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Abstract Under general relativity, the paths of accelerated
test particles are taken into account. It is examined whether
such accelerations have any influence on the ‘singularity’
of the spacetime. The Raychaudhuri equation for the con-
gruence of the time-like curves describing the paths of the
accelerated particles is considered to calculate a few physical
attributes. It is shown that if the acceleration of the test par-
ticles exceeds a particular value, then the congruences of the
accelerated time-like curves do not encounter any singularity
although the usual energy conditions are violated or modi-
fied. It is shown further that in the curved spacetime of general
relativistic framework one may generate a system of trans-
formations that is a generalization of the Rindler coordinates
related to accelerated frame in the flat Minkowski space-
time. To show the influence of the acceleration of test parti-
cle on singularity of a particular spacetime the Schwarzschild
spacetime is considered. Taking tidal deviation related accel-
eration term, it is shown that the acceleration may attain a
specific value for which the modified Kretschmann scalar
vanishes in a spherical neighbourhood of the singularity and
thus the Schwarzschild singularity disappears. In the context
of singularity as ‘geodesic incompleteness’ of the spacetime
manifold it is also proved that prescribing an appropriate
acceleration term on the maximal geodesic defined in a finite
interval one may extend it up to infinite proper time and hence
the spacetime becomes singularity free. Such results hold at
the price of violating the usual energy conditions.

1 Introduction

The general relativity explaining the gravity in the true sense
is so successfully that it has a wide range of applications
in the precise measurement of planetary motions, galactic
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and extra-galactic phenomena and also the evolution of the
universe in the stationary as well as dynamical spacetime
continuum. In the framework of that elegant theory there
exists a situation while the causality breaks down and that is
nothing but the singularity. It is supposed to be a condition
in which the gravity is so intense that spacetime itself breaks
down catastrophically; although that is not the only way to
define a singularity.

In 1955 Penrose [1] proposed the idea of singularity in
terms of incompleteness of spacetime manifold subject to
certain conditions including the existence of trapped surface.
In 1970 Hawking and Penrose [2] developed the ‘singular-
ity theorem’ interpreting the gravitational singularity in the
Big Bang situation. The singularities may be evident in all
the black hole spacetime and in all the cosmological solu-
tions that do not have a scalar field energy or a cosmological
constant. In this article we concentrate on the spacelike sin-
gularity at which the spacetime curvature blows up. The blow
up ratio of the curvature during gravitational collapse have
been studied in details [3,4]. As the curvature is associated
with gravity the curvature singularity corresponds to infinite
gravity and there exist a number of possibilities of how such
infinitely strong gravity manifests itself.

Now a pertaining question is whether that singularity lasts
forever or there may be some way by which it is completely
destroyed. We are strongly motivated by the event of black
hole evaporation interpreting that if the entire black hole
gets evaporated then its singularity must be diminished by
some manner before the evaporation process is completed.
We identify that the accelerated particles having some suit-
able value of acceleration may destroy the spacetime singu-
larity.

The acceleration may be incorporated in the special rela-
tivity characterized by Minkowski spacetime. In 1973 Mis-
ner et al. [5] analyzed the accelerated motion in the frame-
work of special relativity. Although, in general, the special
relativity deals with inertial frame of reference, but that is
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also very much consistent in the non-inertial frame incorpo-
rating acceleration. In special relativity, a uniformly accel-
erating particle exhibits hyperbolic motion and therefore, a
uniformly accelerating frame relative to which the particle
is at rest may be chosen as its proper reference frame. Such
hyperbolic coordinates are termed as Rindler coordinates [6]
that are curvilinear in nature and correspond to the Rindler
metric. The non-inertial frame characterized by the Rindler
coordinates consists of the world lines of the accelerated par-
ticles. Unlike the standard spacetime coordinates the Rindler
coordinates cover only a portion of the spacetime diagram,
which is known as Rindler horizon.

The present work deals with the accelerated test particles,
not in the framework of special relativity, but when general
relativity comes into play. Finding the solution of the uni-
formly accelerated test particles in general relativity work
in this arena have been carried out [7–9]. It has already been
mentioned that the most remarkable feature of the general rel-
ativity is the existence of singularity which is absent in the
Minkowski spacetime. It is intensively studied how the accel-
eration of the test particles affect the singularity. Another
important point to be verified that the acceleration calculated
in the framework of general relativity must be consistent with
the expressions of the same found in the local flat spacetime
with the aid of Gaussian normal coordinates.

