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Abstract

We examine the onset and resilience of emergent time periodicity in a few-body all-to-all
interacting Lipkin—Meshkov—Glick model, where one of the constituents is locally in contact with a
thermal bath. Employing both a collision model framework and a suitable time-continuous
description, we show that stable time-periodic behavior can only be exhibited when the bath acts as
a purely dissipative channel. We assess the role that the microscopic interactions within the system
play, establishing that for the all-to-all model the introduction of temperature leads to a melting of
the emergent time periodicity, in contrast to stable long-time behavior which can be maintained
for nearest neighbor XXZ type interactions.

1. Introduction

Any realistic physical system unavoidably interacts with a surrounding environment to some extent. The
resulting non-unitary dynamics typically leads open quantum systems to equilibrate. Pursuing this line of
inquiry has led to remarkable insights into a wealth of phenomena, including notions of decoherence and
dissipation [1, 2], the emergence of classical objectivity in a quantum prescription [3, 4], the appearance of
decoherence free subspaces [5] and the quantum Zeno effect [6], to name but a few. Equilibration, however,
typically entails the reduction or even loss of genuine quantum properties, such as coherence and locally
accessible entanglement that would guarantee an edge with respect to classical technologies in several
applications ranging from quantum metrology [7] to quantum simulation [8] and (near-term) quantum
computing [9-11].

A particularly interesting class of systems that seem to buck this trend are those displaying non-stationary
behaviors in their long time dynamics [12, 13]. Such systems, sometimes referred to as ‘dissipative time
crystals’, correspond to situations where a many-body system in contact with an environment fails to reach
equilibrium and instead exhibits emergent time periodicity. While the study of this interesting phenomenon
has its roots in the original proposal for the spontaneous breaking of time translation symmetry [14] which
is now characteristic of discrete time crystals, it is important to stress that the time-periodic behaviour
exhibited by these so-called dissipative time-crystals arises from a different mechanism. In fact, dissipative
time crystals lack any inherent underlying time-symmetry, relying instead on the onset of oscillations
between degenerate asymptotic states of the dissipative quantum channel [15]. Notwithstanding such subtle
differences, both discrete and dissipative time-crystals have since spurred a wide ranging literature [15-20]
showing that time crystalline behavior can be exhibited in a variety of settings, including boundary [21],
Floquet [22], Stark [23], and higher dimensional [24] time crystals. Common to all these realisations is that
emergent time-periodic behavior necessarily requires some driving, either in the form of an explicit
time-periodic kick, as is the case of Floquet time crystals, or by explicitly coupling to a bath [12, 13]. While
the prescription of a dissipative time crystal gives rise to a wealth of specific schemes, their actual stability is
in many instances far from clear [20], with few examples with proven stability being known [25, 26].
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Within the plethora of techniques to model an open system dynamics, collision models (also known as
repeated interaction schemes) present a particularly versatile framework [27-29], one which may also allow
to formulate quantitative statements more easily. By giving partial access to the relevant environmental
degrees of freedom, they allow for a more precise microscopic description of the dynamics to be derived.
They have found useful application in the study of time crystalline behavior, including assessing the
thermodynamics of boundary time crystals [30], and in establishing emergent time periodicity from an
otherwise fundamentally random dynamics [26], which will be the starting point of our work.

In this work, we study the stability of the emergent time periodic behavior established in [26] to both
changes in the microscopic description of the internal interactions and the resilience (or lack thereof) to
thermal effects. As main results we show that the establishment of a decoherence free subspace leads to a time
periodic behavior. However, its stability is significantly impacted by the precise details of thee generalised
dynamical symmetry that supports the oscillations. In particular, we show that a fully connected system
modelled by the Lipkin—Meshkov—Glick (LMG) Hamiltonian satisfies the conditions necessary to be a
dissipative time crystal [12, 26] only in the case of a zero temperature environment. For finite temperatures,
we show the time crystal melts and relate this to the specific characteristics of the generalised dynamical
symmetry. Finally, we revisit the XXZ model studied previously by some of us [26] and show that,
remarkably, in a small system of N = 4 spins such a few-body system is sufficient to host protected
symmetries that are fundamentally stable to arbitrarily strong thermal effects.

