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Abstract

The three-dimensional Chern-Simons gauge theory is a topological quantum field
theory, whose correlation functions give metric-independent invariants of knots and
three-manifolds. In this thesis, we consider a version of this theory, in which the gauge
group is taken to be a Lie supergroup. We show that the analytically-continued ver-
sion of the supergroup Chern-Simons theory can be obtained by topological twisting
from the low energy effective theory of the intersection of D3- and NS5-branes in the
type IIB string theory. By S-duality, we deduce a dual magnetic description; and
a slightly different duality, in the case of orthosymplectic gauge group, leads to a
strong-weak coupling duality between certain supergroup Chern-Simons theories on
R3. Some cases of these statements are known in the literature. We analyze how
these dualities act on line and surface operators.

We also consider the purely three-dimensional version of the psl(1|1) and the
U(1]1) supergroup Chern-Simons, coupled to a background complex flat gauge field.
These theories compute the Reidemeister-Milnor-Turaev torsion in three dimensions.
We use the 3d mirror symmetry to derive the Meng-Taubes theorem, which relates
the torsion and the Seiberg-Witten invariants, for a three-manifold with arbitrary
first Betti number. We also present the Hamiltonian quantization of our theories,
find the modular transformations of states, and various properties of loop operators.
Our results for the U(1]|1) theory are in general consistent with the results, found
for the GL(1]1) WZW model. We expect our findings to be useful for the construc-
tion of Chern-Simons invariants of knots and three-manifolds for more general Lie

supergroups.
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Chapter 1

Introduction

1.1 Topological Quantum Field Theory

A quantum field theory is called topological, if its observables do not depend on the
distances. For example, the partition function of such a theory in curved space does
not depend on the metric and produces a topological invariant!. Such theories are
almost trivial in the sense that they do not contain any propagating particles. Never-
theless, they have important applications both in physics and in mathematics. In the
real world, these theories describe low-energy limits of gapped systems, and therefore
are relevant for the classification of quantum phases of matter. In mathematics, the
topological quantum field theory (TQFT) methods have by now become a standard
part of topology.

Presumably the first example of a TQFT was considered by A. Schwarz [3] in the

late seventies. It is a free, non-interacting theory with the action
I = /d3x "’ A,0,A,, (1.1)

where A, is a gauge field in three dimensions and €**” is the antisymmetric tensor.
(To be precise, [3| also considers slightly more general theories.) The action (1.1)

is independent of the space-time metric, and is invariant under general coordinate

'We will not try to make our terminology very precise. What we call “topological invariant” can

depend on the choice of a smooth structure, as well as on some other choices.



transformations. The theory can be defined on an arbitrary three-manifold W. Since
the functional integral with this action is Gaussian, the partition function is simply
the inverse of the square root of the determinant of the kinetic operator. To define
this determinant, one first needs to fix the usual gauge invariance A, — A, + 0,0
The gauge-fixing condition necessarily depends on the metric of the manifold, but,
as one would expect on physical grounds, this dependence drops out of the partition
function. As found in [3], the topological invariant that one gets in this way is what
is known as the Ray-Singer torsion, or, equivalently, the combinatorial Reidemeister
torsion. A close analog of this theory will be the subject of chapter 3 of this thesis.
Here we would like to briefly discuss some other classical examples of topological
theories, which will be important for the present thesis. The three-dimensional Chern-

Simons theory is a gauge theory with the action

k

"~ or

4 a a 1 a C
I A3z e (AM&,Ap + §fabcAuAl;Ap) , (1.2)

where A7}, is a gauge field for some gauge group G, fue are the structure constants, and
k is a coupling constant, which in general has to satisfy some quantization condition,
for the path-integral to be gauge-invariant. If the gauge group is U(1), the action
clearly reduces to (1.1). Again, the action is metric-independent, and therefore one
expects the theory to be topological, provided that it can be regularized in an invariant
way. The interesting observables in this theory are Wilson lines for external particles
charged under the gauge group GG. For example, one can consider a closed Wilson
loop, located along some knot in R? or in the three-sphere S®. It has been shown in
the foundational paper [4] that the expectation value of such a Wilson loop is the knot
invariant, which is known as the Jones polynomial. (This statement applies to the case
of gauge group SU(2) and Wilson operators in the two-dimensional representation.
For other groups and representations, the polynomials have different names.) Tt is
a Laurent polynomial in the variable ¢'/2 = exp(mi/k), and it can be computed for
any given knot by a simple algorithm. It is a topological invariant, in the sense that
two knots with different Jones polynomials cannot be continuously deformed into one

another without cutting the line. (The opposite, unfortunately, is not true: two knots



Figure 1.1: The right-handed trefoil knot.

with the same Jones polynomial need not be identical.) To give an example, for the
trefoil knot, shown on fig. 1.1, the polynomial is P eon = ¢/?(—¢* +¢* +¢q+1), while
for the unknot it is Pkt = ¢/ 4+ ¢~ /2. These two are different, and the trefoil,
indeed, cannot be deformed into the unknot.

The polynomials above have integer coefficients, and the same is true for all Chern-
Simons knot polynomials. This, definitely, is a very unusual structure for Wilson loop
expectation values in a quantum field theory. Mathematically, the integrality of the
coefficients can be explained by the existence of another knot invariant, the Khovanov
homology [5]. To a given knot K it associates a vector space Hy, which is bigraded,
that is, it has a decomposition into a sum of eigenspaces of two operators F' and N.

The Jones polynomial can then be obtained as a trace,
Prc(q) = Try,e (—1)7¢". (1.3)

The coefficients of the polynomial are dimensions of subspaces inside Hy, and there-
fore are integers. Note that the Khovanov homology in general contains more infor-
mation than the Jones polynomial, since in taking the trace in (1.3), the eigenvalues
of F' are relevant only modulo two.

To find a physical interpretation for the Khovanov homology, one needs to con-
struct a four-dimensional TQFT, in which one can define surface operators. (A surface
operator is an operator, which is supported on a two-dimensional subspace, like a Wil-
son line is supported on a one-dimensional subspace.) Suppose that this TQFT is

considered on a four-manifold R; x W, where R; is understood as the time direction,



and suppose we add a surface operator, supported on R; x K, that is, stretched along
the time direction and along the knot K C W. The Hilbert space of such a topo-
logical theory is a vector space, which is naturally a topological invariant of W and
K, and, assuming the existence of two conserved charges F' and N, has a chance to
coincide with the Khovanov homology. Suppose that such a theory is put on S x W.
The partition function on this manifold is a trace over the Hilbert space, and, with an
insertion of operators (—1)¥¢", would coincide with (1.3). (The trace in the partition
function should normally contain the operator exp(iT'H ), but the Hamiltonian H of
a topological theory is zero.) Therefore, the topological theory in question, upon
compactification on a circle, should reduce to the Chern-Simons theory. The TQFT
with these properties has indeed been constructed? in [6].

Besides Chern-Simons theory, another extremely important example of a TQFT
is the Donaldson theory in four dimensions. It can be obtained from the N' = 2
supersymmetric Yang-Mills theory by putting it on a curved four-manifold V' in a
suitable way [7]. Although the Yang-Mills theory has an explicit dependence on the
space-time metric, it contains a subsector, singled out by the condition of invariance
under a particular fermionic charge Q, in which the correlation functions are metric-
independent and define a topological theory. The path-integral in such a theory can
be reduced to an integral over the subspace of Q-invariant field configurations. In the
case of the Donaldson theory, these are instantons, that is, gauge fields with self-dual
field strength. Modulo gauge transformations, this space is finite-dimensional. The
mathematicians formulate the Donaldson theory in terms of the intersection theory
on this finite-dimensional space.

The N = 2 super Yang-Mills theory has a moduli space of vacua, where the gauge
group is partially spontaneously broken by an expectation value of an adjoint-valued
Higgs field. The theory is asymptotically-free, and therefore at long distances flows
to strong coupling, if the expectation value of the Higgs field is not large compared
to the Yang-Mills dynamical scale. Usually, it is hard to produce any analytical

results for a strongly coupled theory, nevertheless, the exact action for the low-energy

2For other physical approaches to the Khovanov homology, see [8] and references in [6].



effective description of the N’ = 2 super Yang-Mills theory has been found [9], [10].
This allowed to construct an alternative description of the Donaldson invariants [11].
Indeed, the observables of the topological theory do not depend on the metric, and
in particular do not change, if we rescale the metric by a large factor, so that the
large-distance effective description of the theory becomes valid. The formulation of
this alternative description of the Donaldson theory, known as the Seiberg-Witten

invariants, was a major success of topological quantum field theory.

1.2 Overview Of The Thesis

The main subject of the present thesis is the Chern-Simons theory in three dimensions,
but with the unusual feature that the gauge group is taken to be a Lie supergroup,
rather than an ordinary Lie group.

Chapter 2 of this thesis is based on the paper [1]|, written in collaboration with
Edward Witten. We define and study the analytically-continued version of the super-
group Chern-Simons theory. In the context of ordinary Chern-Simons, the analytical
continuation was developed in [12], [13], [6]. It allows to continue the theory to
non-integer, and in general even complex values of the level k. This is achieved by
defining the path-integral with unusual middle-dimensional integration cycle in the
space of complexified fields. To ensure convergence of the integral, the integration
cycle is constructed as a Lefschetz thimble for the Morse function, which is taken
to be the real part of the action of the theory. The coordinate parameterizing the
Morse flow becomes a new direction in the space, so that the topological theory for
the analytically-continued Chern-Simons is essentially four-dimensional. It turns out
to be equivalent [6] to the N' = 4 super Yang-Mills theory in a half-space, with the
Kapustin-Witten twist [14]. In this thesis, we generalize these results to the case of
the supergroup Chern-Simons theory. The topological theory in question is obtained
by twisting the theory of the D3-NS5 brane intersection. After explaining this con-
struction, we apply various string theory dualities to obtain alternative descriptions

of the theory. In particular, we show that the supergroup Chern-Simons invariants



can be computed by solving the Kapustin-Witten partial differential equations in the
four-dimensional space with a particular three-dimensional defect. We study line and
surface operators and their transformations under the S-duality.

An interesting application of our construction arises for the case when the gauge
group is taken to be the orthosymplectic supergroup. We point out that the trans-
formation ST'T'S of the SL(2,Z) S-duality group relates the analytically-continued
Chern-Simons theories with gauge groups OSp(2m +1|2n) and OSp(2n+ 1|2m). The
variable in the knot polynomials is changed as ¢ — —q under the duality. Since the
weak coupling limit corresponds to g ~ 1, the duality that we find relates the weak
and the strong coupling regimes. We find the transformations of line and surface
operators under this duality, and in particular obtain a natural correspondence be-
tween non-spinorial representations of the two Lie supergroups. Our results provide
a conceptual physical explanation to some known mathematical relations between
quantum orthosymplectic supergroups [16], corresponding knot invariants [15]| and
supergroup conformal field theories [17].

Chapter 3 of this thesis is based on the paper [2]. We consider Chern-Simons
theories based on Lie superalgebras ps((1]|1) and u(1]|1). We show that they can be
coupled to background flat complex gauge fields. With this coupling, these theories
compute the invariant of three-manifolds, which is known as the Reidemeister-Milnor-
Turaev torsion. We point out that the U(1|1) theory at level k can be obtained by
an RG flow from the twisted version of the A = 4 QED with one flavor of charge k.
The background flat gauge field comes from a background twisted vector multiplet,
whose scalar component defines the FI parameter of the theory in the flat space. The
supersymmetric partition function of the QED can be localized on the solutions of the
three-dimensional Seiberg-Witten equations. This gives a physical explanation to the
theorem of Meng and Taubes [20], which relates the Milnor torsion and the Seiberg-
Witten invariants in three dimensions. Our story is in a sense a toy version of the
relation between the Donaldson and the Seiberg-Witten invariants in four dimensions,
except that here the Seiberg-Witten equations arise in the UV, and not in the IR. For

manifolds with small first Betti number, we discuss the matching of the wall-crossing



phenomena in the UV and in the IR theories.

We also construct the Hamiltonian quantization of the ps((1|1) and the U(1]1)
Chern-Simons theories. In particular, the skein relations for the multivariable Alexan-
der polynomial are derived. We illustrate some subtleties that are expected to be
important in the quantization of more general supergroup Chern-Simons theories.
Our findings are in general agreement with the results, obtained from conformal field
theory, however, in this thesis we do not attempt to derive a relation of the super-
group Chern-Simons theories and the WZW models. Finally, we present some brane
constructions, realizing the supergroup Chern-Simons theories for general unitary and

orthosymplectic gauge groups, and look at possible dualities for those theories.



Chapter 2

Branes And Supergroups

2.1 Introduction

In this Chapter, we consider the analytically-continued version of the Chern-Simons
theory with a supergroup. We take an approach, which has been developed in [6] for
the case of the ordinary Chern-Simons theory. Let us first give a brief overview of

that paper.

2.1.1 Overview Of Previous Work

In the paper [6], the Chern-Simons theory was engineered by a brane construction in
type IIB string theory. Consider a stack of n D3-branes, ending on an NS5-brane.
The theory on the worldvolume of the D3-branes is the N' = 4 super Yang-Mills with
gauge group U(n). One can construct a cohomological TQFT out of it, by making
the Kapustin-Witten topological twist [14]. The boundary conditions along the end
of the D3-branes on the NS5-branes preserve the topological supercharge Q. The
topological theory can then be put on an arbitrary four-manifold M with a three-
dimensional boundary W with these boundary conditions. The action turns out to

be
I:/{Q,V}Jrﬁ/ Tr (.A/\d.A—l-g.A/\.A/\A). (2.1)
M A Jw 3



Here K is a certain complex-valued function of gyy and Oy that will be described
later.! Also, A is a complexified version of the gauge field, roughly A, = A, + i¢,,
where A, is the ordinary gauge field and ¢,, denotes some of the scalar fields of N' = 4
super Yang-Mills theory (which scalar fields enter this formula depends on the choice
of Q). The details of the functional V" are inessential. Forgetting the scalar field ¢ for
a moment, what is written as the Chern-Simons term in (2.1) is really the topological
term of the Yang-Mills gauge field in the bulk. Writing it as a Chern-Simons term
is correct only as long as one considers small variations of the gauge field. The fact
that it is really the bulk topological term means that X need not be an integer for
the path-integral to be gauge-invariant.

If we restrict to Q-invariant observables, localized on the three-dimensional bound-
ary W, the theory with the action (2.1) will actually reproduce the Chern-Simons
theory. One important subtlety is that the gauge field is complexified. In fact, as
explained in much detail in [12], the four-dimensional topological theory in question
is in general equivalent to the Chern-Simons theory with an unusual integration cycle
in the path-integral. The middle-dimensional integration cycle in the space of com-
plexified gauge fields can be found by solving the Kapustin-Witten equations along
the bulk coordinate, normal to the boundary. Those equations in fact define a gra-
dient flow, with the Morse function being the real part of the action of the theory.
The integration cycle then is a Lefschetz thimble. This guarantees that the real part
of the action is bounded from below, and the path-integral is convergent. In this
thesis, we will mostly try to stay away from the subtleties, related to the choice of
the integration contour.

The realization of the (analytically-continued) Chern-Simons theory by a simple
brane construction in [6] allowed to apply various string theory dualities, and thus
to obtain alternative descriptions of the theory. For example, applying the S-duality,
one finds the theory of D3-branes ending on a D5-brane. The corresponding bound-
ary condition in the N = 4 super Yang-Mills is known to be the Nahm pole [21].

IThis function is denoted ¥ in [6, 14]. In the present chapter, we call it K because of the analogy

with the usual Chern-Simons level k.



NSH
D3

D3

Figure 2.1: An NS5-brane with m D3-branes ending on it from the left and n from the
right — sketched here for m = 3, n = 2. The D3-branes but not the NS5-brane extend in
the x3 direction, which is plotted horizontally, and the NS5-brane but not the D3-branes
extend in the x4 56 directions, which are represented symbolically by the vertical direction

in this figure.

For this reason, the S-dual, “magnetic” description of the Chern-Simons theory is
inherently four-dimensional. The path-integral of that theory can be localized on
the solutions of the Kapustin-Witten equations with the Nahm pole boundary con-
dition. The space of these solutions is in general discrete. As checked explicitly in
[74], counting the solutions reproduces correctly the knot polynomials, with signed
counts of the solutions as coefficients. This can be considered as a vast generalization
of the theorem of Meng and Taubes [20], which relates the U(1]|1) knot polynomials
with the three-dimensional Seiberg-Witten invariants. (This special case will be the
subject of Chapter 3 of this thesis.)

By applying further a T-duality, one obtains a D4-D5 configuration, and thus a
five-dimensional topological field theory in a half-space. It has been conjectured in
[6] that the space of supersymmetric ground states in this theory gives a physical

realization of the Khovanov homology.

2.1.2 The Two-Sided Problem And Supergroups

In this Chapter, we extend the construction of [6] to the case of Chern-Simons theory
with a supergroup. We mainly focus on the U(m|n) and the OSp(m|2n) supergroups,
for which there exist explicit brane constructions, but our arguments work for other

supergroups as well.
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We consider the brane configuration of fig. 2.1, with m and n D3-branes on the
two sides of the NS5-brane. In field theory, this corresponds to U(n) and U(m)
maximally-supersymmetric Yang-Mills theories in two half-spaces, joined along a
three-dimensional defect. We prove that the action of the theory is given by the same
formula (2.1), with an important difference that the gauge field A is now superalgebra-
valued. Namely, it is a sum of a u(n) @ u(m)-valued bosonic gauge field, which is
obtained by restriction of the bulk gauge fields on the defect W, and a Grassmann
one-form field, valued in the bifundamental representation of U(m)x U(n). Therefore,
in this two-sided brane configuration, the topological field theory living on the defect
is the U(m|n) supergroup Chern-Simons theory.

This supergroup theory has some peculiarities, which one does not find in the
ordinary, bosonic Chern-Simons. We give a brief review of Lie superalgebras and
their representations, and then discuss line and surface operators that can be used to
define knot invariants in the theory, and some of their properties.

After that we consider some applications. First, as in [6], we apply S-duality and
get a description of the theory in terms of the N' = 4 Yang-Mills with a D5-type three-
dimensional defect. We call this theory “magnetic”’, while the theory before S-duality
is called “electric”. The path-integral here can be computed by counting solutions of
the Kapustin-Witten equations. This, in principle, gives a way to compute supergroup
knot polynomials, though many details remain unclear. We also identify the duals of
line and surface operators, found in the electric theory.

Our most interesting application arises for the gauge supergroup OSp(2m +1|2n).
This theory can be realized by essentially the same brane construction, but with
an addition of an orientifold three-plane. We find that the element S™'T'S of the
SL(2,Z) S-duality group transforms this theory into supergroup Chern-Simons with
gauge group OSp(2n + 1|2m). In the special case of m = 0, this is a duality of
supergroup OSp(1|2n) Chern-Simons and ordinary, bosonic O(2n + 1) Chern-Simons
theory. The variable ¢ in the knot polynomials is mapped under the duality to —q.
Note that the weak coupling limit is ¢ — 1, so, our duality exchanges the weak and the

strong coupling regimes. Again, we describe the mapping of line and surface operators

11



under the duality. In particular, this mapping involves an interesting correspondence
between representations of the two supergroups. For the case m = 0, this mapping

was known in the literature [71].

2.2 Electric Theory

2.2.1 Gauge Theory With An NS-Type Defect

As explained in the introduction, our starting point will be four-dimensional N = 4
super Yang-Mills theory with a three-dimensional half-BPS defect. This theory can
be defined in purely gauge-theoretic terms, but it will be useful to consider a brane
construction, which gives a realization of the theory for unitary and orthosymplectic
gauge groups. We consider a familiar Type IIB setting [36] of D3-branes interacting
with an NS5-brane. As sketched in fig. 2.1 of the introduction, where we consider
the horizontal direction to be parametrized by? y = z3, we assume that there are m
D3-branes and thus U(m) gauge symmetry for y < 0 and n D3-branes and thus U(n)
gauge symmetry for y > 0. We take the NS5-brane to be at 3 = 17 = 13 = 19 = 0
and hence to be parametrized by xg, x1, z9 and x4, x5, x5, while the semi-infinite D3-
branes are parametrized by xg, x1, x9, x3. With an orientifold projection, which we will
introduce in section 2.5, the gauge groups become orthogonal and symplectic. Purely
from the point of view of four-dimensional field theory, there are other possibilities.

The theory in the bulk is N' = 4 super Yang-Mills, and it is coupled to some
three-dimensional bifundamental hypermultiplets, which live on the defect at y = 0
and come from the strings that join the two groups of D3-branes. The bosonic fields
of the theory are the gauge fields A;, the scalars X that describe motion of the
D3-branes along the NS5-brane (that is, in the w4, x5,z directions), and scalars Y
that describe the motion of the D3-branes normal to the NS5-brane (that is, in the
x7,Tg, Tg directions).

The relevant gauge theory action, including the effects of the defect at y = 0, has

2Throughout the chapter, notations y and x3 are used interchangeably for the same coordinate.
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been constructed in the paper [23]. In this section we recall some facts about this
theory, mostly without derivation. More detailed explanations can be found in the
original paper [23] or in the more technical Appendix B below, which is, however, not
necessary for understanding the main ideas of the present chapter.

The half-BPS defect preserves N = 4 superconformal supersymmetry in the three-
dimensional sense; the corresponding superconformal group is OSp(4|4). Tt is im-
portant that there exists a one-parameter family of inequivalent embeddings of this
supergroup into the superconformal group PSU(2,2|4) of the bulk four-dimensional
theory. For our purposes, it will suffice to describe the different embeddings just
from the point of view of global supersymmetry (rather than the full superconfor-
mal symmetry). The embeddings differ by which global supersymmetries are pre-
served by the defect. The four-dimensional bulk theory is invariant under the product
Up = SO(1,3) x SO(6)g of the Lorentz group SO(1,3) and the R-symmetry group
SO(6)g (or more precisely, a double cover of this associated with spin); this is a
subgroup of PSU(2,2/|4). The three-dimensional half-BPS defect breaks U, down
to a subgroup U = SO(1,2) x SO(3)x x SO(3)y; this is a subgroup of OSp(4[4).
Here in ten-dimensional terms, the two factors SO(3)x and SO(3)y of the unbroken
R-symmetry subgroup act by rotations in the 456 and 789 subspaces, respectively.
(SO(6)g is broken to SO(3)x x SO(3)y because the NS5-brane spans the 456 di-
rections.) Under Uy, the global supersymmetries transform in a real representation
(2,1,4)®(1,2,4). Under U this becomes Vz @V, where V4 is a real eight-dimensional
representation (2,2,2) and V5 is a two-dimensional real vector space with trivial ac-
tion of U. An embedding of OSp(4|4) in PSU(2,2|4) can be fixed by specifying which
linear combination of the two copies of Vg is left unbroken by the defect; these un-
broken supersymmetries are of the form Vg ® €y, where ¢y is a fixed vector in V5.
Up to an irrelevant scaling, the choice of ¢ is parametrized by an angle that we will
call ¥. This angle in turn is determined by the string theory coupling parameter
T =1i/gs + 0/27, which in field theory terms is 7 = % + egf—ﬂM. The relation can be
found in the brane description, as follows. Let 1 and g5 be the two ten-dimensional

spinors that parametrize supersymmetry transformations in the underlying Type I1B
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theory. They transform in the 16 of the ten-dimensional Lorentz group Spin(1,9), so
Lotz 06 =&, 1=1,2, (2:2)

where ['g12._ 9 is the product of the SO(1,9) gamma-matrices I';, I=0,..., 9. The

supersymmetry that is preserved by the D3-branes is defined by the condition
g9 = Do12361 5 (2.3)
while the NS5-brane preserves supersymmetries that satisfy
g1 = —To12as6(sine; — cos I eq) , (2.4)
where the angle 9 is related to the coupling parameter 7 by
¥ = arg(T). (2.5)

(When cos? = 0, (2.4) must be supplemented by an additional condition on &5.)
Altogether the above conditions imply

(Bysind + By cos)e; = ¢, (2.6)

where By = 'sy56 and By = ['3789 are operators that commute with the group U and
thus act naturally in the two-dimensional space V5. The solutions of this condition
are of the form €, = e ® ey, where ¢ is any vector in Vg, and g¢ is a fixed, ¥-dependent
vector in V5. These are the generators of the unbroken supersymmetries.

It will be useful to introduce a new real parameter I and to rewrite (2.5) as
7 =Kcosve. (2.7)

The motivation for the notation is that I generalizes the level k£ of purely three-
dimensional Chern-Simons theory. For physical values of the coupling 7, one has
Im 7 > 0; this places a constraint on the variables K and 4. In the twisted topological
field theory, I will turn out to be what was called the canonical parameter W in [14].

In general, let us write GG, and G, for the gauge groups to the left or right of
the defect. From a purely field theory point of view, G, and G, are completely
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arbitrary and moreover arbitrary hypermultiplets may be present at x5 = 0 as long

3 However, as soon as Oyy # 0, Gy and G, and the

as ReT = Oy /27 vanishes.
hypermultiplet representation are severely constrained; to maintain supersymmetry,
the product G, x GG, must be a maximal bosonic subgroup of a supergroup whose
odd part defines the hypermultiplet representation and whose Lie algebra admits an
invariant quadratic form with suitable properties. These rather mysterious conditions
[23] have been given a more natural explanation in a closely related three-dimensional
problem [24]; as explained in the introduction, our initial task is to generalize that
explanation to four dimensions. We denote the Lie algebras of G, and G, as g, and g,,
and denote the Killing forms on these Lie algebras as x, and k,.; precise normalizations
will be specified later. We will loosely write —tr(...) for x; or k.. We also need a
form k = —ky + K, on the direct sum of the two Lie algebras. This will be denoted
by —Tr(...). The gauge indices for g, & g, will be denoted by Latin letters m, n, p.
As already remarked, from a field theory point of view, as long as fyy = 0, the
defect at y = 0 might support a system of N hypermultiplets transforming in an
arbitrary real symplectic representation of Gy x G,.. A real symplectic representation
of Gy x G, is a 4N-dimensional real representation of G, x GG,., equipped with an action
of SU(2) that commutes with G, x G,. (In the context of the supersymmetric gauge
theory, this SU(2) will become part of the R-symmetry group, as specified below.)
This representation can be conveniently described as follows. Let R be a complex 2/N-
dimensional symplectic representation of G, x G, with an invariant two-form wy;.
We take the sum of two copies of this representation, with an SU(2) group acting
on the two-dimensional multiplicity space, and impose a G, x G, x SU(2)-invariant
reality condition. This gives the desired 4N-dimensional real representation. We
denote indices valued in R as I, J, K, we write T/ ; for the m™ generator of Gy x G,
acting in this representation, and we set 7,,;; = T ,wgy, which is symmetric in I,.J

m

(and is related to the moment map for the action of Gy x G, on the hypermultiplets).

3The gauge couplings 7, and the angles ¥, can also be different at y < 0 and y > 0, as long
as the canonical parameter K in eqn. (2.7) is the same [23]. For our purposes, this generalization is

not important.
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As remarked above, for 0y # 0, the representation R is highly constrained. It turns
out that a supersymmetric action for our system with 6y, # 0 can be constructed if
and only if

Tm(1JTK)snk"" = 0. (2.8)

This condition is equivalent [23] to the fermionic Jacobi indentity for a superalgebra
sg, which has bosonic part g, @ g,, with fermionic generators transforming in the rep-
resentation ‘R and with k@w being an invariant and nondegenerate graded-symmetric
bilinear form on sg; we will sometimes write this form as —Str(...). Concretely, if
we denote the fermionic generators of sg as f;, then the commutation relations of the

superalgebra are

[Tm’Tn] = SmTSa
[T, f1] = T [ (2.9)

{f]7 fJ} - TmIJHTnnTn-

A short though admittedly mysterious calculation shows that the Jacobi identity
for this algebra is precisely (2.8). As already remarked, the closest to an intuitive
explanation of this result has been provided in [24], in a related three-dimensional
problem. We will write SG for the supergroup with superalgebra sg.

In more detail, the R-valued hypermultiplet that lives on the defect consists of
scalar fields Q' A and fermions MA that transform in the representation R of the gauge
group, and transform respectively as (1,1,2) and (2,2,1) under U = SO(2,1) x
SO(3)x x SO(3)y. (Here A,B = 1,2 are indices for the double cover SU(2)yx of
SO(3)x, and A, B are similarly related to SO(3)y.) They are subject to a reality
condition, which e.g. for the scalars reads (QI{-‘)T = eABwUQé. To describe the
coupling of the bulk fields to the defect theory, it is convenient to rewrite the bulk
super Yang-Mills fields in three-dimensional language. The scalars X and Y%, a,a =
1,...,3, transform in the vector representations of SO(3)y and SO(3)y, respectively,
and of course the gauge field A; is SO(3)x x SO(3)y singlet. The super Yang-Mills
gaugino field ¥ transforms in the representation (2,1,4) @ (1,2,4) of Uy. Under

AB
2a0 )

the subgroup U, it splits into two spinors \Iff‘f and ¥ which transform in the
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representation (2,2,2), like the supersymmetry generator 52‘3 . More precisely, we
define
U = —\112 (%9 Ble’fo + \Ill X Bze’fo. (210)

With this definition, it is straightforward to decompose the supersymmetry transfor-
mations of the four-dimensional super Yang-Mills to find the transformations that

correspond to € ® €¢. In particular, the bosons transform as

1 ABB . ABB
0A; = —=€ 4505 <\If sin? + W5 " cos 19) :
\/5 ABY 8 1 2
7: .
SXe — gAa\IJBBO'a 7
\/§ B laa YAB
Y = ~_cAogaBoi (2.11)

V2

Here 7, 7, k and «, § are respectively vector and spinor indices of the three-dimensional
Lorentz group SO(2,1), and o; are the Pauli matrices. See Appendix A for some
details on our conventions.

The action of the theory has the following form:
0
]electric = ]SYM - %CS(A) + ]C]hyp. (212)

The terms on the right are as follows. Isyy is the usual action of the N = 4 super
Yang-Mills in the bulk. The term proportional to fyy reflects the bulk “topological”

term of four-dimensional Yang-Mills theory

0 0
Iy, = —— tr FAF — 22 tr F A F, (2.13)

T2 2
87T z3<0 87T x3>0

which we have split into two contributions at y < 0 and y > 0 because in the present
context the gauge field (and even the gauge group) jumps discontinuously at y = 0.
Because of this discontinuity, even if we restrict ourselves to variations that are trivial
at infinity, Iy,,, has a nontrivial variation supported on the locus W defined by y = 0.
This variation is the same as that of (fyn/27)CS(A), where CS(A) is the Chern-

Simons interaction of Gy x G,

1
C4n

CS(A) / Tr (A N dA+ §A NAN A) . (2.14)
w
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(Recall that the symbol Tr includes the contributions of both G, and G,, but with
opposite signs.) We lose some information when we replace Iy, by (6yn/2m)CS(A),
since Iy,,, is gauge-invariant as a real number, but CS(A) is only gauge-invariant mod-
ulo an integer. However, the replacement of Iy, by (6yn/27)CS(A) is a convenient
shorthand. Finally, I}, is the part of the action that involves the hypermultiplets.
More details concerning the action are given in the Appendix B.

We also need some facts about the boundary conditions and supersymmetry trans-
formations in this theory. The bulk scalars Y, obey a Dirichlet type boundary condi-

tion. Tn terms of Y. = ¢4 . Y*™, this boundary condition is

m m N NJ

In the brane picture, this boundary condition reflects the fact that the fields Y¢
describe displacement of the D3-branes from the NS5-brane in the 789 directions,
and so vanish at y = 0 if the hypermultiplets vanish. Notice that, depending on
whether m labels a generator of G, or G, the field Y7, is defined for y < 0 or for
y > 0; but the boundary condition (2.15) is valid in both cases. A similar remark
applies for other formulas below. Boundary conditions for other fields can be obtained
from (2.15) by N/ = 4 supersymmetry transformations, or by ensuring the vanishing
of boundary contributions in the variation of the action. For the gauge fields, the

relevant part of the action is

HYM
drztrF?2 — 2= [ tr FAF + Kl 2.16
29%’1\4/ T 872 '  Melh ( )

Taking the variation and reexpressing the coupling constant using (2.7), one gets on
the boundary
2m

1
SlnﬂFlg — 5 COSﬁEkijF’gL = @Jéﬂ, <217>

where J,p = 0lnyp/dA}" is the hypermultiplet current, and gauge indices are raised
and lowered by the form . There is a similar boundary condition for the X scalar
which we shall not write explicitly here. By making supersymmetry transformations
(2.11) of the equation (2.15), one can also find the boundary condition for the bulk

fermions,

VU = JTIJ/\QAQé. (2.18)



It was shown in [23] that this four-dimensional problem with a half-BPS defect
is closely related to a purely three-dimensional Chern-Simons theory with three-
dimensional N' = 4 supersymmetry. A three-dimensional Chern-Simons theory with
N = 3 supersymmetry exists with arbitrary gauge group and hypermultiplet repre-
sentation, but with A/ = 4 supersymmetry, one needs precisely the constraints stated
above: the gauge group G is the bosonic part of a supergroup SG, and the hyper-
multiplet representation corresponds to the odd part of the Lie algebra of SG. To
compare the action of the four-dimensional model with the defect to the action of
the purely three-dimensional model, we first decompose the hypermultiplet action in
(2.12) as

Inyp = Io(A) + I, (2.19)

where [(A) is the part of the hypermultiplet action that contains couplings to no
bulk fields except A, and I}’lyp contains the couplings of hypermultipets to the bulk
scalars and fermions. (For details, see Appendix B.) In these terms, the action of the

purely three-dimensional theory is
—K(CS(A) + Ig(A)) (2.20)
while the contribution to the four-dimensional action at y = 0 is

_%CS(A) — K (Ig(A) + 1) (2.21)

Thus, there are several differences: the defect part (2.21) of the four-dimensional
action contains the extra couplings in I{nyp, and it has a different coefficient of the
Chern-Simons term than that which appears in the purely three-dimensional action
(2.20); also, in (2.20), A is a purely three-dimensional gauge field while in (2.21), it is
the restriction of a four-dimensional gauge field to y = 0. There also are differences
in the supersymmetry transformations. The supersymmetry transformations in the

purely three-dimensional Chern-Simons theory are schematically
0A ~ ed@, (2.22)

In the four-dimensional theory with the defect, the transformation for the gauge field

19



in (2.11) is schematically

Clearly, the two formulas (2.22) and (2.23) do not coincide. With the help of the
boundary condition (2.18), we see that the Uy term in (2.23), when restricted to
y = 0, has the same form as the purely three-dimensional transformation law (2.22).
The term involving W, cannot be interpreted in that way; rather, before comparing
the four-dimensional theory with a defect to a purely three-dimensional theory, one
must redefine the connection A in a way that will eliminate the ¥; term. In section
2.2.2, generalizing the ideas in [6] and in [24], we will explain how to reconcile the

different formulas.

2.2.2 Topological Twisting

After making a Wick rotation to Euclidean signature on R*, we want to select a
scalar supercharge Q, obeying Q* = 0, in such a way that if we restrict to the
cohomology of Q, we get a topological field theory. As part of the mechanism to
achieve topological invariance, we require Q to be invariant under a twisted action
of the rotations of R*, that is, under rotations combined with suitable R-symmetries.
In Euclidean signature, the rotation and R-symmetry groups are the two factors
of UY = SO(4) x SO(6)g, and the symmetries preserved by the defect are UF =
SO(3) xSO(3)x xSO(3)y. The twisting relevant to our problem is the same procedure
used in studying the geometric Langlands correspondence via gauge theory [14]. We
pick a subgroup SO(4)r C SO(6)g, and define SO'(4) C U/ to be a diagonal subgroup
of SO(4) x SO(4)g, such that from the ten-dimensional point of view, SO’(4) acts by
simultaneous rotations in the 0123 and 4567 directions. The space of ten-dimensional
supersymmetries transforms as (2,1,4) @ (1,2,4) under UY = SO(4) x SO(6)r =
SU(2) x SU(2) x SO(6)g. Each summand has a one-dimensional SO’(4)-invariant
subspace; this follows from the fact that the representations 4 and 4 of SO(6) both
decompose as (2,1) & (1,2) under SO’(4). The two invariant vectors coming from

(2,1,4) and (1,2,4) give two supersymmetry parameters ¢, and &, with definite
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SO(4) chiralities. Although there is no natural way to normalize ¢y, there is a natural
way? to define ¢, in terms of ¢, and one can take Q to be any linear combination
bey + ae,.. We only care about Q up to scaling, so the relevant parameter is ¢t = a/b.

In the bulk theory, we can make any choice of £, but in the presence of the half-
BPS defect, we must choose a supercharge that is preserved by the defect. As in
section 2.2.1, the space of supersymmetries decomposes under U” as Vi ® Vs, where
Vs transforms as (2,2,2), and UF acts trivially on V5. (In Euclidean signature, the
vector spaces Vg and V5 are not real.) The defect preserves supersymmetry generators
of the form € ® gy with any € € Vg and with a fixed ¢y € V5. Invariance under SO’(4)
restricts to a 1-dimensional subspace of Vg, as explained in the next paragraph. So
up to scaling, only one linear combination of £, and ¢, is preserved by the defect, and
t is uniquely determined.

To find the scalar supersymmetry generator in three-dimensional notation, we
note that at y = 0, SO’(4) can be naturally restricted to SO’(3), which is a diagonal
subgroup of SO(3) x SO(3)x C SO(4) x SO(4)g. An SO’(3)-invariant vector in Vg
must have the form

eodd — cadpd (2.24)

Y

where a, A, A = 1,2 label bases of the three factors of Vs ~ 2@ 2 ® 2; €™ is
the antisymmetric symbol; and UA, which takes values in the 2 of SO(3)y, is not
constrained by SO'(3) invariance. However, v is determined up to scaling by SO’(4)
invariance. In fact, for any particular UA, the supersymmetry parameter defined in
eqn. (2.24) is invariant under a twisted rotation group that pairs the 0123 directions
with 456v, where v® ~ T is some direction in the subspace 789 (here 0% are the
Pauli matrices). For SO'(4) invariance, we want to choose v such that v is the
direction z7. A simple way to do that is to look at the U(1)r symmetry subgroup of
SO(3)y that rotates the 89 plane and commutes with SO’(4); thus, U(1)g rotates the
last two components of Y = (Y1,Y5,Y3). We normalize the generator F' of U(1)g so

that the field 0 = YQ_—\/%Y*’ has charge 2. Then using a standard representation of the

1One sets ¢, = Zi:o TCayppce/4, asin eqn. (3.8) of [14].
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o®, one has
Vi =Yl =i , (2.25)

and in this basis, the generator F' is

(2.26)
0 —1

SO’(4) invariance implies that the supersymmetry parameter ¢ has charge —1 under

F (see eqn. (3.11) in [14]), so we can take

- . 0
vA =2l /2 : (2.27)
1

The normalization factor here is to match the conventions of [14]. For future reference,

we also define

: , 1
ut = 2%/ /2 . (2.28)
0

We also will need the relation between the parameter ¢t and the angle ). For that,
we use equation (2.26) from [6] for the topological parameter e, + te,. Comparing it
to our eqn. (2.6), we find that

t = el (2.29)

In the twisted theory, the fields X and Y, join into a one-form ¢ = Ei:o ¢, dz*,
with components ¢; = X1, 1 =0, 1,2, and ¢3 = Y;. Q-invariance (or more precisely
the condition {Q, (} = 0 for any fermionic field () gives a system of equations for A,

and ¢,. These equations, which have been extensively discussed in [6], take the form

YVt =Y~ =V =0, with

VE=(F—¢A¢+tdao)",

V= (F-¢Np—t"dag) ,

VO = D, ¢t (2.30)
Here if A is a two-form, we denote its selfdual and anti-selfdual projections as A* and
A~ respectively.
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2.2.3 Fields And Transformations

If a four-dimensional gauge theory with a defect is related to a purely three-dimensional
theory on the defect, then what are the fields in the effective three-dimensional theory?
The hypermultiplets supported at y = 0 give one obvious source of three-dimensional
fields. So let us first discuss these fields from the standpoint of the twisted theory.

The hypermultiplet contains scalar fields QIA that transform as a doublet under
SU(2)y. In the twisted theory, SU(2)y is reduced to U(1l)r, and accordingly we
decompose the Q™ in multiplets C7 and C' with charges 1 under U(1)p. (These
are upper and lower components in the basis used in (2.26).) The fermionic part of
the hypermultiplet A/ has a more interesting decomposition in the twisted theory.
Under SO’(3), both the spinor index a and the SO(3)x index A carry spin 1/2, so
MY is a sum of pieces of spin 1 and spin 0. In other words, the fermionic part of the
hypermultiplet decomposes into a vector Aff and a scalar BY.

The supercharge Q generates the following transformations of these fields:

6Ar = —DyC,
5C =0,
6C = B,
6B = %[{C, 1, 0. (2.31)
Here for any field ®, we define & = [Q, P}, where [, } is a commutator or anti-

commutator for ® bosonic or fermionic; also, D, is the coveriant derivative with a
connection A, that we define momentarily.

The vector Ay will become the fermionic part of the sg-valued gauge field, which
we will call A. But where will we find A, the bosonic part of A? There is no
candidate among the fields that are supported on the defect. Rather, A, will be the

restriction to the defect worldvolume of a linear combination of bulk fields:
Ay, = A+ i(sin)¢. (2.32)

This formula defines both a g,-valued part of A, — obtained by restricting A+i(sin )¢
from y < 0 toy =0 — and a g,-valued part — obtained by restricting A + i(sin )¢
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from y > 0 to y = 0. (Here g, and g, are the Lie algebras of Gy and G,.) The shift
from A to A removes the unwanted term with W, in the topological supersymmetry
variation (2.23), so that — after restricting to y = 0 and using the boundary condition
(2.18) — one gets

0A, = {C, As}. (2.33)

Obviously, since Ay is only defined at y = 0, 6.4, can only be put in this form at
y=0.

The interpretation of the formulas (2.31) and (2.33) was explained in [24| (where
they arose in a purely three-dimensional context): one can interpret C' as the ghost
field for a partial gauge-fixing of the supergroup SG down to its maximal bosonic
subgroup G, and the supercharge Q as the BRST operator for this partial gauge-
fixing. Since C has U(1)g charge of 1, we should interpret U(1)r as the ghost number.
Once we interpret C' as a ghost field, the transformation laws for A, and Af simply
combine to say that acting on A = A, + Af, Q generates the BRST transformation
0A = —d 4C with gauge parameter C'. The gauge parameter C' has opposite statistics
from an ordinary gauge generator (it is a bosonic field but takes values in the odd
part of the super Lie algebra sg); this is standard in BRST gauge-fixing of a gauge
theory. In such BRST gauge-fixing, one often introduces BRST-trivial multiplets
(C, B), where 6C = B and 0B is whatever it must be to close the algebra. In the
most classical case, C' is an antighost field, with U(1)z charge —1, and B is called a
Lautrup-Nakanishi auxiliary field. The multiplet (C, B) in (2.31) has precisely this
form.

If one finds a gauge transformation in which the gauge parameter has reversed
statistics to be confusing, one may wish to introduce a formal Grassman parameter
n and write 6’ = nd, so that for any field ®, §’® = [nQ, ®]; nQ is bosonic, so there is

an ordinary commutator here. Then
§A = —D(n0C), (2.34)

showing that the symmetry generated by nQ transforms the supergroup connection

A by a gauge transformation with the infinitesimal gauge parameter nC, which has
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normal statistics.

2.2.4 The Action

After twisting, one can define the N' = 4 super Yang-Mills theory on an arbitrary®
four-manifold M, with the defect supported on a three-dimensional oriented subman-
ifold W. Generically, in this generality, one preserves only the unique supercharge
Q.

What is the form of the Q-invariant action of this twisted theory? Any gauge-
invariant expression {Q, -} is Q-invariant, of course — and also largely irrelevant as
long as we calculate only Q-invariant observables, which are the natural observables
in the twisted theory. But in addition, any gauge-invariant function of the complex
connection A is Q-invariant, since Q acts on A as the generator of a gauge transfor-
mation. A is defined only on the oriented three-manifold W, and as we are expecting
to make a topological field theory, the natural gauge-invariant function of A is the
Chern-Simons function.

Given this and previous results (concerning the case that there is no defect [14],
an analogous purely three-dimensional problem [24], and the case that the fields are
nonzero only on one side of W [6]), it is natural to suspect that the action of the

twisted theory on M may have the form

I:iICCS(A)+{Q,...}:%/

W

Str (AdA + §A3> +{0,...}, (2.35)

where if there is a formula of this type, then the coefficient of CS(A) must be precisely
1IC, in view of what is already known about the one-sided case.

This is indeed so. Leaving some technical details for Appendix B, we simply make
a few remarks here. In the absence of a defect, and assuming that M has no boundary,
it was shown in [14] that the action of the twisted super Yang-Mills theory is Q-exact

modulo a topological term:

[SYM—FZHYM/ tr(F/\F):ﬁ/ tr (FAF)+{Q,...}. (2.36)
M M

82 47

5If M is not orientable, one must interpret ¢ not as an ordinary 1-form but as a 1-form twisted

by the orientation bundle of M.
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(On the left, Isyy is the part of the twisted super Yang-Mills action that is pro-
portional to 1/g%,;; the part proportional to fyy is written out explicitly.) In [6],
the case that M has a boundary W (and the D3-branes supported on M end on an
NS5-brane wrapping T*W) was analyzed. It was shown that (2.36) remains valid,
except that the topological term [ o trF'A F must be replaced with a Chern-Simons
function on W = 9M, not of the real gauge field A but of its complexification Ay.
From the point of view of the present thesis, this case means that M intersects the
NS5-brane worldvolume in a defect W, and there are gauge fields only on one side of
W. Part of the derivation of eqn. (2.35) is simply to use the identity (2.36) on both
M, and M,, thinking of the integral of tr F' A F' over M, or M, as a Chern-Simons
coupling on the boundary.

To get the full desired result, we must include also the hypermultiplets () that are
supported on . The full action of the theory was described in formulas (2.12) and
(2.19). In Euclidean signature it reads

10
Lcersie = Tsva + == CS(A) + K(lo(A) + L), (2.37)

The identity (2.36) has a generalization that includes the boundary terms:
]electric =K (CSGT‘ (Ab) - CSGz (Ab)) + ’C]Q(Ab) + {Qa cee } (238)

Since the first three terms are defined purely on the three-manifold W, we can now
invoke the result of [24]: this part of the action is iCCS(A) + {Q, ...}, where now
CSsa(A) is the Chern-Simons function for the full supergroup gauge field A = A;, +
Ay, and the Q-exact terms describe partial gauge-fixing from SG to G. This confirms
the validity of eqn. (2.35).

We conclude by clarifying the meaning of the supergroup Chern-Simons function

CS(A). With A=A, + Ay, we have
CS(A) = CS(Ay) + —— / Str Asda As. (2.39)
A Jw

The term involving As is the integral over W of a function with manifest gauge

symmetry under G, x G, (and even its complexification). It is not affected by the
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usual subtleties of the Chern-Simons function involving gauge transformations that
are not homotopic to the identity. The reason for this is that the supergroup SG is
contractible to its maximal bosonic subgroup G; the topology is entirely contained
in G. Similarly, with A4, = A + i(sin?)¢p, we can expand the complex Chern-Simons

function,

CS(A,) = CS(A) + % /W Tr (i(sind)p A F — (sin® 9)p A dagp — i(sin® 9)p A g A @),
(2.40)
and the topological subtleties affect only the first term CS(A) . Here, as in eqns.
(2.14) and (2.13), to resolve the topological subtleties and put the action in a form
that is well-defined for generic IC, we should replace CS(A) with the corresponding
volume integral (1/47) [,, trF'A F. There is no need for such a substitution in any of
the other terms, since they are all integrals over W of gauge-invariant functions. All
this reflects the fact that a complex Lie group is contractible to a maximal compact
subgroup, so the topological subtlety in CS(.Aj) is entirely contained in CS(A).
It is convenient to simply write the action as ik CS(A) + {Q, ...}, as we have
done in eqn. (2.35), rather than always explicitly replacing the term CS(A) in this

action with a bulk integral.

2.2.5 Analytic Continuation

To get the formula (2.33) along W, we have had to replace A by A + i(sin®)¢, with
the result that the bosonic part of A is complex-valued. This is related to an essen-
tial subtlety [12, 13] in the relation of the four-dimensional theory with a defect to
a Chern-Simons theory supported purely on the defect. In general, four-dimensional
N = 4 super Yang-Mills theory on a four-manifold M, with a half-BPS defect of the
type analyzed here on a three-manifold W C M, is not equivalent to standard Chern-
Simons theory on W with gauge supergroup SG, but to an analytic continuation of
this theory. The basic idea of this analytic continuation is that localization on the
space of solutions of the equations (2.30) defines an integration cycle in the complex-

ified path integral of the Chern-Simons theory. This localization is justified using the
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fact that the Q-exact terms in (2.38) can be scaled up without affecting Q-invariant
observables, so the path integral can be evaluated just on the locus where those terms
vanish. The condition for these terms to vanish is the localization equations (2.30),
which define the integration cycle. (Thus, the integration cycle is characterized by
the fact that A, is the restriction to y = 0 of fields A, ¢ which obey the localization
equations and have prescribed behavior for y — +00.)

For generic W and M, the integration cycle derived from N = 4 super Yang-Mills
theory differs from the standard one of three-dimensional Chern-Simons theory. For
the important case that W = R3, there is essentially only one possible integration cycle
and therefore the two constructions are equivalent. Thus, after including Wilson loop
operators (as we do in section 2.3), the four-dimensional construction can be used to
study the usual knot invariants associated to three-dimensional Chern-Simons theory.

Unfortunately, it turns out that for supergroups all the observables which can be
defined using only closed Wilson loops in R® reduce to observables of an ordinary
bosonic Chern-Simons theory. This is explained in section 2.3 of the present thesis,
and in section 6 of [1]. To find novel observables, one needs to do something more
complicated. All of the options seem to introduce some complications in the relation
to four dimensions. For example, one can replace R® by S® and define observables
that appear to be genuinely new by considering the path integral with insertion of
a Wilson loop in a typical representation (see section 2.3.2.2). But the compactness
of S? means that one encounters infrared questions in comparing to four dimensions.
Because of such complications, our results for supergroup Chern-Simons theory are
less complete then in the case of a bosonic Lie group.

A feature of the localization that is special to supergroups is that A; is the bound-
ary value of a four-dimensional field (which in the localization procedure is constrained
by the equations (2.30)), but Ay is purely three-dimensional. The reason that this
happens is essentially that the topology of the supergroup SG is contained entirely
in its maximal bosonic subgroup G. Being fermionic, Ay is by nature infinitesimal;
the Berezin integral for fermions is an algebraic operation (a Gaussian integral in the

case of Chern-Simons theory of a supergroup) with no room for choosing different in-
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tegration cycles. By contrast, in the integration over the bosonic fields, it is possible
to pick different integration cycles and the relation to four-dimensional N' = 4 super
Yang-Mills theory does give a very particular one.

One important qualitative difference between purely three-dimensional Chern-
Simons theory and what one gets by extension to four dimensions is as follows. In
the three-dimensional theory, the “level” k must be an integer, but in the analytically
continued version given by the relation to four-dimensional N' = 4 super Yang-Mills,
k is generalized to a complex parameter K. Part of the mechanism for this is that
although the Chern-Simons function C'S(A) is only gauge-invariant modulo 1, in the
four-dimensional context it can be replaced by a volume integral f o It F'AF' which

is entirely gauge-invariant, so there is no need to quantize the parameter.

2.2.6 Relation Among Parameters

At first sight, eqn. (2.35) seems to tell us that the relation between the parameter K
in four dimensions and the usual parameter k of Chern-Simons theory, which appears

in the purely three-dimensional action
K 2
2—/ Str (AAdA+—AAAAA>, (2.41)
Am Jw 3

would be K = k. However, for the purely one-sided case, the relation, according to
6], is really®
K =k + h sign (k). (2.42)

An improved explanation of this is as follows.

6 A careful reader will ask what precisely we mean by k in the following formula. In defining k
precisely, we will assume that it is positive; if it is negative, one makes the same definitions after
reversing orientations. One precise definition is that k is the level of a two-dimensional current
algebra theory that is related to the given Chern-Simons theory in three dimensions. (The level is
defined as the coefficient of a c-number term appearing in the product of two currents.) Another
precise definition is that, for integer k, the space of physical states of the Chern-Simons theory on
a Riemann surface ¥ is H°(M, L), where M is the moduli space of holomorphic G-bundles over
3 and L generates the Picard group of M. (For simplicity, in this statement, we assume G to be

simply-connected.)
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The purely three-dimensional Chern-Simons theory for a compact gauge group G
involves a path integral over the space of real connections A. This is an oscillatory
integral and in particular, at one-loop level, in expanding around a classical solution,
one has to perform an oscillatory Gaussian integral.” After diagonalizing the matrix
that governs the fluctuations, the oscillatory Gaussian integral is a product of one-
dimensional integrals

/ T A p(iag?) = SRUT/A)signd) (2.43)
e VT A

where the phase comes from rotating the contour by x = exp(i(7/4)sign\)z’ to get a

real convergent Gaussian integral for /. In Chern-Simons gauge theory, the product
of these phase factors over all modes of the gauge field and the ghosts gives (after
suitable regularization) a factor exp(imn/4), where 7 is the Atiyah-Patodi-Singer 7-
invariant. This factor has the effect of shifting the effective value of k£ in many
observables to k + h sign k, where h is the dual Coxeter number of G (this formula is
often written as k — k + h, with k assumed to be positive).

One can think of the shift & — k£ + h signk as arising in a Wick rotation in
field space from the standard integration cycle of Chern-Simons theory (real A) to an
integration cycle on which the integral is convergent rather than oscillatory. But this
is precisely the integration cycle that is used in the four-dimensional description (see
[12, 13]). Accordingly, in the four-dimensional description, there is no one-loop shift in
the effective value of IC and instead the shift must be absorbed in the relation between
parameters in the four- and three-dimensional descriptions by I = k + h sign k.

Up to a point, the same logic applies in our two-sided problem. The four-
dimensional path integral has no oscillatory phases and hence no one-loop shift in
the effective value of the Chern-Simons coupling. So any such shift that would arise
in a purely three-dimensional description must be absorbed in the relationship be-
tween K and a three-dimensional parameter k. We are therefore tempted to guess

that the relationship between I and the parameter k of a purely three-dimensional

"The following is explained more fully on pp. 358-9 of [4], where however a nonstandard normal-

ization is used for 7. See also [87].
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Chern-Simons theory of the supergroup SG is
K =k + hegsign k, (2.44)

where hgy is the dual Coxeter number of the supergroup. The trouble with this
formula is that it assumes that the effective Chern-Simons level for a supergroup has
the same one-loop renormalization as for a bosonic group. The validity of this claim
is unclear for reasons explored in Appendix E of [1]. (In brief, the fact that the
invariant quadratic form on the bosonic part of the Lie superalgebra sg is typically
not positive-definite means it is not clear what should be meant by sign k, and also
means that a simple imitation of the standard one-loop computation of bosonic Chern-
Simons theory does not give the obvious shift & — k + heysignk.) We actually do
not know the proper treatment of purely three-dimensional Chern-Simons theory of
a supergroup. In this chapter, we concentrate on the four-dimensional description,
in which the bosonic part of the path integral is convergent, not oscillatory, and
accordingly there is no one-loop shift in the effective value of K. Thus we should just
think of KC as the effective parameter of the Chern-Simons theory.