The outline of the present study is therefore as follows: In
Sect. 2 Raychaudhuri equation for the congruence of acceler-
ated curves has been provided along with in two subsections
we discuss the Raychaudhuri equation and the singularity
as well as the proper acceleration and the accelerated frame.
We provide the Kretschmann scalar and singularity in Sect. 3
with the discussions on acceleration in Schwarzschild space-
time in two different subsections. Acceleration and geodesic
completeness are discussed in Sect. 4. Some concluding
remarks are provided in Sect. 5.

2 Raychaudhuri equation for the congruence
of accelerated curves

It is well known that the Raychaudhuri equation [10–16]
plays a pivotal role in the singularity theorems [1,17]. The
most fascinating part of that elegant equation is that it has
been established as a purely geometric relation, making no
reference to the Einstein’s equation [18] of general relativity.
The Raychaudhuri equation is a relation between the Ricci
tensor Rμν and d�

dτ
, where � represents how the ball of test

particles moving along the curves is growing (� > 0) or
shrinking (� < 0) at any point of time. Almost in all works
the Raychaudhuri equation is considered in the perspective
of geodesic congruence; but in this work it is taken in the
framework of curves followed by accelerated test particles.
Let uμ, a tangent vector field to a timelike curve, represent

four-velocity of some massive fluid particles, and their inte-
gral curves of uμ’s, in general, are not geodesics at all. The
term Bμν = uμ;ν , a (0,2) tensor, can be decomposed as fol-
lows:

Bμν = 1

3
�Pμν + σμν + ωμν, (1)

where Pμν represents a projection tensor that projects any
vector in TpM for the given vector field uμ (at each point p)
into a subspace of TpM corresponding to the vector normal
to uμ. The traceless symmetric part σμν represents the shear
or distortion in the shape of the collection of test particles,
where ωμν is the traceless anti-symmetric part, called rota-
tion. With a little bit of calculations the covariant derivative
of Bμν relative to the proper time τ takes the following form

DBμν

dτ
= (uσuμ;σ );ν −Bσ

ν Bμσ − Rλμνσu
σuλ. (2)

Taking the trace of this equation the following expression
is obtained

d�

dτ
= −�2

3
− σμνσ

μν − Rμνu
μuν + (uνuμ;ν );μ . (3)

In the above equation the term ωμνω
μν disappears by

the Frobinius theorem according to which a congruence of
timelike curves is hypersurface orthogonal if and only if
u[μ;ν uρ] = 0 (generalization of ωμν = 0). Equation (3)
represents the Raychaudhuri equation for the congruence
of timelike accelerated curves. The last term on right hand
side represents the covariant derivative of the acceleration
which may play a significant role that will be discussed sub-
sequently.

For clarity, an important aspect arising due to the pres-
ence of acceleration term in the above equation should be
discussed in brief. It is well known that the gravity is an
attractive force, only due to the focussing phenomenon gov-
erned by Rμνuμuν ≥ 0 (for any timelike vector uμ), which
is termed as timelike convergence condition. Such condition
leads to strong energy condition (Tμν − 1

2gμνT )uμuν ≥ 0, in
which energy momentum tensor Tμν is evolved via Einstein
equation. For the consistency of the singularity theorem the
timelike convergence condition should be modified into

Rμνu
μuν ≥ aμ;μ . (4)

Such relation translates the classical energy condition in
terms of pressure p and density ρ into

3p + ρ ≥ 1√−g
(
√−gaμ),μ . (5)
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It is straight forward to show that the acceleration term
aμ = uνuμ;ν is orthogonal to the velocity vector uμ. If
uμ is considered as purely timelike vector then aμ must be
spacelike, and it can be taken as aμ = (0, a). Therefore Eq.
(5) takes the form

aμ;μ = aμ,μ +	μ
μαa

α = aμ,μ

+ 1√−g
aμ∂μ

√−g = 1√−g
(
√−gaμ),μ

The metric gμν can be expressed as

gμν = ημν − 1

3
Rμανβx

αxβ + O(x3)

In the locally flat spacetime Rμανβ(P) = 0 at every point P
therein and therefore, gμν = ημν . It makes the Eq. (5) as

3p + ρ ≥ 1√−g
∇.(

√−ga). (6)

In the locally flat spacetime such condition becomes

3p + ρ ≥ ∇.a. (7)

The above Eq. (3) not only modifies the classical energy
condition, but in some sense, it may also violate such con-
dition. The Eq. (7) shows that the term 3p + ρ is greater or
equal to the divergence of the acceleration three vector and
the classical energy condition is recovered only at the source
and sink of such acceleration vector field.