2. Emergent time periodicity from collisional dynamics

Collision models [27-29, 31-33] have emerged as a versatile tool for simulating and understanding a range
of open system dynamics (and of quantum fields [33, 34]). We model the environment as a large, in principle
infinite, collection of identical copies of an auxiliary quantum system, A. An effective open system dynamics
for the system S is achieved by allowing its free evolution to be punctuated by interactions (collisions) with a
single copy of the auxiliary system for a given interaction time 7. While at first glance such a model may
appear to be an over simplification, a remarkably broad range of physically relevant settings can be modeled
using this approach [27]. In particular, any Markovian dynamics, including a system in contact with a large
thermal bath as will be the focus of the present work, can be simulated by a collision model [35]. In what
follows, we will assume that the system is a many-body quantum system composed of many constituents or
‘sites’, and that the collisions take place only between a single fixed site (without loss of generality hereafter
denoted with q;) and the nth auxiliary system, governed by a simple exchange interaction Hamiltonian

Bya, =5 (600 @60 160 @50 (1)
Tracing out the auxiliary degrees of freedom after each interaction thus leads to an effective open system
dynamics for S.

We briefly recapitulate the main result of [26] where it has been shown that time periodicity can emerge
from an otherwise random dynamics. We will assume that the waiting time between two subsequent
collisions is random, following a probability distribution p(#) ~ e~7? with y7 < 1 in order to guarantee
that the system always interacts with only one auxiliary system at a time. It is important to stress that the
specific choice of p(6) does not impact our main results and any arrival scheme compatible with the above
constraint, including fully deterministic ones do not affect our findings. The dynamics after # collisions will
result in the state

Psn="Tra, .a, |Usp,a,0.. 0Usp a oUsp alpsol| (2)
n times
where 0,,...,0, are n possible outcomes of the random variable 6, Us g, 4.[-] = (AthAj Us(6)) - f]; (6) LA];hA/

gives a period of free evolution followed the collision of duration 7 governed by

Ug .4 = €xp {—iT (7:[3 —&-I:Iql,A”)} . (3)

We assume the auxiliary qubits of the collisional environment have free Hamiltonian given by
H, = —BG6, and that they are initialized in thermal states at inverse temperature 5 = 1/T and are therefore
described by the density matrix

5 1 l—tanh(%) 0
= —

2 0 1+ tanh (22) ) @
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which allows to easily consider the impact of a thermal bath on the ensuing system dynamics.

Within this framework, it has been proven in [26] that, if the system supports the existence of a so-called
dynamical symmetry, which we will rigorously define shortly in equation (7), then any operator having
non-zero overlap with it would be guaranteed to display robust and stationary oscillations. To be more
precise, let us first of all introduce the reduced quantum channel, i.e. a completely positive and
trace-preserving (CPTP) map, describing a single collision

Arg[]=Tra [Uson [ ZQk Q;JE (5)

where we have introduced the Kraus operators

(1) = Qap,r = VPa(BlUy 4, Us (6;) |a) (6)

and py = > Pa|@) (. It is easy to see that by construction, these Kraus operators give rise to a
trace-preserving map.

Owing to being CPTP, all the eigenvalues of A ¢ lie either within the unit circle in the complex plane
(decaying states) or on its boundaries (peripheral spectrum); in particular (with a slight abuse of notation
motivated by consistency with section 3.4) we will denote with p., the eigenstate corresponding to
eigenvalue 1 (which always exists because of the trace preserving nature of the quantum channel), i.e.
Ar 0 [foo] = Poo- Following [12, 36, 37], we define a dynamical symmetry as an operator A satisfying the
following two properties

@) [#s A] =—2A, reR, (7)
(ii) {Qk (r) ,A} P =0, Yk 7T,

namely an eigen-operator of the system Hamiltonian (i) which also spans a subspace which is left invariant
by the collisions (ii). In this case, it can be demonstrated [26] that the evolution of the operator A o
becomes a clean oscillation

Are [Aﬁoo} — AT f5 (8)

at frequency A which depends solely on the spectrum of the system’s Hamiltonian and not on any underlying
periodic driving. We refer the interested reader to [26] for a more complete derivation of the above.

While this statement holds true for any dynamics described by a CPTP map, the specific structure of
collision models plays a crucial role in autonomously selecting this periodic dynamics, getting rid of any
other subspace. Exploiting the above-mentioned fact that all quantum channels 1~\T79 share the same
peripheral spectrum, taking the limit of many collisions n > 1 automatically implies that all decaying states
(whose eigenvalues lie within the unit circle and thus are in modulus smaller than 1) get shrank down to
zero, thus leaving only the oscillating states in the peripheral spectrum A oo untouched. As a consequence,
the expectation value of any system observable O that has a non-zero initial overlap with the dynamical

A(O)]

symmetries of the model in the Hilbert-Schmidt sense, i.e. Tr[ApOO # 0, after sufficiently many

collisions will display oscillations at frequency .

