants, one can redefine vacuum states to be these states: the states that
do not have any matter or radiation excitation on the evolving black hole background—the
original vacuum states are then obtained as excited states on the new vacuum states.12 This
redefinition is possible because the two semiclassical “vacua” represented by the two classes
of microstates belong to the same “vacuum equivalence class” in the sense described in the
last paragraph of Section 2.3; specifically, they possess the same horizon for the same black
hole mass, as defined for the evaporating case in Ref. [19].

As was mentioned above, semiclassical operators, in particular those for modes in the
zone, act nontrivially on both a and k indices of microstates |Ψā a afar;k(M)〉. This can be
seen as follows. If the operators acted only on the a index, the maximal mixture in k space
with a = 0, Eq. (3.4), would look like a pure state from the point of view of these operators,
contradicting the thermal nature in Eq. (3.6). On the other hand, if the operators acted
only on the k index, they would commute with the maximally mixed state in k space, again
contradicting the thermal state. Since the thermal nature of Eq. (3.6) is prominent only
for modes whose energies as measured in the asymptotic region are of order the Hawking
temperature or smaller

ω . TH, (2.13)

10This does not mean that a device made out of semiclassical degrees of freedom cannot probe information
in k. Since there are processes in the fundamental theory (i.e. Hawking evaporation and mining processes) in
which information in k is transferred to that in semiclassical excitations (i.e. degrees of freedom represented
by the a and afar indices), information in k can be probed by degrees of freedom appearing in the semiclassical
theory. It is simply that these information extraction processes cannot be described within the semiclassical
theory, since it can make statements only about the ensemble in Eq. (3.4) and excitations built on it.

11This is analogous to the treatment of a meta-stable vacuum in usual quantum field theory. At the most
fundamental level (or on a very long timescale), such a state must be viewed as a scattering state built on
the true ground state of the system. In practice (or on a sufficiently short timescale), however, we regard it
as a vacuum state, which is approximately the ground state of a theory in which the tunneling out of this
state is artificially switched off, e.g. by making the relevant potential barriers infinitely high.

12In the standard language in semiclassical theory, the original vacuum states correspond essentially to
the Hartle-Hawking vacuum [82], while the new ones (very roughly) to the Unruh vacuum [179].
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i.e. whose energies as measured by local (approximately) static observers are of order or
smaller than the blueshifted Hawking temperature TH/

√
1− 2Ml2P/r, this feature is signifi-

cant only for such infrared modes—operators representing modes with ω � TH act essentially
only on the a index. For operators representing the modes with Eq. (3.8), their actions on
microstates can be very complicated, although they act on the coarse-grained vacuum state
of Eq. (3.4) as if it is the thermal state in Eq. (3.6), up to corrections suppressed by the
exponential of the vacuum entropy S0. The commutation relations of these operators de-
fined on the coarse-grained states take the form as in the semiclassical theory, again up to
exponentially suppressed corrections.

There is a simple physical picture for this phenomenon of “non-decoupling” of the a
and k indices for the infrared modes. As viewed from a distant reference frame, these
modes are “too soft” to be resolved clearly above the background—since the derivation of
the semiclassical theory involves coarse-graining over microstates in which the energy stored
in the region r . RZ has spreads of order ∆E ≈ 1/Ml2P, infrared modes with ω . TH ≈
O(1/Ml2P) are not necessarily distinguished from “spacetime fluctuations” of order ∆E. One
might think that if a mode has nonzero angular momentum or charge, one can discriminate
it from spacetime fluctuations. In this case, however, it cannot be clearly distinguished from
vacuum fluctuations of a Kerr or Reissner-Nordström black hole having the corresponding
(minuscule) angular momentum or charge. In fact, we may reverse the logic and view that
this lack of a clear identity of the soft modes is the physical origin of the thermality of black
holes (and thus of Hawking radiation).

Once the state for the vacuum of the semiclassical theory is obtained as in Eq. (3.4)
(or Eq. (3.6) after partial tracing) and appropriate coarse-grained operators acting on it are
identified, it is straightforward to construct the rest of the states in the theory—we simply
have to act these operators (either field theoretic or of excited string states) on ρ0(M) to
obtain the excited states. For example, to obtain a state which has a field theoretic excitation
in the zone, one can apply the appropriate linear combination of creation and/or annihilation
operators in the semiclassical theory, a†ω`m and/or aω`m:

ρā=0 a afar=0(M) =

(∑
`,m

∫
(caω`maω`m + c′aω`ma

†
ω`m)dω

)
ρ0(M)

(∑
`,m

∫
(caω`maω`m + c′aω`ma

†
ω`m)dω

)†
,

(2.14)
where caω`m and c′aω`m are coefficients. In the case that the applied operator is that for an
infrared mode, this represents a state in which the thermal distribution for the infrared
modes is “modulated” by an excitation over it. A construction similar to Eq. (2.14) also
works for excitations in the far region. To obtain excitations of the stretched horizon, i.e.
ā 6= 0, operators dedicated to describing them must be introduced. The detailed dynamics
of these degrees of freedom, i.e. the r = rs part of Hsc(M), is not yet fully known, however.
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“Constituents of spacetime” and their distribution

While not visible in semiclassical theory, the black hole formation and evaporation (or min-
ing) processes do involve the degrees of freedom represented by k, which we call fine-grained
vacuum degrees of freedom, or vacuum degrees of freedom for short. The dynamics of these
degrees of freedom as well as their interactions with the excitations in the semiclassical theory
are determined by the fundamental theory of quantum gravity, which is not yet well known.
We may, however, anticipate their basic properties based on some general considerations. In
particular, motivated by the general idea of complementarity, we assume the following:

• Interactions with vacuum degrees of freedom do not introduce violation of causality
among field theory degrees of freedom (except possibly for exponentially suppressed
corrections, ∼ e−r/l∗ with l∗ a short-distance quantum gravitational scale).

• Interactions between vacuum degrees of freedom and excitations in the semiclassical
theory are such that unitarity is preserved at the microscopic level.

The first assumption is a special case of the postulate discussed in Section 2.2, applied to
the distant reference frame description of a black hole. This implies that we cannot send
superluminal signals among field theory degrees of freedom using interactions with vacuum
degrees of freedom. The second assumption has an implication for how the vacuum degrees
of freedom may appear from the semiclassical standpoint, which we now discuss.

In quantum mechanics, the information about a state is generally delocalized in space—
locality is a property of dynamics, not that of states. In the case of black hole states, the
information about k, which roughly represents slightly different “values” (superpositions) of
M , is generally delocalized in a large spatial region, so that it can be accessed physically in
a region away from the stretched horizon (e.g. around the edge of the zone r ∼ RZ). This,
however, does not mean that the complete information about the state can be recovered by
a physical process occurring in a limited region in spacetime. For example, if we consider the
set of eS0 different black hole vacuum states, a physical detector occupying a finite spatial
region can only partially discriminate these states in a given finite time.

To see how much information a physical detector in spatial region i can resolve, we can
consider the reduced density matrix obtained after tracing out the subsystems that cannot be
accessed by the semiclassical degrees of freedom associated with this region. In particular,
we may consider the set of all field theory (and excited string state) operators that have
support in i, and trace out the subsystems that do not respond to any of these operators
(which we denote by C̄i):

ρ
(i)
0 = TrC̄i ρ0(M), (2.15)

where ρ0(M) is given by Eq. (3.4), and we have omitted the argument M for ρ
(i)
0 . The

von Neumann entropy of this density matrix, S
(i)
0 = −Tr ρ

(i)
0 ln ρ

(i)
0 , then indicates the dis-

criminatory power the region i possesses—a physical process occurring in region i can, at

most, discriminate the eS0 states into eS
(i)
0 (� eS0) types in a characteristic timescale of
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the system, 1/∆E ≈ O(Ml2P). According to the assumption in Eq. (3.6), this entropy is
the gravitational thermal entropy contained in region i, calculated using the semiclassical
theory.

We therefore arrive at the following picture. Let us divide the region r ≥ rs into N
(arbitrary) subregions, each of which is assumed to have a sufficiently large number of degrees
of freedom so that the thermodynamic limit can be applied. A basis state in the semiclassical
theory can be written as

ρā a afar
(M) = ρ(1)

a1
⊗ ρ(2)

a2
⊗ · · · ⊗ ρ(N)

aN
, (2.16)

where ρ
(i)
ai are states defined in the i-th subregion, with ai representing excitations contained

in that region. (Following the convention in Section 2.3, we regard the vacuum states,
ā = a = afar = 0, to be defined in the limit that the effect from evaporation is ignored.)
Now, in the full Hilbert space of quantum gravity, there are eS0 independent states that all
reduce to the same ρā a afar

(M) at the semiclassical level. These states can be written as

|Ψā a afar;k={ki}(M)〉 = |ψ(1)
a1;k1
〉 |ψ(2)

a2;k2
〉 · · · |ψ(N)

aN ;kN
〉, (2.17)

where ki = 1, · · · , eS
(i)
0 with

S
(i)
0 ≈ gravitational thermal entropy contained in subregion i, (2.18)

calculated using the semiclassical theory for subregions that do not contain the stretched
horizon. The S

(i)
0 ’s for the subregions involving the stretched horizon are determined by the

condition
N∑
i=1

S
(i)
0 = S0 ≈

A
4l2P

, (2.19)

which is valid in the thermodynamic limit. Assuming that the entropy on the stretched hori-
zon is distributed uniformly on the surface, this condition determines the entropies contained
in all the subregions.

The association of ki’s to each subregion, as in Eq. (2.17), corresponds to taking a specific
basis in the space spanned by k. While the expressions above are strictly valid only in the
thermodynamic limit, the corrections caused by deviating from it (e.g. due to correlations
among subregions) do not affect our later discussions. In particular, it does not change the
fact that the region around the edge of the zone, r ≤ RZ and r − 2Ml2P /�Ml2P, contains
O(1) bits of information about k (as it contains O(1) bits of gravitational thermal entropy),
which becomes important when we discuss the Hawking emission process in Section 2.3.
Incidentally, the picture described here leads to the natural interpretation that the subsystem
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that is traced out when going from Eq. (3.4) to Eq. (3.6) corresponds to the stretched horizon;
i.e. C̄ lives on the stretched horizon, while C in the zone.13

We stress that by the gravitational thermal entropy in Eq. (2.18), we mean that associated
with the equilibrium vacuum state. It counts the thermal entropy within the zone, since this
region is regarded as being in equilibrium because of its boundedness due to the stretched
horizon and the potential barrier; on the other hand, Eq. (2.18) does not count the thermal
entropy associated with Hawking radiation emitted from the zone, which is (artificially)

switched off in defining our vacuum microstates. In other words, when calculating S
(i)
0 ’s

using Eq. (2.18) we should use the vacuum state in Eq. (3.6), implying that we should use
the local temperature, i.e. the temperature as measured by local static observers, of

T (r) '


TH√

1−
2Ml2

P
r

for r ≤ RZ,

0 for r > RZ.
(2.20)

When the evolution effect is turned on, which we will analyze in Section 2.3, the state of the
zone is modified (a 6= 0) due to an ingoing negative energy flux, while the state outside the
zone is excited (afar 6= 0) by Hawking quanta, which are emitted from the edge of the zone
and propagate freely in the ambient space. The contribution of the negative energy flux to
the entropy within the zone is small, as we will see in Section 2.3.

The distribution of vacuum degrees of freedom in Eqs. (2.17, 2.18) is exactly the one
needed for the interactions between these degrees of freedom and semiclassical excitations to
preserve unitarity [141]. Imagine we put a physical detector at constant r in the zone. The
detector then sees the thermal bath for all the modes with blueshifted Hawking tempera-
ture, Eq. (3.7), including higher angular momentum modes. This allows for the detector(s)
to extract energy from the black hole at an accelerated rate compared with spontaneous
Hawking emission: the mining process [180, 39]. In order for this process to preserve unitar-
ity, the detector must also extract information at the correspondingly accelerated rate. This
is possible if the information about the microstate of the black hole, specified by the index
k, is distributed according to the gravitational thermal entropy, as in Eqs. (2.17, 2.18). A
similar argument also applies to the spontaneous Hawking emission process, which is viewed
as occurring around the edge of the zone, r ∼ RZ, where the gravitational thermal entropy
is small but not negligible. The microscopic and semiclassical descriptions of these processes
will be discussed in detail in Sections 2.3 and 2.3.

It is natural to interpret the expression in Eq. (2.17) to mean that ki labels possible
configurations of “physical soft quanta”—or the “constituents of spacetime”—that comprise

13This in turn gives us a natural prescription to determine the location of the stretched horizon precisely.
Since the semiclassical expression in Eq. (3.6) is expected to break down for ln dimC > ln dim C̄, a natural
place to locate the stretched horizon, i.e. the cutoff of the semiclassical spacetime, is where the gravitational
thermal entropy outside the stretched horizon becomes S0/2 = A/8l2P. For n low energy species, this yields
rs − 2Ml2P ∼ n/M ∼ l2∗/Ml2P, where l∗ is the string (cutoff) scale and we have used the relation l2∗ ∼ nl2P,
which is expected to apply in any consistent theory of quantum gravity (see, e.g., Ref. [55]). This scaling is
indeed consistent, giving the local Hawking temperature at the stretched horizon T (rs) ∼ 1/l∗, where T (r)
is given in Eq. (3.7).
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the region i. In a certain sense, this interpretation is correct. The dimension of the relevant

Hilbert space, eS
(i)
0 , controls possible interactions of the vacuum degrees of freedom with

the excitations in the semiclassical theory in region i, e.g. how much information a detector
located in region i can extract from the vacuum degrees of freedom. This simple picture,
however, breaks down when we describe the same system from a different reference frame. As
we will discuss in Section 2.4, the distribution of the vacuum degrees of freedom depends on
the reference frame—they are not “anchored” to spacetime. Nevertheless, in a fixed reference
frame, the concept of the spatial distribution of the degrees of freedom represented by the
index k does make sense. In particular, in a distant reference frame the distribution is given
by the gravitational thermal entropy calculated in the semiclassical theory, as we discussed
here.

Hawking emission—“microscopic” and semiclassical descriptions

The formation and evaporation of a black hole involve processes in which the information
about the initial collapsing matter is transferred into the vacuum index k, which will later be
transferred back to the excitations in the semiclassical theory, i.e. the state of final Hawking
radiation. Schematically, we may write these processes as

|minit〉 →
eS0(M(t))∑
k=1

∑
l

ckl(t) |ψk(M(t))〉 |rl(t)〉 → |rfin〉, (2.21)

where |minit〉, |ψk(M(t))〉, |rl(t)〉, and |rfin〉 represent the states for the initial collapsing
matter, the black hole of mass M(t) (which includes the near exterior zone region; see
Eq. (2.6)), the subsystem complement to the black hole at time t, and the final Hawking
quanta after the black hole is completely evaporated, respectively. Here, we have suppressed
the indices representing excitations for the black hole states. For generic initial states and
microscopic emission dynamics, this evolution satisfies the behavior outlined in Ref. [145] on
general grounds.

In this subsection, we discuss how the black hole evaporating process in Eq. (2.21) pro-
ceeds in details, elucidating how the arguments for firewalls in Refs. [10, 9, 126] are avoided.
We also discuss how the semiclassical theory describes the same process, elucidating how the
thermality of Hawking radiation arises despite the unitarity of the process at the fundamental
level.

“Microscopic” (unitary) description

Let us first consider how the “elementary” Hawking emission process is described at the
microscopic level,14 i.e. how a “single” Hawking emission occurs in the absence of any exci-

14By the “microscopic” description, we mean a description in which the vacuum index k is kept (i.e. not
coarse-grained as in the semiclassical description) so that the process is manifestly unitary at each stage of
the evolution. A complete description of the microscopic dynamics of the vacuum degrees of freedom requires
the fundamental theory of quantum gravity, which is beyond the scope of this paper.
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tations other than those directly associated with the emission. (As we will see later, this is
not a very good approximation in general, but the treatment here is sufficient to illustrate
the basic mechanism by which the information is transferred from the black hole to the
ambient space.)

Suppose a black hole of mass M is in microstate k:

|Ψk(M)〉 = |ψk(M)〉|φI〉, (2.22)

where |ψk(M)〉 is the black hole state, in which we have omitted indices representing excita-
tions, while |φI〉 is the exterior state, from which we have suppressed small M dependence
(which, e.g., causes a small gravitational redshift of a factor of about 1.5 for the emitted
Hawking quanta to reach the asymptotic region). As discussed in Sections 2.3 and 2.3, we
consider |Ψk(M)〉 to be one of the black hole vacuum microstates in the limit that the evo-
lution effect is shut off; see, e.g., Eqs. (3.6, 3.7). The effect of the evolution, which consists
of successive elementary Hawking emission processes, will be discussed later.

After a timescale of t ≈ O(Ml2P), the state in Eq. (3.9) evolves due to Hawking emission
as

|ψk(M)〉|φI〉 →
∑
i,a,k′

ckiak′|ψa;k′(M)〉|φI+i〉, (2.23)

where |φI+i〉 is the state in which newly emitted Hawking quanta, labeled by i and having
total energy Ei, are added to the appropriately time evolved |φI〉. The index a represents the
fact that the black hole state has negative energy excitations of total energy −Ea (Ea > 0)
around the edge of the zone, created in connection with the emitted Hawking quanta; the
coefficients ckiak′ are nonzero only if Ei ≈ Ea (within the uncertainty).15 The negative energy
excitations then propagate inward, and after a time of order Ml2P ln(MlP) collide with the
stretched horizon, making the black hole states relax as

|ψa;k′(M)〉 →
∑
ka

dak
′

ka |ψka(M − Ea)〉. (2.24)

The combination of Eqs. (3.10, 3.11) yields

|ψk(M)〉|φI〉 →
∑
i,ki

αkiki |ψki(M − Ei)〉|φI+i〉, (2.25)

where αkiki =
∑

a,k′ c
k
iak′d

ak′

ki
, and we have used Ei = Ea; here, M − Ei for different i may

belong to the same mass within the precision ∆M , i.e. M − Ei = M − Ei′ for i 6= i′. This
expression shows that information in the black hole can be transferred to the radiation state
i.

15To be precise, the sum in the right-hand side of Eq. (3.10) contains the “i = 0 terms” representing
the branches in which no quantum is emitted: |φI+0〉 = |φI〉. In these terms, there is no negative energy
excitation: ck0ak′ 6= 0 only for a = 0. The following expressions are valid including these terms with the
definition Ei=0 = Ea=0 = 0.
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It is important that the negative energy excitations generated in Eq. (3.10) come with
negative entropies, so that each of the processes in Eqs. (3.10, 3.11) (as well as the propagation
of the negative energy excitations in the zone) is separately unitary. This means that as
k and i run over all the possible values with a being fixed, the index k′ runs only over
1, · · · , eS0(M−Ea), the dimension of the space spanned by ka. In fact, this is an example
of the non-factorizable nature of the Hilbert space factors spanned by k and a discussed
in Eq. (2.5), which we assume to arise from the fundamental theory. This structure of
the Hilbert space allows for avoiding the argument for firewalls in Ref. [9]—unlike what is
imagined there, elements of the naive Fock space built on each k in a way isomorphic to that
of quantum field theory are not all physical; the physical Hilbert space is smaller than such
a (hypothetical) Fock space. This implies, in particular, that the Fock space structure of a
semiclassical theory does not factor from the space spanned by the vacuum index k, as is
also implied by the analysis in Section 2.3.

To further elucidate the point made above, we can consider the following simplified
version of the relevant processes. Suppose a black hole in a superposition state of |ψk(M)〉’s
(k = 1, · · · , eS0(M)) releases 1 bit of information through Hawking emission of the form:

|ψk(M)〉|φ0〉 →

{
|ψa; k+1

2
(M)〉|φ1〉 if k is odd,

|ψa; k
2
(M)〉|φ2〉 if k is even,

(2.26)

where we have assumed E1 = E2 = (ln 2)/8πMl2P ' TH, so that the entropy of the black
hole after the emission is reduced by 1 bit: S0(M −E1) = S0(M)− ln 2. Note that the index
representing the negative energy excitation (of energy −E1) takes the same value a in the
first and second lines. Namely, while the entire process in Eq. (2.26) is unitary, the initial
states with k = 2n− 1 and 2n lead to the same black hole state. After the negative energy
excitation reaches the stretched horizon, the black hole states relax into vacuum states for a
smaller black hole:

|ψa;k′(M)〉 → |ψk1=k′(M − E1)〉. (2.27)

While the resulting black hole has a smaller entropy than the original black hole, this re-
laxation process is unitary because k′ in the left-hand side runs only over 1, · · · , eS0(M)/2 =
eS0(M−E1). We note that the creation of a positive energy Hawking quantum and a neg-
ative energy excitation in Eq. (2.26) (and in Eq. (3.10)) takes a form very different from
the standard “pair creation” of particles, which is often invoked to visualize the Hawking
emission process. In the pair creation picture, the positive and negative energy excitations
are maximally entangled with each other, which is not the case here. In fact, it is this lack
of entanglement that allows the emission process to transfer the information from the black
hole to radiation.

We emphasize that from the semiclassical spacetime viewpoint, the emission of Eq. (3.10)
is viewed as occurring locally around the edge of the zone, which is possible because the
information about the black hole microstate extends into the whole zone region according
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to Eqs. (2.17, 2.18). To elucidate this point, we may consider the tortoise coordinate

r∗ = r + 2Ml2P ln
r − 2Ml2P

2Ml2P
, (2.28)

in which the region outside the Schwarzschild horizon r ∈ (2Ml2P,∞) is mapped into r∗ ∈
(−∞,∞). This coordinate is useful in that the kinetic term of an appropriately redefined
field takes the canonical form, so that its propagation can be analyzed as in flat space. In
this coordinate, the stretched horizon, located at r = 2Ml2P + O(l2∗/Ml2P) (see footnote 13),
is at

r∗s ' −4Ml2P ln
Ml2P
l∗
' −4Ml2P ln(MlP), (2.29)

where l∗ is the string (or gravitational cutoff) scale, which we take to be within a couple of
orders of magnitude of lP. This implies that there is a large distance between the stretched
horizon and the potential barrier region when measured in r∗: ∆r∗ ≈ 4Ml2P ln(MlP) �
O(Ml2P) for ln(MlP) � 1. On the other hand, a localized Hawking quantum is represented
by a wavepacket with width of O(Ml2P) in r∗, since it has an energy of order TH = 1/8πMl2P
defined in the asymptotic region.

The point is that, given the state |Ψk(M)〉 = |ψk(M)〉|φI〉, the process in Eq. (3.10) occurs
in the region |r∗| ≈ O(Ml2P) (i.e. the region in which the effective gravitational potential
starts shutting off toward large r∗) without involving deep interior of the zone −r∗ �Ml2P.
In this region, information stored in the vacuum state is converted into that of a particle
state outside the zone. More specifically, the information in the vacuum represented by the k
index (which may also be viewed as a thermal bath of infrared modes, Eq. (3.8), though only
in certain senses) is transferred into that in modes afar 6= 0, i.e. Hawking quanta, which have
clear independent identities over the background spacetime. Due to energy conservation,
this process is accompanied by the creation of ingoing negative energy excitations; however,
they are not maximally entangled with the emitted Hawking quanta.

In Fig. 2.1, we depict schematically the elementary Hawking emission process described
here. In the figure, we have denoted the emitted Hawking quanta as well as negative energy
excitations by arrows, although they are mostly s-waves [148]. The discussion here makes it
clear that the purifiers of the emitted Hawking quanta in the Hawking emission process are
microstates which semiclassical theory describes as a vacuum. In particular, the emission
process does not involve any excitation which, in the near horizon Rindler approximation,
appears as a mode breaking entanglement between the two Rindler wedges necessary to
keep the horizon smooth. Outgoing Hawking quanta emerge at the edge of the zone, living
outside the applicability of the Rindler approximation. Ingoing negative energy excitations
appear, in the Rindler approximation, as modes smooth in Minkowski space, which involve
necessary entanglements between Rindler modes in the two wedges and have frequencies of
order 1/Ml2P in the Minkowski frame. Unlike what was considered in Ref. [10], and unlike
what a “naive” interpretation of semiclassical theory might seem to suggest, Hawking quanta
are not modes associated solely with one of the Rindler wedges (b modes in the notation
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Figure 2.1: A schematic picture of the elementary Hawking emission process; time flows
from the top to the bottom. The edge of the zone, i.e. the barrier region of the effective
gravitational potential, is shown by a portion of a dashed circle at each moment in time.
The emitted Hawking quanta as well as negative energy excitations are depicted by arrows
(solid and dotted, respectively) although they are mostly s-waves.

of Ref. [10]) nor outgoing Minkowski modes (a modes), which would appear to have high
energies for observers who are freely falling into the black hole. This allows for avoiding
the entropy argument for firewalls given in Ref. [10] as well as the typicality argument in
Ref. [126].

In the discussion of the Hawking emission so far, we have assumed that a single emission
of Hawking quanta as well as the associated creation of ingoing negative energy excitations
occur in a black hole vacuum state consisting of |Ψk(M)〉’s, which are defined in the limit
that the evolution effect is ignored. In reality, however, there are always of order ln(MlP)
much of negative energy excitations in the zone, since the emission process occurs in every
time interval of order Ml2P and the time it takes for a negative energy excitation to reach
the stretched horizon is of order Ml2P ln(MlP) (both measured in the asymptotic region)—
an evaporating black hole has an ingoing flux of negative energy excitations of entropy
≈ O(− ln(MlP)) at all times. This flux of excitations modifies spacetime geometry from
that of a Schwarzschild black hole; in particular, the geometry near the horizon is well
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(a) Time reversal of Fig. 2.1
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(b) Generic incoming radiation

Figure 2.2: Time reversal of the Hawking emission process (a) as opposed to the process in
which generic incoming radiation enters into the zone of a usual black hole (b). The former
is an entropy decreasing process requiring an exponentially fine-tuned initial state, while the
latter is a standard process respecting the (generalized) second law of thermodynamics.

described by the advanced/ingoing Vaidya metric [19]. Note that as discussed in Section 2.3,
we may redefine our vacuum states to include these negative energy excitations, although
we do not do it here.

Finally, it is instructive to consider the time reversal of the Hawking emission process. In
this case, radiation coming from the far exterior region and outgoing negative energy excita-
tions emitted from the stretched horizon meet around the edge of the zone; see Fig. 2.2(a).
This results in a black hole state of mass given by the sum of the mass M of the original
black hole (before emitting the negative energy excitations) and the energy δM of the in-
coming radiation. It is a “vacuum” state in the sense that there is no excitation in the zone
except for those associated with a steady flux of outgoing negative energy excitations. We
emphasize that this process is very different from what happens when generic incoming ra-
diation of energy δM ≈ O(1/Ml2P) is sent to a usual (i.e. evaporating, not anti-evaporating)
black hole. In this case, the radiation enters into the zone without being “annihilated” by a
negative energy excitation, which after hitting the stretched horizon will lead to a black hole
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state of mass M + δM ; see Fig. 2.2(b). In fact, the process in Fig. 2.2(a) is a process which
leads to a decrease of coarse-grained (or thermal) entropy, as implied by the fact that the
coarse-grained entropy increases in the standard Hawking emission process [194]. In order
for this to happen, therefore, the initial radiation and black hole state must be exponentially
fine-tuned; otherwise, the radiation would simply propagate inward in the zone as depicted in
Fig. 2.2(b) (although it can be subject to significant scattering by the effective gravitational
potential at the time of the entrance). The origin of the conversion from radiation to vacuum
degrees of freedom for such a fine-tuned initial state can be traced to the non-decoupling of
the a and k indices discussed in Section 2.3.16

Semiclassical (thermal) description

The expression in Eq. (2.21) implies that at an intermediate stage of the evolution, the infor-
mation about the initial collapsing matter is encoded in the black hole microstates labeled
by k and their entanglement with the rest of the system (which will later be transformed into
the state of final-state Hawking radiation). Since semiclassical theory is incapable of describ-
ing the dynamics associated with the index k, it leads to apparent violation of unitarity at
all stages of the black hole formation and evaporation processes. In particular, the state of
the emitted Hawking quanta in each time interval of order M(t)l2P is given by the incoherent
thermal superposition with temperature 1/8πM(t)l2P, making the final Hawking radiation
state a mixed thermal state—this is an intrinsic limitation of the semiclassical description,
which involves a coarse-graining.

To see in detail how thermal Hawking radiation in the semiclassical picture results from
unitary evolution at the fundamental level, let us analyze the elementary Hawking emission
process given in Eq. (3.12). Following Eq. (3.4), we consider the “semiclassical vacuum
state” with a black hole of mass M , obtained after taking the maximally mixed ensemble of
microstates:

ρ(M) =
1

eS0(M)

eS0(M)∑
k=1

|ψk(M)〉|φI〉〈ψk(M)|〈φI |. (2.30)

The evolution of this state under Eq. (3.12) is then given by

ρ(M)→ 1

eS0(M)

eS0(M)∑
k=1

∑
i,i′

eS0(M−Ei)∑
ki=1

eS0(M−Ei′ )∑
k′
i′=1

αkikiα
k∗
i′k′

i′
|ψki(M−Ei)〉|φI+i〉〈ψk′i′ (M−Ei′)|〈φI+i′ |.

(2.31)

16If the black hole vacuum states are redefined as discussed in Section 2.3, the outgoing negative energy
flux cannot be seen as excitations. The physics described here, however, will not change; in particular, only
exponentially fine-tuned initial states allow for converting radiation to vacuum degrees of freedom around
the edge of the zone.
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Now, assuming that the microscopic dynamics of the vacuum degrees of freedom are generic,
we expect using S0(M) = 4πM2l2P that tracing out the black hole states leads to

Tr

[
1

eS0(M)

eS0(M)∑
k=1

eS0(M−Ei)∑
ki=1

eS0(M−Ei′ )∑
k′
i′=1

αkikiα
k∗
i′k′

i′
|ψki(M − Ei)〉〈ψk′i′ (M − Ei′)|

]
≈ 1

Z
gie
− Ei
TH δii′ ,

(2.32)
where TH = 1/8πMl2P, Z =

∑
i gie

−Ei/TH , and gi is a factor that depends on i. This allows
us to write the reduced density matrix representing the exterior state after the evolution in
Eq. (2.31) as

ρext ≈
1

Z

∑
i

gie
− Ei
TH |φI+i〉〈φI+i|, (2.33)

which is the result obtained in Hawking’s original calculation, with gi representing the gray-
body factor calculable in the semiclassical theory [148].

The analysis given above elucidates why the semiclassical calculation sees apparent viola-
tion of unitarity in the Hawking emission process, i.e. why the final expression in Eq. (2.33)
does not depend on microstates of the black hole, despite the fact that the elementary process
in Eq. (3.12) is unitary, so that the coefficients αkiki depend on k. It is because the semiclassi-
cal calculation (secretly) deals with the mixed state, Eq. (2.30), from the beginning—states
in semiclassical theory are maximal mixtures of black hole microstates labeled by vacuum
indices, i.e. k’s. By construction, the semiclassical theory cannot capture unitarity of de-
tailed microscopic processes involving these indices, including the black hole formation and
evaporation processes.

We finally discuss how the unitarity and thermal nature of the black hole evaporation
process may appear in (thought) experiments, illuminating physical implications of the pic-
ture described here. Suppose we prepare an ensemble of a large number of black holes of
mass M all of which are in an identical microstate k, and collect the Hawking quanta emitted
from these black holes in a time interval of order Ml2P. The quanta emitted from each black
hole are then in the same quantum state throughout the ensemble, so that a measurement
of the spectrum of all the emitted quanta does not reveal the thermal property predicted by
the semiclassical theory. On the other hand, if the members of the ensemble are in differ-
ent microstates distributed randomly in k space, then the collection of the Hawking quanta
emitted from all the black holes do exhibit the thermal nature consistent with the prediction
of the semiclassical theory within the Hilbert space describing the quanta emitted from each
black hole (which has dimension only of order unity).

What is the significance of the thermal nature for a single black hole, rather than an
ensemble of a large number of black holes? If we form a black hole of mass M in a particular
microstate k and collect all the Hawking quanta emitted throughout the evaporation process
without measuring them along the way, then the state of the quanta contains the complete
information about k, reflecting unitarity of the process at the fundamental level—the concept
of thermality does not apply to this particular state as a whole. On the other hand, if an
observer measures Hawking quanta emitted in each time interval of order M(t)l2P, then the
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(incoherent) ensemble of measurement outcomes does exhibit the thermal nature as predicted
by the semiclassical theory.17 Since this is the kind of measurement that a realistic observer
typically makes, the semiclassical theory can be said to provide a good prediction even for
the outcome of (a series of) measurements a single observer performs on a single black hole.

Black hole mining—“microscopic” and semiclassical descriptions

It is known that one can accelerate the energy loss rate of a black hole faster than that
of spontaneous Hawking emission by extracting its energy from the thermal atmosphere
using a physical apparatus: the mining process. This acceleration occurs largely because
the number of “channels” one can access increases by going into the zone—unlike the case
of spontaneous Hawking emission, which is dominated by s-wave radiation, higher angular
momentum modes can also contribute to the energy loss in this process [39]. Note that the
rate of energy loss associated with each channel, however, is still the same order as that in
the spontaneous Hawking emission process: energy of order E ≈ O(1/Ml2P) is lost in each
time interval of t ≈ O(Ml2P), with E and t both defined in the asymptotic region. This fact
will become important in Section 2.4 when we discuss the mining process as viewed from an
infalling reference frame.

The information transfer associated with the mining process occurs in a similar way to
that in the spontaneous Hawking emission process. An essential difference is that since the
process involves higher angular momentum modes, the negative energy excitations arising
from backreactions can now be localized in angular directions. Specifically, consider a phys-
ical detector (or a system of detectors) located at a fixed Schwarzschild radial coordinate
r = rd within the zone, rs < rd < RZ. The detector then responds as if it is immersed in
the thermal bath of blueshifted Hawking temperature T (rd), with T (r) given by Eq. (3.7).
Suppose the detector has the ground state |d0〉 and excited states |di〉 (i = 1, 2, . . . ) playing
the role of the “ready” state and pointer states, respectively, and that the proper energies
needed to excite |d0〉 to |di〉 are given by Ed,i. The mining process can then be written such
that after a timescale of t ≈ O(Ml2P) (as measured in the asymptotic region), the state of
the combined black hole and detector system evolves as

|ψk(M)〉|d0〉 →
∑
i,a,k′

ckiak′ |ψa;k′(M)〉|di〉, (2.34)

where we have assumed, as in the discussion of “elementary” Hawking emission, that there
are no excitations other than those directly associated with the process. The state |ψa;k′(M)〉

17In the more fundamental, many-world picture, this implies that the record of a physical observer who
has “measured,” or interacted with, emitted quanta in multiple moments shows a result consistent with
the thermality predicted by the semiclassical theory. Note that a single branch in which such an observer
lives does not in general contain the whole information about the initial black hole state k. The complete
information about k (as well as that of the initial state of the observer) is contained only in a state given
by a superposition of all possible branches resulting from interactions (and non-interactions) between the
observer and quanta, representing all the possible “outcomes” the observer could have had (the probability
distribution of which is consistent with thermality).
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arises as a result of backreaction of the detector response; it contains a negative energy exci-
tation a with energy −Ea, which is generally localized in angular directions. The coefficients
ckiak′ are nonzero only if Ea ≈ Ed,i

√
1− 2Ml2P/rd within the uncertainty.

Once created, the negative energy excitations propagate inward, and after time of t ≈
r∗d − r∗s collide with the stretched horizon, where r∗ is the tortoise coordinate in Eq. (2.28).
This will make the black hole states relax as

|ψa;k′(M)〉 →
∑
ka

dak
′

ka |ψka(M − Ea)〉, (2.35)

in the scrambling time of t ≈ O(Ml2P ln(MlP)). As in the case of spontaneous Hawking
emission, this relaxation process is unitary because the negative energy excitations carry
negative entropies; i.e. for a fixed a, the index k′ runs only over 1, · · · , eS0(M−Ea) � eS0(M).
The combination of Eqs. (2.34, 2.35) then yields

|ψk(M)〉|d0〉 →
∑
i,ki

αkiki |ψki(M − Ei)〉|di〉, (2.36)

where αkiki =
∑

a,k′ c
k
iak′d

ak′

ki
and Ei = Ed,i

√
1− 2Ml2P/rd. This represents a microscopic,

unitary description of the elementary mining process.
In the description given above, we have separated the detector state from the state of

the black hole, but in a treatment fully consistent with the notation in earlier sections,
the detector itself must be viewed as excitations over |ψk(M)〉. After the detector response
process in Eq. (2.34), these excitations can be entangled with Hawking quanta emitted earlier,
reflecting the fact that the detector can extract information from the black hole. Since the
detector can now be put deep in the zone, in which the Rindler approximation is applicable,
this implies that excitations localized within the Rindler wedge corresponding to the region
r > rs are entangled with early Hawking radiation. Does this lead to firewalls as discussed in
Ref. [10]? The answer is no. The excitations describing the detector are, in the near horizon
Rindler approximation, those of modes that are smooth in Minkowski space (a modes in the
notation of Ref. [10]). Likewise, modes representing negative energy excitations arising from
the backreactions are also ones smooth in Minkowski space. Excitations of these modes,
of course, do perturb the black hole system, which can indeed be significant if the detector
is held very close to the horizon. This effect, however, is caused by physical interactions
between the detector and vacuum degrees of freedom, and is confined in the causal future of
the interaction event. This is not the firewall phenomenon.

The semiclassical description of the mining process in Eq. (2.36) is obtained by taking
maximal mixture for the vacuum indices. Specifically, the semiclassical state before the
process starts is given by

ρ(M) =
1

eS0(M)

eS0(M)∑
k=1

|ψk(M)〉|d0〉〈ψk(M)|〈d0|. (2.37)
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The evolution of this state under Eq. (2.36) is then

ρ(M)→ 1

eS0(M)

eS0(M)∑
k=1

∑
i,i′

eS0(M−Ei)∑
ki=1

eS0(M−Ei′ )∑
k′
i′=1

αkikiα
k∗
i′k′

i′
|ψki(M − Ei)〉|di〉〈ψk′i′ (M − Ei′)|〈di′|.

(2.38)
This leads to the density matrix describing the detector state after the process

ρd =
∑
i,i′

γii′ |di〉〈di′|, (2.39)

where

γii′ = Tr

[
1

eS0(M)

eS0(M)∑
k=1

eS0(M−Ei)∑
ki=1

eS0(M−Ei′ )∑
k′
i′=1

αkikiα
k∗
i′k′

i′
|ψki(M − Ei)〉〈ψk′i′ (M − Ei′)|

]
. (2.40)

Assuming that the microscopic dynamics of the vacuum degrees of freedom are generic, γii′
is expected to take the form

γii′ ≈
1

Z
fie
−

Ed,i
T (rd) δii′ , (2.41)

where Z =
∑

i fie
−Ed,i/T (rd), and fi is the detector response function reflecting intrinsic prop-

erties of the detector under consideration. This implies that in the semiclassical approxi-
mation, the final detector state does not have any information about the original black hole
microstate, despite the fact that the fundamental process in Eq. (2.36) is, in fact, unitary.

The fate of an infalling object

We now discuss how an object falling into a black hole is described in a distant reference
frame. As we have seen, having a well-defined black hole geometry requires a superposition
of an enormous number of energy-momentum eigenstates. While the necessary spreads in
energy and momentum are small when measured in the asymptotic region, the spreads of
local energy and momentum (i.e. those measured by local approximately static observers)
are large in the region close to the horizon, because of large gravitational blueshifts. This
makes the local temperature T (r) associated with the vacuum degrees of freedom, Eq. (3.7),
very high near the horizon. We expect that the semiclassical description becomes invalid
when this temperature exceeds the string (cutoff) scale, T (r) & 1/l∗. Namely, semiclassical
spacetime exists only in the region

r > rs = 2Ml2P +O

(
l2∗
Ml2P

)
, (2.42)

where rs is identified as the location of the stretched horizon. The same conclusion can also
be obtained by demanding that the gravitational thermal entropy stored in the region where
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the semiclassical spacetime picture is applicable is a half of the Bekenstein-Hawking entropy,
A/8l2P, as discussed in footnote 13.

Let us consider that an object is dropped from r = r0 with vanishing initial velocity,
where r0 − 2Ml2P ≈ O(Ml2P) > 0. It then freely falls toward the black hole and hits the
stretched horizon at r = rs in Schwarzschild time of about 4Ml2P ln(Ml2P/l∗). Before it
hits the stretched horizon, the object is described by a and afar, the indices labeling field
and string theoretic excitations over the semiclassical background spacetime. After hitting
the stretched horizon, the information about the object will move to the index ā, labeling
excitations of the stretched horizon. The information about the fallen object will then stay
there, at least, for the thermalization (or scrambling) time of the stretched horizon, of order
Ml2P ln(MlP). This allows for avoiding the inconsistency of quantum cloning in black hole
physics [88, 161]. Finally, the information in ā will further move to k, which can (later)
be extracted by an observer in the asymptotic region via the Hawking emission or mining
process, as described in the previous two subsections.

We note that the statement that an object is in the semiclassical regime (i.e. represented
by indices a and afar) does not necessarily mean that it is well described by semiclassical field
theory. Specifically, it is possible that stringy effects become important before the object
hits the stretched horizon. As an example, consider dropping an elementary particle of mass
m (� 1/l∗) from r = r0 with zero initial velocity. (Here, by elementary we mean that there
is no composite structure at lengthscale larger than l∗.) The local energy and local radial
momentum of the object will then vary, as it falls, as:

Eloc = m

√√√√1− 2Ml2P
r0

1− 2Ml2P
r

, ploc = −m

√√√√ 2Ml2P
r
− 2Ml2P

r0

1− 2Ml2P
r

. (2.43)

The values of Eloc ≈ −ploc get larger as r gets smaller, and for m � 1/Ml2P (which we
assume here) become of order 1/l∗ before the object hits the stretched horizon, i.e. at

r − 2Ml2P ' 2Ml2P(ml∗)
2

(
1− 2Ml2P

r0

)
. (2.44)

The Schwarzschild time it takes for the object to reach this point is only about−4Ml2P ln(ml∗),
much smaller than the time needed to reach the stretched horizon, 4Ml2P ln(Ml2P/l∗). Af-
ter the object reaches this point, i.e. when Eloc ≈ −ploc & 1/l∗, stringy effects might be-
come important; specifically, its Lorentz contraction saturates and transverse size grows
with Eloc [167]. Note that this dependence of the description on the boost of a particle
does not necessarily mean violation of Lorentz invariance—physics can still be fully Lorentz
invariant.18

18It is illuminating to consider how these stringy effects appear in a two-particle scattering process in
Minkowski space. For

√
s . 1/l∗, where s is the Mandelstam variable, there is a reference frame in which

energies/momenta of both particles are smaller than 1/l∗, guaranteeing that these effects are not important
in the process. For

√
s > 1/l∗, on the other hand, at least one particle has an energy/momentum larger than

1/l∗ in any reference frame, suggesting that stringy effects become important in scattering with such high√
s.
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Figure 2.3: A schematic depiction of the fate of an elementary particle of mass m (1/Ml2P �
m � 1/l∗) dropped into a black hole, viewed in a distant reference frame. As the particle
falls, its local energy blueshifts and exceeds the string/cutoff scale 1/l∗ before it hits the
stretched horizon. After this point, stringy effects could become important, although the
semiclassical description of the object may still be applicable. The object hits the stretched
horizon at a Schwarzschild time of about 4Ml2P ln(Ml2P/l∗) after the drop. After this time,
the semiclassical description of the object is no longer applicable, and the information about
the object will be encoded in the index ā, representing excitations of the stretched horizon.
(This information will further move to the vacuum index k later, so that it can be extracted
by an observer in the asymptotic region via the Hawking emission or mining process.)

A schematic picture for the fate of an infalling object described above is given in Fig. 2.3.
In a distant reference frame, the semiclassical description of the object is applicable only
until it hits the stretched horizon, after which it is represented as excitations of the stretched
horizon. On the other hand, according to general relativity (or the equivalence principle),
the falling object does not experience anything other than smooth empty spacetime when
it crosses the horizon, except for effects associated with curvature, which are very small for
a black hole of mass M � 1/lP. If this picture is correct, then we expect there is a way to
reorganize the dynamics of the stretched horizon such that the general relativistic smooth
interior of the black hole becomes manifest. In the complementarity picture, this is achieved
by performing an appropriate reference frame change. We now move on to discuss this issue.
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2.4 Black Hole—An Infalling Description

In order to describe the fate of an infalling object using low energy language after it crosses
the Schwarzschild horizon, we need to perform a change of the reference frame from a distant
one, which we have been considering so far, to an infalling one which falls into the black hole
with the object. In general, studying this issue is complicated by the fact that the general
and precise formulation of complementarity is not yet known, but we may still explore the
expected physical picture based on some general considerations.

