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Abstract

The three-dimensional Chern-Simons gauge theory is a topological quantum �eld

theory, whose correlation functions give metric-independent invariants of knots and

three-manifolds. In this thesis, we consider a version of this theory, in which the gauge

group is taken to be a Lie supergroup. We show that the analytically-continued ver-

sion of the supergroup Chern-Simons theory can be obtained by topological twisting

from the low energy e�ective theory of the intersection of D3- and NS5-branes in the

type IIB string theory. By S-duality, we deduce a dual magnetic description; and

a slightly di�erent duality, in the case of orthosymplectic gauge group, leads to a

strong-weak coupling duality between certain supergroup Chern-Simons theories on

R3. Some cases of these statements are known in the literature. We analyze how

these dualities act on line and surface operators.

We also consider the purely three-dimensional version of the psl(1|1) and the

U(1|1) supergroup Chern-Simons, coupled to a background complex �at gauge �eld.

These theories compute the Reidemeister-Milnor-Turaev torsion in three dimensions.

We use the 3d mirror symmetry to derive the Meng-Taubes theorem, which relates

the torsion and the Seiberg-Witten invariants, for a three-manifold with arbitrary

�rst Betti number. We also present the Hamiltonian quantization of our theories,

�nd the modular transformations of states, and various properties of loop operators.

Our results for the U(1|1) theory are in general consistent with the results, found

for the GL(1|1) WZW model. We expect our �ndings to be useful for the construc-

tion of Chern-Simons invariants of knots and three-manifolds for more general Lie

supergroups.
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Chapter 1

Introduction

1.1 Topological Quantum Field Theory

A quantum �eld theory is called topological, if its observables do not depend on the

distances. For example, the partition function of such a theory in curved space does

not depend on the metric and produces a topological invariant1. Such theories are

almost trivial in the sense that they do not contain any propagating particles. Never-

theless, they have important applications both in physics and in mathematics. In the

real world, these theories describe low-energy limits of gapped systems, and therefore

are relevant for the classi�cation of quantum phases of matter. In mathematics, the

topological quantum �eld theory (TQFT) methods have by now become a standard

part of topology.

Presumably the �rst example of a TQFT was considered by A. Schwarz [3] in the

late seventies. It is a free, non-interacting theory with the action

I =

∫
d3x εµνρAµ∂νAρ , (1.1)

where Aµ is a gauge �eld in three dimensions and εµνρ is the antisymmetric tensor.

(To be precise, [3] also considers slightly more general theories.) The action (1.1)

is independent of the space-time metric, and is invariant under general coordinate

1We will not try to make our terminology very precise. What we call �topological invariant� can

depend on the choice of a smooth structure, as well as on some other choices.
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transformations. The theory can be de�ned on an arbitrary three-manifold W . Since

the functional integral with this action is Gaussian, the partition function is simply

the inverse of the square root of the determinant of the kinetic operator. To de�ne

this determinant, one �rst needs to �x the usual gauge invariance Aµ → Aµ + ∂µα.

The gauge-�xing condition necessarily depends on the metric of the manifold, but,

as one would expect on physical grounds, this dependence drops out of the partition

function. As found in [3], the topological invariant that one gets in this way is what

is known as the Ray-Singer torsion, or, equivalently, the combinatorial Reidemeister

torsion. A close analog of this theory will be the subject of chapter 3 of this thesis.

Here we would like to brie�y discuss some other classical examples of topological

theories, which will be important for the present thesis. The three-dimensional Chern-

Simons theory is a gauge theory with the action

I =
k

2π

∫
d3x εµνρ

(
Aaµ∂νA

a
ρ +

1

3
fabcA

a
µA

b
νA

c
ρ

)
, (1.2)

where Aaµ is a gauge �eld for some gauge group G, fabc are the structure constants, and

k is a coupling constant, which in general has to satisfy some quantization condition,

for the path-integral to be gauge-invariant. If the gauge group is U(1), the action

clearly reduces to (1.1). Again, the action is metric-independent, and therefore one

expects the theory to be topological, provided that it can be regularized in an invariant

way. The interesting observables in this theory are Wilson lines for external particles

charged under the gauge group G. For example, one can consider a closed Wilson

loop, located along some knot in R3 or in the three-sphere S3. It has been shown in

the foundational paper [4] that the expectation value of such a Wilson loop is the knot

invariant, which is known as the Jones polynomial. (This statement applies to the case

of gauge group SU(2) and Wilson operators in the two-dimensional representation.

For other groups and representations, the polynomials have di�erent names.) It is

a Laurent polynomial in the variable q1/2 = exp(πi/k), and it can be computed for

any given knot by a simple algorithm. It is a topological invariant, in the sense that

two knots with di�erent Jones polynomials cannot be continuously deformed into one

another without cutting the line. (The opposite, unfortunately, is not true: two knots

2



Figure 1.1: The right-handed trefoil knot.

with the same Jones polynomial need not be identical.) To give an example, for the

trefoil knot, shown on �g. 1.1, the polynomial is Ptrefoil = q1/2(−q4 + q2 + q+ 1), while

for the unknot it is Punknot = q1/2 + q−1/2. These two are di�erent, and the trefoil,

indeed, cannot be deformed into the unknot.

The polynomials above have integer coe�cients, and the same is true for all Chern-

Simons knot polynomials. This, de�nitely, is a very unusual structure for Wilson loop

expectation values in a quantum �eld theory. Mathematically, the integrality of the

coe�cients can be explained by the existence of another knot invariant, the Khovanov

homology [5]. To a given knot K it associates a vector space HK , which is bigraded,

that is, it has a decomposition into a sum of eigenspaces of two operators F and N.

The Jones polynomial can then be obtained as a trace,

PK(q) = TrHK
(−1)F qN . (1.3)

The coe�cients of the polynomial are dimensions of subspaces inside HK , and there-

fore are integers. Note that the Khovanov homology in general contains more infor-

mation than the Jones polynomial, since in taking the trace in (1.3), the eigenvalues

of F are relevant only modulo two.

To �nd a physical interpretation for the Khovanov homology, one needs to con-

struct a four-dimensional TQFT, in which one can de�ne surface operators. (A surface

operator is an operator, which is supported on a two-dimensional subspace, like a Wil-

son line is supported on a one-dimensional subspace.) Suppose that this TQFT is

considered on a four-manifold Rt ×W , where Rt is understood as the time direction,

3



and suppose we add a surface operator, supported on Rt×K, that is, stretched along

the time direction and along the knot K ⊂ W . The Hilbert space of such a topo-

logical theory is a vector space, which is naturally a topological invariant of W and

K, and, assuming the existence of two conserved charges F and N, has a chance to

coincide with the Khovanov homology. Suppose that such a theory is put on S1×W .

The partition function on this manifold is a trace over the Hilbert space, and, with an

insertion of operators (−1)F qN, would coincide with (1.3). (The trace in the partition

function should normally contain the operator exp(iTH), but the Hamiltonian H of

a topological theory is zero.) Therefore, the topological theory in question, upon

compacti�cation on a circle, should reduce to the Chern-Simons theory. The TQFT

with these properties has indeed been constructed2 in [6].

Besides Chern-Simons theory, another extremely important example of a TQFT

is the Donaldson theory in four dimensions. It can be obtained from the N = 2

supersymmetric Yang-Mills theory by putting it on a curved four-manifold V in a

suitable way [7]. Although the Yang-Mills theory has an explicit dependence on the

space-time metric, it contains a subsector, singled out by the condition of invariance

under a particular fermionic charge Q, in which the correlation functions are metric-

independent and de�ne a topological theory. The path-integral in such a theory can

be reduced to an integral over the subspace of Q-invariant �eld con�gurations. In the

case of the Donaldson theory, these are instantons, that is, gauge �elds with self-dual

�eld strength. Modulo gauge transformations, this space is �nite-dimensional. The

mathematicians formulate the Donaldson theory in terms of the intersection theory

on this �nite-dimensional space.

The N = 2 super Yang-Mills theory has a moduli space of vacua, where the gauge

group is partially spontaneously broken by an expectation value of an adjoint-valued

Higgs �eld. The theory is asymptotically-free, and therefore at long distances �ows

to strong coupling, if the expectation value of the Higgs �eld is not large compared

to the Yang-Mills dynamical scale. Usually, it is hard to produce any analytical

results for a strongly coupled theory, nevertheless, the exact action for the low-energy

2For other physical approaches to the Khovanov homology, see [8] and references in [6].
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e�ective description of the N = 2 super Yang-Mills theory has been found [9], [10].

This allowed to construct an alternative description of the Donaldson invariants [11].

Indeed, the observables of the topological theory do not depend on the metric, and

in particular do not change, if we rescale the metric by a large factor, so that the

large-distance e�ective description of the theory becomes valid. The formulation of

this alternative description of the Donaldson theory, known as the Seiberg-Witten

invariants, was a major success of topological quantum �eld theory.

1.2 Overview Of The Thesis

The main subject of the present thesis is the Chern-Simons theory in three dimensions,

but with the unusual feature that the gauge group is taken to be a Lie supergroup,

rather than an ordinary Lie group.

Chapter 2 of this thesis is based on the paper [1], written in collaboration with

Edward Witten. We de�ne and study the analytically-continued version of the super-

group Chern-Simons theory. In the context of ordinary Chern-Simons, the analytical

continuation was developed in [12], [13], [6]. It allows to continue the theory to

non-integer, and in general even complex values of the level k. This is achieved by

de�ning the path-integral with unusual middle-dimensional integration cycle in the

space of complexi�ed �elds. To ensure convergence of the integral, the integration

cycle is constructed as a Lefschetz thimble for the Morse function, which is taken

to be the real part of the action of the theory. The coordinate parameterizing the

Morse �ow becomes a new direction in the space, so that the topological theory for

the analytically-continued Chern-Simons is essentially four-dimensional. It turns out

to be equivalent [6] to the N = 4 super Yang-Mills theory in a half-space, with the

Kapustin-Witten twist [14]. In this thesis, we generalize these results to the case of

the supergroup Chern-Simons theory. The topological theory in question is obtained

by twisting the theory of the D3-NS5 brane intersection. After explaining this con-

struction, we apply various string theory dualities to obtain alternative descriptions

of the theory. In particular, we show that the supergroup Chern-Simons invariants

5



can be computed by solving the Kapustin-Witten partial di�erential equations in the

four-dimensional space with a particular three-dimensional defect. We study line and

surface operators and their transformations under the S-duality.

An interesting application of our construction arises for the case when the gauge

group is taken to be the orthosymplectic supergroup. We point out that the trans-

formation S−1TS of the SL(2,Z) S-duality group relates the analytically-continued

Chern-Simons theories with gauge groups OSp(2m+ 1|2n) and OSp(2n+ 1|2m). The

variable in the knot polynomials is changed as q → −q under the duality. Since the

weak coupling limit corresponds to q ∼ 1, the duality that we �nd relates the weak

and the strong coupling regimes. We �nd the transformations of line and surface

operators under this duality, and in particular obtain a natural correspondence be-

tween non-spinorial representations of the two Lie supergroups. Our results provide

a conceptual physical explanation to some known mathematical relations between

quantum orthosymplectic supergroups [16], corresponding knot invariants [15] and

supergroup conformal �eld theories [17].

Chapter 3 of this thesis is based on the paper [2]. We consider Chern-Simons

theories based on Lie superalgebras psl(1|1) and u(1|1). We show that they can be

coupled to background �at complex gauge �elds. With this coupling, these theories

compute the invariant of three-manifolds, which is known as the Reidemeister-Milnor-

Turaev torsion. We point out that the U(1|1) theory at level k can be obtained by

an RG �ow from the twisted version of the N = 4 QED with one �avor of charge k.

The background �at gauge �eld comes from a background twisted vector multiplet,

whose scalar component de�nes the FI parameter of the theory in the �at space. The

supersymmetric partition function of the QED can be localized on the solutions of the

three-dimensional Seiberg-Witten equations. This gives a physical explanation to the

theorem of Meng and Taubes [20], which relates the Milnor torsion and the Seiberg-

Witten invariants in three dimensions. Our story is in a sense a toy version of the

relation between the Donaldson and the Seiberg-Witten invariants in four dimensions,

except that here the Seiberg-Witten equations arise in the UV, and not in the IR. For

manifolds with small �rst Betti number, we discuss the matching of the wall-crossing

6



phenomena in the UV and in the IR theories.

We also construct the Hamiltonian quantization of the psl(1|1) and the U(1|1)

Chern-Simons theories. In particular, the skein relations for the multivariable Alexan-

der polynomial are derived. We illustrate some subtleties that are expected to be

important in the quantization of more general supergroup Chern-Simons theories.

Our �ndings are in general agreement with the results, obtained from conformal �eld

theory, however, in this thesis we do not attempt to derive a relation of the super-

group Chern-Simons theories and the WZW models. Finally, we present some brane

constructions, realizing the supergroup Chern-Simons theories for general unitary and

orthosymplectic gauge groups, and look at possible dualities for those theories.

7



Chapter 2

Branes And Supergroups

2.1 Introduction

In this Chapter, we consider the analytically-continued version of the Chern-Simons

theory with a supergroup. We take an approach, which has been developed in [6] for

the case of the ordinary Chern-Simons theory. Let us �rst give a brief overview of

that paper.

2.1.1 Overview Of Previous Work

In the paper [6], the Chern-Simons theory was engineered by a brane construction in

type IIB string theory. Consider a stack of n D3-branes, ending on an NS5-brane.

The theory on the worldvolume of the D3-branes is the N = 4 super Yang-Mills with

gauge group U(n). One can construct a cohomological TQFT out of it, by making

the Kapustin-Witten topological twist [14]. The boundary conditions along the end

of the D3-branes on the NS5-branes preserve the topological supercharge Q. The

topological theory can then be put on an arbitrary four-manifold M with a three-

dimensional boundary W with these boundary conditions. The action turns out to

be

I =

∫
M

{Q, V }+
iK
4π

∫
W

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (2.1)

8



Here K is a certain complex-valued function of gYM and θYM that will be described

later.1 Also, A is a complexi�ed version of the gauge �eld, roughly Aµ = Aµ + iφµ,

where Aµ is the ordinary gauge �eld and φµ denotes some of the scalar �elds of N = 4

super Yang-Mills theory (which scalar �elds enter this formula depends on the choice

of Q). The details of the functional V are inessential. Forgetting the scalar �eld φ for

a moment, what is written as the Chern-Simons term in (2.1) is really the topological

term of the Yang-Mills gauge �eld in the bulk. Writing it as a Chern-Simons term

is correct only as long as one considers small variations of the gauge �eld. The fact

that it is really the bulk topological term means that K need not be an integer for

the path-integral to be gauge-invariant.

If we restrict to Q-invariant observables, localized on the three-dimensional bound-

ary W , the theory with the action (2.1) will actually reproduce the Chern-Simons

theory. One important subtlety is that the gauge �eld is complexi�ed. In fact, as

explained in much detail in [12], the four-dimensional topological theory in question

is in general equivalent to the Chern-Simons theory with an unusual integration cycle

in the path-integral. The middle-dimensional integration cycle in the space of com-

plexi�ed gauge �elds can be found by solving the Kapustin-Witten equations along

the bulk coordinate, normal to the boundary. Those equations in fact de�ne a gra-

dient �ow, with the Morse function being the real part of the action of the theory.

The integration cycle then is a Lefschetz thimble. This guarantees that the real part

of the action is bounded from below, and the path-integral is convergent. In this

thesis, we will mostly try to stay away from the subtleties, related to the choice of

the integration contour.

The realization of the (analytically-continued) Chern-Simons theory by a simple

brane construction in [6] allowed to apply various string theory dualities, and thus

to obtain alternative descriptions of the theory. For example, applying the S-duality,

one �nds the theory of D3-branes ending on a D5-brane. The corresponding bound-

ary condition in the N = 4 super Yang-Mills is known to be the Nahm pole [21].

1This function is denoted Ψ in [6, 14]. In the present chapter, we call it K because of the analogy

with the usual Chern-Simons level k.
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Figure 2.1: An NS5-brane with m D3-branes ending on it from the left and n from the

right � sketched here for m = 3, n = 2. The D3-branes but not the NS5-brane extend in

the x3 direction, which is plotted horizontally, and the NS5-brane but not the D3-branes

extend in the x4,5,6 directions, which are represented symbolically by the vertical direction

in this �gure.

For this reason, the S-dual, �magnetic� description of the Chern-Simons theory is

inherently four-dimensional. The path-integral of that theory can be localized on

the solutions of the Kapustin-Witten equations with the Nahm pole boundary con-

dition. The space of these solutions is in general discrete. As checked explicitly in

[74], counting the solutions reproduces correctly the knot polynomials, with signed

counts of the solutions as coe�cients. This can be considered as a vast generalization

of the theorem of Meng and Taubes [20], which relates the U(1|1) knot polynomials

with the three-dimensional Seiberg-Witten invariants. (This special case will be the

subject of Chapter 3 of this thesis.)

By applying further a T-duality, one obtains a D4-D5 con�guration, and thus a

�ve-dimensional topological �eld theory in a half-space. It has been conjectured in

[6] that the space of supersymmetric ground states in this theory gives a physical

realization of the Khovanov homology.

2.1.2 The Two-Sided Problem And Supergroups

In this Chapter, we extend the construction of [6] to the case of Chern-Simons theory

with a supergroup. We mainly focus on the U(m|n) and the OSp(m|2n) supergroups,

for which there exist explicit brane constructions, but our arguments work for other

supergroups as well.
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We consider the brane con�guration of �g. 2.1, with m and n D3-branes on the

two sides of the NS5-brane. In �eld theory, this corresponds to U(n) and U(m)

maximally-supersymmetric Yang-Mills theories in two half-spaces, joined along a

three-dimensional defect. We prove that the action of the theory is given by the same

formula (2.1), with an important di�erence that the gauge �eldA is now superalgebra-

valued. Namely, it is a sum of a u(n) ⊕ u(m)-valued bosonic gauge �eld, which is

obtained by restriction of the bulk gauge �elds on the defect W , and a Grassmann

one-form �eld, valued in the bifundamental representation of U(m)×U(n). Therefore,

in this two-sided brane con�guration, the topological �eld theory living on the defect

is the U(m|n) supergroup Chern-Simons theory.

This supergroup theory has some peculiarities, which one does not �nd in the

ordinary, bosonic Chern-Simons. We give a brief review of Lie superalgebras and

their representations, and then discuss line and surface operators that can be used to

de�ne knot invariants in the theory, and some of their properties.

After that we consider some applications. First, as in [6], we apply S-duality and

get a description of the theory in terms of the N = 4 Yang-Mills with a D5-type three-

dimensional defect. We call this theory �magnetic�, while the theory before S-duality

is called �electric�. The path-integral here can be computed by counting solutions of

the Kapustin-Witten equations. This, in principle, gives a way to compute supergroup

knot polynomials, though many details remain unclear. We also identify the duals of

line and surface operators, found in the electric theory.

Our most interesting application arises for the gauge supergroup OSp(2m+1|2n).

This theory can be realized by essentially the same brane construction, but with

an addition of an orientifold three-plane. We �nd that the element S−1TS of the

SL(2,Z) S-duality group transforms this theory into supergroup Chern-Simons with

gauge group OSp(2n + 1|2m). In the special case of m = 0, this is a duality of

supergroup OSp(1|2n) Chern-Simons and ordinary, bosonic O(2n+ 1) Chern-Simons

theory. The variable q in the knot polynomials is mapped under the duality to −q.

Note that the weak coupling limit is q → 1, so, our duality exchanges the weak and the

strong coupling regimes. Again, we describe the mapping of line and surface operators
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under the duality. In particular, this mapping involves an interesting correspondence

between representations of the two supergroups. For the case m = 0, this mapping

was known in the literature [71].

2.2 Electric Theory

2.2.1 Gauge Theory With An NS-Type Defect

As explained in the introduction, our starting point will be four-dimensional N = 4

super Yang-Mills theory with a three-dimensional half-BPS defect. This theory can

be de�ned in purely gauge-theoretic terms, but it will be useful to consider a brane

construction, which gives a realization of the theory for unitary and orthosymplectic

gauge groups. We consider a familiar Type IIB setting [36] of D3-branes interacting

with an NS5-brane. As sketched in �g. 2.1 of the introduction, where we consider

the horizontal direction to be parametrized by2 y = x3, we assume that there are m

D3-branes and thus U(m) gauge symmetry for y < 0 and n D3-branes and thus U(n)

gauge symmetry for y > 0. We take the NS5-brane to be at x3 = x7 = x8 = x9 = 0

and hence to be parametrized by x0, x1, x2 and x4, x5, x6, while the semi-in�nite D3-

branes are parametrized by x0, x1, x2, x3. With an orientifold projection, which we will

introduce in section 2.5, the gauge groups become orthogonal and symplectic. Purely

from the point of view of four-dimensional �eld theory, there are other possibilities.

The theory in the bulk is N = 4 super Yang-Mills, and it is coupled to some

three-dimensional bifundamental hypermultiplets, which live on the defect at y = 0

and come from the strings that join the two groups of D3-branes. The bosonic �elds

of the theory are the gauge �elds Ai, the scalars ~X that describe motion of the

D3-branes along the NS5-brane (that is, in the x4, x5, x6 directions), and scalars ~Y

that describe the motion of the D3-branes normal to the NS5-brane (that is, in the

x7, x8, x9 directions).

The relevant gauge theory action, including the e�ects of the defect at y = 0, has

2Throughout the chapter, notations y and x3 are used interchangeably for the same coordinate.
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been constructed in the paper [23]. In this section we recall some facts about this

theory, mostly without derivation. More detailed explanations can be found in the

original paper [23] or in the more technical Appendix B below, which is, however, not

necessary for understanding the main ideas of the present chapter.

The half-BPS defect preservesN = 4 superconformal supersymmetry in the three-

dimensional sense; the corresponding superconformal group is OSp(4|4). It is im-

portant that there exists a one-parameter family of inequivalent embeddings of this

supergroup into the superconformal group PSU(2, 2|4) of the bulk four-dimensional

theory. For our purposes, it will su�ce to describe the di�erent embeddings just

from the point of view of global supersymmetry (rather than the full superconfor-

mal symmetry). The embeddings di�er by which global supersymmetries are pre-

served by the defect. The four-dimensional bulk theory is invariant under the product

U0 = SO(1, 3) × SO(6)R of the Lorentz group SO(1, 3) and the R-symmetry group

SO(6)R (or more precisely, a double cover of this associated with spin); this is a

subgroup of PSU(2, 2|4). The three-dimensional half-BPS defect breaks U0 down

to a subgroup U = SO(1, 2) × SO(3)X × SO(3)Y ; this is a subgroup of OSp(4|4).

Here in ten-dimensional terms, the two factors SO(3)X and SO(3)Y of the unbroken

R-symmetry subgroup act by rotations in the 456 and 789 subspaces, respectively.

(SO(6)R is broken to SO(3)X × SO(3)Y because the NS5-brane spans the 456 di-

rections.) Under U0, the global supersymmetries transform in a real representation

(2,1,4)⊕(1,2,4). Under U this becomes V8⊗V2, where V8 is a real eight-dimensional

representation (2,2,2) and V2 is a two-dimensional real vector space with trivial ac-

tion of U. An embedding of OSp(4|4) in PSU(2, 2|4) can be �xed by specifying which

linear combination of the two copies of V8 is left unbroken by the defect; these un-

broken supersymmetries are of the form V8 ⊗ ε0, where ε0 is a �xed vector in V2.

Up to an irrelevant scaling, the choice of ε0 is parametrized by an angle that we will

call ϑ. This angle in turn is determined by the string theory coupling parameter

τ = i/gst + θ/2π, which in �eld theory terms is τ = 4πi
g2
YM

+ θYM

2π
. The relation can be

found in the brane description, as follows. Let ε1 and ε2 be the two ten-dimensional

spinors that parametrize supersymmetry transformations in the underlying Type IIB
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theory. They transform in the 16 of the ten-dimensional Lorentz group Spin(1, 9), so

Γ012...9εi = εi, i = 1, 2, (2.2)

where Γ012...9 is the product of the SO(1, 9) gamma-matrices ΓI , I=0,. . . , 9. The

supersymmetry that is preserved by the D3-branes is de�ned by the condition

ε2 = Γ0123ε1 , (2.3)

while the NS5-brane preserves supersymmetries that satisfy

ε1 = −Γ012456(sinϑ ε1 − cosϑ ε2) , (2.4)

where the angle ϑ is related to the coupling parameter τ by

ϑ = arg(τ). (2.5)

(When cosϑ = 0, (2.4) must be supplemented by an additional condition on ε2.)

Altogether the above conditions imply

(B2 sinϑ+B1 cosϑ)ε1 = ε1 , (2.6)

where B1 = Γ3456 and B2 = Γ3789 are operators that commute with the group U and

thus act naturally in the two-dimensional space V2. The solutions of this condition

are of the form ε1 = ε⊗ ε0, where ε is any vector in V8, and ε0 is a �xed, ϑ-dependent

vector in V2. These are the generators of the unbroken supersymmetries.

It will be useful to introduce a new real parameter K and to rewrite (2.5) as

τ = K cosϑ eiϑ. (2.7)

The motivation for the notation is that K generalizes the level k of purely three-

dimensional Chern-Simons theory. For physical values of the coupling τ , one has

Im τ > 0; this places a constraint on the variables K and ϑ. In the twisted topological

�eld theory, K will turn out to be what was called the canonical parameter Ψ in [14].

In general, let us write G` and Gr for the gauge groups to the left or right of

the defect. From a purely �eld theory point of view, G` and Gr are completely
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arbitrary and moreover arbitrary hypermultiplets may be present at x3 = 0 as long

as Re τ = θYM/2π vanishes.3 However, as soon as θYM 6= 0, G` and Gr and the

hypermultiplet representation are severely constrained; to maintain supersymmetry,

the product G` × Gr must be a maximal bosonic subgroup of a supergroup whose

odd part de�nes the hypermultiplet representation and whose Lie algebra admits an

invariant quadratic form with suitable properties. These rather mysterious conditions

[23] have been given a more natural explanation in a closely related three-dimensional

problem [24]; as explained in the introduction, our initial task is to generalize that

explanation to four dimensions. We denote the Lie algebras of G` and Gr as g` and gr,

and denote the Killing forms on these Lie algebras as κ` and κr; precise normalizations

will be speci�ed later. We will loosely write −tr(. . . ) for κ` or κr. We also need a

form κ = −κ` + κr on the direct sum of the two Lie algebras. This will be denoted

by −Tr(. . . ). The gauge indices for g` ⊕ gr will be denoted by Latin letters m,n, p.

As already remarked, from a �eld theory point of view, as long as θYM = 0, the

defect at y = 0 might support a system of N hypermultiplets transforming in an

arbitrary real symplectic representation of G`×Gr. A real symplectic representation

of G`×Gr is a 4N -dimensional real representation of G`×Gr, equipped with an action

of SU(2) that commutes with G` ×Gr. (In the context of the supersymmetric gauge

theory, this SU(2) will become part of the R-symmetry group, as speci�ed below.)

This representation can be conveniently described as follows. LetR be a complex 2N -

dimensional symplectic representation of G` × Gr, with an invariant two-form ωIJ .

We take the sum of two copies of this representation, with an SU(2) group acting

on the two-dimensional multiplicity space, and impose a G` × Gr × SU(2)-invariant

reality condition. This gives the desired 4N -dimensional real representation. We

denote indices valued in R as I, J,K, we write T ImJ for the mth generator of G` ×Gr

acting in this representation, and we set τmIJ = T SmIωSJ , which is symmetric in I, J

(and is related to the moment map for the action of G`×Gr on the hypermultiplets).

3The gauge couplings τ`,r and the angles ϑ`,r can also be di�erent at y < 0 and y > 0, as long

as the canonical parameter K in eqn. (2.7) is the same [23]. For our purposes, this generalization is

not important.
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As remarked above, for θYM 6= 0, the representation R is highly constrained. It turns

out that a supersymmetric action for our system with θYM 6= 0 can be constructed if

and only if

τm(IJτK)Snκ
mn = 0. (2.8)

This condition is equivalent [23] to the fermionic Jacobi indentity for a superalgebra

sg, which has bosonic part g`⊕gr, with fermionic generators transforming in the rep-

resentationR and with κ⊕ω being an invariant and nondegenerate graded-symmetric

bilinear form on sg; we will sometimes write this form as −Str(. . . ). Concretely, if

we denote the fermionic generators of sg as fI , then the commutation relations of the

superalgebra are

[Tm, Tn] = f smnTs ,

[Tm, fI ] = TKmIfK , (2.9)

{fI , fJ} = τmIJκ
mnTn.

A short though admittedly mysterious calculation shows that the Jacobi identity

for this algebra is precisely (2.8). As already remarked, the closest to an intuitive

explanation of this result has been provided in [24], in a related three-dimensional

problem. We will write SG for the supergroup with superalgebra sg.

In more detail, the R-valued hypermultiplet that lives on the defect consists of

scalar �elds QIȦ and fermions λIAα that transform in the representationR of the gauge

group, and transform respectively as (1,1,2) and (2,2,1) under U = SO(2, 1) ×

SO(3)X × SO(3)Y . (Here A,B = 1, 2 are indices for the double cover SU(2)X of

SO(3)X , and Ȧ, Ḃ are similarly related to SO(3)Y .) They are subject to a reality

condition, which e.g. for the scalars reads
(
QI
Ȧ

)†
= εȦḂωIJQ

J
Ḃ
. To describe the

coupling of the bulk �elds to the defect theory, it is convenient to rewrite the bulk

super Yang-Mills �elds in three-dimensional language. The scalars Xa and Y ȧ, a, ȧ =

1, . . . , 3, transform in the vector representations of SO(3)X and SO(3)Y , respectively,

and of course the gauge �eld Ai is SO(3)X × SO(3)Y singlet. The super Yang-Mills

gaugino �eld Ψ transforms in the representation (2,1,4) ⊕ (1,2,4) of U0. Under

the subgroup U, it splits into two spinors ΨAḂ
1α and ΨAḂ

2α , which transform in the
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representation (2,2,2), like the supersymmetry generator εAḂα . More precisely, we

de�ne

Ψ = −Ψ2 ⊗B1ε0 + Ψ1 ⊗B2ε0. (2.10)

With this de�nition, it is straightforward to decompose the supersymmetry transfor-

mations of the four-dimensional super Yang-Mills to �nd the transformations that

correspond to ε⊗ ε0. In particular, the bosons transform as

δAi =
1√
2
εαAḂσ

α
iβ

(
ΨAḂβ

1 sinϑ+ ΨAḂβ
2 cosϑ

)
,

δXa = − i√
2
εAα
Ḃ

ΨBḂ
1α σ

a
AB ,

δY ȧ =
i√
2
εȦαA ΨAḂ

2α σ
ȧ
ȦḂ
. (2.11)

Here i, j, k and α, β are respectively vector and spinor indices of the three-dimensional

Lorentz group SO(2, 1), and σi are the Pauli matrices. See Appendix A for some

details on our conventions.

The action of the theory has the following form:

Ielectric = ISYM −
θYM

2π
CS(A) +KIhyp. (2.12)

The terms on the right are as follows. ISYM is the usual action of the N = 4 super

Yang-Mills in the bulk. The term proportional to θYM re�ects the bulk �topological�

term of four-dimensional Yang-Mills theory

IθYM
= −θYM

8π2

∫
x3<0

trF ∧ F − θYM

8π2

∫
x3>0

trF ∧ F, (2.13)

which we have split into two contributions at y < 0 and y > 0 because in the present

context the gauge �eld (and even the gauge group) jumps discontinuously at y = 0.

Because of this discontinuity, even if we restrict ourselves to variations that are trivial

at in�nity, IθYM
has a nontrivial variation supported on the locusW de�ned by y = 0.

This variation is the same as that of (θYM/2π)CS(A), where CS(A) is the Chern-

Simons interaction of G` ×Gr:

CS(A) =
1

4π

∫
W

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (2.14)
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(Recall that the symbol Tr includes the contributions of both G` and Gr, but with

opposite signs.) We lose some information when we replace IθYM
by (θYM/2π)CS(A),

since IθYM
is gauge-invariant as a real number, but CS(A) is only gauge-invariant mod-

ulo an integer. However, the replacement of IθYM
by (θYM/2π)CS(A) is a convenient

shorthand. Finally, Ihyp is the part of the action that involves the hypermultiplets.

More details concerning the action are given in the Appendix B.

We also need some facts about the boundary conditions and supersymmetry trans-

formations in this theory. The bulk scalars Yȧ obey a Dirichlet type boundary condi-

tion. In terms of Y m
ȦḂ

= σȧ
ȦḂ
Y ȧm, this boundary condition is

Y m
ȦḂ

= − 1

2 cosϑ
τmIJQ

I
Ȧ
QJ
Ḃ
. (2.15)

In the brane picture, this boundary condition re�ects the fact that the �elds Y ȧ

describe displacement of the D3-branes from the NS5-brane in the 789 directions,

and so vanish at y = 0 if the hypermultiplets vanish. Notice that, depending on

whether m labels a generator of G` or Gr, the �eld Y m
ȦḂ

is de�ned for y ≤ 0 or for

y ≥ 0; but the boundary condition (2.15) is valid in both cases. A similar remark

applies for other formulas below. Boundary conditions for other �elds can be obtained

from (2.15) by N = 4 supersymmetry transformations, or by ensuring the vanishing

of boundary contributions in the variation of the action. For the gauge �elds, the

relevant part of the action is

1

2g2
YM

∫
d4x trF 2

µν −
θYM

8π2

∫
trF ∧ F +KIhyp. (2.16)

Taking the variation and reexpressing the coupling constant using (2.7), one gets on

the boundary

sinϑFm
k3 −

1

2
cosϑ εkijF

m
ij =

2π

cosϑ
Jmk , (2.17)

where Jmk = δIhyp/δA
m
k is the hypermultiplet current, and gauge indices are raised

and lowered by the form κ. There is a similar boundary condition for the Xa scalar

which we shall not write explicitly here. By making supersymmetry transformations

(2.11) of the equation (2.15), one can also �nd the boundary condition for the bulk

fermions,
√

2Ψm
2αAḂ

=
i

cosϑ
τmIJλ

I
αAQ

J
Ḃ
. (2.18)
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It was shown in [23] that this four-dimensional problem with a half-BPS defect

is closely related to a purely three-dimensional Chern-Simons theory with three-

dimensional N = 4 supersymmetry. A three-dimensional Chern-Simons theory with

N = 3 supersymmetry exists with arbitrary gauge group and hypermultiplet repre-

sentation, but with N = 4 supersymmetry, one needs precisely the constraints stated

above: the gauge group G is the bosonic part of a supergroup SG, and the hyper-

multiplet representation corresponds to the odd part of the Lie algebra of SG. To

compare the action of the four-dimensional model with the defect to the action of

the purely three-dimensional model, we �rst decompose the hypermultiplet action in

(2.12) as

Ihyp = IQ(A) + I ′hyp, (2.19)

where IQ(A) is the part of the hypermultiplet action that contains couplings to no

bulk �elds except A, and I ′hyp contains the couplings of hypermultipets to the bulk

scalars and fermions. (For details, see Appendix B.) In these terms, the action of the

purely three-dimensional theory is

−K (CS(A) + IQ(A)) (2.20)

while the contribution to the four-dimensional action at y = 0 is

−θYM

2π
CS(A)−K

(
IQ(A) + I ′hyp

)
. (2.21)

Thus, there are several di�erences: the defect part (2.21) of the four-dimensional

action contains the extra couplings in I ′hyp, and it has a di�erent coe�cient of the

Chern-Simons term than that which appears in the purely three-dimensional action

(2.20); also, in (2.20), A is a purely three-dimensional gauge �eld while in (2.21), it is

the restriction of a four-dimensional gauge �eld to y = 0. There also are di�erences

in the supersymmetry transformations. The supersymmetry transformations in the

purely three-dimensional Chern-Simons theory are schematically

δA ∼ ελQ , (2.22)

In the four-dimensional theory with the defect, the transformation for the gauge �eld
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in (2.11) is schematically

δA ∼ ε(Ψ1 + Ψ2). (2.23)

Clearly, the two formulas (2.22) and (2.23) do not coincide. With the help of the

boundary condition (2.18), we see that the Ψ2 term in (2.23), when restricted to

y = 0, has the same form as the purely three-dimensional transformation law (2.22).

The term involving Ψ1 cannot be interpreted in that way; rather, before comparing

the four-dimensional theory with a defect to a purely three-dimensional theory, one

must rede�ne the connection A in a way that will eliminate the Ψ1 term. In section

2.2.2, generalizing the ideas in [6] and in [24], we will explain how to reconcile the

di�erent formulas.

2.2.2 Topological Twisting

After making a Wick rotation to Euclidean signature on R4, we want to select a

scalar supercharge Q, obeying Q2 = 0, in such a way that if we restrict to the

cohomology of Q, we get a topological �eld theory. As part of the mechanism to

achieve topological invariance, we require Q to be invariant under a twisted action

of the rotations of R4, that is, under rotations combined with suitable R-symmetries.

In Euclidean signature, the rotation and R-symmetry groups are the two factors

of UE
0 = SO(4) × SO(6)R, and the symmetries preserved by the defect are UE =

SO(3)×SO(3)X×SO(3)Y . The twisting relevant to our problem is the same procedure

used in studying the geometric Langlands correspondence via gauge theory [14]. We

pick a subgroup SO(4)R ⊂ SO(6)R, and de�ne SO′(4) ⊂ U ′0 to be a diagonal subgroup

of SO(4)× SO(4)R, such that from the ten-dimensional point of view, SO′(4) acts by

simultaneous rotations in the 0123 and 4567 directions. The space of ten-dimensional

supersymmetries transforms as (2,1,4) ⊕ (1,2,4) under UE
0 = SO(4) × SO(6)R ∼=

SU(2) × SU(2) × SO(6)R. Each summand has a one-dimensional SO′(4)-invariant

subspace; this follows from the fact that the representations 4 and 4 of SO(6)R both

decompose as (2,1) ⊕ (1,2) under SO′(4). The two invariant vectors coming from

(2,1,4) and (1,2,4) give two supersymmetry parameters ε` and εr with de�nite
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SO(4) chiralities. Although there is no natural way to normalize ε`, there is a natural

way4 to de�ne εr in terms of ε` and one can take Q to be any linear combination

bε` + aεr. We only care about Q up to scaling, so the relevant parameter is t = a/b.

In the bulk theory, we can make any choice of t, but in the presence of the half-

BPS defect, we must choose a supercharge that is preserved by the defect. As in

section 2.2.1, the space of supersymmetries decomposes under UE as V8 ⊗ V2, where

V8 transforms as (2,2,2), and UE acts trivially on V2. (In Euclidean signature, the

vector spaces V8 and V2 are not real.) The defect preserves supersymmetry generators

of the form ε⊗ ε0 with any ε ∈ V8 and with a �xed ε0 ∈ V2. Invariance under SO′(4)

restricts to a 1-dimensional subspace of V8, as explained in the next paragraph. So

up to scaling, only one linear combination of ε` and εr is preserved by the defect, and

t is uniquely determined.

To �nd the scalar supersymmetry generator in three-dimensional notation, we

note that at y = 0, SO′(4) can be naturally restricted to SO′(3), which is a diagonal

subgroup of SO(3) × SO(3)X ⊂ SO(4) × SO(4)R. An SO′(3)-invariant vector in V8

must have the form

εαAȦtop = εαAvȦ, (2.24)

where α,A, Ȧ = 1, 2 label bases of the three factors of V8 ∼ 2 ⊗ 2 ⊗ 2; εαA is

the antisymmetric symbol; and vȦ, which takes values in the 2 of SO(3)Y , is not

constrained by SO′(3) invariance. However, vȦ is determined up to scaling by SO′(4)

invariance. In fact, for any particular vȦ, the supersymmetry parameter de�ned in

eqn. (2.24) is invariant under a twisted rotation group that pairs the 0123 directions

with 456v, where vȧ ∼ vσȧv is some direction in the subspace 789 (here σȧ are the

Pauli matrices). For SO′(4) invariance, we want to choose vȦ such that v is the

direction x7. A simple way to do that is to look at the U(1)F symmetry subgroup of

SO(3)Y that rotates the 89 plane and commutes with SO′(4); thus, U(1)F rotates the

last two components of ~Y = (Y1, Y2, Y3). We normalize the generator F of U(1)F so

that the �eld σ = Y2−iY3√
2

has charge 2. Then using a standard representation of the

4One sets εr =
∑3
µ=0 Γ4+µ,µε`/4, as in eqn. (3.8) of [14].
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σȧ, one has

Y Ȧ
Ḃ
≡ Y ȧσȦ

ȧḂ
= i

 Y1

√
2σ

√
2σ −Y1

 , (2.25)

and in this basis, the generator F is 1 0

0 −1

 . (2.26)

SO′(4) invariance implies that the supersymmetry parameter ε has charge −1 under

F (see eqn. (3.11) in [14]), so we can take

vȦ = 21/4 e−iϑ/2

 0

1

 . (2.27)

The normalization factor here is to match the conventions of [14]. For future reference,

we also de�ne

uȦ = 23/4 eiϑ/2

 1

0

 . (2.28)

We also will need the relation between the parameter t and the angle ϑ. For that,

we use equation (2.26) from [6] for the topological parameter ε` + tεr. Comparing it

to our eqn. (2.6), we �nd that

t = ei(π−ϑ). (2.29)

In the twisted theory, the �elds ~X and Y1 join into a one-form φ =
∑3

µ=0 φµ dx
µ,

with components φi = Xi+1, i = 0, 1, 2, and φ3 = Y1. Q-invariance (or more precisely

the condition {Q, ζ} = 0 for any fermionic �eld ζ) gives a system of equations for Aµ

and φµ. These equations, which have been extensively discussed in [6], take the form

V+ = V− = V0 = 0, with

V+ = (F − φ ∧ φ+ t dAφ)+ ,

V− =
(
F − φ ∧ φ− t−1dAφ

)−
,

V0 = Dµφ
µ. (2.30)

Here if Λ is a two-form, we denote its selfdual and anti-selfdual projections as Λ+ and

Λ−, respectively.
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2.2.3 Fields And Transformations

If a four-dimensional gauge theory with a defect is related to a purely three-dimensional

theory on the defect, then what are the �elds in the e�ective three-dimensional theory?

The hypermultiplets supported at y = 0 give one obvious source of three-dimensional

�elds. So let us �rst discuss these �elds from the standpoint of the twisted theory.

The hypermultiplet contains scalar �elds QIȦ that transform as a doublet under

SU(2)Y . In the twisted theory, SU(2)Y is reduced to U(1)F , and accordingly we

decompose the QIȦ in multiplets CI and C
I
with charges ±1 under U(1)F . (These

are upper and lower components in the basis used in (2.26).) The fermionic part of

the hypermultiplet λAIα has a more interesting decomposition in the twisted theory.

Under SO′(3), both the spinor index α and the SO(3)X index A carry spin 1/2, so

λAIα is a sum of pieces of spin 1 and spin 0. In other words, the fermionic part of the

hypermultiplet decomposes into a vector A f
I
i
and a scalar BI .

The supercharge Q generates the following transformations of these �elds:

δA f = −DbC ,

δC = 0 ,

δC = B ,

δB =
1

2
[{C,C}, C]. (2.31)

Here for any �eld Φ, we de�ne δΦ = [Q,Φ}, where [ , } is a commutator or anti-

commutator for Φ bosonic or fermionic; also, Db is the coveriant derivative with a

connection Ab that we de�ne momentarily.

The vector Af will become the fermionic part of the sg-valued gauge �eld, which

we will call A. But where will we �nd Ab, the bosonic part of A? There is no

candidate among the �elds that are supported on the defect. Rather, Ab will be the

restriction to the defect worldvolume of a linear combination of bulk �elds:

Ab = A+ i(sinϑ)φ. (2.32)

This formula de�nes both a g`-valued part of Ab � obtained by restricting A+i(sinϑ)φ

from y ≤ 0 to y = 0 � and a gr-valued part � obtained by restricting A + i(sinϑ)φ
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from y ≥ 0 to y = 0. (Here g` and gr are the Lie algebras of G` and Gr.) The shift

from A to Ab removes the unwanted term with Ψ1 in the topological supersymmetry

variation (2.23), so that � after restricting to y = 0 and using the boundary condition

(2.18) � one gets

δAb = {C,A f}. (2.33)

Obviously, since A f is only de�ned at y = 0, δAb can only be put in this form at

y = 0.

The interpretation of the formulas (2.31) and (2.33) was explained in [24] (where

they arose in a purely three-dimensional context): one can interpret C as the ghost

�eld for a partial gauge-�xing of the supergroup SG down to its maximal bosonic

subgroup G, and the supercharge Q as the BRST operator for this partial gauge-

�xing. Since C has U(1)F charge of 1, we should interpret U(1)F as the ghost number.

Once we interpret C as a ghost �eld, the transformation laws for Ab and A f simply

combine to say that acting on A = Ab +A f , Q generates the BRST transformation

δA = −dAC with gauge parameter C. The gauge parameter C has opposite statistics

from an ordinary gauge generator (it is a bosonic �eld but takes values in the odd

part of the super Lie algebra sg); this is standard in BRST gauge-�xing of a gauge

theory. In such BRST gauge-�xing, one often introduces BRST-trivial multiplets

(C,B), where δC = B and δB is whatever it must be to close the algebra. In the

most classical case, C is an antighost �eld, with U(1)F charge −1, and B is called a

Lautrup-Nakanishi auxiliary �eld. The multiplet (C,B) in (2.31) has precisely this

form.

If one �nds a gauge transformation in which the gauge parameter has reversed

statistics to be confusing, one may wish to introduce a formal Grassman parameter

η and write δ′ = ηδ, so that for any �eld Φ, δ′Φ = [ηQ,Φ]; ηQ is bosonic, so there is

an ordinary commutator here. Then

δ′A = −D(ηC), (2.34)

showing that the symmetry generated by ηQ transforms the supergroup connection

A by a gauge transformation with the in�nitesimal gauge parameter ηC, which has
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normal statistics.

2.2.4 The Action

After twisting, one can de�ne the N = 4 super Yang-Mills theory on an arbitrary5

four-manifoldM , with the defect supported on a three-dimensional oriented subman-

ifold W . Generically, in this generality, one preserves only the unique supercharge

Q.

What is the form of the Q-invariant action of this twisted theory? Any gauge-

invariant expression {Q, ·} is Q-invariant, of course � and also largely irrelevant as

long as we calculate only Q-invariant observables, which are the natural observables

in the twisted theory. But in addition, any gauge-invariant function of the complex

connection A is Q-invariant, since Q acts on A as the generator of a gauge transfor-

mation. A is de�ned only on the oriented three-manifold W , and as we are expecting

to make a topological �eld theory, the natural gauge-invariant function of A is the

Chern-Simons function.

Given this and previous results (concerning the case that there is no defect [14],

an analogous purely three-dimensional problem [24], and the case that the �elds are

nonzero only on one side of W [6]), it is natural to suspect that the action of the

twisted theory on M may have the form

I = iKCS(A) + {Q, . . . } =
iK
4π

∫
W

Str

(
AdA+

2

3
A3

)
+ {Q, . . . } , (2.35)

where if there is a formula of this type, then the coe�cient of CS(A) must be precisely

iK, in view of what is already known about the one-sided case.

This is indeed so. Leaving some technical details for Appendix B, we simply make

a few remarks here. In the absence of a defect, and assuming thatM has no boundary,

it was shown in [14] that the action of the twisted super Yang-Mills theory is Q-exact

modulo a topological term:

ISYM +
iθYM

8π2

∫
M

tr (F ∧ F ) =
iK
4π

∫
M

tr (F ∧ F ) + {Q, . . . } . (2.36)

5If M is not orientable, one must interpret φ not as an ordinary 1-form but as a 1-form twisted

by the orientation bundle of M .
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(On the left, ISYM is the part of the twisted super Yang-Mills action that is pro-

portional to 1/g2
YM; the part proportional to θYM is written out explicitly.) In [6],

the case that M has a boundary W (and the D3-branes supported on M end on an

NS5-brane wrapping T ∗W ) was analyzed. It was shown that (2.36) remains valid,

except that the topological term
∫
M

trF ∧ F must be replaced with a Chern-Simons

function on W = ∂M , not of the real gauge �eld A but of its complexi�cation Ab.

From the point of view of the present thesis, this case means that M intersects the

NS5-brane worldvolume in a defect W , and there are gauge �elds only on one side of

W . Part of the derivation of eqn. (2.35) is simply to use the identity (2.36) on both

M` and Mr, thinking of the integral of trF ∧ F over M` or Mr as a Chern-Simons

coupling on the boundary.

To get the full desired result, we must include also the hypermultiplets Q that are

supported on W . The full action of the theory was described in formulas (2.12) and

(2.19). In Euclidean signature it reads

Ielectric = ISYM +
iθYM

2π
CS(A) +K(IQ(A) + I ′hyp). (2.37)

The identity (2.36) has a generalization that includes the boundary terms:

Ielectric = iK (CSGr(Ab)− CSG`
(Ab)) +KIQ(Ab) + {Q, . . . }. (2.38)

Since the �rst three terms are de�ned purely on the three-manifold W , we can now

invoke the result of [24]: this part of the action is iKCS(A) + {Q, . . . }, where now

CSSG(A) is the Chern-Simons function for the full supergroup gauge �eld A = Ab +

A f , and the Q-exact terms describe partial gauge-�xing from SG to G. This con�rms

the validity of eqn. (2.35).

We conclude by clarifying the meaning of the supergroup Chern-Simons function

CS(A). With A = Ab +A f , we have

CS(A) = CS(Ab) +
1

4π

∫
W

StrA fdAbA f . (2.39)

The term involving A f is the integral over W of a function with manifest gauge

symmetry under G` × Gr (and even its complexi�cation). It is not a�ected by the
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usual subtleties of the Chern-Simons function involving gauge transformations that

are not homotopic to the identity. The reason for this is that the supergroup SG is

contractible to its maximal bosonic subgroup G; the topology is entirely contained

in G. Similarly, with Ab = A + i(sinϑ)φ, we can expand the complex Chern-Simons

function,

CS(Ab) = CS(A) +
1

4π

∫
W

Tr
(
i(sinϑ)φ ∧ F − (sin2 ϑ)φ ∧ dAφ− i(sin3 ϑ)φ ∧ φ ∧ φ

)
,

(2.40)

and the topological subtleties a�ect only the �rst term CS(A) . Here, as in eqns.

(2.14) and (2.13), to resolve the topological subtleties and put the action in a form

that is well-de�ned for generic K, we should replace CS(A) with the corresponding

volume integral (1/4π)
∫
M

trF ∧F . There is no need for such a substitution in any of

the other terms, since they are all integrals over W of gauge-invariant functions. All

this re�ects the fact that a complex Lie group is contractible to a maximal compact

subgroup, so the topological subtlety in CS(Ab) is entirely contained in CS(A).

It is convenient to simply write the action as iKCS(A) + {Q, . . . }, as we have

done in eqn. (2.35), rather than always explicitly replacing the term CS(A) in this

action with a bulk integral.

2.2.5 Analytic Continuation

To get the formula (2.33) along W , we have had to replace A by A+ i(sinϑ)φ, with

the result that the bosonic part of A is complex-valued. This is related to an essen-

tial subtlety [12, 13] in the relation of the four-dimensional theory with a defect to

a Chern-Simons theory supported purely on the defect. In general, four-dimensional

N = 4 super Yang-Mills theory on a four-manifold M , with a half-BPS defect of the

type analyzed here on a three-manifoldW ⊂M , is not equivalent to standard Chern-

Simons theory on W with gauge supergroup SG, but to an analytic continuation of

this theory. The basic idea of this analytic continuation is that localization on the

space of solutions of the equations (2.30) de�nes an integration cycle in the complex-

i�ed path integral of the Chern-Simons theory. This localization is justi�ed using the
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fact that the Q-exact terms in (2.38) can be scaled up without a�ecting Q-invariant

observables, so the path integral can be evaluated just on the locus where those terms

vanish. The condition for these terms to vanish is the localization equations (2.30),

which de�ne the integration cycle. (Thus, the integration cycle is characterized by

the fact that Ab is the restriction to y = 0 of �elds A, φ which obey the localization

equations and have prescribed behavior for y → ±∞.)

For generic W andM , the integration cycle derived from N = 4 super Yang-Mills

theory di�ers from the standard one of three-dimensional Chern-Simons theory. For

the important case thatW = R3, there is essentially only one possible integration cycle

and therefore the two constructions are equivalent. Thus, after including Wilson loop

operators (as we do in section 2.3), the four-dimensional construction can be used to

study the usual knot invariants associated to three-dimensional Chern-Simons theory.

Unfortunately, it turns out that for supergroups all the observables which can be

de�ned using only closed Wilson loops in R3 reduce to observables of an ordinary

bosonic Chern-Simons theory. This is explained in section 2.3 of the present thesis,

and in section 6 of [1]. To �nd novel observables, one needs to do something more

complicated. All of the options seem to introduce some complications in the relation

to four dimensions. For example, one can replace R3 by S3 and de�ne observables

that appear to be genuinely new by considering the path integral with insertion of

a Wilson loop in a typical representation (see section 2.3.2.2). But the compactness

of S3 means that one encounters infrared questions in comparing to four dimensions.