Now, Eq. (3) may be reformulated in a different manner
as given hereunder:

D2uα

dτ 2 = q2uα, (8)

where

q2 = d�

dτ
+ �2

3
+ σμνσ

μν + Rμνu
μuν . (9)

In the following sub-section the fate of the singularity
arising in the Raychaudhuri equation is explored. In the sub-
sequent sub-section the expression of the proper acceleration
as well as accelerating frame of reference are obtained.

2.1 Raychaudhuri equation and the singularity

Followed by the focusing theorem Raychaudhuri equation
leads to a singularity in the congruence of curves, not nec-
essarily being the geodesics. It physically signifies that the
gravity, in some sense, is converging in nature. Here it is
explored how the curves followed by accelerated particles
affect the possible singularity that is inevitable for the ini-
tially converging geodesics. For the sake of simplicity in our

analysis we consider q as constant. Now one may set

k = q2 − (σμνσ
μν + Rμνu

μuν), (10)

where, k may be taken as constant. The physical motivation
for such consideration is that the analysis is carried out for
the small scale of time for which the pressure and density are
assumed to be constant, and therefore, Rμνuμuν(= ρ + 3p)
should remain constant in the current scenario. There is no
harm to take the shear term as constant as well. Moreover,
the term q representing the proper acceleration of the particle
does not depend on time, although its components do.

At this juncture the following three cases may arise.

Case-I: k < 0, set k = −χ2

That includes the situation when there is no acceleration,
i.e., q = 0 and therefore, the congruence consists of the
geodesics. In general that is the situation in which there is
a little acceleration experienced by the test particles. Under
the situation Eq. (9) becomes

d�

dτ
= −�2

3
− χ2. (11)

The analytical solution of the above differential equation
gives

�−1 = 1

χ
√

3
tan

{
χ√

3
τ − cot−1

( |�0|
χ

√
3

)}
, (12)

where �0(< 0) is the initial contraction of the congruence of
curves (or geodesics for q = 0). Equation (12) shows at the

proper time τ∞ =
√

3
χ

cot−1(
|�0|
χ

√
3
) the � diverges to −∞.

That is nothing but the result of focusing theorem by which
the singularity appears.

Case-II: k = 0
In this case the differential equation takes the following

form

d�

dτ
= −�2

3
. (13)

It can be solved with same initial condition �0(< 0) as

�−1 = τ

3
− |�0|−1. (14)

Here also the � diverges to negative infinity at the proper
time τ∞ = 3

|�0| . Thus the focusing is followed to result a
singularity.
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Case-III: k > 0, set k = χ2.
The corresponding differential equation becomes

d�

dτ
= χ2 − �2

3
. (15)

With same initial condition the solution takes the form

� = χ
√

3 tanh

{
χ√

3
τ − tanh−1

( |�0|
χ

√
3

)}
. (16)

The initial converging condition of � exhibits the follow-
ing nature in the subsequent stage.

� ≤ 0, 0 ≤ τ ≤ √
3 tanh−1

( |�0|
χ

√
3

)

> 0, τ >
√

3 tanh−1
( |�0|

χ
√

3

)
.

The � does not diverge not only for a finite value but
for also the large value of τ . On contrary it converges to
χ

√
3 as τ → ∞ and therefore there is a stability of � at

infinity. The most significant observation is there does not
exist any singularity. That is very encouraging to observe the
world lines of the accelerated particles do not encounter any
singularity when q2 exceeds σμνσ

μν + Rμνuμunu .
Thus when the acceleration is large enough compared to

the contribution of energy momentum the singularity may
be avoided. But it is worth mentioning that this picture may
completely become nonphysical. For example, in the shear
free situation the term Rμνuμuν = 3p+ ρ, must not exceed
the square of the proper acceleration term and then only the
avoidance of singularity is possible. For the large density
or pressure the contribution may exceed q2 and the usual
focusing phenomenon, as described in the Case-II occurs;
encountering the singularity is inevitable.

