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ABSTRACT

Semiconductor quantum dots (QDs) are promising hosts for quantum computers because of their scalability. In order to expedite the devel-
opment process, there is a strong need for fully automated tuning of QDs that allows for en masse characterization of newly fabricated devices
and control over large-scale systems with appreciable variability. Machine learning has been actively explored as a means to this end; however,
challenges remain in terms of versatility for different tasks and device types. In this study, we explore a model-based reinforcement learning
(MBRL) approach: unlike traditional reinforcement learning techniques, the learning process of MBRL progresses by constructing a model
for the environment, which is to be diverted for other tasks and/or devices, thereby minimizing time-consuming learning processes. Using
pre-measured data, we construct an environment model and, despite the intrinsic sparse reward distribution of the QD system, demonstrate
its suitability for MBRL by emulating the process of auto-tuning to a single QD region. Our results highlight the potential of MBRL for more
generic QD auto-tuning techniques, providing a promising step toward fully automated QD tuning.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0251336

INTRODUCTION

Semiconductor quantum dots (QDs) are promising for dense
qubit integration because of their small footprint and compatibility
with semiconductor technologies.! One of the severe impediments
to exploring novel QD structures or materials is the labor-intensive
tuning process required to operate devices as qubits. This process
involves repeated manual tunings of gate voltages by human experts
over several days. Human experts conduct the tuning process based
on charge stability diagrams (visual representation of QD charac-
teristics as a function of control voltages). As the number of QDs
increases, this approach will become impractical. To partially auto-
mate the tuning process, machine learning techniques have been
studied;” * however, their applicability is limited to specific tuning
tasks or single device structures.

To overcome this limitation, we propose employing a model-
based reinforcement learning (MBRL) system for QD tuning.” Rein-
forcement learning (RL) is an area of machine learning concerned
with behavior within a certain environment.!’ In general RL, an
agent directly interacts with the environment to learn behaviors that
lead it to the desired goals. In contrast, MBRL constructs a model
for the environment and uses it for learning. Since this model can be
diverted for other tasks and/or devices with similar environments,
the MBRL approach is promising in yielding tuning protocols with
greater generality.

We note that the applicability of MBRL in QD experiments
should not be taken for granted. Auto-tuning of QDs usually relies
on finding the target patterns, which represent specific charge
transport characteristics in charge stability diagrams obtained by
sweeping two gate voltages,” " or by performing one-dimensional
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characterization, using, e.g., a ray-based method.” ’ Unfortunately,
such target patterns are only sparsely distributed, which is rec-
ognized to undermine the ability of the environment model to
accurately represent the real environment.'"'* In addition, an agent
trained in the environment model, which is constructed under
a sparse reward distribution, may struggle to perform QD tun-
ing, with well-known RL challenges such as the credit assignment
problem.'? These problems arise because sparse rewards make it
difficult for the agent to determine the contributions of individual
actions to the final outcome. Therefore, verifying the applicability
of MBRL in systems with sparse reward distributions is an essential
first step toward the practical realization of the MBRL approach in
such systems.

In this work, we construct an environment model for a QD
system with a sparse reward distribution and assess its suitabil-
ity for MBRL purposes. We evaluate the agent’s behavior after the
learning process and check the consistency of its reward prediction
using a pre-measured charge stability diagram. Our work focuses
on the tuning task toward a single QD condition (used, e.g., for
charge sensor operation'*) as a first key step toward MBRL-based
QD tuning.

LEARNING SYSTEM

Figure 1 shows the proposed MBRL system. Similar to the gen-
eral RL framework, the “agent” (i.e., the learning system) interacts
with the “environment” (i.e., a QD device in our case) and learns the
“action” that maximizes the “reward” obtained from the environ-
ment. It consists of the following four major steps for learning: (i) the
agent measures a small charge stability diagram that partially char-
acterizes the QD and obtains its corresponding reward; (ii) the agent
updates the construction of the environment model based on the
measurement results and rewards; (iii) the agent learns the relation
between actions and rewards in the constructed environment model
many times; (iv) the agent determines which area will be measured
in the next action to obtain a higher reward based on the current
learning situation. One of the advantages of MBRL is that step (iii) is
faster than in non-MBRL systems because the MBRL agent does not
interact with the environment via time-consuming measurements.
In the following, we refer to this cycle of four steps as iteration. We
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repeat 5 x 10° iterations in our work, and it takes a couple of days
to complete the entire learning process on a computer with a single
GPU (RTX 2070 SUPER, NVIDIA). We employ the neural-network
RL framework, DreamerV2, as the algorithm for our agent.”” It is a
MBRL framework developed by DeepMind with the potential to out-
perform the top single-GPU agents such as Rainbow'® and IQN."”
This improvement stems from utilization of predictions in the com-
pact latent space of a powerful world model. The detailed parameters
of DreamerV2 used in this study are provided in the supplementary
material, Note 1.

