

Neutrino Oscillations and Quantum Decoherence

Konstantin Stankevich , Alexander Studenikin , and Maxim Vyalkov

Neutrino quantum decoherence is the process of the violation of the coherent superposition of neutrino states engendered by the neutrino interaction with external environment. In [1–3] we proposed and considered the new mechanism of the neutrino quantum decoherence engendered by neutrino decay to a lighter neutrino and an arbitrary massless particle. In this paper we consider that there are two possible independent neutrino decays: (1) neutrino decay to a lighter state and a massless particle and (2) neutrino decay to a lighter state and another massless particle. Photons, dark photons, axions, etc. can be considered as an example of these massless particles.

The evolution of the entire system of both neutrinos and external environment (reservoir consisted of two types of massless particles) can be represented as follows

$$\rho(t) = U(t) \rho_0 U^\dagger(t), \quad (1)$$

where $\rho(t)$ and $U(t)$ is the density matrix and evolution operator of the entire system, ρ_0 is the density matrix of the system at the initial moment of time. According to the approach proposed in [1–3] we use an expression for the expansion of the evolution operator of the entire system up to the second order in powers of the coupling constant

K. Stankevich · A. Studenikin

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

e-mail: studenik@srdf.sinp.msu.ru

M. Vyalkov

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

Branch of Lomonosov Moscow State University in Sarov, Nizhny Novgorod, Russia

e-mail: vyalkovmsu@yandex.ru

$$U(t, t_0) = 1 + (-i) \int_{t_0}^t dt_1 H_I(t_1) + (-i)^2 \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 H_I(t_1) H_I(t_2) + \dots \quad (2)$$

where $H_I(t)$ is the Hamiltonian of the interaction of the neutrino with external reservoir. To get an expression for the neutrino density matrix, we take the trace of the external environment states of freedom $\rho_v(t) = \text{Tr}_A \rho(t)$. Finally, for the neutrino density matrix we get

$$\begin{aligned} \rho(t) = \rho_0 + i \int_{t_0}^t [H_I, \rho] dt + \\ + \frac{1}{2} \left(\int_{t_0}^t \int_{t_0}^t dt_1 dt_2 H_I(t_2) \rho H_I(t_1) + \int_{t_0}^t \int_{t_0}^t dt_1 dt_2 H_I(t_1) \rho H_I(t_2) - \right. \\ - \int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \overset{T}{\rightarrow} \{H_I(t_1) H_I(t_2)\} \rho \\ \left. - \rho \int_{t_0}^t dt_1 \int_{t_0}^t dt_2 \overset{T}{\leftarrow} \{H_I(t_1) H_I(t_2)\} \right). \end{aligned} \quad (3)$$

The neutrino interaction with an external environment is described by two independent interaction Hamiltonians

$$H_I(t_2) = H_1(t_2) + H_2(t_2). \quad (4)$$

Following the approach [1–3] we get the expression for the neutrino evolution

$$\frac{d\rho_v(t)}{dt} = -i [H_1(x) + H_2(x), \rho_v(t)] + D[\rho_v(t)], \quad (5)$$

where the term $D[\rho_v(t)]$ is responsible for neutrino decoherence engendered by neutrino decays. The neutrino decoherence parameter Γ that describes the amplitude of the effect turned out to be a sum of the two independent neutrino decoherence parameters Γ_1 and Γ_2 engendered by the first channel of the neutrino decay and the second channel correspondingly, i.e. $\Gamma = \Gamma_1 + \Gamma_2$. In other words there is no interference terms in neutrino quantum decoherence when considering two independent channels of the neutrino decay.

Acknowledgments One of the authors (A.S.) is thankful to the organizers of the First African Conference on High Energy Physics for the hospitality. This study was supported by the Russian Science Foundation (project No. 22-22-00384).

This study also Supported by the Scientific Program of the National Center for Physics and Mathematics, Section No. 8 (Stage 2023-2025).

References

1. K. Stankevich, A. Studenikin, Neutrino quantum decoherence engendered by neutrino radiative decay. *Phys. Rev. D* **101**(5), 056004 (2020). <https://doi.org/10.1103/PhysRevD.101.056004>
2. A. Lichkunov, K. Stankevich, A. Studenikin, M. Vyalkov, Neutrino quantum decoherence engendered by neutrino decay to photons, familons, and gravitons. *J. Phys. Conf. Ser.* **2156**(1), 012240 (2021). <https://doi.org/10.1088/1742-6596/2156/1/012240>
3. A. Lichkunov, K. Stankevich, A. Studenikin, M. Vyalkov, Neutrino decay processes and flavour oscillations. *PoS EPS-HEP2021* 202 (2022). <https://doi.org/10.22323/1.398.0202>

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (<http://creativecommons.org/licenses/by/4.0/>), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