2.2 Proper acceleration and the accelerated frame

In the special relativity the proper acceleration of a body gives
rise to a non-inertial frame characterized by the Rindler coor-
dinates. Here we consider accelerated curves in the frame-
work of general relativity through Raychaudhuri equation.
It is worth noting that the acceleration vector aα is always
normal to the velocity vector uα and hence to the tangent
space TpM, where p is any arbitrary point in the spacetime
manifold M. If we solve Eq. (8) in the Gaussian normal
coordinates we obtain the expressions of velocity, accelera-
tion and the coordinates respectively, as follows:

uα = uα∗ cosh qτ + aα∗
q

sinh qτ, (17)

aα = quα∗ sinh qτ + aα∗ cosh qτ, (18)

xα = xα∗ + uα∗
q

sinh qτ + aα∗
q2 (cosh qτ − 1), (19)

where uα∗ , aα∗ and xα∗ represent the initial values of the veloc-
ity, acceleration and coordinates respectively.

Equation (18) indicates (a.a)
1
2 = q and therefore, q is

simply the proper acceleration, whose high value makes the
singularity disappears as shown in the Case-III of the previ-
ous sub-section. One may recover the Rindler coordinates in
special relativity from Eq. (19).

Let us now choose the following set of initial values:

xα∗ = (0, 0, 0, 0), uα∗ = (1, 0, 0, 0), aα∗ = (0, q, 0, 0).

(20)

The expressions of the coordinates, velocity and accelera-
tion in terms of proper time and proper acceleration become

x0 = 1

q
sinh qτ, x1 = 1

q
(cosh qτ − 1), x3 = x4 = 0,

(21)

u0 = cosh qτ, u1 = sinh qτ, u2 = u3 = 0, (22)

a0 = q sinh qτ, a1 = q cosh qτ, a2 = a3 = 0, (23)

which are nothing but the said expressions in the Minkowski
spacetime. Replacing 1

q by a coordinate variable ξ one may

have a transformation from Minkowski coordinates (x0, x1)

to Rindler coordinates (ξ, τ ) in (1+1) dimensions. Using the
same trick in the framework of general relativity a combine
expression of the above transformations in the spacetime of
(3+1) dimensions may be expressed as follows:

xα = x̃α
1 sinh(Qα x̃

α
0 ) + x̃α

2 [cosh(Qα x̃
α
0 ) − 1] + x̃α

3 , (24)

where

x̃α
0 = (τ, 0, 0, 0), x̃α

1 = (ξ, 0, 0, 0), x̃α
2 = (0, ξ, 0, 0),

x̃α
3 = (0, 0, 0, 0), Qα = (q, 0, 0, 0) (25)

With an arbitrary choice of (x̃α
0 , x̃α

1 , x̃α
2 , x̃α

3 ) a generalized
Rindler coordinates under the scenario of different space-
time manifolds in general relativity may be obtained. Thus
in general relativity through such transformation a new frame
may be chosen where the test particles exhibit the accelerated
motion and evidently such frame is different from that where
the particles follow the geodesic motion.

3 Kretschmann scalar and singularity

The most awkward situation in the general relativity the-
ory is the singularity, in particular the spacelike singular-
ity, being evident in Schwarzschild spacetime, FRW space-
time etc. Such kind of singularity is characterized by the
Kretschmann scalar K = Rαβγ δRαβγ δ , an invariant quantity
introduced by Erich Kretschmann [19] in the year 1951. It
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is interesting to note that on the event horizon of any type
of black hole such Kretschmann scalar is regular and there-
fore, the apparant singularity arising on the event horizon can
be removed very easily by the proper choice of coordinate
transformations. The real spacelike singularity arises either
at the center of the Schwarzschild type of black hole or at
the big bang, where the Kretschmann scalar is singular. Now
is it possible to turn the Kretschmann scalar to be regular
at the singularity by reconstructing the Reimann curvature
term Rαβγ δ? If we consider the curves of accelerated parti-
cles instead of geodesics then the deviation equation becomes

D2ζ ρ

dτ 2 = −Rρ
βγ δu

βuδζ γ + (uκuρ
κ );γ ζ γ , (26)

where ζ ρ represents the deviation or separation vector
between the neighbouring curves.

