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ABSTRACT

Inclusive production of particles and resonances from K'p interactions.
at beam momenta of 10.1 and 16 GeV/c are studied in this thesis. 1In
Chapter One, we give a review of some of the theoretical ideas associated
with inclusive reactions_which‘have abpeared in literature during the last
three years. In Chapter TWO-We discuss some of the features in our.data,
and some of the expérimental biases from an inclusive point of‘view. Scaling
and 1imiting fragmentation of single and two particle x distributions are
-discussed in Chapter Three. This Chapter includes a possible explanation
(based on duality arguments) of the scaling behaviour of two pion
distributionsin certain kinematical regions. Distributions in p% are
studied in Chapter Four where it is shown that resonance production plays

an important role in the p%

distribution of particles. Inclusive production
of the K*-(890) resonance is.studied in Chapter Five. Comparison of
predictions of triple regge formalism with our data on 2™ inclusive
production is given in Chapter Six. In Chapter Seven it is shown that
resonance produétion plays an important role in the observed correlations

between inclusively produced particles. Inclusive and semi-inclusive

_production of K® and A%are studied in Chapter Eight.
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CHAPTER ONE

INTRODUCTION AND THEORETICAL BACKGROUND

Ngtation, Kinematics and Terminology

In high energy collisions when a parfic]e a, strikes a target b,
different numbers and types of particles are produced in the final
states. At the upper 1limit of present accelerator energies, a 1arge. -
number of charged and neutral particles is produced on average. Since
non=strange neutral particles are very difficult to detect and, in
general, identification of charged high momentum secondaries is not
possible, complete analysis of the final states is difficult.

An alternative to this situation is to concentrate our study on
the particular class of reactions in which a particle of type ¢ is
produced along with various numbers of other particles of unspecified

type in so called "Inclusive reactions"as suggested by Feynman(]) of

the type
a + b - c+ anything . (1.1)

In such a reaction we study theidifferentia1 cross-section as a
function of momentum, say, of particle c regardless of whatever else
is produced.

We denote the four momentum vector of ¢ as (E, p). The obﬁect of
interest is the Lorentz invariant inclusive differential cross-section:
Ed3o/d35. For notational convenience the symbol f is adopted to replace

Ed3s/d%p.

f(s, p) = Ed3o/d35 (1.2)
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where s is the square of the total centre of mass energy. Analogously

for two particle inclusive reactions,
a+b -» c+d+ anything (1.3)

we define a variable G

= = 6 ,,3- ,3- .
G(s, P, pd) E. Eq do/d7p, d7py . (1.4)
In the single particle case, the quantity f(s,p) is a function of
three independent variables, for which several sets may be contemplated.

1 1ist four general sets which are in common use:-

L (s (B ls )
2. (5’ pL’ p%)
3. (s, ¥, p%)‘

4. (s, t, Mx)

The common variable within the above sets is s. p% in sets 2 and
3 is the square of the component of p transverse to the direction of the
incident particle. In set 1 @ is the angle in momentum space between p
and the incident projectile. In set 2 PL is the longitudinal component
of p which may be measured in different frames of references giving
different subsets of set 2.

There are two more important variables to be introduced. The first

variable x proposed by Feynman(]) is related to pfm, as follows:

b

cm
pmax
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and pcT = E%gl [Is - (m + mb)2] [s - (m, - mb)2]] !

at large s Ppax = %?
X = —L (1.5)
Vs .

‘The second variable is the "Rapidity"(z) ¥, which is defined as
R 2 2%
y = sinh " p /(m_ + py)

The advantages of using such a variable are two-fold:-

If one uses a set of variables defined in terms of s, y, p%, the
differential d35/E transforms into ndp%dy,.which eliminates the necessity
of weighting the distributions by E in order to calculate Lorentz
invariant cross-sections. '

Secondly, although y itself is not a Lorentz invariant variable, a
lTongitudinal Lorentz transformation of y from one frame to another will

produce the effect of changing y only by a constant, i.e.

Yy + ¥y =y + constant
Fig. (1.1) shows how the y, pfm and plab variables map into one
another. | |
The set (s, t, Mi) is based on Lorentz invariants and it is the
set mo;t analogous to variables in general used for two body and quasi-

two-body reactions with

ct
]

(P, - P.) (1.6)

fl

ME = (P, + B - P )% . (1.7)



For convenience we record here the phase space volume in a variety

of variables for large s approximation.

¢p/E = d¥py dy
o
~ de dx/x

dx (-dt)

P

-

S

u

Inclusive and Exclusive Reactions

The idea of studying reactions of type (1.1)'is not new. However,
the name "inclusive" was not used until recently. These reactions have
been studied since fhe early days of high energy physics, for example
through the measurements of total cross-sections of different high energy
collisions. These measurements have always been most important in
e]uqidating high energy collisions. In the new inclusive language,
measurement of total cross-sections represents the simplest type of

inclusive reaction which takes the form:-
a+b - anything (1.8)

The only variable on which the cross-section depends is the total
centre of mass eﬁergy for'any fixed a and b pair (neglecting any polar-
ization).

Although this type of analysis imposes itself as a technical
necessity on both the experimentalist and the theorist because of the
increasing number of particles in the final states, it does not follow

that when we average over so many particles the results contain little
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information. The inclusive study is an equivalent alternative to the

exclusive one(3)

and when complete it'is, in principle, équa]]y
informative.

An exélusive reaction is one in which we study one particular
final state where the number and type of particles aré known.

The inclusive cross-section is defined averaging over exclusive

ones, thus we can write

do1'nc'l © 9 J gnte ex dp b
= § nl-="n+e
dp .... Hpn =0 ! dp] R dpn dpn $1 00 dpn + L
- (1.9)

In the same way one can write the exclusive cross-section in terms

of inclusive ones as follows:-

2 .
dcjrexc] w (=1)° j g2 gn dg dq
= . ' -
dq .... dgm 420 !V dq-l ... dqm dqm+] e dqm+2 m] —=-"mg
(1.10)

Relations™ (1.9) and (1.10) are equally correct, although equation (1.10)
is far less familiar. It can be understood as follows:- 1in order to
isolate the contribution of two body channels to tﬁo body inclusive
cross-sections say, we have to subtract from the latter the cross-sections
where three, four etc. particles occur in the final state.

From fhe above discussion one deduces that a complete measurement
of all inclusive cross-sections implies a complete knowledge of all
exclusive cross-sections and vice versa. The two sets of measurements
are entirely equivalent. This equivalence is not surprising. There is

an exact'para11e1 to this in the ordinary many body problem in quantum
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mechanics, where there are two ways of describing a quantum mechanical
system. Either one studies the probability of finding exactly n

particles at the space co-ordinates X ..Xn which is called the

15 *-
particle description or one'asks what is the probability of finding

a particle at Y1, another at Y2 and so on, without specifying the number

of particles in the system; this is called the field description. The

two descriptions are entirely equivalent, being related by a transformation
of co-ordinates in the space over which the probability function is
defined.

In hadron collisions the same situation occurs except it is more
convenient to work in momentum space than in ordinary space. As is the
case in quantum mechanics when dealing with a system of only a few
particles such as Ehe hydrogen atom, the particle description is preserved
and it is fairly easy to calculate the wave function giving the probability
of finding the proton and the electron at a certain co-ordinate or in a
given momentum interval. Héwever, when the number of particles is large,
for example in a liquid, the field description becomes more éonvenient.

As is the.case with exclusive measurements a complete measurement
of all the inclusive cross-sections is impbssib1e. What one hopes, is
that the two will be complementary. This Wi11 help us to gain a Better
understanding of hadron co]1fsions,any theory of which must be able to

predict correctly both exclusive and inclusive spettra.

The Generalised Optical Theorem

A formalism for the phenomenology of inclusive reactions was provided
by Mug11er(4) through a generalisation of the optical theorem.

Before considering the different aspects of this genera]isation, Tet
us first recall the ordinary optical theorem. The theorem is a direct

consequehce of the conservation of probability, i.e. "unitarity", and



relates the total cross-section to the forward elastic amplitude in

two body collisions. One of its forms is

» ~
o "1 m [Ae]]t=o . (1.11)

This relation can be represented schematically by the diagram of
fig. (1.2.a) where or is the total cross section and Ae] is
the elastic two-body scattering amplitude. When this amplitude is
considered as an analytic function of s it is known to have a cut(5) on
the *positive real axis. It is also known that this amplitude satisfies

the reality condition, which is a direct consequence of time reversal.

*
Ae'l (s + ie) = Ae] (s - ie) (1.12)
Im Ae] = -21-1- [Ae] (s + ie) - Ae'l (s - ie)] (1.13)

where e is a very small change in s.
The right-hand side of (1.13) represents a 'right-hand cut' on

the (s) plane, so the optical theorem can be written as

1 |
op =g Disc [Ae]]t=0 (1.14)

where Disc stands for the discontinuity suffered in traversing a pole
in the complex ﬁ]ane. ,
It is clear that the optical theorem relates the total cross-section,
in the simplest inclusive reactions of type (1.8), to the two-body
elastic amplitude, so whatever we know about one implies knowledde of
the other. .
Let us now consider the next simplest inclusive reaction (1.1). For

such reactions the generalised optical theorem suggested by Mueller is



best represented by the diagrams of fig. (1.2.b) which is somewhat
similar to fig. (1.2.a). As in the ordinary optical theorem, the
Lorentz invariant single particle inclusive cross-section is related
to an elastic amplitude in the forward direction of tﬁe three particles
abT as follows:- |

f(s.P.) - 1? Disc2 Ay (abc»d B C)_

o (1.15)

From (1.1) ¢ is an outgoing particle. Consequently, we are not in

the physical region of the reaction:
abtT » a b ¢ (1.16)

In (1.16) Spz = (Pb - PE)Z is an effective mass while in (1.])
it is a momentum transfer and is mostly negative. Furthermore, the
amplitude of (1.16) is a function of many variables and even when
restricted to the physical region of (1.1) Sab® Sab and SabE can
still have cuts. Thus, the discontinuity of fig. (1.2.b) has to be

specified as follows:
Disc A=A (Sab + i.€e., SabE + 1.€., Salbl = 'i.E:.)
-A (Sab 4 i.e, Sabc - i.e, Sab*- i.¢) (1.17)

where one notices that one takes only the discontinuity across the cut
SabE i.e. Mg(x) . Because of these complications one sees that analytic
continuation is needed for the amplitude of reaction (1.16) off its
physical region.

The importance of the generalised optical theorem is that it relates
the inclusive cross-section to an elastic amplitude which might have a

similar behaviour to that of the ordinary two-body elastic amplitude.
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Thus, it changes the nature of the problem to a form which can be
solved in terms of the more traditional s-matrix elements.

From the above discussion we may generalise to more than one body
inclusive reactions simply by relating the n - body inclusive cross
section to the 2 + n > 2 + n body forward elastic amplitude.

Finally, just as the optica1 theorem does not solve all the problems
related to or the generalised optical theorem can not be expected to
answer all the questions about inclusive reactions, and merely changes
the nature of the problem. The question now is to formulate these
(2 4+ n-+>2+n) elastic amplitudes. Because the 2-2 body elastic
amplitude is the simplest member of the family of these n-n amplitudes
several approximations which were used before for the two body case are
being extended to.the other members(e). These include the traditional

Regge expansion and Veneziano Bn functions.

Feynman's Scaling Hypothesié

It was first Feynman in ]969(1) who suggested that the study of
inclusive spectra could be very useful, not only fbf experimental ease
but also from the theoretical point of view. One of his main predictions
about the behaviour of inclusive spectra at high energy is the weal known
hypothesis of scaling. The scaling hypothesis can be stated simply as

that "The inclusive cross-section should become energy independent at

2II

sufficiently high s when studied in terms of x and P

. 2 2
1im f,(s,x,PT) > g(x,PT) (1.18)

S &> @

This hypothesis can be understood using a picture of what happens
in a collision similar to that of Fig. (1.3.a). Looking at the collision

in the centre of mass of the two particles a and b we see that the two
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particles suffer a Lorentz contraction along the z direction which is
defined as the collision axis. This Lorentz contraction changes the
shape of the two particles to disc-like objects. - Feynman suggests that
when the collision takes place there fs a sudden mi*ithqﬁd reversal of
direction of motion-of some part of the hadronic stuff constituting the
two original hadrons. The result of the mixfng is a diéc-]ike "hot"
material or source of radiation. The fadiation produced from this source
will be in the form of material particles. The momentum spectrum of the
emitted particles is determined by the momentum space spectrum of the
source.

If the radiated secondaries are produced from the central source
in a similar way to that of electro-magnetic radiation from classical
currents, then the momentum speétrum of the particles is a Fourier
transform of the energy density of the source.

If we assume that the role s plays in the interaction is merely to
produce the Lorentz contraction, then increasing s merely gives a thinner
disc source. Thus, at very high energy, the energy density of ihe disc
source will have a delta function distribution. The Fourier transform
of such a delta function is uniform in momentum dp. If we further assume
that the field energy is uniform]y'distributed among the various kinds
of particles in fixed ratios independent of s, we conclude that the mean
number of particles of any kind at fixed'PT is distributed as dPL/E where
E is the energy of the particle in the centre of mass. Thus the probability
of finding among‘a11 emitted particles a particle of kind ¢ with mass m, '
in a transverse momentum interval dﬁT and iﬁ the_]ongitudinal momentum

interval dﬁ_is of the form

£ (Py, PL/M) dP d%P JE (1.19)
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where W is the energy in the centre of mass.in terms of x:-

2 2=
fi (PT, x) dx d PT/E (1.20)
which is independent of s and has a finite value-at x = o.
It is useful to see what this means in terms of the rapidity
variable y.

We can write

L
P
sinh ycm = cm
(n? + P2)}
At large s,
. /s
sinh y" = X
2(nf + P2
2(m2 + P?r)é cm
X = —————— sinhy . (1.21)
/s

The small region near x = o, i.e. Ptm = 0, 15 wider when expressed

in terms of the rapidity variable y. This can easily be seen with the
aid of fig. (1). Thus if scaling of the x_distribution is valid, the Yem
distribution will develop a plateau over a region Ay of width comparable

to s% and centered round Yem = O- This is called the plateau hypothesis.

The rate at which scaling is approached may depend on the type of i
particle and on the value of x. This can be explained if one keeps in
mind that in the energy region considered in this thesis, for example,
the cross-section for 4 and 6 prong events is nearly constant whereas it
rises steeply for events with more than 10 prongs. For eventsvwith large
numbers of particles the mean value of x is small. Furthermore, each
particie of a specified type from a certain event is counted once in the

inclusive spectrum, so events with high multiplicity contribute with large
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weight to the overall distribution. Consequently, we should expect
the Feynman scaling to be approached less rapidly for x small than

X large.

The Hypothesis of Limiting Fragmentation

Another form of energy independence of the inclusive cross-section
has been proposed by Benécke, Chou, Yang and Yen(7). They believe
that it is more useful to use the target and the projectile rest frames
as the frames of reference in which to study the momentum spectrum of
inclusively produced particles at high energies. In their view if one
considers the laboratory system L, some of the produced particles tend
to have increasing Tab. velocities B as s increases, and others tend to
have limited velocities. These are those slow particles in the lab
frame which are the ones expected to approach a limiting distribution
as s becomes large.

To make this suggestion more plausible, one may imagine the incoming
beam (a) particles as Lorentz contracted discs in the lab frame, in which
the target b is at rest. The passage of these discs through the hadron b
causes b to split up into fragments. .

One can see from fig. (1.3.b) that as the enérgy increases, the disc
becomes thinner. Once the thickness is below a certain minimum, aﬁ
increase in energy should not appreciably affect the fragmentation of b.
Thus, all inclusive distributions of particles of type c say, with
momentum |Pc| << ¥5 in the target rest frame should approach a constant
1imit, independent of s. The limit [Pcl << Vs is necessary because if
we have IPCI ~ ¥5 then from the uncertainty principle we get a resolution

in z of Az < 1 in the experiment. Such resolution is equal to the rate

Vs
at which the apparent thickness of a decreases with increasing s.
The above argument can be applied edua]ly well in the.projectile

rest frame. This means particles produced as fragments of a approach
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a limifing momentum distribution as s -+ « provided that IPCI << s in
the projectile rest frame. Consequen;]y, two kinematicai regions can be
defined, one the target fragmentation region where the momentum of an
inclusively produced particle is measured in the target rest frame and

a projectile fragmentation region where the momentum of the measured
particle is in the projectile rest frame. In both regions the condition
of IPCI << ¥s has to be satisfied. These two regions can be mapped in
terms of x as the regions of x < o0 and x > o respectively. The region
of x = 0 is called the pionization region.

Pionization is best represented as evaporation(s) of slow moving
particles, mostly pions, in the centre of mass system. If the hypothesis
‘of limiting fragmentation is true, then one does not expect pionization
to take place because if all particles are produced in either of two
fragmentation regions they must have ]PCI < /572 méasured in either frame
of reference. This means that no particles should be produced with

s . . . s
IPCI:s 7;- in either regions which is the value of x = o because values

lab , /s proje _ Vs
of PZ = - or P = 5

7 are values which can not be defined in

the target or projectile frame of reference.

The above point forms the major difference between Feynman's scaling
hypothesis and the hypothesis of 1imiting fragmentation. The former
makes definite predictions about scaling near x = o while the latter
cannot define this region. The two hypotheses are equivalent for ranges

of |x] >> o.

Model Independent Relations

Some very useful relations concerning inclusive reactions may be
derived without using any prior assumptions or dynamical ﬁode]s such as
Feynman scaling or limiting fragmentation. These fundamental relations
are direct consequences of well-known kinematics and conservation laws

and théy are very important, for they provide useful tests on consistency
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of both theory and data. Some of these relations will be discussed
in this section; many others are present in the ]iterature(7).

Starting with the single particle inclusive cross-section we have

- 3__ _

’[ f(s.p) d”p/e= ]'°1c + 2'°2c_+ 3.0, «+v. MO = §1"°nc (1.22)
where e is the contribution to the cross section from final states
involving the production of precisely n particles of type c. If we
define <n.> as the average number of particles of type c produced in

- an channe]s, then:

s O'°Oc + 1'°1c + 2.q2c + 3'°3c + ... + "onc i ;"0 /o
c 9%c ¥ 91c * Ooc F 03¢ F g t o Ipc nep neT (1.23)
Therefore
‘[-f(s,ﬁ) d3p/E= <nc> ar P (1.24)

where or is thé total cross-section for a b collision.

It is interesting to note that equation (1.24) can be used to get
a crude prediction about the behaviour of f(s,p) with energy. It is not
~at'all surprising to-expect that above a certain threshold, the energy
dependence of f(s,p) should not be much different from that of op. Such
behaviour is expected if we take into consideration the empirical fact
that to a first approximation the integration of the phase space volume
d3P/E should be carried out in the longitudinal direction only because
of fH; transverse momentum cut off at small values well below the
kinematical 1imits. In such a case the available phase space volume
is a slowly varying function of s "approximately" as In (s). This is

more or less the same behaviour of <n> so unless f(s,p) is of a

pathological nature its dependence on s should be roughly the same as



- 15 -
that of or-

Next let us consider a conserved additive quantity like electric

charge. It is obvious that
Q. +0Q =z | &% q |- 4 (1.25)
a b c c ‘c (o H' - .

and four momentum vector conservation gives

(p, +p)* = z|d% Bld3° (1.26)
. Pa ¥ Py o Pe SR HE; ’

where the summation over c means taking into account all possible
choices of particles c.
The introduction of symmetries can produce further constraints

on inclusive reactions. Some of these are quite obvious like
flab->cx)=f(ab-+cX) L

where a, b, c and X are the conjugates of a, b, ¢ and x respectively.
For higher particle distributions it is useful to introduce a new
quantity called the correlation function. This quantity has been
defined in several ways. The most popular one is the so called
norha]ized correlation function. For thé two particle case, this

function is given by(g)
- - S 1 - —
C(S Pc ’ pd) = G(S’ Pc, pd) - E? f(S, pC) f(S, pd) (1 ‘27)

with G and f as defined in (1.2) and (1.4) respectively.
For a completely independent emission of particles C should be
equal to zero. In such a case the two particles are said to be

uncorrelated. This situation never occurs because we always have some
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correlation due to well known kinematical reasons like energy and
momentum conservation even in the absence of all other dynamical factors.