The aim of this section is to argue that the existence of interior spacetime, as suggested
by general relativity, does not contradict the unitarity of the Hawking emission and black
hole mining processes, as described in the previous section in a distant reference frame. We
do this by first arguing that there exists a reference frame—an infalling reference frame—in
which the spacetime around a point on the Schwarzschild horizon appears as a large nearly
flat region, with the curvature lengthscale of order Ml2P. This is a reference frame whose
origin falls freely from rest from a point sufficiently far from the black hole. We discuss how
the description based on this reference frame is consistent with that in the distant reference
frame, despite the fact that they apparently look very different, for example in spacetime
locations of the vacuum degrees of freedom.

We then discuss how the system is described in more general reference frames, in partic-
ular a reference frame whose origin falls from rest from a point close to the Schwarzschild
horizon. We will also discuss (non-)relations of black hole mining by a near-horizon static
detector and the—seemingly similar—Unruh effect in Minkowski space. The discussion in
this section illuminates how general coordinate transformations may work at the level of full
quantum gravity, beyond the approximation of quantum field theory in curved spacetime.

Emergence of interior spacetime—free fall from a distance

What does a reference frame really mean? According to the general complementarity picture
described in Section 2.2, it corresponds to a foliation of a portion of spacetime which a
single (hypothetical) observer can access. As discussed there, the procedure to erect such a
reference frame should not depend on the background geometry in order for the framework
to be applicable generally, and there is currently no precise, established formulation to do
that (although there are some partially successful attempts; see, e.g., Ref. [140]). Here we
focus only on classes of reference frames describing the same system with a fixed black hole
background. This limitation allows us to bypass many of the issues arising when we consider
the most general application of the complementarity picture.

In this subsection, we consider a class of reference frames which we call infalling reference
frames. We argue that a reference frame in this class makes it manifest that the spacetime
near the origin of the reference frame appears as a large approximately flat region when it
crosses the Schwarzschild horizon, up to corrections from curvature of lengthscale Ml2P. We
discuss how the interior spacetime of the black hole can emerge through the complementarity
transformation representing a change of reference frame from the distant to infalling ones.
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Consistency of the infalling picture described here with the distant frame description in
Section 2.3 will be discussed in more detail in the next subsection.

We consider a reference frame associated with a freely falling (local Lorentz) frame,
with its spatial origin p0 following the worldline representing a hypothetical observer [133,
140]. In particular, we let the origin of the reference frame, p0, follow the trajectory of
a timelike geodesic, representing the observer who is released from rest at r = r0, with
r0 sufficiently far from the Schwarzschild horizon, r0 − 2Ml2P & Ml2P. According to the
complementarity hypothesis, the system described in this reference frame does not have a
(hot) stretched horizon at the location of the Schwarzschild horizon when p0 crosses it. (The
stretched horizon must have existed around the Schwarzschild horizon when p0 was far away,
rp0 − 2Ml2P & O(Ml2P), because the description in those earlier times must be approximately
that of a distant reference frame, i.e. that discussed in the previous section.) In particular,
the region around p0 must appear approximately flat, i.e. up to small effects from curvature
of order 1/M2l4P, until p0 approaches the singularity.

In this infalling description, we expect that a “horizon” signaling the breakdown of the
semiclassical description lies in the directions associated with “past-directed and inward”
light rays (the directions with increasing r and decreasing t after p0 crosses r = 2Ml2P) as
viewed from p0; see Fig. 2.4.19 As in the stretched horizon in a distant reference frame, this
“horizon” emerges because of the “squeezing” of equal-time hypersurfaces; in particular, an
observer following the trajectory of p0 may probe only a tiny region near the Schwarzschild
horizon for signals arising from this surface. (Note that −r plays a role of time inside the
Schwarzschild horizon.) Considering angular directions, this “horizon” has an area of order
M2l4P, and can be regarded as being located at distances of order Ml2P away from p0 (with an
appropriately defined distance measure on generic equal-time hypersurfaces in the infalling
reference frame; see Section 2.4).

In analogy with the case of a distant frame description, we denote basis states for the
general microstates in an infalling reference frame (before p0 reaches the singularity) as

|Ψᾱ ααfar;κ(M)〉, (2.45)

where ᾱ labels the excitations of the “horizon,” and α, and αfar are the indices labeling
the semiclassical excitations near and far from the black hole, conveniently defined; κ is the
vacuum index in an infalling reference frame, representing degrees of freedom that cannot be
resolved by semiclassical operators.20 The complementarity transformation provides a map
from the basis states in a distant description, Eq. (3.3), to those in an infalling description,
Eq. (3.13), and vice versa. The general form of this transformation can be quite complicated,
depending, e.g., on equal-time hypersurfaces taken in the two descriptions (which are in

19This “horizon,” as viewed from an infalling reference frame, should not be confused with the stretched,
or Schwarzschild, horizon as viewed from a distant reference frame.

20After p0 hits the singularity, the system as viewed from the infalling reference frame can only be repre-
sented by “singularity states”: intrinsically quantum gravitational states that do not allow for a spacetime
interpretation [133].
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Figure 2.4: A sketch of an infalling reference frame in an Eddington-Finkelstein diagram:
the horizontal and vertical axes are r and t∗ = t+r∗−r, respectively, where r∗ is the tortoise
coordinate. The thick (blue) line denotes the spacetime trajectory of the origin, p0, of the
reference frame, while the thin (red) lines represent past-directed light rays emitted from
p0. The shaded area is the causal patch associated with the reference frame, and the dotted
(green) line represents the stretched “horizon” as viewed from this reference frame.

turn related with the general procedure of erecting reference frames by standard coordinate
transformations within each causal patch). Here we consider how various indices are related
under the transformation, focusing on the near black hole region.

Imagine that equal-time hypersurfaces in the two—distant and infalling—reference frames
agree at some time t = t0 in the spacetime region near but outside the surface where the
stretched horizon exists if viewed from the distant reference frame. (Note that the stretched
horizon has physical substance only in a distant reference frame.) We are interested in how
basis states in the two descriptions transform between each other in the timescale of the
fall of the infalling reference frame. The time here can be taken as the proper time at p0

in each reference frame [133, 140], which is approximately the Schwarzschild time for the
distant reference frame. In this case, the relevant timescale is t − t0 . O(Ml2P ln(MlP)) in
the distant reference frame, while t− t0 . O(Ml2P) in the infalling reference frame.

As discussed in Section 2.3, in the distant reference frame, an object dropped from some
r0 with r0−2Ml2P ≈ O(Ml2P) is first represented by a and then by ā after it hits the stretched
horizon. On the other hand, in the infalling frame, the object is represented by the index α
throughout, first as a semiclassical excitation outside the Schwarzschild horizon and then as
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a semiclassical excitation inside the Schwarzschild horizon, implying that the object does not
find anything special at the horizon. Here, we have assumed that p0 follows (approximately)
the trajectory of the falling object. This suggests that a portion of the α index representing
excitations in the interior of the black hole is transformed into the ā index in the distant
description (and vice versa) under the complementarity transformation; i.e., the interior of
the black hole accessible from the infalling reference frame is encoded in the excitations of the
stretched horizon in the distant reference frame. Note that the amount of information needed
to reconstruct the interior (in the semiclassical sense) is much smaller than the Bekenstein-
Hawking entropy [173, 142]—the logarithm of the dimension of the relevant Hilbert space is
of order (A/l2P)q with q < 1.

In the exterior spacetime region, the portion of the α index representing excitations there,
as well as the αfar index, are mapped to the corresponding a and afar indices, and vice versa
(after matching the equal-time hypersurface in the two descriptions through appropriate
time evolutions). Because equal-time hypersurfaces foliate the causal patch, excitations in
the far exterior region naturally have trans-Planckian energies in the infalling description.
However, as discussed in Section 2.3, this does not mean that the semiclassical description is
invalid—objects may still be described as excitations in the semiclassical spacetime, although
stringy effects may become important. Indeed, we expect that the semiclassical description
is applicable in the far exterior region even in the infalling reference frame, because of
the absence of the “squeezing” effect described above which leads to the breakdown of the
semiclassical picture.

We emphasize that the construction of the interior spacetime described here does not
suffer from the paradoxes discussed in Refs. [10, 9, 126]. By labeling states in terms of
excitations, we are in a sense representing the interior spacetime already in the distant
description. (The interpretation, however, is different. In the distant description, the relevant
excitations must be regarded as those of the stretched horizon.) In fact, we do not find any
inconsistency in postulating that the dynamics of an infalling object is described by the
corresponding Hamiltonian in the semiclassical theory in a sufficiently small region around
p0, to the extent that microscopic details of interactions with κ degrees of freedom are
neglected. Namely, we do not find any inconsistency in postulating that physics at the
classical level is well described by general relativity.

Finally, we discuss where the fine-grained vacuum degrees of freedom represented by κ
must be viewed as being located in the infalling description. Because of the lack of an
obvious static limit, it is not straightforward to answer to this question. Nevertheless, it
seems natural to expect, in analogy with the case of a distant description, that most of
the degrees of freedom are located close to the “horizon” (in terms of a natural distance
measure in which the distance between the “horizon” and p0 is of order Ml2P). In fact, we
expect that the number of κ degrees of freedom existing around p0 within a distance scale
sufficiently smaller than Ml2P is of O(1) or smaller, since the time and length scales of the
system characterizing local deviations from Minkowski space (as viewed from the infalling
reference frame) are both of order Ml2P. As in the case of the distant description, we expect
that the κ degrees of freedom do not extend significantly to the far exterior region, since the
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existence of the black hole does not affect the spacetime there much.21

Consistency between the distant and infalling descriptions

In analyzing a black hole system in a distant reference frame, we argued that the microscopic
information about the black hole, represented by the k index, is distributed according to the
gravitational thermal entropy calculated using semiclassical field theory. In particular, on
the Schwarzschild (or stretched) horizon, this information has a Planckian density: one qubit
per area of order l2P on the horizon (or per volume of order l3P if we take into account the
“thickness” of the stretched horizon, ∼ lP). On the other hand, we have just argued that in
an infalling reference frame, the spacetime distribution of the microscopic information (now
represented by the κ index) is different. In particular, the spatial density of the information
around the Schwarzschild horizon, when the origin of the reference frame passes through
it, is very small: one qubit per volume of order (Ml2P)3. How can we reconcile these two
seemingly very different perspectives?

In this subsection, we consider this problem and argue that despite the fact that the
spacetime distribution of the microscopic information depends on the reference frame one
chooses to describe the system, the answers to any operationally well-defined question one
obtains in different reference frames are consistent with each other. As an example most rel-
evant to our discussion, we consider a physical detector hovering at a constant Schwarzschild
radius r = rd (> 2Ml2P). In a distant description, the spatial density of the microscopic in-
formation, represented by k, is large at the location of the detector when rd−2Ml2P �Ml2P.
Such a detector (or a system of detectors) can thus be used for black hole mining: accelerated
extraction of energy and information from the black hole. In an infalling reference frame,
however, the density of the microscopic information, represented by κ, is very small at the
detector location, at least when the origin of the reference frame, p0, passes nearby. This
implies that the rate of extracting information from spacetime cannot be much faster than
1/Ml2P around p0 in the infalling description, reflecting the fact that the spacetime appears
approximately flat there. How are these two descriptions consistent?

In the distant description, the rate of extracting microscopic information about the black
hole is at most of order one qubit per Schwarzschild time 1/TH = 8πMl2P per channel,
regardless of the location of the detector [39]—the acceleration of information extraction
occurs not because of a higher speed of information extraction in each channel but because
of an increased number of channels available by immersing the detector deep into the zone.
This implies that each single detector, which we define to act on a single channel, “clicks”
once (i.e. extracts of O(1) qubits) per a Schwarzschild time of order 8πMl2P.

21Note that the descriptions in the two reference frames are already different at the semiclassical level.
For example, the backreaction of a detector click in a distant reference frame is described as an absorption
of a particle in the thermal bath, while in an infalling reference frame it is described as an emission of a
particle, with the difference arising from different definitions of energy in the two reference frames [181].
The reference frame dependence discussed here is much more drastic, however—the spacetime locations of
physical degrees of freedom are different in the two reference frames.
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Now, consider describing such a detector in an infalling reference frame whose origin p0

is released at r = 2Ml2P + O(Ml2P) from rest, at an angular location close to the detector.
To understand the relevant kinematics, we adopt the near-horizon Rindler approximation:
for r > 2Ml2P

ρ ≈ 2
√

2Ml2P(r − 2Ml2P), ω ≈ t

4Ml2P
, (2.46)

in terms of which the metric is given by

ds2 ≈ −ρ2dω2 + dρ2 + r(ρ)2dΩ. (2.47)

As is well-known, this metric can be written in the Minkowski form

ds2 ≈ −dT 2 + dZ2 + r(T, Z)2dΩ, (2.48)

by introducing the coordinates

T = ρ sinhω, Z = ρ coshω, (2.49)

which can be extended into the r < 2Ml2P region. Our setup corresponds to the situation in
which the detector follows a trajectory of a constant ρ:

ρ = ρd �Ml2P, (2.50)

while the origin of the reference frame p0—or the (fictitious) observer—is at a constant Z:

Z = Zo ≈ O(Ml2P). (2.51)

Note that while we approximate the geometry by flat space, given by Eq. (2.47) or (2.48),
the actual system has small nonzero curvature with lengthscale of order Ml2P.

As discussed above, the detector extracts an O(1) amount of information in each time
interval of

∆ω ≈ O

(
1

4Ml2PTH

)
≈ O(1), (2.52)

while the “observer,” p0, and the detector meet (or pass by each other) at(
ω
ρ

)
=

(
arccoshZo

ρd

ρd

)
≡
(
ω∗
ρ∗

)
. (2.53)

This implies that in the Minkowski coordinates—i.e. as viewed from the infalling observer
p0—the detector clicks only once in each time/space interval of

∆T ≈ ∆ω
∂T

∂ω

∣∣∣∣
ω=ω∗,ρ=ρ∗

≈ Zo ≈ O(Ml2P), (2.54)

∆Z ≈ ∆ω
∂Z

∂ω

∣∣∣∣
ω=ω∗,ρ=ρ∗

≈ Zo ≈ O(Ml2P), (2.55)
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around p0. This is precisely what we expect from the equivalence principle: the spacetime ap-
pears approximately flat when viewed from an infalling observer, up to curvature effects with
lengthscale of Ml2P. While the detector clicks of order ln(MlP) times within the causal patch
of the infalling reference frame, all these clicks occur at distances of order Ml2P away from
p0, where we expect a higher density of κ degrees of freedom. The two descriptions—distant
and infalling—are therefore consistent, despite the fact that the spacetime distributions of
the microscopic information about the black hole—represented by k and κ, respectively—are
different in the two reference frames.

While we have so far discussed the case in which a physical detector is located close to
the Schwarzschild horizon, the conclusion is the same in the case of spontaneous Hawking
emission. In this case, since Hawking particles appear as semiclassical excitations only at
r− 2Ml2P &Ml2P with local energies of order 1/Ml2P, the consistency of the two descriptions
is in a sense obvious. Alternatively, one can regard this case as the ρd ≈ Ml2P limit of the
previous analysis. While the Rindler approximation is strictly valid only for ρ sufficiently
smaller than Ml2P, qualitative results are still valid for ρd ≈Ml2P; in particular, the estimates
in Eqs. (2.54, 2.55) are valid at an order of magnitude level.

Other reference frames—free fall from a nearby point

In this subsection, we consider how the black hole is described in a class of reference frames
whose origin follows a timelike geodesic released from rest at r = r0, where r0 is close to the
Schwarzschild horizon, r0−2Ml2P �Ml2P.22 We argue that the description in these reference
frames does not look similar to either the distant or infalling description discussed before,
and yet it is consistent with both of them.23

To understand how the black hole appears in such a reference frame, let us consider a
setup similar to that in Section 2.4—a physical detector hovering at a constant Schwarzschild
radius r = rd—and see how this system is described in the reference frame. As in Section 2.4,
we may adopt the Rindler approximation, in which Eq. (2.51) is now replaced by

Z = Zo �Ml2P. (2.56)

This implies that as viewed from this reference frame, the detector clicks once in each
time/space interval of

∆T ≈ ∆Z ≈ Zo �Ml2P. (2.57)

Here, we have assumed that ρd < Zo. Since each detector click extracts an O(1) amount of
information from spacetime, which we expect not to occur in Minkowski space, this implies

22In a full geometry in which the black hole is formed by collapsing matter, the trajectory of the origin, p0,
of such a reference frame corresponds to a fine-tuned one in which p0 stays near outside of the Schwarzschild
horizon for long time due to large outward velocities at early times. (Here, we have focused only on the
relevant branch in the full quantum state; see, e.g., footnote 4.)

23Note that we use the term “infalling reference frame” exclusively for reference frames discussed in
Sections 2.4 and 2.4, i.e. the ones in which p0 starts from rest at r0 with r0 − 2Ml2P & O(Ml2P).
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that the spacetime cannot be viewed as approximately Minkowski space over a region beyond
lengthscale Zo. In particular, in contrast with the case in an infalling reference frame (with
Zo & O(Ml2P)), the spacetime region around p0 in this reference frame does not appear nearly
flat over lengthscale of Ml2P when p0 crosses the Schwarzschild horizon.

At a technical level, this difference arises from the fact that the relative boost of p0 with
respect to the distant reference frame when p0 approaches the detector

γ =
1√

1− v2
rel

=

√√√√1− 2Ml2P
r0

1− 2Ml2P
rd

, (2.58)

is very different in the two reference frames. In an infalling reference frame γ is huge,
≈ O(Ml2P/ρd), while in the reference frame considered here γ ≈ O(Zo/ρd), which is not
as large as that in the infalling case. In the infalling reference frame of Sections 2.4 and
2.4, the huge boost of γ ≈ O(Ml2P/ρd) “stretched” the interval between detector clicks to
time/length scales of order Ml2P. Here, this “stretching” makes only a small region around
p0, with lengthscale of order Zo (�Ml2P), look nearly flat at any given time.

We may interpret this result to mean that in the reference frame under consideration,
the “horizon” (as viewed from this reference frame) is located at a distance of order Zo away
from p0, so that detector clicks occur near or “on” this surface. (In the latter case, the
detector click events must be viewed as occurring in the regime outside the applicability of
the semiclassical description; in particular, they can only be described as complicated quan-
tum gravitational processes occurring on the “horizon.”) Since we expect that microscopic
information about the black hole (analogous to k and κ in the distant and infalling reference
frames, respectively) is located near and on the “horizon,” there is no inconsistency that
detector clicks extract microscopic information from the black hole.

One might be bothered by the fact that in this reference frame spacetime near the
Schwarzschild horizon does not appear large, ≈ O(Ml2P), nearly flat space, and consider
that this implies the non-existence of a large black hole interior as suggested by general rel-
ativity. This is, however, not correct. The existence of a reference frame in which spacetime
around the Schwarzschild horizon appears as a large nearly flat region—in particular, the
existence of an infalling reference frame discussed in Sections 2.4 and 2.4—already ensures
that an infalling physical object/observer does not experience anything special, e.g. firewalls,
when it/he/she crosses the Schwarzschild horizon. The analysis given here simply says that
the spacetime around the Schwarzschild horizon does not always appear as a large nearly flat
region, even in a reference frame whose origin falls freely into the black hole. This extreme
relativeness of descriptions is what we expect from complementarity.

(Non-)relations with the Unruh effect in Minkowski space

It is often thought that the system described above is similar to an accelerating detector
existing in Minkowski space, based on a similarity of geometries between the two setups. If
this were true at the full quantum level, it would mean that the description in an inertial
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reference frame in Minkowski space must possess a “horizon,” at which the semiclassical
description of the system breaks down. Does this make sense?

Here we argue that physics of a detector held near the Schwarzschild horizon, given
above in Section 2.4, is, in fact, different from that of an accelerating detector in Minkowski
space. The intuition that the two must be similar comes from the (wrong) perception
that the detector located near the Schwarzschild horizon feels a high blueshifted Hawking
temperature, ≈ 1/ρd � 1/Ml2P, which makes the detector click at a high rate, while the
spacetime curvature there is very small, with lengthscale≈Ml2P, so that such a tiny curvature
must not affect the system. This intuition, however, is flawed by mixing up two different
pictures—the system as viewed at the location of the detector and as viewed in the asymptotic
region.

Suppose we represent all quantities as defined in the asymptotic region. The temperature
a detector feels is then of order 1/Ml2P and the timescale for detector clicks is T ≈ O(Ml2P)
for any rd > 2Ml2P. On the other hand, the energy density of the black hole region is of
order M/(Ml2P)3, so that the curvature lengthscale L is estimated as

1

L2
∼ GN

M

(Ml2P)3
∼ 1

(Ml2P)2
. (2.59)

This implies that
T ∼ L ∼ O(Ml2P); (2.60)

namely, curvature is expected to give an O(1) effect on the dynamics of the detector response.
The same conclusion can also be reached when we represent all the quantities in the

static frame at the detector location. In this case, the temperature the detector feels is of
order 1/Ml2Pχ, where χ =

√
1− 2Ml2P/rd is the redshift factor, so that T ≈ O(Ml2Pχ). On

the other hand, the energy density of the black hole region is given by ∼ (M/χ)/(Ml2P)3χ,
so that the “blueshifted curvature length” L is given by

1

L2
∼ GN

M/χ

(Ml2P)3χ
∼ 1

(Ml2Pχ)2
. (2.61)

This yields
T ∼ L ∼ O(Ml2Pχ), (2.62)

again implying that curvature provides an O(1) effect on the dynamics.
It is, therefore, no surprise that the physics of a near-horizon detector in Section 2.4

differs significantly from that of an accelerating detector in Minkowski space experiencing
the Unruh effect [179]. In fact, we consider, as we naturally expect, that an inertial frame
description in Minkowski space does not have a horizon, implying that no information about
spacetime is extracted by an accelerating detector, despite the fact that it clicks at a rate
controlled by the acceleration a, T ≈ O(1/a), in the detector’s own frame. This is indeed
consistent with the idea that any information must be accompanied by energy. In the black
hole case, the detector mines the black hole, i.e. its click extracts energy from the black
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hole spacetime, while in the Minkowski case the energy needed to excite the detector comes
entirely from the force responsible for the acceleration of the detector—the detector does
not mine energy from Minkowski space. We conclude that blueshifted Hawking radiation
and Unruh radiation in Minkowski space are very different as far as the information flow is
concerned.

Does this imply a violation of the equivalence principle? The equivalence principle states
that gravity is the same as acceleration, and the above statement might seem to contradict
this principle. This is, however, not true. The principle demands the equivalence of the
two only at a point in space in a given coordinate system, and the descriptions of the two
systems discussed above—a black hole and Minkowski space—are indeed the same in an
infinitesimally small (or lengthscale of order l∗) neighborhood of p0. The principle does not
require that the descriptions must be similar in regions away from p0, and indeed they are
very different: there is a “horizon” at a distance of order Zo from p0 in the black hole case
while there is no such thing in the Minkowski case. And it is precisely in these regions that
the detector clicks to extract (or non-extract) information from the black hole (Minkowski)
spacetime. In quantum mechanics, a system is specified by a quantum state which generally
encodes global information on the equal-time hypersurface. It is, therefore, natural that the
equivalence principle, which makes a statement only about a point, does not enforce the
equivalence between physics of blueshifted Hawking radiation and of the Unruh effect in
Minkowski space at the fully quantum level.

Complementarity: general covariance in quantum gravity

We have argued that unitary information transfer described in Section 2.3, associated with
Hawking emission and black hole mining, is consistent with the existence of the interior
spacetime suggested by general relativity. We can summarize important lessons we have
learned about quantum gravity through this study in the following three points:

• In a fixed reference frame, the microscopic information about spacetime, in this case
about a black hole, may be viewed as being associated with specific spacetime loca-
tions. In particular, for a (quasi-)static description of a system, these degrees of free-
dom are distributed according to the gravitational thermal entropy calculated using
semiclassical field theory. The distribution of these degrees of freedom—which we may
call “constituents of spacetime”—controls how they can interact with the degrees of
freedom in semiclassical theory, e.g. matter and radiation in semiclassical field theory.

• The spacetime distribution of the microscopic information, however, changes if we
adopt a different reference frame to describe the system. In this sense, the “constituents
of spacetime” are not anchored to spacetime; they are associated with specific spacetime
locations only after the reference frame is fixed. In particular, no reference frame
independent statement can be made about where these degrees of freedom are located
in spacetime. We may view this as a manifestation of the holographic principle [173,
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169, 27]—gauge invariant degrees of freedom in a quantum theory of gravity live in
some “holographic space.”

• Despite the strong reference frame dependence of the location of the microscopic de-
grees of freedom, the answers to any physical question are consistent with each other
when asked in different reference frames. In particular, when we change the reference
frame, the distribution of the microscopic degrees of freedom (as well as some of the
semiclassical degrees of freedom) is rearranged such that this consistency is maintained.

These items are basic features of general coordinate transformations at the level of full
quantum gravity, beyond the approximation of semiclassical theory in curved spacetime.
In particular, they provide important clues about how complementarity as envisioned in
Refs. [133, 140] may be realized at the microscopic level.

2.5 Summary—A Grand Picture

The relation between the quantum mechanical view of the world and the spacetime picture
of general relativity has never been clear. The issue becomes particularly prominent in a
system with a black hole. Quantum mechanics suggests that the black hole formation and
evaporation processes are unitary—a black hole appears simply as an intermediate (gigantic)
resonance between the initial collapsing matter and final Hawking radiation states. On the
other hand, general relativity suggests that a classical observer falling into a large black hole
does not feel anything special at the horizon. These two, seemingly unrelated, assertions
are surprisingly hard to reconcile. With naive applications of standard quantum field theory
on curved spacetime, one is led to the conclusion that unitarity of quantum mechanics is
violated [85] or that an infalling observer finds something dramatic (firewalls) at the location
of the horizon [10, 9, 126, 38, 127].

In this paper, we have argued that the resolution to this puzzle lies in how a semiclassical
description of the system—quantum theory of matter and radiation on a fixed spacetime
background—arises from the microscopic theory of quantum gravity. While a semiclassical
description employs an exact spacetime background, the quantum uncertainty principle im-
plies that there is no such thing—there is an intrinsic uncertainty for background spacetime
for any finite energy and momentum. This implies, in particular, that at the microscopic
level there are many different ways to arrive at the same background for the semiclassi-
cal theory, within the precision allowed by quantum mechanics. This is the origin of the
Bekenstein-Hawking (and related, e.g. Gibbons-Hawking [70]) entropy. The semiclassical
picture is obtained after coarse-graining these degrees of freedom representing the micro-
scopic structure of spacetime, which we called the vacuum degrees of freedom. More specifi-
cally, any result in semiclassical theory is a statement about the maximally mixed ensemble
of microscopic quantum states consistent with the specified background within the required
uncertainty [141].
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This picture elucidates why the purely semiclassical calculation of Ref. [85] finds a vi-
olation of unitarity. At the microscopic level, formation and evaporation of a black hole
are processes in which information in the initial collapsing matter is converted into that in
the vacuum degrees of freedom, which is later transferred back to semiclassical degrees of
freedom, i.e. Hawking radiation. Since semiclassical theory is incapable of describing mi-
croscopic details of the vacuum degrees of freedom (because it describes them as already
coarse-grained, Bekenstein-Hawking entropy), the description of the black hole formation
and evaporation processes in semiclassical theory violates unitarity at all stages throughout
these processes. This, of course, does not mean that the processes are non-unitary at the
fundamental level.

In order to address the unitary evolution and explore its relation with the existence or
non-existence of the interior spacetime, we therefore need to discuss the properties of the
vacuum degrees of freedom. While the theory governing the detailed microscopic dynamics
of these degrees of freedom is not yet fully known, we may include them in our description in
the form of a new index—vacuum index—carried by the microscopic quantum states (which
we denoted by k and κ) in addition to the indices representing excitations in semiclassical
theory and of the stretched horizon. We have argued that these degrees of freedom show
peculiar features, which play key roles in addressing the paradoxes discussed in Refs. [10, 9,
126]:

Extreme relativeness:

In a fixed reference frame, vacuum degrees of freedom may be viewed as distributed
(nonlocally) over space. The spacetime distribution of these degrees of freedom, how-
ever, changes if we adopt a different reference frame—they are not anchored to space-
time, and rather live in some “holographic space.” This dependence on the reference
frame occurs in a way that the answers to any physical question are consistent with
each other when asked in different reference frames. Together with the reference frame
dependence of (some of the) semiclassical degrees of freedom, discussed in the earlier
literature [170, 166], this comprises basic features of how general coordinate transfor-
mations work in the full theory of quantum gravity.

Spacetime-matter duality:

The vacuum degrees of freedom exhibit dual properties of spacetime and matter (even
in a description in a single reference frame): while these degrees of freedom are inter-
preted as representing the way the semiclassical spacetime is realized at the microscopic
level, their interactions with semiclassical degrees of freedom make them look like ther-
mal radiation. (At a technical level, the Hilbert space labeled by the vacuum index
and that by semiclassical excitations do not factor.) In a sense, these degrees of free-
dom are neither spacetime nor matter/radiation, as can be seen from the fact that
their spacetime distribution changes as we change the reference frame, and that their
detailed dynamics cannot be treated in semiclassical theory (as was done in Refs. [10,
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9, 126]). This situation reminds us of wave-particle duality, which played an important
role in early days in the development of quantum mechanics—a quantum object ex-
hibited dual properties of waves and particles, while the “true” (quantum) description
did not fundamentally rely on either of these classical concepts.

These features make the existence of the black hole interior consistent with unitary evolution,
in the sense of complementarity [170] as envisioned in Refs. [133, 140]. In particular, a large
nearly flat spacetime region near the Schwarzschild horizon becomes manifest in a reference
frame whose origin follows a free-fall trajectory starting from rest from a point sufficiently
far from the black hole.

It is often assumed that two systems related by the equivalence principle, e.g. a static
detector held near the Schwarzschild horizon and an accelerating detector in Minkowski
space, must reveal similar physics. This is, however, not true. Since the equivalence principle
can make a statement only about a point at a given moment in a given reference frame,
while a system in quantum mechanics is specified by a state which generally encodes global
information on the equal-time hypersurface, there is no reason that physics of the two systems
must be similar beyond a point in space. In particular, a detector reacts very differently to
blueshifted Hawking radiation and Unruh radiation in Minkowski space at the microscopic
level—it extracts microscopic information about spacetime in the former case, while it does
not in the latter.

While our study has focused on a system with a black hole, we do not see any reason why
the basic picture we arrived at does not apply to more general cases. We find it enlightening
that our results indicate specific properties for the microscopic degrees of freedom that play a
crucial role in the emergence of spacetime at the fundamental level. Unraveling the detailed
dynamics of these degrees of freedom would be a major step toward obtaining a complete
theory of quantum gravity. As a first step, it seems interesting to study implications of
our picture for the case that spacetime approaches anti-de Sitter space in the asymptotic
region, in which we seem to know a little more [122]. It would also be interesting to explore
implications of our picture for cosmology, e.g. along the lines of Refs. [133, 132, 134].
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Chapter 3

The Black Hole Interior in Quantum
Gravity

3.1 Introduction

Despite much effort, the relation between quantum mechanics and the spacetime picture
of general relativity has never been clear. The issue becomes particularly prominent in
black hole physics [154]. Quantum mechanics suggests that the black hole formation and
evaporation processes are unitary—a black hole simply appears as an intermediate resonance
between the initial collapsing matter and final Hawking radiation states [174]. Meanwhile,
general relativity suggests that an observer falling into a large black hole does not feel
anything special at the horizon. These two assertions are surprisingly hard to reconcile.
With naive applications of quantum field theory on curved spacetime, one is led to the
conclusion that unitarity of quantum mechanics is violated [85] or an infalling observer finds
something dramatic (a firewall) at the horizon [10, 9, 126, 38].

In this letter, we argue that the resolution to this puzzle lies in how a semiclassical
description of the system arises from the microscopic theory of quantum gravity. While a
semiclassical description employs an exact spacetime background, the quantum uncertainty
principle implies that there is no such thing—there is an intrinsic uncertainty for background
spacetime for any finite energy and momentum. This implies that at the microscopic level
there are many different ways to arrive at the same background for the semiclassical theory,
within the precision allowed by quantum mechanics. This is the origin of the Bekenstein-
Hawking entropy [22, 86]. The semiclassical picture is obtained after coarse-graining these
degrees of freedom, which we call vacuum degrees of freedom [141].

We argue that much of the puzzle regarding unitary evolution and the interior spacetime
of a black hole arises from peculiar features the vacuum degrees of freedom exhibit when
viewed from the semiclassical standpoint. In particular, they show properties which we
call extreme relativeness and spacetime-matter duality. The first refers to the fact that
the spacetime distribution of these degrees of freedom changes when we adopt a different
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“reference frame.” This change occurs in a way that the answers to any physical question
are consistent with each other when asked in different reference frames. Together with the
reference frame dependence of the semiclassical degrees of freedom discussed earlier [170,
166], this comprises basic features of how general coordinate transformations work in the
full theory of quantum gravity.

The second property is related to the following fact: while the vacuum degrees of freedom
are interpreted as how the semiclassical spacetime is realized at the microscopic level, their
interactions with semiclassical degrees of freedom make them look like thermal radiation.
In fact, these degrees of freedom are neither spacetime nor matter/radiation, as indicated
by the fact that their spacetime distribution is frame dependent, and that their detailed
dynamics cannot be treated in semiclassical theory. This situation reminds us of wave-
particle duality—a quantum object exhibits dual properties of waves and particles while
the “true” (quantum) description does not fundamentally rely on either of these classical
concepts.

The two properties described above allow us to avoid the arguments in Refs. [10, 9,
126] and make the existence of the black hole interior consistent with unitary evolution, in
the sense of complementarity [170] as envisioned in Refs. [132, 140]. A notion of geometry
carrying information has also been considered recently in Ref. [152] in a different model of
black hole evolution; see also Ref. [155] for early discussions. In our picture, we assume that
a black hole evaporates through Hawking radiation [86]; for an alternative view, see Ref. [79].

In the rest of the letter, we present our picture using the example of a Schwarzschild black
hole formed by collapsing matter in 4-dimensional spacetime. More detailed descriptions are
given in the accompanying paper [137].

3.2 Distant Description

Consider a quantum state representing a black hole of mass M located at some place at rest,
as described in a distant reference frame. (We adopt the Schrödinger picture throughout.)
Because of the uncertainty principle, such a state must involve a superposition of energy
and momentum eigenstates. In particular, since a black hole of mass M will evolve after
Schwarzschild time ∆t ≈ O(Ml2P) into a state representing a Hawking quantum and a smaller
mass black hole, the state must involve a superposition with

∆E ≈ 1

∆t
≈ O

(
1

Ml2P

)
, (3.1)

where E is defined in the asymptotic region, and lP the Planck length. Requiring that the
position uncertainty is comparable to the quantum stretching of the horizon ∆r ≈ O(1/M),
where r is the Schwarzschild radial coordinate, the momentum spread is ∆p ≈ O(1/Ml2P).
This gives an uncertainty of the kinetic energy much smaller than ∆E, so the spread of the
energy comes mostly from a superposition of different rest masses: ∆E ≈ ∆M .
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How many different independent ways are there to superpose the energy eigenstates to
arrive at the same black hole geometry within this precision? We assume that the Bekenstein-
Hawking entropy, A/4l2P, gives the logarithm of this number (at the leading order in l2P/A),
where A = 16πM2l4P is the area of the horizon. The nonzero Bekenstein-Hawking entropy
implies that there are exponentially many independent black hole vacuum states in a small
energy interval of Eq. (3.1):

S0 =
A
4l2P

+O

(
Aq

l2qP

; q < 1

)
, (3.2)

i.e. the states that do not have a field/string theoretic excitation on the semiclassical black
hole background and in which the stretched horizon, located at r = 2Ml2P + O(1/M) ≡ rs,
is not excited.

Labeling these exponentially many states by k, which we call the vacuum index, basis
states for the general microstates of a black hole of mass M (within the uncertainty ∆M)
can be given by

|Ψā a afar;k(M)〉 ≈ |ψāa;k(M)〉|φafar
(M)〉. (3.3)

Here, ā, a, and afar label the excitations of the stretched horizon, in the zone (i.e. the region
within the gravitational potential barrier defined, e.g., as r ≤ RZ ≡ 3Ml2P), and outside the
zone (r > RZ), respectively, and |ψāa;k(M)〉 and |φafar

(M)〉 are black hole and exterior states.
(Here, we have used the fact that k can be regarded as being mostly in r ≤ RZ; see later.)
As we have argued, the index k runs over 1, · · · , eS0 for the vacuum states ā = a = afar = 0.
In general, the range for k depends on ā and a, but its dependence is higher order in l2P/A
so we mostly ignore it. This small dependence, however, becomes relevant when we discuss
negative energy excitations associated with Hawking emission.

Excitations here are defined as fluctuations with respect to a fixed background, so their
energies as well as entropies can be either positive or negative, although their signs must be
the same. As discussed in Refs. [173, 142], the contribution of the excitations to the total
entropy is subdominant in l2P/A. The total entropy in the near black hole region, r ≤ RZ, is
thus given by S = A/4l2P at the leading order.

The fact that all the independent microstates with different k lead to the same geometry
suggests that the semiclassical picture is obtained after coarse-graining the degrees of freedom
represented by this index, the vacuum degrees of freedom [141]. According to this picture,
the black hole vacuum state in the semiclassical description is given by the density matrix

ρ0(M) =
1

eS0

eS0∑
k=1

|Ψā=a=afar=0;k(M)〉〈Ψā=a=afar=0;k(M)|. (3.4)

To obtain the response of this state to the operators in the semiclassical theory, we may trace
out the subsystem on which they do not act. Denoting this subsystem by C̄, the relevant
reduced density matrix is

ρ̃0(M) = TrC̄ ρ0(M). (3.5)
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Consistently with our identification of the origin of the Bekenstein-Hawking entropy, we
assume that this represents the thermal density matrix

ρ̃0(M) ≈ e−βHsc(M)

Tr e−βHsc(M)
; β =

{
1
TH

for r ≤ RZ,

+∞ for r > RZ,
(3.6)

where TH = 1/8πMl2P, and Hsc(M) is the Hamiltonian of the semiclassical theory.
In standard semiclassical field theory, the density matrix of Eq. (3.6) is obtained as a

reduced density matrix by tracing out the region within the horizon in the unique global
black hole vacuum state. Our view is that this density matrix is obtained from a mixed
state of exponentially many pure states, arising from the coarse-graining in Eq. (3.4). We
stress that the information in the vacuum index k is invisible in the semiclassical theory as
it is already coarse-grained to obtain the theory; in particular, the dynamics of the vacuum
degrees of freedom cannot be described in terms of Hsc(M).

The expression in Eq. (3.6) suggests that the spatial distribution of the information about
k follows the thermal entropy calculated using the local temperature:

T (r) '


TH√

1−
2Ml2

P
r

for r ≤ RZ,

0 for r > RZ.
(3.7)

In particular, the region around the edge of the zone, r ≤ RZ and r−2Ml2P /�Ml2P, contains
O(1) bits of information about k.

Semiclassical operators in the zone act nontrivially on both a and k indices; otherwise
the maximal mixture in Eq. (3.4) is not compatible with the thermality in Eq. (3.6). Since
the thermal nature is prominent only for modes whose energies measured in the asymptotic
region are

ω . TH, (3.8)

this feature is significant only for such infrared modes. For operators with Eq. (3.8), their
actions on microstates can be complicated, although they act on the coarse-grained vacuum
state of Eq. (3.4) as if it is the thermal state in Eq. (3.6).

There is a simple physical picture behind this phenomenon of “non-decoupling” of the a
and k indices for the infrared modes. As viewed from a distance, these modes are “too soft”
to be resolved clearly above the background. Since the derivation of the semiclassical theory
involves coarse-graining over microstates in which the energy stored in the region r . RZ has
spreads of order ∆E ≈ 1/Ml2P, infrared modes with ω . TH ≈ O(1/Ml2P) are not necessarily
distinguished from “spacetime fluctuations” of order ∆E.

The structure described above leads to the following picture for black hole evaporation.1

Suppose a black hole of mass M is in microstate k:

|Ψk(M)〉 = |ψk(M)〉|φI〉, (3.9)

1We focus on a single Hawking emission and ignore excitations beyond those directly associated with the
emission. For a more complete discussion, see Ref. [137].
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where |ψk(M)〉 is the black hole state, with suppressed excitation indices, and |φI〉 the
exterior state. After a timescale of t ≈ O(Ml2P), this state evolves due to Hawking emission
as

|ψk(M)〉|φI〉 →
∑
i,a,k′

ckiak′|ψa;k′(M)〉|φI+i〉, (3.10)

where |φI+i〉 is the state in which newly emitted Hawking quanta, labeled by i and having
energy Ei, are added to the appropriately time evolved |φI〉. The index a represents the fact
that the black hole state has negative energy excitations of energy −Ea around the edge of
the zone, created in connection with the Hawking emission; the coefficients ckiak′ are nonzero
only if Ei ≈ Ea (within the uncertainty). The negative energy excitations then propagate
inward, and after a time of order Ml2P ln(MlP) collide with the stretched horizon, making
the black hole states relax as

|ψa;k′(M)〉 →
∑
ka

dak
′

ka |ψka(M − Ea)〉. (3.11)

The combination of Eqs. (3.10, 3.11) yields

|ψk(M)〉|φI〉 →
∑
i,ki

αkiki |ψki(M − Ei)〉|φI+i〉, (3.12)

where αkiki =
∑

a,k′ c
k
iak′d

ak′

ki
, and we have used Ei = Ea. This expression shows that informa-

tion in the black hole can be transferred to the radiation state i.
It is important that the negative energy excitations in Eq. (3.10) come with negative

entropies, so that each of the processes in Eqs. (3.10, 3.11) is separately unitary. Specifically,
as k and i run over all the possible values with a being fixed, the index k′ runs only over
1, · · · , eS0(M−Ea), the dimension of the space spanned by ka. This is an example of the non-
factorizable nature of the k and a indices discussed after Eq. (3.3). This structure avoids
the firewall argument in Ref. [9]—unlike what is imagined there, the physical Hilbert space
is smaller than the naive Fock space built on each k.

From the semiclassical standpoint, the emission of Eq. (3.10) is viewed as occurring locally
around the edge of the zone, which is possible because the information about the black hole
microstate extends into the whole zone region. In this region, information stored in the
vacuum state, k, is transferred into that in modes afar 6= 0, which have clear identities over
the background spacetime. Due to energy conservation, this process is accompanied by the
creation of ingoing negative energy excitations, which are not entangled with the emitted
Hawking quanta.

The discussion here indicates that the purifiers of the emitted Hawking quanta are mi-
crostates which semiclassical theory describes as a vacuum. Unlike what was considered in
Ref. [10], Hawking quanta are not modes associated solely with one of the Rindler wedges in
the near horizon approximation (b modes in the notation of Ref. [10]) nor outgoing Minkowski
modes (a modes), which would appear to have high energies for infalling observers. This
allows for avoiding the entropy [10] and typicality [126] arguments for firewalls. Note that
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physics described here need not introduce nonlocality in low energy field theory; it can still
respect causality in r > rs.

We emphasize that the vacuum degrees of freedom play dual roles. While they represent
how the semiclassical spacetime is composed at the microscopic level, they also appear as
thermal radiation when probed in the semiclassical theory. In fact, these degrees of freedom
are neither spacetime nor matter/radiation. In particular, their detailed dynamics cannot
be treated in semiclassical theory.

The above understanding of Hawking emission clarifies why the semiclassical calculation
of Ref. [85] finds an apparent violation of unitarity. At the microscopic level, formation
and evaporation of a black hole involve the vacuum degrees of freedom. Since semiclassical
theory is incapable of describing their microscopic dynamics, the description of black hole
evolution in semiclassical theory is necessarily non-unitary.

A similar analysis can also be performed for black hole mining [180, 39]. See Ref. [137]
for details.