As the extent of Reimann curvature is measured by the

tidal force D2ζ ρ

dτ 2 the right hand side of the equation (26) may
be expressed in terms of a modified Reimann tensor as given
hereunder

D2ζ ρ

dτ 2 = −R̄ρ
βγ δu

βuδζ γ , (27)

where

R̄αβγ δ = Rαβγ δ − aα;γ uβuδ. (28)

The acceleration term aα = (uκuα;κ );γ modifies the cur-
vature, but the question is whether it suffices to make the
Kretschmann scalar to be regular near singularity. One may
calculate such new Kretschmann scalar in terms of modified
Reimann tensor, i.e., K̄ = R̄αβγ δ R̄αβγ δ as follows:

K̄ = K + gγρaα;ρ aα;γ −2gγρRαβγ δa
α;ρ uβuδ. (29)

The claim is that the particles following the curves will
be accelerated with such a value of aα so that the modified
Kretschmann scalar K̄ vanishes near the singularity. Thus the
singularity can be removed by the suitable acceleration asso-
ciated with the congruence of curves. In the next sub-section
that claim is verified with the illustration of Schwarzschild
spacetime.

3.1 Acceleration in Schwarzschild spacetime

The Schwarzschild spacetime is a perfect example of a spher-
ically symmetric vacuum solution of Einstein’s equation. The
corresponding metric is given by

ds2 = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2. (30)

The metric is evaluated in the plane where θ = π
2 and

φ = 0. There exists a singularity at r = 0 since the cor-
responding Kretschmann scalar takes the form K = 48m2

r6 .
In the accelerated frame of reference the timelike condition
of the velocity vector uα , which is uαuα = −1, brings the
expression of Eq. (30) in the following form.

(ut )2

(
1 − 2m

r

)−1 − (ur )2(
1 − 2m

r

) = 1. (31)

That represents a hyperbolic equation whose parametric
form with parameter λ gives the expressions of ut and ur .

ut = cosh λ(
1 − 2m

r

) 1
2

, ur =
(

1 − 2m

r

) 1
2

sinh λ, uθ = uφ = 0.

(32)

It is worth noting that λ = 0, gives the velocity in
Schwarzschild spacetime for a stationary object. In the
framework of Schwarzschild metric the acceleration four
vector is evaluated as

aα = ur
∂ur

∂r
+ 	α

t t (u
t )2 + 2	α

tr u
tur + 	α

rr (u
r )2 (33)

From the Schwarzschild metric inserting the expressions
of the affine connections the following contravariant space-
time components of the acceleration are evaluated

at = m sinh λ cosh λ

r2
(
1 − 2m

r

) , ar = m cosh2 λ

r2 , aθ = aφ = 0.

(34)

Similarly, the covariant expressions of the acceleration can
be calculated to find the following terms

at = −m sinh λ cosh λ

r2 , ar = m cosh2 λ

r2
(
1 − 2m

r

) , aθ = aφ = 0.

(35)

In addition to those components we can also calculate the
proper acceleration as follows:

q = (a.a)
1
2 = m cosh λ

r2
(
1 − 2m

r

) 1
2

. (36)

Such proper acceleration depending upon λ does not
depend on r , but up to a certain extent. Eventually in the
neighbourhood of r = 0 it becomes a slowly varying func-
tion of r and thus plays a crucial role to turn the modified
Kretschmann scalar vanish. We must explore it.
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To calculate K̄ from Eq. (29) we have to obtain the expres-
sions gγρaα;ρ aα;γ and gγρRαβγ δaα;ρ uβuδ in terms of r .
The various components of aα;β and aα;β are calculated
elaborately in Appendix.

Utilizing that results one may simplify the two expres-
sions, mentioned above, as given hereunder

gγρaα;ρ aα;γ = 2m4

r8 cosh4 λ

⎡
⎣ 1(

1 − 2m
r

)2

+2r2

m2

{
1 + m

r
(
1 − 2m

r

)
}2

+ 2r6

m2

⎤
⎦

+2m4

r8 cosh2 λ

[
1 − 1(

1 − 2m
r

)2

]
, (37)

and

gγρ Rαβγ δa
α;ρ uβuδ = 2m4

r8 cosh4 λ

⎡
⎢⎣2r

m

(
1 − 2m

r

)

+ 8r2

m2
(

1 − 2m
r

)2 + 6r

m
(

1 − 2m
r

)3

⎤
⎥⎦

+2m4

r8 cosh2 λ

⎡
⎢⎣2r4

m2 − 2r

m

(
1 − 2m

r

)

− 2r

m
(

1 − 2m
r

)3

⎤
⎥⎦ . (38)