Let us go back to the purely bosonic or one-sided case. For G simple and simply-

laced, Chern-Simons theory is usually parametrized in terms of
q = exp(2mi/(k + h signk)) = exp(27i/K). (2.45)

If G is not simply-laced, it is convenient to take ¢ = exp(27mi/nyKC), where n, is the
ratio of length squared of long and short roots of g. Including the factor of 1/n, in
the exponent ensures that ¢ is the instanton-counting parameter in a magnetic dual
description. Similarly, for a supergroup SG, we naturally parametrize the theory in
terms of

q = exp(2mi/neglC), (2.46)

where ng, is the ratio of length squared of the longest and shortest roots of a maximal
bosonic subgroup of SG, computed using an invariant bilinear form on sg (for the
supergroups we study in this thesis, ng; can be 1, 2, or 4). To write this formula in

terms of a purely three-dimensional parameter k, we would have to commit ourselves
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to a precise definition of such a parameter. Each of the definitions given for bosonic
groups in footnote 6 may generalize to supergroups, but in neither case is the proper

generalization immediately clear.

2.3 Observables In The Electric Theory

The most important observables in ordinary Chern-Simons gauge theory are Wil-
son line operators, labeled by representations of the gauge group. To understand
their analogs in supergroup Chern-Simons theory, we need to know something about
representations of supergroups. The theory of Lie supergroups has some distinctive
features, compared to the ordinary Lie group case, and these special features have
implications for Chern-Simons theory and its line observables. Accordingly, we devote
section 2.3.1 to a brief review of Lie supergroups and superalgebras. Then in section
2.3.2, we discuss the peculiarities of line observables in three-dimensional supergroup
Chern-Simons theory. In sections 2.3.3 and 2.3.4, we return to the four-dimensional
construction, and explain, in fairly close parallel with [6], how line operators of super-
group Chern-Simons theory are realized as line or surface operators in AN/ = 4 super
Yang-Mills theory. Finally, in section 2.3.5 we summarize some unclear points.

In the four-dimensional construction, in addition to the line and surface operators
considered here, it is possible to construct Q-invariant local operators. They are

described in Appendix D.

2.3.1 A Brief Review Of Lie Superalgebras

We begin with the basics of Lie superalgebras, Lie supergroups, and their represen-
tations. For a much more complete exposition see e.g. [37, 38, 39].

A Lie superalgebra decomposes into its bosonic and fermionic parts, sg = g5+ g7
We will assume that gg is a reductive Lie algebra (the sum of a semi-simple Lie
algebra and an abelian one). Moreover, to define the supergroup gauge theory action,
we need the superalgebra sg to possess a non-degenerate invariant bilinear form.

(This also determines a superinvariant volume form on the SG supergroup manifold.)
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Finite-dimensional Lie superalgebras with these properties are direct sums of some
basic examples. These include the unitary and the orthosymplectic superalgebras,
as well as a one-parameter family of deformations of 0sp(4]2), and two exceptional
superalgebras, as specified in Table 2.1. For the unitary Lie superalgebras, one can
also restrict to the supertraceless matrices su(mn), and for m = n further factor by
the one-dimensional center down to psu(n|n). In what follows, by a Lie superalgebra
we mean a superalgebra from this list.®

Though we use real notation in denoting superalgebras, for instance in writing
u(m|n) and not gl(m|n), we never really are interested in choosing a real form on the
full superalgebra. One reason for this is that we will actually be studying analytically-
continued versions of supergroup Chern-Simons theories. If one considers all possible
integration cycles, then the real form is irrelevant. More fundamentally, as we have
already explained in section 2.2.5, to define a path integral for supergroup Chern-
Simons theory, one needs to pick a real integration cycle for the bosonic fields, but
one does not need anything like this for the fermions. Correspondingly, we might
need a real structure on g (and this will generally be the compact form) but not
on the full supergroup or the superalgebra. So for our purposes, a three-dimensional
Chern-Simons theory is naturally associated to a so-called cs-supergroup, which is a
complex Lie supergroup together with a choice of real form for its bosonic subgroup.

If we choose the compact form of a maximal bosonic subgroup of a supergroup SG,
then one can calculate the volume of SG with respect to its superinvariant measure.
This volume has the following significance in Chern-Simons theory. The starting
point in Chern-Simons perturbation theory on a compact three-manifold is to expand
around the trivial flat connection; in doing so one has to divide by the volume of the

gauge group. But this volume is actually® 0 for any Lie supergroup whose maximal

8We avoid here using the term “simple superalgebra,” since, e.g., u(1|1) is not simple (it is
solvable), but is perfectly suitable for supergroup Chern-Simons theory. Let us mention that Lie
superalgebras with the properties we have required which in addition are simple are called basic

classical superalgebras.
% A quick proof is as follows. Let SG be a Lie supergroup whose maximal bosonic subgroup is

compact (this assumption ensures that there are no infrared subtleties in defining and computing
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bosonic subgroup is compact, with the exception of B(0,n) = OSp(1|2n). This fact
is certainly one reason that one cannot expect to develop supergroup Chern-Simons
theory by naively imitating the bosonic theory.

Another difference between ordinary groups and supergroups is that in the super-
group case, we have to distinguish between irreducible representations and indecom-
posable ones. A representation R of sg is called irreducible if it does not contain a
non-trivial sg-invariant subspace Ry, and it is called indecomposable if it cannot be

decomposed as Ry @& R, where Ry and R; are non-trivial sg-invariant subspaces. In

* ok

a reducible representation, the representation matrices are block triangular ,

0 x*
while in a decomposable representation, they are block diagonal. For ordinary reduc-

tive Lie algebras, these notions coincide (if the matrices are block triangular, there is
a basis in which they are block diagonal), but for Lie superalgebras as defined above,
they do not coincide, with the sole exception of B(0,n). It is not a coincidence that
B(0,n) is an exception to both statements; a standard way to prove that a reducible
representation of a compact Lie group is also decomposable involves averaging over
the group, and this averaging only makes sense because the volume is nonzero. For
B(0,n), taken with the compact form of its maximal bosonic subgroup, the same
proof works, since the volume is not zero. A physicist’s explanation of the “bosonic”
behavior of B(0,n) might be that, as we argue later, the Chern-Simons theory with
this gauge supergroup is dual to an ordinary bosonic Chern-Simons theory with the
gauge group SO(2n + 1). This forces B(0,n) to behave somewhat like an ordinary

bosonic group.

the volume of SG). Suppose that there is a fermionic generator C of sg with the property that
{C,C} = 0. Such a C exists for every Lie supergroup except OSp(1|2n). We view C as generating
a supergroup F of dimension 0|1, which we consider to act on SG on (say) the left. This gives a
fibration SG — SG/F with fibers F. The volume of SG can be computed by first integrating over
the fibers of the fibration. But the volume of the fibers is 0, so (given the existence of C) the volume
of SG is 0. The volume of the fibers is 0 because, since {C,C} = 0, there are local coordinates in
which the fibers are parametrized by an odd variable 1) and C = §/9v. C-invariance of the volume
then implies that the measure for integration over v is invariant under adding a constant to 1; the

volume of the fiber is therefore [di -1 =0.
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superalgebra bosonic part fermionic part | type
u(min) u(m) @ u(n) (m,m) ® (m,n) | I
B(m,n) ~ osp(2m + 1|2n) so(2m+1)@sp(2n) | (2m+1,2n) I1
C(n+1) ~ osp(2|2n) u(l) @ sp(2n) (1,2n) & (1,2n) | I
D(m,n) ~ osp(2m|2n),m > 1| so(2m) @ sp(2n) (2m, 2n) 11
D(2,1;a),a € C\ {0, -1} su(2) @ su(2) @ su(2) (2,2,2) 11
G(3) su(2) @ go (2,7) IT
F(4) su(2) @ so(7) (2,8) I1

Table 2.1: Lie superalgebras suitable for the supergroup Chern-Simons theory. (We do

not list explicitly the subquotients of the unitary superalgebra, which are mentioned in the

text.)
ay az ap—1 Gferm a A —2 Am—1
--------- O & o----- - O—mmO
01 — 02 0o — 03 Op—1— On On — €1 €1 — €2 €Em—2 —€m—-1 €m—-1 — €m

Figure 2.2: Dynkin diagram for the su(m|n) superalgebra. The subscripts are expressions
for the roots in terms of the orthogonal basis de, €. The superscripts represent the Dynkin

labels of a weight. The middle root denoted by a cross is fermionic.

The structure theory for a simple Lie superalgebra sg can be described similarly
to the case of an ordinary Lie algebra. One starts by picking a Cartan subalgebra t,
which for our superalgebras is just a Cartan subalgebra of the bosonic part. Then
one decomposes sg into root subspaces. These subspaces lie either in g5 or in g7, and
the roots are correspondingly called bosonic or fermionic. Then one makes a choice of
positive roots, or, equivalently, of a Borel subalgebra b D t. Unlike in the bosonic case,
different Borel subalgebras can be non-isomorphic. However, there is a distinguished
Borel subalgebra — the one which contains precisely one simple fermionic root. This is
the choice that we shall make. For each choice of Borel subalgebra, one can construct

a Dynkin diagram. The distinguished Dynkin diagrams for the unitary and the odd

35



aq Qferm aq Am—1 Am
61 — 52 52 — 53 (Sn,l — 5” 5n — €1 €1 — €2 €m—1 — €m €m

Figure 2.3: Dynkin diagram for the osp(2m+1|2n) superalgebra, m > 1. The subscripts are
expressions for the roots in terms of the orthogonal basis de, €o. The superscripts represent
the Dynkin labels of a weight. The arrows point in the direction of a shorter root. The
middle root denoted by a cross is fermionic. Roots of the sp(2n) and so(2m+ 1) subalgebras
are on the left and on the right of the fermionic root. The site shown in grey and labeled a,,
is the long simple root of the sp(2n) subalgebra, which does not belong to the set of simple

roots of the superalgebra.

orthosymplectic superalgebras are shown in fig. 2.2 and fig. 2.3.

The fermionic Zy-grading of a Lie superalgebra can be lifted (in a way that is
canonical up to conjugacy) to a Z-grading, which can be defined as follows. The
subalgebra of degree zero is generated by the Cartan subalgebra together with the
bosonic simple roots of the superalgebra. The fermionic simple root of the distin-
guished Dynkin diagram is assigned degree one. The grading for the other elements
of the superalgebra is then determined by the commutation relations. This Z-grading
is defined by a generator of gg.

For example, for the unitary superalgebra this element can be taken to be the
central generator of u(n). The degree zero subalgebra in this case is just the bosonic
subalgebra, while the fermions decompose as g ~ g_1 & g;. Another example would
be the odd orthosymplectic superalgebra osp(2m + 1|2n), for which the situation
is slightly different. There exists a simple root of the bosonic subalgebra, which is
not a simple root of the superalgebra, but rather is a multiple of a fermionic simple
root, and therefore will not have degree zero. It is shown in grey in fig.2.3. The
degree zero subalgebra consists of a semisimple Lie algebra sl(n) ®o(2m+ 1) with the
Dynkin diagram obtained from fig.2.3 by deleting the fermionic node, plus a central
u(1). This central element is the generator of the Z-grading. The bosonic subalgebra
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decomposes into degrees 2 and 0, while the fermions again live in degrees £1.

More generally, for any superalgebra, the distinguished Z-grading takes values
from —1 to 1 or from —2 to 2, and the superalgebras are classified accordingly as
type I or type II. In a type I superalgebra, the bosonic subalgebra lies completely
in degree 0. The representation of gz on the fermionic subalgebra g7 is reducible,
and g7 decomposes into subspaces of degree —1 and 1. The unitary superalgebra is
an example of a type I superalgebra. For the type II superalgebras, the action of
gy on g7 is irreducible. Under the Z-grading, the bosonic subalgebra decomposes as
95 ™~ 92D go D g2, and the fermions decompose as gy ~ g_1 ®g1. The osp(2m+1|2n)
superalgebra is an example of the type IT case. The type of a superalgebra is important
for representation theory, and we indicate it in Table 2.1.

We need to introduce some further notation. Let AT and AT be the sets of positive
bosonic and fermionic roots, respectively, and let Z%r be the set of positive fermionic
roots with zero length. The length is defined using the invariant quadratic form on sg,
which we normalize in a standard way so that the length squared of the longest root
is 2. A root of zero length is called isotropic; isotropic roots are always fermionic. It
is convenient to expand the roots and the weights in terms of a vector basis d, and e,,
orthogonal with respect to the invariant scalar product, with (J;,0;) = —(e;,€;) > 0.

For example, the positive roots for the unitary superalgebra su(m|n) are

AL = {6 = Oiyp,€j —€jup}, i=1...n, j=1...m, p>0,

The quadratic Casimir operator is defined using the invariant form on sg (normalized
in the standard way). In this thesis, by the dual Coxeter number h we mean one-
half of the quadratic Casimir in the adjoint representation.'® For future reference,
in Table 2.2 we collect the superdimension (the difference between the dimension of
gg and that of g7) and the dual Coxeter number for the unitary and orthosymplectic
superalgebras.

For a given Borel subalgebra, one defines the bosonic and fermionic Weyl vectors

10This definition is different from the definition of [43].
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‘5u(m\n), n,m >0 ‘ osp(m|2n), m >0, n>1 ‘ so(n)

h ‘ n—m ‘ n—m/2+1 ‘ n—2
()dim|  (n—mP—1 | @n—m)2n—m+1)/2 [n(n-1)/2

Table 2.2: (Super)dimensions and dual Coxeter numbers.

as

p0:%Za, m:%Za, (2.48)

aEAg aeA%L
and the superalgebra Weyl vector as p = py — pr. The Weyl group of a superalgebra,
by definition, is generated by reflections with respect to the even (that is, bosonic)

roots.

2.3.1.1 Representations

The finite-dimensional irreducible representations are labeled by their highest weights.
The weights can be parametrized in terms of Dynkin labels. For a weight A, the
Dynkin label associated to a simple root «; is defined as a; = %, if the length
of the root «; is non-zero, and a; = (A, o), if the length of the rogt izs Zero.

For a type I superalgebra, the Dynkin diagram coincides with the diagram for the
semisimple part of the bosonic subalgebra gg, if one deletes the fermionic root. The
finite-dimensional superalgebra representations are labeled by the same data as the
representations of the bosonic subalgebra. For example, for the dominant weights
of su(mn) all the Dynkin labels, except dfem, must be non-negative integers. The
fermionic label can be an arbitrary complex number, if we consider representations
of the superalgebra, or an arbitrary integer, if we want the representation to be
integrable to a representation of the compact form of the bosonic subgroup.

For a type Il superalgebra, if one deletes the fermionic node of the Dynkin diagram
(and the links connecting to it), one gets a diagram for the semisimple part of the

degree-zero subalgebra gy C gy. The long simple root of the bosonic subalgebra gg

is “hidden” behind the fermionic simple root, and is no longer a simple root of the
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superalgebra. This is illustrated in fig. 2.3 for the B(m,n) case. For us it will be
convenient to parametrize the dominant weights in terms of the Dynkin labels of the
bosonic subalgebra, so, for type II, instead of age,, we will use the Dynkin label with
respect to the long simple root of gg. For example, for B(m,n) this label is*! a,, as
shown on the figure, and the weights will be parametrized by (ay,...,an, a1, ..., an)-
Clearly, in this case for the superalgebra representation to be finite-dimensional, it is
necessary for these Dynkin labels to be non-negative integers. It turns out that there
is an additional supplementary condition. For example, for B(m,n) this condition
says that if a, < m, then only the first a,, of the labels (ay, ..., a,,) can be non-zero.
For the other type IT superalgebras the supplementary conditions can be found e.g.
in Table 2 of [37]. The finite-dimensional irreducible representations are in one-to-one
correspondence with integral dominant weights that satisfy these extra conditions.
For a generic highest weight, the irreducible superalgebra representation can be
constructed rather explicitly. For a type I superalgebra, one takes an arbitrary rep-
resentation R} of the bosonic part gg, with highest weight A. A representation of the
superalgebra can be induced from RY by setting the raising fermionic generators g;
to act trivially on R, and the lowering fermionic generators g_; to act freely. The

resulting representation in the vector space
Ha = A°g_1 x R} (2.49)

is called the Kac module. For a generic highest weight, this gives the desired finite-
dimensional irreducible representation. For a type II superalgebra, the representation
can be similarly induced from a representation of the degree-zero subalgebra gy C gg,
but the answer is slightly more complicated than (2.49), since the fermionic creation
or annihilation operators do not anticommute among themselves.

The Kac module, which one gets in this way, is irreducible only for a sufficiently
generic highest weight. In this case, the highest weight A and the representation are
called typical. Typical representations share many properties of representations of

bosonic Lie algebras, e.g., a reducible representation with a typical highest weight is

' Our notation here is slightly unconventional: notation a,, is usually used for what we call agoppy, .
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always decomposable, and there exist simple analogs of the classical Weyl character
formula for their characters and supercharacters.

However, if A satisfies the equation
(A+p,0) =0, (2.50)

for some isotropic root a € Z}r , then the Kac module acquires a null vector. The
irreducible representation then is a quotient of the Kac module by a maximal sub-
module. Such weights and representations are called atypical. Let A(A) be the subset
of A7 for which (2.50) is satisfied. The number of roots in A(A) is called the degree
of atypicality of the weight and of the corresponding representation.

The maximal possible degree of atypicality of a dominant weight is called the
defect of the superalgebra. For u(m|n), for a dominant A all the roots in A(A) are
mutually orthogonal, and therefore the maximal number of such isotropic roots is
min(m,n). In the corresponding IIB brane configuration, this is the number of D3-
branes which can be recombined and removed from the NS5-brane. (This symmetry
breaking process is analyzed in section 6 of [1].)

A Kac-Wakimoto conjecture [43, 44] states that the superdimension of a finite-
dimensional irreducible representation is non-zero if and only if it has maximal atyp-
icality. (For ordinary Lie algebras and for B(0,n), the maximal atypicality is zero,

and all representations should be considered as both typical and maximally atypical.)

2.3.1.2 The Casimir Operators And The Atypical Blocks

The Casimir operators, by definition, are invariant polynomials in the generators
of sg; in a fancier language, they generate the center 3 of the universal enveloping
algebra U(sg). We introduce some facts about them, which will be useful for the
discussion of Wilson lines.

There is a well-known formula for the value of the quadratic Casimir in a repre-

sentation with highest weight A,

c2(A) = (A+p, A+ p) —(p.p), (2.51)
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which continues to hold in the superalgebra case. A remote analog of this formula
for the higher Casimirs is known as the Harish-Chandra isomorphism (see e.g. [45]),
which we now briefly review.

By the Poincaré-Birkhoff-Witt theorem, a Casimir element ¢ € 3 can be brought to
the normal-ordered form, where in the Chevalley basis, schematically, c = Y (E~)% Hk2(E+)kr,
When acting on the highest weight vector of some representation, the only non-
zero contribution comes from the purely Cartan part. This gives a homomorphism
£:3 = S(t), where S(t) are the symmetric polynomials in elements of t, and the
value of the Casimir in a representation R, with highest weight A is evaluated as
c(A) = (E (¢))[A]. Here the square brackets mean the evaluation of a polynomial from
S(t) on an element of t*. By making appropriate shifts of the Lie algebra generators in

the polynomial £(c), one can define a different polynomial £(c), such that the formula

becomes
c(A) = (&(e))[A+p] - (2.52)

This is a minor technical redefinition, which will be convenient.

For ordinary Lie algebras, the Harish-Chandra theorem states that the image of
the homomorphism ¢ consists of the Weyl-invariant polynomials Sy, (t) C S(t), and &
is actually an isomorphism of commutative algebras 3 ~ Sy (t). To summarize, the
Casimirs can be represented by Weyl-invariant Cartan polynomials, and their values
in a representation R, are obtained by evaluating these polynomials on A + p.

In the superalgebra case, the Harish-Chandra isomorphism [46] identifies 3 with
a subalgebra SJ,(t) C Sw(t), consisting of Weyl-invariant polynomials p with the

following invariance property,
plA + p + xa] = p[A + p) (2.53)

for any x € C and o € A(A).

For a highest weight representation R,, the corresponding set of eigenvalues of
the Casimir operators (equivalently, a homomorphism from 3 into the complex num-
bers) is called the central character, denoted x,. The Harish-Chandra isomorphism

allows one to describe the sets of weights which share the same central character.
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Figure 2.4: Examples of dominant weights for u(3[4). a. A typical weight. b. A weight
of atypicality two, which is part of a block of atypical weights. The block is labeled by z1,
T2, and g1, which correspond to a dominant weight of u(1]|2). The weights that make up
this block are parametrized by z; and z2, which can be thought of as labels of a maximally

atypical weight of u(2|2).

If the weight is typical, then the other weights with the same central character can
be obtained by the shifted Weyl action A — w(A + p) — p. The orbit of this trans-
formation can contain no more than one dominant weight; therefore, two different
typical finite-dimensional representations have different central characters. This is
no longer the case for the atypical weights. Given an atypical dominant weight A,
we can shift it by a linear combination of elements of A(A) to obtain new dominant
weights with the same central character. More generally, we can apply a sequence
of shifts and Weyl transformations without changing the central character. All the
representations that are obtained in this way will have the same degree of atypicality,
and they will share the same eigenvalues of the Casimir operators. The set of atypical
finite-dimensional representations which have a common central character is called
an atypical block. In this chapter, we are interested mostly in the irreducible repre-
sentations, and, somewhat imprecisely,'? by an atypical block we will usually mean a
set of irreducible representations (or, equivalently, dominant weights) with the same

central character.

12This phrasing is imprecise because it does not take account the difference between reducibility

of a representation and decomposability.
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As an example, let us describe the atypical blocks for the u(m|n) superalgebra. It

is convenient to parametrize a weight A as
A+ P = Z .1’151 — Z Yi€m41—j- (254)
i=1 j=1

For A to be dominant, the two sequences {z;} and {y; } must be strictly increasing, and
satisfy an appropriate integrality condition. A dominant weight can be represented
graphically, as shown in fig. (2.4a). This is essentially the weight diagram of [47]. The
picture shows an obvious analogy between a dominant weight of u(m|n) and a vacuum
of a brane system; we will develop this analogy in section 2.4.4.4. This description
also confirms that dominant weights of u(m|n) correspond to dominant weights of the
purely bosonic subalgebra u(m) x u(n). In this correspondence, of the two central
generators of u(m) x u(n), one linear combination corresponds to the fermionic root
Aferm Of 5u(m|n) and the other to the center of u(m|n).

For atypicality =, the set A(A) consists of r isotropic roots ¢;, —€j;, | = 1...7,
which are mutually orthogonal, that is, each basis vector d, or €, can appear no
more than once.!® The atypicality condition (2.50) then says that r of the z-labels
are “aligned” with (equal to) the y-labels. Let these labels be x;, = ymi1-j, = 2,
Il =1...r, and the others be Z1,...,Zp_r, Y1,---,Ym_r- Then the atypical blocks
of atypicality r are labeled by the numbers z, and y,, which can be thought of as
labels for a dominant weight of u(m — r|n — r), and the weights inside the same
atypical block are parametrized by a sequence z,, which can be thought of as a
dominant maximally atypical weight of u(r|r). An example is shown in fig. (2.4b).
An atypical block is described by the following statement: the category of finite-
dimensional representations (not necessarily irreducible) from the same atypical block
of atypicality r is equivalent to the category of maximally atypical representations
of u(r|r) from the atypical block, which contains the trivial representation [47]. A

similar statement holds for the orthosymplectic superalgebras; the role of u(r|r) is

3Suppose that in {51 — €1,01 — 62} the vector ¢; appears more than once. Then, by taking
a difference, we would get that (A + p,e; — e2) = 0, which contradicts the assumption that A is

dominant.
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Figure 2.5: A diagram contributing to the expectation value of a link. A component L;
of the link is shown. The propagators running from 7% and T connect to the other

components of the link.

played by osp(2r|2r), osp(2r + 1|2r) or osp(2r + 2|2r).

2.3.2 Line Observables In Three Dimensions

We begin the discussion of line operators by considering purely three-dimensional
Chern-Simons theory of a supergroup. As it is explained in Appendix E of [1], there
are some puzzles about this theory, but they do not really affect the following remarks.
In any event, these remarks are applicable to the analytically-continued theory as
defined in four dimensions, to which we return in section 2.3.3.

Consider a supergroup Chern-Simons theory on R?® with a link L which consists
of p closed Wilson loops Li,..., L,, labeled by representations Ry, ..., Ry, of the
supergroup. Let us look at the perturbative expansion of this observable. On R3, the
trivial flat connection is the only one, up to gauge transformation, and perturbation
theory is an expansion about it. The trivial flat connection is invariant under constant
gauge transformations, but as the generators of constant gauge transformations on
R3 are not normalizable, we do not need to divide by the volume of the group of
constant gauge transformations. This is just as well, as this volume is typically zero
in the case of a supergroup.

A portion of a diagram that contributes to the expectation value is shown in
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fig. 2.5. We focus on a single component of the link, say L;, and sketch only the
gluon lines that are attached to this component. Let r be the number of such lines.

Then in evaluating this diagram, we have to evaluate a trace
Strg, (T ... T") du, .0, (2.55)

where T'* are bosonic or fermionic generators of the superalgebra, and everything
except the group factor for the component L, is hidden inside the invariant tensor
da,..a, (Whose construction depends on the rest of the diagram). By gauge invari-
ance, the operator 7% ...7T% d,, ,, is a Casimir operator cy,, € 3, acting in the
representation [2y,. The Casimir can be replaced simply by a number, and what then
remains of the group factor is the supertrace of the identity. So this contribution to
the expectation value can be written as cr, (A1) sdimR,,. From this we learn two
things. First of all, up to a constant factor, the expectation value for the link L will
not change if we replace any of the representations 5, by a representation with the
same values of the Casimirs. That is, for an irreducible atypical representation, the
expectation value depends only on the atypical block, and not on the specific repre-
sentative. Second, if the supertrace over any of the representations R,, vanishes, the
expectation value of the link in R® vanishes. Recall from the previous section that
the superdimension can be non-zero only for a representation of maximal atypicality.
We conclude that in R? for a non-trivial link observable, the components of the link
should be labeled by maximally atypical blocks or else the expectation value will be
zero. For example, for the unitary supergroup U(m|n), maximally atypical blocks
correspond to irreducible representations of the ordinary Lie group U(|n — m]).

In section 6 of [1], it is argued that for knots on R® (and more generally on any
space with enough non-compact directions) one can give expectation values to the
superghost fields C', without changing the expectation value of a product of loop
operators. For instance, in this way, the U(m|n) theory can be Higgsed down to
U(|n — m|). Therefore, on R® the supergroup theory does not give any new Wilson
loop observables, beyond those that are familiar from U(|n — m/|). The symmetry

breaking procedure shows that the expectation value of a Wilson loop labeled by a
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maximally atypical representation of U(m|n) is equal to the expectation value of the
corresponding U(|n — m|) Wilson loop.

Yet it is known from the point of view of quantum supergroups [30, 31| that knot
invariants can be associated to arbitrary highest weights of U(m|n), not necessarily
maximally atypical. It is believed that generically these invariants are new, that is,
they cannot be trivially reduced to invariants constructed using bosonic Lie groups.
To make such a construction from the gauge theory point of view, one needs to remove
the supertrace which in the case of a representation that is not maximally atypical
multiplies the expectation value by sdimR, = 0. One strategy is to consider a Wilson
operator supported not on a compact knot but on a non-compact 1-manifold that is
asymptotic at infinity to a straight line in R® (but which may be knotted in the
interior). The invariant of such a non-compact knot would be an operator acting
on the representation Ry, rather than a number. This approach may give invariants
associated to arbitrary supergroup representations. This strategy seems plausible to
us because it appears to make sense at least in perturbation theory, but we will not
investigate it here.

The Higgsing argument suggests another approach that turns out to work well for
typical representations. (For representations that are neither typical not maximally
atypical, the only strategy we see is the one mentioned in the last paragraph.) In
this approach, we look at the loop observables on a manifold with less then three
non-compact directions. We will focus on the case of S®. Again perturbation theory
is an expansion around the trivial flat connection. But now, unlike the R® case, the
generators of constant gauge transformations are normalizable and we do have to
divide by the volume of the gauge group. As was mentioned in our superalgebra
review, this volume is zero for any supergroup except OSp(1|2n). Therefore, for

almost all supergroups the partition function Z(S®) on S® is divergent,
Z(S?) = 0. (2.56)

If we try to include a Wilson loop in a non-maximally atypical representation, we get

an indeterminacy 0 - cc.
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There is a natural way to resolve this indeterminacy in the case of typical represen-
tations, but it involves an additional tool. In three-dimensional Chern-Simons theory
with a compact simple gauge group G, Wilson line operators and line operators de-
fined by a monodromy singularity are equivalent [4, 48, 49]. The proof involves using
the Borel-Weil-Bott (BWB) theorem to “de-quantize” an irreducible representation
of G, interpreting it as arising by quantizing some auxiliary space (the flag manifold
of G), in what we will call BWB quantum mechanics. To resolve the indeterminacy

that was just noted, we need the analog of this for supergroups.

2.3.2.1 BWB Quantum Mechanics

We first recall this story in the case of an ordinary bosonic group. Let G be a compact
reductive Lie group, 7' C GG a maximal torus, and A € t* an integral weight. Assume
in addition, that A is regular, that is (A, ) # 0 for any root «, or equivalently the
coadjoint orbit of A is G/T. (If this is not so, there is a similar story to what we
will explain with G/T replaced by G/L, where L is a subgroup of G that contains
T. L is called a Levi subgroup of GG. Its Lie algebra is obtained by adjoining to t the
roots a that obey (A, &) = 0.) One can consider a quantum mechanics in phase space
G/T with the Kirillov-Kostant symplectic form corresponding to A. The functional

integral for this theory can be written as

/Dhexp (—i/)\(h‘lﬁsh)ds> : (2.57)

where we integrate over maps of a line (or a circle) to G/T. The action here is defined
using an arbitrary lift of the map h(s) valued in G/T into a map valued in G. The
functional integral is independent of this lift, as long as the weight is integral.

Let V) be a one-dimensional T-module, where T" acts with weight A. The pre-
quantization line bundle over the phase space is defined as £, ~ G xp Vj; thus, it
is a line bundle associated to the principal T-bundle G — G/T. To define an actual
quantization, one needs to make a choice of polarization. For that we need a complex
structure. To that end, pick a Borel subgroup B D T in the complexified gauge group

Gc. The complex Kdhler manifold M ~ G¢/B is isomorphic, as a real manifold, to
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our phase space, and this gives it a complex structure. The prequantum line bundle
is likewise endowed with a holomorphic structure, £, ~ G¢c xg Vi.

An accurate description of geometric quantization also involves the metaplectic
correction. Instead of being just sections of the prequantum line bundle, the wave-
functions are usually taken to be half-forms valued in this line bundle. For example,
this is the source of the 1/2 shift in the Bohr-Sommerfeld quantization condition.
The metaplectic correction is important for showing the independence of the Hilbert
space on the choice of polarization. In a holomorphic polarization, the bundle of
half-densities is a square root of the canonical line bundle K. For the flag manifolds
that we consider, K is simply L£_5,, where p is the Weyl vector for the chosen Borel
subgroup. So our wave-functions will live, roughly speaking, in £, @ K2 ~ L, .

The precise characterization of the Hilbert space is given by the Borel-Weil-Bott
theorem. Let w € W be the element of the Weyl group that conjugates A into a
weight that is dominant with respect to the chosen B. Since A was assumed to be
regular, the weight

A=wA) —p, (2.58)

is also dominant. The BWB theorem states that the cohomology H*(M, Ly_,) is
non-vanishing precisely in one degree ¢(w), which is the length of the element w in
terms of the simple reflections. The group G¢ acts naturally on the cohomology, and
Hé(“’)(M,E;\,p) ~ Rx. This can be taken naturally as the Hilbert space H of our
system. Clearly, Ry depends only on A, and not on the choice of the Borel subgroup,
that is, the polarization. If B is taken such that A is dominant, then this is the usual
Kihler quantization, since H°(M, £,_,) is the space of holomorphic sections.

The fact that the resulting Hilbert space He(w)(./\/l,ll;\,p) is independent of the
choice of complex structure (or equivalently the choice of B) has a direct explanation.
On a Kihler manifold, the bundle Q%*(M) ® K'/2 is isomorphic to the Dirac bundle
S ~ ST @ S, where ST and S~ are spinors of positive or negative chirality. The
Dirac operator is J) = 8 + 0 , and the cohomology of 8 acting in Q%*(M) @ K/? is
isomorphic to the space of zero-modes of the Dirac operator, by a standard Hodge

argument. Therefore, the Hilbert space that we defined is simply the kernel of the
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Dirac operator acting on S ® V).

For the application to Wilson operators, we need to decide if the particle running in
the loop is bosonic or fermionic. If the Hilbert space lies in the /-th cohomology group,
it is natural to define the operator (—1)¥ that distinguishes bosons from fermions as
(—=1)¥ = (=1)%. In the Dirac operator terminology, the particle is a boson or a
fermion depending on whether the zero-modes lie in ST or in S~. In particular,
the amplitude of propagation of the particle along a loop (with zero Hamiltonian) is
naturally defined as the index of the Dirac operator ind ) = 4+dim Ry, to account
for the —1 factor for a fermion loop. Note that an elementary Weyl reflection of A
along a simple root reverses the orientation of M, and therefore exchanges St with
S~ and exchanges bosons and fermions.

In what follows, we will always work in the Borel subalgebra in which A is domi-
nant, and therefore A = A — p.

Now we return to the supergroup case. We would like to write the same functional
integral (2.57), with matrices replaced by supermatrices. A technical detail is as
follows. In the bosonic case, the integral goes over G /T, where G is the real compact
form of the group. In the supergroup case, we choose the compact real form of the
bosonic subgroup Gj, since this is the only choice that will lead to finite-dimensional
representations of SG. The compact form of Gy may not extend to a real form of SG
(for OSp(n|2m) it does not), so one has to develop the theory without assuming a real
form of SG. Similarly to what we have said in the beginning of section 2.3.1 for the
Chern-Simons case, to make sense of the BWB path integral, a real form is needed
only in the bosonic directions. The path integral of the supergroup BWB model goes
over a sub-supermanifold in SG¢/Tc whose reduced manifold is the bosonic phase
space Gi5/T. For instance, in our analysis shortly of a type I supergroup, hg € Gg/T,
and 0 and 0 are independent variables valued in g; and g_;, with no reality condition.

We claim that a simple supergroup version of the BWB model produces an irre-
ducible representation of SG as the Hilbert space. To exclude zero-modes, we assume
that A is regular, so that (A, ) # 0 for any o € A, bosonic or fermionic. It means

in particular that the weight A = A — p is typical. In this case, a direct analog of the
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BWB theorem exists [50], and the same logic as for the bosonic group leads to the
conclusion that the Hilbert space of the system is indeed the irreducible representation
Ry.

For a type I superalgebra, this statement can be heuristically explained as follows.
Take a parametrization of the supergroup element as h = e(’hoeg, with hg an element
of the bosonic subgroup, and 0 and 0 belonging to g_; and gy, respectively. The

action of the theory is

_ / A(h~1dh) = / Str(Ah-dh), (2.59)

where A° = k™A, T,, is the dual of A, defined using the superinvariant bilinear form.'

Using the fact that {g_1,9-1} = 0, and the fact that the invariant bilinear form is

even, one can rewrite this as
/ Str (Nh1dh) = / Str (A°hy 'dho) + / Str (ho[é, AO]hglow) , (2.60)

If A is regular, the commutation with it in [5, A°] simply multiplies the different com-
ponents of the fermion 6 by non-zero numbers. Then we can set 6/ = ho[a, A°lhgt,
with 6" a new fermionic variable. The resulting theory is a BWB quantum mechan-
ics for the bosonic field hg, together with the free fermions 6’ and 6. The Hilbert
space is a tensor product (2.49), as expected for a typical representation of a type I
superalgebra.!®

What if A is atypical, so that there exist isotropic fermionic roots « for which
(A, &) = 07 The usual BWB action (2.57) is degenerate, as it is independent of some

modes of 6 and 0. This is analogous to the problem that one has in the bosonic case if

The circle denotes the dual with respect to the bosonic part of the superinvariant bilinear form

K = ky — K¢. The dual with respect to the positive definite form «, + x, will be denoted by a star.
5There is a small caveat in this discussion. By our logic, the theory (2.60) gives H =~

A®g_1 x RS p which is the superalgebra representation with the highest weight A — p;, whereas
the supergroup BWB predicts the highest weight to be A — p. Presumably, the discrepancy can be
cured if one takes into account the Jacobian of the transformation from the superinvariant measure
in the full set of variables to the free measure in the (¢’, ) variables. In other words, that Jacobian

gives the difference between the one-loop shift for SG and for its maximal bosonic subgroup G.
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A is non-regular, and one can proceed in a similar way. We replace SG/T with SG/L,
where L is a subgroup of G whose Lie algebra includes the roots with (A, o) = 0. (L
is a superanalog of a Levi subgroup of a simple bosonic Lie group.) Then we quantize
SG/L instead of SG/T. This seems to give a well-defined quantum mechanics, but
we will not try to analyze it. The BWB theory for atypical representations is more
complicated than a naive generalization from the bosonic case [47]. One expects
the Hilbert space of the SG/L model to be a finite-dimensional representation with
highest weight A. However, rather than the irreducible representation, it might be
the Kac module, or some quotient of it, or some more complicated indecomposable

representation.

2.3.2.2 Monodromy Operators In The Three Dimensional Theory

By coupling the gauge field of Chern-Simons theory to the currents of BWB quantum
mechanics, supported on a knot K, we can write a path integral representation of a

Wilson operator supported on K:

Strp, P exp (—ﬁA) = /Dhexp (—z'jg{)\(h—ldAh)) : (2.61)

Here K is an arbitrary knot — that is, a closed oriented 1-manifold in W. As we have
explained, this replacement is justified at least for typical representations. In the
atypical case, we expect this replacement to be valid if R, is chosen correctly within
its block.

To establish the relation between Wilson lines and monodromy operators, we
remove the BWB degrees of freedom by a gauge transformation. This is possible
because G acts transitively on G/T'; thus, we can pick a gauge transformation along
K that maps h to a constant element of G/T. For a regular weight A, the choice
of this constant element breaks the G gauge symmetry along K down to 7. What

remains of the functional integral (2.61) is an insertion of an abelian Wilson line

exp (—z fi A(A)) | (2.62)

With this insertion, the classical equations derived from the Chern-Simons functional

integral require the gauge field strength to have a delta-function singularity along the
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knot,

27A°
F pr—
K

For example, if r, f are polar coordinates in the normal plane to the knot, then this

Sx. (2.63)

equation can be obeyed with
)\O
A= —do. 2.64
N (2.64)

We note that df is singular at » = 0, that is, along K. In quantum theory, the classical
equations do not always hold. However, to develop a sensible quantum theory, it is
necessary to work in a space of fields in which it is possible to obey the classical
equations. One accomplishes this in the present case by quantizing the theory in a

space of fields characterized by

AO
A=—do+... 2.65
6+ (2.65)

where the ellipses refer to terms less singular than df at » = 0. This gives the
definition of a monodromy operator.

Note that in (2.61), to rewrite a Wilson line for a dominant weight A, we used a
weight A = A+p. The motivation for this shift was given in our review of the coadjoint
orbit quantum mechanics, but this point requires more explanation. In the ordinary
three-dimensional formulation of Chern-Simons theory, it is known that such shifts of
the weights should not be included in the definition of the monodromy operators, but
rather they appear in the final answers as quantum corrections [48|. This is analogous
to the shift in the level & — k + h sign(k). However, in the analytically-continued
theory, we have to put the shift of £ by hand into the classical action, and one expects
that the same should be done with the shifts of the weights.!® For example, let us
look at the expectation value for the unknot, labeled with the spin j representation,

in the SU(2) Chern-Simons theory on R®. This expectation value is

sin(27r(j—|—1/2)/l€)‘

4R = =5 /)

(2.66)

16Both of these shifts arise from the phase of an oscillatory Gaussian integral, as was explained in
the case of k£ in section 2.2.6. In the 4d analytically-continued version of the theory, the Gaussian

integrals are real and will not generate shifts.
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This formula is derived from the relation with conformal field theory, so 7 here is a
non-negative half-integer. In the analytically-continued theory, we want to replace the
Wilson line of the spin j representation with a monodromy operator, and assume that
the answer is given by the same simple formula (2.66). The prescribed monodromy

around the knot is defined by

v
.J 03

F=2 ) 2.
™ e K, (2.67)

where o3 € su(2) is the Pauli matrix. We need to choose between taking j' = j or
j' = j + 1/2. Note that the Weyl transformation of the field in (2.67) brings j’ to
—4'. It should leave the expectation value invariant, up to sign.!” The symmetry of
the formula (2.66) is consistent with this, if we take j' = j + 1/2.

So we will assume that the monodromy operator in the analytically-continued
theory, which corresponds to a representation with weight A, should be defined using
the shifted weight A = A+ p. However, let us comment on some possible issues related
to these shifts. For a type I superalgebra, the Weyl vector p has integral Dynkin labels,
so, if A is an integral weight, then A is also an integral weight of the superalgebra.
But for the u(m|n) case, it might not be an integral weight of the supergroup. This
can be illustrated even in the purely bosonic case. For U(2), the quantum correction
A — A + p shifts the SU(2) spin by one-half, and does not change the eigenvalue of
the central generator u(1) C u(2). The resulting weight is a well-defined weight of
SU(2) x U(1), but not of U(2) ~ (SU(2) x U(1))/Z,. For a type II superalgebra, the
problem can be worse. If A is an integral weight of the superalgebra, A might not
be an integral weight of the superalgebra itself, because the Weyl vector p can have

non-integer Dynkin labels.!8

For a knot in R3 or S3, there is essentially only one integration cycle, so the Weyl reflection
maps the integration cycle to an equivalent one. But it may reverse the orientation of the integration
cycle, and that is the reason for the sign. A related explanation of the sign was given in section

2.3.2.1.
8For any simple root « of the superalgebra, it is true that 2(p, @) = (a, ). From this one infers

that the Dynkin label of the Weyl vector is either one or zero. However, for a type II superalgebra
there exists a simple root of the bosonic subalgebra, which is not a simple root of the superalgebra,

and for that root the Dynkin label of p need not be integral.
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We will not try to resolve these puzzles, but will just note that in one approach
to the line observables of the analytically-continued theory, one replaces a Chern-
Simons monodromy operator by a surface operator in four dimensions. In that case,
the fact that A° in eqn. (2.65) is defined using a non-integral weight presents no
problem with gauge-invariance for much the same reason that the non-integrality of
IC presents no problem: the “big” gauge transformations that lead to integrality of the
parameters in purely three-dimensional Chern-Simons theory do not have analogs'’
in the four-dimensional setting.

Finally, we can return to the question of making sense of a path integral for
a knot K C S? labeled by a typical representation. As remarked following eqn.
(2.56), a direct attempt to do this in the language of Wilson operators leads to a
0 - co degeneracy. This degeneracy is naturally resolved by replacing the Wilson
operator by a monodromy operator with weight A. In perturbation theory in the
presence of a monodromy operator supported on a knot K, the functional integral
is evaluated by expanding near classical flat connections on the complement of K
whose monodromy around K has a prescribed conjugacy class. The group H of
unbroken gauge symmetries of any such flat connection, for A typical, is a purely
bosonic subgroup of SG, because the fermionic gauge symmetries have been explicitly
broken by the reduction of the gauge symmetry along K from SG to a bosonic
subgroup (this subgroup is T if A is regular as well as typical).? To compute the
functional integral expanded around a classical flat connection, one has to divide by

the volume of H, but this presents no problem: as H is purely bosonic, its volume is

9In going from three to four dimensions, the support of a monodromy operator is promoted from
a knot K to a two-manifold C' with boundary K. If C' is compact, a homotopically non-trivial
map from K to the maximal torus " C G does not extend over C. If C = K x Ry, such a gauge
transformation can be extended over C, but the extension does not approach 1 at infinity. In a

noncompact setting, one only requires invariance under gauge transformations that are 1 at infinity.
20For any K, there is an abelian flat connection on the complement of K with the prescribed

monodromy around K, unique up to gauge transformation. Its automorphism group is 7' if A is
regular as well as typical (and otherwise is a Levi subgroup L that lies between T' and G). In general,
there may be nonabelian flat connections with the required monodromies; their automorphism groups

are smaller.
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not zero. So in the monodromy operator approach, there is no problem to define a
path integral on S® with insertion of a knot labeled by a typical representation.
Now let us consider loop operators in R? rather than S3. We have claimed that
a path integral on R?® with a Wilson operator labeled by a representation of non-
maximal atypicality is 0. This must remain true if the Wilson operator is replaced by
a corresponding monodromy operator. Let us see how this happens. The difference
between R® and S? is that in defining the path integral on R3 we only divide by
gauge transformations that are trivial at infinity. If on S® a flat connection has an
automorphism subgroup H, then on R?® it will give rise to a family of irreducible
connections, with moduli space SG/H. The volume of this moduli space will appear
as a factor (in the numerator!) in evaluating the path integral. If H is purely bosonic,
then the quotient SG/H has fermionic directions, and its volume generally vanishes.?!
Therefore, the expectation value of a closed monodromy operator in R3, for A typical,
vanishes (except for B(0,n)), in agreement with the corresponding statement for the
Wilson loop. To analyze the case that the weight A is not typical, we need to extend
the BWB quantum mechanics for atypical weights, and presumably we will then need
to compute the invariant volume of a homogeneous space SG/H, where now H will
be a subsupergroup. It is plausible that for A of sufficient atypicality, this volume can

2

be non-zero,?? so that the monodromy operator can have a non-trivial expectation

value. But we have not performed this computation.

2.3.3 Line Observables In Four Dimensions

Our next goal is to interpret the line operators that we have discussed in the full
four-dimensional construction. First we consider Wilson lines, and explore their sym-

metries in the physical 4d super Yang-Mills theory associated to the D3-NS5 system.

21 As always, the exception is a supergroup from the series B(0,7n).
22In view of an argument explained in footnote 9, a necessary condition is that any fermionic

generator C of SG that obeys {C,C} = 0 must be conjugate to a generator of H. This ensures that
the group F generated by C does not act freely on SG/H, so that the argument of footnote 9 cannot
be used to show that the volume of SG/H is 0. For U(m|n), it follows from this criterion that

SG/H has zero volume except possibly if A is maximally atypical.
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2.3.3.1 Wilson Operators

For generic values of t, N' = 4 super Yang-Mills theory in bulk does not admit Q-
invariant Wilson operators. (They exist precisely if t? = —1, a fact that is important
in the geometric Langlands correspondence [14].) However, on the defect W there

always exist supersymmetric Wilson operators

Wi(K) = StrgPexp (- 7{( A) , (2.68)

labeled by an arbitrary representation R of the supergroup SG. Here A is the super-
group gauge field and Q-invariance is clear since Q acts on A by gauge transforma-
tions.

These are the most obvious Q-invariant line operators, but they have a drawback
that makes them harder to study: as operators in the physical N' = 4 super Yang-
Mills theory, they have less symmetry than one might expect. We will analyze the
symmetry of these operators in different situations.

The procedure by which we constructed a topological field theory involved twisting
four of the six scalars of N' = 4 super Yang-Mills theory, leaving two untwisted
scalars and hence an unbroken R-symmetry group U(1)r = SO(2) C SO(6)g. In the
special case that M = R x W with a product metric, there is no need for twisting
in the R direction to maintain supersymmetry, so three scalars remain untwisted and
U(1)F is enhanced to SU(2)y. The supercharge Q that we chose in constructing a
topological field theory was one component of an SU(2)y doublet. For M =R x W,
the twisted action is invariant under SU(2)y as well as Q, so it inevitably preserves two
supercharges — both components of the doublet containing Q. Likewise, the Wilson
loop operators (2.68) are invariant under SU(2)y as well as Q, so on M =R x W,
they really preserve two supersymmetries.

Now let us specialize further to the case that W = R3is flat, with M = RxW = R%.
In this case, no topological twisting is necessary, but the half-BPS defect supported
on W breaks the R-symmetry group to SO(3)x x SO(3)y. In addition, there is
an unbroken rotation group SO(3), and, as explained in section 2.2.1, the unbroken

supersymmetries transform as (2,2,2) under SO(3) x SO(3)x x SO(3)y. Let us
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consider a Wilson operator Wx(K) where K is a straight line R C W, say the line
x1 = x9 = 0, parametrized by (. K is invariant under a subgroup SO(2) C SO(3) of
rotations of x; and z5. To identify the global symmetry of Wg(K) involves a crucial
subtlety. First let us consider the one-sided case studied in [6], in other words the
case of an ordinary gauge group G rather than a supergroup SG. In this case, the
supergroup connection reduces to A, = A + i(sin )¢, and the Wilson operator for a
straight Wilson line depends on one component ¢q of a triplet (¢g, @1, ¢2) of SO(3)x.
This field is invariant under a subgroup SO(2)x C SO(3)x, and hence a straight
Wilson line in the case of an ordinary gauge group has global (bosonic) symmetry
SO(2) x SO(2)x x SO(3)y. In the supergroup case, we must remember that the
supergroup connection also has a fermionic part Ay which began life as part of a field
that transforms as (2, 2) under SO(3) x SO(3)x. As a result, the component of Ay in
the z direction is not separately invariant under SO(2) and SO(2) x but only under a
diagonal combination SO’(2) C SO(2) x SO(2)x. Hence the bosonic global symmetry
of a straight Wilson line in the supergroup case is SO'(2) x SO(3)y, reduced from the
corresponding symmetry in the case of an ordinary Lie group.

The supersymmetry of a straight Wilson line Wg(K) is likewise reduced in the
supergroup case from what it is in the case of an ordinary Lie group. A supersym-
metry has no chance to preserve the straight Wilson line if its commutator with the
complexified bosonic gauge field A, has a contribution proportional to ;. Indeed,
the boundary conditions do not tell us anything about the behaviour of ¥; at z3 = 0,
so there would be no way to cancel such a term. Inspection of the supersymmetry
transformations (2.11) reveals that, apart from the SO'(3)-invariant supersymmetries
with generators

oAl = codyyd (2.69)
(familiar from eqn. (2.24)), with arbitrary two-component spinor w?, the only super-
symmetries that do not produce variations of A, proportional to ¥; are those with

generators

M = oo, (2.70)

A

where again w* is an arbitrary spinor. Since w* transforms as a spinor of SU(2)y, an
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SU(2)y-invariant Wilson operator is invariant under this transformation for all oA if
and only if it is invariant for some particular nonzero @A, A choice that is convenient
because it enables us to write simple formulas in the language of the twisted theory
is to set @ = v (where v was defined in (2.28)). Writing 0 for the transformation

generated by the corresponding supersymmetry, one computes that
5Ay = —i[C, B}, (2.71)

where we define

B={C,C}+B. (2.72)

Since (2.71) is non-zero, our Wilson lines do not preserve supersymmetries (2.70)
for a generic representation. Therefore, they preserve only the two supersymmetries
(2.69). They are 1/4-BPS objects from the standpoint of the defect theory (or 1/8
BPS relative to the underlying N' = 4 super Yang-Mills theory). This is an impor-
tant difference from the case of a purely bosonic gauge group, in which Wilson lines
preserve four supersymmetries (a fact that greatly simplifies the analysis of the dual
't Hooft operators [6, 51]). In fact, if the representation R that labels the Wilson
line Wg(K) is such that the fermionic generators act trivially, then (2.71) vanishes,
and Wgr(K) becomes 1/2-BPS (in the defect theory), as in the bosonic or one-sided
case. More generally, for (2.71) to vanish it is enough that the anticommutators of
the fermionic generators vanish in the representation R. Of course, in the case of a
supergroup such as U(m|n), this is a very restrictive condition.

One can also construct other Q-invariant Wilson operators in the electric theory,
by adding a polynomial of the Higgs field B to the connection in the Wilson line. The
resulting operators preserve 1/4 or 1/8 of the three-dimensional supersymmetry. In
the Q-cohomology, such operators are equivalent to the ordinary Wilson lines (2.68),
and for this reason we will not say more about them.

Why do we care about the reduced supersymmetry of the supergroup Wilson loop
operators? One of our goals will be to understand what happens to line operators un-
der nonperturbative dualities. For this purpose, the fact that the supergroup Wilson

operators are only 1/4 and not 1/2 BPS is rather inconvenient. Possible construc-
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tions of a dual operator that preserve 4 supercharges are much more restrictive than
possible constructions that preserve only 2 supercharges. We will obtain a reason-
able duality picture for certain 1/2 BPS Wilson-"t Hooft line operators that will be
introduced in section 2.3.3.2. These Wilson-"t Hooft operators are labeled by weights
of SG and the way they are constructed suggests that from the point of view of the
twisted topological field theory — the supergroup Chern-Simons theory — they are
equivalent to Wilson operators. But because of their enhanced supersymmetry, it is
much easier to find their duals.

About the Wilson operators, we make the following remarks. We were not able to
find a construction of 't Hooft-like disorder operators — characterized by a singularity
of some kind — with precisely the right global symmetries so that they might be dual
to the Wilson operators constructed above. It may be that one has to supplement
an 't Hooft-like construction by adding some quantum mechanical variables that live
along the line operators (analogous to the BWB variables that we discussed in section
2.3.2.1). With only 2 supersymmetries to be preserved, there are many possibilities
and we do not know a good approach. Also, the fact that the two-dimensional space
of supersymmetries preserved by a Wilson operator is not real suggests that it is
difficult to realize such an object in string theory. A string theory realization would

probably have helped in understanding the action of duality.

2.3.3.2 Wilson-’t Hooft Operators

For all these reasons, we now move on to consider Wilson-"t Hooft operators.

N = 4 super Yang-Mills theory supports BPS Wilson-"t Hooft line operators in the
bulk [52]. Though they preserve 8 supersymmetries, generically these do not include
the specific supersymmetry Q. The condition for a Wilson-"t Hooft operator in bulk
to be Q-invariant is that its electric and magnetic charges must be proportional with
a ratio K [14]. Since both charges have to be integral, Q-invariant Wilson-"t Hooft
operators exist in the bulk only for rational values of the canonical parameter . In
the present chapter, we generally assume K to be generic.

