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Abstract: We have used the varying physical constant approach to resolve the flatness problem in
cosmology. Friedmann equations are modified to include the variability of speed of light, gravitational
constant, cosmological constant, and the curvature constant. The continuity equation obtained with
such modifications includes the scale factor-dependent cosmological term as well as the curvature
term, along with the standard energy-momentum term. The result is that as the scale factor tends to
zero (i.e., as the Big Bang is approached), the universe becomes strongly curved rather than flatter and
flatter in the standard cosmology. We have used the supernovae 1a redshift versus distance modulus
data to determine the curvature variation parameter of the new model, which yields a better fit to the
data than the standard ΛCDM model. The universe is found to be an open type with a radius of
curvature Rc = 1.64 (1 + z)−3.3c0/H0, where z is the redshift, c0 is the current speed of light, and H0

is the Hubble constant.
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1. Introduction

While the Big-Bang cosmology has been successful in explaining most observables of the universe,
and has become arguably the most accepted theory since the discovery of microwave background
in 1964 by Penzias and Wilson [1], the inflation phenomenon proposed by Guth in 1981 [2–4] as
explanation for the flatness, horizon, and magnetic monopole problems remains rather contentious.
Within the purview of the Big Bang, several alternatives have been suggested to explain one or more
of these problems. We will mention only a few here to give a flavor of the alternatives proposed, as
our intent is not to review the field, but rather to explore if the recently proposed variable constants
approach [5] can resolve the flatness problem, especially since the approach was able to resolve three
astrometric anomalies and fit the SNe Ia redshift data better than the standard ΛCDM model.

An early review of the inflationary universe was written by Olive in 1990 [6], and an easy textbook
description was provided in chapter 10 by Ryden in 2017 [7]. Levine and Freese in 1993 [8] attempted
a possible solution to the horizon problem using the so-called MAD (massively aged and detained)
approach in the massless scalar theory of gravity. Their approach is based on the time-dependent
Planck mass without the dominance of dark energy that is pivotal in the inflationary cosmology. Hu,
Turner, and Weinberg [9] studied the dynamical solutions to the horizon and flatness problems, and
showed that in the context of scalar-tensor theories, the time-varying Planck mass cannot lead to a
solution of the horizon problem. They also pointed out that there is an apparent paradox in discussing
the horizon problem in the context of the Friedmann–Robertson–Walker (FRW) model, which has been
developed assuming the universe to be isotropic and homogeneous. While the modeling of a generally
inhomogeneous and anisotropic universe is very difficult, and any interpretation of solutions therefrom
is even more difficult [10,11], an easier approach is to consider the perturbation of the FRW model and
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explore if the inhomogeneity created by such perturbations is contained to the level of observations.
One could further question that even if the universe was causally connected, and thus homogeneous
and isotropic during the inflationary epoch, what kept the inhomogeneities from developing from the
time inflation ended

(
t ≈ 10−32s

)
to the time when cosmic microwave background (CMB) radiation

was emitted (t ≈ 380, 000 yrs ≈ 1013s) when the universe was no longer causally connected? More
recently, Singal has asserted that based on theories developed using FRW metric, which a priori assume
the universe to be homogeneous and isotropic, one cannot use homogeneity and flatness problems in
support of inflation [12].

While the horizon problem can be stated as ‘why there is a high level of isotropy and homogeneity
observed in CMB data when most of the universe could not possibly be causally connected’, the flatness
problem seeks to answer: ‘Why is the energy density of the universe so close to the critical energy
density (the latter, being the energy density, assuming the curvature term to be absent in the FRW
model, i.e. the universe to be flat) today, meaning that the universe is almost flat today—and why
it was even flatter in the past?’ [7]. This means that if we write the ratio of the energy density to its
critical energy density as Ω, then what we get in the FRW model is that if we have, say |1−Ω0| ≈ 0.005
now at time t = t0, then at Planck, time t = tP, |1−ΩP| ≈ 10−62!