It is to be noted that the Kretschmann scalar K in the
Schwarzschild spacetime is 48m2

r6 . Combining the results
derived in Eqs. (37) and (38) the expression of the modified
Kretschmann scalar K̄ from Eq. (29) is obtained as

K̄ = 2m4

r8 [A(r) cosh4 λ − B(r) cosh2 λ + C(r)], (39)

where

A(r) = 8 − 4r

m
+ 2r2

m2

(
1 − m

r

1 − 2m
r

)2

− 4r6

m2 + 1(
1 − 2m

r

)2 ,

(40)

B(r) = 7 − 4r

m

{
1 + 1(

1 − 2m
r

)3

}
+ 4r4

m2 ,− 1(
1 − 2m

r

)2

(41)

C(r) = 24r2

m2 . (42)

It is time to specify the parameter λ arising from the
hyperbolic equation (31). The λ plays a significant role in
the perspective of the singularity. It may be considered as

constant outside a spherical neighbourhood of r = 0 with
radius rε � 2m, but inside it is a slowly function of r . The λ

has not been specified earlier, but now one may choose it in
such a manner that the expression within the squared bracket
of Eq. (39) vanishes within the said spherical neighbourhood
of r = 0, that is

A(r) cosh4 λ − B(r) cosh2 λ + C(r) = 0, r < rε. (43)

Solving this equation and taking only the positive value
the λ is obtained as

λ(r) = cosh−1

{√
B

2A
(1 +

√
1 − 4CA

B2 )
1
2

}
r < rε. (44)

Within the said sphere the r is much smaller than 2m and
hence the λ in Eq. (44) may be approximated to the following
expression

λ ≈ cosh−1

( √
7

2
√

2

)
. (45)

The significant aspect of such analysis is that the modi-
fied Kretschmann scalar K̄ vanishes and therefore, becomes
regular. Although K is diverging at r = 0, but the presence
of an acceleration term with a particular value makes K̄ reg-
ular. Thus the spacetime singularity at the central portion of
the Schwarzschild black hole disappears since the spacetime
becomes regular. It should be noted that the Kretschmann
scalar measuring total tidal force remains small if the space-
time is regular.

4 Acceleration and geodesic completeness

The most efficient and consistent definition of the singular-
ity is geodesic incompleteness of the spacetime manifold. In
other words, the world lines of the freely falling test particles
cannot be extended beyond certain proper time. The singu-
larity, in some sense, is an obstruction of extending a timelike
geodesic. Before proceeding further we would define certain
terms essential in the current context. More details are avail-
able in the book by Hawking and Ellis [20] and the lecture
notes by Dafermos [21].
Let us consider (M, gαβ) to be a Lorentzian manifold having
the metric gαβ .

(i) Maximal curve:
A curve γ : I → M is said to be maximal if there does
not exist any curve γ̃ : Ĩ → M with Ĩ ⊂ I such that
γ (τ) = γ̃ (τ ) for every τ ∈ Ĩ .
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(ii) Geodesic:
A curve γ : I → M is said to be a geodesic if for every point
p ∈ γ the condition uβuα;β = 0 holds, where uα ∈ TpM.

(iii) Parallel transport of a vector:
If uα represents a tangent vector along a curve γ : I → M
then a vector vα satisfying the condition uβvα;β = 0 is said
to be parallel transported along the curve γ .

Geometrically geodesic signifies the curve γ whose tan-
gent vector uα is parallel transported along itself.

(iv) Existence and uniqueness of geodesic:
For any point p0 ∈ M and any vector uα

0 ∈ TpM there
exists a unique maximal proper time parameterized geodesic
γ : I → M such that γ (0) = p0 and dγ

dτ
= uα

0 , where
I ⊂ R is an open interval.

The geodesic equation uβuα;β = 0 is a second order ordi-
nary differential equation. Therefore, the proof of the above,
that is existence and uniqueness of geodesic, is simply fol-
lowed from the Picard–Lindelöf theorem for the solutions of
ODEs with prescribed initial conditions.

(v) Future end point:
A point p∗ in M is said to be future endpoint of a future-
directed timelike (or null) curve γ : I → M if, for each and
every neighborhood O of the point p, there exists a τ∗ ∈ I
for which γ (τ) ∈ O for all τ ∈ I such that τ ≥ τ∗.

A causal curve is future inextendible if it has no future
endpoint.