However, we are interested in operators that are supported not in the bulk but
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Figure 2.6: The hyperplane 2° = 0 showing our notation for the coordinates. y = 3 runs

horizontally; the 20 = 0 section of the knot K is shown as a dot in the center.

along the defect at 23 = 0. The gauge theories with gauge groups G, and G, live
in half-spaces, and the magnetic flux for each gauge group can escape through the
boundary of the half-space and so is not quantized. So a Wilson-"t Hooft operator that
lives only at y = 0 is no longer constrained to have an integral magnetic charge. Such
operators can exist for any (integer) electric charge and arbitrary K. To define them
precisely, we work in the weak coupling regime, where gyy is small, and therefore,
according to (2.7), K is large. The weight of the representation is taken to scale with
IC, so that the monodromy of the gauge field, which is proportional to A/KC, is fixed.

Consider a line operator located at y = 0 along the z° axis. (See fig. 2.6 for
the notation.) We want to find a model solution of the BPS equations (2.30) that
will define the singular asymptotics of the fields near the operator. For definiteness,
consider the Yang-Mills theory on the right of the three-dimensional defect. We make

a conformally-invariant abelian ansatz which preserves the SO(2) x SO(2)x x SO(3)y

symmetry:
d 0
A=c, SE/ + m, (1 — cosp)df,
da?
O =cy at (2.73)

Here m, is the magnetic charge (which as noted above will not be quantized). The

ray ¢ = 0 points in the y > 0 direction, and the signs were chosen such that there is
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no Dirac string along this ray. The localization equations (2.30) are satisfied if

m,

(2.74)

Cqo = 1M, tan?d, ¢4 = “os0’

where ¢ is the angle related to the twisting parameter ¢, as introduced in section
2.2. The hypermultiplet fields are taken to vanish. The factor of ¢ in the Coulomb
singularity of the gauge field A is an artifact of the Euclidean continuation; in Lorentz
signature, the solution would be real. Eqn. (2.73) fixes the behaviour of the bulk fields
near a line operator. For a generic magnetic charge, the fields of the hypermultiplet
do not commute with the singularity in (2.73), and thus are required to vanish along
the operator.

Let us check that our model solution satisfies also the boundary conditions at y =
0. The boundary conditions can be derived from (2.17) and an analogous expression
for the scalar X*. This is done in Appendix B. However, in the topological theory
one can understand the relevant features by a more simple argument. The boundary
condition should require vanishing of the boundary part of the variation of the action
of the theory. Suppose that we consider a configuration in which all the fermions
vanish, and the bosonic fields satisfy the localization equations. The variation of the
non-Q-exact Chern-Simons term (equivalently, the topological term) gives the gauge
field strength F;,. The Q-exact terms in the action come in two different sorts. There
is a bulk contribution, whose bosonic part is proportional to the sum of squares
of the localization equations (2.30). The variation of these terms vanishes when
the equations are satisfied. There are also Q-exact terms supported on the defect;
they furnish gauge fixing of the fermionic gauge symmetry of the supergroup Chern-
Simons. Their variation is proportional to the hypermultiplet fields. Therefore, we
conclude that if the fields satisfy the localization equations, and the three-dimensional

hypermultiplet vanishes, the boundary condition reduces to
Vv (Fp) =0, (2.75)

where ¢ : W < M is the natural embedding of the three-manifold into the bulk

manifold. This boundary condition is indeed satisfied by the model solution (2.73),
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(2.74), because in the complexified gauge field A, = A+ i(sin?)¢, the Coulomb parts
of A and ¢ cancel. (The magnetic part is annihilated by ¢*.) In fact, at y = 0, the
complexified field A, reduces to the field of a Chern-Simons monodromy operator
(2.63), if we identify m = A°//C, where now m includes both the part in g, and in g,..

In Chern-Simons theory, in the presence of a monodromy defect, the bulk action
is supplemented with an abelian Wilson line (2.62) along the defect; in our derivation
in section (2.3.2.2), this is what remained after gauge-fixing the BWB action. The
Chern-Simons action with an insertion of an abelian Wilson line is characterized by
the fact that its variation near the background singular field (2.63) does not have a
delta function term supported on the knot (a delta function term that would come
from the variation of Chern-Simons in the presence of the monodromy singularity
is canceled by the variation of the abelian Wilson operator). In four dimensions, in
the presence of a singularity along a knot K, the topological action (2.35) should be
integrated over the four-manifold with a neighborhood of K cut out, and taking into
account the singularity along K of the Wilson-"t Hooft operator, this produces a term

in the variation with delta-function support along K:

5(% A e (}"A]-“)) =i f;{ Str (A°5.A). (2.76)

To cancel this variation, just like in three dimensions, one inserts an abelian Wilson
line (2.62).

But now we learn something fundamental. Although the Wilson-t Hooft opera-
tors that we have constructed do not have a quantized magnetic charge, they have
a quantized electric charge. The abelian Wilson line is only gauge-invariant if A is
an integral weight of G, X G,.. For a type I superalgebra such as u(m|n), an integral
weight of G, x G, corresponds to an integral weight of the supergroup U(m|n) and
therefore, these Wilson operators are classified by integral weights of the supergroup.
The Weyl group of U(m|n) is the same as that of its bosonic subgroup U(m) x U(n),
so an equivalent statement is that Wilson operators of the supergroup (for irreducible
typical representations, or some particular atypical representations) are in correspon-

dence with this class of Wilson-'t Hooft operators. The advantage of the Wilson-'t
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Hooft operators is that they have more symmetry: in addition to Q-invariance, they
are half-BPS operators with the full SO(2) x SO(2)x x SO(3)y symmetry, just like a
Wilson line in the one-sided problem.

For a type II superalgebra, such as osp(2m + 1|2n), there is a slight complica-
tion. For such algebras, some “small” dominant weights do not correspond to rep-
resentations. (These are the weights that do not satisfy the “supplementary condi-

" as defined in section 2.3.1.1. See also section 2.5.6.2 for details in the case of

tion,’
OSp(2m+1|2n).) Our construction gives a half-BPS line operator for every dominant
weight whether or not this weight corresponds to a representation. It is hard to study
explicitly why some Wilson-'t Hooft operators with small weights do not correspond

to representations, because the semiclassical description of a Wilson-'t Hooft operator

is valid for large weights.?3

2.3.3.3 Twisted Line Operators

In section 2.5, we will discuss a non-perturbative duality for Chern-Simons theory with
orthosymplectic supergroup OSp(r|2n). It will turn out that line operators labeled
by dominant weights of the supergroup are not a closed set of operators under that
duality. To get a duality-invariant picture, one needs to include what we will call
twisted line operators.

The clearest explanation seems to be also the most naive one. We consider 4d
super Yang-Mills theory on W x R,, where R, is parametrized by y. For y < 0, the
gauge group is SO(r); for y > 0, it is Sp(2n). Along W x {y = 0} is a bifundamental
hypermultiplet.

Now we pick a knot K C W, and define a line operator supported on K by saying
that the hypermultiplet fermions change sign under monodromy around K. Locally,
this makes perfect sense. Globally, to make sense of it, we have to say essentially

that the hypermultiplets are not just bifundamentals, but are twisted by a Z, bundle

23Given this, one may wonder if the half-BPS property is lost when the weights are too small. We
doubt that this is the right interpretation because the construction of half-BPS line operators on

the magnetic side, discussed in section 2.4.4, appears to be valid for all weights.
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defined on W x {y = 0} that has monodromy around K. If such a flat bundle does
not exist, we say that the path integral with insertion of the given line operator is 0.
If there are inequivalent choices for this flat bundle, we sum over the choices.

This procedure actually defines not just a single new line operator, but a whole
class of them, which we will call twisted line operators. The reason is that the
monodromy around K forces the hypermultiplets to vanish along K, and therefore
there is no problem to include arbitrary SO(r) x Sp(2n) Wilson operators along K.
This class of operators will be important in section 2.5.

Can we do something similar for U(m|n)? In this case, we can pick an arbitrary
nonzero complex number €, embedded as an element of the center of U(n) (or of
its complexification if ¢ is not real), and twist the hypermultiplet fields by e under
monodromy around K. Then we proceed as just explained, and get a family of
line operators that depend on the parameter c. Again, from a global point of view,
this means the hypermultiplets are bifundamentals twisted by a flat line bundle with
monodromy e around K, and we define the path integral by summing over the
possible flat bundles that obey this condition. And again, we can generalize this

definition by including Wilson operators of U(m) x U(n).

2.3.4 Surface Operators

In the relation of 3d Chern-Simons theory to 4d gauge theory, there are two possible
strategies for finding a 4d construction related to a line operator in the Chern-Simons
theory.

In one picture, the 3d line operator is promoted to a 4d line operator that lives on
the defect that supports the Chern-Simons gauge fields. In the second picture, a line
operator in 3d is considered to have its support in codimension 2, and it is promoted
to a surface operator in 4d, whose support is in codimension 2.

So if Chern-Simons theory on a three-manifold W is related to 4d super Yang-Mills
on W x R,, where R, is a copy of R parametrized by y with a defect at y = 0, then
in the first approach, a 3d line operator supported on K C W is promoted in 4d to a

line operator supported on K x {y = 0}. In the second approach, a 3d line operator
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supported on K is promoted to a 4d surface operator supported on a two-manifold
C such that C N {y = 0} = K. For example, C' might be simply K x R,

Both of these viewpoints were explored in [6] for the one-sided problem, although
the first one based on 4d line operators was developed in more detail. In the two-sided
case, we have followed the first viewpoint so far but now we turn to the second one
and consider surface operators.

We focus on the simplest half-BPS surface operators, which were described in
the bulk in [53]. Our problem is to understand what happens when one of these
operators intersects a fivebrane. In the present section, we answer this question on
the electric side (that is, for an NS5-brane). In section 2.4, we answer the question
on the magnetic side (that is, for a D5-brane).

One advantage to the formulation via surface operators in four dimensions rather
than line operators is that the behavior under S-duality is simple to understand.
That is because, in the 4d bulk, one already knows the behavior under S-duality of
the surface operators we will be studying. Given a surface operator intersecting an
NS5-brane, the S-dual of this configuration will have to consist of the S-dual surface
operator intersecting a D5-brane. So all we have to do is to determine what happens
when a surface operator intersects an NS5-brane or a D5-brane. S-duality will then

take care of itself.

2.3.4.1 Surface Operators In The Bulk

The simplest half-BPS surface operators in N' = 4 super Yang-Mills theory are labeled
by a set of four parameters (a, 3,7,7n). The first three define the singular behavior
of the fields near the support of the operator, which will be a two-manifold C. If r
and # are polar coordinates in the normal plane to C, we require the fields near C' to

behave like

A=add+ ...,

aﬁ:ﬁ%—vdw..., (2.77)
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where the ellipses represent less singular terms. The parameters o, § and 7 take values
in a Cartan subalgebra t C g. More precisely, one can make big gauge transformations
on the complement of C' that shift a by an arbitrary cocharacter; therefore, a should
be considered as an element of the maximal torus?* T ~ t/T cocnar-

The meaning of the fourth parameter 7 is the following. Assume that the triple
(cv, B,7) is regular, that is, it commutes only with t. In this case the singular behavior
(2.77) reduces the gauge group along the surface operator to its maximal torus T,
and it makes sense to speak of the first Chern class of the resulting 7T-bundle on C'

One can define the t*-valued theta-angle n coupled to this Chern class, and introduce

exp (z /C n(F)> (2.78)

in the functional integral. By integrality of the first Chern class, this expression

a factor

is invariant under a shift of the theta-angle by an element of the character lattice
[epar C t°, s0 7 really takes values in the maximal torus of the Langlands-dual group,
n € TV >~ t* /T - Dividing by the action of the Weyl group W, which is a remnant
of the non-abelian gauge symmetry, we get that the parameters («, 3,v,n) take values
in (T,¢,+,TV)/W.

The singular asymptotics of the fields (2.77) satisfy the localization equations

(2.30) for any value of ¢, if supplemented with appropriate sources,

F—¢N¢=2madc,
dagp = =271y ¢

dax ¢ =2r3da’ Ady A b¢ (2.79)

where 6o = d(df)/27 is the §-function 2-form that is Poincaré dual to the surface C,
and 2° and y are coordinates along the surface.

The prescribed singularities (2.77) define the space of fields over which one inte-
grates to define NV = 4 super Yang-Mills theory in the presence of the surface operator.

Let us also define more precisely what functional we are integrating over this space.

24Tn this section we discuss only the bulk A" = 4 Yang-Mills theory, and all our notation refers to

its bosonic gauge group, and not to a supergroup.
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The action of the bulk topological theory consists of the topological term and some

Q-exact terms (2.36). In the presence of the surface operator, the topological term is
defined as

ik [

— | tr(FAF), (2.80)

AT i
where the symbol [ ](4 denotes an integral over M \ C, not including a delta function
contribution along C. Alternatively, we can write this as an integral over the whole
four-manifold, and explicitly subtract the contribution which comes from the delta-
function singularity of the curvature:

ﬁ/ tr(FAF) = ﬁ/ tr(FAF) — Z'IC/ tr(aF) —inKtr(a®?)CNC.  (2.81)
47 M 4 M C

The c-number contribution proportional to the self-intersection number CNC appears
here from the square of the delta-function.

In the absence of the surface operator, the Q-exact part of the action has the form

ot
VAV + VYA *VO) : (2.82)

1 2t~ 1
(2 v
I t+1t t+

where YV, V= and V° are the left hand sides of the supersymmetric localization
equations, as defined in (2.30). In the presence of the surface operator, the localization
equations acquire delta-function sources, as in (2.79). The action (2.82) is modified
accordingly, e.g., the first term becomes

1 270 o + + -

. tr (W (Wt —2m(a —t7)6) A (VT = 27(a — tw)éc)) : (2.83)
Because it contains the square of a delta function, this expression is at risk of being
divergent. To make the action finite, one works in a class of fields in which the
localization equations (2.79) are satisfied, modulo smooth terms. In other words, the
left hand side of the localization equations must contain the same delta functions as
the right hand side.

In the definition of the surface operator, it was assumed that the singularity
defined by (a, 8,7) is regular, that is, the gauge group along the operator is broken

down to the maximal torus. This is the case for which the theta-angles n can be
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defined classically. But it can be argued that the surface operator is actually well-
defined quantum mechanically as long as the full collection of couplings («, 3,7, n)
is regular. Omne approach to showing this involves a different construction of these
surface operators with additional degrees of freedom along the surface as described

in section 3 of [54]. In this chapter, we will try to avoid these issues.

2.3.4.2 Surface Operators In The Electric Theory

Let us specialize to a four-manifold M = W x R,, with an NS5-type defect along
W x {y = 0}. To incorporate a loop operator along the knot K in the Chern-Simons
theory, we insert surface operators in the left and right Yang-Mills theories along a
two-surface C' = Cy U C,. that intersects the y = 0 hyperplane along K. We could
simply take C' to be an infinite cylinder K x R,, or we could take an arbitrary finite
2-surface. The orientations are taken to be such that 0C, = —0C, = K. The
parameters of the surface operators on the right and on the left will be denoted by
letters with a subscript r or £. Sometimes we will use notation without subscript to
denote the combined set of parameters on the right and on the left (e.g., a = (a,., ay)).

We would like to understand the meaning of the parameters of a surface operator
in the Chern-Simons theory. It is clear that a surface operator with § =~v =71 =10
and non-zero « is equivalent to a monodromy operator in Chern-Simons, with weight
A° = Ka. Such a surface operator can be obtained e.g. as a Dirac string, which is
produced by moving a Wilson-'t Hooft line operator in the four-dimensional theory
into the bulk.

The parameter S has no direct interpretation in Chern-Simons, and defines just a
deformation of the integration contour, without changing the path integral. As noted
in [6], sometimes it might not be possible to turn on . For example, let the bosonic
gauge group be abelian, and let the three-manifold W be compact (e.g., W ~ S3).
If we have a link with components labeled by i, ..., 8, then, integrating the third
equation in (2.79) over W, we get that > f;l; = 0, where [; is the length of the i-th
component of the link. We see that if there is only one component, then 3 has to be

Zero.
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The case of a surface operator with non-zero ~ is a little subtle. It is not clear
to us whether such an operator in the physical theory®® can intersect (or end on)
the three-dimensional defect in a Q-invariant way, and if it can, then to what line
operator in Chern-Simons theory it would correspond. In topological theory, when
one takes the parameter ¢ to be real, such an operator makes perfect sense and has
a natural Morse theory interpretation [6, 12]. In that case, the bosonic part of the
action, modulo Q-exact terms, is defined in presence of a surface operator by an
integral of the local density tr(F, A F;) over the four-manifold M \ C. Up to some

field-independent constants, we have, analogously to (2.81),

ik [ i .

— | tr(FAF) = —/ tr(Fp A Fp) — ik | tr((a — wy,) Fp). (2.84)

AT, T J M, Cr
(Here we focus on the integral on the right hand side of the defect.) The combination
o, — w7y, under the trace came from the monodromy of the complexified gauge field
Ay = A+ w¢, where w is some complex number with non-zero imaginary part. (In
physical theory, w = isind.) Such an operator clearly corresponds to a Chern-Simons
monodromy operator of weight A° = KC(«v — wry), which generically is complex. Now,
the problem with such an operator in the physical theory is that the right hand side of
(2.84) contains an integral of i/Cwtr(yF) over C, which cannot have any interpretation
in the bulk physical theory, since w is not real. (Comparing e.g. to (2.78), we could
say that this insertion corresponds to n = w/X~, which is not an element of the real Lie
algebra.) What one should really do in the physical theory is to write the action as a
four-dimensional integral of the density tr(F A F), with gauge field non-complexified,
plus the three-dimensional integral of a three-form which can be found on the right
hand side of equation (2.40). In the presence of a surface operator, one should omit C
from the four-dimensional integral of tr(F A F'), and the knot K from the boundary
integral of the just-mentioned three-form. In the bulk, this gives an ordinary surface

operator of the sort reviewed in section 2.3.4.1. However, it is not completely clear

25By the “physical theory” we mean the theory that in flat space describes the D3-NS5 intersection.
In this theory, ¢ is given by (2.29) and lies on the unit circle, and K is real. By the “topological
theory,” we mean the theory which arises naturally from the Morse theory construction [12, 13],

with ¢ being real, and X in general complex. In this chapter, we focus on the physical theory.
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whether with this definition the intersection of the operator with the defect at y =0
can be made Q-invariant, and to what Chern-Simons weight it would correspond.
In the S-dual description of the theory in section 2.4, we will find natural half-BPS
surface operators with non-zero +", and the Chern-Simons weight will not depend on
this parameter. So we would expect that in the physical theory, Q-invariant surface
operators with + # 0, intersecting the boundary, do exist, and that v plays much the
same role as § — that is, it only deforms the integration contour. But this point is
not completely clear.

Finally, turning on the parameter n of the surface operator corresponds to adding
an abelian Wilson insertion along the line K, where the surface operator crosses the
y = 0 hyperplane. Naively, this happens because of the “identity” exp(in meMr F)=
exp(in $,, A) where A is an abelian gauge field with curvature F. We cannot take
this formula literally, since fK A is only gauge-invariant mod 27Z. But the “identity”
is correct for computing classical equations of motion, and thus shifting 7, has the
same effect on the equations of motion as shifting the electric charges that live on
K = CNW. Note that in presence of the three-dimensional defect the parameter n
is lifted from the maximal torus T, and takes values in the dual Cartan subalgebra
t*.

Let us briefly summarize. A surface operator with parameters (o, 3,0,7), sup-
ported on a surface C' = C, U C,., corresponds in the analytically-continued three-
dimensional Chern-Simons theory to a monodromy operator with weight A° = Ca—n*.
(Recall that a circle denotes the dual with respect to the superinvariant bilinear form
Kk = K, — Ky, and a star represents the dual with respect to the positive definite form
Ky + k¢.) Let Ag and A, be the parts of the weight, lying in the Cartan of the left and

right bosonic gauge groups, respectively. Then, more explicitly,

)\g = —ICO./Z + MNe
A =Kol —n,. (2.85)

We have set v to zero, since its role is not completely clear. For a given weight A, we

have a freedom to change o and 7, while preserving A,,. So a given line operator in
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the Chern-Simons theory can be represented by a family of surface operators in the
four-dimensional theory.

Now let us specialize for a moment to the operators of type («,0,0,0). The action
of the Weyl group on «, together with the large gauge transformations which shift «
by an element of the coroot lattice?® T'% of the bosonic subalgebra, generate the action
of the affine Weyl group V/\71 = W x I'7 at level 1. Equivalently, on the quantum-
corrected weights A these transformations act as the affine Weyl group W;C = WxKIF,
at level?” K. Though the description by surface operators makes sense for arbitrary
A, let us look specifically at the integral weights A € I',. For generic K, the subgroup
of W;C which maps the weight lattice to itself consists only of the ordinary Weyl
transformations. Therefore, the space of integral weights modulo the action of WK in
this case is the space I';,/W of dominant weights of the superalgebra, and the Chern-
Simons observables corresponding to these weights are generically all inequivalent.
Of course, this is a statement about the analytically-continued theory, which is the
only theory that makes sense for generic K. If however K is a rational number p/q,
then there are infinitely many elements of the affine Weyl group, which preserve
the integral weight lattice I',,. (For example, such are all the transformations from
17\/\,, C WK) Modulo these transformations, there is only a finite set of inequivalent
integral weights.

For an ordinary bosonic Chern-Simons theory and integer leve,l this can be com-
pared to the well-known three-dimensional result according to which the inequivalent
Chern-Simons line operators are labeled by the integrable weights A € Fw/Wk. The
connection between the two descriptions is that the weight A is integrable at level & if
and only if the corresponding quantum corrected weight A = A+ p belongs to the inte-
rior of the fundamental Weyl chamber T,/ WK, while the operators with A belonging
to the boundary of the fundamental Weyl chamber decouple in the Chern-Simons.

26For simplicity, here we restrict to a simply-connected gauge group, where the cocharacter lattice

is the coroot lattice.
2"By the affine Weyl group at some level p we mean the group which acts on the Cartan subalgebra

by ordinary Weyl transformations together with shifts by p times a coroot. Our terminology is

slightly imprecise, since as an abstract group, the affine Weyl group does not depend on the level.
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This explains how the four-dimensional description by codimension-two operators
with quantum-corrected level K and weight A can be equivalent (for integer I and if
the four-dimensional theory is specialized to an appropriate class of observables) to
the analogous three-dimensional description by operators defined with ordinary k£ and
A. For the case of a supergroup, where the purely three-dimensional description is not
completely clear, this discussion supports the view that, similarly to the bosonic case,
at integer level there is a distinguished theory with only a finite set of inequivalent line
operators. One detail to mention is that in the four-dimensional construction, we did
not show that the operators with A lying on the boundary of the affine Weyl chamber
decouple from the theory. We do not know for sure if this is true for supergroups in
the context of a hypothetical theory with only the distinguished set of line operators.
Another caveat is that we worked with the half-BPS surface operators, and therefore

our conclusion might not hold for the atypical supergroup representations.

2.3.5 Various Problems

We conclude by emphasizing a few unclear points.

In the four-dimensional construction, we have separately defined Wilson line op-
erators and Wilson-'t Hooft line operators in the 3d defect W C M. They are
parametrized by the same data — at least in the case of typical weights. The Wilson
line operators generically have less symmetry. Is it conceivable that they flow in the
infrared to Wilson-"t Hooft line operators with enhanced symmetry?

For an atypical weight, there are many possible Wilson operators but only one
half-BPS Wilson-t Hooft operator. This in itself is no contradiction. But in the S-
dual description of section 2.4 (see in particular section 2.4.4.5), we will find several
half-BPS line operators for a given atypical weight. The counterparts of this on the
electric side seem to be missing.

One more technical puzzle arises for type Il superalgebras. The half-BPS Wilson-"t
Hooft operators seem to be well-defined for an arbitrary integral weight A, at least if it
is typical, even though in some cases there is no corresponding representation. (For a

weight to correspond to a finite-dimensional representation, the weight should satisfy
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an extra constraint, as was recalled in section 2.3.1.1.) There is no contradiction, but
it is perhaps a surprise to apparently find half-BPS Wilson-'t Hooft line operators
that do not correspond to representations.

Additional line operators can presumably be constructed by coupling the bulk
fields to some quantum mechanical degrees of freedom that live only along the line
operator. This may help in constructing additional half-BPS line operators. Per-
haps it is important to understand better the BWB quantum mechanics for atypical

weights.

2.4 Magnetic Theory

2.4.1 Preliminaries

In this section we explore the S-dual description of our theory. Throughout this
section the reader may assume that the theory considered corresponds to the super-
group SG = U(m|n). This means in particular that the maximal bosonic subgroup
SGy = U(m) x U(n) is simply-laced. Some minor modifications that arise for other
supergroups will be discussed in section 2.5.

We would like to recall how the supersymmetries and various parameters transform
under S-duality. It is convenient to look again on the Type IIB picture. Under the

element

M = (2.86)

of the S-duality group SL(2,Z), the coupling constant of the theory transforms as

at + b
N ) 2.87
T cT +d ( )
The supersymmetries of the Type IIB theory transform according to
€1+ 169 — eia/Q(sl + i{fg) , (288)
where a = —arg(cr + d). In particular, for the supersymmetries that are preserved
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by the D3-brane we can use the relation (2.3) to rewrite this as

1
€1 — €xXp (—504 F()lgg) €1, (289)

in Lorentz signature. In [14] this relation was derived from the field theory point of
view.

Under the duality transformation M, the charges of the fivebranes transform as

pa)— @ oM, (2.90)

where (p, q) = (1,0) for the NS5-brane and (p, q) = (0, £1) for the D5- or D5-brane.
For future reference we describe the supersymmetries that are preserved by a defect
consisting of a general (p,q)-fivebrane. The supersymmetries preserved by such a
brane, stretched in the 012456 directions, are given by the same formula as in (2.4),
where now

U = arg(pt + q). (2.91)

Equation (2.4) can be rewritten in a more convenient form
€1+ i€2 = iem F012456(81 — ’ié—fg). (292)

Under the S-duality, ¢ is shifted by angle @« = —arg(ct + d), so one can see that

equation (2.92) indeed transforms covariantly, if the supersymmetries are mapped as

in equation (2.88). The twisting parameter t = —e~® is multiplied by e~ that is,
ct+d
t—>t————:. 2.93
ler + d| (2:93)

The canonical parameter K of the bulk theory was defined in equation (2.36). In

terms of the gauge coupling and the parameter ¢,

7 4t — 1
=2 20 N (2.94)
2r gyt +tT

For the special case that ¢ corresponds to the supersymmetry preserved by the D3-
NS5 system, this reduces to eqn. (2.7). Under S-duality, the canonical parameter

transforms [14] in the same way as the gauge coupling,

alk+b

K )
_)ch—i—d

(2.95)
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Let us specialize to the case of interest. The basic S-duality transformation that
exchanges electric and magnetic fields is usually described (for simply-laced groups)
as 7 — —1/7, but this does not specify it uniquely, since it does not determine the

sign of the matrix M of eqn. (2.86). We fix the sign by taking

0 1
M = . (2.96)

-1 0
This means, according to eqn. (2.90) that an NS5-brane, with (p,q) = (1,0), trans-
forms to a D5-brane, with (p,q) = (0, —1), so that according to eqn. (2.91), 9V =«
and ¢tV = 1. Then from the definition (2.94) of the canonical parameter, it follows

6\/
that IOV = =21

Unlike in the electric theory, the twisted action is very simple on the dual magnetic
side. As in the purely bosonic case [6], the action is Q-exact except for a multiple

of the instanton number (see Appendix C for a detailed explanation). In Euclidean

signature, we have

oV
Tnsgnse = g3 [ (FAF)+{Q... ) (2.97)
8
If we set
q = exp(—ibyy), (2.98)

then the dependence of the theory on ¢ is easily described: a solution of the localiza-
tion equations of instanton number n makes a contribution £¢" to the path integral.
(The sign is given by the sign of the fermion determinant.) This simple result arises
in the usual way because of cancellation between bosonic and fermionic fluctuations
around a solution of the localization equations. If therefore the instanton number
is integer-valued and is bounded above and below in all solutions of the localiza-

tion equations,?® then the path integral is a Laurent polynomial in ¢ with integer

280ne expects the instanton number to be bounded in any solution, though this has not been
proved. However, the claim that the instanton number is integer-valued is oversimplified; for exam-
ple, if the gauge group is simply-connected or M is contractible, the instanton number takes values
in Z 4+ ¢ where c is a constant determined by the boundary conditions. In such a situation, the

partition function is ¢¢ times a Laurent polynomial in gq.

5



coefficients, namely
Z =Y a.q", (2.99)

where a,, is the number of solutions (weighted by sign) of instanton number n.
It is straightforward to express ¢ in terms of the parameters of the electric theory.
As explained above, in the magnetic theory KV = 6Y,,/2m; also, according to (2.95),
KY =—-1/K. So
0%y = —21/K, (2.100)

and hence

For an ordinary (simple, compact, and simply-laced) bosonic group, this is the stan-
dard variable in which the quantum knot invariants are conveniently expressed, and
for a supergroup it is the closest analog. These matters were described in section
2.2.6.

We now proceed to describing the localization equations and the boundary con-
ditions in the magnetic theory, leaving many technical details for Appendix C. Some
relevant aspects of the gauge theory have been studied in [21]. The details depend
on the difference of the numbers of D3-branes on the two sides of the D5-brane. We

describe different cases in the subsequent sections.

2.4.2 Gauge Groups Of Equal Rank

In the case of an equal number of D3-branes on the two sides, the effective theory is a
U(n) super Yang-Mills theory in the whole four-dimensional space, with an additional
three-dimensional matter hypermultiplet localized on the defect, at x3 = 0. This
hypermultiplet comes from the strings that join the D5-brane and the D3-branes,
and therefore it transforms in the fundamental of the U(n) gauge group. Under the
global bosonic symmetries U = SO(1,2) x SO(3)x x SO(3)y, the scalars Z4 of the
hypermultiplet transform as a doublet (1,2,1), and the fermions CO‘A transform as

(2,1,2). The bulk fields have discontinuities at x3 = 0 as a result of their interaction
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with the defect. For example, the equations of motion of the gauge field, in Euclidean
signature, can be deduced from the action
—#/d4xtrF2y+ thv : (2.102)
2(gvm)? o (gva)? P
(In the magnetic description, the topological term [ tr F' A F is integrated over all
of R* and so does not affect the equations of motion.) The equations of motion that

come from the variation of this action have a delta-term supported on the defect,
1

where J;, = 0L /0 AT is the current.® The delta-term in this equation means that

the gauge field has a cusp at 3 = 0, so that Fj; has a discontinuity:

)

1
En*E = S (2.104)

Here and in what follows we use the notation p|* = (x5 + 0) — p(x3 — 0) for the
jump of a field across the defect. By supersymmetry, this discontinuity equation can
be extended to a full three-dimensional current supermultiplet. The most impor-
tant for us will be the lowest component of the current multiplet, which governs the

discontinuity of the bulk scalar fields X*:
+ 1
X" = §;ﬂm, (2.105)
where the hyperkahler moment map for the defect hypermultiplets is
pe = Z 205, Z5. (2.106)

(The other bulk scalar fields Y* are continuous at z3 = 0.)
Now we turn to the twisted theory. Recall, that for twisting we use an SO(4) sub-
group of the R-symmetry, which on the defect naturally reduces to SO(3)y. Thus,

the hypermultiplet scalars Z4 become spinors Z* under the twisted Lorentz group.

2TIndices m,n continue to denote gauge indices, although now the gauge group is just one copy
of U(n) throughout R*. Gauge indices are raised and lowered with the positive-definite Killing form

Omn = —tr(TnTh).
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They are invariant under SU(2)y, and therefore have ghost number zero. The hy-
permultiplet fermions CaA remain spinors. Since they also transform as a doublet of
SU(2)y, we can expand them in the basis given by the vectors u and v of eqns. (2.28)
and (2.27) (where now we take ¥ = 7):

¢t =i, v,

ot = AT, +ivie,. (2.107)
The u- and v-components of ¢ and ¢ have ghost number plus or minus one, respec-
tively.

As usual, the path integral can be localized on the solutions of the BPS equations

{Q, ¢} = 0, where ¢ is any fermionic field. The resulting equations for the bulk
fermions were partly described in eqn. (2.30). At ¢tY = 1, they have a particularly

simple form,

F—¢A¢+*dA¢:%*(5wAM),

D" = 0. (2.108)

Here dy = §(z3)dxs is Poincaré dual to the three-manifold W on which the defect
is supported. The delta function term on the right hand side of the first equation in
(2.108) is related to the discontinuity (2.105) of the 1-form field ¢. There is no such
term in the second equation, because the only field whose z3 derivative appears in
this equation is ¢s; this field originates as a component of Y%, and is continuous at
x3 = 0. The condition that {Q,£} = 0 for all £ also leads to conditions on the ghost
field o

D,o = [¢,,0] =[o,0] =0. (2.109)

These equations say that the infinitesimal gauge transformation generated by o is
a symmetry of the solution. In this chapter we generally do not consider reducible
solutions, so we generally can set o to 0.

We also should consider the condition {Q,&} = 0 where £ is one of the defect
fermions. For the u-component of the fermions that are defined in equ. (2.107), {Q, ¢}

equals the variation of the defect fields under the gauge transformation generated by
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o, so the condition for it to vanish, when combined with (2.109) says that the full
configuration including the fields on the defect is o-invariant. More important for us

will be the condition {Q, ¢} = 0 for the v-components:
DZ+¢sZ =0, IDZ—Zps=0. (2.110)

Equns. (2.108) and (2.110) together give the condition for a supersymmetric configu-

ration.

2.4.3 Gauge Groups Of Unequal Rank

Now consider the case that the number of D3 branes jumps from n to n+r, r > 0,
upon crossing the D5-brane. The gauge groups on the left and on the right are U(n)
and U(n + r), and will be denoted by G, and G,, respectively. The behavior along
the defect has been described in [21]. In contrast to the case r = 0, there are no
hypermultiplets supported along the defect at y = 0. What does happen is different
according to whether r =1 or r > 1. We first describe the behavior for » > 1.

The main feature of this problem is that some of the bulk fields have a singular
behavior (known as a Nahm pole singularity) near y = 0. Assuming that r is positive,
the singular behavior arises as one approaches y = 0 from above. To describe the
singularity, we first pick a subgroup H = U(n) x U(r) € U(n + r), and we set
H' =U(n)xU(1), where U(1) is the center of the second factor in H. The singularity
will break G, = U(n + ) to H'. The fields with a singular behavior are the scalar
fields that we have called X in the untwisted theory or as ¢; in the twisted theory.

The behavior of ¢ as y approaches 0 from above is
i =—+..., (2.111)

where the ellipsis represent less singular terms, and the matrices ¢; represent an
irreducible embedding of su(2) into the Lie algebra u(r) of the second factor of H =

U(n) x U(r). Thus the matrices ¢; are (n + ) X (n 4 r) matrices that vanish except
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for a single r» x r block, as shown here for n =2, r = 3:

(2.112)

o o o o O
o o o o O
*

*

*

* ok %k

These matrices are traceless, so their nonzero blocks are actually valued in su(r) C
u(r).

The Nahm pole singularity breaks the gauge symmetry for y > 0 from U(n + r)
to H' = U(n) x U(1), and there is to begin with a G, = U(n) gauge symmetry for
y < 0. There is therefore a U(n) gauge symmetry on both sides of the defect, and
the condition obeyed by the U(n) gauge fields is just that they are continuous at
y = 0, making a U(n) gauge symmetry throughout the whole spacetime. On the
other hand, the fields supported at y > 0 that do not commute with the Nahm pole
singularity acquire very large masses near y = 0, and they vanish for y — 0. (This
statement applies to fields in the adjoint representation of su(r) and also to fields
in the bifundamental of U(n) x U(r).) To finish describing the gauge theory of the
defect, we must explain the behavior at y = 0 of the fields in the second factor of
H' = U(n) x U(1). These fields make up a single vector multiplet, which obeys
what we might call Dirichlet boundary conditions (the gauge fields A; and scalars
Y@ in this multiplet obey Dirichlet boundary conditions, while the scalars X obey
Neumann boundary conditions; these conditions are extended to the fermions in a
fashion determined by supersymmetry).

For r = 1, this description requires some modification, because su(l) = 0 and
accordingly the matrices ¢; vanish. Still, the defect breaks the G, = U(n + 1) gauge
symmetry for y > 0 to a subgroup H' = U(n) x U(1) C U(n + 1). Just as at r > 1,
the u(n)-valued gauge fields on the two sides of the defect fit smoothly into contin-
uous u(n)-valued fields throughout the whole spacetime. For y > 0, the gauge fields
valued in the orthocomplement of u(n) obey the same Dirichlet boundary conditions

described at the end of the last paragraph.
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So far, we have described this construction as if the matrices ¢; in eqn. (2.111) are
just constant matrices. This makes sense if W = R®, but in general, we must recall
that in the twisted theory on M = W xR, ¢ = Y. ¢;da’ transforms as a 1-form along
W. The proper interpretation of the Nahm pole singularity in this general setting is
as follows (see section 3.4 of [6]; the considerations there carry over to the present
case without essential change). The u(r) bundle along W must be derived from a spin
bundle Sy via a homomorphism o : su(2) — u(k) defined by the ¢;. The restriction to
W x {y = 0} of the u(r)-valued part of the gauge field is the Levi-Civita connection
w of Sy, embedded in su(r) via . We describe this by saying that when restricted
to y = 0, the u(r)-valued part of the gauge field A is A,y = o(w).

2.4.3.1 The Framing Anomaly

It is now possible to make an interesting check of the relationship between Chern-
Simons theory of U(n|n 4 r) and the defect theory just described. Here we will be
rather brief, assuming that the reader is familiar with the description of the one-sided
case in section 3.5.3 of [6]. Recall that in general the partition function of Chern-
Simons theory on a three-manifold W is not quite a topological invariant of W; W
must be endowed with a framing (or more precisely a two-framing [55]) to define this
partition function. A framing is a trivialization of the tangent bundle of W. Under a

unit change of framing, the partition function acquires a factor [4]
exp(2micsign(k))/24), (2.113)

where c is the central charge of the relevant current algebra at level k. For a compact
simple gauge group G this is ¢ = kdim G/(k+h sign(k)), where h is the dual Coxeter
number of G. We will assume that the same formula for ¢ applies, at least modulo

an integer, for a simple supergroup SG, which in our case will be SU(n|n + r):

ksdim SG

= dZ. 2.114
¢ k + hegsign(k) o ( )

This is a non-trivial assumption, since some of the standard arguments do not apply

for supergroups, as it is described in Appendix E of [1]. (Replacing SU(n|n + r) by
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U(n|n-+r), which is isomorphic locally to SU(n|n+r) x U(1), shifts ¢ by 1, which will
not be important as we will only study ¢ mod Z. So the following discussion will be
phrased for the simple supergroup SU(n|n + r), rather than U(n|n +r).) It is useful
to factor (2.113) as follows:

exp (2mi sign(k) sdim SG /24) - g~ =0 sdimSG/24, (2.115)

Perturbation theory is an expansion in powers of 1/K, with an ¢-loop diagram making
a contribution of order 1=*. Accordingly, the exponent 2misign(k)sdim SG/24 in
the first factor in (2.115), being invariant under scaling of k, is a 1-loop effect. Since
it is not analytic in K, we cannot hope to reproduce it from four dimensions. If this
factor — or a similar one that arises if c is shifted by an integer — appears in a purely
three-dimensional construction, then it must appear in a comparison between the
relevant measures in three and four dimensions, as discussed in section 2.2.6 above
and in section 3.5.3 of [6]. However, the second factor in (2.115), which is a simple
power of ¢, comes from diagrams with > 2 loops and can be reproduced from four
dimensions.

As in [6], this factor arises from a subtlety in the definition of instanton number
in the presence of the Nahm pole. The condition that along W x {y = 0}, Ayp) =
o(w) means that the instanton number, defined in the obvious way from the integral
fMé TrFANF+ fMT Tr F' A F, is not a topological invariant. If one varies the metric
of W, the second term picks up a variation from the change in w. To compensate for
this, one must add to the instanton number a multiple of the Chern-Simons invariant
of w, but this is only gauge-invariant (as a real number) once we pick a framing
on W. From the viewpoint of the dual magnetic description, that is why Chern-
Simons theory on W requires a framing of W. To adapt the analysis of |6] to the
present problem, we simply proceed as follows. In the U(n|n + r) case, the Nahm
pole is embedded in a u(r) subalgebra, and therefore the framing-dependence that is
introduced when we define the instanton number for this problem is independent of n
and is the same as it is for the one-sided problem with n = 0 and gauge group U(r).

Hence, to obtain in the magnetic description the expected factor ¢ "=e54m&/24 in the
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framing dependence, we need the identity
hsu(nin+r) sdim SU (n|n + 1) = hgy(y dim SU(r). (2.116)

This is true because sdim SU(n|n + r) is independent of n and likewise hgy(njnr) is

independent of n. See Table 2.2.

2.4.4 Line And Surface Operators In The Magnetic Theory

Our next goal is to identify the S-duals of the line and surface operators that we
have found on the electric side. We use the fact that we know how S-duality acts on
the bulk surface operators. For an “electric” surface operator, the magnetic dual [53]
has parameters (a", 5,7V, nY) = (n, |7|5*, |7|7*, —a), where 7 is the gauge coupling
constant. This determines the singularity of the fields along the operator in the bulk,
away from the three-dimensional defect. We still have to find the model solution
which describes the behavior of the fields near the end of the surface operator at
y = 0. This will be the main subject of the present section.

In bulk, for a surface operator with parameters («, 3,7, ), the parameters o and 7
are both periodic. In the presence of a defect, this is no longer the case. In the electric
description, 7 is not a periodic variable on a D3-brane that ends on (or intersects)
an NSH-brane. Shifting n by an integral character would add a unit of charge along
the defect. Dually to this, for the D3-D5 system, in the case of a surface operator
with parameters (", 58Y,vY,n"), @V is not a periodic variable. In the model solutions
that we construct below, if o is shifted by an integral cocharacter (of G), then the
solution is unchanged in the bulk up to a gauge transformation, but is modified along
the defect.

It follows from this that once we construct model solutions for surface operators
with parameters (a¥, 8Y,~"), we can trivially construct magnetic line operators. We

return to this in section 2.4.5.
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2.4.4.1 Reduction Of The Equations

We focus first on the case of gauge groups of equal rank, as described in section 2.4.2.
The discussion can be transferred to the unequal rank case in a straightforward way,
and we shall comment on this later.

To give a definition of a surface operator whose support intersects the three-
dimensional defect, we have to find a model solution of the localization equations
(2.108) and (2.110) for the fields near the surface C' and near the hyperplane y = 0.
The classical solution does not depend on the two-dimensional theta-angles 1", so we
label it by three parameters (o, 5Y,vY). We consider a surface operator stretched
along C' = R,0 X R, in R*and look for a time-independent, scale-invariant solution.
We aim to construct a model solution that is 1/2-BPS, that is, it preserves the four
supersymmetries (2.69) and (2.70). It should also be invariant under the SO(3)y sub-
group of the R-symmetry groups. The symmetries allow us to considerably reduce the
localization equations. An analogous problem in the one-sided theory was considered
in section 3.6 of [6], where the reader can find many details which we do not repeat
here.

First of all, for an irreducible solution the field o is zero, and therefore, by SO(3)y
symmetry, ¢3 should also vanish. The Q-invariance together with SO(3)y symmetry
makes the solution invariant under the first pair of supersymmetries (2.69). Using
the explicit formulas for the transformations (2.229), one can also impose invariance
under the second pair of supersymmetries (2.70). For t¥ = 1, which is the case in the
magnetic theory, this fixes Ay to be zero. The reduced localization equations can be
written in a concise form, after introducing some convenient notation. Following [6],

we define three operators

Dl = 2D§7
DQ = D3 - i¢0a
D3 =2¢,, (2.117)

where z = x; + iy is a complex coordinate, ¢, = (¢ — i¢y)/2 is the z-component

of ¢, and Dz and D3 are covariant derivatives. We also denote the components of
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the bosonic spinor field Z% as Z = Z' and Z = (Z2)'. For simplicity, we assume the
gauge group G to be U(n). Then the components of the moment map (2.106) can
be written as

w=iZ'ezZ-202Y, pn=-iZ®Z. (2.118)

With this notation, the reduced localization equations are

[D1,Ds] =0, [Ds5,D1] =0, [Dy,Ds] —p.0(y) =0,

D Z=DZ =0, (2.119)

together with
> [P D]] +ioed(y) = 0. (2.120)

1

The space of fields in which we look for the solution is the space of continuous connec-
tions on R*\ C, and Higgs fields with an arbitrary discontinuity across the hyperplane
y = 0. (The fields should also be vanishing at infinity.) The correct discontinuity
(2.105) is enforced by the delta-terms in the localization equations. To put the real
and imaginary parts As and ¢q of the connection in Dy on equal footing, let us also
allow Az to have an arbitrary discontinuity across y = 0, and to compensate for this,
we divide the space of solutions by the gauge transformations, which are allowed to
have a cusp across the defect hyperplane.

The analysis of these equations in the one-sided case in [6] was based on the
fact that the equations (2.119) are actually invariant under complex-valued gauge
transformations, not just real-valued ones. One can try to solve the equations in a
two-step procedure in which one first solves eqn. (2.119) and then tries to find a
complex-valued gauge transformation to a set of fields that obeys (2.120) as well.

Though we could follow that strategy here as well, we will instead follow a more
direct approach. We are motivated by the fact that the basic surface operator in the
absence of any defect or boundary is described by a trivial abelian solution. In the
one-sided problem, one requires a Nahm pole along the boundary and therefore the
full solution is always irreducible. However, in the two-sided case with equal ranks,

there is no Nahm pole. Is it too much to hope that we can find something interesting
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by taking simple abelian solutions for y < 0 and y > 0, somehow glued together along

y =07

2.4.4.2 Some “Abelian” Solutions

We look for a model solution for a surface operator with parameters («",0,0), and
initially we assume «" regular. Since we take ¥ = «V = 0, we look for a model
solution invariant under the SO(2) group of rotations in the 12-plane, and under the
SO(2) x subgroup of the R-symmetry. Accordingly, the field ¢, should vanish. Indeed,
the SO(2)x acts on ¢, by multiplication by a phase. In a fully non-abelian solution,
this phase could possibly be undone by a gauge transformation, but in a solution that
is abelian away from y = 0 — as we will assume here — that is not possible and ¢,
must vanish. Therefore, from the discontinuity equation for ¢, it follows that either
Z or Z should vanish. So for definiteness, assume that Z=0and Z # 0.

For now we focus on irreducible solutions, for which the gauge group along K is
broken completely. We postpone the discussion of reducible solutions.

A simple abelian solution of the localization equations would be A = o cos ¢d#,
¢ = aVdz®/r". For y — oo, ¢ vanishes, and A approaches the simple surface operator
solution «Vdf for y — 400 (6 = 0) or —a¥df for y — —oo (6 = 7). However, we want
a solution in which A will approach independent limits «/df and «,’df for y — —o0
and y — 4o00. Also we want to allow for the possibility that a gauge transformation

by a constant matrix g has to be made to match the solutions for y < 0 and y > 0.

So we try
d 0
y>0: A=a cospdd, qﬁ:oz?Y?f ,
0: A=—galg'cospdd N L 9.121
y<0: =—gajg cospdd, ¢ =—gajg . (2.121)

‘i = %(2T®2—Z®ZT). Note

first of all that taking the trace of this gives i(tr(c) + tr(a))) = r(|Z]> — | Z|) /2.

We also have to impose the discontinuity equation ¢,

Therefore, the choice of whether Z or Z is non-zero is determined by the sign of the

combination of parameters on the left hand side of this equation. We assume this
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combination to be positive, and take
7 =— (2.122)

where v is some constant vector. We have taken Z to be holomorphic to satisfy
D17 = 0 (this is one of the localization equations, eqn. (2.119)). Note that A does
not appear in this equation, since it vanishes at y = 0, so the formula for Z does
not depend on «) or o). Also, (2.122) means that Z has a monodromy —1 around
the knot, which in this description is located at z = 0. So we have to assume that
this monodromy of Z is part of the definition of the surface operator in this magnetic
description.

The discontinuity equation now becomes
vy o1 L t
i) +iga)g = 5V ®@v'. (2.123)

This is a set of n? equations for a unitary matrix g and a vector v, which are together
n?+n variables. The equations are invariant under the diagonal unitary gauge trans-
formations, which remove n parameters. Therefore, generically one expects to have a
finite number of solutions.

The equations can be conveniently formulated as follows. For a given hermitian
matrix N = i)/, find a vector v, such that the hermitian matrix N’ = N — %v ® vl
has the same eigenvalues as M = —ia). Using the identity det(X + v ® vl) =
(14 v X~1v)det(X), the characteristic polynomial for N’ can be written as

det (1-A =N+ svevt) = det(1- A= N) (141 -~ [l (2.124)
e 2v v | =de 2‘_1)\_& ) .

where u; are the eigenvectors of N with eigenvalues \;. First let us assume that

uZT v # 0 for all i. Then the eigenvalues of N’ are solutions of the equation

— 0. (2.125)

Note that all the eigenvalues of N are distinct — this is the regularity condition for
the weight, which says that (A, ag) = (A + p, o) # 0 for all the superalgebra bosonic
roots . By sketching a plot of the function in the left hand side of (2.125), it is easy

87



to observe that the equation has n solutions A\ = X, i = 1,...,n. These solutions
interlace the eigenvalues \;, in the sense that if the \; and )] are arranged in increasing
order then \| < A\ < X, <--- < \,. Had we assumed Z rather than Z to be non-zero,
we would have obtained the opposed interlacing condition Ay < A < Ay < -+ < AL.
Moreover, by tuning the n coefficients |u;rv\2 of the equation, one can in a unique way
put these solutions to arbitrary points inside the intervals (—oo, A1), (A1, A2), ...,
(An—1, An), to which they belong. To do this, we simply view eqn. (2.125) as a system
of linear equations for the constants |u;rv]2. The interlacing condition ensures that
there is no problem with the positivity of those constants. An important special case
is that [u/v|2 — 0 precisely when N, (for j =i or i & 1) approaches \;. The facts we
have just stated are used in some applications of random matrix theory; for example,
see p. 16 of [56].

We conclude that the equation (2.123) has a solution, which moreover is unique
(modulo diagonal gauge transformations), if and only if the eigenvalues of i« and
—iay) are interlaced. Since the eigenvalues of ia, and ia) should be the weights of
a dual Wilson-"t Hooft operator on the electric side, we have a reasonable candidate
for the dual of such operators when certain inequalities are satisfied. If some of
the eigenvalues of ic,’ coincide with eigenvalues of —iay, then the corresponding
components of Z = v/y/z vanish. (We return to this point in section 2.4.4.5.)

If the eigenvalues are not interlaced, the abelian ansatz fails. As a motivation to
understand what to do in this case, we will describe a possibly more familiar problem
that leads to the same equations and conditions that we have just encountered. We
look at the system of N D3-branes intersecting a D5-brane from a different point of
view. Instead of studying a surface operator, we look for a supersymmetric vacuum
state in which the fields X have one asymptotic limit X, for y — —oo and another
limit )Z} for y — +o00. Such a vacuum exists for any choice of )2}7 )Z'm and is unique up
to a gauge transformation. Macroscopically, this vacuum is often just understood by
saying that a D3-brane can end on a D5-brane so the value of X can jump from X, to
)Z'T in crossing the D5-brane. Thus, one represents the vacuum by the simple picture

of fig. 2.1 of section 2.1.2, but now with the fivebrane in the picture understood as a
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miy Moy

Figure 2.7: D3-branes ending on the two sides of a D5-brane. If the branes are not inter-

laced, they can form a fuzzy funnel.

Db5-brane.

Although this picture is correct macroscopically, from a more microscopic point of
view, the vacuum of the D3-D5 system is found by solving Nahm’s equations for the
D3 system, with the D3-D5 intersection contributing a hypermultiplet that appears
as an impurity. This has been analyzed in detail in [21]. Let us just consider the
case that the branes are separated at y — 400 only in the X, direction, where X4
corresponds to ¢g in our notation here. A natural ansatz would then be to assume
that X5 = Xg = 0 everywhere. That leads to simple equations. Nahm’s equations
with X5 = Xg = 0 just reduce to dX,/dy = 0 (for y # 0), so X, is one constant
matrix for y > 0 and a second constant matrix for y < 0. After diagonalizing X, for
y > 0, we can write X; = o for y > 0, X4 = —ga)/g~! for y < 0, with o, o/ € ¢,
g € U(n). Finally, in the construction of the vacuum, the jump condition at the
location of the hypermultiplet is precisely (2.105).

So in constructing the vacuum assuming that X5 = Xg = 0 identically, the solution
exists if and only if the eigenvalues of X, are interlaced, so that the branes are placed
as shown in fig. 2.7(a). What if they are not interlaced? A unique vacuum solution
still exists, but the assumption that X5 and Xg are identically 0 is no longer valid. For
example, if two of the eigenvalues of X, for y — —oo or for y — +o0 are very close —
in other words if two of the \; or two of the A, are very close — then the neighboring
branes form a fuzzy funnel, as in fig. 2.7(b,c). The fuzzy funnel is described [57]
by a nonabelian solution of Nahm’s equations, with X,, X5 # 0. If Xy, X5 — 0 for
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y — =00, then in the appropriate solution of Nahm’s equations, X4+ X5 is nilpotent,
but not zero [21]|. This suggests that we should try a new ansatz with ¢, nilpotent but
not zero in order to find the missing solutions when the weights are not interlaced. For
now, we present this as heuristic motivation for a more general ansatz, but later we
will explain a precise map between the problem of finding half-BPS surface operators

and Nahm’s equations for a D3-D5 vacuum.

2.4.4.3 General Solution For U(2)

We consider the first non-trivial example of this problem, which is for gauge group
U(2), corresponding to U(2]2) on the electric side. We focus on the configuration
shown in fig. 2.7(b). The positions of the branes in that figure should be interpreted
as the eigenvalues of the matrices which appear in the 1/r" singularity of the field ¢.
If the weights are o = i diag(my,, ms,) and o = —idiag(mys, may), then my,, and
may ¢ label the positions of the horizontal lines in fig. 2.7. We assume that, by a Weyl
conjugation, ¥ was brought to the form with my, > ma, and my, > may.