Barrow and Magueijo have addressed the flatness and cosmological constant (Λ) problem with
an evolutionary speed of light theory in which the speed of light falls off with increasing cosmic
time [13,14]. Berera, Gleiser, and Ramos presented a quantum field theory warm inflation model for
solving the horizon and flatness problem wherein in the realm of the elementary dynamics of particle
physics, cosmological scale factor trajectories that originate in the radiation-dominated epoch enter an
inflationary epoch, and finally exit back to the radiation-dominated epoch, with significant radiation
throughout the evolution [15]. Lake has shown through a complete integration of Friedmann equations
that for Λ > 0, there exist nonflat FRW models for which Ω remains ∼ 1 throughout the entire history
of the universe [16]. Fathi, Jalalzadeh, and Moniz used quantum cosmology, based on the application
of the de Broglie–Bohm formulation in quantum mechanics to a spatially closed universe comprising
radiation and matter perfect fluids, to show that expanding the classical universe can emerge from an
oscillating quantum universe without singularity and without the horizon or flatness problems [17].
Using anisotropic scaling, which leads to a novel mechanism of generating scale-invariant cosmological
perturbations and resolution of the horizon problem without inflation, Bramberger et al. proposed a
possible solution of the flatness problem by assuming that the initial condition of the universe is set by
a small instanton respecting the same scaling [18].

In this paper, we show that the flatness problem is easily resolved by incorporating variable physical
constants in deriving the Friedmann equation from Einstein equations and the Robertson–Walker
metric. The continuity equation obtained with such modifications includes the scale factor-dependent
cosmological term as well as the curvature term, along with the standard energy-momentum term.
The result is that as the scale factor tends to zero (i.e., as the Big Bang is approached), the universe
becomes strongly curved rather than flatter and flatter in the standard cosmology. The approach used
here defers from that in reference [5] as follows: (a) we do not assume the curvature term to be zero;
and (b) the continuity equation is not artificially split into two continuity equations.

Section 2 develops the theoretical background of the approach used in this paper. Section 3
delineates the flatness problem. Section 4 discusses the resolution of the flatness problem using the
new approach. In Section 5, the curvature parameter is estimated by fitting the SNe Ia data. Section 6
is dedicated to results and discussions, and finally Section 7 narrates the conclusions reached herein.

2. Theory

Let us start with the Robertson–Walker metric with the usual coordinates xµ (ct, r, θ, φ) :

ds2 = c2dt2
− a(t)2[

dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2)] (1)
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where a(t) is the scale factor; K ≡ k/R2
c , with k determining the spatial geometry of the universe (k = −1,

0, +1 for open, flat, and closed, universe respectively), and Rc representing the spatial curvature of
the universe; and c is the speed of light. The Einstein field equations may be written in terms of the
Einstein tensor Gµν, metric tensor gµν, energy-momentum tensor Tµν, cosmological constant Λ, and
gravitational constant G, as [19]:

Gµν + Λgµν = −
8πG

c4
Tµν (2)

When solved for the Robertson–Walker metric, we get the following non-trivial equations:( .
a
a

)2

+
kc2

R2
c a2

=
8πGε

3c2 +
Λ
3

, (3)

( ..
a
a

)
+

1
2

( .
a
a

)2

+
1
2

kc2

R2
c a2

= −
4πGp

c2 +
1
2

Λ. (4)

Here, G is the Newton’s gravitational constant, ε is the energy density, Λ is the Einstein’s
cosmological constant, and p ≡ wε, with w as the equation of state parameter (0 for matter, 1/3 for
radiation, and −1 for Λ).

It is implicitly assumed in the above equations that the curvature of the universe scales as Rca.
If we relax this constraint, then Rc could evolve differently. In addition, it is assumed that c, G,
and Λ are constants, too. We would like to superficially relax these constancy constraints. Why
superficially? This is because the constraints should ideally be relaxed in the derivation of Equation (2)
from Einstein–Hilbert action. However, this is non-trivial, and no one has been able to do it to our
knowledge. Therefore, our formulation here should be considered phenomenological. It would be
interesting to know to what extent it differs from relativistically correct equations if and when they
are developed.

Let us define two composite constants (in reference [5], symbol K was used instead of J for G/c2;
here, we are using K for curvature parameter). J ≡ G/c2 and U ≡ c2/R2

c and relax the constancy
constraint on them as well as on Λ. J and U have no physical meaning. They are just to simplify the
writing of mathematical expressions. Together, they are containing three varying constants: G, c, and
Rc. We may now write Equation (3) as follows:

.
a2

=
8πJ

3
εa2 +

Λ
3

a2
− kU (5)

Differentiating it with respect to time t, we get:

2
.
a

..
a = 2a

.
a
(8πJ

3
ε+

Λ
3

)
+ a2

8π
3

.
Jε+

8π
3

J
.
ε+

.
Λ
3

− k
.