Because of such complications, our results for supergroup Chern-Simons theory are

less complete then in the case of a bosonic Lie group.

A feature of the localization that is special to supergroups is that Ab is the bound-

ary value of a four-dimensional �eld (which in the localization procedure is constrained

by the equations (2.30)), but A f is purely three-dimensional. The reason that this

happens is essentially that the topology of the supergroup SG is contained entirely

in its maximal bosonic subgroup G. Being fermionic, A f is by nature in�nitesimal;

the Berezin integral for fermions is an algebraic operation (a Gaussian integral in the

case of Chern-Simons theory of a supergroup) with no room for choosing di�erent in-
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tegration cycles. By contrast, in the integration over the bosonic �elds, it is possible

to pick di�erent integration cycles and the relation to four-dimensional N = 4 super

Yang-Mills theory does give a very particular one.

One important qualitative di�erence between purely three-dimensional Chern-

Simons theory and what one gets by extension to four dimensions is as follows. In

the three-dimensional theory, the �level� k must be an integer, but in the analytically

continued version given by the relation to four-dimensional N = 4 super Yang-Mills,

k is generalized to a complex parameter K. Part of the mechanism for this is that

although the Chern-Simons function CS(A) is only gauge-invariant modulo 1, in the

four-dimensional context it can be replaced by a volume integral
∫
M

TrF ∧ F , which

is entirely gauge-invariant, so there is no need to quantize the parameter.

2.2.6 Relation Among Parameters

At �rst sight, eqn. (2.35) seems to tell us that the relation between the parameter K

in four dimensions and the usual parameter k of Chern-Simons theory, which appears

in the purely three-dimensional action

i
k

4π

∫
W

Str

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
, (2.41)

would be K = k. However, for the purely one-sided case, the relation, according to

[6], is really6

K = k + h sign (k). (2.42)

An improved explanation of this is as follows.

6 A careful reader will ask what precisely we mean by k in the following formula. In de�ning k

precisely, we will assume that it is positive; if it is negative, one makes the same de�nitions after

reversing orientations. One precise de�nition is that k is the level of a two-dimensional current

algebra theory that is related to the given Chern-Simons theory in three dimensions. (The level is

de�ned as the coe�cient of a c-number term appearing in the product of two currents.) Another

precise de�nition is that, for integer k, the space of physical states of the Chern-Simons theory on

a Riemann surface Σ is H0(M,Lk), where M is the moduli space of holomorphic G-bundles over

Σ and L generates the Picard group of M. (For simplicity, in this statement, we assume G to be

simply-connected.)
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The purely three-dimensional Chern-Simons theory for a compact gauge group G

involves a path integral over the space of real connections A. This is an oscillatory

integral and in particular, at one-loop level, in expanding around a classical solution,

one has to perform an oscillatory Gaussian integral.7 After diagonalizing the matrix

that governs the �uctuations, the oscillatory Gaussian integral is a product of one-

dimensional integrals ∫ ∞
−∞

dx√
π

exp(iλx2) =
exp(i(π/4)signλ)

|λ|
, (2.43)

where the phase comes from rotating the contour by x = exp(i(π/4)signλ)x′ to get a

real convergent Gaussian integral for x′. In Chern-Simons gauge theory, the product

of these phase factors over all modes of the gauge �eld and the ghosts gives (after

suitable regularization) a factor exp(iπη/4), where η is the Atiyah-Patodi-Singer η-

invariant. This factor has the e�ect of shifting the e�ective value of k in many

observables to k+ h sign k, where h is the dual Coxeter number of G (this formula is

often written as k → k + h, with k assumed to be positive).

One can think of the shift k → k + h sign k as arising in a Wick rotation in

�eld space from the standard integration cycle of Chern-Simons theory (real A) to an

integration cycle on which the integral is convergent rather than oscillatory. But this

is precisely the integration cycle that is used in the four-dimensional description (see

[12, 13]). Accordingly, in the four-dimensional description, there is no one-loop shift in

the e�ective value of K and instead the shift must be absorbed in the relation between

parameters in the four- and three-dimensional descriptions by K = k + h sign k.

Up to a point, the same logic applies in our two-sided problem. The four-

dimensional path integral has no oscillatory phases and hence no one-loop shift in

the e�ective value of the Chern-Simons coupling. So any such shift that would arise

in a purely three-dimensional description must be absorbed in the relationship be-

tween K and a three-dimensional parameter k. We are therefore tempted to guess

that the relationship between K and the parameter k of a purely three-dimensional

7The following is explained more fully on pp. 358-9 of [4], where however a nonstandard normal-

ization is used for η. See also [87].
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Chern-Simons theory of the supergroup SG is

K = k + hsg sign k, (2.44)

where hsg is the dual Coxeter number of the supergroup. The trouble with this

formula is that it assumes that the e�ective Chern-Simons level for a supergroup has

the same one-loop renormalization as for a bosonic group. The validity of this claim

is unclear for reasons explored in Appendix E of [1]. (In brief, the fact that the

invariant quadratic form on the bosonic part of the Lie superalgebra sg is typically

not positive-de�nite means it is not clear what should be meant by sign k, and also

means that a simple imitation of the standard one-loop computation of bosonic Chern-

Simons theory does not give the obvious shift k → k + hsg sign k.) We actually do

not know the proper treatment of purely three-dimensional Chern-Simons theory of

a supergroup. In this chapter, we concentrate on the four-dimensional description,

in which the bosonic part of the path integral is convergent, not oscillatory, and

accordingly there is no one-loop shift in the e�ective value of K. Thus we should just

think of K as the e�ective parameter of the Chern-Simons theory.

Let us go back to the purely bosonic or one-sided case. For G simple and simply-

laced, Chern-Simons theory is usually parametrized in terms of

q = exp(2πi/(k + h sign k)) = exp(2πi/K). (2.45)

If G is not simply-laced, it is convenient to take q = exp(2πi/ngK), where ng is the

ratio of length squared of long and short roots of g. Including the factor of 1/ng in

the exponent ensures that q is the instanton-counting parameter in a magnetic dual

description. Similarly, for a supergroup SG, we naturally parametrize the theory in

terms of

q = exp(2πi/nsgK), (2.46)

where nsg is the ratio of length squared of the longest and shortest roots of a maximal

bosonic subgroup of SG, computed using an invariant bilinear form on sg (for the

supergroups we study in this thesis, nsg can be 1, 2, or 4). To write this formula in

terms of a purely three-dimensional parameter k, we would have to commit ourselves
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to a precise de�nition of such a parameter. Each of the de�nitions given for bosonic

groups in footnote 6 may generalize to supergroups, but in neither case is the proper

generalization immediately clear.

2.3 Observables In The Electric Theory

The most important observables in ordinary Chern-Simons gauge theory are Wil-

son line operators, labeled by representations of the gauge group. To understand

their analogs in supergroup Chern-Simons theory, we need to know something about

representations of supergroups. The theory of Lie supergroups has some distinctive

features, compared to the ordinary Lie group case, and these special features have

implications for Chern-Simons theory and its line observables. Accordingly, we devote

section 2.3.1 to a brief review of Lie supergroups and superalgebras. Then in section

2.3.2, we discuss the peculiarities of line observables in three-dimensional supergroup

Chern-Simons theory. In sections 2.3.3 and 2.3.4, we return to the four-dimensional

construction, and explain, in fairly close parallel with [6], how line operators of super-

group Chern-Simons theory are realized as line or surface operators in N = 4 super

Yang-Mills theory. Finally, in section 2.3.5 we summarize some unclear points.

In the four-dimensional construction, in addition to the line and surface operators

considered here, it is possible to construct Q-invariant local operators. They are

described in Appendix D.

2.3.1 A Brief Review Of Lie Superalgebras

We begin with the basics of Lie superalgebras, Lie supergroups, and their represen-

tations. For a much more complete exposition see e.g. [37, 38, 39].

A Lie superalgebra decomposes into its bosonic and fermionic parts, sg = g0 + g1.

We will assume that g0 is a reductive Lie algebra (the sum of a semi-simple Lie

algebra and an abelian one). Moreover, to de�ne the supergroup gauge theory action,

we need the superalgebra sg to possess a non-degenerate invariant bilinear form.

(This also determines a superinvariant volume form on the SG supergroup manifold.)
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Finite-dimensional Lie superalgebras with these properties are direct sums of some

basic examples. These include the unitary and the orthosymplectic superalgebras,

as well as a one-parameter family of deformations of osp(4|2), and two exceptional

superalgebras, as speci�ed in Table 2.1. For the unitary Lie superalgebras, one can

also restrict to the supertraceless matrices su(m|n), and for m = n further factor by

the one-dimensional center down to psu(n|n). In what follows, by a Lie superalgebra

we mean a superalgebra from this list.8

Though we use real notation in denoting superalgebras, for instance in writing

u(m|n) and not gl(m|n), we never really are interested in choosing a real form on the

full superalgebra. One reason for this is that we will actually be studying analytically-

continued versions of supergroup Chern-Simons theories. If one considers all possible

integration cycles, then the real form is irrelevant. More fundamentally, as we have

already explained in section 2.2.5, to de�ne a path integral for supergroup Chern-

Simons theory, one needs to pick a real integration cycle for the bosonic �elds, but

one does not need anything like this for the fermions. Correspondingly, we might

need a real structure on g0 (and this will generally be the compact form) but not

on the full supergroup or the superalgebra. So for our purposes, a three-dimensional

Chern-Simons theory is naturally associated to a so-called cs-supergroup, which is a

complex Lie supergroup together with a choice of real form for its bosonic subgroup.

If we choose the compact form of a maximal bosonic subgroup of a supergroup SG,

then one can calculate the volume of SG with respect to its superinvariant measure.

This volume has the following signi�cance in Chern-Simons theory. The starting

point in Chern-Simons perturbation theory on a compact three-manifold is to expand

around the trivial �at connection; in doing so one has to divide by the volume of the

gauge group. But this volume is actually9 0 for any Lie supergroup whose maximal

8We avoid here using the term �simple superalgebra,� since, e.g., u(1|1) is not simple (it is

solvable), but is perfectly suitable for supergroup Chern-Simons theory. Let us mention that Lie

superalgebras with the properties we have required which in addition are simple are called basic

classical superalgebras.
9 A quick proof is as follows. Let SG be a Lie supergroup whose maximal bosonic subgroup is

compact (this assumption ensures that there are no infrared subtleties in de�ning and computing
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bosonic subgroup is compact, with the exception of B(0, n) = OSp(1|2n). This fact

is certainly one reason that one cannot expect to develop supergroup Chern-Simons

theory by naively imitating the bosonic theory.

Another di�erence between ordinary groups and supergroups is that in the super-

group case, we have to distinguish between irreducible representations and indecom-

posable ones. A representation R of sg is called irreducible if it does not contain a

non-trivial sg-invariant subspace R0, and it is called indecomposable if it cannot be

decomposed as R0 ⊕ R1 where R0 and R1 are non-trivial sg-invariant subspaces. In

a reducible representation, the representation matrices are block triangular

∗ ∗
0 ∗

,

while in a decomposable representation, they are block diagonal. For ordinary reduc-

tive Lie algebras, these notions coincide (if the matrices are block triangular, there is

a basis in which they are block diagonal), but for Lie superalgebras as de�ned above,

they do not coincide, with the sole exception of B(0, n). It is not a coincidence that

B(0, n) is an exception to both statements; a standard way to prove that a reducible

representation of a compact Lie group is also decomposable involves averaging over

the group, and this averaging only makes sense because the volume is nonzero. For

B(0, n), taken with the compact form of its maximal bosonic subgroup, the same

proof works, since the volume is not zero. A physicist's explanation of the �bosonic�

behavior of B(0, n) might be that, as we argue later, the Chern-Simons theory with

this gauge supergroup is dual to an ordinary bosonic Chern-Simons theory with the

gauge group SO(2n + 1). This forces B(0, n) to behave somewhat like an ordinary

bosonic group.

the volume of SG). Suppose that there is a fermionic generator C of sg with the property that

{C, C} = 0. Such a C exists for every Lie supergroup except OSp(1|2n). We view C as generating

a supergroup F of dimension 0|1, which we consider to act on SG on (say) the left. This gives a

�bration SG → SG/F with �bers F. The volume of SG can be computed by �rst integrating over

the �bers of the �bration. But the volume of the �bers is 0, so (given the existence of C) the volume

of SG is 0. The volume of the �bers is 0 because, since {C, C} = 0, there are local coordinates in

which the �bers are parametrized by an odd variable ψ and C = ∂/∂ψ. C-invariance of the volume

then implies that the measure for integration over ψ is invariant under adding a constant to ψ; the

volume of the �ber is therefore
∫

dψ · 1 = 0.
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superalgebra bosonic part fermionic part type

u(m|n) u(m)⊕ u(n) (m,n)⊕ (m,n) I

B(m,n) ' osp(2m+ 1|2n) so(2m+ 1)⊕ sp(2n) (2m+ 1, 2n) II

C(n+ 1) ' osp(2|2n) u(1)⊕ sp(2n) (1, 2n)⊕ (1, 2n) I

D(m,n) ' osp(2m|2n),m > 1 so(2m)⊕ sp(2n) (2m, 2n) II

D(2, 1;α), α ∈ C \ {0,−1} su(2)⊕ su(2)⊕ su(2) (2, 2, 2) II

G(3) su(2)⊕ g2 (2, 7) II

F (4) su(2)⊕ so(7) (2, 8) II

Table 2.1: Lie superalgebras suitable for the supergroup Chern-Simons theory. (We do

not list explicitly the subquotients of the unitary superalgebra, which are mentioned in the

text.)

Figure 2.2: Dynkin diagram for the su(m|n) superalgebra. The subscripts are expressions

for the roots in terms of the orthogonal basis δ•, ε•. The superscripts represent the Dynkin

labels of a weight. The middle root denoted by a cross is fermionic.

The structure theory for a simple Lie superalgebra sg can be described similarly

to the case of an ordinary Lie algebra. One starts by picking a Cartan subalgebra t,

which for our superalgebras is just a Cartan subalgebra of the bosonic part. Then

one decomposes sg into root subspaces. These subspaces lie either in g0 or in g1, and

the roots are correspondingly called bosonic or fermionic. Then one makes a choice of

positive roots, or, equivalently, of a Borel subalgebra b ⊃ t. Unlike in the bosonic case,

di�erent Borel subalgebras can be non-isomorphic. However, there is a distinguished

Borel subalgebra � the one which contains precisely one simple fermionic root. This is

the choice that we shall make. For each choice of Borel subalgebra, one can construct

a Dynkin diagram. The distinguished Dynkin diagrams for the unitary and the odd
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Figure 2.3: Dynkin diagram for the osp(2m+1|2n) superalgebra, m ≥ 1. The subscripts are

expressions for the roots in terms of the orthogonal basis δ•, ε•. The superscripts represent

the Dynkin labels of a weight. The arrows point in the direction of a shorter root. The

middle root denoted by a cross is fermionic. Roots of the sp(2n) and so(2m+1) subalgebras

are on the left and on the right of the fermionic root. The site shown in grey and labeled an

is the long simple root of the sp(2n) subalgebra, which does not belong to the set of simple

roots of the superalgebra.

orthosymplectic superalgebras are shown in �g. 2.2 and �g. 2.3.

The fermionic Z2-grading of a Lie superalgebra can be lifted (in a way that is

canonical up to conjugacy) to a Z-grading, which can be de�ned as follows. The

subalgebra of degree zero is generated by the Cartan subalgebra together with the

bosonic simple roots of the superalgebra. The fermionic simple root of the distin-

guished Dynkin diagram is assigned degree one. The grading for the other elements

of the superalgebra is then determined by the commutation relations. This Z-grading

is de�ned by a generator of g0.

For example, for the unitary superalgebra this element can be taken to be the

central generator of u(n). The degree zero subalgebra in this case is just the bosonic

subalgebra, while the fermions decompose as g1 ' g−1 ⊕ g1. Another example would

be the odd orthosymplectic superalgebra osp(2m + 1|2n), for which the situation

is slightly di�erent. There exists a simple root of the bosonic subalgebra, which is

not a simple root of the superalgebra, but rather is a multiple of a fermionic simple

root, and therefore will not have degree zero. It is shown in grey in �g.2.3. The

degree zero subalgebra consists of a semisimple Lie algebra sl(n)⊕o(2m+1) with the

Dynkin diagram obtained from �g.2.3 by deleting the fermionic node, plus a central

u(1). This central element is the generator of the Z-grading. The bosonic subalgebra
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decomposes into degrees ±2 and 0, while the fermions again live in degrees ±1.

More generally, for any superalgebra, the distinguished Z-grading takes values

from −1 to 1 or from −2 to 2, and the superalgebras are classi�ed accordingly as

type I or type II. In a type I superalgebra, the bosonic subalgebra lies completely

in degree 0. The representation of g0 on the fermionic subalgebra g1 is reducible,

and g1 decomposes into subspaces of degree −1 and 1. The unitary superalgebra is

an example of a type I superalgebra. For the type II superalgebras, the action of

g0 on g1 is irreducible. Under the Z-grading, the bosonic subalgebra decomposes as

g0 ' g−2⊕g0⊕g2, and the fermions decompose as g1 ' g−1⊕g1. The osp(2m+1|2n)

superalgebra is an example of the type II case. The type of a superalgebra is important

for representation theory, and we indicate it in Table 2.1.

We need to introduce some further notation. Let ∆+
0
and ∆+

1
be the sets of positive

bosonic and fermionic roots, respectively, and let ∆
+

1 be the set of positive fermionic

roots with zero length. The length is de�ned using the invariant quadratic form on sg,

which we normalize in a standard way so that the length squared of the longest root

is 2. A root of zero length is called isotropic; isotropic roots are always fermionic. It

is convenient to expand the roots and the weights in terms of a vector basis δ• and ε•,

orthogonal with respect to the invariant scalar product, with 〈δi, δi〉 = −〈εj, εj〉 > 0.

For example, the positive roots for the unitary superalgebra su(m|n) are

∆+
0

=
{
δi − δi+p, εj − εj+p

}
, i = 1 . . . n, j = 1 . . .m, p > 0,

∆+
1

= ∆
+

1 =
{
δi − εj

}
. (2.47)

The quadratic Casimir operator is de�ned using the invariant form on sg (normalized

in the standard way). In this thesis, by the dual Coxeter number h we mean one-

half of the quadratic Casimir in the adjoint representation.10 For future reference,

in Table 2.2 we collect the superdimension (the di�erence between the dimension of

g0 and that of g1) and the dual Coxeter number for the unitary and orthosymplectic

superalgebras.

For a given Borel subalgebra, one de�nes the bosonic and fermionic Weyl vectors

10This de�nition is di�erent from the de�nition of [43].
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su(m|n), n,m ≥ 0 osp(m|2n), m ≥ 0, n ≥ 1 so(n)

h n−m n−m/2 + 1 n− 2

(s)dim (n−m)2 − 1 (2n−m)(2n−m+ 1)/2 n(n− 1)/2

Table 2.2: (Super)dimensions and dual Coxeter numbers.

as

ρ0 =
1

2

∑
α∈∆+

0

α , ρ1 =
1

2

∑
α∈∆+

1

α , (2.48)

and the superalgebra Weyl vector as ρ = ρ0− ρ1. The Weyl group of a superalgebra,

by de�nition, is generated by re�ections with respect to the even (that is, bosonic)

roots.

2.3.1.1 Representations

The �nite-dimensional irreducible representations are labeled by their highest weights.

The weights can be parametrized in terms of Dynkin labels. For a weight Λ, the

Dynkin label associated to a simple root αi is de�ned as ai =
2〈Λ, αi〉
〈αi, αi〉

, if the length

of the root αi is non-zero, and ai = 〈Λ, αi〉, if the length of the root is zero.

For a type I superalgebra, the Dynkin diagram coincides with the diagram for the

semisimple part of the bosonic subalgebra g0, if one deletes the fermionic root. The

�nite-dimensional superalgebra representations are labeled by the same data as the

representations of the bosonic subalgebra. For example, for the dominant weights

of su(m|n) all the Dynkin labels, except aferm, must be non-negative integers. The

fermionic label can be an arbitrary complex number, if we consider representations

of the superalgebra, or an arbitrary integer, if we want the representation to be

integrable to a representation of the compact form of the bosonic subgroup.

For a type II superalgebra, if one deletes the fermionic node of the Dynkin diagram

(and the links connecting to it), one gets a diagram for the semisimple part of the

degree-zero subalgebra g0 ⊂ g0. The long simple root of the bosonic subalgebra g0

is �hidden� behind the fermionic simple root, and is no longer a simple root of the
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superalgebra. This is illustrated in �g. 2.3 for the B(m,n) case. For us it will be

convenient to parametrize the dominant weights in terms of the Dynkin labels of the

bosonic subalgebra, so, for type II, instead of aferm we will use the Dynkin label with

respect to the long simple root of g0. For example, for B(m,n) this label is11 an, as

shown on the �gure, and the weights will be parametrized by (a1, . . . , an, ã1, . . . , ãm).

Clearly, in this case for the superalgebra representation to be �nite-dimensional, it is

necessary for these Dynkin labels to be non-negative integers. It turns out that there

is an additional supplementary condition. For example, for B(m,n) this condition

says that if an < m, then only the �rst an of the labels (ã1, . . . , ãm) can be non-zero.

For the other type II superalgebras the supplementary conditions can be found e.g.

in Table 2 of [37]. The �nite-dimensional irreducible representations are in one-to-one

correspondence with integral dominant weights that satisfy these extra conditions.

For a generic highest weight, the irreducible superalgebra representation can be

constructed rather explicitly. For a type I superalgebra, one takes an arbitrary rep-

resentation R0
Λ of the bosonic part g0, with highest weight Λ. A representation of the

superalgebra can be induced from R0
Λ by setting the raising fermionic generators g1

to act trivially on R0
Λ, and the lowering fermionic generators g−1 to act freely. The

resulting representation in the vector space

HΛ = ∧•g−1 × R0
Λ (2.49)

is called the Kac module. For a generic highest weight, this gives the desired �nite-

dimensional irreducible representation. For a type II superalgebra, the representation

can be similarly induced from a representation of the degree-zero subalgebra g0 ⊂ g0,

but the answer is slightly more complicated than (2.49), since the fermionic creation

or annihilation operators do not anticommute among themselves.

The Kac module, which one gets in this way, is irreducible only for a su�ciently

generic highest weight. In this case, the highest weight Λ and the representation are

called typical. Typical representations share many properties of representations of

bosonic Lie algebras, e.g., a reducible representation with a typical highest weight is

11Our notation here is slightly unconventional: notation an is usually used for what we call aferm.
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always decomposable, and there exist simple analogs of the classical Weyl character

formula for their characters and supercharacters.

However, if Λ satis�es the equation

〈Λ + ρ, α〉 = 0 , (2.50)

for some isotropic root α ∈ ∆
+

1 , then the Kac module acquires a null vector. The

irreducible representation then is a quotient of the Kac module by a maximal sub-

module. Such weights and representations are called atypical. Let ∆(Λ) be the subset

of ∆
+

1 for which (2.50) is satis�ed. The number of roots in ∆(Λ) is called the degree

of atypicality of the weight and of the corresponding representation.

The maximal possible degree of atypicality of a dominant weight is called the

defect of the superalgebra. For u(m|n), for a dominant Λ all the roots in ∆(Λ) are

mutually orthogonal, and therefore the maximal number of such isotropic roots is

min(m,n). In the corresponding IIB brane con�guration, this is the number of D3-

branes which can be recombined and removed from the NS5-brane. (This symmetry

breaking process is analyzed in section 6 of [1].)

A Kac-Wakimoto conjecture [43, 44] states that the superdimension of a �nite-

dimensional irreducible representation is non-zero if and only if it has maximal atyp-

icality. (For ordinary Lie algebras and for B(0, n), the maximal atypicality is zero,

and all representations should be considered as both typical and maximally atypical.)

2.3.1.2 The Casimir Operators And The Atypical Blocks

The Casimir operators, by de�nition, are invariant polynomials in the generators

of sg; in a fancier language, they generate the center Z of the universal enveloping

algebra U(sg). We introduce some facts about them, which will be useful for the

discussion of Wilson lines.

There is a well-known formula for the value of the quadratic Casimir in a repre-

sentation with highest weight Λ,

c2(Λ) = 〈Λ + ρ,Λ + ρ〉 − 〈ρ, ρ〉 , (2.51)
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which continues to hold in the superalgebra case. A remote analog of this formula

for the higher Casimirs is known as the Harish-Chandra isomorphism (see e.g. [45]),

which we now brie�y review.

By the Poincaré-Birkho�-Witt theorem, a Casimir element c ∈ Z can be brought to

the normal-ordered form, where in the Chevalley basis, schematically, c =
∑

(E−)k1Hk2(E+)k1 .

When acting on the highest weight vector of some representation, the only non-

zero contribution comes from the purely Cartan part. This gives a homomorphism

ξ̂ : Z → S(t), where S(t) are the symmetric polynomials in elements of t, and the

value of the Casimir in a representation RΛ with highest weight Λ is evaluated as

c(Λ) = (ξ̂(c))[Λ]. Here the square brackets mean the evaluation of a polynomial from

S(t) on an element of t∗. By making appropriate shifts of the Lie algebra generators in

the polynomial ξ̂(c), one can de�ne a di�erent polynomial ξ(c), such that the formula

becomes

c(Λ) = (ξ(c))[Λ + ρ] . (2.52)

This is a minor technical rede�nition, which will be convenient.

For ordinary Lie algebras, the Harish-Chandra theorem states that the image of

the homomorphism ξ consists of the Weyl-invariant polynomials SW (t) ⊂ S(t), and ξ

is actually an isomorphism of commutative algebras Z ' SW (t). To summarize, the

Casimirs can be represented by Weyl-invariant Cartan polynomials, and their values

in a representation RΛ are obtained by evaluating these polynomials on Λ + ρ.

In the superalgebra case, the Harish-Chandra isomorphism [46] identi�es Z with

a subalgebra S0
W (t) ⊂ SW (t), consisting of Weyl-invariant polynomials p with the

following invariance property,

p[Λ + ρ+ xα] = p[Λ + ρ] (2.53)

for any x ∈ C and α ∈ ∆(Λ).

For a highest weight representation RΛ, the corresponding set of eigenvalues of

the Casimir operators (equivalently, a homomorphism from Z into the complex num-

bers) is called the central character, denoted χΛ. The Harish-Chandra isomorphism

allows one to describe the sets of weights which share the same central character.
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Figure 2.4: Examples of dominant weights for u(3|4). a. A typical weight. b. A weight

of atypicality two, which is part of a block of atypical weights. The block is labeled by x̃1,

x̃2, and ỹ1, which correspond to a dominant weight of u(1|2). The weights that make up

this block are parametrized by z1 and z2, which can be thought of as labels of a maximally

atypical weight of u(2|2).

If the weight is typical, then the other weights with the same central character can

be obtained by the shifted Weyl action Λ → w(Λ + ρ) − ρ. The orbit of this trans-

formation can contain no more than one dominant weight; therefore, two di�erent

typical �nite-dimensional representations have di�erent central characters. This is

no longer the case for the atypical weights. Given an atypical dominant weight Λ,

we can shift it by a linear combination of elements of ∆(Λ) to obtain new dominant

weights with the same central character. More generally, we can apply a sequence

of shifts and Weyl transformations without changing the central character. All the

representations that are obtained in this way will have the same degree of atypicality,

and they will share the same eigenvalues of the Casimir operators. The set of atypical

�nite-dimensional representations which have a common central character is called

an atypical block. In this chapter, we are interested mostly in the irreducible repre-

sentations, and, somewhat imprecisely,12 by an atypical block we will usually mean a

set of irreducible representations (or, equivalently, dominant weights) with the same

central character.

12This phrasing is imprecise because it does not take account the di�erence between reducibility

of a representation and decomposability.
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As an example, let us describe the atypical blocks for the u(m|n) superalgebra. It

is convenient to parametrize a weight Λ as

Λ + ρ =
n∑
i=1

xiδi −
m∑
j=1

yjεm+1−j. (2.54)

For Λ to be dominant, the two sequences {xi} and {yj}must be strictly increasing, and

satisfy an appropriate integrality condition. A dominant weight can be represented

graphically, as shown in �g. (2.4a). This is essentially the weight diagram of [47]. The

picture shows an obvious analogy between a dominant weight of u(m|n) and a vacuum

of a brane system; we will develop this analogy in section 2.4.4.4. This description

also con�rms that dominant weights of u(m|n) correspond to dominant weights of the

purely bosonic subalgebra u(m) × u(n). In this correspondence, of the two central

generators of u(m)× u(n), one linear combination corresponds to the fermionic root

aferm of su(m|n) and the other to the center of u(m|n).

For atypicality r, the set ∆(Λ) consists of r isotropic roots δil − εjl , l = 1 . . . r,

which are mutually orthogonal, that is, each basis vector δ• or ε• can appear no

more than once.13 The atypicality condition (2.50) then says that r of the x-labels

are �aligned� with (equal to) the y-labels. Let these labels be xil = ym+1−jl ≡ zl,

l = 1 . . . r, and the others be x̃1, . . . , x̃n−r, ỹ1, . . . , ỹm−r. Then the atypical blocks

of atypicality r are labeled by the numbers x̃• and ỹ•, which can be thought of as

labels for a dominant weight of u(m − r|n − r), and the weights inside the same

atypical block are parametrized by a sequence z•, which can be thought of as a

dominant maximally atypical weight of u(r|r). An example is shown in �g. (2.4b).

An atypical block is described by the following statement: the category of �nite-

dimensional representations (not necessarily irreducible) from the same atypical block

of atypicality r is equivalent to the category of maximally atypical representations

of u(r|r) from the atypical block, which contains the trivial representation [47]. A

similar statement holds for the orthosymplectic superalgebras; the role of u(r|r) is

13Suppose that in
{
δ1 − ε1, δ1 − ε2

}
the vector δ1 appears more than once. Then, by taking

a di�erence, we would get that 〈Λ + ρ, ε1 − ε2〉 = 0, which contradicts the assumption that Λ is

dominant.
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Figure 2.5: A diagram contributing to the expectation value of a link. A component L1

of the link is shown. The propagators running from T a3 and T ar connect to the other

components of the link.

played by osp(2r|2r), osp(2r + 1|2r) or osp(2r + 2|2r).

2.3.2 Line Observables In Three Dimensions

We begin the discussion of line operators by considering purely three-dimensional

Chern-Simons theory of a supergroup. As it is explained in Appendix E of [1], there

are some puzzles about this theory, but they do not really a�ect the following remarks.

In any event, these remarks are applicable to the analytically-continued theory as

de�ned in four dimensions, to which we return in section 2.3.3.

Consider a supergroup Chern-Simons theory on R3 with a link L which consists

of p closed Wilson loops L1, . . . , Lp, labeled by representations RΛ1 , . . . , RΛp of the

supergroup. Let us look at the perturbative expansion of this observable. On R3, the

trivial �at connection is the only one, up to gauge transformation, and perturbation

theory is an expansion about it. The trivial �at connection is invariant under constant

gauge transformations, but as the generators of constant gauge transformations on

R3 are not normalizable, we do not need to divide by the volume of the group of

constant gauge transformations. This is just as well, as this volume is typically zero

in the case of a supergroup.

A portion of a diagram that contributes to the expectation value is shown in
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�g. 2.5. We focus on a single component of the link, say L1, and sketch only the

gluon lines that are attached to this component. Let r be the number of such lines.

Then in evaluating this diagram, we have to evaluate a trace

StrRΛ1
(T a1 . . . T ar) da1...ar , (2.55)

where T ai are bosonic or fermionic generators of the superalgebra, and everything

except the group factor for the component L1 is hidden inside the invariant tensor

da1...ar (whose construction depends on the rest of the diagram). By gauge invari-

ance, the operator T a1 . . . T ar da1...ar is a Casimir operator cL1,p ∈ Z, acting in the

representation RΛ1 . The Casimir can be replaced simply by a number, and what then

remains of the group factor is the supertrace of the identity. So this contribution to

the expectation value can be written as cL1,p(Λ1) sdimRΛ1 . From this we learn two

things. First of all, up to a constant factor, the expectation value for the link L will

not change if we replace any of the representations RΛi
by a representation with the

same values of the Casimirs. That is, for an irreducible atypical representation, the

expectation value depends only on the atypical block, and not on the speci�c repre-

sentative. Second, if the supertrace over any of the representations RΛi
vanishes, the

expectation value of the link in R3 vanishes. Recall from the previous section that

the superdimension can be non-zero only for a representation of maximal atypicality.

We conclude that in R3 for a non-trivial link observable, the components of the link

should be labeled by maximally atypical blocks or else the expectation value will be

zero. For example, for the unitary supergroup U(m|n), maximally atypical blocks

correspond to irreducible representations of the ordinary Lie group U(|n−m|).

In section 6 of [1], it is argued that for knots on R3 (and more generally on any

space with enough non-compact directions) one can give expectation values to the

superghost �elds C, without changing the expectation value of a product of loop

operators. For instance, in this way, the U(m|n) theory can be Higgsed down to

U(|n −m|). Therefore, on R3 the supergroup theory does not give any new Wilson

loop observables, beyond those that are familiar from U(|n − m|). The symmetry

breaking procedure shows that the expectation value of a Wilson loop labeled by a
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maximally atypical representation of U(m|n) is equal to the expectation value of the

corresponding U(|n−m|) Wilson loop.

Yet it is known from the point of view of quantum supergroups [30, 31] that knot

invariants can be associated to arbitrary highest weights of U(m|n), not necessarily

maximally atypical. It is believed that generically these invariants are new, that is,

they cannot be trivially reduced to invariants constructed using bosonic Lie groups.

To make such a construction from the gauge theory point of view, one needs to remove

the supertrace which in the case of a representation that is not maximally atypical

multiplies the expectation value by sdimRΛ = 0. One strategy is to consider a Wilson

operator supported not on a compact knot but on a non-compact 1-manifold that is

asymptotic at in�nity to a straight line in R3 (but which may be knotted in the

interior). The invariant of such a non-compact knot would be an operator acting

on the representation RΛ, rather than a number. This approach may give invariants

associated to arbitrary supergroup representations. This strategy seems plausible to

us because it appears to make sense at least in perturbation theory, but we will not

investigate it here.

The Higgsing argument suggests another approach that turns out to work well for

typical representations. (For representations that are neither typical not maximally

atypical, the only strategy we see is the one mentioned in the last paragraph.) In

this approach, we look at the loop observables on a manifold with less then three

non-compact directions. We will focus on the case of S3. Again perturbation theory

is an expansion around the trivial �at connection. But now, unlike the R3 case, the

generators of constant gauge transformations are normalizable and we do have to

divide by the volume of the gauge group. As was mentioned in our superalgebra

review, this volume is zero for any supergroup except OSp(1|2n). Therefore, for

almost all supergroups the partition function Z(S3) on S3 is divergent,

Z(S3) =∞. (2.56)

If we try to include a Wilson loop in a non-maximally atypical representation, we get

an indeterminacy 0 · ∞.
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There is a natural way to resolve this indeterminacy in the case of typical represen-

tations, but it involves an additional tool. In three-dimensional Chern-Simons theory

with a compact simple gauge group G, Wilson line operators and line operators de-

�ned by a monodromy singularity are equivalent [4, 48, 49]. The proof involves using

the Borel-Weil-Bott (BWB) theorem to �de-quantize� an irreducible representation

of G, interpreting it as arising by quantizing some auxiliary space (the �ag manifold

of G), in what we will call BWB quantum mechanics. To resolve the indeterminacy

that was just noted, we need the analog of this for supergroups.

2.3.2.1 BWB Quantum Mechanics

We �rst recall this story in the case of an ordinary bosonic group. Let G be a compact

reductive Lie group, T ⊂ G a maximal torus, and λ ∈ t∗ an integral weight. Assume

in addition, that λ is regular, that is 〈λ, α〉 6= 0 for any root α, or equivalently the

coadjoint orbit of λ is G/T . (If this is not so, there is a similar story to what we

will explain with G/T replaced by G/L, where L is a subgroup of G that contains

T . L is called a Levi subgroup of G. Its Lie algebra is obtained by adjoining to t the

roots α that obey 〈λ, α〉 = 0.) One can consider a quantum mechanics in phase space

G/T with the Kirillov-Kostant symplectic form corresponding to λ. The functional

integral for this theory can be written as∫
Dh exp

(
−i
∫
λ
(
h−1∂sh

)
ds

)
, (2.57)

where we integrate over maps of a line (or a circle) to G/T . The action here is de�ned

using an arbitrary lift of the map h(s) valued in G/T into a map valued in G. The

functional integral is independent of this lift, as long as the weight is integral.

Let Vλ be a one-dimensional T -module, where T acts with weight λ. The pre-

quantization line bundle over the phase space is de�ned as Lλ ' G ×T Vλ; thus, it

is a line bundle associated to the principal T -bundle G→ G/T . To de�ne an actual

quantization, one needs to make a choice of polarization. For that we need a complex

structure. To that end, pick a Borel subgroup B ⊃ T in the complexi�ed gauge group

GC. The complex Kähler manifoldM ' GC/B is isomorphic, as a real manifold, to
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our phase space, and this gives it a complex structure. The prequantum line bundle

is likewise endowed with a holomorphic structure, Lλ ' GC ×B Vλ.

An accurate description of geometric quantization also involves the metaplectic

correction. Instead of being just sections of the prequantum line bundle, the wave-

functions are usually taken to be half-forms valued in this line bundle. For example,

this is the source of the 1/2 shift in the Bohr-Sommerfeld quantization condition.

The metaplectic correction is important for showing the independence of the Hilbert

space on the choice of polarization. In a holomorphic polarization, the bundle of

half-densities is a square root of the canonical line bundle K. For the �ag manifolds

that we consider, K is simply L−2ρ, where ρ is the Weyl vector for the chosen Borel

subgroup. So our wave-functions will live, roughly speaking, in Lλ ⊗K1/2 ' Lλ−ρ.

The precise characterization of the Hilbert space is given by the Borel-Weil-Bott

theorem. Let w ∈ W be the element of the Weyl group that conjugates λ into a

weight that is dominant with respect to the chosen B. Since λ was assumed to be

regular, the weight

Λ = w(λ)− ρ , (2.58)

is also dominant. The BWB theorem states that the cohomology H•(M,Lλ−ρ) is

non-vanishing precisely in one degree `(w), which is the length of the element w in

terms of the simple re�ections. The group GC acts naturally on the cohomology, and

H`(w)(M,Lλ−ρ) ' RΛ. This can be taken naturally as the Hilbert space H of our

system. Clearly, RΛ depends only on λ, and not on the choice of the Borel subgroup,

that is, the polarization. If B is taken such that λ is dominant, then this is the usual

Kähler quantization, since H0(M,Lλ−ρ) is the space of holomorphic sections.

The fact that the resulting Hilbert space H`(w)(M,Lλ−ρ) is independent of the

choice of complex structure (or equivalently the choice of B) has a direct explanation.

On a Kähler manifold, the bundle Ω0,•(M)⊗K1/2 is isomorphic to the Dirac bundle

S ' S+ ⊕ S−, where S+ and S− are spinors of positive or negative chirality. The

Dirac operator is /D = ∂ + ∂
∗
, and the cohomology of ∂ acting in Ω0,•(M)⊗K1/2 is

isomorphic to the space of zero-modes of the Dirac operator, by a standard Hodge

argument. Therefore, the Hilbert space that we de�ned is simply the kernel of the
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Dirac operator acting on S ⊗ Vλ.

For the application to Wilson operators, we need to decide if the particle running in

the loop is bosonic or fermionic. If the Hilbert space lies in the `-th cohomology group,

it is natural to de�ne the operator (−1)F that distinguishes bosons from fermions as

(−1)F = (−1)`. In the Dirac operator terminology, the particle is a boson or a

fermion depending on whether the zero-modes lie in S+ or in S−. In particular,

the amplitude of propagation of the particle along a loop (with zero Hamiltonian) is

naturally de�ned as the index of the Dirac operator ind /D = ±dimRΛ, to account

for the −1 factor for a fermion loop. Note that an elementary Weyl re�ection of λ

along a simple root reverses the orientation ofM, and therefore exchanges S+ with

S− and exchanges bosons and fermions.

In what follows, we will always work in the Borel subalgebra in which λ is domi-

nant, and therefore Λ = λ− ρ.

Now we return to the supergroup case. We would like to write the same functional

integral (2.57), with matrices replaced by supermatrices. A technical detail is as

follows. In the bosonic case, the integral goes over G/T , where G is the real compact

form of the group. In the supergroup case, we choose the compact real form of the

bosonic subgroup G0, since this is the only choice that will lead to �nite-dimensional

representations of SG. The compact form of G0 may not extend to a real form of SG

(for OSp(n|2m) it does not), so one has to develop the theory without assuming a real

form of SG. Similarly to what we have said in the beginning of section 2.3.1 for the

Chern-Simons case, to make sense of the BWB path integral, a real form is needed

only in the bosonic directions. The path integral of the supergroup BWB model goes

over a sub-supermanifold in SGC/TC whose reduced manifold is the bosonic phase

space G0/T . For instance, in our analysis shortly of a type I supergroup, h0 ∈ G0/T ,

and θ and θ̃ are independent variables valued in g1 and g−1, with no reality condition.

We claim that a simple supergroup version of the BWB model produces an irre-

ducible representation of SG as the Hilbert space. To exclude zero-modes, we assume

that λ is regular, so that 〈λ, α〉 6= 0 for any α ∈ ∆+, bosonic or fermionic. It means

in particular that the weight Λ = λ− ρ is typical. In this case, a direct analog of the
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BWB theorem exists [50], and the same logic as for the bosonic group leads to the

conclusion that the Hilbert space of the system is indeed the irreducible representation

RΛ.

For a type I superalgebra, this statement can be heuristically explained as follows.

Take a parametrization of the supergroup element as h = eθh0eθ̃, with h0 an element

of the bosonic subgroup, and θ̃ and θ belonging to g−1 and g1, respectively. The

action of the theory is

−
∫
λ(h−1dh) =

∫
Str(λ◦h−1dh) , (2.59)

where λ◦ = κmnλmTn is the dual of λ, de�ned using the superinvariant bilinear form.14

Using the fact that {g−1, g−1} = 0, and the fact that the invariant bilinear form is

even, one can rewrite this as∫
Str
(
λ◦h−1dh

)
=

∫
Str
(
λ◦h−1

0 dh0

)
+

∫
Str
(
h0[θ̃, λ◦]h−1

0 dθ
)
, (2.60)

If λ is regular, the commutation with it in [θ̃, λ◦] simply multiplies the di�erent com-

ponents of the fermion θ̃ by non-zero numbers. Then we can set θ′ = h0[θ̃, λ◦]h−1
0 ,

with θ′ a new fermionic variable. The resulting theory is a BWB quantum mechan-

ics for the bosonic �eld h0, together with the free fermions θ′ and θ. The Hilbert

space is a tensor product (2.49), as expected for a typical representation of a type I

superalgebra.15

What if λ is atypical, so that there exist isotropic fermionic roots α for which

〈λ, α〉 = 0? The usual BWB action (2.57) is degenerate, as it is independent of some

modes of θ and θ̃. This is analogous to the problem that one has in the bosonic case if

14The circle denotes the dual with respect to the bosonic part of the superinvariant bilinear form

κ = κr − κ`. The dual with respect to the positive de�nite form κr + κ` will be denoted by a star.
15There is a small caveat in this discussion. By our logic, the theory (2.60) gives H '

∧•g−1 × R0
λ−ρ0

, which is the superalgebra representation with the highest weight λ − ρ0, whereas

the supergroup BWB predicts the highest weight to be λ− ρ. Presumably, the discrepancy can be

cured if one takes into account the Jacobian of the transformation from the superinvariant measure

in the full set of variables to the free measure in the (θ′, θ) variables. In other words, that Jacobian

gives the di�erence between the one-loop shift for SG and for its maximal bosonic subgroup G.
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λ is non-regular, and one can proceed in a similar way. We replace SG/T with SG/L,

where L is a subgroup of G whose Lie algebra includes the roots with 〈λ, α〉 = 0. (L

is a superanalog of a Levi subgroup of a simple bosonic Lie group.) Then we quantize

SG/L instead of SG/T . This seems to give a well-de�ned quantum mechanics, but

we will not try to analyze it. The BWB theory for atypical representations is more

complicated than a naive generalization from the bosonic case [47]. One expects

the Hilbert space of the SG/L model to be a �nite-dimensional representation with

highest weight Λ. However, rather than the irreducible representation, it might be

the Kac module, or some quotient of it, or some more complicated indecomposable

representation.

2.3.2.2 Monodromy Operators In The Three Dimensional Theory

By coupling the gauge �eld of Chern-Simons theory to the currents of BWB quantum

mechanics, supported on a knot K, we can write a path integral representation of a

Wilson operator supported on K:

StrRΛ
P exp

(
−
∮
K

A

)
=

∫
Dh exp

(
−i
∮
K

λ(h−1dAh)

)
. (2.61)

Here K is an arbitrary knot � that is, a closed oriented 1-manifold in W . As we have

explained, this replacement is justi�ed at least for typical representations. In the

atypical case, we expect this replacement to be valid if RΛ is chosen correctly within

its block.

To establish the relation between Wilson lines and monodromy operators, we

remove the BWB degrees of freedom by a gauge transformation. This is possible

because G acts transitively on G/T ; thus, we can pick a gauge transformation along

K that maps h to a constant element of G/T . For a regular weight λ, the choice

of this constant element breaks the G gauge symmetry along K down to T . What

remains of the functional integral (2.61) is an insertion of an abelian Wilson line

exp

(
−i
∮
K

λ(A)

)
. (2.62)

With this insertion, the classical equations derived from the Chern-Simons functional

integral require the gauge �eld strength to have a delta-function singularity along the
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knot,

F =
2πλ◦

K
δK . (2.63)

For example, if r, θ are polar coordinates in the normal plane to the knot, then this

equation can be obeyed with

A =
λ◦

K
dθ. (2.64)

We note that dθ is singular at r = 0, that is, alongK. In quantum theory, the classical

equations do not always hold. However, to develop a sensible quantum theory, it is

necessary to work in a space of �elds in which it is possible to obey the classical

equations. One accomplishes this in the present case by quantizing the theory in a

space of �elds characterized by

A =
λ◦

K
dθ + . . . (2.65)

where the ellipses refer to terms less singular than dθ at r = 0. This gives the

de�nition of a monodromy operator.

Note that in (2.61), to rewrite a Wilson line for a dominant weight Λ, we used a

weight λ = Λ+ρ. The motivation for this shift was given in our review of the coadjoint

orbit quantum mechanics, but this point requires more explanation. In the ordinary

three-dimensional formulation of Chern-Simons theory, it is known that such shifts of

the weights should not be included in the de�nition of the monodromy operators, but

rather they appear in the �nal answers as quantum corrections [48]. This is analogous

to the shift in the level k → k + h sign(k). However, in the analytically-continued

theory, we have to put the shift of k by hand into the classical action, and one expects

that the same should be done with the shifts of the weights.16 For example, let us

look at the expectation value for the unknot, labeled with the spin j representation,

in the SU(2) Chern-Simons theory on R3. This expectation value is

Zj(R
3) =

sin (2π (j + 1/2)/K)

sin (π/K)
. (2.66)

16Both of these shifts arise from the phase of an oscillatory Gaussian integral, as was explained in

the case of k in section 2.2.6. In the 4d analytically-continued version of the theory, the Gaussian

integrals are real and will not generate shifts.
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This formula is derived from the relation with conformal �eld theory, so j here is a

non-negative half-integer. In the analytically-continued theory, we want to replace the

Wilson line of the spin j representation with a monodromy operator, and assume that

the answer is given by the same simple formula (2.66). The prescribed monodromy

around the knot is de�ned by

F = 2πi
j′ σ3

K
δK , (2.67)

where σ3 ∈ su(2) is the Pauli matrix. We need to choose between taking j′ = j or

j′ = j + 1/2. Note that the Weyl transformation of the �eld in (2.67) brings j′ to

−j′. It should leave the expectation value invariant, up to sign.17 The symmetry of

the formula (2.66) is consistent with this, if we take j′ = j + 1/2.

So we will assume that the monodromy operator in the analytically-continued

theory, which corresponds to a representation with weight Λ, should be de�ned using

the shifted weight λ = Λ+ρ. However, let us comment on some possible issues related

to these shifts. For a type I superalgebra, the Weyl vector ρ has integral Dynkin labels,

so, if Λ is an integral weight, then λ is also an integral weight of the superalgebra.

But for the u(m|n) case, it might not be an integral weight of the supergroup. This

can be illustrated even in the purely bosonic case. For U(2), the quantum correction

Λ → Λ + ρ shifts the SU(2) spin by one-half, and does not change the eigenvalue of

the central generator u(1) ⊂ u(2). The resulting weight is a well-de�ned weight of

SU(2)×U(1), but not of U(2) ' (SU(2)×U(1))/Z2. For a type II superalgebra, the

problem can be worse. If Λ is an integral weight of the superalgebra, λ might not

be an integral weight of the superalgebra itself, because the Weyl vector ρ can have

non-integer Dynkin labels.18

17For a knot in R3 or S3, there is essentially only one integration cycle, so the Weyl re�ection

maps the integration cycle to an equivalent one. But it may reverse the orientation of the integration

cycle, and that is the reason for the sign. A related explanation of the sign was given in section

2.3.2.1.
18For any simple root α of the superalgebra, it is true that 2〈ρ, α〉 = 〈α, α〉. From this one infers

that the Dynkin label of the Weyl vector is either one or zero. However, for a type II superalgebra

there exists a simple root of the bosonic subalgebra, which is not a simple root of the superalgebra,

and for that root the Dynkin label of ρ need not be integral.
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We will not try to resolve these puzzles, but will just note that in one approach

to the line observables of the analytically-continued theory, one replaces a Chern-

Simons monodromy operator by a surface operator in four dimensions. In that case,

the fact that λ◦ in eqn. (2.65) is de�ned using a non-integral weight presents no

problem with gauge-invariance for much the same reason that the non-integrality of

K presents no problem: the �big� gauge transformations that lead to integrality of the

parameters in purely three-dimensional Chern-Simons theory do not have analogs19

in the four-dimensional setting.

Finally, we can return to the question of making sense of a path integral for

a knot K ⊂ S3 labeled by a typical representation. As remarked following eqn.

(2.56), a direct attempt to do this in the language of Wilson operators leads to a

0 · ∞ degeneracy. This degeneracy is naturally resolved by replacing the Wilson

operator by a monodromy operator with weight λ. In perturbation theory in the

presence of a monodromy operator supported on a knot K, the functional integral

is evaluated by expanding near classical �at connections on the complement of K

whose monodromy around K has a prescribed conjugacy class. The group H of

unbroken gauge symmetries of any such �at connection, for λ typical, is a purely

bosonic subgroup of SG, because the fermionic gauge symmetries have been explicitly

broken by the reduction of the gauge symmetry along K from SG to a bosonic

subgroup (this subgroup is T if λ is regular as well as typical).20 To compute the

functional integral expanded around a classical �at connection, one has to divide by

the volume of H, but this presents no problem: as H is purely bosonic, its volume is

19In going from three to four dimensions, the support of a monodromy operator is promoted from

a knot K to a two-manifold C with boundary K. If C is compact, a homotopically non-trivial

map from K to the maximal torus T ⊂ G does not extend over C. If C = K × R+, such a gauge

transformation can be extended over C, but the extension does not approach 1 at in�nity. In a

noncompact setting, one only requires invariance under gauge transformations that are 1 at in�nity.
20For any K, there is an abelian �at connection on the complement of K with the prescribed

monodromy around K, unique up to gauge transformation. Its automorphism group is T if λ is

regular as well as typical (and otherwise is a Levi subgroup L that lies between T and G). In general,

there may be nonabelian �at connections with the required monodromies; their automorphism groups

are smaller.
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not zero. So in the monodromy operator approach, there is no problem to de�ne a

path integral on S3 with insertion of a knot labeled by a typical representation.

Now let us consider loop operators in R3 rather than S3. We have claimed that

a path integral on R3 with a Wilson operator labeled by a representation of non-

maximal atypicality is 0. This must remain true if the Wilson operator is replaced by

a corresponding monodromy operator. Let us see how this happens. The di�erence

between R3 and S3 is that in de�ning the path integral on R3, we only divide by

gauge transformations that are trivial at in�nity. If on S3 a �at connection has an

automorphism subgroup H, then on R3 it will give rise to a family of irreducible

connections, with moduli space SG/H. The volume of this moduli space will appear

as a factor (in the numerator!) in evaluating the path integral. If H is purely bosonic,

then the quotient SG/H has fermionic directions, and its volume generally vanishes.21

Therefore, the expectation value of a closed monodromy operator in R3, for λ typical,

vanishes (except for B(0, n)), in agreement with the corresponding statement for the

Wilson loop. To analyze the case that the weight λ is not typical, we need to extend

the BWB quantum mechanics for atypical weights, and presumably we will then need

to compute the invariant volume of a homogeneous space SG/H, where now H will

be a subsupergroup. It is plausible that for λ of su�cient atypicality, this volume can

be non-zero,22 so that the monodromy operator can have a non-trivial expectation

value. But we have not performed this computation.