3. Results

We consider N qubits labeled g; with i = 1,..., N described by the isotropic all-to-all interacting model, the
LMG model, given by the Hamiltonian

N
T— 3 (&,5’7&,@ + a—;%p) ~BY 5, 9)

where o, are the usual Pauli matrices, B is an on-site magnetic field and J is the coupling [38, 39]. This and
closely related models have been extensively studied, particularly in the thermodynamic limit where they
display a range of interesting critical phenomena [40, 41]. The high degree of symmetry endows the model
with an interesting energy spectrum which we show examples of in figure 1 for various sized systems. The
cascade of energy level crossings for increasing field strength is characteristic of such isotropic interacting
models. In what follows, we consider a similar setting to [26] where qubit q; is coupled to the collisional bath
and we examine the ability for equation (9) to admit stable time periodicity when observing any single qubit
of the system.
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Figure 1. Energy spectra for the isotropic LMG model, equation (9). We show N = 3, 4, and 10 respectively. The dashed lines on
each plot indicate the energy eigenstates that form the dynamical symmetry of the model for the zero temperature environment
case.

3.1. Zero temperature analysis
We begin by considering a zero-temperature collisional bath, i.e. taking 5 — oo in equation (4) and,
therefore, p4 = |0)(0|. This drives g, the qubit in contact with the collisional bath, to its ground state in the
long time limit. For N = 2, equation (9) does not support any stable oscillatory behavior, with both qubits
ultimately being driven to their local ground states [42]. In contrast, for N > 3 the spectrum of the system is
sufficiently rich that it can support stable oscillations emerging from the otherwise intrinsically random
dynamics of the collision model since the additional qubits in the system allows for decoherence free
subspaces to be supported [5]. These subspaces live between specific energy eigenstates of the system
Hamiltonian. The bath locally interacting with only the first qubit in the system is sufficient to open a
dissipative channel which can ‘purge’ the system of unwanted eigenstates and thus this setting establishes the
conditions necessary for dissipative system to exhibit an emergent time-periodic behavior [12].

To make things concrete, in figure 2 we examine the case of N = 3 and 4 explicitly. We fix the initial state
vector to be

N
1Bo) =0)V @+ P e | R0 ], (10)
j=3

and (arbitrarily) choose B=0.5. For both system sizes we find stable oscillations are established in all of the
qubits that are not directly interacting with the collisional bath, while g; is clearly driven to an equilibrium
state at zero temperature. We remark that only the amplitude of the observed oscillations are impacted for
any other choice of initial state, including fully random, that has a non-zero overlap with the dynamical
symmetry [26]. Since the period of oscillations is directly related to the relevant spectral gap in the system
Hamiltonian, i.e. it is the energy difference between the states supporting the decoherence free subspace, we
can readily identify which energy eigenvalues and states that the system will oscillate between in the long
time limit, which are shown in figure 1 by the dotted lines, and are given by

2
E, = —NB, and EM:N—(N—Z)B. (11)
The eigenvector corresponding to E,, is simply |1, ) = Hf;l |0) @ while E 1, 1s an eigenvalue with (N — 1)
fold degeneracy. We find that the system exhibits clean, persistent oscillations with a frequency given by

2
A=E,—E,=—+2B. 12
" Nt (12)
Immediately we see that in the limit of N — oo the frequency tends to that of a freely (Rabi) oscillating qubit
as a consequence of the vanishing interaction between the observed qubit and ¢q; in equation (9).
Considering N =3 in figure 2(a), we see that (6 £2)> and <6)(c3)> oscillate with the same amplitude but
perfectly out of phase with each other, indicating that any collective measurement, e.g.