3.3 Infalling Description

Suppose we drop an object into a black hole. In a distant reference frame, the semiclassical
description of the object (in terms of a and afar) is applicable only until it hits the stretched
horizon, after which it is represented as excitations of the stretched horizon (in terms of ā).
The information about the fallen object will then stay there, at least, for the scrambling time
of order Ml2P ln(MlP) [88] before being transferred to k. On the other hand, the equivalence
principle says that the falling object does not feel anything special when it crosses the horizon.
How can these two pictures be consistent?

The idea of complementarity is that the infalling object is still described using low energy
language after it crosses the Schwarzschild horizon by making an appropriate reference frame
change. Here we consider a class of reference frames which reveal the spacetime structure
near the Schwarzschild horizon in the clearest form. We call them infalling reference frames.

Let the spatial origin p0 of a reference frame follow a timelike geodesic released from rest
at r = r0, with r0−2Ml2P &Ml2P. According to complementarity, the system described in this
reference frame does not have a (hot) stretched horizon at the location of the Schwarzschild
horizon when p0 crosses it; the region around p0 appears approximately flat up to small
curvature effects.

In this description, a “horizon” signaling the breakdown of the semiclassical description
is expected to appear in the past-directed and inward directions from p0. In analogy with
the case of a distant frame description, we denote basis states for the general microstates as

|Ψᾱ ααfar;κ(M)〉, (3.13)

where ᾱ labels the excitations of the “horizon,” and α, and αfar the semiclassical excitations
near and far from the black hole, respectively; κ is the vacuum index.
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The complementarity transformation provides a map between the states in Eq. (3.3) and
those in Eq. (3.13). While the general form of this transformation can be complicated, we
may consider, based on the analysis of an infalling object, that a portion of the α index
representing interior excitations is transformed into the ā index (and vice versa). Note that
the amount of information needed to reconstruct the interior (in the semiclassical sense) is
much smaller than the Bekenstein-Hawking entropy—the logarithm of the dimension of the
relevant Hilbert space is of order (A/l2P)q with q < 1.

Where are the κ degrees of freedom located? We expect that most are in the region close
to the “horizon”; in particular, the number of κ degrees of freedom within a distance suffi-
ciently smaller than Ml2P from p0 is of O(1), since the time and length scales characterizing
local deviations from Minkowski space are of order Ml2P there. This invites a question: how
can this picture be consistent with that in the distant reference frame, which has a very
different spacetime distribution of the vacuum degrees of freedom?

To see a nontrivial consistency between the two pictures, consider detectors hovering at
a constant r with r − 2Ml2P � Ml2P. In a distant description, the spatial density of the
microscopic information in k is large there, so that these detectors can be used for black
hole mining. The rate of extracting information, however, is still of order one qubit per
Schwarzschild time t ≈ O(Ml2P) per channel [39]—the acceleration of information extraction
occurs not because of a higher rate in each channel but because of an increased number of
available channels. This implies that each single detector, which we define to act on a single
channel, “clicks” once per t ≈ O(Ml2P).

In an infalling reference frame, the density of the microscopic information in κ is small at
the detector location, at least when p0 passes nearby. The rate of extracting information thus
cannot be much faster than 1/Ml2P around p0, reflecting the fact that the spacetime appears
approximately flat there. This, however, is still consistent with the distant description. By
adopting the near-horizon Rindler approximation, one can show that when viewed from the
infalling reference frame, the detector clicks only once in each time/space interval of

∆T ≈ ∆Z ≈ O(Ml2P), (3.14)

around p0 [137]. This is what we expect from the equivalence principle: the spacetime appears
flat up to curvature effects with lengthscale Ml2P. While the detector clicks of order ln(MlP)
times within the causal patch of the infalling frame, these clicks occur at distances of order
Ml2P away from p0, where we expect a higher density of κ degrees of freedom.

The two descriptions are thus consistent. It is striking that the microscopic information
about a black hole exhibits this level of reference frame dependence, a phenomenon we refer
to as extreme relativeness.

3.4 Other Reference Frames

We now discuss a reference frame whose origin follows a timelike geodesic released from rest
at r = r0, where r0 is close to the Schwarzschild horizon, r0 − 2Ml2P � Ml2P. In the case of
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r0−2Ml2P &Ml2P, we found that the detector-click time/length scales are given by Eq. (3.14),
despite the fact that the detector clicks at a much higher rate in its own frame. Technically,
this was due to a huge relative boost between p0 and the detector when they approach. Here,
however, the relevant boost is not as large, and the detector-click time/length scales appear
as

∆T ≈ ∆Z �Ml2P. (3.15)

Since each detector click extracts an O(1) amount of information from spacetime, which
we expect not to occur in Minkowski space, this implies that the spacetime as viewed from
this reference frame is not approximately Minkowski over the lengthscale Ml2P when p0

crosses the Schwarzschild horizon. We interpret this to mean that in this reference frame,
the “horizon” is at a distance of order ∆Z away from p0, so that detector clicks occur near
or “on” this surface. Since we expect that the microscopic information is located near and
on the “horizon,” there is no inconsistency for the clicks to extract information from the
black hole.

One might worry that in this reference frame, spacetime near the Schwarzschild horizon
does not appear large, ≈ O(Ml2P), nearly flat space. However, the existence of an infalling
reference frame discussed before ensures that an infalling physical observer sees a large black
hole interior. The analysis here simply says that the spacetime around the Schwarzschild
horizon is not always described as a large nearly flat region, even in reference frames falling
freely into the black hole.

We finally discuss (non-)relations of black hole mining and the Unruh effect [179] in
Minkowski space. It is often thought that these two reveal the same physics, which would
mean the existence of a “horizon” in an inertial frame description of Minkowski space. This
is, however, not true. Since the equivalence principle can make a statement only about a
point at a given moment in a given reference frame, while a system in quantum mechanics is
specified by a state which encodes global information on the equal-time hypersurface, there
is no reason that physics of the two systems must be similar beyond a point in space. In
particular, the inertial frame description of Minkowski space does not have a “horizon,” so
a detector reacts very differently to blueshifted Hawking radiation and Unruh radiation in
Minkowski space—it extracts microscopic information about spacetime in the former case,
while it does not in the latter. The relation between quantum mechanics and the equivalence
principle seems subtle, but they are consistent.
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Chapter 4

Axion Isocurvature and Magnetic
Monopoles

4.1 Introduction

Cosmic inflation not only provides a framework to address many puzzles of early universe
cosmology [75, 115, 6] but also incorporates a mechanism that seeds the formation of the
structure in the universe [87, 164, 77]. An exciting aspect of the inflationary mechanism
is that it also sources gravitational waves. If inflation occurs at a sufficiently high scale
(∼ 1015–1016 GeV), the amplitude of these gravitational waves is large enough to leave a
measurable imprint on the polarization of the cosmic microwave background (CMB) [192,
105]. A number of CMB polarization experiments are presently searching for this signal [1,
112]. A positive signal in such an experiment would have interesting implications for particle
physics, especially for ultra-light bosonic fields. Bosonic fields with masses lighter than the
inflationary Hubble scale are efficiently produced by inflation and can cause isocurvature
perturbations in the CMB [118, 119, 160, 178]. High scale inflation thus leads to interesting
constraints on ultra-light bosons, including the QCD axion provided the axion decay constant
fa is greater than the inflationary scale.

It is widely regarded [67, 23, 96, 121] that a discovery of inflationary gravitational waves
would rule out the QCD axion with a decay constant fa & 1016 GeV, a range that is favored
by several theoretical considerations [171, 11]. Experiments have also been proposed recently
to search for the QCD axion in this parameter range [72, 73, 40], and it is of great interest
to delineate the viable parameter space accessible to these efforts. For example, this bound
disappears if the QCD axion acquires a large mass during inflation, damping the production
of isocurvature modes. At the end of inflation, however, this mass has to nearly vanish for the
QCD axion to solve the strong CP problem. While models achieving this do exist (see [54,
175] for example), they face the difficulty that the mechanism responsible for generating a
large axion mass during inflation has to violate the Peccei-Quinn symmetry while ensuring
that this violation remains sufficiently sequestered from the axion after inflation. This task



CHAPTER 4. AXION ISOCURVATURE AND MAGNETIC MONOPOLES 54

is made even more difficult by the fact that these dynamics must couple to the inflaton.
Other proposals to alleviate the tension between high scale inflation and the QCD axion
include a dynamically changing Peccei-Quinn breaking scale [108]. While reasonable, such
models sacrifice some of the theoretical arguments underlying high fa axions. There are also
attempts that involve transfer of the axion isocurvature from one species to another [111],
but these typically deplete the dark matter abundance of the axion, eliminating one of the
promising ways to search for them. It might also be possible to relax these constraints
by dumping entropy into the universe around the QCD phase transition [109], but these
channels are constrained [67, 23, 96, 121].

In this paper, we investigate an alternative possibility: what if the QCD axion acquires a
large mass after inflation, which subsequently disappears before the QCD phase transition?
If this mass is larger than the Hubble scale during a large interval, somewhere between the
reheating and QCD scales, then the axion field oscillates earlier and the fluctuations in the
field will be damped, relaxing into the minimum of the potential generating this large mass.
When this mass (and potential) subsequently disappears, the average axion field takes a value
corresponding to this minimum. Since this minimum is in general displaced from the QCD
minimum, the misalignment between these two points regenerate a cosmic abundance of the
QCD axion when the axion reacquires a mass during the QCD phase transition, enabling
it to be dark matter. The isocurvature perturbations, however, will be small since the
initial evolution of the field causes the perturbations to coalesce around the initial minimum,
while the subsequent dark matter abundance is generated by the homogeneous misalignment
between the QCD minimum and the initial minimum.

How can we give such a large initial mass that then disappears almost completely? We
accomplish this by coupling the QCD axion to a new U(1)′ gauge group. If the reheating of
the universe produces magnetic monopoles under this U(1)′, the monopole density generates
a mass for the axion [66]. This is because topological terms like FF̃ become physical in the
presence of magnetic monopoles due to the Witten effect [190]. Specifically, it gives a free
energy density that depends on a background axion field value, thus creating an effective mass
for the axion. This mass is sufficient to damp isocurvature perturbations in the axion field.
After the perturbations have been damped, the monopole density can be efficiently eliminated
by breaking the U(1)′ symmetry, resulting in confinement and subsequent annihilation of
the monopoles. The monopole density forces the axion field to relax into θ′, a point on the
potential chosen by CP phases in the U(1)′ sector. Since this phase need not be aligned with
the QCD minimum at θQCD, the axion generally acquires a homogeneous cosmic abundance
during the QCD phase transition, with suppressed isocurvature perturbations. For large
fa � 1012 GeV, this misalignment needs to be small, |θ′ − θQCD| � 1, but this can be
environmentally selected [120, 177]. We show that there is sufficient time for the damping
of axion isocurvature fluctuations so that axion dark matter with a unification scale fa
is consistent with high scale inflation giving an observable size of the gravitational wave
polarization signal.

The organization of this paper is as follows. In Section 4.2, we review the required
amount of damping of axion isocurvature fluctuations consistent with current observations.
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In Section 4.3 we introduce our basic mechanism, and in Section 4.4 we present a minimal
model realizing it. We show that the model can consistently accommodate unification scale
axion dark matter with high scale (unification scale) inflation. In Section 4.5, we discuss
monopole annihilations due to U(1)′ breaking in detail, showing that they efficiently eliminate
monopoles. In Section 4.6, we discuss extensions/modifications of the minimal model in
which the issue of radiative stability of the U(1)′ sector existing in the minimal model does
not arise. We conclude in Section 4.7.

4.2 Required Damping of Isocurvature Perturbations

Inflation generally induces quantum fluctuations of order Hinf/2π for any massless field,
where Hinf is the Hubble parameter during inflation. This implies that if U(1)PQ is broken
before or during inflation, then the angle θ = a/fa of the axion field a has fluctuations

δθ(TR) ≈ Hinf

2πfa
, (4.1)

at temperature TR, when the radiation dominated era starts due to reheating.1 Since the ax-
ion potential is flat during inflation, these fluctuations are converted to isocurvature density
perturbations upon the generation of the axion mass.

There is a tight constraint on the amount of allowed isocurvature perturbations from the
Planck data [2, 3], which can be written as (see, e.g., [43])

Ωa

ΩDM

δθ(TQCD)

θmis

. 4.8× 10−6, (4.2)

where θmis is the average axion misalignment angle, while δθ(TQCD) is the angle fluctuation of
the axion field at temperature TQCD ∼ 1 GeV. Here, Ωa and ΩDM ' 0.24 represent the axion
and total dark matter abundances, respectively, and we assume θmis > δθ(T ) throughout.2

Using the expression for the axion relic density

Ωa

ΩDM

≈ 1.0× 105 θ2
mis

(
fa

1016 GeV

)1.19

, (4.3)

(which requires θmis . 0.003 for fa ' 1016 GeV, possibly realized through environmental
selection effects [120, 177]), we may rewrite Eq. (4.2) as

δθ(TQCD) . 1.5× 10−8

√
ΩDM

Ωa

(
1016 GeV

fa

)0.6

. (4.4)

1In this paper we adopt the instant reheating approximation for simplicity, so that the universe is
radiation dominated right after inflation. An extension of our analysis to more general cases (including a
matter dominated era before reheating) is straightforward.

2This condition requires Hinf . 2× 1014 GeV
√

Ωa/ΩDM(fa/1016 GeV)0.4; for comparison, see Eq. (4.5)
and an estimate below it for unification scale inflation.
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Assuming the standard cosmological history after inflation, δθ(TQCD) ≈ δθ(TR), so that we
find

Hinf . 9.4× 108 GeV

√
ΩDM

Ωa

(
fa

1016 GeV

)0.4

. (4.5)

This severely constrains inflationary models in the presence of a unification scale axion [67,
23, 96, 121]. In particular, unification scale axion dark matter—Ωa = ΩDM and fa ∼
1016 GeV—is inconsistent with unification scale inflation—Einf ≡ V

1/4
inf ∼ 1016 GeV, which

leads to Hinf = E2
inf/
√

3M̄Pl ∼ 1013 GeV, where M̄Pl ' 2.4× 1018 GeV is the reduced Planck
scale.

Below, we discuss a scenario in which axion isocurvature fluctuations are damped due to
dynamics after inflation. Defining the (inverse) damping factor ∆ by

∆ =
δθ(TQCD)

δθ(TR)
, (4.6)

Eq. (4.4) yields

∆ . 1× 10−4

√
ΩDM

Ωa

(
fa

1016 GeV

)0.4(
1013 GeV

Hinf

)
. (4.7)

Here, we have normalized fa and Hinf by the values corresponding to unification scale axion
and inflation, respectively. This gives the required amount of damping.

4.3 Basic Mechanism

Our basic idea of suppressing axion isocurvature fluctuations is that the axion mass obtains
extra contributions beyond that from QCD in the early universe so that it is larger than
the Hubble parameter in some period. In this period, axion isocurvature perturbations are
reduced because of the damped oscillations of the axion field, giving ∆ < 1.

We do this by introducing a coupling of the axion to a hidden U(1)′ gauge group

L ∼ 1

fa
aF ′µνF̃ ′µν . (4.8)

We assume that at some temperature TM after inflation (TM . TR ≈ Einf), monopoles of
U(1)′ are created. This can happen, for example, if a hidden sector SU(2)′ gauge group
is broken to U(1)′ at that scale.3 In the presence of magnetic monopoles, the coupling in
Eq. (4.8) induces an effective mass for the axion [66]:

m2
a(T ) = γ

nM(T )

fa
, (4.9)

3If the creation of monopoles is associated with G→ G′×U(1)′ symmetry breaking in the hidden sector,
where G and G′ are non-Abelian gauge groups, then we would need to have two axion fields in the ultraviolet
so that the QCD axion remains after G′ gives a large mass to one linear combination of the two axion fields.
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where γ is determined by the structure of the U(1)′ sector, such as the gauge coupling and
matter content. (γ may in general depend on temperature, although it is not the case in the
explicit model considered below.) nM(T ) is the number density of the monopoles; assuming
the abundance determined by the Kibble-Zurek mechanism [110, 193], we find

nM(T ) ≈ α

(
T

TM

)3

H(TM)3, (4.10)

where H(T ) is the Hubble parameter at temperature T , and α & 1.4 The contribution of
Eq. (4.9) makes the axion mass effect dominates over the Hubble friction

ma(T ) & 3H(T ), (4.11)

below some temperature Ti (≤ TM), so that the axion field is subject to damped oscillations
for T . Ti.

We assume that U(1)′ is spontaneously broken at some temperature Tf (� Ti), so that
monopoles quickly disappear.5 Axion isocurvature fluctuations are then damped efficiently
between temperatures Ti and Tf . Suppose

m2
a(T ) ∝ T n, (4.12)

(n = 3 for a constant γ). Since the axion “number density” ma(T )δθ(T )2 scales as T 3 while
Eq. (4.11) is satisfied, we find

δθ(T ) ∝ T p, p ≈ 6− n
4

, (4.13)

in this period. The final damping factor is thus

∆ ≈
(
Tf

Ti

) 6−n
4

, (4.14)

which can be compared with the required amount of damping from observations, Eq. (4.7).
Note that the average axion field 〈θ〉 = 〈a〉/fa after the operation of this damping mech-

anism is determined by the structure of the hidden sector (the original hidden sector θ̄
parameter), which in general differs from the minimum of the late-time axion potential,
θQCD. A homogeneous displacement of the axion field from θQCD, determining the late-time
axion dark matter abundance, is not controlled by the present mechanism, unless we make
an extra assumption. For fa � 1012 GeV, the value of this displacement must be small, but
it can be environmentally selected to be consistent with Ωa ≤ ΩDM [120, 177].

4Note that α can be much larger than O(1), depending on the dynamics of the phase transition; see
e.g. [129]. In this case, monopole-antimonopole annihilations at T ∼ TM may become important; see
Section 4.6 for such a scenario.

5An alternative possibility will be discussed in Section 4.6.
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4.4 Minimal Model

We now consider the minimal model in which the U(1)′ sector below TM contains only a
charged scalar field ϕ, which breaks U(1)′ at scale Tf (� TM). In this case, the factor γ in
the expression for the induced axion mass, Eq. (4.9), is

γ ≈ γ̃
TM
fa
, (4.15)

where we have used TM . fa, and γ̃ ≈ O(1) assuming that the U(1)′ gauge coupling is of
order unity.6 The axion mass just after the monopole production is then given by

ma(TM)

3H(TM)
' 0.2

√
αγ̃ g

1
4
∗M

√
T 3
M

f 2
aM̄Pl

, (4.16)

where we have used H(TM) = ρ(TM)1/2/
√

3M̄Pl and ρ(TM) = (π2/30)g∗MT
4
M with g∗M being

the effective number of relativistic degrees of freedom at temperature TM . Assuming that
TM is not much smaller than the unification scale, this number is roughly of order unity
(and at least not too much smaller than of order unity). The axion field thus starts having
damped oscillations at T ∼ Ti, within a few orders of magnitude from TM . Specifically

Ti ' 1× 1011 GeVαγ̃

√
g∗M
100

(
1016 GeV

fa

)2(
TM

3× 1015 GeV

)4

. (4.17)

Note that if Ti in this expression exceeds TM , e.g. because of α� 1, then Ti must be set to
TM .

At temperatures below Ti, axion isocurvature fluctuations are damped. Since Eq. (4.15)
implies n = 3, so that p ≈ 3/4 (see Eq. (4.13)),

δθ(T )

δθ(Ti)
≈
(
T

Ti

) 3
4

. (4.18)

Therefore, to avoid the observational constraint of Eq. (4.7), we need

Tf . 2× 105 GeVαγ̃

√
g∗M
100

(
ΩDM

Ωa

) 2
3
(
TM/Einf

0.3

)4(
1016 GeV

fa

)1.5(
Einf

1016 GeV

) 4
3

, (4.19)

where we have used Hinf ≈ E2
inf/
√

3M̄Pl. We here generate the required value of Tf simply
by the Brout-Englert-Higgs mechanism associated with ϕ:

Vhid = λ′
(
|ϕ|2 − v′2

)2
, (4.20)

6It is important here that the U(1)′ sector does not contain a light fermion charged under U(1)′. If it
did, virtual fermions would partially screen the charge surrounding a monopole, allowing it to spread over a
distance or order m−1

f . Here, mf is the fermion mass. This would suppress the induced mass of the axion
so that γ ≈ mf/fa [66]. This will be relevant for models in Section 4.6.
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with v′ ≈ Tf . We find that unification scale axion dark matter with unification scale inflation
can be made consistent by our mechanism.

Incidentally, ignoring U(1)′ breaking, we find that monopoles dominate the energy density
of the universe at temperature

T∗ ' 6× 106 GeVα

√
g∗M
100

(
TM

3× 1015 GeV

)3(
mM

3× 1015 GeV

)
, (4.21)

which is slightly below the upper bound in Eq. (4.19) in the relevant parameter region. Here,
mM is the monopole mass. This implies that the universe may be monopole dominated
toward the end of the damped oscillation period, Tf . T . Ti.

4.5 Monopole Annihilations

Here we discuss annihilations of monopoles after U(1)′ is spontaneously broken at some
temperature TS (∼ Tf). After U(1)′ is spontaneously broken, monopoles and antimonopoles
become connected by strings. For monopole-antimonopole annihilations to occur, the string-
monopole system must lose their energies, and there are several processes that can contribute
to the energy loss.

We assume the existence of a renormalizable coupling between the U(1)′ and standard
model sectors, e.g. a quartic coupling between the U(1)′ breaking and standard model Higgs
fields or a kinetic mixing between U(1)′ and U(1) hypercharge:

L ∼ ε ϕ†ϕh†h, εF ′µνF
µν
Y . (4.22)

We will find that monopoles quickly disappear, well within a Hubble time, unless the coupling
ε is significantly suppressed. Note that cosmic strings formed by U(1)′ breaking are harmless
for TS . 1015 GeV [162].

Monopole friction

Suppose the correlation length of the U(1)′ breaking field, ϕ, is of order or larger than the
average distance between monopoles at T ∼ TS:

d(TS) ∼ nM(TS)−
1
3 ∼ M̄Pl

α1/3TSTM
. (4.23)

In this case, strings will connect monopoles through the shortest possible path, and the
energy of a monopole-antimonopole pair to be dissipated is

E0 ∼ η d(TS) ∼ M̄PlTS
α1/3TM

, (4.24)

where we have estimated the string tension η to be of order T 2
S .



CHAPTER 4. AXION ISOCURVATURE AND MAGNETIC MONOPOLES 60

If the monopoles scatter with a thermal bath of temperature TS through a coupling of
strength ε, as in Eq. (4.22), then the energy loss rate due to friction is [184]:

Ė ∼ −ε2T 2
Sv

2, (4.25)

where v is the velocity of the monopoles, which is given by

v ∼


(
T 2
Sd(TS)

mM

) 1
2 ∼

(
TSM̄Pl

α1/3T 2
M

) 1
2

for TS �
α1/3T 2

M

M̄Pl
,

1 for TS & α1/3T 2
M

M̄Pl
,

(4.26)

where the former and latter cases correspond to nonrelativistic and relativistic monopoles,
respectively. In each case, the annihilation timescale τann ∼ |E0/Ė| is given by

τann ∼

 TM
ε2T 2

S
for TS �

α1/3T 2
M

M̄Pl
,

M̄Pl

ε2α1/3TSTM
for TS & α1/3T 2

M

M̄Pl
.

(4.27)

In both cases, this timescale is of order or shorter than the Hubble timescale, tS ∼ M̄Pl/T
2
S ,

unless ε is much smaller than of order unity.

Particle production from strings

If the correlation length of ϕ is much smaller than the average monopole distance at TS,
then we expect that a string connecting a monopole-antimonopole pair to have a significant
number of kinks (from a Brownian formation), and particle production from the string
contributes significantly to the dissipation.

Based on the analysis in Ref. [184], we estimate that the power for a string of thickness
δ and length L to radiate standard model particles is

P ∼ ε2

δ ξ(TS)
, (4.28)

per a portion of a string of length ξ(TS), where ξ(TS) (� d(TS)) is the correlation length of
ϕ.7 In the case of Brownian strings, the average string length is given by

L ∼ d(TS)2

ξ(TS)
, (4.29)

so that the total energy of the string-monopole system to be dissipated and the emission
power from it are

E0 ∼ ηL ∼ T 2
S d(TS)2

ξ(TS)
, (4.30)

Ė ∼ P
L

ξ(TS)
∼ ε2TS d(TS)2

ξ(TS)3
, (4.31)

7The process of energy dissipation may be much faster, P ∼ ε2η(δ/ξ(TS))1/3, if cusps form efficiently [37].
Here we adopt a conservative estimate of Eq. (4.28), which is sufficient to eliminate the monopoles quickly.
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where we have used η ∼ T 2
S and δ ∼ 1/TS. The monopole-antimonopole annihilation

timescale is thus

τann =
E0

Ė
∼ 1

ε2
TS ξ(TS)2 � 1

ε2
TS d(TS)2 ∼ M̄2

Pl

ε2α2/3TST 2
M

. (4.32)

Again, this is of order or shorter than the Hubble timescale, tS ∼ M̄Pl/T
2
S , unless ε is much

smaller than order unity.8

4.6 Technical Naturalness of U(1)′

In Section 4.4, we have presented the minimal model in which U(1)′ breaking is achieved
by a scalar field ϕ with the potential Eq. (4.20). As it stands, the scale appearing in this
potential, v′, is not radiatively stable. The radiative stability of this scale is qualitatively
and quantitatively different from the problem of protecting the QCD axion from quantum
corrections. The U(1)′-breaking field ϕ is a scalar much like the standard model Higgs field
whose mass needs to be protected at scales above TS, unlike the QCD axion whose mass needs
to be protected to the level of ∼ 10−5ma. Existing ideas to address the hierarchy problem
may thus be leveraged to solve this issue. In this section, we discuss extensions/modifications
of the minimal model in which the issue of radiative stability does not arise.

Supersymmetric U(1)′ sector

One way to construct a technically natural model is to make the U(1)′ sector supersymmetric.
This requires promoting the U(1)′-breaking field ϕ to chiral superfields Φ(+1) and Φ̄(−1).
The complication arises because the induced axion mass is suppressed in the presence of
light fermions charged under U(1)′, as mentioned in footnote 6. To obtain a significant
contribution to the axion mass, we need to have a supersymmetric mass for Φ and Φ̄:

W = MΦΦΦ̄. (4.33)

The breaking of U(1)′ is then caused by supersymmetry-breaking squared masses for Φ and
Φ̄ of order m̃2 ∼ T 2

S . To maximize the axion mass, we also take MΦ ∼ TS.9 The coupling
between the U(1)′ and the standard model sectors needed for monopole annihilations can
be taken as a kinetic mixing between U(1)′ and U(1) hypercharge: L ∼ ε [W ′αWY α]θ2 (see
Section 4.5). This implies that the standard model is also supersymmetric above the scale
∼ (4π/ε)m̃.

8In the analysis in this subsection, we have ignored the effect of the increase of the relevant corre-
lation length due to interactions of the strings with the thermal bath, which may become important for
TS . T 2

M/M̄Pl. In this case, however, the analysis in the previous subsection applies, which also says that
monopoles quickly disappear after U(1)′ symmetry breaking.

9The coincidence of the scales m̃ and MΦ is analogous to the µ problem in the minimal supersymmetric
standard model, which can be addressed, e.g., as in Ref. [71, 42].
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With this setup, the induced axion mass is given by Eq. (4.9) with

γ ≈ MΦ

fa
∼ TS
fa
. (4.34)

Plugging this into Eq. (4.19) with TS ∼ Tf , we find that α must be much larger than 1 for
the model to work. We thus suppose that the dynamics of the phase transition producing
monopoles is such that α � 1. The largest possible abundance of monopoles obtained in
this case is determined by the freezeout abundance (instead of Eq. (4.10)), which is given
by [153]

nM(T ) ≈
(
T

TM

)3 √g∗MT 4
M

M̄Pl

, (4.35)

where we have assumed an O(1) U(1)′ gauge coupling. The axion mass at T ∼ TM is then

ma(TM)

3H(TM)
∼
√
TSM̄Pl

g
1/4
∗Mfa

, (4.36)

so that the axion field starts damped oscillations at

Ti ∼
TSTMM̄Pl√
g∗Mf 2

a

. (4.37)

This gives the damping factor of

∆ ≈
(
Tf

Ti

) 3
4

∼
(

f 2
a

TMM̄Pl

) 3
4

. (4.38)

We find that the mechanism is not as strong as in the minimal model, but it can still save
the scenario with fa, TM , Einf as large as ∼ 1015 GeV.

Possibility of unbroken U(1)′

We finally mention an alternative (and very different) possibility that U(1)′ monopoles may
be efficiently eliminated without breaking U(1)′. This may happen if the monopole under
consideration is in fact a dyon that also carries a charge under a hidden non-Abelian gauge
group G′ (to which the axion field does not couple). In this case, if G′ confines at a scale Λ′,
then dyons can be subjected to extra strong annihilation processes.

Suppose the G′ sector contains light particles that are electrically charged under G′.
When G′ confines at T ∼ Λ′, dyons pick up these light particles, becoming G′ hadrons. At
this point, the dyon-antidyon annihilation cross section is expected to become large ∼ 1/Λ′2,
as in the analogous situation for a heavy stable colored particle [107]. This will efficiently
eliminate dyons if the confinement scale is sufficiently low Λ′ . 100 TeV, giving Tf ∼ Λ′.
Since this scenario does not require breaking of the U(1)′ symmetry, the U(1)′ sector need
not have a light charged scalar or fermion, which would, respectively, lead to the issue of
radiative stability and axion mass suppression. Further studies of this possibility, including
a detailed analysis of whether dyon annihilation is indeed strong enough, are warranted.
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4.7 Conclusions

In this paper we have presented a mechanism that suppresses axion isocurvature fluctuations
due to the dynamics of a hidden U(1)′ sector coupled to the axion field. In particular, this
sector produces U(1)′ monopoles at T ∼ TM , which disappear at T ∼ Tf (� TM). For
temperatures between Ti (� Tf) and Tf , the effective axion mass induced by the monopoles
makes the axion heavier than the Hubble parameter, so that the isocurvature fluctuations
are damped. Since the average value of the axion field after the damping is not necessarily at
the minimum of the zero-temperature potential determined by QCD, homogeneous coherent
oscillations after the QCD phase transition may still produce axion dark matter [120, 177].

We have presented a minimal model in which this mechanism successfully operates. This
model accommodates a large enough time interval in which the axion isocurvature fluctua-
tions are damped, so that axion dark matter with a unification scale decay constant can be
consistent with unification scale inflation. We have also discussed extensions/modifications
of the minimal model in which the issue of radiative stability does not arise.

Since the axion provides a leading solution to the strong CP problem, it is important
to fully study its consistency. If a future CMB experiment discovers inflationary gravita-
tional wave signals, it would exclude naive axion models with the Peccei-Quinn symmetry
broken before the end of inflation. Our mechanism makes the QCD axion alive even in
such a case, without requiring the Peccei-Quinn symmetry breaking scale to be below the
inflationary scale. This is particularly important for a string axion, which has a virtue that
explicit breaking of the Peccei-Quinn symmetry (which needs to be extremely small to solve
the strong CP problem [106]) is generated only at a nonperturbative level [171, 11]. Our
mechanism allows for a string axion to be a consistent solution to the strong CP problem
even if inflationary gravitational wave signals are discovered, and it would also keep open
the possibility that axion dark matter may be discovered by high precision experiments such
as those proposed in Ref. [72, 73, 40].
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Chapter 5

A Holographic Entanglement Entropy
Conjecture for General Spacetimes

5.1 Introduction

A theory of quantum gravity should not apply only to asymptotically locally anti-de Sitter
(AlAdS) spacetimes. For this reason, the AdS/CFT correspondence [122, 189], although im-
mensely successful, has fallen short of a description of the quantum mechanics of spacetime.
The AdS restriction is severe: Maldacena’s conjecture does not apply in an obvious way to
even the cosmological spacetime we find ourselves in.

If a quantum theory applies to general spacetimes, it is desirable that it reduces to
AdS/CFT in the appropriate cases. This suggests a strategy for guessing properties of a
complete theory: consider specific aspects of AdS/CFT and devise generalizations that are
applicable to other spacetimes. If one knew only of Special Relativity, she could guess
aspects of General Relativity by thinking to “promote” the flat metric to a dynamical one.
Similar statements can be made about the relation between many other pairs of theories.
But retrospective examples obscure the challenge: one cannot confidently know what to
promote (and how to promote it) to enlarge the regime of validity of a given theory.

Holographic entanglement entropy, proposed by Ryu and Takayanagi (RT) [157], proved
by Lewkowycz and Maldacena [113], and made covariant by Hubeny, Rangamani, and
Takayanagi (HRT) [99], is a beautiful property (or, in the covariant case, conjecture) of
AdS/CFT. Below we describe a promotion of holographic entanglement entropy beyond
the scope of AdS/CFT that applies just as well to cosmological spacetimes as it does to
asymptotically AdS spacetimes. In the case of the latter, it reduces to the HRT proposal.
Moreover, the promoted holographic entanglement entropy satisfies, for nontrivial reasons,
expected properties of entanglement entropy like strong subadditivity.

The HRT prescription provides a way to compute entanglement entropy of a spatial
region A in a quantum state dual to an AlAdS spacetime. The procedure is to consider ∂A,
the boundary of the spatial region, and to find the area of a codimension 2 extremal surface
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that is anchored to ∂A. A näıve extension of this idea to general spacetimes would be to
take A to be a region in the conformal boundary of an arbitrary spacetime. This approach
fails: what is the boundary of a closed FRW universe with past and future singularities?

In our proposal, we anchor extremal surfaces to a holographic screen. Holographic screens
are codimension 1 surfaces that appear to be the most natural place for quantum states dual
to arbitrary geometries to live on. In fact, they were proposed by Bousso [28] in an attempt
to find the analogue of the AdS boundary when extending holography to general spacetimes.
If one believes the covariant entropy bound [27], then there is essentially no other reasonable
class of surfaces for this purpose.

Outline. In section 5.2 we first review the concept of holographic screens [28] with an
emphasis on the recent developments of Bousso and Engelhardt [31, 32] which identified a
class of screens that satisfy an area monotonicity law. We then give the definition of holo-
graphic screen entanglement entropy and list a number of its key properties. We conclude the
section by stating our screen entanglement conjecture—a proposal that holographic screen
entanglement entropy actually measures von Neumann entropy in a putative holographic
description of general spacetimes. Section 5.3 contains technical developments including
proofs of the properties of screen entanglement entropy that are advertised in section 5.2.
Section 5.4 gives cosmological examples of holographic screens and their extremal surfaces.
We focus particularly on FRW universes that approach de Sitter space at late times. Section
5.5 concludes by reviewing the procedure for computing screen entanglement entropy and
by suggesting extensions to our proposal such as possible methods for computing subleading
contributions to holographic screen entanglement entropy.

5.2 Holographic Screen Entanglement Entropy

We open this section with a brief review of holographic screens, especially past and future
holographic screens. Readers that are already familiar with the content [27, 28, 31, 32] may
still find it useful to read through these paragraphs to become familiar with our conventions
and notation. Throughout this paper we will work in a globally hyperbolic spacetime M of
dimension d that satisfies the null energy condition. We assume that the spacetime satisfies
the genericity conditions laid out in [28, 32].

Suppose that B is an orientable spacelike codimension 2 submanifold of M . It is possible
to find an independent pair of future directed null vector fields on B that are everywhere
orthogonal to B. If one of these vector fields has vanishing null expansion on B, we will say
that B is marginal. If one vector field has zero expansion on B while the other has negative
(positive) expansion on B, we say that B is marginally trapped (marginally anti-trapped).

A past holographic screen is a codimension-1 submanifold H of the spacetime that is foli-
ated by marginally anti-trapped compact spacelike surfaces called leaves. The foliation into
leaves is unique: other splittings of H cannot satisfy the marginally anti-trapped condition.
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σDσ

k l

H

Figure 5.1: An example of a past holographic screen H. One particular leaf σ is highlighted
here along with its null orthogonal vector fields k and l satisfying θk = 0 and θl > 0.
The causal region Dσ plays a critical role in our generalization of holographic entanglement
entropy.

A future holographic screen is instead foliated by marginally trapped surfaces. In this paper,
we will always assume that leaves have the topology of Sd−2.

Holographic screens are generated by null foliations: if {Nr} is a null foliation of a
spacetime, it is possible to identify a family of leaves {σ(r)} with σ(r) ⊂ Nr by finding the
codimension 2 surface of maximal area on each null surface. In general, this will break the
values of the parameter r into open intervals, some of which correspond to past holographic
screens and others corresponding to future screens.1 Isolated values of r that lie between
past and future screens correspond to the case where σ(r) is an isolated extremal sphere
which can join a past and future screen. Such a sphere will not be considered to lie on a
past or future holographic screen by convention. This occurs in the case of a closed universe
with a big crunch: see figure 5.9.

Some of the simplest examples of holographic screens arise in the “observer-centered”
case where we take {Nr} to be the set of past light-cones of an observer’s worldline in
some spacetime. In the case of FRW cosmology with the observer taken to be comoving,
such holographic screens are just apparent horizons. Figure 5.1 shows an example of such
a holographic screen. See also figures 5.6 (top) and 5.9. Because past holographic screens
are often generated in this way, we will mostly focus on the case of past screens throughout

1It is also possible that for some values of r, σ(r) does not have a definite sign for θl. We leave the
investigation of this scenario to future work.
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this paper. However, all results below apply equally well to future screens with appropriate
modifications.

Because null foliations are highly non-unique, holographic screens are also non-unique.
For example, in the observer-centered case, a past holographic screen can be obtained ob-
tained by considering the surfaces of maximal area on the past light-cones of an observer’s
worldline if the maximal area surfaces are anti-trapped and compact which we assume. In
this case, performing a modification to the worldline will modify the holographic screen.2

From this point of view, holographic screens appear to be “pro-complementarity” objects.
The potential importance of this aspect of screens is further discussed below.

Suppose that H is a past holographic screen. Let σ be a leaf of H and let k and l denote,
respectively, the ingoing and outgoing future-directed null surface-orthogonal vector fields
on σ. (It may be useful to refer to figure 5.1.) Then, the condition that σ is marginally
anti-trapped means that

θk = 0

θl > 0
(5.1)

where θk and θl denote the expansion of congruences in the k and l directions at σ.
Every holographic screen comes with a fibration. A fibration is a family of curves gen-

erated by a nonvanishing vector field h on and tangent to H with the property that h is
orthogonal to every leaf. If we extend the vector fields k and l to all of H (so that they are
surface orthogonal to every leaf), then h = αl+βk where α and β are scalar functions on H.
h is not required to be timelike, spacelike or null and, in fact, can switch between these three
cases on one screen. Thus, holographic screens need not have definite signature.3 Lacking a
definite signature, normalization of h is arbitrary. Nonetheless, it is convenient to write the
leaves of H as σ(r) where r is some (non-unique) parameter and to then normalize h by the
condition dr(h) = 1.

Bousso and Engelhardt proved that α > 0 at every point in H and concluded that leaves
have strictly increasing area [31, 32]. More precisely, the area of σ(r2) is greater than the
area of σ(r1) if r2 > r1. In fact, if ‖·‖ denotes the area functional, then

d

dr
‖σ(r)‖ =

∫
σ(r)

dd−2y
√
g(σ(r)) α θl

2Note that the non-uniqueness of holographic screens for a given spacetime fits well with the ideas of
[140, 137, 136] where a strong emphasis is placed on the importance of “fixing the gauge” in quantum
gravity. This was clearly discussed in [140] in which the role of a gauge-fixed apparent horizon (essentially
a holographic screen though not a past or future screen) was discussed. We do not commit to the pictures
described in these papers.

3This is the key distinguishing feature between past (and future) holographic screens and related objects
including future outer trapping horizons and dynamical horizons [89, 90, 13, 12] that were introduced in
an attempt to find a “quasi-local” definition of a black hole. Past and future holographic screens can be
regarded as a synthesis such ideas with those of [27].
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which is positive by equation 5.1 and the fact that α > 0. Here, g(σ(r)) denotes the induced
metric on σ(r). Note, in particular, that the area is strictly increasing for all intervals of r.
The inequality would not be strict if it were not for the genericity conditions of [32].

Definition and Properties of Holographic Screen Entanglement
Entropy

As before, let H denote a past holographic screen. Everything below can be modified to the
case of a future holographic screen without difficulty.

It is helpful to emphasize the following result which follows from the genericity conditions
of [32]:

• Strict Focusing. If B is a codimension 2 spacelike surface, the four surface-orthogonal
null congruences have strictly decreasing expansion as they move away from B.

This means that there is always enough matter content everywhere in the spacetime to focus
neighboring null geodesics. If M fails to satisfy this condition, it can be made to do so by
sprinkling a very small amount of classical matter everywhere.

As discussed above, there is a unique foliation of H into anti-trapped leaves. Let σ be
a particular leaf in this foliation and let k and l denote the vector fields on σ that satisfy
equation 5.1. Because M is globally hyperbolic, there exists a Cauchy surface S0 containing
σ such that S0\σ consists of a disconnected interior and exterior. The interior of S0 is defined
so that a vector on σ pointing toward the interior takes the form c1k − c2l with c1, c2 > 0.
Let S denote the union of the interior of S0 with σ. We will assume that S is compact and
that it has the topology of a solid ball. Now let Dσ be the domain of dependence of S,
Dσ = D(S), with the convention that Dσ includes orthogonal null surfaces generated by k
and −l.

Suppose that A is a d− 2 dimensional submanifold of σ with a boundary. Consider the
set of extremal codimension 2 surfaces that are anchored to and terminating at ∂A, and
contained entirely in Dσ (see figure 5.2). In section 5.3 we will give conditions on Dσ that
ensure that this set is not empty. Taking the existence of such a surface for granted, let the
one of minimal area be denoted by ext (A) and define the holographic screen entanglement
entropy (or screen entanglement entropy for brevity) of A as

S(A) =
‖ext (A)‖

4
. (5.2)

The quantity S(A) is the most natural generalization of the HRT proposal to general
spacetimes. We emphasize that we have defined screen entanglement entropy geometrically
without reference to a quantum theory. The term “entanglement entropy” is only meant
suggestively. Nonetheless, below we state a screen entanglement conjecture: that S(A) is in
fact the von Neumann entropy of a subsystem of a holographic quantum state for general
spacetimes. Regardless of the validity of this conjecture, we are free to study S(A) as we
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Figure 5.2: This figure depicts our construction of holographic entanglement entropy in
general spacetimes. The horn-shaped surface is a past holographic screen H. The black and
red codimension 2 regions together form a single leaf σ. The black segment represents a
region A and the extremal surface ext (A) (orange) is anchored to its boundary. The causal
region Dσ is the green diamond (both interior and boundary). Note that ext A ⊂ Dσ.

have defined it. As we will see, the properties of holographic screens ensure that screen
entanglement entropy possesses numerous properties reminiscent of von Neumann entropy
which we now discuss.

Properties of Holographic Screen
Entanglement Entropy and Extremal Surfaces

• Existence and Containment. In section 5.3 we provide conditions for ext (A) to exist.
This is a nontrivial issue because of the “containment condition” that ext A ⊂ Dσ.
Arguments that Dσ contains an extremal surface rely critically on the assumption that
A is in a leaf of a holographic screen. Moreover, the condition that ext (A) ⊂ Dσ gives
rise to properties of holographic screen entanglement entropy like strong subadditivity
(see below) and will allow us to reasonably define an entanglement wedge for A. For
an example of the importance of the containment condition, see equation 5.4 below
and the paragraphs around it.
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• (Strong) Subadditivity. Suppose that A and B are regions in σ. Then,

S(A) + S(B) ≥ S(A ∪B) + S(A ∩B)

where S is the function defined in 5.2. This result holds regardless of whether or not
A and B intersect as long as we take the convention that S(∅) = 0. As we will see
in section 5.3, the proof of this is a modified version of Wall’s [187] “maximim” proof
for the HRT case. This does not mean that strong subadditivity is an obvious result:
most of the work in section 5.3 is to show that the properties of leaves of holographic
screens are sufficient to generalize Wall’s arguments to our context.

• Page Bounded. Define the extensive entropy of A as Sextensive(A) = ‖A‖/4. Then, the
holographic screen entanglement entropy satisfies the following Page bound :4

S(A) ≤ min{Sextensive(A), Sextensive(σ \ A)}. (5.3)

This is a simple consequence of the maximin construction we give in section 5.3. Note
that the area law for holographic screens implies that this inequality becomes a weaker
constraint if we transport A along the fibration vector field defined above. In certain
cases, the inequality saturates and S(A) approaches a “random entanglement limit.”
(See section 5.4 for examples of this in cosmology.)