2.3.3 Line Observables In Four Dimensions

Our next goal is to interpret the line operators that we have discussed in the full

four-dimensional construction. First we consider Wilson lines, and explore their sym-

metries in the physical 4d super Yang-Mills theory associated to the D3-NS5 system.

21As always, the exception is a supergroup from the series B(0, n).
22In view of an argument explained in footnote 9, a necessary condition is that any fermionic

generator C of SG that obeys {C, C} = 0 must be conjugate to a generator of H. This ensures that

the group F generated by C does not act freely on SG/H, so that the argument of footnote 9 cannot

be used to show that the volume of SG/H is 0. For U(m|n), it follows from this criterion that

SG/H has zero volume except possibly if λ is maximally atypical.
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2.3.3.1 Wilson Operators

For generic values of t, N = 4 super Yang-Mills theory in bulk does not admit Q-

invariant Wilson operators. (They exist precisely if t2 = −1, a fact that is important

in the geometric Langlands correspondence [14].) However, on the defect W there

always exist supersymmetric Wilson operators

WR(K) = StrRP exp

(
−
∮
K

A
)
, (2.68)

labeled by an arbitrary representation R of the supergroup SG. Here A is the super-

group gauge �eld and Q-invariance is clear since Q acts on A by gauge transforma-

tions.

These are the most obvious Q-invariant line operators, but they have a drawback

that makes them harder to study: as operators in the physical N = 4 super Yang-

Mills theory, they have less symmetry than one might expect. We will analyze the

symmetry of these operators in di�erent situations.

The procedure by which we constructed a topological �eld theory involved twisting

four of the six scalars of N = 4 super Yang-Mills theory, leaving two untwisted

scalars and hence an unbroken R-symmetry group U(1)F = SO(2) ⊂ SO(6)R. In the

special case that M = R ×W with a product metric, there is no need for twisting

in the R direction to maintain supersymmetry, so three scalars remain untwisted and

U(1)F is enhanced to SU(2)Y . The supercharge Q that we chose in constructing a

topological �eld theory was one component of an SU(2)Y doublet. For M = R×W ,

the twisted action is invariant under SU(2)Y as well as Q, so it inevitably preserves two

supercharges � both components of the doublet containing Q. Likewise, the Wilson

loop operators (2.68) are invariant under SU(2)Y as well as Q, so on M = R ×W ,

they really preserve two supersymmetries.

Now let us specialize further to the case thatW = R3 is �at, withM = R×W = R4.

In this case, no topological twisting is necessary, but the half-BPS defect supported

on W breaks the R-symmetry group to SO(3)X × SO(3)Y . In addition, there is

an unbroken rotation group SO(3), and, as explained in section 2.2.1, the unbroken

supersymmetries transform as (2,2,2) under SO(3) × SO(3)X × SO(3)Y . Let us
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consider a Wilson operator WR(K) where K is a straight line R ⊂ W , say the line

x1 = x2 = 0, parametrized by x0. K is invariant under a subgroup SO(2) ⊂ SO(3) of

rotations of x1 and x2. To identify the global symmetry of WR(K) involves a crucial

subtlety. First let us consider the one-sided case studied in [6], in other words the

case of an ordinary gauge group G rather than a supergroup SG. In this case, the

supergroup connection reduces to Ab = A+ i(sinϑ)φ, and the Wilson operator for a

straight Wilson line depends on one component φ0 of a triplet (φ0, φ1, φ2) of SO(3)X .

This �eld is invariant under a subgroup SO(2)X ⊂ SO(3)X , and hence a straight

Wilson line in the case of an ordinary gauge group has global (bosonic) symmetry

SO(2) × SO(2)X × SO(3)Y . In the supergroup case, we must remember that the

supergroup connection also has a fermionic part A f which began life as part of a �eld

that transforms as (2,2) under SO(3)×SO(3)X . As a result, the component of A f in

the x0 direction is not separately invariant under SO(2) and SO(2)X but only under a

diagonal combination SO′(2) ⊂ SO(2)×SO(2)X . Hence the bosonic global symmetry

of a straight Wilson line in the supergroup case is SO′(2)×SO(3)Y , reduced from the

corresponding symmetry in the case of an ordinary Lie group.

The supersymmetry of a straight Wilson line WR(K) is likewise reduced in the

supergroup case from what it is in the case of an ordinary Lie group. A supersym-

metry has no chance to preserve the straight Wilson line if its commutator with the

complexi�ed bosonic gauge �eld Ab has a contribution proportional to Ψ1. Indeed,

the boundary conditions do not tell us anything about the behaviour of Ψ1 at x3 = 0,

so there would be no way to cancel such a term. Inspection of the supersymmetry

transformations (2.11) reveals that, apart from the SO′(3)-invariant supersymmetries

with generators

εαAȦ = εαAwȦ (2.69)

(familiar from eqn. (2.24)), with arbitrary two-component spinor wȦ, the only super-

symmetries that do not produce variations of Ab proportional to Ψ1 are those with

generators

εαAȦ = σαA0 w̃Ȧ , (2.70)

where again w̃Ȧ is an arbitrary spinor. Since w̃Ȧ transforms as a spinor of SU(2)Y , an
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SU(2)Y -invariant Wilson operator is invariant under this transformation for all w̃Ȧ if

and only if it is invariant for some particular nonzero w̃Ȧ. A choice that is convenient

because it enables us to write simple formulas in the language of the twisted theory

is to set w̃Ȧ = vȦ (where vȦ was de�ned in (2.28)). Writing δ̃ for the transformation

generated by the corresponding supersymmetry, one computes that

δ̃A0 = −i[C,B} , (2.71)

where we de�ne

B = {C,C}+B. (2.72)

Since (2.71) is non-zero, our Wilson lines do not preserve supersymmetries (2.70)

for a generic representation. Therefore, they preserve only the two supersymmetries

(2.69). They are 1/4-BPS objects from the standpoint of the defect theory (or 1/8

BPS relative to the underlying N = 4 super Yang-Mills theory). This is an impor-

tant di�erence from the case of a purely bosonic gauge group, in which Wilson lines

preserve four supersymmetries (a fact that greatly simpli�es the analysis of the dual

't Hooft operators [6, 51]). In fact, if the representation R that labels the Wilson

line WR(K) is such that the fermionic generators act trivially, then (2.71) vanishes,

and WR(K) becomes 1/2-BPS (in the defect theory), as in the bosonic or one-sided

case. More generally, for (2.71) to vanish it is enough that the anticommutators of

the fermionic generators vanish in the representation R. Of course, in the case of a

supergroup such as U(m|n), this is a very restrictive condition.

One can also construct other Q-invariant Wilson operators in the electric theory,

by adding a polynomial of the Higgs �eld B to the connection in the Wilson line. The

resulting operators preserve 1/4 or 1/8 of the three-dimensional supersymmetry. In

the Q-cohomology, such operators are equivalent to the ordinary Wilson lines (2.68),

and for this reason we will not say more about them.

Why do we care about the reduced supersymmetry of the supergroup Wilson loop

operators? One of our goals will be to understand what happens to line operators un-

der nonperturbative dualities. For this purpose, the fact that the supergroup Wilson

operators are only 1/4 and not 1/2 BPS is rather inconvenient. Possible construc-
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tions of a dual operator that preserve 4 supercharges are much more restrictive than

possible constructions that preserve only 2 supercharges. We will obtain a reason-

able duality picture for certain 1/2 BPS Wilson-'t Hooft line operators that will be

introduced in section 2.3.3.2. These Wilson-'t Hooft operators are labeled by weights

of SG and the way they are constructed suggests that from the point of view of the

twisted topological �eld theory � the supergroup Chern-Simons theory � they are

equivalent to Wilson operators. But because of their enhanced supersymmetry, it is

much easier to �nd their duals.

About the Wilson operators, we make the following remarks. We were not able to

�nd a construction of 't Hooft-like disorder operators � characterized by a singularity

of some kind � with precisely the right global symmetries so that they might be dual

to the Wilson operators constructed above. It may be that one has to supplement

an 't Hooft-like construction by adding some quantum mechanical variables that live

along the line operators (analogous to the BWB variables that we discussed in section

2.3.2.1). With only 2 supersymmetries to be preserved, there are many possibilities

and we do not know a good approach. Also, the fact that the two-dimensional space

of supersymmetries preserved by a Wilson operator is not real suggests that it is

di�cult to realize such an object in string theory. A string theory realization would

probably have helped in understanding the action of duality.

2.3.3.2 Wilson-'t Hooft Operators

For all these reasons, we now move on to consider Wilson-'t Hooft operators.

N = 4 super Yang-Mills theory supports BPSWilson-'t Hooft line operators in the

bulk [52]. Though they preserve 8 supersymmetries, generically these do not include

the speci�c supersymmetry Q. The condition for a Wilson-'t Hooft operator in bulk

to be Q-invariant is that its electric and magnetic charges must be proportional with

a ratio K [14]. Since both charges have to be integral, Q-invariant Wilson-'t Hooft

operators exist in the bulk only for rational values of the canonical parameter K. In

the present chapter, we generally assume K to be generic.

However, we are interested in operators that are supported not in the bulk but
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Figure 2.6: The hyperplane x0 = 0 showing our notation for the coordinates. y = x3 runs

horizontally; the x0 = 0 section of the knot K is shown as a dot in the center.

along the defect at x3 = 0. The gauge theories with gauge groups G` and Gr live

in half-spaces, and the magnetic �ux for each gauge group can escape through the

boundary of the half-space and so is not quantized. So a Wilson-'t Hooft operator that

lives only at y = 0 is no longer constrained to have an integral magnetic charge. Such

operators can exist for any (integer) electric charge and arbitrary K. To de�ne them

precisely, we work in the weak coupling regime, where gYM is small, and therefore,

according to (2.7), K is large. The weight of the representation is taken to scale with

K, so that the monodromy of the gauge �eld, which is proportional to λ/K, is �xed.

Consider a line operator located at y = 0 along the x0 axis. (See �g. 2.6 for

the notation.) We want to �nd a model solution of the BPS equations (2.30) that

will de�ne the singular asymptotics of the �elds near the operator. For de�niteness,

consider the Yang-Mills theory on the right of the three-dimensional defect. We make

a conformally-invariant abelian ansatz which preserves the SO(2)×SO(2)X×SO(3)Y

symmetry:

A = ca
dx0

r′
+ mr(1− cosϕ)dθ ,

φ = cφ
dx0

r′
. (2.73)

Here mr is the magnetic charge (which as noted above will not be quantized). The

ray ϕ = 0 points in the y > 0 direction, and the signs were chosen such that there is
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no Dirac string along this ray. The localization equations (2.30) are satis�ed if

ca = imr tanϑ , cφ = − mr

cosϑ
, (2.74)

where ϑ is the angle related to the twisting parameter t, as introduced in section

2.2. The hypermultiplet �elds are taken to vanish. The factor of i in the Coulomb

singularity of the gauge �eld A is an artifact of the Euclidean continuation; in Lorentz

signature, the solution would be real. Eqn. (2.73) �xes the behaviour of the bulk �elds

near a line operator. For a generic magnetic charge, the �elds of the hypermultiplet

do not commute with the singularity in (2.73), and thus are required to vanish along

the operator.

Let us check that our model solution satis�es also the boundary conditions at y =

0. The boundary conditions can be derived from (2.17) and an analogous expression

for the scalar Xa. This is done in Appendix B. However, in the topological theory

one can understand the relevant features by a more simple argument. The boundary

condition should require vanishing of the boundary part of the variation of the action

of the theory. Suppose that we consider a con�guration in which all the fermions

vanish, and the bosonic �elds satisfy the localization equations. The variation of the

non-Q-exact Chern-Simons term (equivalently, the topological term) gives the gauge

�eld strength Fb. The Q-exact terms in the action come in two di�erent sorts. There

is a bulk contribution, whose bosonic part is proportional to the sum of squares

of the localization equations (2.30). The variation of these terms vanishes when

the equations are satis�ed. There are also Q-exact terms supported on the defect;

they furnish gauge �xing of the fermionic gauge symmetry of the supergroup Chern-

Simons. Their variation is proportional to the hypermultiplet �elds. Therefore, we

conclude that if the �elds satisfy the localization equations, and the three-dimensional

hypermultiplet vanishes, the boundary condition reduces to

ı∗ (Fb) = 0 , (2.75)

where ı : W ↪→ M is the natural embedding of the three-manifold into the bulk

manifold. This boundary condition is indeed satis�ed by the model solution (2.73),
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(2.74), because in the complexi�ed gauge �eld Ab = A+ i(sinϑ)φ, the Coulomb parts

of A and φ cancel. (The magnetic part is annihilated by ı∗.) In fact, at y = 0, the

complexi�ed �eld Ab reduces to the �eld of a Chern-Simons monodromy operator

(2.63), if we identify m = λ◦/K, where now m includes both the part in g` and in gr.

In Chern-Simons theory, in the presence of a monodromy defect, the bulk action

is supplemented with an abelian Wilson line (2.62) along the defect; in our derivation

in section (2.3.2.2), this is what remained after gauge-�xing the BWB action. The

Chern-Simons action with an insertion of an abelian Wilson line is characterized by

the fact that its variation near the background singular �eld (2.63) does not have a

delta function term supported on the knot (a delta function term that would come

from the variation of Chern-Simons in the presence of the monodromy singularity

is canceled by the variation of the abelian Wilson operator). In four dimensions, in

the presence of a singularity along a knot K, the topological action (2.35) should be

integrated over the four-manifold with a neighborhood of K cut out, and taking into

account the singularity along K of the Wilson-'t Hooft operator, this produces a term

in the variation with delta-function support along K:

δ

(
iK
4π

∫
M\K

tr (F ∧ F)

)
= i

∮
K

Str (λ◦δA) . (2.76)

To cancel this variation, just like in three dimensions, one inserts an abelian Wilson

line (2.62).

But now we learn something fundamental. Although the Wilson-'t Hooft opera-

tors that we have constructed do not have a quantized magnetic charge, they have

a quantized electric charge. The abelian Wilson line is only gauge-invariant if λ is

an integral weight of G` ×Gr. For a type I superalgebra such as u(m|n), an integral

weight of G` × Gr corresponds to an integral weight of the supergroup U(m|n) and

therefore, these Wilson operators are classi�ed by integral weights of the supergroup.

The Weyl group of U(m|n) is the same as that of its bosonic subgroup U(m)×U(n),

so an equivalent statement is that Wilson operators of the supergroup (for irreducible

typical representations, or some particular atypical representations) are in correspon-

dence with this class of Wilson-'t Hooft operators. The advantage of the Wilson-'t
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Hooft operators is that they have more symmetry: in addition to Q-invariance, they

are half-BPS operators with the full SO(2)× SO(2)X × SO(3)Y symmetry, just like a

Wilson line in the one-sided problem.

For a type II superalgebra, such as osp(2m + 1|2n), there is a slight complica-

tion. For such algebras, some �small� dominant weights do not correspond to rep-

resentations. (These are the weights that do not satisfy the �supplementary condi-

tion,� as de�ned in section 2.3.1.1. See also section 2.5.6.2 for details in the case of

OSp(2m+1|2n).) Our construction gives a half-BPS line operator for every dominant

weight whether or not this weight corresponds to a representation. It is hard to study

explicitly why some Wilson-'t Hooft operators with small weights do not correspond

to representations, because the semiclassical description of a Wilson-'t Hooft operator

is valid for large weights.23

2.3.3.3 Twisted Line Operators

In section 2.5, we will discuss a non-perturbative duality for Chern-Simons theory with

orthosymplectic supergroup OSp(r|2n). It will turn out that line operators labeled

by dominant weights of the supergroup are not a closed set of operators under that

duality. To get a duality-invariant picture, one needs to include what we will call

twisted line operators.

The clearest explanation seems to be also the most naive one. We consider 4d

super Yang-Mills theory on W × Ry, where Ry is parametrized by y. For y < 0, the

gauge group is SO(r); for y > 0, it is Sp(2n). Along W ×{y = 0} is a bifundamental

hypermultiplet.

Now we pick a knot K ⊂ W , and de�ne a line operator supported on K by saying

that the hypermultiplet fermions change sign under monodromy around K. Locally,

this makes perfect sense. Globally, to make sense of it, we have to say essentially

that the hypermultiplets are not just bifundamentals, but are twisted by a Z2 bundle

23Given this, one may wonder if the half-BPS property is lost when the weights are too small. We

doubt that this is the right interpretation because the construction of half-BPS line operators on

the magnetic side, discussed in section 2.4.4, appears to be valid for all weights.
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de�ned on W × {y = 0} that has monodromy around K. If such a �at bundle does

not exist, we say that the path integral with insertion of the given line operator is 0.

If there are inequivalent choices for this �at bundle, we sum over the choices.

This procedure actually de�nes not just a single new line operator, but a whole

class of them, which we will call twisted line operators. The reason is that the

monodromy around K forces the hypermultiplets to vanish along K, and therefore

there is no problem to include arbitrary SO(r) × Sp(2n) Wilson operators along K.

This class of operators will be important in section 2.5.

Can we do something similar for U(m|n)? In this case, we can pick an arbitrary

nonzero complex number eic, embedded as an element of the center of U(n) (or of

its complexi�cation if c is not real), and twist the hypermultiplet �elds by eic under

monodromy around K. Then we proceed as just explained, and get a family of

line operators that depend on the parameter c. Again, from a global point of view,

this means the hypermultiplets are bifundamentals twisted by a �at line bundle with

monodromy eic around K, and we de�ne the path integral by summing over the

possible �at bundles that obey this condition. And again, we can generalize this

de�nition by including Wilson operators of U(m)× U(n).

2.3.4 Surface Operators

In the relation of 3d Chern-Simons theory to 4d gauge theory, there are two possible

strategies for �nding a 4d construction related to a line operator in the Chern-Simons

theory.

In one picture, the 3d line operator is promoted to a 4d line operator that lives on

the defect that supports the Chern-Simons gauge �elds. In the second picture, a line

operator in 3d is considered to have its support in codimension 2, and it is promoted

to a surface operator in 4d, whose support is in codimension 2.

So if Chern-Simons theory on a three-manifoldW is related to 4d super Yang-Mills

on W × Ry, where Ry is a copy of R parametrized by y with a defect at y = 0, then

in the �rst approach, a 3d line operator supported on K ⊂ W is promoted in 4d to a

line operator supported on K × {y = 0}. In the second approach, a 3d line operator
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supported on K is promoted to a 4d surface operator supported on a two-manifold

C such that C ∩ {y = 0} = K. For example, C might be simply K × Ry.

Both of these viewpoints were explored in [6] for the one-sided problem, although

the �rst one based on 4d line operators was developed in more detail. In the two-sided

case, we have followed the �rst viewpoint so far but now we turn to the second one

and consider surface operators.

We focus on the simplest half-BPS surface operators, which were described in

the bulk in [53]. Our problem is to understand what happens when one of these

operators intersects a �vebrane. In the present section, we answer this question on

the electric side (that is, for an NS5-brane). In section 2.4, we answer the question

on the magnetic side (that is, for a D5-brane).

One advantage to the formulation via surface operators in four dimensions rather

than line operators is that the behavior under S-duality is simple to understand.

That is because, in the 4d bulk, one already knows the behavior under S-duality of

the surface operators we will be studying. Given a surface operator intersecting an

NS5-brane, the S-dual of this con�guration will have to consist of the S-dual surface

operator intersecting a D5-brane. So all we have to do is to determine what happens

when a surface operator intersects an NS5-brane or a D5-brane. S-duality will then

take care of itself.

2.3.4.1 Surface Operators In The Bulk

The simplest half-BPS surface operators inN = 4 super Yang-Mills theory are labeled

by a set of four parameters (α, β, γ, η). The �rst three de�ne the singular behavior

of the �elds near the support of the operator, which will be a two-manifold C. If r

and θ are polar coordinates in the normal plane to C, we require the �elds near C to

behave like

A = α dθ + . . . ,

φ = β
dr

r
− γ dθ + . . . , (2.77)
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where the ellipses represent less singular terms. The parameters α, β and γ take values

in a Cartan subalgebra t ⊂ g. More precisely, one can make big gauge transformations

on the complement of C that shift α by an arbitrary cocharacter; therefore, α should

be considered as an element of the maximal torus24 T ' t/Γcochar.

The meaning of the fourth parameter η is the following. Assume that the triple

(α, β, γ) is regular, that is, it commutes only with t. In this case the singular behavior

(2.77) reduces the gauge group along the surface operator to its maximal torus T ,

and it makes sense to speak of the �rst Chern class of the resulting T -bundle on C.

One can de�ne the t∗-valued theta-angle η coupled to this Chern class, and introduce

a factor

exp

(
i

∫
C

η(F )

)
(2.78)

in the functional integral. By integrality of the �rst Chern class, this expression

is invariant under a shift of the theta-angle by an element of the character lattice

Γchar ⊂ t∗, so η really takes values in the maximal torus of the Langlands-dual group,

η ∈ T∨ ' t∗/Γchar. Dividing by the action of the Weyl group W , which is a remnant

of the non-abelian gauge symmetry, we get that the parameters (α, β, γ, η) take values

in (T, t, t, T∨)/W .

The singular asymptotics of the �elds (2.77) satisfy the localization equations

(2.30) for any value of t, if supplemented with appropriate sources,

F − φ ∧ φ = 2πα δC ,

dAφ = −2πγ δC

dA ? φ = 2πβ dx0 ∧ dy ∧ δC (2.79)

where δC = d(dθ)/2π is the δ-function 2-form that is Poincaré dual to the surface C,

and x0 and y are coordinates along the surface.

The prescribed singularities (2.77) de�ne the space of �elds over which one inte-

grates to de�neN = 4 super Yang-Mills theory in the presence of the surface operator.

Let us also de�ne more precisely what functional we are integrating over this space.

24In this section we discuss only the bulk N = 4 Yang-Mills theory, and all our notation refers to

its bosonic gauge group, and not to a supergroup.
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The action of the bulk topological theory consists of the topological term and some

Q-exact terms (2.36). In the presence of the surface operator, the topological term is

de�ned as
iK
4π

∫ ′
M

tr(F ∧ F ) , (2.80)

where the symbol
∫ ′
M

denotes an integral over M \ C, not including a delta function

contribution along C. Alternatively, we can write this as an integral over the whole

four-manifold, and explicitly subtract the contribution which comes from the delta-

function singularity of the curvature:

iK
4π

∫ ′
M

tr(F ∧ F ) =
iK
4π

∫
M

tr(F ∧ F )− iK
∫
C

tr(αF )− iπK tr(α2)C ∩ C. (2.81)

The c-number contribution proportional to the self-intersection number C∩C appears

here from the square of the delta-function.

In the absence of the surface operator, the Q-exact part of the action has the form

− 1

g2
YM

∫
tr

(
2t−1

t+ t−1
V+∧ V+ − 2t

t+ t−1
V−∧ V− + V0 ∧ ?V0

)
, (2.82)

where V+, V− and V0 are the left hand sides of the supersymmetric localization

equations, as de�ned in (2.30). In the presence of the surface operator, the localization

equations acquire delta-function sources, as in (2.79). The action (2.82) is modi�ed

accordingly, e.g., the �rst term becomes

− 1

g2
YM

∫
tr

(
2t−1

t+ t−1

(
V+ − 2π(α− tγ)δ+

C

)
∧
(
V+ − 2π(α− tγ)δ+

C

))
. (2.83)

Because it contains the square of a delta function, this expression is at risk of being

divergent. To make the action �nite, one works in a class of �elds in which the

localization equations (2.79) are satis�ed, modulo smooth terms. In other words, the

left hand side of the localization equations must contain the same delta functions as

the right hand side.

In the de�nition of the surface operator, it was assumed that the singularity

de�ned by (α, β, γ) is regular, that is, the gauge group along the operator is broken

down to the maximal torus. This is the case for which the theta-angles η can be
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de�ned classically. But it can be argued that the surface operator is actually well-

de�ned quantum mechanically as long as the full collection of couplings (α, β, γ, η)

is regular. One approach to showing this involves a di�erent construction of these

surface operators with additional degrees of freedom along the surface as described

in section 3 of [54]. In this chapter, we will try to avoid these issues.

2.3.4.2 Surface Operators In The Electric Theory

Let us specialize to a four-manifold M = W × Ry, with an NS5-type defect along

W ×{y = 0}. To incorporate a loop operator along the knot K in the Chern-Simons

theory, we insert surface operators in the left and right Yang-Mills theories along a

two-surface C = C` ∪ Cr that intersects the y = 0 hyperplane along K. We could

simply take C to be an in�nite cylinder K × Ry, or we could take an arbitrary �nite

2-surface. The orientations are taken to be such that ∂Cr = −∂C` = K. The

parameters of the surface operators on the right and on the left will be denoted by

letters with a subscript r or `. Sometimes we will use notation without subscript to

denote the combined set of parameters on the right and on the left (e.g., α = (αr, α`)).

We would like to understand the meaning of the parameters of a surface operator

in the Chern-Simons theory. It is clear that a surface operator with β = γ = η = 0

and non-zero α is equivalent to a monodromy operator in Chern-Simons, with weight

λ◦ = Kα. Such a surface operator can be obtained e.g. as a Dirac string, which is

produced by moving a Wilson-'t Hooft line operator in the four-dimensional theory

into the bulk.

The parameter β has no direct interpretation in Chern-Simons, and de�nes just a

deformation of the integration contour, without changing the path integral. As noted

in [6], sometimes it might not be possible to turn on β. For example, let the bosonic

gauge group be abelian, and let the three-manifold W be compact (e.g., W ' S3).

If we have a link with components labeled by β1, . . . , βp, then, integrating the third

equation in (2.79) over W , we get that
∑
βili = 0, where li is the length of the i-th

component of the link. We see that if there is only one component, then β has to be

zero.
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The case of a surface operator with non-zero γ is a little subtle. It is not clear

to us whether such an operator in the physical theory25 can intersect (or end on)

the three-dimensional defect in a Q-invariant way, and if it can, then to what line

operator in Chern-Simons theory it would correspond. In topological theory, when

one takes the parameter t to be real, such an operator makes perfect sense and has

a natural Morse theory interpretation [6, 12]. In that case, the bosonic part of the

action, modulo Q-exact terms, is de�ned in presence of a surface operator by an

integral of the local density tr(Fb ∧ Fb) over the four-manifold M \ C. Up to some

�eld-independent constants, we have, analogously to (2.81),

iK
4π

∫ ′
Mr

tr(Fb ∧ Fb) =
iK
4π

∫
Mr

tr(Fb ∧ Fb)− iK
∫
Cr

tr((αr − wγr)Fb). (2.84)

(Here we focus on the integral on the right hand side of the defect.) The combination

αr − wγr under the trace came from the monodromy of the complexi�ed gauge �eld

Ab = A + wφ, where w is some complex number with non-zero imaginary part. (In

physical theory, w = i sinϑ.) Such an operator clearly corresponds to a Chern-Simons

monodromy operator of weight λ◦ = K(α− wγ), which generically is complex. Now,

the problem with such an operator in the physical theory is that the right hand side of

(2.84) contains an integral of iKwtr(γF ) over C, which cannot have any interpretation

in the bulk physical theory, since w is not real. (Comparing e.g. to (2.78), we could

say that this insertion corresponds to η = wKγ, which is not an element of the real Lie

algebra.) What one should really do in the physical theory is to write the action as a

four-dimensional integral of the density tr(F ∧F ), with gauge �eld non-complexi�ed,

plus the three-dimensional integral of a three-form which can be found on the right

hand side of equation (2.40). In the presence of a surface operator, one should omit C

from the four-dimensional integral of tr(F ∧ F ), and the knot K from the boundary

integral of the just-mentioned three-form. In the bulk, this gives an ordinary surface

operator of the sort reviewed in section 2.3.4.1. However, it is not completely clear

25By the �physical theory� we mean the theory that in �at space describes the D3-NS5 intersection.

In this theory, t is given by (2.29) and lies on the unit circle, and K is real. By the �topological

theory,� we mean the theory which arises naturally from the Morse theory construction [12, 13],

with t being real, and K in general complex. In this chapter, we focus on the physical theory.
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whether with this de�nition the intersection of the operator with the defect at y = 0

can be made Q-invariant, and to what Chern-Simons weight it would correspond.

In the S-dual description of the theory in section 2.4, we will �nd natural half-BPS

surface operators with non-zero γ∨, and the Chern-Simons weight will not depend on

this parameter. So we would expect that in the physical theory, Q-invariant surface

operators with γ 6= 0, intersecting the boundary, do exist, and that γ plays much the

same role as β � that is, it only deforms the integration contour. But this point is

not completely clear.

Finally, turning on the parameter η of the surface operator corresponds to adding

an abelian Wilson insertion along the line K, where the surface operator crosses the

y = 0 hyperplane. Naively, this happens because of the �identity� exp(iη
∫
C∩Mr

F ) =

exp(iη
∮
K
A) where A is an abelian gauge �eld with curvature F . We cannot take

this formula literally, since
∮
K
A is only gauge-invariant mod 2πZ. But the �identity�

is correct for computing classical equations of motion, and thus shifting η`,r has the

same e�ect on the equations of motion as shifting the electric charges that live on

K = C ∩W . Note that in presence of the three-dimensional defect the parameter η

is lifted from the maximal torus T∨, and takes values in the dual Cartan subalgebra

t∗.

Let us brie�y summarize. A surface operator with parameters (α, β, 0, η), sup-

ported on a surface C = C` ∪ Cr, corresponds in the analytically-continued three-

dimensional Chern-Simons theory to a monodromy operator with weight λ◦ = Kα−η∗.

(Recall that a circle denotes the dual with respect to the superinvariant bilinear form

κ = κr − κ`, and a star represents the dual with respect to the positive de�nite form

κr + κ`.) Let λ` and λr be the parts of the weight, lying in the Cartan of the left and

right bosonic gauge groups, respectively. Then, more explicitly,

λ` = −Kα∗` + η` ,

λr = Kα∗r − ηr. (2.85)

We have set γ to zero, since its role is not completely clear. For a given weight λ, we

have a freedom to change α and η, while preserving λ`,r. So a given line operator in
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the Chern-Simons theory can be represented by a family of surface operators in the

four-dimensional theory.

Now let us specialize for a moment to the operators of type (α, 0, 0, 0). The action

of the Weyl group on α, together with the large gauge transformations which shift α

by an element of the coroot lattice26 Γ∗w of the bosonic subalgebra, generate the action

of the a�ne Weyl group Ŵ1 = W n Γ∗w at level 1. Equivalently, on the quantum-

corrected weights λ these transformations act as the a�neWeyl group ŴK =WnKΓ∗w

at level27 K. Though the description by surface operators makes sense for arbitrary

λ, let us look speci�cally at the integral weights λ ∈ Γw. For generic K, the subgroup

of ŴK which maps the weight lattice to itself consists only of the ordinary Weyl

transformations. Therefore, the space of integral weights modulo the action of ŴK in

this case is the space Γw/W of dominant weights of the superalgebra, and the Chern-

Simons observables corresponding to these weights are generically all inequivalent.

Of course, this is a statement about the analytically-continued theory, which is the

only theory that makes sense for generic K. If however K is a rational number p/q,

then there are in�nitely many elements of the a�ne Weyl group, which preserve

the integral weight lattice Γw. (For example, such are all the transformations from

Ŵp ⊂ ŴK.) Modulo these transformations, there is only a �nite set of inequivalent

integral weights.

For an ordinary bosonic Chern-Simons theory and integer leve,l this can be com-

pared to the well-known three-dimensional result according to which the inequivalent

Chern-Simons line operators are labeled by the integrable weights Λ ∈ Γw/Ŵk. The

connection between the two descriptions is that the weight Λ is integrable at level k if

and only if the corresponding quantum corrected weight λ = Λ+ρ belongs to the inte-

rior of the fundamental Weyl chamber Γw/ŴK, while the operators with λ belonging

to the boundary of the fundamental Weyl chamber decouple in the Chern-Simons.

26For simplicity, here we restrict to a simply-connected gauge group, where the cocharacter lattice

is the coroot lattice.
27By the a�ne Weyl group at some level p we mean the group which acts on the Cartan subalgebra

by ordinary Weyl transformations together with shifts by p times a coroot. Our terminology is

slightly imprecise, since as an abstract group, the a�ne Weyl group does not depend on the level.
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This explains how the four-dimensional description by codimension-two operators

with quantum-corrected level K and weight λ can be equivalent (for integer K and if

the four-dimensional theory is specialized to an appropriate class of observables) to

the analogous three-dimensional description by operators de�ned with ordinary k and

Λ. For the case of a supergroup, where the purely three-dimensional description is not

completely clear, this discussion supports the view that, similarly to the bosonic case,

at integer level there is a distinguished theory with only a �nite set of inequivalent line

operators. One detail to mention is that in the four-dimensional construction, we did

not show that the operators with λ lying on the boundary of the a�ne Weyl chamber

decouple from the theory. We do not know for sure if this is true for supergroups in

the context of a hypothetical theory with only the distinguished set of line operators.

Another caveat is that we worked with the half-BPS surface operators, and therefore

our conclusion might not hold for the atypical supergroup representations.

2.3.5 Various Problems

We conclude by emphasizing a few unclear points.

In the four-dimensional construction, we have separately de�ned Wilson line op-

erators and Wilson-'t Hooft line operators in the 3d defect W ⊂ M . They are

parametrized by the same data � at least in the case of typical weights. The Wilson

line operators generically have less symmetry. Is it conceivable that they �ow in the

infrared to Wilson-'t Hooft line operators with enhanced symmetry?

For an atypical weight, there are many possible Wilson operators but only one

half-BPS Wilson-'t Hooft operator. This in itself is no contradiction. But in the S-

dual description of section 2.4 (see in particular section 2.4.4.5), we will �nd several

half-BPS line operators for a given atypical weight. The counterparts of this on the

electric side seem to be missing.

One more technical puzzle arises for type II superalgebras. The half-BPSWilson-'t

Hooft operators seem to be well-de�ned for an arbitrary integral weight λ, at least if it

is typical, even though in some cases there is no corresponding representation. (For a

weight to correspond to a �nite-dimensional representation, the weight should satisfy
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an extra constraint, as was recalled in section 2.3.1.1.) There is no contradiction, but

it is perhaps a surprise to apparently �nd half-BPS Wilson-'t Hooft line operators

that do not correspond to representations.

Additional line operators can presumably be constructed by coupling the bulk

�elds to some quantum mechanical degrees of freedom that live only along the line

operator. This may help in constructing additional half-BPS line operators. Per-

haps it is important to understand better the BWB quantum mechanics for atypical

weights.

2.4 Magnetic Theory

2.4.1 Preliminaries

In this section we explore the S-dual description of our theory. Throughout this

section the reader may assume that the theory considered corresponds to the super-

group SG = U(m|n). This means in particular that the maximal bosonic subgroup

SG0 = U(m) × U(n) is simply-laced. Some minor modi�cations that arise for other

supergroups will be discussed in section 2.5.

We would like to recall how the supersymmetries and various parameters transform

under S-duality. It is convenient to look again on the Type IIB picture. Under the

element

M =

 a b

c d

 (2.86)

of the S-duality group SL(2,Z), the coupling constant of the theory transforms as

τ → aτ + b

cτ + d
. (2.87)

The supersymmetries of the Type IIB theory transform according to

ε1 + iε2 → eiα/2(ε1 + iε2) , (2.88)

where α = − arg(cτ + d). In particular, for the supersymmetries that are preserved
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by the D3-brane we can use the relation (2.3) to rewrite this as

ε1 → exp

(
−1

2
αΓ0123

)
ε1 , (2.89)

in Lorentz signature. In [14] this relation was derived from the �eld theory point of

view.

Under the duality transformationM, the charges of the �vebranes transform as

(p q)→ (p q)M−1 , (2.90)

where (p, q) = (1, 0) for the NS5-brane and (p, q) = (0,±1) for the D5- or D5-brane.

For future reference we describe the supersymmetries that are preserved by a defect

consisting of a general (p, q)-�vebrane. The supersymmetries preserved by such a

brane, stretched in the 012456 directions, are given by the same formula as in (2.4),

where now

ϑ = arg(pτ + q). (2.91)

Equation (2.4) can be rewritten in a more convenient form

ε1 + iε2 = ieiϑ Γ012456(ε1 − iε2). (2.92)

Under the S-duality, ϑ is shifted by angle α = − arg(cτ + d), so one can see that

equation (2.92) indeed transforms covariantly, if the supersymmetries are mapped as

in equation (2.88). The twisting parameter t = −e−iϑ is multiplied by e−iα, that is,

t→ t
cτ + d

|cτ + d|
. (2.93)

The canonical parameter K of the bulk theory was de�ned in equation (2.36). In

terms of the gauge coupling and the parameter t,

K =
θYM

2π
+

4πi

g2
YM

t− t−1

t+ t−1
. (2.94)

For the special case that t corresponds to the supersymmetry preserved by the D3-

NS5 system, this reduces to eqn. (2.7). Under S-duality, the canonical parameter

transforms [14] in the same way as the gauge coupling,

K → aK + b

cK + d
. (2.95)
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Let us specialize to the case of interest. The basic S-duality transformation that

exchanges electric and magnetic �elds is usually described (for simply-laced groups)

as τ → −1/τ , but this does not specify it uniquely, since it does not determine the

sign of the matrixM of eqn. (2.86). We �x the sign by taking

M =

 0 1

−1 0

 . (2.96)

This means, according to eqn. (2.90) that an NS5-brane, with (p, q) = (1, 0), trans-

forms to a D5-brane, with (p, q) = (0,−1), so that according to eqn. (2.91), ϑ∨ = π

and t∨ = 1. Then from the de�nition (2.94) of the canonical parameter, it follows

that K∨ =
θ∨YM

2π
.

Unlike in the electric theory, the twisted action is very simple on the dual magnetic

side. As in the purely bosonic case [6], the action is Q-exact except for a multiple

of the instanton number (see Appendix C for a detailed explanation). In Euclidean

signature, we have

Imagnetic =
iθ∨YM

8π2

∫
tr (F ∧ F ) + {Q, . . . }. (2.97)

If we set

q = exp(−iθ∨YM) , (2.98)

then the dependence of the theory on q is easily described: a solution of the localiza-

tion equations of instanton number n makes a contribution ±qn to the path integral.

(The sign is given by the sign of the fermion determinant.) This simple result arises

in the usual way because of cancellation between bosonic and fermionic �uctuations

around a solution of the localization equations. If therefore the instanton number

is integer-valued and is bounded above and below in all solutions of the localiza-

tion equations,28 then the path integral is a Laurent polynomial in q with integer

28One expects the instanton number to be bounded in any solution, though this has not been

proved. However, the claim that the instanton number is integer-valued is oversimpli�ed; for exam-

ple, if the gauge group is simply-connected or M is contractible, the instanton number takes values

in Z + c where c is a constant determined by the boundary conditions. In such a situation, the

partition function is qc times a Laurent polynomial in q.
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coe�cients, namely

Z =
∑
n

anq
n, (2.99)

where an is the number of solutions (weighted by sign) of instanton number n.

It is straightforward to express q in terms of the parameters of the electric theory.

As explained above, in the magnetic theory K∨ = θ∨YM/2π; also, according to (2.95),

K∨ = −1/K. So

θ∨YM = −2π/K , (2.100)

and hence

q = exp

(
2πi

K

)
. (2.101)

For an ordinary (simple, compact, and simply-laced) bosonic group, this is the stan-

dard variable in which the quantum knot invariants are conveniently expressed, and

for a supergroup it is the closest analog. These matters were described in section

2.2.6.

We now proceed to describing the localization equations and the boundary con-

ditions in the magnetic theory, leaving many technical details for Appendix C. Some

relevant aspects of the gauge theory have been studied in [21]. The details depend

on the di�erence of the numbers of D3-branes on the two sides of the D5-brane. We

describe di�erent cases in the subsequent sections.

2.4.2 Gauge Groups Of Equal Rank

In the case of an equal number of D3-branes on the two sides, the e�ective theory is a

U(n) super Yang-Mills theory in the whole four-dimensional space, with an additional

three-dimensional matter hypermultiplet localized on the defect, at x3 = 0. This

hypermultiplet comes from the strings that join the D5-brane and the D3-branes,

and therefore it transforms in the fundamental of the U(n) gauge group. Under the

global bosonic symmetries U = SO(1, 2) × SO(3)X × SO(3)Y , the scalars ZA of the

hypermultiplet transform as a doublet (1,2,1), and the fermions ζαȦ transform as

(2,1,2). The bulk �elds have discontinuities at x3 = 0 as a result of their interaction
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with the defect. For example, the equations of motion of the gauge �eld, in Euclidean

signature, can be deduced from the action

− 1

2(g∨YM)2

∫
d4x trF 2

µν +
1

(g∨YM)2
I∨hyp. (2.102)

(In the magnetic description, the topological term
∫

trF ∧ F is integrated over all

of R4 and so does not a�ect the equations of motion.) The equations of motion that

come from the variation of this action have a delta-term supported on the defect,

D3F
m
3i −

1

2
δ(x3)Jmi = 0 , (2.103)

where J im = δI∨hyp/δA
m
i is the current.29 The delta-term in this equation means that

the gauge �eld has a cusp at x3 = 0, so that F3i has a discontinuity:

Fm
3i |
± =

1

2
Jmi . (2.104)

Here and in what follows we use the notation ϕ|± = ϕ(x3 + 0) − ϕ(x3 − 0) for the

jump of a �eld across the defect. By supersymmetry, this discontinuity equation can

be extended to a full three-dimensional current supermultiplet. The most impor-

tant for us will be the lowest component of the current multiplet, which governs the

discontinuity of the bulk scalar �elds Xa:

Xam
∣∣+
− =

1

2
µam , (2.105)

where the hyperkahler moment map for the defect hypermultiplets is

µam = ZAσ
aA
B TmZ

B. (2.106)

(The other bulk scalar �elds Y ȧ are continuous at x3 = 0.)

Now we turn to the twisted theory. Recall, that for twisting we use an SO(4) sub-

group of the R-symmetry, which on the defect naturally reduces to SO(3)X . Thus,

the hypermultiplet scalars ZA become spinors Zα under the twisted Lorentz group.

29Indices m,n continue to denote gauge indices, although now the gauge group is just one copy

of U(n) throughout R4. Gauge indices are raised and lowered with the positive-de�nite Killing form

δmn = −tr(TmTn).

77



They are invariant under SU(2)Y , and therefore have ghost number zero. The hy-

permultiplet fermions ζαȦ remain spinors. Since they also transform as a doublet of

SU(2)Y , we can expand them in the basis given by the vectors u and v of eqns. (2.28)

and (2.27) (where now we take ϑ∨ = π):

ζȦ = iuȦζu + ivȦζv ,

ζ
Ȧ

= iuȦζu + ivȦζv. (2.107)

The u- and v-components of ζ and ζ have ghost number plus or minus one, respec-

tively.

As usual, the path integral can be localized on the solutions of the BPS equations

{Q, ξ} = 0, where ξ is any fermionic �eld. The resulting equations for the bulk

fermions were partly described in eqn. (2.30). At t∨ = 1, they have a particularly

simple form,

F − φ ∧ φ+ ?dAφ =
1

2
? (δW ∧ µ) ,

Dµφ
µ = 0. (2.108)

Here δW = δ(x3)dx3 is Poincaré dual to the three-manifold W on which the defect

is supported. The delta function term on the right hand side of the �rst equation in

(2.108) is related to the discontinuity (2.105) of the 1-form �eld φ. There is no such

term in the second equation, because the only �eld whose x3 derivative appears in

this equation is φ3; this �eld originates as a component of Y ȧ, and is continuous at

x3 = 0. The condition that {Q, ξ} = 0 for all ξ also leads to conditions on the ghost

�eld σ:

Dµσ = [φµ, σ] = [σ, σ] = 0. (2.109)

These equations say that the in�nitesimal gauge transformation generated by σ is

a symmetry of the solution. In this chapter we generally do not consider reducible

solutions, so we generally can set σ to 0.

We also should consider the condition {Q, ξ} = 0 where ξ is one of the defect

fermions. For the u-component of the fermions that are de�ned in eqn. (2.107), {Q, ξ}

equals the variation of the defect �elds under the gauge transformation generated by
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σ, so the condition for it to vanish, when combined with (2.109) says that the full

con�guration including the �elds on the defect is σ-invariant. More important for us

will be the condition {Q, ξ} = 0 for the v-components:

/DZ + φ3Z = 0 , /DZ − Zφ3 = 0. (2.110)

Eqns. (2.108) and (2.110) together give the condition for a supersymmetric con�gu-

ration.

2.4.3 Gauge Groups Of Unequal Rank

Now consider the case that the number of D3 branes jumps from n to n + r, r > 0,

upon crossing the D5-brane. The gauge groups on the left and on the right are U(n)

and U(n + r), and will be denoted by G` and Gr, respectively. The behavior along

the defect has been described in [21]. In contrast to the case r = 0, there are no

hypermultiplets supported along the defect at y = 0. What does happen is di�erent

according to whether r = 1 or r > 1. We �rst describe the behavior for r > 1.

The main feature of this problem is that some of the bulk �elds have a singular

behavior (known as a Nahm pole singularity) near y = 0. Assuming that r is positive,

the singular behavior arises as one approaches y = 0 from above. To describe the

singularity, we �rst pick a subgroup H = U(n) × U(r) ⊂ U(n + r), and we set

H ′ = U(n)×U(1), where U(1) is the center of the second factor in H. The singularity

will break Gr = U(n + r) to H ′. The �elds with a singular behavior are the scalar

�elds that we have called Xa in the untwisted theory or as φi in the twisted theory.

The behavior of φ as y approaches 0 from above is

φi =
ti
y

+ . . . , (2.111)

where the ellipsis represent less singular terms, and the matrices ti represent an

irreducible embedding of su(2) into the Lie algebra u(r) of the second factor of H =

U(n)× U(r). Thus the matrices ti are (n+ r)× (n+ r) matrices that vanish except
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for a single r × r block, as shown here for n = 2, r = 3:

0 0 0 0 0

0 0 0 0 0

0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗


. (2.112)

These matrices are traceless, so their nonzero blocks are actually valued in su(r) ⊂

u(r).

The Nahm pole singularity breaks the gauge symmetry for y > 0 from U(n + r)

to H ′ = U(n) × U(1), and there is to begin with a G` = U(n) gauge symmetry for

y < 0. There is therefore a U(n) gauge symmetry on both sides of the defect, and

the condition obeyed by the U(n) gauge �elds is just that they are continuous at

y = 0, making a U(n) gauge symmetry throughout the whole spacetime. On the

other hand, the �elds supported at y > 0 that do not commute with the Nahm pole

singularity acquire very large masses near y = 0, and they vanish for y → 0. (This

statement applies to �elds in the adjoint representation of su(r) and also to �elds

in the bifundamental of U(n) × U(r).) To �nish describing the gauge theory of the

defect, we must explain the behavior at y = 0 of the �elds in the second factor of

H ′ = U(n) × U(1). These �elds make up a single vector multiplet, which obeys

what we might call Dirichlet boundary conditions (the gauge �elds Ai and scalars

Y ȧ in this multiplet obey Dirichlet boundary conditions, while the scalars Xa obey

Neumann boundary conditions; these conditions are extended to the fermions in a

fashion determined by supersymmetry).

For r = 1, this description requires some modi�cation, because su(1) = 0 and

accordingly the matrices ti vanish. Still, the defect breaks the Gr = U(n + 1) gauge

symmetry for y > 0 to a subgroup H ′ = U(n) × U(1) ⊂ U(n + 1). Just as at r > 1,

the u(n)-valued gauge �elds on the two sides of the defect �t smoothly into contin-

uous u(n)-valued �elds throughout the whole spacetime. For y > 0, the gauge �elds

valued in the orthocomplement of u(n) obey the same Dirichlet boundary conditions

described at the end of the last paragraph.
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So far, we have described this construction as if the matrices ti in eqn. (2.111) are

just constant matrices. This makes sense if W = R3, but in general, we must recall

that in the twisted theory onM = W ×R, φ =
∑

i φidx
i transforms as a 1-form along

W . The proper interpretation of the Nahm pole singularity in this general setting is

as follows (see section 3.4 of [6]; the considerations there carry over to the present

case without essential change). The u(r) bundle alongW must be derived from a spin

bundle SW via a homomorphism % : su(2)→ u(k) de�ned by the ti. The restriction to

W × {y = 0} of the u(r)-valued part of the gauge �eld is the Levi-Civita connection

ω of SW , embedded in su(r) via %. We describe this by saying that when restricted

to y = 0, the u(r)-valued part of the gauge �eld A is Au(r) = %(ω).

2.4.3.1 The Framing Anomaly

It is now possible to make an interesting check of the relationship between Chern-

Simons theory of U(n|n + r) and the defect theory just described. Here we will be

rather brief, assuming that the reader is familiar with the description of the one-sided

case in section 3.5.3 of [6]. Recall that in general the partition function of Chern-

Simons theory on a three-manifold W is not quite a topological invariant of W ; W

must be endowed with a framing (or more precisely a two-framing [55]) to de�ne this

partition function. A framing is a trivialization of the tangent bundle of W . Under a

unit change of framing, the partition function acquires a factor [4]

exp(2πic sign(k))/24) , (2.113)

where c is the central charge of the relevant current algebra at level k. For a compact

simple gauge group G this is c = k dimG/(k+h sign(k)), where h is the dual Coxeter

number of G. We will assume that the same formula for c applies, at least modulo

an integer, for a simple supergroup SG, which in our case will be SU(n|n+ r):

c =
k sdimSG

k + hsgsign(k)
mod Z. (2.114)

This is a non-trivial assumption, since some of the standard arguments do not apply

for supergroups, as it is described in Appendix E of [1]. (Replacing SU(n|n + r) by
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U(n|n+r), which is isomorphic locally to SU(n|n+r)×U(1), shifts c by 1, which will

not be important as we will only study c mod Z. So the following discussion will be

phrased for the simple supergroup SU(n|n+ r), rather than U(n|n+ r).) It is useful

to factor (2.113) as follows:

exp (2πi sign(k) sdimSG/24) · q−hsg sdimSG/24. (2.115)

Perturbation theory is an expansion in powers of 1/K, with an `-loop diagram making

a contribution of order K1−`. Accordingly, the exponent 2πi sign(k) sdimSG/24 in

the �rst factor in (2.115), being invariant under scaling of k, is a 1-loop e�ect. Since

it is not analytic in K, we cannot hope to reproduce it from four dimensions. If this

factor � or a similar one that arises if c is shifted by an integer � appears in a purely

three-dimensional construction, then it must appear in a comparison between the

relevant measures in three and four dimensions, as discussed in section 2.2.6 above

and in section 3.5.3 of [6]. However, the second factor in (2.115), which is a simple

power of q, comes from diagrams with ≥ 2 loops and can be reproduced from four

dimensions.

As in [6], this factor arises from a subtlety in the de�nition of instanton number

in the presence of the Nahm pole. The condition that along W × {y = 0}, Au(r) =

%(ω) means that the instanton number, de�ned in the obvious way from the integral∫
M`

TrF ∧ F +
∫
Mr

TrF ∧ F , is not a topological invariant. If one varies the metric

of W , the second term picks up a variation from the change in ω. To compensate for

this, one must add to the instanton number a multiple of the Chern-Simons invariant

of ω, but this is only gauge-invariant (as a real number) once we pick a framing

on W . From the viewpoint of the dual magnetic description, that is why Chern-

Simons theory on W requires a framing of W . To adapt the analysis of [6] to the

present problem, we simply proceed as follows. In the U(n|n + r) case, the Nahm

pole is embedded in a u(r) subalgebra, and therefore the framing-dependence that is

introduced when we de�ne the instanton number for this problem is independent of n

and is the same as it is for the one-sided problem with n = 0 and gauge group U(r).

Hence, to obtain in the magnetic description the expected factor q−hsgsdimG/24 in the
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framing dependence, we need the identity

hsu(n|n+r) sdimSU(n|n+ r) = hsu(r) dimSU(r). (2.116)

This is true because sdimSU(n|n + r) is independent of n and likewise hsu(n|n+r) is

independent of n. See Table 2.2.

2.4.4 Line And Surface Operators In The Magnetic Theory

Our next goal is to identify the S-duals of the line and surface operators that we

have found on the electric side. We use the fact that we know how S-duality acts on

the bulk surface operators. For an �electric� surface operator, the magnetic dual [53]

has parameters (α∨, β∨, γ∨, η∨) = (η, |τ |β∗, |τ |γ∗,−α), where τ is the gauge coupling

constant. This determines the singularity of the �elds along the operator in the bulk,

away from the three-dimensional defect. We still have to �nd the model solution

which describes the behavior of the �elds near the end of the surface operator at

y = 0. This will be the main subject of the present section.

In bulk, for a surface operator with parameters (α, β, γ, η), the parameters α and η

are both periodic. In the presence of a defect, this is no longer the case. In the electric

description, η is not a periodic variable on a D3-brane that ends on (or intersects)

an NS5-brane. Shifting η by an integral character would add a unit of charge along

the defect. Dually to this, for the D3-D5 system, in the case of a surface operator

with parameters (α∨, β∨, γ∨, η∨), α∨ is not a periodic variable. In the model solutions

that we construct below, if α∨ is shifted by an integral cocharacter (of G∨), then the

solution is unchanged in the bulk up to a gauge transformation, but is modi�ed along

the defect.