The correlation function can be related to the average multiplicities

of particles c and d by integrating both sides of relation (1.27) over

all momenta, from which we get:-

c(s) = <n. X‘nd> - <n> <ng> | " (1.28)
If particles ¢ and d are identical particles with multiplicity n then

c(s) = <n (n-1)> - <n2>
where c(s) is called the overall correlation.

Phenomenological Models

The phenomenological models proposed by differgnt authors to predicf
or parametrise inclusive sﬁectra can be classified into two main
categories which use different approaches to evaluate the inclusive
spectrum. In the first category a general 2 + n reaction is parametrized
using standard s-matrix techniques for such a process, squaring and
integrating over all allowed phase space for each n then summihg over
all n to find the inclusive cross section. The second approach tries |
to predict the inclusive spectrum without going into detailed assumptions
about any particular 2 - n process. |

Well known examples in the first category are the multiperipheral

(10).

models In the second category we can include Feynman scaling,

limiting fragmentation, models based on Mueller's generalized optical

1)

theorem 1ike the dual resonance mode]s( and Mueller regge analysis

(12),

and statistical type models like the thermodynamics model I shall

give a very brief summary of the basic physical ideas behind these models
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leaving detailed discussion until the predibtions are compared with
our data; further reference to these models is contained in a review

article by Frazer et a1(13).

Mu]tipefiphera] Models

These models were first developed for exclusive analysis by Amati,
Fubini and Stanghe]]ini(]4). The basic idea in such models is that many
body reactions are very peripheral. In this case the interaction is
expected to proceed via virtual particle exchanges. Using off-mass-shell
particle particle scattering amplitudes one can constrhct amplitudes for
many 2 -+ n particle high energy processes provided that the off-mass shell
behaViour of the low energy particle amplitudes are known.

Inclusive spéctra can be obtained in principle by averaging over all
the exclusive ones. The results depend solely on the assumptions made
concerning the off-mass shell behaviour of the scattering amplitudes and

which exchanges are important. Not many detailed calculations exist in

the literature for inclusive spectra derived using these models.

Semiclassical Radiation Models

In these models the production of particles in the final states is
considered as a process of radiation emitted by current sources. This
idea was used by Feynman to predict scaling. The amplitudes for these
radiation processes are derived from the Fourier transform of the current
source. Again there are no detailed predictions, with which experimental
data can be compared, apart from the scaling hypothesis.

T

Dual Resonance Models

The generalized optical theorem provided a good starting point to
use Veneziano type models which are based on narrow resonance dominance
in all channels. These are called dual resonance models. Scaling laws

and early limiting fragmentation criteria were demonstrated. The defects
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with these models are that internal quantum numbers cannot be introduced
in a realistic way to correspond to realistic experimental resonances

and that unitarity cannot be satisfied implicitly.

Regge Pole Models

The idea of using a regge expansion for the n » n amplitude to
describe and parametrize inclusive spectra has been used extensively and
fairly successfully in different kinematical regions such as the two
fragmentation regions and the central regions(]s). I sha]] come back to
these models in a later chapter where a comparison with our data has been

carried out.

Hagedorn Thermodynamical Model

Hagedorn's model is a statistical model based on thermodynamic
arguments coupled with the uée of arbitrary distribution functions of
longitudinal momentum. It predicts approximate forms of transverse
momentﬁm distributions and the dependence of these distributions on
outgoing particle masses. It is the only model that predicts the latter
explicitly. These predictions are_obtained using Bose-Einstein or Fermi
Dirac single particle distribution functions of a system in local thermo-

(16)

dynamic equilibrium. Ranft and Ranft extended this model to predict

the nature of the correlation function in two particle inclusives.
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FIGURE CAPTIONS (1)

Sections of phase space for a single pion from Kp - 7 +
anything at 16 GeV/c. Variables are transverse momentum of

the pion against its:-

_ Centre of mass rapidity,

Centre of mass longitudinal momentum,

Lab. longitudinal momentum.

Solid lines represent the boundaries of phase space. Dashed
lines of constant y denoted A, B, C, D and E in (a) are

mapped into those with the same labels in parts (b) and (c).

Shown schematically are the optical theorem for total cross-
section and Mueller's generalized unitarity relationship which
connects the invariant inclusive cross-section to a discontinuity

of the 3 to 3 forward elastic amplitude.

Schematic representation of:-
Feynman's scaling picture in the centre of mass system,

Limiting fragmentation picture in the target rest frame.
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CHAPTER TWO

10 AND 16 GEV/C K'P DATA FROM INCLUSIVE POINT OF VIEW

History of the 10 and 16 GeV/c Experiments

The 10 GeV/c K'p experiment on which this thesis is partially
based was originally proposed at the béginning of 1965. The first
period of beam tuning and bubble chamber exposure began in April of
the same year. This was followed by three additional runs with the
same béam momentum. In total some 700,000 photographs of the bubble
chamber were taken. '

The beam-1ine used to produce the K~ beam for this experiment was
equipped with two radio frequency cavities. This type of separator
~was used because at such high energies electrostatic separation is

unsuitable for a good separated K™ beam. R.F. separation is essentially
a time of flight method for distinguishing between different particles
moving with different velocities. Each R.F. separator consists of -two
radio frequency oscillating cavities. By adjusting the frequency and
the distance between the two cavities one can get very efficient
separation of the beam particles required for the experiment.

The first 10 GeV/c run was taken in the British 1.5 meter chamber.
The rest of the pictures were taken in the CERN 2 meter bubble chamber.
Five European research groups have collaborated in all stage§ of the
~experiment. Thése groups are listed below.

Aachen (Physikalisches Institut der Technischen Hochschule)

Berlin - (Institut fdr Hochenergiphysik der Akademie der

Wissenschaften der DDR)

CERN (European Organization for Nuclear Research)
London (Physics Department, Imperial College)
Vienna (Institut flr Hochenergiephysikder Osterreichischen

Akademie der Wissenschaften)
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The final data summary tape, (D.S.f.), of all events which were
scanned, measured and fitted was completed recently. This tape contains
about 250,000 akgtheses

The original purpose of this experiment was to s@Udy the mechanisms-
by which particles and resonances could be produced in exclusive channels.
At the time when this experiment was started the techniques of inclusive
ana]ysis of high energy collisions were not deve]opeq.

Because of the increasing interest in diffractive processes during
the period when the data from the 10 GeV/c experiment were being analysed,
it became desirable to study such processes at higher energies. The need
for such high energy K'p data was partially fulfilled with a new K'p
experiment at 16 GeV/c beam momentum. The first run for bubble chamber
photographs taken at this energy was in April 1971. The author was
involved in the beam tuning and picture quality control of this run and
was also partially inQo]Ved in the day to day work of check scanning and
grind checking of the films. This run was followed by two more and in
all about 700,000 photographs at this energy have been taken so far. A
proposal for another 1,000,000 photographs is being considered by the
collaboration. The first data summary tape at this energy containing
about 75,600 events was ready by May 1972 and very recently about double »
this number became available. The data from this experiment represent
events from the highest K~ beam momentum available before tﬁe MIRABELLE
32 GeV/c K p photographs from which no fitted events are yet available.

10 and 16 GeV/c Inclusive Interactions

During the year 1971 and the years that followed after the Helsinki
Conference(]) inclusive analysis of high energy collisions became
fashionable. The first application of this idea by the collaboration
was in a paper on production of R° particles at 10 GeV/c(z), before the

16 GeV/c data became available. The new developments in this field and
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the prediction of the scaling behaviour of inclusive cross sections

gives the opportunity to test many predictions about scaling between
these two energies. An encouraging feature of the data is that both
experiments used the same beam 1ine and were analysed by the same

groups. This is a great advantage which helps in-.performing a consisfent
analysis with reduced biasses. '

Most scaling criteria are made in the framework of constructing
exotic combinations of particles, a, b and ¢ in single particle inclusive
reactions. Such combinations are severely lacking in single particle
K'p interactions. For such reasons more attention was paid to two body
inclusive reactioné and resonance inclusive production. Not many
theoretical predictions exist in these cases and this led us to reduce
our task from one which was more concerned with comparisons of theoretical
predictions with our data to another which is more concerned with the
production of data in the hope that theoretical interpretations will come

at a later stage.

Data Processiné

As was stated in the first article of this Chapter this set of
experiments was originally intended to study production mechanisms in
exclusive channels. Our inclusive analysis was deve]&ped some time after
the experiment was first started. Because of this situation one naturally
had to expect some problems in trying to look at the data # inclusively.
The first problem which one had to face was the inappropriate form in
which the 10 GeV/c data existed at the beginning of this work. Data for
different exclusive channels were scattered on many déta summary tapes;
The first stage in making the D.S.T.s usable for our study was to collect
everything on the minimum number of tapes. This was done for the 10
GeV/c data independently and in a later stage the CERN group produced

the data on mini-DST which were designed for inclusive study. For a part
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of the work this CERN D.S.T. was used. When the 16 GeV/c data was
produced it was produced directly in the inclusive format. '

The 10 GeV/c data used. comes from about 140,000 events on tapes.
These include both fitted and unfitted channels. Thosé at 16 GeV/c
consisted of about 75,000 events including "fits" and "no-fits".

In order to minimisg the numbef of D.S.T.s, the events are stored
in "packed" form on the tape. The unpacking of the information required
for each SUMX run, requires a substantial amount of CDC 6600 computer
time. Furthermore, because in every run one has to test every event
for the particle or particles whose inclusive distribution is being
studied, more c.p. time is required than for typical jobs for studying
exc]usive-reactions when one deals with a small fraction of the data.
Consequently, all jobs for inclusive analysis are of a high catégory
which isi-usually given low priority when being processed. The turnround
for such jobs on the University of London CDC 6600 computer varies from
two days as a minimum up to two weeks in some cases, depending on the

existing backlog.

The Selection of Physics Topics .

The selection of phy§ics topics was decided with two major factors
in mind. The first one was the theoretical significance of what one does
andqthe second was the experimental feasibility of doing it. The latter
faéfor is determined mainly by the quality of the data for the particular
type of analysis. For example one would be very interested in studying
the scaling behaviour of inclusive1y produced K 's. Unfortunately, the
K™/n~ ambiguity which will be discussed later does not allow one to draw
strong conclusions about this reaction even though this reaction may have
some theoretical significance because of the b ¢ exoticity. This is only
one example of topics which one could not study. In the following sections

we shall investigate the different experimental biases associated with
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the topics discussed in the following chapters.

The Data _
| Tables (2-1) and (2-2) show the general structure of the data
used in terms of the number of prongs and "seen" decay modes of neutral
particles. The total number of events‘in those tables corresponds to
about 75% of the number of hypotheses on our DST's. This is
because, as one would naturally expect, not all events are uniquely
identified. Some of the events are ambiguous between two or three
hypatheses and in such cases each hypothesis has been given an
ambiguity weight equal to 1/Number of hypotheses accepted. For example
each hypothesis for an event which can be interpreted in terms of two
acceptable hypotheses is given a weight of 0.5. Events which correspond
to more than three hypofheses were accepted as ambiguous events with
all particles which could not be identified by ionization assumed to
be pions and the event given a special ambiguity flag. Ambiguitiés
tend to occur more often with higher mu1tip11city events than with low
multiplicity ones. '

On the same tables we give the topological cross sections. These
cross sections and the microbarn equivalents per event for the different
topologies were calculated from the scanning and pass.rate informations

for each topology.

Errorsand Biases

As stated before, a substantial number of events do not have a
unique assignment. This is mainly due to failure to identify the
charged particle tracks or to a large number of missing neutra]sf‘ Due
to these reasons one would naturally expect some of our distributions
to be biased to a certain extent. The main important sources of biases

are those due to failure to assign negative tracks between K 's and = 's
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and positiQe tracks between protons and 7t. The taﬁk of estimating

the actual amount of bias in each inclusive distribution in order to
correct for it is not trivial. However, an attempt was made to estimate
the possible size of the errors on our positive and .negative pion
distributions using a technique which we shall discuss below.

It is well known in the field of bias and error estimate that one
can use an unbiased samp]é of events to estimate the biases in a biased
sample if the two samp]es'come from the same population. This téchnique
is most useful in cases where one cannot obtain an unbiased sample which
is large enough to fulfil requirements and, therefore, must use a larger
but biased sample of data.

The situation_that occurs in our case is not exactly of this type
but to a first approximation the same idea can be used to estimate the
errors due to the biases in our data. To do this we‘selected on that
particular part of the data where our events are uniquely identified.
From comparison of the distributions of "inclusively" produced particles
in such events with distributions from a11'the data one in principle
at least can obtain some idea about the size of the errors due to biases.
However, the situation is not that straightforward. This is becayse one's
estimator is not really an unbiased sample of data. Ambiguities tend to
occur more often at high multiplicities, thus reducing the chances of
having uniquely identified events at high multiplicities.

To overcome this problem we weighted each of the uniquely identified
events by a factor such that the proportion of each topology in the
overall data is maintained in our uniquely identified sample of events.
Our main interest was to calculate errors on the x distributions of
charged particles in different kinematical regions. For this reason we
plotted the x distributions for these particles coming from the weighted
estimator sample of events. After normalizing the total distributions

of these particles and the overall inclusive distribution of all events
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we compared the two sets of distributions. To reduce the effect of
statistical fluctuations we preferred not to calculate the percentage
error for each bin in x but to average such errors over a whole
kinematical region.

- The results of such calculations are shown in table (2-3).

These errors must be added to the‘statistica] errors of each
distribution to get the total errors.

From table (2-3) one deduces that the errors due to this type of
bias are not very large for the cases of = 's and 7t's and they are
not‘expected to have a great effect on our conclusions when we compare
our data from the two energies. However, those errors tend to be large
enough to wash out any differences that may be observed in K or proton
distributions. For this reason no attempt was made to carryrout any
comparison of these two distributions at the two energies.

The same technique could be used to predict the errors on our p%
distributions for charged particles. However, this was not considered
necessary because these distributions tend to be less sensitive to
ambiguities than the x distributions.

In our calculations on reactions involving neutral strange particles
we always used events with decays of such particles in the chamber. To
correct for particles which decayed outside the visible region of the
chamber and for those which decay very near to the vertex, the events

were assigned a weight calculated from the formula:-

W= ]/{(exp (-Lm_in/v'r) - exp (-Lmax/vr)] | (2.1)

where L js the minimum detectable length between the decay vertex

min
and the primary vertex, Lmax is the potential length available for the
vO particle to decay within the specified fiducial volume along its

direction, v is the velocity of the partcle and t is {ts mean life time.
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To allow for unseen decay modes and long Tived strange particles

i-spin weighting was used to calculate cross sections whenever they
were needed. For this reason the quality of the data on K® inclusive
proddction is extremely reliable because in the majprjty of events
(where we do not have ke or pp pair prodﬁction) there is no ambiguity
in jdentifying = 's.

A possible source of bias in strange particle iqc]usive reactions
is kinematic ambiguity of R with A°. However, such a bias is expected
to be very small because in the majority of cases these ambiguities are
resolved by ionization measurement of the decay tracks to identify the
‘proton from A° decay. A more important source of bias is that due.to
misidentification of A° with £° where the £° decays into A%y and the
decay éecondary vertex is fitted to a A% and the A® is used to fit the
primary vertex. No attempt was made to devise a method to correct for
such error.

"The proton—n+ ambiguity is not expected to cause large biases on
our at* triple regge analysis, because our main study is carried out in
the small t range, where the protons are slow, and such contamination is
reduced. This is supported by the fact that after we selected oﬁ these
events with M(pn+) in the o™ region we found that only about 2% of the
events were counted more than once to have a a™" combination in the
region. In such a case we accepted only the one with M(pn+) nearer to

“the A++ central mass value.
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TABLE CAPTIONS (2)

Topological cross sections and microbarn equivalents per

event for each topology produced from K'p at 10.1 GeV/c.

Topological cross sections and microbarn equivalents per

event for each topology produced from K'p at 16 GeV/c.

Estimated percentage errors on single particle inclusive
x distributions for particles produced from K'p at

16 GeV/c,

10.1 GeV/c,

in different kinematical regions.
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Table (2-1)

TOPOLOGICAL CROSS SECTIONS FOR K™P AT 10.1 GEV/C
TOPOLOGY o (mb) EVENTS ON DST | ub/EVENT
2 Prong 8.206 7 0.110 57000.0 0.144
2 Prong V° 1.768 ¥ 0.021 13591.5 0.130°
4 Prong 6.140 ¥ 0.086 43504.7 0.142
4 Prong V° 1.477 ¥ 0.018 10617.7 0.139
6 Prong 1.962 ¥ 0.038 10533.0 0.186
6 Prong V° 0.322 ¥ 0.015 1557.5 0.207
8 Prong 0.203 ¥ 0.021 663.0 0.306
8 Prong V° 0.021 % 0.011 51.0 0.412

10 Prong 0.009 ¥ 0.003 7.0 1.286
10 Prong V° | 0.002 ¥ 0.001 3.0 1.500
Table (2-2)

TOPOLOGICAL CROSS SECTIONS FOR K™P AT 16 GEV/C
TOPOLOGY o (mb) EVENTS ON DST ub/EVENT
2 Prong 6.220 ¥ 0.155 $23840.0 0.226
2 Prong V° 1.406 F 0.041 4220.0 0.333
4 Prong 6.170 ¥ 0.175 25115.0 0.246
4 Prong V° 1.650 ¥ 0.049 4570.5 0.361
6 Prong 3.034 } 0.088 10722.0 0.283
6 Prong V° 0.716 ¥ 0.023 1758.0 0.407
8 Prong 0.788 ¥ 0.025 2111.5 0.373
8 Prong V° 0.138 ¥ 0.006 253.0 0.545
10 Prong 0.038 ¥ 0.005 21.0 4.666

10 Prong V° 0.016 T 0.002
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Table (2~3-a)

K™P AT 16 GEV/C
PARTICLE REGION % ERROR
proton TR 1
= CR 8
= PR 16
2° R 2
- CR 2
= PR 4
R TR 3
= CR 6
= PR 6
K™ TR 2
= CR 20
= PR 18
o TR 1
- CR 3
- PR 2
s TR 2
= CR 3
= PR 5

TR x less than -0.1
CR x between -0.1 and 0.1
PR x bigger than 0.1
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Table (2-3-b)

K'P AT 10.1 GEV/C

PARTICLE REGION % ERROR

proton TR 2

= CR 7

= ’ PR 15

TR 1

= CR 1

= PR

k° | TR

= CR

K TR

- | CR 1

3
4
)
= PR 6
3
8
8

= PR 1

ot TR

—t

= CR -

= PR

ﬂ TR

= CR

S W NN N

PR

TR x less than -0.1
CR x between -0.1 and 0.1
PR x bigger than 0.1
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'CHAPTER THREE

ENERGY DEPENDENCE OF SINGLE AND TWO PARTICLE
DISTRIBUTION FUNCTIONS

Introduction

The hypotheses of 1{miting fragmentation and Feynman scaling
discussed in Chapter One are predicted to be satisfied in the asymptotic
1imit in which s is very large. They do not tell us anything about the
behaviour of distribution functions at lower energy where data is
available.- Furthermore, they do not predict the threshold at which
energy independenge is expeéted to be valid. However, we can compare
our data with some subsequent predictions about the dependence of
particle distributions on energy and extract from this comparison a
good estimate of the rate aF which scaling and limiting fragmentation
are approached. ‘

The first prediction about the rate at which scaling is approached
came from Chan, Hsue, Quigg and Wang (CHQW)(]) in 1971. They used the
Mueller generalised optical theorem to relate the single partic]g
distribution function to the forward elastic amplitude to predict the
energy dependence in the fragmentation region and the central regfon.
This was done by assuming that the 3-3 amplitude has a Regge behaviour
and the single particle distribution function in the fragmentation
region of one of the particles, the target b say, is
“i(o) -1

. 2y . 2
f(s,t,Mx) + L Bi(s’t’Mx) s

) (3.1)
1

where the summation corresponds to the expansion over all possible

Regge trajectoriesas in the figure below.
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The behaviour of f as s + = depends on what Regge singularities
are assumed to dominate. If we assume the leading trajectories to be
‘the pomeron with a{0) = 1, and the nearly degenerate meson trajectories
p-f-w-A, with aM(o) = 0.5, one has

2

2 2
f(s,t,Mx) + BP(s,t,Mx) + BM(s,t,M

st (3.2)

The ratio of BM/BP governs the rate of approach to scaling and the
value of-it depends on the quantum numbers of particles a, b and c.
CHQW used the duality argument similar to that applied to the total
cross-section of two body reactions, where one expects energy independent
cross—sec%ions if the two particles are exotic in the s-channel, and
they predict that pomeron exchange should be dominating in the figure
above if the quantum numbers of the a b ¢ combination are exotic.
Thus energy 1ndeﬁendence is expected in both fragmentation regions for
reactions 1ike K'p » n~ + X, while reactions of the type Kp->m +X
should be energy dependent in general. However, they claim that while
the a b ¢ exoticity condition is sufficient, it may not be necessary.