We introduce a convenient variable ¢ defined as sinh ¢ = cot ¢ (or tanh ¢ = cos ).
It runs from —oo to 0 on the left of the defect, and from 0 to 400 on the right. For
the fields on the left of the defect, we use the same abelian ansatz (2.121). For the
fields on the right, we want to find a conformally- and SO(2) x-invariant solution with
¢, belonging to the non-trivial nilpotent conjugacy class. A family of such solutions,
which actually contains all the solutions with these symmetries, was found in [6], and

has the following form,

[ mae +maoe + 0V, 0

A=1 ' ? * cospdf ,
2 0 My, + Moy — a(‘/;"

s 1 mi, + Moy + OV, 0

00— 5, ’

QTI 0 miyr + Moy — ag‘/r
1 0 1

b, = — exp(—V;), (2.126)
2z 00
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where the function V,.(¢) is found from the localization equations to be

V. = log (M) - (2.127)

a

The ansatz is SO(2) y-invariant up to a diagonal gauge transformation. In (2.126),
a, and b, are some unknown constants. We choose a, to be positive. Then b, should
also be positive, so that no singularity appears® in the interval ¢ € (0,00). The
requirement that the behavior of the gauge field at ¢ — oo should agree with the
surface operator A = «,/df fixes a = my, — mg,. (Had we chosen the opposite
Weyl chamber for oV, we would have to make a Weyl transformation on the ansatz
(2.126), making ¢, lower-triangular.) Note that, due to the cos¢ factor, the gauge
field at y = 0 vanishes; this agrees with our requirement that Z* ~ 1/4/z should have
monodromy —1. The next step is to impose the discontinuity equations at ¢ = 0, and
to hope that they will have a solution for some positive real b.. The z-component
of the discontinuity equations tells us that the hypermultiplet fields should have the

form

1 (s ~ 1,
Z:ﬁ N Z:%(Ozw). (2.128)

Unlike the interlaced case, here there is no freedom to include a general non-abelian
gauge transformation in gluing the left and the right side. Such a gauge transfor-
mation would not be consistent with the symmetry, since generically it would not
commute with the U(1) subgroup of the gauge group which is used to undo the
SO(2)x rotations. The only possible non-abelian gluing gauge transformation is the

Weyl conjugation. The equations will tell us that in this case it is not needed. The

30The singularity that the solution has at a,s+b, = 0 is the Nahm pole. In the one-sided problem,

one chooses b, = 0 to have this pole precisely at ¢ = 0.
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¢o and ¢, discontinuity conditions give

iy
= sw
sinh b, ’
My, + Mo, — 2mqy + a, coth b, = —|s\2 ,
My, + Moy — 2Myy — a, coth b, = |w|?. (2.129)

Subtracting the last two equations, we see that a solution with positive b cannot exist
unless myy — moy > 0. This is consistent with our choice of the Weyl chamber, so no

gluing gauge transformation is needed. Eliminating s and w from (2.129), we obtain

2
- r T - 1
My — Moy coth br M1, + Mo My — Moy S (2130)
mir — Moy miyr — Moy sinh br

The function on the right is monotonically decreasing. It is easy to see that the
equation has a solution b, > 0 if and only if the eigenvalues are arranged as in fig.
2.7b.

The last case to consider for the U(2) group is that of fig. 2.7c. Here fields on
both sides of the defect should have a non-zero nilpotent ¢,. The fields on the right
are given by the same ansatz (2.126). The fields on the left are given by the same
ansatz, but with V. replaced by

(2.131)

Vi = log (sinh(—agg - bg)) |

Qg

Again, we assume a, to be positive, and then b, should also be positive to avoid the
singularity on the interval ¢ € (—o00,0). We fix a, from the asymptotics at ¢ — —oo to
be a; = myy—meoy, though in this case the gauge field A asymptotically is proportional
to diag(mag, m1s). We could make a Weyl gauge transformation to bring it to the other
Weyl chamber.

In gluing left and right, we cannot make any non-diagonal gauge transformations,
as follows again from the SO(2) x symmetry. There are two separate cases to consider.

First assume that ¢, has a non-trivial jump at y = 0. This forces the hypermultiplet
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fields Z and Z to have the form (2.128). The discontinuity equations give

Q- Qy
+ =
sinh b,  sinh b, SW5
2 2
Qr COth br + Ay COth be = —w )
(2.132)
wl* — Is|?
miy + Moy — M1y — Moy = T

(The sign in the first equation can be exchanged by an abelian gluing gauge transfor-
mation.) The second equation clearly has no positive solutions for b, .
Therefore, the field ¢, has to be continuous at y = 0. In this case, either Z or Z

should be zero. Assume that it is Z, and

72 (° (2.133)
AN .

Since the field ¢ is diagonal, the matrix Z ® Z' should be also diagonal, so either s
or w is zero. We have to choose s = 0 to avoid the same sign problem which caused

trouble in the second equation in (2.132). The discontinuity equations become

(078 Qy
sinh b, sinhb,

0,

a, coth b, + ag coth by = |w|?/2,

My, + Moy — My — Moy = —|w|?/2. (2.134)

The last equation here implies that my, + msq, < mis + mss. In the opposite case, we

would have to take Z and not Z to be zero. Eliminating |w| and by, we get

2
- r T - 1
Mg+ Mag = Mar = Mar _ 4h b + \/ (m” m”) + (2.135)

- 1924, ¢
miy — Moy miy — Moy sinh br

This equation has a solution precisely when the eigenvalues are arranged as in fig.

2.7c¢.
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2.4.4.4 (General Surface Operators

We have described the abelian solutions for the U(n|n) case, and some more general
solutions for U(2|2) for surface operators of type («",0,0). In this section we look
at the general singularities of type (a",5Y,~"), aiming to make a precise statement
about the correspondence between surface operators and supersymmetric vacua of
the theory.

Let us go from the coordinates (¢, z1,x2,y) to (t,¢,0,7"), in which the rotational
and scaling symmetries act in the most simple way. The flat metric in these co-
ordinates is conformally equivalent to cosh?¢(dt? + dr’?)/r? + d¢? 4 d6?, which is
AdSy x R. x S, up to a warping factor cosh?¢. In conformal field theory, finding a
model solution for a surface operator is equivalent to finding a vacuum configuration
in this space, with the asymptotics of the scalar fields at ¢ — +oo defined by the
charges of the surface operator. To make this intuition precise, let us rewrite our lo-
calization equations (2.119), (2.120) in terms of these coordinates. We make a general

scale-invariant and rotationally-invariant ansatz for the fields,
1 1
b0 = T—M(g) NORES ;N(g) , A= M(s)cospdd. (2.136)

(We could have absorbed cos ¢ = tanh ¢ into M;, but it is more convenient to write

it this way.) The equations reduce to

. . 4 , 21
[0 —iM,N] =0, [0 —iM;,N]=0, [&—zM,8§—2M1]+Sinh2g(M—M1) =0,
(2.137)
together with
inh* cO M, + 0. M inh
sinh” ¢o, 21+ 2 2N, NT] + sin 3C (M, — M) = 0. (2.138)
cosh”¢ cosh” ¢

The first set of equations almost implies that M; = M. In fact, there is a class
of reducible solutions for which this equality is not true. They will be described in
the next section, but for now we take M; = M as an ansatz. Then the equations
reduce simply to Nahm’s equations [0, — iM, N] = 0 and .M + 2i[N, NT] = 0 for
the scalar fields M, Re(N) and Im(N). At ¢ — Foo, these fields should approach
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limiting values given by the parameters of the surface operator o¥, Y and ~V. At

= 0, assuming the regularity of M (<), the conformally invariant solution for Z and
7 is given by 1 /+/7z times some constant vectors, which should be found from the
discontinuity equations.

In this way, the problem of finding the model solution for a surface operator is
indeed reduced to the problem of finding the supersymmetric vacuum of the D3-
D5 system for given asymptotic values of the scalar fields. To actually find the
solutions, one needs to find the solutions of the Nahm’s equations on a half-line, with
asymptotics of the fields given by the regular triple («", 5Y,~"), and then glue them
at y = 0, according to the discontinuity equations. The relevant solutions of the
Nahm’s equations can be found e.g. in [51]. The problem reduces to solving a set of
algebraic equations for the integration constants of the solutions and the components
of the hypermultiplet field Z®. Solving these equations seems like a tedious problem
even for the U(2) case, and we will not attempt to do it here. The relation to
the supersymmetric vacua guarantees that for any values of the parameters a model
solution exists, unique up to gauge invariance.

The reduction that we have just described works for the unequal rank case as well.
The gluing conditions of section 2.4.3 for the conformally-invariant solution (2.136)
at y = 0 reduce to the gluing conditions for the scalar fields M and N. In particular,
a 1/y Nahm pole boundary condition translates into a 1/¢ Nahm pole for the vacuum

scalar fields.

2.4.4.5 Reducible Solutions

So far we have concentrated on irreducible solutions, but there are reducible solutions
as well.

Returning to eqn. (2.137), instead of setting M; = M, we write M; = M +S. We
find that the equations are obeyed if M and N obey the same conditions as before,

while
2

sinh 2¢

S, N] = [S, M] = 8.8 + S =0. (2.139)
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The last equation means that

1
Ccos

S = coth (Sy =

S (2.140)

with a constant matrix Sy.

The interpretation is very simple. First we describe the equal rank case. In U(n),
we pick a subgroup U(n—m) x U(m). In U(n—m), we pick matrices M, N and defect
fields Z, Z that satisfy Nahm’s equations and the jump conditions at y = 0, giving
an irreducible solution (in U(n — m)) as described in section 2.4.4.4. In U(m), we
embed a trivial abelian solution with A = a¥d#f, ¢, = (8Y +1iv")/(22), ¢o = 0. (This
trivial solution is obtained by taking S = a", and taking the u(m)-valued part of N
to be the constant matrix (8Y + iy¥)/2.) This describes a solution that can exist if
m eigenvalues of ¢ = (ay, 8Y, 7)) coincide with m eigenvalues of ¢¥ = (a, 8Y,~Y).
For left and right eigenvalues to coincide is the condition for an atypical weight, so
these solutions govern atypical weights.

For the same atypical weight, however, we could have simply used the irreducible
U(n)-valued solution with S = 0 constructed in section 2.4.4.4. After all, this solution
exists for any weights. More generally, consider an atypical weight of U(n|n) with s
eigenvalues of @V equal to corresponding eigenvalues of C:V . For any m < s, we can
obtain a surface operator solution with this weight, based on a subgroup U(n —m) x
U(m) C U(n). We simply take a trivial abelian solution in U(m) based on m of the
s common weights, and combine this with an irreducible solution in U(n —m) for all
the other weights. For each m, there are (fn) such solutions, since we had to pick
m of the s common weights. Considering all values of m from 0 to s, this gives 2°
surface operator solutions for a weight of U(n|n) of atypicality s. Qualitatively, this
is in agreement with what one finds on the electric side, where a finite-dimensional

representation with a given highest weight is unique only if the weight is typical. In

Vv

the case that the weights « and «, are integral and 3),~, and f,

.7, all vanish,
so that the model solutions that we have constructed are related to line operators
(see section 2.4.5), this leads to 2° line operators associated to a weight of atypicality

s; we suspect that they are dual to 2° distinguished representations with the given
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highest weight.

The story is similar for unequal ranks. The gauge group is U(n) for y < 0 and
U(n+r) for y > 0. We pick subgroups U(n —m) x U(m) C U(n) and U(n+r—m) X
U(m) C U(n+ ). We combine a trivial abelian U(m)-valued solution on the whole
y line with an irreducible solution based on U(n —m) for y < 0 and U(n+r —m) for
y > 0. Just as in the last paragraph, we get 2° solutions for a weight of U(n|n +r) of
atypicality s.

Another type of reducible solution was found in section 2.4.4.2. If one of the
eigenvalues of o, is equal to an eigenvalue of —«, then the corresponding matrix
elements of Z and Z vanish and a U(1) subgroup of the gauge group is unbroken.
The basic phenomenon occurs actually for the gauge group U(1), corresponding to the
supergroup U(1]1). There is a surface operator described by a trivial abelian solution
with A = a" cos pdf and ¢ = ¥ dz®/r’ everywhere and Z = Z =0. (This solution
has o) = a = —a)/ because cos = 1 on the positive y axis and —1 on the negative
y axis.) Clearly since Z and Z vanish, the U(1) gauge symmetry is unbroken. This
is a reducible solution that can occur for a typical weight, since ;) = —a/ is not a
condition for atypicality. Such a surface operator does not seem to be well-defined.
Since the gauge symmetry remains unbroken along the knot K, the gauge field near K
is free to fluctuate. In particular, it follows that the variation of the topological term
in the presence of this model singularity is not zero, but is proportional to | o QOA,
and therefore, the action is not Q-invariant. We do not know how to interpret the
singularity that seems to arise when an eigenvalue of o) approaches one of —a,’, or
how to describe a half-BPS surface operator in this case. A possibly similar problem
arises in the bulk in N' = 4 super Yang-Mills theory with any nonabelian gauge group
if one tries to define a surface operator with parameters (0,0,0,7"). Classically, it
is hard to see how to do this, since the definition of 1" requires a reduction of the
gauge symmetry to the maximal torus along the support of the surface operator, and
this is lacking classically if ¥ = ¥ = vY = 0. Yet the surface operator in question
certainly exists; it is S-dual to a surface operator with parameters (a, 0,0, 0) that can

be constructed semiclassically. One approach to defining it involves adding additional
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variables along the surface (see section 3 of [54]).

2.4.5 Line Operators And Their Dualities

We have constructed surface operators, but there is an easy way to construct line
operators from them. We simply observe that if we set ¥ = 7" = 0, and also take
a" to be integral, then the bulk solution A = oV df defining a surface operator in the
absence of any D5-brane can be gauged away. So for those parameters, the surface
operators that we have constructed are trivial far away from the D5-brane defect.
That means that those surface operators reduce macroscopically to line operators
supported on the defect.

Saying that o is “integral” means that it is a cocharacter of the maximal torus
of the dual group GV, or in other words a character of the maximal torus of G. Up
to the action of the Weyl group, this character corresponds to a dominant weight
of G. In other words, we have found line operators of the magnetic description by
GV gauge theory that are classified by dominant weights (or representations) of the
electric group G.

In all these statements, G is either G, or GG, the gauge group to the left or right
of the Db5-brane defect. Taking account of the behavior on both sides, these line
operators are really classified by dominant weights of Gy X G,.. (In our main example
of U(m|n), G is U(m) or U(n) and the distinction between G and its dual group GV
is not important. However, this part of the analysis is more general and carries over
also to the orthosymplectic case that we discuss in section 2.5.)

Wilson-"t Hooft operators of the “electric” description involving an NS5-brane are
also classified by dominant weights of Gy x G, (or equivalently by dominant weights
of the supergroup SG), as we learned in section 2.3.3.2. Thus an obvious duality
conjecture presents itself: the line operator associated to a given weight of G, x G
in one description is dual to the line operator associated to the same weight in the
other description.

This statement is a natural analog of the usual duality between Wilson and 't Hooft

operators, adapted to the present situation. But a detail remains to be clarified. In
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the standard mapping between Wilson operators of G and 't Hooft operators of GV,
there is a minus sign that to some extent is a matter of convention. That is because
electric-magnetic duality could be composed with charge conjugation for either G
or GY. Charge conjugation acts by reversing the sign of a weight, up to a Weyl
transformation.

In the supergroup case, let (A, A,) be a weight of G, x G,, and let (o, ;) be
a magnetic weight of G x G)/. If we specify that we want a duality transformation
that maps A, to +a;/, then it becomes a well-defined question whether A, maps to

+a, or to —«,/. The correct answer is the one with a minus sign:

Ae,A\) < (o, —a)). (2.141)

r

To see this, we observe that there is a symmetry of the problem that exchanges the
left and right of the defect and exchanges A, with A, but o) with —a;’. For a defect

2 = 23 = 0, we can take

at 22 = 0 and a line operator supported on the line L : 2! =z
this symmetry to be 22 — —22, 23 — —23, with 2% 2! fixed. This has been chosen
to exchange the left and right sides of the defect, while mapping the line L to itself
and preserving the orientation of spacetime, so as to leave K fixed. It does not affect
electric charge, but it reverses the sign of o because it reverses the orientation of the
x'2? plane.

As was already remarked in section 2.3.5, in the case of an atypical weight, our
pictures on the magnetic and electric sides do not quite match. On the magnetic side,
for a given atypical weight, we have found multiple possible 1/2 BPS surface and line

operators, as explained in section 2.4.4.5. On the electric side, for any weight, even

atypical, we found only a single 1/2 BPS surface or Wilson-"t Hooft line operator.

2.4.6 A Magnetic Formula For Knot And Link Invariants

The Q-invariant line and surface operators that we have constructed can be used to
get magnetic formulas for knot and link invariants. In the case of line operators, we
have little to add to what was stated in eqn. (2.99). Here we will elaborate on the

construction of knot and link invariants using surface operators. After some general
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observations, we will comment on what happens for atypical weights.

We start on the electric side with a knot invariant defined by including a sur-
face operator with parameters (a, 8,7,n) supported on a two-surface C' that inter-
sects the hyperplane y = 0 along a knot K. One can take simply C' = K x R,
(where R, is parametrized by y) or one can choose C' to be compact. The dual
magnetic description involves a surface operator wrapped on C with parameters
(@, 8% 7", n") = (0, |7]87, [T]7", —a).

The parameters of the surface operator in the magnetic case define the singularities
of the fields near C, but also they determine some insertions that must be made in the
functional integral along C. The action of the theory in the presence of the surface
operator is

iKY ,
— | tr(FAF)— @/Ctr((leozv —n"F) (2.142)

™ JMm

modulo Q-exact terms. We have used eqns. (2.81) and (2.78) for the terms propor-
tional to a¥ and n¥*. The integral in the four-dimensional topological term is taken
over M, but alternatively, we could take it over M \ C, and that would absorb the
term proportional to oV. Note that the objects which appear in this formula are
topological invariants, because the bundle is naturally trivialized both at infinity and
in the vicinity of K, where the fields Z* become large. (For now we consider the
generic irreducible case, when the gauge group is completely broken along K; we do
not consider the problem mentioned at the end of section 2.4.4.5.) Using the relation
(2.85) between weights and parameters of the surface operator, the action can be
alternatively written as

ik tr(FAF)+iICV/ tr(?\rF)—ile/ tr(AF). (2.143)

47 M - C

The insertion of the two-dimensional observable in this formula is essentially the S-
dual of the analogous insertion in the electric theory. This statement can be justified
explicitly if the gauge group is abelian. In that case, the two-observable [ F is the
second descendant of the Q-closed field o. Under S-duality, both the gauge-invariant
polynomials of o and their descendants are mapped to each other. (See Appendix D

for details on the descent procedure in the presence of the three-dimensional defect.)

100



The functional integral in the magnetic theory can be localized on the space of
solutions to the localization equations (2.108), (2.110). The knot polynomial can
be obtained by counting the solutions of the localization equations in the presence
of a singularity of type type (a¥,3Y,~"), weighted by the combination (2.143) of
topological numbers of the solution, as well as the sign of the fermion determinant.
(These statements hold for both the equal-rank and unequal rank cases, though one
uses different equations and model solutions in the two cases.) For a given weight,
there are different possible choices of surface operator. We can vary o and 7V, as
long as their appropriate combination is equal to the weight. We can also turn on
arbitrary 7" and Y, as long as it is not forbidden for topological reasons. All this
simply reflects the fact that the problem of counting solutions of elliptic equations
is formally invariant under continuous deformations of parameters. Note that, in
particular, the operators with vV # 0 are well-defined and 1/2-BPS; and changing ~"
does not change the weight in (2.143), with which the solutions of the localization
equations are counted. This supports the view, proposed in section 2.3.4.2, that in the
physical theory 7 plays much the same role, as : it deforms the contour of integration
in the functional integral, without changing the Chern-Simons observables.3!

It is conceivable that the counting of the solutions of the localization equations
is only generically independent of the parameters (o, 5Y,~v), and that wall-crossing
phenomena can occur. (A prototype of what might happen has been seen for the
three-dimensional Seiberg-Witten equations [20].) We will not attempt to analyze
this possibility here, and will simply assume that for any regular triple (o, 5Y,~v"),
the counting of solutions is the same. Let Sy be the space of these solutions. It is
convenient to introduce variables t, = ¢~ and t, = ¢, valued in the complexifica-

tion of the maximal tori of the left and the right bosonic gauge groups of the electric

3L All this is true for the physical theory, where both C and the weights are real. We expect the
situation to be different in the topological theory, where on the electric side the surface operators
with v # 0 are defined according to eq. (2.84). In that case, v is related to the imaginary part of
the weight. In particular, the insertion of iKw [ tr(vF) in (2.84) will lead on the magnetic side to

a similar insertion, which will complexify the weight in eq. (2.143).
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theory. The knot polynomial is then given by

> (=1 gV g e (2.144)

SESy

Here (—1)/ is the sign of the fermion determinant, evaluated in the background of

the classical solution s, NV = # fM\K tr(F' A F') is the instanton number, and ¢y, =
% fCM F are the tV-valued relative first Chern classes for the abelian bundles on C,
and Cy. One can consider (2.144) as a polynomial in ¢, after expressing t,,. in terms of
q for a particular weight A, but one can also treat t,, as independent formal variables.

What happens if the weight A is atypical? By varying o and 1", while preserving
A, we can still make the model solution irreducible. So we can use the solutions from Sy
to obtain the knot polynomial, and simply substitute our A in eqn.(2.144). We expect
that this polynomial will correspond to the Kac module of highest weight A. This
expectation follows from the fact that a typical representation can be continuously
deformed into an atypical one by varying the fermionic Dynkin label ag,,. Since this
label need not be integral, this variation makes sense, and the limit of this typical
representation, when the weight becomes atypical, is the Kac module. In the magnetic
theory, to take the limit of a knot invariant, we simply substitute the atypical weight
into the universal polynomial (2.144), evaluated on Sy. So this type of polynomial
indeed corresponds to the Kac module.

For an atypical weight, rather than an irreducible model solution, we can also
use surface operators defined by reducible solutions. For any weight of atypicality at
least p, we can consider a surface operator whose irreducible part is associated to a
surface operator of U(m — p|n — p). This surface operator breaks the bosonic group
U(m) x U(n) to an subgroup H that generically is U(1) (it can be a nonabelian group
containing U(1)? if the reducible part of the solution is non-regular). Let Ty = U(1)P

be the maximal torus of H. The group H acts on the space of solutions of the

localization equations. In such a situation, by standard localization arguments,>?

32Generically, one expects that the solutions consist of a finite set of points, and if so, these points
are all invariant under the continuous group Ty. However, suppose that some of the solutions make

up a manifold U that has a non-trivial action of T. Then by standard arguments of cohomological
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the invariants can be computed by just counting the Ty-invariant solutions. The Ty-
invariant subgroup of U(m)xU(n) is Ty x U(m—p) xU(n—p). There are no interesting
solutions valued in the abelian group Ty, so in fact, the U(m|n) invariants with a
surface operator of this type can be computed by counting solutions for U(m—p|n—p).
Some simple group theory shows that the signs of the two fermion determinants are
the same and hence the U(m|n) invariants for a weight of atypicality > p coincide with
U(m — p|n — p) invariants. In particular, U(m|n) invariants of maximal atypicality
coincide with invariants of the bosonic group U(|n —m/|). (This reasoning also makes
it clear that the knot and link invariants constructed using a reducible model solution
do not depend on the weights in the abelian part of the solution.)

For a weight of atypicality r, we can take any p < r in this construction. We
have argued that for p = 0, we expect to get invariants associated to the Kac module,
while p = r presumably corresponds to the irreducible atypical representation. The
intermediate values of p plausibly correspond to the reducible indecomposables, which
are obtained by taking non-minimal subquotients of the Kac module.

In section 6 of [1], an alternative approach to comparing U(m|n) with U(m—p|n—
p) is given. The key idea there is gauge symmetry breaking. This approach is very
natural on the electric side.

In the rather formal discussion that we have given here, we have not taken into
account some of the insight from section 2.3.2.2. From that analysis, we know that for
the knot invariants to be nonzero, we can consider a typical weight for a knot in S® or
a maximally atypical weight for a knot in R3. For other weights, a slightly different

approach is needed. We have not understood the analogs of these statements on the

field theory [58], the contribution of the manifold U to the counting of solutions is (—1)/x(U; V),
where (—1)7 is the sign of the fermion determinant, V' — U is a certain “obstruction bundle” (a
real vector bundle of rank equal to the dimension of U), and x(U;V) is the Euler characteristic of
V — U. Let U’ be the fixed point set of the action of T on U and let V' — U’ be the Ty-invariant
subbundle of V|, A standard topological argument shows that (—1)7x(U; V) = (=1)/ x(U"; V')
(if U’ is not connected, one must write a sum over components on the right hand side). In our
problem, this means that we can consider only the U(m — p|n — p) solutions and count them just as

we would for U(m — p|n — p), ignoring the embedding in U(m|n).
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magnetic side.

2.4.7 A Possible Application

Here we will briefly indicate a possible application of this work, for gauge group
U(1|1). This direction will be explored in more detail in Chapter 3 of this thesis.

Using the fact that the supergroup U(1|1) is solvable, the invariant for a knot
K C S? labeled by a typical representation of U(1|1) can be explicitly computed
by repeated (Gaussian integrals. It turns out to equal the Alexander polynomial
[59, 60, 61]. The usual variable ¢ on which the Alexander polynomial depends is a
certain function of the Chern-Simons coupling and the typical weight.

The Alexander polynomial of K can also be computed |20] by counting solutions
of a 3d version of the Seiberg-Witten equations with a prescribed singularity along
K. Such solutions can be labeled by an integer-valued invariant © (a certain relative
first Chern class), and if b, is the number of solutions with © = n (weighted as usual
with the sign of a certain fermion determinant), then the Alexander polynomial is
Z(q) = Y, bng". The proof that Z(q) equals the Alexander polynomial is made by
showing that the two functions obey the same “skein relations.”

The question arises of whether one could find a more direct explanation of this
result, or perhaps a more direct link between U(1|1) Chern-Simons theory and the
Seiberg-Witten equations. From the point of view of the present chapter, U(1|1)
Chern-Simons theory can be represented in terms of N/ = 4 super Yang-Mills theory
with gauge group U(1), x U(1), on S x R, interacting with a bifundamental hyper-
multiplet that is supported on S x {0}. However, we can just as well replace R here
by S. If we do that, we get U(1]1) Chern-Simons theory with a different integration
cycle. However, as long as one considers only Wilson operators on R?® or S3, all inte-
gration cycles are equivalent and so A/ = 4 super Yang-Mills theory on S? x S! with
a bifundamental hypermultiplet on S® x {0} should give another way to study the

Alexander polynomial.?

330nce we replace S2 x R with S3 x S!, the left and right of the defect are connected. So we now

have a single U(1) vector multiplet on S3 x S!, with the fields allowed to have different limits as
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S-duality converts this to a “magnetic” problem on S® x S, now with U(1) gauge
fields in bulk and a twisted hypermultiplet supported on S* x S'. If one takes the
radius of S' to be small compared to that of S3, the four-dimensional localization
equations can be expected to reduce to three-dimensional effective equations. These
will be equations in which U(1) gauge fields are coupled to a hypermultiplet, and one
can argue that the relevant equations are the Seiberg-Witten equations.

Thus one can hope that, as in [20], it will be possible to compute the Alexander
polynomial by counting solutions of the Seiberg-Witten equations. Unfortunately, in
working on S% x S, one encounters a number of technical difficulties. In Chapter 3,
we instead consider the three-dimensional theory, which is obtained by compactifying

on an interval with particular boundary conditions, instead of S?.

2.5 Orthosymplectic Chern-Simons Theory

In this section, we return to the D3-NS5 system of fig. 2.1, but now we add an O3-
plane parallel to the D3-branes. A D3-03 system can have orthogonal or symplectic
gauge symmetry, depending on which type of O3-plane is chosen. The gauge sym-
metry jumps from orthogonal to symplectic in crossing an NS5-brane. Accordingly,
the construction of section 2.2, with an O3-plane added, is related to Chern-Simons
theory of an orthosymplectic gauge group OSp(r|2n), where the integers r and n de-
pend on the numbers of D3-branes on the two sides of the NS5-brane. As in section
2.4, an S-duality transformation that converts the D3-O3-NS5 system to a D3-O3-D5
system gives a magnetic dual of three-dimensional OSp(r|2n) Chern-Simons theory.
This is a close analog of what we have already seen for unitary groups.

However, something novel happens if r = 2m + 1 is odd. In this case, a slightly
different procedure yields a duality between two “electric” descriptions. In three-
dimensional terms, we will learn that Chern-Simons theory of OSp(2m + 1|2n), with

coupling parameter ¢, is equivalent to Chern-Simons theory of OSp(2n + 1|2m), with

S$3 x {0} is approached from the left or right. The two limits give two different sets of 3d fields to
which the “bifundamental” hypermultiplet is coupled.
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Figure 2.8: Action of the S-duality group on the orientifold planes.

coupling parameter —¢q. (The Chern-Simons theories that appear in this statement
are defined via the brane constructions which as usual allow analytic continuation
away from integer levels.) Since weak coupling in Chern-Simons theory is ¢ — 1,
while ¢ — —1 is a strongly-coupled limit, this duality exchanges strong and weak

coupling.

2.5.1 Review Of Orientifold Planes

We start with a brief review of the orientifold 3-planes of Type IIB superstring theory
[25, 26] (see also section 7 of [29]).

There are four kinds of O3-plane, distinguished by Z,-valued discrete fluxes of
the NS and RR two-form fields of Type IIB supergravity. An O3-plane in which
both fluxes vanish is denoted O37; in the presence of m parallel D3-branes (and
their images) it gives O(2m) gauge symmetry (for some purposes, we consider only
the connected component SO(2m)). Adding discrete RR flux gives an 03 -plane,
which with the addition of m parallel D3-branes gives O(2m + 1) gauge symmetry.
An orientifold 3-plane with only NS flux is denoted O3" and gives Sp(2m) gauge
symmetry. Finally, the orientifold 03" with both kinds of flux gives again Sp(2m)
gauge symmetry, but (as we recall shortly) with a shift in the value of the theta-
angle fyy, a fact that we abbreviate by saying that the gauge group is Sp’(2m). The
transformation properties of the orientifold 3-planes under the SL(2,Z) S-duality

group are summarized in fig. 2.8.
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When an O3-plane crosses an NSH-brane, its NS flux jumps; when it crosses a D5-
brane, its RR flux jumps. More generally, when an O3-plane crosses a (p, q)-fivebrane
its (NS, RR) fluxes jump by (p, ¢) mod 2.

Regardless of the type of O3-plane, a D3-O3 system has the same supersymmetry
as a system of D3-branes only. In particular, this supersymmetry is parametrized
by the angle 1, which is related to the string coupling in the usual way, as in eqn.
(2.91). To find the classical effective action for the gauge theory that describes a D3-
03 system at low energies, we simply take the effective action of a D3-brane system,
restrict the fields to be invariant under the orientifold projection, and divide by 2.
The restriction reduces a U(n) gauge symmetry to O(n) or Sp(n), depending on the
type of O3-plane. We divide by 2 because the orientifolding operation is a sort of
discrete gauge symmetry in string theory. (As we explain shortly, there is a subtlety in
dividing @y by 2.) The same procedure of restricting to the invariant subspace and
dividing by 2 enables us to deduce the effective action of a D3-O3-NS5 or D3-03-D5
system from those of a D3-NS5 or D3-D5 system.

For the U(n) gauge fields along a system of n parallel D3-branes, we write the

gauge theory action as

QYM
/d4;vtr F2 - 52 | WEAF, (2.145)

205
where tr is the trace in the fundamental representation of U(n), and the Yang-Mills
parameters gyy and fyyy are related to the 7 parameter of the underlying Type 11B
superstring theory by the standard formula

Oy 2mi
=My 0 (2.146)
2 gym

The action (2.145) is defined so that fyy couples precisely to the instanton number

N = 8—;/trF/\F, (2.147)
normalized to be an integer on a four-manifold without boundary. This ensures that
the theory is invariant under 7 — 7 + 1, which corresponds to Oyy — Oyw + 2.

If we include an O3 plane that reduces the gauge symmetry from U(n) to O(n),

then we write the action in the same way, with tr now representing a trace in the
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fundamental representation of O(n). But since we have to divide the action by 2, we

express the gauge theory parameters in terms of 7 not by (2.146) but by

vy 2mi
K LY (2.148)
2 27 IoMm

We write

g = Tyu, (2.149)

where 7y is expressed in terms of gyy and Oy in the usual way. An important
detail now is that the quantity N, which is Z-valued in U(n) gauge theory, takes
values in®! 2Z in O(n) gauge theory for n > 4. Because of this, the O(n) gauge
theory is invariant under 7 — 7 + 1, even though 6y couples to N/2.

Next consider the orientifold plane to be O3, reducing the gauge symmetry
from U(n) to Sp(n) (here n must be even). The action is still defined as in eqn.
(2.145), now with tr representing the trace in the fundamental representation of Sp(n).
Furthermore, the coupling parameter 7 of Type IIB superstring theory is still related
to the gauge theory parameters as in (2.148). Now, however, the quantity N is
integer-valued (a minimal Sp(n) instanton is an SU(2) instanton of instanton number
1 embedded in Sp(2) = SU(2)), so the operation 7 — 7 + 1 of the underlying string
theory is not a symmetry of the gauge theory. Instead, this operation maps an O3*
orientifold plane to a 6v3+—plane, in which the gauge group is still Sp(n) but the
relation between string theory and gauge theory parameters is shifted from (2.148)

to
T+1 . GYM 211
2 2m Gy

(2.150)

The term Sp’(n) gauge theory is an abbreviation for Sp(n) gauge theory with coupling

parameters related in this way to the underlying string theory parameters.

34For n > 4, an O(n) instanton of minimal instanton number can be embedded in an SO(4)
subgroup. An SO(4) instanton of minimal instanton number (on R*; we do not consider here effects
associated to the second Stieffel-Whitney class) is simply an SU(2) instanton of instanton number
1, embedded in one of the two factors of Spin(4) = SU(2) x SU(2). Upon embedding O(n) in U(n),
the O(n) instanton constructed this way is a U(n) instanton of instanton number 2, explaining why
the instanton number normalized as in (2.147) is an even integer in O(n). In the case of O(3), there

is not room for the construction just described, and the minimal instanton has N = 4.
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Figure 2.9: The brane configurations that realize the electric and magnetic theory for the

four-dimensional construction of the OSp(2m|2n) Chern-Simons theory.

2.5.2 The Even Orthosymplectic Theory

Now we begin our study of the D3-O3 system interacting with a fivebrane. On the
left of fig. 2.9, we sketch an O3 -plane that converts to an O3*-plane in crossing
an NS5-brane. The gauge group is therefore SO(2m) on the left and Sp(2n) on the
right, where m and n are the relevant numbers of D3-branes. In the topologically
twisted version of the theory, along the defect, one sees a Chern-Simons theory of the
supergroup OSp(2m|2n). After the orientifold projection, the action can be written
just as in eqn. (2.35):

7

/WStr (AdA+ §A3> +{Q,...}, (2.151)

Now Str denotes the supertrace in the fundamental representation of the orthosym-
plectic group. This follows by simply projecting the effective action described in
section 2.2 onto the part that is invariant under the orientifold projection. The ex-
pression for Ky, in terms of string theory parameters 7,9 is the same as in equation

(2.7) except for a factor of 2 associated to the orientifolding:

% = Tym = Kosp cOs U ™. (2.152)
Note that the bosonic part of the Chern-Simons action in (2.151) can be also expressed
as

iKoﬁp

/W Tr (AbdAb + %Aﬁ) = iKosp (CS(Asp) - QCS(Aso)) 7 (2.153)

47

where the Chern-Simons functionals CS(A,,) and CS(A,,) are normalized to take

values in R/27Z for simply connected gauge groups and m > 1.
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Now we apply the usual S-duality transformation 7 — 7¥ = —1/7. As indicated
in the figure, this leaves the O3~ -plane invariant but converts the O3"-plane to an
O3 -plane; now the gauge group is SO(2m) on the left and SO(2n + 1) on the right.
What we get this way is a magnetic dual of Chern-Simons theory of OSp(2m|2n).

The appropriate effective action to describe this situation is found by simply
projecting the effective action described in section 2.4.3 onto the part invariant under
the orientifold projection. There is no analog of the case m = n that was important in
section 2.4.3, since 2m never coincides with 2n + 1. The condition analogous to |n —
m| > 2is |2m — (2n+ 1)| > 3. If this is the case, the appropriate description involves
a Nahm pole associated to an irreducible embedding su(2) — so(|2m — (2n + 1)]).
The Nahm pole appears on the left or the right of the defect depending on the sign of
2m —(2n+1). What commutes with the Nahm pole is an SO(w) gauge theory theory
that fills all space; here w is the smaller of 2m and 2n+1. If [2m — (2n+1)| = 1, then
as in section 2.4.3, there is no Nahm pole and the vector multiplets that transform in
the fundamental representation of SO(w) obey Dirichlet boundary conditions along
the defect.

The action can still be expressed as in (2.97)
Inagnetic = o2 tr (FAF)+{Q,...}, (2.154)
where now tr is the trace in the fundamental representation of the orthogonal group,

and Ty = Oy /27 +4mi/ (gyg)? is related to the underlying string theory parameters

by

1 1
VM = 57'\/ =5 (2.155)

We recall from section 2.5.1 that the instanton number N¥ = (1/87?) [ tr F A F takes
even integer values in the case of an orthogonal gauge group. Hence the natural

instanton-counting parameter is
q = exp(—2i0y,), (2.156)

in the sense that a field of NY = 2r contributes +¢" to the path integral (as usual the

sign depends on the sign of the fermion determinant).
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The variable ¢ can be expressed in terms of the canonical parameter Ky, of the
electric description. In (2.100), we have obtained Re (7Y) = —1/K, where K is the
canonical parameter for the theory with no orientifolds. In the orientifolded theory,
the canonical parameter o that appears in the action (2.151) is one-half of that.

Hence, using equation (2.155), we find that

1 1

T2 4Ky

by _ Re 7y 1Re v =
2

. Y™ = (2.157)

and therefore the definition (2.156) gives

q = exp (,Cm ) (2.158)
osp

By contrast, Chern-Simons theory or two-dimensional current algebra for a purely

bosonic group GG with Lie algebra g is naturally parametrized by

= 2mi (2.159)
= ex .
1 P ngkCq ’

where ng is the ratio of length squared of long and short roots of g. (This is also the
natural instanton-counting parameter in the magnetic dual description of this theory
[6].) The parameter g defined in eqn. (2.158) is an analog of this, with n, replaced by
the ratio of length squared of the longest and shortest bosonic roots; for osp(2m|2n),

this ratio is equal to 2.

2.5.3 The Odd Orthosymplectic Theory

2.5.3.1 Preliminaries

Now we will repeat the analysis of the D3-O3-NS5 system, with just one important
change: we give the O3-planes a discrete RR flux. As depicted in the upper left of
fig. 2.10, we take the O3-plane to be of type O3 to the left of the NS5-brane and
(therefore) of type ()vi’>+ to the right. The gauge groups realized on the D3-O3 system
on the two sides of the defect are SO(2m + 1) and Sp’(2n), so this configuration
describes an analytically-continued version of OSp(2m + 1|2n) Chern-Simons theory.

Up to a point, the four-dimensional gauge theory description of this system can be
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Figure 2.10: The figure in the upper left corner shows the brane configuration, which gives
the four-dimensional construction for the OSp(2m + 1|2n) Chern-Simons theory. The other
figures are obtained by acting with various elements of the SL(2,Z) S-duality group. In
particular, the transformation S~'T'S maps the configuration in the upper left to the one

in the lower left.

found just as in section 2.5.2: we restrict the fields of the familiar U(2m + 1|2n)
system to be invariant under the orientifold projection, and divide the action by 2.

However, there are some crucial subtleties that do not have a close analog in the
previous case:

(1) The gauge theory theta-angle jumps by 7 in crossing the defect, because
the gauge theory on the right is of type Sp’(2m). By itself, this would spoil the
supersymmetry of the defect system, since when one verifies supersymmetry at the
classical level, one assumes that 7yy; is continuous in crossing the defect.3®

(2) This suggests that a quantum anomaly may be relevant, and in fact there is
one: in three dimensions, the bifundamental hypermultiplet of SO(2m + 1) x Sp(2n)
that is supported on the three-dimensional defect suffers from a global anomaly.

These two problems, in fact, compensate each other. Indeed, the anomalous

fermionic path-integral can be made well-defined by adding a half-integer Chern-

35Supersymmetry actually allows certain discontinuities [23], but not a jump in 6y at fixed 9.
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Simons term, that is, by considering the combination

PE(B) exp (%csw) | (2.160)

Here Pf([D) is the Pfaffian of the fermionic kinetic operator, which changes sign under
large Sp(2n) gauge transformations. The half-integral Chern-Simons term, sitting at
the defect, has the same local variation, as a bulk theta-term with theta-angle equal
to m. Thus, adding the half-integral Chern-Simons term simultaneously restores the
invariance under the gauge symmetry and under the supersymmetry.

The combination (2.160) is what is typically used in physical literature. However,
the overall sign of this expression is not well-defined. It is better to use the APS index
theorem to replace this combination by the eta-invariant, which is gauge-invariant and

well-defined. So, we write instead
|Pf(1D)| exp(imn’/2) (2.161)

where

exp(imn'/2) = exp(in7)/2 — imCS(Aq) — 2inCS(Ay,)) , (2.162)

and 7] is one-half of the eta-invariant of the kinetic operator of the 3d fermions. Under
local variations of the gauge field, the expression (2.161) changes in the same way as

(2.160).

2.5.3.2 The Dual Theory

We can find now a magnetic dual of OSp(2m+1|2n) Chern-Simons theory by applying
the S-duality transformation 7 — —1/7. Its action on the brane configuration is
shown in the upper part of fig. 2.10. The new string coupling is 7¥ = —1/7. The
gauge groups are now Sp(2m) in M, and Sp'(2n) in M,. We continue to use the
notation 7vy; = 27" for the gauge coupling. The minimal instanton number for
the symplectic group is 1, so the natural instanton-counting parameter analogous to
(2.156) is ¢ = exp(—iby,;). Using (2.157), this can be presented as

iy
— . 2.1
q = exp (2/605,0) (2.163)
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This agrees with the general definition (2.159), since the ratio of length squared of
the longest and shortest bosonic roots for the odd orthosymplectic algebras is ny = 4.

In the “magnetic” description, one of the orientifold planes is again of type 63’)4:
which means that the 0yy jumps by 7 upon crossing the defect. As in the electric
description, this jump appears to violate supersymmetry. The resolution is similar to
what it was in the electric description. First we consider the case that m = n. For this
case, the gauge group is simply Sp(2n) filling all of spacetime. There is a fundamental
hypermultiplet supported on the defect. Its Pfaffian has the sign anomaly, similarly to
the one mentioned in the previous section. The anomaly is canceled roughly speaking
via a half-integral Chern-Simons term supported on the defect, or more accurately
via an n-invariant. The combined path integral involving the fermion Pfaffian, the
n-invariant, and the jump in Oyy (as well as other factors) is gauge-invariant and
supersymmetric. The factors involved in the anomaly cancellation are the familiar
ones from eqn. (2.161):

Pt e (~-

trep F A F) ) (2.164)
Ar

(Here we have written explicitly the term, corresponding to the jump of the theta-
angle.) According to the APS index theorem, the product of the last two factors
equals +1 (possibly multiplied by a factor that only depends on f M, R?). This factor

of £1 must be incorporated in the sum over instanton solutions. We denote it as

sign, o = exp(inn’/2) exp (_SLW / trgp £ A F> . (2.165)
M

What happens if n # m? In this case, there are no hypermultiplets supported
on the defect. Instead, there is a jump in the gauge group in crossing the defect.
Along the defect there is a Nahm pole, associated to an irreducible embedding of
su(2) in sp(|2n — 2m|). As usual, the pole is on the side on which the gauge group is
larger. The gauge group that is unbroken throughout all space is Sp(2s), where s is
the smaller of n and m.

At first sight, it is not clear how to generalize (2.164) to n # m. If there are no

fermions supported on the defect, how can we possibly use an anomaly in a fermion
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determinant as part of a mechanism to compensate for a jump in Oy by 77 To
understand what must happen, recall that we can deform from n = m to n # m by
Higgsing — by moving some of the D3-branes (on one side or the other of the defect)
away from the rest of the system. When we do this, the bifundamental hypermultiplet
which is responsible for some of the interesting factors in (2.164) does not simply
vanish in a puff of smoke. It mixes with some of the bulk degrees of freedom and
gains a large mass. When this happens, whatever bulk degrees of freedom remain
will carry whatever anomaly existed before the Higgsing process.

So the resolution of the puzzle must involve a subtlety in the fermion path integral
for n # m. Going back to (2.164), naively I) is the Dirac operator just of the defect
fermions and 7’ is one-half their n-invariant. There are also bulk fermions, but they
have no anomaly and vanishing n-invariant, so it does not seem interesting to include
them in (2.164). However, precisely because they have no anomaly and vanishing 7-
invariant, we could include them in (2.164) (and their coupling to the defect fermions)
without changing anything. This is a better starting point to study the Higgsing
process, since Higgsing disturbs the decoupling.

Upon Higgsing, the first two factors in eqn. (2.164) keep their form, but some
modes become massive and — in the limit that |2n — 2m| D3-branes are removed
on one side or the other — the defect fermions disappear and we are left with an
expression of the same form as (2.164), but now the Pfaffian and the n-invariant are
those of the bulk fermions in the presence of the Nahm pole. The Dirac operator of
the bulk fermions in the presence of the Nahm pole can be properly defined, with
some subtlety, as an elliptic differential operator |70]|. This gives a framework in
which one could investigate its Pfaffian and n-invariant. For the theory that we are
discussing here to make sense, there must be an anomaly in the sign of the Pfaffian of
this operator, and it must also have a nontrivial n-invariant that compensates in the
familiar way for the jump in 6yy;. These points have not yet been investigated, but

there do not seem to be any general principles that exclude the required behavior.
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2.5.4 The Framing Anomalies

In section 2.4.3.1 we have verified that our constructions predict the correct value for
the global framing anomaly for the Chern-Simons theory of the unitary supergroup.
Here we repeat the same analysis for the orthosymplectic gauge group.

In the non-simply-laced case, the analog of the formula (2.115) for the framing

factor is

exp (2mi sign(k) sdim SG /24) - g "ehes sdimSG/24 (2.166)

The difference with the simply-laced case is the factor of ngy in the exponent, which
compensates for the analogous factor in the definition (2.159) of the ¢ variable. As
usual in this chapter, we will ignore the one-loop contribution to the anomaly, and
focus only on the power of q. To compare the anomalies for different groups, it
is convenient to express them in terms of the theta-angle of the magnetic theory.
What we need to know is that for a theory with a bosonic gauge group the variable
q is defined as ¢ = exp(—2ify,,), if the gauge group in the magnetic description is
orthogonal, and as ¢ = exp(—ifly,,), if this group is symplectic. We have explained
the reason behind this definition, when we discussed the magnetic theories for the
orthosymplectic supergroups.

Consider first the even orthosymplectic algebra osp(2m|2n). As we recalled in
section 2.4.3.1, the framing anomaly in the magnetic description comes from the
peculiarities of the definition of the instanton number in the presence of the Nahm
pole. We set r = n — m. For r > 0, the Nahm pole in the magnetic theory is
embedded into an so(2r + 1) subalgebra of so(2n + 1). This means that the framing
anomaly depends only on r and not on m; setting m = 0, we reduce to the magnetic
dual of Sp(2r) Chern-Simons theory and we should get the same framing anomaly.

The anomaly factor for the orthosymplectic case is expected to be
Qoo osnSEMOSPI2Y (o ( 430Y\ hospsdim OSp/24) . (2.167)
For the symplectic gauge group this factor is

Gop PSP — oxp (—4i6Y hepdim Sp/24) . (2.168)
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The two expressions agree, since
Rasp(2m|2n) 8dim OSp(2m|2n) = hgyeory dim Sp(2r) = 2r(r +1/2)(r +1).  (2.169)

This identity is the analog of (2.116); see Table 2.2 for the numerical values.

If r < 0, the Nahm pole lives in the so(—2r —1) subalgebra on the other side of the
defect. This is the same Nahm pole that would arise in the magnetic dual of SO(—2r)
Chern-Simons theory, so the framing anomaly should agree with that theory. For the

bosonic theory with the even orthogonal gauge group we have
g im SO — oxp (=200 heedim SO/24) . (2.170)
This agrees with (2.167), since
Posp(2mi2n) sdim OSp(2m|2n) = —%hw(%)dim SO(=2r) =2r(r+1/2)(r+1). (2.171)

The minus sign appears here, because the Nahm pole for the orthosymplectic theory
with r < 0 is on the left side of the defect.

Alternatively, we could think of the so(—2r — 1) Nahm pole as corresponding to
the Sp(—2r — 2) electric theory. This would give the same result.

Let us repeat the same story for the odd orthosymplectic superalgebra osp(2m +
1|2n). Again, we set r = n —m. The Nahm pole is embedded in the sp(2|r|)
subalgebra. In the purely bosonic case, the same embedding would arise for the
SO(2|n—m|+1) electric theory. Therefore, we would expect that the global framing
anomaly for the superalgebra case is the same as for this purely bosonic Lie algebra,
at least above one loop. The framing factor for the odd orthosymplectic case should

be

“TNosp(2m+1|2n) hUﬁPSdimOSp/24 _

Qosp = exp (—4i0yy hospsdim OSp/24) . (2.172)
In the SO(2|r| + 1) the answer is
oo M8 — oxp (= 200y, 1 heodim SO /24) . (2.173)
The two expressions (2.172) and (2.173) agree, since from Table 2.2 we have

1
hosp(2m+1|2n) sdim OSp(2m + 1’271) = §h50(2‘r|+1)dim SO(2|1"| -+ 1) = 27“(7“2 — 1/4)
(2.174)
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The sign in the right hand side changes, depending on the sign of r, in accord with
the fact that the Nahm pole is on the right or on the left of the defect. Note also,
that up to this change of sign the formula is symmetric under the exchange of m and

n. This reason for this symmetry will become clear in section 2.5.5.

2.5.5 Another Duality

So far in this chapter, we have just exploited the duality S : 7 — —1/7, exchanging
NS5-branes with D5-branes. The full S-duality group SL(2,Z) of Type IIB super-
string theory contains much more. In particular, it has a non-trivial subgroup that

maps an NSH-brane to itself. This subgroup is generated by the element

» 1 0
S7ITS = . (2.175)
~1 1

That this element maps an NS5-brane to itself follows from the action of duality on
fivebrane charges given in eqn. (2.90). (Concretely, S converts an NS5-brane to a
D5-brane, T leaves fixed the D5-brane, and S~ maps back to an NS5-brane.) This
transformation will map a D3-NS5 system, possibly with an O3-plane, to a system
of the same type. In the approach to Chern-Simons theories followed in the present
chapter, this transformation will map an “electric” description to another “electric”
description, and thus it will give a duality of Chern-Simons theories (analytically
continued away from integer levels).

Let us first see what this duality does to a D3-NS5 system, associated to the su-
pergroup U(m|n). The operation S™!T'S maps D3-branes and NS5-branes to them-
selves, so it maps the Chern-Simons theory of U(m|n) to itself, while transforming

the canonical parameter according to (2.95), which in this case gives

11 1
i1 1 9.1
'K ‘T (2.176)

This transformation leaves fixed the variable ¢ = exp(27i/K) in terms of which the
knot invariants are usually expressed. (In fact, the symmetry (2.176) can be viewed

as the reason that the knot invariants can be expressed in terms of ¢ rather than

118



being more general functions of K.) This duality acts trivially on line operators of
U(m|n). To argue this, we just observe that 7' can be understood classically — as a
27 shift in Oy — and does not affect the model solution that is used to define a line
operator.

The action of ST'S™! on a surface operator can be determined by looking at the

behavior far away from the defect. We have

a) s n T n s-1 a—n
= — s

n - U/t n

(2.177)

Using the relation (2.85), the action on the weight A can be conveniently written
NooOA
— = . 2.178
IC/ IC ( )
Since knot invariants computed using surface operators by the procedure explained in
section 2.4.6 only depend on the ratio A//C, this shows that they are invariant under

S™ITS. Using the relation (2.176) between K’ and K, eqn. (2.178) is equivalent to
A=A+ KA. (2.179)

Let us check whether these formulas are consistent with the idea that if A is
integral, the same knot and link invariants can be computed using either line operators
or surface operators. S™1T'S acts trivially on the weight of a line operator, but acts
on the weight of a surface operator as in (2.179). However, knot invariants computed
from surface operators are unchanged in shifting A by IC times an integral cocharacter.
Since the groups U(n) and U(m) are selfdual, if A is an integral character, it is also
an integral cocharacter.

Now let us apply this duality to the configuration of fig. 2.9, which corresponds
to an even orthosymplectic group OSp(2m|2n). The transformation S~'T'S maps the
O3-planes that appear in this configuration to themselves, so again it maps Chern-
Simons theory of OSp(2m|2n) to itself. The canonical parameter K,s of the or-
thosymplectic theory was defined as one-half of the object I defined in section 2.4,
so the transformation rule (2.176) can be written

Lot 1
’Casp Kusp K, 7

osp

(2.180)
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Therefore, the natural Chern-Simons parameter ¢ = exp(mi/Koq), defined in eqn.
(2.158), is invariant, just as for the unitary case. The Chern-Simons theory again is
simply mapped to itself. Tt takes a little more effort to understand the duality action
on line and surface operators. For this reason, the discussion of the operator mapping
will be presented in a separate section 2.5.6. There we will find that, unlike for the
unitary superalgebra, the duality acts on the set of line operators by a non-trivial
involution.

For the odd orthosymplectic group OSp(2m + 1|2n), matters are more interesting.
The action of S™'T'S on the brane configuration associated to OSp(2m + 1|2n) is
described in fig. 2.10. Chasing clockwise around the figure from upper left to lower
left, we see that the duality maps a brane configuration associated to OSp(2m+1|2n)
to one associated to OSp(2n+1|2m). Since the gauge group changes, this is definitely
a non-trivial duality of (analytically-continued) Chern-Simons theories. For example,
setting n = 0, we get a duality between Chern-Simons theory of the ordinary bosonic
group O(2m + 1) and Chern-Simons theory of the supergroup OSp(1|2m). How does
this duality act on the natural variable ¢ that parametrizes the knot invariants?
For the odd orthosymplectic group, the natural variable in terms of which the knot
invariants are expressed is ¢ = exp(mi/2/s), introduced in eqn. (2.163). The

transformation (2.180) acts on this variable by®®
q— —q. (2.181)

The minus sign means that the duality we have found exchanges weak and strong
coupling. Indeed, in three-dimensional Chern-Simons theory, the weak coupling limit
is ¢ — 1, and ¢ — —1 is a point of strong coupling.

It is inevitable that the duality must map weak coupling to strong coupling, since

the classical representation theories of OSp(2m + 1]2n) and OSp(2n + 1|2m) are

36There is a subtlety here. The Killing form for a superalgebra can be defined with either sign.
Since the duality maps theories with, say, Sp group at y > 0 to Sp group at y < 0, it exchanges the
two choices. If we want to define the sign of the Killing form to be always positive, say, for the sp
subalgebra, we should rather say that ¢ maps to —¢~!. What is written in the text assumes that

the sign of the Killing form in M, or M,. is unchanged in the duality.

