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ABSTRACT

A qualitative review is given of the theoretical prob-
lems and possibilities arising when one tries to under-
stand what happens in relativistic heavy ion collisions.
The striking similarity between these and pp collisions
suggests the use of techniques similar to those used
five to twelve years ago in pp. collisions to disentangle
collective motions from thermodynamics. A very heuristic
and qualitative sketch of statistical bootstrap thermo-
dynamics concludes an idealized picture inwhicha relat-
ivistic heavy ion collision appears as a superpositionof
moving "fireballs" with equilibrium thermodynamics in the
rest frames of these fireballs, The interesting problems
arise where this theoretician's picture deviates from re-
ality: non-equilibrium, more complicated motion (shock
waves, turbulence, spin) and the collisionhistory. Only
if these problems have been solved or shown to be irrel-
evant can we safely identify signatures of unusual states
of hadronic matter as, for example, a quark-gluon plasma

or density isomers.
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1. INTRODUCTION

During the last two years when I was working with Johann Rafelskil
on the statistical bootstrap modell) in order to adapt it to describe
hot nuclear matter, I came more and more often across people concerned
with relativistic heavy ion collisions, and also slowly became acquainted
with the literature of this field - only to become more and more aware of
how similar its problems are to those encountered in the beginning of
particle physics. Of the many different theoretical models invented and
applied in the develcpment of hadron physics there is one - the "thermo-
dynamical model"Z) which tries to describe just those aspects of high
energy particle collisions which are most strikingly similar to the main
ones of relativistic heavy ion collisions, némely, the many-body aspects
with an intimate mixture of ccherent collective and incoherent stochastic

movements.

I think one can still claim that the thermodynamical model was suc-
cessful when applied with care and precaution. The well-known "large
transverse momenta" do not invalidate this model; they belong to phenomena
outside its range of validity as I shall explain later. That there was
success at all - one dared to apply statistical thermodynamics to two-
body collisions of elementary(!) particles - was due to the many degrees
of freedom in the final states and, without doubt, also to the colliding
"elementary" particles being much less elementary than one thought 30
years ago. The analogy to relativistic heavy ion collisions becomes
obvious when the "elementary" particles are considered as bags3) filled
with quarks and gluons. If I anticipate here that the present form of
the statistical bootstrap model has good reasons to claim that ip colli-
sions with a few GeV per nucleon the individual bags will melf into a
single big bag, then the analogy between a pp <¢ollision and a relativ-
istic heavy ion collision is perfect; remaining differences in the theo-

retical treatment of these collisions are quantitative, but, not principal.

1t is, therefore, not surprising that several ideas of the the
thermodynamical model have been independently rediscovered by people con-
cerned with relativistic heavy ion collisions. With all this in mind,
T have the courage to dig deep into the past and uncover a few forgotten
thlngs which may still be useful for today's relativistic heavy ion
collisions. The rather explicit list of references should compensate for

for the extremely qualitative style of this talk.



Notation :h=c =k =1; energy units MeV, GeV.

Abbreviations : RHIC : Relativistic Heavy Ion Collisions;
SBM @ Statistical Bootstrap Model.

. COLLECTIVE MOTIONS

{
To my knowledge, Weisskopf+) was the first to apply thermodynamics
to the emission of particles from excited nuclei. The situation was
favourable to such an approach: the excitation energy was low and the

compound nucleus was long lived enough to reach an equilibrium state,

One would think that this could no longer be true in elementary
particle collisions or RHIC. Nevertheless, when the first pion producing

pp collisions were analyzed,'KoppeB)

realized that they could be inter-
preted as pion evaporation from some hot object of elementary dimensions.
To henour Koppe for this pioneering work, this model was called the "Fermi

6)

statistical model"™ .

The hot, dense object became known as "fireball™. Very soon it was
discovered that a single fireball could not explain the momentum distri-
bution of emitted particles; it was impossible to find, for any given
event, a Lofentz frame in which the momentum distribution was isotropic.
Indeed, this should not have been expected, since even if a single fire-
ball had formed it would, in general, have a very high spin. Moreover,
phase space calculations show that the actual anistropy - a forward/back-
ward jet in the centre of momentum frame - cannot be accounted for by
assuming a single, high spin fireballY). This is easily understood: the
initial state has very definite phase relations between its individual
partial waves; a single fireball, even if considered as a statistical

sum over spins, cannot reproduce these phase relations.

It was then found, with the help of ingeniously chosen variablesg),

that two fireballs meving with large opposite velocities in the  CM frame
were a much better approximation of reality. Adding a third fireball,
at rest in CM, substantially improved the pictureg). Of course, the two
oppositely moving fireballs need nct have the same mass nor the same
speed and the third could also have some velocity in the CM. Therefore,
one should rather introduce mass and velocity distributions, but then

why have Jjust three fireballs? Why not sometimes one, sometimes two and
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sometimes three or even more? Thus, one should alsc introduce a distri-
bution for the number of fireballs. It seems that in this way one ob-
tains so much freedom that one can fit everything. This is not so if
some simple model assumptions are made which are based on cbservation
and which are very restrictive. This was done in the thermodynamical
modelg) which I shall briefly describe. It was designed to predict in-
clusive momentum distributions and branching ratios of particlés produced
in high energy pp collisions, but it was later easily adapted to 7mp,
kplo) and p nucleus (even heavy ones) Collisionsll). Some of the
simplifying assumptions may be grossly wrong if extended to RHIC - T

shall come back to this.
23,121

The simplifying postulates were

Postulate 1 : In high energy collisions of hadrons, collective metions
have only comporents in the direction of the colliszion
axis. It is possible to find a continuum of co-moving
Lorentz frames (local rest frames) such that a co-moving
observer will, in his neighbourhocd, see only thermic

motion., Turbulence is absent.

Postulate 2 : All the kinetic energy of the incoming particles, which
disappears by decelerating hadronic matter, is adiabatically
and locally converted into excitation energy (heat).

Postulate 1 is illustrated in Figs. 1, 2 and 3; the first two are taken

from my CERN lectures in 197112), while the other two are from recent

1
theoretical articles on RHIC 3),14)'

Fig. 1 is a picture of the distri-
bution at the moment of impact, Figs. 2 and 3 show a time development
found under different assumptions about the equation of state from hydro-

dynamical calculations. Some transverse collective motion is present.

2.1 Useful variables

We use B = velocity and v = (1 - Ba)-l/2 = Lorentz factor: a
momentum four vector is then p = m(y,%y). A Lorentz transformation
along a given direction is fully determined by B or  vy: 1t brings a

particle from rest to velocity BRB.