E11is, Finkelstein, Frampton and Jacob (EFFJ)(Z) disagree with the
CHQW prediction. They claim that a b ¢ being exotic is not a sufficient
condition for early scaling, for this will merely suppress energy

dependent contributions from terms in the direct a b ¢ channel only. They
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suggést that non-exotic ab can give an energy dependent term to thé
3-3 amplitude. They further argue that a c, b ¢ need not be exotic
for early scaling to be satisfied; this is because they are below.
threshold. They predict that the sufficient condition for early
scaling is a b ¢ and a b both exotic.

Logan(3) requires a b ¢, a b and b ¢ all to be exotic for energy
independence of the cross-section in the fragmentation region of a.

Kugler, Lipkin and Rittenberg (KLR)(4)

and Freeman say that if
CHQW condition is sufficient for early scaling to be valid then meson
. contributions in (3.2) also cancel if a ¢ is exotic and then they also
prove that in this case it is not necessary for a b ¢ to be exotic.
A11 the above predictions are formulated in the fragmentation
region of a or b. -In the central region, which we can represent by

the diagram below, the asymptotic Regge expansion takes the form

f(U,t,K) f § Bié(K) (V) as(0) - 1 (t)aj(O) -1
a > > a
) .
c —> > C
)
b —> > b

where K is called the transverse energy given by

and U and t are the squared four vector momentum transfers from the
incident particles to c.

If we again assume that our leading trajectories are the pomeron
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and the degenerate meson trajectories we get

a -1 a -1
¢ Q(o) Q(O)

f(s.,t,u) - Bpp (K) + BPQ (K) + BQP u
where Q stands for a meson trajectory.

The term BPP is the pomeron-pomeron - ¢ Regge residue, which is
energy independent and $0 represents the scaling part of f. The other
two terms are energy dependént through the uQ(O) dependence. Their
dependence is upon uQ(O). Considering uQ(o) to be a typical meson
trajectory intercept = 0.5 one can see that the approach to scaling is
given by s-%(aQ(O)—]) = s'% which is very slow. This leads us to
expect that scaliqg is vio]afed more in the central region than in the
fragmentation regions.

In the following sections of this chapter we will give a comparison
of our data with the above Fheoretical predictions. Furthermore, we
will give the two particle distributions for some exotic and non-exotic
combinations in order to try to determine which of the above predictions

is supported by experiment. In some cases we will use published data

from other reactions as well.

x Single Particle Distribution

The Lorentz invariant x distribution for positive pions in our
experiments at 10 and 16 GeV/c are shown in fig. (3-1). In this reaction
neither a b nor a b ¢ is exotic. The only exotic combination we have is
a ¢ which is K'n . In this case, if we accept the/CHQw condition as
being sufficient but not necessary, early sca]ingxis not required in
either fragmentation region. On the other hand the EFFJ condition requires
a b to be exotic as well as a b c as the necessary condition. In such
a case we should not expect early scaling. Furthermore, according to

KLR if a b ¢ exoticity is sufficient then this reaction must scale in

the projectile fragmentation region because a ¢ is exotic.
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A close study of fig. (3-1) shows that there is indication of
~eér1y scaling in the projectile fragmentation region. This is in good
agreement with the KLR prediction of a c exotic being sufficient for
early scaling in a fragmentation region. This may be.taken as an
indirect evidence in support of CHQW a b ¢ exotic being sufficient
condition for scaling.

In the central and target fragmentation region ?he cross-section

seems to be increasing with energy.

m  Single Particle Distribution

The distribution in the Feynman variable x for this channel at 10
and 16 GeV/c beam momenta is shown in fig. (3¥2). In this channel none
of the combinations a b c, a b, b ¢ or a ¢ are exotic. Scaling is not
to be expected in any region if we adopt any of the suggested scaling
criteria except that éf CHQW which does not require any necessary condition
for scaling. In fig. (3-2) we notice that the cross-section is falling
with energy in both the projectile fragmentation region and in the central
region. In the target fragmentation region of < -0.2 we see that the
distributions at the two energies are approaching each other within the
experimen%a] errors.

A possible explanation for such aﬁ effect is that suggested by Brower.
He points out that the ratio of the differential cross—secfions in x for
the reactions K'p -+ + X and K+p -~ + X can be related to universal
constants representing the ratios of the different Regge residues
associated with the exchanges of the degenerate Regge trajectories. He

A2

comes to this conclusion by assuming that FT = F® and F'? = F° where F®

is the Regge residue for the o trajectory. Furthermore, he depends on
the exchange degeneracy for p and £° and CHQW exoticity condition for

f

w+p + 7 + X to relate FP and F' through the relation Fp/Ff = e. Then

from



one gets

where & = F /FT.

Using Feynman's form of the Regge expansion in the triple Regge
1imit one gets for the ratios of the two differential cross sections
at fixed x the value of (1 + ¢//T - x) with ¢ = 2(1 +8)/ev/5s.

The above ratio for the two energies were compared with the data
using the data on K+p ~ 7 + X published by Ko and Lander(s) at 12 GeV/c.
The centre of mass energy of the K+p data is not important in the
calculation because experimental as well as theoretical evidences suggest
that this reaction scales even for energies below 12 GeV.

- The comparison was carried out in the profon fragmentation region
using the unweighted x distributibn. This was done simply because the
k' data was published in this form. The logarithms of the above-mentioned
ratios were fitted with curves deduced from the expression log (1 + c/1 - x)
where ¢ was left as the free parameter. The fitting was not extended to
include values of X near the boundary when x = 1 or in the central region
where x = o. The values of the constant 2(1 + §)/e were calculated for

both energies and following values were obtained.

14

2(1 + 8)/e
2(1 + 8)/¢

0.37 - 0.05 at 10.1 GeV/c

14

0.40 ¥ 0.05 at 16 GeV/c

These values are not in disagreement with each other. Using these

¥ (15)

results and some published data on n'p + = + x' -’and assuming that
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factorization is valid, it was found that this gives a value of = 0.5

for the ratio between the coupling of the above degenerate trajectories

to the kaon to that of the same trajectories to the pion. This suggests
that the Brower formalism whfch is a direct result of exchange degeneracy
and a b ¢ exoticity condition of CHQW is not inconsistent with our data.
This may be taken as an indirect evidence in favour of the CHQW prediction

that a b ¢ exotic can be taken as a sufficient condition for scaling.

R° single Particle Distribution

K° inclusive production at 10.1 GeV/c was studied in reference (7).
Fig. (3-3) shows the x distributions for both 10.1 and 16 GeV/c. No
significant change in the shabe of the distribution is evident between
these two momenta. It should be noted that the total R° production cross-
section forms about 40% of the total K'p inelastic cross-section. This
fraction seems to have only weak dependence on energy. This characteristic
does hot seem to be restricted to charge exchange production of R°. It is
reported e]sewhere(g) that this 40% ratio applies to most leading particles
produced via charge exchange.

It is worth mentioning here that Bialas, Muryn and Za1ewski(8} have
pointed out that such results are difficult to describe by the nova model,
unless double nova production is assumed to form a substantial part of
the production process. This is because in a single nova production model
the number of K° produced is expected to be very small if the nova is
produced at the proton vertex because this will lead to diffractive
production off K 's. ﬁ

‘Returning to fig. (3-3) we find that the majority of the events
populate the positive x region. However, we do not see strong leading
particle effects, for the distribution is not flat for positive x but
peaks at about 0.2. This is probably due to the fact that most K°'s come

*
from decaysiK resonances.
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2° Single Particle Distribution

The reaction K'p » 2° + anything cannot be considered as an
inclusive reaction in the sense suggested by Feynmah. This is because
at our two energies the events contributing to this reaction involve
the production of pions only. At such energies the cross-sections for
other channels which fnv°1ve the production of pp, A%A°, KK~ or K°RC
are very small, forming dn]y about 4% of the total A° production cross-
section at 10 GeV/c and about 8% at 16 GeV/c. For such reasons this
reaction is called "partially inc]usive"(g). The scaling properties of
this reaction between 4.2 and 10.1 GeV/c beam momenta were studied in
ref. (10). It was observed that the x distribution does not scale when
the Lorentz 1nvar1§nt inc1USfVe cross-section is used. However, when
the cross-section is normalized by the total A% inclusive cross-section
the normalized function does scale. Further detailed analysis of
exclusive A° channels was done at 10 GeV/c by Kumar(1]). We present
here a comparison of the above results with our 16 GeV/c data.

Fig. (3-4) shows the invariant differential cross-section for the
data at 10 and-16 GeV/c. It can be seen that the two distributions have
different shapes. The cross-section is falling with energy over most
of the range of x. However, the cross-section seems to be decreasing
more rapidly in the forward direction than in the backward direction.
This is in contrast with the behaviour observed at lower energies in
ref. (10).

This effect is not very surprising. The difference in the rate at
which the cross-section is decreasing with energy could be due to the
difference in the exchange mechanisms by which forward and backward £%'s
are produced. For A° produced in the forward direction one would expect
baryon exchange to dominate while in the backward direction strange
meson exchange is expected to be dominant.

Further analysis of inclusive A° production is given in Chapter Eight.
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TT_/‘IT+' Ratio

The ratio between different particle production cross-sections 1in
the fragmentation regions and in the central region is of considerable
importance. This is because the limiting behaviour of this ratio for
large values of S can be taken as an indication of whether the pomeron
is a leading trajectory or not in any particular region.

The importance of the n /' cross-section ratio in our case is
restricted to the central region, where the Mueller Regge diagram shown
in section (1) of this chapter is expected to be valid. If the production
of pions in this region takes place via double pomeron exchange then |
factorization suggests that the pomeron particle coupling is-equa] to

the pomeron aptiparticle coub]ing(]z).

Hence one would expect the ratio
of the two cross-sections to be unity.

Fig. (3-5-a) and (3-5-b) show this ratio over the whole range of x
for 10 and 16 GeV/c data reﬁpective]y. In both cases one can see that
this ratio is generally different from unity, in the central region and
both fragmentation regions. This ratio is low for backward moving pions
and is high for forward moving pions.

In the central region we have a significant struﬁture with the
highest value of about 0.9. The errors on the values of this ratio in
this region are very small and the existence of this structure, which
cannot be produced by double pomeron exchange, is definite, This can be
taken as an explanation for the strong violation of scaling by both at

and 7 in the central regioh.

Two Particle Distributions

The study of single particle distributions, although very useful,
cannot yield a definite conclusion about the most efficient scaling criteria
for K p interactions. This is because it is nearly impossible to obtain
an a b ¢ exotic combination which is the basic condition for scaling in

most of the proposed criteria.
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To overcome this problem the idea was extended to include two
particle inclusive reactions. This extension was done only for two
pion inclusive reactions for two reasons:

1. Interactions involving pions as our defected particles are

the nearest approximation to the ideal inclusive reactions

in this energy range when one expects many particles to be

produced.

2. Choosing pions as.our detected particles offers a large

variety of exotic and non-exotic combinations which can be

composéd of K'p and two pions and in particular the combination

a b c d exotic whi;h we cannot get in single particle inclusive.
One here may speculate that if a b ¢ is a sufficient condition for ]
scaling in the single particle case, then a b ¢ d exotic may be a
~sufficient condition for scaling in the two particle case.

The disadvantage of this type of study is that one is . restricted to
only that part of the data where at least the two particles are produced,
which reduces the statistics, but as will be shown, this problem is not
very serious because the error bars on the data do not affect our

conclusions severely.
E.E

The function G = —%;g dzc/dx]dx2 for the reaction K'p » at 4 ot o+
anything at 10 and 16 GeV/c is plotted in fig. (3-6) for different regions
in X(n1+). One can see that all these piots clearly show very strong '
energy dependence of the function except in fig. (3-6-d) in the region
which corresponds to both pions moving in the forward direction, i.e. the
K~ fragmentation region. The difference in Gvbetween the two energies in
all other regions cannot be accounted for by the error bars on the data.

Fig. (3-7) shows similar plots for the m m distribution function.

In this case again strong energy dependence is clear in all regions except
where both = 's are in the proton fragmentation region where the energy

dependence is very weak and the error bars are larger than the difference
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in G between the two energies.

In both cases a b ¢ d is exotic corresponding to K pr n  in the
first case and K-pﬂ+ﬂ+ in the second. The conclusion from both cases
is that a b ¢ d exotic is not a sufficient condition for scaling in
all regions at our energies.

Plots of G for the ¢ n case where a b ¢ d is not exotic are shown
in fig. (3-8). The behaviour of G shows that it is energy dependent in
general in all regions and no strong evidence for scaling can be
observed in any of them.

Using the above experimental results to speculate about possible
scaling criteria, we notice that apparent energy independence was
observed in some regions when a b ¢ d was exotic but not when a b ¢ d
is not exotic, so one may conclude that although a b ¢ d being exotic
is a necessary condition for scaling, it is not at all sufficient. A
second thing one noticés is that the scaling behaviour of G was observed
in those regions where the particles ¢ and d can be considered as fragments
of a particle with which @ ¢ can form an exotic combination, e.g. G(m 7 )
scales in the proton fragmentatioﬁ region and G(ﬂ+ﬂ+) scales in the K~

fragmentation region.

Possible Explanation of the Observed Behaviour of Two Particle Distributions

In order to try to understand the nature of the observed scaling
behaviour in two particle inclusive reactions considered in the prevﬁous
section, we try here to use arguments based on two component duality.
Such arguments have been used to predict the scaling behaviour in single
particle inclusive reactions through applying them to constrain 3-3
amplitudes.

In our two particle case we shall try to use similar arguments to
consider 4-4 amplitudes. Before doing so we shall summarise the general
way 3-3 amplitudes have been treated as a sum over all possible

distinguishable configuratidns of dual diagrams. These diagrams are
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constructed from the original quark diagrams representing the exchange
of quarks between particles. The Harari-Freund two component duality
for two body amplitudes extends to a seven component picture for 3-3
amplitudes. To see this 1e£ us recall how the two components arise

in the 2-2 amplitude in fig. (3-9). Fig. (3-9-a) contains a single
resonance production in the a b s channel where a and b are attached

to the same quark loop. This diagram vanishes if a b has exotic quantum
numbers. The configuration shown in fig. (3-9-b) contain two resonances
in the intermediate state and the two particles are connected to two
separated quark loops. These two cases are considered to represent two
components of the amplitude. In the second component the pomeron is
expected to be the leading exchange between the two quark loops if the
amplitude is to héve a regge behaviour. In such a case if a b is

exotic then one would expect the total a b scattering cross-section

to be energy independent. |

Now going to the 3-3 cése we can see that there can be three
independent configurations for a single resonance intermediate state,
three configurations for a double resonance intermediate state and one
configuration for a triple resonance intermediate state. These
configurations are shown in fig. (3-10-a) and the corresponding qﬁark
dual diagrams are shown in fig. (3-10-b).

Using this type of représentation of the 3-3 amplitude many authors
have predicted various scaling criteria for different kinematical regions
of the single particle inclusive spectrum. Some of these criteria have
been discussed in previous sections.

. Now we shall try to use the same procedure applied to the 4-4
amplitude to explain some of the features observed in the two particle
distribution functions observed in the data of the previous section.

We shall concentrate our attention on the case where our detected
particles are two pions of Tike charge. This is because restriction

to this type of reaction simplifies the procedure for dealing with a
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general abcd - ab cdamplitude and trying to establish the
conditions under which the amplitude becomes energy independent.

In the case of a general a b c d+ a b c d amplitude we can
construct eight independent configurations representing cases where
we can have a single resonance in the intermediate state, twelve
independent configurations for a two resonance intermediate state,
eight configurations for a three resonance intermediate state and two
independent configurations for a four resonance intermediate state.
This will give us an amplitude which can be represented in terms of
thirty independent dual diagrams. A1l the thirty configurations for
a general a b c d case are shown in fig. (3-11) where the wavy lines
represent resonances in the fntermediate states such resonances are
assumed to form the discontinuities in the 4-4 amplitude. The dual
quark loop diagrams can be obtained directly from squaring such
resbnance‘diagrams.

It is apparent that it is very difficu]t to consider contributions
of all these diagrams or their corresponding quark loops diagrams for
the general a b ¢ d case. Hence we shall stick to our two particular
reactions where two pions of like charge are produced. Thi§ can be
done'thro&gh substitution for a, b ¢ and d by the corresponding particles
in eachcse. We shall use two duality rules to reduce the number of
diagrams which have to be considered. These two rules are:-(]3)

1. Diagrams with exotic combinations of quantum numbers of
particles attached to the same quark loop are expected to
vanish,

2. Reggeons are expected to be exchanged between particles
attached to the same quark loop while the pomeron is expected
to. form the leading trajectory exchanged between different
quark loops.

The quark loop diagrams for the reaction K'p - atat + X7 are
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shown in fig. (3-12). If we apply the first one of the above two
rules we can see that we get contributions to the amplitude from the

following diagrams only:-
13, 20, 23, 24, 25, 28, 29 and 30

Now diagram 13 has been constructed from diagram 13 in fig. (3-11),
where one can see that particle ¢ is far away from particle a, and
hence is not expected to have a large contribution in the region of
small tac but would contribute to the region of small tyee In this
case its contribution to the projectile fragmentation region may be
neglected. This diagram contains an energy dependent part due to
reggeon exchanges. The same argument can be applied to diagrams 20,
24, 25 and 28. A1l these diagrams can give non-scaling terms but to

a ffrst approximation they contribute only to cases where at least one
of the pions is produced in tﬁe target fragmentation region. - Diagrams
23; 29 and 30 give energy independent contributions to all regions
including the case where the two particles are produced in the
fragmentation region. This may explain the energy independence
observed %or this reaction in this region.