120



not equivalent. A duality mapping weak coupling to weak coupling would imply an
equivalence between the two classical limits, but this does not hold.

Some instances of the duality predicted by the brane construction have been dis-
covered previously. For n = 0 and m = 1, the relation between knot invariants has
been discussed in [17]; for n = 0 and any m, this subject has been discussed in [15] in
a different language. For related discussion from the standpoint of quantum groups
see [16], and see [71] for associated representation theory. We will say more on some
of these results in section 2.5.6.

Now let us look at the same duality in the magnetic dual language. Our two elec-
tric theories are sketched in the upper and lower left of fig. 2.10, and the corresponding
magnetic duals, obtained by acting with S, are shown in the upper and lower right
of the same figure. One involves an Sp(2m) x Sp'(2n) gauge theory, and the other
involves an Sp’(2m) x Sp(2n) gauge theory. There is no change in the gauge groups,
the localization equations, or in the hypermultiplet fermions if n = m or in the Nahm
pole singularity if n £ m. The only difference is that in one case 6y, differs on the
right by 7 from the underlying Type IIB theta-angle, and in the other case, it differs
on the left by 7 from the underlying Type IIB theta-angle. In the upper right of fig.
2.10, a solution of the localization equations with instanton number NV is weighted
by the product of ¢N” with the sign factor of eqn. (2.165). There is an additional sign
that we will call (—1)/; this is the sign of the determinant of the operator obtained by
linearizing around a solution of the localization equations. This factor is not affected

by the duality. The combination is

(—1)quvsjgny>0 = (=1)7¢N" exp(imn /2) exp (—8L/ trep £ A F) : (2.182)
> T

On the lower left of the figure, the sign factor sign,- is replaced with

sign, <o = exp(inn’/2) exp (+8L7r/ trep £ A F) : (2.183)
M

We also have to replace ¢ with —¢q. So (2.182) is replaced with

(=1} (g™ exp(imn /2) exp (+8i7r /M tray F' A F) | (2.184)
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The two expressions (2.182) and (2.184) are equal, since
NY=N/+N/, (2.185)

with

1 1
Ny =5 [ tu FAF, N/ =_— / trep F' A F. (2.186)
M,

£ 82 M, 32

The above formulas can be written more elegantly by using the Atiyah-Patodi-
Singer (APS) index theorem [69] for the Dirac operator on a manifold with boundary.
This will also be useful later. We let v, (or 1) be the index of the Dirac operator on
M, (or M, ), acting on spinors with values in the fundamental representation of Sp(2n)
(or Sp(2m)). This index is defined by counting zero-modes of spinor fields that are
required to be square-integrable at infinite ends of M, or M,., and to obey APS global
boundary conditions along the finite boundary W. The APS index theorem gives

(—1)" = exp(imn'/2) exp —|—i/ trep F'AF
8 S,

(=1)" = exp(inr /2) exp (—i/ trgp F' A F) . (2.187)
87 Jur,

Thus the factors weighting a given solution in the dual constructions of fig. 2.10 are

respectively

(=) (=g (=1 (2.188)

and

(17" (1) (2.189)

The most convenient way to compare these two formulas is as follows. Let v be the
index of the Dirac operator on the whole four-manifold M = M, U M,. Additivity of
the index under gluing gives

V=1Up+ . (2.190)

But we also have

v=N". (2.191)

To obtain this formula, one can first deform the gauge field into an Sp(2s) subgroup,

where s = min(n,m), so as not to have to consider the jump from n to m (which is not
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present in standard formulations of index problems). Then (2.191) is a consequence of
the ordinary Atiyah-Singer index theorem, or of the APS theorem on the noncompact
four-manifold M = W x R (with the contributions of the ends at infinity canceling).

It follows from these statements that
(=N (=17 = (=1, (2.192)

showing that the two descriptions do give the same result.
We now proceed to describe the action of the duality on line and surface operators

of the orthosymplectic theory.

2.5.6 Duality Transformation Of Orthosymplectic Line And

Surface Operators

2.5.6.1 Magnetic Duals Of Twisted Line Operators

Before we can describe the action of the duality on line operators, we need some
preparation. In section 2.3.3.3, we have introduced the twisted line operators in the
electric description. One needs to include them in the story to get a consistent picture
for the ST1T'S duality of line operators in the orthosymplectic theory. For this reason,
here we make a digression to describe their magnetic duals.

This question arises already for U(m|n), so we start there. Consider a knot K
in a three-manifold W. W is embedded in a four-manifold M, for example W x R.
The definition of twisted line operators on the electric side depended on the existence
of a flat line bundle with some twist ¢ around the knot K. For a generic twist,
such a bundle can only exist if the cycle K is trivial in H;(M). In addition to the
twist, the line operator also supports a Wilson operator of the bosonic subgroup
with some weight A. In the magnetic theory, we propose the following definition for
the dual of a twisted operator. Let A = A + py be the quantum-corrected weight.
Note that here we use the bosonic Weyl vector for the quantum correction, since A
was the highest weight of a representation of the bosonic subgroup. For a twisted

operator of quantum-corrected weight A, we define the dual magnetic operator, using
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the irreducible model solution of section 2.4.4, corresponding to the weight A, but also
make the following modification. For definiteness, let n > m. Then the U(m)-part
of the gauge field is continuous across the three-dimensional defect. Pick a surface X
bounded by K, or, more precisely, a class®” in the relative homology Hy(M, K). The
U(m) bundle is trivialized along the knot K, so it makes sense to evaluate its first

Chern class on the class ¥, and to include a factor

exp (ic /E tr F/27T) (2.193)

in the functional integral. Here c¢ is an angular variable, which we conjecture to equal
the twist of the line operator on the electric side.?® This proposal can be justified
by noting that the insertion (2.193) is essentially an abelian surface operator of type
(0,0,0,n"), with n¥ valued in the center of the Lie algebra of the magnetic gauge
group. After doing the S-duality transformation, this becomes an operator of type
(r,0,0,0) in the electric theory. The singularity adf in the abelian gauge field can
be removed by making a gauge transformation around this surface operator. Such a
gauge transformation closes only up to the element exp(ic) of the center, and therefore
introduces a twist by exp(ic) to the boundary hypermultiplets.

Now let us turn to the orthosymplectic Chern-Simons theory. For the OSp(2m|2n)
case the magnetic gauge group is SO(2m) x SO(2n + 1), and its subgroup which is
not broken by the three-dimensional defect is SO(N), where N = 2m or N = 2n + 1,
depending on m,n. As is clear from the electric description of section 2.3.3.3, for
the twisted operator to have a non-zero matrix element, the knot K should be trivial
in Hy(M;Z,), that is, we should have K = 0% + 2K’, where X is a two-cycle in
Hy(M, K), and K’ is an integral cycle. In the magnetic description we define a
twisted operator of quantum-corrected weight A = A + py by the same irreducible

model solution that we would use for an untwisted operator, but we also make an

37Since K is trivial in the homology, ¥ exists, but it might not be unique. If it is not unique, we
should probably sum over possible choices. For simple manifolds like R* and R x 2 that we mostly

consider in this chapter, this question does not arise.
38Note that one cannot define such twisted operators in the one-sided, purely bosonic theory,

because there the gauge bundle is trivialized completely along y = 0, and not only along the knot.
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insertion in the functional integral. Namely, when we sum over different bundles, we
add an extra minus sign if the SO(N)-bundle, restricted to X, cannot be lifted to a

Spin(N)-bundle. In other words, we add a factor
(1)l w2 (2.194)

where wy is the second Stiefel-Whitney class.’

There is no analog of this for an odd orthosymplectic group OSp(2m + 1|2n). For
example, for m = n, the magnetic dual is simply an Sp(2n) gauge theory with a
fundamental hypermultiplet along the defect. The existence of this hypermultiplet
means that the gauge bundle restricted to ¥ must be an Sp(2n) bundle, not a bundle
with structure group PSp(2n) = Sp(2n)/Z;. For m # n, the model solution has a
Nahm pole valued in Sp(|2m — 2n|), and this is incompatible with a twist defined
using the center of Sp(2n). The magnetic duals of twisted and untwisted operators
are nonetheless different, but that is because the model solutions used to define them

are different, as explained in section 2.5.6.6.

2.5.6.2 More On The Orthosymplectic Lie Superalgebras

We also need to review some facts about the orthosymplectic Lie superalgebras. We
start with the even orthosymplectic superalgebra D(m,n) ~ osp(2m|2n). Here we
assume that m > 1, since m = 1 corresponds to the type I superalgebra C(n) ~
0sp(2|2n) (the analysis of its line and surface operators is analogous to the u(m|n)
case, which we have discussed in section 2.5.5). We also assume that n > 1; the case
n =1 can be treated with minor modifications.

The Dynkin diagram for D(m,n) is shown on fig. 2.11. The positive bosonic and

fermionic roots of osp(2m|2n) are

A%_ = {51 I|:5i+p7 25za €j + €j+p}7

Af={s+e}, i=1..n,j=1...m,p>0, (2.195)

39What we have described about the S-duality of twisted line operators is rather similar to the
result of [72]: choosing a topological type of bundle on one side of the duality translates on the other

side to choosing a fugacity in the sum over bundles.
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€m—1 + €m

€m—1 — €m

Figure 2.11: Dynkin diagram for the osp(2m|2n) superalgebra, m > 2. The subscripts are
expressions for the roots in terms of the orthogonal basis de, €o. The superscripts represent
the Dynkin labels of a weight. The middle root denoted by a cross is fermionic. Roots of the
sp(2n) and so(2m) subalgebras are on the left and on the right of the fermionic root. The
site shown in grey and labeled a,, is the long simple root of the sp(2n) subalgebra, which

does not belong to the set of simple roots of the superalgebra.

where the mutually orthogonal basis vectors are normalized as
1 1
0i,0i) = i €)= —75, 2.196
(Gub) =5, lened=—; (2.196)

to ensure that the longest root has length squared 2. The bosonic and fermionic Weyl

vectors are

Pg = Z?”H—l—z im J)€&, pr= mZ(SZ, (2.197)
j=1 =1

and the superalgebra Weyl vector is p = pg — p1.
A weight with Dynkin labels*® a,, @, is decomposed in terms of the basis vectors

as

A= ab1++a,(01++0,) tareg+ -+ amoler + -+ €m2)

1. 1.
+ §am,1(€1 + -+ €1 T+ €m> -+ §Clm(€1 + €1 — Em) . (2198)

It is a dominant weight of a finite-dimensional representation, if the Dynkin labels

are non-negative integers, and also satisfy the following supplementary condition: if

40The Dynkin label of a weight A for a simple bosonic root « is defined as usual as a =
2(A, a)/{«, ). However, the Dynkin labels used in (2.198) are for the simple roots of so(2m) xsp(2n),
not for the superalgebra osp(2m|2n). In practice, this means that a,, is the weight for the long root

20, of sp(2n), and we do not use the label aferm associated to the fermionic root of the superalgebra.
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a, < m — 2, then no more than the first a, of the labels a, can be non-zero; if
a, = m — 1, then a,,_1 = a,,_o; if a, > m, there is no constraint. We will call a
weight (and the corresponding representation) spinorial if the number @,, 1 + @, is
odd. Clearly, a spinorial dominant weight must have a,, > m. Also, such a weight is
always typical.

Now let us turn to the odd orthosymplectic superalgebra B(m,n) ~ osp(2m +
1|2n). The distinguished Dynkin diagram and the simple roots for osp(2m + 1|2n)
and for its bosonic subalgebra so(2m + 1) x sp(2n) can be found in fig. 2.3 of section

2.3.1. The positive bosonic and fermionic roots of this superalgebra are

Ag = {5i - 5i+p7 0; + 5i+p> 20;, €5 = €j4ps € T €jtp, Ej} )

AT ={6—¢€,0i+¢€,0}, i=1...n,j=1...mp>0, (2.199)

where the mutually orthogonal basis vectors are normalized as in (2.196). The bosonic

and fermionic Weyl vectors are

i=1 7=1 i=1

and as usual the superalgebra Weyl vector is p = py — p1.

If we parametrize a weight as

=1 =1

then, in terms of its Dynkin labels, one has

n m—1
_ 1
pi=> aj, fi=» a;+ 5 m: (2.202)
j=t j=1

A weight A is a highest weight of a finite-dimensional representation of osp(2m+1|2n),
if its Dynkin labels are non-negative integers, and no more than the first a, of the
s0(2m+1) labels (ay, . . ., a,,) are non-zero. The last condition is trivial if a,, > m. We
will call an irreducible representation “large” if a,, > m, and “small” in the opposite
case. An irreducible representation is spinorial if the Dynkin label a,, is odd, and

non-spinorial in the opposite case. Clearly, any spinorial representation is “large.” It
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Figure 2.12: Example of a hook partition for osp(9(6). The labels p;, ¢ = 1,...n and g;,
j=1,...m were defined in (2.202). Here us = 3, and, clearly, no more than the first three

11’s can be non-zero.

is also easy to see that all the “small” representations are atypical, and all the spinorial
representations are typical.

Non-spin highest weights can be conveniently encoded in terms of hook partitions
[40, 41, 42|. These are simply Young diagrams which are constrained to fit inside a
hook with sides of width n and m, as shown in fig. 2.12 for n = 3 and m = 4. The
figure shows how the labels u, and i, parametrizing the weight are read from the
diagram. This presentation implements automatically the constraint that only the
first a,, of the so(2m+ 1) Dynkin labels can be non-zero. In this notation, the “small”
representations are those for which the Young diagram does not fill the upper left
n X m rectangle.

Finally, let us note that for typical representations of any superalgebra there exist
simple analogs of the Weyl formula to compute characters and supercharacters. For

the character of a representation with highest weight A, the formula reads

ch (Ry) = L7 ) " (=1)"™ exp (w(A + p)) . (2.203)

Here the sum goes over the elements of the Weyl group W, which, by definition, is
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generated by reflections along the bosonic roots. The number ¢(w) is the length of

the reduced expression for the Weyl group element w. The Weyl denominator L is

HaEA%’ (e*/? —eo/2)

L= .
[Taeas (¥ +e772)
1

(2.204)

2.5.6.3 OSp(2m|2n): The Mapping Of Line Operators

To understand the action of the S™'T'S duality on the line operators of the D(m,n)
Chern-Simons theory, we need to understand the action of the T-transformation on
their magnetic duals. Since 7' is just a shift of the theta-angle, it does not change
the model solution that is used to define the operator. Therefore one might conclude,
as we did for the unitary superalgebra, that line operators are invariant under this
transformation. As we now explain, this is indeed true for a subclass of line operators,
but not for all of them.

In section 2.5.1 we have defined the instanton number 9 for the orthogonal group.
The action contained a term 0,91 /2, where 0, is the string theory theta-angle. The
27m-periodicity of 6, relied on the fact that 91V takes values in 2Z. While this assertion
is true on R* or R x 83, it is not always true on more general manifolds. We now
want to show that it is not true even on simple manifolds like R* in the presence of
some line operators, and therefore such line operators transform non-trivially under
the T-transformation.

Before explaining the details, let us state clearly the result. Consider a Wilson-
't Hooft operator (untwisted or twisted) in the electric theory, located along a knot K.
We claim that in the presence of its S-dual, the instanton number 91" of the magnetic
theory takes values in 2Z, if the quantum-corrected weight A of the operator is non-
spin, and it takes values® in Z, if this weight is spin. Therefore, T acts trivially on
the non-spinorial line operators, but not on the spinorial ones. We will show that for

spinorial weights the transformation 7" exchanges twisted and untwisted operators of

41 As we have already explained in footnote 28, a more precise statement is that the instanton
number takes values in 2Z + ¢ or Z + ¢ for some constant c. Here we are interested only in the

difference of instanton numbers for different bundles, so we will ignore the constant shift.
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a given quantum-corrected weight A. In terms of the electric theory, we say that the
knot invariants that are obtained from an untwisted spinorial operator in the theory
with level Ky, are equal to the invariants obtained from a twisted spinorial operator
in the theory with level K, where K, is given by (2.180). The mapping of non-
spinorial line operators (whether untwisted or twisted) between the Chern-Simons

/

osp 18 trivial: the weight is unchanged and twisted or

theories with levels Koy and K
untwisted operators map to themselves.

Now let us prove our assertions about the instanton number. Assume for simplicity
that the four-manifold M is 2-connected (that is, m (M) = mo(M) = 0). Our goal is
to evaluate the instanton number 91 for an SO(2m) x SO(2n+ 1) bundle on the knot
complement M \ K with a fixed trivialization along K, which is defined by a model
solution of weight A. For now let us assume that m < n, so that the SO(2m) subgroup
of the gauge group is left unbroken by the three-dimensional defect at y = 0. Let
¥’ be a two-sphere in M that encircles some point of the knot (this means that the
linking number of ¥ with K is 1; for instance, ¥ can be the sphere 2° = 0, r' =const
in the language of fig. 2.6 of section 3.3.1), and ¥ be a surface, bounded by the knot.
Y. represents the non-trivial cycle in the relative homology Hy(M, K).

We will focus on SO(2m) bundles V on the knot complement, and ignore what
happens in the SO(2(n—m)+ 1)-part of the gauge group, which is broken everywhere
at y = 0 by the boundary condition of the 3d defect. The reason we can do so is
that all interesting things will come from different extensions of the SO(2m) bundle
from the knot neighborhood K x ¥’ to the cycle X, while for the SO(2(n —m) + 1)
subgroup this extension is uniquely fixed by the boundary condition. This is also the
reason that there is no non-trivial analog of this story for the one-sided problem [6].

So far we have not been precise about the global form of the structure group of
our bundle ¥V — M. In the most general case, the structure group is the projective
orthogonal group PSO(2m) (the quotient of SO(2m) by its center {+1}), and this
structure group might or might not lift to SO(2m) or Spin(2m). If it does lift to
SO(2m) or Spin(2m), we say that V) has a vector or a spin structure, respectively. To

study obstructions to the existence of a vector or a spin structure (and more generally,
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obstructions related to m(G) for G-bundles), it is enough to look at the restriction
of the bundle to the two-skeleton of the manifold. Let ¥, be a two-manifold with
G-bundle V — ¥,; we assume that G is a connected group, and that X is closed
or that V is trivialized on its boundary. Such a V — ¥ is classified topologically
by a characteristic class z valued in H?(3g, m;(G)). Concretely, z is captured by an
element of 7m1(G) that is used as a gluing function to construct the bundle V — 3.
Thus, x associates to Xy an element T of the center of the universal cover GofG. A
bundle Vg associated to V in a representation R exists if and only if T acts trivially
on R.

In our application, ¥ is either ¥ or ¥, and G = PSO(2m). We note that the
surface ¥ can be deformed to lie entirely in the region y > 0, where the gauge group
is SO(2n 4 1). Since SO(2m) and not PSO(2m) is a subgroup of SO(2n + 1), the
restriction of V to ¥ always has vector structure.

Let A be a non-spinorial weight of the gauge group of the electric theory. This
means that A belongs to the character lattice of SO(2m) x Sp(2n), and therefore the
parameter of the S-dual magnetic operator belongs to the cocharacter lattice of the
dual group, which is SO(2m) x SO(2n+1). Therefore, the model solution for the line
operator defines on Y’ a bundle with vector structure. Together with the facts that
we explained a few lines above, this means that V has vector structure, 7.e. it is an

SO(2m) bundle. For its instanton number we can use the formula
N = / wy A we mod 2, (2.205)
M

where wy is the second Stiefel-Whitney class, or more precisely an arbitrary lift of it
to the integral cohomology. (For a derivation of this formula, see e.g. [73].) On our

manifold we can rewrite*? this as

o2 ([ ) ([ o) mot2 00

42For a quick explanation, think of ws in this geometry as a sum a + b, where a is possibly non-

trivial on X but trivial on ¥, and b is trivial on ¥ but possibly non-trivial on ¥'. Then w3 = 2ab = 0

mod 2, accounting for the factor of 2 in eqn. (2.206).
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which means that whatever wy is, the instanton number is even. Therefore, a shift of
the theta-angle by 27 in presence of a non-spinorial line operator is still a symmetry,
and such operators are mapped trivially under the T-transformation.

Now let the weight A be spinorial. Then it belongs to the character lattice of
Spin(2m) x Sp(2n) (and not to its sublattice corresponding to SO(2m) x Sp(2n)),
and therefore the parameter of the dual magnetic operator belongs to the cocharacter
lattice of PSO(2m) x SO(2n + 1) (and not to the cocharacter lattice of SO(2m) x
SO(2n+1)). The bundle that is defined on ' by such a model solution is a PSO(2m)
bundle with no vector structure. What we then expect to get is roughly speaking that
the factor [g, wy in (2.206) now becomes 1/2, which would give us ¥ = [, w; mod 2
for the instanton number. Let us prove this in a more rigorous way.

For that we adapt arguments used in 73], where more detail can be found. The
topology of two PSO-bundles that coincide on the two-skeleton can differ only by
the embedding of some number of bulk instantons. Therefore the instanton numbers
of such bundles can only differ by an even integer. To find 91¥ mod 2, it is enough
to study any convenient bundle with a given behavior on ¥ and ¥'. Consider first
the case of the group PSO(6) = SU(4)/Z,. Its fundamental group is Z4. Let x be
the Z4-valued characteristic class which defines the topology of the restriction of the
bundle to the two-skeleton (i.e., to 3 and X'). Let £ be a line bundle with first Chern

class ¢; = x mod 4. Let O be the trivial line bundle, and consider the bundle
V=L (LT'o00000). (2.207)

It does not exist as an SU(4) bundle, unless x = 0, but its associated adjoint bundle
3L® 3L @ 90 does exist; this bundle has structure group PSO(6). The associated
bundle in the vector representation of SO(6) is the antisymmetric part of V; ® Vy; it
exists precisely when = = 0 mod 2, since it contains £/2. Though V), might not exist,

we can use the standard formulas to compute its Chern number

/M@m) _ —%/ch(ﬁ) /E (L) = i/zx//xmod 1. (2.208)

This Chern number is the instanton number normalized to be Z-valued for an SU(4)

bundle, so it is 91V /2. Note that, since the bundle on ¥’ has no vector structure, we
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have fE, x = £1. On the contrary, on X there is vector structure, and we can write

Jsx =2 [;w;, mod 4. We finally get
N = / wy mod 2. (2.209)
>

Comparing to the definition of the magnetic duals of the twisted operators in section
2.5.6.1, we conclude that the T-transformation, besides shifting the theta-angle by
2w, ialso interchanges the twisted and untwisted spinorial line operators. One can
easily extend these arguments to the even orthogonal groups other than SO(6). The
relevant facts are explained in |73] in a similar context, and will not be repeated here.

In our discussion, we have assumed that the ranks of the two gauge groups satisfy
m < n. One can extend the arguments to the case n > m with some technical modifi-
cations. Rather than explaining this, we will now give an alternative argument, which
uses the language of surface operators, and does not depend on the rank difference

n—m.

2.5.6.4 OSp(2m|2n): The Mapping Of Surface Operators

Our discussion will be analogous to what we have said about the case of the unitary
superalgebra in section 2.5.5. The S™'T'S duality transformation acts on the half-BPS

surface operators in the following way,

Oé _ o — m*s0
5, L O T (2.210)

n —« neoa n

Ui

Here the T-transformation acts in the magnetic description of the theory. Therefore,
its definition involves taking the dual of n with respect to the canonically-normalized
Killing form of the orthogonal Lie group, which is the gauge group in the magnetic
description. To emphasize this fact, we have denoted this dual by 7*°.

Recall that the action in the electric theory was defined using the canonically-
normalized Killing form of the superalgebra, whose bosonic part, according to (2.153),
IS Kosp = Kep — 2Kso, Where kg, and kg, are the canonically-normalized Killing forms
for the corresponding bosonic Lie algebras. Let us consider the positive-definite form

Kep + 2Kso, and denote the dual with respect to this form by a star. (In fact, this
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notation has already been defined in footnote 14.) The equation (2.210) in this

notation is equivalent to
| s, (o (2.211)
n n
For the so(2m) part of the parameters, the factor of two in this formula simply
follows from the analogous factor in front of ks in Kesp. For the sp(2n) part of the
parameters, one needs to compare the canonically-normalized Killing forms of sp(2n)
and 50(2n + 1) on t;, =~ t,. The S-duality maps the root lattice in t;, to the coroot
lattice in t5,. Comparing these lattices, one finds that in tj, ~ t;, the S-duality
identifies J; with ¢;, in the notations of section 2.5.6.2. The canonically-normalized
forms for sp(2n) and so(2n+1) give respectively®® (6;,0;)sp = 0;;/2 and (€;, €;)s0 = 0y,
and their ratio gives the factor of two in (2.211).
The equation (2.85), which defines the relation between the weight and the pa-
rameters of a surface operator in the electric theory, continues to hold for the or-
thosymplectic Chern-Simons theory, if one replaces the level K in that equation by

Kosp- Using this, and also the transformation laws (2.180) and (2.211), we conclude
that the S~'T'S duality transforms the weights according to

N A
— = . (2.212)
]Cosp ICOSP

Again, the procedure of section 2.4.6 for computing knot invariants using surface
operators is obviously invariant under this transformation.
Let us compare the surface operator and the line operator approaches in the case

that the weight A is integral. The equation (2.212) can alternatively be written as

N =+ 2K A (2.213)

osp’t -

First let us look at the part A, of the weight, which corresponds to the symplectic Lie
subalgebra. In the action (2.153), the level Ko multiplies the Chern-Simons term

for the sp(2n) subalgebra, which is defined using the canonically-normalized sp(2n)

“3Note that the canonical normalization of the Killing form for so(2n + 1) is different from the

superalgebra normalization (2.196).
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Killing form. Therefore the knot invariants computed using the surface operators
are unchanged when the weight A, is shifted by K., times an integral coroot of the
sp(2n) subalgebra. If A, is an integral weight, then 2A, is an integral coroot, and
therefore the difference between A, and A, in (2.213) is inessential for computing the
knot invariants.

For the part A, of the weight, which corresponds to the orthogonal subalgebra,
the situation is more complicated. The canonically-normalized Chern-Simons term
for the orthogonal subalgebra in the action (2.153) is multiplied by 2K,,. For this
reason, the knot invariants computed using the surface operators are invariant under
the shift of A, by 2/Cos, times an integral coroot of the so(2m) subalgebra. Therefore,
the shift of A, in the equation (2.213) is trivial from the point of view of the knot
observables if and only if the integral weight A, is actually a coroot. What if it is
not? Since the so(2m) Lie algebra is simply-laced, any integral weight is also an
element of the dual root lattice I':. Therefore the group element exp(27A,) actually
belongs to the center of the orthogonal group. Let us make a singular gauge trans-
formation in the electric theory around the surface operator on the left side of the
three-dimensional defect, using the group element exp(6A,), where 6 is the azimuthal
angle in the plane normal to the surface operator. This transformation maps a surface
operator corresponding to the weight A, back to a surface operator with weight A,.
Since our gauge transformation is closed only up to the central element exp(27A,),
it also introduces a twist of the boundary hypermultiplets by this group element. In
the fundamental representation of SO(2m), to which the hypermultiplets belong, the
element exp(27wA,) acts trivially if the weight A is non-spinorial, and it acts by —1
if A is spinorial. We have reproduced the result that was derived in the previous
section in the language of line operators: S™'T'S acts trivially on Chern-Simons line
observables labeled by non-spinorial representations, but exchanges the twisted and

the untwisted operators for a spinorial weight.
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2.5.6.5 OSp(2m|2n): Comparing The Representations

We would like to look closer at the mapping of spinorial line operators. Consider
a line operator, labeled by a supergroup representation of spinorial highest weight
A = A—p, and an S~1T'S-dual twisted operator, which is labeled by a representation
of the bosonic subgroup with highest weight A’ = A — p5. Note that the Weyl vectors
p and pg, which can be found from (2.197), are non-spinorial integral weights, and
therefore the property of being spinorial /non-spinorial is the same for the weights and
for the quantum-corrected weights of OSp(2m|2n).

We would like to see more explicitly how the duality mapping acts in terms of
representations. We have A = A+ p = A’ + pg, or equivalently, A’ = A — p7. Using the
formulas (2.197) and (2.198), this can be translated into a mapping of Dynkin labels,

692537 J=1 1,
a;=a;, i=1,...,n—1,
a, =a, —m. (2.214)

As was noted in section 2.5.6.2, for a spinorial superalgebra representation one has**
a, > m. Therefore, the mapping of Dynkin labels written above is a one-to-one
correspondence between the irreducible spinorial representations of the D(m,n) su-
peralgebra and its bosonic subalgebra.

We can make an additional test of the duality by comparing the local framing
anomalies of the line operators. Recall that the knot polynomials in Chern-Simons
theory are invariants of framed knots. If the framing of a knot is shifted by one unit

via a 27 twist, the knot polynomial is multiplied by a factor

exp(2milo), (2.215)

44 As we have mentioned in a similar context in section 2.3.5, we do not really know why the
supplementary condition should be imposed in the present discussion, since it is not a general
condition on 1/2-BPS line operators. Nonetheless, imposing this condition works nicely, as we have
just seen. This shows once again that our understanding of line operators in the theory is incomplete.

We will find something similar for odd OSp supergroups.
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where Ao is the dimension of the conformal primary O that corresponds in the WZW
model® to the given Wilson line. For a Wilson line in representation R, this framing

factor is

. ca(R) es(R)
v o 2.21
P (m k+h sign(k)) ¢ (2.216)

where co(R) = (A, A)—(p, p) is the value of the quadratic Casimir in the representation
R. The variable ¢ was defined for the D(m, n) superalgebra in (2.158). In the bosonic,
one-sided case these formulas have been derived in [6] from the magnetic description
of the theory. It would be desirable to give such a derivation for the two-sided case,
but we will not attempt to do it here.

To compare the framing factors for our dual operators, we need to derive a formula
for the framing anomaly of a twisted operator. The energy-momentum tensor of the
conformal field theory is given by the Sugawara construction

Fonm 2™ (2)J"(2):
2(k+h) ’

T(z) = (2.217)

where % = k @ w is the superinvariant bilinear form?® on the superalgebra, and J™(z)
is the holomorphic current with the usual OPE

krm" N JrmJP (w)
(z — w)? z—w

J™(2) I (w) ~ (2.218)

One can easily verify that for a simple superalgebra the formula (2.217) gives the
energy-momentum tensor with a correct OPE.

Normally, the current J™(z) is expanded in integer modes. The eigenvalue of the
Virasoro generator Ly, acting on a primary field, is determined by the action of the
zero-modes of the current, which give the quadratic Casimir, as stated in eqn. (2.216).
However, for a primary field corresponding to a twisted operator in Chern-Simons, one

naturally expects the fermionic components of the current J™(z) to be antiperiodic.

45 As it is explained in Appendix E of [1], there actually is not a straightforward relation between
3d Chern-Simons theory and 2d current algebra in the case of a supergroup. Nonetheless, some

results work nicely and the one we are stating here seems to be one.
46Here we slightly depart from our usual notation, and use indices m,n,... both for bosonic

and fermionic generators of the superalgebra. Also, note that the inverse tensor is defined by

-mn_g — 5’!71

K" Kpn 4 hence the unusual order of indices in the Sugawara formula.
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In that case, the bosonic part of the current gives the usual contribution to the
conformal dimension, which for a weight A is proportional to the bosonic quadratic
Casimir (A + 2pg, A). The fermionic part of the current in the twisted sector has
no zero-modes, and its contribution to the L, eigenvalue is just a normal-ordering
constant, independent of the weight A. One can evaluate this constant from (2.217),
(2.218), and get for the dimension of the operator

(A +2pg, A) — kdim(gp)/8

Atw —
© 2(k + h)

(2.219)

Using the identity (pg, pg) = (p, p) + h dim(g7)/8, which actually is valid for any of
our superalgebras, one obtains an expression for the framing factor

exp (m (A A) —{p,p)

T h sign(k:)) exp (—imdim(gy)sign(k)/8) . (2.220)

Here we have restored the dependence on the sign of the level k£, and used our definition
of A for the twisted operators. The second factor in this formula does not map
correctly under the duality, but that is what one could have expected, since this
factor is non-analytic in K = k + hsign(k) (compare to the discussion of the global
framing anomalies in sections 2.4.3.1 and 2.5.4). The first factor is analytic in I,
and it is clear from comparison to eq. (2.216) that it does map correctly under the

duality.

2.5.6.6 Duality For The Odd Orthosymplectic Superalgebra

Let us turn to the case of the odd orthosymplectic superalgebra. As was already noted
in section 2.3.2.2, the definition of line operators in this theory has some peculiarities.
As follows from the equation (2.200), for B(m,n) the bosonic Weyl vector pg is an
integral spinorial weight, while the superalgebra Weyl vector p is not an integral
weight: it has a half-integral Dynkin label with respect to the short coroot of the
sp(2n) subalgebra. This means that the quantum-corrected weight A = A + p for an
untwisted operator is not an integral weight, and therefore a Wilson-'t Hooft operator,
as defined in section (2.3.3.2), is not gauge-invariant classically. The resolution of this

puzzle should come from another peculiarity of the B(m, n) Chern-Simons theory. The
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definition of the path-integral of this theory includes an n-invariant (2.161), which
comes from the one-loop determinant (or rather the Pfaffian) of the hypermultiplet
fermions. In the presence of a monodromy operator, one should carefully define this
fermionic determinant, and we expect an anomaly that will cancel the problem that
exists at the classical level. We will not attempt to explain the details of this in the
present chapter.

Unlike the case OSp(2m|2n), a magnetic line operator of OSp(2m + 1|2n) is com-
pletely determined®” by its weight A, as explained at the end of section 2.5.6.1. How-
ever, the quantum-corrected weights for twisted and untwisted operators belong to
different lattices, due to the different properties of p and p;, mentioned above. So
the magnetic duals of twisted and untwisted electric line operators are simply de-
scribed by different model solutions. Since the T-transformation preserves the model
solution, the S™'T'S duality should preserve the quantum-corrected weight.

We need to introduce some further notation. In the orientifold construction, we
took the Killing form to be positive on the sp part of B(m,n). In the dual theory, it
will be positive on the so part, and for this reason we denote the superalgebra of the
dual theory by B'(n,m). The basis vectors in the dual t*' of the Cartan subalgebra
of B'(n,m) will be denoted by &%, j = 1,...,m, and ¢, i = 1,...,n, and their
scalar products are defined to have opposite sign relative to (2.196). The Dynkin
labels for the representations of B'(n,m) will be denoted as aj, j =1,...,m, and
a,, i =1,...,n. To make precise sense of the statement that the S™'T'S duality
preserves the quantum-corrected weight, it is necessary to specify how one identifies
t* and t*'. We use the mapping which identifies €, with §; and d% with ¢;. This linear
map preserves the scalar product. In principle, one could derive this identification
from the S-duality transformations of surface operators, but we will simply take it as
a conjecture and show that it passes some non-trivial tests.

We can make one such test before we go into the details of the operator mapping.

According to the equations (2.216), (2.220) and the definition (2.163) of the variable

4THere we ignore the issues related to the atypical representations. We will say a little more on

this later in this section.
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g, the framing anomaly factor in the B(m,n) theory for an operator of quantum-
corrected weight A is equal to ¢, where co = (A,A) — (p, p). (This formula is true
for both twisted and untwisted operators, modulo non-analytic terms.) From this
we can see that our map does preserve the framing anomaly.*® Indeed, it preserves
A and the scalar product, and although the Weyl vectors p and p’ for the two dual
superalgebras B(m,n) and B/(n, m) are different, their lengths happen to coincide, as
one can verify from the explicit formula (2.200).

In the rest of this section we will examine the mapping
A=N (2.221)

in more detail. We will see that it gives a correspondence between the untwisted non-
spinorial operators of the two theories, maps the twisted non-spinorial operators to the
untwisted spinorial operators, and finally indentifies the twisted spinorial operators of
one theory with the twisted spinorial operators of the other one. To put it shortly, it
exchanges the spin and the twist. It is important to note that one might need to refine
the mapping (2.221) for atypical weights. We will indeed encounter an ambiguity in
interpreting (2.221) for the “small” atypical weights.

First let us focus on the non-spinorial untwisted line operators, for which the
duality should give a correspondence between the non-spinorial representations of the
two superalgebras. The map (2.221) of the dominant weights is already known in the
literature for the special case of m = 0. In fact, a remarkable correspondence between
finite-dimensional representations of 0sp(1|2n) and non-spinorial finite-dimensional
representations of so(2n + 1) was established in [71]. Tt preserves the full set of
Casimirs, including the quadratic one. For n = 1, the map is so elementary that
one can describe it by hand. This will make our later discussion more concrete. The
spin s representation of s0(3), for non-negative integer s, is mapped to the trivial

representation of osp(1]2) for s = 0, and otherwise to the representation of osp(1|2)

48To be precise, there is actually a little mismatch for the spinorial operators. In that case the
quadratic Casimir ¢y can be non-integral, and therefore there is a difference by a root of unity due
to the fact that ¢ is mapped to —q. Hopefully, this discrepancy can be cured in a more accurate

treatment.
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that is a direct sum of bosonic states of spin s/2 (under sp(2) = su(2)) and fermionic
states of spin (s — 1)/2. Note that if we ignore the statistics of the states, the given
50(3) and osp(1|2) representations both have dimension 2s+ 1. This is a special case
of a correspondence between characters found in [71].

An equivalent explanation is that a representation of so(3) whose highest weight
is s is mapped, if s is an integer, to a representation of 0sp(1]|2) whose highest weight
is s times the smallest strictly positive weight of this algebra. The spinorial repre-
sentations of s0(3) — the representations with half-integral s — do not participate in
this correspondence, since there is no representation of osp(1]2) whose highest weight
is a half-integral multiple of the smallest positive weight. The spinorial representa-
tions of s0(3) have a dual in terms of twisted line operators, but not in terms of
representations.

This correspondence between so(s) and osp(1]2) maps tensor products of so(3)
representations to tensor products of 0sp(1|2) representations if one ignores whether
the highest weight of an 0sp(1|2) representation is bosonic or fermionic. To illustrate
this correspondence, let s denote an irreducible so(3) representation of spin s. Let s’
and s’ denote irreducible osp(1]2) representations whose highest weight is s times the
smallest positive weight, with the highest weight vector being bosonic or fermionic,
respectively. Then one has, for example,

11220160 for so(3) (2.999)

1'01'=2a1 a0 for osp(1]2).
There is an obvious matching, if we ignore the reversed statistics of 1’ on the osp(1|2)
side. We interpret this matching to reflect the fact that the duality between so(3)
and osp(1]2) preserves the operator production expansion for Wilson line operators.
(In Chern-Simons theory, for generic ¢ the OPE of line operators is given by the
classical tensor product, so we can compare such OPE’s by comparing classical tensor
products.) However, we do not know the interpretation of the reversed statistics of 1.
Perhaps it somehow involves the fact that the quantum duality changes the sign of q.

In [71], it is shown that an analogous matching of tensor products holds in general.
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Additional relevant results are in [16]. Let U,(osp(1|2n)) and Uy (so(2n + 1)) be
the quantum deformations of the universal enveloping algebras of the correspond-
ing Lie (super)algebras. It has been shown in [16] that there exists a natural map
between the representations of these two quantum groups if one takes ¢ = —¢, and
restricts to non-spinorial representations of the latter. One would expect such a result
from our duality, assuming that Chern-Simons theory of a supergroup is related to a
corresponding quantum group in the manner that is familiar in the bosonic world.

Now we return to our mapping A = A’ (eqn. (2.221)), which extends the known
results described above to general m and n. It has several nice properties. As follows
from our discussion of the framing anomaly, it preserves the quadratic Casimir. From
the Harish-Chandra isomorphism, it follows that, for non-spinorial weights, (2.221)
gives a natural mapping not only of the quadratic Casimir, but of the higher Casimirs
as well. It would be interesting to find an explanation of this directly from the
quantum field theory. The map also preserves the atypicality conditions (2.50). Next,
let us look at the Weyl character formula (2.203), assuming that the weights are
typical. The Weyl groups for the two superalgebras are equivalent and act in the
same way on t* ~ t*/; therefore, with the mapping (2.221), the numerators of the
character formula coincide for the dual representations. The denominators are also
equal, as one can easily check, using the list of simple roots (2.199). However, the
supercharacters are not mapped in any simple way. In particular, the duality preserves
the dimensions of typical representations, but not the superdimensions.*®

Let us actually see what the equation (2.221) says about the map of representa-
tions. Writing it as A’ = A + p — p/ and using equations (2.200), (2.201), one gets
that the labels o and fi,, defined in those equations, transform into u} = p; + n,

i = p; —m. According to the equation (2.202), this gives a mapping for the Dynkin

0f course, for m,n # 0 the superdimensions of typical representations on both sides of the

duality are simply zero. But for m or n equal to 0, they are non-zero and do not agree.
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labels,

a,=a;, i1=1,...,n—1,
a;:ajv jzlv 7m_17
a, =2(a, —m),
1.
a,, = m + 1. (2.223)

If we restrict to “large” non-spin dominant weights (a,, > m), then this formula gives
a one-to-one correspondence. The non-spin condition means that a,, is even, so that
the mapping (2.223) is well-defined, and the “large” condition a,, > m ensures that
a, > 0.

It is not immediately obvious what to say for “small” representations, since for
them the dual Dynkin label @/, comes out negative. Note that all the “small” repre-
sentations are atypical, and in general we have less control over them by methods of
this chapter. There can be different possible conjectures as to how to make sense of
our map for them. First of all, we can still treat (2.221) as a correspondence between
monodromy operators. Then to understand to which representation a given operator
corresponds, we should make a Weyl transformation on A’, to bring it to a positive
Weyl chamber. This is one possible way to understand the map (2.221) for the “small”
representations. (For an atypical weight, there can be several different ways to conju-
gate it to the positive Weyl chamber; these give different weights, though belonging
to the same atypical block.)

There is another very elegant possibility. If we simply transpose the hook diagram
for a B(m,n) weight, we will get some weight of B'(n, m). It is a curious observation
that for the “large” representations, this operation reproduces our duality (2.223).
Moreover, one can prove that even for the “small” representations this flip preserves
the quadratic Casimir operator and therefore the framing anomaly, and can be a can-
didate for the generalization of our map to the “small” highest weights. Unfortunately,
this is merely a possible guess.

In short, we have found a natural 1-1 mapping between non-spinorial representa-

tions of OSp(2m + 1|2n) and OSp(2n+ 1|2m). Now let us turn to spinorial ones. The
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mapping (2.221) sends spinorial line operators to twisted operators. Here is a simple
consistency check of this statement. In the electric theory, consider a Wilson-"t Hooft
operator in a spinorial representation R that is supported on a knot K in a three-
manifold W. If the class of K in H;(W;Z5) is nonzero, then the expectation of the
operator vanishes because it is odd under a certain “large” gauge transformation that
is single-valued in SO(2m + 1) but not if lifted to Spin(2m + 1). (The gauge transfor-
mations along a Wilson-"t Hooft operator are constrained to lie in the maximal torus,
but there is no problem in choosing such an abelian “large” gauge transformation.)
The dual of such a Wilson-"t Hooft operator under the S~'T'S duality should have
the same property. Indeed, a twisted operator, as described in section 2.3.3.3, does
have this property (in this case because the definition of the twisted operator involves
picking a Z, bundle with monodromy around K).

Let A be a spinorial dominant weight of the B(m, n) superalgebra, and let A’ be a
non-spinorial weight of the bosonic algebra so(2n+1) x sp(2m) that we use in defining
a twisted line operator. The mapping (2.221) would then be A’ + pL = A + p. The
bosonic Weyl vector that is used here can be obtained from (2.200) by exchanging e,
with d, and m with n. From this one finds that the coefficients in the expansion of
the weights in the d,, €, basis transform as ji; = j; —m, p; = ji; — 1/2. Therefore,

according to (2.202), the Dynkin labels of the weights are related as

a,=a;, i=1,....,n—1,
a;=a; j=1,....,m—1,
a, = 2(a, —m),
1
a,, = §(am —1). (2.224)

This gives a one-to-one correspondence between the spinorial supergroup represen-
tations and the non-spinorial weights of the bosonic algebra so(2n 4 1) x sp(2m).

In fact, for a spinorial representation of osp(2m + 1|2n), a,, is odd, ensuring that

a, is an integer. On the other hand, a, is always even, so the twisted line opera-

L, a. is always associated to a non-spinorial representation of

tor with Dynkin labels a;, a;

the bosonic subalgebra of OSp(2n + 1|2m). Moreover, the supplementary condition
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guarantees that a,, — m is non-negative for a spinorial superalgebra representation.

The twisted operators for spinorial representations of the bosonic subgroup should
be mapped into similar twisted spinorial operators. The mapping (2.221) reduces in
this case to A + pg = A" + p5. This gives p; = p; +1/2, py = i — 1/2, or, in terms of
the Dynkin labels,

a=a; i1=1,....n—1,

a;=a; j=1,....m—1,

a, =2a, +1,

a = %(am— 0, (2.225)

which is indeed a one-to-one correspondence between the spinorial representations of
the bosonic subgroups. In other words, the weights a; and @ are integers if the a;

and a; are integers and a,, is odd, and moreover in that case a/, is odd.

2.6 Appendix A: Conventions And Supersymmetry
Transformations

We mostly follow the notation of [23, 6], with some minor differences. Euclidean
signature is used, except in section 2.2.1 and the beginning of section 2.4. The
Lorentz vector indices are denoted by Greek letters pu, v, ... in four dimensions and
by Latin 4, j, k in three dimensions. The defect is at 2° = 0, and 2® is assumed to be
the normal coordinate such that Js is the unit normal vector at the defect. The 3d
spinor indices are denoted by «, £, .... When the indices are not shown explicitly,
they are contracted as v*w,. They are raised and lowered with epsilon symbols,

6122612:1,

v = e*Pyg. (2.226)
Vector and spinor notation are related by sigma-matrices,

| Vot Vs iV
Vag = a5V = L ol (2.227)
iV Vo + V3
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With this definition, the product of the sigma-matrices is
o"Pol = 5967 + éFopy. (2.228)

The boundary conditions are invariant under 3d supersymmetry, with R-symmetry
group SU(2)x x SU(2)y. The spinor indices for these two groups are denoted by
A, B,... and A, B,..., respectively, and the vector indices are denoted by a,b,c
and @, b, ¢. Conventions for the R-symmetry indices are the same as for the Lorentz
indices. In particular, the R-symmetry sigma-matrices are as in 2.227.

Fields that take values in the adjoint representation are understood as anti-
hermitian matrices.

The three-dimensional N' = 4 supersymmetry acts on the fields in the following

way:
0A; = ——533 (‘IffBﬁ sin ¥ + \111243'3 cos 19) Tiag ;s

0A3 = — —\I/ff cosv + \11’245 sin 19) :

oA (
SX0 — _\/'_ g\pBBUAB’
5y = % eAvlon
V25WAB = cFBB <—zpaﬁxg - %eaﬁ sinﬁ[XAC,XBC])
Al (iDng + %sinﬁ[YAC, YBC])
+i cos ﬁegc[Xé, YCB] +ePAB (% sin de 1, FV + cos 19Fk3) Okaf »
V20WAB = hAA (waﬁyf - %eaﬁ cos 9]y BC, YAC})
—553 (iDng — Bug(S(xg)} — %COS ﬁ[XAC,XBC]>

—¢sin 19550[Xé, Yég] — gPAB (—5 cos Ve F" + sin 19Fk3) Tkaf
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5QII4 = _5:2/\1[47

A oW, -
A, = iDopQ — ey iw’’ + e8P sin XL T Q%

o 507
574 = —eAch,

67" = 4t

§¢h =edipzt — e, YABZB

5T = D7 4 e, 7RV AB, (2.229)

The term with the moment map g in the transformation of the ¥, fermion is present
only for the magnetic theory. In the language of N’ = 1 three-dimensional superfields,
it comes from the §(x3) term in the auxiliary field Fy (see eqn. (2.264) for more
details). This term propagates in all equations in combination with D3 X“, canceling

the delta-contribution from the discontinuity of the field X.

2.7 Appendix B: Details On The Action And The
Twisting

2.7.1 Constructing The Action From N = 1 Superfields

In this section, we review the construction [23| of the action for the D3-NS5 system.
One of the reasons for discussing this in some detail is that we will need parts of it
to write out the action for the magnetic theory.

Here we work in Euclidean signature. In [23|, the D3-NS5 action was constructed
by writing an A/ = 1 3d supersymmetric action with a global SU(2) symmetry, and
then adjusting the couplings to extend this symmetry to a product SU(2)x x SU(2)y.
This group does not commute with the supersymmetry generators, and therefore
extends the N = 1 supersymmetry to N' = 4. The N' = 1 multiplets in the bulk
are a vector multiplet® (A;,£4) and three chiral multiplets (X, p¢, F'L), (Y2, ps, F2)
and (As, &3, F3), where X and Y* are the six scalars of the NV =4 SYM®!, and Aj3 is

50The subscript A in &4 is not an R-symmetry index.
In non- R-symmetrized expressions, where only the diagonal subgroup of the SU(2)x x SU(2)y
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a component of the gauge field. The fermionic fields can be packed into two N = 4
SUSY covariant combinations

\/E\IffB = —ipgAB) + eAB(— sind €4 + cos v &3)

V2WAE — i pB) 4 AB(Lcos e, — sind &), (2.230)

The action of the bulk A/ = 4 super Yang-Mills, rephrased in three-dimensional

notation, has the following form,

1 1 “ “

Iym
. AB a8 . AB a8 AB «

X8 (= sin D[0P, W e, ] = WO, Wy e,]) — 2005 0WE, W, 10,
+Y§ (= cos V(WP W ] — (9507, Wy ,]) + 25050 W e ] )
—F2 — F2 — F2 +2D3 (FxY) — 2F3[X,Y]

+F¢ (—2D3Y, — sinYeu ([X°, X — [Y*,Y?]) — 2 cos Jeape[ X, V)
+FY (2D3X, — cos Peqpe([X?, X — [Y2,Y°]) + 2sin eqne[ X", Y]))

10y
+ o2 /tr(F/\F)

+/d4x tr (HYTM&;, (fi) — %83 ((531 — &) sind cos ) — 26364 cos® 19)92-231)

2
8 YM

Here the first four lines are the usual kinetic and Yukawa terms. The next three
lines contain the auxiliary fields, after eliminating which these terms will give the
usual quartic NV = 4 super Yang-Mills potential, but they will also give some total
0s derivatives, which we cannot drop if we want to couple the theory to the defect in
a supersymmetric way. Next, there is also a theta-term, and finally in the last line
there are some total derivatives of the non- R-symmetric combinations of fermions,
which appear from rearranging the fermionic kinetic terms and from the theta-term.
For the NS5-type defect we can use (2.7) to reduce the last line in (2.231) to
002t v /d4az Dstr (€4 cos ) + Egsind)? . (2.232)

9vym

This term is important for R-symmetrizing the fermionic couplings on the boundary.

is explicitly visible, it does not make sense to distinguish SU(2)x and SU(2)y indices.

148



On the three-dimensional defect live chiral multiplets (Q#, A4, F@“) In N =1
notation, the action on the defect includes a usual kinetic term for the Q-multiplet,
a quartic superpotential %W;;(Q) with

1
Wy = Etu k€' PP QL 0L 0K OF |

tryks = Z/‘ﬁmn (TimIKTss — TmISTasK) (2.233)

and a superpotential that couples the four-dimensional scalar X to the defect theory,
K . 1A ym JB
Waoxq = = sin9Q X7, Q7. (2.234)

This choice of the superpotential corresponds to the case when the N S5-brane is
stretched in directions 456. Indeed, the bifundamental fields will have a mass term
proportional to X2, 4.e. their mass is proportional to the displacement in these
directions.

The boundary conditions of the theory form a current multiplet of three-dimensional

N = 4 supersymmetry,

Yik =  2cos ¥ ”QAQ
- i
V2UL s = oS ﬁTIJA AQ%
: m i m 27 mn
sin VF}5 — 3 cos ﬁeiijij i~ 19/@ 'k

Ds X" — 3 cos ﬁeabcmeb”XCp =3 tanﬁwIJeABX"T JSQKAQSB

4COS§AI oMBrm AL (2.235)
where J,,;, is the current
o1 1
T = an = Tm1 ( ABQLD,QY + EAB—)\AUZ/\J> : (2.236)

The first of the boundary conditions has the following origin. At stationary points of
the action the auxiliary field F'§ has a contribution from the boundary, proportional
to the delta function. Then the term F% would produce a square of the delta function.
To avoid this and to make sense of the action, the boundary contribution to F'§ should

be set to zero, and this gives the boundary condition for the field Y¢. The other three
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boundary conditions can be obtained in a usual way from the variation of the action,
after eliminating the auxiliary fields.

The complete action after eliminating the auxiliary fields is

0
Ielectric = ISYM + 22\;\/{ CS(A) + ’CIQ(A>
K 1 i 5 1
- d*z (5 sin? Ywyye i s XM X T T/ ,Q5AQ%P — 5 sin mngABTmUAg)
1 3 2 avybyc 2 : av by c AB
—1—92— d°z Tr —geabccosﬁX X°X —geabcsmﬂY YOV 4+ 20770, , 5 1(2.237)
YM
where
1 1 4 . i
Io(A) = g / 3z (561“%”1)1-@;1)@% — EeABqugm;g

1 .
+ZﬁmnTmIJTnKSQ]AQ§)‘Jc)‘g + ;€

1 0, 0W,
SE B a%a%) (2.238)

is the V' = 4 super Chern-Simons action with the CS term omitted.
Before proceeding to twisting, it is useful to remove the term AX\ in the action,

using the last line in the boundary conditions®® (2.235). Then the action is

0
Ielectric = ISYM + %CS(A) + IC[Q(A>

K [ (1 o
+o- [ e (—5 sin® Jwy se ABXWXMT,;KT,{SQKAQSB)
™

1 2 2 ~
+—— [ P Tr | —Zewe cos VX XX — Zeype sin Y VY + 20550,
Iym 3 3

2

——— [ @z Tr (X*D5X, — cos Ve X" X" X°) . (2.239)
Ivm

The supersymmetry transformations for this theory can be found by R-symmetrization
of the N' = 1 supersymmetry transformations, or, for the bulk super Yang-Mills fields,
by reduction from the A/ = 4 formulas in four dimensions. The result can be found

in Appendix 2.6.

