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Abstract
Entanglement breaking (EB) channels, as completely positive and trace-
preserving linear operators, sever the entanglement between the input sys-
tem and other systems. In the realm of infinite-dimensional systems, a related
concept known as strongly EB (SEB) channels emerges. This paper delves
into characterizations of SEB channels, delineating sufficient conditions for a
channel to be classified as SEB, especially with respect to the commutativity
of its range. Moreover, we demonstrate that every closed self-adjoint subspace
of trace-zero operators, with the trace norm, is the null space of a SEB channel.

Keywords: quantum channels, strongly entanglement breaking channels,
infinite-dimensional quantum systems, commutative range, null space

1. Introduction

Entanglement breaking (EB) channels are channels which disrupt entanglement with other
quantum systems. Specifically, when an EB channel is applied to a component of a composite
system, any entanglement in the input state transforms into separable states. This concept was
first introduced in [9] as an extension of the classical–quantum and quantum–classical channels
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considered in [7]. The characterization of these channels has been the subject of intensive
research for finite-dimensional systems, as seen in works such as [2, 9, 12, 13]. Some of these
findings have been expanded to infinite-dimensional systems in [3, 5, 6, 15].

We recall some notions in quantum information theory, see, e.g. [6, 10]. Consider infinite-
dimensional Hilbert spacesH andK. Let B(H) be the set of bounded linear operators onH, and
let B(H)+ denote the set of positive semi-definite operators in B(H). Let T(H) be the space of
trace-class operators on H. A state in T(H) is a self-adjoint positive and trace-one operator on
H. Denote by S(H) the set of states in T(H). A state ρ ∈ S(H⊗K) is called separable if it is a
limit in the trace-norm of states of the form

ρ=
n∑

i=1

pigi⊗ hi, for some gi ∈ S(H) ,hi ∈ S(K) ,pi > 0, with
n∑

i=1

pi = 1. (1.1)

In particular, if ρ ∈ S(H⊗K) can be expressed as an infinite sum of product states:

ρ=
∞∑
i=1

pigi⊗ hi, for some gi ∈ S(H) ,hi ∈ S(K) ,pi > 0, with
∞∑
i=1

pi = 1, (1.2)

then ρ is said to be countably separable; see [6, 11]. For finite-dimensional systems, a separable
state always has the form as outlined in (1.1). However, in infinite-dimensional systems, a
separable state may not necessarily be countably separable, i.e. it may not have the form (1.2),
see, e.g. [6].

A quantum channel Φ : T(H)→ T(K) is a completely positive and trace-preserving linear
map. Specifically, a channelΦ is called entanglement breaking (EB in short) if, for any Hilbert
space R and any state ρ ∈ T(R⊗H), the output state (IR⊗Φ)(ρ) is always separable in S(R⊗
K). Similarly, Φ is called strongly entanglement breaking (SEB in short) if (IR⊗Φ)(ρ) is
always countably separable.

The following provides us with the structure of SEB channels, which we will utilize
throughout this paper. It shows that a SEB channel always has a measure-and-prepare form
(called the Holevo form) (1.3) and can be represented by an operator-sum of rank-one opera-
tions (1.4).

Theorem 1.1 ([5, theorem 3.1] [9, theorem 4]). Let Φ : T(H)→ T(K) be a channel. The fol-
lowing are equivalent.

(a) Φ is a SEB channel.
(b) Φ has the form

Φ(X) =
∞∑
k=1

RkTr(FkX) (1.3)

for some states Rk ∈ S(K) and positive operators Fk ∈ B(H)+ such that
∑∞

k=1Fk = IH.
(c) Φ has an operator-sum representation by rank-one operations, i.e.

Φ(X) =
∞∑
k=1

ukv
∗
kXvku

∗
k =

∞∑
k=1

(v∗kXvk)uku
∗
k , (1.4)

for some unit vectors {uk} ⊆ K and vectors {vk} ⊆ H such that
∑∞

k=1 vkv
∗
k = IH.

It is shown in [15, lemma 2.9] that a channel Φ is SEB if the output state (IH⊗Φ)(ρ0) cor-
responding to the maximally entangled state ρ0 in S(H⊗H) is countably separable. However,
determining whether a state is separable (or countably separable) is indeed very challenging.
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Therefore, it is interesting to find some conditions ensuring a channel is SEB other than the
separability of the output states.

In finite-dimensional systems, if the range of a completely positive map is commutative,
then it is EB; see [17, lemma III.1] and [19, corollary 3]. However, the validity of these
assertions may not extend seamlessly to infinite-dimensional systems, particularly concern-
ing SEB channels. Our contribution in theorem 2.3 establishes that the commutativity of the
range serves as a sufficient condition to guarantee the SEB nature of a channel. Conversely, as
demonstrated in proposition 2.5, we affirm that the dual of any SEB channel can be dilated to
a completely positive map with commutative range.