U. (6)

Dividing the above equation by 2a
.
a, we may write:( ..

a
a

)
=

8πJ
3
ε+

Λ
3
+

4π
3

(a
.
a

) .
Jε+

4π
3

(a
.
a

)
J

.
ε+

1
6

(a
.
a

) .
Λ − k

.
U
( 1

2a
.
a

)
. (7)

Equating it with
..
a/a in Equation (4) and rearranging, we get:

4πJε(1 + w) +
4π
3

J
.
ε
(a

.
a

)
+

4π
3

.
Jε

(a
.
a

)
+

.
Λ
6

(a
.
a

)
−

k
.

U
2a

.
a
= 0. (8)
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Multiplying by 3
4πJ

( .
a
a

)
, this equation becomes:

.
ε+

( .
a
a

)
(3 + 3w)ε+

.
J
J
ε+

1
8π

 .
Λ
J

− 3k
8πa2

 .
U
J

 = 0. (9)

This is the new continuity equation. If we assume the time dependence of ε and that all constants
are proportional to

.
a/a, we may write following Barrow [20]:

.
ε
ε
= s

( .
a
a

)
,

.
J
J
= j

( .
a
a

)
,

.
Λ
Λ

= l
( .

a
a

)
, and

.
U
U

= u
( .

a
a

)
, i.e., (10)

ε = ε0as, J = J0a j, Λ = Λ0al, and U = U0au. (11)

The continuity equation, Equation (9), may now be written as:

.
ε+ ε(3 + 3w)

( .
a
a

)
+

 .
J
J

ε+ 1
8π

 .
Λ
Λ

(Λ
J

)
−

3k
8πa2

 .
U
U

(U
J

)
= 0. (12)

In the standard ΛCDM model, J, Λ and U are constants; thus, the last three terms in the above
equation are zero. Thus, we get the usual continuity equation:

.
ε+ ε(3 + 3w)

( .
a
a

)
= 0. (13)

The solution of the equation is:
ε = ε0a−3−3w. (14)

Here, ε0 is the energy density at the current time t = t0. The substitution of Equation (13) in
Equation (12), and using Equation (10), we get the second continuity equation superimposed on
the first:

j
( .

a
a

)
ε+

l
8π

( .
a
a

)(
Λ
J

)
−

3ku
8πa2

( .
a
a

)(
U
J

)
= 0, (15)

which simplifies to (using Equation (11)):

8πε jJ + lΛ −
3ku
a2 U = 0, or 8πε0 jJ0a j−3−3w + lΛ0al = 3kuU0au−2. (16)

It yields, assuming exponents of a, the only time-varying parameter, which is equal to the following:

j− 3− 3w = l = u− 2 and 8πε0 jJ0 + lΛ0 = 3kuU0. (17)

The separation of the continuity equation, Equation (12), is tantamount to no direct sharing of the
energy between the components represented by Equation (13) and the components represented by
Equation (15). This is not acceptable if we wish to properly take into account the effect of the variation
of c, G, and Λ on the evolution of the universe. Therefore, we rewrite Equation (12) as:

.
ε
εε+ (3 + 3w)

( .
a
a

)
ε+

( .
J
J

)
ε+ 1

8π

( .
Λ
Λ

)(
Λ
J

)
−

3k
8πa2

( .
U
U

)(
U
J

)
= 0, or

s
( .

a
a

)
ε0as + (3 + 3w)

( .
a
a

)
ε0as + j

( .
a
a

)
ε0as + l

8π

( .
a
a

)(Λ0
J0

)
al− j
−

3ku
8π

( .
a
a

)(U0
J0

)
au− j−2 = 0 .

(18)

Dividing by
.
a
a and rearranging:

(s + 3 + 3w + j)ε0as +
l

8π

(
Λ0

J0

)
al− j
−

3ku
8π

(
U0

J0

)
au− j−2 = 0. (19)
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Therefore, this is the undivided continuity equation. Since a0 = 1, we get the following
constraining condition:

(s + 3 + 3w + j)ε0 +
l

8π

(
Λ0

J0

)
=

3ku
8π

(
U0

J0

)
. (20)

From Equation (19), if we would like the Λ term to be dominant in the past (over the radiation
term), i.e., when a→ 0 , then l− j < s, and if the curvature term is to be dominant, then u− j− 2 < s.
One simple solution is obtained when we consider s = l − j = u − j − 2. However, we will not be
limited to such a constraint.