It follows from this that once we construct model solutions for surface operators

with parameters (α∨, β∨, γ∨), we can trivially construct magnetic line operators. We

return to this in section 2.4.5.
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2.4.4.1 Reduction Of The Equations

We focus �rst on the case of gauge groups of equal rank, as described in section 2.4.2.

The discussion can be transferred to the unequal rank case in a straightforward way,

and we shall comment on this later.

To give a de�nition of a surface operator whose support intersects the three-

dimensional defect, we have to �nd a model solution of the localization equations

(2.108) and (2.110) for the �elds near the surface C and near the hyperplane y = 0.

The classical solution does not depend on the two-dimensional theta-angles η∨, so we

label it by three parameters (α∨, β∨, γ∨). We consider a surface operator stretched

along C = Rx0 × Ry in R4,and look for a time-independent, scale-invariant solution.

We aim to construct a model solution that is 1/2-BPS, that is, it preserves the four

supersymmetries (2.69) and (2.70). It should also be invariant under the SO(3)Y sub-

group of the R-symmetry groups. The symmetries allow us to considerably reduce the

localization equations. An analogous problem in the one-sided theory was considered

in section 3.6 of [6], where the reader can �nd many details which we do not repeat

here.

First of all, for an irreducible solution the �eld σ is zero, and therefore, by SO(3)Y

symmetry, φ3 should also vanish. The Q-invariance together with SO(3)Y symmetry

makes the solution invariant under the �rst pair of supersymmetries (2.69). Using

the explicit formulas for the transformations (2.229), one can also impose invariance

under the second pair of supersymmetries (2.70). For t∨ = 1, which is the case in the

magnetic theory, this �xes A0 to be zero. The reduced localization equations can be

written in a concise form, after introducing some convenient notation. Following [6],

we de�ne three operators

D1 = 2Dz ,

D2 = D3 − iφ0 ,

D3 = 2φz , (2.117)

where z = x1 + ix2 is a complex coordinate, φz = (φ1 − iφ2)/2 is the z-component

of φ, and Dz and D3 are covariant derivatives. We also denote the components of
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the bosonic spinor �eld Zα as Z ≡ Z1 and Z̃ ≡ (Z2)†. For simplicity, we assume the

gauge group G∨ to be U(n). Then the components of the moment map (2.106) can

be written as

µ0 = i(Z̃† ⊗ Z̃ − Z ⊗ Z†) , µz = −iZ ⊗ Z̃. (2.118)

With this notation, the reduced localization equations are

[D1,D2] = 0 , [D3,D1] = 0 , [D2,D3]− µzδ(y) = 0 ,

D1Z = D1Z̃ = 0 , (2.119)

together with ∑
i

[Di,D†i ] + iµ0δ(y) = 0. (2.120)

The space of �elds in which we look for the solution is the space of continuous connec-

tions on R4\C, and Higgs �elds with an arbitrary discontinuity across the hyperplane

y = 0. (The �elds should also be vanishing at in�nity.) The correct discontinuity

(2.105) is enforced by the delta-terms in the localization equations. To put the real

and imaginary parts A3 and φ0 of the connection in D2 on equal footing, let us also

allow A3 to have an arbitrary discontinuity across y = 0, and to compensate for this,

we divide the space of solutions by the gauge transformations, which are allowed to

have a cusp across the defect hyperplane.

The analysis of these equations in the one-sided case in [6] was based on the

fact that the equations (2.119) are actually invariant under complex-valued gauge

transformations, not just real-valued ones. One can try to solve the equations in a

two-step procedure in which one �rst solves eqn. (2.119) and then tries to �nd a

complex-valued gauge transformation to a set of �elds that obeys (2.120) as well.

Though we could follow that strategy here as well, we will instead follow a more

direct approach. We are motivated by the fact that the basic surface operator in the

absence of any defect or boundary is described by a trivial abelian solution. In the

one-sided problem, one requires a Nahm pole along the boundary and therefore the

full solution is always irreducible. However, in the two-sided case with equal ranks,

there is no Nahm pole. Is it too much to hope that we can �nd something interesting
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by taking simple abelian solutions for y < 0 and y > 0, somehow glued together along

y = 0?

2.4.4.2 Some �Abelian� Solutions

We look for a model solution for a surface operator with parameters (α∨, 0, 0), and

initially we assume α∨ regular. Since we take β∨ = γ∨ = 0, we look for a model

solution invariant under the SO(2) group of rotations in the 12-plane, and under the

SO(2)X subgroup of the R-symmetry. Accordingly, the �eld φz should vanish. Indeed,

the SO(2)X acts on φz by multiplication by a phase. In a fully non-abelian solution,

this phase could possibly be undone by a gauge transformation, but in a solution that

is abelian away from y = 0 � as we will assume here � that is not possible and φz

must vanish. Therefore, from the discontinuity equation for φz it follows that either

Z or Z̃ should vanish. So for de�niteness, assume that Z̃ = 0 and Z 6= 0.

For now we focus on irreducible solutions, for which the gauge group along K is

broken completely. We postpone the discussion of reducible solutions.

A simple abelian solution of the localization equations would be A = α∨ cosϕdθ,

φ = α∨dx0/r′. For y →∞, φ vanishes, and A approaches the simple surface operator

solution α∨dθ for y → +∞ (θ = 0) or −α∨dθ for y → −∞ (θ = π). However, we want

a solution in which A will approach independent limits α∨` dθ and α∨r dθ for y → −∞

and y → +∞. Also we want to allow for the possibility that a gauge transformation

by a constant matrix g has to be made to match the solutions for y < 0 and y > 0.

So we try

y > 0 : A = α∨r cosϕ dθ , φ = α∨r
dx0

r′
,

y < 0 : A = −gα∨` g−1 cosϕ dθ , φ = −gα∨` g−1 dx0

r′
. (2.121)

We also have to impose the discontinuity equation φ0

∣∣± = i
2
(Z̃†⊗Z̃−Z⊗Z†). Note

�rst of all that taking the trace of this gives i(tr(α∨r ) + tr(α∨` )) = r′(|Z|2 − |Z̃|2)/2.

Therefore, the choice of whether Z or Z̃ is non-zero is determined by the sign of the

combination of parameters on the left hand side of this equation. We assume this
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combination to be positive, and take

Z =
v√
z
, (2.122)

where v is some constant vector. We have taken Z to be holomorphic to satisfy

D1Z = 0 (this is one of the localization equations, eqn. (2.119)). Note that A does

not appear in this equation, since it vanishes at y = 0, so the formula for Z does

not depend on α∨` or α∨r . Also, (2.122) means that Z has a monodromy −1 around

the knot, which in this description is located at z = 0. So we have to assume that

this monodromy of Z is part of the de�nition of the surface operator in this magnetic

description.

The discontinuity equation now becomes

iα∨r + igα∨` g
−1 =

1

2
v⊗ v†. (2.123)

This is a set of n2 equations for a unitary matrix g and a vector v, which are together

n2 +n variables. The equations are invariant under the diagonal unitary gauge trans-

formations, which remove n parameters. Therefore, generically one expects to have a

�nite number of solutions.

The equations can be conveniently formulated as follows. For a given hermitian

matrix N = iα∨r , �nd a vector v, such that the hermitian matrix N ′ = N − 1
2
v ⊗ v†

has the same eigenvalues as M = −iα∨` . Using the identity det(X + v ⊗ v†) =

(1 + v†X−1v) det(X), the characteristic polynomial for N ′ can be written as

det

(
1 · λ−N +

1

2
v⊗ v†

)
= det(1 · λ−N)

(
1 +

1

2

n∑
i=1

|u†iv|2

λ− λi

)
, (2.124)

where ui are the eigenvectors of N with eigenvalues λi. First let us assume that

u
†
iv 6= 0 for all i. Then the eigenvalues of N ′ are solutions of the equation

1 +
1

2

n∑
i=1

|u†iv|2

λ− λi
= 0. (2.125)

Note that all the eigenvalues of N are distinct � this is the regularity condition for

the weight, which says that 〈λ, α0〉 ≡ 〈Λ + ρ, α0〉 6= 0 for all the superalgebra bosonic

roots α0. By sketching a plot of the function in the left hand side of (2.125), it is easy
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to observe that the equation has n solutions λ = λ′i, i = 1, . . . , n. These solutions

interlace the eigenvalues λi, in the sense that if the λi and λ
′
i are arranged in increasing

order then λ′1 < λ1 < λ′2 < · · · < λn. Had we assumed Z̃ rather than Z to be non-zero,

we would have obtained the opposed interlacing condition λ1 < λ′1 < λ2 < · · · < λ′n.

Moreover, by tuning the n coe�cients |u†iv|2 of the equation, one can in a unique way

put these solutions to arbitrary points inside the intervals (−∞, λ1), (λ1, λ2), . . . ,

(λn−1, λn), to which they belong. To do this, we simply view eqn. (2.125) as a system

of linear equations for the constants |u†iv|2. The interlacing condition ensures that

there is no problem with the positivity of those constants. An important special case

is that |u†iv|2 → 0 precisely when λ′j (for j = i or i± 1) approaches λi. The facts we

have just stated are used in some applications of random matrix theory; for example,

see p. 16 of [56].

We conclude that the equation (2.123) has a solution, which moreover is unique

(modulo diagonal gauge transformations), if and only if the eigenvalues of iα∨r and

−iα∨` are interlaced. Since the eigenvalues of iα∨r and iα∨` should be the weights of

a dual Wilson-'t Hooft operator on the electric side, we have a reasonable candidate

for the dual of such operators when certain inequalities are satis�ed. If some of

the eigenvalues of iα∨r coincide with eigenvalues of −iα∨` , then the corresponding

components of Z = v/
√
z vanish. (We return to this point in section 2.4.4.5.)

If the eigenvalues are not interlaced, the abelian ansatz fails. As a motivation to

understand what to do in this case, we will describe a possibly more familiar problem

that leads to the same equations and conditions that we have just encountered. We

look at the system of N D3-branes intersecting a D5-brane from a di�erent point of

view. Instead of studying a surface operator, we look for a supersymmetric vacuum

state in which the �elds ~X have one asymptotic limit ~X` for y → −∞ and another

limit ~Xr for y → +∞. Such a vacuum exists for any choice of ~X`, ~Xr, and is unique up

to a gauge transformation. Macroscopically, this vacuum is often just understood by

saying that a D3-brane can end on a D5-brane so the value of ~X can jump from ~X` to

~Xr in crossing the D5-brane. Thus, one represents the vacuum by the simple picture

of �g. 2.1 of section 2.1.2, but now with the �vebrane in the picture understood as a
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Figure 2.7: D3-branes ending on the two sides of a D5-brane. If the branes are not inter-

laced, they can form a fuzzy funnel.

D5-brane.

Although this picture is correct macroscopically, from a more microscopic point of

view, the vacuum of the D3-D5 system is found by solving Nahm's equations for the

D3 system, with the D3-D5 intersection contributing a hypermultiplet that appears

as an impurity. This has been analyzed in detail in [21]. Let us just consider the

case that the branes are separated at y → ±∞ only in the X4 direction, where X4

corresponds to φ0 in our notation here. A natural ansatz would then be to assume

that X5 = X6 = 0 everywhere. That leads to simple equations. Nahm's equations

with X5 = X6 = 0 just reduce to dX4/dy = 0 (for y 6= 0), so X4 is one constant

matrix for y > 0 and a second constant matrix for y < 0. After diagonalizing X4 for

y > 0, we can write X4 = α∨r for y > 0, X4 = −gα∨` g−1 for y < 0, with α∨` , α
∨
r ∈ t,

g ∈ U(n). Finally, in the construction of the vacuum, the jump condition at the

location of the hypermultiplet is precisely (2.105).

So in constructing the vacuum assuming thatX5 = X6 = 0 identically, the solution

exists if and only if the eigenvalues of X4 are interlaced, so that the branes are placed

as shown in �g. 2.7(a). What if they are not interlaced? A unique vacuum solution

still exists, but the assumption that X5 and X6 are identically 0 is no longer valid. For

example, if two of the eigenvalues of X4 for y → −∞ or for y → +∞ are very close �

in other words if two of the λi or two of the λ′i are very close � then the neighboring

branes form a fuzzy funnel, as in �g. 2.7(b,c). The fuzzy funnel is described [57]

by a nonabelian solution of Nahm's equations, with X4, X5 6= 0. If X4, X5 → 0 for
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y → ±∞, then in the appropriate solution of Nahm's equations, X4±iX5 is nilpotent,

but not zero [21]. This suggests that we should try a new ansatz with φz nilpotent but

not zero in order to �nd the missing solutions when the weights are not interlaced. For

now, we present this as heuristic motivation for a more general ansatz, but later we

will explain a precise map between the problem of �nding half-BPS surface operators

and Nahm's equations for a D3-D5 vacuum.

2.4.4.3 General Solution For U(2)

We consider the �rst non-trivial example of this problem, which is for gauge group

U(2), corresponding to U(2|2) on the electric side. We focus on the con�guration

shown in �g. 2.7(b). The positions of the branes in that �gure should be interpreted

as the eigenvalues of the matrices which appear in the 1/r′ singularity of the �eld φ0.

If the weights are α∨r = i diag(m1r,m2r) and α
∨
` = −i diag(m1`,m2`), then m1r,` and

m2r,` label the positions of the horizontal lines in �g. 2.7. We assume that, by a Weyl

conjugation, α∨ was brought to the form with m1r > m2r and m1` > m2`.

We introduce a convenient variable ς de�ned as sinh ς = cotϕ (or tanh ς = cosϕ).

It runs from −∞ to 0 on the left of the defect, and from 0 to +∞ on the right. For

the �elds on the left of the defect, we use the same abelian ansatz (2.121). For the

�elds on the right, we want to �nd a conformally- and SO(2)X-invariant solution with

φz belonging to the non-trivial nilpotent conjugacy class. A family of such solutions,

which actually contains all the solutions with these symmetries, was found in [6], and

has the following form,

A =
i

2

 m1r +m2r + ∂ςVr 0

0 m1r +m2r − ∂ςVr

 cosϕ dθ ,

φ0 =
i

2r′

 m1r +m2r + ∂ςVr 0

0 m1r +m2r − ∂ςVr

 ,

φz =
1

2z

 0 1

0 0

 exp(−Vr) , (2.126)
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where the function Vr(ς) is found from the localization equations to be

Vr = log

(
sinh(arς + br)

ar

)
. (2.127)

The ansatz is SO(2)X-invariant up to a diagonal gauge transformation. In (2.126),

ar and br are some unknown constants. We choose ar to be positive. Then br should

also be positive, so that no singularity appears30 in the interval ς ∈ (0,∞). The

requirement that the behavior of the gauge �eld at ς → ∞ should agree with the

surface operator A = α∨r dθ �xes a = m1r − m2r. (Had we chosen the opposite

Weyl chamber for α∨, we would have to make a Weyl transformation on the ansatz

(2.126), making φz lower-triangular.) Note that, due to the cosϕ factor, the gauge

�eld at y = 0 vanishes; this agrees with our requirement that Zα ∼ 1/
√
z should have

monodromy −1. The next step is to impose the discontinuity equations at ς = 0, and

to hope that they will have a solution for some positive real br. The z-component

of the discontinuity equations tells us that the hypermultiplet �elds should have the

form

Z =
1√
z

 s

0

 , Z̃ =
1√
z

(0 iw). (2.128)

Unlike the interlaced case, here there is no freedom to include a general non-abelian

gauge transformation in gluing the left and the right side. Such a gauge transfor-

mation would not be consistent with the symmetry, since generically it would not

commute with the U(1) subgroup of the gauge group which is used to undo the

SO(2)X rotations. The only possible non-abelian gluing gauge transformation is the

Weyl conjugation. The equations will tell us that in this case it is not needed. The

30The singularity that the solution has at arς+br = 0 is the Nahm pole. In the one-sided problem,

one chooses br = 0 to have this pole precisely at ς = 0.
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φ0 and φz discontinuity conditions give

ar
sinh br

= sw ,

m1r +m2r − 2m1` + ar coth br = −|s|2 ,

m1r +m2r − 2m2` − ar coth br = |w|2. (2.129)

Subtracting the last two equations, we see that a solution with positive b cannot exist

unless m1` −m2` > 0. This is consistent with our choice of the Weyl chamber, so no

gluing gauge transformation is needed. Eliminating s and w from (2.129), we obtain

m1` −m2`

m1r −m2r

= coth br +

√(
m1r +m2r −m1` −m2`

m1r −m2r

)2

+
1

sinh2 br
. (2.130)

The function on the right is monotonically decreasing. It is easy to see that the

equation has a solution br > 0 if and only if the eigenvalues are arranged as in �g.

2.7b.

The last case to consider for the U(2) group is that of �g. 2.7c. Here �elds on

both sides of the defect should have a non-zero nilpotent φz. The �elds on the right

are given by the same ansatz (2.126). The �elds on the left are given by the same

ansatz, but with Vr replaced by

V` = log

(
sinh(−a`ς + b`)

a`

)
. (2.131)

Again, we assume a` to be positive, and then b` should also be positive to avoid the

singularity on the interval ς ∈ (−∞, 0). We �x a` from the asymptotics at ς → −∞ to

be a` = m1`−m2`, though in this case the gauge �eld A asymptotically is proportional

to diag(m2`,m1`). We could make a Weyl gauge transformation to bring it to the other

Weyl chamber.

In gluing left and right, we cannot make any non-diagonal gauge transformations,

as follows again from the SO(2)X symmetry. There are two separate cases to consider.

First assume that φz has a non-trivial jump at y = 0. This forces the hypermultiplet
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�elds Z and Z̃ to have the form (2.128). The discontinuity equations give

ar
sinh br

± a`
sinh b`

= sw ,

ar coth br + a` coth b` = −|w|
2 + |s|2

2
,

(2.132)

m1r +m2r −m1` −m2` =
|w|2 − |s|2

2
.

(The sign in the �rst equation can be exchanged by an abelian gluing gauge transfor-

mation.) The second equation clearly has no positive solutions for br,`.

Therefore, the �eld φz has to be continuous at y = 0. In this case, either Z or Z̃

should be zero. Assume that it is Z̃, and

Z =
1√
z

 s

w

 . (2.133)

Since the �eld φ0 is diagonal, the matrix Z ⊗ Z† should be also diagonal, so either s

or w is zero. We have to choose s = 0 to avoid the same sign problem which caused

trouble in the second equation in (2.132). The discontinuity equations become

ar
sinh br

− a`
sinh b`

= 0 ,

ar coth br + a` coth b` = |w|2/2 ,

m1r +m2r −m1` −m2` = −|w|2/2. (2.134)

The last equation here implies that m1r +m2r < m1` +m2`. In the opposite case, we

would have to take Z and not Z̃ to be zero. Eliminating |w| and b`, we get

m1` +m2` −m1r −m2r

m1r −m2r

= coth br +

√(
m1` −m2`

m1r −m2r

)2

+
1

sinh2 br
. (2.135)

This equation has a solution precisely when the eigenvalues are arranged as in �g.

2.7c.
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2.4.4.4 General Surface Operators

We have described the abelian solutions for the U(n|n) case, and some more general

solutions for U(2|2) for surface operators of type (α∨, 0, 0). In this section we look

at the general singularities of type (α∨, β∨, γ∨), aiming to make a precise statement

about the correspondence between surface operators and supersymmetric vacua of

the theory.

Let us go from the coordinates (t, x1, x2, y) to (t, ς, θ, r′), in which the rotational

and scaling symmetries act in the most simple way. The �at metric in these co-

ordinates is conformally equivalent to cosh2 ς(dt2 + dr′2)/r′2 + dς2 + dθ2, which is

AdS2 × Rς × S1
θ , up to a warping factor cosh2 ς. In conformal �eld theory, �nding a

model solution for a surface operator is equivalent to �nding a vacuum con�guration

in this space, with the asymptotics of the scalar �elds at ς → ±∞ de�ned by the

charges of the surface operator. To make this intuition precise, let us rewrite our lo-

calization equations (2.119), (2.120) in terms of these coordinates. We make a general

scale-invariant and rotationally-invariant ansatz for the �elds,

φ0 =
1

r′
M(ς) , φz =

1

z
N(ς) , A = M1(ς) cosϕ dθ. (2.136)

(We could have absorbed cosϕ = tanh ς into M1, but it is more convenient to write

it this way.) The equations reduce to

[∂ς − iM,N ] = 0 , [∂ς − iM1, N ] = 0 , [∂ς − iM, ∂ς − iM1] +
2i

sinh 2ς
(M −M1) = 0 ,

(2.137)

together with

sinh2 ς∂ςM1 + ∂ςM

cosh2 ς
+ 2i[N,N †] +

sinh ς

cosh3 ς
(M1 −M) = 0. (2.138)

The �rst set of equations almost implies that M1 = M . In fact, there is a class

of reducible solutions for which this equality is not true. They will be described in

the next section, but for now we take M1 = M as an ansatz. Then the equations

reduce simply to Nahm's equations [∂ς − iM,N ] = 0 and ∂ςM + 2i[N,N †] = 0 for

the scalar �elds M , Re(N) and Im(N). At ς → ±∞, these �elds should approach
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limiting values given by the parameters of the surface operator α∨, β∨ and γ∨. At

ς = 0, assuming the regularity of M(ς), the conformally invariant solution for Z and

Z̃ is given by 1/
√
z times some constant vectors, which should be found from the

discontinuity equations.

In this way, the problem of �nding the model solution for a surface operator is

indeed reduced to the problem of �nding the supersymmetric vacuum of the D3-

D5 system for given asymptotic values of the scalar �elds. To actually �nd the

solutions, one needs to �nd the solutions of the Nahm's equations on a half-line, with

asymptotics of the �elds given by the regular triple (α∨, β∨, γ∨), and then glue them

at y = 0, according to the discontinuity equations. The relevant solutions of the

Nahm's equations can be found e.g. in [51]. The problem reduces to solving a set of

algebraic equations for the integration constants of the solutions and the components

of the hypermultiplet �eld Zα. Solving these equations seems like a tedious problem

even for the U(2) case, and we will not attempt to do it here. The relation to

the supersymmetric vacua guarantees that for any values of the parameters a model

solution exists, unique up to gauge invariance.

The reduction that we have just described works for the unequal rank case as well.

The gluing conditions of section 2.4.3 for the conformally-invariant solution (2.136)

at y = 0 reduce to the gluing conditions for the scalar �elds M and N . In particular,

a 1/y Nahm pole boundary condition translates into a 1/ς Nahm pole for the vacuum

scalar �elds.

2.4.4.5 Reducible Solutions

So far we have concentrated on irreducible solutions, but there are reducible solutions

as well.

Returning to eqn. (2.137), instead of settingM1 = M , we writeM1 = M +S. We

�nd that the equations are obeyed if M and N obey the same conditions as before,

while

[S,N ] = [S,M ] = ∂ςS +
2

sinh 2ς
S = 0. (2.139)
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The last equation means that

S = coth ζS0 =
1

cosϕ
S0 (2.140)

with a constant matrix S0.

The interpretation is very simple. First we describe the equal rank case. In U(n),

we pick a subgroup U(n−m)×U(m). In U(n−m), we pick matricesM,N and defect

�elds Z, Z̃ that satisfy Nahm's equations and the jump conditions at y = 0, giving

an irreducible solution (in U(n − m)) as described in section 2.4.4.4. In U(m), we

embed a trivial abelian solution with A = α∨dθ, φz = (β∨+ iγ∨)/(2z), φ0 = 0. (This

trivial solution is obtained by taking S = α∨, and taking the u(m)-valued part of N

to be the constant matrix (β∨ + iγ∨)/2.) This describes a solution that can exist if

m eigenvalues of ~ζ∨` = (α∨` , β
∨
` , γ

∨
` ) coincide with m eigenvalues of ~ζ∨r = (α∨r , β

∨
r , γ

∨
r ).

For left and right eigenvalues to coincide is the condition for an atypical weight, so

these solutions govern atypical weights.

For the same atypical weight, however, we could have simply used the irreducible

U(n)-valued solution with S = 0 constructed in section 2.4.4.4. After all, this solution

exists for any weights. More generally, consider an atypical weight of U(n|n) with s

eigenvalues of ~ζ∨` equal to corresponding eigenvalues of ~ζ∨r . For any m ≤ s, we can

obtain a surface operator solution with this weight, based on a subgroup U(n−m)×

U(m) ⊂ U(n). We simply take a trivial abelian solution in U(m) based on m of the

s common weights, and combine this with an irreducible solution in U(n−m) for all

the other weights. For each m, there are
(
s
m

)
such solutions, since we had to pick

m of the s common weights. Considering all values of m from 0 to s, this gives 2s

surface operator solutions for a weight of U(n|n) of atypicality s. Qualitatively, this

is in agreement with what one �nds on the electric side, where a �nite-dimensional

representation with a given highest weight is unique only if the weight is typical. In

the case that the weights α∨` and α∨r are integral and β∨` , γ
∨
` and β∨r , γ

∨
r all vanish,

so that the model solutions that we have constructed are related to line operators

(see section 2.4.5), this leads to 2s line operators associated to a weight of atypicality

s; we suspect that they are dual to 2s distinguished representations with the given
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highest weight.

The story is similar for unequal ranks. The gauge group is U(n) for y < 0 and

U(n+ r) for y > 0. We pick subgroups U(n−m)×U(m) ⊂ U(n) and U(n+ r−m)×

U(m) ⊂ U(n + r). We combine a trivial abelian U(m)-valued solution on the whole

y line with an irreducible solution based on U(n−m) for y < 0 and U(n+ r−m) for

y > 0. Just as in the last paragraph, we get 2s solutions for a weight of U(n|n+ r) of

atypicality s.

Another type of reducible solution was found in section 2.4.4.2. If one of the

eigenvalues of α∨r is equal to an eigenvalue of −α∨` , then the corresponding matrix

elements of Z and Z̃ vanish and a U(1) subgroup of the gauge group is unbroken.

The basic phenomenon occurs actually for the gauge group U(1), corresponding to the

supergroup U(1|1). There is a surface operator described by a trivial abelian solution

with A = α∨ cosϕ dθ and φ = α∨ dx0/r′ everywhere and Z = Z̃ = 0. (This solution

has α∨r = α = −α∨` because cosϕ = 1 on the positive y axis and −1 on the negative

y axis.) Clearly since Z and Z̃ vanish, the U(1) gauge symmetry is unbroken. This

is a reducible solution that can occur for a typical weight, since α∨r = −α∨` is not a

condition for atypicality. Such a surface operator does not seem to be well-de�ned.

Since the gauge symmetry remains unbroken along the knotK, the gauge �eld nearK

is free to �uctuate. In particular, it follows that the variation of the topological term

in the presence of this model singularity is not zero, but is proportional to
∫
K
αδA,

and therefore, the action is not Q-invariant. We do not know how to interpret the

singularity that seems to arise when an eigenvalue of α∨` approaches one of −α∨r , or

how to describe a half-BPS surface operator in this case. A possibly similar problem

arises in the bulk in N = 4 super Yang-Mills theory with any nonabelian gauge group

if one tries to de�ne a surface operator with parameters (0, 0, 0, η∨). Classically, it

is hard to see how to do this, since the de�nition of η∨ requires a reduction of the

gauge symmetry to the maximal torus along the support of the surface operator, and

this is lacking classically if α∨ = β∨ = γ∨ = 0. Yet the surface operator in question

certainly exists; it is S-dual to a surface operator with parameters (α, 0, 0, 0) that can

be constructed semiclassically. One approach to de�ning it involves adding additional
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variables along the surface (see section 3 of [54]).

2.4.5 Line Operators And Their Dualities

We have constructed surface operators, but there is an easy way to construct line

operators from them. We simply observe that if we set β∨ = γ∨ = 0, and also take

α∨ to be integral, then the bulk solution A = α∨ dθ de�ning a surface operator in the

absence of any D5-brane can be gauged away. So for those parameters, the surface

operators that we have constructed are trivial far away from the D5-brane defect.

That means that those surface operators reduce macroscopically to line operators

supported on the defect.

Saying that α∨ is �integral� means that it is a cocharacter of the maximal torus

of the dual group G∨, or in other words a character of the maximal torus of G. Up

to the action of the Weyl group, this character corresponds to a dominant weight

of G. In other words, we have found line operators of the magnetic description by

G∨ gauge theory that are classi�ed by dominant weights (or representations) of the

electric group G.

In all these statements, G is either G` or Gr, the gauge group to the left or right

of the D5-brane defect. Taking account of the behavior on both sides, these line

operators are really classi�ed by dominant weights of G`×Gr. (In our main example

of U(m|n), G is U(m) or U(n) and the distinction between G and its dual group G∨

is not important. However, this part of the analysis is more general and carries over

also to the orthosymplectic case that we discuss in section 2.5.)

Wilson-'t Hooft operators of the �electric� description involving an NS5-brane are

also classi�ed by dominant weights of G` ×Gr (or equivalently by dominant weights

of the supergroup SG), as we learned in section 2.3.3.2. Thus an obvious duality

conjecture presents itself: the line operator associated to a given weight of G` × Gr

in one description is dual to the line operator associated to the same weight in the

other description.

This statement is a natural analog of the usual duality betweenWilson and 't Hooft

operators, adapted to the present situation. But a detail remains to be clari�ed. In
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the standard mapping between Wilson operators of G and 't Hooft operators of G∨,

there is a minus sign that to some extent is a matter of convention. That is because

electric-magnetic duality could be composed with charge conjugation for either G

or G∨. Charge conjugation acts by reversing the sign of a weight, up to a Weyl

transformation.

In the supergroup case, let (λ`, λr) be a weight of G` × Gr, and let (α∨` , α
∨
r ) be

a magnetic weight of G∨` × G∨r . If we specify that we want a duality transformation

that maps λ` to +α∨` , then it becomes a well-de�ned question whether λr maps to

+α∨r or to −α∨r . The correct answer is the one with a minus sign:

(λ`, λr)↔ (α∨` ,−α∨r ). (2.141)

To see this, we observe that there is a symmetry of the problem that exchanges the

left and right of the defect and exchanges λ` with λr but α
∨
` with −α∨r . For a defect

at x3 = 0 and a line operator supported on the line L : x1 = x2 = x3 = 0, we can take

this symmetry to be x2 → −x2, x3 → −x3, with x0, x1 �xed. This has been chosen

to exchange the left and right sides of the defect, while mapping the line L to itself

and preserving the orientation of spacetime, so as to leave K �xed. It does not a�ect

electric charge, but it reverses the sign of α∨ because it reverses the orientation of the

x1x2 plane.

As was already remarked in section 2.3.5, in the case of an atypical weight, our

pictures on the magnetic and electric sides do not quite match. On the magnetic side,

for a given atypical weight, we have found multiple possible 1/2 BPS surface and line

operators, as explained in section 2.4.4.5. On the electric side, for any weight, even

atypical, we found only a single 1/2 BPS surface or Wilson-'t Hooft line operator.

2.4.6 A Magnetic Formula For Knot And Link Invariants

The Q-invariant line and surface operators that we have constructed can be used to

get magnetic formulas for knot and link invariants. In the case of line operators, we

have little to add to what was stated in eqn. (2.99). Here we will elaborate on the

construction of knot and link invariants using surface operators. After some general
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observations, we will comment on what happens for atypical weights.

We start on the electric side with a knot invariant de�ned by including a sur-

face operator with parameters (α, β, γ, η) supported on a two-surface C that inter-

sects the hyperplane y = 0 along a knot K. One can take simply C = K × Ry

(where Ry is parametrized by y) or one can choose C to be compact. The dual

magnetic description involves a surface operator wrapped on C with parameters

(α∨, β∨, γ∨, η∨) = (η, |τ |β∗, |τ |γ∗,−α).

The parameters of the surface operator in the magnetic case de�ne the singularities

of the �elds near C, but also they determine some insertions that must be made in the

functional integral along C. The action of the theory in the presence of the surface

operator is
iK∨

4π

∫
M

tr(F ∧ F )− i
∫
C

tr ((K∨α∨ − η∨∗)F ) , (2.142)

modulo Q-exact terms. We have used eqns. (2.81) and (2.78) for the terms propor-

tional to α∨ and η∨∗. The integral in the four-dimensional topological term is taken

over M , but alternatively, we could take it over M \ C, and that would absorb the

term proportional to α∨. Note that the objects which appear in this formula are

topological invariants, because the bundle is naturally trivialized both at in�nity and

in the vicinity of K, where the �elds Zα become large. (For now we consider the

generic irreducible case, when the gauge group is completely broken along K; we do

not consider the problem mentioned at the end of section 2.4.4.5.) Using the relation

(2.85) between weights and parameters of the surface operator, the action can be

alternatively written as

iK∨

4π

∫
M

tr(F ∧ F ) + iK∨
∫
Cr

tr(λrF )− iK∨
∫
C`

tr(λ`F ). (2.143)

The insertion of the two-dimensional observable in this formula is essentially the S-

dual of the analogous insertion in the electric theory. This statement can be justi�ed

explicitly if the gauge group is abelian. In that case, the two-observable
∫
F is the

second descendant of the Q-closed �eld σ. Under S-duality, both the gauge-invariant

polynomials of σ and their descendants are mapped to each other. (See Appendix D

for details on the descent procedure in the presence of the three-dimensional defect.)
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The functional integral in the magnetic theory can be localized on the space of

solutions to the localization equations (2.108), (2.110). The knot polynomial can

be obtained by counting the solutions of the localization equations in the presence

of a singularity of type type (α∨, β∨, γ∨), weighted by the combination (2.143) of

topological numbers of the solution, as well as the sign of the fermion determinant.

(These statements hold for both the equal-rank and unequal rank cases, though one

uses di�erent equations and model solutions in the two cases.) For a given weight,

there are di�erent possible choices of surface operator. We can vary α∨ and η∨, as

long as their appropriate combination is equal to the weight. We can also turn on

arbitrary γ∨ and β∨, as long as it is not forbidden for topological reasons. All this

simply re�ects the fact that the problem of counting solutions of elliptic equations

is formally invariant under continuous deformations of parameters. Note that, in

particular, the operators with γ∨ 6= 0 are well-de�ned and 1/2-BPS, and changing γ∨

does not change the weight in (2.143), with which the solutions of the localization

equations are counted. This supports the view, proposed in section 2.3.4.2, that in the

physical theory γ plays much the same role, as β: it deforms the contour of integration

in the functional integral, without changing the Chern-Simons observables.31

It is conceivable that the counting of the solutions of the localization equations

is only generically independent of the parameters (α∨, β∨, γ∨), and that wall-crossing

phenomena can occur. (A prototype of what might happen has been seen for the

three-dimensional Seiberg-Witten equations [20].) We will not attempt to analyze

this possibility here, and will simply assume that for any regular triple (α∨, β∨, γ∨),

the counting of solutions is the same. Let S0 be the space of these solutions. It is

convenient to introduce variables tr = q−λ
∗
r and t` = qλ

∗
` , valued in the complexi�ca-

tion of the maximal tori of the left and the right bosonic gauge groups of the electric

31All this is true for the physical theory, where both K and the weights are real. We expect the

situation to be di�erent in the topological theory, where on the electric side the surface operators

with γ 6= 0 are de�ned according to eq. (2.84). In that case, γ is related to the imaginary part of

the weight. In particular, the insertion of iKw
∫

tr(γF) in (2.84) will lead on the magnetic side to

a similar insertion, which will complexify the weight in eq. (2.143).
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theory. The knot polynomial is then given by∑
s∈S0

(−1)fqN∨ tc1`` tc1rr . (2.144)

Here (−1)f is the sign of the fermion determinant, evaluated in the background of

the classical solution s, N∨ = 1
8π2

∫
M\K tr(F ∧F ) is the instanton number, and c1`,r =

1
2π

∫
Cr,`

F are the t∨-valued relative �rst Chern classes for the abelian bundles on Cr

and C`. One can consider (2.144) as a polynomial in q, after expressing t`,r in terms of

q for a particular weight λ, but one can also treat t`,r as independent formal variables.

What happens if the weight λ is atypical? By varying α∨ and η∨, while preserving

λ, we can still make the model solution irreducible. So we can use the solutions from S0

to obtain the knot polynomial, and simply substitute our λ in eqn.(2.144). We expect

that this polynomial will correspond to the Kac module of highest weight λ. This

expectation follows from the fact that a typical representation can be continuously

deformed into an atypical one by varying the fermionic Dynkin label aferm. Since this

label need not be integral, this variation makes sense, and the limit of this typical

representation, when the weight becomes atypical, is the Kac module. In the magnetic

theory, to take the limit of a knot invariant, we simply substitute the atypical weight

into the universal polynomial (2.144), evaluated on S0. So this type of polynomial

indeed corresponds to the Kac module.

For an atypical weight, rather than an irreducible model solution, we can also

use surface operators de�ned by reducible solutions. For any weight of atypicality at

least p, we can consider a surface operator whose irreducible part is associated to a

surface operator of U(m− p|n− p). This surface operator breaks the bosonic group

U(m)×U(n) to an subgroup H that generically is U(1)p (it can be a nonabelian group

containing U(1)p if the reducible part of the solution is non-regular). Let TH ∼= U(1)p

be the maximal torus of H. The group H acts on the space of solutions of the

localization equations. In such a situation, by standard localization arguments,32

32Generically, one expects that the solutions consist of a �nite set of points, and if so, these points

are all invariant under the continuous group TH . However, suppose that some of the solutions make

up a manifold U that has a non-trivial action of TH . Then by standard arguments of cohomological
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the invariants can be computed by just counting the TH-invariant solutions. The TH-

invariant subgroup of U(m)×U(n) is TH×U(m−p)×U(n−p). There are no interesting

solutions valued in the abelian group TH , so in fact, the U(m|n) invariants with a

surface operator of this type can be computed by counting solutions for U(m−p|n−p).

Some simple group theory shows that the signs of the two fermion determinants are

the same and hence the U(m|n) invariants for a weight of atypicality ≥ p coincide with

U(m − p|n − p) invariants. In particular, U(m|n) invariants of maximal atypicality

coincide with invariants of the bosonic group U(|n−m|). (This reasoning also makes

it clear that the knot and link invariants constructed using a reducible model solution

do not depend on the weights in the abelian part of the solution.)

For a weight of atypicality r, we can take any p ≤ r in this construction. We

have argued that for p = 0, we expect to get invariants associated to the Kac module,

while p = r presumably corresponds to the irreducible atypical representation. The

intermediate values of p plausibly correspond to the reducible indecomposables, which

are obtained by taking non-minimal subquotients of the Kac module.

In section 6 of [1], an alternative approach to comparing U(m|n) with U(m−p|n−

p) is given. The key idea there is gauge symmetry breaking. This approach is very

natural on the electric side.

In the rather formal discussion that we have given here, we have not taken into

account some of the insight from section 2.3.2.2. From that analysis, we know that for

the knot invariants to be nonzero, we can consider a typical weight for a knot in S3 or

a maximally atypical weight for a knot in R3. For other weights, a slightly di�erent

approach is needed. We have not understood the analogs of these statements on the

�eld theory [58], the contribution of the manifold U to the counting of solutions is (−1)fχ(U ;V ),

where (−1)f is the sign of the fermion determinant, V → U is a certain �obstruction bundle� (a

real vector bundle of rank equal to the dimension of U), and χ(U ;V ) is the Euler characteristic of

V → U . Let U ′ be the �xed point set of the action of TH on U and let V ′ → U ′ be the TH -invariant

subbundle of V |U ′ . A standard topological argument shows that (−1)fχ(U ;V ) = (−1)f
′
χ(U ′;V ′)

(if U ′ is not connected, one must write a sum over components on the right hand side). In our

problem, this means that we can consider only the U(m− p|n− p) solutions and count them just as

we would for U(m− p|n− p), ignoring the embedding in U(m|n).
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magnetic side.

2.4.7 A Possible Application

Here we will brie�y indicate a possible application of this work, for gauge group

U(1|1). This direction will be explored in more detail in Chapter 3 of this thesis.

Using the fact that the supergroup U(1|1) is solvable, the invariant for a knot

K ⊂ S3 labeled by a typical representation of U(1|1) can be explicitly computed

by repeated Gaussian integrals. It turns out to equal the Alexander polynomial

[59, 60, 61]. The usual variable q on which the Alexander polynomial depends is a

certain function of the Chern-Simons coupling and the typical weight.

The Alexander polynomial of K can also be computed [20] by counting solutions

of a 3d version of the Seiberg-Witten equations with a prescribed singularity along

K. Such solutions can be labeled by an integer-valued invariant Θ (a certain relative

�rst Chern class), and if bn is the number of solutions with Θ = n (weighted as usual

with the sign of a certain fermion determinant), then the Alexander polynomial is

Z(q) =
∑

n bnq
n. The proof that Z(q) equals the Alexander polynomial is made by

showing that the two functions obey the same �skein relations.�

The question arises of whether one could �nd a more direct explanation of this

result, or perhaps a more direct link between U(1|1) Chern-Simons theory and the

Seiberg-Witten equations. From the point of view of the present chapter, U(1|1)

Chern-Simons theory can be represented in terms of N = 4 super Yang-Mills theory

with gauge group U(1)` × U(1)r on S
3 × R, interacting with a bifundamental hyper-

multiplet that is supported on S3× {0}. However, we can just as well replace R here

by S1. If we do that, we get U(1|1) Chern-Simons theory with a di�erent integration

cycle. However, as long as one considers only Wilson operators on R3 or S3, all inte-

gration cycles are equivalent and so N = 4 super Yang-Mills theory on S3 × S1 with

a bifundamental hypermultiplet on S3 × {0} should give another way to study the

Alexander polynomial.33

33Once we replace S3 ×R with S3 ×S1, the left and right of the defect are connected. So we now

have a single U(1) vector multiplet on S3 × S1, with the �elds allowed to have di�erent limits as
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S-duality converts this to a �magnetic� problem on S3×S1, now with U(1) gauge

�elds in bulk and a twisted hypermultiplet supported on S3 × S1. If one takes the

radius of S1 to be small compared to that of S3, the four-dimensional localization

equations can be expected to reduce to three-dimensional e�ective equations. These

will be equations in which U(1) gauge �elds are coupled to a hypermultiplet, and one

can argue that the relevant equations are the Seiberg-Witten equations.

Thus one can hope that, as in [20], it will be possible to compute the Alexander

polynomial by counting solutions of the Seiberg-Witten equations. Unfortunately, in

working on S3 × S1, one encounters a number of technical di�culties. In Chapter 3,

we instead consider the three-dimensional theory, which is obtained by compactifying

on an interval with particular boundary conditions, instead of S1.

2.5 Orthosymplectic Chern-Simons Theory

In this section, we return to the D3-NS5 system of �g. 2.1, but now we add an O3-

plane parallel to the D3-branes. A D3-O3 system can have orthogonal or symplectic

gauge symmetry, depending on which type of O3-plane is chosen. The gauge sym-

metry jumps from orthogonal to symplectic in crossing an NS5-brane. Accordingly,

the construction of section 2.2, with an O3-plane added, is related to Chern-Simons

theory of an orthosymplectic gauge group OSp(r|2n), where the integers r and n de-

pend on the numbers of D3-branes on the two sides of the NS5-brane. As in section

2.4, an S-duality transformation that converts the D3-O3-NS5 system to a D3-O3-D5

system gives a magnetic dual of three-dimensional OSp(r|2n) Chern-Simons theory.

This is a close analog of what we have already seen for unitary groups.

However, something novel happens if r = 2m + 1 is odd. In this case, a slightly

di�erent procedure yields a duality between two �electric� descriptions. In three-

dimensional terms, we will learn that Chern-Simons theory of OSp(2m+ 1|2n), with

coupling parameter q, is equivalent to Chern-Simons theory of OSp(2n+ 1|2m), with

S3 × {0} is approached from the left or right. The two limits give two di�erent sets of 3d �elds to

which the �bifundamental� hypermultiplet is coupled.
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Figure 2.8: Action of the S-duality group on the orientifold planes.

coupling parameter −q. (The Chern-Simons theories that appear in this statement

are de�ned via the brane constructions which as usual allow analytic continuation

away from integer levels.) Since weak coupling in Chern-Simons theory is q → 1,

while q → −1 is a strongly-coupled limit, this duality exchanges strong and weak

coupling.

2.5.1 Review Of Orientifold Planes

We start with a brief review of the orientifold 3-planes of Type IIB superstring theory

[25, 26] (see also section 7 of [29]).

There are four kinds of O3-plane, distinguished by Z2-valued discrete �uxes of

the NS and RR two-form �elds of Type IIB supergravity. An O3-plane in which

both �uxes vanish is denoted O3−; in the presence of m parallel D3-branes (and

their images) it gives O(2m) gauge symmetry (for some purposes, we consider only

the connected component SO(2m)). Adding discrete RR �ux gives an Õ3
−
-plane,

which with the addition of m parallel D3-branes gives O(2m + 1) gauge symmetry.

An orientifold 3-plane with only NS �ux is denoted O3+ and gives Sp(2m) gauge

symmetry. Finally, the orientifold Õ3
+
with both kinds of �ux gives again Sp(2m)

gauge symmetry, but (as we recall shortly) with a shift in the value of the theta-

angle θYM, a fact that we abbreviate by saying that the gauge group is Sp′(2m). The

transformation properties of the orientifold 3-planes under the SL(2,Z) S-duality

group are summarized in �g. 2.8.
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When an O3-plane crosses an NS5-brane, its NS �ux jumps; when it crosses a D5-

brane, its RR �ux jumps. More generally, when an O3-plane crosses a (p, q)-�vebrane

its (NS,RR) �uxes jump by (p, q) mod 2.

Regardless of the type of O3-plane, a D3-O3 system has the same supersymmetry

as a system of D3-branes only. In particular, this supersymmetry is parametrized

by the angle ϑ, which is related to the string coupling in the usual way, as in eqn.

(2.91). To �nd the classical e�ective action for the gauge theory that describes a D3-

O3 system at low energies, we simply take the e�ective action of a D3-brane system,

restrict the �elds to be invariant under the orientifold projection, and divide by 2.

The restriction reduces a U(n) gauge symmetry to O(n) or Sp(n), depending on the

type of O3-plane. We divide by 2 because the orientifolding operation is a sort of

discrete gauge symmetry in string theory. (As we explain shortly, there is a subtlety in

dividing θYM by 2.) The same procedure of restricting to the invariant subspace and

dividing by 2 enables us to deduce the e�ective action of a D3-O3-NS5 or D3-O3-D5

system from those of a D3-NS5 or D3-D5 system.

For the U(n) gauge �elds along a system of n parallel D3-branes, we write the

gauge theory action as

1

2g2
YM

∫
d4x trF 2

µν −
θYM

8π2

∫
trF ∧ F , (2.145)

where tr is the trace in the fundamental representation of U(n), and the Yang-Mills

parameters gYM and θYM are related to the τ parameter of the underlying Type IIB

superstring theory by the standard formula

τ =
θYM

2π
+

2πi

g2
YM

. (2.146)

The action (2.145) is de�ned so that θYM couples precisely to the instanton number

N =
1

8π2

∫
trF ∧ F, (2.147)

normalized to be an integer on a four-manifold without boundary. This ensures that

the theory is invariant under τ → τ + 1, which corresponds to θYM → θYM + 2π.

If we include an O3 plane that reduces the gauge symmetry from U(n) to O(n),

then we write the action in the same way, with tr now representing a trace in the
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fundamental representation of O(n). But since we have to divide the action by 2, we

express the gauge theory parameters in terms of τ not by (2.146) but by

τ

2
=
θYM

2π
+

2πi

g2
YM

. (2.148)

We write
τ

2
= τYM, (2.149)

where τYM is expressed in terms of gYM and θYM in the usual way. An important

detail now is that the quantity N, which is Z-valued in U(n) gauge theory, takes

values in34 2Z in O(n) gauge theory for n ≥ 4. Because of this, the O(n) gauge

theory is invariant under τ → τ + 1, even though θYM couples to N/2.

Next consider the orientifold plane to be O3+, reducing the gauge symmetry

from U(n) to Sp(n) (here n must be even). The action is still de�ned as in eqn.

(2.145), now with tr representing the trace in the fundamental representation of Sp(n).

Furthermore, the coupling parameter τ of Type IIB superstring theory is still related

to the gauge theory parameters as in (2.148). Now, however, the quantity N is

integer-valued (a minimal Sp(n) instanton is an SU(2) instanton of instanton number

1 embedded in Sp(2) ∼= SU(2)), so the operation τ → τ + 1 of the underlying string

theory is not a symmetry of the gauge theory. Instead, this operation maps an O3+

orientifold plane to a Õ3
+
-plane, in which the gauge group is still Sp(n) but the

relation between string theory and gauge theory parameters is shifted from (2.148)

to
τ + 1

2
=
θYM

2π
+

2πi

g2
YM

. (2.150)

The term Sp′(n) gauge theory is an abbreviation for Sp(n) gauge theory with coupling

parameters related in this way to the underlying string theory parameters.

34For n ≥ 4, an O(n) instanton of minimal instanton number can be embedded in an SO(4)

subgroup. An SO(4) instanton of minimal instanton number (on R4; we do not consider here e�ects

associated to the second Stie�el-Whitney class) is simply an SU(2) instanton of instanton number

1, embedded in one of the two factors of Spin(4) ∼= SU(2)× SU(2). Upon embedding O(n) in U(n),

the O(n) instanton constructed this way is a U(n) instanton of instanton number 2, explaining why

the instanton number normalized as in (2.147) is an even integer in O(n). In the case of O(3), there

is not room for the construction just described, and the minimal instanton has N = 4.
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Figure 2.9: The brane con�gurations that realize the electric and magnetic theory for the

four-dimensional construction of the OSp(2m|2n) Chern-Simons theory.

2.5.2 The Even Orthosymplectic Theory

Now we begin our study of the D3-O3 system interacting with a �vebrane. On the

left of �g. 2.9, we sketch an O3−-plane that converts to an O3+-plane in crossing

an NS5-brane. The gauge group is therefore SO(2m) on the left and Sp(2n) on the

right, where m and n are the relevant numbers of D3-branes. In the topologically

twisted version of the theory, along the defect, one sees a Chern-Simons theory of the

supergroup OSp(2m|2n). After the orientifold projection, the action can be written

just as in eqn. (2.35):

I =
iKosp

4π

∫
W

Str

(
AdA+

2

3
A3

)
+ {Q, . . . } , (2.151)

Now Str denotes the supertrace in the fundamental representation of the orthosym-

plectic group. This follows by simply projecting the e�ective action described in

section 2.2 onto the part that is invariant under the orientifold projection. The ex-

pression for Kosp in terms of string theory parameters τ, ϑ is the same as in equation

(2.7) except for a factor of 2 associated to the orientifolding:

τ

2
= τYM = Kosp cosϑ eiϑ. (2.152)

Note that the bosonic part of the Chern-Simons action in (2.151) can be also expressed

as
iKosp

4π

∫
W

Tr

(
AbdAb +

2

3
Ab

3

)
= iKosp

(
CS(Asp)− 2CS(Aso)

)
, (2.153)

where the Chern-Simons functionals CS(Asp) and CS(Aso) are normalized to take

values in R/2πZ for simply connected gauge groups and m > 1.
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Now we apply the usual S-duality transformation τ → τ∨ = −1/τ . As indicated

in the �gure, this leaves the O3−-plane invariant but converts the O3+-plane to an

Õ3
−
-plane; now the gauge group is SO(2m) on the left and SO(2n+ 1) on the right.

What we get this way is a magnetic dual of Chern-Simons theory of OSp(2m|2n).

The appropriate e�ective action to describe this situation is found by simply

projecting the e�ective action described in section 2.4.3 onto the part invariant under

the orientifold projection. There is no analog of the casem = n that was important in

section 2.4.3, since 2m never coincides with 2n+ 1. The condition analogous to |n−

m| ≥ 2 is |2m− (2n+ 1)| ≥ 3. If this is the case, the appropriate description involves

a Nahm pole associated to an irreducible embedding su(2) → so(|2m − (2n + 1)|).

The Nahm pole appears on the left or the right of the defect depending on the sign of

2m− (2n+1). What commutes with the Nahm pole is an SO(w) gauge theory theory

that �lls all space; here w is the smaller of 2m and 2n+1. If |2m− (2n+1)| = 1, then

as in section 2.4.3, there is no Nahm pole and the vector multiplets that transform in

the fundamental representation of SO(w) obey Dirichlet boundary conditions along

the defect.

The action can still be expressed as in (2.97)

Imagnetic =
iθ∨YM

8π2

∫
tr (F ∧ F ) + {Q, . . . }, (2.154)

where now tr is the trace in the fundamental representation of the orthogonal group,

and τ∨YM = θ∨YM/2π+4πi/(g∨YM)2 is related to the underlying string theory parameters

by

τ∨YM =
1

2
τ∨ = − 1

2τ
. (2.155)

We recall from section 2.5.1 that the instanton number N∨ = (1/8π2)
∫

trF ∧F takes

even integer values in the case of an orthogonal gauge group. Hence the natural

instanton-counting parameter is

q = exp(−2iθ∨YM), (2.156)

in the sense that a �eld of N∨ = 2r contributes ±qr to the path integral (as usual the

sign depends on the sign of the fermion determinant).
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The variable q can be expressed in terms of the canonical parameter Kosp of the

electric description. In (2.100), we have obtained Re (τ∨) = −1/K, where K is the

canonical parameter for the theory with no orientifolds. In the orientifolded theory,

the canonical parameter Kosp that appears in the action (2.151) is one-half of that.