In a recent study focusing on the structure of null spaces, the authors in [12] constructed
some private subalgebras of certain classes of EB channels for finite-dimensional systems.
In particular, they showed that every self-adjoint subspace of trace-zero matrices is the null
space of an EB channel. The finding presented in theorem 3.2 expands upon this discovery,
now encompassing applications to infinite-dimensional systems.

The article is structured as follows. In section 2, we delve into various conditions that char-
acterize a channel as SEB. In section 3, we considered SEB channels whose null space is a
given closed self-adjoint subspace of trace-zero operators for infinite-dimensional systems.
Furthermore, we explore the attributes of the fixed point set of these channels concerning their
representation via rank-one operations in (1.4). In section 4, we demonstrate some of the res-
ults in the previous sections to a class of single-mode Gaussian channels.

2. Some characterizations of SEB channels

Asmentioned by Størmer [19], there is a natural duality between bounded linear maps on B(H)
and linear functionals on the tensor product B(H)⊗̂T(H). In the subsequent discussion, we
leverage this duality within the context of SEB channels. It is demonstrated that a channel is
SEB if and only if the corresponding linear functional satisfies a specific criterion associated
with separability. We first revisit some notions outlined in [19].

Let Ψ : B(H)→ B(H) be a bounded linear operator. Then a map Ψ̃ : B(H)⊗̂T(H)→ C
given by

Ψ̃(Y⊗X) = Tr
(
Ψ(Y)XT

)
for X ∈ T (H) ,Y ∈ B(H) , (2.1)

defines a linear functional on the projective tensor product space of B(H) and T(H), where the
transpose XT defined by

〈
ei|XT|ej

〉
= 〈ej|X|ei〉with respect to a fixed orthonormal basis {ei} of

H. A linear functionalφ on B(H)⊗̂T(H) is called separable (see [19]) if it belongs to the norm
closure of elements of the form

∑n
k=1wk⊗ ρk for some positive norm-one linear functional wk

on B(H) and positive linear functional ρk on T(H). The separability of the corresponding linear
functional Ψ̃ is equivalent to the following characterization of the operator Ψ.

Proposition 2.1 ([19, theorem 2]). Let Ψ be a completely positive operator and let Ψ̃ be the
linear functional defined in (2.1). Then Ψ̃ is a separable linear functional if and only if Ψ is a
limit (in bounded-weak topology) of operators of the form x 7→

∑n
i=1wi(x)bi for some positive

norm-one linear functional wi ∈ B(H)∗ and positive operators bi ∈ B(H)+.

By leveraging the aforementioned duality, we proceed to establish the separability of the
associated linear functional in relation to a SEB channel.

Proposition 2.2. A quantum channel Φ : T(H)→ T(H) is SEB if and only if the linear func-
tional Φ̃∗ : B(H)⊗̂T(H)→ C corresponding to the dual map Φ∗ can be written as the form
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Φ̃∗ =
∑∞

k=1wk⊗ ρk for some weak∗ continuous positive norm-one linear functional wk on
B(H) and positive linear functional ρk on T(H) with

∑∞
k=1 ρk(X) = Tr(X) for all X ∈ T(H).

For convenience, we call a linear functional having the form as stated in the proposition
2.2 be countably separable. The proof aligns with the argument presented in [19, theorem 2]
concerning SEB channels.

Proof. Suppose Φ : T(H)→ T(H) is a SEB channel. Recall that a dual map of Φ is the linear
map Φ∗ : B(H)→ B(H) satisfying Tr(Φ(X)Y) = Tr(XΦ∗(Y)) for all X ∈ T(H) and Y ∈ B(H).
If Φ has the form (1.3) then its dual map satisfies

Φ∗ (Y) =
∞∑
k=1

Tr(RkY)Fk, (2.2)

for some states Rk ∈ T(H) and positive operators Fk ∈ B(H)+. For Y ∈ B(H) and X ∈ T(H),

Φ̃∗ (Y⊗X) = Tr
(
Φ∗ (Y)XT

)
=

∞∑
k=1

Tr(RkY)Tr
(
FkX

T
)
=

∞∑
k=1

wk (Y)ρk (X) ,

where

wk (Y) = Tr(RkY) and ρk (X) = Tr
(
FkX

T
)

(2.3)

define a state in B(H)∗ and a positive linear functional on T(H), respectively. Then we have

∞∑
k=1

ρk (X) = Tr

(( ∞∑
k=1

Fk

)
XT
)

= Tr
(
XT
)
= Tr(X) .