The situation with the reaction K'p +.n_n- + anything is somewhat
more complicated than in the previous case. In this reaction we expect
to have contributions to the amplitude from quark loop diagrams 10, 12,
13, 15, 16, 17, 19 and 22 to 30 of fig. (3-13). Diagrams 10, 15 and 16
are expected to have stronger contributions when one of the pions is
produced in the target fragmentation region than when both pions are
produced in the same fragmentation region. Furthermore, contributions
from.these diagrams are expected to suppress contributions from diagrams
22 - 28 when both sets contribute to the same kinematical region. This

(14)

argument is based on predictions of narrow width duality . Diagrams
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12, 13, 17 and 19 are expected to contribute strongly to the proton
fragmentation region with the last three contributions to the K™
fragmentation region as well. A1l these diagrams are expected to give
some energy dependence. Th{s may lead us not to expect any energy
independence in any region. But if we look at the main contribution
to the proton fragmentation region we can see that we always have one
of our pions produced via a pomeron exchange mechanism on a single
quark loop coupled to another quark loop containing the rest of the
particles. The latter quark loop is nothing but a dual diagram for

- the amplitude K'prt + K'pnT which was observed to show 1ittle energy
dependence in a previous section at this energy range. Therefore, the
scaling of the two 7T's inclusive spectrum in the proton fragmentation
region may be'closé1y related to the observed weak energy dependence
of single particle = dinclusive distributions in this energy range.

It must be mentioned at this stage that all our arguments are based
on simple planar duality whi}h although successfully explaining many
experimental results is still incomplete, at least, because of the fact
that baryons are treated in the same way as mesons when constructing

our diagrams.

Conclusions

The mafn aim of this chapter was to study the scaling behaviour in
single and two particle inclusive reactions. Experimental distributions
were compared with existing theoretjca] scaling criteria. In the single
particle case one was limited to a certain extent by the fact that no
a b c-exotic combination was possible and so no definite direct
conclusion can be drawn from these except that a b exotic may not be
a necessary condition for early scaling. This is because scaling was
observed in some cases only in certain regions. The data are not in
disagreement with CHQW prediction although one cannot say whether a b c

being exotic is a sufficient condition for early scaling or not.
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In the two particle case evidence was shown that a b ¢ d being
exotic cannot be a sufficient condition for scaling in all regions.
Furthermore, a crude extension of duality arguments was developed and
the observed scaling in some regions in the two particle case was

explained on that basis. The main result is that for scaling in the

“two particle case we need a b ¢ d and b ¢ d to be exotic in order to

have early scaling in the target fragmentation region and a b ¢ d,
a c d to be exotic in order to have scaling in the projectile

fragmentation region.

w
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FIGURE CAPTIONS (3)

(3-1) Lorentz invariant x distributions for n+

inclusive production
from K'p at 10 and 16 GeV/c.

(3-2) Lorentz invariant x distributions for n~ inclusive production
from K'p at 10 and 16 GeV/c.

(3-3) Lorentz invariaﬁt x distributions for K® inclusive production
from K p at 10 and 16 GeV/c.

(3-4) Lorentz invariant x distributions for A° inclusive production

from K p at 10 and 16 GeV/c.

(3-5) The ratio of = /" inclusive cross-section versus x from K'p at:-
(a) 10 GeV/c | ,
(b) 16 GeV/c.

(3-6) Lorentz invariant two particle inclusive distributions for the -

reaction K'p - n+q+ +x at 10 and 16 GeV/c.

(3-7) Lorentz invariant two particle inclusive distributions for the

reaction K'p - n + x'7 at 10 and 16 GeV/c.

(3-8) Lorentz invariant two particle inc]usiVe distributions for the

reaction Kp - ninr + x° at 10 and 16 GeV/c.

(3-9) 2 to é elastic amplitude represented in terms of dual resonance

diagrams which in turn can be represented in terms of dual
quark loops to demonstrate two component duality picture of the
amplitude.
(3-10) 3 to 3 elastic amplitude expressed as:-
(a) a sum of dual resonance diagrams, and
(b) a sum of quark loop diagrams.
(3-11) 4 to 4 elastic amplitude for the process abcd-abcd
represented in terms of dual resonance diagrams.
(3-12)  Quark loop representation of the amplitude for K'pn m - Kpn n

elastic scattering.

(3-13) Quark loop representation of the amplitude for Kprtnt - Kpn'n
elastic scattering.
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CHAPTER FOUR

TRANSVERSE MOMENTA OF PRODUCED PARTICLES

General Features

One of the most persistent features of hadron collisions is that
the transverse momenta of all particles produced in the final states
are very small compared with the values allowed by phase space and
with the longitudinal momenta of these particles. This behaviour is
1ndgpendent of energy over a wide range starting as low as two or
three GeV.and up to ISR energies. This effect is largely independent
of the type of the incident bartié]e or of the secondary particles.
Apart from some effect at very small values of p$ the distributions
can be parametrized with a simple exponential formula of the form:-

99? = Const. exp (- kp%) (4.1)
dp '

I
Another surprising feature is the value of the parameter k. For
different reactions, different particles produced and different incident
energies éhe value of k does not seem to change much. The value of k
is usually. between 3 and 4. The behaviour near small values of p% is
~somewhat more complicated and varies with the type of reaction. This
point will be studied in the following sections.
The third characteristic feature which is related to the p%
distributions is that the avérage value of p% depends on the mass of
the particle. For example, it is higher for protons than for kaons
and higher for the latter than it is for pions.
To demonstrate the above features in our data we present in fig.
(4-1) and fig. (4-2) the p% distributions for different particles produced

at 10 and 16 GeV/c respectively. The solid lines correspond to a simple
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parametrization of thé data in the region of p% > 0.5 (G(_eV/c)2 with
equation (4.1). The corresponding values of the parameter k are given
in table (4-1). The region of p$ < 0.5 (GeV/c)2 needs a steeper slope
and the value of k in this region differs from one partic]e to another.
However, it can be clearly seen that the value of the cross-section in
this region is higher than that expected from extrapolating the fitted
line from the other region into this region. We shall come back to
this point in more detail in a subsequent section. At the moment one
can only say that such effects depend on the particle produced.

Fig. (4-3) shows the value of <Py> of particles plotted against
their masses. The relation is approximately linear. The proton,
however, has a <Py> value (which was calculated excluding elastic
events) appreciably smaller than this simple scheme would indicate.

It is clear from figs. (4-1) and (4-2) that none of the properties
associated with transQerse momenta are dependent on the incident beam
momentum apart from the overall normalization of the cross-section
which can be considered as a direct consequence of the non-scaling
part of the cross-section discussed in the previous chapter. A1l other
properties 1ike the shape of the distribution and the value of k are

hardly affected by the change of the beam momentum from 10 to 16 GeV/c.

Comparison with the Thermodynamic Model

The nature of the Hagedorn(]) thermodynamical model mentioned in
Chapter One makes it a very useful model in attempting fo describe
transverse momentum distributions of particles produced in high energy
collisions. The advantage that this model enjoys ovef other models in
this respect is that one reduces the effects of leading particles,
which in the thermodynamic language are assumed to be associated with
the so called drift velocity x». Hence, from the basic assumption of

the thermodynamical model which assumes that in a hadronic collision
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at high energy one would expect that some kind of hadronic "hot-stuff"
is formed and reaches some kind of thermal equilibrium state before
emitting particles, in a way which is similar to that of black body
radiation, one would expect-the transverse momentum distributions of

produced particles to be described by the formula

f(prs s) = Const [(exp (K}T . ])] (4.2)

where K is called the transverse energy of the particle given by

K2 = m2 + 52 and T is the "temperature" of the hadronic stuff produced

in the collision. The model suggests that this value is universal for
all particles produced from collisions where hadronic thermal equilibrium
is reached. ’

The positive sign in relation (4.2) is taken when dealing with
fermion particles which are described by Fermi Dirac statistics while
the negative sign is taken fbr bosons.,

Equation (4.2) was used to parametrize the overall transverse
momentum distribution of each of the distributions shown in fig. (4.1)
and fig. (4.2). The method of least squares was used to fit for both
normalization constants and temperature parameters. The quality of the
fits obtained was very poor in terms of the ratio of XZ to the number
of degrees of freedom. Furthermore, the values of the temperature
parameter T obtained from those fits>were not in good agreement with
the predicted value of Hagedorn of 140 MeV.

In order to try to improve the quality of the fits, we selected
particles produced with small values of the centre of mass longitudinal
momenta in the region of |x| smaller than 0.1. The distributions were
fitted separately with formula (4.2). The quality of the fits, however,
was not much better than the previous case. The values of the temperature
parameter were in good agreement with the predicted 146 MeV value for

k® and A° only. Table (4-2) shows the values of T and the values of
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xz/N where N is the number of degrees of freedom for each of the particle
distributions fitted.

From this we conclude that in spite of its success in describing
the p% distributions of K° and Ao, this thermodynamic model does not give
good fits for the distributions of pions produced. This behaviour is
difficult to explain by possible biases in the data due to misidentifications
of particles because we get results which are very similar for both =+
and © while the nature of the ambiguity in each case is different.

It is clear that in this energy range the thermodynamical model is
not completely adequate to describe the Pr distribution even for pions,
whi]e other particies are known to be produced via certain exchange

mechanisms rather than via a ﬁrocess like black body radiation.

Transverse Momenta in Multiperipheral Models

Multiperipheral models contain within their physical concept the
facility to explain the observed experimental cut off of transverse
momenta of produced particles qua]itativé1y if not quantitatively. This
can be easily understood in two ways. The first way is through the
consideration of the physical assumption involved in these models that
particles broduced are decay products of some type of cluster of various
angular momentum states produced along a multiperipheral 1adder.. The
decay of these clusters with a Tow Q value is the main reason behind the
observed Tow values of p%, where the Q value represents the mass differ-
ence between the cluster and its decay products. The second way to
explain this effect is very much linked to the first explanation: At
any vertex of a multiperipheral diagram the p% value of any particle
produced at that vertex is approximately proportional to the squared
four vector momentum transfer to that point. Because of the fact that
regge exchanges are expected to be the momentum transfer carriers, one

would expect to have small values of ‘t's betweenvdifferent parts of the

multiperipheral ladder. This in turn can give small values to the transverse
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moméntalpossessed by produced particles.

Although detailed quantitative predictions about.p$ distributions
using these models do not exist at the moment, one can to a first
approximation consider pioné to be the best particles with which to
test these models. This is becauée, as was shown in Chapter Three,
pions are produced mostly in the central region which is equivalent
to producing particles half way up a multiperipheral ladder. This,
coupled with the fact that in most cases the nucleon and the strange
ﬁeson are produced as leading particles, leaves us with pions produced
half way between the two and in the multiperipheral ladder. These may
be considered as decay products of slow moving resonances such as the
p. This is only true for modeis which do take into account resoéance
production. .

Steven Pinsky (2) has shown that in a simple model, in which

all pions are produced as decay products of a low mass unpolarized
2."'-
T
the transverse momentum of the produced pions exhibits a turning over

cluster with a transverse mbmentum distribution that peaks near p 0.0,
near p% = 0. This effect is strictly kinematical and will appear in
any similar model.

To compare this with our data we selected those pions produced in
the central region. The p% distribution for those events is plotted in
fig. (4-4). The solid curve represents the Pinsky%audvﬁfewenév
prediction; because of the form in which this prediction was given
no detailed fits were made and we fitted our data only to the shape
of their curve with the overall normalization as a free parameter.
Although the agreement between the data and the predicted curve is not
bad for large p% there is disagreement in the region where a turnover
is expected. OQOur data show no such effect. This may be taken as an
indication against the assumption that all particles produced in the

central region come from the decay of the low mass mescn resonances

produced on the multiperipheral ladder.
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Although the above statement does not take into account any of
the details involved in this type‘of hodé], it gives a general
comparison with the behaviour of the distribution expected from such
models. However, the evidence here against these models is not very
strong and the only disagreement is that one associated with the

turnover at small p%.

Comparison with Dual Resonance Model

Most dual resonance models (DRM) predict the observed dynamical
cut off in the p% distributions of dinclusively produced particles. The
particular model which we are éoing to use in this context is that
formulated by de Tar et a1(3). They used the relation between the
inclusive distribution fun;tion and the discontinuity in the 3-3
amplitude to predict the transverse momentum distributions. The latter
discontinuity was derived using seven configurations corresponding to
seven different dual diagrams contributing to the inclusive single
particle distribution function. To obtain quantitative results on p$
distributions these dual djagrams were expressed in terms of BG functions.
The results of these calculations were shown to predict transverse
momentum distributions of the form

£(p2) = exp (- 4a' p2) (4.3)

for large values of p%.
Where «' was claimed to be a universal slope related to those
trajectories which were assumed to be exchanged.
It was shown in the first section of this chapter that the simple
exponential form assumed for f(p%) distribution offers a good parametriz-
ation for large values of p2 > 0.5 (GeV/c)z. However, the values of the

slope parameter for different particles are somewhat different and may
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depend among other factors on the mass of the particle. Thus one
concludes that the evidence in support of the universality of the
Va]ue of the slope parameter o' is not strong. Another DRM ca]cu1ation(4)'

predicts the same kind of behaviour without requiring o' to be universal.

The Seagull Effect

In most high energy interactions if one plots the average value of
the square of the transverse momentum variable versus the Feynman variable
x or the longitudinal momentum of an inclusively produced particie one
gets a dip in <p$> values near x = 0. This type of behaviour is called
the seagull effect. The depth of the dip depends on the mass of phe
particle considered. It is uéua1]y smaller for particles with higher
mass than it is fog those with smaller mass.

Fig. (4-5) shows plots of <p$> values against x for some particles

produced at 10 GeV/c. The behaviour at 16 GeV/c is similar. The values
(in this figure were ca]cu]atéd from the Lorentz non-invariant do/dx
.distributions. The mass dependence of the dip is clear. For example,

the dips in the-curves of the two pions are much larger than they are

for the proton or the lambda. This behaviour led many people to believe
that the effect may be due to kinematical reasons coming from the fact
that we are not using the Lorentz invariant distribution. The Lorentz
non-invariant distribution does not contain the %~factor and hence can
give a dip in p% for x = 0 if E = 0. To avoid this the Lorentz invariant
Edo/dx distributions were aiso used and fig. (4-6) shows the resulting
plots. It is clear that although this procedure reduces the dip to some
extent.it is not true that the effect can be fully accounted for by the %
factor in the Lorentz non-invariant differential cross-section. The plots
of fig. (4-6) show the effect is still there and the type of mass dependence
observed in fig. (4-5) is again present.

Berger(s) relates the kind of behaviour observed to the nature of the

2
Pt distributions of the particles considered. He explains the seagull
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effect as a reflection of the heavily populated region on the p$
distribution near p% = 0.0. Furthermore, Berger argues fhat both the
seagull effect and the peak near p% = 0 can be explained as a result
of kinematic effects produced as consequences of resonance production.
If one considers a resonance to be produced with sma1{ p% value then
in the centre of mass frame of that resonance one may expect the decay
products to be produced with very small p% values provided that the Q
value for that decay mode of the resonance is small. ‘In a very small
Q value approximation the decay products of the resonance will share
the original momentum of that resonance with ratios proportional to
their masses when measured in the overall centre of mass. Now the
;ffect of the Q value of the decay can be bounded Between two extreme
cases when the additional momentum is either added or subtracted to
the momentum shared between the two particles. For small Q values this
will only form a sma114perturbation to the momentum of the particles.
In the bngitudinal direction the effect of the decay can be neglected
comp]eteiy remembering thaf the massive particle takes the largest
proportion of the longitudinal momentum with it and the particle with
small mass will have the smaller proportion. This will lead to
production of decay products with p% and x very small.

In order to check whether the above argument can explain the
observed seagull effect in the data it was first thought that one should
not expect such an effect when one étudies resonances themselves rather
than their decay products. ‘The two most abundant resonances in our
experiment, the K*' and the A++, were chosen and plots of p% versus x
are shown in fig. (4-7) for each of them. Indeed the effect disappears
and in the case of the 2™ values of p% are higher near x = 0 than
anywhere else and the two resonances tend to have an overall <p$> higher
than that of the R and the protons.

An argument against this type of analysis is that by choosing the

resonances we have automatically increased the masses which, as was seen
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in section one, has the effect of increasing <p$>. The ansWer to
thét is that the K*' and the o™ have nearly the same masses as the
proton and the A% and yet we do not observe the seagull effect for
the former two while it is élear for the latter two particles.

A different type of analysis was carried out by classifying
partic]és into two samples depending on whether or not they are decay
products of a particular resonance and the <p$> - X correlation for
the two samples are compared. The resonanceschosen for this study
were the A", K™ and Y.

In the a*t case, pions coming from inside and outside the At
mass region are compared using the <p¥> dependence on x in fig. (4-8-a).
It can be seen that the two samples of pions are different in the’sense
that those coming %rom att decay have substantially smaller <p$> values
than those which do not. Furthermore, it is clear that resonance decay

products occupy a very limited region in x around zero. Although there
is a small dip in the plot for pions coming from outside the At

region the dip is much smaller than it is for the case of all pions.
This dip is due to other resonances which were not separated. The same
kind of behaviour can be observed with protons although to a much less
significant degree.

The situation in the K*— and the Y*— follow the same pattern and
on the whole one observes that particles coming from the decay of a
resonance tend to have smaller <p$> values than those which do not, as
is shown in fig. (4-9) and (4-10).

To check whether this effect is due to the cut on a low mass cluster
and not due to the resonance formation we imposed cuts on different
regions of the background outside the resonance regions on both sides.
No effect indicating differences between those regions was observed and
in all cases <p$> were larger than that of the resonances decay products.
This Teads us to conclude that Berger's.exp1anation of the seagull effect
does explain a substantial part of this effect at least, if not the

whole structure.
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Reflections on Correlations

Although the study of correlations between two inclusively produced
particles is going to be treated in some detail in following chapters,
we find it necessary to deal with one éspect of this subject at this
stage. This can be justified if one tries to remember that the simplest
and most direct method to study correlations between two particles is
being done through studying structures fn their effectiVevmass distributions.
In the previous section we discussed possible reflections of structures
in the effective mass distributions due to resonances on the single
part%c]e transverse momentum distributions. In this section we are
going to demonstrate that structures in the effettjve mass distribution
are reflected in other kinematical variables of the two particles.
At this stage we want to introduce a new method for studying
correlations between two particles. This is done through the study of
the dependence of <p$> of one of the particles on the longitudinal
variable x of the other. The first particle is usually chosen to be a
pion while the second may be taken to be any particle. Although this
method is a very simple one, we find that it has many advantages which
help in extracting information concerning the observed <p¥> distributions
in single particle 1nciusive reactions. The main advantages that we
have hére are:-
1. If the two particles are independently produced and are
completely uncorrelated, then one would simply expect the
flat dfstribution of <p$> values Qf one particle against the
x values of the other over the whole range of x.

2. With the first particle chosen to be a pion one has the means
of exploiting the useful fact that correlations due to energy
momentum conservation are the same for both =''s and = 's
inclusive reactions. Therefore, one can extract at least part
of the dynamics involved simply by comparing results from

reactions involving a « and a produced with another particle.
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In this section the type of dynamics we are looking at are those
due to resonance production. To do this we choose the following
reactions:-

K'p -~ K% + anything
K'p + A%F + anything

K'p > prT + anything

The above reactions form a typical sample which represent most of the
known production mechanisms that may take place. Reactions involving
EO as one of the detected partié1es represent two extreme cases where
one of them has a strong resonance production mainly through K*'(890)
and K*'(1420) production while the other has the exotic combination.
If the method is sensitive enough one might expect some difference
betﬁeen values of <p¥> between the two reactions especially when the
K® is fast moving in the forward direction. Indeed, from fig. (4-11)
one finds that first the average <p$ (w+)> are nearly independent on
the x values of K° while there exists some dependence in the =~ case.
The difference between the two becomes larger for higher values of

X(RO) and we conclude that there must exist some effect other than

2
T

RO 4s moving fast in the forward direction. The only difference we know

phase space which tends to suppress the va]hes of p7 (v ) when the

of is the resonance production involved in one but not in the other.

So one may conclude that K*_ production may have a significant effect
in suppressing further the values of p% (v) produced.