A very useful variable is the "rapidity" n defined by
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= by
(3&= S‘m&/n (2.1)

p -t

n is the angle if a Lorentz transformation is represented as rotation
in Minkowski space. As the product of two rotations about the same axis
is the rotation with the sum of the two angles, it follows for the product

of two parallel and rotation free Lorentz transformations

LYo Lin) = L (oatMe)

In applying Postulate 1, we shall have to ascribe at any moment to a fire-
ball a velocity along the collision axis and, according to Postulate 2,

an internal excitation equal to the kinetic energy which has disappeared
by decelerating it from the initial to its present velocity. The excita-
tion energy of a fireball must therefore be a function of the initial as
well as of the actual velocity. Therefore, a suitable velocity variable
should contain both the actual and the initial #elocities. Giving the
initial one a subscript zero, reasonable choices for velocity variables

are then

kel
.“M&.“’]o

or
(2.3}

= L
A=A

or



Note that A: = B/By is not suitable since £ and B, are almost
always very near to one and thus such a X would have no "resclution
ﬁower” for analyzing a relativistic velocity spectrum. The three other
possible above choices all have good resoluticn power and they share the
property -1 < A < 1. The first choice makes X =almost equal to Feynman's
variable x 15), the second choice dces not seem to have been used and
the third is still used today in the thermodynamical modelE)’l6)’17).

It has the advantage of being physically obvious: (y - 1)/(YG -1} is
the ratic of the actual kinetic energy density to the initial one of a
decelerated volume element. However, it has the disadvantage of not
being an analytic function as the other two are. Today I wolld prefer
the first cheice, but in this talk I leave the choice open, it could be

any of the three or even some cther one.

2.2 Momentum distributions

What is the situation now? We assume that there is a veloclty distri-
bution of hadronic matter which will depend on time t, space point §,
impact parameter b and "yelocity" A

— ~>
longitudinal velocity distribution: AL (?\, x;tl *(L ) (2.4)

1f properly normalized, uf{A, §, t, E)d3xd2b is the probability
that the piece of matter contained in d3x has, at time t, the velocity

A when the impact parameter of the collision had been in {%, dzb}.

According to Postulate 1, such a plece of matter is, for a co-moving
observer, hot matter at rest in equilibrium, having a certain local temp-
erature T. From very general arguments about black body radiation it
then follows that in this volume element the momentum distribution of

particles with mass m will be

A3y A3
3 > 2 , P
P T) = iy g (o) 2 7

For mw = 0 this is just the Planck formula which initiated quantum

(2.5)

physics,
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The local temperature T can now be calculated from Postulate 2 1if
an equation of state is known (see below). Consider a piece of incoming
hadron matter. Before the collision it has the rest energy density £,
of cold hadron matter. Now follow it as a co-moving observer until it
has decelerated from its initial Lorentz factor vy, to the actual Lorentz
factor v at time t. For the co-moving observer it is still at rest,
but now has rest energy density e because the initial kinetic energy

nas become excitation energy. Postulate 2 asserts

€Y = Eoo (2.6)

Assuming the equation of state is known, we furthermore have

This can be inverted to give T(e) and since ¢ = EOYG/Y it follows

that T = T(A, v,).

Now we put everything together to obtain the momentum distribution
of particles of mass m in any fixed Lorentz frame. To be definite, we

may choose the CM frame of the collision

2R -
[, Ge], = (s s fan i X, D)

% [ () ;ﬂu(T(a,go),fgr)dspf}

This formula does the following: for fixed %, t, ;, A the momentum

distribution fm(T,E')d3p' in the local A rest frame is Lorentz trans-

]

(2.7)

formed by L{(A) to the CM frame and then the integrations sum up all
these local contributions to yileld wm(E)CM'

We now observe that neither the local spectrum fm(T,g‘) ner the
Lorentz transformation depend on %, t, §. Therefore, we can immediately

integrate over these variables and obtain a new weight function
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V. F[R,Xp) Do Jdg&\gd‘ttﬁx u(?\,Y,{',Z) (2.8)

where V 1s thes total interaction volume and (2.7) reduces %o

W%[F)dng: §F(%on)L(7~){V'{m(T(wo),p”)ﬁp’} (2.9)

where F(A, v,) now picks up all contributions to a given X summed
over the entire space-time history and all impact parameters. This

formula can be written in a manifestly covariant way.

In Eq. (2.9) everything is known except the weight function F{}, Yol

As a probability distribution it must cbey

0 !
[Fogdy = [FOX) = 1 2.10)
~1 0

We normalize it independently over each half interval in order to allow

target and projectile to have different mass.

Now Fi(A, YO) is normalized and defined over the Yy, independent
interval {-1, 0; 0, 1}. Hence, if Y, Vvaries, F can only change
shape. One would like to choose the definition of X in such a way that

F{A, v,) becomes a scaling function:

ij)MoO F2Yo) = F () (2.11)

2)

It has turned out that the choice made in the thermodynamical model™ ",

i.e.y A= {y - l)/(yo - 1), which was made with that aim, aimost led

to the desired behaviour {2.11). From 10 GeV to 1000 GeV (ISR) F{(A, YO)
did not detectably depend on Y, if fitted to experimentsla}. However, if
any, then only one choice of X can lead to (2.11) because if Ao =

= fiy, y,) does so, then any other choice Ag = g8ly, v,) (unles; AE is

a function of Af above) will not.

2.3 Determination of the weight function F(), Yol

One can have two attitudes:
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1) try to calculate F(x, v,) from some model: ¥)
19)
20}

- from Regge poles

- from form factors

- from relativistic kinematicszl)'22)

- from hydrodynamic523)

24)

- from the Boltzmann collision equation25)

- from Monte Carlo cascade calculations

- from any other models (I apologize to the authors not quoted due
to my ignorance).

2) find it by parametrization and fit tc experiments. This was done by

several authorsa)’l?}. When fitted to pion production at cone primary
energy, the same F()) gave good predictions for other different
energies (up to ISR), for other secondaries (v N, ¥, X, ¥, ¥, d, d,
He3, ﬁEB...) and for other projectiles and/or targetslo)’ll). As
F(A) was parametrized with only two parameters (remaining the same
and constant for all these processes) one could say that F(A) was
nearly (i.e., within the precision of the fit and the comparison of

11)

predictions with the data ) a universal function, although at ISR

energies the behaviour at X near zero suggested a viclation of the

18)

desired form of scaling The varicus F(A) calculated from medels
differ among each other and from the empirical one, but never dramat-

ically, except for a possible singularity at A = O,

2.4 Violations of the Postulates 1 and 2

Our postulates worked rather well in particle physics, but they may
fail in RHEIC.