• Reduction to the HRT Proposal. As explained in detail in [28], the AdS boundary can
be regarded as a holographic screen. In this case, surfaces of constant time in the dual
field theory correspond to leaves, and our proposal becomes identical to the covariant
holographic entanglement entropy conjecture of [99].

The Screen Entanglement Conjecture

We are now in a position to state our conjecture about the role of S(A) in quantum gravity.
This conjecture is the primary concern of this paper. Nonetheless, we emphasize that the
mathematical developments below (e.g. the proof that S(A) satisfies standard properties of
von Neumann entropy) do not rely on any conjectural statements.

Our proposal can be regarded as an extension of a covariant holographic principle due to
Bousso which we now review very briefly. In [28], Bousso integrated the ideas of [173, 169]
with his covariant entropy conjecture [27] and proposed that each marginal surfaceB foliating
a holographic screen is associated with a Hilbert space HB of dimension exp(area(B)/4) and
that states in HB holographically define the state on a null surface N passing through B in
the marginal direction. For our purposes, this holographic principle takes the following form.
To each leaf σ of a past or future holographic screen we assign a density matrix ρσ. The
density matrix acts on a Hilbert space of dimension exp(area(σ)/4) which may be a subspace

4The term “Page bound” is motivated by Page’s considerations of the entanglement entropies of subsys-
tems [144].
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of a “complete” Hilbert space.5 The covariant entropy bound suggests that ρσ encodes the
quantum information on the null slice generated by k and −k where k is the null vector field
with θk = 0 on σ.

We now assume Bousso’s holographic principle and state our new conjecture. We pro-
pose that every region A of σ (up to string scale resolution) corresponds to a subsystem of
the Hilbert space that ρσ acts on. We conjecture that the von Neumann entropy of that
subsystem in the density matrix ρσ is given, at leading order, by S(A) as we have defined it
in equation 5.2.

We refer to this statement as the screen entanglement conjecture. Because a holographic
quantum theory dual to arbitrary spacetimes is not known, the screen entanglement conjec-
ture is not a mathematical statement about the relation between two known theories (as in
the case of HRT). Instead, our conjecture suggests a way to compute properties of quantum
states in an unknown theory. It is our hope that this will, in fact, be a step toward developing
a quantum theory for arbitrary spacetimes.

Nonuniqueness of Holographic Screens and Frame-Dependence in Quantum
Gravity

It was emphasized above that in a given spacetime, there is no unique preferred holographic
screen. As a consequence, screen entanglement entropy cannot even be defined before first
deciding on a particular choice of a screen. This might seem to put the screen entanglement
conjecture on haphazard footing, but we explain here why this arbitrariness is, in fact,
a necessary feature of any generalization of holographic entanglement entropy to general
spacetimes.

Conventional holographic entanglement entropy in AdS/CFT is reference frame depen-
dent in the following sense. Consider an observer in an asymptotically AdS spacetime M
with conformal boundary ∂M following a worldline p(τ). Here, τ is the proper time param-
eter of the observer. At a given value of τ , we can consider a spacelike cut of the boundary
[130, 61]:

C(τ) = ∂J−
(
p(τ)

)
∩ ∂M.

Here, J−(q) denotes the causal past of a point q. A region AΩ on C(τ) can be specified by
considering a portion Ω of a small sphere on the tip of the past light cone of the point p(τ)
and following points in Ω down null geodesics until ∂M is reached. Thus, once the trajectory
p(τ) is decided upon, we can use the HRT formula to compute S(AΩ, τ), the holographic
entanglement entropy of the region AΩ on the cut C(τ). If the trajectory is changed, S(AΩ, τ)
correspondingly transforms. At the level of the dual CFT, this discussion corresponds to the

5The concept that the states corresponding to any particular approximately fixed geometry form a
subspace of a complete Hilbert space is due to Nomura [132, 133]. In his formulation, a larger Hilbert
space for arbitrary geometries is a direct sum over subspaces for each geometry. This direct sum itself is
only a subspace of the complete Hilbert space which may include an “intrinsically stringy” subspace with
no geometrical interpretation. This construction may provide insight into how quantum mechanics can be
unitary despite the fact that screens have non-constant area.
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fact that quantum states and their time-dependence have a gauge-redundancy that is fixed
by making a choice of time-slicing on the boundary ∂M .

In the case of the screen entanglement conjecture and a spacetime that is not asymptot-
ically AdS, a null foliation must be selected to fix a holographic screen. As discussed above,
a simple way to do this is to choose a curve p(τ), and, at any given τ , follow along the past
light-cone of p(τ) until a marginal surface σ(τ) is obtained. The role of σ(τ) is analogous to
that of the cut C(τ) in asymptotically AdS spacetimes. The foliation dependence of screen
entanglement entropy is closely tied to the frame-dependence of the HRT formula. This is
an example of “fixing the gauge” in quantum gravity, a concept developed in [133].

In the case of asymptotically AdS spacetimes, no matter what worldline p(τ) is chosen,
the union of all of its cuts will always be a subset of the boundary.6 In general spacetimes
however, the particular holographic screen obtained by taking the union over all τ of σ(τ)
will depend on the choice of the worldline. Thus, the surface on which holographic quantum
states are defined is no longer tethered to the spacetime. This is a basic property of Bousso’s
holographic principle, not one that arises only in the more extended framework of this
paper. We regard this aspect of holographic screens as being in the spirit of black hole
complementarity, where quantum information is not attached to a fixed spacetime position
(e.g. a qubit is not inside or outside a black hole) until an observer is selected to describe
the system.

5.3 Proofs of Strong Subadditivity and Other

Relations

In this section we prove key technical results about holographic screen entanglement entropy
including many of the properties advertised above. The notation and conventions we will
use are the same as those given in section 5.2. In particular, H is a past holographic screen
in a globally hyperbolic spacetime of dimension d that satisfies the genericity conditions of
[32]. σ is a compact leaf of H which we assume to have the topology of Sd−2. k and l are null
orthogonal vector fields on σ satisfying equation 5.1. S0 is a Cauchy slice containing σ and
S is the portion of S0 that is enclosed by σ including σ itself (the enclosed side is defined in
section 5.2). S is assumed to have the topology of a compact d− 1 ball. Dσ is the domain
of dependence of S.

As always, the case of a future holographic screen is omitted because it presents no
additional subtlety.

6This follows trivially from the definition of C(τ). However, in some cases past directed null geodesics
of p(τ) may fail to reach ∂M .
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Figure 5.3: The proof of lemma 1 involves a continuous family of surfaces As along with
their extremal surfaces (dotted curves).

Existence and Containment of Extremal Surfaces

As discussed in section 5.2, it is nontrivial and critical to show the existence of an extremal
surface anchored to ∂A that lies entirely in Dσ. We now prove that such a surface exists
under very generic conditions. Our first step is to show that ext (A) exists in the case that
Dσ is compact. This is a common situation7 although it is not the case if the ingoing light
sheets of σ encounter a singularity.

Lemma 1. If Dσ is compact, then there exists a codimenson 2 extremal surface anchored
and terminating at ∂A that lies entirely in Dσ and that intersects ∂Dσ only at ∂A.

Proof. Let Σ+ and Σ− denote the future and past ingoing light-sheets of σ. We now extend
Σ− to a slightly larger light-sheet, Σ̃−, by following the future directed null congruence of l.
Because θl > 0 on σ, we can make this extension so that Σ̃− has θl > 0 everywhere and so
that there exists an open set in Σ̃− containing σ.

In the language of [62], both Σ+\σ and Σ̃− are extremal surface barriers because they have
negative expansion in the k and −l directions respectively. Moreover, ∂Dσ ⊂ (Σ+ \ σ)∪ Σ̃−.

7Suppose that the future and past ingoing light-sheets of σ terminate at caustics rather than singularities.
Let C+ and C− denote the set of the first caustics encountered (local or nonlocal) by null geodesics in the
future and past light sheets respectively. Then, if Dσ = J−(C+) ∩ J+(C−), we can conclude that Dσ is
compact. This follows from the fact that C± inherits the compactness of σ and from the fact that global
hyperbolicity implies that J−(K1) ∩ J+(K2) is compact if K1 and K2 are compact.
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It follows that ∂Dσ is itself an extremal surface barrier for extremal surfaces in the interior8

of Dσ.
Now consider the region A. The spherical topology9 of σ ensures that it is possible to

introduce a continuous one-parameter family of submanifolds of Dσ, As, such that

• A0 consists of a single point in the interior of Dσ

• A1 = A

• for 0 < s < 1, As is a codimension 2 submanifold of the interior of Dσ that is diffeo-
morphic to A.

This is shown in figure 5.3. Note, in particular, that if s < 1, As ∩ ∂Dσ = ∅.
If ε > 0 is sufficiently small, then the extremal surface of minimal area that is anchored

to ∂Aε lies entirely in the interior of Dσ. Denote this extremal surface by Γ(ε). Consider
increasing the value of the parameter s from ε to 1. For each value of s, construct an extremal
surface Γ(s) (not necessarily the one of minimal area) anchored to ∂As. The compactness of
Dσ (which ensures that it is bounded and has no singularities) together with the fact that,
as discussed above, ∂Dσ is an extremal surface barrier, allows us to take Γ(s) to not jump
discontinuously and to be contained in the interior of Dσ for all s < 1. When we take the
limit sending s to 1, the extremal surface anchored to ∂A must intersect ∂Dσ at ∂A and
nowhere else: if it did intersect ∂Dσ outside of ∂A, the extremal surface would be locally
tangent to an extremal surface barrier with strictly nonzero null extrinsic curvature.

The unwanted assumption that Dσ is compact (which fails in the event that Σ+ or Σ−
encounter a singularity) can be dropped if there exists a codimension 0 submanifold (with
boundary) of Dσ, R, which “restricts” extremal surfaces (see figure 5.4). By this we mean
that

1. R is compact,

2. There exists an open set U containing S with Dσ ∩ U = R ∩ U , and

3. ∂R = (∂Dσ ∩R)∪B where B is an extremal surface barrier for codimension 2 extremal
surfaces inside in R.

These conditions for R are designed to ensure that R can be used in lemma 1 in place of
Dσ without difficulty. The existence of such regions R relies on the existence of the barrier

8In [62], extremal surfaces are confined to regions referred to as the “exterior” of an extremal surface
barrier. The interior of Dσ, i.e. Dσ \ ∂Dσ, is analogous to exterior regions studied by Wall and Engelhardt.

9We remind the reader that our conventions are those laid out in the first paragraph of section 5.2. In
particular, we are making simplifying topological assumptions about σ and S. We will leave it to future
work to investigate the consequences of relaxing these assumptions.
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Figure 5.4: The idea of a compact restriction is shown here. The restriction R is the shaded
region along with its boundary, the blue and orange lines. ∂R consists of two parts: an
extremal surface barrier B (blue) and a portion of ∂Dσ (orange). In this figure, the barrier
B protects extremal surfaces in R from a singularity. Not shown are extremal surfaces in R,
none of which contact ∂R except at their anchor on the leaf σ.

B. The arguments in theorem 11 of [187] show that Kasner singularities are always protected
by such barriers. Hartman and Maldacena [83] encountered a barrier protecting black hole
singularities from codimension 2 extremal surfaces. Constant time slices in FRW spacetimes
are another example of suitable barriers.10

Any region R ⊂ Dσ satisfying the conditions will be called a compact restriction of Dσ.
Note that, in particular, if Dσ is compact then Dσ is a compact restriction of itself. Our
findings can now be summarized by the following improvement upon lemma 1:

Theorem 1. If Dσ possesses a compact restriction, then there exists a codimenson 2 extremal
surface anchored and terminating at ∂A that lies entirely in Dσ and that intersects ∂Dσ only
at ∂A.

10Many extremal surfaces are anchored at singularities and thus pass through barriers. This is irrelevant
because the barriers we are discussing here play the of ∂Dσ in the proof of lemma 1. As a region As is
deformed from a point inside R into A ⊂ σ, extremal surfaces anchored to ∂As cannot smoothly pass B or
∂Dσ.
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To better appreciate this theorem, it is helpful show that the statement is false if σ is
not a leaf of a holographic screen. Consider 2 + 1 dimensional Minkowski space with inertial
coordinates (t, x, y) and let C denote the large cylinder satisfying x2 + y2 = R2 with R� 1.
Consider the two line segments on C that are approximately given by

A = {(t =
1

2
|x|,−1 > x ≥ 0, y = R)}

B = {(t =
1

2
|x|, 0 ≤ x < 1, y = R)}

(5.4)

and construct any spacelike “time slice” on C, σ, that includes AB. It is easy to see that
the extremal surface anchored to ∂ (AB) is a straight line that is timelike related to AB and
thus fails to lie within the domain of dependence Dσ. To see how severe this problem is, note
that the segments A and B fail to satisfy subadditivity of entanglement entropy. That is,
the inequality SA + SB ≥ SAB is false. Note that in this example σ fails to satisfy equation
5.1 because of the kink at A ∩B.

A Maximin Construction for Holographic Screens

Theorem 1 ensures that holographic screen entanglement entropy is a well-defined quantity
in a broad set of cases. We will now demonstrate that this quantity satisfies expected
properties of entanglement entropy. To do this, it is very useful to closely follow [187] and
introduce a maximin construction of ext A. Our construction will be slightly modified from
that used for HRT surfaces anchored to the AdS boundary. Wall’s maximin prescription
involves considering a collection of Cauchy slices that are anchored only to ∂A. Because we
already know that ext A lies inside of Dσ, we will introduce a stronger constraint requiring
that we only consider achronal slices that are anchored to all of σ.

Definition and Existence of Mm(A)

Our setup remains unchanged. Fix a past (or future) holographic screen H in a globally
hyperbolic spacetime and let σ be a leaf. We take a Cauchy surface S0 containing σ and
define S as the closure of the portion of S0 inside of σ. As before, we require that S is
compact and that it has the topology of a solid d − 1 ball. Let Dσ = D(S). We also fix a
region A in σ with a boundary. Now define Cσ as the collection of codimension 1 compact
achronal surfaces that are anchored to σ and that have domain of dependence Dσ. Note,
in particular, that S ∈ Cσ. Moreover, note that the global hyperbolicity of Dσ ensures that
every element of Cσ has the same topology as S: that of a compact d− 1 ball.

Take any Σ ∈ Cσ. Let min(∂A,Σ) denote the codimension 2 surface of minimal area11 on
Σ that is anchored to ∂A. The existence of min(∂A,Σ) is guaranteed by the compactness of Σ

11 Wall [187] added the condition that min(∂A,Σ) be homologous to A. While this condition ought to be
included in our discussion as well, the assumption that S (and thus every element of Cσ) has the topology
of a compact d− 1 ball makes a homology condition trivial. We leave the task of investigating more general
topologies to future work.
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and theorem 9 of [187]. Define a function F : Cσ → [0, area(A)] by F (Σ) = area(min(∂A,Σ)).
Now assume that there exists a Σ0 in Cσ that maximizes F (globally). We now define
min(∂A,Σ0) as the maximin surface of A, and we will denote it by Mm(A). If there are
several maximin surfaces, Mm(A) can refer to any of them.

The existence of Mm(A) can be proven in many cases by appropriately importing the
arguments of theorems 10 and 11 in [187] which we only briefly describe here. Consider the
Cauchy surface S0 which can be identified as a slice in a foliation of Cauchy surfaces {St}.
Using this definition of time, we can identify a surface Σ ∈ Cσ with a function tΣ : S0 → R in
a natural way: if Ix denotes the integral curve of ∂t that passes through a point x ∈ S, then
Σ = {Ix ∩StΣ(x)|x ∈ S}. From this viewpoint, F can be regarded as a real-valued functional
on {tΣ}. Now if Dσ is compact, we can find the maximum and minimum values of t for
the set Dσ to obtain an upper and lower bound on tΣ that applies for all Σ. Moreover, the
condition that Σ be compact and achronal ensures that {tΣ} is equicontinuous. These facts
imply that Cσ is compact (with the uniform topology) and that the extreme value theorem
applies to the function F .

In the case where Dσ is not compact (for instance, due to a singularity terminating a
light sheet of σ), we can still argue that F has a maximum as long as Dσ satisfies a condition
similar to but slightly stronger than the “compact restriction” idea discussed above. Suppose
that B+ is a surface in Cσ which is identical to Σ+ in some neighborhood of S. For any Σ ∈ Cσ,
define another surface Σ̄ by tΣ̄ = min{tΣ, tB+}. If B+ has the property that for any Σ we
have F (Σ) ≤ F (Σ̄), then we will say that B+ is a future maximin barrier. A past maximin
barrier is defined analogously as a surface B− ∈ Cσ, identical to Σ− in a neighborhood of S,
such that for any Σ we have F (Σ) ≤ F (Σ̄) where Σ̄ is defined by tΣ̄ = max{tΣ, tB−}.

Now if Dσ possesses both a past and future maximin barrier, then we can restrict our
attention to the subset of surfaces in Cσ that satisfy tB− ≤ tΣ ≤ tB+ . Let Cσ(B−, B+)
denote this restricted set. Because B− and B+ are compact, J+(B−) ∩ J−(B+) is compact
and so the set Cσ(B−, B+) is compact in the uniform topology and F has a maximum
Σ0 ∈ Cσ(B−, B+). The definition of past and future maximin barriers ensures us that if
Σ ∈ Cσ, then F (Σ0) ≥ F (Σ). Thus, Σ0 is a global maximum for F and we can safely define
min(∂A,Σ0) as the maximin surface of A, Mm(A).

As in the case of the compact restriction of Dσ used in theorem 1, it is difficult to find
examples where Dσ does not possess a past and future barrier. Wall [187] argued that such
barriers protect maximin surfaces from a wide range of singularities: approximately Kasner
singularities, BKL singularities, and FRW big bangs all lead to past or future maximin
barriers. If Σ± simply terminate at caustics rather than singularities, then B± = Σ± are
barriers. In any event, if B± exist, then the region J+(B−) ∩ J−(B+) provides a compact
restriction of Dσ in the sense of theorem 1. Thus, the existence of B± ensures both the
existence of Mm(A) as well as the existence of ext (A). From here on, we will simply take
for granted that a past and future maximin barrier exist.
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Equivalence of Mm(A) and ext (A)

Below we will argue that Mm(A) = ext (A). However, it is first very useful to introduce two
additional definitions first.

1. Take Σ ∈ Cσ and let Γ be a codimension 2 surface anchored to ∂A that lies in Dσ.
Consider the intersection between Σ and the future and past-directed orthogonal null
surfaces of Γ that are directed toward A. This intersection is called the representative
of Γ on Σ and will be denoted by rep(Γ,Σ).

2. The domain of dependence of codimension 1 achronal surfaces anchored to A ∪ ext A
lying in Dσ will be called the entanglement wedge of A.

Note that rep(Γ,Σ) is itself a codimension 2 surface anchored to ∂A that lies on Σ.
Moreover, if Γ is extremal then, by the focusing theorem, area(rep(Γ,Σ)) ≤ area(Γ).

We now demonstrate that our maximin procedure always finds extA, the extremal surface
of minimal area that is anchored to ∂A and which lies in Dσ. While much of the proof is
similar to the arguments in [187], we will have to pay special attention to the possibility that
the maximin surface could run into the boundary of Dσ.

Theorem 2. Mm(A) = ext (A).

Proof. The argument of theorem 15 in [187] immediately shows that if a point p ∈ Mm(A)
is also in the interior of Dσ (i.e. Dσ \ ∂Dσ), then Mm(A) is extremal at p. In particular, if
Mm(A) ∩ ∂Dσ = ∂A, then Mm(A) is an extremal surface everywhere. We now argue that
Mm(A) in fact cannot ever intersect ∂Dσ outside of ∂A.

Suppose there exists p ∈ Mm(A) ∩ (∂Dσ \ ∂A). There must be an open neighborhood
of p in Mm(A) (open in the d-2 dimensional manifold Mm(A)) that is entirely contained in
∂Dσ. If this were not the case, Mm(A) would be extremal at points arbitrarily close to p and
would thus be extremal at p. Moreover, Mm(A) would be tangent to ∂Dσ at p. However,
∂Dσ is an extremal surface barrier (see lemma 1) so this is not possible. There are now two
cases to consider.

• Case 1 : p ∈ ∂Dσ \ σ.
Figure 5.5 illustrates a construction that we will use for this case. Take p ∈ Σ+ (the case
of p ∈ Σ− is no different). By construction, Mm(A) is minimal on a surface Σ0. There
exists a (dimension d-1) open subset U of Σ0 containing p such that U ∩Mm(A) ⊂ Σ+.
Moreover, we can require that U is “split” by Mm(A) into two disconnected sets, N
and V , such that N is the side of U closer to σ. Since Σ0 is anchored to σ, we must
have that N ⊂ Σ+ and, in particular, N is null. On the other hand, V cannot be a
subset of Σ+. If it were, then Mm(A) could decrease its area by being deformed up Σ+

(by the focusing theorem). In particular, we can take U small enough to ensure that
V is nowhere null in the direction of k.
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Figure 5.5: This figure depicts the argument of case 1 of the proof of theorem 2. Note that
the surface S is shown here for reference and that it does not play a critical role in the proof.
The shaded region is Dσ = D(S) and the green dot is (a cross-section of) the leaf σ.

We now consider the process of slightly sliding Σ0 down Σ+. More precisely, take a
small parameter ε > 0 and a corresponding one-parameter family of slices {Σε} that
are slightly deformed from Σ0 in a way we now describe (an example of Σε is depicted
in figure 5.5 by an orange dashed line). The surface Mm(A) ∩ U is described by a
function λ0(x) giving the affine distance from σ up to Mm(A) at a point x ∈ σ. Now
put λε(x) = λ0(x) − εf(x). Here, f : σ → [0, 1] is a smooth weighting function which
equals 1 at the null generator xp that p lies on. We take f to go to zero smoothly as
x moves away from xp, equaling zero exactly when x corresponds to a point outside
of U ∩ Mm(A). For λ < λε(x), we require that the surface Σε is identical to Σ+.
We extend Σε beyond λε by parallel transporting tangent vectors on Mm(A) directed
toward V down to λε. This prescription does not uniquely fix Σε, but it is sufficient
for our purposes.

Consider the one-parameter family of codimension 2 curves min(∂A,Σε). For any ε > 0,
let Lε denote the future-directed null congruence of min(∂A,Σε) that points toward
the interior of Dσ (see figure 5.5). The continuity of min(∂A,Σε) as ε varies and the
fact that Σ+ is a light sheet ensures that there exists and ε0 > 0 such that for ε < ε0,

– Lε intersects Σ0 to form a codimension 2 surface on Σ0 anchored to ∂A and

– Lε has negative future-directed expansion in the region between min(∂A,Σε) and
its intersection with Σ0.
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Denote this intersection by Cε and observe that C0 = Mm(A). But Mm(A) is minimal
on Σ0 so for sufficiently small ε,

area(Mm(A)) < area(Cε) ≤ area(min(∂A,Σε))

which contradicts the assumption that Mm(A) has area greater than or equal to the
minimal area surface on any slice. Note that the last inequality above follows from the
focusing theorem applied to Lε.

• case 2 : p ∈ σ.
Assume that there exists a (dimension d-2) open subset of Mm(A) that is contained
in σ. (If not, there must be such an open set in ∂Dσ \ σ which just leads to case 1
above.) Now consider the null vector field k on σ and the geodesics generated by it.
Follow these geodesics from σ up along Σ+ by a short affine distance ε > 0 to generate
a new codimension 2 surface, σε, which limits to σ when ε→ 0. The focusing theorem
now gives rise to a modified version of equation 5.1 at σε:

θlε > 0

θkε < 0.
(5.5)

Along with moving σ up the light-sheet, we also translate A up the sheet to a one-
parameter family of surfaces Aε that limit to A. Consider the maximin construction
applied to codimension 2 surfaces anchored to ∂Aε that lie on codimension 1 surfaces
anchored to σε. We denote the result by Mm(Aε). We also define Dσε in the obvious
way. Now this maximin procedure leads to the same two cases that we are now study-
ing. The first case, where Mm(Aε) intersects ∂Dσε \ σε proceeds exactly as it did with
ε = 0. Now suppose that Mm(Aε) has an open set contained in σε. Mm(Aε) must be
minimal on some slice Σε. However, equation 5.5 implies that σε has negative (inward)
extrinsic curvature on Σε. It is thus impossible for Mm(Aε) to be minimal on Σε since
its area could be decreased by “cutting corners.”

We can thus conclude that Mm(Aε) ∩ ∂Dσε = ∂Aε. This implies that Mm(Aε) is
extremal. Taking the limit as ε→ 0, we conclude that Mm(A) is extremal. But, given
our assumption that part of Mm(A) lies on σ, equation 5.1 shows that Mm(A) cannot
be extremal since extremal surfaces have zero null expansion in all directions.

At this point it is proven that Mm(A) is extremal. All that is left is to show that, of all
the extremal surfaces in Dσ that are anchored to ∂A, Mm(A) is the smallest. Let Σ0 ∈ Cσ be
a slice on which Mm(A) is minimal. If Γ is another extremal surface anchored to ∂A then,
as a result of the focusing theorem, we find that

area(Mm(A)) ≤ area(rep(Γ,Σ0)) ≤ area(Γ).
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We are now in a position to prove a variety of properties of screen entanglement entropy.
We begin with the “Page bound” advertised in section 5.2.

Corollary 1. If A is a region in the leaf σ, then

S(A) ≤ min{Sextensive(A), Sextensive(σ \ A)}

where S deonotes the holographic screen entanglement entropy of A and Sextensive(X) denotes
the area of a region X ⊂ σ divided by 4.

Proof. S(A) = area(Mm(A))/4 but Mm(A) = min(∂A,Σ0) for some Σ0 ∈ Cσ. Both A and
σ\A are codimension d−2 dimensional surfaces on Σ0 anchored to ∂A so the area of Mm(A)
is less than or equal to the areas of both A and σ \ A.

Next we turn to the proof of strong subadditivity for holographic screen entanglement
entropy (other properties of entanglement entropy that admit covariant geometrical bulk
proofs can be imported here as well). Unlike the case of theorems 1 and 2, the arguments
below are essentially identical to those of [187] with little additional subtlety. We start with
our version of theorem 17 in [187] which states that if B ⊂ A, then ext A lies “outside” of
extB.

Theorem 3. Suppose that A and B are regions in the leaf σ with B ⊂ A. Then,

1. the entanglement wedge of A contains the entanglement wedge of B,

2. there exists a surface in Cσ on which both ext A and ext B are minimal.

Sketch of Proof: The proof is the same as that of theorem 17 of [187] so we only sketch it
here. For any surface in Σ ∈ Cσ, consider a pair of codimension 2 surfaces constrained to
lie on Σ, ΓA and ΓB, such that ΓA is anchored to ∂A and ΓB is anchored to ∂B. Then let
Z = area(ΓA) + area(ΓB). We now minimize the value of Z by varying over all possible
choices of ΓA and ΓB. After that, we maximize the minimal values of Z by varying over all
possible Σ.

This new maximin procedure gives a well-defined answer for the maximinimal value of
Z. Moreover, a slice Σ0 results on which both ΓA and ΓB are minimal. On this slice, it is
impossible for ΓA to cross ΓB as this would necessarily give rise to a surface on Σ0 anchored
to ∂A with smaller area than ΓA. A further observation is that if a connected component of
A is distinct from a component of B, the corresponding connected components of ΓA and ΓB
cannot come into contact even tangentially. The argument for this is that the component
of ΓB would necessarily have a different trace of its spatial extrinsic curvature than ΓA at
points close to the contact point. This would mean that either ΓA or ΓB is not minimal on
Σ0.

At this point it is known that components of ΓA or ΓB that are distinct have neigh-
borhoods in Σ0 that do not intersect the other surface. Within such neighborhoods, small
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deviations Σ0 and the minimal surfaces can be made that prove that such surfaces are ex-
tremal.

The only remaining step is to show that, in fact, ΓA and ΓB are the extremal surfaces inDσ

of minimal area. If Γ′A is an extremal surface in Dσ anchored to ∂A, then its representation
on Σ0 must have larger area than that of ΓA but smaller area than that of Γ′A. Thus,
ΓA = ext A. Similarly, ΓB = ext B. By construction, both are minimal on the same surface
Σ0 ∈ Cσ. Moreover, because Σ0 is achronal, we must have that the entanglement wedge of
A contains that of B.

Corollary 2. Suppose that A, B, and C are nonintersecting regions in σ. Then,

S(AB) + S(BC) ≥ S(ABC) + S(B)

where XY denotes X ∪ Y and where the function S is defined in equation 5.2.

Proof. By theorem 3, we can find a surface Σ0 ∈ Cσ such that extB and ext ABC are both
minimal on Σ0. Let S̃(AB) and S̃(BC) denote the areas of the representations of ext AB
and extBC on Σ0. Then,

S(AB) + S(BC) ≥ S̃(AB) + S̃(BC) ≥ S(ABC) + S(B)

where the first inequality follows from the focusing theorem and the second inequality follows
from the standard geometric proof of strong subadditivity [92].

Note that the inequality S(A) + S(B) ≥ S(AB) follows as a special case of this result.

5.4 Extremal Surfaces in FRW Cosmology

The conventional holographic entanglement entropy prescription, with its limitation to asymp-
totically locally AdS spacetimes, provides very little information about entanglement struc-
ture in cosmology. One of the most intriguing applications of our proposal, therefore, is to
calculate holographic screen entanglement entropy in FRW universes. Assuming the screen
entanglement conjecture, the calculations below give the entanglement entropy of subsystems
in quantum states that are dual to cosmological spacetimes.

Holographic Screens in FRW Cosmology

First we review the holographic screen structure of FRW spacetimes. Consider a homoge-
neous and isotropic spacetime with the metric

ds2 = −dτ 2 + a(τ)2
(
dχ2 + f(χ)2dΩ2

2

)
(5.6)

where f(χ) = sinh(χ), χ, or sin(χ) in the open, flat, and closed cases respectively. Before
computing extremal surfaces we must decide upon a null foliation for the spacetime and then
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identify the corresponding holographic screen. Null foliations (and thus holographic screens)
are highly nonunique. The foliation we will consider here is that of past light cones from a
worldline at χ = 0.

To find the holographic screen for this foliation, it is convenient to introduce a conformal
time coordinate η such that dτ/dη = a. Then, the past light cone of the point (η = η0, χ = 0)
satisfies χ = η0−η. Spheres along the past light cone can be parameterized by the coordinate
η, and their area is given by

A(η) = 4π a
(
τ(η0 − η)

)2

f(η0 − η)2 (5.7)

Assuming that a = 0 is not merely a coordinate singularity, the condition that A is maxi-
mized is equivalent to the condition that dA/dη = 0. Thus, equation 5.7 gives the condition
that fixes the holographic screen:

f(χ)

f ′(χ)
− 1

ȧ(τ)
= 0. (5.8)

The codimension 1 surface defined by this constraint may be timelike, spacelike, or null,
depending on the particular choice of FRW spacetime. The foliating leaves of this holo-
graphic screen are spheres of constant τ and comoving radius χ satisfying equation 5.8. The
covariant entropy bound implies that each leaf has sufficient area to holographically encode
the information on one past light cone from the worldline at χ = 0 [27, 28].

Let σ(τ) be the leaf of the holographic screen at time τ and let ρ(τ) denote the energy
density in the universe (measured by comoving observers) at time τ . Then, one can write a
simple expression for the area of a leaf of the holographic screen at time τ , valid for any f :

area(σ(τ)) =
3

2ρ(τ)
. (5.9)

In particular, this expression shows that holographic screens grow in area as the universe
expands.

Extremal Surfaces in de Sitter Space

Consider 3+1 dimensional de Sitter space of radius α. This spacetime is S3 × R with the
metric

ds2 = −dT 2 + α2 cosh2

(
T

α

)
dΩ2

3

where dΩ2
3 is the metric on a unit 3-sphere. Despite the fact that this spacetime has the

form of equation 5.6 (with f(χ) = sinχ), it is an awkward setting for the consideration of
holographic screens: the null expansion on the past or future light cones of any point in de
Sitter space goes to zero only at infinite affine parameter. This suggests that the appropriate
“boundary” of de Sitter space is past or future infinity. Even if we do attempt to anchor
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extremal surfaces to spheres at infinity, the analysis in section 5.3 fails to apply because of
the assumption made there that leaves are compact.

Fortunately these difficulties can be averted completely by considering an FRW spacetime
that asymptotically approaches de Sitter space at late times. Specifically, we will consider a
spacetime of the form of equation 5.6 with vacuum energy density ρΛ and, in addition, some
matter content ρmatter(τ) with the property the matter content gives rise to a big bang at
τ = 0 and dilutes completely12 as τ →∞.

Equation 5.9 immediately implies that

lim
τ→∞

area(σ(τ)) =
3

2ρΛ

= 4πα2 (5.10)

where α =
√

3/8πρΛ. Because of the big bang singularity, we must have that area(στ=0) = 0.
Thus, by the area law for holographic screens [31, 32], we can conclude that the leaves of
our screen are spheres that monotonically increase in area, starting with 0 area at the big
bang, and expanding to approach the de Sitter horizon of area 4πα2 at late τ .

Now focus on a late time leaf σ(τ). As discussed in section 5.3, given a region A ⊂ σ(τ)
with a boundary, we can determine the holographic screen entanglement entropy of A, S(A),
by considering an extremal surface anchored to and terminating at ∂A. In the notation of
section 5.3, Dσ(τ) is compact so theorem 1 implies that an extremal surface anchored to ∂A
exists and lies inside of Dσ(τ).

For any time τ , define

SτPage(A) =

{
1
4
area(A) area(A) ≤ 1

2
area(σ(τ))

1
4

(area(σ(τ))− area(A)) area(A) > 1
2
area(σ(τ)).

(5.11)

We allow this definition to extend to a function S∞Page(A) where A is a region on a 2-sphere
of radius α. This τ =∞ case is defined exactly as in equation 5.11 if we take area(σ(∞)) =
4πα2.

Below we will present an argument that if A ⊂ σ(τ), then

lim
τ→∞

S(A) = S∞Page(A). (5.12)

(Note that in this limit, it is implied that A is transported to later and later leaves.) Thus,
we will find that as τ → ∞, S(A) approaches the random entanglement limit discussed in
section 5.2.

Any interpretation of this result is necessarily speculative. Nevertheless, if one assumes
the screen entanglement conjecture, then equation 5.12 implies that the the quantum state
of an FRW universe asymptotically approaching de Sitter space has the property that its
O(α2) degrees of freedom are almost randomly entangled with one-another. At earlier times,
the degrees of freedom are not randomly entangled because S(A) < S∞Page(A).
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Figure 5.6: The domain of dependence Dσ(τ) for a late time leaf in the flat FRW universe
(the small green triangle in the upper diagram) can be approximately mapped to a domain
of dependence Dσ̃(τ) in empty de Sitter space (lower diagram). The mapping becomes in-
creasingly accurate as τ becomes larger. The effect of increasing τ is to move the green
triangle in the upper diagram into the top-left corner (along the blue curve), while the green
triangle in the lower diagram moves to the right and approaches the entire left static wedge.

Random Entanglement and the Static Sphere Approximation

We now present a combination of rigorous arguments, numerical data, and analytic approx-
imations suggesting that the approximate de Sitter cosmological spacetimes discussed above
saturate the random entanglement bound in the τ → ∞ limit. As before, σ(τ) denotes a
leaf at time τ in an FRW universe with vacuum energy as well as matter energy that dilutes
at late time.

The entire region Dσ(τ) has a metric that can be made arbitrarily similar to that of a
patch of empty de Sitter space by making τ large. To see this, first note that points in Dσ(τ)

have χ < χscreen(τ) and χscreen(τ) can be made arbitrarily small by making τ large. (This
follows from equation 5.10 and the fact that limτ→∞ a(τ) = ∞.) Meanwhile, the conformal
diagram for our spacetime immediately shows that the minimal value of τ in Dσ(τ) can be
made arbitrarily large by making τ large. Thus Dσ(τ) can be made to only cover arbitrarily
large τ and arbitrarily small χ, in which case our metric of equation 5.6 takes the form

ds2 ≈ −dτ 2 + c e2τ/α(dχ2 + χ2dΩ2
2) (5.13)

where c is a constant and α is the same constant as before. Here we have made use of the
Friedmann equations. The right-hand side of this equation is precisely the metric of de Sitter
space in flat slicing. De Sitter space can also be described in static coordinates that make a
time-translation Killing vector field manifest:

ds2 ≈ −
(

1− r2

α2

)
dt2 +

(
1− r2

α2

)−1

dr2 + r2dΩ2
2. (5.14)

12In particular, we are not considering spacetimes with a big crunch in this section.
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Fortunately, Dσ(τ) lies in a region that is well-described by either the flat or static slicing of
equations 5.13 and 5.14 respectively.

We can now identify Dσ(τ) with a region Dσ̃(τ) where Dσ̃(τ) denotes a corresponding
region in exact de Sitter space obtained by finding a sphere σ̃(τ) in the static patch with
area matching that of σ(τ). While it may seem natural to put σ̃(τ) at large static time, we
can use the t translational symmetry of de Sitter space to place σ̃(τ) at t = 0 for all τ . The
effect of increasing τ is simply to bring σ̃(τ) closer to the bifurcation sphere on the de Sitter
horizon. This identification is illustrated in figure 5.6. Note that as τ → ∞, the geometry
of Dσ(τ) and Dσ̃(τ) become arbitrarily similar.

Consider the region A ⊂ σ(τ) which can be identified with a region Ã ⊂ σ̃(τ). At large
τ , σ̃(τ) approaches the equator of a 3-sphere of radius α. The equator itself is an extremal
surface so with τ < ∞ but still large, there must be an extremal surface that is close to Ã
but not exactly on it. Its area will be slightly less than that of Ã. Note, moreover, that if
the area of Ã exceeds half the area of the equator, then a smaller extremal surface can be
obtained by considering the complement of A.

This suggests but does not yet prove that at large τ , the holographic screen entanglement
entropy of A is almost equal to a fourth of its own area in Planck units if A has less area
than half of the de Sitter horizon. What we have proven so far is that an extremal surface
exists with area almost equal to that of A (or 4πα2 − area(A)).

What if there is another extremal surface with smaller area than the one we have found?
It is easy to see that this is impossible. Following the notation in section 5.3, consider the
spacelike surface Σ0 that, after mapping to Dσ̃(τ), lies at static time t = 0, and that and
terminates at σ̃. (Σ0 is most of a hemisphere of the 3-sphere.) The Riemannian geometry of
S3 shows that the surface of minimal area anchored to ∂A is the one we have already found.
If Γ is another extremal surface (not necessarily lying on Σ0), then its representation on Σ0,
rep(Γ,Σ0), necessarily has larger area than the extremal surface close to the horizon. But
area(Γ) ≥ area(rep(Γ,Σ0)) so we conclude that Γ does not have minimal area.

The arguments above show that the random entanglement limit is saturated at large
τ . Taking 0 � τ < ∞ and A ⊂ σ(τ), we now explain a way to obtain a more accurate
estimate for S(A) than SτPage(A). Calculating S(A) without taking the large τ limit is more
involved than what was done above. Nonetheless, it is worthwhile to investigate this case to
better understand how the Page bound limit is approached. In particular, it is of interest to
understand how the discontinuity of the derivative of S∞Page arises.

We begin by further discussing the role of the 3-sphere in de Sitter space. Figure 5.7
depicts a hemisphere of an S3 of radius α which is precisely half of a static slice of de Sitter
space (which we can freely take to be t = 0). Define a parameter z as z =

√
α2 − r2 where r

is the static radius appearing in equation 5.14. Note that a surface of constant z (and static
time) is an S2 of area 4π(α2− z2). This suggests a way to obtain an approximation for S(A)
if A is a region in the leaf σ(τ). Rather than taking A to be a region in σ(τ), we take figure
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Figure 5.7: The upper hemisphere of a 3-sphere of radius α is half of a static slice in empty
de Sitter space and serves as a good approximation for Dσ(τ) at large τ . The blue 2-sphere
(appearing as a circle here) lies at constant z (equivalently, constant r where r is the radial
coordinate in equation 5.14). This 2-sphere is an approximation for the leaf σ(τ). Green
surfaces depict extremal spherical caps on S3 that approximate ext Aψ for various values
of ψ. The many samples of extremal surfaces shown here have evenly spaced values of ψ.
Figure 5.8 provides evidence that this static sphere approximation is accurate at late τ .

5.6 seriously and map A to a region in the S2 of constant

z =

√
4πα2 − area(σ(τ))

4π
(5.15)

which ensures that this S2 has the same area as σ(τ). After this mapping is made, one
computes S(A) by finding the extremal surface on the S3 that is anchored to ∂A (which
we take to lie at constant z). Below we will refer to this procedure as the “static sphere
approximation.”

Consider regions in σ(τ) that are spherical caps. Such a cap can be fixed (up to SO(3)
rotation) by a zenith opening angle angle ψ, so we will denote our region of σ(τ) by Aψ.
(With this notation, Aπ/2 is a hemisphere and Aπ is the entire leaf.) The static sphere
approximation makes it is clear that for 0 < ψ � π/2, ext Aψ is close to Aψ itself and that
for π/2� ψ < π, extAψ approaches σ(τ)\Aψ. As ψ passes the transition angle π/2, extAψ
quickly passes over the top of the 3-sphere of radius α. The closer area(σ(τ)) is to 4πα2, the
faster ext Aψ passes over the top of the sphere. This explains how the discontinuity in the
derivative of S∞Page(A) arises in the large τ limit.13

13For finite τ , there is always another extremal surface on the 3-sphere which goes around the sphere the
wrong way. This surface always has area greater than extAψ and, in any case, fails to lie in Dσ(τ). However,
if we consider the τ = ∞ limit, then ext Aψ does not smoothly pass over the hemisphere of the 3-sphere,
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(a) z/α ≈ .05 (b) z/α ≈ .02

Figure 5.8: Plots of S(Aψ) and other quantities for two leaves at different times in a universe
with dust and vacuum energy. In both plots, the red curve is the numerically computed
holographic screen entanglement entropy of Aψ. The dashed green curve is the static sphere
approximation for S(Aψ) which becomes more accurate at later τ (smaller z). The orange
curve with a sharp peak is SPage(Aψ) as defined by equation 5.11 and the black curve is
Sextensive(Aψ). The horizontal line, provided for scale, marks the value of πα2/2 which is
precisely one fourth of the extensive entropy of the de Sitter horizon.

Because the geometry of S3 is simple, it is not difficult to obtain an explicit (if cumber-
some) expression for S(Aψ) in the static sphere approximation:

S(Aψ) ≈ π sin2

(
1

4
cos−1

[
z2

α2
+

(
1− z2

α2

)
cos 2ψ

])
(5.16)

where z is given by equation 5.15 and, as before, α =
√

3/8πρΛ. This expression can be
thought of as giving a correction to the “zeroth order” expression S(Aψ) ≈ S∞Page(Aψ). Taking
τ <∞ will lead to corrections in 1/τ that are not described by the static sphere method. It
is an open question as to whether or not such corrections can, in principle, be of the same
(or greater) order in 1/τ as the one we have studied here. However, numerical data that
suggests that the static sphere approximation is accurate at large τ as we will now see.

As explained above, the cosmological spacetimes we have been discussing have vacuum
energy ρΛ as well as some matter content that dilutes at late time. The simplest case of this
is when the universe is flat (f(χ) = χ) and when the additional matter content consists of
only one species with density ρmatter and pressure pm = wρm. The scale factor for this case
is

a(τ) = C sinh

[
3(1 + w)τ

2α

] 2
3(1+w)

(5.17)

and in this case, the discontinuity in the derivative of S∞Page(A) is explained by the fact that the surface
that wraps around the sphere the “wrong way” is now precisely the complement of Aψ in the equator. If
ψ exceeds π/2 in this case, then the complement of Aψ has smaller area than Aψ. We see that a phase
transition occurs only in the exact τ =∞ limit.
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Figure 5.9: Both Penrose diagrams here are for the same spacetime: a closed FRW universe
with dust. The red lines denote a null foliation and the black diagonals are the past and
future holographic screens corresponding to the foliation. The two figures demonstrate that
different foliations give rise to different screens. In both figures, the lower half of the diagonal
is a past holographic screen and the upper half is a future holographic screen. Arrows show
the direction of increasing area.

where the normalization factor C is independent of τ .
This setting is very useful to test the theoretical apparatus developed in this section. In

the case of w = 0, figure 5.8 shows a variety of quantities we have discussed. Figure 5.8
(a) and (b) depict the case of an earlier and later time leaf with z/α ≈ .05 and z/α ≈ .02
respectively. The solid red curves show S(Aψ) (computed numerically) while the green curves
give the static sphere approximation of equation 5.16. The dotted horizontal line marks half
of the de Sitter entropy: S1/2 = πα2/2. As expected, S(Aψ) < S1/2. The orange curve
with a discontinuity in its derivative is S∞Page(Aψ). Comparing figures 5.8 (a) and (b), one
can see that S(Aψ) is approaching S∞Page(Aψ) as τ → ∞. Finally, the black curves shows
extensive entropy: Sextensive(Aψ) = (1/4)area(Aψ). Note that S(Aψ) < Sextensive(Aψ) for all
ψ as required by corollary 1.