Se=> & (13)
i

will not show an oscillatory behavior due the cancellation between the two subsystem expectation

values [43]. Nevertheless the individual qubits are stably oscillating with the expected frequency given in
equation (12). In figure 2(b) we consider N = 4. Due to the all-to-all nature of the coupling in equation (9),
G2, g3, and g4 all equally feel the effect of the collisional bath. The only asymmetry present is at the level of

4
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Figure 2. We show the behavior for a fixed initial state vector |¥) given by equation (10). We choose B/J = 0.5, consider 400
collisions with collision duration 0.5 and an exponential distribution for the random arrival times with v = 1. In all plots <0'(1)>

(qubit that interacts with collisional bath) is shown in black. (a) For N = 3 we see <O')E >> and (6 ¢ >) are exactly anti-periodic. (b)
For N =4 we see (0‘< )) has the largest amplitude while <&£3>> and (6% S >) exactly coincide. (c) We show the oscillation frequency
in the long time limit for the zero temperature collisional bath case, the line is given according to equation (12) for N =3, 4, 10,

and 100 (top to bottom) while the points for N = 3 and 4 are determined directly from numerical simulations.

the initial state, equation (10). From figure 2(b) we again see that regardless of which of these qubits we
choose to measure the system still admits stable oscillations with exactly the expected frequency. However, we
now see that the amplitude of the oscillations is impacted. For ¢,, which has been initialised in |+), the
amplitudes are larger compared to g3 and q4.

Finally, in figure 2(c) show explicitly the linear dependence that the observed oscillation frequency on the
value of the field, B. The points for N = 3 and 4 are computed directly by numerically simulating the
dynamics and taking the Fourier transform of the long time behavior of ¢, to determine the oscillation
frequency while the lines correspond to equation (12). We clearly see that despite the model exhibiting
energy level crossings as a function of B, cfr figure 1 (and a QPT in the thermodynamic limit), these features
play no role in the observed oscillatory behavior. As the system is scaled up, the emergent time-periodic
behavior is effectively lost and the observed qubit freely oscillates. This indicates the the establishment of a
dissipative time-crystal for this model is dependent on the interplay between the (collisional) bath in contact
with the system via qubit q; and the remaining qubits, g;+1, in the system that act as an effective second bath
for the observed qubit, ultimately driving the system periodically in a non-trivial manner.

3.2. Finite temperature analysis
From the previous section it is clear that the oscillatory behavior is robust at the level of the Hamiltonian
parameters, in particular for finite N it occurs regardless of the specific value of interaction strength and/or

5
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Figure 3. () Finite temperature (6 @ )) for N = 3 with same initial state, equation (10). We show different values of (inverse)
temperature for the auxiliary systems’ states corresponding to 8 = 10 (thin, blue), 2.5 (thick, blue), 1.0 (lighter, yellow) and 0.1
(red) following a heat map color scheme. Inset shows a zoomed in region of time. (b) Decay of oscillations observed as a function
of /3 at different instances of time starting from t = 200, 300, 400, and 500 from left to right. Inset shows a qualitatively similar
behavior holds for increased system size, N = 4.

applied field strength. We now consider how the nature of the collisional bath impacts the dynamical
behavior by demonstrating that the introduction of temperature at the level of the auxiliary qubits making
up the collisional bath degrades the oscillation amplitude, in effect melting the emergent time periodicity.

In figure 3(a) we fix N = 3 and examine the behavior of (&,@) for the same initial state, equation (10)
and we consider several values for the inverse temperature, 3. It is clear that 8 = 10 is sufficiently large to
recover the zero-temperature behavior. As we increase the temperature of the collisional bath, we find that
the oscillations decay in time. While the decay appears slow for large values of 3 =5, it is nevertheless
exponential, which is more clearly evident by examining smaller values of 5. From the inset we see that for
low, but non-zero temperatures, the oscillatory behavior can still be observed, albeit the frequency shows a
slight drift from the value predicted by equation (12).

The impact of temperature on the oscillation amplitude is captured in figure 3(b) where we consider the
ratio between (&;@) and (?7,@) B—ro0 1.€. the zero temperature value, at different instances in time for t =200
(left most black) to t =500 (rightmost lighter gray). We see that at a fixed value of temperature, the
oscillation amplitude monotonically decays with time, confirming the aforementioned melting of the
dissipative time crystal for finite temperatures. Comparing the main panel for N = 3 with the inset shows
that the same qualitative behavior is found for N = 4. However, we see that larger systems can delay, although
not fully mitigate, the impact of the thermal environment since the onset of the decay is shifted to lower
values of 3.