2.4.1 Transverse collective motions

F()) 1is designed to represent only longitudinal collective motions.
In principle, there should also be a function G{ll) for transverse
collective motions or betfer still a function F(i) with K representing
three dimensional collective motions., While in pp collisions this was
not necessary, hydrodynamic calculation323) for RHIC indicate the exist~
ence of non-negligible transverse components of hydrodynamic flow and of
shock wave326). . Figure 4 shows the result of a non-relativistic hydro-

27).

dynamical calculation Clearly, all such calculations greatly depend

%
) Not all the listed references set out to calculate F(A, v,), but the
models yield information which can be interpreted in terms of such a
function.
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on the assumptions made for equations of state, viscosity, compressibility
and so on. As a child, I was much impressed when I discovered that solid,
cold tar was like a liquid if one had patience (a stone would sink into

a tar barrel within a couple of days), but it would shatter like glass

if hit hard. Thus transverse motion may depend on the collision energy.

400 Mevin
b=6fm

Fig. 4 Temperature, density and velocity distrib-
utions in Ne - U collisions from hydro-
dynamical calculations. Note the signifi-

27
cant transverse velocity component .

Theoretical work in this domain can greatly profit from experiment;
we will always have a superposition of collective and heat motion. Heat
motion 1s (as we shall see) limited to typical values as, for example,

28) .

at ISR energies
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(p)
<(p$>¢m o oo Mevfc => B~ N

(2.12)

(m) Q3
(D ™ 350 MeVfc =D B %

Hence, the chance to observe transverse collective motion despite the

thermal noise grows with the mass. For m > T (i.e., m>> mﬂ) we
2y,12)
have '’

<P_L((M;T)> RS \/ %@-—T (2.13)

Hence, with

2 1
z - Kﬁ“ l F&-
G"" = z = 7 2 (2.14)
KJ_ M+ Dy

—
<(3.L>% %J:? ad Vg’% (m >>T) (2.15)

the typical temperature for very high collision energies is T = 160 MeV,
This gives with (2.15) for protons <g> = 0.52 which shows that

Eq. (2.15) already gives a good estimate for m = My and is rather good
for heavier masses. Since even for very large collision energles T g

< T. = 160 MeV, we have for all energies above a few GeV/nucleon:

<(3'L>A N -6—'2/\[K (2.16)

where A is the nucleon number of the emitted fragment. For heavy
fragments, the thermal transverse velocity Bi is therefore small and
may become smaller than the transverse collective velocity. Therefore,
the transverse momentum of heavy fragments should be studied carefully
because it allows one to determine the collective transverse motion and
to compare it to hydrodynamic calculations., Turbulence might also be

detected by such measurements.
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FIG. 5

Fig. 5 Two extreme possibilities of the situation after a collision
(a) two "hot spots" leading to an asymmetry in the lab distri-
bution of produced particles; (b) a fast stretching con-

tinuum will not lead to an asymmetry.
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2.4.2 Violation of Postulate 2

Postulate 2 is also certainly violated and here it seems to
be difficult to say how this could be experimentally detected because

there are many violating mechanisms:

- it is not true that an incoming volume element will sihply be deceler-
ated; it will also be deformed and its matter content'wiil be.miied
by mutual interpenetration with that of the collision partner. Never-
theless, it seems that the velocity weight function F(X, YO) is able
to absorb part of this type of violation and that the fast rise of the
local temperature towards some limiting value does the rest .to dis-

simulate it.

- while heating up matter, some particle emission already takes place.
Thus, heating. is not quite adiabatic. However, emission is damped
by exp(-m/T) so that only near the highest temperature reached in

the heating process will particle emission be significant.

- equilibrium might not be established even locally. We will come back

to this point. -

- heat conduction might take placégg}. This will be negligible if

break-up and particle emission is faster than heat transfer,

- reabsorption of emitted particles violates not so much Postulate 2
as the assumption made in Eg. (2.9) that emission in the local rest

frame is isotropic. Figure 5a shows how this can generate an asymmetry

in the angular distribution ("hot spot")zg}, Figure 5b shows that this

asymmetry would also disappear if longitudinal break-up into many fire-
balls is fast.

STATISTICAL BOOTSTRAP THERMODYNAMICS

The whole philosophy and all technical details of S.B. are described

1),12),30)

in the literature and a short description of its present state

iz given in Ref.31}. Here I shall be very qualitative.

3.1 The partiticn function

Consider a macroscopic system confined to a volume V and embedded

in a heat bath of temperature T. It will have an energy level spectrum
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S = {EO, El’ E2,..., En,...}. As an example, think of an ideal gas of

one sort of particles of mass m. Then the probability of finding the
system on the energy level En is proportional to exp(-En/T). Norm-

alized to one we have
od
W exp(~Em/T) ZéXF("Ei/T) B
" 1=
The expectation value of its energy is

<&Eﬁ> =‘4§f: Egu hﬁn = :E:EEM €XE)(-£5~/H")
"=0 2. e"F('Em /T) (3.2)

d od
= - %{Z e’cP("’Em/T)}
d(-_F) m=0
The expression in curly brackets is the partition function Z(V,T)

50 e _Ef
Z(v):=3 eplaf) = [otev)e " de
0

The density of states o(E, V) is defined by this identity; of{E, V)dE =
= the number of energy levels in the interval {E, dE}. Equation {3.3)
states that the partition function is the Laplace transform of the den-

sity of states.

From Z{T, V,..} all interesting thermodynamic quantities can be
derived by logarithmic differentiation similarly as in Eq. (3.2). Apart
from T and V, the partition function may depend on further variables
like chemical potentials (one for each conservation law}, external

fields, etc.
3.2 Interaction

We learn from chemists that if there are atoms of sorts A and B

which can undergoe exothermic chemical reactions liberating the heat Q

A+B — (AB)+Q (3.4)
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where {(AB} is a molecule consisting of atoms A and B, then one in=-
troduces just three different particles A, B and (AB) with masses
Myr Mg Mg
m :-—-'-W'}'Q'Vl-E. .l = Eg (3.5)
AB A 8 M! *h“d'
If then no other sorts of particles and no other reactions occur, this is
sufficient to calculate the chemical equilibrium rates A:B:{AB} and

the equations of state. One simply considers a three component ideal

2Ty )= Zy ) ZglTh ) Zpg (T ) 00

and calculates everything from
-BKZ, = &”ZA t &Zx + ‘a‘ZAB (3.7

We need not know any details éxcept Ebind about the interaction between
A and B nor of the internal structures of A, B and (AB); the
values of My, Mg and Mg (which contains Ebind) are sufficient

to represent the interaction for all questions about the equilibrium
state (not, for example, for the question of how fast equilibrium is
reached). This method can be pushed further; we could also include mole-
cules (AQ Bk) with 2, k =1, 2,... or add further elementary ob-
jects {atoms) C, D,... and consider molecules (Ai Bj Ck Dg...) as

well as their excited states.