Thus, Φ̃∗ is countably separable in (B(H)⊗̂T(H))∗.
Conversely, suppose Φ̃∗ is countably separable and has the form Φ̃∗ =

∑∞
k=1wk⊗ ρk as in

the proposition. For each k, there exist states Rk ∈ T(H) and positive operators Fk ∈ B(H)+
satisfying (2.3). The condition

∑∞
k=1 ρk(X) = Tr(X) implies that

∑∞
k=1Fk = IH. For each X ∈

T(H) and Y ∈ B(H),

Tr
(
Φ∗ (Y)XT

)
= Φ̃∗ (Y⊗X) =

∞∑
k=1

wk (Y)ρk (X) = Tr

( ∞∑
k=1

Tr(RkY)FkX
T

)
.

Then Φ∗ has the form as in (2.2), and hence Φ is a SEB channel.

Herein, we present a sufficient condition adequate for identifying a channel as SEB, devoid
of any reliance on the separability of states within the bipartite system. This condition asserts
that if the range of a channel is commutative, then the channel qualifies as SEB.

Theorem 2.3. Let {ei} be any orthonormal basis of a separable Hilbert space H. Let Φ :
T(H)→ T(H) be a completely positive and trace-preserving channel. If the range of Φ is
commutative, thenΦ is a SEB channel. Under this condition, for any set of scalars λi > 0 with∑∞

i=1λi = 1, the weighted Choi state σ of Φ, defined by

σ :=
∞∑

i,j=1

√
λiλjeie

∗
j ⊗Φ

(
eie

∗
j

)
,
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is countably separable and can be written in the form

σ =
∞∑
k=1

pkρk⊗ vkv
∗
k , (2.4)

for some orthonormal set of vectors {vk} in H, some states ρk in T(H), and some scalars pk > 0
with

∑∞
k=1 pk = 1. Moreover, the channel Φ can be expressed as Φ(X) =

∑∞
k=1RkTr(XFk),

where Rk = (Uvk)(Uvk)∗ for some unitary operator U in B(H), and operators Fk ∈ B(H)+
with a matrix representation as

Fk =

[
pk√
λiλj

〈ei,ρkej〉

]
1⩽i,j<∞

.

Proof. We first note that if the range of a channel Φ : T(H)→ T(H) is commutative, then
this range will consist of normal operators. Indeed, since Φ is positive, it maps self-adjoint
operators to self-adjoint operators. Then for any operator X in T(H) of the form X= X1 + iX2

for some self-adjoint operators X1 and X2, we have Φ(X)∗ = (Φ(X1)+ iΦ(X2))
∗ =Φ(X1)−

iΦ(X2) = Φ(X∗). Thus, Φ preserves the involution. Since T(H) is a self-adjoint space, for
each X ∈ T(H) we have Φ(X)Φ(X)∗ =Φ(X)Φ(X∗) = Φ(X∗)Φ(X) = Φ(X)∗Φ(X). Then Φ(X)
is a normal operator for all X ∈ T(H).

We now employ some techniques introduced in [4, 15]. From the above paragraph,
Φ(eie∗j ), i, j = 1, . . . ,∞, are mutually commuting, normal and trace-class (hence compact)
operators. So they are simultaneously diagonalizable by some unitary operator U in B(H).
Then

(IH⊗U∗)σ (IH⊗U) =
∞∑

i,j=1

eie
∗
j ⊗Dij, (2.5)

for some diagonal operators Dij in B(H). Replacing Φ(·) by UΦ(·)U∗, we can assume σ has
the form as in the right side of (2.5). Hence σ can be written as

σ =
∑
k

Bk⊗Pk,

for some rank-one orthogonal projections Pk and positive operators Bk. On the other hand,
since Φ is completely positive, the weighted Choi operator σ defined as in (2.4) is positive
by [15, theorem 1.4]. It is easy to check that σ has trace-one, hence it is a state in B(H⊗H).
Thus, σ has the form as (2.4) for some orthonormal set of vectors {vk} in H, some states {ρk}
in T(H) and some scalars pk ⩾ 0 with

∑∞
k=1 pk = 1.