3.3. GKSL master equation approach

We now show that a consistent behavior can be observed by modelling the dynamics using the GKSL master
equation

éz—i[ﬁ,@]+r(n+1)(”@a—“ 2{&%“)7@})

+T7 (0$)@&(1) > {&@&L‘),@})

with I' > 0 being the damping rate, 77 = (e’® — 1) ™! is the thermal occupation number, and the bath is
acting on only a single qubit in the system, i.e. g;. A microscopic derivation of equation (14) notoriously

(14)

6
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requires several approximations; commonly this can be obtained when system and bath are weakly coupled
and the dynamics of the latter is much faster than any timescale of the system (Born—Markov, secular
approximation) [2]. However a different, less common microscopic derivation can be obtained within the
collisional picture in the limit of short collision times [44], provided the interaction Hamiltonian

equation (1) is rescaled as T2 corresponding to the ultra-strong coupling regime [27, 33, 44]. It is
important to remark however that, since we are only interested in the long-time dynamics and not in the
transient, we do not perform here such rescaling of the interaction to the ultra-strong coupling regime and
treat the master equation equation (14) as an effective reduced description, that qualitatively matches in the
steady-state regime of the numerical simulations with the collision model. In figure 4(a), we show (&§2)> for
the random arrival time collision model (thicker, red) and from the corresponding master equation
approach (thinner, blue) using equation (14) for the zero temperature case, i.e. 5 — oo in equation (4) and
7 — 0 in equation (14), again taking the initial state to be equation (10). During the transient we see that the
qualitative behavior is consistent, although there are clear quantitative differences. However, once the system
reaches its steady state, which corresponds to g; being driven into its local ground state vector |0) ) the inset
shows that the dynamics in the two pictures perfectly overlap. In figure 4(b) for finite temperature we
observe a consistent (although not strictly identical) behavior when compared with the collision model
approach at the same temperature (cfr figure 3(a)). Having established that the dynamics is accurately
captured by employing the master equation, this then allows us to more carefully assess whether the
time-periodicity observed strictly corresponds to a dissipative time-crystal [12].

3.4. Correspondence with dissipative time crystals

The melting of the periodic behavior exhibited for finite temperatures raises questions as to whether the
observed behavior constitutes a bonafide time crystal. This can be readily checked by constructing the
associated dynamical symmetry A for the model and testing the criteria set out in [12], where given the
correspondence established between the collisional model and the GKSL master equations, we consider the
jump operators in equation (14) and check

(i) [ﬂ,A} foo = ~AApus, and,

) 4] - NEOMLINY (15)
(ii) [ak ,A} Poo = <0k ) JA| 6kpoo =0
for k = {+,—} and where j, is the steady state of the dynamics. For the N = 3 case we can easily diagonalise
equation (9) and determine the eigenstates that support the observed oscillations from which we can obtain
the dynamical symmetry. Considering the following state vectors

1) =10y 10y |0y,

(16)
1) =10)" 1) 10)® —10) M ]0) ) 1)),

we find that A = |1)) (¢ satisfies the conditions of being a dynamical symmetry only for the zero temperature
bath, i.e. [7:[5, /q = 2 4 2B and while condition (ii) is only valid for k = —. This therefore explains why the

presence of finite temperatures impacts the dynamics since the symmetry is not protected and consequently
the time-crystal melts. The crucial point is the state of q; appearing in equation (16): in both |¢) and |$), q1
is in its local ground state, and since this is the state that the zero temperature bath drives it to, this ensures
that once the system has purged all other unwanted eigenstates into the dissipative bath via g; the whole
system will remain trapped in the decoherence free subspace. In contrast, finite temperatures drive g; to a
thermal state with some population in the state vector |1) M) which ultimately ensures that the system can
never ‘settle’ into the decoherence free subspace.

The above considerations gives cause to revisit the XXZ spin ring model considered in [26]

N
H=7Y (605040 +6050+0) 4+ BY 60, (17)
i=1 i=1
where we have omitted &Z(i) &§i+1) term as it is immaterial to our discussion. In [26] a qualitatively similar
behavior as discussed thus far for equation (9) has been demonstrated for this model, however, the
collisional bath was assumed to be zero temperature. We can again use the GKSL master equation to examine
the impact of temperature on the time-periodic behavior since the long time behavior is accurately captured.

In figure 4(c) we show (&,@} (blue) and (&f)) and consider several different temperatures corresponding to

7
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Figure 4. (a) Collision model (thick, red) versus master equation simulation (thinner, blue) showing (&§2)> for N = 3 with same
initial state as before. For zero temperature, i.e. 7 = 0 in equation (14) and 8 =0 in equation (4). Inset shows a zoomed in region
of time. (b) Master equation simulation for N = 3 with same initial state as before, equation (10), taking increasing values of
temperature with 7 = 0 (thinnest, blue), 0.1 (dark, red), and 0.5 (lighter red, thickest). (c) N =4 for the XXZ model given by
equation (17). We show <6',52)> (blue) and (6',9)) (red) for different values of temperature 77 = 0, 0.1, and 0.5 (thinnest to thickest

curves). The initial state vector is | ¥o) = |O>(1) ® |+>(2) ® |7>(3) ® |O)(4). The oscillation frequency is 2B as expected from [26].