For the proof-of-concept demonstration of MBRL auto-tuning,
we use as the environment a pre-measured wide-range charge
stability diagram. The use of pre-measured data provides several
benefits, such as accelerated interaction speed and avoided risk of
potential device damage by eliminating the need for real measure-
ments. The data were obtained by sweeping the voltages of the
plunger gates, Vg1 and Vg, across a wide enough range. This
ensures that the dataset captures key conditions relevant to QD
formation, including pinch-off, single- and double-QD configura-
tions. Pre-measured data obtained from an n-type multiple QD
device were employed that was electrostatically defined by gate
electrodes fabricated on a silicon-on-insulator substrate.'"” The
data store the QD current flowing between the drain and source
measured at 4.2 K as a function of two gate-electrode voltages
Vg1 and Vgs.

REWARD DETERMINATION BY IMAGE
CLASSIFICATION

In RL, reward plays an important role because the agent decides
its action based on reward predictions. In contrast to video games
such as Atari games,”’ where the environment outputs a score that
plays the role of reward, in QD measurements, rewards must be
provided separately. We use a convolutional neural network (CNN)
technique to evaluate the base rewards for the measured results
based on the similarity to computer-generated “target patterns,” as
shown in Fig. 2(a).”! These patterns (stripes with a negative slope)
represent the charge stability diagrams expected for the single QD
region’” and help us eliminate the need for human intervention in
the labeling process. This is in stark contrast to the usual image
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FIG. 1. Learning system. A sequence of steps (i)—(iv) constitutes an iteration cycle. The magenta frame on the charge stability diagram represents the single QD region set
by human experts, which will be used in the section titled The MBRL training and the result for the numerical evaluation of the environment model. Examples of small charge
stability diagrams (cropped from the overall plot) are shown along with the confidence scores received from the CNN model (see the main text).
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classification with CNN, where it is necessary for humans to man-
ually label data obtained through real measurements in order to
perform supervised learning. We train the CNN with supervised
learning for the classification task with the target pattern dataset
(5000 images) and CIFAR-10 as the dummy dataset (5000 images).**
These datasets are divided into a training dataset (7000 images) used
to train the CNN and a test dataset (3000 images) used exclusively
for evaluation. We tune the hyperparameters of the CNN model
structure, such as the number of hidden layers, nodes in the layers,
and learning rate, using Optuna, an open-source hyperparameter
tuning framework.”* The details of the CNN are presented in the
supplementary material, Note 1. The CNN model outputs a scalar
value between 0 and 1, hereinafter referred to as the confidence
score, for an input image. We regard a classification as correct when
the confidence score is higher than 0.5. Figure 2(b) shows the evo-
lution of classification accuracy as a function of epoch (An epoch
elapses when every image in the training dataset is used once for
training). The trained CNN achieves >99% accuracy on the test
dataset.

We assess the CNN’s performance based on the distribution
of confidence scores for the pre-measured data. The distribution
is visualized from the calculations of the confidence score on each
data point in the pre-measured data [Fig. 2(c)]; the CNN calcu-
lates the score based on the small charge stability diagram centered
on the point. The distribution shows large scores in regions where
human experts recognize the target patterns; see also the small
charge stability diagrams in Fig. 1. As will be discussed later, the
MBRL agent using the learning system incorporating the trained
CNN succeeds in QD auto-tuning, which ultimately demonstrates
that the CNN possesses sufficient performance to achieve our
objective.

Using the sum of confidence scores (between 0 and 1) received
in each iteration as the base reward, we design the reward to be
employed in the MBRL process of QD auto-tuning as follows: a +100
reward is given upon reaching the goal with the confidence score
above 0.5 and a penalty of —100 reward is issued when one of the gate
voltages exceeds the pre-determined limits (0 and 5 V in the present
case). Since we terminate each episode of the auto-tuning process
after at most 100 iterations and the total base reward is between
0 and 100, the extra rewards strongly motivate the MBRL agent to
move to the desired goals.