For each state X=
∑

i,j eij⊗Xij ∈ S(H⊗H), define the partial trace of X on the second
component by Tr2(X) =

∑
i,j eijTr(Xij). Since Φ is trace-preserving, taking the partial trace

over the second component of (2.4), we arrive at

∞∑
i=1

piρi =
∑
i,j

λieie
∗
j Tr

(
Φ
(
eie

∗
j

))
=

∞∑
i=1

λieie
∗
i . (2.6)

From (2.4), for x,y ∈ H,

√
λiλj

〈
Φ
(
eie

∗
j

)
x,y
〉
= 〈σ (ei⊗ x) ,(ej⊗ y)〉=

∞∑
k=1

〈ei,pkρkej〉〈vkv∗k x,y〉 .
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Then

Φ
(
eie

∗
j

)
=

∞∑
k=1

pk√
λiλj

〈ei,ρkej〉vkv∗k . (2.7)

Following the proof of [15, lemma 2.9], we let Fk be the Schur product as

Fk = pk


1
λ1

√
1

λ1λ2

...√
1

λ2λ1

1
λ2

...

· · · · · ·
. . .

 ◦


(ρk)11 (ρk)12

...

(ρk)21 (ρk)22
...

· · · · · ·
. . .

=
∞∑

i,j=1

pk√
λiλj

(ρk)ij eie
∗
j ,

where (ρk)ij = 〈ei,ρkej〉. We have Fk ⩾ 0 and
∑∞

k=1Fk = IH by (2.6). The map Ψ(X) =∑∞
k=1Tr(XFk)vkv

∗
k is well-defined and completely positive on T(H), see [15, lemma 2.5].

Equation (2.7) ensures that Ψ(eie∗j ) = Φ(eie∗j ) for all i, j. Hence, Φ =Ψ on T(H) from the
continuity in trace norm of these maps, see the proof of [15, lemma 2.9] for details. Thus, Φ
has the desired form.

Remark 2.4. Theorem 2.3 shares a connection with a result by Størmer [19]. Specifically,
corollary 3 and theorem 2 (along with proposition 2.1) in [19] imply that a completely positive
operator with commutative range serves as a limit of entanglement breaking maps. These maps
bear similarities to the dual maps in (1.3), albeit with a finite count of summands. In theorem
2.3, we demonstrate that a completely positive and trace-preserving channel with commutative
range embodies a form characterized by an infinite summation akin to (1.3).

The subsequent demonstration proves an anticipation in [2]. It establishes that the dual
map of any SEB channel can be dilated to a completely positive linear map with commutative
range. Notably, the predual of an operator Ψ : B(K)→ B(E) is represented by the operator
Ψ∗ : T(E)→ T(K), which satisfies the following relationship:

Tr(Ψ(Y)X) = Tr(YΨ∗ (X)) , ∀X ∈ T (E) ,Y ∈ B(K) .

Proposition 2.5. If a channel Φ : T(H)→ T(K) is SEB, then there exist a Hilbert space E, an
isometry U : H→ E, and a positive linear map Ψ : B(K)→ B(E) with range(Ψ) being com-
mutative such that Φ(X) = Ψ∗(UXU∗) for all X ∈ T(H).

Proof. We follow the arguments in [2] which was for finite-dimensional systems. Let Φ∗ :
B(K)→ B(H) be a dual of Φ with a form

Φ∗ (Y) =
∞∑
k=1

Tr(RkY)Fk,

for some states Rk ∈ T(K) and positive operators Fk ∈ B(H)+ satisfying
∑∞

k=1Fk = IH. Let
l∞ be the space of bounded sequences. Then l∞ is an unital commutative C∗-algebra with
pointwise sums and products, which can be identified with C(βN), the space of continuous
functions on the Stone-Čech compactification of N.

We write Φ∗ into the composition Φ∗ = η ◦ γ of unital maps γ : B(K)→ l∞ by γ(Y) =
{Tr(YRk)}k, and η : l∞ → B(H) by η({ai}i) =

∑∞
i=1 aiFi. The positive linear map η is well-

defined by conditions on {Fi}i. Moreover, it is completely positive since l∞ is a commut-
ative C∗-algebra, see [16, theorem 3.11]. By the Stinespring dilation theorem, there exist

6



J. Phys. A: Math. Theor. 58 (2025) 265305 B N Muoi and N-S Sze

a Hilbert space E, an isometry U : H→ E and a ∗-homomorphism π : l∞ → B(E) such that
η(X) = U∗π(X)U. Then for each Y ∈ B(K), we have

Φ∗ (Y) = η ◦ γ (Y) = U∗ (π ◦ γ)(Y)U= U∗Ψ(Y)U,

where Ψ = π ◦ γ : B(K)→ B(E) is a weak∗–weak∗ continuous positive mapping with com-
mutative range since γ is so. For each Y ∈ B(K) and X ∈ T(H),

Tr(YΦ(X)) = Tr(Φ∗(Y)X) = Tr(U∗Ψ(Y)UX) = Tr(Ψ(Y)UXU∗) = Tr(YΨ∗(UXU
∗).