3. Flatness Problem

We may rewrite Equation (3), with εΛ ≡ Λ/8πJ, as:

H(t)2
≡

( .
a
a

)2

=
8πJ

3
ε+

Λ
3
−

kU
a2 =

8πJ
3
ε+

8πJ
3
εΛ −

kU
a2 =

8π
3

JεT −
kU
a2 . (21)

Here, H(t) is the Hubble parameter, and εT = ε+ εΛ is the total energy density as it includes
the same due to Λ. From the definition of critical density, i.e., the density in a spatially flat universe
(k = 0):

εTc =
3

8πJ
H(t)2 , or

8πJ
3

=
H(t)2

εTc
, therefore H2

0 =
8πJ0

3
εTc,0, (22)

we may define the relative energy density Ω(t) at time t as:

Ω(t) ≡
εT(t)
εTc(t)

. (23)

We may rewrite Equation (21) using Equation (22) as:

H(t)2 =
8π
3

JεT −
kU
a2 = H(t)2

(
εT(t)
εTc(t)

)
− k

(U
a2

)
. (24)

Dividing by H(t)2 and rearranging, we get (recall that a0 ≡ 1):

1−Ω(t) = −
kU

a2H(t)2 , and (25)

1−Ω0 = −
kU0

H2
0

, (26)

Using Equation (21) and Equation (22), we may write:

H(t)2

H2
0

= 8π
3 JεT/

(
8π
3 J0εTc,0

)
−

kU
a2

(
3

8πJ0εTc,0

)
,

= a j

εTc,0

(
ε0as + Λ0

8πJ0
al− j

)
− kU0au−2

(
3

8πJ0εTc,0

)
,

= 1
8πJ0εTc,0

(
8πJ0ε0as+ j + Λ0al

− 3kU0au−2
)
.

(27)

Dividing Equation (25) by Equation (26) and rearranging, then using Equation (27), we have:

1−Ω(t) = (1−Ω0)
(

UH2
0

U0a2H(t)2

)
,

= (1−Ω0)au−2
(

H2
0

H(t)2

)
,

= (1−Ω0)au−28πJ0εTc,0/
(
8πJ0ε0as+ j + Λ0al

− 3kU0au−2
)

, or
1−Ω(a) = (1−Ω0)8πJ0εTc,0/

(
8πJ0ε0as+ j−u+2 + Λ0al−u+2

− 3kU0
)
.

(28)



Galaxies 2019, 7, 77 6 of 12

It may also be written in terms of the relative energy densities Ωε,0 = ε0/εTc,0,
ΩΛ,0 = Λ0/(8πJ0εTc,0) = εΛ,0/εTc,0:

1−Ω(a) = (1−Ω0)/
(
Ωε,0as+ j−u+2 + ΩΛ,0al−u+2 + (1−Ω0)

)
. (29)

As a check, it can be seen by referring to Equation (27) that the denominator on the right-hand
side of the above equation reduces to 1 at t = t0 because a(t0) ≡ 1 and Ω0 = Ωε,0 + ΩΛ,0.

When none of the constants are varying, so j = u = l = 0, and s = −3− 3w (from Equations (11)
and (14)), Equation (29) becomes:

1−Ω(a) = (1−Ω0)/
(
Ωε,0a−1−3w + ΩΛ,0a2 + (1−Ω0)

)
,

= (1−Ω0)a2/
(
Ωε,0a+1−3w + ΩΛ,0a4 + (1−Ω0)a2

)
.

(30)

As a→ 0 , we have 1−Ω(a)→ (1−Ω0)a in the matter-dominated universe, i.e., w = 0, and
1−Ω(a)→ (1−Ω0)a2 in radiation-dominated universe. In both the cases, 1 −Ω(t) is becoming
smaller and smaller as we approach the Big Bang, i.e., the universe is becoming flatter and flatter
linearly with the decreasing scale factor in the matter-dominated universe and quadratically in the
radiation-dominated universe. This indeed is the flatness problem.