71=0, 0.1, and 0.5. We see that (&,Ez)) decays as a function 7. In contrast, (6,53)) shows persistent oscillations
regardless of the value of temperature, with the oscillation frequency given by 2B which is exactly the
expected behavior for the dynamical symmetry given by

A =19 19,) (¢,
[91) =10y [0y 1) — 1) 10) P 0y @, (18)
lor) = [0)P 1)@ 1)@ — 1)@ 1) o))

as reported in [26]. It is readily confirmed that A\ satisfies all the conditions given by equation (15) for both
jump operators. The fact that g5 exhibits the oscillations can be seen from equation (18) as g3 in the spin ring
is the only state that differs between |, ) and |¢; ). The resilience to thermal effects can be understood as a
consequence of the fact that the state of q;, which is in contact with the thermal bath, in /ll is simply the
identity, and, therefore, the bath can drive the qubit to any state and still allow for the emergence of stable
time periodic behaviors. Only g5 exhibits such features as can be confirmed by examining the behavior of

(&;@) in figure 4(c) where we see that introducing temperature leads to an asymptotic decay of the oscillation

8
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amplitudes. This is because the dynamical symmetry that is supported on sites g, and g4 corresponds to

Ay = [9:)(¢a,
195) = [0)V 1) 10y 10y — 10y 0y 0y |1y @, (19)
lo2) = 10)™ 0) @ 0) ) 0) .

For A,, similar to equation (16), the state of g, is restricted to be |0) M) The necessity for q; to remain in its
ground state means this symmetry can only be maintained for zero temperature environments. This can be
further confirmed by computing equation (15) for A, where again we find that condition (ii) is only satisfied
for k = —. We can therefore conclude that a the emergent time periodicity associated to .A; for a 4 qubit
system with XX(Z) type interactions is remarkably robust and does not melt in the presence of finite
temperatures.

Our setup, according to the definition and formalism put forward in [12, 13, 45], can thus be classified as
a dissipative time-crystal due to the emergent oscillatory behavior in system observables. As we have seen,
there is a transient that the system must undergo where the bath ‘purges’ eigenstates that do not correspond
to the dark states of the Hamiltonian, and, therefore, the timescales necessary for a system to exhibit such
time-periodic behavior is largely governed by the Liouvillian gap [45] or that of the iterated quantum
channel reflecting the collisional dynamics. We have demonstrated that the robustness of dissipative
time-crystals is delicately dependent on the structure of the dynamical symmetry governing the oscillations.
Our results indicate that characterising emergent oscillations as a bonafide time-crystal should be done with
caution, with a careful analysis of the robustness of any such features, e.g. as considered here or in the
thermodynamic limit along the lines of [15], being prudent.

4. Conclusions

We have examined the stability of emergent time-periodicity in an interacting system modelled by the LMG
Hamiltonian. By coupling one of the constituent qubits of the system to a collisional bath, we have shown
that a stable time-periodic phase can be established when the bath is at zero temperature. Introducing finite
temperatures leads to a melting away of the time periodicity and we have shown that this is due to the
characteristics of the eigenstates that define the decoherence free subspace corresponding to the relevant
generalised dynamical symmetry [12]. We have shown that the nature of the microscopic interactions within
the system play a vital role in the stability of such dissipative time-crystals, showing that by changing
interaction model to the nearest neighbor XXZ type can allow for a thermally robust emergent
time-periodicity.

Our results therefore provide useful insight into the conditions necessary to realise stable time-periodic
behavior and leave open several relevant directions for future study; for example considering the impact that
non-Markovian dynamics [46] or environmental coherence [47] can have on the steady-state behavior.
While for non-Markovian dynamics, provided the fixed point of the generator drives the qubit in contact
with the bath to a state compatible with the emergent time-periodic behavior, we expect a qualitatively
similar behavior as discussed here to be established, the impact of coherence in the incoming environmental
auxiliary systems’ states is less evident. This work can also be seen as a further invitation to take steps towards
probing time-periodic behaviour under controlled conditions using instances of quantum simulators [19,
24, 48]. It is the hope that the present work contributes to stimulating such steps.
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