Hence, Φ(X) = Ψ∗(UXU∗) as asserted.

3. Null space, fixed point and multiplicative domain

In [12], the authors construct an EB channel that vanishes on a given subspace of trace-zero
matrices as follows.

Proposition 3.1 ([12, proposition 3.1]). Let H be a finite-dimensional Hilbert space. Let N
be a self-adjoint subspace of trace-zero operators in B(H). Then there is an EB channel Φ on
B(H) such that N = {X ∈ B(H) : Φ(X) = 0}.

We demonstrate the validity of this assertion in the context of infinite-dimensional systems.
Here, T(H)0 represents the subspace of trace-zero operators within T(H), and the null space
of a channel Φ on T(H) is denoted by null(Φ) := {X ∈ T(H) : Φ(X) = 0}. Given that every
channel operating on T(H) is continuous in the trace-norm topology, see [15, lemma 2.3], its
null space must be closed within this topology.

Theorem 3.2. Let H be a separable infinite-dimensional Hilbert space. Let N ⊆ T(H)0 be a
self-adjoint and closed (in trace-norm) subspace of trace-zero operators on H. Then there is
a SEB channel Φ on T(H) such that null(Φ) =N.

Proof. Let N⊥ be a subspace of B(H) defined by

N⊥ = {Y ∈ B(H) : Tr(XY) = 0 for all X ∈N} .

The identity operator IH is in N⊥ since N ⊆ T(H)0. Let {ek}k be an orthonormal basis of H.
For each Y ∈N⊥,

0= Tr(YX) =
∞∑
i=1

〈ek,YXek〉=
∞∑
k=1

〈X∗Y∗ek,ek〉= Tr(X∗Y∗) for all X ∈N.

Since N is self-adjoint, i.e. N = {X∗ : X ∈N}, we have Y∗ ∈N⊥. Thus, N⊥ is a self-adjoint
subspace of B(H). We follow arguments in [20, lemma 2] to define a countable subset whose
linear span is dense (in weak∗ topology) in N⊥.

Recall the duality between (B(H),‖ · ‖) and (T(H),‖ · ‖1) is defined by 〈X,Y〉= Tr(XY) for
all X ∈ T(H) and Y ∈ B(H). The weak∗ topology on B(H) is the topology defined by the family
of semi-norms {qX : X ∈ T(H)}, where qX(Y) = |Tr(XY)| for all Y ∈ B(H). In addition, since
the Hilbert spaceH is separable, the trace-class T(H) is a separable Banach space with respect
to the trace norm. This implies that the set

B :=

{
Y ∈N⊥ : ‖Y− IH‖⩽

1
2

}
is weak∗ compact and metrizable. Hence, there exists a countable subset of self-adjoint oper-
ators {IH, F̃2, F̃3, . . .} which is dense in B in the weak∗ topology. Since ‖IH− F̃k‖⩽ 1

2 , each
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self-adjoint operator F̃k is positive with the operator-norm ‖F̃k‖⩽ 2. Let Fk = 1
2k F̃k for k⩾ 2

and F1 = IH−
∑∞

k=2Fk. Then ‖IH−F1‖= ‖
∑∞

k=2Fk‖⩽
∑∞

k=2
1

2k−1 = 1. Hence {Fk}∞k=1 is a
set of self-adjoint positive operators in B(H) with

∑∞
k=1Fk = IH and its linear span is weak∗

dense in N⊥.
Let Rk = eke∗k be states in B(H). Consider a SEB channel Φ : T(H)→ T(H) defined by

Φ(X) =
∞∑
k=1

RkTr(FkX) .

Then X ∈ null(Φ) if and only if Tr(XFk) = 0 for all k. This happens exactly for X ∈ (N⊥)⊥ =
N since N is a closed subspace in trace-norm. Hence null(Φ) =N as asserted.

Throughout the remainder of this section, we delve into examining the fixed point set and the
multiplicative domain of SEB channels by leveraging the operator-sum representation through
rank-one operations as in (1.4). It is worth recalling that the fixed point set of a mapΨ : Z→ Z
is defined as Fix(Ψ) := {T ∈ Z : Ψ(T) = T}. For the details on the characterization of fixed
point sets of quantum operations, refer to [1, 14].