4. Resolution of Flatness Problem

Let us focus on Equation (29). If we have s + j− u+ 2 = 0 and l− u + 2 = 0, then the denominator
reduces to 1 and thus, irrespective of the value of a, 1 −Ω(a) = (1−Ω0). If s + j − u + 2 > 0 and
l− u + 2 > 0, then the denominator keeps decreasing in absolute value with the decreasing scale factor
(assuming all relative densities have the same sign). Ultimately, at a = 0, the first two terms in the
denominator on the right-hand side vanish, and (1−Ω(t)) = 1; i.e., the universe become strongly
curved as the scale factor a approaches zero. However, if s + j − u + 2 < 0 or l − u + 2 < 0, then the
denominator keep increasing with the decreasing scale factor, and the flatness problem remains. Thus,
the flatness problem is resolved provided that s + j− u + 2 ≥ 0 and l− u + 2 ≥ 0. It should be noted
that the flatness problem is resolved even if ΩΛ,0 = 0.

One may ask if it is possible to determine the parameters s, j, u, and l. If we take s = −3− 3w
(Equation (14)), based on the split continuity equation, and j = 1.8 [5], we get (a) for radiation-dominated
epochs (i.e., w = 1/3), u ≤ −0.2 and l ≥ u − 2; and (b) for matter-dominated epochs, (i.e., w = 0),
u ≤ 0.8 and l ≥ u− 2.

Now, s , −3 − 3w, if we wish to keep the undivided continuity equation, i.e., Equation (19).
However, if we assume ΩΛ,0 = 0 (Einstein–de Sitter type model) and consider the curvature term to be
observationally very small at present and thus ignore it, we get from Equation (20), s = −3− 3w− j
rather than s = −3 − 3w obtained from the split continuity equation. This yields u ≤ −2 for
radiation-dominated epochs and u ≤ −1 for matter-dominated epochs. Since the ΩΛ,0 term is absent,
we don’t need to worry about l. Nevertheless, the limiting flatness conclusions remain unchanged.

The above reasoning only gives the high limits of u under various scenarios, and does not give
the actual value of the parameter. Let us see if u can be determined from the supernovae 1a redshift z
versus the distance modulus µ observational data [21] for 1048 extragalactic sources up to z ≤ 2.26.

5. Estimation of the Curvature Parameter u

Equation (27) may be written:
H(t)2

H2
0

= Ωm,0a−1.2 + Ωr,0a−2.2 + ΩΛ,0al + (1−Ω0)au−2 , or using Peebles convention [22]:

E2(z) ≡
H(z)2

H2
0

= Ωm,0(1 + z)1.2 + Ωr,0(1 + z)2.2 + ΩΛ,0(1 + z)−l + (1−Ω0)(1 + z)2−u , or (31)
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H(z) ≡
( .

a
a

)
= H0E(z). (32)

Now, the proper distance dP(t0) of a galaxy emitting the light is given by [7]:

dP(t0) =

∫ t0

te

c
(

dt
a(t)

)
=

∫ a0

ae

c
(

da
a

.
a

)
=

∫ a0

ae

c

 da

a2
( .

a
a

) . (33)

Since a = 1/(1 + z), da = −dz/(1 + z)2 = −a2dz, and c = c0a j = c0/(1 + z)1.8 [5], we may write
Equation (33) as:

dP(z) =
∫ z

0

 c0

(1 + z′)1.8

( dz′

H0E(z′)

)
=

(
c0

H0

) ∫ z

0

 dz′

(1 + z′)1.8E(z′)

. (34)

The luminosity distance dL(z) = (1 + z)dP(z) and the distance modulus µ = 5 log10(dL(z)) + 25
when distance is expressed in Mpc, i.e.:

µ = 5 log10

( c0

H0

) ∫ z

0

 dz′

(1 + z′)1.8E(z′)

+ 5 log10(1 + z) + 25. (35)

If we assume that the cosmological constant is an artifact that compensates the inadequacy of
a model, then we can try to fit data assuming ΩΛ,0 = 0. In addition, we know that Ωr,0 � Ωm,0.
Therefore, we may write:

E2(z) = Ωm,0(1 + z)1.2 + (1−Ωm,0)(1 + z)2−u. (36)

Substituting this in Equation (35) and fitting the SNe Ia data, we can obtain H0, Ωm,0 and u.
Several attempts have been made to solve Equation (35) analytically (e.g., Baes et al. [23] and

Zaninetti [24]) in a limited range of the redshift z. However, we have used the numerical integration
function ‘integral’ built in the MATLAB software to determine µ using Equation (35).