Back to particle physics. Here we include gii_possible reactions
and all bound states, excited states and resonances of the elementary
input particles; the latter are chosen by convenience., One could start
with quarks and gluons, but equall& well with pions and nucleons {or
with all these at the same time). Let us consider pions and nucleons
(one could add strange, charmed,..., particles). Figure 6 shows a mass
distribution of 7 and its resonances, N and its resonances and bound
states (nuclei) of (7N) and its resonances. We Know from the chemists
that we need all these masses and that we have only to consider a mixture

of ideal gases, one for each particle mass (labelled i = l,...,%®).
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Fig. 6 The mass spectrum p(m) of hadrons (schematically).
Each line represents one particle and their density
grows exponentially with the mass.

&Z(T:V(---):Z&*Zmih‘lvf )= :fdm f(au)&».Z,M (T,‘l/,) (3.8)

where p{m})dm is the number of different sorts of particles in {m, dm},
Zm{T, V...) 1s the ideal gas partition function for an unrestricted
number of particles of mass m and where the dots indicate further

variables (chemical potentials). The number of particles has to be un-
restricted because
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- their total number is unrestricted due to particle creation and annihil-

aticn;

- the number of each sort changes via "chemical" reactions, e.g.,

N+N+N+N*+2Tr.

For the partition function of an ideal gas of an arbitrary number of part-

icles we find in any textbook:

buZo (T,V) = VT e

(3.9)
mT |32
\Q(m\IT) > ( f
m>T NI [
Note that the factor e_m/T is missing in most textbooks, since in non-

relativistic statistical mechanics it is an irrelevant normalizing factor,
In the relativistic situation it is the important part as it governs the
equilibrium between particle creation and annihilation. Hence

b7 (rv) = V[ pmT) ) €T

0
is the partition function for the strongly interacting 7w - N gas, i.e.,

for the simplest strongly interacting hadron gas. What now is plm}?

We have the w, N, all nuclei with their excited states, = resonances,
N resonances, 7N states and their resonanées, etc. Only a finlte number
of them is known, but there are many more still unknown. The finite

number of known states is, in general, sufficient to calculate some in-
teresting quantities. This has been done for a long time - recently and

in the context of nucleosynthesis in the early universe as well as for

RHIC in some picneering paper532). In particular, the two papers by

AZ, Mekjan32) are an excellent introduction to many fundamental concepts

and open questions - most recommended reading!

What a finite number of states, included in the integral (3.10) for
gnZ, cannot do, is to generate a singularity of the partition function,
in other words, generate a phase transition. As one sees from Eq. (3.10),
2nZ(T, V} is analytic in the entire right half of the complex T plane
if Cﬂﬁ(m)] = ma, a < o, If pl(m) grows exponentially, opf{m} ~
. Cmfexp(m/T,), then the integral (3.10) does not exist for Re(T) > T,

and
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nZ(T, V) has a singularity at T, as first observed by Yu.B, Rumer33)

years before the 3SBM was proposed,

3.3 The bootstrap hypothesis

An incomplete 'p(m), however useful for computing low temperature
properties of the system, will fail to exhibit critical phenomena. We
therefore need the complete p{m) Oji m < «, Indeed, only the com-
plete spectrum can represent the full interaction; it is equivalent to

the eigenphase representation of the S matrix3o).

We obtain the full mass spectrum from the "bootstrap" hypothesis.
The l1ldea goes like this: from Egs. (3.3) and (3.10) we have

TO“(E} vye Tue
C

Z(Tv)

ii

o8 o
Z(rv) - expfv [pmr)pm)e | o

The same function Z(T, V) is expressed in different ways, once by the
density of states of the whole system and once by the mass spectrum of

its constituents.

We must clearly understand the physical meaning of o(E, V) and of
o(m) [see Fig, 7 :

o(E, V)dE 1is the number of states between E and E + dE of an inter-
acting system enclosed in an externally given volume V:

pim)dm is the number of states (i.e., different particles) between m
and m + dm of ah interacting system confined to its '"natural
volume”, i.e., to the volume resulting from the forces keeping

these masses together as bound states or resonances.

Thus of(E, V) refers, in general, to some macroscopic system, while
p{m} refers to particles, Here the reader should hold on for a moment
and imagine that we could compress the macroscopic system to that small
volume which would be the natural volume V(E) belonging to the energy
E. What would happen? It would itself become a "particle" - just one

among the infinite number counted by the mass spectrum. Thus of(E, V(E))
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A macroscopic system

0y T—
o o OOO o compress

O OQ oQ /

a " particle"

with total energy E with total energy m
given volume V self-confined to its
density of states o (E,V) natural volume V{(m)

density of states p(m)

Fig. 7 One step in the argument leading to statistical bootstrap.

would have to be equal to the mass spectrum at m = E, namely,

olm, Vim))) = p{m). This argument is so important that I will repeat it
in another formulation:

The interaction reigning in the macroscopic system enclosed in
V is identical to the one creating the various bound states
and resonances, keeping them together awhile and squeezing them
into their natural volumes. On the other hand, we have claimed
that the existence of all these - just exactly these! - bound
states and resonances with all possible "chemical" reactions

between them does represent - even generate - this interaction:
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THE INTERACTION

(:c> is generated by reactions between bound states and resonances,

which themselves are generated by the interaction, which-jj

This c¢ircular reasoning is a special example of the more general "boot-

strap philosophy" proposed by G.F. Chew34).

Coming back to the above Gedankenexperiment: if we could compress
the system with energy E and volume V o its natural volume V(E),
it would not be distinguishable from a resonance or a bound state with
mass m = E and volume V(m). However, it then alsc follows that such
a particle is also "composed of" other particles just as it was before
compressing and because it is subject tc the same interaction (Fig. 7).
Then of course, ¢(E, V{E)) is the number of states between F and
E + dE of a system confined to its natural veclume; this is just the
definition of p(m) at E = m. Therefore, the function p(m) is at

the same time

- the density of states of a composite system confined to its natural

volume
- and the mass spectrum of the constituents of such a system

and p generates the interaction which generates p. This double role
of p «can be illustrated by a highly simplified "bootstrap equation"

in which everything except the double rdle has been omitted

glm) v p(m)Q(M2)... O(my)
bith 3T m; = O for uy N

=t

(3.12)

Such a type of equation has only exponential solutions. Actually, the
arguments are much more subtle and the equation for o(m) is not as
simple as Eg. {3.12), but the conclusion remains the same: p is of the

o(m) = g(™)e
JUQIE w ;&<

{3.13)
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where g(m) is not exponential. It is not easy to determine glm), but
its asymptotic behaviour for m + <« is well known: g(m) ~» C/m3. The
reader will find more information in Refs.1),31),30). Here I mention
only two things: the constants C and T, can be guessed from a simpli-
), ¢, s

fied model involving only pions a © mﬁ. Such a spectrum fits

well the lewer part of the known spectrum of hadrons where we are sure

1}

£to have found ail resonances ' and T, gives about the right slope.