Let Φ : T(H)→ T(H) be a SEB channel defined as in (1.4) by

Φ(X) =
∞∑
k=1

ukv
∗
kXvku

∗
k =

∞∑
k=1

EkXE
∗
k , (3.1)

where Ek = ukv∗k for uk,vk ∈ H satisfying ‖uk‖= 1 for all k and
∑∞

k=1 vkv
∗
k = IH. Then Φ∗ :

B(H)→ B(H) is an unital completely positive operator with rank-one Kraus operations
{E∗

k = vku∗k}.
Suppose a projection P ∈ Fix(Φ∗). Then

∑∞
k=1E

∗
kPEk = P. By multiplying from both sides

of this equation with IH−P, we derive PEk(IH−P) = 0 for all k. Similarly, by multiplying
both sides of equationΦ∗(IH−P) = IH−P by P, we get (IH−P)EkP= 0. Hence, PEk = EkP
for all k. Substitute Ek = ukv∗k we obtain

Pvk = Pvk (u
∗
kuk) = P(vku

∗
k )uk = (vku

∗
k )(Puk) = vk (u

∗
kPuk) .

Thus, Pvk = λkvk for some scalar λk. Similarly, Puk = βkuk for some scalar βk. Hence, vk and
uk are eigenvectors of P for all k. Let P,Q be projections in Fix(Φ∗). Then for each k, there
are scalars λk,βk such that Pvk = λkvk and Qvk = µkvk. Thus,

PQ = PQ

( ∞∑
k=1

vkv
∗
k

)
= P

∞∑
k=1

µkvkv
∗
k =

∞∑
k=1

µkλkvkv
∗
k

=
∞∑
k=1

λkQvkv
∗
k =

∞∑
k=1

QPvkv
∗
k = QP.

(3.2)

Then P and Q are commutative. Let A= {A ∈ B(H) : [A,Ek] = [A,E∗
k ] = 0}. Since A is

spanned by its projections, A is a commutative von Neumann subalgebra of Fix(Φ∗). For
infinite-dimensional systems, the inclusionA⊆ Fix(Φ∗) can be strict, see [1]. From the above
observations, we have

Proposition 3.3. Let Φ be a SEB channel on T(H) defined by (3.1) with rank-one operations
{Ek = ukv∗k}. A projection P is a fixed point ofΦ∗ if and only if [P,Ek] = 0 for all k. In this case,
all vectors uk and vk are eigenvectors of P. The set of projections in Fix(Φ∗) is commutative.

8
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The study of fixed point sets is useful for the investigation of the multiplicative domain of
a map. Recall that a multiplicative domain of a map Φ on T(H) is the set (see e.g. [17])

MΦ = {A ∈ T (H) : Φ(AX) = Φ(A)Φ(X) ,Φ(XA) = Φ(X)Φ(A) for all X ∈ T (H)} .

Proposition 3.4. Let Φ be a SEB channel on T(H) defined by (3.1) with rank-one operations
{Ek = ukv∗k}. If a projection P is in the multiplicative domainMΦ, then vk are eigenvectors of
P for all k. The set of projections inMΦ is commutative.

Proof. It is known that if P ∈MΦ, then P ∈ Fix(Φ∗ ◦Φ). Indeed, for each X ∈ T(H), we have

Tr(PX) = Tr(Φ(PX)) = Tr(Φ(P)Φ(X)) = Tr((Φ∗ ◦Φ)(P)X) .

Hence, (Φ∗ ◦Φ)(P) = P. This implies E∗
i EjP= PE∗

i EjP for all i, j. Substitute Ei = uiv∗i , we
arrive at Pvi = λivi for some scalar λi. The commutativity argument is similar as in (3.2).

4. On single-mode Gaussian channels

In the following, we demonstrate some of the results discussed in the above sections to a
class of single-mode bosonic Gaussian channels [18] which are widely considered in infinite-
dimensional quantum systems.

We begin with some notations adopted from [8, 18]. Let H= L2(R) be the space of
complex-valued square-integrable functions. For each x,y ∈ R, we define unitary operators
Vx and Uy on H by Vxψ(ξ) = exp(iξ x)ψ(ξ) and Uyψ(ξ) = ψ(ξ+ y) for ψ ∈ L2(R) and ξ ∈ R.
The unitary Weyl representation W : R2 → B(H) is defined by

W(z) = exp

(
i
2
yx

)
VxUy, z= (x,y)T ∈ R2.