Closed Universe with a Big Crunch

The holographic screen entanglement entropy structure of a closed universe with a past and
future singularity is similar to that of approximate de Sitter space. The spacetimes we
consider have the metric of equation 5.6 with f(χ) = sin(χ). In this case the coordinate
χ takes values from 0 to π. We put one species of matter content in the spacetime that
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satisfies p = wρ which gives rise to a big bang at τ = 0 as well as a big crunch. As before,
we introduce a conformal time coordinate η in terms of which the scale factor is

a(η) = c

(
sin

η

q

)q
where q = 2/(1 + 3w) and c is constant. This shows that the Penrose diagram for this
spacetime is a rectangle with a time-to-space aspect ratio of q.

Figure 5.9 shows the holographic screen structure of this spacetime for two examples of
null foliations. We focus on the diagram to the left in which case the null foliation (partially)
consists of past light cones of a comoving worldline at the χ = 0. As suggested by the figure,
the holographic screen is given by

χscreen =
1

q
η.

However, a subtlety arises because the screen is a past holographic screen for η < qπ/2 and a
future screen for η > qπ/2. The sphere that connects the past and future screen is extremal
(this was called an “optimal” surface in [28]) and has area 4πc2. Let σ(η) denote the leaf at
conformal time η. We put σ0 = σ(η = qπ/2).

Just as in the de Sitter case, this example leads to a saturation of the Page bound of equa-
tion 5.3 as leaves are maximized in area. More precisely, if A ⊂ σ(η), then limη→qπ/2 S(A) =
S∞Page(A) where in this case

S∞Page(A) =

{
1
4
area(A) area(A) ≤ 1

2
πc2

1
4

(4πc2 − area(A)) area(A) > 1
2
πc2.

It appears that S(A) saturates the Page bound in a great variety of cases where the areas
of leaves are bounded above.

5.5 Concluding Remarks

The proposal we have given above may open the door to a new research program: the study of
the entanglement structure of general spacetimes. In light of this, and for the sake of clarity,
we now summarize the recipe for computing von Neumann entropy under the assumption of
the screen entanglement conjecture discussed in section 5.2:

1. Select a particular null foliation {Nr} of a spacetime with dimension d.

2. Find the codimension 2 surfaces {σr} with σr ⊂ Nr that have maximal area on each
Nr.

3. Take a d− 2 dimensional subregion A ⊂ σr with a boundary ∂A.
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4. Of all extremal surfaces anchored to ∂A and lying in the causal region Dσ (see section
5.2), select the one of minimal area. The conjectured entropy S(A) is then one fourth
the area of the minimal extremal surface in Planck units.

Potential applications of our conjecture are numerous. One example not considered above
is case of a spacetime with a black hole. Black holes formed through the collapse of matter
possess future holographic screens in their interiors that approach their horizons at late times.
It is of potential significance to investigate the entanglement structure of such spacetimes.
Perhaps such an analysis will shed light on the firewall paradox [10].

If the screen entanglement conjecture is correct, it should still only be regarded as a
leading order prescription for the computation of von Neumann entropies. A version of the
analysis of [64] may be extendible to the context of holographic screens. It is not completely
obvious how this should be done. If A is a region in a leaf σ lying on a Cauchy slice S0,
one may consider the region on S0 bounded by A and its extremal surface ext (A) and
compute the entanglement entropy of this region in a quantum field theory on the spacetime
background. On the other hand, it may be necessary to modify the spacetime position of
the holographic screen itself as was done in [30].
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Chapter 6

Toward a Holographic Theory for
General Spacetimes

6.1 Introduction

As with any other classical object, spacetime is expected to consist of a large number of
quantum degrees of freedom. The first explicit hint of this came from the discovery that
empty spacetime can carry entropy [21, 22, 20, 84, 86, 70]. What theory describes these
degrees of freedom as well as the excitations on them, i.e. matter?

Part of the difficulty in finding such a theory is the large redundancies present in the
description of gravitational spacetime. The holographic principle [173, 169, 29] suggests that
the natural space in which the microscopic degrees of freedom for spacetime (and matter)
live is a non-dynamical spacetime whose dimension is one less than that in the original
description (as demonstrated in the special case of the AdS/CFT correspondence [122]).
This represents a huge redundancy in the original gravitational description beyond that
associated with general coordinate transformations. For general spacetimes, causality plays
a central role in fixing this redundancy [65, 27]. A similar idea also plays an important role in
addressing problems in the semiclassical descriptions of black holes [170] and cosmology [132,
35].

In this paper, we explore a holographic theory for general spacetimes. We follow a
“bottom-up” approach given the lack of a useful description in known frameworks, such
as AdS/CFT and string theory in asymptotically Minkowski space. We assume that our
holographic theory is formulated on a holographic screen [28], a codimension-1 surface on
which the information about the original spacetime can be encoded. This construction can
be extended beyond the semiclassical regime by considering all possible states on all possible
slices—called leaves—of holographic screens [132, 133], where the nonuniqueness of erecting
a holographic screen is interpreted as the freedom in fixing the redundancy associated with
holography. The resulting picture is consistent with the recently discovered area theorem
applicable to the holographic screens [31, 32, 159].
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To study the structure of the theory, we use conjectured relationships between space-
time in the gravitational description and quantum entanglement in the holographic theory.
Recently, it has become increasingly clear that quantum entanglement among holographic
degrees of freedom plays an important role in the emergence of classical spacetime [157,
156, 99, 182, 172, 113, 124, 158, 68, 8, 143, 81]. In particular, Ref. [158] showed that the
areas of the extremal surfaces anchored to the boundaries of regions on a leaf of a holo-
graphic screen satisfy relations obeyed by entanglement entropies, so that they can indeed
be identified as the entanglement entropies associated with the corresponding regions in the
holographic space. We analyze properties of these surfaces and discuss their implications for
a holographic theory of general spacetimes.

We lay down our general framework in Section 6.2. We then study the behavior of
extremal surfaces in cosmological Friedmann-Robertson-Walker (FRW) spacetimes in Sec-
tion 6.3. Here we focus on initially expanding flat and open universes, in which the area of
the leaves monotonically increases. We first consider universes dominated by a single com-
ponent in the Friedmann equation, and we identify how screen entanglement entropies—the
entanglement entropies among the degrees of freedom in the holographic space—encode in-
formation about the spacetimes. We discuss next how the screen entanglement entropies
behave in a transition period in which the dominant component of the universe changes.
We find an interesting theorem when the holographic screen is spacelike: the change of a
screen entanglement entropy is always monotonic. The proof of this theorem is given in
Appendix 6.6. If the holographic screen is timelike, no such theorem holds.

In Section 6.4, we study the structure of the holographic theory for general spacetimes,
building on the results obtained earlier. In particular, we discuss how the holographic en-
tanglement entropies for general spacetimes differ from those in AdS/CFT and how, nev-
ertheless, the former reduce to the latter in an appropriate limit. We emphasize that the
holographic entanglement entropies for cosmological spacetimes obey a volume law, rather
than an area law, implying that the relevant holographic states are not ground states of local
field theories. This is the case despite the fact that the dynamics of the holographic theory
respects some sense of locality, indicated by the fact that the area of a leaf increases in a
local manner on a holographic screen.

The Hilbert space of the theory is analyzed in Section 6.4 under two assumptions:

(i) The holographic theory has (effectively) a qubit degree of freedom per each volume
of 4 ln 2 in Planck units. These degrees of freedom appear local at lengthscales larger
than a microscopic cutoff lc.

(ii) If a holographic state represents a semiclassical spacetime, the area of an extremal
surface anchored to the boundary of a region Γ on a leaf σ and contained in the causal
region associated with σ represents the entanglement entropy of Γ in the holographic
theory.

We find that these two assumptions strongly constrain the structure of the Hilbert space,
although they do not determine it uniquely. There are essentially two possibilities:
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Direct sum structure — Holographic states representing different semiclassical space-
times M live in different Hilbert spaces HM even if these spacetimes have the same
boundary space (or leaf) B

HB =
⊕
M

HM. (6.1)

In each Hilbert space HM, the states representing the semiclassical spacetime comprise
only a tiny subset of all the states—the vast majority of the states in HM do not allow
for a semiclassical interpretation, which we call “firewall” states borrowing the termi-
nology in Refs. [10, 9, 126]. In fact, the states allowing for a semiclassical spacetime
interpretation do not even form a vector space—their superposition may lead to a fire-
wall state if it involves a large number of terms, of order a positive power of dimHM.
This is because a superposition involving such a large number of terms significantly
alters the entanglement entropy structure, so under assumption (ii) above we cannot
interpret the resulting state as a semiclassical state representing M. In this picture,
small excitations over spacetime M can be represented by standard linear operators
acting on the (suitably extended) Hilbert space HM, which can be trivially promoted
to linear operators in HB.

Spacetime equals entanglement — Holographic states that represent different semi-
classical spacetimes but have same boundary space B are all elements of a single Hilbert
space HB. And yet, the number of independent microstates representing each of these
spacetimes, M,M′,M′′, · · · , is the dimension of HB:

|ΨMi 〉, |ΨM
′

i′ 〉, |ΨM
′′

i′′ 〉, · · · ∈ HB; i, i′, i′′, · · · = 1, · · · , dimHB, (6.2)

which implies that the microstates representing different spacetimes are not indepen-
dent. This picture arises if we require the converse of assumption (ii) and is called
“spacetime equals entanglement” [143]: if a holographic state has the form of entangle-
ment entropies corresponding to a certain spacetime, then the state indeed represents
that spacetime. The structure of Eq. (6.2) is then obtained because arbitrary unitary
transformations acting in each cutoff size cell in B do not change the entanglement en-
tropies, implying that the number of microstates for any geometry is dimHB (so they
span a basis of HB). Despite the intricate structure of the states, this picture admits
the standard many worlds interpretation for classical spacetimes, as shown in Ref. [143].
Small excitations over spacetime are represented by non-linear/state-dependent oper-
ators, along the lines of Ref. [151] (see also [150, 183, 138]), since a superposition of
background spacetimes may lead to another spacetime, so that operators representing
excitations must know the entire quantum state they act on.

We note that a dichotomy similar to the one described above was discussed earlier in
Ref. [151], but the interpretation and the context in which it appears here are distinct.
First, the state-dependence of the operators representing excitations in the second scenario
(as well as that of the time evolution operator) becomes relevant when the boundary space
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is involved in the dynamics as in the case of cosmological spacetimes. Hence, this particular
state-dependence need not persist in the AdS/CFT limit. This does not imply anything
about the description of the interior a black hole in the CFT. It is possible that the CFT
does not provide a semiclassical description of the black hole interior, i.e. it gives only
a distant description. Alternatively, there may be a way of obtaining a state-dependent
semiclassical description of the black hole interior within a CFT, as envisioned in Ref. [151].
We are agnostic about this issue.

Second, Ref. [151] describes the dichotomy as state-dependence vs. firewalls. Our pic-
ture, on the other hand, does not have a relation with firewalls because the following two
statements apply to both the direct sum and spacetime equals entanglement pictures:

• Most of the states in the Hilbert space, e.g. in the Haar measure, are firewalls in the
sense that they do not represent smooth semiclassical spacetimes, which require special
entanglement structures among the holographic degrees of freedom.

• The fact that most of the states are firewalls does not mean that these states are
realized as a result of standard time evolution, in which the volume of the boundary
space increases in time. In fact, the direct sum picture even has a built-in mechanism
of eliminating firewalls through time evolution, as we will see in Section 6.4.1

Rather, the real tension is between the linearity/state-independence of operators representing
observables (including the time evolution operator) and the spacetime equals entanglement
hypothesis, i.e. the hypothesis that if a holographic state has entanglement entropies corre-
sponding to a semiclassical spacetime, then the state indeed represents that spacetime. If
we insist on the linearity of observables, we are forced to take the direct sum picture; if we
adopt the spacetime equals entanglement hypothesis, then we must give up linearity.

Our analysis in Section 6.4 also includes the following. In Section 6.4, we discuss bulk
reconstruction from a holographic state, which suggests that the framework provides a dis-
tant description for a dynamical black hole. In Section 6.4, we consider how the theory
encodes information about spacetime outside the causal region of a leaf, which is needed for
autonomous time evolution. Our analysis suggests a strengthened covariant entropy bound:
the entropy on the union of two light sheets (future-directed ingoing and past-directed out-
going) of a leaf is bounded by the area of the leaf divided by 4. This bound is stronger than
the original bound in Ref. [27], which says that the entropy on each of the two light sheets is
bounded by the area divided by 4. In Section 6.4, we analyze properties of time evolution,
in particular a built-in mechanics of eliminating firewalls in the direct sum picture and the
required non-linearity of the time evolution operator in the spacetime equals entanglement
picture. In Sections 6.4 and 6.4, we discuss how our framework may reduce to AdS/CFT
and string theory in an asymptotically Minkowski background in the appropriate limits. We

1This is natural because any dynamics leading to classicalization selects only a very special set of states
as the result of time evolution: states interpreted as a superposition of a small number of classical worlds,
where small means a number (exponentially) smaller than the dimension of the full microscopic Hilbert
space.
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argue that the dynamics of these theories (in which the boundaries are sent to infinity) de-
scribe that of the general holographic theory modded out by “vacuum degeneracies” relevant
for the dynamics of the boundaries and the exteriors.

In Section 6.5, we devote our final discussion to the issue of selecting a state. In general,
specifying a system requires selection conditions on a state in addition to determining the
theory. To address this issue in quantum gravity, we need to study the problem of time [48,
188]. We discuss possible signals from a past singularity or past null infinity, closed universes
and “fine-tuning” of states, and selection conditions for the string theory landscape [34, 104,
168, 53], especially the scenario called the “static quantum multiverse” [134]. While our
discussion in this section is schematic, it allows us to develop intuition about how quantum
gravity might work at the fundamental level when applied to the real world.

Throughout the paper, we adopt the Schrödinger picture of quantum mechanics and
take the Planck length to be unity, lP = 1. When the semiclassical picture is applicable, we
assume the null and causal energy conditions to be satisfied. These impose the conditions
ρ ≥ −p and |ρ| ≥ |p|, respectively, on the energy density ρ and pressure p of an ideal fluid
component. The equation of state parameter w = p/ρ, therefore, takes a value in the range
|w| ≤ 1.

6.2 Holography and Quantum Gravity

The holographic principle states that quantum mechanics of a system with gravity can be
formulated as a non-gravitational theory in spacetime with dimension one less than that
in the gravitational description. The covariant entropy bound, or Bousso bound, [27] sug-
gests that this holographically reduced—or “boundary”—spacetime may be identified as a
hypersurface in the original gravitational spacetime determined by a collection of light rays.
Specifically, it implies that the entropy on a null hypersurface generated by a congruence of
light rays terminating at a caustic or singularity is bounded by its largest cross sectional area
A; in particular, the entropy on each side of the largest cross sectional surface is bounded
by A/4 in Planck units.2 It is therefore natural to consider that, for a fixed gravitational
spacetime, the holographic theory lives on a hypersurface—called the holographic screen—on
which null hypersurfaces foliating the spacetime have the largest cross sectional areas [28].

This procedure of erecting a holographic screen has a large ambiguity, presumably re-
flecting a large freedom in fixing the redundancy of the gravitational description associated
with the holographic principle. A particularly useful choice advocated in Refs. [132, 133,
140] is to adopt an “observer centric reference frame.” Let the origin of the reference frame
follow a timelike curve p(τ) which passes through a fixed spacetime point p0 at τ = 0, and
consider the congruence of past-directed light rays emanating from p0.3 The expansion of

2We will conjecture a stronger bound in Section 6.4.
3In Refs. [132, 133, 140], p(τ) was chosen to be a timelike geodesic with τ being the proper time measured

at p(τ). We suspect that this simplifies the time evolution operator in the holographic theory.
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p (✁)

p
0

✂ = 0 

✁ = 0

Figure 6.1: For a fixed semiclassical spacetime, the holographic screen is a hypersurface
obtained as the collection of codimension-2 surfaces (labeled by τ) on which the expansion
of the light rays emanating from a timelike curve p(τ) vanishes, θ = 0. This way of erecting
the holographic screen automatically deals with the redundancy associated with comple-
mentarity. The ambiguity of choosing p(τ) reflects a large freedom in fixing the redundancy
associated with holography.

the light rays θ satisfies
∂θ

∂λ
+

1

2
θ2 ≤ 0, (6.3)

where λ is the affine parameter associated with the light rays. This implies that the light
rays emitted from p0 focus toward the past (starting from θ = +∞ at λ = 0+), and we may
identify the apparent horizon, i.e. the codimension-2 surface with

θ = 0, (6.4)

to be an equal-time hypersurface—called a leaf—of a holographic screen. Repeating the
procedure for all τ , we obtain a specific holographic screen, with the leaves parameterized
by τ , corresponding to foliating the spacetime region accessible to the observer at p(τ);
see Fig. 6.1. Such a foliation is consonant with the complementarity hypothesis [170], which
asserts that a complete description of a system is obtained by referring only to the spacetime
region that can be accessed by a single observer.

With this construction, we can view a quantum state of the holographic theory as living
on a leaf of the holographic screen obtained in the above observer centric manner. We can
then consider the collection of all possible quantum states on all possible leaves, obtained by
considering all timelike curves in all spacetimes. We take the view that a state of quantum
gravity lives in the Hilbert space spanned by all of these states (together with other states
that do not admit a full spacetime interpretation) [132, 133]. It is often convenient to
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consider a Hilbert space HB spanned by the holographic states that live on the “same”
boundary space B.4 The relevant Hilbert space can then be written as

H =
∑
B

HB, (6.5)

where the sum of Hilbert spaces is defined by5

H1 +H2 = {v1 + v2 | v1 ∈ H1, v2 ∈ H2}. (6.6)

This formulation is not restricted to descriptions based on fixed semiclassical spacetime back-
grounds. For example, we may consider a state in which macroscopically different spacetimes
are superposed; in particular, this picture describes the eternally inflating multiverse as a
state in which macroscopically different universes are superposed [132, 134]. The space in
Eq. (6.5) is called the covariant Hilbert space with observer centric gauge fixing.

Recently, Bousso and Engelhardt have identified two special classes of holographic screens [31,
32]: if a portion of a holographic screen is foliated by marginally anti-trapped (trapped) sur-
faces, then that portion is called a past (future) holographic screen. Specifically, denoting
the two future-directed null vector fields orthogonal to a portion of a leaf by ka and la,
with ka being tangent to light rays emanating from p(τ), the expansion of the null geodesic
congruence generated by la satisfies θl > 0 and < 0 for past and future holographic screens,
respectively. They proved, building on earlier works [89, 90, 14, 13], that the area of leaves
A(τ) monotonically increases (decreases) for a past (future) holographic screen:{

θk = 0
θl ≷ 0

⇔ d

dτ
A(τ) ≷ 0; (6.7)

see Fig. 6.2. In many regular circumstances, including expanding FRW universes, the holo-
graphic screen is a past holographic screen, so that the area of the leaves monotonically
increases, dA(τ)/dτ > 0. In this paper we mostly focus on this case, and we interpret the
area theorem in terms of the second law of thermodynamics applied to the Hilbert space of
Eq. (6.5). Moreover, in Ref. [159] it was proved that this area theorem holds locally on the
holographic screen: the area of any fixed spatial portion of the holographic screen, deter-
mined by a vector field tangent to the holographic screen and normal to its leaves, increases

4The exact way in which the boundary spaces are grouped into different B’s is unimportant. For example,
one can regard the boundary spaces having the same area A within some precision δA to be in the same
B, or one can discriminate them further by their induced metrics. This ambiguity does not affect any of
the results, unless one takes δA to be exponentially small in A or discriminates induced metrics with the
accuracy of order the Planck length (which corresponds to resolving microstates of the spacetime).

5Unlike Ref. [133], here we do not assume specific relations between HB ’s; for example, HB1
and HB2

for different boundary spaces B1 and B2 may not be orthogonal. Also, we have included in the sum over B
the cases in which B is outside the semiclassical regime, i.e. the cases in which the holographic space does
not correspond to a leaf of a holographic screen in a semiclassical regime. These issues will be discussed in
Section 6.4.
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Figure 6.2: The congruence of past-directed light rays emanating from p0 (the origin of the
reference frame) has the largest cross sectional area on a leaf σ, where the holographic theory
lives. At any point on σ, there are two future-directed null vectors orthogonal to the leaf:
ka and la. For a given region Γ of the leaf, we can find a codimension-2 extremal surface
E(Γ) anchored to the boundary ∂Γ of Γ, which is fully contained in the causal region Dσ

associated with σ.

monotonically in time. This implies that the dynamics of the holographic theory respects
some notion of locality.

What is the structure of the holographic theory and how can we explore it? Recently, a
conjecture has been made in Ref. [158] which relates geometries of general spacetimes in the
gravitational description to the entanglement entropies of states in the holographic theory.
This extends the analogous theorem/conjecture in the AdS/CFT context [157, 156, 99] to
more general cases, allowing us to probe the holographic description of general spacetimes,
including those that do not have an obvious spacetime boundary on which the holographic
theory can live. In particular, Ref. [158] proved that for a given region Γ of a leaf σ, a
codimension-2 extremal surface E(Γ) anchored to the boundary ∂Γ of Γ is fully contained
in the causal region Dσ of σ:

Dσ : the domain of dependence of an interior achronal hypersurface whose only boundary is σ,
(6.8)

where the concept of the interior is defined so that a vector on σ pointing toward the interior
takes the form c1k

a − c2l
a with c1, c2 > 0 (see Fig. 6.2). This implies that the normalized

area of the extremal surface E(Γ)

S(Γ) =
1

4
‖E(Γ)‖, (6.9)

satisfies expected properties of entanglement entropy, such as strong subadditivity, so that
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it can be identified with the entanglement entropy of the region Γ in the holographic theory.
Here, ‖x‖ represents the area of x. If there are multiple extremal surfaces in Dσ for a given
Γ, then we must take the one with the minimal area.

In the rest of the paper, we study the holographic theory of quantum gravity for gen-
eral spacetimes, adopting the framework described in this section. We first analyze FRW
spacetimes and then discuss lessons learned from that analysis later.

6.3 Holographic Description of FRW Universes

In this section, we study the putative holographic description of (3 + 1)-dimensional FRW
cosmological spacetimes:

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2(dψ2 + sin2ψ dφ2)

]
, (6.10)

where a(t) is the scale factor, and κ < 0, = 0 and > 0 for open, flat and closed universes,
respectively. The Friedmann equation is given by(

ȧ

a

)2

+
κ

a2
=

8π

3
ρ, (6.11)

where the dot represents t derivative. Here, we include the energy density from the cosmo-
logical constant as a component in ρ having the equation of state parameter w = −1.

As discussed in the previous section, we describe the system as viewed from a reference
frame whose origin follows a timelike curve p(τ), which we choose to be at r = 0. The
holographic theory then lives on the holographic screen, an equal-time slice of which is an
apparent horizon: a codimension-2 surface on which the expansion of the light rays emanating
from p(τ) for a fixed τ vanishes. Under generic conditions, this horizon is always at a finite
distance

r =
1√

ȧ2(t∗) + κ
≡ rAH(t∗) <∞, (6.12)

where t∗ is the FRW time on the horizon. Note that the symmetry of the setup makes
the FRW time the same everywhere on the apparent horizon, and for an open universe,
ȧ(t∗) >

√
−κ is satisfied for values of τ before p(τ) hits the big crunch. For flat and open

universes, we find that this surface is always marginally anti-trapped, i.e. a leaf of a past
holographic screen, as long as the universe is initially expanding. On the other hand, for a
closed universe the surface can change from marginally anti-trapped to marginally trapped
as τ increases, implying that the holographic screen may be a past holographic screen only
until certain time τ . In this section, we focus our attention on initially expanding flat and
open universes. Closed universes will be discussed in Section 6.5.

Below, we study entanglement entropies for subregions in the holographic theory—screen
entanglement entropies—adopting the conjecture of Ref. [158]. Here we focus on studying the
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properties of these entropies, leaving their detailed interpretation for later. We first discuss
“stationary” aspects of screen entanglement entropies, concentrating on states representing
spacetime in which the expansion of the universe is dominated by a single component in the
Friedmann equation. We study how screen entanglement entropies encode the information
about the spacetime the state represents. We then analyze dynamics of screen entanglement
entropies during a transition period in which the dominant component changes. Implications
of these results in the broader context of the holographic description of quantum gravity will
be discussed in the next section.

Holographic dictionary for FRW universes

Consider a Hilbert spaceHB spanned by a set of quantum states living in the same codimension-
2 boundary surface B. As mentioned in footnote 4, the definition of the boundary surface
being the same has an ambiguity. For our analysis of states representing FRW spacetimes,
we take the boundary B to be specified by its area AB (within some precision δAB that
is not exponentially small in AB). In this subsection, we focus on a single Hilbert space
H∗ ∈ {HB} specified by a fixed (though arbitrary) boundary area A∗.

Consider FRW universes with κ ≤ 0 having vacuum energy ρΛ and filled with varying
ideal fluid components.6 For every universe with

ρΛ <
3

2A∗
, (6.13)

there is an FRW time t∗ at which the area of the leaf of the past holographic screen is A∗; see
Fig. 6.3. This is because the area of the leaf of the past holographic screen is monotonically
increasing [31], and the final (asymptotic) value of the area is given by

A∞ =

{
3

2ρΛ
, for ρΛ > 0,

+∞, for ρΛ ≤ 0.
(6.14)

Any quantum state representing the system at any such moment is an element of H∗. A
question is what features of the holographic state encode information about the universe it
represents.

To study this problem, we perform the following analysis. First, given an FRW universe
specified by the history of the energy density of the universe, ρ(t), we determine the FRW
time t∗ at which the apparent horizon σ∗, identified as a leaf of the past holographic screen,
has the area A∗: {

ρ(t)
A∗

→ t∗, (6.15)

6The ρΛ here represents the energy density of a (local) minimum of the potential near which fields in
the FRW universe in question take values. In fact, string theory suggests that there is no absolutely stable
de Sitter vacuum in full quantum gravity; it must decay, at least, before the Poincaré recurrence time [104].
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Figure 6.3: Various FRW universes, I, II, III, · · · , have the same boundary area A∗ at differ-
ent times, t∗(I), t∗(II), t∗(III), · · · . Quantum states representing universes at these moments
belong to Hilbert space H∗ specified by the value of the boundary area.

where we assume Eq. (6.13). We then consider a spherical cap region of the leaf σ∗ specified
by an angle γ (0 ≤ γ ≤ π):

L(γ) : t = t∗, r = rAH(t∗), 0 ≤ ψ ≤ γ, (6.16)

where rAH(t∗) is given by Eq. (6.12) (see Fig. 6.4), and determine the extremal surface E(γ)
which is codimension-2 in spacetime, anchored on the boundary of L(γ), and fully contained
inside the causal region Dσ∗ associated with σ∗. According to Ref. [158], we interpret the
quantity

S(γ) =
1

4
‖E(γ)‖, (6.17)

to represent von Neumann entropy of the holographic state representing the region L(γ),
obtained after tracing out the complementary region on σ∗.

To determine the extremal surface E(γ), it is useful to introduce cylindrical coordinates

ξ = r sinψ, z = r cosψ. (6.18)

We find that the isometry of the FRW metric, Eq. (6.10), allows us to move the boundary
on which the extremal surface is anchored, ∂L(γ), on the z = 0 plane:

∂L(γ) : t = t∗, ξ = rAH(t∗) sin γ ≡ ξAH, z = 0. (6.19)

The surface to be extremized is then parameterized by functions t(ξ) and z(ξ) with the
boundary conditions

t(ξAH) = t∗, z(ξAH) = 0, (6.20)
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Figure 6.4: A region L(γ) of the leaf σ∗ is parameterized by an angle γ : [0, π]. The extremal
surface E(γ) anchored to its boundary, ∂L(γ), is also depicted schematically. (In fact, E(γ)
bulges into the time direction.)

and the area functional to be extremized is given by

2π

∫ ξAH

0

a(t) ξ

√
−
(
dt

dξ

)2

+
a2(t)

1− κ(ξ2 + z2)

{
(1− κz2) + (1− κξ2)

(
dz

dξ

)2

+ 2κξz
dz

dξ

}
dξ.

(6.21)
In all the examples we study (in this and next subsections), we find that the extremal surface
does not bulge into the z direction. In this case, we can set z = 0 in Eq. (6.21) and find

‖E(γ)‖ = ext
t(ξ)

2π

∫ rAH(t∗) sin γ

0

a(t) ξ

√
−
(
dt

dξ

)2

+
a2(t)

1− κξ2
dξ

 . (6.22)

The analysis described above is greatly simplified if the expansion of the universe is
determined by a single component in the Friedmann equation, i.e. a single fluid component
with the equation of state parameter w or negative spacetime curvature. We thus focus
on the case in which the expansion is dominated by a single component in (most of) the
region probed by the extremal surfaces. In realistic FRW universes this holds for almost all
t, except for a few Hubble times around when the dominant component changes from one
to another. Discussion about a transition period in which the dominant component changes
will be given in the next subsection.
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A flat FRW universe filled with a single fluid component

Suppose the expansion of the universe is determined dominantly by a single ideal fluid
component with w. The scale factor is then given by

a(t) = c t
2

3(1+w) , (6.23)

where c is a constant, and the metric in the region r ≤ rAH takes the form

ds2 = −dt2 + c2 t
4

3(1+w)
[
dr2 + r2(dψ2 + sin2ψ dφ2)

]
, (6.24)

where we have used the fact that |κ r2
AH| � 1. In this case, we find that the A∗ dependence

of screen entanglement entropy SΓ for an arbitrarily shaped region Γ on σ∗—specified as a
region on the ψ-φ plane—is given by

SΓ = S̃ΓA∗, (6.25)

where S̃Γ does not depend on A∗. This can be seen in the following way.
Consider the causal region Dσ∗ associated with σ∗. For certain values of w (i.e. w ≥ 1/3),

Dσ∗ hits the big bang singularity. It is thus more convenient to discuss the “upper half” of
the region:

D+
σ∗ = {p ∈ Dσ∗ | t(p) ≥ t∗}. (6.26)

In an expanding universe, the extremal surface anchored on the boundary of a region Γ on σ∗
is fully contained in this region. Now, by performing t∗-dependent coordinate transformation

ρ =
2

3(1 + w)
c t
− 1+3w

3(1+w)
∗ r, (6.27)

η =
2

3(1 + w)

[(
t

t∗

) 1+3w
3(1+w)

− 1

]
, (6.28)

the region D+
σ∗ is mapped into

0 ≤ η ≤ 1, 0 ≤ ρ ≤ 1− η, (6.29)

and the metric in D+
σ∗ is given by

ds2
∣∣
D+
σ∗

=
A∗
4π

(
1 + 3w

2
η + 1

) 4
1+3w [

−dη2 + dρ2 + ρ2(dψ2 + sin2ψ dφ2)
]
, (6.30)

where
A∗ = 9π(1 + w)2t2∗. (6.31)

Since A∗ appears only as an overall factor of the metric in Eqs. (6.29, 6.30), we conclude
that the A∗ dependence of SΓ ∝ ‖EΓ‖ is only through an overall proportionality factor, as
in Eq. (6.25).
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Due to the scaling in Eq. (6.25), it is useful to consider an object obtained by dividing SΓ

by a quantity that is also proportional to A∗. We find it convenient to define the quantity

QΓ ≡
SΓ

VΓ/4
, (6.32)

where VΓ is the (2-dimensional) “volume” of the region Γ or its complement Γ̄ on the bound-
ary surface σ∗, whichever is smaller. This quantity is independent of A∗, and hence t∗. For
the spherical region of Eq. (6.16), we find

Q(γ) =
S(γ)

V (γ)/4
=
‖E(γ)‖
V (γ)

, (6.33)

where

V (γ) =
1

2

{
1− sgn

(π
2
− γ
)

cos γ
}
A∗. (6.34)

An explicit expression for Q(γ) is given by

Q(γ) =
1

1− sgn(π
2
− γ) cos γ

ext
f(x)

[∫ sin γ

0

x f
4

1+3w

√
1−

( 2

1 + 3w

)2( df
dx

)2

dx

]
, (6.35)

where the extremization with respect to function f(x) is performed with the boundary
condition

f(sin γ) = 1, (6.36)

and we have used the fact that the extremal surface does not bulge into the z direction in
the cylindrical coordinates of Eq. (6.18). From the point of view of the holographic theory,
QΓ represents the amount of entanglement entropy per degree of freedom as viewed from
the smaller of Γ and Γ̄. As we will discuss in Section 6.4, the fact that this is a physically
significant quantity has important implications for the structure of the holographic theory.

In Fig. 6.5, we plot Q(γ) as a function of γ (0 ≤ γ ≤ π/2) for various values of w: −1
(vacuum energy), −0.98, −0.8, 0 (matter), 1/3 (radiation), and 1. The value of Q(γ) for
π/2 ≤ γ ≤ π is given by Q(γ) = Q(π − γ). We find the following features:

• In the limit of a small boundary region, γ � 1, the value of Q(γ) approaches unity
regardless of the value of w:

Qw(γ)
γ�1−−→ 1. (6.37)

This implies that for a small boundary region, the entanglement entropy of the region
is given by its volume in the holographic theory in Planck units:

Sw(γ)
γ�1−−→ 1

4
V (γ). (6.38)

For larger γ (≤ π/2), Q(γ) becomes monotonically small as γ increases:

d

dγ
Qw(γ) < 0. (6.39)
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Figure 6.5: The value of Q(γ) as a function of γ (0 ≤ γ ≤ π/2) for w = −1 (vacuum energy),
−0.98, −0.8, 0 (matter), 1/3 (radiation), and 1. The dotted line indicates the lower bound
given by the flat space geometry, which can be realized in a curvature dominated open FRW
universe.

The deviation of Q(γ) from 1 near γ = 0 is given by

Qw(γ)
γ�1
= 1− c (1 + w)γ4 + · · · , (6.40)

where c > 0 is a constant that does not depend on w.

• For any fixed boundary region, γ, the value of Q(γ) decreases monotonically in w:

d

dw
Qw(γ) < 0. (6.41)

In particular, when w approaches −1 (from above), Q(γ) becomes unity:

lim
w→−1

Qw(γ) = 1. (6.42)

This implies that in the limit of de Sitter FRW (w → −1), the state in the holographic
theory becomes “randomly entangled” (i.e. saturates the Page curve [144]):7

lim
w→−1

Sw(γ) =
1

4
V (γ). (6.43)

7In the case of an exactly single component with w = −1, the expansion of light rays emanating from p0,
i.e. θk, becomes 0 only at infinite affine parameter λ. We view this as a result of mathematical idealization.
A realistic de Sitter FRW universe is obtained by introducing an infinitesimally small amount of matter in
addition to the w = −1 component, which avoids the above issue. The results obtained in this way agree
with those by first taking w > −1 and then the limit w → −1.
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Figure 6.6: The value of Q(π/2) as a function of w.

Note that V (γ) is the smaller of the volume of L(γ) and that of its complement on the
leaf. The value of Q(π/2) (the case in which L(γ) is a half of the leaf) is plotted as a
function of w in Fig. 6.6.

We will discuss further implications of these findings in Section 6.4.
We note that there are simple geometric bounds on the values of Qw(γ). This can be

seen by adopting the maximin construction [158, 187]: the extremal surface is the one having
the maximal area among all possible codimension-2 surfaces each of which is anchored on
∂L(γ) and has minimal area on some interior achronal hypersurface bounded by σ. This
implies that the area of the extremal surface, ‖E(γ)‖, cannot be larger than the boundary
volume V (γ), giving Q(γ) ≤ 1. Also, the extremal surface cannot have a smaller area than
the codimension-2 surface that has the minimal area on a constant time hypersurface t = t∗:
‖E(γ)‖ ≥ π{a(t∗)rAH(t∗) sin γ}2. Together, we obtain

sin2γ

2
{

1− sgn(π
2
− γ) cos γ

} ≤ Qw(γ) ≤ 1. (6.44)

The lower edge of this range is depicted by the dashed line in Fig. 6.5. We find that the
upper bound of Eq. (6.44) can be saturated with w → −1, while the lower bound cannot
with |w| ≤ 1. If we formally take w → +∞, the lower bound can be reached. A fluid with
w > 1, however, does not satisfy the causal energy condition (although it satisfies the null
energy condition), so we do not consider such a component.

As a final remark, we show in Fig. 6.7 the shape of the extremal surface for γ = π/2 for
the same values of w as in Fig. 6.5: −1, −0.98, −0.8, 0, 1/3, and 1. The horizontal axis is
the cylindrical radial coordinate normalized by the apparent horizon radius, ξ/ξAH, and the
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Figure 6.7: The shape of the extremal surfaces E(π/2) for w = −1, −0.98, −0.8, 0, 1/3,
and 1. The horizontal axis is the cylindrical radial coordinate normalized by the apparent
horizon radius, ξ/ξAH, and the vertical axis is the Hubble time, tH.

vertical axis is taken to be the Hubble time defined by

tH =

∫ t

t∗

ȧ(t)

a(t)
dt =

2

3(1 + w)
ln

t

t∗
, (6.45)

which reduces in the w → −1 limit to the usual Hubble time tH = H(t − t∗), where H =
ȧ/a. We find that the extremal surface bulges into the future direction for any w. In fact,
this occurs generally in an expanding universe and can be understood from the maximin
construction: the scale factor increases toward the future, so that the area of the minimal
area surface on an achronal hypersurface increases when the hypersurface bulges into the
future direction in time. The amount of the bulge is tH ≈ O(1), except when w ≈ −1. For
w → −1, the extremal surface probes tH → +∞ as ξ/ξAH → +0, but its area is still finite,
‖E(π/2)‖ → A∗/2, as the surface becomes almost null in this limit.

An open FRW universe dominated by curvature

We now consider an open FRW universe dominated by curvature, i.e. the case in which the
expansion of the universe is determined by the second term in the left-hand side of Eq. (6.11).
This implies that the distance to the apparent horizon is much larger than the curvature
length scale

−κ
a2(t)

� 8π

3
ρ(t) ⇐⇒ rAH(t)� 1√

−κ
≡ rcurv. (6.46)

(Note that κ < 0 for an open universe.) As seen in Eqs. (6.11, 6.12), the value of rAH(t) is
determined by ρ(t), which gives only a minor contribution to the expansion of the universe.
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The scale factor is given by
a(t) =

√
−κ t. (6.47)

The extremal surface can be found easily by noticing that the universe in this limit is a
hyperbolic foliation of a portion of the Minkowski space: the coordinate transformation

t̃ = t

√
1 +

(√
−κ r

)2
, (6.48)

r̃ =
√
−κ t r, (6.49)

leads to the Minkowski metric ds2 = −dt̃2 +dr̃2 + r̃2(dψ2 + sin2ψ dφ2). The extremal surface
is thus a plane on a constant t̃ hypersurface, which in the FRW (cylindrical) coordinates is
given by

tH ≈ ln
1

ξ/ξAH

(0 ≤ ξ/ξAH ≤ 1), (6.50)

where ξAH = rAH(t∗) sin γ, and tH is the Hubble time

tH =

∫ t

t∗

ȧ(t)

a(t)
dt = ln

t

t∗
. (6.51)

The resulting Q(γ) is

Q(γ) ≈ sin2γ

2
{

1− sgn(π
2
− γ) cos γ

} . (6.52)

This, in fact, saturates the lower bound in Eq. (6.44), plotted as the dashed line in Fig. 6.5.

Dynamics of screen entanglement entropies in a transition

Let us consider the evolution of an FRW universe. From the holographic theory point of
view, it is described by a time-dependent state |Ψ(τ)〉 living on σ(τ). Because of the area
theorem of Refs. [31, 32], we can take τ to be a monotonic function of the leaf area, leading
to

d

dτ
A(τ) > 0, (6.53)

where A(τ) ≡ ‖σ(τ)‖. This evolution involves a change in the number of (effective) degrees
of freedom, A(τ)/4, as well as that of the structure of entanglement on the boundary, QΓ(τ).
For the latter, we mostly consider Q(γ, τ) associated with a spherical cap region Γ = L(γ).
A natural question is if a statement similar to Eq. (6.53) applies for screen entanglement
entropies:

d

dτ
S(γ, τ)

?
> 0. (6.54)

Here,

S(γ, τ) = Q(γ, τ)
V (γ, τ)

4
, (6.55)
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with

V (γ, τ) =
1

2

{
1− sgn

(π
2
− γ
)

cos γ
}
A(τ), (6.56)

being the smaller of the boundary volumes of L(γ) and its complement.
There are some cases in which we can show that the relation in Eq. (6.54) is indeed

satisfied. Consider, for example, a flat FRW universe filled with various fluid components
having differing equations of states: wi (i = 1, 2, · · · ). As time passes, the dominant compo-
nent of the universe changes from one having larger w to one having smaller w successively.
This implies that Q(γ, τ) monotonically increases in time, so that Eq. (6.53) indeed implies
Eq. (6.54) in this case. Another interesting case is when the holographic screen is spacelike.
In this case, we can prove that the time dependence of S(γ, τ) is monotonic; see Appendix 6.6.
In particular, if we have a spacelike past holographic screen (which occurs for w > 1/3 in a
single-component dominated flat FRW universe), then the screen entanglement entropy for
an arbitrary region increases in time: dSΓ(τ)/dτ > 0.

What happens if the holographic screen is timelike? One might think that there is an
obvious argument against the inequality in Eq. (6.54). Suppose the expansion of the early
universe is dominated by a fluid component with w. Suppose at some FRW time t0 this
component is converted into another fluid component having a different equation of state
parameter w′, e.g. by reheating associated with the decay of a scalar condensate. If w′ > w,
then the Q value after the transition is smaller than that before

Qw′(γ)−Qw(γ) < 0. (6.57)

One may think that this can easily overpower the increase of S(γ, τ) from the increase of
the area: dA(γ, τ)/dτ > 0 [159]. In particular, if w is close to −1, then the increase of the
area before the transition is very slow, so that the effect of Eq. (6.57) would win over that
of the area increase. However, as depicted in Fig. 6.7, when w ≈ −1 the extremal surface
bulges into larger t by many Hubble times. Hence the time between the moments in which
Eq. (6.55) can be used before and after the transition becomes long, opening the possibility
that the relevant area increase is non-negligible.

To make the above discussion more explicit, let us compare the values of the screen
entanglement entropy S(γ) corresponding to two extremal surfaces depicted in Fig. 6.8: the
“latest” extremal surface that is fully contained in the w region and the “earliest” extremal
surface fully contained in the w′ region, each anchored to the leaves at FRW times t∗ and t0.
This provides the most stringent test of the inequality in Eq. (6.54) that can be performed
using the expression of Eq. (6.55) for fixed w’s. The ratio of the entanglement entropies is
given by

Rw′w(γ) ≡ Safter(γ)

Sbefore(γ)
=
Qw′(γ)

Qw(γ)

t20
t2∗

=
Qw′(γ)

Qw(γ)
e3(1+w)tH,w , (6.58)

where tH,w is the Hubble time between t∗ and t0, given by Eq. (6.45) with t→ t0. In Fig. 6.9,
we plot Rw ≡ R1w(π/2); setting w′ = 1 minimizes the ratio. We find that this ratio can
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Figure 6.8: An FRW universe whose dominant component changes from w to w′ at time t0.
Two surfaces depicted by orange lines are the latest extremal surface fully contained in the
w region (bottom) and the earliest extremal surface fully contained in the w′ region (top),
each anchored to the leaves at t∗ and t0.

be smaller than 1 for w ≈ −1. In fact, for w → −1 we find the value obtained naively by
assuming that the area does not change before the transition:

R−1 =
Q1

(
π
2

)
Q−1

(
π
2

) = Q1

(π
2

)
, (6.59)

although for w = −1 there is no such thing as the latest extremal surface that is fully
contained in the region before the transition (since tH,−1 = +∞).