6. Results and Discussion

We have used the gold standard data of redshift versus distance modulus: the so-called Pantheon
sample comprising 1048 supernovae 1a in the range of 0.01 < z ≤ 2.26, which was compiled by Scolnic
et al. [21]. The data is in terms of the apparent magnitude, and we added 19.35 to it to obtain normal
luminosity distance numbers, as suggested by Scolnic [25].

The MATLAB curve fitting tool was used to fit the data by minimizing χ2, and the latter was used
for determining the corresponding χ2 probability [26] P. Here, χ2 is the weighted summed square of
residual of µ :

χ2 =
N∑

i=1

wi
[
µ(zi; H0, p1, p2 . . .) − µobs,i

]2
(37)

where N is the number of data points, wi is the weight of the ith data point µobs,i determined from the
measurement error σµObs,i in the observed distance modulus µobs,i using the relation wi = 1/σ2

µObs,i
, and

µ(zi; H0, p1, p2 . . .) is the model-calculated distance modulus dependent on parameters H0 and all the
other model-dependent parameters p1, p2, etc. As an example, for the ΛCDM models considered here,
p1 ≡ Ωm,0, and there is no other unknown parameter.

Then, we quantified the goodness-of-fit of a model by calculating the χ2 probability for a model
whose χ2 has been determined by fitting the observed data with the known measurement error, as
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above. This probability P for a χ2 distribution with n degrees of freedom (DOF), the latter being the
number of data points less the number of fitted parameters, is given by:

P(χ2, n) =

 1

Γ
(

n
2

) 
∫
∞

χ2
2

e−ss
n
2−1ds, (38)

where Γ is the well-known gamma function—that is, the generalization of the factorial function to
complex and non-integer numbers. The lower the value of χ2, the better the fit, but the real test of the
goodness-of-fit is the χ2 probability P; the higher the value of P for a model, the better the model’s fit
to the data. We used an online calculator to determine P from the input of χ2 and DOF [27].

Our primary findings are presented in Table 1. The unit of the Hubble constant H0 is km s−1

Mpc−1. The table includes the data fit results for the standard ΛCDM model for comparison with the
varying constant model, the latter being identified as the VcGU model (varying c, G, and U model).
The table shows that the goodness of fit is slightly in favor of the varying constant model. The results
are also compared graphically in Figure 1.

Table 1. Model parameters and goodness-of-fit parameters for the Λ CDM model the varying c, G, and
U (VcGU) model. The unit of H0 is km s−1 Mpc−1. P% is the χ2 probability in percent that is used to
assess the better fit model; the higher the χ2 probability P, the better the model fits to the data. R2 is the
square of the correlation between the response values and the predicted response values. RMSE is the
root mean square error. DOF: degrees of freedom.

Parameter/Model ΛCDM VcGU

H0 70.18 ± 0.43 70.65 ± 0.60
Ωm,0 0.2845 ± 0.0245 0.6309 ± 0.1103

u NA −2.938 ± 0.549
χ2 1036 1032

DOF 1046 1045
P% 58 61
R2 0.9970 0.9970

RMSE 0.995 0.994
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It should be mentioned that we are not trying to determine which model fits the SNe 1a data best,
as this has already been done in an earlier paper [28] Our attempt is to determine the u parameter of
the curvature by fitting the data.

We get u ≈ −3 from the table. Therefore, we may rewrite Equation (29) in the VcGU model as:

1−Ω(a) = (1−Ω0)/
(
Ωm,0a3.8 + (1−Ω0)

)
, (39)

in the matter-dominated universe, and in the radiation-dominated universe, as:

1−Ω(a) = (1−Ω0)/
(
Ωr,0a2.8 + (1−Ω0)

)
. (40)

If we constrain u = −3 in th VcGU model (against constraining k = 0 in the ΛCDM model), we
get H0 = 70.7 ± 0.45, Ωm,0 = 0.6428 ± 0.0221,χ2 = 1033, DOF = 1046, P% = 61, R2 = 0.997, and
RMSE = 0.9935. Thus, both the models now have two parameters, with the VcGU model still having a
slight edge over the ΛCDM model.