The situation with reactions when the proton and a pion are produced
and detected is similar except that we have contributions from resonances
in both n" proton and m proton combinations. However, this is not a
very serious problem because the main resonances in both cases are the

2t and the a° respectively which have the same mass. Furthermore, many
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studies of exclusive channels have shown that the cross-section for
+

at production is much higher than that of AO(S). Fig. (4-12) shows
a substantial difference in values of <p$> for nt and © over a wide
range of X(p) with those of at 1ying below the corresponding values
for = . The two cases become nearly equal when X(p) + -1. This may
be explained by the fact that the majority of fast backward moving
protons are produced via diffractive dissociation of.K~ where no
resonance is being formed in the proton vertex.

The results from the study of the Aon; inclusive reaction are
somewhat different. IN this case both Yik+ and Y*' are strongly produced
resonances. However, the crosé-section for Y*_ production is a.little
higher than that of Y’k+ (6). Fig. (4-13) shows values of <p$> which

are nearly equal although one may observe: some values of <p$ (n)>

2
=

By combining the results of the above three pairs of cases one can

which are a Tittle bit higher than the corresponding ones for <p (v+)>.

deduce that resonance production plays a strong role in suppressing the
values of p% of the ﬁartic]es inv61ved. This effect reflects itself
in the observed transverse momentum distributions of particles through
the production of large population density of events near small values
of p$ and also in the observed structure called the seagull effect

observed for most particles.

Conclusions

In this chapter, single particle transverse momentum distributions
were studied. These distributions were compared with predictions from
the Hagedorn thermodynamical model, the multiperipheral model and the
dual resonance type model. The observed higher values of the cross-
section at small values of p% were investigated in the light of the
assumption that the effect is due to resonance production. The data

seems to be in agreement with Hagedorn model for 2° and &° but not
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~ for n+ and = . No strong evidence in support of a multiperipheral

model was found. The higher population density in the <p$> distribution
and the observed seagull effect was proved to be due, partially at
least, to those particles cbming from decays of resonances. A new
method of studying correlations between pions and other particles was
introduced. This method depends on-the suppression of the values of

<p$> for particles produced as decay products of resonances.
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TABLE CAPTIONS (4)

Values of the slope parameter k obtained from exponential fits
to inclusive p% distributions for different particles produced
from K'p interactions at

10 GeV/c

16 GeV/c.

On the tables are also shown the values of"j?/N where N is the

number of degrees of freedom.

Values of the temperature parameter T obtained from thermo-
dynamical mq@e] fittinQ to inclusive p% distributions for -
particles produced in the region |x] < 0.1 from K'p at

10 GeV/c

16 GeV/c.
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TABLE (4-1-a)

KP AT 10 GEV/C

Particle k(GeV/c)™> x“/N
P 4.14 0.93
- 3.36 0.54
T 3.62 0.58
A° 3.08 0.59
g 3.56 0.26
K 3.34 0.85
TABLE (4-1-b)
K'P AT 16 GEV/C
. -2 2
Particle k(GeV/c) x /N
b 4.32 1.07
_ 3.41 0.50
T 3.54 0.63
A° 3.04 1.14
k° 3.42 1.07
K~ 4.08 0.91
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TABLE (4-2-a)

K'P AT 10 GEV/C

Particle Temperature Parameter leN
p 102 0.21
- 221 2.23
T 196 2.52
£° 121 0.36
RO 145 0.47
K~ 135 0.56

TABLE (4-2-b)
K™P AT 16 GEV/C

Particle Temperature Parameter XZ/N
p 101 1.05
at 186 4.60
T 166 5.60
r° 135 1.20
g 142 0.43
K 131 0.40
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FIGURE CAPTIONS (4)

f(p%) single particle inclusive distributions for the reaction
K'p - ¢ + anything at 10.1 GeV/c where ¢ is a proton, =¥, n_,
2%, K% and K.

f(p%) single particle inclusive distributions for the reaction
K'p - ¢ + anything at 16 GeV/c where c is a proton, =, n 5 A,
K® or K.

Average value of PT for different particles produced from K'p
collisions at 10.1 GeV/c plotted against their masses.

f(x, p%) for pions in the region of |x| < 0.1 from K'p collisions
at 10 and 16 GeV/c. Solid 1lines represent predictions o%
mu]tiperiéheral model if those pions are decay products of a
Tow mass cluster.

<p$> for particles produced from K'p collisions at 10.1 GeV/c
plotted against théir longitudinal variable x. Values of <p$>

are calculated from Lorentz non invariant x distributions.

<p$> values versus x. Values of <p$> are calculated from Lorentz
invariant x distributions.

<p$> values versus x for

the o™ resonance

the K*"(890) resonance.

<p$> values are ca]cu]éted from Lorentz non invariant x

distribution for the resonance in each case.

Comparison of <p$> versus x for pions which are decay products of
the A++ with those which are not.
Comparison of <p$> versus x for protons which are decay products

of the a™" with those which are not.
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(a)

(b)
i4zlg)
(b)
(4-11)
(4-12)

(4-13)
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Comparison of <p$> versus x for pions which are decay products
*
of the K with those which are not.
Comparison of <p$> versus x for protons which are decay products

of the K" with those which are not.

Comparison of <p$> versus x for pions which are decay products
of the Y* with those which are not.

Comparison of <p$> versus x for protons which are decay products
of the Y* with those which are not.

<p¥> of pions plotted against x of K® in the two reactions

K'p~ K% + X at 10 GeV/c.

<p$> of pions plottéd against x of protons in the two reactions
K'p - pn; + X at 10 GeV/c.

<p%> of pions plotted against x of A% in the two reactions

K'p > 1%" + X at 10 GeV/c.
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CHAPTER FIVE

- | LI
K'P_> K ~(890) + ANYTHING

Inclusive Resonance Production

In the inclusive approach to the study of hadron-hadron interactions,
it is tempting to sfudy,reactions of type (1.1) where particle ¢ is a
resonance rather than a stable particle. This type of study represents
an intermediate step between single and two particle inc]ﬁsive reactions.
As noted in Chapter Four, reflections due to resonance production show
'ghemselves in single particle distributions and such reflections contribute
to give two particle corre]atfons. Therefore, the temptation to study
resonance production specifically is not unjustified if one wants to
understand the different aspects of high energy collisions in the frame-
work of inclusive reactions.,

It is not surprising that the amount of published work on this
subject is small compared to.what has been published on stable particle
inclusive production. This is because the study of resonance production
is more complicated than that for stable particles. In inc]usfve
resonance énalysis juét as in exclusive analysis, the reliability of the
data can be a decisive factor in one's chances of performing a successful
study. For inclusives, the situation is worse because one has to sum
over all channels which include the particular resonance under consideration,
including those which are kinematically unconstrained, and this imposes
severé restrictions on what one can do. The second problem is that one
is technically Timited to certain types of "clean" resonance where the
signal to background ratio is not too small. This problem becomes very
serious when one tries to study resonances, such as the bo, which can be
formed from many combinations of particles. 1In this case, for example,

one may need to consider up to twenty-five combinations in some ten pronged
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events. Of cburse not all these combinations can contribute to the
0® and consequently will form a major contribution to the background.
. When an effective mass plot for all these combinations was produced
the po region was observed as a very broad bump over a wide range of
effective mass.

The theoretical situation with this type of study is again not
very clear. Although it'is in principle true that all of the
predictions that do exist concerning single particle production can
be used to describe resonance inclusive production, they cannot be
fully exploited because they are either of a very general nature or
are restricted to a small region of phase space where the errors on the
data are too large to perforﬁ a fruitful comparison of theory with
experiment. However, there exists some demand by many theoretician
authors for data not only on single particle distributions but on
resonance inclusives as we]](1’2).

In spite of the above problems, inclusive resonance analysis can
add a new dimension to -the inclusive approach because of the valuable
information it provides about exchange mechanisms through the study of
decay angular distributions yielding spin space density matrix elements,

which, in general, single stable particle analysis does not provide.

In our experiments if one takes into account all the above factors,
one js left with two resonances about which useful data can be_prodUced.
The first one is the K*—(890) and the second is the A++(1236) resonance
and an inclusive study of these is presented in thié chapter and the

next.

Y

K (890) Total Cross Section

Here we give the values of the total cross-sections for inclusive
K*' production at 10 and 16 GeV/c. These values have been calculated

from the effective mass plots of K« combinations. Before doing so, one
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has to account for the Background under the resonancé. This was done
by subtracting from the Kn~ effective mass plot the Ko effective
mass spectrum. In the latter case one does not expect K* production
in the mass plot. However, because there are some events where the
seen decay corresponds to a K rather than a Ro, there is a signal in
the resonance region. This bias has been estima;gd to be about 10%
for K'p at 14.2 GeV/c(S). Consequently, the Ron:?effective mass plot
was scaled by a factor of 0.9. The dotted Tines on fig. (5-1) correspond
to the background expected using this technique.

The results of such subtractions are shown on the same figure. These
.show a clear K* signal.

The values of the cross-sections were estimated by counting events
in the K*' region in the plots whose backgrounds have been subtracted.

- The values of the cross-sections are given in table (5—1)'for both

beam momenta. In the same table the value of the cross-section at 8.2

4).

GeVkis given( These values show a cross section which tends to remain

constant with increasing incident energy.

Production Features

The x distributions for K*‘s produced at our two energies are shown
in fig; (5-2). Although most K*@; are proaucéd in the forward direction
in both cases, no strong forward peak near x = 1.0 is observed. This
can be taken as an indication of the lack of-K*-production through
diffractive dissociation. The distribution peaks at both energies at
a value of x of about 0.3 and then falls rapidly as x increases. This
leads one to expect that the leading trajectories are mainly those of
the p, A2, w, f in addition to = exchange.

When one compares the distributions of fig. (5-2) with the

5)

. . *y : ’ . .
corresponding ones for K ° produced from K+p ( interactions one

observes that the distributioh in the latter case is flatter in the
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positive x region with a pronounced peak near x = 1 in contrast with

our results.

The t distributions in fig. (5-3) are very similar to those for

" :
K'. The missing mass distributions in fig. (5-4) show a one bin peak

coming from the exclusive channel K'p + K*'p. It is interesting to

note that the height of this peak at 16 GeV is about 75 microbarns, which
is well below the values obtained for the exclusive éross section of this
channel at lower energies. This value is in good agreement with the

prediction of the Gribov-Morrison(6)

rule for the variation of the cross
section of this channel with thg_]ab momentum of the incident beam.

This does not support the value obtained for this cross section from

the RHEL K'p experiment at 14.2 GeV/c (7) which shoWs_some flattening
effect in the crogs section,

The distributions of squared transverse momentum in fig. (5-5) can

be well represented by a simple exponential parametrization. These

2

distributions do not possess a higher population density near PT = 0

which has been observed in single particle distributions.

Decay Angular Distributions

It is well known that the study of decay angular distributions in
a frame of reference where the resonance is considered to be at rest,
such as the Jackson frame, can yield useful information about the exchange
mechanism in exclusive channels in which the resonance is produced.

If one argues that there exists some kind of similarity between the
quasi two body reaction of the form

‘e

a+b » a'+b' (5.1)

where in this case a' is a decaying resonance, then one might think of

using the same technique to study the inclusive exchange mechanism.
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However, the technique may not be applied in such a straightforward
manner. This is because in the quasi twe body case the resonance
under study is usually recoiled from another particle or resonance
which is a definite angular momentum state, while in the inclusive
case the recoiling mass "anything" is a mixture of defined and undefined
angular momentum states. Thus one does not expect that such analysis
can yield the same information which one can get from a quasi two body
analysis. |

To get some insight about the extent to which the analogy between
the two cases can be carried, let us consider the basic definition of

an inclusive resonance cross section

dofa+b+a' +X) =z do(a+b~a'+ X;) (5.2)
i
where Xifis a given set of particles specified in number and type. It
is clear that Xi is not a well defined angular momentum state, but is
a mixture of many possible states. Taking into account all such states

9 of the particular state X; then relation (5.2) may be rewritten as

Fo.

2
13'

do(a + b +a' +X) =13 | (5.3)
i

z
J
where Fij is the amplitude for producing a state X5 with quantum numbers
95 From this one would not expect the density matrixelements to satisfy
the relation

'A'
= (-1

(5.4)

Part Pax, ="

for a particular n body fina! state with n > 2. However, Ader, Meyer
and Salin (AMS) (12) pointed out that when one‘integrates over all i to

find the inclusive cross section, one finds out the relation (5.4) is
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satisfied. Furthermore, they showed that all quantities which are
measurable in the quasi.two body case are measurable in the inclusive
case as well with the same relations for the decay probability
distributions derived for the former cdse.

Consequently, the decay angular distributions in 8 and ¢ in the
Jackson (8) frame have been ca]ch]ated. The Jackson frame is defined
as the resonance rest frame with the z direction taken as the incident
beam direction. The X-Y plane has been defined by the direction of the
momentum of the recoiling mass and the normal to this direction and the
beam direction. A schematic diagram of this frame and the definifions
of 8 and ¢ are given in fig. (5-6).

In this frame the angu]dr distribution function for a spin one

resonance is given by (9)
3 2 . 2
W(Cost,¢) = v 5(1—p00) + %(3900—1)005 6 - Py Sin“e Cos 2¢
- V2 Re P10 SinzevCos(p} . (5.5)

Angular Distributions Versus the Missing Mass and t

The distributions in the Jackson angles for different regions in
the missing mass variable for the K*(890) produced in the 10 GeV/c data
are shown in fig. (5-7). The first thing one may notice in this figure
is the-change in shape of the Cos 6 distribution between the first two
mass intervals. This effect is not very surprising because, through
the introduction of such a mass cut, one is actually selecting on those
exclusive events where the K" is produced with the proton. This channel
is known to be dominated by natural parity exchange. However, what 1is
interesting is the continuation of the general trend to show more unnatural
parity exchange for higher values of missing mass.

For highef values of missing mass one notices that the ¢ angular

- distribution is no longer symmetric. This may be explained because the
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Kn cohbinations selected with a simple mass cut is not a pure 1~ object
for such high vé]ues of missing mass. This type of asymmetry is not
unexpected from AMS calculations and they expect this kind of behaviour
after integrating over all quantum numbers in the missing mass.

When one studies these angular distributions as a function of t
integrating over all values of missing mass in fig. (5-8) one observes
that there exists a gradual change of the exchange mechanism when we go
to higher values of t. Again here one observes that there is some degree
of asymmetry in the ¢ distributions, due to the overall integration over
the missing mass. Natural parity exchange tends to be stronger for
smaller values of t, being replaced by unnatural parity exchanges at a

higher value of t.

2

Decay Angular Distributions versus X and PT

Although the momentum transfer and missing mass variables are the
ones which are in common use to study angular distributions and density
matrix elements in quasi two body‘reactions, one tends to favqur the
pair of x and p% when dealing with inclusives. This is mainly because
by using the latter set of variab]es one reduces biases produced by mass
cuts which might select particular exclusive channels rather than |
producing simple kinematical cuts on the whole inclusive cross section.
Here we are going.to demonstraté-that there exists some dependence of
decay angular distributions on x and p% only.

In figs. (5-9) we studied the angular distributions vefsus the
variable p$ for three regions in x. It can be observed that in both
regions where x is positive there exists a gradual change of the exchange
mechanism depending on the values of pg; For the lowest bins in p% one
observes that we get more“ﬁgtura1 parity exchange, decreasing as we go
toward higher values of p%. High values of |x| serve as mass cuts of

small missing masses with the advantage of selecting on forward and
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backward moving K*'s separately without biasing the sub sample severely
with a particular type of exclusive events.

For values of x which are negative one cannot draw any conclusions
about the nature of the exchénge mechanism. When the Kn effective masses
were plotted for these events the signal to background ratio was
observed to be very small. This indicates that cuts in x can serve

the purpose of reducing background.

Density Matrix Elements

Depending on the results of AMS which suggest that relation (5.4)
is, indeed, a correct relation for describing the decay angular distribution
of a spin one particle in its centre of mass we used this relation to
-~ calculate the Spin-density matrix elements for the K* resonance. The
method used here is the method of moments where the density matrix

elements are given by

- J
Poo = 3(5 Cos 8° - 1)
_ b .2
P, -1 ° 7 Sin~ 6 Cos 2 ¢.
. .5 il
Re Pip = w; Sin~ o Cos ¢

In fig. (5-10) we show these density matrix elements computed in
different regions of t' and Mx' It is apparent that values of both
P1, -1 and Re Pyg are consistent with zero over a wide range of vé]ues
of M’éhd t within the statistical error bars.
For the smallest t bin the values of Py 2T increasing with
increasing values of MX. Starting from zero for the lowest bin in Mx
which corresponds to the K'p - K*—p channel, up to values which are slightly

less than one for Mx * 1.4 GeV for values of Mx above this range the values
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seem to have some structure. It is interesting that the same typé of
behaviour has been observed for K*+ produced in K+p interactions (5)_
The selection on our data was done in such a way as to allow comparison
between the two cases. The same kind of behaviour is followed for
higher values of poa but to a less significant degree.

From this one may conclude that natural parity exchange dominates
in the region of small Mx and t. For higher values of t and Mx where
more pions are being produced unnatural parity exchange tends to be the
main contribution to the exchange mechanism.

) The dependence of these density matrix elements on x and p% is shown
in fig. (5-11). 1In this case one observes from fig. (5-11-b) that the
values of Py, are increas%ng with increasing x and b%. K* moving fast
in the forward direction with large transverse momenta have the highest
values of P1, -1 of about 0.25. A1l events with p% * 0 have P, 1 ° 0
and the values of P1, -1 are decreasing with decréasing X and p%. The
values of P1, -1 for backward moving K*'s are comparable with zero for
all values of p%.

No indication of values of Re p]d which are different from zero can
be deduced from fig. (5-11-c), indicating that 10 is largely imaginary.

The same conclusion that has been drawn from the study of decay
angular distribution versus p% can be deduced,%rom the study of Poo in
fig. (5-11-a). In all three regions of x the values of Poo ATE highest
for very small va]ues of p% which indicate a larger contribution of
unnatural parity exchange for these p values. This contribution decreases

matural pavit
with increasing p values where g3=n exchange tends to take over.
T

Comparison with a Dual Resonance Model

The model with which we are going to compare our experimental values

of the K*(890) density matrix elements has been formulated by Randa(]o).

Mueller's generalised optical theorem is used in this model to express
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the two body inclusive cross section in terms of the discontinuity
in the 4-4 amplitude. In this type of model n - n amplitudes are
represented by g functions. This model uses the assumption that the

reaction

a + b > R + anything

L, c+d

to be a special case of two particle inclusive reactions. In the dual
resonance framework these reactions are related through the optical
theorem to the 4-4 amplitude which is assumed to have a Bg behavjour.
In this special case where bartic]es ¢ and d are decay products of the
resonance R, this-e8 function can be expanded to a linear combination
of 36'5 because of cancellation of contributions from many dual diagrams.
In this model only contributions from the diagrams of fig. (5-12) are
considered. Another major ;ssumption used in this model is that all
trajectories are linear and in the actual numerical ca]cu]atioﬁs all
trajectories are taken to be equal to the = trajectory. This was
justified in two ways. First, because the model is mainly concerned
with some features of the production process at a fixed energy, such
as the p% distribution and density matrix elements, ratheb than with
the energy dependence of these features, Randa argues that one can
tolerate having all trajectories to have zero intercepts even that of
the pomeron. The second argument is that the model tries to impose
scaling in an explicit form by normalizing the cross section to ab total
cross. section to allow for scaling even with the pomeron intercept being
zero.

After reducing the gg mathematical form to a linear combiﬁation of
eﬁ‘functions, using only those dual resonance diagrams which are assumed

to contribute to the fragmentation region of a, and performing detailed
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mathematical and numerical calculations using the meson trajectory as
the only trajectory, the model predicts a transverse momentum
distribution, and also uses the explicit relation derived by Mue]]er(”)
to relate the spin density matrix elements to the discontinuity in the

three to three amplitude. This relation is given by

Pax

=1 pisc . <«abR (A)|Tla bR (a)>
N M2
X

N =3 Disc <a bR (A)|T]a bR (a)>
A .