This analysis suggests that screen entanglement entropies can in fact drop if the system
experiences a rapid transition induced by some dynamics,8 although the instantaneous tran-
sition approximation adopted above is not fully realistic. Of course, such a drop is expected
to be only a temporary phenomenon—because of the area increase after the transition, the
entropy generally returns back to the value before the transition in a characteristic dynamical
timescale and then continues to increase afterward. We expect that the relation in Eq. (6.54)
is valid in a coarse-grained sense

d

dτ
S̄(γ, τ) > 0; S̄(γ, τ) =

1

τc

∫ τ+τc

τ

S(γ, τ ′) dτ ′, (6.60)

but not “microscopically” in general. Here, τc must be taken sufficiently larger than the
characteristic dynamical timescale, the Hubble time for an FRW universe.

8This does not mean that the second law of thermodynamics is violated. The entropy discussed here is
the von Neumann entropy of a significant portion (half) of the whole system, which can deviate from the
thermodynamic entropy of the region when the system experiences a rapid change.
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Figure 6.9: The ratio of the screen entanglement entropies, Rw = R1w(π/2), before and
after the transition from a universe with the equation of state parameter w to that with
w′ = 1, obtained from Figs. 6.6 and 6.7 using Eq. (6.58). The dot at w = −1 represents
R−1 = R1−1(π/2) obtained in Eq. (6.59).

For further illustration, we perform numerical calculations for how the area of a leaf
hemisphere, ‖L(π/2, t)‖, and the associated screen entanglement entropy, calculated using
S(π/2, t) = ‖E(π/2, t)‖/4, evolve in time during transitions from a w = −1 to a w′ = 0 flat
FRW universe. Here, we take the FRW time t as the time parameter. For this purpose, we
consider a scalar field φ having a potential V (φ) that has a flat portion and a well, with
the initial value of φ being in the flat portion. We first note that a transformation of the
potential of the form

V (φ)→ V ′(φ) = ε2V (φ), (6.61)

leads to rescalings of the scalar field, φ(t), and the scale factor, a(t), obtained as the solutions
to the equations of motion:

φ′(t) = φ(εt), a′(t) = a(εt). (6.62)

Plugging these in Eq. (6.22), we find that the area functionals before and after the transfor-
mation Eq. (6.61) are related by simple rescaling t→ t/ε and ξ → ξ/ε, so that∥∥∥E ′(π

2
, t
)∥∥∥ =

1

ε2

∥∥∥E(π
2
,
t

ε

)∥∥∥. (6.63)

These scaling properties imply that the leaf hemisphere area and the screen entanglement
entropy for the transformed potential are read off from those for the untransformed one by∥∥∥L′(π

2
, t
)∥∥∥ =

1

ε2

∥∥∥L(π
2
,
t

ε

)∥∥∥, ∥∥∥S ′(π
2
, t
)∥∥∥ =

1

ε2

∥∥∥S(π
2
,
t

ε

)∥∥∥. (6.64)
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We therefore need to be concerned only with the shape of the potential, not its overall scale.
In particular, we can always be in the semiclassical regime by performing a transformation
with ε� 1.

In Fig. 6.10, we show the results of our calculations for “steep” and “broad” potentials.
The explicit forms of the potentials are given by

V (φ) = 1− e−k(φ−φ0)2

+ s(φ− φ0) tanh(p(φ− φ0)), (6.65)

with

Steep : k = 5000, s = 0.01, p = 20, φ0 = 0.045, (6.66)

Broad : k = 25, s = 0.01, p = 2, φ0 = 0.5, (6.67)

although their detailed forms are unimportant. For the steep potential, plotted in Fig. 6.10(a),
we show the time evolutions of φ(t), ‖L(π/2, t)‖, and S(π/2, t) in Figs. 6.10(b)–(d) for the
initial conditions of φ(0) = φ̇(0) = 0 and a(0) = 0.01. The same are shown for the broad
potential, Fig. 6.10(e), in Figs. 6.10(f)–(h) for the initial conditions of φ(0) = φ̇(0) = 0 and
a(0) = 10−11. In either cases, the leaf hemisphere area increases monotonically while the
screen entanglement entropy experiences drops as the field oscillates around the minimum.
The fractional drops from the first, second, and third peaks are ' 1.3%, 0.9%, and 0.6%,
respectively, for the steep potential and ' 2.5%, 1.6%, and 1.2%, respectively, for the broad
potential.

We thus find that screen entanglement entropies may decrease in a transition period.
The interpretation of this result, however, needs care. Since the system is far from being in a
“vacuum” during a transition, true entanglement entropies for subregions in the holographic
theory may have contributions beyond that captured by the simple formula of Eq. (6.17).
This would require corrections of the formula, possibly along the lines of Refs. [64, 63, 30],
and with such corrections the drop of the entanglement entropy we have found here might
disappear. We leave a detailed study of this issue to future work.

6.4 Interpretation: Beyond AdS/CFT

The entanglement entropies in the holographic theory of FRW universes seen so far show
features different from those in CFTs of the AdS/CFT correspondence. Here we highlight
these differences and see how properties characteristic to local CFTs are reproduced when
bulk spacetime becomes asymptotically AdS. We also discuss implications of our findings for
the structure of the holographic theory. In particular, we discuss the structure of the Hilbert
space for quantum gravity applicable to general spacetimes. While we cannot determine
the structure uniquely, we can classify possibilities under certain general assumptions. The
issues discussed include bulk reconstruction, the interior and exterior regions of the leaf, and
time evolution in the holographic theory.
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Volume/area law for screen entanglement entropies

One can immediately see that holographic entanglement entropies for FRW universes have
two features that are distinct from those in AdS/CFT. First, unlike entanglement entropies
in CFTs, the holographic entanglement entropies for FRW universes are finite for a finite
value of A∗. Second, as seen in Section 6.3, e.g. Eq. (6.25), these entropies obey a volume law,
rather than an area law.9 (Note that A∗ is a volume from the viewpoint of the holographic
theory.) In particular, in the limit that the region Γ in the holographic theory becomes
small, the entanglement entropy SΓ becomes proportional to the volume VΓ with a universal
coefficient, which we identified as 1/4 to match the conventional results in Refs. [21, 22, 20,
84, 86, 70]. (For a small enough subsystem, we expect that the entanglement entropy agrees
with the thermal entropy.) From the bulk point of view, this is because the extremal surface
EΓ approaches Γ itself, so that ‖EΓ‖ → VΓ.

What do these features mean for the holographic theory? The finiteness of the entan-
glement entropies implies that the cutoff length of the holographic theory is finite, i.e. the
number of degrees of freedom in the holographic theory is finite, at least effectively. In
particular, our identification implies that the holographic theory effectively has a qubit de-
gree of freedom per volume of 4 ln 2 (in Planck units), although it does not mean that the
cutoff length of the theory is necessarily '

√
4 ln 2. It is possible that the cutoff length is

lc >
√

4 ln 2 and that each cutoff size cell has N = l2c/4 ln 2 (> 1) degrees of freedom. In
fact, since the string length ls and the Planck length are related as l2s ∼ n, where n is the
number of species in the low energy theory (including the moduli fields parameterizing the
extra dimensions) [55], it seems natural to identify lc and N as ls and n, respectively.

The volume law of the entangled entropies implies that a holographic state corresponding
to an FRW universe is not a ground state of local field theory, which is known to satisfy
an area law [26, 163]. This does not necessarily mean that the holographic theory for FRW
universes must be nonlocal at lengthscales larger than the cutoff lc; it might simply be
that the relevant states are highly excited ones. In fact, the dynamics of the holographic
theory is expected to respect some aspects of locality as suggested by the fact that the area
theorem applies locally on a holographic screen [159]. Of course, it is also possible that the
holographic states for FRW universes are states of some special class of nonlocal theories.

The features of screen entangled entropies described here are not specific to FRW uni-
verses but appear in more general “cosmological” spacetimes, spacetimes in which the holo-
graphic screen is at finite distances and the gravitational dynamics is not frozen there. If
the interior region of the holographic screen is (asymptotically) AdS, these features change.
In this case, the same procedure as in Section 6.2 puts the holographic screen at spatial
infinity (the AdS boundary), and the AdS geometry makes the area of the extremal surface
anchored to the boundary ∂Γ of a small region Γ on a leaf proportional to the area of ∂Γ
with a diverging coefficient: ‖EΓ‖ ∼ ‖∂Γ‖/ε (ε → 0). This makes the screen entanglement
entropies obey an area law, so that the holographic theory can now be a ground state of a

9A similar property was argued for holographic entropies for Euclidean flat spacetime in Ref. [114].
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local field theory. In fact, the theory is a CFT [122, 74, 189], consistent with the fact that
we could take the cutoff length to zero, lc ∼ ε→ 0.

The structure of holographic Hilbert space

We now discuss implications of our analysis for the structure of the Hilbert space of quantum
gravity for general spacetimes. We work in the framework of Section 6.2; in particular, we
assume that when a holographic state represents a semiclassical spacetime, the area of the
extremal surface contained in Dσ and anchored to the boundary of a region Γ on a leaf
represents the entanglement entropy of the region Γ in the holographic theory, Eq. (6.9). Note
that this does not necessarily mean that the converse is true; there may be a holographic state
in which entanglement entropies for subregions do not correspond to the areas of extremal
surfaces in a semiclassical spacetime.

Consider a holographic state representing an FRW spacetime. The fact that for a small
enough region Γ the area of the extremal surface anchored to its boundary approaches the
volume of the region on the leaf, ‖EΓ‖ → VΓ, implies that the degrees of freedom in the
holographic theory are localized and that their density is, at least effectively, one qubit per
4 ln 2 (although the cutoff length of the theory may be larger than

√
4 ln 2). We take these

for granted as anticipated in the original holographic picture [173, 169]. This suggests that
the number of holographic degrees of freedom which comprise FRW states on the leaf σ∗
with area A∗ is A∗/4 for any value of w.

Given these assumptions, there are still a few possibilities for the structure of the Hilbert
space of the holographic theory. Below we enumerate these possibilities and discuss their
salient features.

Direct sum structure

Let us first assume that state vectors representing FRW universes with different w’s are
independent of each other, as indicated in the left portion of Fig. 6.11. This implies that
the Hilbert space H∗ ∈ {HB}, which contains holographic states for FRW universes at times
when the leaf area is A∗, has a direct sum structure

H∗ =
⊕
w

H∗,w. (6.68)

Here, we regard universes with the equation of state parameters falling in a range δw � 1
to be macroscopically identical, where δw is a small number that does not scale with A∗.10

This is the structure envisioned originally in Ref. [133].
What is the structure of H∗,w? A natural possibility is that each of these subspaces has

dimension

ln dimH∗,w =
A∗
4
. (6.69)

10If we consider FRW universes with multiple fluid components, the corresponding spaces must be added
in the right-hand side of Eq. (6.68).
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This is motivated by the fact that arbitrary unitary transformations acting in each cutoff size
cell do not change the structure of screen entanglement entropies, and they can lead to eA∗/4

independent holographic states that have the screen entanglement entropies corresponding
to the FRW universe with the equation of state parameter w. If we regard all of these states
as microstates for the FRW universe with w, then we obtain Eq. (6.69). This, however, does
not mean that the holographic states representing the FRW universe with w comprise the
Hilbert space H∗,w. Since these states form a basis of H∗,w, their superposition can lead to
a state which has entanglement entropies far from those corresponding to the FRW universe
with w. In fact, we can even form a state in which degrees of freedom in different cells
are not entangled at all. This is a manifestation of the fact that entanglement cannot be
represented by a linear operator.

This implies that states representing the semiclassical FRW universe are “preferred basis
states” in H∗,w, and their arbitrary linear combinations may lead to states that do not
admit a semiclassical interpretation. We expect that these preferred axes are “fat”: we have
to superpose a large number of basis states, in fact exponentially many in A∗, to obtain
a state that is not semiclassical (because we need that many states to appreciably change
the entanglement structure, as illustrated in a toy qubit model in Appendix 6.6). It is,
however, true that most of the states in H∗,w, including those having the entanglement
entropy structure corresponding to a universe with another w, are states that do not admit
a semiclassical spacetime interpretation. Drawing an analogy with the work in Refs. [10,
9, 126], we may call them “firewall” states. In Section 6.4, we argue that these states are
unlikely to be produced by standard semiclassical time evolution.

The dimension of H∗ is given by

ln dimH∗ = ln
∑
w

e
A∗
4 ≈ A∗

4
− ln δw ' A∗

4
, (6.70)

as expected from the covariant entropy bound (unless δw is exponentially small in A∗,
which we assume not to be the case). Small excitations over the FRW universes may be
represented in suitably extended spaces H∗,w. Since entropies associated with the excitations
are typically subdominant in A∗ [173, 142], they have only minor effects on the overall
picture, e.g. Eq. (6.70). (Note that the excitations here do not contain the degrees of freedom
attributed to gravitational, e.g. Gibbons-Hawking, radiation. These degrees of freedom are
identified as the microscopic degrees of freedom of spacetimes, i.e. the vacuum degrees of
freedom [136, 137, 135], which are already included in Eq. (6.69).) The operators representing
the excitations can be standard linear operators acting on the Hilbert space H∗, at least in
principle.

We also mention the possibility that the logarithm of the number of independent states
Nw representing the FRW universe with w is smaller than A∗/4. For example, it might be
given approximately by twice the entanglement entropy for a leaf hemisphere Sw(π/2) =
Qw(π/2)A∗/8:

lnNw ≈ Qw

(π
2

) A∗
4
. (6.71)
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The basic picture in this case is not much different from that discussed above; for example,
the difference of the values of ln dimH∗ is higher order in 1/A∗ (although this possibility
makes the issue of the equivalence condition for the boundary space label B nontrivial). We
will not consider this case separately below.

Russian doll structure: spacetime equals entanglement

In the picture described above, the structures of H∗,w’s are all very similar. Each of these
spaces has the dimension of A∗/4 and has eA∗/4 independent states that represent the FRW
universe with a fixed value of w. An arbitrary linear combination of these states, however,
is not necessarily a state representing the FRW universe with w. In the previous picture, we
identified all such states as the firewall (or unphysical) states, but is it possible that some
of these states, in fact, represent other FRW universes? In particular, is it possible that all
the H∗,w spaces are actually the same space, i.e. H∗,w1 = H∗,w2 for all w1 6= w2?

A motivation to consider this possibility comes from the fact that if w does not by
itself provide an independent label for states, then the eA∗/4 independent microstates for
the FRW universe with a fixed w can form a basis for the configuration space of the A∗/4
holographic degrees of freedom. This implies that we can superpose these states to obtain
many—in fact eA∗/4—independent states that have the entanglement entropies corresponding
to the FRW universe with any w′ 6= w, which we can identify as the states representing
the FRW universe with w′.11 In essence, this amounts to saying that the converse of the
statement made at the beginning of this subsection is true: when a holographic state has the
form of entanglement entropies corresponding to a certain spacetime, then the state indeed
represents that spacetime. This scenario was proposed in Ref. [143] and called “spacetime
equals entanglement.” It is depicted in the right portion of Fig. 6.11.

One might think that the scenario does not make sense, since it implies that a superpo-
sition of classical universes can lead to a different classical universe. Wouldn’t it make any
reasonable many worlds interpretation of spacetime impossible? In Ref. [143], it was argued
that this is not the case. First, for a given FRW universe, we expect that the space of its
microstates is “fat”; namely, a superposition of less than eO(δwA∗) microstates representing
a classical universe leads only to another microstate representing the same universe. This
implies that the eA∗/4 microstates of a classical universe generate an “effective vector space,”
unless we consider a superposition of an exponentially large, & eO(δwA∗), number of states.

What about a superposition of different classical universes? In particular, if states repre-
senting universes with w1 and w2 (6= w1) are superposed, then how does the theory know that
the resulting state represents a superposition of two classical universes, and not another—
perhaps even non-classical—universe? A key point is that the Hilbert space we consider has

11The same argument applies to the FRW universes with multiple fluid components, so that the states
representing these universes also live in the same Hilbert space as the single component universes.
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a special basis, determined by the A∗/4 local degrees of freedom in the holographic space:12

H∗ = (C2)⊗
A∗
4 . (6.72)

From the result in Section 6.3, we know that a state representing the FRW universe with w1 is
more entangled than that representing the FRW universe with w2 (> w1). This implies that
when expanded in the natural basis {|Ψi〉} for the structure of Eq. (6.72), i.e. the product
state basis for the A∗/4 local holographic degrees of freedom, then a state |Ψw1〉 representing
the universe with w1 effectively has exponentially more terms than a state |Ψw2〉 representing
the universe with w2. Namely, we expect that

|Ψw〉 ≈
ef(w)A∗4∑
i=1

ai |Ψi〉, (6.73)

where f(w) is a monotonically decreasing function of w taking values of O(1), and ai are
coefficients taking generic random values. The normalization condition for |Ψw〉 then implies

|ai| ≈ O
(
e−f(w)A∗

8

)
, (6.74)

i.e. the size of the coefficients in product basis expansion is exponentially different for states
with different w’s. This, in particular, leads to

〈Ψw1|Ψw2〉 . O
(
e−{f(w1)−f(w2)}A∗

8

)
, (6.75)

i.e. microstates for different universes are orthogonal up to exponentially suppressed correc-
tions.

Now consider a superposition state

|Ψ〉 = c1|Ψw1〉+ c2|Ψw2〉, (6.76)

where |c1|2 + |c2|2 = 1 up to the correction from exponentially small overlap 〈Ψw1|Ψw2〉. We
are interested in the reduced density matrix for a subregion Γ in the holographic theory

ρΓ = TrΓ̄ |Ψ〉〈Ψ|, (6.77)

where Γ occupies less than a half of the leaf volume. The property of Eq. (6.75) then ensures
that

ρΓ = |c1|2ρ(1)
Γ + |c2|2ρ(2)

Γ , (6.78)

up to corrections exponentially suppressed in A∗. Here, ρ
(1)
Γ (ρ

(2)
Γ ) are the reduced density

matrices we would obtain if the state were genuinely |Ψw1〉 (|Ψw2〉). The matrix ρΓ thus takes

12For simplicity, here we have assumed that the degrees of freedom are qubits, but the subsequent argu-
ment persists as long as the number of independent states for each degree of freedom does not scale with A∗.
In particular, it persists if the correct structure of H∗ appears as (CN )⊗A∗/l

2
c as discussed in Section 6.4.
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the form of an incoherent classical mixture for the two universes. Similarly, the entanglement
entropy for the region Γ is also incoherently added

SΓ = |c1|2S(1)
Γ + |c2|2S(2)

Γ + SΓ,mix, (6.79)

where S
(1,2)
Γ are the entanglement entropies obtained if the state were |Ψw1,2〉, and

SΓ,mix = −|c1|2 ln |c1|2 − |c2|2 ln |c2|2, (6.80)

is the entropy of mixing (classical Shannon entropy), suppressed by factors of O(A∗) com-

pared with S
(1,2)
Γ . The features in Eqs. (6.78, 6.79) indicate that unless |c1| or |c2| is sup-

pressed exponentially in A∗, the state |Ψ〉 admits the usual interpretation of a superposition
of macroscopically different universes with w1,2.

In fact, unless a superposition involves exponentially many microstates, we find

|Ψ〉 =
∑
i

ci|Ψwi〉 ⇒ ρΓ =
∑

i |ci|2ρ
(i)
Γ ,

SΓ =
∑

i |ci|2S
(i)
Γ + SΓ,mix,

(6.81)

with exponential accuracy. Here, SΓ,mix = −
∑

i |ci|2 ln |ci|2 and is suppressed by a factor of
O(A∗) compared with the first term in SΓ. This indicates that the standard many worlds
interpretation applies to classical spacetimes under any reasonable measurements (only) in
the limit that e−A∗ is regarded as zero, i.e. unless a superposition involves exponentially
many terms or an exponentially small coefficient. This is consonant with the observation
that classical spacetime has an intrinsically thermodynamic nature [100], supporting the idea
that it consists of a large number of degrees of freedom. In Ref. [143], the features described
above were discussed using a qubit model in which the states representing the FRW universes
exhibit a “Russian doll” structure as illustrated in Fig 6.11. We summarize this model in
Appendix 6.6 for completeness.

We conclude that the states representing FRW universes with a leaf area A∗ can all be
elements of a single Hilbert space H∗ with dimension

ln dimH∗ =
A∗
4
. (6.82)

Any such universe has eA∗/4 independent microstates, which form a basis of H∗. This implies
that matter and spacetime must have a sort of unified origin in this picture, since a super-
position that changes the spacetime geometry must also change the matter content filling
the universe. How could this be the case?

Consider, as discussed in Section 6.4, that the cutoff length of the holographic theory is
of order ls ∼

√
n, where n (> 1) is the number of species at energies below 1/ls. This implies

that the A∗/4 degrees of freedom can be decomposed as

A∗
4
∼ n
A∗
l2s
, (6.83)
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representing n fields living in the holographic space of cutoff length ls. Now, to obtain the
eA∗/4 microstates for an FRW universe we need to consider rotations for all the n degrees of
freedom in each cutoff size cell. This may suggest that the identity of a matter species at the
fundamental level may not be as adamant as in low energy semiclassical field theories. The
reason why all the n degrees of freedom can be involved could be because the “local effective
temperature,” defined analogously to de Sitter space, diverges at the holographic screen.

Finally, we expect that small excitations over FRW universes in this picture are repre-
sented by non-linear/state-dependent operators in the (suitably extended) H∗ space, along
the lines of Ref. [151] (see Refs. [150, 183, 138] for earlier work). This is because a superposi-
tion of background spacetimes may lead to another background spacetime, so that operators
representing excitations should know the entire quantum state they are acting on.

Bulk reconstruction from holographic states

We have seen that the entanglement entropies of the A∗/4 local holographic degrees of
freedom in the holographic space σ∗ encode information about spacetime in the causal region
Dσ∗ . Here we discuss in more detail how this encoding may work in general.

While we have focused on the case in which the future-directed ingoing light rays em-
anating orthogonally from σ∗ (i.e. in the ka directions in Fig. 6.2) meet at a point p0, our
discussion can be naturally extended to the case in which the light rays encounter a space-
time singularity before reaching a caustic. This may occur, for example, if a black hole
forms in a universe as depicted in Fig. 6.12, where we have assumed spherical symmetry for
collapsing matter and taken p(τ) to follow its center. We see that at intermediate times, the
future-directed ingoing light rays emanating from leaves encounter the black hole singularity
before reaching a caustic.13 Our interpretation in this case is similar to the case without
a singularity. The entanglement entropies of the holographic degrees of freedom encode
information about Dσ∗ .

In what sense does a holographic state on σ∗ contain information about Dσ∗? We assume
that the theory allows for the reconstruction of Dσ∗ from the data in the state on σ∗. On
the other hand, it is not the case that the collection of extremal surfaces for all possible
subregions on σ∗ probes the entire Dσ∗ . This suggests that the full reconstruction of Dσ∗

may need bulk time evolution.
There is, however, no a priori guarantee that the operation corresponding to bulk time

evolution is complete within H∗. This means that there may be no arrangement of operators
defined in H∗ that represents certain operators in Dσ∗ . For these subsets of Dσ∗ , bulk
reconstruction would involve operators defined on other boundary spaces. In other words,
the operators supported purely in H∗ may allow for a direct spacetime interpretation only
for a portion of Dσ∗ , e.g. the outside of the black hole horizon in the example of Fig. 6.12 (in

13At these times, the specific construction of the holographic screen in Section 6.2 cannot be applied
exactly. This is not a problem as the fundamental object is the state in the holographic space, and not
p(τ). The purpose of the discussion in Section 6.2 is to illustrate our observer centric choice of fixing the
holographic redundancy in formulating the holographic theory.
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which case some of the operators would represent the stretched horizon degrees of freedom).
Our assumption merely says that the operators in H∗ acting on the state contain data
equivalent to specifying the system on a Cauchy surface for Dσ∗ .

The consideration above implies that the information in a holographic state on σ∗, when
interpreted through operators in H∗, may only be partly semiclassical. We expect that this
becomes important when the spacetime has a horizon. In particular, for the w = −1 FRW
universe, the leaf σ∗ is formally beyond the stretched de Sitter horizon as viewed from p(τ).
This may mean that some of the degrees of freedom represented by operators defined in H∗
can only be viewed as non-semiclassical stretched horizon degrees of freedom.

Information about the “exterior” region

The information about Dσ∗ , contained in the screen entanglement entropies, is not sufficient
to determine future states obtained by time evolution. This information corresponds to that
on the “interior” light sheet, i.e. the light sheet generated by light rays emanating in the
+ka directions from σ∗.

14 However, even barring the possibility of information sent into the
system from a past singularity or past null infinity (which we will discuss in Section 6.5),
determining a future state requires information about the “exterior” light sheet, i.e. the
one generated by light rays emanating in the −ka directions; see Fig. 6.13.15 How is this
information encoded in the holographic state? Does it require additional holographic degrees
of freedom beyond the A∗/4 degrees of freedom considered so far?

The simplest possibility is that the eA∗/4 microstates for each interior geometry (i.e. a
fixed screen entanglement entropy structure) contain all the information associated with
both the interior and exterior light sheets. If this is indeed the case, then we do not need
any other degrees of freedom in the holographic space σ∗ beyond the A∗/4 ones discussed
earlier. It also implies the following properties for the holographic theory:

• Autonomous time evolution — Assuming the absence of a signal sent in from a
past singularity or past null infinity (see Section 6.5), the evolution of the state is
autonomous. In particular, an initial pure state evolves into a pure state.

• S-matrix description for a dynamical black hole — As a special case, a pure
state representing initial collapsing matter to form a black hole will evolve into a
pure state representing final Hawking radiation, even if p(τ) hits the singularity at an
intermediate stage (at least if the leaf stays outside the black hole); see Fig. 6.12.

• Strengthened covariant entropy bound — According to the original proposal of
the covariant entropy bound [27, 29], the entropy on each of the interior and exterior

14If the light sheet encounters a singularity before reaching a caustic, then the information about the
singularity may also be contained.

15This light sheet is terminated at a singularity or a caustic. Note that the information beyond a caustic
is not needed to specify the state [140], since it is timelike related with the information on the interior light
sheet [186] so that the two do not provide independent information.
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light sheets is bounded by A∗/4, implying that

ln dimH∗ = 2× A∗
4

=
A∗
2
, (6.84)

where H∗ is the Hilbert space associated with σ∗. The present picture instead says

ln dimH∗ =
A∗
4
, (6.85)

implying that the entropy on the union of the interior and exterior light sheets is
bounded by A∗/4:16 Note that the bound does not say that the entropy on each
of the interior and exterior light sheets is separately bounded by A∗/8, and so is
profoundly holographic. This bound is consistent with the fact that in any known
realistic examples the covariant entropy bound is saturated only in one side of a leaf [33].

The picture described here is, of course, a conjecture, which needs to be tested. For example,
if a realistic case is found in which the A∗/4 bound is violated by the contributions from
both the interior and exterior light sheets, then we would have to modify the framework,
e.g., by adding an extra A∗/4 degrees of freedom on the holographic space. It is interesting
that there is no known system that requires such a modification.

We finally discuss the connection with AdS/CFT. In the limit that the spacetime becomes
asymptotically AdS, the location of the holographic screen is sent to spatial infinity, so that
A∗ → ∞. This implies that there are N∗ = eA∗/4 → ∞ microstates for any spacetime
configuration in Dσ∗ for a leaf σ∗, including the case that it is a portion of the empty AdS
space. Wouldn’t this contradict the statement that the vacuum of a CFT is unique?

As we will discuss in Section 6.5, the degrees of freedom associated with N∗ correspond to
a freedom of sending information into the system at a later stage of time evolution, i.e. that
of inserting operators at locations other than the point x−∞ corresponding to τ = −∞ on the
conformally compactified AdS boundary. It is with this freedom that the CFT corresponds
to the AdS limit of our theory including the N∗ degrees of freedom:

CFT ⇐⇒ lim
M→asymptotic AdS

T , (6.86)

whereM is the spacetime inside the holographic screen, and T represents the theory under
consideration. Here, we have taken the holographic screen to stay outside the cutoff surface
(corresponding to the ultraviolet cutoff of the CFT) which is also sent to infinity.

This implies that if we want to consider a setup in which the evolution of the state is
“autonomous” within the bulk, then we need to fix a configuration of operators at x 6= x−∞,
i.e. we need to fully fix a boundary condition at the AdS boundary. The correspondence to
our theory in this case is written as

autonomous CFT ⇐⇒ lim
M→asymptotic AdS

T /N∗. (6.87)

16This bound was anticipated earlier [142] based on more phenomenological considerations.
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The conventional vacuum state of the CFT corresponds to a special configuration of the N∗
degrees of freedom that does not send in any signal to the system at later times (the simple
reflective boundary conditions at the AdS boundary). Given the correspondence between the
N∗ degrees of freedom and boundary operators, we expect that this configuration is unique.
The state corresponding to the CFT vacuum in our theory is then unique: the vacuum state
of the theory T /N∗ with the configuration of the N∗ degrees of freedom chosen uniquely as
discussed above.

Time evolution

Another feature of the holographic theory of general spacetimes beyond AdS/CFT is that
the boundary space changes in time. This implies that we need to consider the theory in
a large Hilbert space containing states living in different boundary spaces, Eq. (6.5). For
states representing FRW universes, the relevant space can be written as

H =
∑
A

HA, (6.88)

where A is the area of the leaf, and the sum of the Hilbert spaces is defined by Eq. (6.6).17

While the microscopic theory involving time evolution is not yet available, we can derive its
salient features by assuming that it reproduces the semiclassical time evolution in appropriate
regimes. Here we discuss this issue for both direct sum and Russian doll structures. In
particular, we consider a semiclassical time evolution in which a state having the leaf area
A1 evolves into that having the leaf area A2 (> A1).

Direct sum structure

In this case there is a priori no need to introduce non-linearity in the algebra of observables,
so we may assume that time evolution is described by a standard unitary operator acting on
H. In particular, time evolution of a state in HA1 into that in HA2 is given by a linear map
from elements of HA1 to those in HA2 .

Consider microstates |Ψw
i 〉 (i = 1, · · · , eA1/4) representing the FRW universe with w when

the leaf area is A1, |Ψw
i 〉 ∈ HA1,w ⊂ HA1 ; see Eq. (6.68). Assuming that all these states

follow the standard semiclassical time evolution,18 their evolution is given by

|Ψw
i 〉 → |Φw

i 〉, (6.89)

17More precisely, HA contains states whose leaf areas fall in the range between A and A + δA. The
precise choice of δA is unimportant unless it is exponentially small in A. For example, the dimension of HA
is eA/4δA, so that the entropy associated with it is A/4 + ln δA, which is A/4 at the leading order in 1/A
expansion.

18Here we ignore the possibility that the equation of state changes between the two times, e.g., by a
conversion of the matter content or vacuum decay. This does not affect our discussion below.
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where {|Φw
i 〉} is a subset of the microstates |Φw

j 〉 (j = 1, · · · , eA2/4) representing the FRW
universe with w when the leaf area is A2, |Φw

j 〉 ∈ HA2,w ⊂ HA2 . This has an important
implication. Suppose that the initial state of the universe is given by

|Ψ〉 =
∑
i

ai|Ψw
i 〉. (6.90)

As we discussed before, if the effective number of terms in the sum is of order eA1/4, namely
if there are eA1/4 nonzero ai’s with size |ai| ∼ e−A1/8, then the state |Ψ〉 is not semiclassical,
i.e. a firewall state (because a superposition of that many microstates changes the structure
of the entanglement entropies). After the time evolution, however, this state becomes

|Ψ〉 → |Φ〉 =
∑
i

ai|Φw
i 〉, (6.91)

where the number of terms in the sum is eA1/4 because of the linearity of the map. This
implies that the state |Φ〉 is not a firewall state, since the number of terms is much (exponen-
tially) smaller than the dimensionality of HA2,w: eA1/4 � eA2/4. In particular, the state |Φ〉
represents the standard semiclassical FRW universe with the equation of state parameter w.

This shows that this picture has a “built-in” mechanism of eliminating firewalls through
time evolution, at least when the leaf area increases in time as we focus on here. This
process happens very quickly—any macroscopic increase of the leaf area makes the state
semiclassical regardless of the initial state.

Spacetime equals entanglement

In this case, time evolution from states in HA1 to those in HA2 is expected to be non-linear.
Consider microstates |Ψw

i 〉 (i = 1, · · · , eA1/4) representing the FRW universe with w when
the leaf area is A1, |Ψw

i 〉 ∈ HA1 . As before, requiring the standard semiclassical evolution
for all the microstates, we obtain

|Ψw
i 〉 → |Φw

i 〉, (6.92)

where {|Φw
i 〉} is a subset of the microstates |Φw

j 〉 (j = 1, · · · , eA2/4) representing the FRW
universe with w when the leaf area is A2, |Φw

j 〉 ∈ HA2 . Suppose the initial state

|Ψ〉 =
∑
i

ai|Ψw
i 〉 ≡ |Ψw′〉, (6.93)

represents the FRW universe with w′ < w. This is possible if the effective number of terms
in the sum is of order eA1/4, i.e. if there are eA1/4 nonzero ai’s with size |ai| ∼ e−A1/8. Now,
if the time evolution map were linear, then this state would evolve into

|Ψw′〉 → |Φ〉 =
∑
i

ai|Φw
i 〉. (6.94)
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This state, however, is not a state representing the FRW universe with w′, since the effective
number of terms in the sum, eA1/4, is exponentially smaller than eA2/4, the required number
to obtain a state with w′ from the microstates |Φw

i 〉. To avoid this problem, the map from
HA1 into HA2 must be non-linear so that |Ψw′〉 evolves into |Φw′〉 containing eA2/4 terms
when expanded in terms of |Φw

i 〉.
Here we make two comments. First, the non-linearity of the map described above does

not necessarily mean that the time evolution of semiclassical degrees of freedom (given as
excitations on the background states considered here) is non-linear, since the definition of
these degrees of freedom would also be non-linear at the fundamental level. In fact, from
observation this evolution must be linear, at least with high accuracy. This requirement
gives a strong constraint on the structure of the theory. Second, the non-linearity seen
above arises when the area of the boundary space changes, A1 → A2 6= A1. Since the
area of the boundary is fixed in the AdS/CFT limit (with the standard regularization and
renormalization procedure), this non-linearity does not show up in the CFT time evolution,
generated by the dilatation operator with respect to the t = −∞ point in the compactified
Euclidean space.19

We finally discuss relations between different HB’s. While we do not know how they
are related, for example they could simply exist as a direct sum in the full Hilbert space
H =

⊕
BHB, an interesting possibility is that their structure is analogous to the Russian

doll structure within a single HB. Specifically, let us introduce the notation to represent the
Russian doll structure as

{|Ψw〉} ≺ {|Ψw′〉} for w′ < w, (6.95)

meaning that the left-hand side is a measure zero subset of the closure of the right-hand
side. We may imagine that states |ΨB〉 representing spacetimes with boundary B and states
|ΨB′〉 representing those with boundary B′ are related similarly as

{|ΨB〉} ≺ {|ΨB′〉} for ‖B‖ < ‖B′‖. (6.96)

(The relation may be more complicated; for example, some of the |ΨB〉’s are related with
|ΨB′〉’s and some with |ΨB′′〉’s with B′′ 6= B′.) Ultimately, all states in realistic (cosmological)
spacetimes may be related with those in asymptotically Minkowski space as

{|ΨB〉} ≺ {|ΨB′〉} · · · ≺ {|ΨMinkowski〉}, (6.97)

since the boundary area for asymptotically Minkowski space is infinity, AMinkowski = ∞.
Does string theory formulated in an asymptotically Minkowski background (using S-matrix
elements) correspond to the present theory as

String theory ⇐⇒ lim
M→asymptotic Minkowski

T ? (6.98)

19This does not mean that the interior of a black hole is described by state-independent operators in the
CFT. It is possible that the CFT does not provide a description of the black hole interior; see discussion in
Section 6.4.
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Here, the T /NMinkowski portion is described by the scattering dynamics, and the NMinkowski

degrees of freedom are responsible for the initial conditions, where NMinkowski = eAMinkowski/4;
see the next section. If this is indeed the case, then it would be difficult to obtain a use-
ful description of cosmological spacetimes directly in that formulation, since they would
correspond to a special measure zero subset of the possible asymptotic states.

6.5 Discussion

In this final section, we discuss some of the issues that have not been addressed in the
construction so far. This includes the possibility of sending signals from a past singularity or
past null infinity (in the course of time evolution) and the interpretation of a closed universe
in which the area of the leaf changes from increasing to decreasing once the scale factor at
the leaf starts decreasing. We argue that these issues are related to that of “selecting a
state”—even if the theory is specified we still need to provide selection conditions on a state,
usually given in the form of boundary conditions (e.g. initial conditions). Our discussion
here is schematic, but it allows us to develop intuition about how quantum gravity in general
spacetimes might work at the fundamental level.

Signals from a past singularity or past null infinity

As mentioned in Section 6.4, the evolution of a state in the present framework is not fully
autonomous. Consistent with the covariant entropy bound, we may view a holographic state
to carry the information on the two (future-directed ingoing and past-directed outgoing)
light sheets associated with the leaf it represents. However, this is not enough to determine
a future state because there may be signals sent into the system from a past singularity or
past null infinity (signals originating from the lower right direction between the two 45◦ lines
in Fig. 6.13).

To be specific, let us consider a (not necessarily FRW) universe beginning with a big bang.
As shown in Fig. 6.14, obtaining a future state (represented by the upper 45◦ line) in general
requires a specification of signals from the big bang singularity, in addition to the information
contained in the original state (the lower 45◦ line). We usually avoid this issue by requiring
the “cosmological principle,” i.e. spatial homogeneity and isotropy, which determines what
conditions one must put at the singularity—with this requirement, the state of the universe is
determined by the energy density content in the universe at a time. Imposing this principle,
however, corresponds to choosing a very special state. This is because there is no reason to
expect that signals sent from the singularity at different times τ (defined holographically)
are correlated in such a way that the system appears as homogeneous and isotropic in some
time slicing. In fact, this was one of the original motivations for inflationary cosmology [75,
115, 6].

In some cases, appropriate conditions can be obtained by assuming that the spacetime
under consideration is a portion of larger spacetime. For example, if the universe is dominated
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by negative curvature at an early stage, it may arise from bubble nucleation [44], in which case
the homogeneity and isotropy would result from the dynamics of the bubble nucleation [76].
Even in this case, however, we would still need to specify similar conditions in the ambient
space in which our bubble forms, and so on. More generally, the analysis here says that to
obtain a future state, we need to specify the information coming from the directions tangent
to the past-directed light rays. This, however, is morally the same as the usual situation in
physics in which we need to specify boundary (e.g. initial) conditions beyond the dynamical
laws the system obeys.

The situation is essentially the same in the limit of AdS/CFT; we only need to consider
the AdS boundary instead of the big bang singularity. To obtain future states, it is not
enough to specify the initial state, given by a local operator inserted at the point x−∞
corresponding to τ = −∞ on the conformally compactified AdS boundary. We also have to
specify other (possible) boundary operators inserted at points other than x−∞.

String theory formulated in terms of the S-matrix deals with this issue by adopting an
asymptotically Minkowski time slice in which all the necessary information is viewed as being
in the initial state. This, however, does not change the amount of information needed to
specify the state, which is infinite in asymptotically Minkowski space (because one can in
principle send an infinite amount of information into the system from past null infinity).

Closed universes—time in quantum gravity

Consider a closed universe in which the vacuum energy is negligible throughout its history.
In such a universe, the area of the leaf changes from increasing to decreasing in the middle
of its evolution. On the other hand, we expect that the area of the leaf for a “generic” state
increases monotonically, since the number of independent states representing spacetime with
the leaf area A goes as eA/4. What does this imply?

We interpret that states representing universes like these are “fine-tuned,” so that they
do not obey the usual second law of thermodynamics as applied to the Hilbert space of
quantum gravity. This does not mean that they are meaningless states to consider. Rather,
it means that we need to scrutinize carefully the concept of time in quantum gravity.

There are at least three different views of time in quantum gravity; see, e.g., Ref. [131].
First, since time parameterization in quantum gravity is nothing other than a gauge choice,
the state |Ψ̃〉 of the full system—whatever its interpretation—satisfies the constraint [48,
188]

H|Ψ̃〉 = 0, (6.99)

where H is the time evolution operator, in our context the generator of a shift in τ . In this
sense, the concept of time evolution does not apply to the full state |Ψ̃〉.20 However, this of
course does not mean that physical time we perceive is nonexistent. Time we observe can

20Reference [48] states that Eq. (6.99) need not apply in an infinite world; for example, the state of the
system |Ψ∞〉 may depend on time in asymptotically Minkowski space. We view that Eq. (6.99) still applies
in this case by interpreting |Ψ̃〉 to represent the full system, including the “exterior” degrees of freedom
discussed in Section 6.4 (the degrees of freedom corresponding to NMinkowski below Eq. (6.98)) as well as
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be defined as correlations between subsystems (e.g. between an object playing the role of a
clock and the rest) [48, 149], at least in some branch of |Ψ̃〉. Another way to define time is
through probability flow in |Ψ̃〉. Suppose |Ψ̃〉 is expanded in a set of states |Ψi〉 each of which
represents a well-defined semiclassical spacetime when such an interpretation is applicable:

|Ψ̃〉 =
∑
i

ci|Ψi〉. (6.100)

According to the discussion in Section 6.4, |Ψi〉’s are approximately orthogonal in the ap-
propriate limit, and the constraint in Eq. (6.99) implies∑

j

cjUij = ci, Uij ≡ 〈Ψi|e−iHδτ |Ψj〉, (6.101)

where Uij is (effectively) unitary∑
j

UijU
∗
kj =

∑
j

UjiU
∗
jk = δik. (6.102)

Multiplying Eq. (6.101) with its conjugate and using Eq. (6.102), we obtain

0 =− |ci|2
∑
j 6=i

|Uji|2 +
∑
j 6=i

|cj|2|Uij|2

+
∑
j 6=i

cic
∗
jUiiU

∗
ij +

∑
j 6=i

cjc
∗
iUijU

∗
ii +

∑
j,k 6=i
j 6=k

cjc
∗
kUijU

∗
ik. (6.103)

In the regime where the WKB approximation is applicable, the terms in the second line are
negligible compared with those in the first line because of a rapid oscillation of the phases
of cj,k’s, so that

|ci|2
∑
j 6=i

|Uji|2 =
∑
j 6=i

|cj|2|Uij|2, (6.104)

implying that the “current of probability” is conserved. We may regard this current as time
flow. The time defined in this way—which we call current time—need not be the same as
the physical time defined through correlations, although in many cases the former agrees
approximately with the latter or the negative of it (up to a trivial shift and rescaling).

In a closed universe (with a negligible vacuum energy), it is customary to impose the
boundary condition

ci = 0 for {|Ψi〉 | a = 0}, (6.105)

i.e. the wavefunction vanishes when the scale factor goes to zero [48]. With this boundary
condition, current time τ flows in a closed circuit. The direction of the flow agrees with that

the “interior” degrees of freedom represented by |Ψ∞〉. The time evolution of |Ψ∞〉 is then understood as
correlations between the interior and exterior degrees of freedom, as described below.
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of physical time in the branches where da/dτ > 0, while the two are exactly the opposite
in the branches where da/dτ < 0. (The latter statement follows, e.g., from the analysis
in Ref. [4], which shows that given a lower entropy final condition the most likely history
of a system is the CPT conjugate of the standard time evolution.) Our time evolution in
earlier sections concerns the flow of current time. The (apparent) violation of the second
law of thermodynamics then arises because the condition of Eq. (6.105) selects a special,
“standing wave” solution from the viewpoint of the current time flow. This is, however, not
a fine-tuning from the point of view of the quantum theory in a similar way as the electron
energy levels of the hydrogen atom are not regarded as fine-tuned states.

The fact that current time flows toward lower entropy states does not mean that a physical
observer living in the da/dτ < 0 phase sees a violation of the second law of thermodynamics.
Since the whole system evolves as time reversal of a standard entropy increasing process,
including memory states of the observer, a physical observer always finds the evolution of the
system to be the standard one [133, 4]; in particular, he/she always finds that the universe
is expanding.

Static quantum multiverse—selecting the state in the landscape

The analysis of string theory suggests that the theory has a multitude of metastable vacua
each of which leads to a distinct low energy effective theory [34, 104, 168, 53]. Combining
this with the fact that many of these vacua lead to inflation (which is future eternal at the
semiclassical level) leads to the picture of the inflationary multiverse [78, 185, 117, 116]. The
picture suggests that our universe is one of many bubble universes, and it cannot be a closed
universe that will eventually collapse as the one discussed above. How is the state of the
multiverse selected then?