(vi) Geodesic completeness:
A spacetime (M, gαβ) is geodesically complete if every max-
imal geodesic γ : I → M is such that I = (−∞,∞), that
is the geodesic can be extended over infinite proper time
parameter τ .

A spacetime is geodesically incomplete if there exists at
least one maximal geodesic with future end point. When a
timelike geodesic has a future end point then, followed by
the consequence of geodesic incompleteness, the manifold
must contain a spacetime singularity. If it is possible to over-
come such end point by some means and extend the curve
up to infinite proper time parameter the singularity can be
removed from the spacetime manifold. In this context we
may introduce the following theorem which may be named
as Removal of singularity.

Theorem on removal of singularity:
A suitable choice of acceleration term prescribed on a max-
imal geodesic curve having a future end point at some value
of proper time parameter makes the curve to be extended
up to infinite proper time parameter with a suitable re-
parameterization.
Proof: Let γ : I → M be a maximal geodesic in the
spacetime manifold (M, gα,β) with proper time parameter

τ ∈ I ⊂ (−∞,∞). Since γ is a geodesic the following
condition must hold.

∂uα

∂τ
+ 	α

μνu
μuν = 0. (46)

Now the acceleration term is prescribed on each and every
geodesic which is incomplete, that is ended up just before
attaining a parametric value, say τ∗. Suppose τ0 is the value
of proper time parameter at which the acceleration comes into
play. Obviously the curve remains no longer a geodesic as
the following condition defined on the given curve replaces
the condition represented by Eq. (46).

∂uα

∂τ
+ 	α

μνu
μuν = aα �= 0 τ0 ≤ τ < τ∗, (47)

where 	α
μν is the affine connections associated with gμν .

Since the geodesics, which fail to be complete, are
assigned with the acceleration aα they lose their geodesic
property. At this juncture one may use a special type of re-
parameterization τ̃ = τ̃ (τ ) in such a manner that τ̃ → ∞,
whereas τ < τ∗. With such re-parameterization Eq. (47)
turns into the following equation.

∂uα

∂τ̃
+ 	α

μνu
μuν = 0, (48)

and thus the accelerated curve becomes a geodesic. Such
representation is possible if and only if the acceleration term
aα takes the following form by the said re-parameterization

aα = ∂uα

∂τ̃

(
dτ̃

dτ
− 1

)
. (49)

It is emphasized that the transformation τ̃ = τ̃ (τ ) may not
be unique, but it would be such that the above relation must be
satisfied. We may give an example of one such transformation
as

τ̃ = tanh−1
(

τ

τ∗

)
, τ0 ≤ τ < τ∗. (50)

Clearly the above transformation of the proper time shows
that τ̃ → ∞ as τ → τ∗ and thus the proof of the above
theorem follows.

5 Discussion and conclusion

Illustrating with different cases it is shown intensively in the
Sect. 2.1 that when the proper accelerationq exceeds a certain
value the paths of the test particles never find a singularity,
but in case of the geodesic motion or the motion with little
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acceleration of test particles the existence of singularity is
inevitable. That infers two possibilities: either the paths of
the accelerated particles get shifted from the track of the sin-
gularity or the singularity itself disappears. The shifting of
path might be a possible explanation for a single accelerated
particle following a single curve, but it is to be kept in our
mind that the Raychaudhuri equation deals with the congru-
ence of curves. Over a large region such congruence of curves
of accelerated particles moving towards a black hole do not
lead to the focusing and therefore, no singularity is evident
in the said region. Thus the congruence of paths of unaccel-
erated particles (geodesics) moving towards the black hole
must encounter a singularity through focusing, whereas the
same of accelerated particles cannot find any singularity at
all. Therefore, one may infer that the singularity inside the
black hole, most likely, disappears. The cost of disappearing
the singularity is to modify the classical energy condition,
which is discussed in Sect. 2.

Such disappearance is verified more elaborately and
exhaustively in the case of the Schwarzschild spacetime by
calculating the Kretschmann scalar with adding an accelera-
tion term. Considering the tidal equation for the accelerated
curves a new Reimann tensor is constructed in the Sect. 3.
In the Sect. 3.1 the acceleration term for the Schwarzschild
spacetime is evaluated in terms of λ being a slowly varying
function of r so that it may be thought as constant outside
the spherical neighbourhood of the singularity at r = 0. The
value of λ is such that the modified Kretschmann scalar asso-
ciated with the modified Reimann curvature tensor arising
due to the acceleration term must vanish inside a spherical
neighbourhood of r = 0 with infinitesimal radius and so
remains regular therein. Depending on the suitable choice of
λ the singularity disappears and the Schwarzschild spacetime
becomes regular at r = 0.