Furthermore, the same T, accounts quantitatively for the well-known
timited mean transverse momenta of particles produced in high energy
collisions because the partition function will become singular at T,
{as explained above) and T, =z mTT should be in some sense a iimiting
temperature or the critical temperature of a phase transition {boiling

point of hadron matter). We shall come back te this.

Thus the bootstrap hypothesis allows one to predict the (averaged)
hadronic mass.spectrum and relates it to one of the most prominent features
of high energy particle production - limited mean transverse momenta.

It might be expected that it can also be applied to RHIC.

3.4 The singularity of the partition function; baryon conservation

We have to conserve the baryon number in RHIC, So far we héﬁe ig-
nored this, but now it will be built in. In order to do =so, we must
study the singularity of the partition function., We insert the exponen-
tial mass spectrum {3.13) into Eg. (3.1C) for inZ, combine the two non-
exponential functions f£(m, T) of (3.10) and g(m) of (3.13) into a
new non-exponential function h(m, T} and obtain

GM

WZ(Tv)= VW'"T ™ .10

where it is obvious that this integral exists for T < T, and has a
singularity at T = T,, the nature of which dpends on him, T) and does

not interest us at the moment.

Now we split &nZ into two parts, anﬂ and anN where the first
one only contains pions and pionic resonances, while the second contains

all baryonic states
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Ww”Z = uZ, +&4Z” (3.15)

where
oo M M

&CZ{, = VS“&{W](M;T)P,_G Tdm (3.16)
N} o W

Here we claim that the asymptotic part em/To of the mass spectrum is
the same for pions and baryons. Qualitatively, this can be understood
by considering all hadrons with a given baryon number b and a very
large mass such that m >> me. For such large masses, the presence of
a few baryons is irrelevant as most of the mass is due to excitation of
non-baryonic degrees of freedom. Hence, for any fixed baryon number b,

the asymptotic part of the mass spectrum must be the same and equal to

the pionic one. This conclusion can be proved rigorously36).

Consider now the baryonic partition function

Iy W _ W
&LZ'N =V j&N(W,T)gn T dun (3.17)
[4
m/ T

The factor e is proportional to the probability of creating a mass

m at temperature T. This factor is extremely small for small T and

30 would be the number of baryons. If we wish QnZN to exhibit a given
number of brought-in baryons, we must counteract the small factor e-m/T.
This can be done by artificially lowering m by subtracting some suit-

able Am from it. This Am should account for the actual average baryon
number <b> we wish to impose and it should lie between 0O and m {Am = O

is no correction; Am = m is just excluded as too much). Thus we put

AM = (\M-;%N (3.18)

where u 1is some parameter to be adjusted to yield the wanted <b>.
Then replacing exp(-m/T) by exp(-{m-Am)/T} we obtain a new baryonic

partition function



&»ZN(T;VIF)z Vfﬂw (M,T)e% é-:f'@ {I-%ﬂ) Am (3.19)
0

This partition function, in which u can be chosen to give any desired
expectation value <b> of the baryon number, has no longer an 1solated
singularity at TO put a singular curve in the T-p plane. Indeed,

it will be singular where the total exponent vanishes.
T=T(u): = T'(’I-/“/WN) (3.20)
cit 0 0

This is the broken straight line in Fig. 8.

T

Fig. 8 The critical curve in the T - u plane.
The broken line is obtained from the hand-
waving "derivation" in the text, the full

curve results from the model of Ref. 31).
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The above arguments are oversimplified in order to make the idea clear.

In reality, one proceeds differently and ¢nZ has a slightly different

N 31)

form, the critical curve in the T-u plane is not trivial to calculate
and it locks like the curve in Fig. 8 instead of being a straight line;

the partition function exists below that curve.

The new parameter 1y, introduced here (in a sloppy way), is called
the chemical potential related to baryon number conservation; there is
an extra chemical potential for every conserved quantity. Ours is the
relativistic chemical potential; in non-relativistic statistical mechanics
factor e in non-relativistic situations. Suppose we deal with a

This is consistent with omitting the

nucleon gas non-relativistically, then for the one~particle case
2 11
E'_/u_-a——-;-(MN—-O“NR-i-W“): E __/u
2my [ AR

T 2y
?
e—(E—/u)/‘f' _ e“z’o‘i’rﬁ' + /_#mz

e—mN/T

and

Thus the factor has disappeared.

With the knowledge of o(m) and the introduction of the chemical
potential for baryon number conservation, Z(T, V, u! has become calcul-
able and is ready for application to the problem of highly excited had-
ren {(nuclear) matter. I stress that here I have only presented the general
ideas; the complete analytical soluticn is technically more involved,
but known in every detail3l).

3.5 The partition function for real (extended) particles3l)

All we have done so far suffers from a most unrealistic tacit assump-

tion, namely, that our particles are peintlike. For dilute gases this

is known to be a good approximation. We, however, consider dense matter.
Indeed, when applying the bootstrap argument, the system considered has
the density of a composite particle, i.e., roughly nuclear density. From
nuclear physics we know that describing a nucleus as a gas of pointlike
nucleons is a bad approximation. We also know that the volume of a
nucleus is proportional to the number of its nucleons, i?e., to its total

mass. In a relativistic situation it is not possible to distinguish



- 25 -

between mass due to the rest masses of constituents and mass due to kin-
etic energy. Hence, relativistically, the natural volume V(m) of a

particle must be proportional to the mass m

Viwm) = ;m‘g (3.21)

where B is a fundamental constant with the dimension of energy density.
Relation (3.21) is borne out not only by low energy nuclear physics, but
3

also by bag models and by the statistical bootstrap model, as can

be seen as follows:

- first write (3.21), which is valid in the particle's rest frame, in

covariant form

V}l(au) = -'f:gi (3.22)

by which the four volume vy  is defined. 1In the rest frame this re-
duces to (3.21) and therefore is the unique generalization of (3.21)

and of the corresponding low energy nuclear property;

- consider a particlé as a densely packed assembly of any number of other

particles with masses my

V,‘("“) = Z Vf(““i ) F”" Owy Jok fw w1 2o

- bootstrap tells us that the my have the same composite internal
structure as the composite m. Hence, the V“(mi) must obey (3.22)

with the same B;

- therefore " '
N
VH(M) = i s ZPP (3.24)
q'B Ll'B 'i=| L
which is an identity, since pM = Zp4p for any partition. This proves
l =

(3.21) to be true in statistical beootstrap.