A naive semiclassical picture implies that the state of the multiverse evolves asymptoti-
cally into a superposition of supersymmetric Minkowski worlds and (possibly) “singularity
worlds” resulting from the big crunches of AdS bubble universes [133]. This is because any
other universe is expected to decay eventually. There are basically two possibilities for the
situation in a full quantum theory.

The first possibility is that the multiverse is in a “scattering state.” This essentially
preserves the semiclassical intuition. From the viewpoint of the current time flow, the mul-
tiverse begins as an asymptotic state, experiences nontrivial cosmology at an intermediate
stage, and then dissipates again into the asymptotic Minkowski and singularity worlds. In
the earlier stage of the evolution in which the coarse-grained entropy decreases in τ , the di-
rections of current and physical time flows are opposite, while in the later stage of increasing
entropy, the flows of the two times are in the same direction. The resulting picture is similar
to that of Ref. [41]: the multiverse evolves asymptotically into both forward and backward
in (current) time. This, however, does not mean that a physical observer, who is a part of
the system, sees an entropy decreasing universe; the observer always finds that his/her world
obeys the second law of thermodynamics.
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A problem with this possibility is that specifying the theory of quantum gravity, e.g. the
structure of the Hilbert space and Hamiltonian, is not enough to obtain the state of the
multiverse and hence make predictions. We would need a separate theory to specify initial
conditions. Furthermore, having a lower course-grained entropy at the turn-around point
(the point at which the coarse-grained entropy changes from decreasing to increasing in the
current time evolution) requires a more carefully chosen initial condition. This leads to the
issue of understanding why we are “ordinary observers,” carrying course-grained entropies
(much) smaller than that needed to have any consciousness—a variant of the well-known
Boltzmann brain problem [56, 5, 147] (the argument applied to space of initial conditions,
rather than to a thermal system).

The alternative, and perhaps more attractive, possibility is that the multiverse is in a
“bound state” [134]. Specifically, the multiverse is in a normalizable state satisfying the
constraint of Eq. (6.99) (as well as any other constraints):

|Ψ̃〉 =
∑
i

ci|Ψi〉;
∑
i

|ci|2 <∞. (6.106)

This is a normalization condition in spacetime, rather than in space as in usual quantum
mechanics, and it allows us to determine, in principle, the state of the multiverse once the
theory is given.21 As in the case of a collapsing closed universe, current time flows in a closed
circuit(s) to the extent that this concept is applicable. This suggests that the multiverse does
not probe an asymptotic supersymmetric Minkowski region or the big crunch singularity of
an AdS bubble. The origin of this phenomenon must be intrinsically quantum mechanical as
it contradicts the naive semiclassical picture. In fact, such a situation is not new in physics.
As is well known, the hydrogen atom cannot be correctly described using classical mechanics:
any orbit of the electron is unstable with respect to the emission of synchrotron radiation.
The situation in the quantum multiverse may be similar—quantum mechanics is responsible
for the very existence of the system.

Once the state of the multiverse is determined, we should be able to use it to give
predictions or explanations. This requires us to develop a prescription for extracting answers
to physical questions about the state. The prescription would certainly involve coarse-
graining (as one cannot even store the information of all possible microstates of the multiverse
within the multiverse), and it should reproduce the standard Born rule giving probabilistic
predictions in the appropriate regime. Perhaps, the normalization condition of Eq. (6.106)
is required in order for this prescription to be well-defined.

21If there are multiple solutions |Ψ̃I〉, it is natural to assume that the multiverse is in the maximally

mixed state ρ = 1
N

∑N
I=1 |Ψ̃I〉〈Ψ̃I | (in the absence of more information). Here, we have taken |Ψ̃I〉’s to be

orthonormal.
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6.6 Appendix for Chapter 6

Spacelike Monotonicity Theorem

Let H be a past holographic screen, foliated by compact marginally anti-trapped surfaces i.e.
leaves, {σr}. Here, r is a (non-unique) real parameter taken to be a monotonically increasing
function of the leaf area. For each leaf we can construct the two future-directed null vector
fields (up to overall normalization) and denote them ka and la, which satisfy

θk = 0, θl > 0. (6.107)

Now let ha a leaf-orthogonal vector field tangent to H and normalized by the condition
ha∂ar = 1. Note that ha must point in the direction of increasing area. We can always put
ha = αla+βka for some smooth real-valued functions α and β on H. The Bousso-Engelhardt
area theorem implies that α > 0 everywhere. There is no restriction on the sign of β: it can
even have indefinite sign on a single leaf.

Let Ar be a d− 2 dimensional region in a leaf σr and let ∂Ar denote its boundary, where
d is the spacetime dimension. This region can be transported to a region Ar′ in a nearby leaf
σr′ by following the integral curves of the leaf-orthogonal vector field ha. While Ref. [159]
pointed out that ‖Ar‖ is an increasing function of r, this by itself does not guarantee that
S(Ar) monotonically increases. Nonetheless, we now show that S(Ar) indeed monotonically
increases if ha is spacelike.

Theorem 4. Suppose that H is a past holographic screen foliated by leaves {σr} and assume
that the parameter r is oriented to increase as leaf area increases. Assume that H is spacelike
on some particular leaf which we take to be σ0 by shifting r if necessary. Let A0 be a subregion
of σ0 and define Ar ⊂ σr by transporting points in A0 along the integral curves of the leaf-
orthogonal vector field in H. Then, S(Ar) is a monotonically increasing function of r.

Proof. Let ha be the leaf-orthogonal vector field tangent to H with ha∂ar = 1 and note that
ha
∣∣
σ0

is spacelike. The compactness of σ0 now allows us to find r0 > 0 such that ha
∣∣
H[−r0,r0]

is spacelike. Here we have introduced the convenient notation

H[r1, r2] =
⋃

r1≤r≤r2

σr. (6.108)

In what follows, we will assume that the extremal surface E(Ar) anchored to ∂Ar deforms
smoothly as a function of r at r = 0. If this is not the case, a phase transition occurs at
r = 0 which will give rise to a discontinuity in the derivative of S(Ar). However, we can
then note that our theorem applies at r slightly greater than zero (where H is still spacelike
and where no phase transition occurs) and also at r slightly smaller than zero. This implies
that S(Ar) is monotonically increasing at r = 0 even if E(Ar) “jumps” at r = 0 so that the
derivative of ‖E(Ar)‖ has a discontinuity.
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The maximin construction of E(A0) ensures that there exists Σ0 ∈ Cσ0 such that E(A0) =
min(A0,Σ0). Here, Cσ denotes the collection of all complete codimension-1 achronal surfaces
lying in Dσ that are anchored to σ, and min(A,Σ) denote the d − 2 dimensional surface of
minimal area lying in Σ that is homologous to A. If 0 < ε < r0, let

Σε = Σ0 ∪H[0, ε]. (6.109)

We claim that Σε ∈ Cσε for small ε. First we check that Σε is achronal. Since Σ0 and
H[0, ε] are achronal independently, we focus on their intersection at σ0. The definition
of Cσ0 requires that Σ0 lies in Dσ0 so that a vector pointing from σ0 to Σ0 has the form
c1k

a− c2l
a with c1, c2 > 0. Meanwhile, a vector pointing from σ0 to H[0, ε] is proportional to

ha
∣∣
σ0

= |α|la−|β|ka. Here we have made use of the fact that α > 0 and β < 0 for a spacelike
past holographic screen. We see now that Σ0 lies “inside” σ0 while ha points toward the
“outside.” This ensures that Σε is achronal for sufficiently small ε. All that is left to check
is that Σε lies inside of Dσε . But this is clear because a vector pointing from σε toward Σε is
proportional to −ha

∣∣
σε

= −|α|la + |β|ka which is indeed directed into Dσε . That Σε ∈ Cσε is
now clear for small ε.

We now construct an ε-dependent family of d− 2 dimensional surfaces lying on Σ0 that
are anchored to ∂A0, which we will denote by Ξε. Begin by fixing a small ε with 0 < ε < r0

and defining a projection function πε : H[0, ε]→ σ0 in the natural way: if p ∈ H[0, ε], follow
the integral curves of ha, starting from p, until a point in σ0 is reached. The result is πε(p).
We can now define Ξε:

Ξε =
(

min(Aε,Σε) ∩ Σ0

)⋃
πε

(
min(Aε,Σε) ∩H[0, ε]

)
. (6.110)

If ε is sufficiently small, the fact that H[0, ε] has a positive definite metric, along with the
fact that E(A0) is not tangent to σ0 anywhere, ensures that ‖πε

(
min(Aε,Σε) ∩ H[0, ε]

)
‖ <

‖min(Aε,Σε) ∩H[0, ε]‖. From this it follows that

‖Ξε‖ < ‖min(Aε,Σε)‖. (6.111)

On the other hand, because πε(∂Aε) = ∂A0, we know that Ξε is a codimension-2 surface
anchored to ∂A0 that lies only on Σ0. Thus,

4S(A0) = ‖min(A0,Σ0)‖ ≤ ‖Ξε‖. (6.112)

Noting that the maximin construction of E(Aε) requires

‖min(Aε,Σε)‖ ≤ 4S(Aε), (6.113)

we find S(A0) < S(Aε).
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Qubit Model

Model and applications to quantum gravity

Here we describe a toy model for holographic states representing FRW universes, presented
originally in Ref. [143]. We consider a Hilbert space for N (� 1) qubits H = (C2)⊗N . Let
∆ (≤ N) be a nonnegative integer and consider a typical superposition of 2∆ product states

|Ψ〉 =
2∆∑
i=1

ai |xi1xi2 · · ·xiN〉, (6.114)

where {ai} is a normalized complex vector, and xi1,··· ,N ∈ {0, 1}. Given an integer n with
1 ≤ n < N , we can break the Hilbert space into a subsystem Γ for the first n qubits and its
complement Γ̄. We are interested in computing the entanglement entropy SΓ of Γ.

Suppose n ≤ N/2. If ∆ ≥ n, then i in Eq. (6.114) runs over an index that takes many
more values than the dimension of the Hilbert space for Γ, so that Page’s argument [144]
tells us that Γ has maximal entanglement entropy: SΓ = n ln 2. On the other hand, if ∆ < n
then the number of terms in Eq. (6.114) is much less than both the dimension of the Hilbert
space of Γ and that of Γ̄, which limits the entanglement entropy: SΓ = ∆ ln 2. We therefore
obtain

SΓ =

{
n n ≤ ∆,

∆ n > ∆,
(6.115)

for ∆ < N/2, while
SΓ = n, (6.116)

for ∆ ≥ N/2. Here and below, we drop the irrelevant factor of ln 2. The value of SΓ for
n > N/2 is obtained from SΓ = SΓ̄ since |Ψ〉 is pure.

The behavior of SΓ in Eqs. (6.115, 6.116) models that of S(γ) in Section 6.3. The
correspondence is given by

n

N
↔ ‖Γ‖
A∗

, (6.117)

∆

N
↔ 1

2
Qw

(π
2

)
, (6.118)

for ∆ ≤ N/2.22 The identification of Eq. (6.117) is natural if we regard the N = A∗/4 qubits
as distributing over a leaf σ∗ with each qubit occupying a volume of 4 in Planck units. The
quantity ∆ controls what universe a state represents. For fixed ∆, different choices of the
product states |xi1xi2 · · ·xiN〉 and the coefficients ai give eN independent microstates for the
FRW universe with w = f(∆/N). The function f is determined by Eq. (6.118); in particular,
f = −1 (> −1) for ∆/N = 1/2 (< 1/2).

22States with ∆ > N/2 cannot be discriminated from those with ∆ = N/2 using SΓ alone. Below, we
only consider the states with N/4 ≤ ∆ ≤ N/2.
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This model can be used to argue for features of the holographic theories discussed in
Section 6.4. We consider two cases:

Direct sum structure — In this case, each of the subspaces H∗,w is modeled by the
N qubit system described here. Consider H∗,w with a fixed w. States representing
the FRW universe with w then encompass eN independent microstates in this space.
These microstates form “effective vector space” in that a superposition involving less
than eO(δwN) of them leads only to another microstate representing the same FRW
universe with w. (We say that these states comprise “fat” preferred axes.) Most of
the states in H∗,w, containing more than eO(δwN) of the w microstates, are regarded as
non-semiclassical, i.e. firewall or unphysical, states.

Russian doll structure — In this case, the entire H∗ space is modeled by the N
qubits, and the states representing various FRW universes are all elements of this single
Hilbert space of dimension eN . An important point is that the set of states with any
fixed ∆w provide a complete basis for the whole Hilbert space, where ∆w ≡ Nf−1(w).
This implies that we can obtain a state with any w′ < w by superposing e∆w′−∆w states
with ∆w, and we can also obtain a state with w′ > w as a superposition of carefully
chosen e∆w states with ∆w. We call this the “Russian doll” structure, which is depicted
schematically in Fig. 6.11.

Effective incoherence of superpositions

We now focus on the latter case and consider a normalized superposition

|Ψ〉 = c1|Ψ1〉+ c2|Ψ2〉, (6.119)

of two states

|Ψ1〉 =
2∆1∑
i=1

ai |xi1xi2 · · ·xiN〉

(
2∆1∑
i=1

|ai|2 = 1

)
, (6.120)

|Ψ2〉 =
2∆2∑
i=1

bi |yi1yi2 · · · yiN〉

(
2∆2∑
i=1

|bi|2 = 1

)
, (6.121)

with ∆1 6= ∆2 and

∆1,∆2 ≤
N

2
. (6.122)

Here, the coefficients ai and bi are random, as are the binary values xi1,··· ,N and yi1,··· ,N , and
|c1|2 + |c2|2 = 1 up to an exponentially suppressed correction arising from 〈Ψ1|Ψ2〉 6= 0 .
O(2−|∆1−∆2|/2). We are interested in the reduced density matrix

ρ1···n = Trn+1···N ρ, (6.123)



CHAPTER 6. TOWARD A HOLOGRAPHIC THEORY FOR GENERAL SPACETIMES135

obtained by performing a partial trace on

ρ = |Ψ〉〈Ψ| = |c1|2|Ψ1〉〈Ψ1|+ |c2|2|Ψ2〉〈Ψ2|+ c1c
∗
2|Ψ1〉〈Ψ2|+ c2c

∗
1|Ψ2〉〈Ψ1|, (6.124)

over the subsystem consisting of the first n qubits. We will only consider the case where
n < N/2.

We begin our analysis by considering Trn+1···N |Ψ1〉〈Ψ1|. It is convenient to write

|Ψ1〉〈Ψ1| =
2∆1∑
i=1

|ai|2 |xi1 · · ·xiN〉〈xi1 · · ·xiN |+
2∆1∑
i,j=1
i 6=j

aia
∗
j |xi1 · · ·xiN〉〈x

j
1 · · ·x

j
N |. (6.125)

Upon performing the partial trace over |Ψ1〉〈Ψ1|, the first sum gives a diagonal contribution
to the reduced density matrix

D11 =
2∆1∑
i=1

|ai|2 |xi1 · · ·xin〉〈xi1 · · ·xin|. (6.126)

The second sum gives a correction

D̃11 =
2∆1∑
i,j=1
i 6=j

aia
∗
j |xi1 · · ·xin〉〈x

j
1 · · ·xjn| δxin+1,x

j
n+1
· · · δxiN ,xjN . (6.127)

We now consider two cases:

(i) ∆1 > n.
Because 2∆1 � 2n, it is clear that D11 is a 2n×2n diagonal matrix with every diagonal
entry approximately given by

2∆1

2n
〈
|ai|2

〉
= 2−n. (6.128)

(Note that 〈|ai|2〉 = 2−∆1 because |Ψ1〉 is normalized and random.) Thus, D11 is a
fully mixed state. Now observe that D̃11 consists of almost all zeros. In fact, looking
at Eq. (6.127) we see that there are 22∆1−N+n nonzero entries of average absolute value
2−∆1 . Given that ∆1 ≤ N/2, we conclude that D̃11 has exponentially fewer nonzero
entries than D11, and that each nonzero entry has exponentially smaller size than the
entries of D11.

(ii) ∆1 ≤ n.
In this case, D11 is a diagonal matrix having 2∆1 nonzero entries of order 2−∆1 . The
number of nonzero entries in D̃11 is, again, 22∆1−N+n, each having the average absolute
value 2−∆1 . The effect of D̃11 is highly suppressed because its number of nonzero entries



CHAPTER 6. TOWARD A HOLOGRAPHIC THEORY FOR GENERAL SPACETIMES136

is exponentially smaller than that of D11. In fact, for the number of nonzero entries in
D̃11 to compete with that in D11, we would need 2∆1 −N + n ≥ ∆1, which, however,
mean

∆1 ≥ N − n > N

2
, (6.129)

a contradiction.

Summarizing, Trn+1···N |Ψ1〉〈Ψ1| = D11 + D̃11 is a diagonal matrix having 2min{∆1,n} nonzero
entries of order 2−min{∆1,n}, up to exponentially suppressed effects. The same analysis obvi-
ously applies to Trn+1···N |Ψ2〉〈Ψ2| = D22 + D̃22 with ∆1 → ∆2.

We now turn our attention to the matrix Trn+1···N |Ψ1〉〈Ψ2|, which we denote as D̃12:

D̃12 =
2∆1∑
i=1

2∆2∑
j=1

aib
∗
j |xi1 · · ·xin〉〈y

j
1 · · · yjn|δxin+1,y

j
n+1
· · · δxiN ,yjN . (6.130)

We argue, along similar lines to the above, that D̃12 is exponentially smaller than |c1|2D11 +
|c2|2D22, unless |c1| or |c2| is exponentially suppressed. Once again, we have several cases:

(i) ∆1,∆2 ≤ n.
In this case, |c1|2D11 + |c2|2D22 is a diagonal matrix having 2∆1 nonzero entries of order
2−∆1 and 2∆2 nonzero entries of order 2−∆2 . Considering Eq. (6.130), D̃12 consists of
zeros except for 2∆1+∆2−N+n nonzero entries with the average absolute value

〈
|aib∗j |

〉
=

2−(∆1+∆2)/2. The number of these entries, however, is exponentially smaller than 2∆1 ,
since having ∆1 + ∆2 − N + n ≥ ∆1 would require ∆2 ≥ N − n > N/2; similarly,
it is also exponentially smaller than 2∆2 . Moreover the changes of the exponentially
rare eigenvalues affected are at most of O(1). We conclude that the effect of D̃12 is
exponentially suppressed.

(ii) ∆1,∆2 > n.
In this case, the condition that |c1|2 + |c2|2 = 1 ensures that |c1|2D11 + |c2|2D22 is a
2n × 2n unit matrix multiplied by 2−n. Meanwhile, D̃12 consists of zeros except for
2∆1+∆2−N+n � 2n nonzero entries of size 2−(∆1+∆2)/2 � 2−n.

(iii) ∆1 ≤ n < ∆2.
In this case, D22 is a 2n × 2n unit matrix multiplied by 2−n while D11 is a diagonal
matrix having 2∆1 nonzero entries of order 2−∆1 . Once again, the number of nonzero
entries in D̃12 is exponentially smaller than 2∆1 , since ∆1 + ∆2 − N + n ≥ ∆1 would
require ∆2 ≥ N − n > N/2, and the fractional corrections to eigenvalues from these
entries are of order 2−(∆2−n). This implies that the effect of D̃12 is negligible. The same
argument also applies to the case that ∆2 ≤ n < ∆1.
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We conclude that for n < N/2, we find

ρ1···n = |c1|2D11 + |c2|2D22 =
2∆1∑
i=1

|ai|2 |xi1 · · ·xin〉〈xi1 · · ·xin|+
2∆2∑
i=1

|bi|2 |yi1 · · · yin〉〈yi1 · · · yin|,

(6.131)
up to effects exponentially suppressed in N ≈ O(A∗). This implies that the reduced density
matrix for the state |Ψ〉 takes the form of an incoherent classical mixture

ρ1···n = |c1|2ρ(1)
1···n + |c2|2ρ(2)

1···n, (6.132)

where ρ
(k)
1···n = Trn+1···N |Ψk〉〈Ψk| (k = 1, 2) are the reduced density matrices we would obtain

if the state were |Ψk〉.
The form of Eq. (6.131) also implies that the entanglement entropy

S1···n = −Tr1···n(ρ1···n ln ρ1···n), (6.133)

obeys a similar linear relation

S1···n = |c1|2S(1)
1···n + |c2|2S(2)

1···n +O(1), (6.134)

unless |c1| or |c2| is exponentially small. Here, S
(k)
1···n = −Tr1···n(ρ

(k)
1···n ln ρ

(k)
1···n). This can be

seen by considering the same three cases as above. If ∆1,∆2 ≤ n, ρ1···n is a diagonal matrix
having 2∆1 nonzero entries with average value |c1|22−∆1 and 2∆2 nonzero entries with average
value |c2|22−∆2 . In this case,

S1···n = −|c1|2 ln
|c1|2

2∆1
− |c2|2 ln

|c2|2

2∆2
= |c1|2∆1 ln 2 + |c2|2∆2 ln 2 +O(1), (6.135)

while we have S
(k)
1···n = ∆k ln 2. The O(1) correction from linearity is the entropy of mixing,

given by
S1···n,mix = −|c1|2 ln |c1|2 − |c2|2 ln |c2|2. (6.136)

If ∆1,∆2 > n, then ρ1···n is a unit matrix multiplied by 2−n. From this it follows that S1···n =
n ln 2 = |c1|2n ln 2 + |c2|2n ln 2, which is desirable given that S

(k)
1···n = n ln 2 for ∆k > n.23

Finally, if ∆1 < n < ∆2, ρ
(1)
1···n has 2∆1 nonzero entries of mean value 2−∆1 while ρ

(2)
1···n is a

unit matrix multiplied by 2−n. Because 2−∆1 � 2−n the total density matrix ρ1···n given by
Eq. (6.131) is diagonal and has 2∆1 entries of size |c1|22−∆1 and 2n entries of size |c2|22−n.

We thus find that S1···n = |c1|2∆1 ln 2 + |c2|2n ln 2 + S1···n,mix = |c1|2S(1)
1···n + |c2|2S(2)

1···n +O(1).
(This expression is valid for ∆1 = n < ∆2 as well.)

23The absence of the mixing contribution in this case is an artifact of the specific qubit model considered
here, arising from the fact that two universes cannot be discriminated unless n is larger than one of ∆1,2;
see Eq. (6.115). In realistic cases, the mixing contribution should always exist for any macroscopic region in
the holographic space as two different universes can be discriminated in that region; see, e.g., Fig. 6.5.
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(a) Steep Potential (b) Broad Potential

(c) φ(t) for the steep potential. (d) φ(t) for the broad potential.

(e) ‖L(π/2, t)‖ for the steep potential. (f) ‖L(π/2, t)‖ for the broad potential.

(g) S(π/2, t) for the steep potential. (h) S(π/2, t) for the broad potential.

Figure 6.10: A steep potential (a) leading to the time evolution of the scalar field (b), the
area of a leaf hemisphere (c), and the screen entanglement entropy (d). The same for a broad
potential (e)–(h).
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Figure 6.11: Possible structures of the Hilbert space H∗ for a fixed boundary space B. In
the direct sum structure (left), each semiclassical spacetime in Dσ∗ has its own Hilbert space
H∗,w. The Russian doll structure (right) corresponds to the scenario of “spacetime equals
entanglement,” i.e. the entanglement entropies of the holographic degrees of freedom deter-
mine spacetime in Dσ∗ . This implies that a superposition of exponentially many semiclassical
spacetimes can lead to a different semiclassical spacetime.

±
*

Figure 6.12: If a black hole forms inside the holographic screen, future-directed ingoing light
rays emanating orthogonally from the leaf σ∗ at an intermediate time may hit the singularity
before reaching a caustic. While the diagram here assumes spherical symmetry for simplicity,
the phenomenon can occur more generally.
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-k 

a

k 

a

Figure 6.13: To determine a state in the future, we need information on the “exterior” light
sheet, the light sheet generated by light rays emanating from σ∗ in the −ka directions, in
addition to that on the “interior” light sheet, i.e. the one generated by light rays emanating
in the +ka directions.

² ²
2

² ²
1

Figure 6.14: In a universe beginning with a big bang, obtaining a future state requires a
specification of signals from the big bang singularity, in addition to the information contained
in the original state. In an FRW universe this is done by imposing spatial homogeneity and
isotropy, which corresponds to selecting a fine-tuned state from the viewpoint of the big bang
universe.
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Chapter 7

The Boundary Dual of Bulk Local
Operators

7.1 Introduction

The emergence of bulk locality in the AdS/CFT correspondence [122, 189] has yet to receive
a satisfactory explanation in terms of the behavior of holographic CFTs. While gravity
prohibits exact locality in a quantum theory, when the gravitational coupling is sufficiently
small, local physics must be a good approximation in the bulk. There should be a manifes-
tation of this “emergence of locality” in the boundary theory.

One way to tackle this issue is by studying the ways in which bulk degrees of freedom
are encoded in the CFT. It is thus natural to ask if there is a boundary dual of local bulk
fields in the regime where semiclassical field theory holds. While the extrapolate dictionary
[18] states that bulk fields at spacelike infinity are dual to local operators on the boundary,
points deep in the bulk require a nonlocal holographic description. There are many well-
known ways to reconstruct bulk fields in terms of nonlocal boundary operators [18, 80, 103,
94] with support in a variety of boundary regions. All of these procedures, however, require
solving bulk equations of motion which presupposes knowledge of the bulk spacetime. If one
were not explicitly told the metric in the bulk, is there any way to determine whether or not
a given operator is bulk local? To put this question differently, is the concept of a local bulk
operator in any way distinguished in the boundary theory?

The primary goal of this work is to address this question. We will find that a powerful
tool to this end is the concept of subregion duality. The notion that a boundary domain of
dependence should be thought of as being dual to some region of the bulk, which originally
arose from considerations of causal wedge reconstruction, was made precise recently by [7,
102, 49] where it was concluded that a bulk operator can be reconstructed in a subregion
of the CFT if and only if its support is contained in the entanglement wedge of that CFT
region [49]. This conclusion was made in the context of a new development in AdS/CFT: the
role of quantum error correction. It is now understood that a semiclassical bulk spacetime
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description is associated with a code subspace of the boundary Hilbert space, and that
various inequivalent boundary reconstructions of bulk operators become equivalent when
restricted to the code subspace.

This modern form of subregion duality will reveal a novel characterization of locality in
the bulk. Given a holographic CFT and a code subspace dual to some unknown geometry,
we will provide a procedure that can identify, up to certain caveats, whether or not an
operator is dual to a bulk local operator. As a byproduct of our method, we are also able
to reconstruct the causal structure (equivalently, the metric up to a conformal factor) of a
large region in the bulk. In some examples, this region can penetrate event horizons.

Outline. We start, in section 7.2, by reviewing the arguments and motivation for the
quantum error correcting view in holography. In particular, we sketch the proof of [49] that
a bulk operator is reconstructable in a boundary region if and only if its support is contained
entirely in the entanglement wedge of that boundary region.

Section 7.3 contains the major constructions of this work. We define the notion of a
superficially local operator without making direct reference to the bulk. These are bulk
operators that are “as local as the boundary can directly tell.” Their defining characteristic is
the great variety of boundary regions in which they can be reconstructed. In a certain region
of the bulk called the localizable region, operators are local if and only if they are superficially
local. However, there are situations in which superficially local operators correspond to
nonlocal bulk operators that are supported outside of the localizable region. The bulk regions
in which these problematic operators lie will be referred to as clumps. Fortunately, clumps
appear to always be identifiable from the boundary theory because they are associated
with phase transitions. Thus, they can be identified and thrown away, leaving only the
superficially local operators that are authentically dual to bulk local operators.

The set of superficially local operators can be given an equivalence relation by identifying
two operators when they can be reconstructed in exactly the same boundary regions. After
removing clumps, the set of equivalence classes of superficially local operators is naturally
identified with the bulk localizable region.

In 7.4, we note that the commutation relations amongst these operators reveals the causal
structure in the localizable region. Thus, we are able to reconstruct the metric in this portion
of the bulk up to a conformal rescaling. This approach is similar at heart to that of [61]
where a bulk reconstruction is accomplished by means of light-cone cuts. We argue, in fact,
that there are numerous interesting connections between our approach and that involving
cut singularities.

7.2 Principles of Subregion Duality

This section provides a brief review of the quantum error correcting view of AdS/CFT.
Readers already familiar with the conclusions of [7, 49] may wish to proceed to section 7.3

There is a zoo of different methods for expressing bulk fields in terms of CFT operators.
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The extrapolate dictionary [18] gives a precise relationship between limiting values of bulk
fields and CFT operators with corresponding scaling dimensions. It is also possible to express
operators lying deeper in the bulk in therms of CFT quantities by solving equations of motion
in the bulk [80, 18, 103, 128, 94]. Of these approaches, one of relevance for our considerations
is the causal wedge reconstruction, which generalizes the Rindler reconstruction of [80]. This
prescription expresses local bulk fields in terms of CFT operators localized to a special
boundary subregion. Specifically, if R is region in the boundary with domain of dependence
D∂(R), and if CW(R) = J+[D∂(R)] ∩ J−[D∂(R)] is the causal wedge [98] of R, then causal
wedge reconstruction allows a bulk field in CW(R) to be expressed as a smeared operator in
D∂(R).1

Causal wedge reconstruction suggests the possibility that subregions in the boundary are
enough to understand the physics of associated bulk subregions. However, despite what is
suggested from the analysis of [80], the causal wedge is, in general, not the largest possible re-
gion that a boundary subregion holographically describes in the semiclassical limit. Instead,
the bulk region dual to a CFT region R is the entanglement wedge of R, denoted by EW(R)
[187, 93, 101]. EW(R) can be defined as follows. Let Σ be a spacelike bulk surface that,
after conformal compactification of M , is a Cauchy slice for the unphysical bulk spacetime.
Require that Σ contains R and its HRT surface ext R. Let S denote the part of Σ between
R and extR. The domain of dependence of S (computed in the unphysical spacetime) is the
entanglement wedge of R. It is known that EW(R) ⊇ CW(R) [93]. As we review below, [49]
gave a precise sense in which a boundary region R should really be thought of as being dual
to its entanglement wedge. This is the most refined and powerful known form of “subregion
duality” [36] in AdS/CFT.

Before discussing entanglement wedge reconstruction, we note that subregion duality,
even in the form of [80], raises major puzzles [7]. For example, an operator φ(p) deep
within the bulk can be taken to lie in many different causal wedges. Thus, a causal wedge
reconstruction of the form

φ(p) =

∫
D∂(R)

K(p, x)O(x)dx (7.1)

manifestly commutes with all operators in the complement region R̄. This argument can be
repeated for many different boundary regions and used to show that a bulk field φ(p) near the
center of AdS can be written in a way that manifestly commutes with any given operator
in the boundary. This directly implies what should have been obvious: that each choice
of reconstruction for φ(p) is a different operator in the CFT. This is not an inconsistency.
Various reconstructions of φ(p) are distinct CFT operators, but the CFT Hilbert space is
much larger2 than the Hilbert space relevant for a bulk operator on a spacetime background.
The explanation of the multitude of distinct CFT operators is therefore that there is a special

1The smearing function has to be understood in a distributional sense. For details see [128, 36]. Such
subtleties will not be important for what follows.

2The basic concept that semiclassical excitations give rise to exponentially small subspaces of a Hilbert
space describing quantum gravitational physics has played a role in many related areas. See, e.g., [142, 136,
151]
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R1

R3

R2

Figure 7.1: The operator depicted in the center of this figure is not in CW(R1), CW(R2),
or CW(R3). However, it does lie in the causal wedge of the union of any two regions
CW(Ri ∪Rj) and can thus be written in terms of boundary operators in the algebra of the
combined regions.

subspace of the Hilbert space, the code subspace, which describes the states that φ(p) is
defined on. The restriction of all reconstructions of φ(p) to this subspace reproduce φ(p).
This is a quantum-error correcting property of the CFT: the action of different operators
defined in different regions is the same when restricting to special subspaces called code
subspaces.

The necessity for such a redundant descriptions of bulk operators was made particularly
obvious with the following argument [7] illustrated in figure 7.1 . Consider a partition the
boundary into 3 equal regions R1, R2, and R3 which only have points on their boundaries in
common. Taking the vacuum state for simplicity, their causal wedges will not contain points
that are close to the center of the bulk spacetime. Thus, there is no HKLL smearing over
any one region that reconstructs a local bulk operator near the center. However, the causal
wedge of the union of any two regions CW(Ri ∪ Rj) does contain the bulk point of interest
and the HKLL procedure can be used. The different choices cannot represent the same CFT
operator, since their support is on causally disconnected regions.3

Review of the DHW argument

3 The mutual intersection actually includes points on the boundaries of the Ri. However, repeating the
argument with slightly different regions circumvents the possibility that the reconstruction of φ is achieved
only in the algebra of ∂Ri
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The fact that the entanglement wedge EW(R) is the “largest” bulk region that can be
reconstructed from the algebra of R will play a critical role in our work. For this reason, we
will briefly review the arguments in [7, 49], focusing especially on the aspects of this literature
that will be the most relevant for the framework that we begin to develop in section 7.3.

Suppose that we are given4 a particular code subspace G ⊂ H which is known to be a
span of states obtained by acting with a small number of low energy operators on a state
where a semiclassical bulk exists; in particular, within G, gravitational backreaction of bulk
fields can be treated perturbatively. Dong, Harlow, and Wall (DHW) proved that if the
support of an operator φ is contained in EW(R), then that operator can be reconstructed
in R [49]. This means that there is an element of the algebra of R whose action on states in
the code subspace is the same as the action of φ.

To understand the proof given in [49], we first refer to a result from quantum information.
Refs. [7, 25, 24] show that if we have a code subspace G and some factorization of the full
Hilbert space G ⊂ HR ⊗HR̄, and if φ is some operator that acts within G (it’s action send
states in the code subspace to other states in the code subspace), then the following two
statements are equivalent.

1. There exists an operator OR on HR such that for any |ψ〉 ∈ G,

φ|ψ〉 = OR|ψ〉 φ†|ψ〉 = O†R|ψ〉. (7.2)

2. For any operator XR̄ on on HR̄, we have

[φ,XR̄]
∣∣
G

= 0. (7.3)

While this theorem follows purely from quantum information, it plays a critical role in
the entanglement wedge reconstruction argument. As suggested by the notation, we will
associate R with the factorization induced from boundary regions and G will be a code
subspace with a semiclassical bulk interpretation. We can now discuss [49], which establishes
that bulk semiclassical operators satisfy condition 7.3, and the reconstructability follows
because this is equivalent to 7.2.

We know the boundary Hilbert space can be factorized into a region and its complement
H = HR ⊗ HR̄. For states with a semiclassical bulk interpretation, we can think about
the extremal surface anchored to ∂R as inducing its own tensor factorization of the code
subspace GEW(R) ⊗GEW(R̄).

Consider two states |ψ0〉, |ψ1〉 ∈ G and the reduced density matrices obtained by tracing
out the appropriate complement regions in the two factorizations

ρ0
R̄ = TrR|ψ0〉〈ψ0|

ρ0
EW(R̄) = TrEW(R)|ψ0〉〈ψ0| (7.4)

4While we take the code subspace as given, it should be possible to identify code subspaces purely from
the CFT. For example, a necessary (but not sufficient) condition for a collection of states to lie in the same
code subspace is that the collection has the property that subregions have entanglement entropies differing
only by sub-leading contributions in N .
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Similarly, the density matrices ρ1
R̄

and ρ1
EW(R̄)

are defined by the state |ψ1〉.
The statement of a theorem in [49] is that if the states satisfy:

ρ0
EW(R̄) = ρ1

EW(R̄) =⇒ ρ0
R̄ = ρ1

R̄ (7.5)

then, an operator of the form φ = 1⊗φEW(R) acting only within the entanglement wedge of
R will satisfy the two equivalent properties of 7.2 and 7.3.

To understand this, we note that the result in [102] established a precise relationship be-
tween the bulk and boundary modular hamiltonian. This provides the connection between
the first equality and second equality in 7.5. Now, the operator φ supported in the entan-
glement wedge of a boundary region R does not affect the state in the complement wedge
(this just follows from semiclassical field theory). Thus, if we define |ψ1〉 as

|ψ1〉 = eiεφ|ψ0〉 (7.6)

the first equality in 7.5 is satisfied. The second equality then implies that the expectation
value of any operator in the algebra of R̄ is the same in both states:

〈ψ0|XR̄|ψ0〉 − 〈ψ1|XR̄|ψ1〉 = 0 (7.7)

Rewriting the second term using 7.6 and expanding to first order in ε we obtain 7.3.
This proves that within the code subspace, we can express operators in the entanglement

wedge of R in terms of operators in the algebra of R. Moreover, if an operator on G has
support outside EW(R), it must have no reconstruction in R. To see this, suppose that
an operator φ on G had support outside EW(R) so that it fails to commute with some
operator φ′ on EW(R̄). The argument above shows that there exists a reconstruction O′

R̄
of

φ′ that acts on R̄. If φ could be reconstructed with an operator OR on R, we would have
[O′

R̄
, OR] = 0 which contradicts the fact that [φ′, φ] 6= 0.
Our final conclusion is that an operator acting on a code subspace can be reconstructed

in a region R of the CFT if and only if its support in entirely contained in EW(R). By
exploiting the reconstructability for states in the code subspace, we now explore how the
bulk, including the conformal metric, is encoded in the CFT.

We note that the reconstructability argument itself is a statement about a special class of
quantum states and makes no reference to the plank length in the bulk. However, in making
the connection between the reduced density matrix in the entanglement wedge [102] and the
boundary, one clearly needs to assume some notion of locality. In particular, this involves
taking N →∞.

7.3 Superficially Local Operators

For the rest of this paper we work in the context of the “infinite N limit.” It is assumed
that there are code subspaces {G} of the CFT Hilbert space H that are holographically dual
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to quantum field theory on (asymptotically AdS) spacetime backgrounds. Setting N = ∞
in this way may cause discomfort, especially with some of the more complicated things we
discuss below, and for this reason we have provided appendix .1 which defines our quantities
while taking the large N limit more carefully. Even without reading the appendix, the
majority of our development can made much more precise simply by replacing equalities
with approximate equalities which, in the large N limit, approach authentic equalities.

In this section we are going to almost completely answer a fundamental question: Suppose
that a code subspace G is given and that we are told that G is dual to some unknown field
theory on some unknown spacetime background. Let φ be a given operator on G. Is φ dual
to a local operator? Note that we are given no information about φ (other than how it acts
on G) and, in particular, it is probably not a local CFT operator. The ability to answer
this question is equivalent to finding all of the CFT operators that are dual to local bulk
operators with respect to our particular code subspace.

Prior work addresses related issues but falls short of providing a general identification of
local bulk operators. Consider, again, the HKLL method [80]. If φ is a quantum field in the
bulk M , then, given a point p ∈ M , it is possible to solve the field equation of motion and
obtain an expression of the form

φ(p) =

(∫
∂M

K(p, x)O(x)dD−1x

) ∣∣∣∣
G

. (7.8)

Here, the boundary field O is the one associated with φ through the extrapolate dictionary.
As discussed above, the integration kernel K is not unique. While different choices of K
yield different CFT operators, the restriction of these different choices of operators to the
code subspace G must always give the same answer.

At a first glance, equation 7.8 appears to not only identify the nonlocal CFT operators
that are dual to local bulk operators, but even provides a formula for them. This is not the
case however. The integration kernel can only be found by solving equations of motion on
the curved spacetime background M , and this assumes knowledge of what the background is.
There are very few code subspaces for which the corresponding geometry is known. Another
reason that the HKLL procedure is unsatisfactory for our purposes is that it only identifies
a subset of the boundary operators that are dual to local bulk operators. We would like to
find a more general characterization of locality in the bulk at leading order in 1/N .

Comparing Locality of Operators

Our guiding principle is that that, roughly speaking, the more local a bulk operator φ is, the
more distinct boundary regions exist for which φ can be reconstructed. This follows from
subregion duality as explained in section 7.2. To make this concept more precise, we are
going to employ the full power of the quantum error-correcting structure of AdS/CFT to
introduce a function Q that maps operators on G to the collection of all possible boundary
regions that can reconstruct a given operator. Q will then provide a measure of locality of
every operator. We now explain this precisely.
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Figure 7.2: A nonlocal bulk operator φ1 will clearly lie in fewer regions than an operator φ2

whose support is entirely contained in the first Q(φ1) ⊂ Q(φ2) .

Let R denote the collection of all D − 2 dimensional achronal submanifolds of ∂M .
Informally,R is the collection of all regions R upon which one would compute a von Neumann
entropy by anchoring stationary surfaces [157, 99] to ∂R. Note that we are not restricting
to a single time slice of ∂M . If R ∈ R and φ is an operator that, along with its hermitian
conjugate, acts on the code subspace G, then φ is said to be reconstructable in R if there
exists O in the algebra of R such that O

∣∣
G

= φ and O†
∣∣
G

= φ†. We now give a critical
definition:

Definition 1. Suppose that φ is an operator on G and R ∈ R. Then, we define

Q(φ) = {R ∈ R
∣∣ φ is reconstructable in R}.

Whatever the (unknown) geometry of M is, subregion duality (see section 7.2) gives a geo-
metrical condition for Q(φ) to contain a region R. Specifically, R ∈ Q(φ) if and only if the
(bulk) support5 of φ is contained in the entanglement wedge of R. This immediately implies
the following properties of Q:

Proposition 7.3.1. Let φ1 and φ2 be two operators on the code subspace G. Then,

1. If supp φ1 ⊇ supp φ2 , then Q(φ1) ⊆ Q(φ2),

2. if supp φ1 = supp φ2, then Q(φ1) = Q(φ2).

5The support of an operator is defined as follows. Let A be a (possibly nonlocal) operator on a quantum
field theory on the curved spacetime M . Let U be the set of points in M such that for every point p in U ,
every local bulk operator at p commutes with A. Then, the support of A, denoted by supp A, is given by
M \ (J+(U) ∪ J−(U))
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Note that the converses to these statements, though seemingly desirable, are false in
many cases. This is somewhat disappointing: the bulk support of an operator is a property
of the operator’s bulk description while Q is a function that is manifestly defined in the
boundary theory. Our goal is to find a “boundary-only” characterization of bulk locality, so
we would be much better off if the converse to Proposition 7.3.1 were in fact true.

What Q does accomplish is that it identifies the support of an operator to the greatest
possible “resolution” that the boundary theory can easily see. For this reason we define an
equivalence relation on operators on G: φ1 ∼ φ2 if Q(φ1) = Q(φ2). We use the notation
[φ] to denote the equivalence class of φ with respect to this relation. In other words, [φ] =
Q−1(Q(φ)). Two operators are in the same class if they are “the same as far as Q can tell.”
We can attempt to compare the locality of two operators by putting a partial ordering on
the collection of equivalence classes by writing [φ1] ≤ [φ2] if Q(φ1) ⊆ Q(φ2) (which is a
well-defined relation). Note that a trivial operator like the identity on G, denoted by 1G,
can be reconstructed in any region. Thus, [φ] ≤ [1G] for any operator φ on G.

We are now ready to give a plausible characterization of a local bulk operator by means
of Q.

Definition 2. Suppose that φ is an operator on G. φ is said to be superficially local if

1. [φ] 6= [1G] and

2. Every operator φ′ with the property that [φ] ≤ [φ′] has [φ′] ∈ {[φ], [1G]}.

We emphasize that the definition of a superficially local operator makes reference only to
the boundary theory. Thus, we can use this definition to offer an answer to the question
posed above: if we are given a large N CFT with a Hilbert space H, a subspace G of H, and
an operator φ, and if we told that G is a code subspace corresponding to an unknown bulk
spacetime, then we can guess that φ is a local operator in the dual bulk theory if it acts on
G and if its restriction to G is a superficially local operator. This answer turns out to be
right in many cases.