Hence, using equation (2.155), we �nd that

θ∨YM

2π
= Re τ∨YM =

1

2
Re τ∨ = − 1

2K
= − 1

4Kosp

, (2.157)

and therefore the de�nition (2.156) gives

q = exp

(
πi

Kosp

)
. (2.158)

By contrast, Chern-Simons theory or two-dimensional current algebra for a purely

bosonic group G with Lie algebra g is naturally parametrized by

qg = exp

(
2πi

ngKg

)
, (2.159)

where ng is the ratio of length squared of long and short roots of g. (This is also the

natural instanton-counting parameter in the magnetic dual description of this theory

[6].) The parameter q de�ned in eqn. (2.158) is an analog of this, with ng replaced by

the ratio of length squared of the longest and shortest bosonic roots; for osp(2m|2n),

this ratio is equal to 2.

2.5.3 The Odd Orthosymplectic Theory

2.5.3.1 Preliminaries

Now we will repeat the analysis of the D3-O3-NS5 system, with just one important

change: we give the O3-planes a discrete RR �ux. As depicted in the upper left of

�g. 2.10, we take the O3-plane to be of type Õ3
−
to the left of the NS5-brane and

(therefore) of type Õ3
+
to the right. The gauge groups realized on the D3-O3 system

on the two sides of the defect are SO(2m + 1) and Sp′(2n), so this con�guration

describes an analytically-continued version of OSp(2m+ 1|2n) Chern-Simons theory.

Up to a point, the four-dimensional gauge theory description of this system can be
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Figure 2.10: The �gure in the upper left corner shows the brane con�guration, which gives

the four-dimensional construction for the OSp(2m+ 1|2n) Chern-Simons theory. The other

�gures are obtained by acting with various elements of the SL(2,Z) S-duality group. In

particular, the transformation S−1TS maps the con�guration in the upper left to the one

in the lower left.

found just as in section 2.5.2: we restrict the �elds of the familiar U(2m + 1|2n)

system to be invariant under the orientifold projection, and divide the action by 2.

However, there are some crucial subtleties that do not have a close analog in the

previous case:

(1) The gauge theory theta-angle jumps by π in crossing the defect, because

the gauge theory on the right is of type Sp′(2m). By itself, this would spoil the

supersymmetry of the defect system, since when one veri�es supersymmetry at the

classical level, one assumes that τYM is continuous in crossing the defect.35

(2) This suggests that a quantum anomaly may be relevant, and in fact there is

one: in three dimensions, the bifundamental hypermultiplet of SO(2m+ 1)× Sp(2n)

that is supported on the three-dimensional defect su�ers from a global anomaly.

These two problems, in fact, compensate each other. Indeed, the anomalous

fermionic path-integral can be made well-de�ned by adding a half-integer Chern-

35Supersymmetry actually allows certain discontinuities [23], but not a jump in θYM at �xed ϑ.
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Simons term, that is, by considering the combination

Pf( /D) exp

(
i

2
CS(A)

)
. (2.160)

Here Pf( /D) is the Pfa�an of the fermionic kinetic operator, which changes sign under

large Sp(2n) gauge transformations. The half-integral Chern-Simons term, sitting at

the defect, has the same local variation, as a bulk theta-term with theta-angle equal

to π. Thus, adding the half-integral Chern-Simons term simultaneously restores the

invariance under the gauge symmetry and under the supersymmetry.

The combination (2.160) is what is typically used in physical literature. However,

the overall sign of this expression is not well-de�ned. It is better to use the APS index

theorem to replace this combination by the eta-invariant, which is gauge-invariant and

well-de�ned. So, we write instead

|Pf( /D)| exp(iπη′/2) (2.161)

where

exp(iπη′/2) = exp(iπη̂/2− imCS(Asp)− 2inCS(Aso)) , (2.162)

and η̂ is one-half of the eta-invariant of the kinetic operator of the 3d fermions. Under

local variations of the gauge �eld, the expression (2.161) changes in the same way as

(2.160).

2.5.3.2 The Dual Theory

We can �nd now a magnetic dual of OSp(2m+1|2n) Chern-Simons theory by applying

the S-duality transformation τ → −1/τ . Its action on the brane con�guration is

shown in the upper part of �g. 2.10. The new string coupling is τ∨ = −1/τ . The

gauge groups are now Sp(2m) in M` and Sp′(2n) in Mr. We continue to use the

notation τ∨YM = 1
2
τ∨ for the gauge coupling. The minimal instanton number for

the symplectic group is 1, so the natural instanton-counting parameter analogous to

(2.156) is q = exp(−iθ∨YM). Using (2.157), this can be presented as

q = exp

(
πi

2Kosp

)
. (2.163)
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This agrees with the general de�nition (2.159), since the ratio of length squared of

the longest and shortest bosonic roots for the odd orthosymplectic algebras is ng = 4.

In the �magnetic� description, one of the orientifold planes is again of type Õ3
+
,

which means that the θYM jumps by π upon crossing the defect. As in the electric

description, this jump appears to violate supersymmetry. The resolution is similar to

what it was in the electric description. First we consider the case thatm = n. For this

case, the gauge group is simply Sp(2n) �lling all of spacetime. There is a fundamental

hypermultiplet supported on the defect. Its Pfa�an has the sign anomaly, similarly to

the one mentioned in the previous section. The anomaly is canceled roughly speaking

via a half-integral Chern-Simons term supported on the defect, or more accurately

via an η-invariant. The combined path integral involving the fermion Pfa�an, the

η-invariant, and the jump in θYM (as well as other factors) is gauge-invariant and

supersymmetric. The factors involved in the anomaly cancellation are the familiar

ones from eqn. (2.161):

|Pf( /D)| exp(iπη′/2) exp

(
− i

8π

∫
Mr

trsp F ∧ F
)
. (2.164)

(Here we have written explicitly the term, corresponding to the jump of the theta-

angle.) According to the APS index theorem, the product of the last two factors

equals ±1 (possibly multiplied by a factor that only depends on
∫
Mr
R2). This factor

of ±1 must be incorporated in the sum over instanton solutions. We denote it as

signy≥0 = exp(iπη′/2) exp

(
− i

8π

∫
Mr

trsp F ∧ F
)
. (2.165)

What happens if n 6= m? In this case, there are no hypermultiplets supported

on the defect. Instead, there is a jump in the gauge group in crossing the defect.

Along the defect there is a Nahm pole, associated to an irreducible embedding of

su(2) in sp(|2n− 2m|). As usual, the pole is on the side on which the gauge group is

larger. The gauge group that is unbroken throughout all space is Sp(2s), where s is

the smaller of n and m.

At �rst sight, it is not clear how to generalize (2.164) to n 6= m. If there are no

fermions supported on the defect, how can we possibly use an anomaly in a fermion
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determinant as part of a mechanism to compensate for a jump in θYM by π? To

understand what must happen, recall that we can deform from n = m to n 6= m by

Higgsing � by moving some of the D3-branes (on one side or the other of the defect)

away from the rest of the system. When we do this, the bifundamental hypermultiplet

which is responsible for some of the interesting factors in (2.164) does not simply

vanish in a pu� of smoke. It mixes with some of the bulk degrees of freedom and

gains a large mass. When this happens, whatever bulk degrees of freedom remain

will carry whatever anomaly existed before the Higgsing process.

So the resolution of the puzzle must involve a subtlety in the fermion path integral

for n 6= m. Going back to (2.164), naively /D is the Dirac operator just of the defect

fermions and η′ is one-half their η-invariant. There are also bulk fermions, but they

have no anomaly and vanishing η-invariant, so it does not seem interesting to include

them in (2.164). However, precisely because they have no anomaly and vanishing η-

invariant, we could include them in (2.164) (and their coupling to the defect fermions)

without changing anything. This is a better starting point to study the Higgsing

process, since Higgsing disturbs the decoupling.

Upon Higgsing, the �rst two factors in eqn. (2.164) keep their form, but some

modes become massive and � in the limit that |2n − 2m| D3-branes are removed

on one side or the other � the defect fermions disappear and we are left with an

expression of the same form as (2.164), but now the Pfa�an and the η-invariant are

those of the bulk fermions in the presence of the Nahm pole. The Dirac operator of

the bulk fermions in the presence of the Nahm pole can be properly de�ned, with

some subtlety, as an elliptic di�erential operator [70]. This gives a framework in

which one could investigate its Pfa�an and η-invariant. For the theory that we are

discussing here to make sense, there must be an anomaly in the sign of the Pfa�an of

this operator, and it must also have a nontrivial η-invariant that compensates in the

familiar way for the jump in θYM. These points have not yet been investigated, but

there do not seem to be any general principles that exclude the required behavior.
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2.5.4 The Framing Anomalies

In section 2.4.3.1 we have veri�ed that our constructions predict the correct value for

the global framing anomaly for the Chern-Simons theory of the unitary supergroup.

Here we repeat the same analysis for the orthosymplectic gauge group.

In the non-simply-laced case, the analog of the formula (2.115) for the framing

factor is

exp (2πi sign(k) sdimSG/24) · q−nghsg sdim SG/24. (2.166)

The di�erence with the simply-laced case is the factor of ng in the exponent, which

compensates for the analogous factor in the de�nition (2.159) of the q variable. As

usual in this chapter, we will ignore the one-loop contribution to the anomaly, and

focus only on the power of q. To compare the anomalies for di�erent groups, it

is convenient to express them in terms of the theta-angle of the magnetic theory.

What we need to know is that for a theory with a bosonic gauge group the variable

q is de�ned as q = exp(−2iθ∨YM), if the gauge group in the magnetic description is

orthogonal, and as q = exp(−iθ∨YM), if this group is symplectic. We have explained

the reason behind this de�nition, when we discussed the magnetic theories for the

orthosymplectic supergroups.

Consider �rst the even orthosymplectic algebra osp(2m|2n). As we recalled in

section 2.4.3.1, the framing anomaly in the magnetic description comes from the

peculiarities of the de�nition of the instanton number in the presence of the Nahm

pole. We set r = n − m. For r > 0, the Nahm pole in the magnetic theory is

embedded into an so(2r + 1) subalgebra of so(2n+ 1). This means that the framing

anomaly depends only on r and not on m; setting m = 0, we reduce to the magnetic

dual of Sp(2r) Chern-Simons theory and we should get the same framing anomaly.

The anomaly factor for the orthosymplectic case is expected to be

q
−nosp(2m|2n)hospsdimOSp/24
osp = exp (−4iθ∨YMhospsdim OSp/24) . (2.167)

For the symplectic gauge group this factor is

q
−nsphspdimSp/24
sp = exp (−4iθ∨YMhspdim Sp/24) . (2.168)
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The two expressions agree, since

hosp(2m|2n) sdim OSp(2m|2n) = hsp(2r) dim Sp(2r) = 2r(r + 1/2)(r + 1). (2.169)

This identity is the analog of (2.116); see Table 2.2 for the numerical values.

If r < 0, the Nahm pole lives in the so(−2r−1) subalgebra on the other side of the

defect. This is the same Nahm pole that would arise in the magnetic dual of SO(−2r)

Chern-Simons theory, so the framing anomaly should agree with that theory. For the

bosonic theory with the even orthogonal gauge group we have

q−hsodim SO
so = exp (−2iθ∨YMhsodim SO/24) . (2.170)

This agrees with (2.167), since

hosp(2m|2n) sdim OSp(2m|2n) = −1

2
hso(−2r)dim SO(−2r) = 2r(r+ 1/2)(r+ 1). (2.171)

The minus sign appears here, because the Nahm pole for the orthosymplectic theory

with r < 0 is on the left side of the defect.

Alternatively, we could think of the so(−2r − 1) Nahm pole as corresponding to

the Sp(−2r − 2) electric theory. This would give the same result.

Let us repeat the same story for the odd orthosymplectic superalgebra osp(2m+

1|2n). Again, we set r = n − m. The Nahm pole is embedded in the sp(2|r|)

subalgebra. In the purely bosonic case, the same embedding would arise for the

SO(2|n−m|+ 1) electric theory. Therefore, we would expect that the global framing

anomaly for the superalgebra case is the same as for this purely bosonic Lie algebra,

at least above one loop. The framing factor for the odd orthosymplectic case should

be

q
−nosp(2m+1|2n)hospsdimOSp/24
osp = exp (−4iθ∨YMhospsdim OSp/24) . (2.172)

In the SO(2|r|+ 1) the answer is

q−nsohsodim SO
so = exp (−2iθ∨YMhsodim SO/24) . (2.173)

The two expressions (2.172) and (2.173) agree, since from Table 2.2 we have

hosp(2m+1|2n) sdim OSp(2m+ 1|2n) =
1

2
hso(2|r|+1)dim SO(2|r|+ 1) = 2r(r2 − 1/4).

(2.174)
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The sign in the right hand side changes, depending on the sign of r, in accord with

the fact that the Nahm pole is on the right or on the left of the defect. Note also,

that up to this change of sign the formula is symmetric under the exchange of m and

n. This reason for this symmetry will become clear in section 2.5.5.

2.5.5 Another Duality

So far in this chapter, we have just exploited the duality S : τ → −1/τ , exchanging

NS5-branes with D5-branes. The full S-duality group SL(2,Z) of Type IIB super-

string theory contains much more. In particular, it has a non-trivial subgroup that

maps an NS5-brane to itself. This subgroup is generated by the element

S−1TS =

 1 0

−1 1

 . (2.175)

That this element maps an NS5-brane to itself follows from the action of duality on

�vebrane charges given in eqn. (2.90). (Concretely, S converts an NS5-brane to a

D5-brane, T leaves �xed the D5-brane, and S−1 maps back to an NS5-brane.) This

transformation will map a D3-NS5 system, possibly with an O3-plane, to a system

of the same type. In the approach to Chern-Simons theories followed in the present

chapter, this transformation will map an �electric� description to another �electric�

description, and thus it will give a duality of Chern-Simons theories (analytically

continued away from integer levels).

Let us �rst see what this duality does to a D3-NS5 system, associated to the su-

pergroup U(m|n). The operation S−1TS maps D3-branes and NS5-branes to them-

selves, so it maps the Chern-Simons theory of U(m|n) to itself, while transforming

the canonical parameter according to (2.95), which in this case gives

1

K
→ 1

K
− 1 =

1

K′
. (2.176)

This transformation leaves �xed the variable q = exp(2πi/K) in terms of which the

knot invariants are usually expressed. (In fact, the symmetry (2.176) can be viewed

as the reason that the knot invariants can be expressed in terms of q rather than
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being more general functions of K.) This duality acts trivially on line operators of

U(m|n). To argue this, we just observe that T can be understood classically � as a

2π shift in θYM � and does not a�ect the model solution that is used to de�ne a line

operator.

The action of STS−1 on a surface operator can be determined by looking at the

behavior far away from the defect. We haveα
η

 S−→

 η

−α

 T−→

 η

η − α

 S−1

−−→

α− η
η

 . (2.177)

Using the relation (2.85), the action on the weight λ can be conveniently written

λ′

K′
=
λ

K
. (2.178)

Since knot invariants computed using surface operators by the procedure explained in

section 2.4.6 only depend on the ratio λ/K, this shows that they are invariant under

S−1TS. Using the relation (2.176) between K′ and K, eqn. (2.178) is equivalent to

λ′ = λ+K′λ. (2.179)

Let us check whether these formulas are consistent with the idea that if λ is

integral, the same knot and link invariants can be computed using either line operators

or surface operators. S−1TS acts trivially on the weight of a line operator, but acts

on the weight of a surface operator as in (2.179). However, knot invariants computed

from surface operators are unchanged in shifting λ by K times an integral cocharacter.

Since the groups U(n) and U(m) are selfdual, if λ is an integral character, it is also

an integral cocharacter.

Now let us apply this duality to the con�guration of �g. 2.9, which corresponds

to an even orthosymplectic group OSp(2m|2n). The transformation S−1TS maps the

O3-planes that appear in this con�guration to themselves, so again it maps Chern-

Simons theory of OSp(2m|2n) to itself. The canonical parameter Kosp of the or-

thosymplectic theory was de�ned as one-half of the object K de�ned in section 2.4,

so the transformation rule (2.176) can be written

1

Kosp

→ 1

Kosp

− 2 =
1

K′osp
, (2.180)
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Therefore, the natural Chern-Simons parameter q = exp(πi/Kosp), de�ned in eqn.

(2.158), is invariant, just as for the unitary case. The Chern-Simons theory again is

simply mapped to itself. It takes a little more e�ort to understand the duality action

on line and surface operators. For this reason, the discussion of the operator mapping

will be presented in a separate section 2.5.6. There we will �nd that, unlike for the

unitary superalgebra, the duality acts on the set of line operators by a non-trivial

involution.

For the odd orthosymplectic group OSp(2m+1|2n), matters are more interesting.

The action of S−1TS on the brane con�guration associated to OSp(2m + 1|2n) is

described in �g. 2.10. Chasing clockwise around the �gure from upper left to lower

left, we see that the duality maps a brane con�guration associated to OSp(2m+1|2n)

to one associated to OSp(2n+1|2m). Since the gauge group changes, this is de�nitely

a non-trivial duality of (analytically-continued) Chern-Simons theories. For example,

setting n = 0, we get a duality between Chern-Simons theory of the ordinary bosonic

group O(2m+ 1) and Chern-Simons theory of the supergroup OSp(1|2m). How does

this duality act on the natural variable q that parametrizes the knot invariants?

For the odd orthosymplectic group, the natural variable in terms of which the knot

invariants are expressed is q = exp(πi/2Kosp), introduced in eqn. (2.163). The

transformation (2.180) acts on this variable by36

q → −q. (2.181)

The minus sign means that the duality we have found exchanges weak and strong

coupling. Indeed, in three-dimensional Chern-Simons theory, the weak coupling limit

is q → 1, and q → −1 is a point of strong coupling.

It is inevitable that the duality must map weak coupling to strong coupling, since

the classical representation theories of OSp(2m + 1|2n) and OSp(2n + 1|2m) are

36There is a subtlety here. The Killing form for a superalgebra can be de�ned with either sign.

Since the duality maps theories with, say, Sp group at y > 0 to Sp group at y < 0, it exchanges the

two choices. If we want to de�ne the sign of the Killing form to be always positive, say, for the sp

subalgebra, we should rather say that q maps to −q−1. What is written in the text assumes that

the sign of the Killing form in M` or Mr is unchanged in the duality.
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not equivalent. A duality mapping weak coupling to weak coupling would imply an

equivalence between the two classical limits, but this does not hold.

Some instances of the duality predicted by the brane construction have been dis-

covered previously. For n = 0 and m = 1, the relation between knot invariants has

been discussed in [17]; for n = 0 and any m, this subject has been discussed in [15] in

a di�erent language. For related discussion from the standpoint of quantum groups

see [16], and see [71] for associated representation theory. We will say more on some

of these results in section 2.5.6.

Now let us look at the same duality in the magnetic dual language. Our two elec-

tric theories are sketched in the upper and lower left of �g. 2.10, and the corresponding

magnetic duals, obtained by acting with S, are shown in the upper and lower right

of the same �gure. One involves an Sp(2m) × Sp′(2n) gauge theory, and the other

involves an Sp′(2m)× Sp(2n) gauge theory. There is no change in the gauge groups,

the localization equations, or in the hypermultiplet fermions if n = m or in the Nahm

pole singularity if n 6= m. The only di�erence is that in one case θYM di�ers on the

right by π from the underlying Type IIB theta-angle, and in the other case, it di�ers

on the left by π from the underlying Type IIB theta-angle. In the upper right of �g.

2.10, a solution of the localization equations with instanton number N∨ is weighted

by the product of qN∨ with the sign factor of eqn. (2.165). There is an additional sign

that we will call (−1)f ; this is the sign of the determinant of the operator obtained by

linearizing around a solution of the localization equations. This factor is not a�ected

by the duality. The combination is

(−1)fqN∨signy≥0 = (−1)fqN∨ exp(iπη′/2) exp

(
− i

8π

∫
Mr

trsp F ∧ F
)
. (2.182)

On the lower left of the �gure, the sign factor signy≥0 is replaced with

signy≤0 = exp(iπη′/2) exp

(
+
i

8π

∫
M`

trsp F ∧ F
)
. (2.183)

We also have to replace q with −q. So (2.182) is replaced with

(−1)f (−q)N∨ exp(iπη′/2) exp

(
+
i

8π

∫
M`

trsp F ∧ F
)
. (2.184)
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The two expressions (2.182) and (2.184) are equal, since

N∨ = N∨` + N∨r , (2.185)

with

N∨` =
1

8π2

∫
M`

trsp F ∧ F, N∨r =
1

8π2

∫
Mr

trsp F ∧ F. (2.186)

The above formulas can be written more elegantly by using the Atiyah-Patodi-

Singer (APS) index theorem [69] for the Dirac operator on a manifold with boundary.

This will also be useful later. We let ν` (or νr) be the index of the Dirac operator on

M` (orMr), acting on spinors with values in the fundamental representation of Sp(2n)

(or Sp(2m)). This index is de�ned by counting zero-modes of spinor �elds that are

required to be square-integrable at in�nite ends ofM` orMr, and to obey APS global

boundary conditions along the �nite boundary W . The APS index theorem gives

(−1)ν` = exp(iπη′/2) exp

(
+
i

8π

∫
M`

trsp F ∧ F
)

(−1)νr = exp(iπη′/2) exp

(
− i

8π

∫
Mr

trsp F ∧ F
)
. (2.187)

Thus the factors weighting a given solution in the dual constructions of �g. 2.10 are

respectively

(−1)f (−q)N∨(−1)ν` (2.188)

and

(−1)fqN∨(−1)νr . (2.189)

The most convenient way to compare these two formulas is as follows. Let ν be the

index of the Dirac operator on the whole four-manifold M = M` ∪Mr. Additivity of

the index under gluing gives

ν = ν` + νr. (2.190)

But we also have

ν = N∨. (2.191)

To obtain this formula, one can �rst deform the gauge �eld into an Sp(2s) subgroup,

where s = min(n,m), so as not to have to consider the jump from n tom (which is not
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present in standard formulations of index problems). Then (2.191) is a consequence of

the ordinary Atiyah-Singer index theorem, or of the APS theorem on the noncompact

four-manifold M = W × R (with the contributions of the ends at in�nity canceling).

It follows from these statements that

(−1)N∨(−1)νr = (−1)ν` , (2.192)

showing that the two descriptions do give the same result.

We now proceed to describe the action of the duality on line and surface operators

of the orthosymplectic theory.

2.5.6 Duality Transformation Of Orthosymplectic Line And

Surface Operators

2.5.6.1 Magnetic Duals Of Twisted Line Operators

Before we can describe the action of the duality on line operators, we need some

preparation. In section 2.3.3.3, we have introduced the twisted line operators in the

electric description. One needs to include them in the story to get a consistent picture

for the S−1TS duality of line operators in the orthosymplectic theory. For this reason,

here we make a digression to describe their magnetic duals.

This question arises already for U(m|n), so we start there. Consider a knot K

in a three-manifold W . W is embedded in a four-manifold M , for example W × R.

The de�nition of twisted line operators on the electric side depended on the existence

of a �at line bundle with some twist c around the knot K. For a generic twist,

such a bundle can only exist if the cycle K is trivial in H1(M). In addition to the

twist, the line operator also supports a Wilson operator of the bosonic subgroup

with some weight Λ. In the magnetic theory, we propose the following de�nition for

the dual of a twisted operator. Let λ = Λ + ρ0 be the quantum-corrected weight.

Note that here we use the bosonic Weyl vector for the quantum correction, since Λ

was the highest weight of a representation of the bosonic subgroup. For a twisted

operator of quantum-corrected weight λ, we de�ne the dual magnetic operator, using
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the irreducible model solution of section 2.4.4, corresponding to the weight λ, but also

make the following modi�cation. For de�niteness, let n ≥ m. Then the U(m)-part

of the gauge �eld is continuous across the three-dimensional defect. Pick a surface Σ

bounded by K, or, more precisely, a class37 in the relative homology H2(M,K). The

U(m) bundle is trivialized along the knot K, so it makes sense to evaluate its �rst

Chern class on the class Σ, and to include a factor

exp

(
ic

∫
Σ

trF/2π

)
(2.193)

in the functional integral. Here c is an angular variable, which we conjecture to equal

the twist of the line operator on the electric side.38 This proposal can be justi�ed

by noting that the insertion (2.193) is essentially an abelian surface operator of type

(0, 0, 0, η∨), with η∨ valued in the center of the Lie algebra of the magnetic gauge

group. After doing the S-duality transformation, this becomes an operator of type

(α, 0, 0, 0) in the electric theory. The singularity αdθ in the abelian gauge �eld can

be removed by making a gauge transformation around this surface operator. Such a

gauge transformation closes only up to the element exp(ic) of the center, and therefore

introduces a twist by exp(ic) to the boundary hypermultiplets.

Now let us turn to the orthosymplectic Chern-Simons theory. For the OSp(2m|2n)

case the magnetic gauge group is SO(2m) × SO(2n + 1), and its subgroup which is

not broken by the three-dimensional defect is SO(N), where N = 2m or N = 2n+ 1,

depending on m,n. As is clear from the electric description of section 2.3.3.3, for

the twisted operator to have a non-zero matrix element, the knot K should be trivial

in H1(M ; Z2), that is, we should have K = ∂Σ + 2K ′, where Σ is a two-cycle in

H2(M,K), and K ′ is an integral cycle. In the magnetic description we de�ne a

twisted operator of quantum-corrected weight λ = Λ + ρ0 by the same irreducible

model solution that we would use for an untwisted operator, but we also make an

37Since K is trivial in the homology, Σ exists, but it might not be unique. If it is not unique, we

should probably sum over possible choices. For simple manifolds like R4 and R× S3 that we mostly

consider in this chapter, this question does not arise.
38Note that one cannot de�ne such twisted operators in the one-sided, purely bosonic theory,

because there the gauge bundle is trivialized completely along y = 0, and not only along the knot.
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insertion in the functional integral. Namely, when we sum over di�erent bundles, we

add an extra minus sign if the SO(N)-bundle, restricted to Σ, cannot be lifted to a

Spin(N)-bundle. In other words, we add a factor

(−1)
∫
Σ w2 , (2.194)

where w2 is the second Stiefel-Whitney class.39

There is no analog of this for an odd orthosymplectic group OSp(2m+ 1|2n). For

example, for m = n, the magnetic dual is simply an Sp(2n) gauge theory with a

fundamental hypermultiplet along the defect. The existence of this hypermultiplet

means that the gauge bundle restricted to Σ must be an Sp(2n) bundle, not a bundle

with structure group PSp(2n) = Sp(2n)/Z2. For m 6= n, the model solution has a

Nahm pole valued in Sp(|2m − 2n|), and this is incompatible with a twist de�ned

using the center of Sp(2n). The magnetic duals of twisted and untwisted operators

are nonetheless di�erent, but that is because the model solutions used to de�ne them

are di�erent, as explained in section 2.5.6.6.

2.5.6.2 More On The Orthosymplectic Lie Superalgebras

We also need to review some facts about the orthosymplectic Lie superalgebras. We

start with the even orthosymplectic superalgebra D(m,n) ' osp(2m|2n). Here we

assume that m > 1, since m = 1 corresponds to the type I superalgebra C(n) '

osp(2|2n) (the analysis of its line and surface operators is analogous to the u(m|n)

case, which we have discussed in section 2.5.5). We also assume that n > 1; the case

n = 1 can be treated with minor modi�cations.

The Dynkin diagram for D(m,n) is shown on �g. 2.11. The positive bosonic and

fermionic roots of osp(2m|2n) are

∆+
0

=
{
δi ± δi+p, 2δi, εj ± εj+p

}
,

∆+
1

=
{
δi ± εj} , i = 1 . . . n, j = 1 . . .m, p > 0 , (2.195)

39What we have described about the S-duality of twisted line operators is rather similar to the

result of [72]: choosing a topological type of bundle on one side of the duality translates on the other

side to choosing a fugacity in the sum over bundles.
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Figure 2.11: Dynkin diagram for the osp(2m|2n) superalgebra, m ≥ 2. The subscripts are

expressions for the roots in terms of the orthogonal basis δ•, ε•. The superscripts represent

the Dynkin labels of a weight. The middle root denoted by a cross is fermionic. Roots of the

sp(2n) and so(2m) subalgebras are on the left and on the right of the fermionic root. The

site shown in grey and labeled an is the long simple root of the sp(2n) subalgebra, which

does not belong to the set of simple roots of the superalgebra.

where the mutually orthogonal basis vectors are normalized as

〈δi, δi〉 =
1

2
, 〈εi, εi〉 = −1

2
, (2.196)

to ensure that the longest root has length squared 2. The bosonic and fermionic Weyl

vectors are

ρ0 =
n∑
i=1

(n+ 1− i) δi +
m∑
j=1

(m− j) εj , ρ1 = m
n∑
i=1

δi , (2.197)

and the superalgebra Weyl vector is ρ = ρ0 − ρ1.

A weight with Dynkin labels40 a•, ã• is decomposed in terms of the basis vectors

as

Λ = a1δ1 + · · ·+ an(δ1 + · · ·+ δn) + ã1ε1 + · · ·+ ãm−2(ε1 + · · ·+ εm−2)

+
1

2
ãm−1(ε1 + · · ·+ εm−1 + εm) +

1

2
ãm(ε1 + · · ·+ εm−1 − εm) . (2.198)

It is a dominant weight of a �nite-dimensional representation, if the Dynkin labels

are non-negative integers, and also satisfy the following supplementary condition: if

40The Dynkin label of a weight Λ for a simple bosonic root α is de�ned as usual as a =

2〈Λ, α〉/〈α, α〉. However, the Dynkin labels used in (2.198) are for the simple roots of so(2m)×sp(2n),

not for the superalgebra osp(2m|2n). In practice, this means that an is the weight for the long root

2δn of sp(2n), and we do not use the label aferm associated to the fermionic root of the superalgebra.
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an ≤ m − 2, then no more than the �rst an of the labels ã• can be non-zero; if

an = m − 1, then ãm−1 = ãm−2; if an ≥ m, there is no constraint. We will call a

weight (and the corresponding representation) spinorial if the number ãm−1 + ãm is

odd. Clearly, a spinorial dominant weight must have an ≥ m. Also, such a weight is

always typical.

Now let us turn to the odd orthosymplectic superalgebra B(m,n) ' osp(2m +

1|2n). The distinguished Dynkin diagram and the simple roots for osp(2m + 1|2n)

and for its bosonic subalgebra so(2m+ 1)× sp(2n) can be found in �g. 2.3 of section

2.3.1. The positive bosonic and fermionic roots of this superalgebra are

∆+
0

=
{
δi − δi+p, δi + δi+p, 2δi, εj − εj+p, εj + εj+p, εj

}
,

∆+
1

=
{
δi − εj, δi + εj, δi

}
, i = 1 . . . n, j = 1 . . .m, p > 0 , (2.199)

where the mutually orthogonal basis vectors are normalized as in (2.196). The bosonic

and fermionic Weyl vectors are

ρ0 =
n∑
i=1

(n+ 1− i) δi +
m∑
j=1

(
m+

1

2
− j
)
εj , ρ1 =

(
m+

1

2

) n∑
i=1

δi , (2.200)

and as usual the superalgebra Weyl vector is ρ = ρ0 − ρ1.

If we parametrize a weight as

Λ =
n∑
i=1

µiδi +
m∑
i=1

µ̃iεi , (2.201)

then, in terms of its Dynkin labels, one has

µi =
n∑
j=i

aj , µ̃i =
m−1∑
j=i

ãj +
1

2
ãm. (2.202)

A weight Λ is a highest weight of a �nite-dimensional representation of osp(2m+1|2n),

if its Dynkin labels are non-negative integers, and no more than the �rst an of the

so(2m+1) labels (ã1, . . . , ãm) are non-zero. The last condition is trivial if an ≥ m. We

will call an irreducible representation �large� if an ≥ m, and �small� in the opposite

case. An irreducible representation is spinorial if the Dynkin label ãm is odd, and

non-spinorial in the opposite case. Clearly, any spinorial representation is �large.� It
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Figure 2.12: Example of a hook partition for osp(9|6). The labels µi, i = 1, . . . n and µ̃j ,

j = 1, . . .m were de�ned in (2.202). Here µ3 = 3, and, clearly, no more than the �rst three

µ̃'s can be non-zero.

is also easy to see that all the �small� representations are atypical, and all the spinorial

representations are typical.

Non-spin highest weights can be conveniently encoded in terms of hook partitions

[40, 41, 42]. These are simply Young diagrams which are constrained to �t inside a

hook with sides of width n and m, as shown in �g. 2.12 for n = 3 and m = 4. The

�gure shows how the labels µ• and µ̃• parametrizing the weight are read from the

diagram. This presentation implements automatically the constraint that only the

�rst an of the so(2m+1) Dynkin labels can be non-zero. In this notation, the �small�

representations are those for which the Young diagram does not �ll the upper left

n×m rectangle.

Finally, let us note that for typical representations of any superalgebra there exist

simple analogs of the Weyl formula to compute characters and supercharacters. For

the character of a representation with highest weight Λ, the formula reads

ch (RΛ) = L−1
∑
w∈W

(−1)`(w) exp (w(Λ + ρ)) . (2.203)

Here the sum goes over the elements of the Weyl group W , which, by de�nition, is
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generated by re�ections along the bosonic roots. The number `(w) is the length of

the reduced expression for the Weyl group element w. The Weyl denominator L is

L =

∏
α∈∆+

0

(eα/2 − e−α/2)∏
α∈∆+

1

(eα/2 + e−α/2)
. (2.204)

2.5.6.3 OSp(2m|2n): The Mapping Of Line Operators

To understand the action of the S−1TS duality on the line operators of the D(m,n)

Chern-Simons theory, we need to understand the action of the T -transformation on

their magnetic duals. Since T is just a shift of the theta-angle, it does not change

the model solution that is used to de�ne the operator. Therefore one might conclude,

as we did for the unitary superalgebra, that line operators are invariant under this

transformation. As we now explain, this is indeed true for a subclass of line operators,

but not for all of them.

In section 2.5.1 we have de�ned the instanton numberN∨ for the orthogonal group.

The action contained a term iθsN
∨/2, where θs is the string theory theta-angle. The

2π-periodicity of θs relied on the fact that N∨ takes values in 2Z. While this assertion

is true on R4 or R × S3, it is not always true on more general manifolds. We now

want to show that it is not true even on simple manifolds like R4 in the presence of

some line operators, and therefore such line operators transform non-trivially under

the T -transformation.

Before explaining the details, let us state clearly the result. Consider a Wilson-

't Hooft operator (untwisted or twisted) in the electric theory, located along a knotK.

We claim that in the presence of its S-dual, the instanton number N∨ of the magnetic

theory takes values in 2Z, if the quantum-corrected weight λ of the operator is non-

spin, and it takes values41 in Z, if this weight is spin. Therefore, T acts trivially on

the non-spinorial line operators, but not on the spinorial ones. We will show that for

spinorial weights the transformation T exchanges twisted and untwisted operators of

41As we have already explained in footnote 28, a more precise statement is that the instanton

number takes values in 2Z + c or Z + c for some constant c. Here we are interested only in the

di�erence of instanton numbers for di�erent bundles, so we will ignore the constant shift.
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a given quantum-corrected weight λ. In terms of the electric theory, we say that the

knot invariants that are obtained from an untwisted spinorial operator in the theory

with level Kosp are equal to the invariants obtained from a twisted spinorial operator

in the theory with level K′osp, where K′osp is given by (2.180). The mapping of non-

spinorial line operators (whether untwisted or twisted) between the Chern-Simons

theories with levels Kosp and K′osp is trivial: the weight is unchanged and twisted or

untwisted operators map to themselves.

Now let us prove our assertions about the instanton number. Assume for simplicity

that the four-manifold M is 2-connected (that is, π1(M) = π2(M) = 0). Our goal is

to evaluate the instanton number N∨ for an SO(2m)×SO(2n+1) bundle on the knot

complement M \K with a �xed trivialization along K, which is de�ned by a model

solution of weight λ. For now let us assume thatm ≤ n, so that the SO(2m) subgroup

of the gauge group is left unbroken by the three-dimensional defect at y = 0. Let

Σ′ be a two-sphere in M that encircles some point of the knot (this means that the

linking number of Σ′ with K is 1; for instance, Σ′ can be the sphere x0 = 0, r′ =const

in the language of �g. 2.6 of section 3.3.1), and Σ be a surface, bounded by the knot.

Σ represents the non-trivial cycle in the relative homology H2(M,K).

We will focus on SO(2m) bundles V on the knot complement, and ignore what

happens in the SO(2(n−m)+1)-part of the gauge group, which is broken everywhere

at y = 0 by the boundary condition of the 3d defect. The reason we can do so is

that all interesting things will come from di�erent extensions of the SO(2m) bundle

from the knot neighborhood K × Σ′ to the cycle Σ, while for the SO(2(n −m) + 1)

subgroup this extension is uniquely �xed by the boundary condition. This is also the

reason that there is no non-trivial analog of this story for the one-sided problem [6].

So far we have not been precise about the global form of the structure group of

our bundle V → M . In the most general case, the structure group is the projective

orthogonal group PSO(2m) (the quotient of SO(2m) by its center {±1}), and this

structure group might or might not lift to SO(2m) or Spin(2m). If it does lift to

SO(2m) or Spin(2m), we say that V has a vector or a spin structure, respectively. To

study obstructions to the existence of a vector or a spin structure (and more generally,
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obstructions related to π1(G) for G-bundles), it is enough to look at the restriction

of the bundle to the two-skeleton of the manifold. Let Σ0 be a two-manifold with

G-bundle V → Σ0; we assume that G is a connected group, and that Σ0 is closed

or that V is trivialized on its boundary. Such a V → Σ0 is classi�ed topologically

by a characteristic class x valued in H2(Σ0, π1(G)). Concretely, x is captured by an

element of π1(G) that is used as a gluing function to construct the bundle V → Σ0.

Thus, x associates to Σ0 an element x̂ of the center of the universal cover Ĝ of G. A

bundle VR associated to V in a representation R exists if and only if x̂ acts trivially

on R.

In our application, Σ0 is either Σ or Σ′, and G = PSO(2m). We note that the

surface Σ can be deformed to lie entirely in the region y > 0, where the gauge group

is SO(2n + 1). Since SO(2m) and not PSO(2m) is a subgroup of SO(2n + 1), the

restriction of V to Σ always has vector structure.

Let λ be a non-spinorial weight of the gauge group of the electric theory. This

means that λ belongs to the character lattice of SO(2m)× Sp(2n), and therefore the

parameter of the S-dual magnetic operator belongs to the cocharacter lattice of the

dual group, which is SO(2m)×SO(2n+ 1). Therefore, the model solution for the line

operator de�nes on Σ′ a bundle with vector structure. Together with the facts that

we explained a few lines above, this means that V has vector structure, i.e. it is an

SO(2m) bundle. For its instanton number we can use the formula

N∨ =

∫
M

w2 ∧ w2 mod 2 , (2.205)

where w2 is the second Stiefel-Whitney class, or more precisely an arbitrary lift of it

to the integral cohomology. (For a derivation of this formula, see e.g. [73].) On our

manifold we can rewrite42 this as

N∨ = 2

(∫
Σ

w2

) (∫
Σ′
w2

)
mod 2 , (2.206)

42For a quick explanation, think of w2 in this geometry as a sum a + b, where a is possibly non-

trivial on Σ but trivial on Σ′, and b is trivial on Σ but possibly non-trivial on Σ′. Then w2
2 = 2ab = 0

mod 2, accounting for the factor of 2 in eqn. (2.206).
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which means that whatever w2 is, the instanton number is even. Therefore, a shift of

the theta-angle by 2π in presence of a non-spinorial line operator is still a symmetry,

and such operators are mapped trivially under the T -transformation.

Now let the weight λ be spinorial. Then it belongs to the character lattice of

Spin(2m) × Sp(2n) (and not to its sublattice corresponding to SO(2m) × Sp(2n)),

and therefore the parameter of the dual magnetic operator belongs to the cocharacter

lattice of PSO(2m) × SO(2n + 1) (and not to the cocharacter lattice of SO(2m) ×

SO(2n+1)). The bundle that is de�ned on Σ′ by such a model solution is a PSO(2m)

bundle with no vector structure. What we then expect to get is roughly speaking that

the factor
∫

Σ′
w2 in (2.206) now becomes 1/2, which would give us N∨ =

∫
Σ
w2 mod 2

for the instanton number. Let us prove this in a more rigorous way.

For that we adapt arguments used in [73], where more detail can be found. The

topology of two PSO-bundles that coincide on the two-skeleton can di�er only by

the embedding of some number of bulk instantons. Therefore the instanton numbers

of such bundles can only di�er by an even integer. To �nd N∨ mod 2, it is enough

to study any convenient bundle with a given behavior on Σ and Σ′. Consider �rst

the case of the group PSO(6) = SU(4)/Z4. Its fundamental group is Z4. Let x be

the Z4-valued characteristic class which de�nes the topology of the restriction of the

bundle to the two-skeleton (i.e., to Σ and Σ′). Let L be a line bundle with �rst Chern

class c1 = x mod 4. Let O be the trivial line bundle, and consider the bundle

V4 = L1/4 ⊗ (L−1 ⊕O ⊕O ⊕O) . (2.207)

It does not exist as an SU(4) bundle, unless x = 0, but its associated adjoint bundle

3L⊕ 3L−1 ⊕ 9O does exist; this bundle has structure group PSO(6). The associated

bundle in the vector representation of SO(6) is the antisymmetric part of V4 ⊗ V4; it

exists precisely when x = 0 mod 2, since it contains L1/2. Though V4 might not exist,

we can use the standard formulas to compute its Chern number∫
M

c2(V4) = −3

4

∫
Σ

c1(L)

∫
Σ′
c1(L) =

1

4

∫
Σ

x

∫
Σ′
x mod 1 . (2.208)

This Chern number is the instanton number normalized to be Z-valued for an SU(4)

bundle, so it is N∨/2. Note that, since the bundle on Σ′ has no vector structure, we
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have
∫

Σ′
x = ±1. On the contrary, on Σ there is vector structure, and we can write∫

Σ
x = 2

∫
Σ
w2 mod 4. We �nally get

N∨ =

∫
Σ

w2 mod 2 . (2.209)

Comparing to the de�nition of the magnetic duals of the twisted operators in section

2.5.6.1, we conclude that the T -transformation, besides shifting the theta-angle by

2π, ialso interchanges the twisted and untwisted spinorial line operators. One can

easily extend these arguments to the even orthogonal groups other than SO(6). The

relevant facts are explained in [73] in a similar context, and will not be repeated here.

In our discussion, we have assumed that the ranks of the two gauge groups satisfy

m ≤ n. One can extend the arguments to the case n > m with some technical modi�-

cations. Rather than explaining this, we will now give an alternative argument, which

uses the language of surface operators, and does not depend on the rank di�erence

n−m.

2.5.6.4 OSp(2m|2n): The Mapping Of Surface Operators

Our discussion will be analogous to what we have said about the case of the unitary

superalgebra in section 2.5.5. The S−1TS duality transformation acts on the half-BPS

surface operators in the following way,α
η

 S−→

 η

−α

 T−→

 η

η∗so − α

 S−1

−−→

α− η∗so
η

 . (2.210)

Here the T -transformation acts in the magnetic description of the theory. Therefore,

its de�nition involves taking the dual of η with respect to the canonically-normalized

Killing form of the orthogonal Lie group, which is the gauge group in the magnetic

description. To emphasize this fact, we have denoted this dual by η∗so.

Recall that the action in the electric theory was de�ned using the canonically-

normalized Killing form of the superalgebra, whose bosonic part, according to (2.153),

is κosp = κsp − 2κso, where κso and κsp are the canonically-normalized Killing forms

for the corresponding bosonic Lie algebras. Let us consider the positive-de�nite form

κsp + 2κso, and denote the dual with respect to this form by a star. (In fact, this
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notation has already been de�ned in footnote 14.) The equation (2.210) in this

notation is equivalent to α
η

 S−1TS−−−−→

α− 2η∗

η

 . (2.211)

For the so(2m) part of the parameters, the factor of two in this formula simply

follows from the analogous factor in front of κso in κosp. For the sp(2n) part of the

parameters, one needs to compare the canonically-normalized Killing forms of sp(2n)

and so(2n + 1) on t∗sp ' tso. The S-duality maps the root lattice in t∗sp to the coroot

lattice in tso. Comparing these lattices, one �nds that in t∗sp ' tso the S-duality

identi�es δi with εi, in the notations of section 2.5.6.2. The canonically-normalized

forms for sp(2n) and so(2n+1) give respectively43 〈δi, δj〉sp = δij/2 and 〈εi, εj〉so = δij,

and their ratio gives the factor of two in (2.211).

The equation (2.85), which de�nes the relation between the weight and the pa-

rameters of a surface operator in the electric theory, continues to hold for the or-

thosymplectic Chern-Simons theory, if one replaces the level K in that equation by

Kosp. Using this, and also the transformation laws (2.180) and (2.211), we conclude

that the S−1TS duality transforms the weights according to

λ′

K′osp
=

λ

Kosp

. (2.212)

Again, the procedure of section 2.4.6 for computing knot invariants using surface

operators is obviously invariant under this transformation.

Let us compare the surface operator and the line operator approaches in the case

that the weight λ is integral. The equation (2.212) can alternatively be written as

λ′ = λ+ 2K′ospλ . (2.213)

First let us look at the part λr of the weight, which corresponds to the symplectic Lie

subalgebra. In the action (2.153), the level Kosp multiplies the Chern-Simons term

for the sp(2n) subalgebra, which is de�ned using the canonically-normalized sp(2n)

43Note that the canonical normalization of the Killing form for so(2n + 1) is di�erent from the

superalgebra normalization (2.196).
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Killing form. Therefore the knot invariants computed using the surface operators

are unchanged when the weight λr is shifted by Kosp times an integral coroot of the

sp(2n) subalgebra. If λr is an integral weight, then 2λr is an integral coroot, and

therefore the di�erence between λ′r and λr in (2.213) is inessential for computing the

knot invariants.

For the part λ` of the weight, which corresponds to the orthogonal subalgebra,

the situation is more complicated. The canonically-normalized Chern-Simons term

for the orthogonal subalgebra in the action (2.153) is multiplied by 2Kosp. For this

reason, the knot invariants computed using the surface operators are invariant under

the shift of λ` by 2Kosp times an integral coroot of the so(2m) subalgebra. Therefore,

the shift of λ` in the equation (2.213) is trivial from the point of view of the knot

observables if and only if the integral weight λ` is actually a coroot. What if it is

not? Since the so(2m) Lie algebra is simply-laced, any integral weight is also an

element of the dual root lattice Γ∗r. Therefore the group element exp(2πλ`) actually

belongs to the center of the orthogonal group. Let us make a singular gauge trans-

formation in the electric theory around the surface operator on the left side of the

three-dimensional defect, using the group element exp(θλ`), where θ is the azimuthal

angle in the plane normal to the surface operator. This transformation maps a surface

operator corresponding to the weight λ′` back to a surface operator with weight λ`.

Since our gauge transformation is closed only up to the central element exp(2πλ`),

it also introduces a twist of the boundary hypermultiplets by this group element. In

the fundamental representation of SO(2m), to which the hypermultiplets belong, the

element exp(2πλ`) acts trivially if the weight λ is non-spinorial, and it acts by −1

if λ is spinorial. We have reproduced the result that was derived in the previous

section in the language of line operators: S−1TS acts trivially on Chern-Simons line

observables labeled by non-spinorial representations, but exchanges the twisted and

the untwisted operators for a spinorial weight.
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2.5.6.5 OSp(2m|2n): Comparing The Representations

We would like to look closer at the mapping of spinorial line operators. Consider

a line operator, labeled by a supergroup representation of spinorial highest weight

Λ = λ− ρ, and an S−1TS-dual twisted operator, which is labeled by a representation

of the bosonic subgroup with highest weight Λ′ = λ− ρ0. Note that the Weyl vectors

ρ and ρ0, which can be found from (2.197), are non-spinorial integral weights, and

therefore the property of being spinorial/non-spinorial is the same for the weights and

for the quantum-corrected weights of OSp(2m|2n).

We would like to see more explicitly how the duality mapping acts in terms of

representations. We have λ = Λ+ρ = Λ′+ρ0, or equivalently, Λ′ = Λ−ρ1. Using the

formulas (2.197) and (2.198), this can be translated into a mapping of Dynkin labels,

ã′j = ãj, j = 1, . . . ,m ,

a′i = ai, i = 1, . . . , n− 1 ,

a′n = an −m. (2.214)

As was noted in section 2.5.6.2, for a spinorial superalgebra representation one has44

an ≥ m. Therefore, the mapping of Dynkin labels written above is a one-to-one

correspondence between the irreducible spinorial representations of the D(m,n) su-

peralgebra and its bosonic subalgebra.

We can make an additional test of the duality by comparing the local framing

anomalies of the line operators. Recall that the knot polynomials in Chern-Simons

theory are invariants of framed knots. If the framing of a knot is shifted by one unit

via a 2π twist, the knot polynomial is multiplied by a factor

exp(2πi∆O) , (2.215)

44As we have mentioned in a similar context in section 2.3.5, we do not really know why the

supplementary condition should be imposed in the present discussion, since it is not a general

condition on 1/2-BPS line operators. Nonetheless, imposing this condition works nicely, as we have

just seen. This shows once again that our understanding of line operators in the theory is incomplete.

We will �nd something similar for odd OSp supergroups.
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where ∆O is the dimension of the conformal primary O that corresponds in the WZW

model45 to the given Wilson line. For a Wilson line in representation R, this framing

factor is

exp

(
iπ

c2(R)

k + h sign(k)

)
= qc2(R) , (2.216)

where c2(R) = 〈λ, λ〉−〈ρ, ρ〉 is the value of the quadratic Casimir in the representation

R. The variable q was de�ned for the D(m,n) superalgebra in (2.158). In the bosonic,

one-sided case these formulas have been derived in [6] from the magnetic description

of the theory. It would be desirable to give such a derivation for the two-sided case,

but we will not attempt to do it here.

To compare the framing factors for our dual operators, we need to derive a formula

for the framing anomaly of a twisted operator. The energy-momentum tensor of the

conformal �eld theory is given by the Sugawara construction

T (z) =
κ̂nm :Jm(z)Jn(z) :

2(k + h)
, (2.217)

where κ̂ = κ⊕ω is the superinvariant bilinear form46 on the superalgebra, and Jm(z)

is the holomorphic current with the usual OPE

Jm(z)Jn(w) ∼ k κ̂mn

(z − w)2
+
fmnp Jp(w)

z − w
. (2.218)

One can easily verify that for a simple superalgebra the formula (2.217) gives the

energy-momentum tensor with a correct OPE.

Normally, the current Jm(z) is expanded in integer modes. The eigenvalue of the

Virasoro generator L0, acting on a primary �eld, is determined by the action of the

zero-modes of the current, which give the quadratic Casimir, as stated in eqn. (2.216).

However, for a primary �eld corresponding to a twisted operator in Chern-Simons, one

naturally expects the fermionic components of the current Jm(z) to be antiperiodic.

45As it is explained in Appendix E of [1], there actually is not a straightforward relation between

3d Chern-Simons theory and 2d current algebra in the case of a supergroup. Nonetheless, some

results work nicely and the one we are stating here seems to be one.
46Here we slightly depart from our usual notation, and use indices m,n, . . . both for bosonic

and fermionic generators of the superalgebra. Also, note that the inverse tensor is de�ned by

κ̂mnκ̂pn = δmp , hence the unusual order of indices in the Sugawara formula.
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In that case, the bosonic part of the current gives the usual contribution to the

conformal dimension, which for a weight Λ is proportional to the bosonic quadratic

Casimir 〈Λ + 2ρ0,Λ〉. The fermionic part of the current in the twisted sector has

no zero-modes, and its contribution to the L0 eigenvalue is just a normal-ordering

constant, independent of the weight Λ. One can evaluate this constant from (2.217),

(2.218), and get for the dimension of the operator

∆tw
O =

〈Λ + 2ρ0,Λ〉 − k dim(g1)/8

2(k + h)
. (2.219)

Using the identity 〈ρ0, ρ0〉 = 〈ρ, ρ〉 + h dim(g1)/8, which actually is valid for any of

our superalgebras, one obtains an expression for the framing factor

exp

(
iπ
〈λ, λ〉 − 〈ρ, ρ〉
k + h sign(k)

)
exp (−iπdim(g1)sign(k)/8) . (2.220)

Here we have restored the dependence on the sign of the level k, and used our de�nition

of λ for the twisted operators. The second factor in this formula does not map

correctly under the duality, but that is what one could have expected, since this

factor is non-analytic in K = k + h sign(k) (compare to the discussion of the global

framing anomalies in sections 2.4.3.1 and 2.5.4). The �rst factor is analytic in K,

and it is clear from comparison to eq. (2.216) that it does map correctly under the

duality.

2.5.6.6 Duality For The Odd Orthosymplectic Superalgebra

Let us turn to the case of the odd orthosymplectic superalgebra. As was already noted

in section 2.3.2.2, the de�nition of line operators in this theory has some peculiarities.