For each state ρ ∈ T(H), define a characteristic function on R2 by φρ(z) = Tr(ρW(z)). LetM2

be the set of 2× 2 real matrices. A state ρ ∈ T(H) is called aGaussian state if its characteristic
function φρ has the form

φρ (z) = exp

(
imTz− 1

2
zTCz

)
, (4.1)

for some vector m ∈ R2 and symmetric matrix C ∈M2. A quantum channel Φ : T(H)→ T(H)
is called a Gaussian channel if there are parameters K,α ∈M2 such that the characteristic
function of Φ(ρ) satisfies

φΦ(ρ) (z) = φρ (Kz)exp

(
−1
2
zTαz

)
, ∀z ∈ R2. (4.2)

Equivalently,

Φ∗ (W(z)) =W(Kz)exp

(
−1
2
zTαz

)
. (4.3)

Holevo [8, theorem 12.17] shows that (4.1) defines a state if and only if C⩾± i
2∆ where

∆=

[
0 1
−1 0

]
. In this case, the characteristic function determines the operator via the fol-

lowing inverse formula

ρ=
1
2π

ˆ
φρ (z)W(−z)d2z, (4.4)

where the integral converges weakly.

9
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From [8, theorem 12.35], a Gaussian channel Φ defined by parameters (K,α) is EB if and
only if α admits the decomposition α= α1 +α2 where

α1 ⩾± i
2
KT∆K and α2 ⩾± i

2
∆. (4.5)

For a given matrix K ∈M2, the channel corresponding to parameters (K,α0), where α0 is the
minimal ofα satisfying the condition (4.5) is called entanglement breaking limit. Classification
of Gaussian channels for single-mode systems can be found in [8, theorem 12.41]. It was
showed in [18, theorem 1] that all single-mode Gaussian channels at their EB limit admit only
continuous-indexed (non-countable) set of rank-one Kraus operators and that is unique, except
the full-loss channel A1(1) corresponding to the parametersK= 0 and α= I2. Therefore, these
channels are EB but not SEB except the A1(1) channel.

Applying the equivalent condition in proposition 2.2, we can give another way to show that
A1(1) channel is SEB by showing that the linear functional Φ̃∗ on B(H)⊗̂T(H) defined in (2.1)
corresponding to the channel Φ is countably separable. Indeed, for each Y=W(z) ∈ B(H) and
X ∈ T(H), from equation (4.3) we have

Φ̃∗ (Y⊗X) = Tr
(
Φ∗ (W(z))XT

)
= Tr

(
W(Kz)XT

)
exp

(
−1
2
zTαz

)
= Tr(X)exp

(
−1
2
zTz

)
.

Define a linear functional σ on span{W(z) : z ∈ R2} by extending linearly the map σ(W(z)) =
exp(− 1

2 z
Tz). Then σ is a positive linear functional with σ(I) = σ(W(0)) = 1. By Hahn–

Banach extension theorem, σ can be extended to a norm-one positive linear functional on
B(H). Let w(X) := Tr(X). Hence, Φ̃∗ = w⊗σ is a countably separable linear functional on
B(H)⊗̂T(H).

From (4.2) and (4.4), we have

Φ(ρ) =
1
2π

ˆ
φρ (Kz)exp

(
−1
2
zTαz

)
W(−z)d2z. (4.6)

In the case of a full-loss Gaussian channel with parameters K= 0 and α= I2,

Φ(ρ) =
1
2π

ˆ
exp

(
−1
2
zTz

)
W(−z)d2z := ρ0,

where the state ρ0 is independent of the input state ρ. Then Φ has the Holevo form Φ(X) =
Tr(X)ρ0 forX in the span of Gaussian states, hence it is a SEB channel and has the commutative
range.

In the following, we examine the commutativity of the range of Gaussian channels corres-
ponding to the parameter K 6= 0. For each state ρ ∈ T(H), let f ρ be the continuous function
inside the integral (4.6) by

fρ (z) = Tr(ρW(Kz))exp

(
−1
2
zTαz

)
. (4.7)

Following [8, section 5.3], for given states ρ1,ρ2 ∈ T(H), we have

Φ(ρ1)Φ(ρ2) =
1
2π

ˆ (
fρ1

× fρ2

)
(z)W(−z)d2z,

where (
fρ1

× fρ2

)
(z) =

1
2π

ˆ
fρ1 (x) fρ2 (z− x)exp

(
ix∆z
2

)
d2x.