The word “superficial” is used for two reasons. First, as we will shortly see, there are
examples of asymptotically AdS spacetimes for which some local bulk operators (for instance,
those lying close to a spacelike singularity) are not superficially local. Second, we will not
prove that every superficially local operator is local in the bulk. The first of these deficiencies
is completely unavoidable and it is tempting to contemplate its relation to the difficulties of
using AdS/CFT to describe points deep within a black hole interior [10] (although we will
not pursue such contemplations here). The second apparent deficiency is not a problem:
in section 7.4 we will argue that it is possible to identify when a given equivalence class of
superficially local operators contains operators that are not actually local in the bulk. This
argument will be made in the boundary theory. The concept of superficial locality therefore
provides a way to confidently identify a very large collection of operators on G that should
be interpreted as local operators in the bulk. We now explain exactly which bulk operators
can be found in this way.
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The Localizable Region

As above, let M be the asymptotically AdS bulk spacetime that is dual to a code subspace
G of a CFT in the large N limit with Hilbert space H. In this section we are going to
identify a special subset of M , denoted by Loc(M), which has the property that local bulk
operators at points in Loc(M) can be successfully identified in the boundary theory through
the consideration of superficially local operators.

Definition 3. The localizable region of M , denoted Loc(M), is the set of points p ∈ M
satisfying

1. If supp φ = {p}, then φ is superficially local and

2. if supp φ = {p} and [φ′] = [φ], then supp φ′ = {p}.

Elements of Loc(M) will sometimes be called localizable points. Note that Loc(M) is a
subset of the bulk and its definition makes reference to the concept of the bulk support
of an operator, so this definition is not particularly transparent from the boundary theory.
However, a connection with the boundary theory becomes apparent when Loc(M) = M :

Proposition 7.3.2. If Loc(M) = M , an operator φ on G is superficially local if and only
if it is local in the bulk. Moreover, if φ1 and φ2 are two superficially local operators with
[φ1] = [φ2], then they must be local at the same bulk point.

Proof. If φ is a local operator, the definition of Loc(M) immediately demands that φ is
superficially local. Conversely, let suppose that φ is superficially local. If φ is not local in
the bulk, then there are at least two distinct points p and q in the support of φ. Let φ′

be a local operator at p. By Proposition 7.3.1, the fact that supp φ′ ⊆ supp φ means that
[φ] ≤ [φ′]. But φ is superficially local and φ′ is nontrivial so we conclude that [φ] = [φ′]. The
definition of the localizable region now demands that supp φ = {p}, a contradiction.

Now suppose that φ1 and φ2 are two superficially local operators with [φ1] = [φ2]. From
what we just proved, we know that φ1 is local at some point, so the definition of the localizable
region immediately demands that φ1 and φ2 are local at the same point.

This result is a first step to providing a boundary description of Loc(M) because the
notion of superficial locality is one of the boundary theory. Unfortunately the hypothesis
of Proposition 7.3.2 is often too much to ask for. To better understand this, consider the
following result which which establishes a geometrical bulk interpretation of Loc(M).6

Theorem 5. p ∈ Loc(M) if and only if there exists a subset R0 of the collection of boundary
regions R such that ⋂

R∈R0

EW(R) = {p}.

6Theorem 5 elucidates the connection between our program and the ideas of [47, 46, 17, 15, 45, 91].
Note this work is primarily interested in the reconstruction of bulk geometry while our focus is on operator
reconstruction. However, below in section 7.4 we will reconstruct aspects of the bulk geometry.



CHAPTER 7. THE BOUNDARY DUAL OF BULK LOCAL OPERATORS 151

Proof. Suppose first that there exists R0 satisfying the condition given in the statement of
the theorem. Fix a local bulk operator φ at p so that supp φ = {p}. Q(φ) must contain all
regions R with p ∈ EW(R) so, in particular, R0 ⊆ Q(φ). If φ′ is some operator on G with
[φ′] ≥ [φ], then Q(φ) ⊆ Q(φ′) so we have

supp φ′ ⊆
⋂

R∈Q(φ′)

EW(R) ⊆
⋂

R∈Q(φ)

EW(R)

⊆
⋂
R∈R0

EW(R) = {p}.

This implies that φ is superficially local so the first condition for p ∈ Loc(M) is satisfied. If
it happens that the operator φ′ above satisfies [φ′] = [φ], our argument still applies and we
must therefore have supp φ′ ⊆ {p}. It is not possible to have supp φ′ = ∅ since this would
require that [φ′] = [φ] = R which is false. We conclude that supp φ′ = {p} and thus that
p ∈ Loc(M).

We now prove the converse. Let p lie in Loc(M). Suppose that there does not exist any
R0 ⊆ R with

⋂
R∈R0

EW(R) = {p}. Let φ be a local operator at p which requires that φ is
superficially local. There must exist a point q ∈M with

q ∈

 ⋂
R∈Q(φ)

EW(R)

 \ {p}.
Now consider a local operator φ′ at the point q. Since q lies in the entanglement wedge
of every region whose entanglement wedge contains p, we have [φ] ≤ [φ′]. The superficial
locality of φ, along with the fact that φ′ is not trivial, implies now that [φ] = [φ′] which, by
the definition of Loc(M), implies that supp φ′ = {p} which is a contradiction.

Theorem 5 is a useful tool for identifying examples of localizable regions in asymptotically
AdS spacetimes as we will do in section 7.3. For now, we only advertise some facts that may
be of interest. Localizable regions can extend quite far into the bulk spacetime. For the
same reason that extremal surfaces can penetrate event horizons in some cases, Loc(M) can
intersect a black hole interior. However, points that are too close to spacelike singularities
are not localizable. Another interesting property of localizable regions is that they are not
always subsets of the portion of the bulk that is accessible to boundary-anchored extremal
codimension 2 surfaces with minimal area. In other words, Loc(M) can have a nonempty
intersection with the entanglement shadow [16]. Before discussing these examples, however,
we are going to introduce an object that will greatly increase the motivation for studying
the localizable region.
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The Space of Classes

The object that we now study is the collection of all equivalence classes of superficially local
operators on G. We suggestively denote this set by M̃ :

M̃ =
{

[φ]
∣∣ φ is a superficially local operator on G

}
.

Given that an element P ∈ M̃ is a set of operators, all of which have the same value of Q,
it is convenient to let define Q(P ) as Q(φ) for any choice of φ ∈ P .

An intuitive picture of M̃ is clear when M = Loc(M). In this case, Proposition 7.3.2
shows that there is a one-to-one correspondence between M̃ and M . The correspondence is
that a point p ∈M is identified with the collection of all local operators at p. This reveals a
new approach to bulk reconstruction from the boundary theory, somewhat similar in spirit
to that of [61], which we will explore below.

Let us now make no assumptions about Loc(M) and determine the general structure of
M̃ . What we are going to find is that M̃ is equal to Loc(M) with the possible addition of
some extra points in M̃ . We refer to these unwanted extra points as “clumps.”

First suppose that p ∈ Loc(M) and let φ be a local bulk operator at p. Then, [φ] consists
only of local operators at p. (This follows directly from the definition of the localizable
region.) As a consequence, a copy of Loc(M) can always be identified in M̃ . Another thing
that we can immediately show is that if Φ is any superficially local operator whose support
consists of more than one point, then supp Φ ∩ Loc(M) = ∅. To see, this, suppose that
p ∈ supp Φ ∩ Loc(M) and consider a local operator φ at p. We would then have [Φ] ≤ [φ]
with Φ superficially local so [Φ] = [φ]. This contradicts the definition of Loc(M) since Φ is
nonlocal.

We cannot exclude the possibility that there exist nonlocal superficially local operators.
To investigate this issue carefully, we introduce a map C that sends a point P in M̃ to a
subset of M as follows:

C(P ) =
⋃

Φ∈P

supp Φ.

C has some nice properties:

Proposition 7.3.3. Suppose that P and Q are elements of M̃ . Then,

1. If every element of P is a local bulk operator, then there exists a point p ∈ Loc(M)
such that C(P ) = {p},

2. if P contains a nonlocal operator, then C(P ) ∩ Loc(M) = ∅,

3. if C(P ) ∩ C(Q) 6= ∅, then P = Q and, in particular, C is injective.

Proof. 1. If P consists of only local operators, then all of those operators must be at the
same bulk point. To see this, suppose that φ1 and φ2 are two local bulk operators at bulk
points p1 and p2 respectively. Now Q(φ1) = Q(φ2) so any linear combination αφ1 +βφ2 must
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satisfy [φ1] ≤ [αφ1 + βφ2]. The superficial locality of φ1 now proves that [φ1] = [αφ1 + βφ2]
which contradicts the assumption that P consists only of local operators unless p1 = p2. Now
let p denote the unique point in M where the elements of P are supported. It is obvious
now that C(P ) = {p}. Moreover, every local operator at p must lie in P and since there are
no operators in P with support beyond {p} we conclude that p ∈ Loc(M).

2. Assume that P contains a nonlocal bulk operator and suppose that q ∈ C(P )∩Loc(M).
Let φ denote a local operator at q. There must be some operator Φ ∈ P with q ∈ supp Φ so
[Φ] ≤ [φ] from which the superficial locality of Φ implies that [Φ] = [φ] which is equivalent to
the statement that [φ] ∈ P . But this means that φ, a local operator in Loc(M), is equivalent
to a nonlocal operator. This is a contradiction.

3. Suppose that there exists a bulk point x ∈ C(P )∩C(Q). Let φ denote a local operator
at x. An argument identical to what was given for the proof of statement 2 shows that φ ∈ P
and φ ∈ Q. But P and Q are equivalence classes so the fact that they share an element
means that P = Q.

This argument shows that M̃ can be thought of as the union of Loc(M) with some extra
points. Each extra point P has the property that C(P ) is a subset of M with more than
one element. These objects are subtle enough to deserve a name:

Definition 4. Suppose that P ∈ M̃ has the property that C(P ) has more than one element.
Then, we will call both P and C(P ) a clump.

Clumps are somewhat problematic because both local and nonlocal operators in clumps are
superficially local. They therefore represent a potential threat to our approach. However,
there is good news: we will argue in section 7.3 that clumps can be identified and removed
using only the boundary theory (e.g. without relying on concepts like the bulk support of
operators). Roughly speaking, clumps are associated with phase transitions for holographic
entanglement entropy, and such phase transitions are visible in the boundary.

We are now in a position to give a much stronger answer to the fundamental question
posed at the beginning of this section about identifying the operators on G that are dual to
local operators in the bulk.

Theorem 6. If there are no clumps, an operator φ on the code subspace G is dual to a local
bulk operator in the localizable region if and only if φ is superficially local.

If we assume the clump conjecture of section 7.3, which provides a way to identify and
eliminate clumps, this conclusion provides the boundary dual to the concept of a bulk local
operator (within a certain region of the bulk).

Examples

Examples can greatly clarify the machinery we have been developing. In particular, the
spacetimes below demonstrate several features:
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• Despite being associated with HRT surfaces, Loc(M) can probe entanglement shadows.

• Loc(M) can intersect black hole interiors (but it does not extend arbitrarily closely to
spacelike singularities).

• In regions that are close to spacelike singularities, local operators are not superficially
local.

• Clumps can occur, but the only known examples are associated with phase transitions
where extremal surfaces “jump” around them.

Vacuum AdS

The simplest example is when M is vacuum AdS space (or any small perturbation of vacuum
AdS) with dimension D ≥ 2 + 1. For any point p ∈ M , theorem 5 immediately shows that
p ∈ Loc(M). This is because in AdS space, one can always construct D − 1 codimension
2 stationary surfaces intersecting p, whose tangent spaces at p are pairwise distinct, and
then find the corresponding boundary regions R1, . . . RD−1 on which these stationary sur-
faces are anchored. To prove that p ∈ Loc(M), we then consider the collection of regions
{R1, . . . RD−1, R̄1, . . . , R̄D−1} and apply this set to theorem 5.

Conclusion: If we somehow know that G is dual to a spacetime close to vacuum AdS,
then an operator on G is local if and only if it is superficially local. The space of classes of
superficially local operators, M̃ , is a reconstruction of the bulk.

Conical AdS

Anti-de Sitter space with a conical deficit is a simple example of a spacetime with an entan-
glement shadow7 [16]. Given that Loc(M) can be defined by means of HRT surfaces, one
might suspect that for conical AdS, Loc(M) is a proper subset of M . We will explain why
this is not the case and that, in fact, we again have Loc(M) = M .

Let n be an integer greater than 1 and consider, for example, M = AdS2+1/Zn. The
metric can be written as

ds2 = −
(

1

n2
+
r2

L2

)
dt2 +

(
1

n2
+
r2

L2

)−1

dr2 + r2dφ2 (7.9)

where −∞ < t <∞, r > 0, and φ ∈ [0, 2π). There is a critical radius rcrit such that no HRT
surface intersects the region r < rcrit. If {Rs} is a continuous nested family of boundary
regions with R−1 a small region and R1 wrapping around almost the entire boundary, the
HRT surface anchored to Rs, extRs , will discontinuously jump around the shadow at some

7To our knowledge, [16] and related work has only studied regions that are not probed by minimal
surfaces anchored to static boundary regions rather than the general stationary surfaces appearing in the
calculation of covariant holographic entanglement entropy. Below we assume that the general features of the
entanglement shadow in standard examples are unchanged if non-static surfaces are considered.
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Figure 7.3: Conical AdS is an example of how points in the bulk that are not directly
probed by extremal surfaces can still be in the localizable region. Despite the entanglement
shadow (the grey cylinder), points can be localized because they can intersect boundaries of
entanglement wedges.

critical value of s. Note that this phenomenon is not related to extremal surface barriers [62]
but is instead a consequence of there being more than one stationary codimension 2 surface
anchored to any given boundary region: no HRT surface enters the shadow because there
would always be another stationary surface that does not enter the shadow with smaller
area. The discontinuous jump can be regarded as a phase transition in the sense that the
von Neumann entropy S(Rs), regarded as a function of the parameter s, has a discontinuous
derivative at the jump.

If p ∈ M lies outside of the entanglement shadow, we must have p ∈ Loc(M) for the
same reason that every point is localized in vacuum AdS. On the other hand, suppose that
p lies within the entanglement shadow. To show that p ∈ Loc(M), all we need, by theorem
5, is a finite set of boundary regions such that the intersection of their entanglement wedges
is {p}.

This can by done by considering regions like those shown in figure 7.3. Note that only
two regions are shown in the figure but that the point can be completely localized by adding
other boundary regions such as rotations of the regions depicted. The trick here is easy
to understand: it is not necessary for HRT surfaces to intersect localized points as long as
boundaries of entanglement wedges intersect them instead.
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Loc(M)

R1R2

Figure 7.4

Conclusion: If G is dual to a spacetime close to AdS2+1/Zn, then an operator on G is
local if and only if it is superficially local. The space of classes of superficially local operators,
M̃ , is a reconstruction of the bulk.

Two-Sided Black Holes

In the case where M is an eternal AdS-Schwarzschild geometry, which has two disconnected
boundary components, the localizable region extends into the black hole interior but does not
probe all the way to the singularity. This is depicted in figure 7.4. Many points in the interior
region can be localized by considering boundary regions that consist of two disconnected
components lying in different boundaries (see figure 7.4). HRT surfaces, however, do not
reach points that are arbitrarily close the future or past singularities: there is a critical radius
rcrit (smaller than the black hole radius) that no boundary-anchored extremal surface extends
beyond [187, 62]. Figure 7.5 proves that local operators at points with radius r < rcrit are
not superficially local. This portion of the spacetime is completely missed by our methods
and will thus be called the inaccessible region.

Conclusion: If G is dual to an eternal AdS-Schwarzschild geometry (with two boundary
CFTs), then an operator φ on G is superficially local if and only if it is dual to a local bulk
operator at a bulk point with r > rcrit. The space of classes of superficially local operators,
M̃ , is a reconstruction of the region of M with r > rcrit.

Dynamical Black Holes

The previous example might have given the impression that Loc(M) cannot intersect a black
hole interior without appealing to entanglement between two CFTs. This is not the case.
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Figure 7.5: When a point (purple) is close to a spacelike singularity, it is very difficult for the
point to be in Loc(M). Quite generally, HRT surfaces are prevented from approaching such
singularities [187, 62]. In this figure, the horizontal dashed line is a surface with the property
that no HRT surface intersects its future. (This is more restrictive than an extremal surface
barrier, which would prohibit smooth deformations of stationary surfaces.) A local operator
at the purple point cannot be superficially local since a point in its past (blue) will typically
be contained in strictly more entanglement wedges.

Consider a black hole that forms from collapse in an asymptotically AdS spacetime. Then,
it has been demonstrated [97] that HRT surfaces probe the black hole interior (although
they do not approach the singularity arbitrarily closely). Because such HRT surfaces can be
anchored to boundary regions at a variety of angular positions, we conclude that Loc(M)
enters the black hole interior in this case. Note, however, that figure 7.5 again explains why
regions too close to the singularity are not localizable.

Bag of Gold

Our fourth example is a “bag of gold” spacetime (see, e.g., [125]). The manifold M is an AdS-
Schwarzschild spacetime with one of its two asymptotic regions removed and replaced with
a patch of de Sitter space. The spacetime is static and spherically symmetric. Its Penrose
diagram is shown in figure 7.6. We will label the regions in the diagram I-IV as shown in the
figure (note that region II includes the de Sitter patch). It is very important to understand
that unlike the two-side AdS-Schwarzschild spacetime, M has only one asymptotic boundary
with topology SD−2 ×R. The time slice Σ that is marked in figure 7.6 has the topology of
RD−1. In particular, Σ is simply connected and the homology constraint for HRT surfaces
will not play any interesting role here. The dotted line in region I is a surface beyond which
no HRT surface probes.

We will argue the following.

1. Loc(M) is the portion of region I that is probed by HRT surfaces.

2. M̃ has a single clump whose image under C (see section 7.3) is all of region II. Thus,
we will say that region II is a clump.



CHAPTER 7. THE BOUNDARY DUAL OF BULK LOCAL OPERATORS 158
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Figure 7.6: The bag of gold geometry we consider is obtained by removing an asymptotic
region from an AdS black hole and replacing it with a patch of de Sitter space. As discussed
in the text, the localizable region is the portion of region I that is accessible to HRT surfaces
and region II is a single clump. The remaining portion of the spacetime is “inaccessible” in
the sense that no operator with support in these regions is superficially local.

3. The rest of the spacetime (including regions II and IV) is neither localizable nor within
clumps. It is “inaccessible.”

First let us discuss why region II is a clump. Like conical AdS, this spacetime exhibits
phase transitions in its HRT surfaces as well as an entanglement shadow. Consider the
boundary time slice σ = ∂Σ and let Rψ be a spherical cap on σ with opening angle ψ (defined
so that Rπ = σ). The spacetime in region I is identical to region I of AdS-Schwarzschild
so the structure of stationary codimension 2 boundary-anchored surfaces must also be the
same and, in particular, there are always two distinct stationary surfaces anchored to Rψ. At
ψ = π/2, there is a phase transition with a discontinuity in the first derivative of S(Rψ). At
this transition, the minimal surface jumps around the entire region II. Note also that HRT
surfaces fail to even contact the bifurcation throat: there is, once again, a minimal radius in
region I, rcrit, greater than the black hole radius, within which no HRT surface extends.

If ψ < π/2, the spatial region Vψ on Σ between Rψ and its HRT surface ext Rψ is
confined to region I. Thus EW(Rψ) is confined to region I; this follows from the fact that
EW(Rψ) = D(Vψ) after compactification. Meanwhile, When ψ > π/2, Vψ contains the entire
intersection of Σ with region II and EW(Rψ) must contain all of region II. These observations
were made for a simple spherical cap on the time-reversal symmetric slice Σ, but they hold
very generally: any time we consider a nested family of boundary regions {Rs ∈ R}, EW(Rs)
is confined to region I for s smaller than some critical value and EW(Rs) contains all of region
II when s exceeds this value.
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What this shows is that if φ1 and φ2 are two bulk operators with support in region II,
we must have Q(φ1) = Q(φ2). Moreover, note that any operator φ which is supported in
region II must be superficially local. To see this, consider any x ∈M \ ( region II). If x is in
region I or III, take a spherical cap like Rψ with ψ > π/2, but place it on a boundary time
slice at very early time. No matter how early time time is taken, time-translation invariance
guarantees that region II is still contained in EW(Rψ), but by sending the boundary time
slice to −∞, we can put any point in regions I or III in the future of ext Rψ. This means
that there exists some R ∈ Q(φ) \ Q(φ′) so φ � φ′. The same argument can be made if
x is in region IV by sending the boundary time slice to +∞. We conclude that φ must be
superficially local and region II is thus a clump (since all operators with support in region
II are superficially local and have the same image under Q).

Let us finally study the remainder of the spacetime. The portion of region I that is probed
by HRT surfaces is readily seen to be contained in Loc(M). We now outline an argument
that, in fact, this probed region is exactly Loc(M). Figure 7.5 gives an explanation of
why local operators in region III cannot be localized. More generally, consider a local bulk
operator φx at a point x lying outside of the region probed by HRT surfaces but also lying
outside of the clumped region II. If R is a boundary region with x ∈ EW(R), then R must
be large enough to have undergone a phase transition so that region II is contained in the
entanglement wedge of R as well. This means that if Φ is any superficially local operator in
the clump, we have Q(φx) ( Q(Φ). This shows that φx cannot be superficially local.

Conclusion: Suppose that G is dual to the bag of gold geometry. If φ is a superficially
local operator, then it is either a local operator in the portion of region I probed by extremal
surfaces or it is some operator (which need not be local) with support in region II. The
clump conjecture of section 7.3 is valid for this spacetime, so the problematic superficially
local operators can be identified and discarded. After doing so, the remaining superficially
local operators exactly form the collection of all bulk local operators in Loc(M).

The Clump Conjecture

In this section we propose a way to use the boundary theory to identify and remove clumps
from M̃ . Specifically we give an alternative definition of a clump that does not make direct
reference to the bulk and we conjecture that our two definitions are equivalent. We know of
no counterexamples to the conjecture and there is good evidence for its general validity.

The basic motivation is as follows. If P ∈ M̃ is a clump, then, by definition, C(P )
contains more than one bulk point. Generically, clumps have nonzero spacetime volume. On
the other hand, we know that no entanglement wedge can contain only part of a clump: if
R ∈ R, then either C(P ) ⊆ EW(R) or C(P ) ∩ (EW(R))◦ = ∅. These observations indicate
that if Rs is a continuous nested one-parameter family of regions in R such that Rs ∈ Q(P )
for s > 0 and Rs /∈ Q(P ) when s < 0, we must have some form of a discontinuity in the
entanglement wedges EW(Rs) as a function of s at s = 0. Such discontinuities occur when
the HRT surfaces anchored to {Rs} jump discontinuously. But such a jump can often be seen
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in the boundary theory in the form of a discontinuity in a derivative of the von Neumann
entropy of the boundary regions Rs.

Before stating the conjecture formally, we give a useful definition:

Definition 5. Let φ be an operator on G and R ∈ Q(φ). R is said to be minimal if whenever
R′ ( R, R /∈ Q(φ).

We will also introduce the map Q̄ by letting Q̄(φ) denote the collection of minimal elements
of Q(φ). Additionally, if P ∈ M̃ , we will define Q̄(P ) as Q̄(φ) for any choice of φ ∈ P (all
choices of φ have the same Q̄(φ)).

As suggested above, phase transitions in the boundary theory will play a role in the
boundary identification of clumps. To be clear, a “phase transition” refers to the following
situation. Suppose that {Rs

∣∣ − 1 < s < 1} is a regular8 one-parameter family of boundary
regions with Rs1 ( Rs2 whenever s1 < s2. Let S(Rs) denote the von Neumann entropy of
the boundary region Rs in any state9 in the code subspace G. We say that there is a phase
transition at s = 0 if some derivative of S(Rs) at s = 0 is discontinuous. Moreover, if R ∈ R,
we will say that there is a phase transition at R if there is some one parameter deformation
of the form above, {Rs}, with R0 = R.

We now state our proposal for identifying and removing clumps. We will refer to it as
the clump conjecture:

Suppose that P ∈ M̃ . P is a clump if and only if for every R ∈ Q̄(P ), there is a phase
transition at R.

We immediately note that this conjecture is consistent with the examples provided in section
7.3. The only example we gave of a clump is that of the bag of gold spacetime which always
features phase transitions for minimal regions. Consider, however the example of AdS2+1/Zn.
This may appear to contradict the clump conjecture because it is a spacetime with no clumps
but which does posses phase transitions. However, consider regions like the ones depicted in
figure 7.3. These are indeed minimal regions for the operator at the point depicted (which
corresponds to a point in M̃ . However, there is no phase transition at such a region. This is
why the statement of the clump conjecture requires that there is a phase transition for every
R ∈ Q̄(P ).

8By “regular” we mean that Rs deforms smoothly enough that we are not introducing discontinuities in
any derivative of von Neumann entropy by choosing an awkward parameterization of regions.

9S(Rs) is state-dependent, but the spacetime background is approximately fixed within the code subspace
G, so assertions about phase transitions will be state-independent at leading order.
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7.4 Reconstruction of Causal Structure and Beyond

From here on we assume the validity of the clump conjecture (which we strongly expect)
and use a new definition of M̃ :

M̃ =
{

[φ]
∣∣ φ is superficially local and [φ] is not a clump

}
This can be done using only the boundary theory. Simply begin with M̃ as defined previously,
and then remove clumps from it by using the clump conjecture.

With this new definition, a major conclusion of section 7.3 is that in some sense M̃ is
isomorphic to Loc(M) although we have not been very clear about what sort of isomorphism
this is. We are now going to take the view that M̃ can be thought of as a reconstruction
of the bulk very seriously. We will successfully determine a metric on M̃ up to a conformal
rescaling. This will be done using only information available in the boundary theory (which
includes the definition of M̃ itself). The manifold M̃ and its causal structure will exactly
reproduce that of Loc(M). This constitutes a boundary reconstruction of the metric on
Loc(M) up to its conformal factor.

Spacelike Separation and Microcausality

The key insight to identifying a causal structure on M̃ is to note that M̃ consists of collections
of operators on the code subspace G and that the commutation relations amongst those
operators must betray an aspect of the bulk spacetime geometry. This suggests the following
definition:

Definition 6. Suppose that P,Q ∈ M̃ . We say that P and Q are spacelike separated if
for every φ1 ∈ P and φ2 ∈ Q, we have [φ1, φ2] = 0. Otherwise, we say that P and Q are
causally related.

There are two things to immediately notice about this definition. First, while we have
defined the statement that P and Q are causally related, we have not yet given meaning to
the statement that P is to the future of Q. This will be addressed below. Second, note that
for P and Q to be causally related, all that is necessary is that there exists some φ1 ∈ P and
some φ2 ∈ Q such that φ1 and φ2 fail to commute. It is certainly not necessary that all such
operators would fail to commute.

In special cases, it is possible to conclude that P and Q are spacelike separated without
relying directly studying the commutativity of their operators. If it happens that there exists
R1 ∈ Q(P ), R2 ∈ Q(Q) with the property that R1 and R2 are spacelike separated in the
boundary, meaning that (

J∂+(R1) ∪ J∂−(R1)
)
∩R2 = ∅,

then microcausality in the boundary field theory guarantees that any operators O1 and O2

in the algebras of R1 and R2 respectively must have [O1, O2] = 0. In particular, for any
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φ1 ∈ P and φ2 ∈ Q, we can find reconstructions of φ1 and φ2 in R1 and R2 respectively and
conclude that [φ1, φ2] = 0. However, this situation is too much to ask for in general.

In the case where two classes P and Q are causally related, the above logic indicates that
there absolutely cannot be any R1 ∈ Q(P ), R2 ∈ Q(Q) with the property that R1 and R2

are spacelike separated in the boundary. This is consistent with a theorem in bulk geometry
which is a necessary result for the consistency of entanglement wedge reconstruction:

Proposition 7.4.1. Let M be an asymptotically AdS spacetime and suppose that p, q ∈ M
are bulk points with q ∈ I+(p). Suppose, moreover, that there exist boundary regions R1, R2 ∈
R such that p ∈ EW(R1), q ∈ EW(R2). Then,

(
I∂+(R1) ∪ I∂−(R1)

)
∩R2 6= ∅.

Proof. Choose a Cauchy surface σ of ∂M with R1 ⊆ σ and let R̄1 = σ \ R1. Let Σ be any
AdS-Cauchy surface for the bulk with ∂Σ = σ and write Σ = S ∪ S̄ where S ∩ S̄ is the HRT
surface of R1. Then, q /∈ EW(R̄1). (This follows from the fact that EW(R1) = D(S) and
EW(R̄1) = D(S̄).)

Suppose that we had R2 ⊆ D∂(R̄1). Wall’s entanglement wedge nesting theorem [187]
implies that this would require that EW(R2) ⊆ EW(R̄1) which contradicts the fact that
q ∈ EW(R2). Thus, R2 is not contained (entirely) in D∂(R̄1). On the other hand, the
boundary is flat so D(R̄1) = ∂M \ (I∂+(R1) ∪ I∂−(R1)). We conclude that R2 intersects
I∂+(R1) ∪ I∂−(R1).

Time Orientation

Suppose that P and Q are points in M̃ that are causally related. Then, the corresponding
bulk points, p and q respectively, must either have p ∈ J+(q) or q ∈ J+(p). But how do we
know which?

There may be a very direct way to answer this question. Here, however, we give a
topological answer. In appendix .1 we explain how M̃ be be made into a topological space.
The basic idea is fairly obvious: two points in M̃ are close to each other if their images under
Q are close. Because this topology will be consistent with the bulk topology on Loc(M), we
can make use of topological features of the causal structure of the spacetime Loc(M).

Of particular use is the fact that if p ∈ M , J+(p) is connected (as is J−(p)). Because
Loc(M) may be a proper subset of M , it is possible that J+(p) ∩ Loc(M) is not connected.
Nonetheless, we can consider the connected component of J+(p) ∩ Loc(M) that contains p.
The same construction must be possible in M̃ , but we have to be somewhat more careful.
For P ∈ M̃ , we can consider the set of points K that are causally related to P . This includes
P itself. We can then consider K \ {P} and look at the two connected components of K
that are arbitrarily close to P . (There must be exactly two such components because the
topology on M̃ needs to be consistent with that of Loc(M).) We label these two components
J̃±(P ) with the understanding that we have yet to determine which component deserves a
plus sign and which deserves a minus sign.

Suppose we arbitrarily choose which of the two regions is to be called J̃+(P0) for one
particular point P0. In all but the most pathological of connected spacetimes, this fixes the
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P0

P1

P2

Figure 7.7: If the definition of the future and past of a point P0 ∈ M̃ is chosen, there is
an immediate constraint on the time orientation at other points in M̃ . In this figure, the
orientation at P0 also fixes the orientation at P1 and P2.

time orientation for every other point in the spacetime. For example, suppose that P1 is
another point in M̃ and that P1 ∈ J̃+(P0). (Here we are making use of our arbitrary decision
about J̃+(P0).) Then, we must assign the orientation at P1 so that P0 ∈ J̃−(P1). But now,
if we find another point P2 ∈ J̃−(P1), we must have that J̃+(P2) contains P1. Continuing in
this way, we can expect to be able to fix the time orientation for every point in M̃ as long
as it is connected. This process is depicted in figure 7.7

But what about the overall time orientation? That is, how do we decide on J̃+(P0) in our
example above? This can be done by beginning with a point in M̃ that corresponds to local
boundary operators at some boundary point. On ∂M , we already have a notion of future
and past. Thus, if we take P0 to be an equivalence class consisting only of local boundary
operators at a point x ∈ ∂M , we can decide upon J̃+(P0) by requiring that if P1 is another
class of local boundary operators lying at a point y then P1 ∈ J̃+(P0) only if y ∈ J∂+(x).

We have now succeeded in defining a causal structure on M̃ that must be consistent with
that on Loc(M). As a consequence, we have reconstructed the metric in Loc(M) up to an
undetermined conformal factor.

Comparison with Light-Cone Cut Reconstruction

There is a compelling connection between the bulk reconstruction developed here and a recent
approach to bulk reconstruction involving light-cone cuts due to Engelhardt and Horowitz
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[61]. Cut reconstruction is a new area of research [59, 57, 60, 58], and remarkably, a number
of the ideas involving cuts appear to have analogs in superficial locality reconstruction. We
now detail the similarities and differences between the two approaches.

• Large N : Both cut reconstruction and reconstruction with superficial locality require
in their current forms that the classical limit be taken. Light cone cuts are associated
with singularities of correlation functions of local boundary operators that only resolve
in the large N limit. These singularities in the boundary theory are at first mysterious
but have a simple explanation if one knows about the dual bulk: if there is a bulk
point p in the causal wedge of the boundary, then cut singularities are singularities of
boundary n-point functions < O(x1) . . . O(xn) > that can occur when the boundary
points lie on the future and past cuts of p: C±(p) = (∂J±(p))∩∂M . These singularities
are generally known as bulk-point singularities and have been considered in several
contexts prior to that of cuts [69, 123]. In particular, [123] provided an example
showing that such singularities are not expected to arise without sending N to infinity.
This is consistent with the fact that there should not be any notion of a local bulk
scattering point when N is finite. Similarly, our consideration of superficially local
operators and their equivalence classes is certainly only expected to reproduce local
bulk physics in the large N limit. At finite N there are no local (gauge-invariant)
observables in the quantum gravity [51, 52], so it is not clear why one would even
seek to study any notion of exactly local bulk operators in this case. It is, of course,
interesting to contemplate whether or not either of these approaches suggests new ways
to think about approximate locality at finite but large N .

• Specification of a state: Cut reconstruction, in its original form, presupposes that we
are given a particular quantum state ψ in the CFT Hilbert space and that we are
told that ψ is dual to some unknown bulk geometry.10 The task is then to study
correlation functions in that state (which can be done using the boundary theory
only) to determine aspects of the bulk interpretation of ψ (like the bulk geometry).
Similarly, throughout this paper we have assumed that we are given a code subspace
G and that we are told that G has the bulk interpretation of being the Hilbert space
of a quantum field theory on some unknown spacetime background. We then consider
various operators acting on G and ask which of them are superficially local (which can
be done using the boundary theory only).

• Identification of points with a boundary object : The next step in cut reconstruction is
to make an identification between the set of light-cone cuts and the set of points in the
causal wedge of the boundary. On the other hand, here we identify points in Loc(M)
with equivalence classes of superficially local operators.

10In [58], the theory of cuts was put into a framework that did not strictly rely on the presumption of the
existence of a bulk, but where an extra dimension can be seen to emerge in appropriate cases.
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• Reconstruction of the Conformal Metric: It is possible to assign a causal structure to
the set of cuts. This causal structure is consistent with the causal structure in the set
of bulk points corresponding to the cuts (with some caveats that can be addressed).
As a result, the set of cuts provides a reconstruction of the metric in the causal wedge
of the boundary, CW(∂M), up to a conformal factor. Similarly, we are able to identify
a causal structure on M̃ , the set of classes of superficially local operators, and we
therefore obtain a reconstruction of the conformal class of the metric in the bulk
region Loc(M). It is known that in some cases, Loc(M) extends further into the bulk
than CW(∂M) does: in the case of a dynamical black hole, Loc(M) can intersect
the black hole interior. We do not know whether or not it is always the case that
CW(∂M) ⊆ Loc(M).

• Local operators and the connection between the two methods : The premise of our ap-
proach was to solve a different problem from bulk reconstruction. Superficial locality
provides a way to identify the operators on a code subspace G that are dual to local
bulk operators. Identification of bulk local operators has not yet been a goal of light-
cone cut reconstruction, but it is a promising direction. In fact, such considerations
suggest a way to directly relate cut reconstruction to our program. Consider a point
P ∈ M̃ and also consider a light-cone cut C± associated with singularities in correla-
tion functions computed in a state ψ ∈ G. We would like to know how to tell if the
bulk point associated with P is the same as the bulk point associated with C± (clearly
this is only plausible for bulk points in the intersection of CW(∂M) and Loc(M).

We suggest the following approach to this problem. Consider a superficially local
operator φ ∈ P and take a collection of boundary points x1, . . . , xn close to points in
C. Now, consider two different correlation functions:

Fn(x1, . . . , xn) = 〈ψ|O(x1) . . . O(xn)|ψ〉
Gn(x1, . . . , xn) = 〈ψ|φ O(x1) . . . O(xn)|ψ〉.

If φ is indeed a local operator at the vertex of the cut C, then a signature of that
property will be encoded in the relationships between Fn and Gm for various values of
n and m. We do not pursue this idea further in the present work.

7.5 Discussion

Relying only on subregion duality between the boundary and bulk spacetimes, our con-
struction addresses the following question. Given a CFT and a code subspace dual to an
unknown geometry, can we tell if some operator is dual to a bulk local operator? To answer
this question, we exploit the curious feature that numerous distinct boundary regions can
reconstruct a local bulk operator. Once we identify the set of local bulk operators in the
localizable region, the relations among those operators reveal bulk causal structure.
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Furthermore, because the program focuses on entanglement wedges, as opposed to the
extremal surfaces themselves, the operators we identify can lie behind horizons and within
entanglement shadows in many examples. As expected, however, there are still regions for
which our procedure fails to completely describe locality (these regions are often behind
horizons). If we assume bulk locality still holds even within these regions, its encoding in
the CFT is different than that of operators in the localizable region.

Subregion duality is a common property of holography. The holographic entanglement
entropy prescription [157, 99] and the fact that entanglement wedge reconstruction is possible
[49], lead us to the conclusion that quantum error correction is a feature of any theory with a
holographic description. This is an extra constraint on holographic CFTs, which must encode
information in a way consistent with bulk reconstruction, and can be seen as a requirement
of CFTs having a bulk dual.

Remaining Considerations

Finite N : While we have addressed how locality, for the portion of the bulk in the local-
izable region, emerges from quantum error correction, there are still gaps that need to be
understood. To what extent does locality fail at finite N? Gravitational effects prohibit
the existence of local bulk observables. However, the quantum error correcting properties of
subregion duality hold beyond leading order and it may therefore be elucidating to consider
an approximate form of our approach at finite N . This may shed light on the subtleties of
the large N limit and the relationship between exact quantum gravity and the infinite N
theory.

The conformal factor : While there is no obvious way to reconstruct the conformal factor
on M̃ , we can argue that more information than just the causal structure is available to
us. Consider a point P ∈ M̃ with the special property that for some boundary region
R ∈ R, both R and its complement R̄ lie in Q(P ). The only geometrical interpretation
of this scenario is that operators in P correspond to a point on the HRT surface ext R.
This means that in addition to the conformal metric on M̃ we also know the minimal area
anchored extremal surfaces as well as the (regulated) areas of those surfaces, determined by
the von Neumann entropies of corresponding boundary regions [157, 99, 113, 50]. Noting
that stationary surfaces and their areas are not invariant under conformal transformations,
the conformal factor on the metric is significantly constrained. We leave further investigation
in this direction to future work.

.1 Appendix for Chapter 7

The large N limit

In discussing the main concepts in the text, we have assumed that local bulk operators exist,
hoping to present our construction in an intuitive fashion. However, exact bulk locality only
exists when N = ∞, and gravitational effects are turned off. When N is large but finite,
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gravitational effects demands that any gauge invariant bulk operator will be nonlocal in
some way [51, 52]. Nevertheless, bulk effective field theory still makes sense within the code
subspace of holographic CFTs. This is possible because nonlocal effects become small, since
they come with some positive power of the gravitational coupling. The suppression in N
allows us to discuss local bulk fields (perhaps smeared over a region ∼ lp) and perturbatively
add nonlocal effects (by appropriately dressing the fields for example), so long as we work
in the appropriate code subspace.

Here, we explain how the constructions in the main text can be made precise by appro-
priately applying the large N limit to decouple nonlocalities due to gravity. Consider a CFT
satisfying the appropriate requirements for having a bulk dual (see e.g. [95]). The theory
has some parameter, ε(N), which corresponds to the gravitational coupling in the bulk and
taking ε → 0 means turning off gravitational effects (i.e. sending N → ∞). Different val-
ues of ε correspond to different boundary theories (with different central charges) with an
associated Hilbert space Hε.

For ε 6= 0, no gauge-invariant operator φε, restricted to the appropriate code subspace Gε,
will be local in the bulk. However, as we decrease ε, the strength of nonlocal gravitational
effects decreases, and some operators and some operators in the CFT will start to resemble
what one expects for local operators in semiclassical field theory; intuitively these would
be the operators that would limit to local fields in the ε = 0 limit. For example, if we
think about semiclassical fields that are gravitationally dressed, the gravitational coupling
suppresses the nonlocal dressing.

Consider now a family of operators, {φε}ε>0, with φε acting on the code subspace Gε for
all ε > 0. 11

Definition 7. Let R ∈ R be a boundary region and let R̄ be a complement of R. We say
that a family {φε}ε>0 is reconstructable in R if for any family of operators {OR̄

ε }ε>0 in the
algebra of R̄ for Hε and for any family of states {ψε}ε>0 with ψε ∈ Gε,

lim
ε→0
〈ψε|[φε, OR̄

ε ]|ψε〉 = 0 (10)

As reviewed in section 7.2, this implies that, when ε is very small, there is some operator
OR
ε in the algebra of R, whose action on Gε is that of the operator φε (up to corrections in

ε).
Note that most of these families of operators will not limit to a semiclassical local bulk

field. The “limit” might be a smeared operator in EW(R) or the family of operators could
oscillate forever within EW(R) and never converge in any sense. However, some special class
of such families do limit to local operators.

In order to test whether or not a collection of operators approaches a local field as ε
becomes small, we introduce a generalization of the procedure in the text. The idea is to

11 Decreasing ε decreases the strength of gravitational backreaction. In order to keep any nontrivial
background fixed while changing the value of ε, we must separate “background matter” from excitations.
As we send ε → 0, the stress tensor for the background matter must be rescaled appropriately to maintain
a nontrivial background. This emphasizes the subtlety in the definition of Gε
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make the fundamental object of study the collection of ε-dependent families of operators as
opposed to the set of operators on a fixed code subspace. Following the framework from
section 7.3, we introduce a map Q that acts on families of operators as follows:

Q({φε}ε>0) = {R
∣∣{φε}ε>0 is reconstructible in R} (11)

For some of these sequences, the set Q({φε}ε>0) will be the result expected for a field
localized to a point in the bulk. If this is the case, we can think of {φε}ε>0 as a set of
operators whose bulk interpretation is a semiclassical field (built on a background associated
with a code subspace) whose nonlocal gravitational effects disappears as ε → 0. For such
sequences of operators, taking the ε → 0 limit is can be thought of as “undressing” φ by
consistently tuning down gravitational effects while keeping the background fixed.

We can use this new definition of Q to define equivalence classes of families of operators
and then the notion of superficial locality12 exactly as we do in section 7.3. All of the
developments in the main text can be done in this formalism.

Topology of M̃

In this appendix we explain how a topology on M̃ can be constructed using only the boundary
theory. We make no assumptions here about whether or not clumps are present. Despite
appearances, the purpose of this construction is not so much to demonstrate mathematical
rigor as it is to provide motivation for the statement that M̃ , an object defined in the
boundary theory, can be regarded (in the absence of clumps) as a “copy” of Loc(M), a
region of spacetime that certainly has a nice topological structure.

The boundary theory is taken to be on a flat space which, after conformal compact-
ification, is a cylinder. (The case where there are multiple disconnected boundaries is a
straightforward generalization of the construction below.) A spatial region R ∈ R is thus
bounded so its boundary, ∂R, is compact. Choose some global coordinate system on this
flat spacetime (that is, fix a conformal frame), and define a Euclidean metric d between two
points via geodesic (Euclidean) distance. We can now give a metric on R denoted by D,
by defining D(R,R′) as the Hausdorff distance between ∂R and ∂R′.13 This definition of
distance is problematic in the case where ∂R = ∅. However, if ∂R1, ∂R2 = ∅ and ∂R3 6= ∅,
we simply define D(R1, R2) = 0 and D(R1, R3) =∞.

Given ε > 0, let Bε(R) be the subset of R consisting of regions R′ with D(R,R′) < ε. A
topology on M̃ can now be obtained by taking P ∈ M̃ and defining Uε(P ) as the set of points

12Note that the definition of superficial locality works very nicely with our new definition of Q. If it
happened, for example, that {φε}ε>0 were a family of operators that oscillates from place to place as ε→ 0,
then we can be sure that this family would not be superficially local unless it were to oscillate within a
clump.

13Given a metric space (S, d), the Hausdorff distance is a metric-like function that can be defined in terms
of d to measure the distance between two subsets of S in a reasonable fashion. The Hausdorff distance is
a legitimate metric on the collection of nonempty compact subsets of S so our definition of D provides a
metric on the subset of R where ∂R 6= ∅ because ∂R is always compact.
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P ′ ∈ M̃ such that for every R ∈ Q(P ), there exists R′ ∈ Q(P ′) ∩ Bε(R). The collection of
sets {Uε(P )

∣∣ ε > 0, P ∈ M̃} forms a topological base from which a topology can be defined.
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