Coming back to the partition function of a macroscopic system, we

now introduce the notion of the available volumeBl)

*)

we take B to be the "bag constant™; 4B is the energy density of a
bag.
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1=1 (3.25)

where V is the externally given volume enclosing the system in a heat
bath [for such a system, Eg. (3.22) is, of course, not true; it only
holds for each of its constituents] and A 1is what remains after taking
the proper volumes of all constituents away, Just as in the Van der Waals

gas:

A is the volume in which the particles move as if they were

pointlike, while in reality they have finite proper volumes (VdW)

and move in V.

There are some differences with the Van der Waals gas, however:

1} the proper volumes V(mi) are not equal;

2) the proper volumes will have to be written covariantly

Viwiy= B :

qul) = ! N P_ P = (M-
4 7 N fipu '

3} the usual factor four multiplying ZVi is missing; it arises only

for particles being rigid spheres of equal radius. OQur particles

are deformable and of different sizes in which case the factor is cne;

4) the second Van der Waals correction, which simulates attractive forces
by subtracting a density dependent term from the pressure, is not
necessary here since becotstrap takes care of attractive forces {(and

to all orders in the virial expansion),

The above statement (VdW) implies that one obtains the partition
function of real, extended particles enclosed in V by calculating the

partition function of pointlike particles enclosed in the volume A

th (T,V,/") EZP"' (Tzd,/“) (3.26)

Consider a particular micro-state of the system where the particles have

momenta piu (i = 1...N). In that case, Eq. (3.25) reads
N
M
AF= V'“.ZP{AB = Vﬂ—%‘ (3.27)
=i

with pu being the momentary total four momentum of the system (pu

fluctuates due to the heat bath!). How then can we insert A in the

AT R R R D] T LI T D R i s B e s e e e s



- 27 -

partition function? The difficulties seem great since Zpt is equal to

exp(Z.), the one particle function [see (3.11)] and yet we shall in-

1
treduce a quantity which depends on all momenta and even fluctuates.
We solve the problem by a tour de‘force. We choose A to be ocur in-

dependent volume-like parameter. Then

\/ﬂ;: Al F/qg (3.28)

for any state contributing to E&nZ. Thus now V 1s no longer fixed.
Tt has, however, an expectation value. In the rest frame of the heat
bath

< V(E A)> = A4+ 5= (3.29)

1)

3.6 Properties of the real hadron gas3

From Egs. (3.26) and (3.29) we can calculate all the usual thermo-
dynamic variables. As an example, we calculate <E>/<V>, the energy

density. Equation {3.2) says that

279
<E>=T@?&ZMM T,N_éuZFe (T4, /u) (3.30)

and since anpt(T A, w) 1is proportional to A [see, e.g., (3.19)],

E>= A 1720 -gung.(-’?df/‘)_] (3.31)

A NT

The expression in brackets is the (A independent) energy density of a

gas of pointlike particles: e (T, u). Hence

ot
E?
{E> =.—A-£f [(V(EAD_ -Epe (T,_/u) (3.32)
Here €pt does not depend on A. Furthermore, A can be chosen so that

any given value <V(E, A)> is assumed (3_<E>/4B). Hence we can now con-
sider <V> as a variable which can be prescribed and we can thus sclve
{3.22) for <E> without regard to the implicit dependence of <V> on

<E>

KE> = (VD - Ept (T:p) (3.33)

I+ Ept (T4 /g
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an

d
3 Epe (T,
€2 € oat (77/4) = (T (3.34)
V> T I+ &pt(tp) /om
Furthermore, from (3.32) <E> = A.e ¢s ve find with (3.34)

VTap)> = A (14 e (T4l /i )
4 = <V (I-Erml(tﬂ)/‘ls)

It turns out that all "real" intensive guantities like pressure, baryon

(3.35)

number density, etc., are related to the "point™ intensive quantities as

ereal is related to ept

Erent (T ) = 25 - Ept (T4

Bt T) <35 -}

Vuat (Th): = ﬁ,i = &y e (i)

3.6 Behaviour near the critical curve

L (T p ) (pressure ) (3.36)

1}

Inspection of the exact partition f‘unction3 reveals that

€ t(T, 1) + = when the system approaches the critical curve. While, for
given T, u, one can choose A to vield any given <V> > <E>/4B [see
Eq. (3.29); Eq. (3.35) says howj, the ratio A/<V> 1is a definite function

of T and u, tending to zero when the system approaches the critical curve

(f:‘”,:‘) ( /‘) = 4R (3.37)

that is, on the critical curve the whole system assumes the density 4B
of its constituents [remember Eq. (3.21)7 and therefore has become just

31)

one giant "particle". Closer inspection yields for the pressure and

the baryon number density

s Pt -0
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Gyt () = Mg () #0000

As the critical curve is reached at finite energy density, nothing
prevents it being reached in actual particle collisions and nothing pre-
vents it even being passed over, provided the collision was energetic
enough. Considering hadrons as quark-gluon bags, the hadronic gas becomes
then on the critical curve a giant gquark-gluon bag and it should be de-
scribed as an interacting gquark-gluon gas on the other side. This,lit

least, is our {J. Rafelski and R. Hagedorn) present interpretation3
(Fig. 9).

| ™

quark - gluon - phase

hadron phase

vacuum

~

To

Fig. 9 Physical interpretation of different
regions of the T -y plane as pro-

posed in Ref., 31).
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This thermodynamics, combined with a good description of the collective

motions should then give a model for RHIC

Cm‘«&k lloa-ipﬁm =f{wﬂtbﬁw Mn}@{%%ﬁé (3.39)

While the lecal bootstrap thermodynamics is known, we still know little
about the collective motions, which themselves depend again on the local

thermedynamics. There remains a great deal of work to be done!

IS THERE EQUILIBRIUM IN RHIC?

Nobody expects global equilibrium (except perhaps in selected "central™
collisions), but there are good reasons to doubt even that there is local
equilibrium, because the duration of a collision, the lifetime of reson-
ances and the fime needed to create a particie are all of the same order
of magnitude. In particle collisions one can agree that thermodynamic
equilibrium does not require a number of collisions of existing particles,
but that the quantum mechanical probability distributions governing the
creation of particles are such that the new-born particles seem to come
from an equilibrium statelg). This might be different in RHIC where
many particles are already present before the ccllision and have to underm

g0 collisions individually and/or coherently.