ARTICLE pubs.aip.org/aip/aml

FIG. 2. (a) Example of computer-
generated “target patterns” used for
training the CNN. (b) Learning result of
CNN with supervised learning for the
classification task of whether or not a
device is in a single QD region. The
training and test data include 7000 and
3000 images, respectively. All images in
the datasets are used in each epoch.
(c) The distribution of confidence scores
obtained by analyzing pre-measured
0 data with CNN.

Confidence score

THE MBRL TRAINING AND THE RESULT

We now train our MBRL agent on the pre-measured data to
perform QD auto-tuning. During the MBRL training, the agent
explores the desired goal by repeating the iterations described in
the section titled Learning system. In each episode, the starting volt-
age condition of the agent is randomly selected within the range of
0.5-1.0 V for both gate voltages. The MBRL actions in this work
are restricted to four types of movements: 0.1 V shift in the up,
down, left, and right directions on the map shown in Fig. 1. After
taking an action, the agent performs a measurement in the square
range of £0.15 V around the new location. The measurement result
is evaluated by the CNN described in the section titled Reward
determination by image classification.

Here, we discuss how the agent works toward achieving the
QD auto-tuning task by analyzing the training results from three
perspectives. Figure 3(a) presents the episode reward, i.e., the cumu-
lative reward per episode as a function of the learning iteration.
In the figure, the MBRL agent’s episode reward decreases and then
increases at the early learning stages (~1.3 x 10” iterations), implying
that our agent learns to avoid penalized areas. As learning pro-
gresses, the episode reward acquired by the MBRL agent promptly
increases and mostly remains around 100, with occasional dips
that soon recover, indicating consistent achievement of the goal.
These dips are possibly a result of the agent temporarily employ-
ing inefficient policies in an effort to explore better ones in the
long term. On the other hand, the control experiment, where the
agent selects the action randomly (random agent), has much lower
rewards (~—70) patently due to the penalty. The rewards do not
depend on the learning iteration as expected for its randomness
in action selection. These results suggest that the reward system
is well designed to guide the agent toward successful QD auto-
tuning. After the training, we perform QD auto-tuning with the
MBRL agent and monitor its action histories to validate its decision-
making process. Figure 3(b) shows 50 trajectories randomly selected
from 1000 episode runs conducted on the pre-measured data. We
see that the agent first moves upward on the pre-measured data
to reach the area where current flows and then explores for the
target pattern in the vicinity, similar to the way human experts
tune devices toward a single QD condition. In this connection, the
agent successfully completed tuning within the single QD region
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with a probability of 98.0%. As a baseline for comparison, we also
apply the Deep Q-Network (DQN) framework under the same
environment and tasks. DQN is a widely adopted model-free RL
framework, and its variant has been employed in previous stud-
ies on QD auto-tuning.® The DQN successfully completed tuning
with a probability of 87.1%, which is lower than that of MBRL and
underscores the capability of MBRL to outperform a well-established
model-free approach, further highlighting its effectiveness in the
QD system. We note that in some trajectories where the MBRL
agent first deviates slightly to the left, it turns back to the right to
avoid penalties. We also find that the agent mostly ends up under
the G2 dot condition (the lower-right region), although high scores
are also output under the G1 dot condition (the upper-left region)
by the CNN; see Fig. 2(c). This indicates that the agent learns to
move toward a high-reward region closer to the starting point;
indeed, the training algorithm employed in this study is designed to

the single QD region, as defined in Fig. 1.