10
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Since the transform f 7→ 1
2π

´
f(z)W(−z)d2z is injective, the equation Φ(ρ1)Φ(ρ2) =

Φ(ρ2)Φ(ρ1) implies that ( fρ1
× fρ2)(z) = ( fρ2

× fρ1)(z),∀z ∈ R2. Equivalently,
ˆ

[fρ1 (x) fρ2 (z− x)− fρ2 (x) fρ1 (z− x)]exp

(
ix∆z
2

)
d2x= 0. (4.8)

Therefore the channel Φ has a commutative range if and only if equation (4.8) holds for
all states ρ1,ρ2 ∈ T(H) and all z ∈ R2. An extreme case for (4.8) is that fρ1(x)fρ2(z− x) =
fρ2(x)fρ1(z− x) for all x,z ∈ R2. Substituting into (4.7) we get

Tr(ρ1W(Kx))Tr(ρ2W(K(z− x))) = Tr(ρ2W(Kx))Tr(ρ1W(K(z− x))) . (4.9)

Equation (4.9) being satisfied for all states ρ1,ρ2 ∈ T(H) implies that the following function
is constant in the state ρ ∈ T(H) for all x,z ∈ R2,

ρ 7→ Tr(ρW(Kx))
Tr(ρW(K(z− x)))

.

This happens if and only if the parameter K= 0.

Now consider equation (4.8) with parameters K=

[
1 0
0 0

]
and α= I2. With z= (z1,z2)T

and x= (x1,x2)T in R2, we haveW(Kx) = Vx1 ,W(K(z− x)) = Vz1−x1 , where Vxi is the unitary
operator in B(H) defined above. The equation (4.8) becomes

ˆ
[Tr(ρ1Vx1)Tr(ρ2Vz1−x1)−Tr(ρ2Vx1)Tr(ρ1Vz1−x1)]exp

(
−x21 + z1x1

)
exp

(
ix1z2
2

)
dx1 = 0.

(4.10)

Let g(x1) = [Tr(ρ1Vx1)Tr(ρ2Vz1−x1)−Tr(ρ2Vx1)Tr(ρ1Vz1−x1)]exp(−x21 + z1x1). Since the

Fourier transform g→ F(g) defined by F(g)(z2) =
ˆ
g(x1)exp

(
ix1z2
2

)
dx1 is injective,

equation (4.10) implies that g(x1) = 0 for all x1 ∈ R. Hence

Tr(ρ1Vx1)Tr(ρ2Vz1−x1) = Tr(ρ2Vx1)Tr(ρ1Vz1−x1) , ∀ρ1,ρ2 ∈ T (H) ,∀x1,z1 ∈ R.

We get Tr(ρVx1) = Tr(ρVz1−x1) for all ρ ∈ T(H) and all x1,z1 ∈ R, that is impossible. Hence,
the corresponding channel does not have a commutative range. With a similar argument, if the
parameter K ∈M2 has rank one and α= I2, then the corresponding Gaussian channel does not
have a commutative range.

In fact, by combining the sufficient condition stated in theorem 2.3 with the result in [18,
theorem 1] referenced earlier, it can be deduced that the single-mode Gaussian channels cor-
responding to the parameter K 6= 0 do not have a commutative range.

We end this section with a discussion about the A2(1)Gaussian channel at the EB limit with

parameters K=

[
1 0
0 0

]
and α= I2, see [8, theorem 12.41]. In this case, the dual map Φ∗

has a commutative range since for z,z ′ ∈ R2,

Φ∗ (W(z))Φ∗ (W(z ′)) =W(Kz)W(Kz ′)exp

(
−1
2
zTαz− 1

2
z ′Tαz ′

)
,

where W(Kz)W(Kz ′) = exp(− i
2 z

T(KT∆K)z ′)W(Kz+Kz ′), see [8, section 12.2]. Here
W(Kz)W(Kz ′) =W(Kz+Kz ′) =W(Kz ′)W(Kz) since KT∆K= 0. Proposition 2.1 shows that
Φ∗ is the limit of operators in the Holevo formwith finite terms. However, as mentioned before,
Φ∗ does not admit the Holevo form with countable summands since the A2(1) channel Φ is

11
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not SEB. This provides us an instant for the difference of proposition 2.1 in infinite dimen-
sions with the finite-dimension cases where a unital completely positivemapwith commutative
range always has the Holevo form, see e.g. [17, lemma III.1].

5. Conclusions

The paper establishes characterizations of SEB channels tailored to infinite-dimensional sys-
tems. It unveils properties akin to their finite-dimensional counterparts, as documented in
works such as [2, 12, 17]. Notably, the paper demonstrates that a channel is SEB if its range
is commutative. Furthermore, it reveals that any SEB channel can be dilated to the predual
of a positive map with commutative range. Additionally, a SEB channel is constructed with a
null space that aligns with a specified self-adjoint and closed subspace of trace-zero operat-
ors. The discussion also delves into the commutativity of projections within the fixed point set
and the multiplicative domain of these channels. Finally, we illustrate our results to a class of
single-mode bosonic Gaussian channels. The approach intertwines techniques from the finite-
dimensional realm with expanded outcomes in operator theory tailored to infinite-dimensional
systems, as expounded in [4, 15, 20].
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