One can very easily see that the spin density matrix constructed
from the density matrix elements defined above does, indeed, satisfy
the trace condition.

The solid lines on fig. (5-13) and fig. (5-14) show the predicted
behaviour of the two density matrix elements Poo and Re plo'wiﬁh t' for
two regions of Mi/s given by Mj/s = 0.1 and 0.2. The data points on
those two figures are the experimental values of the density matrix
elements calculated for the corresponding values of Mi/s which were.
chosen to be between 0.05 - 0.15 and 0.15 - 0.25 for the particular
t bins shown in the figures. It may be noted here that in the above
mass cuts the channel K p » K*p has been excluded automatically. This
channel is known to be dominated by natural parity exchange.

We note that in both figures the data are not in very good agreement
with the predictions of the model. The values of P oo measured are
substantially lower than the corresponding predicted ones for the small
t region especially for the lower range of Mi/s values. This difference
between the two tends to be reduced in the higher range of Mi/s values,

but the values of Pgo dre still far below the ones expected from the
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model. No evidence of a pronounced dip in Poo NNear t' = 0.7 Ge\l2

can be observed.

The situation with Re P10 is no better and there is a substantial
amount of disagreement betWeen the measured and predicted values of
this quantity over a wide range of t' and for both Mi/s ranges.,

This disagreement is not too surprising. For this model not only
suffers from the weakness that it does not satisfy unitarity (because
it has been built on the g8's Veneziano type amplitudes which all have
this problem), but furthermore it involves severe constraints on the
type of the exchanged trajectories. Such constraints may not produce
substantial problems when tested against p% distributions but one would
certainly expect their effect to be more noticeable when ded]iné with
density matrix e]éments. This is because we know that our K*'s are not
produced by a process of pure pioh exchange but that there is a |
noticeable amount of natural parity exchange as well. In such a case
one needs to feed in more ;ealistic trajectories to be able to take into
account contribution from such exchanges.

The other problem with this model is that the pomeron is introduced
in a rather artificial way. In order to do this in a natural way one
needs to consider more dual diagrams in addition to those of fig. (5-12).
These dual diagrams would each contain more than one quark loop. This
will avoid the problem of having to normalize by op to take care of the
scaling part of the amplitude.

However, this comparison may be useful in the sense that it gives
us some idea about the possible sensitivity of dual resonance models to
changes in the trajectories used. Such sensitivity is difficult to
obtain when the predictions of such models are compared with the data
using quantities other than spin density matrix elements, such as
longitudinal and transverse momentum distributions, which seem to be
well deécribed by most models of this type without much dependence on

the kinds of trajectories used in the actual calculations.



- 110 -

Conclusions

In this chapter, data on K*_ inclusive production have been
presented. These include the study of the dependence of the total
production cross section on energy. The study of the x distributions
does not give any strong evidence of a forward diffractive peak. The
study of decay angular distributions and density matrix elements shows
that there is a substantial amount of.natural parity exéhange in

ook uia _

addition to % exchange. Comparison with a dual resonance model was
carried out. Although this model does provide a good exponential
paFametrization of the p% distribution, the predictions concerning
the variation of Poo and Re P10 with M and t were not compatible with
our data. This might be due to the fact that this model substitutes
the m trajectory for all others in the actual numerical calculation.

Furthermore, the pomeron was not introduced in the proper sense.
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TABLE CAPTION (5)

) - %o
(5-1) Inclusive total cross section for the reaction K p~+~ K +

anything at three different energies.
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TABLE (5-1)

- * -
Kp+K +X

PLab GeV/c

mb

8.25
10.1
16

2.4
2.0
2.5

+1

+1

0.3
0.5
0.5
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FIGURE CAPTIONS (5)

(5-1) Effective mass distribution for K% systems at 10 and 16
GeV/c. The solid lines fepresent the inclusive cross section
for KO{'system. The dotted lines represent the inclusive
cross section for R°n+ system. The shaded area is the result
of subtraction of the K" distribution from the Kon~
distribution.

X distributions for K*" inclusive production from K p at

10 GeV/c

16 GeV/c.

)
)
) -
(5-3) t distributions for K*' inclusive production from K p at
) 10 GeV/c |
) 16 GeV/c.
) Missing mass distributions for the reaction K'p » K*_ + anything
at ‘
(a) 10 GeV/c.
(b) 16 GeV/c.
(5-5) Squared transverse momentum distribution for K*- inclusive
production from K'p at
(a) 10 GeV/c
(b) 16 GeV/c.
© (5-6) Schematic diagram of the Gottfried-dackson(s) frame defining
the angles 6 and ¢.
(5-7) Cos 6 and ¢ decay angular distributions for K*'(890) for
s different missing mass regions.
(5-8) Cos 6 and ¢ decay angular distributions for K*'(890) for
different values of t.
(5-9) Cos 6 and ¢ decay angular distributions for K*"(890) versus p%

in three different x regions.



(5-10)

(5-11)
(5-12)

(5-13)

(5-14)
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Values of o -1 and Re °10 plotted against t' = (t -

00® °1,
tminiﬁum) for different regions of the missing mass.
Poo? P1,-1 and Re P10 plotted against p% for different X regions.
Dual resonance diagrams used in ref.(11) to construct the 3-3
amplitude for vector resonance inclusive production.
Comparison of the values of Poo for K*' decay from our 10 and
16 GeV/c data with predictioné of ref.(11).

Comparison of the values of Re 10 for K*_ decay from our 10

and 16 GeV/c data with predictions of ref.(11).
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CHAPTER SIX

K'P » 2™ (1236) + ANYTHING

Production Features

The a** resonance is produced most of the time, at dur gnergies,
in the backward hemiSphefe of the K'p centre of mass system. This can
be seen from the x-distributions of this resonance which are shown in
fig. (6-1) for both 10 and 16 GeV/c data. It can also be observed in
these distributions that although this resonance is produced in the

-backward direction, there is_no strong peak in the }egion of x = 1.

The transverse momentum distribution of this resonance is similar
in shape to that of the K*'(890). It differs from those of other
particles discussed in Chapter Four in the sense that it does not
deviate from the exponential form for small values of p%, as can be

: )’
which is higher than those observed for other particles but it does

seen from.fig. (6-2). The average value of p; is about 0.4 (GeV/c
fall on the empirical line relating <pp> to the mass of the particle.
The missing mass distribution of fig. (6-4) starts from threshold

and increases smoothly, showing no strong features up to the kinematical
Timit. Such features are not to be expected anyway because of the
exotic nature of the quantum numbers involved in the missing mass. This
will be a great deal of help when one studies the behaviour in the
Triple Regge 1imit because one can go to lower values of missing mass

in defining the triple Regge limit, a procedure which could not be used

in the K ~(890) case.

The Triple Regge Formula

The generalised optical theorem has been used intensively to

formulate the mathematical form of the inclusive cross-section. After
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the success of Regge theory in expressing the behaviour of the'two
'body amplitude it was a logical step to use the same approach in the
inclusive Mueller's optical theorem framework(1).

The basic assumption involved in the inclusive triple Regge
analysis is that for small values of the squared four momentum transfer
t, each narrow missing mass range MX méy be considered as a one particle
state with the same trajectory «(t) being exchanged as in fig. (6-5-a)(2).
Now in the region of high values of missing mass the top vertex in
fig. (6-5-a) can be approximated by the total cross section of the
a - a(t) scattering with centre of mass energy Mx' This cross-section
can then be represented by the imaginary part of the forward a - «(t)
scattering amplitude which aéain may be expected to have a Regge behaviour
as shown in fig. (6-5-c).

In general and fqr values of M,above the resonance region the latter
ahpTitude‘can be represented in terms of a trajectory «(0) which will be
the pomeron at large @e‘but an effective pomeron-reggion trajectory at
lower values of MX(B).

Suéh considerations lead to a dependence of the inclusive single

particle cross-section on M and t given by

2 2¢(t) 2a(o) -1
der = — B(t) tﬁﬂ M, (6.1)
PLab X

where PLab is the incident particle laboratory momentum and B(t) incorporate
the various Regge residue functions invo]ved(4).

For reasons outlined above, equation (6.1) is not expected to hold
over the whole kinematical region but only in that part restricted by the

following values of Mx and t (5).

1. |t| must be small so that the Regge exchange argument can be expected
to be valid.

2. The values of Mx ought to be chosen above the resonance region although
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this condition has been relaxed by some authors using arguments based

on semi-local duality, extracted from experimental observations, that

Regge predictions of the asymptotic behaviour of two body total cross
sections can be extrapolated to give the average cross section in the

Tow energy resonance region.

3. Values of s/Mi must.be large in order to make sure that we are vorking

in the inclusive asymptotic limit.

The same'kind of relation in the above defined kinematical region
hés been derived by De Tar et al. using group theoretical arguments to
expand the discontinuity in the 3-3 amplitude in Mueller's. generalised
optical theorem.

The kinematical 1imit defined above where this formula is expected
to be valid is called the triple Regge 1imit and the formula itself is
called the “riple Regge formula because of the triple Reggion vertex
involved 1in fig. (6-5-c).

Equation (6.1) is very useful in the sense that if it is valid and

one has some prior idea of the exchange trajectories involved, one can

predict the expected s dependence of the cross section from -measurements
of the M dependence at a single energy and vice versa.
The disadvantage involved in using this relation lies in the fact

that the large M and small t restriction on the applicability of this

formula means that one is necessarily working close to the kinematical

bbundary. Careful attention ha§ to be paid to treatment 6f kinematical
effects, particularly for a broad resonance 1ike the att, Unfortunately
such effects should be sonewhat dependent on the form assumed for the
Regge residue. .

The applicability of the triple Regge formula has been tested in
many single particle inc]u;ive experimenfs. In tabie>(6-]) (6) we quote
some of.these tests and the general conclusion drawn from them. In

addition this table contains some of the Regge trajectories which were
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found to give suitable parametrization of the data. In most cases,
although the formulae did, indeed, provide a good parametrization of
the inclusive cross-sections, the trajectories obtained using such
parametrization are somewhat different from those obtained from two
body and quasi two body reactions. This might be due mainly tp the
fact that in most inclusive studies one usually deals with effective
trajectories which are mixtures of pomeron and degenerate reggion
trajectories rather than with almost pure trajectories as in the case

with two body and quasi two body reactions.

The A" Resonance in the Triple Regge Limit

The 2™ resonance inclusively produced from K p interactions possesses
some properties which make it more useful than the K*~(890) resonance,
discussed in Chapter Four, in testing the triple Regge formula. The
first and'possibly most important of all is that in the region of small
values of the squared four momentum transfer from the proton to the A++,
which was chosen to be less than 0.6 (GeV/c)z, the problem of background
under the A++4}s not serious, as can be seen in fig. (6-3). This greatly
facilitates reliable analysis in this region.

The second important advantage associated with this reaction is
that one reduces the problem of having to dea] with effective trajectories.
This can be expected if one believes that the CHQW scaling criterion
discussed in Chapter Three is correct, because in this reaction we have
a b ¢ is indeed exotic and from the triple Regge formula one woqu expect
the value of «(0) to be equal to the intercept of the pomeron in order
to take care of the energy independence in the triple Regge limit.
Furthermore, this value should not contain any dependence on the squared
four momentum transfer t and the values of the density matrix elements
obtained should be compatible with those expected from exchanging the

trajectory «(t).




- 145 -

The third advantage is related to the previous one and arises
because the missing mass on the whole has exotic quantum numbers, thus
circumventing the restrictiqn that.Mx should be large. This helps a
great deal in taking a wider range in Mx within the available
kinematical region, which helps to improve the quality of the fits .

and reduces effects due to the dependence on B(t).

Test of the Triple Regge Formula

The applicability of equation (6.]) has been tesfed in this
reaction in the following manner:- V

Equation (6.1) indicates that.the Regge trajectory o(t) can pe
obtained from the s dependenée at fixed Mx values. If the trip]e Regge
formula is a valid parametrization of the data this trajectory a(t)
should be the séme as that obtained from the Mx dependence at fixed s.
However, the Mx variation a!so depends on the intercept «(0) which can
be obtained from the s dependence at fixed (s/Mi) as can be seen if

we rearrange equation (6.1) to take the form:-

.

2 20(t) - a(0) -3 afo) +3
o - 2= o (3 S e
pLab

Once (o) has been obtained in this way equation (6.1) can give
a(t) from the M dependence at fixed s and this can be compared with
a(t) from equation (6.1) using the s dependence at fixed M.

As mentioned before, the lower 1imit on M created no difficulty
becéd;e we were able to use relatively low values of M where there are
enough events to carry out the fitting. The upper Timit was always
affected by the position of the kinematical boundary. The missing mass

distributions for the two energies in five ranges of the momentum transfer

t from the proton to the »** are shown in fig. (6-6) and fig. (6-7) in
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2 minimization procedure

bins of 0.1 GeV in the missing mass. We used a X
to fit the data to the triple Regge formula (6.1). For each bin the
theoretical curves given by the formula were integrated over a Breit
Wigner shape with the a*t mass and width as given in the Particle Data
Group tab]es(IT{ This procedure was performed over the t range, up

to the kinematical 1imit specified by the position of the boundary for
the particular pn+ effective mass. However, it was found that direct
substitution with the a™t central mass va}ue (7) does rot produce results
which are much different from the ones obtained using the above long
procedure which is also dependent on the form assumed for B(t) which was
left as a free parameter in our case. Fortunately, as it turned oﬁt,
such effects are only important at the lowest t range where reliable
results could not be obtained anyway.

The values of the parameter o(o) obtained from the s dependence at
fixed values of s/Mi for the five t ranges are shown in fig. (6-8). The
results represent the average values obtained from determinations in each
t bin for various values of M# chosen such that the quantity (s/Mi)
‘remains the same for both 10 énd 16 GeV/c. It is very interesting that
the values of a(0) do not show any significant t dependence except that
we get a rather anomalous value of a(o) for the lowest t bin. This is
because, as was stated earlier, of the effect of the way we dealt with
the Regge residue B(t). No attempt was made to substitute any functional
form of B(t). The othér very interesting feature which can be observed
is that the values of «(0) obtained are compatible with unity. Such a
. .{valueﬂis to be expected if one has the pomeron trajectory at the kaon
.vertex and one expects duality to be true. What is not well understood
is that the values of a(0) are s]ight1y higher than expected. Different
checks were app]i?d and the whole calculation was repeated twice without
any significant dﬁfference in the results. We suspect that this might
be dhe to some error in the calculations of the microbarn equivalent per

event in the 16 GeV/c data, which was the first batch of measurement to go
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onto the DST. It would be very desirable if the whole analysis can
be repeated when more statistics at 16 GeV/c become available.

Using values of a(0) derived above we determined the Regge
trajectory o(t) from the M dependence at 16 GeV/c in‘the range of M
betweeh 1.0 and 2.5 GeV/c. A number of separate determinations of
a(t) were made from the s dependence between 10 and 16 GeV/c for narrow
fixed values of M. The overall average of the values of a(t) for each
t range are plotted in fig. (6-9). The slope and intercept of the
trajectory a(t) were derived from the fitted values of o(t) though
passing a straight Tine through the points in fig. (6-9). In this
_case we neglected the o(t) value in the lowest t range because it is
biased due to kinematical effects. The trajectory obtained was of the

form
~a(t) = 0.45 +0.75 t

The slope and intercept of this trajectory are compatible with those of
the p (8).

From the\above discussion one may conclude that the triple Regge
formula ﬁ}ovides a goodlparametrization of our data. The slope and
intercepts of the Regge trajectories obtained are in good agreement
with those expected from such a Regge picture. The value of «(0), which
is close to unity, can be considered as a demoﬁstration of the duality
principle where the pomeron is considered to be dual to the exotic a b ¢

combination.

The Effect of the Regge Residue

It is clear that the values of both «(t) and a(o) obtained from our
parametrization of the data using the triple Regge formula were higher

in the lowest t bin than in other t ranges. Furthermore, these values
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are not'in agreement with values expectednif one assumes that our
trajectories are compatible with well known Regge trajectories. This
result is not very surprising, because of the way we treated the Regge
residue function B(t) in ouf parametrization, where no explicit
functional form was substituted for it. 1In this case one would
naturally expect some anomalies in the small t region where kinematic
corrections can be strongly dependent on the functional form of B(t).
In this small t region our knowledge of the exchange mechanism and
consequently the form of the Regge residue is very limited. For very
small values of t one is very near to the pion pole exchange where the
Regge residue function may have to contain in its structure a pion
propagator of the form {—%—EZ . Such a propagator can give steéﬁ t
dependence in the-small t region. For higher values of t one might
expect contributions from other exchanges such as the p and the A2 as
we move away from the pion pole. Such contributions can give a more
gentle type of t dependence.in the very small t region and the t
dependence becomes weaker as t increases for both pion and other
exchanges(g). .For this reason we have considered the values of o(0)
and a(t) above the lTowest t bin as more reliable than the values in

. the lowest t bin because their values are not very dependent on the

~

kinematic corrections due to the shape of B(t).

Decay Angular Distributions and Density Matrix Elements

In order to check the degree of reasonableness of the values of
the slope and intercept of the Regge trajectory obtained from fitting
the triple Regge formula, we studied the exchange mechanism of at
production in terms of its decay angular distributions and the density
matrix elements associated with them. In this case again we rely upon
the results of Ader, Meyer and Salin in the same way we did in the K*'
case and assume that all relations derived for a quasi-two body angular

distribution can be used for inclusive resonance production processes.
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We studied the angu]af distributions in the Jackson frame which can

be defined in the same way as in the K™ case by interchanging the

target proton and the projectile kaon directions in fig. (5-6)
For this case the decay angular distributions for a spin 3/2

baryon resonance is given by(]o)

L 2
H(Cos 6, ¢) = 7 [-]5-(1 + 4pgg) + 3(1 - dpg) Cos® b - = P31
Sin2 o Cos 2¢ - 5%-Re P31 S1'n2 8 Cos ¢] . (6.3)

. 3

Fig. (6-10) and fig. (6-11) show the cos & angular distributions for
att produced at 10 and 16 GeV/c respectively. The t cuts used are the
same as those used in the study of the triple Regge limit and all plots
contain only events selected in the missing mass region of 1.0 to 2.5
GeV as used in the triple Regge fit.

The density matrix elements were calculated from the cos 6 and ¢
angular distributions of fig. (6-10) and fig. (6-11). Using the method
of moments applied to equation (6.3), the three density matrix elements

are given by

1 Z
P33 = §-(7 - 15 Cos™e)
. 2
Rp3’_1 = - 5%3 Sin%e Cos 2¢ | (6.4)
Re P3, 1= " Eéi Sin 2o Cos ¢

Because no detailed model analysis about the behaviour of decay
angular distributfons and density matrix elements exists, one does not
really know what to expect. However, it is probable that the behaviour

will not be much different from that in the quasi two body case, where
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some predictions do exist.

Because our’resu1ts concerning the trajectory a(t) show that it
is very compatible with the p trajectory, we chose to compare our
results for the density matrix elements with predictions made for the
quasi two body case By the p exchange model of Stodolisky and Sakurai(]])
where the vertex p-p-A++ is treated, in analogy to the vertex NyA++, in
terms of electromagnetic multipole transitions because the quantum numbers
of the p are the same as those of the photon. They found that using such
assu@ptions one gets the values of the three density matrix elements as

P33 = § - Reps,.-f’?’ Rogy = 0.0

These density matrix elements for our 10 and 16 GeV/c data are shown in
fig. (6-12) and fig. (6-13) respectively. The values of P33 Re P3,-1
and Re P31 and their t dependence are not in good agreement with the
unmodified p exchange model. It is possible that better agreement would
be obtained if one took into account absorption effects which could yield

the t dependence observed.