As follows from the equation (2.200), for B(m,n) the bosonic Weyl vector ρ0 is an

integral spinorial weight, while the superalgebra Weyl vector ρ is not an integral

weight: it has a half-integral Dynkin label with respect to the short coroot of the

sp(2n) subalgebra. This means that the quantum-corrected weight λ = Λ + ρ for an

untwisted operator is not an integral weight, and therefore a Wilson-'t Hooft operator,

as de�ned in section (2.3.3.2), is not gauge-invariant classically. The resolution of this

puzzle should come from another peculiarity of the B(m,n) Chern-Simons theory. The
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de�nition of the path-integral of this theory includes an η-invariant (2.161), which

comes from the one-loop determinant (or rather the Pfa�an) of the hypermultiplet

fermions. In the presence of a monodromy operator, one should carefully de�ne this

fermionic determinant, and we expect an anomaly that will cancel the problem that

exists at the classical level. We will not attempt to explain the details of this in the

present chapter.

Unlike the case OSp(2m|2n), a magnetic line operator of OSp(2m+ 1|2n) is com-

pletely determined47 by its weight λ, as explained at the end of section 2.5.6.1. How-

ever, the quantum-corrected weights for twisted and untwisted operators belong to

di�erent lattices, due to the di�erent properties of ρ and ρ0, mentioned above. So

the magnetic duals of twisted and untwisted electric line operators are simply de-

scribed by di�erent model solutions. Since the T -transformation preserves the model

solution, the S−1TS duality should preserve the quantum-corrected weight.

We need to introduce some further notation. In the orientifold construction, we

took the Killing form to be positive on the sp part of B(m,n). In the dual theory, it

will be positive on the so part, and for this reason we denote the superalgebra of the

dual theory by B′(n,m). The basis vectors in the dual t∗′ of the Cartan subalgebra

of B′(n,m) will be denoted by δ′j, j = 1, . . . ,m, and ε′i, i = 1, . . . , n, and their

scalar products are de�ned to have opposite sign relative to (2.196). The Dynkin

labels for the representations of B′(n,m) will be denoted as a′j, j = 1, . . . ,m, and

ã′i, i = 1, . . . , n. To make precise sense of the statement that the S−1TS duality

preserves the quantum-corrected weight, it is necessary to specify how one identi�es

t∗ and t∗′. We use the mapping which identi�es ε′i with δi and δ
′
j with εj. This linear

map preserves the scalar product. In principle, one could derive this identi�cation

from the S-duality transformations of surface operators, but we will simply take it as

a conjecture and show that it passes some non-trivial tests.

We can make one such test before we go into the details of the operator mapping.

According to the equations (2.216), (2.220) and the de�nition (2.163) of the variable

47Here we ignore the issues related to the atypical representations. We will say a little more on

this later in this section.
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q, the framing anomaly factor in the B(m,n) theory for an operator of quantum-

corrected weight λ is equal to q2c2 , where c2 = 〈λ, λ〉 − 〈ρ, ρ〉. (This formula is true

for both twisted and untwisted operators, modulo non-analytic terms.) From this

we can see that our map does preserve the framing anomaly.48 Indeed, it preserves

λ and the scalar product, and although the Weyl vectors ρ and ρ′ for the two dual

superalgebras B(m,n) and B′(n,m) are di�erent, their lengths happen to coincide, as

one can verify from the explicit formula (2.200).

In the rest of this section we will examine the mapping

λ = λ′ (2.221)

in more detail. We will see that it gives a correspondence between the untwisted non-

spinorial operators of the two theories, maps the twisted non-spinorial operators to the

untwisted spinorial operators, and �nally indenti�es the twisted spinorial operators of

one theory with the twisted spinorial operators of the other one. To put it shortly, it

exchanges the spin and the twist. It is important to note that one might need to re�ne

the mapping (2.221) for atypical weights. We will indeed encounter an ambiguity in

interpreting (2.221) for the �small� atypical weights.

First let us focus on the non-spinorial untwisted line operators, for which the

duality should give a correspondence between the non-spinorial representations of the

two superalgebras. The map (2.221) of the dominant weights is already known in the

literature for the special case of m = 0. In fact, a remarkable correspondence between

�nite-dimensional representations of osp(1|2n) and non-spinorial �nite-dimensional

representations of so(2n + 1) was established in [71]. It preserves the full set of

Casimirs, including the quadratic one. For n = 1, the map is so elementary that

one can describe it by hand. This will make our later discussion more concrete. The

spin s representation of so(3), for non-negative integer s, is mapped to the trivial

representation of osp(1|2) for s = 0, and otherwise to the representation of osp(1|2)

48To be precise, there is actually a little mismatch for the spinorial operators. In that case the

quadratic Casimir c2 can be non-integral, and therefore there is a di�erence by a root of unity due

to the fact that q is mapped to −q. Hopefully, this discrepancy can be cured in a more accurate

treatment.
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that is a direct sum of bosonic states of spin s/2 (under sp(2) ∼= su(2)) and fermionic

states of spin (s− 1)/2. Note that if we ignore the statistics of the states, the given

so(3) and osp(1|2) representations both have dimension 2s+ 1. This is a special case

of a correspondence between characters found in [71].

An equivalent explanation is that a representation of so(3) whose highest weight

is s is mapped, if s is an integer, to a representation of osp(1|2) whose highest weight

is s times the smallest strictly positive weight of this algebra. The spinorial repre-

sentations of so(3) � the representations with half-integral s � do not participate in

this correspondence, since there is no representation of osp(1|2) whose highest weight

is a half-integral multiple of the smallest positive weight. The spinorial representa-

tions of so(3) have a dual in terms of twisted line operators, but not in terms of

representations.

This correspondence between so(s) and osp(1|2) maps tensor products of so(3)

representations to tensor products of osp(1|2) representations if one ignores whether

the highest weight of an osp(1|2) representation is bosonic or fermionic. To illustrate

this correspondence, let s denote an irreducible so(3) representation of spin s. Let s′

and s̃′ denote irreducible osp(1|2) representations whose highest weight is s times the

smallest positive weight, with the highest weight vector being bosonic or fermionic,

respectively. Then one has, for example,1⊗ 1 ∼= 2⊕ 1⊕ 0 for so(3)

1′ ⊗ 1′ ∼= 2′ ⊕ 1̃′ ⊕ 0′ for osp(1|2).

(2.222)

There is an obvious matching, if we ignore the reversed statistics of 1̃′ on the osp(1|2)

side. We interpret this matching to re�ect the fact that the duality between so(3)

and osp(1|2) preserves the operator production expansion for Wilson line operators.

(In Chern-Simons theory, for generic q the OPE of line operators is given by the

classical tensor product, so we can compare such OPE's by comparing classical tensor

products.) However, we do not know the interpretation of the reversed statistics of 1̃′.

Perhaps it somehow involves the fact that the quantum duality changes the sign of q.

In [71], it is shown that an analogous matching of tensor products holds in general.
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Additional relevant results are in [16]. Let Uq(osp(1|2n)) and Uq′(so(2n + 1)) be

the quantum deformations of the universal enveloping algebras of the correspond-

ing Lie (super)algebras. It has been shown in [16] that there exists a natural map

between the representations of these two quantum groups if one takes q′ = −q, and

restricts to non-spinorial representations of the latter. One would expect such a result

from our duality, assuming that Chern-Simons theory of a supergroup is related to a

corresponding quantum group in the manner that is familiar in the bosonic world.

Now we return to our mapping λ = λ′ (eqn. (2.221)), which extends the known

results described above to general m and n. It has several nice properties. As follows

from our discussion of the framing anomaly, it preserves the quadratic Casimir. From

the Harish-Chandra isomorphism, it follows that, for non-spinorial weights, (2.221)

gives a natural mapping not only of the quadratic Casimir, but of the higher Casimirs

as well. It would be interesting to �nd an explanation of this directly from the

quantum �eld theory. The map also preserves the atypicality conditions (2.50). Next,

let us look at the Weyl character formula (2.203), assuming that the weights are

typical. The Weyl groups for the two superalgebras are equivalent and act in the

same way on t∗ ' t∗′; therefore, with the mapping (2.221), the numerators of the

character formula coincide for the dual representations. The denominators are also

equal, as one can easily check, using the list of simple roots (2.199). However, the

supercharacters are not mapped in any simple way. In particular, the duality preserves

the dimensions of typical representations, but not the superdimensions.49

Let us actually see what the equation (2.221) says about the map of representa-

tions. Writing it as Λ′ = Λ + ρ − ρ′ and using equations (2.200), (2.201), one gets

that the labels µ• and µ̃•, de�ned in those equations, transform into µ′j = µ̃j + n,

µ̃′i = µi−m. According to the equation (2.202), this gives a mapping for the Dynkin

49Of course, for m,n 6= 0 the superdimensions of typical representations on both sides of the

duality are simply zero. But for m or n equal to 0, they are non-zero and do not agree.
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labels,

ã′i = ai, i = 1, . . . , n− 1 ,

a′j = ãj, j = 1, . . . ,m− 1 ,

ã′n = 2(an −m) ,

a′m =
1

2
ãm + n. (2.223)

If we restrict to �large� non-spin dominant weights (an ≥ m), then this formula gives

a one-to-one correspondence. The non-spin condition means that ãm is even, so that

the mapping (2.223) is well-de�ned, and the �large� condition an ≥ m ensures that

ã′n ≥ 0.

It is not immediately obvious what to say for �small� representations, since for

them the dual Dynkin label ã′n comes out negative. Note that all the �small� repre-

sentations are atypical, and in general we have less control over them by methods of

this chapter. There can be di�erent possible conjectures as to how to make sense of

our map for them. First of all, we can still treat (2.221) as a correspondence between

monodromy operators. Then to understand to which representation a given operator

corresponds, we should make a Weyl transformation on λ′, to bring it to a positive

Weyl chamber. This is one possible way to understand the map (2.221) for the �small�

representations. (For an atypical weight, there can be several di�erent ways to conju-

gate it to the positive Weyl chamber; these give di�erent weights, though belonging

to the same atypical block.)

There is another very elegant possibility. If we simply transpose the hook diagram

for a B(m,n) weight, we will get some weight of B′(n,m). It is a curious observation

that for the �large� representations, this operation reproduces our duality (2.223).

Moreover, one can prove that even for the �small� representations this �ip preserves

the quadratic Casimir operator and therefore the framing anomaly, and can be a can-

didate for the generalization of our map to the �small� highest weights. Unfortunately,

this is merely a possible guess.

In short, we have found a natural 1-1 mapping between non-spinorial representa-

tions of OSp(2m+1|2n) and OSp(2n+1|2m). Now let us turn to spinorial ones. The
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mapping (2.221) sends spinorial line operators to twisted operators. Here is a simple

consistency check of this statement. In the electric theory, consider a Wilson-'t Hooft

operator in a spinorial representation R that is supported on a knot K in a three-

manifold W . If the class of K in H1(W ; Z2) is nonzero, then the expectation of the

operator vanishes because it is odd under a certain �large� gauge transformation that

is single-valued in SO(2m+ 1) but not if lifted to Spin(2m+ 1). (The gauge transfor-

mations along a Wilson-'t Hooft operator are constrained to lie in the maximal torus,

but there is no problem in choosing such an abelian �large� gauge transformation.)

The dual of such a Wilson-'t Hooft operator under the S−1TS duality should have

the same property. Indeed, a twisted operator, as described in section 2.3.3.3, does

have this property (in this case because the de�nition of the twisted operator involves

picking a Z2 bundle with monodromy around K).

Let Λ be a spinorial dominant weight of the B(m,n) superalgebra, and let Λ′ be a

non-spinorial weight of the bosonic algebra so(2n+1)×sp(2m) that we use in de�ning

a twisted line operator. The mapping (2.221) would then be Λ′ + ρ′
0

= Λ + ρ. The

bosonic Weyl vector that is used here can be obtained from (2.200) by exchanging ε•

with δ• and m with n. From this one �nds that the coe�cients in the expansion of

the weights in the δ•, ε• basis transform as µ̃′i = µi −m, µ′j = µ̃j − 1/2. Therefore,

according to (2.202), the Dynkin labels of the weights are related as

ã′i = ai, i = 1, . . . , n− 1 ,

a′j = ãj, j = 1, . . . ,m− 1 ,

ã′n = 2(an −m) ,

a′m =
1

2
(ãm − 1). (2.224)

This gives a one-to-one correspondence between the spinorial supergroup represen-

tations and the non-spinorial weights of the bosonic algebra so(2n + 1) × sp(2m).

In fact, for a spinorial representation of osp(2m + 1|2n), ãm is odd, ensuring that

a′m is an integer. On the other hand, ã′n is always even, so the twisted line opera-

tor with Dynkin labels a′i, ã
′
j is always associated to a non-spinorial representation of

the bosonic subalgebra of OSp(2n + 1|2m). Moreover, the supplementary condition
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guarantees that an −m is non-negative for a spinorial superalgebra representation.

The twisted operators for spinorial representations of the bosonic subgroup should

be mapped into similar twisted spinorial operators. The mapping (2.221) reduces in

this case to Λ + ρ0 = Λ′+ ρ′
0
. This gives µ̃′i = µi + 1/2, µ′j = µ̃j − 1/2, or, in terms of

the Dynkin labels,

ã′i = ai, i = 1, . . . , n− 1 ,

a′j = ãj, j = 1, . . . ,m− 1 ,

ã′n = 2an + 1 ,

a′m =
1

2
(ãm − 1) , (2.225)

which is indeed a one-to-one correspondence between the spinorial representations of

the bosonic subgroups. In other words, the weights a′i and ã′j are integers if the ai

and ãj are integers and ãm is odd, and moreover in that case ã′n is odd.

2.6 Appendix A: Conventions And Supersymmetry

Transformations

We mostly follow the notation of [23, 6], with some minor di�erences. Euclidean

signature is used, except in section 2.2.1 and the beginning of section 2.4. The

Lorentz vector indices are denoted by Greek letters µ, ν, . . . in four dimensions and

by Latin i, j, k in three dimensions. The defect is at x3 = 0, and x3 is assumed to be

the normal coordinate such that ∂3 is the unit normal vector at the defect. The 3d

spinor indices are denoted by α, β, . . . . When the indices are not shown explicitly,

they are contracted as vαwα. They are raised and lowered with epsilon symbols,

ε12 = ε12 = 1 ,

vα = εαβvβ. (2.226)

Vector and spinor notation are related by sigma-matrices,

Vαβ = σiαβVi =

 −iV2 + V3 iV1

iV1 iV2 + V3

 . (2.227)
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With this de�nition, the product of the sigma-matrices is

σiαβσjβγ = δijδαγ + εijkσαkγ. (2.228)

The boundary conditions are invariant under 3d supersymmetry, with R-symmetry

group SU(2)X × SU(2)Y . The spinor indices for these two groups are denoted by

A,B, . . . and Ȧ, Ḃ, . . . , respectively, and the vector indices are denoted by a, b, c

and ȧ, ḃ, ċ. Conventions for the R-symmetry indices are the same as for the Lorentz

indices. In particular, the R-symmetry sigma-matrices are as in 2.227.

Fields that take values in the adjoint representation are understood as anti-

hermitian matrices.

The three-dimensional N = 4 supersymmetry acts on the �elds in the following

way:

δAi = − 1√
2
εα
AḂ

(
ΨAḂβ

1 sinϑ+ ΨAḂβ
2 cosϑ

)
σiαβ ,

δA3 = − i√
2
εα
AḂ

(
−ΨAḂ

1α cosϑ+ ΨAḂ
2α sinϑ

)
,

δXa = − i√
2
εA
Ḃ

ΨBḂ
1 σaAB ,

δY a =
i√
2
εȦAΨAḂ

2 σa
ȦḂ

,

√
2δΨAḂ

1α = εβBḂ
(
− /DαβX

A
B −

i

2
εαβ sinϑ[XAC , XBC ]

)
−εAȦα

(
iD3Y

Ḃ
Ȧ

+
i

2
sinϑ[YȦĊ , Y

ḂĊ ]

)
+i cosϑεCĊα [XA

C , Y
Ḃ
Ċ

] + εβAḂ
(
i

2
sinϑεijkF

ij + cosϑFk3

)
σkαβ ,

√
2δΨAḂ

2α = εβAȦ
(
/DαβY

Ḃ
Ȧ
− i

2
εαβ cosϑ[Y ḂĊ , YȦĊ ]

)
−εBḂα

(
iD3X

A
B −

[
i

2
µABδ

(
x3
)]
− i

2
cosϑ[XAC , XBC ]

)
−i sinϑεCĊα [XA

C , Y
Ḃ
Ċ

]− εβAḂ
(
− i

2
cosϑεijkF

ij + sinϑFk3

)
σkαβ ,
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δQI
Ȧ

= −εA
Ȧ
λIA ,

δλIαA = εβȦA i /DαβQ
I
Ȧ
− εαAȦω

IJ ∂W4

∂QJ
Ȧ

+ εBḂα sinϑXm
ABT

I
mJQ

J
Ḃ
,

δZA = −εA
Ȧ
ζȦ ,

δZ
A

= −εA
Ȧ
ζ
Ȧ
,

δζȦ = εȦAi /DZ
A − εBḂY

ȦḂZB ,

δζ
Ȧ

= εȦAi /DZ
A

+ εBḂZ
B
Y ȦḂ. (2.229)

The term with the moment map µAB in the transformation of the Ψ2 fermion is present

only for the magnetic theory. In the language of N = 1 three-dimensional super�elds,

it comes from the δ(x3) term in the auxiliary �eld FY (see eqn. (2.264) for more

details). This term propagates in all equations in combination with D3X
a, canceling

the delta-contribution from the discontinuity of the �eld Xa.

2.7 Appendix B: Details On The Action And The

Twisting

2.7.1 Constructing The Action From N = 1 Super�elds

In this section, we review the construction [23] of the action for the D3-NS5 system.

One of the reasons for discussing this in some detail is that we will need parts of it

to write out the action for the magnetic theory.

Here we work in Euclidean signature. In [23], the D3-NS5 action was constructed

by writing an N = 1 3d supersymmetric action with a global SU(2) symmetry, and

then adjusting the couplings to extend this symmetry to a product SU(2)X×SU(2)Y .

This group does not commute with the supersymmetry generators, and therefore

extends the N = 1 supersymmetry to N = 4. The N = 1 multiplets in the bulk

are a vector multiplet50 (Ai, ξA) and three chiral multiplets (Xa, ρa1, F
a
X), (Y a, ρa2, F

a
Y )

and (A3, ξ3, F3), where Xa and Y a are the six scalars of the N = 4 SYM51, and A3 is

50The subscript A in ξA is not an R-symmetry index.
51In non-R-symmetrized expressions, where only the diagonal subgroup of the SU(2)X × SU(2)Y
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a component of the gauge �eld. The fermionic �elds can be packed into two N = 4

SUSY covariant combinations

√
2ΨAḂ

1 = −iρ(AḂ)
1 + εAḂ(− sinϑ ξA + cosϑ ξ3) ,

√
2ΨAḂ

2 = −iρ(AḂ)
2 + εAḂ(− cosϑ ξA − sinϑ ξ3). (2.230)

The action of the bulk N = 4 super Yang-Mills, rephrased in three-dimensional

notation, has the following form,

− 1

g2
YM

∫
d4x tr

(
1

2
F 2
µν + (DiX

a)2 + (DiY
a)2

+iΨAḂ
1α D

α
βΨβ

1AḂ
+ iΨAḂ

2α D
α
βΨβ

2AḂ
+ 2ΨAḂ

2α D3Ψα
1AḂ

+XA
B

(
− sinϑ([ΨBĊα

1 ,Ψ1AĊα]− [ΨBĊα
2 ,Ψ2AĊα])− 2 cosϑ[ΨBĊα

2 ,Ψ1AĊα]
)

+Y Ċ
Ḋ

(
− cosϑ([ΨAḊα

1 ,Ψ1AĊα]− [ΨAḊα
2 ,Ψ2AĊα]) + 2 sinϑ[ΨAḊα

2 ,Ψ1AĊα]
)

−F 2
X − F 2

Y − F 2
3 + 2D3 (FXY )− 2F3[X, Y ]

+F a
X

(
−2D3Ya − sinϑεabc([X

b, Xc]− [Y b, Y c])− 2 cosϑεabc[X
b, Y c]

)
+F a

Y

(
2D3Xa − cosϑεabc([X

b, Xc]− [Y b, Y c]) + 2 sinϑεabc[X
b, Y c]

))
+
iθYM

8π2

∫
tr (F ∧ F )

+

∫
d4x tr

(
θYM

8π2
∂3

(
ξ2
A

)
− 1

g2
YM

∂3

(
(ξ2
A − ξ2

3) sinϑ cosϑ− 2ξ3ξA cos2 ϑ
))

.(2.231)

Here the �rst four lines are the usual kinetic and Yukawa terms. The next three

lines contain the auxiliary �elds, after eliminating which these terms will give the

usual quartic N = 4 super Yang-Mills potential, but they will also give some total

∂3 derivatives, which we cannot drop if we want to couple the theory to the defect in

a supersymmetric way. Next, there is also a theta-term, and �nally in the last line

there are some total derivatives of the non-R-symmetric combinations of fermions,

which appear from rearranging the fermionic kinetic terms and from the theta-term.

For the NS5-type defect we can use (2.7) to reduce the last line in (2.231) to

cotϑ

g2
YM

∫
d4x ∂3tr (ξA cosϑ+ ξ3 sinϑ)2 . (2.232)

This term is important for R-symmetrizing the fermionic couplings on the boundary.

is explicitly visible, it does not make sense to distinguish SU(2)X and SU(2)Y indices.
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On the three-dimensional defect live chiral multiplets (QA, λA, FA
Q ). In N = 1

notation, the action on the defect includes a usual kinetic term for the Q-multiplet,

a quartic superpotential K
4π
W4(Q) with

W4 =
1

12
tIJ ;KSε

ABεCDQIAQJBQKCQSD ,

tIJ ;KS =
1

4
κmn (τmIKτnJS − τmISτnJK) , (2.233)

and a superpotential that couples the four-dimensional scalar Xa to the defect theory,

WQXQ = − K
4π

sinϑQIAXm
ABτmIJQJB. (2.234)

This choice of the superpotential corresponds to the case when the NS5-brane is

stretched in directions 456. Indeed, the bifundamental �elds will have a mass term

proportional to X2, i.e. their mass is proportional to the displacement in these

directions.

The boundary conditions of the theory form a current multiplet of three-dimensional

N = 4 supersymmetry,

Y m
ȦḂ

= − 1

2 cosϑ
τmIJQ

I
Ȧ
QJ
Ḃ
,

√
2Ψm

2αAḂ
=

i

cosϑ
τmIJλ

I
αAQ

J
Ḃ
,

sinϑFm
k3 −

i

2
cosϑεijkF

m
ij = − 2π

cosϑ
κmnJnk ,

D3X
m
a −

1

2
cosϑεabcf

m
npX

bnXcp =
1

2
tanϑωIJεȦḂX

n
a T

mI
K T JnSQ

KȦQSḂ

− 1

4 cosϑ
λIAσ

AB
a τmIJλ

J
B , (2.235)

where Jmk is the current

Jmi =
δIQ
δAim

=
1

4π
τmIJ

(
εȦḂQI

Ȧ
DiQ

J
Ḃ

+ εAB
i

2
λIAσiλ

J
B

)
. (2.236)

The �rst of the boundary conditions has the following origin. At stationary points of

the action the auxiliary �eld F a
X has a contribution from the boundary, proportional

to the delta function. Then the term F 2
X would produce a square of the delta function.

To avoid this and to make sense of the action, the boundary contribution to F a
X should

be set to zero, and this gives the boundary condition for the �eld Y ȧ. The other three
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boundary conditions can be obtained in a usual way from the variation of the action,

after eliminating the auxiliary �elds.

The complete action after eliminating the auxiliary �elds is

Ielectric = ISYM +
iθYM

2π
CS(A) +KIQ(A)

+
K
4π

∫
d3x

(
1

2
sin2 ϑωIJεȦḂX

maXnaT ImKT
J
nSQ

KȦQSḂ − 1

2
sinϑλIAX

mABτmIJλ
J
B

)
+

1

g2
YM

∫
d3xTr

(
−2

3
εabc cosϑXaXbXc − 2

3
εabc sinϑY aY bY c + 2ΨAḂ

1 Ψ2AḂ

)
,(2.237)

where

IQ(A) =
1

4π

∫
d3x

(
1

2
εȦḂωIJDiQ

I
Ȧ
DiQJ

Ḃ
− i

2
εABωIJλ

I
A
/DλJB

+
1

4
κmnτmIJτnKSQ

IȦQK
Ȧ
λJCλSC +

1

2
εȦḂω

IJ ∂W4

∂QI
Ȧ

∂W4

∂QJ
Ḃ

)
. (2.238)

is the N = 4 super Chern-Simons action with the CS term omitted.

Before proceeding to twisting, it is useful to remove the term λXλ in the action,

using the last line in the boundary conditions52 (2.235). Then the action is

Ielectric = ISYM +
iθYM

2π
CS(A) +KIQ(A)

+
K
4π

∫
d3x

(
−1

2
sin2 ϑωIJεȦḂX

maXnaT ImKT
J
nSQ

KȦQSḂ

)
+

1

g2
YM

∫
d3xTr

(
−2

3
εabc cosϑXaXbXc − 2

3
εabc sinϑY aY bY c + 2ΨAḂ

1 Ψ2AḂ

)
− 2

g2
YM

∫
d3xTr

(
XaD3Xa − cosϑεabcX

aXbXc
)
. (2.239)

The supersymmetry transformations for this theory can be found byR-symmetrization

of theN = 1 supersymmetry transformations, or, for the bulk super Yang-Mills �elds,

by reduction from the N = 4 formulas in four dimensions. The result can be found

in Appendix 2.6.

52One might be worried that after this transformation the action no longer gives the same boundary

conditions from the boundary variation. In section 2.7.3 we will make our argument more accurate.
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2.7.2 Twisted Action

Now we would like to twist the theory and to couple it to the metric. Let us recall,

what is the set of �elds of our topological theory. The four scalars Xa and Y 1 of the

bulk super Yang-Mills become components of a 1-form φ, and the other two scalars

are combined as σ = Y2−iY3√
2

and σ = Y2+iY3√
2

. The fermions of the twisted bulk theory

are [14] two scalars η and η̃, two one-forms ψ and ψ̃, and a 2-form χ. The selfdual and

anti-selfdual parts of the two forms are denoted by ± superscripts. These fermions

are related to the �elds of the physical theory as follows,

2
√

2ΨαAȦ
1 = (η̃ − t−1η)εαAvȦ + (−ψ̃ − tψ)3ε

αAuȦ +

+2(t−1χ+ + χ−)i3σ
αA
i vȦ + (ψ̃ − tψ)iσ

αA
i uȦ ,

−2
√

2iΨαAȦ
2 = (−η̃ − t−1η)εαAvȦ + (−ψ̃ + tψ)3ε

αAuȦ +

+2(t−1χ+ − χ−)i3σ
αA
i vȦ + (ψ̃ + tψ)iσ

αA
i uȦ. (2.240)

Here is a summary of Q-transformations of the bulk �elds, as derived in [14],

δA = itψ̃ + iψ , δφ = −iψ̃ + itψ ,

δσ = 0 , δσ = itη̃ + iη ,

δη = tP + [σ, σ] , δη̃ = −P + t[σ, σ] ,

δψ = Dσ + t[φ, σ] , δψ̃ = tDσ − [φ, σ] ,

δχ = H , (2.241)

where on-shell

P = Dµφµ , H+ = V+(t) , H− = tV−(t) (2.242)

and

V+(t) = (F − φ ∧ φ+ tDφ)+ ,

V−(t) =
(
F − φ ∧ φ− t−1Dφ

)−
. (2.243)

As it was described in [14], the manifestly Q-invariant topological action for the

bulk super Yang-Mills theory contains a topological term and a Q-variation of a
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fermionic expression (see section 3.4 of that paper). In our case the theory is de�ned

on the two half-spaces with the defect W between them, and therefore the equations

have to be completed with some boundary terms:

ISYM =
{

Q, . . .
}
− t− t−1

t+ t−1

4π

g2
YM

CS(A)

+
1

g2
YM

∫
W

Tr

(
4

t+ t−1

(
F ∧ φ− 1

3
φ ∧ φ ∧ φ

)
+
t− t−1

t+ t−1
φ ∧Dφ

)
+

1

g2
YM

∫
W

d3x
√
γ Tr

(
2σD3σ + γijφiDjφ3 − γijφ3Djφi

)
. (2.244)

Let us give some explanations on this formula. Recall that in our notation, ISYM is

the part of the bulk super Yang-Mills action, which is proportional to 1/g2
SYM, � that

is, with the θYM-part omitted. Here and in what follows we ignore expressions on W

bilinear in the bulk fermions, because in the end they have to cancel by supersymme-

try, anyway. As usual, the Chern-Simons form CS(A) is just a notation for the bulk

topological term. By γ we denote the induced metric on W. The third component of

various bulk tensors on the boundary is de�ned as a contraction of these tensors with

a unit vector �eld nµ, normal to the defect. For example, Djφ3 means a pullback to

W of a one-form nνDµφν .

The �rst line in the expression above is the formula that was used in [14]. The

coe�cient of the topological term in this expression adds with the usual theta param-

eter θYM to become the canonical parameter, which we called K. The second line in

this formula is what appeared in the purely bosonic Chern-Simons case [6]. Finally,

the last line was dropped in that paper as a consequence of the boundary conditions,

but in our case it is non-zero.

A useful transformation is to integrate by parts in the last line of (2.244) to

change −φ3D
iφi into another φiDiφ3, but in doing so we have to remember that the

metric connection in the covariant derivatives is four-dimensional. Because of this,

the integration by parts produces a curvature term

1

g2
YM

∫
W

d3x
√
γ Tr

(
−sijφiφj + siiφ3φ3

)
, (2.245)

where sij is the second fundamental form of the hypersurface W. This curvature term

should be canceled by adding a curvature coupling to the last line in (2.239).
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We will substitute what we have just learned about ISYM into the action (2.239) of

the theory, but �rst let us make some transformations of the action (2.239). We would

like to complexify the gauge �eld in the hypermultiplet action IQ(A). The seagull

term for (DQ)2 comes from XXQQ in the second line of (2.239). To change the terms

linear in the gauge �eld we need to add and subtract i sinϑX times the boundary

current (2.236). Using the third of the boundary conditions (2.235), the current can

be rewritten as a combination of gauge �eld strengths. After these manipulations, a

twisted version of (2.239) will look like

Ielectric = ISYM +
iθYM

2π
CS(A) +KIQ(Ab) +

1

g2
YM

∫
d3xTr

(
−2

3
cosϑφ ∧ φ ∧ φ

)
+

1

g2
YM

∫
d3x
√
γ Tr

(
−i sinϑφ3[σ, σ]− 2φiD3φi − 2i sinϑφiFi3 + sijφ

iφj − siiφ3φ3

)
+

2 cosϑ

g2
YM

∫
d3xTr (φ ∧ φ ∧ φ− φ ∧ F ) . (2.246)

Now we substitute here the expression (2.244) for the super Yang-Mills action. The

Chern-Simons term in (2.244) changes the coe�cient in front of the Chern-Simons

term in (2.246) from θYM/2π to K. Expression in the second line in (2.244) and the

term with φ ∧ φ ∧ φ in the �rst line of (2.246) combine with the Chern-Simons term,

changing the gauge �eld in it from A into complexi�ed gauge �eld Ab, as shown in

[6]. We are left with the following action,

Ielectric =
{

Q, . . .
}

+ iKCS(Ab) +KIQ(Ab)

+
1

g2
YM

∫
d3x
√
γ Tr (−i sinϑφ3[σ, σ] + 2σD3σ)

+
1

g2
YM

∫
d3x
√
γ Tr

(
−2φiD3φi + 2φiDiφ3 − 2i sinϑφiFi3

)
+

2 cosϑ

g2
YM

∫
Tr (−φ ∧ F + φ ∧ φ ∧ φ) . (2.247)

We are almost done. All we need to show is that the last three lines here are Q-exact.
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This is indeed so (again, we ignore the fermion bilinears):∫
d3x
√
γ Tr (σD3σ) = − 1

2 cosϑ

{
Q,
∫

d3x
√
γ Tr

(
σ(t−1ψ3 + ψ̃3)

)}
,∫

d3x
√
γ Tr (φ3[σ, σ]) = − 1

2 cosϑ

{
Q,
∫

d3x
√
γ Tr

(
σ(t−1ψ̃3 − ψ3)

)}
, (2.248)∫

Tr (φ ∧ (?Dφ− i sinϑ ? F − cosϑ(F − φ ∧ φ))) =

{
Q,
∫

Tr
(
φ ∧ (t−1χ+ + χ−)

)}
.

Up to Q-exact terms, our action is the sum of the Chern-Simons term and the

twisted action IQ(Ab). This combination is just the (twisted) action of the N = 4

Chern-Simons theory. Let us see, how it is related [24] to the Chern-Simons theory

with a supergroup. We de�ne the �elds of the twisted theory as

QȦ = ivȦC +
1

2
uȦC ,

λαA = − i
2
εαAB + iσiαAA f i. (2.249)

Substituting this into the action and using the explicit form (2.238) of IQ(A), one

�nds,

iKCS(Ab) +K IQ(Ab) = iKCS(A) + iKIg.f. , (2.250)

where A = Ab + A f is the complexi�ed superconnection. The Q-exact gauge �xing

term Ig.f. = {Q, Vg.f.} for the fermionic part of the superalgebra is

Ig.f. =

∫
d3x
√
γ Str

(
−DibBA f i +DibCDbiC + {A f , C}{A f , C}

+
1

4
{C,B}{C,B}+

1

16
[C, {C,C}][C, {C,C}]

)
, (2.251)

Vg.f. =

∫
d3x
√
γ Str

(
−DibCA f i +

1

8
{C,C}{C,B}

)
.

2.7.3 Boundary Conditions

Let us rewrite the boundary conditions (2.235) in terms of �elds of the twisted theory.

The �rst line of that formula gives

σ =
i

2

1

1 + t2
{C,C} , σ =

i

1 + t−2
{C,C} , φ3 = − 1

t+ t−1
{C,C}. (2.252)
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These three formulas are related to one another by SU(2)Y rotations. The boundary

condition for the fermion in (2.235) gives one new relation

t−1χ+
i3 − χ−i3 =

2

t+ t−1
{A f i, C} , (2.253)

two relations, that can be obtained from (2.252) by Q-transformations

η̃ + t−1η =
2

t+ t−1
{B,C} , −ψ̃3 + tψ3 =

i

t+ t−1
{B,C} , (2.254)

and one relation which comes from the bulk and boundary Q-variation of the gauge

�eld Ab, which we have already discussed,

ψ̃i + tψi = − 2i

t+ t−1
{A f i, C}. (2.255)

The third line in (2.235) gives boundary condition for the gauge �eld,

cosϑ ı∗ (i sinϑ ? F + cosϑF ) = −A f ∧ A f +
1

2
?3

(
{C,DC} − {C,DC}+ [B,A f ]

)
.

(2.256)

The twisted version of the last line in (2.235) is a long expression with a contribution

from the curvature coupling. It can be somewhat simpli�ed by subtracting a Di

derivative of the boundary condition (2.252) for φ3. The result is the following,

cosϑı∗ (?Dφ+ cosϑφ ∧ φ) = −A f∧A f +
1

2
?3

(
D{C,C}+ i sinϑ

(
{C, [φ,C]} − {C, [φ,C]}

)
− [B,A f ]

)
.

(2.257)

If we subtract (2.257) and (2.256), we get just a Q-variation of the fermionic boundary

condition (2.253). A new relation results, if we add these two:

Fb +A f ∧ A f = ?3{C,DC − i sinϑ[φ,C]} − {Q,χt} , (2.258)

where we de�ned

χt =
t−2 − 3

4
χ+ +

t2 − 3

4
χ−. (2.259)

Q2 acts as a gauge transformation with parameter −i(1 + t2)σ in the bulk and with

parameter {C,C}/2 on the defect (2.33), (2.31). This agrees with the boundary

conditions.
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The Q-transformations of the set of boundary ghosts C, C and B were given in

(2.31). To �x the residual gauge symmetry in perturbation theory, we introduce the

usual ghosts c, c and the Lagrange multiplier �eld b, and the BRST-di�erential Qbos,

associated to this gauge �xing. This di�erential acts on all �elds in the usual fashion.

The topological di�erential Q acts trivially on b and c, but generates the following

transformation, when acting on c:

δc = i(1 + t2)σ. (2.260)

On the boundary, this corresponds to [24]

δc = −1

2
{C,C}. (2.261)

The full BRST di�erential in the gauge �xed theory is the sum Q+Qbos. This operator

squares to zero, and in the boundary theory it corresponds to the usual gauge �xing

for the full supergroup gauge symmetry.

Finally, let us comment on the fact that we used the boundary conditions to

transform the action (to pass from (2.238) to (2.239), and then to get (2.246)). We

did it to exploit more directly the relation to the N = 4 Chern-Simons theory, but

that transformation was not really necessary. Indeed, the terms that came from using

the boundary conditions gave essentially the last line in the list (2.248) of Q-exact

expressions. The combination of the boundary conditions that we used was just a

Q-variation of the boundary condition for the χ fermion (2.253). (More precisely,

this combination di�ers by a derivative of (2.252), but this is �ne, since the boundary

condition (2.252) is Dirichlet.) So we could equally well keep the expressions that

involved the hypermultiplet �elds, instead of transforming them into the bulk �elds,

and this would give Q-exact expressions as well.
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2.8 Appendix C: Details On The Magnetic Theory

2.8.1 Action Of The Physical Theory

Here we would like to give some details on the derivation of the action and the

boundary conditions for the D3-D5 system, with equal numbers if the D3-branes in

the two sides of the D5-brane. This action has been constructed in [83], but our

treatment of the boundary conditions is slightly di�erent.

As in the electric theory, we write the action in the three-dimensional N = 1

formalism. The bulk super Yang-Mills part of the action has been given in (2.231)

(one should set ϑ to π in that formula). On the defect there is a fundamental hyper-

multiplet (ZA, ζA, FA), where the �rst two �elds have already appeared in our story,

and FA is the auxiliary �eld. Besides the usual kinetic term, the boundary action

contains a superpotenial that couples the bulk and the boundary �elds,

WZY Z = −ZAYABZB. (2.262)

This superpotential has been chosen in such a way as to make the boundary inter-

actions invariant53 under the full SO(3)X × SO(3)Y R-symmetry group. Speci�cally,

the boundary action contains Yukawa couplings −iζAξAZA + iZAξAζ
A coming from

the kinetic term, and ZAρ
AB
2 ζB + ζAρ

AB
2 ZB from the superpotential. They can be

packed into R-symmetric couplings

i
√

2
(
ZAΨAḂ

2 ζḂ + ζḂΨAḂ
2 ZA

)
, (2.263)

where the N = 4 fermion ΨAḂ
2 was de�ned in (2.230).

The superpotential contains a coupling of the auxiliary �eld FY to the moment

map µam, which was de�ned in (2.106). This coupling will add a delta-function con-

tribution to the equation for the auxiliary �eld,

F am
Y = D3X

am +
1

2
εabc([Xb, Xc]− [Yb, Yc])

m − 1

2
µamδ(x3). (2.264)

53As we have said, we choose t∨ = 1. For t∨ = −1 the sign of the superpotential would be the

opposite.
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The square of the auxiliary �eld in the Yang-Mills action would produce a term with a

square of this delta-function. To make this contribution �nite, we require the scalars

Xa to have a discontinuity across the defect. This discontinuity equation extends via

the supersymmetry to a set of equations for two three-dimensional current multiplets,

Xam
∣∣+
− =

1

2
µam ,

√
2ΨAḂ

1m

∣∣+
− = i

(
ζ
Ḃ
TmZ

A + Z
A
Tmζ

Ḃ
)
,

Fm
3i

∣∣+
− =

1

2
Jmi ,

D3Y
a
m

∣∣+
− =

1

2

(
ZA{Y a, Tm}ZA − ζȦTmζḂσaȦḂ

)
, (2.265)

where the current is

Jmi =
δI∨hyp

δAmi
= −ZATmDiZ

A +DiZATmZ
A − iζαȦTmσ

β
iαζ

Ȧ
β . (2.266)

Next we have to substitute expressions for all the auxiliary �elds into the Lagrangian,

and make it manifestly R-symmetric. Also, we would like to rearrange the action in

such a way that the squares of the delta-function would not appear. In the Yang-

Mills action (2.231) there is a potentially dangerous term F 2
Y , but with the gluing

conditions (2.265) it is non-singular and produces no �nite contribution at x3 = 0.

Then for this term we can replace the x3-integral over R by an integral over x3 < 0

and x3 > 0. The term F 2
X is also non-singular, so we delete the plane x3 = 0 in

the same way. There is a singular term D3(FXY ), but in can be dropped as a total

derivative. The total ∂3 derivative of the non-R-symmetric fermion combination in

(2.231) can be dropped in the same way. There is also a delta-function contribution

from the D3 part of the fermionic kinetic term. Collecting all the boundary terms in

the integrals with x3 = 0 deleted, we get a simple action

Imagnetic = ISYM +
iθ∨YM

8π2

∫
tr (F ∧ F )

+
1

(g∨YM)2

∫
d3x

(
DiZAD

iZA − iζȦ /Dζ
Ȧ − ζȦY

Ȧ
Ḃ
ζḂ − ZAY

aYaZ
A
)

+
1

(g∨YM)2

∫
d3x

2

3
tr
(
εabc(X

aXbXc)
∣∣+
−

)
. (2.267)

Here in ISYM the usual super Yang-Mills Lagrangian in the bulk is integrated over the

two half-spaces x3 < 0 and x3 > 0, with the hyperplane x3 = 0 deleted. On the defect
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the ZY Y Z terms from the superpotential combined with the XY Y term from the

bulk action into an R-symmetric coupling. The Yukawa terms ζΨ2Z+ZΨ2ζ canceled

with the delta-contribution from the bulk fermionic kinetic energy.

2.8.2 Action Of The Twisted Theory

From the action of supersymmetry (2.229) one �nds the following Q-transformations

for the boundary �elds of the twisted theory,

δZ = −2iζu ,

δZ = −2iζu ,

δζu = σZ ,

δζu = −Zσ. (2.268)

The two other fermions transform as δζv = f and δζv = f , where

f = /DZ + φ3Z ,

f = /DZ − Zφ3 , (2.269)

but with these transformation rules the algebra does not close o�-shell. For this reason

we introduce two auxiliary bosonic spinor �elds F and F , for which the equations of

motion should impose F = f and F = f . The topological transformations are then

δζv = F ,

δζv = F ,

δF = −2iσζv ,

δF = 2iζvσ. (2.270)

The transformation rules for the auxiliary �elds were chosen in a way to ensure that

the square of the topological supercharge acts by the same gauge transformation, by

which it acts on the other �elds.

Now we would like to prove our claim that the action of the magnetic theory is Q-

exact (2.97), up to the topological term. The �rst step is to notice that the following
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identity holds, up to terms bilinear in the bulk fermions,∫
d3x
√
γ

(
DiZαD

iZα − iζȦ /Dζ
Ȧ + ζȦY

Ȧ
Ḃ
ζḂ + Zα

(
−φ2

3 − {σ, σ}+
1

4
R

)
Zα

)
=

{
Q,
∫

d3x
√
γ

((
1

2
F − f

)
ζv + ζv

(
1

2
F − f

)
+ Zσζu − ζuσZ

)}
+

∫
d3x
√
γ tr

(
φ3Diµ

i
)
−
∫

d3x tr (F ∧ µ) . (2.271)

In the �rst line R is the scalar curvature of the three-dimensional metric γij, which

appears in this equation from the Lichnerowicz identity.

We can apply this formula to the action (2.267) of the theory, after adding appro-

priate curvature couplings. We see that there are several unwanted terms, which are

not Q-exact. They come from the last line in the identity (2.271), from the boundary

terms in the Yang-Mills action (2.244), and, �nally, there is a cubic XXX term in

(2.267). Using the Dirichlet boundary condition (2.105), we see that most of these

terms cancel. What is left is the tr(σD3σ|±) term from the super Yang-Mills action

(2.244), but this term is Q-exact (after adding appropriate fermion bilinear), as we

noted in (2.248). So the only non-trivial term in the action of the magnetic theory is

the topological term. This is, of course, what one would expect, since in the electric

theory we are integrating the fourth descendant of the scalar BRST-closed observable

trσ2. In the S-dual picture this should map to the fourth descendant of the analogous

scalar operator, which gives precisely the topological term.

Let us comment on the role of the discontinuity equations (2.265) in the local-

ization computations. In fact, only the �rst condition in (2.265) should be explicitly

imposed on the solutions of the localization equations. Indeed, one can show with

some algebra that the last two conditions in that formula follow from the �rst one

automatically, if the localization equations {Q, λ} = 0 for every fermion are satis�ed.

2.9 Appendix D: Local Observables

In a topological theory of cohomological type (see [58] for an introduction), there

generally are interesting local observables. In fact, typically there are Q-invariant
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zero-form observables (local operators that are inserted at points) and also p-form

observables which must be integrated over p-cycles to achieve Q invariance. They are

derived from the local observables by a �descent� procedure.

We will describe here the local observables in our problem and the descent proce-

dure. In the magnetic description, everything proceeds in a rather standard way, so we

have little to say. The action of electric-magnetic duality on local observables is also

straightforward. The zero-form operators of the electric theory are gauge-invariant

polynomials in σ, as we discuss below, and duality maps them to the corresponding

gauge-invariant polynomials in σ∨; the duality mapping of k-form observables is then

determined by applying the descent procedure on both sides of the duality. We focus

here on the peculiarities of the electric description that re�ect the fact that there are

two di�erent gauge groups on the two sides of a defect.

First we recall what happens in bulk, away from the defect. The theory has a

complex adjoint-valued scalar σ (de�ned in eqn. (2.25)) that has ghost number 2

(that is, charge 2 under U(1)F ). This ensures that {Q, σ} = 0, as super Yang-Mills

theory has no �eld of dimension 3/2 and ghost number 3 (the elementary fermions

have ghost number ±1). The gauge-invariant and Q-invariant local operators are

simply the gauge-invariant polynomials in σ. For a semisimple Lie group of rank r,

it is a polynomial ring with r generators. To be concrete, we consider gauge group

U(n), in which the generators are Ok = 1
k
trσk, k = 1, . . . , n. These are the basic

Q-invariant local observables.

In a topological �eld theory, one would expect that it does not matter at what

point in spacetime the operator Ok is inserted. This follows from the identity

dOp =

{
Q,

1

2
tr
(
σp−1(t−1ψ̃ + ψ)

)}
, (2.272)

where d =
∑

dxµ∂µ is the exterior derivative, and ψ and ψ̃ are fermionic one-forms.

(See Appendix 2.7.2 for a list of �elds of the bulk theory and their Q-transformations.)

This identity, which says that the derivative of Ok is Q-exact, is actually the �rst in

a hierarchy [7]. If we rename Ok as O
(0)
k to emphasize the fact that it is a zero-form

valued operator, then for each k, there is a hierarchy of s-form valued operators O
(s)
k ,
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s = 0, . . . , 4, obeying

dO
(s)
k = [Q,O(s+1)

k }. (2.273)

Construction of this hierarchy is sometimes called the descent procedure. This formula

can be read in two ways. If Σs is a closed, oriented s-manifold in W , then Ik,Σs =∫
Σs

O
(s)
k is a Q-invariant observable, since[

Q,
∫

Σs

O
(s)
k

}
=

∫
Σs

dO
(s−1)
k = 0. (2.274)

And Ik,Σs only depends, modulo [Q, . . . }, on the homology class of Σs, since if Σs is

the boundary of some Σs+1, then∫
Σs

O
(s)
k =

∫
Σs+1

dO
(s)
k =

[
Q,
∫

Σs+1

O
(s+1)
k

}
. (2.275)

For s = 0, Σs is just a point p , and
∫
p

O
(0)
k is just the evaluation of Ok = O

(0)
k at p;

the statement that
∫

Σs
O

(s)
k only depends on the homology class of Σs means that it

is independent of p, as we explained already above via eqn. (2.272).

In the magnetic description, we simply carry out this procedure as just described.

However, in the electric theory, it is not immediately obvious how much of this stan-

dard picture survives when a four-manifold M is divided into two halves M` and Mr

by a defectW . Starting with zero-forms, to begin with we can de�ne separate observ-

ables Ok,` = 1
k
tr` σ

k and Ok,r = 1
k
trr σ

k in M` and Mr respectively. Ok,` is constant

mod {Q, . . . } in M`, and similarly Ok,r is constant mod {Q, . . . } in Mr. But is there

any relation between these two observables? Such a relation follows from boundary

condition (2.15), which tells us that on the boundary

σ =
i

2

1

1 + t2
{C,C}. (2.276)

(This concise formula, when restricted to the Lie algebras of G` or of Gr, expresses

the boundary value of σ on M` or on Mr in terms of the same boundary �eld C.)

Hence the invariance of the supertrace implies that Strσk = 0 along W , or in other

words that

tr` σ
k = trrσ

k (2.277)
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when restricted to the boundary betweenM` andMr, where it makes sense to compare

these two operators.

Now let us reconsider the descent procedure in this context. We will try to con-

struct an observable by integration on a closed one-cycle Σ1 = Σ1` ∪ Σ1r, which lies

partly in M` and partly in Mr,∫
Σ1

O
(1)
k ≡

∫
Σ1`

O
(1)
k,` +

∫
Σ1r

O
(1)
k,r. (2.278)

Given that O
(0)
k,` = O

(0)
k,r along M` ∩Mr = W , and in particular on C0 = Σ1 ∩W , our

observable is Q-closed,[
Q,
∫

Σ1

O
(1)
k

}
=

∫
C0

(
O

(0)
k,r −O

(0)
k,`

)
= 0. (2.279)

The relative minus sign comes in here, because Σ1` and Σ1r end on C1 with opposite

orientations.

Next we would like to go one step further and de�ne an analogous 2-observable. To

check Q-invariance of such an observable, analogously to the case just considered, we

would need a relation between O
(1)
k,` and O

(1)
k,r. From the relations dO

(0)
k,` = [Q,O(1)

k,`} in

M`, dO
(0)
k,r = [Q,O(1)

k,r} in Mr, it follows that, if ı : W ↪→M is the natural embedding,

then [
Q, ı∗(O(1)

k,` −O
(1)
k,r)
}

= 0. (2.280)

In topological theory, a Q-closed unintegrated one-form should be Q-exact, so there

should exist some operator Õ
(1)
k , such that

ı∗(O
(1)
k,` −O

(1)
k,r) =

[
Q, Õ(1)

k

}
, . (2.281)

Then for a closed 2-cycle Σ2 = Σ2` ∪ Σ2r that intersects W along some C1 we can

de�ne an observable ∫
Σ2

O
(2)
k ≡

∫
Σ2`

O
(2)
k,` +

∫
Σ2r

O
(2)
k,r +

∫
C1

Õ
(1)
k . (2.282)

This observable is Q-closed.

Let us see how to de�ne the next descendant. From the de�nition of O(2) and

from (2.281) we have [
Q, ı∗(O(2)

k,` −O
(2)
k,r)
}

=
[
Q, dÕ(1)

k

}
, (2.283)
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therefore, there exists Õ
(2)
k such that

ı∗(O
(2)
k,` −O

(2)
k,r) = dÕ

(1)
k +

[
Q, Õ(2)

k

}
. (2.284)

Continuing in the same way, we �nd Õ
(n)
k such that

ı∗(O
(n)
k,` −O

(n)
k,r ) = dÕ

(n−1)
k +

[
Q, Õ(n)

k

}
, (2.285)

and the Q-invariant (n)-observable can be de�ned as∫
Σn

O
(n)
k ≡

∫
Σn`

O
(n)
k,` +

∫
Σnr

O
(n)
k,r +

∫
Cn−1

Õ
(n−1)
k . (2.286)

Let us �nd explicit representatives for all these operators in our case. A formula

for O
(1)
k was already given in the right hand side of (2.272):

O
(1)
k,`,r = tr`,r

(
σk−1ψt

)
, (2.287)

where we now de�ned

ψt =
1

2
(t−1ψ̃ + ψ). (2.288)

This �eld has useful properties

{Q,ψt} = Dbσ , [Q,Fb] = i(1 + t2)Dbψt , (2.289)

and satis�es the boundary condition

ı∗(ψt) = − i

1 + t2
{A f , C}. (2.290)

Therefore on the defect

ı∗
(

O
(1)
k,` −O

(1)
k,r

)
∼ Str

(
{C,C}k−1{C,A f}

)
= 0. (2.291)

Since this is zero, Õ
(1)
k vanishes, and the 2-observable can be de�ned without a bound-

ary contribution. A representative for the 2-observable is

O
(2)
k,`,r = tr`,r

(
1

2

∑
k−2

σj1 ψt ∧ σj2 ψt −
i

1 + t2
σk−1Fb

)
, (2.292)

where Fb is the �eld strength for the complexi�ed gauge �eld Ab. Here and in what

follows we use the notation
∑

m for a sum where the set of indices j1, j2, . . . runs over

partitions of m.
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Using the boundary condition (2.290) and invariance of the supertrace, one �nds

on the boundary,

ı∗
(

O
(2)
k,` −O

(2)
k,r

)
=

i

1 + t2
Str
(
σk−1F ′

)
, (2.293)

where F ′ = Fb +A f ∧A f is the part of the super gauge �eld strength that lies in the

bosonic subalgebra. The expression under the supertrace is non-zero, but we know

that it should be Q-exact. Indeed, one �nds that this is a Q-variation of

Õ(2)
k =

1

2

(
i

1 + t2

)k
Str
(
C2k−3DbA f

)
. (2.294)

Proceeding further with the descent procedure, we can �nd the 3-descendant,

O(3)
k,`,r = tr`,r

(
1

3

∑
k−3

σj1 ψt ∧ σj2 ψt ∧ σj3 ψt −
i

1 + t2

∑
k−2

σj1 Fb ∧ σj2 ψt

)
. (2.295)

On the boundary after some computation we �nd

Õ(3)
k =

1

2

(
i

1 + t2

)k
Str

(∑
2k−4

C j1A fC
j2DbA f

)
. (2.296)

The bulk part of the four-observable has a representative

O
(4)
k,`,r = tr`,r

(
1

4

∑
k−4

σj1ψt ∧ σj2ψt ∧ σj3ψt ∧ σj4ψt −
i

1 + t2

∑
k−3

σj1Fb ∧ σj2ψt ∧ σj3ψt

− 1

2(1 + t2)2

∑
k−2

σj1Fb ∧ σj2Fb

)
. (2.297)

The four-observable, which is formed from (2.296) and (2.297), has ghost number zero

for k = 2. In this case, of course, it reduces just to our super Chern-Simons action.