The argument for equilibrium seems to be valid in particle physics
because the thermodynamical model which heavily rests on it was, on the
whole, successful. With very few free parameters chosen once and for all,
it covered collisions of different sorts of particles with lab energies
between 10 and 1000 GeV, describing rather well the features of particle
production for all sorts of particles and with production rates ranging
over 12 orders of magnitude. While many mcdels are quantitatively superior
in restricted areas, the thermodynamical model was (and still is) the
only one covering the whole reasonably well. There are also some failures:
1) two particle correlations are not well described by the simple thermo-

dynamical mode 37);

8)

2} the large P~ processes observed at ISR energie32
by the model.

are not predicted
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Fig. 10 Transverse momentum distribution of #°% at ISR energies3

The curves (handdrawn by present author) can be well approx-

~3

< 1.5 GeV/c the SBM prediction holds with T = 165 MeV,
2/7
E
c

Imated by a superposition of three exponentials; at p g
4

at < > 5 GeV/c a temperature growing = {broken

straight lines) suggests a plasma of gluons and not quite

massless quarks.

The second failure is particularly interesting because 1t concerns only

about one per thousand of all produced particles - the rest behave as the
medel predicts. Figure 10 shows what happens qualitatively. The pl
distribution takes off the straight line predicted by the model at P,z

> 1.5 GeV/c and stays higher up depending on the height of the collision
energy. Why does this not kill the model? Because the straight parts

of all curves, coinciding below ~ 1.5 GeV/c have the same energy-inde-
pendent shape corresponding to a temperature ~ 165 MeV just as the

mocdel says. If the shape of this part had decreased steadily with rising
energy, the model would have been in serious trouble. The large transe
verse momenta can be understood as being due te pre-hadronization processes

taking place in the guark-gluon phase and emitting some energetic quark
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or gluon before crossing the critical curve. All the-particles belonging
to the straight line below 1.5 GeV/c would then be emitted from the

hadronic phase after crossing the critical curve.

While in pp collisions at ISR energies there are thus definite
traces of pre-equilibrium processes happening in the guark-gluon phase,
such indications are as yet missing in proton-nucleus and nucleus-nucleus
collisions, presumably because the collision energies are not yet high
enough. In any case, models along the lines described in the previous
sections have been applied to pN and NN collisions. I will mention
Just a few {apologizing to any authors not menticned because of my 1lg-
norance) :

- the "Black Book" on particle spectrall)

calculates pN collisions
between 20 and 70 GeV primary lab energy with N being Be, AL,

Cu and Pb. A single collective velocity function F(A) covers all
of these energies and targets in satisfactory agreement with data
(where available). Production of heavy fragments is not calculated;

- J.P. Alard39)

pioneered the calculation of nucleon and heavy frag-
ment emission (Heq, Be, Li...) wusing a special F(X) and introducing
chemical potentials;

- A. Mekjiaan) calculated RHIC with F(A) ~ &() - AO) where AO

adjusted to represent one single, moving fireball with thermodynamics

was

restricted to the lower, explicitly known part of the spectrum;

- J. Gosset, J.I. Kapusta and G.D. Westfallal) obtained good results

using a velocity distribution ("fire streak") derived from kinematical

considerations by W.D. Myersl3)

2
part of the spectr’umao)’4 );

25)

and with thermodynamics using the lower

- R. Malfliet derived a collective velocity distribution [in the
sense of F(X), but taking into account its temporal evolution| from
the relativistic Boltzmann equation. Supplied with low-spectrum
thermodynamics and nucleon-nucleon cross-sections, the model vielded

particle spectra in good agreement with REIC data;

All these attempts are based on the assumption of {local equilib-
rium} ® {collective motion} and they are all more or less successful.

This is surprising.
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where UC is the inelastic cross-section (assumed energy independent

and equal for all collisions mN, wm, NN), v, the mean thermic velocity

T
and n the density of pions plus nucleons. We have assumed that A

has a sufficiently large mass so that its contribution to n is neglig-

ible: n >> a at all times. wpair is the pair creation probability per

collision.

do 2
£a = 0.0 -4
(M-' )muu&Mw A TA

where OA is the annihilation cross-section of A and VTA the mean

thermic velocity of the A's. Hence

(4.3)

a(t)

A

a (0)

a(0)

Fig. 11 The approach to equilibrium (qualitative) predicted
by our simple model for two different initial values

a{0).
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4,1 The way to equilibrium

It is necessary to understand why there can be local eguilibrium,
- at least approximately. The problem has been considered in the

literatur643)’qq)’45).

Clearly, the approach %o equilibrium takes
time. After a sufficient time has‘elapsed, any system will come to
equilibrium, What is less obvious, is that the equilibrium state reached
will, everything else being‘equal, depend on the volume availablele)’QB).

Here I shall cutline the ideas without going into detail;
There are two kinds of equilibrium - kinetic and chemical:

Kinetic equilibrium means equipartition of the total kinetic energy

among the particles then present. This is a fast process which needs
enly very few collisions per particle. We assume this kind of equilib-
rium to be established instantaneously and locally, which means that a
local temperature can be defined meaningfully. This temperatun@ can

s5till vary in space and time.

Chemical equilibrium is equilibrium between the numbers of différent
species of particles. Being in equilibrium means for a given'ééecies
that its rate of creation balances its death rate. TO‘afrive at that
staxe nay take a qhort or a long t1me~depend1ng on croess~sections, life
tlmes, densitieés and 86 on. ‘ '

Consider a simplified example which exhibitS'the main point: a
quasi-ideal, pion-nucleon gas in which a third kind of pérticle with a
conserved charge Q can be created. Let A and A denote this part-
1¢le and its antiparticle and a the density of either A or A:

a = NA/V. Further, let .n be the number density of pions plqé nucleons:
n = (NTT + NN)/V.. Then

} 4_6_1_ (4.1)
dt = \AE Joenting A ounibibabivn o

da .t
(E )Otmh‘rh - G;fv_;,% D\/Fa,ir (4.2)




2 ? z
%%_(rc%m WPa;r—Ggﬂk,—Aa =: -3
? (4.4)

where o, B are constants fixed by particle properties, densities and

temperature. Obviously equilibrium is reached when

d _ o
dt
a(oe)-—-m

The system approaches this value from below or from above depending on

(4.5)

the initial value a(0) as shown in Fig. 11. From the thermodynamical

model we know Efirst paper of Ref. 2) and CERN lectures, Ref. 12)7] that

WW V. exP (-MA/T') : (4.6)

T
so that
<A
a(oc) - Wﬂ . e T (4.7)

Consider now a{0). This initial value is determined by the process
which creates the 7wN gas in which the creation of AR pairs takes
place. Let this process be a RHIC, Then in the first instant, NN
collisions at high (not thermic) velocities take place and in these col-
lisions pions as well as AR pairs are created. Then kinetic equilib-
rium between all these is rapidly reached and Egs. (4.1) ~ (4.3) can be
applied, with a{0} being the demsity of A resulting from the pairs

created in the first impact

afo) v Q-WA/T | (4.8)

the proportionality' constant depending on the details of the collision

(energy, number of nucleons...).