As a→ 0 , both the above expressions, Equations (39) and (40), tend to unity, i.e., the universe
was strongly curved in the past. By taking Ω0 = Ωm,0 = 0.63 from Table 1 for Equation (39), and
Ω0 = Ωr,0 = 9.0× 10−5 from Table 5.2 in reference [7], we get radiation density equal to matter density
at z ≈ 7000, which is determined by the relation:

Ωr,0a−4 = Ωm,0a−3, or Ωr,0(1 + z)4 = Ωm,0(1 + z)3. (41)

However, we can easily calculate from Equation (39), and see from Figure 2 displaying the plot of
1−Ω against a, that 1−Ω was almost unity within three decimal places at z = 15, i.e., well below the
redshift when radiation density equaled matter density. The flatness of the universe problem is thus
resolved: the universe is curved now and was strongly curved in the past.Galaxies 2019, 7, x FOR PEER REVIEW 9 of 11 
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We can also determine Rc,0 using Equation (26):

1−Ω0 = −
kU0

H2
0

= −
k

H2
0

 c2
0

R2
c,0

, or (42)

R2
c,0 = −

kc2
0

H2
0

(
1

1−Ω0

)
= −

k
1− 0.63

 c2
0

H2
0

 = −2.7k

 c2
0

H2
0

. (43)
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This expression shows that k must be negative (= −1) in order for Rc,0 to be real, i.e., the universe
is open with Rc,0 = 1.64c0/H0.

We will now determine how the radius of curvature Rc in Equations (3) and (4), which is embedded
in the parameter U, varies with the scale factor a. Now, U ≡ c2/R2

c , U = U0a−3 =
(
c2

0/R2
c,0

)
a−3 and

c = c0a1.8, and Rc,0 = 1.64c0/H0. Therefore, Rc = Rc,0a3.3 = 1.64(1 + z)−3.3c0/H0. This is presented in
Figure 3.
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Einstein introduced his most undesirable cosmological constant Λ to prevent the universe from
collapsing [29]. Currently, it represents the elusive dark energy in most cosmological models that is
needed to explain observables. The inflation theories require Λ to be 107 orders of magnitude larger
during inflation than in the current epoch. Additionally, it has to be turned on and off at appropriate
times: inflation started at t ≈ 10−36s and lasted for a period of about 10−34s [7]. The variable physical
constants model, and its extension by relaxing the usual constraint on the curvature of the universe to
evolve exactly as the scale factor, makes it possible to refrain from using the cosmological constant in
cosmological modeling.

One major objection to the current model is that the Einstein equations represented by Equation
(2) are not valid for the varying physical constants, especially the varying speed of light, and thus
Equations (3) and (4)—which are derived from it—are incorrect. Nevertheless, if we give Equations
(3) and (4) an identity independent of Equation (2), i.e., forget that they are derived from Equation
(2), we may then relax the constraint on any of the parameters in Equations (3) and (4), and consider
them empirical rather than theoretical. This then poses a challenge to theoreticians to show why
these equations fit the observables so well and avoid issues such as the flatness problem. Perhaps the
Einstein equations remain valid for variable speed of light except for the space-time regions that are
strongly curved due to extremely high energy density such as that in the black holes.

Another concern one would have is that many cosmological observations require for their
interpretation the constancy of the speed of light. It is not clear how the observations would modify if
c is allowed to vary. Nevertheless, we believe the redshift measurements used in this paper, as well
as the distance modulus derived from the luminosity measurements, are independent of the speed
of light.

7. Conclusions

The following are the conclusions:

1. The variable physical constant approach can naturally eliminate the flatness problem that has
been pervasive in most cosmological models.

2. The universe is open type, was strongly curved in the past, and is substantially curved at present
with a curvature 1.64c0/H0.
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3. The scaling of the curvature can be reliably determined by fitting the most recently available
supernovae 1a data; the new model fits the data better than the standard ΛCDM model.

4. The radius of curvature of the universe evolves differently than assumed in the standard model;
it evolves proportional to the a3.3.

5. The cosmological constant, and consequently the dark energy, is no longer required to save the
cosmos from collapsing.
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