One might wonder how unique this procedure is. Clearly, for the nth descendant

of O
(0)
k , we can try to modify it by adding a suitable (n − 1)-observable with ghost

number (2k − n), integrated over Cn−1 = Σn ∩ W . Since Cn−1 is a boundary in

the bulk (it is the boundary of ΣnM`, for example), such a modi�cation would be

non-trivial only if the observable that we add cannot be extended into the bulk.

One possible example is adding a Wilson loop to Õ
(1)
1 in the 2-descendant of the

operator trσ. What other boundary observables might one consider? If we denote

the bosonic subgroup of the supergroup by SG0
∼= G` × Gr, the Q-invariant scalar
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observables on the defect correspond to the SG0-invariant polynomials of the ghost

�eld C. However, one can check that for the basic classical Lie superalgebras all such

polynomials come54 from the invariant polynomials in σ ∼ {C,C}, and therefore the

corresponding observables are bulk observables.

54See, e.g., a list of these polynomials in [84].
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Chapter 3

Analytic Torsion, 3d Mirror

Symmetry and Supergroup

Chern-Simons Theories

3.1 Introduction

In this chapter, we study the topological quantum �eld theory that computes the

Reidemeister-Milnor-Turaev torsion [88], [89] in three dimensions. This is a Gaussian

theory of a number of bosonic and fermionic �elds in a background �at complex GL(1)

gauge �eld. It can be obtained by topological twisting from a free hypermultiplet with

N = 4 supersymmetry. This theory is very simple and can be given di�erent names �

the one-loop Chern-Simons path-integral [90], or the Rozansky-Witten model [91]

with target space C2, or the U(1|1) supergroup Chern-Simons theory [61] at level

equal to one, but we prefer to call it psl(1|1) supergroup Chern-Simons theory.

Let us give a brief summary of the chapter. In section 3.2, we describe the def-

inition of the theory. We explain that its functional integral computes a ratio of

determinants, which depends holomorphically on a background �at GL(1) bundle

L. We also de�ne various line operators, the most important of which lead to the

Alexander polynomial for knots and links.
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In section 3.3, we use mirror symmetry in three dimensions to represent the

psl(1|1) theory as the endpoint of an RG �ow, that starts from the twisted version

of the N = 4 QED with one fundamental �avor. The computation of the partition

function of the QED can be localized on the set of solutions to the three-dimensional

version of the Seiberg-Witten equations [11]. This provides a physicist's derivation

of the relation between the Reidemeister-Turaev torsion and the Seiberg-Witten in-

variants, which is known as the Meng-Taubes theorem [20], [92]. We consider, in

particular, the subtle case of three-manifolds with �rst Betti number b1 ≤ 1 and

show, how the quantum �eld theory manages to reproduce the details of the Meng-

Taubes theorem in this case. Previously, the same RG �ow has been used in [93]

to derive a special case of the Meng-Taubes theorem for the trivial background bun-

dle, when the torsion degenerates to the Casson-Walker invariant. (We elaborate a

little more on this in the end of section 3.3.) In comparison to [93], the new ingre-

dient in our thesis is the coupling of the QED to the background �at bundle L, so

let us explain, how this works. In �at space and before twisting, the QED has a

triplet of FI terms φa, which transform as a vector under the SU(2)X-subgroup of the

SU(2)X × SU(2)Y R-symmetry. (In our notations, the scalars of the vector multiplet

of the QED transform in the vector representation of SU(2)Y .) These FI terms can

be thought of as a vev of the scalars of a background twisted vector multiplet. The

vector �eld Bi of the same multiplet can be coupled in a supersymmetric way to the

current of the topological U(1)-symmetry of the QED. Upon twisting the theory by

SU(2)X , the scalar and the vector �elds of the twisted vector multiplet combine into

a complex gauge �eld B + iφ. Invariance under the topological supercharge Q re-

quires this background �eld to be �at. One can easily see that the partition function

depends on it holomorphically. In the psl(1|1) theory, which emerges in the IR, the

�eld B + iφ gives rise to the complex �at connection that is used in the de�nition of

the Reidemeister-Turaev torsion.

In section 3.4, we consider the U(1|1) supergroup Chern-Simons theory. It is

obtained from the psl(1|1) theory by coupling it to U(1)k × U(1)−k Chern-Simons

gauge �elds. It has been argued previously [59], [61] that this theory computes the

168



torsion that we study. We show that, in fact, the U(1|1) theory for the compact form

of the gauge group is a Zk-orbifold of the psl(1|1) theory, and thus, indeed, computes

essentially the same invariant. To be more precise, there exist di�erent versions of

the U(1|1) theory, which di�er by the global form of the gauge group, but they all

are related to the psl(1|1) theory. Mirror symmetry maps the U(1|1) Chern-Simons

theory at level k to an orbifold of the same twisted N = 4 QED, or equivalently, to

an N = 4 QED with one electron of charge k.

In section 3.5, we present the Hamiltonian quantization of the theory. This sec-

tion does not depend on the results of section 3.3, and can be read separately. By

considering braiding transformations of the states on a punctured sphere, we recover

the skein relations for the multivariable Alexander polynomial. We consider in some

detail the Hilbert space of the psl(1|1) theory on a torus, and the correspondence

between the states and the loop operators. We �nd the OPEs of line operators and

the action of the modular group. In fact, as long as the background bundle L has

non-trivial holonomies along the cycles of the Riemann surface, on which the theory is

quantized, the Hilbert space is one-dimensional, and our analysis is very straightfor-

ward. We also discuss the canonical quantization of the U(1|1) Chern-Simons theory.

We consider modular transformations of the states on the torus, and �nd results very

similar to those obtained from the GL(1|1) WZW model [60]. To our knowledge,

this is the �rst example of the canonical quantization of a supergroup Chern-Simons

theory, that does not assume an a priori relation to the WZW model.

In section 3.6, we discuss possible generalizations to other supergroup Chern-

Simons theories. We make a summary of properties of such theories. (Some of these

were brie�y discussed in Chapter 2.) We also present some brane constructions, and

consider possible dualities.

Besides the papers that we have already mentioned, previous work on the topo-

logical �eld theory interpretation of the Meng-Taubes theorem includes [94], where

the subject was approached from the four-dimensional Donaldson theory, and [95],

where a mathematically rigorous proof of the Meng-Taubes theorem using TQFT

was presented. All the mathematical facts about the Reidemeister-Turaev torsion,
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the Seiberg-Witten invariants and the Meng-Taubes theory, that we touch upon in

this chapter, can be found in a comprehensive review [88].

Finally, let us mention that there exists yet another approach [96] to the Reidemeister-

Turaev torsion, which presumably can be given a physical interpretation, � in this

case, in terms of the �rst-quantized theory of Seiberg-Witten monopoles. Unfortu-

nately, this will not be considered in the present thesis.

3.2 Electric Theory

In this section, we describe the theory, which computes an analytic analog of the

Reidemeister-Turaev torsion. Up to some details, it is simply the theory of the de-

generate quadratic functional [3]. One important di�erence, however, is that we

introduce a coupling to a complex background �at bundle, and consider the torsion as

a holomorphic function of it. Our de�nition is similar but not quite identical to the

de�nition of the analytic torsion, known in the mathematical literature [97]. The dis-

cussion will be phrased in the language of supergroup Chern-Simons theory. Though

this might seem like an unnecessary over-complication, it will make our formulas a

little more compact, and will also help, when we discuss generalizations in later sec-

tions. Throughout the chapter, the theory of this section will be called �electric�,

while its mirror, considered in section 3.3, will be called �magnetic�.

3.2.1 The Simplest Supergroup Chern-Simons Theory

In this section we introduce the psl(1|1) Chern-Simons theory. We work on a closed

oriented three-manifold W .

The superalgebra g ' psl(1|1) is simply the supercommutative Grassmann algebra

C0|2. The Chern-Simons gauge �eld will be a C2-valued fermionic one-form A = AI f̂I ,

where f̂+ and f̂− are the superalgebra generators. To make the theory interesting,

we want to couple it to a background �at bundle. It could possibly be a GL(2)-

bundle, where GL(2) acts on g in the obvious way. However, the de�nition of the

Chern-Simons action requires a choice of an invariant bilinear form. This reduces the
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symmetry to SL(2), so we couple the theory to a �at SL(2)-bundle B. The Chern-

Simons action can be written as1

Ipsl(1|1) =
i

4π

∫
W

StrA dBA , (3.1)

where the supertrace denotes an invariant two-form, Str(ab) = εIJa
IbJ , and dB is the

covariant di�erential, acting on the forms valued in B. One could eliminate the �at

gauge �eld from dB by a suitable choice of trivialization of B, but we prefer not to do

so.

The supergroup gauge transformations act by A → A − dBα. To �x the gauge,

we introduce a g-valued ghost �eld C. Since our gauge symmetry is fermionic, this

�eld has to be bosonic: its two components are complex scalars C+ and C−. We also

introduce a bosonic g-valued antighost �eld C and a g-valued fermionic Lagrange

multiplier λ. The BRST generator Q is de�ned to act as

δA = −dBC , δC = 0 , δλ = 0 , δC = λ . (3.2)

Next we have to choose an appropriate gauge-�xing action. It will contain in partic-

ular the kinetic term for the bosonic �elds C and C, and we want to make sure that

this term is positive-de�nite. To that end, we pick a hermitian structure on our �at

bundle and restrict to unitary gauges. We impose a reality condition C
I

= −εIJ(CJ)†.

The complex �at connection in B can be decomposed as B + iφ, where B is a her-

mitian connection and φ is a section of the adjoint bundle. We introduce a covariant

derivative Di = ∂i + iBi, and also introduce notations Di = Di − φi for the covariant

derivative in the �at bundle B and Di = Di +φi for the covariant derivative with the

conjugate gauge �eld. We pick a metric γ on W and take the gauge-�xing action to

be

Ig.f. =

{
Q,
∫

d3x
√
γγij Str

(
DiCAj

)}
= −

∫
d3x
√
γγij Str

(
DiCDjC − AiDjλ

)
.

(3.3)

1Throughout the chapter we use Euclidean conventions, in which the functional under the path-

integral is exp(−I).
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The bosonic part of this action is manifestly positive-de�nite. The gauge-�xing con-

dition is DiAi = 0. The action has a ghost number symmetry U(1)F, under which

the ghost and the antighost �elds have charges ±1. If the background �eld satis�es

[Di,Di] = 0, or equivalently Diφi = 0, this symmetry is enhanced to SU(2), which

rotates C and C as a doublet and which we will call SU(2)Y . If we turn o� the back-

ground gauge �eld completely, we also recover the ��avor� SU(2)fl symmetry, which

is the unitary subgroup of the SL(2) automorphism group of the superalgebra. The

groups SU(2)Y and SU(2)fl commute. Together they generate an action of SO(4) on

the real four-dimensional space parameterized by C and C.

In this chapter, we will not consider the general SL(2) analytic torsion2. From now

on, we restrict our attention to the case that the background �at bundle is abelian,

B = L ⊕ L−1, where3 L ∈ Hom(H1(W ),C∗). By abuse of notation, we will denote

the connection in L by the same letters B + iφ, where now B is understood to be a

connection in a �at unitary line bundle, and φ is a closed one-form, whose cohomology

class determines the absolute values of the holonomies in L.

The abelian background �eld preserves a U(1)fl-subgroup of the �avor symmetry

group SU(2)fl. We will furthermore assume that φ is chosen to be the harmonic

representative in its cohomology class, so that the SU(2)Y -symmetry is present.

3.2.2 Relation To A Free Hypermultiplet

Our theory can be obtained by making a topological twist of the theory of a free

N = 4 hypermultiplet. This is a trivial special case of the general relation between

supergroup Chern-Simons and N = 4 Chern-Simons-matter theories, found in [24].

For completeness, we provide some details.

2The reason is that the Meng-Taubes theorem, which will be the subject of section 3.3, does not

seem to generalize to SL(2) torsion, since only the abelian part of the symmetry is visible in the

UV. However, what could be generalized to the SL(2) torsion (and, in fact, to Sp(2n,C) torsion) is

the Hamiltonian quantization that we consider in section 3.5. This generalization will be discussed

elsewhere.
3Throughout the chapter, the coe�cients in homology and cohomology are assumed to be Z,

unless explicitly speci�ed otherwise.
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The R-symmetry group of N = 4 supersymmetry in three dimensions is SU(2)X×

SU(2)Y . The supercharges transform in the (2,2,2)-representation of SU(2)Lorentz ×

SU(2)X × SU(2)Y . A supersymmetric theory can be twisted by taking the Lorentz

spin-connection to act by elements of the diagonal subgroup of SU(2)Lorentz×SU(2)X .

This leaves an SU(2)Y doublet of invariant supercharges. We pick one of them, to be

called Q, and use it to de�ne a cohomological topological theory. The ghost number

symmetry U(1)F is the subgroup of SU(2)Y , for which Q is an eigenvector.

The scalars of the free hyper give rise to the ghost �elds C and C. They parame-

terize a copy of the quaternionic line H, which has a natural action of two commuting

SU(2) groups. One of them is identi�ed with the R-symmetry group SU(2)Y , and the

other is the �avor symmetry SU(2)fl. The hypermultiplet fermions, which transform

in the (2,2,1) representation of the Lorentz and R-symmetry groups, upon twisting

give rise to a vector �eld and a scalar, which we identify with the fermionic gauge

�eld Ai and the Lagrange multiplier �eld λ.

Finally, the imaginary part of the �at connection φi originates from the SU(2)X-

triplet of hypermultiplet masses. While they are constant parameters in the untwisted

theory, they are promoted to a closed one-form in the topological theory, still pre-

serving the Q-invariance. Di�erent terms in the action (3.1), (3.3) can be easily seen

to originate from the kinetic and the mass terms for the hypermultiplet scalars and

fermions.

3.2.3 A Closer Look At The Analytic Torsion

Here we would like to take a closer look at the invariant that our theory computes.

We discuss its properties and relation to other known de�nitions of the torsion. For

simplicity, the manifold W is assumed to be closed, unless indicated otherwise.

3.2.3.1 De�nition And Properties

The partition function of the theory can be written as a ratio of determinants,

τ(L) =
detL−

det2∆0

. (3.4)
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Here the operator L− = ?(dB − φ) + (dB + φ)? is acting in Ω1
L(W )⊕ Ω3

L(W ), where

Ωp
L(W ) is the space of p-forms valued in L. The twisted Laplacian ∆0 = −DiD

i+φiφ
i

is acting in Ω0
L(W ). Note that the operator ∆0 is hermitian, while L− is hermitian

only when φ = 0.

The ratio τ(L), by construction, is a holomorphic function of the �at bundle, even

though the determinants in (3.4) are not. We can understand the analytic properties

of τ(L) rather explicitly. The absolute value of the torsion can be written in the usual

Ray-Singer form as

|τ(L)| = (det ∆1)1/2

(det ∆0)3/2
, (3.5)

where ∆1 is the twisted Laplacian, acting on one-forms. The numerator in this formula

vanishes, whenever the twisted cohomology H1(W,L) is non-empty. This subspace,

possibly with the exception of the trivial �at bundle, is the locus of zeros of τ(L). The

denominator vanishes, when the twisted cohomology H0(W,L) is non-empty, which

is precisely when the �at bundle L is trivial. At this point the function τ(L) can

potentially have a singularity. In fact, if the �rst Betti number b1 of W is greater

than one, the singularity would be of codimension at least two, which is not possible

for a holomorphic function. For b1 = 1, let the holonomies of L around the torsion4

one-cycles be trivial, and let t be the holonomy around the non-torsion one-cycle.

At t = 1, the operators ∆0 and ∆1 have one zero mode each. At small t − 1, these

eigenfunctions become quasi-zero modes with eigenvalues of order (t− 1)2, according

to the non-degenerate perturbation theory. Plugging this into (3.5), we see that the

ratio τ(L) near the trivial �at bundle is proportional to 1/(t − 1)2, that is, has a

second-order pole. Finally, for b1 = 0 the torsion is a function on the discrete set of

�at bundles. For the trivial �at bundle and b1 = 0, it is natural to set τ to be equal

to in�nity5.

4A cycle is called �torsion� if it lies in the torsion part of H1(W ), that is, if some multiple of

it is trivial. This use of the word �torsion� is totally unrelated to �torsion� as an invariant of the

manifold. Hopefully, this will not cause confusion.
5One could say that for the trivial bundle the path-integral is unde�ned, since it has both bosonic

and fermionic zero modes. But it is natural to set it equal to in�nity for b1 = 0, because, thinking

in terms of gauge-�xing, the path-integral has a factor of inverse volume of the gauge supergroup,

174



Another important property of the torsion is the relation

τ(L) = τ(L−1) , (3.6)

which follows from the charge conjugation symmetry C that maps the superalgebra

generators as f̂± → ±f̂∓, and the line bundle L to its dual L−1.

3.2.3.2 Details Of The De�nition

We would like to make a more precise statement about what we mean by the formal

de�nition (3.4). Let us assume for now that the �at bundle L is unitary. If we

eliminate the ambiguities in the de�nition of τ(L) for such bundles, the de�nition for

complex �at bundles will also be unambiguous, by analyticity.

The absolute value (3.5) of τ(L) is (the inverse of) the Ray-Singer torsion, which

is a well-de�ned and metric-independent object. However, as is well-known in the

context of Chern-Simons theory [4], the de�nition of the phase of τ(L) requires more

care. With our assumption that L is unitary, the operator L− is hermitian and has

real eigenvalues. Since the determinant of L− comes from a fermionic path-integral, it

is natural to choose a regularization, in which it is real. The only possible ambiguity

then is in its sign. Note that this is mainly interesting in the case when there is

torsion in H1(W ), so that the space of �at bundles is not connected, and signs can

potentially be changed for di�erent connected components.

Let us suggest a way to de�ne the sign of L−. What we are about to say might not

seem particularly natural at �rst sight, but, as we show later, matches well with known

de�nitions of the analytic and combinatorial torsion. Let us pick a spin structure s

on the three-manifold W , and take some oriented spin four-manifold V , of which W

with a given spin structure is a boundary. The line bundle L can be extended onto

V , though the extension might not be �at. On V we consider the Donaldson operator

L4 : Ω1
L(V ) → Ω0

L(V )⊕ Ω2,−
L (V ) that arises from the linearization of the self-duality

equations, twisted by the line bundle L. Here Ω2,− is the bundle of anti-selfdual

which is in�nity, since this volume is zero. Taking Z(S3) =∞ also makes the factorization formulas

of the ordinary Chern-Simons valid in the supergroup case.
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two-forms. We de�ne the sign of the determinant of L−, and therefore of the torsion

τ(L), using the index of the elliptic operator L4,

sign τ(L) = (−1)ind(L4)−ind(L4,triv) , (3.7)

where L4,triv is the Donaldson operator coupled to the trivial line bundle. The mo-

tivation behind this de�nition is that, if we were to compute the change of sign of

detL− under a continuous change of L, we could naturally do it by using the formula

(3.7) with the four-manifold taken to be the cylinder W × I, since the index of L4 on

such a cylinder computes the spectral �ow of L−.

We started with a choice of a spin structure, but so far it did not explicitly enter the

discussion. Its role is the following. For two di�erent choices of the four-manifold, the

change in the sign of detL− is governed by the index of L4 on a closed four-manifold

V ′, which, according to the index theorem, is

ind(L4)− ind(L4,triv) =

∫
V ′
c1(L)2 . (3.8)

However, since the spin structure on W can be extended to V ′, the four-manifold V ′

is spin, and therefore its intersection form is even, and so is the right hand side of

(3.8). We conclude that the sign of τ(L) depends on a spin structure on W , but not

on the choice of the four-manifold. (This is equivalent to the well-known fact [98]

that a choice of a spin-structure allows to de�ne a half-integral Chern-Simons term

for an abelian gauge �eld.)

It is not hard to calculate the dependence on the spin structure explicitly. Let s1

and s2 be two spin structures on W , which di�er by some x ∈ H1(W,Z2). Let V1

and V2 be four-manifolds with boundary W , onto which s1 and s2 extend. Now the

closed four-manifold V ′, glued from V1 and V2 along their boundary W , need not be

spin, and its Stiefel-Whitney class w2 ∈ H2(V ′,Z2) can be non-zero. The intersection

form is not even, but its odd part is governed by the Wu's formula, which tells us

that c2
1 = c1 ^ w2, where c1 is the mod 2 reduction of c1(L). (This is true for any

H2(V ′,Z2) class, of course.) The Stiefel-Whitney class of V ′ is determined by x. For

a given good covering of V ′, the two spin structures s1 and s2 de�ne a lift of the
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transition functions of the tangent bundle of V ′ from SO(4) to Spin(4), and this lift

is consistent everywhere, except for a codimension-two chain, lying in W . This chain

de�nes the Stiefel-Whitney class of V ′, but it is also the Poincaré dual of the class x

in W . These arguments allow us to write∫
V ′
c1(L)2 =

∫
V ′
c1(L)^w2 =

∫
PD(w2)

c1(L) =

∫
PD(x)

c1(L) =

∫
W

c1(L)^x mod 2 ,

(3.9)

where PD stands for Poincaré dual. We conclude that under a change of the spin

structure by x, the sign of τ(L) changes by the factor

(−1)
∫
W c1(L)^x . (3.10)

It will be useful to rearrange this formula a little. For that we need to recall a

couple of topological facts. The topology of a �at line bundle is completely de�ned

by its holonomies around the torsion one-cycles. This is formalized by the following

exact sequence,

H1(W )→ H1(W,R)
α−→ H1(W,U(1))

β−→ torH2(W )→ 0 , (3.11)

which is associated to the short exact sequence of coe�cients 0→ Z→ R→ U(1)→

0. By Pontryagin duality, H1(W,U(1)) ' Hom(H1(W ),U(1)) is the abelian group of

(unitary) �at line bundles on W . The morphism α gives a �at bundle with trivial

holonomy around the torsion cycles and given holonomy around the non-torsion cy-

cles6. The morphism β maps a given �at bundle to its �rst Chern class, which depends

only on the holonomies around the torsion cycles, by exactness of the sequence. Pick

a pair of classes y1 and y2 from torH2(W ). Let L1 be some �at bundle with Chern

class y1. Its holonomies around the torsion cycles are completely de�ned by y1. We

can take a holonomy of L1 around the one-cycle, Poincaré-dual to y2. The logarithm

of this number gives a pairing torH2(W )× torH2(W )→ Q/Z, which is known as the

linking form. An important fact is that it is bilinear and symmetric. (Actually, this

pairing is just the U(1)× U(1) Chern-Simons term for �at bundles.)

6What one means by non-torsion cycles is not canonically de�ned, but this does not matter, when

the holonomies around the torsion cycles are trivial.
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Returning to the formula (3.10), we note that x ∈ H1(W,Z2) de�nes a Z2-bundle,

and (3.10) is the holonomy of this bundle around the one-cycle, Poincaré dual to

c1(L). Since the linking form is symmetric, this holonomy is equal to the holonomy

of L around the one-cycle, Poincaré dual to c1(x), where, to construct c1(x), we think

of the Z2-bundle de�ned by x as of a U(1)-bundle. This holonomy will be denoted by

L(c1(x)). We conclude that it de�nes the change of the sign of τ(L), when the spin

structure on W is changed by x. To indicate the dependence on the spin structure

explicitly, we will sometimes write the torsion as τs(L), so that

τx·s(L) = L(c1(x)) τs(L) . (3.12)

It is noteworthy that if the line bundle L has trivial holonomies around 2-torsion

cycles, the de�nition of τ(L) is independent of any choices at all.

In fact, even for a generic �at bundle, τs(L) depends on something less than a

spin structure. There is a natural map from the set of spin structures to the set of

spin-C structures with trivial determinant, which is given by tensoring with a trivial

line bundle,. This map is not an isomorphism, because in general two di�erent spin

structures can map to the same spin-C structure. Since the change of the sign of

τs(L) under a change of s by an element x of H1(W,Z2) depends only on the �rst

Chern class of the line bundle obtained from x, the sign of τs(L) really depends only

on a spin-C structure with trivial determinant, and not on the spin structure itself.

One could consider some trivial generalizations of our de�nition of the torsion.

For example, τs can be naturally de�ned for an arbitrary spin-C structure s, not

necessarily with trivial determinant. Let s0 be some arbitrary spin-C structure with

trivial determinant, s be an arbitrary spin-C structure, and let y ∈ H2(W ) be such

that y · s = s0. We can set τs(L) = L(y)τs0(L). Clearly, (3.12) implies that τs

depends only on s, and not on the choice of s0. In quantum �eld theory terms, this

modi�cation amounts to adding to the action a local topologically-invariant functional

of the background gauge �eld � the Wilson loop of L around the cycle, Poincaré-dual

to y ∈ H2(W ). Another possible modi�cation of the de�nition would be to add a

Chern-Simons term for the background �eld B. Note that, if we choose the coe�cient
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of this term to be a half-integer, this would eliminate the dependence of τs on the

spin structure. In what follows, we will mostly restrict to our most basic de�nition

of τs, unless indicated otherwise.

3.2.3.3 Comparison To Known De�nitions

Let us comment on the relation of our torsion to some known de�nitions from the

mathematical literature. A rigorous de�nition of the complex analytic torsion was

given in [97]. The authors consider essentially7 the same ratio of determinants (3.4)

and use the ζ-function regularization to de�ne it as a holomorphic function of the �at

bundle L. An important di�erence, however, is that for a unitary �at bundle their

torsion is not real, but has a phase, proportional to the eta-invariant of L−. In the

language of functional integral, such de�nition is perhaps more natural [4], when the

determinant of L− comes from a bosonic, rather than a fermionic functional integral.

The relation to our de�nition is given by the APS index theorem: to transform

the eta-invariant into the index, one needs to subtract what might be called a half-

integral Chern-Simons term of the �at connection in the line bundle L. This is why

the dependence on a spin structure appeares in our story, but not in [97].

In fact, there is a combinatorial de�nition of torsion, which, as we conjecture, is

precisely equal to our τs(L). This is the Turaev's re�nement of Reidemeister torsion8.

We brie�y summarize some facts about it. For a detailed review, as well as references,

the reader can consult [88].

7There are some di�erences. The discussion in [97] is more general: the authors consider a man-

ifold of arbitrary odd dimension, and not necessarily one-dimensional �at vector bundles. Another

di�erence from our approach, if phrased in path-integral language, is that in [97] the gauge-�xing

term in the analog of (3.3) is de�ned using the derivative D, rather than its conjugate. This elim-

inates the need to pick a hermitian structure on the �at bundle, but makes the functional integral

representation of the determinant more formal. Finally, the ratio of determinants in [97] is actually

the inverse of ours.
8Note that sometimes Reidemeister torsion is de�ned to be the inverse of what we consider here.

With the de�nition that we use, the absolute value of the combinatorial torsion is equal to the

inverse of Ray-Singer torsion, de�ned in the usual way.
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Let W ′ be a compact three-manifold, which is closed or is a complement of a link

neighborhood in a closed three-manifold, so that it has a boundary consisting of a

number of tori. (In our language, non-empty boundary will correspond to adding

line operators, to which we turn in the next section.) In either case, the Euler

characteristic of W ′ is zero. Reidemeister torsion of W ′ is de�ned as the determinant

of a particular acyclic complex, twisted by a vector representation of the fundamental

group of the manifold. The determinant of this combinatorially de�ned complex can

be viewed as a discretisation of the functional integral, which computes the analytic

torsion. We will assume that the representation of the fundamental group is given

by the �at line bundle L. Reidemeister torsion is de�ned only up to a sign and up

to multiplication by a holonomy of L around an arbitrary cycle in W ′. This happens

because the determinant depends on the basis in the complex, of which there is

no canonical choice. Turaev has shown [99] that this ambiguity can be eliminated,

once one makes a choice of what he called an Euler structure9. In analytical terms,

it is a choice of a nowhere vanishing vector �eld, up to homotopy and up to an

arbitrary modi�cation inside a three-ball. Such vector �elds always exist onW ′, since

χ(W ′) = 0. In three dimensions, it is not hard to see that Euler structures are in a

canonical one-to-one correspondence with spin-C structures. For a spin-C structure

s, let us denote the Reidemeister-Turaev combinatorial torsion by τRT
s (L). Under a

change of the spin-C structure by an element y ∈ H2(W ′), the torsion changes as

τRT
y·s (L) = L(y) τRT

s (L) , (3.13)

where, as usual in our notations, L(y) is the holonomy of L around the cycle Poincaré

dual to y. The combinatorial torsion also has a charge conjugation symmetry C

τRT
s (L−1) = (−1)`τRT

s (L) = (−1)` L−1(c1(det s))τRT
s (L) , (3.14)

where s is the conjugate of the spin-C structure s, and ` is the number of connected

9More precisely, the choice of an Euler structure eliminates the freedom to multiply the torsion

by a holonomy of L, while the overall sign can be �xed by choosing an orientation in the homology

H•(W
′). At least for a closed three-manifold, there exists a canonical homology orientation, de�ned

by the Poincaré duality, and we assume that our theory automatically picks this orientation.
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components of the boundary of W ′. The second equality here follows from (3.13).

If the three-manifold W ′ is closed and the spin-C structure s has trivial determi-

nant, we claim that τRT
s coincides with our analytic torsion τs. (Modulo signs, that is,

ignoring the dependence on the spin structure, this statement would follow from the

results of [97] and [100].) For a spin-C structure with trivial determinant, the proper-

ties (3.13) and (3.14) reduce to our formulas (3.12) and (3.6), respectively. When the

three-manifold W ′ is not closed but is a complement of a link, the relation between

τRT
s and our τs should still hold, with an appropriate de�nition of the analytic torsion

in presence of line operators. This will be discussed in the next section.

An important special case is when the �at bundle L has trivial holonomies around

the torsion one-cycles. Then τRT
s (L) is a holomorphic function of b1(W ′) variables

t1, . . . , tb1 . Let us also ignore the dependence on s, so that we consider τ modulo

sign and modulo multiplication by powers of t•. This variant of the combinatorial

torsion is known as the Milnor torsion. A theorem due to Milnor [101] and Turaev

[102] describes its relation to the Alexander polynomial ∆ of W ′, which is a function

of the same variables t1, . . . tb1 . If b1(W ′) > 1, then τ = ∆. If b1(W ′) = 1, then

τ = t∆/(t − 1)2, if W ′ is a closed three-manifold, and τ = ∆/(t − 1), if W ′ is a

complement of a knot in a closed three-manifold. For a closed W ′, these statements

are in agreement with the analytical properties of our τ , described in section 3.2.3.1.

3.2.4 Line Operators

We would like to de�ne some line operators in our theory, in order to study knot

invariants. First thing that comes to mind is to use Wilson lines. For these to be

invariant under the transformations (3.2), they should be labeled by representations

of pl(1|1). This superalgebra contains psl(1|1) as well as one bosonic generator, which

acts on the fermionic generators with charges ±1. The Wilson lines should be de�ned

with the pl(1|1) connection A+B+ iφ. In fact, the only irreducible representations of

pl(1|1) are one-dimensional representations, to be denoted (m), in which the bosonic

generator acts with some charge m, and the fermionic generators act trivially. Insert-

ing a Wilson loop in representation (m) along a knot K is equivalent to multiplying
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Figure 3.1: Examples of reducible indecomposable representations of pl(1|1). The dots

are the basis vectors, and the arrows show the action of the fermionic generators f̂±. The

numbers n, n−1, . . . are the eigenvalues of the bosonic generator of pl(1|1), that is, the U(1)fl-

charges. The representations (0, n)− and (0, n)+ are known as the (anti-)Kac modules.

the path-integral by the m-th power of the holonomy of the background bundle L

around the cycle K. Though this operator is of a rather trivial sort, it will be conve-

nient to consider it as a line operator. It will be denoted by Lm, m ∈ Z. According to

the remarks at the end of section 3.2.3.2, inserting operators Lm around various cycles

is equivalent to changing the spin-C structure, with which the torsion is de�ned.

All the other representations of pl(1|1) are reducible, but, in general, can be inde-

composable10. Some examples are shown on �g. 3.1. (There are more such represen-

tations � they are listed e.g. in [103], � but we will not need them.) In this chapter,

we are mostly interested in closed loop operators. Naively, due to the presence of the

supertrace, a closed Wilson loop labeled by a reducible indecomposable representa-

tion splits into a sum of Wilson loops for the invariant subspaces and quotients by

them. If this were true, the indecomposable representations would not need to be

considered separately. We will later �nd that, due to regularization issues, at least

for some indecomposable representations the Wilson loops do not actually reduce to

sums of Wilson loops Lm. This will be discussed in section 3.5, but till then we will

not consider indecomposable representations.

In the case that the holonomy of the background �eld along some loop K is trivial,

one can construct a line operator by inserting an integral
∮
K
A± into the path-integral.

10That is, they have invariant subspaces, but need not split into direct sums.
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Note that these operators transform as a doublet under the SU(2)fl �avor symmetry.

These will play the role of creation/annihilation operators in the Hamiltonian picture

in section 3.5, but, again, will not be important till there.

The most useful line operator can be obtained by cutting a knot (or a link) K out

of W , and requiring the background gauge �eld to have a singularity near K with

some prescribed holonomy t around the meridian of the knot complement11. It is this

type of line operators that will give rise to the Alexander knot polynomial.

One has to be careful in de�ning the determinants (3.4) in presence of such a

singularity. In this chapter, our understanding of the determinants in this case will

be much less complete than in the case of closed three-manifolds. We will not attempt

to give a rigorous de�nition, but will simply state some results that are consistent

with other approaches to line operators, which are discussed later in the thesis, and

with known properties of the Alexander polynomial. Let t be the holonomy around

the meridian of the knot K, and t‖ be the holonomy around the longitude. While

t is a part of the de�nition of the line operator along K, t‖ depends on the �at

connection and, in particular, on other line operators, linked with K. The problem

with the determinants (3.4) in presence of line operators is that in general they can

be anomalous, that is, they can change sign under large gauge transformations of

the background gauge �eld. Equivalently, one will in general encounter half-integral

powers of t and t‖ in the expectation values. One possible resolution is to choose a

square root of the holonomies, or, equivalently, to take L ' L′2, and to consider the

knot polynomial as a function of the holonomies of L′. One expects this to produce

a version of the Alexander polynomial known as the Conway function. (See section 4

of [102] for a review.) Alternative approach, which we will assume in most of the

chapter, is to add along the longitude of the knot a Wilson line for the background

gauge �eld. So, we will in general consider combined line operators, labeled by two

parameters t and m, with m being the charge for the Wilson line for the background

11The meridian is the cycle that can be represented by a small circle, linking around the knot.

A longitude is a cycle that goes parallel to the knot. The longitude, unlike the meridian, is not

canonically de�ned. Its choice is equivalent to choosing a framing of the knot.
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�eld B + iφ. It will be clear from the discussion of the U(1|1) theory in section 3.4

that for gauge invariance, the charge m should be taken valued in 1/2 + Z. It is more

convenient to work with an integer parameter n = m+ 1/2, and we will accordingly

label our line operators as Lt, n. Note that, since the longitude cycle is not canonically

de�ned, the de�nition of these line operators depends on the knot framing. Under a

unit change of framing, the Wilson line for the background gauge �eld will produce

a factor of tn−1/2. With suitable choices of framing, half-integral powers of t will not

appear in the expectation values.

The operators Lt, n will sometimes be called typical, while Ln and Wilson lines

for the indecomposable representations will be called atypical. This terminology

originates from the classi�cation of superalgebra representations, as we brie�y recall

in section 3.4.1.

3.3 Magnetic Theory And The Meng-Taubes Theo-

rem

As was explained in section 3.2.2, our Chern-Simons theory can be obtained from

the theory of a free N = 4 hypermultiplet by twisting. An alternative description of

the same topological theory can be obtained, if we recall that the free hypermultiplet

describes the infrared limit of the N = 4 QED with one electron. This is the basic

example of mirror symmetry [104] in three-dimensional abelian theories, which was

understood in [105] as a functional Fourier transform. By metric independence of

the topological observables, they can be equally well computed in the UV or in the

IR description. We now consider the topologically-twisted version of the UV gauge

theory, which we will call the �magnetic� description.

(On a compact manifold, the claim that the RG �ow from the UV theory leads

to a free hypermultiplet depends on the presence of the non-trivial background �at

bundle, which forces the theory to sit near its conformally-invariant vacuum. When

the background gauge �eld is turned o�, e.g. as is necessarily the case for a manifold
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with trivial H1, the situation is more subtle. This and some other details will be

discussed in part 3.3.3 of the present section.)

3.3.1 The N = 4 QED With One Electron

We now describe the bosonic �elds of the theory. The fermionic �elds, as well as

the details on the action, are discussed in the Appendix A. Bosonic �elds of the

vector multiplet are a gauge �eld Ai and an SU(2)Y -triplet of scalars Y
ȧ. (Bosonic

gauge �eld Ai here is completely unrelated to the fermionic gauge �eld of the electric

gauge theory. In fact, the �elds of the electric description emerge from the monopole

operators of the UV theory.) In the twisting construction we use the SU(2)X-subgroup

of the R-symmetry, so the scalars of the vector multiplet will remain scalars. It is

convenient to introduce a combination σ = (Y2 − iY3)/
√

2, which has charge 2 under

the ghost number symmetry U(1)F . The remaining component Y1 has ghost number

zero. The hypermultiplet contains an SU(2)X-doublet of complex scalars, which upon

twisting become a spinor Zα. They have charge one under the gauge group. The

imaginary part φ of the background �at connection originated from the masses in the

electric description. Under the mirror symmetry, it is mapped to a Fayet-Iliopoulos

parameter.

The �avor symmetry SU(2)fl is emergent in the infrared limit. In the UV, only its

Cartan part is visible � it is identi�ed with the shift symmetry of the dual photon. The

current for this symmetry is −i
2π
? F , where F = dA. The real part of the background

gauge �eld couples to this symmetry, so, it should enter the action in the interaction

− i
2π

∫
B ∧ F . In fact, the whole action of the topological theory has the form

IQED = {Q, . . . }+ Itop , (3.15)

where

Itop = − i

2π

∫
(B + iφ) ∧ F . (3.16)

(More details are given in Appendix A.) This can be more accurately written as

exp(−Itop) = L−1 (c1(A)) , (3.17)
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where A is a line bundle, in which A is the connection. The �elds Zα take values in

a spin-C bundle, and correspondingly, the path-integral includes a sum over spin-C

structures s′. We view this spin-C bundle as a spin bundle S for some �xed spin

structure s, tensored with the line bundle A. We identify the reference spin structure

s with the spin structure, which was used in the de�nition of torsion on the electric

side. A change of the spin structure by an element x ∈ H1(W,Z2) is equivalent to

twisting the bundle A by the Z2-bundle, corresponding to x. The formula (3.17) then

changes in the same way (3.12) as the torsion τs(L), in agreement with the mirror

symmetry12. The theory also has a charge conjugation symmetry, which, as on the

electric side, implies that the invariants for L and L−1 are the same.

Note that, instead of (3.16), we could try to use

exp(−Itop)
?
= L−1

(
1

2
c1(det s′)

)
. (3.18)

Here det s′ is the determinant line bundle of the spin-C bundle, in which the �elds

Zα live. However, the factor of 1/2 inside the brackets means that one has to take a

square root of the holonomy of L, and therefore the sign of this quantity is not well

de�ned. This is the same ambiguity that we encountered in section 3.2.3.2, and it is

resolved, again, by picking a reference spin structure s.

The functional integral of the magnetic theory can be localized on the solutions

of BPS equations {Q, ψ} = 0, where ψ is any fermion of the theory. One group of

these equations actually tells us that the solution should be invariant under the gauge

transformation with parameter, equal to the �eld σ. We will only consider irreducible

solutions, and therefore σ must be zero. We also only consider the case that the

background �eld satis�es d ? φ = 0, so that the twisted theory has the full SU(2)Y -

symmetry. (We have seen on the electric side that d ? φ = 0 is the condition for this

symmetry to be present. On the magnetic side, one can also explicitly check this,

as shown in the Appendix A.) This symmetry, together with vanishing of σ, implies

12Again, s should be more appropriately viewed as a spin-C structure with trivial determinant.

Of course, we could equally well take an arbitrary reference spin-C structure. That would give the

trivial generalization of τs to arbitrary spin-C structures, as described at the end of section 3.2.3.2.
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that Y1 is also zero. With this vanishing assumed, the remaining BPS equations take

the form of the three-dimensional Seiberg-Witten equations,

F +
1

2
?
(
µ− e2φ

)
= 0 ,

/DZ = 0 , (3.19)

where µ = iσβj α Z
αZβ dxj is the moment map, with σβi α being the Pauli matrices

contracted with the vielbein, e2 is the gauge coupling, and /D is the Dirac operator,

acting on the sections of S⊗A. Generically, the localization equations have a discrete

set of solutions, and the partition function of the theory can be written as

τs(L) =
∑
S

(−1)f L−1(c1(A)) , (3.20)

where the sum goes over the set S of solutions of the Seiberg-Witten equations, A

is a line bundle, corresponding to the given solution, and (−1)f is the sign of the

fermionic determinant.

The relation between the Reidemeister-Turaev torsion and the Seiberg-Witten

invariant in three-dimensions is the content of the Meng-Taubes theorem [20] and

its re�nement due to Turaev [92]. We have presented a physicist's derivation of this

theorem. Some subtleties that arise for three-manifolds with b1 ≤ 1 are discussed

later in this section.

3.3.2 Adding Line Operators

Let us describe the magnetic duals of line operators, which were introduced in section

3.2.4. The �rst type of line operators were the integrals of the fermionic gauge �eld∫
K
A±. On the magnetic side, their duals will be the integrals of monopole operators,

which we will not discuss. The second type were the Wilson lines for the background

gauge �eld. Obviously, their de�nition will be the same on the magnetic side.

Non-trivial and interesting line operators were de�ned by singularities of the back-

ground �at connection. We denoted them by Lt ,n in section 3.2.4. Since the one-form

φ enters the BPS equations (3.19) on the magnetic side, the singularity of φ implies
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that those equations will have solutions with a singularity along the knot K. The line

operator is then de�ned by requiring the �elds to diverge near K as in a particular

singular model solution. We use notation W for the closed three-manifold, and W ′

for the manifold, obtained from W by cutting out a small toric neighborhood of the

singular line operator. Let r and θ be the polar coordinates in the plane, perpendic-

ular to K. Near the knot, the singularity of the imaginary part of the background

gauge �eld has the form

φ = −γ dθ + β
dr

r
. (3.21)

(We follow the notations of [53].) Note that whenever the parameter β is non-zero,

the closed two-form ?φ has a non-vanishing integral around the boundary of the toric

neighborhood of the link. This might be forbidden for topological reasons � e.g., if

K is a one-component link in S3. In such cases, β cannot be turned on. Even when

the parameter β can be non-zero, we expect the invariants to be independent of it.

To �nd the model solution, consider the case that W is the �at space, and K

is a straight line. Let Z1 and Z2 be the two components of Zα, and z = r exp(iθ)

be the complex coordinate in the plane, perpendicular to K. We are looking for

a time-independent, scale-invariant solution of the Seiberg-Witten equations. The

gauge �eld in such a solution can be set to zero, so that the remaining equations give

Z1(Z2)† =
e2(β + iγ)

2z
, Z1(Z1)† − Z2(Z2)† = 0 , ∂zZ

1 = ∂zZ
2 = 0 , (3.22)

and the scale-invariant solution is simply Z1 = a/
√
z, Z2 = b/

√
z, where ab† =

e2(β + iγ)/2 and |a|2 = |b|2. Note that the �eld Zα here is antiperiodic around K.

Since we view Zα as a spinor �eld on the closed three-manifold W , it should rather

be periodic, so, we make a gauge transformation to bring the model solution to the

form

Z1 =
a√
r
, Z2 =

b√
r

exp(iθ) , A = −1

2
dθ . (3.23)

To complete the de�nition of the line operator, we also need to explain, how the

topological action (3.17) is de�ned in presence of the singularity. The �at bundle L is

naturally an element of Hom(H1(W ′),C∗). By Poincaré duality, it can be paired with

an element of the relative cohomology H2(W ′, ∂W ′), and this pairing will de�ne the

188



action. If we forget for a moment about possible torsion, the relative cohomology class

that we need is naturally the cohomology class [F/2π] of the gauge �eld strength for a

given solution. However, here we encounter the mirror of the problem that we had on

the electric side: this class in general is not integral. The reason, roughly speaking,

is the antiperiodicity of the �eld Zα around K, or equivalently, the half-integral term

−1
2
dθ in the gauge �eld (3.23) near the line operator. (Depending on the topology,

there can also appear a similar term with θ replaced by the angle along K.) This

will in general cause half-integral powers of the holonomies t and t‖ to appear in

the torsion invariant. To remove them, just as in section 3.2.4, one introduces along

K a Wilson line for the background gauge �eld with a half integral charge n − 1/2.

With a suitable choice of framing, this is enough to remove the half-integral powers

of holonomies.

Here we viewed the �eld Zα as a section of the spin bundle on W , tensored with a

line bundleA with connection A. A more systematic way to de�ne these line operators

is to allow spin (or spin-C) structures on W ′ that do not necessarily extend to W .

The antiperiodicity of Z in the model solution (3.23) can then be absorbed into the

de�nition of this spin structure. The �eld Zα then provides an honest cross-section

of the line bundle A in the neighborhood of the link, and this allows to canonically

de�ne an integer-valued relative Chern class c1(A) ∈ H2(W ′, ∂W ′). The charge n of

the background �eld Wilson line and the choice of the framing are then absorbed into

the choice of the spin-C structure. This is the approach taken in the mathematical

literature13, see e.g. [88]. This point of view is consistent with the picture that

inserting line operators of type Lm, or changing the parameter n for operators Lt, n,

is equivalent to changing the spin-C structure.

We only considered the case that the holonomy of the background �at connection

around the meridian of the knot is not unimodular. In the opposite case, we have

γ = 0 in eq. (3.21), and, assuming that the parameter β is also zero, the singular

13There is also another di�erence of our treatment of line operators from mathematical literature.

There, the analogs of line operators are typically introduced by gluing in an in�nite cylindrical end

to the manifold W ′, rather than by considering solutions on W with singularities.
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model solution seems to disappear. This makes it unclear, how to de�ne the magnetic

duals of line operators with unimodular holonomy, except by the analytic continuation

from γ 6= 0. This problem looks analogous to the one described in the end of section

2.4.4.5 of Chapter 2.

3.3.3 More Details On The Invariant

In our derivation of the relation between the Seiberg-Witten invariant and the Reidemeister-

Turaev torsion we ignored some subtleties [20], [106], which occur for three-manifolds

with b1 ≤ 1. Here we would like to close this gap. First we look at the UV theory,

and then we describe the RG �ow to the IR theory in more detail. We will see that

the claim that the IR theory is the psl(1|1) Chern-Simons model sometimes has to

be corrected.

3.3.3.1 Seiberg-Witten Equations For b1 ≤ 1

Let us look closer at the Seiberg-Witten counting problem. Our goal here is not to

derive something new, but merely to understand, how gauge theory takes care of some

subtleties in the formulation of the Meng-Taubes theorem.

Note that in the analogous problem in the context of Donaldson theory in four

dimensions, the gauge theory gives the �rst of the Seiberg-Witten equations roughly

in the form F+ + ZZ = 0. To avoid dealing with reducible solutions with F+ = 0,

one introduces by hand a deformation two-form in the equation [11]. In our case,

the situation is di�erent: the deformation two-form e2 ? φ/2 is already there. In nice

situations, the counting of solutions does not depend on the choice of this deformation,

so any two-form could be taken. But sometimes it is not true, and then it will be

important, what deformation two-form is chosen for us by the gauge theory.

The properties of the counting problem depend on the �rst Betti number b1(W ),

whose role here is analogous to b+
2 in four dimensions. For b1 > 0, a reducible solution

has Z = 0 and F = e2 ? φ/2. For such a solution to occur, the cohomology class of

e2?φ/2 has to be integral. When in the parameter space we pass through such a point,
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so that reducible solutions are possible, the counting of solutions can in principle jump.

This makes the Seiberg-Witten invariant dependent on the deformation two-form, or

the metric and e2, if we prefer to keep the deformation two-form equal to e2?φ/2 with

�xed φ. Actually, for b1 > 1 no jumping is possible, since in the space of deformation

two-forms we can always bypass the point, where reducible solutions can occur. But

for b1 = 1, non-trivial wall-crossing phenomena do happen. As we change the two-

form e2 ? φ/2, and its cohomology class passes through an integer point, the number

of solutions with �rst Chern class [F/2π] equal to this integer does change in a known

way [107]. (For the particular case of S1 × S2, the Seiberg-Witten counting problem

is worked out in detail in the Example 4.1 in [88].)

There is another related issue. As we explained in section 3.2.3.1, the torsion,

to which the Seiberg-Witten invariant is supposed to be equal to, for b1 = 1 has a

second order pole. Just for concreteness, consider the manifold S1×S2, for which the

torsion is14 τ(t) = t/(t− 1)2, where t is the holonomy around the non-trivial cycle.

If we expand this, say, near t = 0, we get a semi-in�nite Laurent series t + 2t2 + . . . .

However, it is known that for any given deformation two-form the Seiberg-Witten

equations have only a �nite number of solutions.

The resolution of these puzzles is that we need to take the infrared limit of the

theory, e.g. by taking e2 to in�nity. This means that we have to take the deformation

two-form to be +∞ · ?φ. That is, it should be proportional to ?φ with a positive

coe�cient, and, to count solutions with a given Chern class [F/2π], we should use a

deformation two-form with Chern class much larger than [F/2π] in absolute value.

This is equivalent to the prescription of Meng and Taubes. Depending on the sign

of φ, the two expansions that we get in this way for S1 × S2 would be t + 2t2 + . . .

and t−1 + 2t−2 + . . . . One can check that the sign of φ is such that |t| < 1 in the

�rst case and |t| > 1 in the second, so that in either case the expansion is absolutely

14The function τ(t) should have a second order pole at t = 1. Also, it cannot have any zeros

for t ∈ C∗ \ {1}, since the twisted cohomology H1(S1 × S2,L) for such t is empty. Imposing also

invariance under the charge conjugation C, we recover the stated result, up to a constant numerical

factor.
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convergent.

Just like for closed three-manifolds, for manifolds with links in them, the Seiberg-

Witten counting problem for b1(W ′) = 1 is special. (This case arises e.g. when one

cuts out a one-component knot from a simply-connected manifold.) As we reviewed

in the end of section 3.2.3.3, the Reidemeister torsion for such a manifold has a �rst

order pole. Therefore, it has two di�erent Laurent expansions near t = 0 and t =∞.

The Seiberg-Witten equations in this case have an in�nite number of solutions, with

Chern class unbounded from above or from below, depending on the sign of the

deformation two-form e2 ? φ. The sign of e2 ? φ is such that these expansions are

absolutely convergent. Unlike the case of a compact three-manifold, here we do not

need to explicitly take e2 to in�nity, since the deformation two-form e2 ? φ already

diverges near the knot.

When W is a rational homology sphere, that is b1 = 0, there is no way to avoid

reducible solutions in working with the Seiberg-Witten equations. Because of this, a

simple signed count of solutions is no longer a topological invariant. Still, one can

de�ne a topological invariant by adding an appropriate correction term [107]. We will

not attempt to derive it from the quantum �eld theory, but will in what follows use

the fact that the de�nition of the invariant for b1 = 0 does exist.

3.3.3.2 Massive RW Model And The Casson-Walker Invariant

Let us now turn to the IR theory, which is a valid description, when the size of the

three-manifold W is scaled to be large. The topological theory reduces in this case to

the Rozansky-Witten (RW) sigma-model [91] with the target space being the Coulomb

branch manifold, which for the N = 4 QED is [108] the smooth Taub-NUT space

XTN. The U(1) graviphoton translation symmetry is generated on XTN by a Killing

vector �eld V . The coupling of the UV theory to the �at gauge �eld B+ iφ translates

into a coupling of the RW model to the same �at gauge �eld via the isometry V . In

the untwisted language, the imaginary part φ of the gauge �eld would be a hyperkäler

triplet of mass terms. For this reason, we call our IR theory the massive Rozansky-

Witten model. An explicit Lagrangian and more detailed treatment of this theory
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will appear elsewhere. The coupling of the Rozansky-Witten model to a dynamical

Chern-Simons gauge �eld has been previously considered in [24]. We will now see,

how and when the massive RW model reduces to the Gaussian psl(1|1) theory.