Above, we have made the assumption that the density a is so small
that it can be neglected against n. This implies that after creation

the particles A and B part from each other to large distances and
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that A{L) has to wait for annihilation until colliding with some other
particle A(A). This, however, is only possible if the total volume
available to the whole system is so large that the pairs created in the
first instance can escape to distances which are large compared to the
range of the annihilation interaction. If the volume were so small as

to keep them always within annihilaticn distance, the number of pairs would
always remain proportional to exp(—ZmA/T) as in pp collisionsg)’lz).
Between such a small and a very large vclume, many intermediate situations
may occur in RHIC. Therefore, it is important to know the volume depend-
ence of the equilibrium distributizn) a{w) which may vary between,‘

5

~ exp(-2mA/T) and ~ exp(—mA/T)

only for large volumes, as n >> a was assumed.)

. (Our above equation is valid

The time needed to reach equilibrium depends on the values of g
and 8, which determine the slopes of the curves in Fig. 1l. Equilib-
rium is reached when |a(t) - a(°°}|2 is of the order of the natural

fluctuations 1n equilibrium

la-alo) e <At - <)t
. equiliby.

From this the equilibrium time can be determinedqq).

4.2 Expansion and cooling

Expansion and cooling after a RHIC are not equilibrium processes,
but the only way presently known of describing them theoretically seems
.via a sequence of quasi~equilibrium states. Two approaches have been

40),43)

discussed in the literature : expansion with constant energy and

31)

wilth constant entropy. We believe that constant entropy is wrong,
since during expansion, reactions and particle creation still take place,
no external work is done and the precess is iﬁteyersible. On the‘other
hand, total energy is conserved, but it is insufficient to - characteérize
.the process, since we can calculate from thermodynamics only energy den-
gities and do not know the expanding volume. On the cother hand, baryon
number is also conserved and must be taken into account. Again, we can
only calculate the.baryon number density and do not know the volume.

The ratio of the two conserved quantities <E> and <b> is then also

conserved and the unknown expanding volume drops cut
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E .
&> ¢ =<§ ‘ = lusl .
<> v v auibog (4.10)

We therefore advocate the calculation of cooling curves given by (4.10)
as a succession of quasl equilibrium states3l). We may visualize this

as in Fig. 12 where we imagine the separating walls pulled down one after
another, each time waiting until a new equilibrium is established. At
some stage, pulling down more walls will not change any more the momentum
distribution and particle ratios. We have then reached an ideal gas
situation: the equilibrium has been frozenAO)’A3). This state will

be the one recorded on our particle detectors, but particles being

0 oo OJVITTTTTTTT
3‘g’ oof ] :
5, 0.2 %
QO@OO .
00 oo 0 L
000 8o 0 L
065666080
pull down one after
another to let gas
expand {Gay-Lussac)
ofeJeReXe ,

rig. 12 Freely expanding hadron matter seen as a sequence
- of equilibrium states. Energy and baryon number

are conserved, entropy increases.
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emitted during the whole process will superimpose on it3l). Clearly,

the process pictured in Fig. 12 is only an approximation of reality,
since equilibrium is not reached after each decay step. But it will be
a much better approximation than that obtained from the assumpticn of

of constant entropy. While we know for sure that <E>s/<b> 1s conserved,

we have no reason to assume anything like conserved <S>/<b>,
CONCLUSIONS

Despite a great number of well worked-out partial theoretical models,
we do not yet know enough to build a theory which describes coherently
the whole of RHIC. Under these circumstances, even the detail models
cannot be adequately tested since we have not yet learned to disentangle
the dozen or so0 different mechanisms mixed up in a RHIC. There exists,
however, a fully worked out analogue computer programme based on the
one and only true, complete theory: RHIC experiment. As we do not know
the programme, but only its output for a given input, learning the theory
from it is far from trivial., We should try to force it to give answers

to the following unsettled questions:

is there a unique F(X)?

~ how important are transverse collective motions and turbulence?
~ must hydrodynamics be used? '

~ 1s bootstrap thermodynamics right?

~ how fast is equilibrium reached locally?

- which is the best thermometer?

~ how do fireballs cool and expand?

- 1is there a phase transition to a quark-gluon plasma?

- do ISR jets (large p ) indicate such a phase transition?
1

These questions result from theoretical prejudice., Given that these
prejudices might be reasonable to start with, the following experiments
will be interesting: '
1) measure total multiplicities or relative ratios of secondaries:

™, N, K, A, £, d, L, He3, Heq, Be, Li,..., and of as many of their

antiparticles as feasible.

2) measure for all of these the mean transverse momentum <p > as
AL
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funciion of the primary energy per nucleon E/A4 and of the secondary's

mass m.

For these first twe types of measurement try to make things as sim-
ple as possible: projectile = target and trigger for central collisions,

in order to approach the theoretician's dream object - a single fireball.

3} Measure inclusive momentum distributions W(E)dBp as function of
E/A and m. Try to fit with some F(K)(g {1local beootstrap thermo-

dynamics}.

- can one find an energy independent F(K}?
- 1is it the same for all targets and projectiles?
- 1is it independent of the emitted secondary?

- does one need transverse collective motion?

For these measurements all events must be taken; triggering for
central collisions or selecting events along any specific criteria would
distort the picture. One might start, howevér, by colliding equal nuclei
and later make projectile # target. Pay special attention to transverse

momenta of heavy fragments, the heavier the better (see Eq. (2.16)).
4) Look for asymmetries in individual events:

« azimuthal, i.e., non-isotropic in the angle about the collision
axis. Such an asymmetry should arise from angular momentum con-

46)

servation and be large in peripheral, small in central col-
lisions;

~ while the first type of azimuthal asymmetry would still maintain
symmetry with respect to reflection on the collision axis, even
that might be destroyed by the "hot spot" mechanisng}leading

to a right-left asymmetry,
5) Look for "abnormal" things

- sideward jets
- unusually large p
1
-~ unexpected (from equilibrium thermodynamics) particle ratios, in

particular involving anti ={A, I).

This last group of observations would have to be interpreted as

evidence supporting the theoretical picture of a phase transition to a
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quark-gluon plasma. Any process originating in that phase and surviving

the return to the hadron phase would leave traces of the sort mentioned.
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