520ne might be worried that after this transformation the action no longer gives the same boundary

conditions from the boundary variation. In section 2.7.3 we will make our argument more accurate.
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2.7.2 Twisted Action

Now we would like to twist the theory and to couple it to the metric. Let us recall,
what is the set of fields of our topological theory. The four scalars X and Y! of the
bulk super Yang-Mills become components of a 1-form ¢, and the other two scalars
are combined as o = % and 7 = % The fermions of the twisted bulk theory
are |14] two scalars n and 77, two one-forms v and 7:5, and a 2-form x. The selfdual and

anti-selfdual parts of the two forms are denoted by + superscripts. These fermions

are related to the fields of the physical theory as follows,
V2 = ([ et 4 (0 — )t 4
_|_2(t—1X+ + % )130.0414,014 + (¢ o t@D)ZUaAUA
—2\/§Z\IJSAA _ (_,,7_ t_lﬁ)GaA’UA ( @Z) + tl/}) aA A

+2t7 T = xiso O‘AUA + W+ tw)laaAuA (2.240)

Here is a summary of Q-transformations of the bulk fields, as derived in |14],

SA =it + i, 5 = —it) + ity
o =0, 0 =ity +1n,
577:tp+[670]7 577:—P—|—t[670'],

0 = Do + t[p, 0], 5$:tDO'—[¢7O'],
oy =H, (2.241)

where on-shell
P=D!¢,, HT"=V't), H =tV () (2.242)
and
V) = (F—¢N¢+tDg)"
V()= (F-¢Nd—t"Dg) . (2.243)

As it was described in [14], the manifestly Q-invariant topological action for the

bulk super Yang-Mills theory contains a topological term and a Q-variation of a
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fermionic expression (see section 3.4 of that paper). In our case the theory is defined
on the two half-spaces with the defect W between them, and therefore the equations

have to be completed with some boundary terms:

—t 1 Ar
I == — A
SYM {Q } PR T -1 g CS( )
o (A (Fae—tenens) s T u A Do
—_— I‘ _—
g%N[ w t -+ til 3 til
1 ‘ 3 )
+ —— | Py T (26D30 +77¢;Djs — ¥ d3D;;) . (2.244)
9ym Jw

Let us give some explanations on this formula. Recall that in our notation, Isyy is
the part of the bulk super Yang-Mills action, which is proportional to 1/g3y,;, — that
is, with the fvy-part omitted. Here and in what follows we ignore expressions on W
bilinear in the bulk fermions, because in the end they have to cancel by supersymme-
try, anyway. As usual, the Chern-Simons form C'S(A) is just a notation for the bulk
topological term. By v we denote the induced metric on W. The third component of
various bulk tensors on the boundary is defined as a contraction of these tensors with
a unit vector field n#, normal to the defect. For example, D;¢3 means a pullback to
W of a one-form n”D,¢,.

The first line in the expression above is the formula that was used in [14]. The
coefficient of the topological term in this expression adds with the usual theta param-
eter fyyv to become the canonical parameter, which we called K. The second line in
this formula is what appeared in the purely bosonic Chern-Simons case [6]. Finally,
the last line was dropped in that paper as a consequence of the boundary conditions,
but in our case it is non-zero.

A useful transformation is to integrate by parts in the last line of (2.244) to
change —@3D'¢; into another ¢'D;¢s, but in doing so we have to remember that the
metric connection in the covariant derivatives is four-dimensional. Because of this,
the integration by parts produces a curvature term

dS.I\/_TI'( Sij¢i¢j + 82¢3¢3) R (2245)

QYM

where s;; is the second fundamental form of the hypersurface W. This curvature term

should be canceled by adding a curvature coupling to the last line in (2.239).
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We will substitute what we have just learned about Isyys into the action (2.239) of
the theory, but first let us make some transformations of the action (2.239). We would
like to complexify the gauge field in the hypermultiplet action Io(A). The seagull
term for (DQ)? comes from X X QQ in the second line of (2.239). To change the terms
linear in the gauge field we need to add and subtract ¢sin?X times the boundary
current (2.236). Using the third of the boundary conditions (2.235), the current can
be rewritten as a combination of gauge field strengths. After these manipulations, a

twisted version of (2.239) will look like

10y

Ielectric - ]SYM +

MCs(A) + Klg(Ap) + QL /d?’x Tr (—; cosVp A ¢ A qb)

2T IIm

1 . . L. .
+—— | &Pz Tr (—isindes[o, 0] — 2¢' D3¢y — 2isind ¢'Fiz + si;0'¢7 — sidzps)

IyMm
2C;Sﬁ/d3xTr(¢/\q§/\q§—q§/\F).

9vym

Now we substitute here the expression (2.244) for the super Yang-Mills action. The
Chern-Simons term in (2.244) changes the coefficient in front of the Chern-Simons
term in (2.246) from 6y /27 to K. Expression in the second line in (2.244) and the
term with ¢ A ¢ A ¢ in the first line of (2.246) combine with the Chern-Simons term,
changing the gauge field in it from A into complexified gauge field A;, as shown in
[6]. We are left with the following action,

Toectric = {Q7 s } + Z’CCS(Ab) + ICIQ<Ab)
1

+—— | &z /4 Tr (—isindes[o, o] + 26 Ds0)
Iym
1 ‘ , A ,
+92— Pz /7 Tr (—2¢'D3¢; + 2¢' D3 — 2isind ¢'Fy3)
YM
2cos v
+ C;)S /Tr(—gb/\FJrqugb/\gb). (2.247)
9ym

We are almost done. All we need to show is that the last three lines here are Q-exact.
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This is indeed so (again, we ignore the fermion bilinears):

/d% VAT (EDs0) = 5 {Q, / P AT (3t s + ) } ,

/ & /7 T (3a[5, o) = = Cis y {Q, / &z /7 Tr (a(rl{b’g - %)) } , (2.248)

/Tr(¢/\(*D¢—z’sin19 * F —cosI(F — oA o))) = {Q,/Tr (¢A(t1x++x))}.

Up to Q-exact terms, our action is the sum of the Chern-Simons term and the
twisted action Ig(Ap). This combination is just the (twisted) action of the N' = 4
Chern-Simons theory. Let us see, how it is related [24] to the Chern-Simons theory
with a supergroup. We define the fields of the twisted theory as

. 1
Q' =T+ Ju'c,

« i a g %o
A4 — —5¢ AB +io" M Ay (2.249)

Substituting this into the action and using the explicit form (2.238) of I5(A), one
finds,
iK CS(Ap) + K Ig(Ap) = iK CS(A) + iK1y, (2.250)

where A = A + Af is the complexified superconnection. The Q-exact gauge fixing
term I, ¢ = {Q, Vg } for the fermionic part of the superalgebra is

Iy = / 4’z \/7 Str (=DyBAs, + DyCDyC + {As, CH A, C}

+ 110 BYC, BY + [0 T, TN, {C,0)] (2.251)

Ve = [ @ yasu (-0, + (0.0HCBY)

2.7.3 Boundary Conditions

Let us rewrite the boundary conditions (2.235) in terms of fields of the twisted theory.
The first line of that formula gives

i1 R __ 1
o== {C,C}, 0= 1+t72{070}’ 03 = t4t1

T {C.C}.  (2.252)
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These three formulas are related to one another by SU(2)y rotations. The boundary

condition for the fermion in (2.235) gives one new relation

2
t+t1

X — X = {Af,, C}, (2.253)

two relations, that can be obtained from (2.252) by Q-transformations

2
t4+t1

{B,C}, —vs+tys= #{B, C, (2.254)

n+ttn=

and one relation which comes from the bulk and boundary Q-variation of the gauge

field A;, which we have already discussed,

2
{47, C} (2.255)

i+t = —
Dit b = -

The third line in (2.235) gives boundary condition for the gauge field,

cos 1" (isind) x F' 4 cos VF) = —Ar A A + % x3 ({C,DC} — {C,DC} + [B, Ay)) .
(2.256)
The twisted version of the last line in (2.235) is a long expression with a contribution
from the curvature coupling. It can be somewhat simplified by subtracting a D;

derivative of the boundary condition (2.252) for ¢3. The result is the following,

1 — — —
cos V" (xD¢p + cos ¥ ¢ N\ ¢) = —Af/\Af+§*3 (D{C,C} +isind ({C,[¢,C]} — {C,[¢,C]}) — [B, As
(2.257)
If we subtract (2.257) and (2.256), we get just a Q-variation of the fermionic boundary

condition (2.253). A new relation results, if we add these two:
Fo+ Af N As = 53{C, DC —isind[p,C]} — {Q,x:} , (2.258)

where we defined
t=2-3 2 —3

+ - 92.259
X X ( )

Xt =

Q? acts as a gauge transformation with parameter —i(1 + ¢*)o in the bulk and with
parameter {C,C}/2 on the defect (2.33), (2.31). This agrees with the boundary

conditions.
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The Q-transformations of the set of boundary ghosts C', C' and B were given in
(2.31). To fix the residual gauge symmetry in perturbation theory, we introduce the
usual ghosts ¢, ¢ and the Lagrange multiplier field b, and the BRST-differential Qys,
associated to this gauge fixing. This differential acts on all fields in the usual fashion.
The topological differential Q acts trivially on b and ¢, but generates the following

transformation, when acting on c:
dc =i(1+t*)o. (2.260)
On the boundary, this corresponds to [24]
1
dc = _5{0’ C}. (2.261)

The full BRST differential in the gauge fixed theory is the sum Q+Qy,.s. This operator
squares to zero, and in the boundary theory it corresponds to the usual gauge fixing
for the full supergroup gauge symmetry.

Finally, let us comment on the fact that we used the boundary conditions to
transform the action (to pass from (2.238) to (2.239), and then to get (2.246)). We
did it to exploit more directly the relation to the N' = 4 Chern-Simons theory, but
that transformation was not really necessary. Indeed, the terms that came from using
the boundary conditions gave essentially the last line in the list (2.248) of Q-exact
expressions. The combination of the boundary conditions that we used was just a
Q-variation of the boundary condition for the x fermion (2.253). (More precisely,
this combination differs by a derivative of (2.252), but this is fine, since the boundary
condition (2.252) is Dirichlet.) So we could equally well keep the expressions that
involved the hypermultiplet fields, instead of transforming them into the bulk fields,

and this would give Q-exact expressions as well.
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2.8 Appendix C: Details On The Magnetic Theory

2.8.1 Action Of The Physical Theory

Here we would like to give some details on the derivation of the action and the
boundary conditions for the D3-D5 system, with equal numbers if the D3-branes in
the two sides of the D5-brane. This action has been constructed in [83|, but our
treatment of the boundary conditions is slightly different.

As in the electric theory, we write the action in the three-dimensional N = 1
formalism. The bulk super Yang-Mills part of the action has been given in (2.231)
(one should set ¥ to 7 in that formula). On the defect there is a fundamental hyper-
multiplet (Z4, ¢4, F4), where the first two fields have already appeared in our story,
and F4 is the auxiliary field. Besides the usual kinetic term, the boundary action

contains a superpotenial that couples the bulk and the boundary fields,

Way, = —Z24V5 28, (2.262)

This superpotential has been chosen in such a way as to make the boundary inter-
actions invariant® under the full SO(3)x x SO(3)y R-symmetry group. Specifically,
the boundary action contains Yukawa couplings —i¢ ;64 Z4 4 iZ 464¢* coming from
the kinetic term, and Z4p5P¢P + (4p4% Zp from the superpotential. They can be

packed into R-symmetric couplings
NG (Zqﬂg‘BcB + ZB\IJ§BZA> , (2.263)

where the NV = 4 fermion V45 was defined in (2.230).

The superpotential contains a coupling of the auxiliary field Fy to the moment

a
m?

map p2,, which was defined in (2.106). This coupling will add a delta-function con-

tribution to the equation for the auxiliary field,

1 1
Fy™ = DyX™™ 4 o e™([Xy, Xe] = [V, Y™ = S p™0(a). (2.264)

53 As we have said, we choose t¥ = 1. For ¥ = —1 the sign of the superpotential would be the

opposite.
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The square of the auxiliary field in the Yang-Mills action would produce a term with a
square of this delta-function. To make this contribution finite, we require the scalars
X% to have a discontinuity across the defect. This discontinuity equation extends via

the supersymmetry to a set of equations for two three-dimensional current multiplets,

Xam‘Jr — 1 am
— 2 )
V2UAB |t (g T, 7 + 7T, ¢ )
1
el =g
31 | — 2 i
1
DYal" = 5 (Zatye T2~ T'TaPoty,) (2.265)
where the current is
51 _ _ o ,
Jimi = 5255 = ~ZATD;Z* + D;Z 4T, Z* — i3 Toin (5 (2.266)

Next we have to substitute expressions for all the auxiliary fields into the Lagrangian,
and make it manifestly R-symmetric. Also, we would like to rearrange the action in
such a way that the squares of the delta-function would not appear. In the Yang-
Mills action (2.231) there is a potentially dangerous term FZ2, but with the gluing
conditions (2.265) it is non-singular and produces no finite contribution at x3 = 0.
Then for this term we can replace the x3-integral over R by an integral over x5 < 0
and z3 > 0. The term F% is also non-singular, so we delete the plane 2 = 0 in
the same way. There is a singular term D3(FxY'), but in can be dropped as a total
derivative. The total 03 derivative of the non-R-symmetric fermion combination in
(2.231) can be dropped in the same way. There is also a delta-function contribution
from the D3 part of the fermionic kinetic term. Collecting all the boundary terms in

the integrals with x5 = 0 deleted, we get a simple action

16
Imagnetic = ]SYM+ 8YM/tr (F/\F)

1 _ - )
P / P (DiZAD’ZA — A — T YA — 2y YZA>
YM
1 2
o / d'z ~tr <eabc(XaXbXC)[>. (2.267)
YM

Here in Isyy the usual super Yang-Mills Lagrangian in the bulk is integrated over the

two half-spaces x3 < 0 and x3 > 0, with the hyperplane x3 = 0 deleted. On the defect

158



the ZYY Z terms from the superpotential combined with the XYY term from the
bulk action into an R-symmetric coupling. The Yukawa terms (WyZ + ZW,y( canceled

with the delta-contribution from the bulk fermionic kinetic energy.

2.8.2 Action Of The Twisted Theory

From the action of supersymmetry (2.229) one finds the following Q-transformations

for the boundary fields of the twisted theory,

67 = —2iC,,

67 = —2iC,,

0Cu =02,

6¢, = —Zo. (2.268)

The two other fermions transform as d¢, = f and §(, = f, where

f = lDZ + ¢3Z,
f=DZ—~Zp;, (2.269)
but with these transformation rules the algebra does not close off-shell. For this reason

we introduce two auxiliary bosonic spinor fields F' and F, for which the equations of

motion should impose F = f and F = f. The topological transformations are then

oG = F,

¢, =F,

6F = —2i0(,,

§F = 2iC,0. (2.270)

The transformation rules for the auxiliary fields were chosen in a way to ensure that
the square of the topological supercharge acts by the same gauge transformation, by
which it acts on the other fields.

Now we would like to prove our claim that the action of the magnetic theory is Q-

exact (2.97), up to the topological term. The first step is to notice that the following
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identity holds, up to terms bilinear in the bulk fermions,
. — . — i = i = 1
/d%ﬁ (DiZaDZZO‘ — i + YA+ Z, (—qsg —{7,0} + ZR) Za)

o foevi(37-7) s (3r-1) 20 507))
—I—/dgxﬁtr (¢psDipt’) —/d%tr (F A ). (2.271)

In the first line R is the scalar curvature of the three-dimensional metric +;;, which
appears in this equation from the Lichnerowicz identity.

We can apply this formula to the action (2.267) of the theory, after adding appro-
priate curvature couplings. We see that there are several unwanted terms, which are
not Q-exact. They come from the last line in the identity (2.271), from the boundary
terms in the Yang-Mills action (2.244), and, finally, there is a cubic XXX term in
(2.267). Using the Dirichlet boundary condition (2.105), we see that most of these
terms cancel. What is left is the tr(GDzo|*) term from the super Yang-Mills action
(2.244), but this term is Q-exact (after adding appropriate fermion bilinear), as we
noted in (2.248). So the only non-trivial term in the action of the magnetic theory is
the topological term. This is, of course, what one would expect, since in the electric
theory we are integrating the fourth descendant of the scalar BRST-closed observable
tro?. In the S-dual picture this should map to the fourth descendant of the analogous
scalar operator, which gives precisely the topological term.

Let us comment on the role of the discontinuity equations (2.265) in the local-
ization computations. In fact, only the first condition in (2.265) should be explicitly
imposed on the solutions of the localization equations. Indeed, one can show with
some algebra that the last two conditions in that formula follow from the first one

automatically, if the localization equations {Q, A} = 0 for every fermion are satisfied.

2.9 Appendix D: Local Observables

In a topological theory of cohomological type (see [58] for an introduction), there

generally are interesting local observables. In fact, typically there are Q-invariant
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zero-form observables (local operators that are inserted at points) and also p-form
observables which must be integrated over p-cycles to achieve Q invariance. They are
derived from the local observables by a “descent” procedure.

We will describe here the local observables in our problem and the descent proce-
dure. In the magnetic description, everything proceeds in a rather standard way, so we
have little to say. The action of electric-magnetic duality on local observables is also
straightforward. The zero-form operators of the electric theory are gauge-invariant
polynomials in o, as we discuss below, and duality maps them to the corresponding
gauge-invariant polynomials in ¢V; the duality mapping of k-form observables is then
determined by applying the descent procedure on both sides of the duality. We focus
here on the peculiarities of the electric description that reflect the fact that there are
two different gauge groups on the two sides of a defect.

First we recall what happens in bulk, away from the defect. The theory has a
complex adjoint-valued scalar o (defined in eqn. (2.25)) that has ghost number 2
(that is, charge 2 under U(1)r). This ensures that {Q,c} = 0, as super Yang-Mills
theory has no field of dimension 3/2 and ghost number 3 (the elementary fermions
have ghost number +1). The gauge-invariant and Q-invariant local operators are
simply the gauge-invariant polynomials in o. For a semisimple Lie group of rank r,
it is a polynomial ring with r generators. To be concrete, we consider gauge group
U(n), in which the generators are Oy = %tr o k =1,...,n. These are the basic
Q-invariant local observables.

In a topological field theory, one would expect that it does not matter at what

point in spacetime the operator Oy is inserted. This follows from the identity
1 ~
do, = {Q, St (apfl(flw + w)) } , (2.272)

where d = ) daz#0, is the exterior derivative, and ¢ and {/: are fermionic one-forms.
(See Appendix 2.7.2 for a list of fields of the bulk theory and their Q-transformations.)
This identity, which says that the derivative of O, is Q-exact, is actually the first in
a hierarchy [7]. If we rename Oy, as O,(f) to emphasize the fact that it is a zero-form

valued operator, then for each k, there is a hierarchy of s-form valued operators O,(:),
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s=0,...,4, obeying
4o = [Q, 0. (2.273)

Construction of this hierarchy is sometimes called the descent procedure. This formula
can be read in two ways. If ¥ is a closed, oriented s-manifold in W, then I %, =
s O,(:) is a Q-invariant observable, since
{g olﬁs)} — / a0 —o. (2.274)
DR .
And Iy 5, only depends, modulo [Q, ...}, on the homology class of 3, since if ¥ is

the boundary of some >4, 1, then

/ Oﬁj):/ 40\ = [Q/ O,(f“)}. (2.275)
s Zst1 Ys+1

For s = 0, ¥, is just a point p , and fp O,(go) is just the evaluation of O = O,io) at p;
the statement that [, O,(f) only depends on the homology class of ¥, means that it
is independent of p, as we explained already above via eqn. (2.272).

In the magnetic description, we simply carry out this procedure as just described.
However, in the electric theory, it is not immediately obvious how much of this stan-
dard picture survives when a four-manifold M is divided into two halves M, and M,
by a defect W. Starting with zero-forms, to begin with we can define separate observ-
ables Oy, = %tl‘g o* and O, = %tr,. ¥ in M, and M, respectively. Oy, is constant
mod {Q, ...} in My, and similarly Oy, is constant mod {Q, ...} in M,. But is there
any relation between these two observables? Such a relation follows from boundary
condition (2.15), which tells us that on the boundary

11

o

(This concise formula, when restricted to the Lie algebras of G, or of G,., expresses
the boundary value of o on M, or on M, in terms of the same boundary field C.)
Hence the invariance of the supertrace implies that Stro* = 0 along W, or in other
words that

troo® = tro" (2.277)
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when restricted to the boundary between M, and M,, where it makes sense to compare
these two operators.

Now let us reconsider the descent procedure in this context. We will try to con-
struct an observable by integration on a closed one-cycle ¥ = 31, U 34, which lies

partly in M, and partly in M,,

o= [ o)+ [ of. (2.278)

> bW X1y
Given that O,(fz = O,(fz along M, N M, = W, and in particular on Cy = X1 N W, our

observable is Q-closed,

o [ oPb= [ (o -o) =0 (2.279)
31 C()

The relative minus sign comes in here, because ¥, and X, end on C with opposite
orientations.

Next we would like to go one step further and define an analogous 2-observable. To
check Q-invariance of such an observable, analogously to the case just considered, we
would need a relation between O,(Clz and ng From the relations dO,(fé = [Q, ng} in
My, dO,(fZ =[Q, O,(:z} in M, it follows that, if + : W < M is the natural embedding,
then

Q.0 o)} =o. (2.280)
In topological theory, a Q-closed unintegrated one-form should be Q-exact, so there

should exist some operator CN),(:), such that
(OF) — Of) = [Q, 6;&”} ;- (2.281)

Then for a closed 2-cycle X5 = Yo, U Xy, that intersects W along some C we can

/ o / OF) + / 0 + / oW, (2.282)
3o Yop Yor Cq

This observable is Q-closed.
Let us see how to define the next descendant. From the definition of O® and

define an observable

from (2.281) we have
Q. (0% -0} = Q0" } | (2.283)
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therefore, there exists 6,(3) such that

#(0F) — 0y =doy + [Q, 653)} . (2.284)
Continuing in the same way, we find 6,({") such that
) =doy" Y + [Q, 6,&”)} , (2.285)
and the Q-invariant (n)-observable can be defined as

[o=[ o[ ope [ o e
n En@ Znr Cn*l

Let us find explicit representatives for all these operators in our case. A formula

for O,(Cl) was already given in the right hand side of (2.272):

Oy, = tre, (" 1by) (2.287)
where we now defined
1 ~
b= S0+ ). (2.288)

This field has useful properties

{Q. Wi} =Dyo,  [Q,Fy) = i(1+*)Dyy, (2.289)

and satisfies the boundary condition

l

Therefore on the defect
2* (o;{g - o}j}) ~ Str ({C, CYHC, As}) = 0. (2.291)

Since this is zero, 6,&1) vanishes, and the 2-observable can be defined without a bound-

ary contribution. A representative for the 2-observable is

1 . .
Oi(fz,r = try, (5 Z o' Py Aoy —

k—2

: i 5 akl]:b> : (2.292)

where F;, is the field strength for the complexified gauge field A,. Here and in what

follows we use the notation ) for a sum where the set of indices ji, j,... runs over

partitions of m.
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Using the boundary condition (2.290) and invariance of the supertrace, one finds

on the boundary,

(0 - o) = 1jt2 Str (0" 1 F) (2.293)

where F' = F, + Af A Ay is the part of the super gauge field strength that lies in the
bosonic subalgebra. The expression under the supertrace is non-zero, but we know

that it should be Q-exact. Indeed, one finds that this is a Q-variation of

~o 1 i \" .
0P = 5 (1 — tQ) Str (C* Dy Ay) . (2.294)

Proceeding further with the descent procedure, we can find the 3-descendant,

l
14t

Oi(jg,r = trg, (5 Z o by Ao Py AP by —

k=3

> o Fyno® xpt> . (2.295)
k—2

On the boundary after some computation we find

. k
AB3) 1 ¢ i1 j2
(it (geaene)

2k—4

The bulk part of the four-observable has a representative

Oy = tre, (1 D Y A R T e D DA T TR
k—4 k—3
1 . )
- — NF, N2 F, . (2.297)
2)\2 ZE:(T b b)
2(1+t?) —

The four-observable, which is formed from (2.296) and (2.297), has ghost number zero
for k = 2. In this case, of course, it reduces just to our super Chern-Simons action.
One might wonder how unique this procedure is. Clearly, for the n'* descendant
of Ofgo), we can try to modify it by adding a suitable (n — 1)-observable with ghost
number (2k — n), integrated over C,,_; = X, N W. Since C,_; is a boundary in
the bulk (it is the boundary of ¥, My, for example), such a modification would be
non-trivial only if the observable that we add cannot be extended into the bulk.
One possible example is adding a Wilson loop to 6&1) in the 2-descendant of the
operator tro. What other boundary observables might one consider? If we denote

the bosonic subgroup of the supergroup by SGz = G, x G, the Q-invariant scalar
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observables on the defect correspond to the SGg-invariant polynomials of the ghost
field C'. However, one can check that for the basic classical Lie superalgebras all such
polynomials come® from the invariant polynomials in o ~ {C,C}, and therefore the

corresponding observables are bulk observables.

4Gee, e.g., a list of these polynomials in [84].
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Chapter 3

Analytic Torsion, 3d Mirror
Symmetry and Supergroup

Chern-Simons Theories

3.1 Introduction

In this chapter, we study the topological quantum field theory that computes the
Reidemeister-Milnor-Turaev torsion [88], [89] in three dimensions. This is a Gaussian
theory of a number of bosonic and fermionic fields in a background flat complex GL(1)
gauge field. It can be obtained by topological twisting from a free hypermultiplet with
N = 4 supersymmetry. This theory is very simple and can be given different names —
the one-loop Chern-Simons path-integral [90], or the Rozansky-Witten model [91]
with target space C?, or the U(1]|1) supergroup Chern-Simons theory [61] at level
equal to one, but we prefer to call it ps((1]|1) supergroup Chern-Simons theory.

Let us give a brief summary of the chapter. In section 3.2, we describe the def-
inition of the theory. We explain that its functional integral computes a ratio of
determinants, which depends holomorphically on a background flat GL(1) bundle
L. We also define various line operators, the most important of which lead to the

Alexander polynomial for knots and links.
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In section 3.3, we use mirror symmetry in three dimensions to represent the
psl(1]1) theory as the endpoint of an RG flow, that starts from the twisted version
of the N' = 4 QED with one fundamental flavor. The computation of the partition
function of the QED can be localized on the set of solutions to the three-dimensional
version of the Seiberg-Witten equations [11|. This provides a physicist’s derivation
of the relation between the Reidemeister-Turaev torsion and the Seiberg-Witten in-
variants, which is known as the Meng-Taubes theorem [20], [92]. We consider, in
particular, the subtle case of three-manifolds with first Betti number b; < 1 and
show, how the quantum field theory manages to reproduce the details of the Meng-
Taubes theorem in this case. Previously, the same RG flow has been used in [93]
to derive a special case of the Meng-Taubes theorem for the trivial background bun-
dle, when the torsion degenerates to the Casson-Walker invariant. (We elaborate a
little more on this in the end of section 3.3.) In comparison to [93], the new ingre-
dient in our thesis is the coupling of the QED to the background flat bundle £, so
let us explain, how this works. In flat space and before twisting, the QED has a
triplet of FI terms ¢*, which transform as a vector under the SU(2) x-subgroup of the
SU(2)x x SU(2)y R-symmetry. (In our notations, the scalars of the vector multiplet
of the QED transform in the vector representation of SU(2)y.) These FI terms can
be thought of as a vev of the scalars of a background twisted vector multiplet. The
vector field B; of the same multiplet can be coupled in a supersymmetric way to the
current of the topological U(1)-symmetry of the QED. Upon twisting the theory by
SU(2)x, the scalar and the vector fields of the twisted vector multiplet combine into
a complex gauge field B + i¢. Invariance under the topological supercharge Q re-
quires this background field to be flat. One can easily see that the partition function
depends on it holomorphically. In the psl(1]|1) theory, which emerges in the IR, the
field B + i¢ gives rise to the complex flat connection that is used in the definition of
the Reidemeister-Turaev torsion.

In section 3.4, we consider the U(1|1) supergroup Chern-Simons theory. It is
obtained from the ps((1|1) theory by coupling it to U(1); x U(1)_, Chern-Simons

gauge fields. It has been argued previously [59], [61] that this theory computes the
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torsion that we study. We show that, in fact, the U(1]|1) theory for the compact form
of the gauge group is a Zy-orbifold of the ps((1]|1) theory, and thus, indeed, computes
essentially the same invariant. To be more precise, there exist different versions of
the U(1]1) theory, which differ by the global form of the gauge group, but they all
are related to the ps((1]|1) theory. Mirror symmetry maps the U(1|1) Chern-Simons
theory at level k to an orbifold of the same twisted N’ = 4 QED, or equivalently, to
an N = 4 QED with one electron of charge k.

In section 3.5, we present the Hamiltonian quantization of the theory. This sec-
tion does not depend on the results of section 3.3, and can be read separately. By
considering braiding transformations of the states on a punctured sphere, we recover
the skein relations for the multivariable Alexander polynomial. We consider in some
detail the Hilbert space of the psl(1|1) theory on a torus, and the correspondence
between the states and the loop operators. We find the OPEs of line operators and
the action of the modular group. In fact, as long as the background bundle £ has
non-trivial holonomies along the cycles of the Riemann surface, on which the theory is
quantized, the Hilbert space is one-dimensional, and our analysis is very straightfor-
ward. We also discuss the canonical quantization of the U(1|1) Chern-Simons theory.
We consider modular transformations of the states on the torus, and find results very
similar to those obtained from the GL(1|1) WZW model [60]. To our knowledge,
this is the first example of the canonical quantization of a supergroup Chern-Simons
theory, that does not assume an a prior: relation to the WZW model.

In section 3.6, we discuss possible generalizations to other supergroup Chern-
Simons theories. We make a summary of properties of such theories. (Some of these
were briefly discussed in Chapter 2.) We also present some brane constructions, and
consider possible dualities.

Besides the papers that we have already mentioned, previous work on the topo-
logical field theory interpretation of the Meng-Taubes theorem includes [94], where
the subject was approached from the four-dimensional Donaldson theory, and [95],
where a mathematically rigorous proof of the Meng-Taubes theorem using TQFT

was presented. All the mathematical facts about the Reidemeister-Turaev torsion,
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the Seiberg-Witten invariants and the Meng-Taubes theory, that we touch upon in
this chapter, can be found in a comprehensive review |88|.

Finally, let us mention that there exists yet another approach [96| to the Reidemeister-
Turaev torsion, which presumably can be given a physical interpretation, — in this
case, in terms of the first-quantized theory of Seiberg-Witten monopoles. Unfortu-

nately, this will not be considered in the present thesis.

3.2 Electric Theory

In this section, we describe the theory, which computes an analytic analog of the
Reidemeister-Turaev torsion. Up to some details, it is simply the theory of the de-
generate quadratic functional [3]. One important difference, however, is that we
introduce a coupling to a complex background flat bundle, and consider the torsion as
a holomorphic function of it. Our definition is similar but not quite identical to the
definition of the analytic torsion, known in the mathematical literature [97]. The dis-
cussion will be phrased in the language of supergroup Chern-Simons theory. Though
this might seem like an unnecessary over-complication, it will make our formulas a
little more compact, and will also help, when we discuss generalizations in later sec-
tions. Throughout the chapter, the theory of this section will be called “electric”,

while its mirror, considered in section 3.3, will be called “magnetic”.

3.2.1 The Simplest Supergroup Chern-Simons Theory

In this section we introduce the psl(1|1) Chern-Simons theory. We work on a closed
oriented three-manifold WW.

The superalgebra g ~ psl(1]1) is simply the supercommutative Grassmann algebra
CY2, The Chern-Simons gauge field will be a C%-valued fermionic one-form A = A f;,
where ﬁ and f_ are the superalgebra generators. To make the theory interesting,
we want to couple it to a background flat bundle. It could possibly be a GL(2)-
bundle, where GL(2) acts on g in the obvious way. However, the definition of the

Chern-Simons action requires a choice of an invariant bilinear form. This reduces the
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symmetry to SL(2), so we couple the theory to a flat SL(2)-bundle B. The Chern-

Simons action can be written as’'

{
Ips[(1|1) = E /VV StI'AdBA, (31)

where the supertrace denotes an invariant two-form, Str(ab) = €;;a’b”’, and dj is the
covariant differential, acting on the forms valued in B. One could eliminate the flat
gauge field from dg by a suitable choice of trivialization of B, but we prefer not to do
SO.

The supergroup gauge transformations act by A — A — dga. To fix the gauge,
we introduce a g-valued ghost field C. Since our gauge symmetry is fermionic, this
field has to be bosonic: its two components are complex scalars C* and C~. We also
introduce a bosonic g-valued antighost field C' and a g-valued fermionic Lagrange

multiplier A\. The BRST generator Q is defined to act as
§A=—dgC, 6C =0, A=0, 6C=\. (3.2)

Next we have to choose an appropriate gauge-fixing action. It will contain in partic-
ular the kinetic term for the bosonic fields C' and C, and we want to make sure that
this term is positive-definite. To that end, we pick a hermitian structure on our flat
bundle and restrict to unitary gauges. We impose a reality condition o' = —elJ(CT,
The complex flat connection in B can be decomposed as B + i¢, where B is a her-
mitian connection and ¢ is a section of the adjoint bundle. We introduce a covariant
derivative D; = 0; 4+ iB;, and also introduce notations D; = D; — ¢, for the covariant
derivative in the flat bundle B and D; = D; + ¢; for the covariant derivative with the
conjugate gauge field. We pick a metric v on W and take the gauge-fixing action to
be

Ig.f‘ = {Q,/dsl’ﬁ’yw Str (516./4])} = — /dsl’ﬁ”}/w Str (5162)30 — Alﬁjk) .
(3.3)

!Throughout the chapter we use Euclidean conventions, in which the functional under the path-

integral is exp(—1I).
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The bosonic part of this action is manifestly positive-definite. The gauge-fixing con-
dition is D;A* = 0. The action has a ghost number symmetry U(1)r, under which
the ghost and the antighost fields have charges +1. If the background field satisfies
[5i,Di] = 0, or equivalently D'¢; = 0, this symmetry is enhanced to SU(2), which
rotates C' and C as a doublet and which we will call SU(2)y. If we turn off the back-
ground gauge field completely, we also recover the “flavor” SU(2)g symmetry, which
is the unitary subgroup of the SL(2) automorphism group of the superalgebra. The
groups SU(2)y and SU(2)g commute. Together they generate an action of SO(4) on
the real four-dimensional space parameterized by C and C.

In this chapter, we will not consider the general SL(2) analytic torsion?. From now
on, we restrict our attention to the case that the background flat bundle is abelian,
B=L&L where* £ € Hom(H,;(W),C*). By abuse of notation, we will denote
the connection in £ by the same letters B + i¢, where now B is understood to be a
connection in a flat unitary line bundle, and ¢ is a closed one-form, whose cohomology
class determines the absolute values of the holonomies in L.

The abelian background field preserves a U(1)g-subgroup of the flavor symmetry
group SU(2)g. We will furthermore assume that ¢ is chosen to be the harmonic

representative in its cohomology class, so that the SU(2)y-symmetry is present.

3.2.2 Relation To A Free Hypermultiplet

Our theory can be obtained by making a topological twist of the theory of a free
N = 4 hypermultiplet. This is a trivial special case of the general relation between
supergroup Chern-Simons and A" = 4 Chern-Simons-matter theories, found in [24].

For completeness, we provide some details.

2The reason is that the Meng-Taubes theorem, which will be the subject of section 3.3, does not
seem to generalize to SL(2) torsion, since only the abelian part of the symmetry is visible in the
UV. However, what could be generalized to the SL(2) torsion (and, in fact, to Sp(2n, C) torsion) is
the Hamiltonian quantization that we consider in section 3.5. This generalization will be discussed

elsewhere.
3Throughout the chapter, the coefficients in homology and cohomology are assumed to be Z,

unless explicitly specified otherwise.
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The R-symmetry group of N/ = 4 supersymmetry in three dimensions is SU(2) x x
SU(2)y. The supercharges transform in the (2,2, 2)-representation of SU(2)perentz ¥
SU(2)x x SU(2)y. A supersymmetric theory can be twisted by taking the Lorentz
spin-connection to act by elements of the diagonal subgroup of SU(2)1orentz X SU(2) x-
This leaves an SU(2)y doublet of invariant supercharges. We pick one of them, to be
called Q, and use it to define a cohomological topological theory. The ghost number
symmetry U(1)g is the subgroup of SU(2)y, for which Q is an eigenvector.

The scalars of the free hyper give rise to the ghost fields C' and C. They parame-
terize a copy of the quaternionic line H, which has a natural action of two commuting
SU(2) groups. One of them is identified with the R-symmetry group SU(2)y, and the
other is the flavor symmetry SU(2)q. The hypermultiplet fermions, which transform
in the (2,2, 1) representation of the Lorentz and R-symmetry groups, upon twisting
give rise to a vector field and a scalar, which we identify with the fermionic gauge
field A; and the Lagrange multiplier field A.

Finally, the imaginary part of the flat connection ¢; originates from the SU(2) -
triplet of hypermultiplet masses. While they are constant parameters in the untwisted
theory, they are promoted to a closed one-form in the topological theory, still pre-
serving the Q-invariance. Different terms in the action (3.1), (3.3) can be easily seen
to originate from the kinetic and the mass terms for the hypermultiplet scalars and

fermions.

3.2.3 A Closer Look At The Analytic Torsion

Here we would like to take a closer look at the invariant that our theory computes.
We discuss its properties and relation to other known definitions of the torsion. For

simplicity, the manifold W is assumed to be closed, unless indicated otherwise.

3.2.3.1 Definition And Properties

The partition function of the theory can be written as a ratio of determinants,

_ det L_
B det2A0 '

7(L) (3.4)
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Here the operator L_ = (dg — ¢) + (dg + ¢)* is acting in Q(W) & Q%.(W), where
QF.(W) is the space of p-forms valued in £. The twisted Laplacian Ag = —D; D"+ ¢;¢"
is acting in Q%(W). Note that the operator Ag is hermitian, while L_ is hermitian
only when ¢ = 0.

The ratio 7(£), by construction, is a holomorphic function of the flat bundle, even
though the determinants in (3.4) are not. We can understand the analytic properties
of 7(L) rather explicitly. The absolute value of the torsion can be written in the usual

Ray-Singer form as
det Ap)1/?
()] = (It
(det AU)3/2

where A is the twisted Laplacian, acting on one-forms. The numerator in this formula

(3.5)

vanishes, whenever the twisted cohomology H'(W, £) is non-empty. This subspace,
possibly with the exception of the trivial flat bundle, is the locus of zeros of 7(£). The
denominator vanishes, when the twisted cohomology H°(W, L) is non-empty, which
is precisely when the flat bundle £ is trivial. At this point the function 7(£) can
potentially have a singularity. In fact, if the first Betti number b; of W is greater
than one, the singularity would be of codimension at least two, which is not possible
for a holomorphic function. For b; = 1, let the holonomies of £ around the torsion®
one-cycles be trivial, and let t be the holonomy around the non-torsion one-cycle.
At t = 1, the operators Ay and A; have one zero mode each. At small t — 1, these
eigenfunctions become quasi-zero modes with eigenvalues of order (t — 1)?, according
to the non-degenerate perturbation theory. Plugging this into (3.5), we see that the
ratio 7(£) near the trivial flat bundle is proportional to 1/(t — 1)?, that is, has a
second-order pole. Finally, for b; = 0 the torsion is a function on the discrete set of
flat bundles. For the trivial flat bundle and b; = 0, it is natural to set 7 to be equal
to infinity®.

4A cycle is called “torsion” if it lies in the torsion part of Hy(W), that is, if some multiple of
it is trivial. This use of the word “torsion” is totally unrelated to “torsion” as an invariant of the

manifold. Hopefully, this will not cause confusion.
5One could say that for the trivial bundle the path-integral is undefined, since it has both bosonic

and fermionic zero modes. But it is natural to set it equal to infinity for by = 0, because, thinking

in terms of gauge-fixing, the path-integral has a factor of inverse volume of the gauge supergroup,
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Another important property of the torsion is the relation
(L) =7(L"), (3.6)

which follows from the charge conjugation symmetry C that maps the superalgebra

generators as ]/”\i — j:]/”;, and the line bundle £ to its dual £

3.2.3.2 Details Of The Definition

We would like to make a more precise statement about what we mean by the formal
definition (3.4). Let us assume for now that the flat bundle £ is unitary. If we
eliminate the ambiguities in the definition of 7(£) for such bundles, the definition for
complex flat bundles will also be unambiguous, by analyticity.

The absolute value (3.5) of 7(£) is (the inverse of) the Ray-Singer torsion, which
is a well-defined and metric-independent object. However, as is well-known in the
context of Chern-Simons theory [4], the definition of the phase of 7(£) requires more
care. With our assumption that £ is unitary, the operator L_ is hermitian and has
real eigenvalues. Since the determinant of L_ comes from a fermionic path-integral, it
is natural to choose a regularization, in which it is real. The only possible ambiguity
then is in its sign. Note that this is mainly interesting in the case when there is
torsion in Hy(W), so that the space of flat bundles is not connected, and signs can
potentially be changed for different connected components.

Let us suggest a way to define the sign of L_. What we are about to say might not
seem particularly natural at first sight, but, as we show later, matches well with known
definitions of the analytic and combinatorial torsion. Let us pick a spin structure s
on the three-manifold W, and take some oriented spin four-manifold V', of which W
with a given spin structure is a boundary. The line bundle £ can be extended onto
V', though the extension might not be flat. On V' we consider the Donaldson operator
Ly QL(V) = Q%(V) @ Q% (V) that arises from the linearization of the self-duality
equations, twisted by the line bundle £. Here Q%™ is the bundle of anti-selfdual

which is infinity, since this volume is zero. Taking Z(S3) = oo also makes the factorization formulas

of the ordinary Chern-Simons valid in the supergroup case.
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two-forms. We define the sign of the determinant of L_, and therefore of the torsion

7(L), using the index of the elliptic operator Ly,
sign 7(L) = (—1)mdEa)ndlLawi) (3.7)

where Ly i, is the Donaldson operator coupled to the trivial line bundle. The mo-
tivation behind this definition is that, if we were to compute the change of sign of
det L_ under a continuous change of £, we could naturally do it by using the formula
(3.7) with the four-manifold taken to be the cylinder W x I, since the index of L, on
such a cylinder computes the spectral flow of L_.

We started with a choice of a spin structure, but so far it did not explicitly enter the
discussion. Its role is the following. For two different choices of the four-manifold, the
change in the sign of det L._ is governed by the index of L, on a closed four-manifold

V', which, according to the index theorem, is

ind(Ly) — ind(Lapiv) = / /01(5)2. (3.8)
However, since the spin structure on W can be extended to V', the four-manifold V"’
is spin, and therefore its intersection form is even, and so is the right hand side of
(3.8). We conclude that the sign of 7(£) depends on a spin structure on W, but not
on the choice of the four-manifold. (This is equivalent to the well-known fact 98|
that a choice of a spin-structure allows to define a half-integral Chern-Simons term
for an abelian gauge field.)

It is not hard to calculate the dependence on the spin structure explicitly. Let s;
and sy be two spin structures on W, which differ by some z € H'(W,Z;). Let V}
and V5 be four-manifolds with boundary W, onto which s; and s, extend. Now the
closed four-manifold V', glued from V; and V5 along their boundary W, need not be
spin, and its Stiefel-Whitney class wo € H?(V’,Z,) can be non-zero. The intersection
form is not even, but its odd part is governed by the Wu’s formula, which tells us
that ¢ = ¢, — ws, where ¢; is the mod 2 reduction of ¢;(£). (This is true for any

H?(V',Zy) class, of course.) The Stiefel-Whitney class of V’ is determined by x. For

a given good covering of V', the two spin structures s; and sy define a lift of the
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transition functions of the tangent bundle of V' from SO(4) to Spin(4), and this lift
is consistent everywhere, except for a codimension-two chain, lying in W. This chain
defines the Stiefel-Whitney class of V', but it is also the Poincaré dual of the class x

in W. These arguments allow us to write

//Cl(E)Q://Cl(ﬁ)vwgz/PD(wz)cl(ﬁ):/F)D(x)cl(ﬁ):/wcl(ﬁ)vx mod 2,
(3.9)

where PD stands for Poincaré dual. We conclude that under a change of the spin

structure by x, the sign of 7(L£) changes by the factor
(—1)westr=>, (3.10)

It will be useful to rearrange this formula a little. For that we need to recall a
couple of topological facts. The topology of a flat line bundle is completely defined
by its holonomies around the torsion one-cycles. This is formalized by the following

exact sequence,
HY (W) — HYW,R) % HYW,U(1)) & tor HX(W) — 0, (3.11)

which is associated to the short exact sequence of coefficients 0 - Z — R — U(1) —
0. By Pontryagin duality, H'(WW,U(1)) ~ Hom(H, (W), U(1)) is the abelian group of
(unitary) flat line bundles on W. The morphism « gives a flat bundle with trivial
holonomy around the torsion cycles and given holonomy around the non-torsion cy-
cles®. The morphism 3 maps a given flat bundle to its first Chern class, which depends
only on the holonomies around the torsion cycles, by exactness of the sequence. Pick
a pair of classes y; and yo from tor H?(W). Let £; be some flat bundle with Chern
class y;. Its holonomies around the torsion cycles are completely defined by y;. We
can take a holonomy of £, around the one-cycle, Poincaré-dual to y;. The logarithm
of this number gives a pairing tor H*(W) x tor H*(W) — Q/Z, which is known as the
linking form. An important fact is that it is bilinear and symmetric. (Actually, this

pairing is just the U(1) x U(1) Chern-Simons term for flat bundles.)

5What one means by non-torsion cycles is not canonically defined, but this does not matter, when

the holonomies around the torsion cycles are trivial.
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Returning to the formula (3.10), we note that z € H'(W, Z,) defines a Z,-bundle,
and (3.10) is the holonomy of this bundle around the one-cycle, Poincaré dual to
c1(L). Since the linking form is symmetric, this holonomy is equal to the holonomy
of £ around the one-cycle, Poincaré dual to ¢;(z), where, to construct ¢;(z), we think
of the Zy-bundle defined by x as of a U(1)-bundle. This holonomy will be denoted by
L(c1(x)). We conclude that it defines the change of the sign of 7(£), when the spin
structure on W is changed by x. To indicate the dependence on the spin structure

explicitly, we will sometimes write the torsion as 74(L£), so that
Tes(L) = L(c1(x)) 5(L) . (3.12)

It is noteworthy that if the line bundle £ has trivial holonomies around 2-torsion
cycles, the definition of 7(£) is independent of any choices at all.

In fact, even for a generic flat bundle, 7,(£) depends on something less than a
spin structure. There is a natural map from the set of spin structures to the set of
spin-C structures with trivial determinant, which is given by tensoring with a trivial
line bundle,. This map is not an isomorphism, because in general two different spin
structures can map to the same spin-C structure. Since the change of the sign of
7.(L£) under a change of s by an element x of H'(W,Z;) depends only on the first
Chern class of the line bundle obtained from x, the sign of 7,(L) really depends only
on a spin-C structure with trivial determinant, and not on the spin structure itself.

One could consider some trivial generalizations of our definition of the torsion.
For example, 7, can be naturally defined for an arbitrary spin-C structure s, not
necessarily with trivial determinant. Let sy be some arbitrary spin-C structure with
trivial determinant, s be an arbitrary spin-C structure, and let y € H*(W) be such
that y - s = so. We can set 75(L) = L(y)75,(L). Clearly, (3.12) implies that 7,
depends only on s, and not on the choice of so. In quantum field theory terms, this
modification amounts to adding to the action a local topologically-invariant functional
of the background gauge field — the Wilson loop of £ around the cycle, Poincaré-dual
to y € H?*(W). Another possible modification of the definition would be to add a

Chern-Simons term for the background field B. Note that, if we choose the coefficient
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of this term to be a half-integer, this would eliminate the dependence of 7, on the
spin structure. In what follows, we will mostly restrict to our most basic definition

of 74, unless indicated otherwise.

3.2.3.3 Comparison To Known Definitions

Let us comment on the relation of our torsion to some known definitions from the
mathematical literature. A rigorous definition of the complex analytic torsion was
given in [97]. The authors consider essentially’ the same ratio of determinants (3.4)
and use the (-function regularization to define it as a holomorphic function of the flat
bundle £. An important difference, however, is that for a unitary flat bundle their
torsion is not real, but has a phase, proportional to the eta-invariant of L_. In the
language of functional integral, such definition is perhaps more natural [4|, when the
determinant of L_ comes from a bosonic, rather than a fermionic functional integral.
The relation to our definition is given by the APS index theorem: to transform
the eta-invariant into the index, one needs to subtract what might be called a half-
integral Chern-Simons term of the flat connection in the line bundle £. This is why
the dependence on a spin structure appeares in our story, but not in [97].

In fact, there is a combinatorial definition of torsion, which, as we conjecture, is
precisely equal to our 74(£). This is the Turaev’s refinement of Reidemeister torsion®.

We briefly summarize some facts about it. For a detailed review, as well as references,

the reader can consult [88].

"There are some differences. The discussion in [97] is more general: the authors consider a man-
ifold of arbitrary odd dimension, and not necessarily one-dimensional flat vector bundles. Another
difference from our approach, if phrased in path-integral language, is that in [97] the gauge-fixing
term in the analog of (3.3) is defined using the derivative D, rather than its conjugate. This elim-
inates the need to pick a hermitian structure on the flat bundle, but makes the functional integral
representation of the determinant more formal. Finally, the ratio of determinants in [97] is actually

the inverse of ours.
8Note that sometimes Reidemeister torsion is defined to be the inverse of what we consider here.

With the definition that we use, the absolute value of the combinatorial torsion is equal to the

inverse of Ray-Singer torsion, defined in the usual way.
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Let VW' be a compact three-manifold, which is closed or is a complement of a link
neighborhood in a closed three-manifold, so that it has a boundary consisting of a
number of tori. (In our language, non-empty boundary will correspond to adding
line operators, to which we turn in the next section.) In either case, the Euler
characteristic of W' is zero. Reidemeister torsion of W’ is defined as the determinant
of a particular acyclic complex, twisted by a vector representation of the fundamental
group of the manifold. The determinant of this combinatorially defined complex can
be viewed as a discretisation of the functional integral, which computes the analytic
torsion. We will assume that the representation of the fundamental group is given
by the flat line bundle £. Reidemeister torsion is defined only up to a sign and up
to multiplication by a holonomy of £ around an arbitrary cycle in W’. This happens
because the determinant depends on the basis in the complex, of which there is
no canonical choice. Turaev has shown [99] that this ambiguity can be eliminated,
once one makes a choice of what he called an Euler structure?. In analytical terms,
it is a choice of a nowhere vanishing vector field, up to homotopy and up to an
arbitrary modification inside a three-ball. Such vector fields always exist on W', since
X(W’) = 0. In three dimensions, it is not hard to see that Euler structures are in a
canonical one-to-one correspondence with spin-C structures. For a spin-C structure
s, let us denote the Reidemeister-Turaev combinatorial torsion by 7RT(£). Under a

change of the spin-C structure by an element y € H*(W’), the torsion changes as

L) = L(y) TR (L), (3.13)

y-s s

where, as usual in our notations, £(y) is the holonomy of £ around the cycle Poincaré

dual to y. The combinatorial torsion also has a charge conjugation symmetry C

TR(LYY = (1) RT(L) = (=1) £ (er (det 8)) 7R (L) (3.14)

s

where s is the conjugate of the spin-C structure s, and ¢ is the number of connected

9More precisely, the choice of an Euler structure eliminates the freedom to multiply the torsion
by a holonomy of £, while the overall sign can be fixed by choosing an orientation in the homology
Ho(W'). At least for a closed three-manifold, there exists a canonical homology orientation, defined

by the Poincaré duality, and we assume that our theory automatically picks this orientation.

180



components of the boundary of W’. The second equality here follows from (3.13).

If the three-manifold W’ is closed and the spin-C structure s has trivial determi-
nant, we claim that 78T coincides with our analytic torsion 7,. (Modulo signs, that is,
ignoring the dependence on the spin structure, this statement would follow from the
results of [97] and [100].) For a spin-C structure with trivial determinant, the proper-
ties (3.13) and (3.14) reduce to our formulas (3.12) and (3.6), respectively. When the
three-manifold W' is not closed but is a complement of a link, the relation between

78T and our 7, should still hold, with an appropriate definition of the analytic torsion

in presence of line operators. This will be discussed in the next section.

An important special case is when the flat bundle £ has trivial holonomies around
the torsion one-cycles. Then 78T(L£) is a holomorphic function of by (W’) variables
ti,...,ty,. Let us also ignore the dependence on s, so that we consider 7 modulo
sign and modulo multiplication by powers of t,. This variant of the combinatorial
torsion is known as the Milnor torsion. A theorem due to Milnor [101] and Turaev
[102] describes its relation to the Alexander polynomial A of W', which is a function
o b (W) > 1, then 7 = A. If by (W’) = 1, then

7 = tA/(t — 1)% if W' is a closed three-manifold, and 7 = A/(t — 1), if W' is a

of the same variables tq,...t;

complement of a knot in a closed three-manifold. For a closed W/, these statements

are in agreement with the analytical properties of our 7, described in section 3.2.3.1.

3.2.4 Line Operators

We would like to define some line operators in our theory, in order to study knot
invariants. First thing that comes to mind is to use Wilson lines. For these to be
invariant under the transformations (3.2), they should be labeled by representations
of pI(1|1). This superalgebra contains psl(1|1) as well as one bosonic generator, which
acts on the fermionic generators with charges +1. The Wilson lines should be defined
with the pl(1|1) connection A+ B+i¢. In fact, the only irreducible representations of
pl(1|1) are one-dimensional representations, to be denoted (m), in which the bosonic
generator acts with some charge m, and the fermionic generators act trivially. Insert-

ing a Wilson loop in representation (m) along a knot K is equivalent to multiplying
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n n

f+‘
In—1 n—1

(O7n)+ (O7n)—

Figure 3.1: Examples of reducible indecomposable representations of pl(1|1). The dots
are the basis vectors, and the arrows show the action of the fermionic generators fi. The
numbers n,n—1, ... are the eigenvalues of the bosonic generator of pl(1|1), that is, the U(1)g-

charges. The representations (0,n)_ and (0,n)y are known as the (anti-)Kac modules.

the path-integral by the m-th power of the holonomy of the background bundle £
around the cycle K. Though this operator is of a rather trivial sort, it will be conve-
nient to consider it as a line operator. It will be denoted by L,,, m € Z. According to
the remarks at the end of section 3.2.3.2, inserting operators L,, around various cycles
is equivalent to changing the spin-C structure, with which the torsion is defined.

All the other representations of pl(1]|1) are reducible, but, in general, can be inde-
composable!’. Some examples are shown on fig. 3.1. (There are more such represen-
tations — they are listed e.g. in [103], — but we will not need them.) In this chapter,
we are mostly interested in closed loop operators. Naively, due to the presence of the
supertrace, a closed Wilson loop labeled by a reducible indecomposable representa-
tion splits into a sum of Wilson loops for the invariant subspaces and quotients by
them. If this were true, the indecomposable representations would not need to be
considered separately. We will later find that, due to regularization issues, at least
for some indecomposable representations the Wilson loops do not actually reduce to
sums of Wilson loops L,,. This will be discussed in section 3.5, but till then we will
not consider indecomposable representations.