maximize the expected value of the cumulative discounted reward
(the expected sum of the rewards in the next 15 iterations with the
reward obtained in each iteration discounted by a factor of 0.1%
after each iteration'”). This discount encourages the agent to learn
to find the goal with fewer iterations. To clarify the performance
of the MBRL agent, we compare the distributions in the number of
iterations required to complete the tuning task for the MBRL agent
and the random agent [Fig. 3(c)]. We apply the Wilcoxon rank-
sum test”” to the two distributions and obtain a p-value (<0.001)
well below the commonly used significance level of 0.05. Thus, we
reject the null hypothesis that there is no difference in the median
number of iterations between the MBRL and the random agents,
indicating that the MBRL agent makes meaningful action selections.
These findings collectively demonstrate that the agent trained within
the environment model achieves the auto-tuning toward single
QD condition.
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To confirm the impact of the sparse reward distribution on
the environment model’s ability to represent the original system,
we perform evaluation from the perspective of the rewards pre-
dicted by the environment model. The MBRL algorithm we evaluate
in this study, DreamerV2, incorporates a reward prediction mech-
anism in its environment model, allowing for the prediction of
rewards for subsequent iterations based on previous ones. This
mechanism enables us to obtain a property of the environment
model, leading to an explainability of its internal states—a fea-
ture distinct from typical systems with black-boxed internal states.
Figure 3(d) shows the predicted reward distribution averaged over
1000 episodes within a grid of 0.3 x 0.3 V sub-regions, which is
the same size as a small charge stability diagram. We see that the
predicted rewards remain close to zero in regions without current
and start to increase around Vg, = 1.4 V, where the target pattern
begins to emerge; this behavior is consistent with what is expected
from the confidence score distribution. To give more numerical
evaluation, we present in Fig. 3(e) the comparison between the dis-
tributions of the predicted rewards inside and outside the single QD
region set by human experts (as illustrated in Fig. 1). By apply-
ing the test again to the two distributions, we reveal significantly
higher predicted rewards inside the single QD region compared
to outside, with a p-value (<0.001), as with the analysis conducted
in Fig. 3(c). These results suggest that the QD device behav-
iors are adequately modeled in MBRL algorithms for auto-tuning
purposes even though the QD systems have inherently sparse reward
distributions.

Overall, we have confirmed the applicability of MBRL to QD
systems through the effective auto-tuning by the MBRL agent
trained within the environment model and the successful construc-
tion of the environment model that represents the sparse rewards.
This is a first key step toward more general QD auto-tuning tech-
niques overcoming challenges in terms of versatility for different
tasks and device types.

To gain more insight into the performance of the MBRL agent,
we now present a preliminary analysis of failure cases. Among 20
failure cases out of 1000 episode runs, we have 15 cases of “drifting”
outcome and five cases of “left-exit” outcome. In the “drifting”
cases, the agent remains within the given boundary of the charge
stability diagram but fails to reach the target pattern even after
100 iterations. We attribute such cases to the inherent stochastic-
ity of DreamerV2,'” which, while advantageous for escaping local
optima, introduces randomness in the agent’s decision making. In
the “left-exit” cases, on the other hand, the agent moves beyond
the left boundary of the diagram (V1 < 0 V) and incurs a penalty.
A possible scenario is that they result from the agent aiming to
tune to the G1 dot condition, which happens to be in close prox-
imity to the left boundary. The stochastic nature of the agent’s
decision making in DreamerV2 may lead to trespassing. Optimiz-
ing the stochasticity of the agent’s behavior is an important topic of
future studies.

CONCLUSIONS

In this work, we explored a MBRL approach toward QD tuning
and confirmed a construction of a model of the QD environment,
which leads, in the future, to the versatility in qubit tuning. A war-
ranted concern is that the sparsely distributed QD characteristics

pubs.aip.org/aip/aml

impede the construction of a model functional in QD tuning and
therefore the application of MBRL to QD tuning. To demonstrate
the applicability of MBRL to QD systems, we first trained the MBRL
agent on the pre-measured data and constructed an environment
model. In the training, we utilized the automated reward deter-
mination via image classification using a CNN. We evaluated the
performance of the MBRL agent by analyzing the training results;
it turned out that the agent trained within the environment model
achieved the auto-tuning toward single QD condition. Then, we
also evaluated the environment model from the perspective of the
predicted reward, which demonstrates its ability to represent the
original system, including the inherent sparse reward distribution.
Our results suggest the applicability of MBRL to QD measurements
and represent the first key step toward MBRL-based QD tuning. The
generalization of auto-tuning for QD devices is essential for pro-
moting the advancement of QD-based quantum computing because
we need to perform tuning on non-standardized”® and diverse char-
acteristics of current QD devices. A next step toward auto-tuning
of integrated silicon qubits involves the reduction in learning time
by leveraging the MBRL’s ability to adapt an environment model
to a different system without requiring complete re-training. As a
preliminary investigation of this potential, we conduct additional
experiments under a different starting condition designed to mimic
a device with distinct threshold voltages (see the supplementary
material, Note 2). This result provides preliminary evidence for the
robustness of the MBRL procedure across different device config-
urations. We believe that the MBRL approach investigated in this
work offers more versatility than other auto-tuning methods and
will accelerate the realization of the general-purpose auto-tuning
technique.

SUPPLEMENTARY MATERIAL

See the supplementary material for details regarding the CNN
model, the DreamerV2 model, and the additional experiment on the
robustness of the MBRL procedure in QD tuning.
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