In the Sect. 4. the disappearance of singularity is discussed
in the notion of geodesic incompleteness. The incomplete-
ness of maximal timelike geodesic signifies that the history
of the freely moving particles does not exist after a finite open
interval of proper time. That is more robust criterion rather
than that of infinite curvature to define a spacelike singular-
ity. Therefore, essentially the singularity and its disappear-
ance is also required to be explored in the light of geodesic
incompleteness. In the said section it is shown in terms of
a newly introduced theorem named as removal of singular-
ity. It is shown that a maximal geodesic being unable to be
complete may have an acceleration to be turned into non-
geodesic curve (maximal), but consequently with a suitable
value of acceleration a reparameterization of proper time may
transform that accelerated curve into a geodesic that can be
extended over infinite proper time. As a result no maximal
geodesic will have the future end point, and the spacetime
manifold becomes complete and singularity-free.

An observation of Eq. (49) is that the rate of change of
new parameter τ̃ relative to the old one may tend to infinity
as τ → τ∗. That is not a problem as the magnitude of ∂u

∂τ̃

becomes so small near τ∗ that the product ∂u
∂τ̃

dτ̃
dτ

makes the
acceleration term aα a finite quantity therein.

Thus the accelerated motion of the ball of test particles
neighbouring the black hole destroys the singularity. The said
particles may be the anti-particles formed by the vacuum
fluctuations at the vicinity of the black hole event horizon.
Here we have not carried out any quantum treatment as the
whole work is based on the classical general relativity. At this
juncture only what we can expect is that the particles may
get accelerated by the process of pair productions. Thus one
may conclude that the black hole singularity, is diminished
when the test particles directed towards the singularity gains
high value of acceleration. It may also be consistent with
the phenomenon of black hole evaporation as its singularity
disappears.
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Appendix

The various terms ofaα;β as well asaα;β in the Schwarzschild
spacetime are calculated precisely. At the beginning let us
state different terms of affine connections	

ρ
αβ of Schwarzschild

solutions as follows:

	t
tr = m

r2
(
1 − 2m

r

) (A1)

	r
tt =

(
1 − 2m

r

)
m

r2 (A2)

	r
rr = − m

r2
(
1 − 2m

r

) (A3)
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	r
θθ = 	r

φφ = −r

(
1 − 2m

r

)
(A4)

	θ
rθ = 	

φ
rφ = 1

r
(A5)

In the above result it is assumed θ = π
2 and under such

assumption different non-zero terms of Rαβγ δ take the fol-
lowing forms.

Rtrtr = −2m

r3 (A6)

Rtθ tθ = Rtφtφ = m

r

(
1 − 2m

r

)
(A7)

Rrθrθ = Rrφrφ = − m

r
(
1 − 2m

r

) (A8)

Rtθ tθ = 	r
φφ = 2mr (A9)

The terms of aα;β and aα;β can be evaluated by using the
following formula.

aα;β = aα,β +	α
βt a

t + 	α
βr a

r (A10)

aα;β = aα,β −	t
αβat − 	r

αβar (A11)

Thus the various non-zero terms of the acceleration become

at ;t = m2

r4
(
1 − 2m

r

) cosh2 λ (A12)

at ;t = −m2

r4 cosh2 λ (A13)

at ;r = m2

r4
(
1 − 2m

r

)2 sinh λ cosh λ (A14)

at ;r = m2

r4
(
1 − 2m

r

) sinh λ cosh λ (A15)

ar ;t = m2

r4 sinh λ cosh λ (A16)

ar ;t = m2

r4
(
1 − 2m

r

) sinh λ cosh λ (A17)

ar ;r = −
[

2m

r3 + m2

r4
(
1 − 2m

r

)
]

cosh2 λ (A18)

ar ;r = − 1(
1 − 2m

r

)
[

2m

r3 + m2

r4
(
1 − 2m

r

)
]

cosh2 λ (A19)

aθ ;θ = aφ;φ = m2

r3 cosh2 λ (A20)

aθ ;θ = aφ;φ = m2

r3 cosh2 λ (A21)
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