In the case that the holonomy of the background field along some loop K is trivial,

one can construct a line operator by inserting an integral fK A* into the path-integral.

10That is, they have invariant subspaces, but need not split into direct sums.
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Note that these operators transform as a doublet under the SU(2)g flavor symmetry.
These will play the role of creation/annihilation operators in the Hamiltonian picture
in section 3.5, but, again, will not be important till there.

The most useful line operator can be obtained by cutting a knot (or a link) K out
of W, and requiring the background gauge field to have a singularity near K with
some prescribed holonomy t around the meridian of the knot complement!!. Tt is this
type of line operators that will give rise to the Alexander knot polynomial.

One has to be careful in defining the determinants (3.4) in presence of such a
singularity. In this chapter, our understanding of the determinants in this case will
be much less complete than in the case of closed three-manifolds. We will not attempt
to give a rigorous definition, but will simply state some results that are consistent
with other approaches to line operators, which are discussed later in the thesis, and
with known properties of the Alexander polynomial. Let t be the holonomy around
the meridian of the knot K, and t; be the holonomy around the longitude. While
t is a part of the definition of the line operator along K, t; depends on the flat
connection and, in particular, on other line operators, linked with K. The problem
with the determinants (3.4) in presence of line operators is that in general they can
be anomalous, that is, they can change sign under large gauge transformations of
the background gauge field. Equivalently, one will in general encounter half-integral
powers of t and t| in the expectation values. One possible resolution is to choose a
square root of the holonomies, or, equivalently, to take £ ~ £, and to consider the
knot polynomial as a function of the holonomies of £’. One expects this to produce
a version of the Alexander polynomial known as the Conway function. (See section 4
of [102] for a review.) Alternative approach, which we will assume in most of the
chapter, is to add along the longitude of the knot a Wilson line for the background
gauge field. So, we will in general consider combined line operators, labeled by two

parameters t and m, with m being the charge for the Wilson line for the background

11 The meridian is the cycle that can be represented by a small circle, linking around the knot.
A longitude is a cycle that goes parallel to the knot. The longitude, unlike the meridian, is not

canonically defined. Its choice is equivalent to choosing a framing of the knot.
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field B + i¢. It will be clear from the discussion of the U(1]|1) theory in section 3.4
that for gauge invariance, the charge m should be taken valued in 1/2+4Z. It is more
convenient to work with an integer parameter n = m + 1/2, and we will accordingly
label our line operators as Lt ,. Note that, since the longitude cycle is not canonically
defined, the definition of these line operators depends on the knot framing. Under a
unit change of framing, the Wilson line for the background gauge field will produce
a factor of t"~'/2. With suitable choices of framing, half-integral powers of t will not
appear in the expectation values.

The operators Lg , will sometimes be called typical, while L,, and Wilson lines
for the indecomposable representations will be called atypical. This terminology
originates from the classification of superalgebra representations, as we briefly recall

in section 3.4.1.

3.3 Magnetic Theory And The Meng-Taubes Theo-
rem

As was explained in section 3.2.2, our Chern-Simons theory can be obtained from
the theory of a free N' = 4 hypermultiplet by twisting. An alternative description of
the same topological theory can be obtained, if we recall that the free hypermultiplet
describes the infrared limit of the A/ = 4 QED with one electron. This is the basic
example of mirror symmetry [104] in three-dimensional abelian theories, which was
understood in [105] as a functional Fourier transform. By metric independence of
the topological observables, they can be equally well computed in the UV or in the
IR description. We now consider the topologically-twisted version of the UV gauge
theory, which we will call the “magnetic” description.

(On a compact manifold, the claim that the RG flow from the UV theory leads
to a free hypermultiplet depends on the presence of the non-trivial background flat
bundle, which forces the theory to sit near its conformally-invariant vacuum. When

the background gauge field is turned off, e.g. as is necessarily the case for a manifold
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with trivial H;, the situation is more subtle. This and some other details will be

discussed in part 3.3.3 of the present section.)

3.3.1 The N =4 QED With One Electron

We now describe the bosonic fields of the theory. The fermionic fields, as well as
the details on the action, are discussed in the Appendix A. Bosonic fields of the
vector multiplet are a gauge field A; and an SU(2)y-triplet of scalars Y. (Bosonic
gauge field A; here is completely unrelated to the fermionic gauge field of the electric
gauge theory. In fact, the fields of the electric description emerge from the monopole
operators of the UV theory.) In the twisting construction we use the SU(2) x-subgroup
of the R-symmetry, so the scalars of the vector multiplet will remain scalars. It is
convenient, to introduce a combination o = (Y3 — iY3)/v/2, which has charge 2 under
the ghost number symmetry U(1)r. The remaining component Y7 has ghost number
zero. The hypermultiplet contains an SU(2) x-doublet of complex scalars, which upon
twisting become a spinor Z“¢. They have charge one under the gauge group. The
imaginary part ¢ of the background flat connection originated from the masses in the
electric description. Under the mirror symmetry, it is mapped to a Fayet-Iliopoulos
parameter.

The flavor symmetry SU(2)g is emergent in the infrared limit. In the UV, only its
Cartan part is visible — it is identified with the shift symmetry of the dual photon. The
current for this symmetry is 2_—7: * I, where F' = dA. The real part of the background
gauge field couples to this symmetry, so, it should enter the action in the interaction

—% [ BAF. In fact, the whole action of the topological theory has the form

Iqep ={Q, ... } + Liop (3.15)

where
]top = _i /(B + qu) NF. (316)
2m
(More details are given in Appendix A.) This can be more accurately written as
exp(—Tiop) = L7 (c1(A)) (3.17)
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where A is a line bundle, in which A is the connection. The fields Z¢ take values in
a spin-C bundle, and correspondingly, the path-integral includes a sum over spin-C
structures s’. We view this spin-C bundle as a spin bundle S for some fixed spin
structure s, tensored with the line bundle A. We identify the reference spin structure
s with the spin structure, which was used in the definition of torsion on the electric
side. A change of the spin structure by an element z € H' (W, Z,) is equivalent to
twisting the bundle A by the Z,-bundle, corresponding to z. The formula (3.17) then
changes in the same way (3.12) as the torsion 7,(L£), in agreement with the mirror
symmetry?. The theory also has a charge conjugation symmetry, which, as on the
electric side, implies that the invariants for £ and £~! are the same.

Note that, instead of (3.16), we could try to use

exp(—Tiop) = £ (%cl(det s')) | (3.18)

Here det s’ is the determinant line bundle of the spin-C bundle, in which the fields
Z live. However, the factor of 1/2 inside the brackets means that one has to take a
square root of the holonomy of £, and therefore the sign of this quantity is not well
defined. This is the same ambiguity that we encountered in section 3.2.3.2, and it is
resolved, again, by picking a reference spin structure s.

The functional integral of the magnetic theory can be localized on the solutions
of BPS equations {Q,v%} = 0, where ¢ is any fermion of the theory. One group of
these equations actually tells us that the solution should be invariant under the gauge
transformation with parameter, equal to the field 0. We will only consider irreducible
solutions, and therefore o must be zero. We also only consider the case that the
background field satisfies d x ¢ = 0, so that the twisted theory has the full SU(2)y-
symmetry. (We have seen on the electric side that d x ¢ = 0 is the condition for this
symmetry to be present. On the magnetic side, one can also explicitly check this,

as shown in the Appendix A.) This symmetry, together with vanishing of o, implies

12 Again, s should be more appropriately viewed as a spin-C structure with trivial determinant.
Of course, we could equally well take an arbitrary reference spin-C structure. That would give the

trivial generalization of 7, to arbitrary spin-C structures, as described at the end of section 3.2.3.2.
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that Y7 is also zero. With this vanishing assumed, the remaining BPS equations take
the form of the three-dimensional Seiberg-Witten equations,

F+%*(,u—e2q§):0,

PZ=0, (3.19)

_ ;B
where p = io;

W Z%Z 5da? is the moment map, with U;-Ba being the Pauli matrices
contracted with the vielbein, e? is the gauge coupling, and ) is the Dirac operator,
acting on the sections of S®.A. Generically, the localization equations have a discrete

set of solutions, and the partition function of the theory can be written as

(L) =) (-1 L7 (er(A), (3.20)

&
where the sum goes over the set & of solutions of the Seiberg-Witten equations, A
is a line bundle, corresponding to the given solution, and (—1)7 is the sign of the
fermionic determinant.

The relation between the Reidemeister-Turaev torsion and the Seiberg-Witten
invariant in three-dimensions is the content of the Meng-Taubes theorem [20] and
its refinement due to Turaev [92]. We have presented a physicist’s derivation of this
theorem. Some subtleties that arise for three-manifolds with b; < 1 are discussed

later in this section.

3.3.2 Adding Line Operators

Let us describe the magnetic duals of line operators, which were introduced in section
3.2.4. The first type of line operators were the integrals of the fermionic gauge field
fK A*. On the magnetic side, their duals will be the integrals of monopole operators,
which we will not discuss. The second type were the Wilson lines for the background
gauge field. Obviously, their definition will be the same on the magnetic side.
Non-trivial and interesting line operators were defined by singularities of the back-
ground flat connection. We denoted them by Ly ,, in section 3.2.4. Since the one-form

¢ enters the BPS equations (3.19) on the magnetic side, the singularity of ¢ implies
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that those equations will have solutions with a singularity along the knot K. The line
operator is then defined by requiring the fields to diverge near K as in a particular
singular model solution. We use notation W for the closed three-manifold, and W’
for the manifold, obtained from W by cutting out a small toric neighborhood of the
singular line operator. Let r» and 6 be the polar coordinates in the plane, perpendic-
ular to K. Near the knot, the singularity of the imaginary part of the background
gauge field has the form

b= —7d9+6¥. (3.21)

(We follow the notations of [53].) Note that whenever the parameter 3 is non-zero,
the closed two-form *¢ has a non-vanishing integral around the boundary of the toric
neighborhood of the link. This might be forbidden for topological reasons — e.g., if
K is a one-component link in S®. In such cases, 3 cannot be turned on. Even when
the parameter S can be non-zero, we expect the invariants to be independent of it.
To find the model solution, consider the case that W is the flat space, and K
is a straight line. Let Z! and Z? be the two components of Z%, and z = rexp(if)
be the complex coordinate in the plane, perpendicular to K. We are looking for
a time-independent, scale-invariant solution of the Seiberg-Witten equations. The

gauge field in such a solution can be set to zero, so that the remaining equations give

2 .
772 = e(ﬁz—j”) 2NN - 2223 =0, 8.2'=0.22=0, (3.22)

and the scale-invariant solution is simply Z' = a/\/z, Z> = b/\/Z, where abl =
e2(8 +iv)/2 and |a|?> = |b|?. Note that the field Z here is antiperiodic around K.
Since we view Z% as a spinor field on the closed three-manifold W, it should rather
be periodic, so, we make a gauge transformation to bring the model solution to the
form

b 1
22= L 2= D epif), A= —5d6. (3.23)

VA

To complete the definition of the line operator, we also need to explain, how the
topological action (3.17) is defined in presence of the singularity. The flat bundle L is
naturally an element of Hom(H,(W’),C*). By Poincaré duality, it can be paired with

an element of the relative cohomology H?(TW’' dWW’), and this pairing will define the
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action. If we forget for a moment about possible torsion, the relative cohomology class
that we need is naturally the cohomology class [F/27| of the gauge field strength for a
given solution. However, here we encounter the mirror of the problem that we had on
the electric side: this class in general is not integral. The reason, roughly speaking,
is the antiperiodicity of the field Z¢ around K, or equivalently, the half-integral term
—2df in the gauge field (3.23) near the line operator. (Depending on the topology,
there can also appear a similar term with 6 replaced by the angle along K.) This
will in general cause half-integral powers of the holonomies t and t; to appear in
the torsion invariant. To remove them, just as in section 3.2.4, one introduces along
K a Wilson line for the background gauge field with a half integral charge n — 1/2.
With a suitable choice of framing, this is enough to remove the half-integral powers
of holonomies.

Here we viewed the field Z® as a section of the spin bundle on W, tensored with a
line bundle A with connection A. A more systematic way to define these line operators
is to allow spin (or spin-C) structures on W’ that do not necessarily extend to .
The antiperiodicity of Z in the model solution (3.23) can then be absorbed into the
definition of this spin structure. The field Z¢ then provides an honest cross-section
of the line bundle A in the neighborhood of the link, and this allows to canonically
define an integer-valued relative Chern class ¢;(A) € H*(W’,0W’). The charge n of
the background field Wilson line and the choice of the framing are then absorbed into
the choice of the spin-C structure. This is the approach taken in the mathematical
literature!®, see e.g. [88]. This point of view is consistent with the picture that
inserting line operators of type L,,, or changing the parameter n for operators L ,,
is equivalent to changing the spin-C structure.

We only considered the case that the holonomy of the background flat connection
around the meridian of the knot is not unimodular. In the opposite case, we have

v = 01in eq. (3.21), and, assuming that the parameter /3 is also zero, the singular

B There is also another difference of our treatment of line operators from mathematical literature.
There, the analogs of line operators are typically introduced by gluing in an infinite cylindrical end

to the manifold W', rather than by considering solutions on W with singularities.
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model solution seems to disappear. This makes it unclear, how to define the magnetic
duals of line operators with unimodular holonomy, except by the analytic continuation
from « # 0. This problem looks analogous to the one described in the end of section

2.4.4.5 of Chapter 2.

3.3.3 More Details On The Invariant

In our derivation of the relation between the Seiberg-Witten invariant and the Reidemeister-
Turaev torsion we ignored some subtleties [20], [106], which occur for three-manifolds
with b, < 1. Here we would like to close this gap. First we look at the UV theory,
and then we describe the RG flow to the IR theory in more detail. We will see that
the claim that the IR theory is the psl(1|1) Chern-Simons model sometimes has to

be corrected.

3.3.3.1 Seiberg-Witten Equations For b; <1

Let us look closer at the Seiberg-Witten counting problem. Our goal here is not to
derive something new, but merely to understand, how gauge theory takes care of some
subtleties in the formulation of the Meng-Taubes theorem.

Note that in the analogous problem in the context of Donaldson theory in four
dimensions, the gauge theory gives the first of the Seiberg-Witten equations roughly
in the form F+ + ZZ = 0. To avoid dealing with reducible solutions with F* = 0,
one introduces by hand a deformation two-form in the equation [11]. In our case,
the situation is different: the deformation two-form e? x ¢/2 is already there. In nice
situations, the counting of solutions does not depend on the choice of this deformation,
so any two-form could be taken. But sometimes it is not true, and then it will be
important, what deformation two-form is chosen for us by the gauge theory.

The properties of the counting problem depend on the first Betti number b, (1),
whose role here is analogous to b; in four dimensions. For b; > 0, a reducible solution
has Z = 0 and F = e*x ¢/2. For such a solution to occur, the cohomology class of

e?x¢/2 has to be integral. When in the parameter space we pass through such a point,
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so that reducible solutions are possible, the counting of solutions can in principle jump.
This makes the Seiberg-Witten invariant dependent on the deformation two-form, or
the metric and e?, if we prefer to keep the deformation two-form equal to e*x¢/2 with
fixed ¢. Actually, for b; > 1 no jumping is possible, since in the space of deformation
two-forms we can always bypass the point, where reducible solutions can occur. But
for by = 1, non-trivial wall-crossing phenomena do happen. As we change the two-
form e x ¢/2, and its cohomology class passes through an integer point, the number
of solutions with first Chern class [F'/27] equal to this integer does change in a known
way [107]. (For the particular case of S' x 52, the Seiberg-Witten counting problem
is worked out in detail in the Example 4.1 in [88].)

There is another related issue. As we explained in section 3.2.3.1, the torsion,
to which the Seiberg-Witten invariant is supposed to be equal to, for b, = 1 has a
second order pole. Just for concreteness, consider the manifold S* x S2, for which the
torsion is'* 7(t) = t/(t — 1)?, where t is the holonomy around the non-trivial cycle.
If we expand this, say, near t = 0, we get a semi-infinite Laurent series t + 2t + .. ..
However, it is known that for any given deformation two-form the Seiberg-Witten
equations have only a finite number of solutions.

The resolution of these puzzles is that we need to take the infrared limit of the
theory, e.g. by taking €? to infinity. This means that we have to take the deformation
two-form to be +o0o - x¢. That is, it should be proportional to x¢ with a positive
coefficient, and, to count solutions with a given Chern class [F/27], we should use a
deformation two-form with Chern class much larger than [F/27] in absolute value.
This is equivalent to the prescription of Meng and Taubes. Depending on the sign
of ¢, the two expansions that we get in this way for S! x S? would be t + 2t2 + ...
and t7! +2t72 + .... One can check that the sign of ¢ is such that |t| < 1 in the

first case and [t| > 1 in the second, so that in either case the expansion is absolutely

4The function 7(t) should have a second order pole at t = 1. Also, it cannot have any zeros
for t € C*\ {1}, since the twisted cohomology H!(S* x S2, L) for such t is empty. Imposing also
invariance under the charge conjugation C, we recover the stated result, up to a constant numerical

factor.
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convergent.

Just like for closed three-manifolds, for manifolds with links in them, the Seiberg-
Witten counting problem for b;(W’) = 1 is special. (This case arises e.g. when one
cuts out a one-component knot from a simply-connected manifold.) As we reviewed
in the end of section 3.2.3.3, the Reidemeister torsion for such a manifold has a first
order pole. Therefore, it has two different Laurent expansions near t = 0 and t = oo.
The Seiberg-Witten equations in this case have an infinite number of solutions, with
Chern class unbounded from above or from below, depending on the sign of the
deformation two-form e? x ¢. The sign of e x ¢ is such that these expansions are
absolutely convergent. Unlike the case of a compact three-manifold, here we do not
need to explicitly take e? to infinity, since the deformation two-form e? x ¢ already
diverges near the knot.

When W is a rational homology sphere, that is b; = 0, there is no way to avoid
reducible solutions in working with the Seiberg-Witten equations. Because of this, a
simple signed count of solutions is no longer a topological invariant. Still, one can
define a topological invariant by adding an appropriate correction term [107]. We will
not attempt to derive it from the quantum field theory, but will in what follows use

the fact that the definition of the invariant for b; = 0 does exist.

3.3.3.2 Massive RW Model And The Casson-Walker Invariant

Let us now turn to the IR theory, which is a valid description, when the size of the
three-manifold W is scaled to be large. The topological theory reduces in this case to
the Rozansky-Witten (RW) sigma-model [91] with the target space being the Coulomb
branch manifold, which for the A/ = 4 QED is [108] the smooth Taub-NUT space
Xtn. The U(1) graviphoton translation symmetry is generated on Xon by a Killing
vector field V. The coupling of the UV theory to the flat gauge field B +i¢ translates
into a coupling of the RW model to the same flat gauge field via the isometry V. In
the untwisted language, the imaginary part ¢ of the gauge field would be a hyperkiler
triplet of mass terms. For this reason, we call our IR theory the massive Rozansky-

Witten model. An explicit Lagrangian and more detailed treatment of this theory
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will appear elsewhere. The coupling of the Rozansky-Witten model to a dynamical
Chern-Simons gauge field has been previously considered in [24]. We will now see,
how and when the massive RW model reduces to the Gaussian ps((1|1) theory.

First, let us turn off the background flat gauge field. What we get then is the
ordinary RW model for Xtn. The path-integral of that theory has the following
structure [91]. The kinetic terms have both bosonic and fermionic zero modes. The
bosonic ones correspond to constant maps to the target space. The integral over the
bosonic zero modes thus is an integral over Xry. The one-loop path-integral produces
a simple measure factor, while most of the higher-loop diagrams vanish. The reason
is that all the interactions (which involve the curvature of Xry) are irrelevant in
the RG sense, and can be dropped, when the worldsheet metric is scaled to infinity.
However, some diagrams do survive due to the presence of the zero modes. Overall,
the path-integral for each b, is given by a simple Feynman diagram, which captures the
topological information about W, times the integral of the Euler density of Xry. It is
important that the path-integral depends on the target space only by this curvature
integral. The Euler numbers happen to be the same for Xty and for the Atiyah-
Hitchin manifold Xap. This was used in [93] to derive a special case of the Meng-
Taubes theorem by the following argument. The RW model for Xy can be obtained
from the IR limit of the topologically-twisted N/ = 4 SU(2) Yang-Mills theory [108],
which computes the Casson-Walker invariant [109], [110], [111]. Since the Rozansky-
Witten invariants computed using Xrn and Xay are the same, the Casson-Walker
invariant is equal to the Seiberg-Witten invariant, when the background bundle is
trivial.

Now let us turn on the background bundle back again. In its presence, the kinetic
terms of the RW model have no zero modes. The classical solution, around which
one expands, is the map to the fixed point of the vector field V', that is, to the
conformally-invariant vacuum. In the absence of the zero modes, all the irrelevant
curvature couplings can be thrown away. In this way, the RW path-integral reduces to
the Gaussian integral of the ps((1|1) model. It is natural to expect the path-integral

to be continuous in £. To the extent that this is true, the torsion 7(£) evaluated for
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trivial £ should thus coincide with the Casson-Walker invariant. Note that on the
level of Feynman diagrams this is not completely trivial, since for B 4 i¢p = 0 the
interaction vertices come from the curvature terms, while for B + i¢ # 0 they come
from expanding the Gaussian path-integral in powers of the background gauge field.
Still, the actual Feynman integrals should coincide. We will not explicitly analyze
the diagrams here (most of them were analyzed in [91]), but will just use the known
relation between 7 and the Casson-Walker invariant to check the continuity of the
massive RW path-integral in L.

Let 7(1) denote the torsion evaluated for the trivial background flat bundle'®, and
CW be the Casson-Walker invariant. For b; > 2, it is indeed true that 7(1) = CW.
For b; = 1, the torsion has the form

tA(t)

T(t):m;

(3.24)

where A(t) is the Alexander polynomial. Setting t = exp(m) and expanding this in

m, we get
A1)

m?2

1 " 1 2
+5A"(1) = 5 A1) +0(m?). (3.25)

T(t) =

Dropping the 1/m? term, we define the regularized torsion Teg(1) = A" (1) — 5 A(1).
This combination, again, is equal to the Casson-Walker invariant for by = 1. How-
ever, the presence of the extra divergent piece A(1)/m? means that the path-integral
of the massive RW model in this case is not continuous in its dependence on the
background gauge field: for £ approaching the trivial flat bundle, the torsion tends
to infinity, while for £ taken to be exactly the trivial flat bundle, the invariant is
finite. One can trace the origin of this discontinuity to the wall-crossing in the UV
theory. Indeed, for non-zero ¢, the Seiberg-Witten invariant is evaluated using the
deformation two-form e? x ¢/2, which in the infrared limit e — oo lands us in the
infinite wall-crossing chamber. The 1/m? singularity of the torsion for m — 0 arises
from the infinite number of solutions of the Seiberg-Witten equations in this cham-

ber. On the other hand, for trivial £ we have ¢ = 0, and the deformation two-form

vanishes for all 2. To evaluate the invariant, one should properly deal with reducible

5Note that for 7(1) the dependence on the spin-C structure drops out.
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solutions. Instead, we will simply assume that the deformation two-form is non-zero,
but infinitesimally small. It is known [88] that in such chamber the Seiberg-Witten
invariant is equal to %A” (1), which, again, is the Casson-Walker invariant, up to a
correction —15A(1) = —15|tor Hy (W), which, presumably, would be recovered with
an appropriate treatment of the reducible solutions. Thus, one can say that the dis-
continuity at trivial £ in the massive RW model for b; = 1 is a “squeezed version” of
the wall-crossing in the UV theory'®

Finally, for b; = 0, assuming that the torsion subgroup tor H; (W) is non-empty,
the Reidemeister-Turaev torsion is a function on the discrete set of flat bundles. For
non-trivial £, the Seiberg-Witten counting problem computes the torsion, while for
trivial £ it computes the Casson-Walker invariant, which now is not related to the
torsion, since there is no way to continuously interpolate to the trivial £, starting
from a non-trivial £. In fact, for by = 0 the Casson invariant is computed by a
two-loop Feynman integral [91], and it is clearly not possible to obtain it from the
one-loop torsion.

Let us summarize. The UV topological theory, and thus the Seiberg-Witten count-
ing problem, is equivalent to the massive RW theory. For non-trivial £, this theory
reduces to the ps((1|1) Chern-Simons theory and computes the Reidemeister-Turaev
torsion. For trivial £, it computes the Casson-Walker invariant, which for b; > 0 can
be obtained from a limit of the psl(1]1) invariant, while for b; = 0 is not related to

it. Our results agree with the mathematical literature [88], [106].

3.4 U(1]1) Chern-Simons Theory

In a series of papers [59, 60, 61|, it has been shown that the Alexander polynomial
and the Milnor torsion can be computed from the U(1|1) Chern-Simons theory. We

161t is a “squeezed version”, because the wall-crossing condition is not conformally-invariant, and
thus we cannot see all the walls in the IR theory, but only see a discontinuity at ¢ = 0. This
can be contrasted with the situation in the Donaldson theory in four dimensions, where the wall-
crossing condition is conformally-invariant, and the walls can be seen both in the UV and in the IR

descriptions [112].
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would like to revisit this subject and to show, how it fits together with our discussion
in previous sections. We point out that for the compact form of the bosonic gauge
group, the U(1]1) Chern-Simons theory is simply an orbifold of the ps((1|1) theory. (A
direct analog of this statement is well-known in the ABJM context.) In particular, it
contains no new information compared to the psl(1]1) Chern-Simons with a coupling
to a general background flat bundle £, and computes, indeed, essentially the same

invariant.

3.4.1 Lie Superalgebra u(1|1)

We start with a brief review of the superalgebra u(1]1). A more complete discussion
can be found e.g. in [103]. Let ﬁr and f_ be the fermionic generators, and %, and 7,
the generators of the left and right bosonic u(1) factors. It will also be convenient to
use a different basis in the bosonic subalgebra, which is E= t,+1t, and N = (tAr—%\g)/2
The element N acts on the fermionic subalgebra by the U(1)g transformations, and

the element F is central. Explicitly, the non-trivial commutation relations are
[Nvf:l:]::tf:ta {f—i—af—}:E- (326)

The group of even automorphisms of u(1|1) is generated by the charge conjugation
E— —E, N - —]V, fi — ifi, rescalings ]/“; — aif;, E— a+a_E’ with ax € R\ 0,
and shifts N — N +bE, b € R.

As for any Lie superalgebra, the representations of u(1]1) can be usefully divided
into two classes — the typical and the atypical ones. (For a brief review of superalgebra
representations, the reader can consult section 2.3.1.) The typicals are precisely the
ones, in which the central generator E acts non-trivially. They are two-dimensional,

and the generators, in some basis, act by matrices

~ 10 ~ n 0 - 0 w —~ 0 0
E:w 9 N: 9 f—i-: ) f—: )
0 1 0 n—1 0 0 1 0
(3.27)

with w # 0. These will be called representations of type (w,n). To be precise,

one has to make a choice, whether to assign a bosonic or a fermionic parity to the
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highest weight vector. This effectively doubles the number of representations. In our
applications, the representations will be labeling closed Wilson loops, which come
with a supertrace. Therefore, different parity assignments will be just a matter of
overall sign, and we will mostly ignore this.

In the atypical representations the generator E acts trivially, and therefore they
can be equivalently thought of as representations of pl(1]|1). These have already been
described in section 3.2.4. Note that the indecomposable representation (0,n)_ of
fig. 3.1 can be obtained as a degeneration of the typical representation (w,n) for
w — 0. With a suitable rescaling of the generators fi before taking the limit, one
can similarly obtain the representation (0,n) of fig. 3.1. The representations (0,7n)_
and (0,n), are known as the atypical Kac module and anti-Kac module.

Let us also write out some tensor products. Tensoring any representation with the
one-dimensional atypical (n) simply shifts the N -charges. The other tensor products

are

(wi,n1) @ (wa,n2) = (w1 + wa, Ny + ng) B (w1 + we,ny +n2 — 1), wy +we #0;
(3.28)

(w7n1) ® (_w7 n2) = Pn1+n2 ) (329)

where the indecomposables P, were defined on fig. 3.1. The prime on the second
representation in the r.h.s. of (3.28) means that the highest weight vector in it has
reversed parity. The set of representations (n), (w,n), P, is closed under tensor
products.

The superalgebra u(1|1) possesses a two-dimensional family of non-degenerate
invariant bilinear two-forms, which can be obtained by taking a supertrace over a
(w, n) representation with w # 0. Note that all the representations (w, n) for different
values of w # 0 and n, and therefore also the corresponding invariant forms, are

related by the superalgebra automorphisms.
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3.4.2 Global Forms

There exist different versions of Chern-Simons theory based on the superalgebra
u(1|1), and here we would like to classify them. To define such a theory, one needs to
pick a global form of the gauge group, and also to choose an invariant bilinear form,
with which to define the action. These data should be consistent, in the sense that the
action should be invariant under the large gauge transformations. Theories related
by the superalgebra automorphisms are equivalent. We can use this symmetry to
bring either the invariant bilinear form, or the lattice, which defines the global form
of the group, to some simple canonical form. To classify the theories, it is convenient
to take the first approach.

Let gz ~ R? be the bosonic subalgebra of u(1[1). The u(1|1) gauge field, in
components, is A = ANN + APE + A*f, + A~ f_. For the bosonic part of the gauge
field, we will also use expansion in a different basis, ANN + APE = A%, + A" 1,. The

action of the theory can be written as
Lyany = Tvos + Lpsiany (Lav @ L) + Iy s, (3.30)

where Iy is the Chern-Simons term for the bosonic gauge field, g1 is the action
(3.1), coupled to the line bundle £~ with connection AV, and to some background
flat bundle £. Finally, I, is the gauge-fixing action (3.3) for the fermionic part of
the gauge symmetry.

By using the superalgebra automorphisms, we bring the bosonic Chern-Simons
term to the form

Lo = ﬁ AT - ALdAL. (3.31)

(As usual, this formula is literally true only for topologically-trivial bundles. More
generally, it is implicitly understood that the action is defined by integrating Chern
classes of a continuation of the bundle to some four-manifold.)

Different versions of the theory will correspond to different choices of the global

form of the bosonic subgroup Gg of U(1]1). A global form is fixed, once we choose

a cocharacter lattice ['coen C gg, that is, the lattice by which to factorize the vector
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space gy to get the torus Gg. The first constraint on possible choices of the lattice
Leocn comes from the fact that the fermionic generators of u(1|1) should transform in
a well-defined representation of Gg. In the basis dual to (?,?’”), the corresponding
weight has coordinates (—1, 1), and we require that this vector be contained in the
dual lattice I'gp, > T'%_ .

We also need to make sure that the action (3.31) is invariant under the large gauge
transformations. This will be true, if the number

1
—/ci/\c’{—c‘i/\c‘i (3.32)
2.y

is integer on any closed spin four-manifold V. (We restrict to spin four-manifolds,
because we already have a choice of a spin structure on W.) Here ¢ = [dA™/2x]
are the H?(V,R)-valued Chern classes for some extension of the Gg-bundle onto V.
The classes ¢” and ¢! for different Gg-bundles form a lattice in H?(V,R)® H?(V,R),
which is naturally isomorphic to o, @ H?(V) (modulo torsion). Any element of this
lattice can be expanded as viw; + vows, where w; and ws are arbitrary classes in
H?(V), and v; and v, are the generators of the lattice T'coar. The quadratic form

(3.32) can be explicitly written as

1 1
aq / —wi ANwy + Glg/ w1 N\ wo + a22/ —Wwy N\ Wy , (333)
\% 2 % \% 2

with a1, = (v])? — (v9)%, a1 = Vivy — vivd and ag = (v5)% — (v4)2. For (3.33) to

be an integer for arbitrary w; and ws, the three coefficients a;; should be integers.
(We used again the fact that the intersection form on a spin four-manifold is even.)
This condition is precisely equivalent to the requirement for I'c,, to be an integral
lattice in R'. We conclude that U(1]|1) Chern-Simons theories are labeled by integral

lattices in R, whose dual contains the vector (—1,1).

3.4.3 The Orbifold

To show that the theory is an orbifold of psl(1|1) Chern-Simons, it is convenient to
rewrite it in a different way. Let us use the basis (E, N) in gg, in which the R scalar

product is (u,v) = uNv¥ +uPv¥. Let k and v be some positive integers, and ¢ be an
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integer or a half-integer, defined modulo k. By taking v, = (k/v,0) and vy = (£/v,v)
as the generators, for any such set we define a lattice, which actually has the right
properties to serve as I'coen. The opposite is also true: any lattice I'.oq, has a basis of
this form, and it is unique modulo shifting & by a multiple of k. (The parameter k is
actually the area of the fundamental domain of T'c,e,.) This can be seen as follows.
Let v; = (a,b) and vy = (c,d) be some generators of I'coen. The condition that the
weight of the fermionic part of the superalgebra is a well-defined weight of G means
that b and d are integers. Let v be their greatest common divisor. Then, by Euclidean

algorithm, there exists an SL(2, Z)-matrix of the form

d/v —b/v | (3.34)
p q
with some p and ¢. Transforming the basis of the lattice with this matrix, we find a
basis of the form v; = (d/,0), v = (b, v). (We choose a’ to be positive.) The integral-
ity of the lattice means that a'v € Z and 2b'v € Z, so we can indeed parameterize the
basis vectors in terms of k, £ and v. Residual SL(2, Z)-transformations of the basis
shift & by multiples of k.

Now we can make a superalgebra automorphism E = %E, N =N+ %E to
transform this basis into v; = (1,0), v = (0,v), at the expense of changing the
action from its canonical form (3.31) to

i k
bos = 5

ANdAE +- 3 = ANAY. (3.35)

The path-integral involves a sum over topological classes of bundles, which are
parameterized by the first Chern classes of the A” and A" bundles, which take values
in H*(W) and vH?(W), respectively. For every topological type, let us write the
gauge field A as a sum of some fixed connection Ag)) and a one-form . Integrating
over a” produces a delta-function, which localizes the integral to those connections
AN which are flat. The psl(1|1) part of the path-integral can then be taken explicitly,
and we get for the U(1]1) partition function,

U £y = / DANZ(S (kdAY /2) L gv (ker) exp(ECS(Lan)) (L% ® L) . (3.36)

Cl
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Here for convenience we changed the integration variable AY — vAY. The origin of
different terms here is as follows. The sum over the (integral) Chern classes c¥ is what
remained from the functional integral over A®. The delta-function came from the
integration over a”. The holonomy of the flat bundle £ 4~ around the Poincaré dual
of kcF is just a rewriting of the exponential of the Chern-Simons term kANdAF /27.
The Chern-Simons term for £~ with coefficient ¢ came from the ANdAY /27 term in
the action (3.35). Finally, 7, is the psl(1]1) torsion evaluated for a flat bundle, which
is the v-th power of £ ~, tensored with some background flat bundle L.

Essentially the same path-integral as (3.36) was considered in section 2.2 of [113].
It was noted that the sum over c¢F is proportional to the delta-function, supported
on flat bundles with Z;-valued holonomy, since the pairing between H?(W) and the
group of flat bundles is perfect. (That paper actually considered k = 1.) Using this,

we finally get
PID(E) = 23 expl€CS(L0) 7 (1 @ £), (3:37)
Ly,

where the sum goes over all Z,-bundles £;. The factor of k appeared from the delta-
function in (3.36). To be precise, the explanations that we gave are sufficient to fix
this formula only up to a prefactor. For manifolds with b; = 0, the normalization
(3.37) can be recovered from the considerations in section 2.2 of [113]. We expect
that it is correct in general. The factor of 1/k has a natural interpretation in terms
of the orbifold — it is the volume of the isotropy subgroup, which is Z;.

An important special case is the U(1|1) Chern-Simons defined with the most
natural global form of the group, where we simply set exp(27rﬁ\4) = exp(27ritA,.) = 1.
The action is (3.31) with an integer factor k in front of it. By making an automorphism
transformation, this theory can be mapped to the form (3.35) with £ = k/2 and v = 1.
Interestingly, it becomes independent of the spin structure, if k is odd. This is because
the sign of the fermionic determinant is changing in the same way as the half-integral
Chern-Simons term for AY. For the general version of the theory, the dependence on
the spin structure drops out when v/2 + ¢ € Z. In what follows, we restrict to the

version of the theory with £ =0 and v = 1.
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Let us make some terminological comments. We call the theory U(1]|1) Chern-
Simons, and not gl(1]|1) or u(1|1), because we need to choose a reality condition and a
global form for the bosonic subgroup — and we take it to be U(1) x U(1). One could in
principle consider other real and global forms. Those theories, if well-defined, would
not need to be related to the ps((1|1) theory by orbifolding. For the psl(1]1) theory,
we do not use the name PSU(1|1), because there is no bosonic subgroup, and therefore
no choice of the real form or the global form. This theory is naturally associated to
the complex Lie superalgebra.

In this thesis, we will not attempt to derive a relation between the supergroup
Chern-Simons theory and the WZW models. However, if such a relation does exist,
then what we have explained in this section would imply some correspondence between
the U(1]|1) and the psl(1]1) WZW models. A duality of this kind is indeed known

[114], although its derivation does not look similar to ours.

3.4.4 Magnetic Dual

The dual magnetic description of the theory is, of course, simply the orbifold of
the QED of section 3.3. (This fact can also be independently derived from brane
constructions, as we review later in section 3.6.3.) For the polynomial (3.20), summing
over flat bundles has simply the effect of picking only powers of holonomies, which
are multiples of k. Equivalently, note that the action of the magnetic theory will have
the form analogous to (3.30), but with Juap) + Iys replaced by the QED action.
The field AN couples to the QED topological current iF'/2w. Integrating over AN,
we simply get that the Chern class of the QED gauge field is the k-th multiple of
the Chern class of the A® bundle. Since this bundle is arbitrary, we conclude that
the orbifold of the magnetic theory is just the same QED, but with a constraint that
the Chern class of the gauge field takes values in kH?(W). This can be equivalently
viewed as'” an N = 4 QED with one electron of charge k.

The u(1|1) partition function o1 (£) inherits from the torsion 7, the dependence

17T thank N. Seiberg for pointing this out.
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on the spin-C structure with trivial determinant. As we noted in the end of section
3.2.3.2, the definition of 74(£) can be easily extended to construct a torsion, which
depends on an arbitrary spin-C structure, with no constraint. The same applies to
75(1‘1)(5). Now, consider the limit & — oco. Since now we sum essentially over all
flat bundles, the U(1]|1) partition function cannot depend on the unitary part of the
flat connection in L. Therefore, by holomorphicity, it will not depend on L at all.
We denote this version of the torsion by 7. This is a number, which depends only
on W and on the choice of a spin-C structure. Looking at the magnetic side, it is
clear that this number is precisely the signed count of solutions to the Seiberg-Witten
equations, with the fields Z¢ valued in a given spin-C bundle s. We conclude that the
version of the electric theory with £ = oo has these integers as its partition function.
We note that this version of the torsion invariant has been defined and studied in [115]
and [92]. The fact that it is an integer was demonstrated by purely combinatorial
methods. One pedantic comment that we have to make is that 7, is completely
independent of £ only for a manifold with b; > 1. For b; = 1, it does depend on the
orientation in H'(W,R), induced by the absolute value of the holonomy of L, since

we need to choose the chamber, in which the Seiberg-Witten invariant is computed.

3.4.5 Line Operators

In the U(1]1) theory, we can define some Wilson loops. For the atypical representa-
tions, these are essentially the operators that were already defined earlier in section
3.2.4 for the ps((1|1) theory. These are the operators L,, labeled by one-dimensional
atypicals (n), as well as Wilson lines for the indecomposable representations, whose
role we still have to clarify.

For the typical representations (w,n), we want to claim that the Wilson lines are
actually equivalent to the twist line operators of type L, with t = exp(2miw/k).
This relation is the usual statement of equivalence of Wilson lines and monodromy op-
erators in Chern-Simons theory. (For U(1|1), this relation was first suggested in [61].)

The argument adapted to the supergroup case is given'® in section 2.3.2. One consis-

18In fact, for U(1|1) the statement is quite obvious. The two-dimensional representation (w,n)
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tency check can be made by looking at the transformation of these operators under
the charge conjugation symmetry C. As can be seen from (3.27), the representation
changes as (w,n) — (—w, 1—n), while the twist operator changes as Ly ,, — L¢-11_p,
as follows from its definition in section 3.2.4. This is consistent with the identifica-
tion of the operators. Note also that the boson-fermion parity of the highest weight
vector of the representation (w,n) is changed under the charge conjugation. A Wil-
son loop with a supertrace will consequently change its sign. This can be taken as
an explanation of the factor (—1)* in the formula (3.14) for the charge conjugation
transformation of torsion in presence of the boundary. For t = exp(2miw/k), we will

also denote the operators Ly ,, by L., . Hopefully, this will not cause confusion.

3.5 Hamiltonian Quantization

It is a well-established fact that the quantization of the Chern-Simons theory with
an ordinary compact gauge group leads to conformal blocks of a WZW model [4, 48,
86, 116]. For the supergroup case, it is often assumed that a similar relation holds
[59, 61, 34], however, to our knowledge, no derivation of this statement is available
in the literature, and the properties of the supergroup theories in the Hamiltonian
picture are fundamentally unclear. In this section, we take an opportunity to bring
some clarity to the subject by explicitly quantizing the Chern-Simons theories, which
were considered in previous sections. Since these theories are essentially Gaussian,
the quantization is straightforward. In this thesis, we do not attempt to derive a

relation to the conformal field theory.

can be obtained by quantizing a pair of fermions, living on the Wilson line. After gauging these
fermions away, one is left with a singularity in the gauge field, which is equivalent to the monodromy
t. The ubiquitous shift of n by 1/2 can be understood as a shift of the weight by the Weyl vector
of the superalgebra u(1|1). The combination m = n — 1/2, which appeared in section 3.2.4, is the

“quantum-corrected” weight.
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3.5.1 Generalities

In the quantization of an ordinary, bosonic Chern-Simons theory on a Riemann surface
3., the classical phase space to be quantized is the moduli space of flat connections on
Y. Dividing by the gauge group typically introduces singularities, which, however, do
not play much role — the correct thing to do is to throw them away by replacing the
moduli space of flat connections by the moduli space of stable holomorphic bundles.
In the supergroup case, this approach does not seem to lead to consistent results.
Reducible connections here can lead to infinite partition functions (as in the case of
the theory on S?), and that should somehow be reflected in the canonical quantization.
The correct approach, we believe, is to consider the theory with gauge-fixed fermionic
part of the gauge symmetry. The Hilbert space of the supergroup Chern-Simons
should then be constructed by taking the cohomology of the BRST supercharge in
the joint Hilbert space of gauge fields and superghosts. Due to “non-compactness” of
the fermionic directions, even in the ghost number zero sector this cohomology is not
equivalent to throwing the ghosts away.

First we consider the quantization of the psl(1]1) Chern-Simons theory. We take
the three-manifold to be a product R; x ¥, where R; is the time direction, and X is
a connected oriented Riemann surface. Non-zero modes of the fields along 3 do not
contribute to the cohomology of Q, and can be dropped. Zero-modes are present,
when the cohomology H*(X, L) of the de Rham differential on X, twisted by the
connection in the flat bundle £, is non-trivial. When H'(X, £) is non-empty, there is
a moduli space of fermionic flat connections on >. This gives a number of fermionic
creation and annihilation operators, and a finite-dimensional factor for the Hilbert
space, — in complete analogy with the ordinary, bosonic Chern-Simons. This will be
illustrated in examples later in this section. The zeroth cohomology H°(X, £) is non-
empty, if and only if the flat bundle £ is trivial on . In this case, the cohomology
is one-dimensional, since we have assumed X to be connected. The ghosts and the

time component A, of the fermionic gauge field now have zero modes, which organize
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themselves into the quantum mechanics of a free superparticle in R4, with the action
- / dt Str(—Agh + CC). (3.38)

(Here for simplicity we did not write the coupling to the external gauge field.) The
Hilbert space!®, before we reduce to the cohomology of Q, is the space of functions
on C? (with holomorphic coordinates given by the components C* of the scalar su-
perghost), tensored with the four-dimensional Hilbert space of the fermions A* and

AZT. We can write the states as
Yol0) + L AT[0) + 1 A7[0) + 4 ATAT[0) (3.39)

where |0) is annihilated by A3, and v, are functions of C' and C. We recall from
eq. (3.2) that the BRST differential transforms C into A. If we treat A* as the
differentials dC° and identify the wavefunctions (3.39) with differential forms on C?
with antiholomorphic indices, then Q acts as the Dolbeault operator. Thus, formally,
the Hilbert space of the ghost system Hgy, is the Dolbeault cohomology?® of C? with
antiholomorphic indices.

Since C? is non-compact, it is not obvious, how to make precise sense of this
statement. Certainly, the path-integral of the theory on some three-manifold with
a boundary produces a Q-closed state on the boundary. But to divide by Q-exact
wavefunctions, we need to specify, what class of states is considered. For example,
one could consider differential forms with no constraints on the behavior at infinity.
This would lead to the ordinary Dolbeault complex. By the 0-Poincaré lemma, the
cohomology is supported in degree zero, and consists simply of holomorphic functions
on C2. This space will be denoted by Hg’o, and the states will be called non-compact.
In our applications, we can usually restrict to states, which are invariant under the
U(1)r ghost number symmetry. In Hg’o, such states are multiples of vy = |0), the

constant holomorphic function. Another possibility is to look at the cohomology

9Here and in what follows, by “Hilbert space” we really mean the space of states. It does not, in

general, have an everywhere-defined non-degenerate scalar product.
20Tn the context of general Rozansky-Witten theories this statement — with C? replaced by a

compact hyper-Kéhler manifold — appeares already in the original paper [91].
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with compact support?!

. By Serre duality, it is the dual of the space of holomorphic
functions, and lives in degree (0,2). We will denote this space by Hgfomp, and call
the corresponding states compact. The U(1)g-invariant states here are multiples of
o = 59(C,T)NA0).

To understand the interpretation of these states in our theory, we need to recall
some properties of the torsion. Let W’ be a three-manifold with boundary ¥, together
with some choice of the flat bundle £ and, possibly, line operators inside. Let the
holonomies of £ be trivial on 3, so that H°(X, £) is non-empty. If the flat bundle £
is completely trivial even inside W', and, in particular, W’ contains no line operators
Ly ,,, we call the manifold with this choice of the flat bundle unstable. In the opposite
case, we call it stable. Let W be a connected sum of two three-manifolds W; and
Wy along their common boundary ¥, with no holonomies of £ along the cycles of .
There are three possibilities. If both W, and W, are stable, the path-integral on W
vanishes, because of the fermionic zero modes, — this property of the torsion is known
as “unstability”. If both W; and W5 are unstable, the path-integral is not well-defined,
because of the presence of both fermionic and bosonic zero modes. Finally, if one of
Wi, W is stable, and the other is unstable, the functional integral generically has no
zero modes, and the torsion is a finite number.

We claim that our functional integral for an unstable three-manifold W’ with
boundary X naturally yields a state for the ghosts in the non-compact cohomology
Hg’o. Indeed, the zero modes of C', C' and X are completely free to fluctuate inside
W', and therefore the wavefunction as a function of C' is constant and should not
contain insertions of A\, — so, it is a multiple of vg. On the other hand, if the manifold
W' is stable, we get a state in the compact cohomology Hgiomp. The holonomies of
the flat bundle inside W’ do not allow the zero modes of the ghosts and A to freely
go to infinity. Modulo Q, the wavefunction in this case is a multiple of the state v;.
The natural pairing between the compact and the non-compact cohomology yields a

finite answer for a closed three-manifold, glued from a stable and an unstable piece.

21For our purposes, the cohomology with compact support and the integrable cohomology will be

considered as identical.
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If, on the other hand, we try to pair two stable manifolds, we get zero, since we have
too many insertions of the operators A* in the product of the wavefunctions. If we
try to pair two non-compact, unstable states, the result is not well-defined, because
one encounters both bosonic and fermionic zero modes??. This is consistent with the
properties of the torsion, described above.

In the special case that Y is a two-sphere with no punctures, the ghost Hilbert
space Hgp is all of the Hilbert space. Since it is not one-dimensional, the topological
theory contains non-trivial local operators. They are in correspondence with d-closed
(0, p)-forms on C2. Again, one might think that all of these, except for the holomorphic
functions, are Q-exact, and therefore decouple, but this is not in general true due to
the non-compactness of the field space. Let us introduce a special notation O; for

the operator A*A~6(C, C), which we will need in what follows.

3.5.2 The Theory On S! x X

Let us illustrate in some examples, how this machinery works. First we compute
the invariants for the theory on S! x ¥, with ¥ a closed Riemann surface with no
punctures. Then we add punctures and derive the skein relations for the Alexander
polynomial. In the whole section 3.5, we typically ignore the overall sign of the

torsion, and its dependence on the spin structure.

3.5.2.1 No Punctures

Consider a three-manifold S' x X, where ¥ is a Riemann surface of genus g. Let the
flat bundle £ have a holonomy t along the S, and no holonomies along the cycles
of . We would like to compute the torsion 7(t) of this manifold. For simplicity, we
take |t| = 1.

The topological theory on this manifold reduces to the quantum mechanics of zero

22For a manifold W glued from two unstable pieces, depending on the situation, it can be natural
to define the torsion to be infinity, or zero, or some finite number, by perturbing £ away from the
singular case. However, it does not seem to be possible to give any universal meaning to the pairing

of non-compact wavefunctions in the ghost Hilbert space.
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modes of the fields on ¥. The components of the gauge field A*, tangential to ¥, will
produce 4g fermionic zero modes, which can be grouped into 2¢g pairs of fermions,
corresponding to some choice of a- and b-cycles on X. For each pair of the fermions,
the action is defined with the kinetic operator i0; + By, where B, is the background
gauge field in the time direction. If we denote the determinant of this operator by
d(t), the gauge fields contribute a factor of d*?(t) to the torsion. The time component
of the gauge field AT together with the Lagrange multiplier A give two more pairs of
fermions with the same action, and hence a factor of d*(t). Finally, the zero-modes
of the superghosts C* and o give two complex scalars, which contribute a factor
of d~*(t). The torsion altogether is 7(t) = d?9~2(t). Using the zeta-regularization,?

one readily computes d(t) = t!/2 — t~1/2. For the torsion of S' x ¥, we get
T(t) = (tY/2 — t7Y2)2072 (3.40)

Let us derive the same result by a Hilbert space computation. The torsion can
be computed by taking the supertrace StrHtj over the Hilbert space, where 7T is the
generator of the U(1)g-symmetry. In this formalism, it is obvious that the contribution
of a single pair of fermions is indeed d(t) = t'/2 — t~'/2. The contribution of the
superghosts C' and C' can also be easily computed. We set t = exp(ia). The quantum
mechanics of the complex field O is the theory of a free particle in R?, and we need

~

to find the trace of the rotation operator exp(ia.J) over its Hilbert space,
2212
tr exp (iozj) = / %exp(iﬁf) exp(—ip'T) = m, (3.41)
where p” is the vector obtained from p’ by a rotation by the angle . This is equal to
—d2(t), and together with a similar contribution from C~ leads to the correct result
d=4(t).
In the computation above, the trace was taken over the whole Hilbert space of

the ghost system, and not over the cohomology of Q, since it is not clear in general,

230ne needs to use the identity exp (—¢’(0,a) — ¢’(0,1 — a)) = 2sin(ma) for the derivative 95((s, a)
of the Hurwitz zeta-function. In the text we ignored the factor of —i, which results from this

computation, since we are not interested in the overall sign of 7(t).
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what one should mean by this cohomology. However, it is curious to observe that one
can obtain the same results by tracing over the non-compact (or over the compact)
Dolbeault cohomology. Indeed, H%O is the space of holomorphic functions on C2,
which can be expanded in the basis generated by the monomials 1, C*, C—, (C)2,

ete. The trace of t7 over this space can be written as
t0f e (t ) e T At D) 4 (3.42)

where we introduced a regulator € > 0. The sum of this convergent series for ¢ — 0 is
equal to —d~2(t), which is the correct contribution of the ghost system to the torsion.

[ do not know, if this computation should be taken seriously.

3.5.2.2 Surfaces With Punctures

Next, let us incorporate some line operators. Consider a Riemann surface ¥ of genus
g with p > 2 punctures, corresponding to p parallel line operators L, n, ... Lt n,,
stretched along the S'. For consistency, we assume t1ty ... t, = 1. Let there also be a
background holonomy t around the S*. We introduce the number N = >~ (n; —1/2),
which measures the total U(1)g-charge. For N = 0, the configuration is symmetric
under the charge conjugation (up to the substitution t — t=* for all the holonomies.)

Due to the presence of line operators, the cohomology H°(X, £) is empty, and
the Hilbert space does not contain the ghost factor Hg,. However, the cohomology
H' (X, L) = H' is in general non-empty, so there will be h = dim H' zero modes of
the fermionic gauge field AT and h zero modes of the field A~. Our Lie superalgebra
is a direct sum, and correspondingly it is convenient to choose a polarization, in which
the modes of AT are the creation operators, and the modes of A~ are the annihilation

operators. The Hilbert space is
(det HY)~Y2EN/P @ A HY (3.43)

[t contains states with charges ranging from —h/2 + N to h/2 + N, with

N(q) = (q N h/h2 B N) (3.44)
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states of charge q. (The overall power of det H' was chosen so as to ensure that for
N = 0 the spectrum of U(1)g-charges is symmetric.) Taking the supertrace of t/ over

this Hilbert space, we find the invariant for S* x ¥,
T(t) =tV (£ — 72" (3.45)

As we will see, h = —xy = 29 — 2 + p. An important special case is that Y is S?
with two marked points. Then h = 0, the Hilbert space is one-dimensional, and the
invariant 7 is equal to one, up to an overall power of t.

Let us give a more explicit description of the twisted cohomology for the simple
case of ¥ ~ S%. In the presence of a singular background field, corresponding to an
insertion of a line operator L , along some knot K, the behavior of the dynamical
fields of the psl(1]1) theory near K is determined by a boundary condition, which is
described in Appendix B. It says that the superghost fields C* should vanish near
K, while the components of the fermionic gauge field A*, perpendicular to K, are
allowed to have a singularity, which however has to be better than a pole. This
boundary condition is elliptic. The cohomology H®, therefore, can be represented
by L-twisted one-forms, which lie in the kernel of the operator d + d* on ¥ and
which near the marked points are less singular than 1/r. Just for illustration, we can
write an explicit formula for these one-forms. For that, pick a complex structure on
2, and let the marked points be zi,...,2,. The cohomology will be represented by
holomorphic (1,0)- and antiholomorphic (0, 1)-forms. Let us write t; = exp(27ia;),
with a; € (0,1), for the holonomies. (We assume that the bundle £ is unitary.) Note
that the sum ) a; is a positive integer. Any twisted holomorphic one-form can be

written as
p

w= H(z — z)%P(z)dz, (3.46)

i=1

with some rational function P(z), which is allowed to have simple poles at points z;,
according to our boundary condition. Assuming that infinity is not among the marked
points, we should have w ~ dz/z2+0(1/2?) at large z. Writing P(z) as >_ P;/(z — 2),
the condition at infinity gives 1 + > a; linear equations on the coefficients P;, so the

space of twisted holomorphic forms is of dimension p —1 — > a;. Similarly, the space
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Figure 3.2: a. Marked points, basis contours, and a particular choice of cuts on the p-

punctured sphere. Locally-constant sections of £ pick a factor of t; upon going counter-
clockwise around the i-th puncture. b. This contour is trivial, since it can be pulled off to

infinity. This gives a relation (1 —t1)Ci +---+ (1 —t1...tp—1)Cp1 = 0.

of twisted antiholomorphic forms has dimension ) a; — 1, and the total dimension of
H'is p — 2, in agreement with the formula h = —y.