Pomeron Factorization

ﬁactorization of Regge trajectories can be useful in the sense that
it provides many relations between scattéring cross-sections of different
particles. Many authors are inclined to believe that the pomeron is a
factorisable po]e(.z’ i;).

To check this property in the triple Regge 1imit we compared our data
at 16 GeV/c with unpUb]ished data from = p interactions at the same
energy(12).

On the trip]e'Regge diagram of fig. (6-4-c) one would have ana b ¢
combination exotic in both cases where a is K~ or n . Thus one Wou]d

expect a(0) to be that of the pomeron which, according to duality, is
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expected to dominate. The only difference one would expect between
the two cases is that due to different couplings between the pomeron
and the projectile particle in each case. This is only true if the
pomeron is a factorizable pole. In this instance one_can write a

relation between the partial cross-sections in the two cases given by

dosdtdm(p 8 2™y 4P
- T
d2o/dtam(p % ot K'P

where y _ is the pomeron coupling to K~ and y _ is the pomeron coupling
KP m

“to the w .
The ratio of the two couplings can be obtained from the ratio of
K p/m p total cross-sections where one again has to assume that the

pomeron is a factorizable pole. In such a case we can write

Eojamdt(p X a1y ok P)

d2q/dMdt (p 3 4™ or(m p)

Fig.- (6-14) shows the partial cross-sections for production in t
and M in both cases plotted on the same diagram at beam momentum of
16 GeV/c. The cross-section for K p case is multiplied by oT(n'p) aT(K'p).
The two distributions seem to be in very good agreement with each other |
for all ranges in t after such normalisation. This supports the

assumption that the pomeron is, indeed, a factorizable pole.

Summary and Conclusions

The main aim of this chapter was to perform a possible test on the
triple Regge formula using the inclusively produced a** resonance. The
formula seems to provide a good parametrization of the data and the values

of the parameters obtained for the slope and intercepts of the Regge
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trajectories are in good agreement with those expected if,the formula
is applicable. The results deduced from studies of the decay angular
distributions and the density matrix elements are not in disagreement
with assumptions about the p exchange production mechanism which was
the result obtained from the triple Regge fit.

The vé]ue of a(o) is of a special importance because of its
relation to the scaling behaviour of A*F. If one take the CHQW condition
of a b ¢ exoticity as sufficient in this case, one would expect a(o) to
be that of the pomeron, which is, indeed, compatible with what we obtain
from our fits. This supports not only the triple Regge parametrization
Qut also the exoticity condition for scaling predicted by CHQW.

It is interesting to noté that agreement of the data with the triple
Regge parametrization is good even in this relatively low energy region
in spite of the fact that the triple Regge formula is an approximation to

the‘asymptotic limit.
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TABLE CAPTION (6)

(6-1) A compilation of results on using triple Regge parametrization

of inclusive distributions from ref.(6).
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TABLE (6-1)(6)

Reaction “i(t) Authors
T p -+ pX Chan, Miettinen,
0.K.
pp -+ pX : Roberts, Paige and Wang
K > ROX Chliapnikov et al.
+ o 0.K.
pK™ - KX Rutherftord-Saclay E.P.
Kp » 2%X 0.K. Rutherford-Saclay E.P.
py + 7 X Stanford-Berkeley-Tuft
+ -+ 0.K.
Tp->4a X ABBCCHY Collaboration
pr -+ pX " 0.K. Randa, Bishari and Yeshian
- i
pK™ -+ 2% 0.K. Rutherford-Saclay-E.P.
pp + 7 X ’ Risk, Ranft and Ranft
_ - Too low Chen et al.
yp > 7w X Stanford-Berkeley-Tuft
: _
pp = 7 X Too low =
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FIGURE CAPTIONS (6)

X distribution for inclusive A" production from K'p at
10 GeV/c
16 GeV/c.

p% distribution for inclusive a™* productioh from K'p at
10 GeV/c |
16 GeV/c.

pn+ effective mass distribution for

+

all A""'s produced from K'p at 10 GeV/c

a1l 2t

++

s produced from K p at 16 GeV/c

A )2 from K'p at 10 GeV/c

Rad

s produced with t < 0.6 (GeV/c
s produced with t < 0.6 (GeV/c)? from Kp at 16 GeV/c.

Missing mass distributions for the reaction Kp » A++ + anything

at

10 GeV/c

16 GeV/c.

Schematic representationvof the amplitude abc-abc in the triple
Regge Timit. |

Triple Regge fits for the inclusive cross section dzc(K'p >

a™ + X77)/dtdM, at 10 GeV/c.

Triple Regge fits for inclusive cross section dzc(K_p > AT X )/
dthX at 16 GeV/c.

Values of a(0) obtained from fitting the triple Regge formula

to our data for the reaction K'p » o™ + X™™ at 10 and 16 GeV/c
plotted against t. '

Values of a(t) obtained from fitting the triple Regge formula to
our data for the reaction K'p » a¥% + X ™ at 10 and 16 GeV/c
plotted against t. The dashed Tine represents the fitted Regge

trajectory through four points.
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Cos o and ¢ decay angular distribution for inclusive att
produced from K™p at 10 GeV/c plotted versus t, the missing
mass range is between 1.5 and 2.5 GeV.
Cos 6 and ¢ decay angular distribution for inclusive 2t
produced from K p at 16 GeV/c plotted versus t, the missing
mass range is between 1.5 and 2.5 GeV. |

++ . .
The o™ " density matrix elements P33s Re P31 and Re P3,-1
calculated from the distribution in fig.(6-10).

++ . .
The A" " density matrix elements P332 Re P31> and Re P3,-1

calculated from the distribution in fig. (6-11).

2 or(n7p) 42
. d g - ++ —— T d“e -
Comparison of (rp=>2a"+X )with — Kp-~
dMdt? G anae |

A™ 4 7Y at 16 Gev/c. T
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CHAPTER SEVEN

TWO PARTICLE CORRELATIONS

Introduction

The idea of studying correlations that might exist between particles
produced "in multibody final states in high energy collisions is not a
very new one. This type of study forms a substantial part of the work
done with such final states. The study of correlations appeared in
its earliest form in analyses of effective mass distributions and in
the hunt for new resonances in exclusive channe1s:'.. This type of
analysis can in principle be used in the inclusive framework. However,
as evidenced in the previous two chapters, such analysis is not Tikely
to teach us much about correlations in inclusive reactions. This is
beﬁause when we sum over all exclusive channels which iﬁvo]ve the
particles between which correlations are intended to be studied, the
background that exists under the resonance tends to dilute many.effects
that can be seen in exclusive channels. This makes inclusive effective
mass distributions an unlikely place to look for resonances.

In the inclusive approach one follows a different line in studying
correlations. In this case, one studies pbssib]e effects constraining
-the production of a particle or a group of particles by the production
of another particle or group of particles. Such effects are called
correlations in the inclusive terminology. One type of correlation is
that imposed purely by kinematics, coming from energy-momentum
conservation. Such effects do, indeed, exist and are 1ikely to show
up, in some form or another, in any study of correlations. Now the
question arises, how do we separate these kinematical correlations from
possible dynamical effects in which we are interested? Unfortunately,

the answer to this question is not trivial. Methods employed in

-
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exclusive types of analysis are not in general suitable for detecting

such effects in inclusive correlations. For example, it is difficult

to compare Monte Carlo generatgd events constrained by kinematics only

with real events as in_exc]usive analysisﬁl)This is bgcause as well as

being a lengthy process, one does not know everything about the real
multiplicities of the contributing events which can contain an unknown
number of neutrals. In such a case one is forced to use some assumptions
about the number of these neutrals. These assumptions are usually model
dependent. This means that one is imposing dynamics in the process of
looking at kinematics. This would certainly lead to some wrong conclusions.

This leaves one with two choices in the method to employ in the study
of correlations. The first one is to study some of the features of
correlations which are not largely affected by the kinematics involved
or features which are described by models which take into account
correlations due to k{nematics. The second method is to try to study
some special cases where kinematical correlations can be accounted for
experimentally.

Although the study of correlations on the basis of thé two choices
open to us is not expected to lead to full understanding of multibody
correlations in high energy collisions, it might still be capable of
providing us with some information about these interactions.

For the reasons outlined above and for other reasons associated with
the fact that when studying correlations one is looking for a variety of
known and unknown effects, the methods of studying correlations vary with
the aim of the study. For this reason different methods have been used
and at this stage one cannot decide which is the best method to obtain
more information about correlations. Thus we shall discuss the advantages
and disadvantages of some of these methods during the process of

discussing their applications to our data.
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" Two Body Correlation Function

The Mueller-Regge approach to the study of inclusive reactions is
one of the most fruitful ways of analysing data from inclusive experiments.
Correlations between partiéles in inclusive reactions can be studied in
the Mueller-Regge framework when they are expressed in terms of
correlation functions(z). The two particle correlation function,
defined in equation (1.27), is dependent on seven independent variables.
However, it is convenient to reduce those to three only by integrating
over the transverse momenta of the two particles. In doing so equation
(1.27) is reduced to the following when the rapidity variables are

used(B).

. . 2
__d7o _ 1 do do
C(s, y], ¥p) = v, 0y, o @y " Ay, (7.7)

Because fapidities are not Lorentz invariant quantities and because
it is much simpler to plot Eorrelation functions as one dimensional
quantities, it is useful to study equation (7.1) in terms of rapidity
separation instead of rapidities of the two particles. The quantity
AY = ¥1 - Y is a Lorentz invariant quantity. Most theoretical predictionsA
about correlation functions are usually made in terms of Ay rather than
¥y and Yo-

To study the behaviour of this correlation function as a function of
ay we calculated values of C(s, ¥y, ¥p) for atr?, 7r and otn”  combinations
from final states at 10 and 16 GeV/c. This was done by plotting the two
particle distribution function do/dy1dy2 and summing over a11 cells of
constant y; - y, = Ay.. The product of the two single particle distributions
in each case, which is a two dimensional diagram, was treated in the same
way to find (do/dy]).(dc/dyz) for each range of ay. After normalising by
the total cross-section, values of C(s, ¥y, ¥,) were calculated for each Ay

bin for each set of particles. The correlation functions calculated by
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this ﬁethod for the three sets of particles are given in figs. (7-1),
(7-2) and (7-3) for n'xt, v and n'n" respectively.

The First feature one notices in all these figures is that ¢
approaches zero when Ay becomes large. This approach is expected to
depend on the leading Regge singularities which control the approach
to scaling in the Regge expansion of the 4-4 amp]itude(4). If we assume
that the intercept of such singularities is e then one would expect

an = 1

c(¥qs ¥p) = s]S
where S12 is the invariant mass of the two particles. Now

o 3
S1p = My + My + 2(K]K2) Cos h (y1 Yo) = 2 pT]'pTz

2,2 - - . 1 ly] - yzl
ay = 1 (e =1 yy = ¥,l

Q _ Q 1 2

S12 = (K;Kp)

When the correlation functions in the region of Ay > 2.0 were fitted

with a simple exponential of the form c(y], yz) = ¢ MY the value of K

~in all cases was found to be about 0.5 + 0.05. This may be taken as an
indication that the leading singularity is not the pomeron. This is in
agreement with results obtained in Chapter Three from the study of the
scaling behaviour of the two particle distribution function of the same
sets of particles. This is because the regjon of large Ay cqrresponds

to the case where the two particles are produced ih diffefént fragmentation
regions. None qf these two particle distribution functions showed any
scé]ing behaviour in these fegions. Such behaviour was shown, in Chapter

Three, not to be expected from the study of the different contributions

to the cross-sections from dual diagrams of the 4-4 amplitude.
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The main disadvantage of the correlation function is that one does

not know how much the correlation is due to kinematics(s).

The way such
correlations show themselves on a corre]atidn function plot is complicated.
This problem becomes more serious in the region of small Ay where the
values of the correlation functions usually peak sharply. Morrison

has pointed out that such behaviour is expected simply because the single
particle distribution peaks at values of small y.

One can resolve this problem partially through the study of correlations
between different pairs of particles having approximately the same type of
kinéﬁatica]_correlations. Such correlations are expected to give the same
kind of reflections on the behaviour of the correlation function. For all
our three cases one would exﬁéct these reflections to be the same. Hence,
if no dynamical correlations exist one would expect all the three sets of
correlation functions to be similar. However, as is épparent from figs.
(7-1) to (7-3) this is not the case. Near Ay = 0 the values of c(y], y2)
are positive and much higher for w'n~ than for »™w ¢ The latter are again
higher than those for ot which are always negative. This is direct
evidence for the existence of different dynamical effécts producing the
correlations of the three sets of particles. We note that in the atn case
the two particles form a non-exotic combination while in the =« and n'rm'
cases the combinations are exotic. From this we'may conclude that the

amount of positive correlation between two particles is larger if the two

. particles form a non-exotic combination than if they form an exotic one.

Correlation Functions and Energy

The three sets of correlation functions studied so far do not show any
significant differences between 10 and 16 GeV/c. Not many predictions
exist about the nature of the energy dependence of the shape of correlation
functions. However, an important quantity which is useful for distinguishing

between different models is the integral overall values of Ay of the
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correlation function, ‘This'is defined as the second multiplicity moment
mentioned in Chabter One.

Unfortunately, the predictions about thfs quantity made by both the
multiperipheral and the diffractive pictures are supposed to hold only at
asymptotic energies(6’7). Neither of these two models predict strong
variation with energy for the second multiplicity moment in our energy
range. However, we think it useful to report the values of this quantity
for the fhree different cases at our two energies. These values are given
in table (7-1).

‘It is clear from figs. (7-1) to (7-3) and from table (7-1) that
statistical models which predict pure Poisson distributions for the charged
multiplicities are not capab]é of explaining our correlation data(g). This
is because these models also predict a value of zero for the second
multiplicity moments. The multiperipheral model predicts a log s depend-

ence while diffractive models predict s% dependence. These two cannot be

distinguished in our energy range.

Correlations in Different Kinematical Regions

‘We have seen that the correlation function is strongly dependent on
Ay. The positive contributions to the correlation always tend to be
stronger in the region of Ay near zero than anywhere else. Furthermore,
this positive contribution is stronger for unlike pions than for 1like pions
in the small region. The situation is still not well understood. The
region of small Ay has contributions coming from three different kinematical
regions. These arise when both particles are produced in the target
fragmentation region, the projectile fragmentatioh region or the central
region.

To gain more insight into the different positive and negative
contributions, we divided our 10 GeV/c data in rapidity space into four

regiohs depending on the rapidity of one of the particles for each set of
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particles. The plots of the correlation functions in each case are
shown in figs. (7-4), (7-5) and (7-6).

When both particles- are produced in the projectile fragmentation
region, one notices that in the = = and ainT cases the values of the
correlation functions are not very different from zero and that in the
n'n case the correlations are positive as before. This is in contrast
with the behaviour which can be observed if one of the particles is
produced in the target fragmentation region, when:fhe correlations tend
to heve negative values for nfw' and 7tnT. The similarity between the

*and w7 in these regions leads us to believe that

correlations of ='n
these correlations are nothing but kinematical effects due to energy and
momentum censervation and possibly leading particle effects. This is
interesting in the sense that one can at least get some idea about the
nature of the correlations due to such cffects. One expects some other
effects to account for the n'n~ case where positive correlations have been
observed but where_kinematica] effects are expected to be of the same
nature as in the previous cases.

When one of the two partib]es is produced in the central region the
behaviour of the correlation function follows a different pattern. 'The
main feature in this case is that there are large positive correlations
in all cases in the region of small Ay. The same kind of behaviour was

observed in the data on K'p > o« + anything of Ko and Lander(9).

However,
we believe that this effect is not very surpriéing becauée the correlations
in our case are not much different between mw s mr on the one hand and
the = = cases in the K¥p case on the other hand. This effect is not
difficult to explain on any model which predicts that a large number of
pions are produced with small values of rapidity in the centre of mass.

In particular, the Hagedorn thermodynamical model and the multiperipheral

model contain the necessary ingredients for such predictions. What is

more interesting is the fact that these positive correlations are stronger
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for the = n case than for n+n+ and both cases contain much smaller

~ correlations than in the n'n~ case. The interest here is not in whether
there are positive correlations for small Ay values, but in where do they
occur in terms of yy and Yo A more striking effect wpu]d be if there
are strong positive correlations in the case of two particles produced

in one fragmentation region. However, the positive correlations observed
.1n the central region can be attributed mainly to kinghatics in the n
and 7t case with some dynamical reflections. The difference between
these two cases and the n'n~ case in this region suggests that different
dynamics are involved in the latter case. These could possibly be due

to resonance production. If one accepts this explanation then one may
Aeduce that correlations due to resonances between the two particles are
not only positive in sign but tend to be of large magnitude when compared
with negative correlations due to phase space and leading particle effects.
_ Hence, one would expecf any realistic model which tries to explain

correlation data to take into account resonance production.

Azimuthal Correlations

Another method for looking for possible correlations between particles
in multibody final states is through the study of the distribution of the

azimuthal angle defined as

1 2

5 b
T-I T
1Pr 1P,

¢ = Cos

where Py is the transverse momentum vector of the partic]e(]o).

If the two particle are uncorrelated then one would expect the ¢
distribution to be isotropic. However, kinematical effects, especially
energy-momentum conservation, can introduce anisotropy. The reflections
of these effects on the ¢ distributions are not simple to predict. This

severely 1imits the amount of information we can extract from the study



- 185 -

of such distributions. Again, we shall use the technique used previously
of comparing correlations between pairs of particles with the same masses‘
but different charge combinations, rather than trying to study absolute
correlations between these bartic]es. However, this method the problems
associated with different kinematical boundaries for the two particles
produced are not very important. For this reason here we can study
correlations between leading or non-leading particles in the same way.
Using this method we looked for possible correlations in the following

reactions: -

- + +
Kp+anm + X
> 4+ X

+
> T T + X

The ¢ distributions for the three reactions are shown in fig. (7-7).
Although all three distribuéions show some kind of anisotropy in that

more events populate the region of ¢ greater than 90 degrees than in the
region of ¢ less than 90 degreeé, the anisotropy is much stronger in the
nTn” case than in the other two cases. This behaviour confirms the effect
observed through the study of the correlation functions of these three
pairs of particles which indicated some different dynamical effécts between
a'n correlations on the one hand and nn and wimT on the other.

One simple explanation for this type of behaviour is that we expect
resonance production to play an important role in the observed correlations.
To get some clearer idea about such a possible case we divided our data
into two samples. The first sample included only those combinations with
effective mass in the p region, which was defined to be 0.62 < M(nw) < 0.88"
GeV. The othér sample contains all combinations outside this mass region.

The ¢ distributions for the two samples are shown in fig. (7-8). One can

observe that such a simple mass cut can produce a dramatic difference in
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the ¢ distributions between the two samples. This difference indicates

the existence of Etrong correlations between the two pions in the p indeed.
However, a problem ﬁith the p resonance is that it is wide and rather close
to the nm threshold. Hence, one is not qu{te sure whether the effect
observed is due to small values of the effective mass or whether it is

a distinguishabie effect associated with the p. To resolve this ambiguity
we show in fig. (7-8-c) the ¢ distribution for atn” combinations which

have effective masses smaller than 0.62 GeV. In this case one observes
that although there exists sdme anisotropy in the ¢ distribution for these
‘comb{nations, it is not as strong as that observed for those combinations
inside the po mass region. For this reason we tend to believe that the
anisotropy in the ¢ distribut%bn is strongly related to resonance
production. However, kinematical reflections tend to give some anisotropy
and, coupled with reflections from resonance production between pions and
other particles, may form a reasonable basis for explaining the observed

slight anisotropy in the ¢ distributions.