Instead of working with cohomology, it is more convenient to look at the dual
homology, which for S? with marked points is generated by contours, connecting
different punctures?*. (The differential forms, which behave better than 1/r near the
punctures, can be integrated over such contours, and the integrals do not change,
when the forms are shifted by differentials of functions that vanish at the punctures.
Moreover, the pairing between this version of homology and the twisted cohomology
is non-degenerate.) The basis in the homology consists of p—2 contours Cy, ..., C, o,
shown on fig. 3.2a. One might think that the contour C,_; should also be included in
the basis, but actually it can be expressed in terms of Cy, ..., C,_o, using the relation
of fig. 3.2b. On a general Riemann surface, one obtains in the same way that the
dimension of the homology is h = —x = p — 2 + 2g.

It is possible to find modular transformations of states in the Hilbert space. For
that, one needs to find the action of large diffeomorphisms on the twisted cohomology
H?', or, equivalently, on the basis contours in the dual homology. To give an example of

such argument, we derive the skein relations for the Alexander polynomial?®>. Consider

24T am grateful to E. Witten for the suggestion to look at the homology and for helpful explana-

tions.
Z5Rather similar contour manipulations are used in [59] to obtain braiding transformations of the
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t—l C2 t—l t-1 C2 t— t—l C2 t—l

Figure 3.3: a. Two cuts and two basis contours for a four-punctured sphere. b. The result
of the braiding transformation. C. We moved the contour C; across the cut and reversed its

orientation, which produced a factor of —t.

a Riemann sphere with four punctures, two of which are labeled by holonomies t, and
two by t~!. This configuration arises on the boundary of a solid three-ball with two
line operators Ly , inside. We set the parameters n equal to one-half, so that the line
operators are expected to have trivial framing transformations and to give rise to the
Conway function. (We have to mention once again that our understanding of these
line operators is incomplete. This will lead to some uncontrollable minus signs in
their expectation values.) The twisted cohomology H! on the four-punctured sphere
is two-dimensional. A pair of basis contours C; and C, for the dual homology is shown
on fig. 3.3a. We make a large diffeomorphism, which exchanges the two punctures
labeled by t. This leads to the configuration of fig. 3.3b. We move the upper cut
through the contour C;. This multiplies C; by a factor of t. This brings us to the
configuration of fig. 3.3c, where we have also reversed the orientation of the upper
contour. The cuts can now be deformed back to the configuration of fig. 3.3a, and we

find that the braiding transformation acts on the contours as

c —t 0 C
S - e (3.47)
c, 0 1 C,

states from the CF'T free-field representation. The contours in question are then integration contours
for the screening fields. In fact, the two computations seem to be directly related, since the screening
fields are the CFT currents, which in the Chern-Simons theory correspond to the gauge fields A™,
whose modes are the cohomology that we are considering. To make the connection more precise,

one needs to switch to the holomorphic polarization.
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U/\ — Ul/\ = i - (t1/2_t—1/2)

Figure 3.4: A skein relation for the Alexander polynomial. In the canonical framing, u = 1.
(00 -0 =0

Figure 3.5: The result of closing the strands in the skein relation and using the fact that
the Alexander polynomial for a disjoint link is zero. The relation is consistent, if it is written
in the vertical framing, and the invariant transforms by a factor of u under a unit change of

framing.

The Hilbert space of the four-punctured sphere, according to eq. (3.43), consists of
four states — one of U(1)g-charge —1, one of charge +1, and two of charge 0. The
neutral states are the ones that arise on the boundary of a three-ball with a pair
of line operators inside. The state of charge —1 transforms under the braiding by
some phase. From eq. (3.43), we would expect this phase to be the inverse square
root of the determinant of the matrix in (3.47). The two U(1)g-invariant states then

transform with the matrix
it2 0
(3.48)
0 —it™1/?

Note that the braiding action (3.47) is defined only up to an overall phase, since we
could make a constant U(1)g gauge transformation, or, equivalently, could move the
cuts on fig. 3.3 around the sphere any number of times. Such a phase, however, would
cancel out in 3.48, since the two states of interest are U(1)g-invariant.

From (3.48) it follows |4] that the knot invariant satisfies the skein relation of

fig.3.4, with u = i. (On the way, we made an arbitrary choice of the square root of
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the determinant of the matrix (3.47). With an opposite choice, we would get u = —1i.)
Initially, we assumed that our line operators have no framing dependence. But now
we can see that this would be inconsistent with fig. 3.5, which is obtained from the
skein relation by closing the braids and using the fact that the Alexander polynomial
of a disjoint link is zero. We are seemingly forced to conclude that our invariant
does have a framing dependence, with a framing factor u = i. On S3, there exists a
canonical choice of framing, in which the self-linking number of all components of the
link is zero. If we bring all the links to this choice of framing, the polynomial would
satisfy the skein relation of fig. 3.4, but with « = 1. This skein relation, together with
a normalization condition, which we derive later in this section, defines the single-
variable Alexander polynomial (or the Conway function), as expected. But the fact
that we found a non-trivial framing dependence is rather unsatisfactory. In the dual
Seiberg-Witten description, the knot invariant is clearly a polynomial with real (and
integral) coefficients, and there can be no factors of i. To get rid of the problem, we
have to put an extra factor of 7 in the braiding transformation of the highest weight
state of U(1)g-charge —1. This will multiply the matrix (3.48) by ¢, and make u =1
in the skein relation. Tt would be desirable to understand the physical origin of this
factor.

To be able to compute the multivariable Alexander polynomial, that is, the in-
variant for multicomponent links, with different components labeled by arbitrary

holonomies, one needs two more skein relations [117]. We derive them in Appendix C.

3.5.3 T? And Line Operators

In this section, we look more closely on the Hamiltonian quantization of the theory
on a two-torus 72. First we describe the Hilbert space abstractly, and then relate

different states to line operators of the theory.
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3.5.3.1 The Torus Hilbert Space

Let us fix a basis of cycles a and b on T2, and denote the corresponding holonomies of
the background bundle by t, and t,. Assume first that at least one of the holonomies
is non-trivial. In this case, the twisted cohomology H*®(T?, £) is empty, and the torus
Hilbert space Ht, t, is one-dimensional. Let us choose some basis vector |t,,t;) for
each of these Hilbert spaces. We pick a normalization such that under any SL(2,Z)

modular transformation M the vectors map as
Mlta, ty) = [tr-130), A1) (3.49)

without any extra factors. Note that the charge conjugation symmetry C is equivalent
to the modular transformation S?, which flips the signs of both cycles.

A slightly more complicated case is t, = t, = 1. The Hilbert space H;; is a
product, with one factor being the vector space Hgy, of states of the ghosts, which
was described before. Another factor comes from the fact that the fermionic gauge

fields now have zero modes A}, A, A

. and A, , arising from components of the

one-forms A* along the a- or the b-cycle. With a natural choice of polarization, the
modes of A~ are the annihilation operators, and the modes of A" are the creation

operators. The four states in the Hilbert space of the vector fields are
|—1), [0.) = AF|-1), [0p) = Af|-1), |+1)=ATAS|-1). (3.50)

The states |+1) are of charge 1, and are invariant under the modular group SL(2, Z),
since they have nowhere to transform. The two states |0,) and |0,) are neutral, and

transform under SL(2,Z) as a doublet.

3.5.3.2 Line Operators L, ,

Consider a solid torus with boundary T2, with cycle a contractible, and put a line
operator of type Ly, , along the b-cycle inside. Here it is assumed that t, # 1. The
operator is taken with the natural framing for loops in the solid torus. We can also

turn on a background holonomy t,. The resulting state lives in Hy, t,, and we claim
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that it is
Lty o t) =t b0, ), (3.51)

with a suitable normalization of |t,, t;). (Note that t, is not a parameter of the line
operator itself, but is defined by the background bundle, and in particular by the other
line operators, linked with the given one.) It is easy to see that both sides of (3.51)
depend on n in the same way. (In taking a half-integer power of t;, we ignored the sign
ambiguity, since we generically do not try to fix the overall signs in this section. A
more accurate treatment of signs would require keeping track of spin structures.) The
non-trivial content of this equation is the statement that |t,, t;), defined in this way,
transforms under the modular group as in (3.49), without any extra factors. For the
charge conjugation symmetry C, this is easy to see from the transformation properties
of the line operators Ly, ,. For the element 7 of the modular group SL(2,Z), the
Lh.s. changes into t;"+1/2|Lta7n,tb>, where the factor of t, is due to the change of
framing. This is again consistent with (3.49). It requires a little more work to see that
[ta, tp) transforms as in (3.49) also for the element S of SL(2,Z). Note that a pair of
solid tori can be glued together to produce S* x S? with two parallel line operators
along the S*. The gluing identifies the b-cycles of the two tori, and maps the a-cycle
of one torus to the —a of the other. This gives a bilinear pairing between the Hilbert
spaces H-1, and Hg, ¢,. In the section 3.5.2.2, we learned that the dimension of the
Hilbert space on S? with two marked points is equal to one. It follows that, under

the bilinear pairing,

(|t;1a tb>7 |ta7t’b>) = (|Ltg1717n7tb>7 |Lta,n7tb>) =1. (352)

Note that we can apply the elements CS and S to the two vectors in this equa-
tion, and get the same gluing of the tori. Suppose that the S-transformation of the
state [t,,t;) gives the state |t, ', t,) with some factor f(t,,ts). It then follows that
f(ta,ty) (1, t5) = 1. The function f should be holomorphic, and can only have
zeros or singularities at t, or t, equal to 0, 1 or infinity. However, 1 is excluded
by the equation above. Then, f can only be a monomial in powers of t,, but this

possibility is excluded by the charge conjugation symmetry. We conclude that the
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vectors |t,, tpy), defined as in (3.51), transform under the modular group according
to (3.49). (We did not exclude the possibility of non-trivial t-independent phases in
(3.49), but there seem to be no possible candidates for such phases.)

As a check of the modular transformations that we have described, consider a
Hopf link, formed by two unknots with some operators L, , and Ly, »,, in S*. Up
to powers of t,, which depend on the framings, the invariant for this configuration
is equal to the same scalar product (3.52), that is, to one. This is the correct result
for the Alexander polynomial of the Hopf link. In the discussion of the Hilbert space
of empty S?, we have defined a local operator O;. Now we can give it a geometric
interpretation®®: it can be obtained by inserting a small Hopf link of loop operators

of type L, .

3.5.3.3 Other Line Operators

Consider again the same solid torus, and put a line operator L, along the b-cycle?”.
We first assume that t, # 1, so that the resulting state is | L,, t,) = t}} g(t;)|1, t;), for
some holomorphic function g(t). To fix it, note that the invariant for S* x S? with

holonomy t; around S*! can be represented by

7(S' x 5%, t) = (Lo, ty), | Lo, te)) = g*(ts) - (3.53)
On the other hand, it is equal to (t;/2 — t;1/2)_27 so we find that g(ty) = 1/(’52/2 —
tb_l/Q), and therefore
1 _
L, ty) = — 721 ) (3.54)

26This operator can be given yet another interpretation. Consider cutting out a small three-ball,
and gluing in a non-compact space, which is the complement of the three-ball in R3. The zero-modes
of the ghosts cannot freely fluctuate in such geometry, so, this construction produces the desired
operator. We can also give arbitrary non-zero vevs Cy € C? to the fields C in the asymptotic region.

This would produce the operator A*A’5(4)(C —Cy,C —Cy).
2TThese operators differ from the vacuum just by a factor of t”, so, we would loose nothing by

considering only n = 0. But we prefer to keep general n, because it will be helpful, when we come

to the U(1|1) theory.
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Figure 3.6: The anticommutation relation for the modes of AT and A~, written geometri-

cally.

Using this, we can find the Milnor torsion for an unknot in S2. This invariant is equal

to
1

(’Lt o) 1>7S|L07t>> = t1/2 o tfl/Q )

(3.55)

which is the correct result. (One can get rid of the half-integer power of t by choosing
a different framing.) Another application is to find the degeneration of the operator

Ly ,, in the limit t — 1. From (3.51) and (3.54) we find
lim Lo =Ly — Loy, t#1. (3.56)

(This formula is valid only in the sector t, # 1, that is, in presence of a non-trivial
holonomy along the line operator.) This relation, when applied to invariants of links
in the three-sphere, is known as the Torres formula [118].

Now, consider the case that t, = 1, so that L,, is inserted inside a solid torus with
no background holonomy. The parameter n then does nothing, and the resulting
state corresponds just to the empty torus. We want to identify the corresponding
state |vac) in H; 1. In the ghost Hilbert space, it is the vector vy, as defined in section
3.5.1. In the gauge fields Hilbert space, it is some vector from (3.50), which should
have zero charge and should be invariant under the 7T-transformation. The vector

with these properties is |0,), so we find
|L,, 1) = |vac) = vy ® |04) . (3.57)

Let us also give a geometrical interpretation to some other states in H; ;. For
+

—p» used as the creation and annihilation

that, we simply need to write the modes A

operators in (3.50), as integrals of A* over different cycles. The anticommutation
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Figure 3.7: By inserting the operator $. A" . A~, with cycles C; and Cy shown on the
figure, one obtains the state 7PS|vac) = (S + p)|vac), with p equal to the number of times

the cycles wind around each other.

Lt,n Lt,n Ltb,nb“ Ltb,nb
Lf:,ﬁ Ltly”l
a. | b. Ltz ma

Figure 3.8: a. A relation that follows from one-dimensionality of the Hilbert space of a
sphere with two marked points. b. The configurations on the left and on the right are

proportional with some coeflicient.

relation for these operators is equivalent to a geometrical identity, shown on fig. 3.6.
To obtain the state vy ® |—1), one inserts into the empty solid torus the operator
¢, A, effectively undoing the action of A} in (3.50). Similarly, the states vy ®|0,) and
vg ® |+1) can be obtained by inserting operators §, AT ¢, A~ and § A™, respectively.
On fig. 3.7, we show the operators needed to create the neutral states, which are

obtained by applying transformations 77 to the S-transform of the vacuum.

3.5.3.4 OPEs of Line Operators

We would like to find the OPEs of our line operators. For products involving the
atypical operator L,,, the OPE is trivial: such an operator simply shifts the value of n
for the other operators, with which it is multiplied. More interesting are the products

of the typical operators Ls ,. To find their OPE, we will need the relation of fig. 3.8a.
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It can be derived from the fact that the Hilbert space of the two-punctured sphere is
one dimensional, and from comparison of the invariants for two linked unknots and
for a single unknot in S3.

To derive the expansion for the product Lg, ,, X Lg, n,, We place two parallel
operators along the b-cycle inside a solid torus, and look at the resulting state on
the boundary 72. Assuming that t;t, # 1, the Hilbert space for the torus with
this insertion is one-dimensional, and the state created by the insertion of the two
operators is proportional to the state created by Ly, ¢, n,+n,, With some proportionality
coefficient f, which in general can be a holomorphic function of ty, ts, and also of
the holonomy t; of the background bundle along the b-cycle of the torus. To fix this
coefficient, consider the configuration on fig. 3.8b. To get from the l.h.s. to the r.h.s.,
one can apply the relation of fig. 3.8a twice, or one can first fuse Ly, ,, and L, p,,
and then apply the relation once. The two ways of reducing the picture should be
equivalent, and this fixes the proportionality factor f, mentioned above, to be equal

to1— tb_l. This leads to the following OPE,

Lthm X Ltz,nz = Lt1t2,n1+712 - Lt1t2,n1+n2—1 . (358>

(Here we absorbed a factor of tb_1 into the shift ny +mny — ny +ng — 1.)

Now let us turn to the more subtle case of t;t, = 1. Let us write the OPE as
Lt,nl X Lt_l,ng = LP,n1+n2 ) (359)

where Lp,, is some new line operator, to be determined. Again, assume that the
operators Lg ,, and L1 ,, lie along the b-cycle of a solid torus. In the sector t;, # 1,
the Hilbert space on T with this insertion is one-dimensional, and one can apply the

same arguments that we used above. The result is

LP,n1+7L2 = Ln1+n2 - 2Ln1+n271 + Ln1+n272 N ) # 1 ) (360)

where we applied the relation (3.56) to the OPE (3.58). For t, = 1, the product
Ly ny X Ly-1 p, creates some state |Lp ,,1n,, 1) in the Hilbert space H; ;. In the ghost

sector, this state is v; (in the notations of sec. 3.5.1), since the singularities in Lg, ,,
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and L¢-1 ,,, do not allow the ghosts to fluctuate. We also need to find, what linear
combination of the states (3.50) of the fermionic gauge fields is created by Lp p,4n,-
For that, we note that gluing a solid torus with the operator Lp ,,4,, to an empty
solid torus produces S' x S§? with two line operators L ,, and Ly-1 ,,, along S*. The

corresponding invariant is equal to one, so
(lLP,nH-nza 1>7 Uy & |0a>) =1. (361)

On the other hand, if we glue the same tori, but with transformation S sliced in
between, we get a three-sphere with two unlinked unknots L¢ ,, and L¢-1 ,, inside.

The invariant for this configuration is zero, so
(ILP,ny+nz, 1) 00 ® [03)) = 0. (3.62)
From the two equations above, we find that
|Lp,ny4ngs 1) = 01 @ [0p) - (3.63)

Thus, the line operator Lp ,, which can be obtained from the OPE of Ly ,, and

L¢-1 p,, is defined by (3.60) in the sector t, # 1, and by (3.63) in the sector t, = 1.
The set of line operators Lg ,, L, and Lp, for different values of n and t # 1

forms a closed operator algebra. The OPEs of operators Lp , with themselves and

with Ly, follow from (3.58) and (3.59) by associativity.

3.5.3.5 A Comment On Indecomposable Representations

It is convenient to think of the operators L ,, as of Wilson lines, coming from the typ-
ical representations of the u(1|1) superalgebra, though, of course, this will be literally
true only in the U(1|1) theory, and not in ps((1|1). The OPE (3.58) of these operators
agrees with the tensor product decomposition (3.28) of the typical representations.
For the second OPE (3.59) to agree with (3.29), we have to assume that the line
operator Lp,, is actually the Wilson line for the indecomposable representation P,
defined in fig. 3.1. This statement makes sense already in the psl(1|1) theory, since P,

is also a representation of pl(1|1). In (3.60) we found that Lp, reduces in a special
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case to a sum of atypical line operators L,. Comparing this statement to fig. 3.1,
we see that it agrees with the decomposition that one would expect to happen for
the Wilson loop in representation P,. (Recall that Wilson loops in reducible inde-
composable representations are naively expected to decompose into sums of Wilson
loops for irreducible representations.) But we also note that this decomposition does
not hold always. Indeed, if it were true also in the sector t, = 1, the r.h.s. of (3.60)
would tell us that Lp,, is identically zero in that sector, which is not correct, since for
t, = 1 the operator Lp,, actually produces a non-zero state v; ® |0,). This state can
be obtained by inserting the operators § A" and § A~, as shown on fig. 3.7, together
with the local operator Oy, to produce the ghost wavefunction v;. It is tempting
to speculate that this combination of operators should arise as some point-splitting
regularization of the Wilson loop in representation P,, but we do not know, how to
make this statement precise.

If the typical operators Ly , are thought of as Wilson lines in the typical repre-
sentations (w, n), then their limit for t — 1 should correspond to Wilson lines in the
(anti-)Kac modules (0,n)4, introduced on fig. 3.1. The Torres formula (3.56) then
says that the Wilson loops in these indecomposable representations actually reduce
to sums of Wilson loops L, for the irreducible building blocks of the indecompos-
ables. This statement, again, is true in the sector t, # 1. For t, = 1, one should
find some independent way to fix the state in #H,;, produced by the operator L ,,.
More precisely, since there are two different versions (0,7n) and (0,n)_ of the limit
of (w,n) for w — 0, one would expect that there are two versions L;, + and L;, _
of the operator lim¢_,; L¢ ,, which produce two different states in H; ;. We are not
sure, what these states are.?8.

The general situation with Wilson loops in reducible indecomposable representa-

tions is the following. It is consistent to assume that they do split into sums of Wilson

Z80ne possible guess would be that L, ; for t, = 1 is equivalent to )\*5(2)(0*764_) § AT, and
similarly for L; , _, with plus and minus indices interchanged. The reason is that this combination
is U(1)g-invariant, and depends only on AT, and not on A~, as the Wilson line in representation

(0,n)4 should.
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loops L, if the background monodromy t; along the knot is non-trivial. When t, = 1,
one has to find some independent way to determine, what states in H; ; they produce.
For P,, we used the OPE of two typical operators, and for the (anti-)Kac modules
(0,n)+, one could possibly use the relation to the degeneration limit of the typical
operators. But for general indecomposable representations, there seems to be no nat-
ural way to determine the state in H; ;, and therefore it does not make much sense

to consider such Wilson loops as separate operators at all.

3.5.4 U(1|1) Chern-Simons

Since the U(1]1) theory is the Zg-orbifold of the ps((1|1) Chern-Simons, it is com-
pletely straightforward to write out its Hamiltonian quantization, once it is known for
psl(1]1). For that, one simply needs to restrict to states with U(1)g-charge divisible
by k, and to sum over winding sectors.

For illustration, we consider explicitly the torus Hilbert space. The windings
around the two cycles will be labeled by integers w and w’, which we take to lie in
the range 0 < w,w’ < k — 1. The corresponding holonomies are t,, = exp(2miw/k)
and t,, = exp(2miw’/k). Let Hoo be the Zi-invariant subspace of the psl(1]1) zero-
winding Hilbert space Hi 1, and let H,, v = Hg, ¢, be the one-dimensional Hilbert
spaces in the sectors with windings w and w’. The Hilbert space of the U(1]1) theory
on 77 is the direct sum Hrz = By Hop 1o

To find the states that are created by loop operators Ly, ,, L, and Lp,, we take
corresponding states in the psl(1]1) theory, set the longitudinal holonomy t; to be
equal to exp(2miw’/k), and sum over the winding sectors w’ = 0,...k — 1. Setting

|w, w') = |ty, ty), from the equations (3.51), (3.54), (3.57), (3.60) and (3.63) we find

k—1
Lun) = 3 exp(ri(n = 1/2)w [K)w,w), w #0;
'=0

-1

1 kz exp(2minw’/k)

L) = — .
[Ln) = 00 @ |0a) + 2i £~ sin(rw'/k) 0w
k—1
|Lpa) =01 @[0) +2i Y sin(rw'/k) exp(2mi(n — ' /k)|0,w) . (3.64)
w'=1
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The parameter n is periodic with period k, and we take it to belong to the interval
0 < n < k—1. If we project out the subspace Hoo, the states |L,) and |L.,,)
withn=0,...k—1, w=1...k — 1, corresponding to a restricted set of irreducible
representations, would form a basis in the remaining Hilbert space. This is what one
would have in the ordinary, bosonic Chern-Simons theory. In the full Hilbert space
Hr2, the states created by the line operators that we have discussed do not form a
basis. More precisely, it is not even clear, what one would mean by such a basis, due
to the rather weird nature of Hg.

The bilinear product of states in U(1|1) theory is 1/k times the product in the

psl(1]1) theory, where the factor 1/k comes from eq. (3.37). In particular, we have

- 1
(|w> w,>7 w, w/>> = E(Suﬂrfﬁmodk,o 5w’7ﬁ7’ mod k, 0 » (365)
and therefore
(ILwn)s [L7)) = Ow+@modk,0 On-+7i—1mod k,0 - (3.66)

Let us look at the modular properties of the states, created by the line operators.
Under the transformation 7, the state |w,w’) transforms into |w,w — w). The
operator L, , thus picks a phase exp(2miw(n —1/2)/k). The combination w(n—1/2)
is the quadratic Casimir for the typical representation (w,n), and the framing factor
that we got is what one would expect from the conformal field theory. The operator
L, is invariant under 7. The operator Lp, does not transform with a simple phase,
but rather is shifted as

T|Lpn) = |Lpn) +v1 ®@|0,) . (3.67)

Geometrically, the reason is that the operator, which defines the state |0;), is given by
integration of A* and A~ over the contours of fig. 3.7. Under the 7-transformation,
the winding number of the two contours changes. We note that in the sector H the
operator 7T is not diagonalizable. This is the signature of the logarithmic behavior of
the CFT, which presumably corresponds to our Chern-Simons theory.

Under the modular transformation S, the state |L,, ,) changes into > ., S£IR|LR/)
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with

Sy’ = %exp(—?mj((n —1/2w + (0 — 1/2)w)/k), (3.68)
Sgln = Zisin(mw/k) exp(—2min'w/k) . (3.69)

k

The other line operators transform as S|L,,) = vo®|0,) + > 5, SH|\ L) and S|Lp,) =
-1 ® |0a> + ZR’ SII;:%HLR/% with

ey 1
w,n — _2 . / .
Sy ST E—n exp(—2minw'/k) , (3.70)
o ien(rut
A L) Sm(gw/ ) exp(~2ri(n — 1)u! /) (3.71)

Modular transformations very similar to (3.68)-(3.71) were previously derived in the
U(1|1) WZW model in [60]. There are, however, some differences. The transfor-
mations most similar to ours, but with H( part omitted, are called “naive” in that
paper. A slightly different version of transformations is derived using a particular reg-
ularization, whose role is essentially to avoid dealing with Hgo. (The Chern-Simons
interpretation of this regularization is explained on fig. 11-12 of that paper.) We will
not attempt to rederive the modular transformations with the regularization of [60],

since in our approach a regularization is not needed.

3.6 Some Generalizations

In this section, we make some brief comments on supergroup Chern-Simons theories
other than psl(1]1) or U(1|1). Much of what we are going to say here is a summary
of results of [1]. The reason we decided to make this summary is that there, the
focus was not on the three-dimensional, but on the analytically-continued version of
the theory. Here we would also like to emphasize the importance of coupling to a
background flat bundle. Our understanding of the supergroup Chern-Simons theories

is very limited, and this section will contain more questions than answers.
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3.6.1 Definition And Brane Constructions

To define a supergroup Chern-Simons theory, one needs to choose a complex Lie
superalgebra g, which possesses a non-degenerate invariant bilinear form. The bosonic
and the fermionic parts of g will be denoted by gz and gg, respectively. One also needs
to choose a real form gg for gy, and a global form Gy for the corresponding ordinary
real Lie group?®. A real form for the whole superalgebra g is not needed. The action
of the theory is the usual Chern-Simons action, except that the gauge field is a sum of
an ordinary gg—valued gauge field and a Grassmann gi-valued one-form. The action
is multiplied by a level k, whose quantization condition is determined by the global
form Gj, as in the usual Chern-Simons theory. More precisely, the fermionic part of
the action can have a global anomaly, in which case the quantization condition for
k should be shifted by 1/2, to cancel the anomaly. To state exactly what we mean
by k, we have to specify the regularization scheme. In flat space, one can make the
path-integral absolutely convergent by adding a Yang-Mills term, at the expense of
breaking the supersymmetry from N = 4 to N' = 3. The Chern-Simons level then
receives no one-loop renormalization. By k we mean this “quantum-corrected” level®.
An equivalent definition of k is by a brane construction, which is presented below.
On a curved space, the correct treatment of the theory at one-loop is not entirely
clear (see e.g. Appendix E of [1].)
By analogy with the ordinary Chern-Simons theory, one can define an “uncor-
rected” level k' by
= k' + |hg| sign(k'), (3.72)

where hg is the dual Coxeter number of the superalgebra. One expects that this £’ is

the level of the current algebra, which one would find in the Hamiltonian quantization

290me could also imagine defining a complex supergroup Chern-Simons theory, in which the
bosonic gauge fields would be valued in the complex Lie algebra gy, and the fermions — in two
copies of g;. More generally, it should be possible to define quivers of supergroup Chern-Simons

theories, as mentioned in section 2.2.6 of [1].
30Note that we changed notations slightly compared to chapter 2. What we call k here is equal

to what was called K in that chapter.
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(k) D3 n gl
D3 (1, k)

Figure 3.9: Brane construction for an N/ = 4 Gaiotto-Witten theory. The complexified
type 1IB string coupling should belong to a semicircle of radius k, as shown on the left.
The relative displacement ¢, of the two (1, k)-branes is the SU(2) x-triplet of masses. The
D3-branes are shown slightly displaced along the direction of the NS5-brane just for clarity

of the picture.

0|12 3 |4/5|6|7|8]9
D3 |vI|v|v|iWv)|=|=|=|-]=|-
NS5 | v v v = |v|v|v|=|=-|-
L) | v v iv] = |=|=|=|v|v]|v

Table 3.1: Details on the brane configuration of fig. 3.9. The D3-branes span a finite interval
in the third direction. The R-symmetry groups SU(2)x and SU(2)y act on the directions
456 and 789, respectively.

of the theory, but that remains to be shown. We note that, while k£ can be a half-
integer, with definition (3.72) £’ is always an integer.

Completely analogously to the ps((1|1) case, the fermionic part of the gauge sym-
metry can be globally gauge-fixed. This introduces gi-valued bosonic superghost C'
and antighost C, as well as a fermionic g;-valued Lagrangian multiplier A. Observ-
ables of the topological theory are then in the cohomology of a BRST charge Q. This
partial gauge-fixing procedure for supergroup Chern-Simons was first described in
[24].

As was found in [24], supergroup Chern-Simons theories can be obtained by topo-
logical twisting from the A/ = 4 Chern-Simons-matter theories of [23]. For unitary
and orthosymplectic gauge groups, the latter can be engineered in type IIB string

theory by brane constructions [119], [120], [121]. For the U(m|n) theory, the brane
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configuration is shown on fig. 3.9. Table 3.1 shows, in which directions the branes
are stretched. For eight supersymmetries to be preserved, the complexified type 11B
coupling should lie on a semicircle of radius k, as shown on the left of fig. 3.9. The
coupling constant can thus be of order g?> ~ 1/k, so, the theory has a well-defined
perturbative expansion in 1/k. The level k for U(m|n) should satisfy the general-
ized s-rule condition |k| > |n — m|, and otherwise the theory breaks supersymmetry
[36], [119], [122], [123]. One can also turn on an SU(2)x-triplet of masses ¢,, which
correspond in the brane picture to the relative displacement of the (1, k)-branes in
directions 456, as shown on fig. 3.9. For this deformation to preserve supersymmetry,
the generalized s-rule requires |k| > max(m,n).

Let us also discuss brane construction for the orthosymplectic theories. For that,
we add an orientifold three-plane to the configuration of fig. 3.6.3. (For a review of
orientifold planes, see [25], [26], or section 2.5.1.) Recall that the orientifold three-
planes have two Z,-charges, one of which is usually denoted by plus or minus, and the
other by a tilde. Upon crossing a (p, ¢)-fivebrane, the type of the orientifold changes:
if p mod 2 # 0, then plus is exchanged with minus, and if ¢ mod 2 # 0, then the tilde
is added or removed. A possible configuration is shown on fig. 3.10. In the interval
between the two (1, k)-fivebranes, the gauge group is O(2m+1) on the left and Sp(2n)
on the right. The leftmost and rightmost orientifold planes on the figure have a tilde,
if k is even, and do not have it, if k is odd. If the 653_—plane would appear on the far
right, the theory would have an extra three-dimensional hypermultiplet, coming from
the fundamental strings that join the D3-branes and the ()Vi’)_—plane. That would give
a theory different from what we want. Therefore, we have to take k£ to be an odd

integer. In the OSp(2m + 1|2n) Chern-Simons, we normalize the action to be

kosp 2 3

where Str is the supertrace in the fundamental representation of the supergroup. Here
kosp = k/2, where the factor of 1/2 comes from the orientifolding. Let us call a bosonic
Chern-Simons term canonically-normalized, if it transforms by arbitrary multiples of

21 under large gauge transformations, assuming that the gauge group is connected
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Figure 3.10: The brane construction for the N' = 4 Gaiotto-Witten theory, which upon

twisting would give OSp(2m + 1|2n) Chern-Simons. The leftmost and rightmost orientifold
— 4

planes are O3™ | if k is even, and O3%, if k is odd.

and simply-connected. With the normalization (3.73), the level k.o, multiplies the
canonically-normalized Chern-Simons term for the Sp(2n) subgroup, and twice the
canonically-normalized action®' for Spin(2m + 1). From what we have said about the
brane configuration, we see that £k is odd, and thus k., € 1/2 + Z. Therefore, the
Sp(2n) part of the bosonic action is anomalous under large gauge transformations.
But that precisely compensates for the anomaly for 2m + 1 hypermultiplets in the
fundamental of Sp(2n), so, the theory is well-defined. For any supergroup Chern-
Simons theory, one expects the analog of the s-rule to be |ky| > |hg|. This is equivalent
to the requirement that kg, as defined in (3.72), does exist. For OSp(2m + 1|2n), this
condition reads as |k| > |2(n —m) + 1].

For the even orthosymplectic group OSp(2m|2n), the brane configuration is shown
on fig. 3.11. To avoid having an (%_—plane and an extra hypermultiplet, this time we
have to take k to be even, and therefore k,, = k/2 is an arbitrary integer, consistently
with the fact that the fermionic determinant has no global anomaly. The generalized

s-rule is |k| > 2|n —m + 1.

3.6.2 Some Properties

Importantly, for Lie superalgebras there exist automorphisms, which commute with

the bosonic subalgebra. For the so-called type I superalgebras, the group of these

31More precisely, this is true for m > 1. For m = 1, it is four times the canonically-normalized

action.
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Figure 3.11: The brane construction for the N' = 4 Gaiotto-Witten theory, which upon

twisting would give OSp(2m/|2n) Chern-Simons. The leftmost and rightmost orientifold
~+

planes are O3%, if k is even, and 03", if k is odd.

automorphisms is U(1). Type I superalgebras are gl(m|n), together with the sub-
quotients sl and psl, and the orthosymplectic superalgebras osp(2|2n). The fermionic
part g7 for type I decomposes under the action of gy into a direct sum of two represen-
tations. The U(1)-automorphism acts on them with charges +1. For superalgebras of
type II, which are all the other superalgebras, the relevant group of automorphisms is
only Z,. It acts trivially on gg, and flips the sign of elements of g7. In Chern-Simons
theory, one can use these automorphisms to couple the theory to a background flat
connection. For type I, this can be a complex flat line bundle, just as we found for
psl(1]1) and U(1|1). The partition function of the theory depends on the background
complex flat connection holomorphically. In flat space, the imaginary part of the
background flat connection can be identified with the SU(2) x-triplet of masses, men-
tioned above. For a theory with a type II superalgebra, the background bundle can
only be a Zy-bundle. Equivalently, one can assign antiperiodic boundary conditions
around various cycles of the three-manifold for the gy-valued fields.

Line observables of the supergroup Chern-Simons theory include Wilson lines in
various representations of the supergroup, as well as vortex operators, which are
expected to be equivalent to the Wilson lines, at least modulo Q. Omne can also
construct twist line operators by turning on a singular holonomy for the background
flat gauge field, as we did in simple examples in the present chapter. For special values
of the holonomy, those operators can be equivalent to ordinary vortex operators.

Consider the theory on R3, or other space with three non-compact directions, and
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assume that the background flat bundle was turned off. It is then possible to give
vevs to the scalar superghost fields C' and C' and to partially Higgs the theory. For
example, the U(m/|n) gauge supergroup can in this way be reduced down to U(|n—m]).
(In the brane picture, this corresponds to recombining a number of D3-branes and
taking them away from the NS5-brane in the directions 789.) Since the superghosts
appear only in Q-exact terms, this procedure does not change the expectation values
of observables in the Q-cohomology. By this Higgsing argument one can see that the
expectation values of Wilson loops vanish for almost all representations, except for
the maximally-atypical ones. The classes of maximally-atypical representations are
in a natural correspondence with representations of U(|n —m|), and the Wilson loops
in those representations reduce to Wilson loops of the ordinary, bosonic U(|n — m|)
Chern-Simons theory upon Higgsing. Thus, on R? the U(m|n) supergroup theory does
not produce new knot invariants. (A similar story holds for other supergroups?.) Tt
is however interesting to turn on a background flat bundle, which in flat space means
just a constant SU(2)x-triplet of mass terms. Looking at the brane picture, one
would expect that for large ¢, the U(m|n) theory would reduce to U(m) x U(n)
Chern-Simons. If this were true, then, in particular, we would have a knot invariant,
which interpolates between the U(Jn — m|) and the U(m) x U(n) invariants. This is
certainly very puzzling. Unfortunately, we cannot test this in the simple examples
considered in this chapter, since the atypical representations of U(1|1) do not produce
non-trivial knot invariants.

On a compact closed three-manifold, the theory has both bosonic and fermionic
zero modes. To get a well-defined invariant, one needs to turn on a background flat
bundle. The partition function is then a holomorphic function thereof. Alternatively,
one can insert loops with vortex operators. As discussed in section 2.3.2, to remove

all the zero modes by a single vortex operator, it has to be labeled by a typical weight

32 Almost all supergroup Chern-Simons theories can be reduced in this way to bosonic Chern-
Simons. One exception is the series OSp(2m + 1|2n), which can be Higgsed only to OSp(1|2n).
However, we found in section 2.5.5 that the analytically-continued version of OSp(1]|2n) Chern-

Simons is dual to the ordinary Chern-Simons with gauge group O(2n + 1).
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Figure 3.12: The S-dual of the brane configuration, which describes the U(m|n) Chern-

Simons theory.

of the superalgebra.

3.6.3 Dualities

The configuration of fig. 3.9 is clearly similar to the brane contruction for the analytically-
continued theory, discussed in Chapter 2. If we moved the (1, k)-branes along the third
direction away to infinity, we would recover precisely the configuration studied in [6]
and in the previous Chapter. In the language of the analytically-continued theory, the
role of the (1, k)-branes is to choose the real integration contour for the path-integral.
Indeed, the fluctuations of the D3-branes in the directions 456 are described in the
4d N = 4 Yang-Mills theory by three components of the adjoint-valued scalar field.
Upon twisting, those become the imaginary part of the gauge field of the analytically-
continued Chern-Simons theory. At the positions of the (1, k)-branes these fields are
set to zero, which means that we are working with the real integration contour.

Having a brane construction, one can apply various string theory dualities. In
the analytically-continued Chern-Simons, it has been shown that the S-dual theory
gives a new way to compute the Chern-Simons invariants [6], [74]. One might ask,
whether we can obtain anything useful by considering the S-dual of our configuration
of fig. 3.9, which is shown on fig. 3.12. Unfortunately, this does not seem to be the
case, beyond the duality for the psl(1]|1) and U(1]1) theory, which has been considered
in previous sections.

The problem is that the S-dual configuration of fig. 3.12 contains D3-branes ending

on (k, 1)-fivebranes. The low energy field theory for such a “tail” has been described in
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T(U(n))

Figure 3.13: The interaction of n D3-branes with a (k,1)-brane is described by coupling
the D3-brane gauge fields to the T'(U(n)) theory via the U(n) symmetry of the Higgs branch
of T(U(n)), and gauging the Coulomb branch of T'(U(n)) with a U(n) Chern-Simons gauge
field at level k.

NS5
D5 m

D3 n D5

D3

Figure 3.14: A brane configuration, which produces a free U(n)xU(m) bifundamental
hypermultiplet. There are m and n D5-branes on the left and on the right, arranged so as

to impose the Dirichlet boundary condition in the 4d A/ = 4 Yang-Mills theory.

[29], and is shown on fig. 3.13. The U(n) gauge theory of n D3-branes is coupled to the
Higgs branch of the three-dimensional theory T'(U(n)), the Coulomb branch of which
is gauged by a level k Chern-Simons gauge field. The T'(U(n)) theory with non-abelian
symmetries of the Coulomb branch gauged does not have a Lagrangian description,
and therefore the configuration of fig. 3.12 does not seem to be particularly useful for
the purpose of studying supergroup topological invariants.

More precisely, there exists one case, where gauging the Coulomb branch of
T(U(n)) is easy [29] — namely, n = 1. Using the description of this case in 29|,
one can readily see that the configuration of fig. 3.12 for m = n = 1 gives the mirror
of U(1|1) Chern-Simons, which was considered in section 3.4.4.

One can alternatively view the mirror transformation of the U(m|n) theory as
follows. We represent the bifundamental hypermultiplet of the U(m|n) theory as the
IR limit of the Coulomb branch of some UV theory, and then couple it to bosonic
Chern-Simons gauge fields. The relevant UV theory can be found by replacing the
(1, k)-fivebranes on fig. 3.9 by a bunch of D5-branes, so as to impose the Dirichlet

234



ooRONOROEE )

Figure 3.15: A quiver gauge theory, which is obtained by S-duality and a sequence of
Hanany-Witten moves from the brane configuration of fig. 3.14.. We follow the notations of
[29]: the circles denote unitary gauge groups, the square is the fundamental hypermultiplet,

and connecting lines are bifundamental hypermultiplets.

boundary condition (see fig. 3.14), and then applying the S-duality and making some
Hanany-Witten moves. (For n = m = 1, this procedure would give the psl(1|1)
theory and its mirror.) The resulting UV theory is given by the quiver of fig. 3.15.
It is an “ugly” quiver, in the terminology of [29]. As demonstrated in section 2.4
of that paper, it has nm monopole operators, which in the IR give rise to nm free
hypermultiplets, as expected.

Again, this description is not useful for non-abelian supergroup Chern-Simons
theories, since the non-abelian symmetry of the Coulomb branch of the quiver emerges
only in the IR. We can nevertheless play a game similar to what we did for the single
hypermultiplet. We can couple the quiver theory to n+m —1 flat GL(1) gauge fields,
using the dual photon translation symmetries and FI terms of the UV theory. On the
one hand, it is clear from the IR theory that the resulting invariant is a product of
nm abelian torsions. On the other hand, it can be computed by solving non-abelian
Seiberg-Witten equations®® for the quiver of fig. 3.15. One expects that the solutions
to those equations, in the limit of large FI terms, can be obtained by embedding nm
solutions of the abelian equations, so as to reproduce a product of abelian torsions.
Since, anyway, this invariant does not produce anything new, we will not consider it

in more detail.

33Those equations are completely analogous to the abelian ones, and are written out in

Appendix3.7.
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There is one last case, where the mirror symmetry can be useful for supergroup
Chern-Simons. This is when the level & is equal to one. The reason is that a (1, 1)-
fivebrane can be related by S-duality, say, to a D5-brane, while preserving the NS5-
brane in the configuration of fig. 3.9. The generalized s-rule requires in this case that
|n —m| < 1. By applying a further S-duality, the theory can be mapped to an N' =4
Yang-Mills with no matter or with a single fundamental hypermultiplet. In this way,
e.g., the U(n|n) Chern-Simons theory at level one would be related to the non-abelian
U(n) Seiberg-Witten equations. The problem, however, is that the s-rule in this case
does not allow us to turn on a background flat bundle, except for the case of the
U(1]1) theory. Therefore, even if the mirror theory does compute some non-trivial
invariant, it will not be computable in the U(m|n) supergroup Chern-Simons. It is
possible that in the orthosymplectic OSp(2m + 1|2n) case the situation is better, and
one can turn on a background Zy-bundle and get a non-trivial duality of invariants,

but we will not explore this here.

3.7 Appendix A: Details On The N =4 QCD

Here we describe the fields, the BRST transformations and the Lagrangian for the
topologically twisted N = 4 SQCD with one fundamental flavor. The bosonic fields
of the theory are the gauge field A, the triplet of scalars, which we write as a complex
scalar o and a real field Y, and the hypermultiplet scalar fields, which upon twisting
become a spinor Z®. The fermions of the vector multiplet transform in the (2,2, 2)
representation of the Lorentz and R-symmetry groups, and upon twisting produce
fermionic scalars n and J of ghost numbers —1 and +1, a one-form 1 of ghost number
+1, and a two-form x of ghost number —1. The fermions of the hypermultiplet after
twisting remain spinors, and will be denoted by (, (of ghost number +1) and ¢, (of
ghost number —1).

The BRST transformations of the fields can be obtained by dimensional reduc-
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tion* from the formulas of Chapter 2,

bA=4, bo=0, dT=n, Mi=v, §Z=¢
67722[0_75]7 0 = —dao, 5?/5:2[0_7}/1]7 ox=H, oQ,=1i0Z, ¢ =/Ff.
Here y = iZ% ® Zo? is the moment map, and H and f are auxiliary fields. The

equations of motion set H = F + % (dAYl + %y, — %e%) and f = IDZ + 1Y, Z, and the

Seiberg-Witten equations are

11
F+x (dm + gt - 56%) =0, (3.74)
DZ+iviZ =0. (3.75)

The FI one-form ¢ is valued in the center of u(n). Here are a couple of useful identities,
/ dBoyy (DiaDiza +Za (Yf + ER) Z‘“)
= /d?’xﬁ]ﬂz — /d%ﬁtr (YiDp') + /d3x tr (A ), (3.76)
[@avin (5524 4 G - o) - oD

— /tr (H AxH) +/tr(F/\62¢—F/\u) +/d3xﬁtr (YiD;p') . (3.77)

where R is the scalar curvature. These identities allow to rewrite the SQCD action
in the form (3.15)-(3.16). (Our normalization of the coupling constant is such that
the gauge field kinetic term is [ tr 7> /4me?.)

The action of the twisted theory in general contains the term Y; Di¢;, which breaks
the SU(2)y-symmetry. This, in fact, is the same term that we saw in section 3.2.1 in
the electric theory. If dx ¢ = 0, the symmetry is restored. For an irreducible solution
of the Seiberg-Witten equations, one then has Y; = ¢ = & = 0, and the equations
(3.74)-(3.75) can be simplified to (3.19). For a more general ¢, the field Y} is non-zero
and can be found by applying da to the equation (3.74).

We focused on the QCD with one fundamental flavor, but this twisting procedure
generalizes in an obvious way to an arbitrary quiver theory with vector multiplets

and hypermultiplets.

340Qur notations here are slightly different from Chapter 2 in that here the adjoint-valued fields

are Hermitian. The covariant differential is d4 = d + 7A.
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3.8 Appendix B: Boundary Conditions Near A Line
Operator

In general, in giving a definition of a disorder operator, one needs to specify the
boundary conditions for the fields near the singularity, to ensure that the Hamiltonian
in presence of the operator remains self-adjoint. (A closely related condition is that
in Euclidean signature the kinetic operator of the fields should remain Fredholm.)
For that, the boundary conditions should satisfy two requirements. First, to verify
the Hermiticity of the Hamiltonian, one integrates by parts, and the boundary term
should vanish. Second, the boundary conditions should set to zero half of the modes
near the boundary. Here we would like to sketch these boundary conditions for our
disorder operators Ly ,, since we use them explicitly in section 3.5.2.2. (Note that
sometimes in similar problems there exist families of possible boundary conditions,
and this leads to important physical consequences [124], [125]. In our case, nothing
like this happens.)

We consider an operator Ly ,, stretched along a straight line in R®. The coordi-
nate along the operator will be denoted by ¢ and will be treated as time, and the
polar coordinates in the transverse plane will be denoted by r and 8. For the back-
ground gauge field, we choose the gauge in which B is zero, but fields with positive
U(1)g-charge are multiplied by t in going around the operator. We assume t to be
unimodular and write it as t = exp(2wia), with a € (0,1).

For the scalar field C*, we want to impose a boundary condition with which the
two-dimensional Laplacian A would be self-adjoint. The field can be expanded in
modes of different angular momentum ¢, valued in a +Z. Near r = 0, the modes with
angular momentum £ behave like 7*/l. We impose the boundary condition C|,_,o = 0.
It actually implies that C' vanishes at least as r™®@1=@)  This boundary condition
has the required properties.

The Q transformations act as
§Ag = —0,C, dA=—-dC, 6C =)\, (3.78)
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where we separated the fermionic gauge field into its time component Ay and com-
ponents A in the transverse plane. The boundary condition for the fermions, which
is compatible with vanishing of C' and with Q-invariance, is to require that A and A,
vanish at r = 0, and that A is less singular than 1/r, in an orthonormal frame. Then,
in fact, the fields A, Ay and 7 A vanish at least as r™(®1=%) and are square-integrable.
The fermionic Hamiltonian is the operator d+d* in two dimensions, acting on the field
A = Ag+ A+xA, where * is the 2d Hodge operator. It is easy to see (on the physical
level of rigor) that with our boundary condition the Hamiltonian is self-adjoint. If

z = rexp(i0) is the complex coordinate, then the operator reduces to

0 -0
o 0

: (3.79)

acting on the doublet ((Ag + ¢))/2, A,), plus a similar operator for the other pair of
fields ((Ag — 1)) /2, As). In verifying the Hermiticity of this operator, the boundary
term in the integration by parts vanishes. The boundary condition sets to zero a
minimal possible number of modes, so one expects that the operator is not only

Hermitian, but is self-adjoint.

3.9 Appendix C: Skein Relations For The Multivari-
able Alexander Polynomial

Here we derive two skein relations for the multivariable Alexander polynomial, which
are known [117] to define it completely, together with the skein relation of fig. 3.4,
the normalization (3.55), the formula of fig. 3.8a, and the fact that the invariant is
zero for a disjoint link.

Consider the case of two strands, labeled by holonomies t; and ts. The sphere
with four punctures ty, t;', t2, t;' and two basis contours is shown on fig. 3.16a.
Upon performing a braiding transformation, which brings the marked point t, around
the point t;, we arrive at the picture on fig. 3.16b. The contour C; gets a factor of t;

in crossing the left cut. To compare to fig. 3.16a, we also need to move the right cut
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Figure 3.16: a. Two cuts and two basis contours for a four-punctured sphere. b. The result
of the braiding transformation. The contour C; got multiplied by t; in crossing the left cut.

It will also get a factor of t2, when the right cut is moved back to its place.

S& i / - po ((brt2) /2 + (b1t2)1/2)
to t1

s tq to

Figure 3.17: A skein relation for the multivariable Alexander polynomial.

ty

back to its place. That will multiply the contour C; by a factor of t;. Overall, the

transformation acts on the contours as

G| it O @ (3.80)
c, 0 1 Co
Therefore, the state of U(1)g-charge —1 transforms by a factor (t;t,)~'/2, and the
two U(1)g-neutral states are transformed by a matrix with eigenvalues (t;t;)'/? and
(ti1t2)~'/2. (In taking a square root, we made a choice of sign such that the resulting
skein relation for t; = ty is consistent with fig. 3.4.) The skein relation that we find
is shown on fig. 3.17.
To completely characterize the multivariable Alexander polynomial, one more

skein relation is needed [117]. It relates seven three-strand configurations, shown

on fig. 3.18. The existence of this skein relation follows from the fact that the dimen-
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Figure 3.18: Braids for the 3-strand skein relation.

sion of the U(1)g-invariant subspace of the Hilbert space of the six-punctured sphere,
according to (3.44), is (3) = 6.

We need to find the action of the braiding transformations of fig. 3.18 on the
four contours that generate the twisted homology of the six-punctured sphere. For
example, let us consider the link Lss1;. The basis contours and the result of the
braiding transformation are shown on fig. 3.19. On the contours C; and Cy; we put
cross-marks at some points, which are not moved in the transformation. At these
points the one-form, which is being integrated over the contour, is taken on the first
sheet, and on the rest of the contour it is defined by analytic continuation. The first
step in comparing figures 3.19b and 3.19a is to bring the middle cut back to its place.
On the way, it will cross the contours C; and Cs, and that will multiply them by t,.
On fig. 3.20, we show the contour t2C;. We need to expand it in the new basis C}
and C,, which is shown by dashed lines. We start comparing the contours from the

cross-mark, and add a factor of t=! each time we cross a cut counterclockwise around

a puncture t. We find
t,C = C + Cy +t51(—C, — C +t,1C)). (3.81)

Repeating the same steps for C,, and for each link from fig. 3.18, we find the braiding
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t; C; by Cq b3 t; C; by Cq b3

Figure 3.19: a. A particular choice of cuts and basis contours for the six-punctured sphere.

b. The result of the braiding transformation, corresponding to the link Loa1;.

Figure 3.20: Contour t2Cy, which comes from C; of fig. 3.19 after moving the middle cut

back to its place. We show the new basis contours C} and C/, by dashed lines.
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matrices

1 0 toty by — 1
Ba11o = t3 ; Bigo =t )
to(ti — 1) tits 0 1
t, t1(1 — t3) 1 —t3+tity t,'(1—t3)
Bag11 = to ,  DBiiga = to 2 ;
1—t, 1—ty+tits tots(1 — t1) t
t1ts 0 1 1—+t3 1 0
BH = , B22 = s BO = . (382)
to(1—t) 1 0 toty 01

Here we defined the matrices by (C}, C,)T = B(Cy,Cy)”. The contours Cz and C4 are
transformed trivially.

Let ai273,4 be the four creation operators, obtained by integrating the fermionic
gauge field AT over the corresponding contours. The Hilbert space of the six-punctured
sphere contains one state of charge —2, from which we build the other states by ap-

plying a}. The six neutral states, which we are interested in, are

)

ajai|=2), ajaz|-2),

a1a4|—2)7 ajay|—2),
)

(3.83)

The highest weight state |—2) transforms under braiding by a factor det™"/? B, and
therefore so does the state ajaj|—2). The state af aj|—2) transforms by a factor
det!/? B. The states in the second and the third lines of (3.83) transform in doublets
by the matrix Bdet™/2B. TIn total, for each braiding transformation, the 6 x 6
braiding matrix has 1+ 144 = 6 independent matrix elements. We can collect them
in a 7 X 6 matrix, in which the rows correspond to the diagrams of fig. 3.18. The null-
vector of this matrix will give us the skein relation. Let us set g.(t) = t'/2 £ t=1/2,
Using the explicit expressions for the braiding matrices (3.82), one finds the skein

relation to be

9+(t1)9— (t2)L2112 —g- (t2)9+(t3)L1221 +g- (t1t§1)(L2211 + L1122)

+ g—(tatsty ) g (t3) Ly — g (brtaty ') g (t1)Loo + g (t7t57) Lo = 0. (3.84)
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This, indeed, is the correct skein relation for the multivariable Alexander polynomial.
Together with other relations and normalization conditions that we have found, it
fixes the knot invariant completely [117]. We should note, however, that we did not
explain, how to properly choose the square root of the determinant of the braiding
matrix in the transformation of the highest weight state. Thus, our derivation does

not allow to unambiguously fix relative signs of different diagrams in the skein relation.
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