Cross Over Correlations

The method introduced in Chapter Four in connection with our
investigation of the seagull effect may be called a cross over method
of studying correlations. This is because we study correlations betweén
values of two kinematical variables belonging to two different particles.
Those two quantities were the longitudinal momentum of one particle versus
the transverse momentum of the other.

Another similar method of studying correlations between average values )
of transverse momentum of the two particles was used in ref. (11). We
tried this method for comparison with ours. Fig? (7~Q:)‘shows the average
transverse momentum of pions versus that of protons produced at 10 GeV/c.

It is clear that the values of transverse momentum of negative pions

are systematically higher than those of positive pions. Such behaviour can
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be explained through suppression of transverse momentum Qa]ues due to
resonance production and the associated seagull effect. The difference
in p% values extends over the whole range of p%(p). For this reason we
find it more useful to study this type of correlation in terms of x(p)
rather than p%(p) where more information can be obtained about the

kinematical region where suppression occurs. .

Summary and Conclusions

In this chapter correlations between non leading particles as well
as those between a leading and a non leading particle were studied
qualitatively. The results suggest possible strong correlations between
bartic!es due to resonance production effects. This is in contrast
with results obtained in ref. (12), where correlation between two leading
particles could be explained on kinematical bases without the need to have

any extra.reflections on correlations due to resonance production.
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TABLE CAPTION (7)

Values of the overall correlation for the reactions

s anything |

K"p '*.’IT+1T
K'p > m n + anything
K'p > ntn” + anything

at 10 and 16 GeV/c.
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TABLE (7-1)
Reaction C mb at 10.1 GeV/c C mb at 16 GeV/c
Kpram X 2,75 -1.87
Kp+nnt + X~ . -2.24 -2.17
Kp-an +X° +6.90 +1.54




(7-1)

(7-2)

(7-3)

(7-4)

(a)
(b)
(c)
(d)
(7-6)

(b)
(c)

(d) -
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FIGURE CAPTIONS (7)

Plots of the correlation function versus Ay = (y] - yz) for
the reaction K'p - n'n' + anything at 10 and. 16 GeV/c.

Plots of the correlation function versus Ay for the reaction
K'p+nnm +anything at 10 and 16 GeV/c.

Plots of the correlation function versus ay.for the reaction
K'p +.n+n- + anything at 10 and 16 GeV/c.

Plots of the correlation function versus Ay for the reaction
Kp ~ ot at 10 GeV/c when one n+ is produced with a centre
of mass rapidity y]‘where

y1, < ~-1.0

-1.0 < ¥ < 0.0

0.0 < ¥1 < 1.0

¥y > 1.0.

Plots of the correlation function versus Ay for the reaction
K'p + n n + anything at 10 GeV/c when one n~ is produced with

centre of mass rapidity A where

¥y < -1.0

:1.0 <y;<0.0 i
0.0 < Yy < 1.0

Y, > 1.0.

Plots of the correlation function versus Ay for the reaction
K'p » n*n~ + anything at 10 GeV/c when the ' is produced with
centre of mass rapidity Y1 where

¥y < -1.0

-1.0 < ¥q < 0.0

0.0 < yq < 1.0

yy > 1.0.
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(7-7) Plots of the distributions of the azimuthal angle ¢ between
the transverse momenta of the two pions in the reactions
()  K'p-nn + anything’
(b) K'p+an + anything
(¢)  Kp~an + anything
af 10 GeV/c.
(7-8) Azimuthal angu]ér distributions for the reaction K'p + T+
anything plotted as a function of the n'n~ effective mass.
(7-9) Plot of <p$(n)> versus <p$(p)> for the reactions K'p + pﬂ; +
anything. The solid and dotted lines represent <p$(n+)> and

<p$(n')> respectively.
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CHAPTER EIGHT

K® AND A° INCLUSIVE AND SEMI-INCLUSIVE PRODUCTION

Introduction

So far in our study we have treated inclusive reactions, in which
a K% or a A° are produced and detected, in the same way as we treated
other reactions involving, for example, pions. Although such treatment
is correct from an inclusive point of view, one may feel that it does
not teach us many things we would T1ike to know about the characteristic
features of strange particle production. It is our aim in this qhapter

to‘investigate some of these features in more detail.

Semi-Inclusive Reactions

In an earlier stage, arguments were brought in support of the
meaningfulness of the idea éf studying inclusive reactions. Those
arguments were mainly based on relatijons between inclusive and exclusive
cross-sections-and also on relations between these cross sections and
n - n amplitudes through the Mueller generalised optical theorem. However,
using those arguments only, one cannot achieve fu]] understanding of
particle interactions equivalent to that which follows from full analysis
of all exclusive channels unless one is in an ideal situation where one
can study all inclusive channels. In such an ideal situation full
understanding may come from either inclusive or exclusive analysis and
the éeparation between the two approaches from the experimental point of
view becomes rather artificial. Unfortunately, we are not in that ideal
situation and for this feason both types of reactions are being studied.

In bubble chamber experiments one feels that it is a pity to average:
over so many pieces of available information to study a lower order
inclusive reaction. In order to try to make more use of the information

available about each track in bubble chamber events, Koba, Nielsen and
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Olesen (KNO)(l) introduced the so called "Semi-inclusive reactions".

The simp]éét two forms of this type of reaction are

+
a+b->c+ (n-1) charged + Anything : (8.1.a)

a+b~>cd+ (n) charged + Anything . (8.1.b)

The advantage in studying this type of reaction is that one is using
information about the charged multiplicity of each event, and looking
for‘the dependence of cross sections on multiplicity. However, in this
case one is dealing with éross sections which do not form complete sets
of information from which e¥¢1usive or inclusive cross sections can be
derived. Furthermore, exclusive cross sections can be related to a
phenomenological picture related to 2-n body inelastic amplitudes and
inclusive cross sections can be related to the discontinuities in n-n
body elastic amplitudes through the Mueller generalised optical theorem '
while no such relations can be constructed for semi-inclusive cross .
sections.

Through lack of a theoreticaT picture to express semi-inclusive
cross sections, predictions about these cross sections have been made
starting with ordinary inclusive reactions. For such reasons one does
not expect semi-inclusive data to have a theoretical importance equal
to that enjoyed.by exclusive or inclusive data. However, such data may
be useful from an experimental point of view in yielding a quatitative
feeling about distributions of particles observed at different
multiplicities. This type of knowledge may help to a certain extent
in understanding some phenomenclogical pictures of partié]e interactions
at high energies.

For these reasons we decided to show data about semi-inclusive

7% and K° production and we shall try to discuss our results in terms
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of what we know about the inclusive cross section of these two

particles.

The KNO Scaling Formula

Koba, Nielsen and 01eson(]), who argued that if an inclusive
distribution of a particle produced at high energy shows some kind of
energy independence then one may expect the individual semi-inclusive
distributions of that particle té follow a simple formula at each

multiplicity. They suggest this scaling formula to have the general

form: -
Edon
35— (@ + b+ c +n charged + anything neutral) = on(s) h (X, P>
d Pe
n 1 .

where 0 is a term of the order of zero. In this relation <n> and n are
the average anq real multiplicity and o is the topological crossvsection
for the reaction at a given asymptotic energy s.

Because the 1ns (s) dependence produces very slow variation of cross
section with energy one would expect the méin s dependence to be due to
the variation of <n> with energy. In this case one might be able to check
the correctness of relation (8.2) using the two sets of semi-inclusive
cross sections derived from events involving k% and A° production. This
can be done through the use of our prior kﬁow]edge about thp way the
inclusive cross sections of these:two reactions béhé?e éé a'fuﬁétion of
eneré;. In these two reactions we have on the one hand the inclusive
cross section of K° which shows no significant energy dependence in our
energy range while on the other hand we have the A% inclusive cross
section which is falling rapidly with increasing energy. If relation .

(8.2) is valid, then one would expect the same kind of energy dependence
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in the corresponding semi-inclusive cross sections. This can be done
because <n> does not vary too much between our two energies and, hence,

for a given prong number n/<n> is nearly constant.

The Reaction K'p + K° + n charged + neutrals

In fig. (8—]) we present semi-inclusive cross sections in x normalised
by o for this reaction for different multiplicities at 10 and 16 GeV/c.
It can be seen from this figure that the shape of the distribution for
a given multiplicity at one energy tends to be similar to that at the
othér energy. Such behaviour is very much in agreement with what one
expects from relation (8.2) ;oup]ed with the fact that the K° inclusive
distribution discussed in Chabter Three does not show any strong energy
dependence between the two energies.

From our previous studies concerning correlations between particles
we have shown that such correlations do indeed exist. KNO have pointed
out that in their absence, relation (8.2) reduces to a simple form given
by:- |

3

Ed 9

= o f (X, prs S)
d3pc n T

where f(x, PT’ s) is the inclusive cross section of particle c.

It is true that the assumption of no corre]atiohs contradicts our
previous conclusions concerning their existence. However, it is useful
to check whether equation (8.2) is sensitive to such correlations.

From fig. (8-1) again one notices that a]thdugh distributions with
equal n values have the same shape at both energies they do change their
shape to a large extent as we move from one multiplicity to another.
Furthermore, all distributions at different multiplicities tend to have

shapes which are rather different from the inclusive R® distributions
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of fig. (3-4). This is not only a sihp]e check on the correctness of
relation (8.2) and its sensitivity to correlations, but can be taken
as a confirmation of our previous results concerning the existence of
these correlations. From this we may conclude that our semi-inclusive
K distributions are not in disagreement with relation (8.2) proposed

by KNO.

. The Reaction K'p + A% + n charged + neutrals

In contrast with the previous reaction where we had an energy
dependent inclusive cross-section in our energy range, as mentioned in
Chapter Three the inclusive cross-section for 2° falls off quite
significantly as the energy increases. In such a case one would expect
the same kind of energy dependence of the individual semi-inclusive cross-
sections at different multiplicities: i.e. scaling of semi-inclusive
cross sections is not éxpected to occur if relation (8.2) is a good
measure of the energy dependence of these cross sections.

In fig. (8-2) we show the topological semi-inclusive cross-sections
for this reaction. From this figure it is apparent that distributions
at different energies but for the same multiplicity tend to have different
shapes. §ca1ing does not occur. The different shapes of the normalised ’
semi-inclusive cross-sections tend to reflect the energy dependence of
two different exchange mechanisms inVO]vgd in the forward and backward
directions.” This is other evidence that what is called naive scaling
is not satisfied in this energy range which is in contrast with previous
results on A° inclusive production(z) between 4.2 and 10.1 GeV/c.

K2 and A° in the Triple Regge Limit

Comparison of inclusive cross sections of R® and A° produced in K'p
interaction at 14.2 GeV/c with predictions of the triple Regge formula

was carried out by Paler et a].(s).
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The results of their comparison showed that the triple Regge formula
(6-1) provides éood parametrization of the data. However, in their
case, they fitted only for the parameter «{t). Values of a(o) were
considered to be known. For their R® and backward A°, &(6) was assumed
fo be a meson trajectory intercept and o(o) was set to equal to 0.5.

For forward A°, a(o) was assumed to be equal to 0.0.

Study of triple Regge behaviour for these two particles in this
energy range is not as simple as the corresponding one for the AT case.
This is mainly because in these two cases we have non-exofic quantum
numgers in the missing mass. This leads to restrictions about the extent
to which one can employ the triple Regge formula. This is because for a
wide range of M values one has well known resonances while the assumptions
made to obtain the triple Regge formula involve asymptotic Regge behaviour
of a(t) b scattering. Such an assumption is valid only in the high mass
region.

Thus triple Régge fits in this energy range for such reactions if
successful are not on]yvgood support for the triple Regge parametrization
but may be considered as evidence for the applicability of semi-local

duality arguments(4)

if such fits are carried out using events in the
small MX region.

Another problem associated with the triple Regge parametrization of
these two reactions is that one cannot ekpect the trajectory derived in
each case to correspond to a pure exchange mechanism. What one actually
gets is an effective trajectory resulting from contributions from more

than one Regge trajectory. Thus one is not in a situation to make definite

conclusions about which trajectory is being exchanged in each case.

Triple Regge Parametrization of the X° Cross Sections

The x distributions for R° produced at our two energies shown in

fig. (3-4) show that only a few K%'s are produced in the backward direction.
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For this reason we cannot fit the triple Regge formula in the region of
small momentum transfer from the incident proton. Parametrization can be
performed on those R%'s produced in the K~ fragmentation region only.

The same kind of technique which was used in the A++rregge fits has
been used here. The missing mass distributions for different t ranges
between 0.0 and -0.6 (GeV/é)2 are shown in fig. (8-3) and these were fitted
with the triple Regge formula. Again the values of «(0) were obtained from
the s dependence at fixed values of Mi/s for each t range and in this case
again no significant dependence of a(o) on t was found.

‘Using these values of o(0) the Regge trajectory o(t) was calculated
from the Mx dependence for values of M between 1.5 and 2.5 GeV/c. The
dependence of a(o) and a(t) on t are shown in fig. (8-4) and fig. (8-5)
respectively. An eye-ball fit to a straight Tine through the values of

a(t) versus t yields a Regge trajectory given by

a(t) = 0.15 + 0.87 t.
!

The values of ;(o) are in agreement with a value of 1. within the
errors. This is expected if one assumes that «(o) is the intercept of the
pomeron trajectory which may indeed be the case if one is to expect the
observed early scaling in the RO single particle distribution. This is
not in agreement with the value of 0.5 for &(o) assumed in the triple Regge

fit of ref. (3).

Triple Regge Parametrization of A° Cross Sections

Unlike the x distribution for Ro, the corresponding one for 1% shows
cross sections in the forward and backward directions which are of the same
order'of magnitude. The cross section in the backward direction is somewhat
higher than in the forward direction. In this case one can study the

behaviour in two triple Regge 1imits corresponding to fragmentation regions
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of the proton and the kaon.

In both case§ we have used the same technidue employed previously.

The missing mass distributions for'different.regions in the momentum
transfer variables are shown in fig. (8-6) where for backward moving A%'s
the momentum transfer was taken to be that from the protons and in fig.
(8-7) where the momentum transfer was taken to be from the kaon for
forward moving 2°.

For backward moving A°'s results of fits for the parameters'&(o) and
a(t) for values of M between 1.5 - 2.5 GeV are shown in fig. (8-8) for each
t range. From this figure it is apparent that a(0) has no_significant
dependence on t. Furthermore, the average value of a(0) is in agreement
%&1th the value of 0.5 which is what one would expéct if «(0) is an intercept
of a meson trajectory. .The values of o(t) for different ranges in t give
a trajectory which seems to be in agreement with what one would expect if
one has K*(890) exchange. )

For forward moving A°'s one could not select on events withAAO produced
with very small squared four momentum transfers from the beam. This is |
‘because of the small number of events in the small t ranges. Thus we had
to use values of t up to 1.1 (GéV/c)Z. Tﬁe results of triple Regge fits in
this case are shown in fig. (8-9). The values of «(0) show no significant

dependence on t. Furthermore, these values are in agreement with what one

.would expect from 5] dependence of pp total cross-sections.

Polarization of A at 10 GeV/c
We have studied the average po]arization of inclusively produced a°
in our 10 GeV/c data. This was done using the polarization formula for

A° decay given by:

p = %f<Cos 8>

where p is the polarization and & is the angle between the direction of
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pion coming frém the A° decay and the original direction of the A° when
this angle is calculated in the 1° rest frame. o is the A decay parameter
which is known to be 0.62(5).

Such calculation could hot be done for A's produced at 16 GeV/c beﬁause
the data summary tape available did not contain measurements of the decay
trakcs and for this reason our calculation was confined to the 10 GeV/c data.

The polarization of A% as a function of the kinematical variables
X p%, t and M is shown in fig. (8-10). In this figure one notices that
the average polarization tends to have values which are slightly positive
for negative values of X. This polarization changes sign going to negative
values when x becomes positive. As a function of p% the polarization is
zero for small values of p% bécoming more negative toward higher Qﬁlues of
p%. This may be ré]ated to x dependence of the polarization through the
seagull effect because selection on events where the A% has small values of
p% increases the proportion of events produced in the small x region where
the-average polarization is ;ero. An overall small negative polarization
for large p% values comes from adding the positive polarization at negative
x to the larger-negative polarization at positive x.

The polarization changes sign as a function of t. It is negative for
very small values of t and becomes positive for t in the range‘of 0.2 GeVZ/cz.
For higher values of t the polarization is negative. Zero values for the
polarization are obtained for small values of the missing mass. However,
for values of M greater than 2.5 GeV the polarization becomes negative.

A11 the above effects are expected to be related. Whaf is most
interesting is the fact that the polarization shows a change of sign as we
go from negative to positive values of x. It was shown in a previous article
that fits performed using the triple Regge formalism gave different
trajectories which are assumed to be exchanged in the triple Regge 1limits
for the positive and negative x regions. The difference between the two sets
of trajectories exchanged may have something to do with the observed

polarization in the two regions. As far as we know, there are no theoretical



- 21 -

predictions about such polarization effects. However, Berger in his review
of inclusive phenomenology emphasizes that because the theoretical situation
is not clear, it is important to obtain data showing the approximate
magnitude and sign of the polarization in different kinematical regions.

Summary and Conclusions

In this chapter we dealt with some'aspécts of R and 1° production 1in
our experiments. Semi-inclusive cross sections for the production of these
two particles were presented and compared with KNO predictions. Triple Regge
analysis of these two reactions shows that the triple Regge formula produces
good parametrization of the data. Fﬁr R° production the value of a(0)
seems to be in disagreement with the assumption made in ref.(3). For the A°
case, although our statistics at 16 GeV/c are not very good the trajectories
obtained were in good agreement with baryon exchange for A° produced in the
forward direction and K* exchange for A° produced in the backward direction.
Polarization measurement reflect to some extent these two different exchange

mechanisms.
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FIGURE CAPTIONS (8)

Plots of the normalized semi-inclusive distributions in x for

the reaction K'p + K° + n charged + anything, Solid histograms
represent values of h(x) from the 10 GeV/c data, dotted histograms
represent the corresponding values of h(x) from the 16 GeV/c data.
Plots of the normalized semi-inclusive distributions in x for

the reaction K'p - £ +n charged + anything. Solid histograms
represent values of h(x) from the 10 GeV/c data, dotted histograms
represent the corresponding values of h(x) from the 16 GeV/c data.
Missing mass distributions for different t ranges for the reaction
K'p » RO + anything‘

at 10 GeV/c

at 16 GeV/c.

The solid curves represent results of fitting those distributions

~with the triple Regge formula.

Values of &(o) obtained from fitting the missing mass distributions
of fig.(8-3) with the triple Regge formula plotted versus t.

Values of o(t) obtained from fitting the distributions of fig.(8t3)
&ith the triple Regge formula plotted versus t. The solid Tine
represents an eye ball fitted trajectory.

Missing mass distributions for different tpAo ranges for the
reaction K'p » Agackward + anything at

10 GeV/c

16 GeV/c.

Solid curves represent results of fits using the triple Regge
formula.
Missing mass distributions for different typo ranges for the

reactions Kp + A + anything at

0
Forward
10 GeV/c

16 GeV/c.
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Solid curves represent results of fits using the triple Regge
formula.

(8-8) - .
(a) Values of «(0) obtained from triple Regge fits of the distributions

in fig.(8-6) plotted as a function of t.
(b) Values of o(t) obtained from triple Regge fits of the distributions
in fig.(8-6) plotted as a function of t. The solid line represents

*
the K Regge trajectory.

(a) Values of a(o) obtained from triple Regge fits of the distributions
in fig.(8-7) plotted as a function of t.
(b) Values of o(t) obtained from triple Regge fits of the distributions
in fig.(8-7) plotted as a function of t.
(8-10) Polarization of A°'s from the reaction Kp ~ 20 + anything plotted

as a function of x, p%, tpAO and missing mass.
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