First, let us turn o� the background �at gauge �eld. What we get then is the

ordinary RW model for XTN. The path-integral of that theory has the following

structure [91]. The kinetic terms have both bosonic and fermionic zero modes. The

bosonic ones correspond to constant maps to the target space. The integral over the

bosonic zero modes thus is an integral over XTN. The one-loop path-integral produces

a simple measure factor, while most of the higher-loop diagrams vanish. The reason

is that all the interactions (which involve the curvature of XTN) are irrelevant in

the RG sense, and can be dropped, when the worldsheet metric is scaled to in�nity.

However, some diagrams do survive due to the presence of the zero modes. Overall,

the path-integral for each b1 is given by a simple Feynman diagram, which captures the

topological information aboutW , times the integral of the Euler density of XTN. It is

important that the path-integral depends on the target space only by this curvature

integral. The Euler numbers happen to be the same for XTN and for the Atiyah-

Hitchin manifold XAH. This was used in [93] to derive a special case of the Meng-

Taubes theorem by the following argument. The RW model for XAH can be obtained

from the IR limit of the topologically-twisted N = 4 SU(2) Yang-Mills theory [108],

which computes the Casson-Walker invariant [109], [110], [111]. Since the Rozansky-

Witten invariants computed using XTN and XAH are the same, the Casson-Walker

invariant is equal to the Seiberg-Witten invariant, when the background bundle is

trivial.

Now let us turn on the background bundle back again. In its presence, the kinetic

terms of the RW model have no zero modes. The classical solution, around which

one expands, is the map to the �xed point of the vector �eld V , that is, to the

conformally-invariant vacuum. In the absence of the zero modes, all the irrelevant

curvature couplings can be thrown away. In this way, the RW path-integral reduces to

the Gaussian integral of the psl(1|1) model. It is natural to expect the path-integral

to be continuous in L. To the extent that this is true, the torsion τ(L) evaluated for
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trivial L should thus coincide with the Casson-Walker invariant. Note that on the

level of Feynman diagrams this is not completely trivial, since for B + iφ = 0 the

interaction vertices come from the curvature terms, while for B + iφ 6= 0 they come

from expanding the Gaussian path-integral in powers of the background gauge �eld.

Still, the actual Feynman integrals should coincide. We will not explicitly analyze

the diagrams here (most of them were analyzed in [91]), but will just use the known

relation between τ and the Casson-Walker invariant to check the continuity of the

massive RW path-integral in L.

Let τ(1) denote the torsion evaluated for the trivial background �at bundle15, and

CW be the Casson-Walker invariant. For b1 ≥ 2, it is indeed true that τ(1) = CW.

For b1 = 1, the torsion has the form

τ(t) =
t∆(t)

(t− 1)2
, (3.24)

where ∆(t) is the Alexander polynomial. Setting t = exp(m) and expanding this in

m, we get

τ(t) =
∆(1)

m2
+

1

2
∆′′(1)− 1

12
∆(1) +O(m2) . (3.25)

Dropping the 1/m2 term, we de�ne the regularized torsion τreg(1) = 1
2
∆′′(1)− 1

12
∆(1).

This combination, again, is equal to the Casson-Walker invariant for b1 = 1. How-

ever, the presence of the extra divergent piece ∆(1)/m2 means that the path-integral

of the massive RW model in this case is not continuous in its dependence on the

background gauge �eld: for L approaching the trivial �at bundle, the torsion tends

to in�nity, while for L taken to be exactly the trivial �at bundle, the invariant is

�nite. One can trace the origin of this discontinuity to the wall-crossing in the UV

theory. Indeed, for non-zero φ, the Seiberg-Witten invariant is evaluated using the

deformation two-form e2 ? φ/2, which in the infrared limit e2 → ∞ lands us in the

in�nite wall-crossing chamber. The 1/m2 singularity of the torsion for m→ 0 arises

from the in�nite number of solutions of the Seiberg-Witten equations in this cham-

ber. On the other hand, for trivial L we have φ = 0, and the deformation two-form

vanishes for all e2. To evaluate the invariant, one should properly deal with reducible

15Note that for τ(1) the dependence on the spin-C structure drops out.
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solutions. Instead, we will simply assume that the deformation two-form is non-zero,

but in�nitesimally small. It is known [88] that in such chamber the Seiberg-Witten

invariant is equal to 1
2
∆′′(1), which, again, is the Casson-Walker invariant, up to a

correction − 1
12

∆(1) = − 1
12
|torH1(W )|, which, presumably, would be recovered with

an appropriate treatment of the reducible solutions. Thus, one can say that the dis-

continuity at trivial L in the massive RW model for b1 = 1 is a �squeezed version� of

the wall-crossing in the UV theory16

Finally, for b1 = 0, assuming that the torsion subgroup tor H1(W ) is non-empty,

the Reidemeister-Turaev torsion is a function on the discrete set of �at bundles. For

non-trivial L, the Seiberg-Witten counting problem computes the torsion, while for

trivial L it computes the Casson-Walker invariant, which now is not related to the

torsion, since there is no way to continuously interpolate to the trivial L, starting

from a non-trivial L. In fact, for b1 = 0 the Casson invariant is computed by a

two-loop Feynman integral [91], and it is clearly not possible to obtain it from the

one-loop torsion.

Let us summarize. The UV topological theory, and thus the Seiberg-Witten count-

ing problem, is equivalent to the massive RW theory. For non-trivial L, this theory

reduces to the psl(1|1) Chern-Simons theory and computes the Reidemeister-Turaev

torsion. For trivial L, it computes the Casson-Walker invariant, which for b1 > 0 can

be obtained from a limit of the psl(1|1) invariant, while for b1 = 0 is not related to

it. Our results agree with the mathematical literature [88], [106].

3.4 U(1|1) Chern-Simons Theory

In a series of papers [59, 60, 61], it has been shown that the Alexander polynomial

and the Milnor torsion can be computed from the U(1|1) Chern-Simons theory. We

16It is a �squeezed version�, because the wall-crossing condition is not conformally-invariant, and

thus we cannot see all the walls in the IR theory, but only see a discontinuity at φ = 0. This

can be contrasted with the situation in the Donaldson theory in four dimensions, where the wall-

crossing condition is conformally-invariant, and the walls can be seen both in the UV and in the IR

descriptions [112].
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would like to revisit this subject and to show, how it �ts together with our discussion

in previous sections. We point out that for the compact form of the bosonic gauge

group, the U(1|1) Chern-Simons theory is simply an orbifold of the psl(1|1) theory. (A

direct analog of this statement is well-known in the ABJM context.) In particular, it

contains no new information compared to the psl(1|1) Chern-Simons with a coupling

to a general background �at bundle L, and computes, indeed, essentially the same

invariant.

3.4.1 Lie Superalgebra u(1|1)

We start with a brief review of the superalgebra u(1|1). A more complete discussion

can be found e.g. in [103]. Let f̂+ and f̂− be the fermionic generators, and t̂` and t̂r

the generators of the left and right bosonic u(1) factors. It will also be convenient to

use a di�erent basis in the bosonic subalgebra, which is Ê = t̂r+t̂` and N̂ = (t̂r−t̂`)/2.

The element N̂ acts on the fermionic subalgebra by the U(1)fl transformations, and

the element Ê is central. Explicitly, the non-trivial commutation relations are

[N̂ , f̂±] = ±f̂± , {f̂+, f̂−} = Ê . (3.26)

The group of even automorphisms of u(1|1) is generated by the charge conjugation

Ê → −Ê, N̂ → −N̂ , f̂± → ±f̂±, rescalings f̂± → a±f̂±, Ê → a+a−Ê with a± ∈ R\0,

and shifts N̂ → N̂ + bÊ, b ∈ R.

As for any Lie superalgebra, the representations of u(1|1) can be usefully divided

into two classes � the typical and the atypical ones. (For a brief review of superalgebra

representations, the reader can consult section 2.3.1.) The typicals are precisely the

ones, in which the central generator Ê acts non-trivially. They are two-dimensional,

and the generators, in some basis, act by matrices

Ê = w

 1 0

0 1

 , N̂ =

 n 0

0 n− 1

 , f̂+ =

 0 w

0 0

 , f̂− =

 0 0

1 0

 ,

(3.27)

with w 6= 0. These will be called representations of type (w, n). To be precise,

one has to make a choice, whether to assign a bosonic or a fermionic parity to the
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highest weight vector. This e�ectively doubles the number of representations. In our

applications, the representations will be labeling closed Wilson loops, which come

with a supertrace. Therefore, di�erent parity assignments will be just a matter of

overall sign, and we will mostly ignore this.

In the atypical representations the generator Ê acts trivially, and therefore they

can be equivalently thought of as representations of pl(1|1). These have already been

described in section 3.2.4. Note that the indecomposable representation (0, n)− of

�g. 3.1 can be obtained as a degeneration of the typical representation (w, n) for

w → 0. With a suitable rescaling of the generators f̂± before taking the limit, one

can similarly obtain the representation (0, n)+ of �g. 3.1. The representations (0, n)−

and (0, n)+ are known as the atypical Kac module and anti-Kac module.

Let us also write out some tensor products. Tensoring any representation with the

one-dimensional atypical (n) simply shifts the N̂ -charges. The other tensor products

are

(w1, n1)⊗ (w2, n2) = (w1 + w2, n1 + n2)⊕ (w1 + w2, n1 + n2 − 1)′ , w1 + w2 6= 0 ;

(3.28)

(w, n1)⊗ (−w, n2) = Pn1+n2 , (3.29)

where the indecomposables Pn were de�ned on �g. 3.1. The prime on the second

representation in the r.h.s. of (3.28) means that the highest weight vector in it has

reversed parity. The set of representations (n), (w, n), Pn is closed under tensor

products.

The superalgebra u(1|1) possesses a two-dimensional family of non-degenerate

invariant bilinear two-forms, which can be obtained by taking a supertrace over a

(w, n) representation with w 6= 0. Note that all the representations (w, n) for di�erent

values of w 6= 0 and n, and therefore also the corresponding invariant forms, are

related by the superalgebra automorphisms.
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3.4.2 Global Forms

There exist di�erent versions of Chern-Simons theory based on the superalgebra

u(1|1), and here we would like to classify them. To de�ne such a theory, one needs to

pick a global form of the gauge group, and also to choose an invariant bilinear form,

with which to de�ne the action. These data should be consistent, in the sense that the

action should be invariant under the large gauge transformations. Theories related

by the superalgebra automorphisms are equivalent. We can use this symmetry to

bring either the invariant bilinear form, or the lattice, which de�nes the global form

of the group, to some simple canonical form. To classify the theories, it is convenient

to take the �rst approach.

Let g0 ' R2 be the bosonic subalgebra of u(1|1). The u(1|1) gauge �eld, in

components, is A = ANN̂ +AEÊ +A+f̂+ +A−f̂−. For the bosonic part of the gauge

�eld, we will also use expansion in a di�erent basis, ANN̂ +AEÊ ≡ A` t̂`+Ar t̂r. The

action of the theory can be written as

Iu(1|1) = Ibos + Ipsl(1|1)(LAN ⊗ L) + Ig.f. , (3.30)

where Ibos is the Chern-Simons term for the bosonic gauge �eld, Ipsl(1|1) is the action

(3.1), coupled to the line bundle LAN with connection AN , and to some background

�at bundle L. Finally, Ig.f. is the gauge-�xing action (3.3) for the fermionic part of

the gauge symmetry.

By using the superalgebra automorphisms, we bring the bosonic Chern-Simons

term to the form

Ibos =
i

4π

∫
W

ArdAr − A`dA` . (3.31)

(As usual, this formula is literally true only for topologically-trivial bundles. More

generally, it is implicitly understood that the action is de�ned by integrating Chern

classes of a continuation of the bundle to some four-manifold.)

Di�erent versions of the theory will correspond to di�erent choices of the global

form of the bosonic subgroup G0 of U(1|1). A global form is �xed, once we choose

a cocharacter lattice Γcoch ⊂ g0, that is, the lattice by which to factorize the vector
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space g0 to get the torus G0. The �rst constraint on possible choices of the lattice

Γcoch comes from the fact that the fermionic generators of u(1|1) should transform in

a well-de�ned representation of G0. In the basis dual to (t̂`, t̂r), the corresponding

weight has coordinates (−1, 1), and we require that this vector be contained in the

dual lattice Γch ' Γ∗coch.

We also need to make sure that the action (3.31) is invariant under the large gauge

transformations. This will be true, if the number

1

2

∫
V

cr1 ∧ cr1 − c`1 ∧ c`1 (3.32)

is integer on any closed spin four-manifold V . (We restrict to spin four-manifolds,

because we already have a choice of a spin structure on W .) Here cr,`1 = [dAr,`/2π]

are the H2(V,R)-valued Chern classes for some extension of the G0-bundle onto V .

The classes cr and c` for di�erent G0-bundles form a lattice in H2(V,R)⊕H2(V,R),

which is naturally isomorphic to Γcoch⊗H2(V ) (modulo torsion). Any element of this

lattice can be expanded as v1ω1 + v2ω2, where ω1 and ω2 are arbitrary classes in

H2(V ), and v1 and v2 are the generators of the lattice Γcoch. The quadratic form

(3.32) can be explicitly written as

a11

∫
V

1

2
ω1 ∧ ω1 + a12

∫
V

ω1 ∧ ω2 + a22

∫
V

1

2
ω2 ∧ ω2 , (3.33)

with a11 = (vr1)2 − (v`1)2, a12 = vr1v
r
2 − v`1v

`
2 and a22 = (vr2)2 − (v`2)2. For (3.33) to

be an integer for arbitrary ω1 and ω2, the three coe�cients aij should be integers.

(We used again the fact that the intersection form on a spin four-manifold is even.)

This condition is precisely equivalent to the requirement for Γcoch to be an integral

lattice in R1,1. We conclude that U(1|1) Chern-Simons theories are labeled by integral

lattices in R1,1, whose dual contains the vector (−1, 1).

3.4.3 The Orbifold

To show that the theory is an orbifold of psl(1|1) Chern-Simons, it is convenient to

rewrite it in a di�erent way. Let us use the basis (Ê, N̂) in g0, in which the R1,1 scalar

product is (u, v) = uNvE +uEvN . Let k and ν be some positive integers, and ξ be an
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integer or a half-integer, de�ned modulo k. By taking v1 = (k/ν, 0) and v2 = (ξ/ν, ν)

as the generators, for any such set we de�ne a lattice, which actually has the right

properties to serve as Γcoch. The opposite is also true: any lattice Γcoch has a basis of

this form, and it is unique modulo shifting ξ by a multiple of k. (The parameter k is

actually the area of the fundamental domain of Γcoch.) This can be seen as follows.

Let v1 = (a, b) and v2 = (c, d) be some generators of Γcoch. The condition that the

weight of the fermionic part of the superalgebra is a well-de�ned weight of G0 means

that b and d are integers. Let ν be their greatest common divisor. Then, by Euclidean

algorithm, there exists an SL(2,Z)-matrix of the form d/ν −b/ν

p q

 , (3.34)

with some p and q. Transforming the basis of the lattice with this matrix, we �nd a

basis of the form v1 = (a′, 0), v2 = (b′, ν). (We choose a′ to be positive.) The integral-

ity of the lattice means that a′ν ∈ Z and 2b′ν ∈ Z, so we can indeed parameterize the

basis vectors in terms of k, ξ and ν. Residual SL(2,Z)-transformations of the basis

shift ξ by multiples of k.

Now we can make a superalgebra automorphism Ê ′ = k
ν
Ê, N̂ ′ = N̂ + ξ

ν2 Ê to

transform this basis into v′1 = (1, 0), v′2 = (0, ν), at the expense of changing the

action from its canonical form (3.31) to

Ibos =
i

2π

∫
W

k

ν
ANdAE +

ξ

ν2
ANdAN . (3.35)

The path-integral involves a sum over topological classes of bundles, which are

parameterized by the �rst Chern classes of the AE and AN bundles, which take values

in H2(W ) and νH2(W ), respectively. For every topological type, let us write the

gauge �eld AE as a sum of some �xed connection AE(0) and a one-form aE. Integrating

over aE produces a delta-function, which localizes the integral to those connections

AN , which are �at. The psl(1|1) part of the path-integral can then be taken explicitly,

and we get for the U(1|1) partition function,

τU(1|1)
s (L) =

∫
DAN

∑
cE1

δ(kdAN/2π)LAN (kcE1 ) exp(ξCS(LAN )) τs(LνAN⊗L) . (3.36)
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Here for convenience we changed the integration variable AN → νAN . The origin of

di�erent terms here is as follows. The sum over the (integral) Chern classes cE1 is what

remained from the functional integral over AE. The delta-function came from the

integration over aE. The holonomy of the �at bundle LAN around the Poincaré dual

of kcE1 is just a rewriting of the exponential of the Chern-Simons term kANdAE/2π.

The Chern-Simons term for LAN with coe�cient ξ came from the ANdAN/2π term in

the action (3.35). Finally, τs is the psl(1|1) torsion evaluated for a �at bundle, which

is the ν-th power of LAN , tensored with some background �at bundle L.

Essentially the same path-integral as (3.36) was considered in section 2.2 of [113].

It was noted that the sum over cE1 is proportional to the delta-function, supported

on �at bundles with Zk-valued holonomy, since the pairing between H2(W ) and the

group of �at bundles is perfect. (That paper actually considered k = 1.) Using this,

we �nally get

τU(1|1)
s (L) =

1

k

∑
Lk

exp(ξCS(Lk)) τs(Lνk ⊗ L) , (3.37)

where the sum goes over all Zk-bundles Lk. The factor of k appeared from the delta-

function in (3.36). To be precise, the explanations that we gave are su�cient to �x

this formula only up to a prefactor. For manifolds with b1 = 0, the normalization

(3.37) can be recovered from the considerations in section 2.2 of [113]. We expect

that it is correct in general. The factor of 1/k has a natural interpretation in terms

of the orbifold � it is the volume of the isotropy subgroup, which is Zk.

An important special case is the U(1|1) Chern-Simons de�ned with the most

natural global form of the group, where we simply set exp(2πit̂`) = exp(2πit̂r) = 1.

The action is (3.31) with an integer factor k in front of it. By making an automorphism

transformation, this theory can be mapped to the form (3.35) with ξ = k/2 and ν = 1.

Interestingly, it becomes independent of the spin structure, if k is odd. This is because

the sign of the fermionic determinant is changing in the same way as the half-integral

Chern-Simons term for AN . For the general version of the theory, the dependence on

the spin structure drops out when ν/2 + ξ ∈ Z. In what follows, we restrict to the

version of the theory with ξ = 0 and ν = 1.
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Let us make some terminological comments. We call the theory U(1|1) Chern-

Simons, and not gl(1|1) or u(1|1), because we need to choose a reality condition and a

global form for the bosonic subgroup � and we take it to be U(1)×U(1). One could in

principle consider other real and global forms. Those theories, if well-de�ned, would

not need to be related to the psl(1|1) theory by orbifolding. For the psl(1|1) theory,

we do not use the name PSU(1|1), because there is no bosonic subgroup, and therefore

no choice of the real form or the global form. This theory is naturally associated to

the complex Lie superalgebra.

In this thesis, we will not attempt to derive a relation between the supergroup

Chern-Simons theory and the WZW models. However, if such a relation does exist,

then what we have explained in this section would imply some correspondence between

the U(1|1) and the psl(1|1) WZW models. A duality of this kind is indeed known

[114], although its derivation does not look similar to ours.

3.4.4 Magnetic Dual

The dual magnetic description of the theory is, of course, simply the orbifold of

the QED of section 3.3. (This fact can also be independently derived from brane

constructions, as we review later in section 3.6.3.) For the polynomial (3.20), summing

over �at bundles has simply the e�ect of picking only powers of holonomies, which

are multiples of k. Equivalently, note that the action of the magnetic theory will have

the form analogous to (3.30), but with Ipsl(1|1) + Ig.f. replaced by the QED action.

The �eld AN couples to the QED topological current iF/2π. Integrating over AN ,

we simply get that the Chern class of the QED gauge �eld is the k-th multiple of

the Chern class of the AE bundle. Since this bundle is arbitrary, we conclude that

the orbifold of the magnetic theory is just the same QED, but with a constraint that

the Chern class of the gauge �eld takes values in kH2(W ). This can be equivalently

viewed as17 an N = 4 QED with one electron of charge k.

The u(1|1) partition function τ
U(1|1)
s (L) inherits from the torsion τs the dependence

17I thank N. Seiberg for pointing this out.
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on the spin-C structure with trivial determinant. As we noted in the end of section

3.2.3.2, the de�nition of τs(L) can be easily extended to construct a torsion, which

depends on an arbitrary spin-C structure, with no constraint. The same applies to

τ
U(1|1)
s (L). Now, consider the limit k → ∞. Since now we sum essentially over all

�at bundles, the U(1|1) partition function cannot depend on the unitary part of the

�at connection in L. Therefore, by holomorphicity, it will not depend on L at all.

We denote this version of the torsion by τs,∞. This is a number, which depends only

on W and on the choice of a spin-C structure. Looking at the magnetic side, it is

clear that this number is precisely the signed count of solutions to the Seiberg-Witten

equations, with the �elds Zα valued in a given spin-C bundle s. We conclude that the

version of the electric theory with k =∞ has these integers as its partition function.

We note that this version of the torsion invariant has been de�ned and studied in [115]

and [92]. The fact that it is an integer was demonstrated by purely combinatorial

methods. One pedantic comment that we have to make is that τs,∞ is completely

independent of L only for a manifold with b1 > 1. For b1 = 1, it does depend on the

orientation in H1(W,R), induced by the absolute value of the holonomy of L, since

we need to choose the chamber, in which the Seiberg-Witten invariant is computed.

3.4.5 Line Operators

In the U(1|1) theory, we can de�ne some Wilson loops. For the atypical representa-

tions, these are essentially the operators that were already de�ned earlier in section

3.2.4 for the psl(1|1) theory. These are the operators Ln, labeled by one-dimensional

atypicals (n), as well as Wilson lines for the indecomposable representations, whose

role we still have to clarify.

For the typical representations (w, n), we want to claim that the Wilson lines are

actually equivalent to the twist line operators of type Lt ,n with t = exp(2πiw/k).

This relation is the usual statement of equivalence of Wilson lines and monodromy op-

erators in Chern-Simons theory. (For U(1|1), this relation was �rst suggested in [61].)

The argument adapted to the supergroup case is given18 in section 2.3.2. One consis-

18In fact, for U(1|1) the statement is quite obvious. The two-dimensional representation (w, n)
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tency check can be made by looking at the transformation of these operators under

the charge conjugation symmetry C. As can be seen from (3.27), the representation

changes as (w, n)→ (−w, 1−n), while the twist operator changes as Lt ,n → Lt−1,1−n,

as follows from its de�nition in section 3.2.4. This is consistent with the identi�ca-

tion of the operators. Note also that the boson-fermion parity of the highest weight

vector of the representation (w, n) is changed under the charge conjugation. A Wil-

son loop with a supertrace will consequently change its sign. This can be taken as

an explanation of the factor (−1)` in the formula (3.14) for the charge conjugation

transformation of torsion in presence of the boundary. For t = exp(2πiw/k), we will

also denote the operators Lt ,n by Lw, n. Hopefully, this will not cause confusion.

3.5 Hamiltonian Quantization

It is a well-established fact that the quantization of the Chern-Simons theory with

an ordinary compact gauge group leads to conformal blocks of a WZW model [4, 48,

86, 116]. For the supergroup case, it is often assumed that a similar relation holds

[59, 61, 34], however, to our knowledge, no derivation of this statement is available

in the literature, and the properties of the supergroup theories in the Hamiltonian

picture are fundamentally unclear. In this section, we take an opportunity to bring

some clarity to the subject by explicitly quantizing the Chern-Simons theories, which

were considered in previous sections. Since these theories are essentially Gaussian,

the quantization is straightforward. In this thesis, we do not attempt to derive a

relation to the conformal �eld theory.

can be obtained by quantizing a pair of fermions, living on the Wilson line. After gauging these

fermions away, one is left with a singularity in the gauge �eld, which is equivalent to the monodromy

t. The ubiquitous shift of n by 1/2 can be understood as a shift of the weight by the Weyl vector

of the superalgebra u(1|1). The combination m = n − 1/2, which appeared in section 3.2.4, is the

�quantum-corrected� weight.
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3.5.1 Generalities

In the quantization of an ordinary, bosonic Chern-Simons theory on a Riemann surface

Σ, the classical phase space to be quantized is the moduli space of �at connections on

Σ. Dividing by the gauge group typically introduces singularities, which, however, do

not play much role � the correct thing to do is to throw them away by replacing the

moduli space of �at connections by the moduli space of stable holomorphic bundles.

In the supergroup case, this approach does not seem to lead to consistent results.

Reducible connections here can lead to in�nite partition functions (as in the case of

the theory on S3), and that should somehow be re�ected in the canonical quantization.

The correct approach, we believe, is to consider the theory with gauge-�xed fermionic

part of the gauge symmetry. The Hilbert space of the supergroup Chern-Simons

should then be constructed by taking the cohomology of the BRST supercharge in

the joint Hilbert space of gauge �elds and superghosts. Due to �non-compactness� of

the fermionic directions, even in the ghost number zero sector this cohomology is not

equivalent to throwing the ghosts away.

First we consider the quantization of the psl(1|1) Chern-Simons theory. We take

the three-manifold to be a product Rt × Σ, where Rt is the time direction, and Σ is

a connected oriented Riemann surface. Non-zero modes of the �elds along Σ do not

contribute to the cohomology of Q, and can be dropped. Zero-modes are present,

when the cohomology H•(Σ,L) of the de Rham di�erential on Σ, twisted by the

connection in the �at bundle L, is non-trivial. When H1(Σ,L) is non-empty, there is

a moduli space of fermionic �at connections on Σ. This gives a number of fermionic

creation and annihilation operators, and a �nite-dimensional factor for the Hilbert

space, � in complete analogy with the ordinary, bosonic Chern-Simons. This will be

illustrated in examples later in this section. The zeroth cohomology H0(Σ,L) is non-

empty, if and only if the �at bundle L is trivial on Σ. In this case, the cohomology

is one-dimensional, since we have assumed Σ to be connected. The ghosts and the

time component A0 of the fermionic gauge �eld now have zero modes, which organize
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themselves into the quantum mechanics of a free superparticle in R4|4, with the action

−
∫

dt Str(−A0λ̇+ ĊĊ) . (3.38)

(Here for simplicity we did not write the coupling to the external gauge �eld.) The

Hilbert space19, before we reduce to the cohomology of Q, is the space of functions

on C2 (with holomorphic coordinates given by the components C± of the scalar su-

perghost), tensored with the four-dimensional Hilbert space of the fermions λ± and

A±0 . We can write the states as

ψ0|0〉+ ψ+λ
+|0〉+ ψ−λ

−|0〉+ ψ+−λ
+λ−|0〉 , (3.39)

where |0〉 is annihilated by A±0 , and ψ• are functions of C and C. We recall from

eq. (3.2) that the BRST di�erential transforms C into λ. If we treat λ± as the

di�erentials dC
±
and identify the wavefunctions (3.39) with di�erential forms on C2

with antiholomorphic indices, then Q acts as the Dolbeault operator. Thus, formally,

the Hilbert space of the ghost system Hgh is the Dolbeault cohomology20 of C2 with

antiholomorphic indices.

Since C2 is non-compact, it is not obvious, how to make precise sense of this

statement. Certainly, the path-integral of the theory on some three-manifold with

a boundary produces a Q-closed state on the boundary. But to divide by Q-exact

wavefunctions, we need to specify, what class of states is considered. For example,

one could consider di�erential forms with no constraints on the behavior at in�nity.

This would lead to the ordinary Dolbeault complex. By the ∂-Poincaré lemma, the

cohomology is supported in degree zero, and consists simply of holomorphic functions

on C2. This space will be denoted by H0,0

∂
, and the states will be called non-compact.

In our applications, we can usually restrict to states, which are invariant under the

U(1)F ghost number symmetry. In H0,0

∂
, such states are multiples of v0 = |0〉, the

constant holomorphic function. Another possibility is to look at the cohomology

19Here and in what follows, by �Hilbert space� we really mean the space of states. It does not, in

general, have an everywhere-de�ned non-degenerate scalar product.
20In the context of general Rozansky-Witten theories this statement � with C2 replaced by a

compact hyper-Kähler manifold � appeares already in the original paper [91].
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with compact support21. By Serre duality, it is the dual of the space of holomorphic

functions, and lives in degree (0, 2). We will denote this space by H0,2

∂,comp
, and call

the corresponding states compact. The U(1)F -invariant states here are multiples of

v1 = δ(4)(C,C)λ+λ−|0〉.

To understand the interpretation of these states in our theory, we need to recall

some properties of the torsion. LetW ′ be a three-manifold with boundary Σ, together

with some choice of the �at bundle L and, possibly, line operators inside. Let the

holonomies of L be trivial on Σ, so that H0(Σ,L) is non-empty. If the �at bundle L

is completely trivial even inside W ′, and, in particular, W ′ contains no line operators

Lt ,n, we call the manifold with this choice of the �at bundle unstable. In the opposite

case, we call it stable. Let W be a connected sum of two three-manifolds W1 and

W2 along their common boundary Σ, with no holonomies of L along the cycles of Σ.

There are three possibilities. If both W1 and W2 are stable, the path-integral on W

vanishes, because of the fermionic zero modes, � this property of the torsion is known

as �unstability�. If bothW1 andW2 are unstable, the path-integral is not well-de�ned,

because of the presence of both fermionic and bosonic zero modes. Finally, if one of

W1, W2 is stable, and the other is unstable, the functional integral generically has no

zero modes, and the torsion is a �nite number.

We claim that our functional integral for an unstable three-manifold W ′ with

boundary Σ naturally yields a state for the ghosts in the non-compact cohomology

H0,0

∂
. Indeed, the zero modes of C, C and λ are completely free to �uctuate inside

W ′, and therefore the wavefunction as a function of C is constant and should not

contain insertions of λ, � so, it is a multiple of v0. On the other hand, if the manifold

W ′ is stable, we get a state in the compact cohomology H0,2

∂,comp
. The holonomies of

the �at bundle inside W ′ do not allow the zero modes of the ghosts and λ to freely

go to in�nity. Modulo Q, the wavefunction in this case is a multiple of the state v1.

The natural pairing between the compact and the non-compact cohomology yields a

�nite answer for a closed three-manifold, glued from a stable and an unstable piece.

21For our purposes, the cohomology with compact support and the integrable cohomology will be

considered as identical.
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If, on the other hand, we try to pair two stable manifolds, we get zero, since we have

too many insertions of the operators λ± in the product of the wavefunctions. If we

try to pair two non-compact, unstable states, the result is not well-de�ned, because

one encounters both bosonic and fermionic zero modes22. This is consistent with the

properties of the torsion, described above.

In the special case that Σ is a two-sphere with no punctures, the ghost Hilbert

space Hgh is all of the Hilbert space. Since it is not one-dimensional, the topological

theory contains non-trivial local operators. They are in correspondence with ∂-closed

(0, p)-forms on C2. Again, one might think that all of these, except for the holomorphic

functions, are Q-exact, and therefore decouple, but this is not in general true due to

the non-compactness of the �eld space. Let us introduce a special notation O1 for

the operator λ+λ−δ(4)(C,C), which we will need in what follows.

3.5.2 The Theory On S1 × Σ

Let us illustrate in some examples, how this machinery works. First we compute

the invariants for the theory on S1 × Σ, with Σ a closed Riemann surface with no

punctures. Then we add punctures and derive the skein relations for the Alexander

polynomial. In the whole section 3.5, we typically ignore the overall sign of the

torsion, and its dependence on the spin structure.

3.5.2.1 No Punctures

Consider a three-manifold S1 ×Σ, where Σ is a Riemann surface of genus g. Let the

�at bundle L have a holonomy t along the S1, and no holonomies along the cycles

of Σ. We would like to compute the torsion τ(t) of this manifold. For simplicity, we

take |t| = 1.

The topological theory on this manifold reduces to the quantum mechanics of zero

22For a manifold W glued from two unstable pieces, depending on the situation, it can be natural

to de�ne the torsion to be in�nity, or zero, or some �nite number, by perturbing L away from the

singular case. However, it does not seem to be possible to give any universal meaning to the pairing

of non-compact wavefunctions in the ghost Hilbert space.
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modes of the �elds on Σ. The components of the gauge �eld A±, tangential to Σ, will

produce 4g fermionic zero modes, which can be grouped into 2g pairs of fermions,

corresponding to some choice of a- and b-cycles on Σ. For each pair of the fermions,

the action is de�ned with the kinetic operator i∂t + B0, where B0 is the background

gauge �eld in the time direction. If we denote the determinant of this operator by

d(t), the gauge �elds contribute a factor of d2g(t) to the torsion. The time component

of the gauge �eld A±0 together with the Lagrange multiplier λ give two more pairs of

fermions with the same action, and hence a factor of d2(t). Finally, the zero-modes

of the superghosts C± and C
±
give two complex scalars, which contribute a factor

of d−4(t). The torsion altogether is τ(t) = d2g−2(t). Using the zeta-regularization,23

one readily computes d(t) = t1/2 − t−1/2. For the torsion of S1 × Σ, we get

τ(t) = (t1/2 − t−1/2)2g−2 . (3.40)

Let us derive the same result by a Hilbert space computation. The torsion can

be computed by taking the supertrace StrHt
Ĵ over the Hilbert space, where Ĵ is the

generator of the U(1)fl-symmetry. In this formalism, it is obvious that the contribution

of a single pair of fermions is indeed d(t) = t1/2 − t−1/2. The contribution of the

superghosts C and C can also be easily computed. We set t = exp(iα). The quantum

mechanics of the complex �eld C+ is the theory of a free particle in R2, and we need

to �nd the trace of the rotation operator exp(iαĴ) over its Hilbert space,

tr exp
(
iαĴ

)
=

∫
d2~p d2~x

(2π)2
exp(i~p~x) exp(−i~p ′~x) =

1

4 sin2(α/2)
, (3.41)

where ~p ′ is the vector obtained from ~p by a rotation by the angle α. This is equal to

−d−2(t), and together with a similar contribution from C− leads to the correct result

d−4(t).

In the computation above, the trace was taken over the whole Hilbert space of

the ghost system, and not over the cohomology of Q, since it is not clear in general,

23One needs to use the identity exp (−ζ ′(0, a)− ζ ′(0, 1− a)) = 2 sin(πa) for the derivative ∂sζ(s, a)

of the Hurwitz zeta-function. In the text we ignored the factor of −i, which results from this

computation, since we are not interested in the overall sign of τ(t).
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what one should mean by this cohomology. However, it is curious to observe that one

can obtain the same results by tracing over the non-compact (or over the compact)

Dolbeault cohomology. Indeed, H0,0

∂
is the space of holomorphic functions on C2,

which can be expanded in the basis generated by the monomials 1, C+, C−, (C+)2,

etc. The trace of tĴ over this space can be written as

t0 + e−ε(t−1 + t) + e−2ε(t−2 + t0 + t2) + . . . , (3.42)

where we introduced a regulator ε > 0. The sum of this convergent series for ε→ 0 is

equal to −d−2(t), which is the correct contribution of the ghost system to the torsion.

I do not know, if this computation should be taken seriously.

3.5.2.2 Surfaces With Punctures

Next, let us incorporate some line operators. Consider a Riemann surface Σ of genus

g with p ≥ 2 punctures, corresponding to p parallel line operators Lt1, n1 . . . Ltp, np ,

stretched along the S1. For consistency, we assume t1t2 . . . tp = 1. Let there also be a

background holonomy t around the S1. We introduce the number N =
∑

i(ni−1/2),

which measures the total U(1)fl-charge. For N = 0, the con�guration is symmetric

under the charge conjugation (up to the substitution t→ t−1 for all the holonomies.)

Due to the presence of line operators, the cohomology H0(Σ,L) is empty, and

the Hilbert space does not contain the ghost factor Hgh. However, the cohomology

H1(Σ,L) ≡ H1 is in general non-empty, so there will be h = dimH1 zero modes of

the fermionic gauge �eld A+ and h zero modes of the �eld A−. Our Lie superalgebra

is a direct sum, and correspondingly it is convenient to choose a polarization, in which

the modes of A+ are the creation operators, and the modes of A− are the annihilation

operators. The Hilbert space is

(detH1)−1/2+N/h ⊗ ∧•H1 . (3.43)

It contains states with charges ranging from −h/2 +N to h/2 +N , with

N(q) =

(
h

q + h/2−N

)
(3.44)
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states of charge q. (The overall power of detH1 was chosen so as to ensure that for

N = 0 the spectrum of U(1)fl-charges is symmetric.) Taking the supertrace of tĴ over

this Hilbert space, we �nd the invariant for S1 × Σ,

τ(t) = tN(t1/2 − t−1/2)h . (3.45)

As we will see, h = −χ = 2g − 2 + p. An important special case is that Σ is S2

with two marked points. Then h = 0, the Hilbert space is one-dimensional, and the

invariant τ is equal to one, up to an overall power of t.

Let us give a more explicit description of the twisted cohomology for the simple

case of Σ ' S2. In the presence of a singular background �eld, corresponding to an

insertion of a line operator Lt, n along some knot K, the behavior of the dynamical

�elds of the psl(1|1) theory near K is determined by a boundary condition, which is

described in Appendix B. It says that the superghost �elds C± should vanish near

K, while the components of the fermionic gauge �eld A±, perpendicular to K, are

allowed to have a singularity, which however has to be better than a pole. This

boundary condition is elliptic. The cohomology H1, therefore, can be represented

by L-twisted one-forms, which lie in the kernel of the operator d + d∗ on Σ and

which near the marked points are less singular than 1/r. Just for illustration, we can

write an explicit formula for these one-forms. For that, pick a complex structure on

Σ, and let the marked points be z1, . . . , zp. The cohomology will be represented by

holomorphic (1, 0)- and antiholomorphic (0, 1)-forms. Let us write ti = exp(2πi ai),

with ai ∈ (0, 1), for the holonomies. (We assume that the bundle L is unitary.) Note

that the sum
∑
ai is a positive integer. Any twisted holomorphic one-form can be

written as

ω =

p∏
i=1

(z − zi)aiP (z)dz , (3.46)

with some rational function P (z), which is allowed to have simple poles at points zi,

according to our boundary condition. Assuming that in�nity is not among the marked

points, we should have ω ∼ dz/z2 +o(1/z2) at large z. Writing P (z) as
∑
Pi/(z−zi),

the condition at in�nity gives 1 +
∑
ai linear equations on the coe�cients Pi, so the

space of twisted holomorphic forms is of dimension p− 1−
∑
ai. Similarly, the space
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Figure 3.2: a. Marked points, basis contours, and a particular choice of cuts on the p-

punctured sphere. Locally-constant sections of L pick a factor of ti upon going counter-

clockwise around the i-th puncture. b. This contour is trivial, since it can be pulled o� to

in�nity. This gives a relation (1− t1)C1 + · · ·+ (1− t1 . . . tp−1)Cp−1 = 0.

of twisted antiholomorphic forms has dimension
∑
ai− 1, and the total dimension of

H1 is p− 2, in agreement with the formula h = −χ.

Instead of working with cohomology, it is more convenient to look at the dual

homology, which for S2 with marked points is generated by contours, connecting

di�erent punctures24. (The di�erential forms, which behave better than 1/r near the

punctures, can be integrated over such contours, and the integrals do not change,

when the forms are shifted by di�erentials of functions that vanish at the punctures.

Moreover, the pairing between this version of homology and the twisted cohomology

is non-degenerate.) The basis in the homology consists of p−2 contours C1, . . . ,Cp−2,

shown on �g. 3.2a. One might think that the contour Cp−1 should also be included in

the basis, but actually it can be expressed in terms of C1, . . . ,Cp−2, using the relation

of �g. 3.2b. On a general Riemann surface, one obtains in the same way that the

dimension of the homology is h = −χ = p− 2 + 2g.

It is possible to �nd modular transformations of states in the Hilbert space. For

that, one needs to �nd the action of large di�eomorphisms on the twisted cohomology

H1, or, equivalently, on the basis contours in the dual homology. To give an example of

such argument, we derive the skein relations for the Alexander polynomial25. Consider

24I am grateful to E. Witten for the suggestion to look at the homology and for helpful explana-

tions.
25Rather similar contour manipulations are used in [59] to obtain braiding transformations of the
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Figure 3.3: a. Two cuts and two basis contours for a four-punctured sphere. b. The result

of the braiding transformation. c. We moved the contour C1 across the cut and reversed its

orientation, which produced a factor of −t.

a Riemann sphere with four punctures, two of which are labeled by holonomies t, and

two by t−1. This con�guration arises on the boundary of a solid three-ball with two

line operators Lt, n inside. We set the parameters n equal to one-half, so that the line

operators are expected to have trivial framing transformations and to give rise to the

Conway function. (We have to mention once again that our understanding of these

line operators is incomplete. This will lead to some uncontrollable minus signs in

their expectation values.) The twisted cohomology H1 on the four-punctured sphere

is two-dimensional. A pair of basis contours C1 and C2 for the dual homology is shown

on �g. 3.3a. We make a large di�eomorphism, which exchanges the two punctures

labeled by t. This leads to the con�guration of �g. 3.3b. We move the upper cut

through the contour C1. This multiplies C1 by a factor of t. This brings us to the

con�guration of �g. 3.3c, where we have also reversed the orientation of the upper

contour. The cuts can now be deformed back to the con�guration of �g. 3.3a, and we

�nd that the braiding transformation acts on the contours as C′1

C′2

 =

 −t 0

0 1

 C1

C2

 . (3.47)

states from the CFT free-�eld representation. The contours in question are then integration contours

for the screening �elds. In fact, the two computations seem to be directly related, since the screening

�elds are the CFT currents, which in the Chern-Simons theory correspond to the gauge �elds A±,

whose modes are the cohomology that we are considering. To make the connection more precise,

one needs to switch to the holomorphic polarization.
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Figure 3.4: A skein relation for the Alexander polynomial. In the canonical framing, u = 1.

Figure 3.5: The result of closing the strands in the skein relation and using the fact that

the Alexander polynomial for a disjoint link is zero. The relation is consistent, if it is written

in the vertical framing, and the invariant transforms by a factor of u under a unit change of

framing.

The Hilbert space of the four-punctured sphere, according to eq. (3.43), consists of

four states � one of U(1)fl-charge −1, one of charge +1, and two of charge 0. The

neutral states are the ones that arise on the boundary of a three-ball with a pair

of line operators inside. The state of charge −1 transforms under the braiding by

some phase. From eq. (3.43), we would expect this phase to be the inverse square

root of the determinant of the matrix in (3.47). The two U(1)fl-invariant states then

transform with the matrix  it1/2 0

0 −it−1/2

 . (3.48)

Note that the braiding action (3.47) is de�ned only up to an overall phase, since we

could make a constant U(1)fl gauge transformation, or, equivalently, could move the

cuts on �g. 3.3 around the sphere any number of times. Such a phase, however, would

cancel out in 3.48, since the two states of interest are U(1)fl-invariant.

From (3.48) it follows [4] that the knot invariant satis�es the skein relation of

�g.3.4, with u = i. (On the way, we made an arbitrary choice of the square root of
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the determinant of the matrix (3.47). With an opposite choice, we would get u = −i.)

Initially, we assumed that our line operators have no framing dependence. But now

we can see that this would be inconsistent with �g. 3.5, which is obtained from the

skein relation by closing the braids and using the fact that the Alexander polynomial

of a disjoint link is zero. We are seemingly forced to conclude that our invariant

does have a framing dependence, with a framing factor u = i. On S3, there exists a

canonical choice of framing, in which the self-linking number of all components of the

link is zero. If we bring all the links to this choice of framing, the polynomial would

satisfy the skein relation of �g. 3.4, but with u = 1. This skein relation, together with

a normalization condition, which we derive later in this section, de�nes the single-

variable Alexander polynomial (or the Conway function), as expected. But the fact

that we found a non-trivial framing dependence is rather unsatisfactory. In the dual

Seiberg-Witten description, the knot invariant is clearly a polynomial with real (and

integral) coe�cients, and there can be no factors of i. To get rid of the problem, we

have to put an extra factor of i in the braiding transformation of the highest weight

state of U(1)fl-charge −1. This will multiply the matrix (3.48) by i, and make u = 1

in the skein relation. It would be desirable to understand the physical origin of this

factor.

To be able to compute the multivariable Alexander polynomial, that is, the in-

variant for multicomponent links, with di�erent components labeled by arbitrary

holonomies, one needs two more skein relations [117]. We derive them in Appendix C.

3.5.3 T 2 And Line Operators

In this section, we look more closely on the Hamiltonian quantization of the theory

on a two-torus T 2. First we describe the Hilbert space abstractly, and then relate

di�erent states to line operators of the theory.
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3.5.3.1 The Torus Hilbert Space

Let us �x a basis of cycles a and b on T 2, and denote the corresponding holonomies of

the background bundle by ta and tb. Assume �rst that at least one of the holonomies

is non-trivial. In this case, the twisted cohomology H•(T 2,L) is empty, and the torus

Hilbert space Hta,tb is one-dimensional. Let us choose some basis vector |ta, tb〉 for

each of these Hilbert spaces. We pick a normalization such that under any SL(2,Z)

modular transformationM the vectors map as

M|ta, tb〉 = |tM−1(a), tM−1(b)〉 , (3.49)

without any extra factors. Note that the charge conjugation symmetry C is equivalent

to the modular transformation S2, which �ips the signs of both cycles.

A slightly more complicated case is ta = tb = 1. The Hilbert space H1,1 is a

product, with one factor being the vector space Hgh of states of the ghosts, which

was described before. Another factor comes from the fact that the fermionic gauge

�elds now have zero modes A+
a , A

+
b , A

−
a and A−b , arising from components of the

one-forms A± along the a- or the b-cycle. With a natural choice of polarization, the

modes of A− are the annihilation operators, and the modes of A+ are the creation

operators. The four states in the Hilbert space of the vector �elds are

|−1〉, |0a〉 ≡ A+
a |−1〉, |0b〉 ≡ A+

b |−1〉, |+1〉 ≡ A+
aA

+
b |−1〉 . (3.50)

The states |±1〉 are of charge ±1, and are invariant under the modular group SL(2,Z),

since they have nowhere to transform. The two states |0a〉 and |0b〉 are neutral, and

transform under SL(2,Z) as a doublet.

3.5.3.2 Line Operators Lt ,n

Consider a solid torus with boundary T 2, with cycle a contractible, and put a line

operator of type Lta, n along the b-cycle inside. Here it is assumed that ta 6= 1. The

operator is taken with the natural framing for loops in the solid torus. We can also

turn on a background holonomy tb. The resulting state lives in Hta,tb , and we claim
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that it is

|Lta ,n, tb〉 = t
n−1/2
b |ta, tb〉 , (3.51)

with a suitable normalization of |ta, tb〉. (Note that tb is not a parameter of the line

operator itself, but is de�ned by the background bundle, and in particular by the other

line operators, linked with the given one.) It is easy to see that both sides of (3.51)

depend on n in the same way. (In taking a half-integer power of tb, we ignored the sign

ambiguity, since we generically do not try to �x the overall signs in this section. A

more accurate treatment of signs would require keeping track of spin structures.) The

non-trivial content of this equation is the statement that |ta, tb〉, de�ned in this way,

transforms under the modular group as in (3.49), without any extra factors. For the

charge conjugation symmetry C, this is easy to see from the transformation properties

of the line operators Lta, n. For the element T of the modular group SL(2,Z), the

l.h.s. changes into t
−n+1/2
a |Lta, n, tb〉, where the factor of ta is due to the change of

framing. This is again consistent with (3.49). It requires a little more work to see that

|ta, tb〉 transforms as in (3.49) also for the element S of SL(2,Z). Note that a pair of

solid tori can be glued together to produce S1 × S2 with two parallel line operators

along the S1. The gluing identi�es the b-cycles of the two tori, and maps the a-cycle

of one torus to the −a of the other. This gives a bilinear pairing between the Hilbert

spaces Ht−1
a ,tb

and Hta,tb . In the section 3.5.2.2, we learned that the dimension of the

Hilbert space on S2 with two marked points is equal to one. It follows that, under

the bilinear pairing,

(
|t−1
a , tb〉, |ta, tb〉

)
=
(
|Lt−1

a , 1−n, tb〉, |Lta, n, tb〉
)

= 1 . (3.52)

Note that we can apply the elements CS and S to the two vectors in this equa-

tion, and get the same gluing of the tori. Suppose that the S-transformation of the

state |ta, tb〉 gives the state |t−1
b , ta〉 with some factor f(ta, tb). It then follows that

f(ta, tb)f(t−1
a , tb) = 1. The function f should be holomorphic, and can only have

zeros or singularities at ta or tb equal to 0, 1 or in�nity. However, 1 is excluded

by the equation above. Then, f can only be a monomial in powers of ta, but this

possibility is excluded by the charge conjugation symmetry. We conclude that the
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vectors |ta, tb〉, de�ned as in (3.51), transform under the modular group according

to (3.49). (We did not exclude the possibility of non-trivial t-independent phases in

(3.49), but there seem to be no possible candidates for such phases.)

As a check of the modular transformations that we have described, consider a

Hopf link, formed by two unknots with some operators Lta, n and Ltb,m in S3. Up

to powers of t•, which depend on the framings, the invariant for this con�guration

is equal to the same scalar product (3.52), that is, to one. This is the correct result

for the Alexander polynomial of the Hopf link. In the discussion of the Hilbert space

of empty S2, we have de�ned a local operator O1. Now we can give it a geometric

interpretation26: it can be obtained by inserting a small Hopf link of loop operators

of type Lt, n.

3.5.3.3 Other Line Operators

Consider again the same solid torus, and put a line operator Ln along the b-cycle27.

We �rst assume that tb 6= 1, so that the resulting state is |Ln, tb〉 = tnb g(tb)|1, tb〉, for

some holomorphic function g(t). To �x it, note that the invariant for S1 × S2 with

holonomy tb around S
1 can be represented by

τ(S1 × S2, tb) = (|L0, tb〉, |L0, tb〉) = g2(tb) . (3.53)

On the other hand, it is equal to (t
1/2
b − t

−1/2
b )−2, so we �nd that g(tb) = 1/(t

1/2
b −

t
−1/2
b ), and therefore

|Ln, tb〉 =
1

1− t−1
b

t
n−1/2
b |1, tb〉 . (3.54)

26This operator can be given yet another interpretation. Consider cutting out a small three-ball,

and gluing in a non-compact space, which is the complement of the three-ball in R3. The zero-modes

of the ghosts cannot freely �uctuate in such geometry, so, this construction produces the desired

operator. We can also give arbitrary non-zero vevs C0 ∈ C2 to the �elds C in the asymptotic region.

This would produce the operator λ+λ−δ(4)(C − C0, C − C0).
27These operators di�er from the vacuum just by a factor of tn, so, we would loose nothing by

considering only n = 0. But we prefer to keep general n, because it will be helpful, when we come

to the U(1|1) theory.
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Figure 3.6: The anticommutation relation for the modes of A+ and A−, written geometri-

cally.

Using this, we can �nd the Milnor torsion for an unknot in S3. This invariant is equal

to

(|Lt ,n, 1〉,S|L0, t〉) =
1

t1/2 − t−1/2
, (3.55)

which is the correct result. (One can get rid of the half-integer power of t by choosing

a di�erent framing.) Another application is to �nd the degeneration of the operator

Lt ,n in the limit t→ 1. From (3.51) and (3.54) we �nd

lim
t→1

Lt, n = Ln − Ln−1 , tb 6= 1 . (3.56)

(This formula is valid only in the sector tb 6= 1, that is, in presence of a non-trivial

holonomy along the line operator.) This relation, when applied to invariants of links

in the three-sphere, is known as the Torres formula [118].

Now, consider the case that tb = 1, so that Ln is inserted inside a solid torus with

no background holonomy. The parameter n then does nothing, and the resulting

state corresponds just to the empty torus. We want to identify the corresponding

state |vac〉 in H1,1. In the ghost Hilbert space, it is the vector v0, as de�ned in section

3.5.1. In the gauge �elds Hilbert space, it is some vector from (3.50), which should

have zero charge and should be invariant under the T -transformation. The vector

with these properties is |0a〉, so we �nd

|Ln, 1〉 = |vac〉 = v0 ⊗ |0a〉 . (3.57)

Let us also give a geometrical interpretation to some other states in H1,1. For

that, we simply need to write the modes A±a,b, used as the creation and annihilation

operators in (3.50), as integrals of A± over di�erent cycles. The anticommutation
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Figure 3.7: By inserting the operator
∮
C1
A+
∮
C2
A−, with cycles C1 and C2 shown on the

�gure, one obtains the state T pS|vac〉 = (S + p)|vac〉, with p equal to the number of times

the cycles wind around each other.

Figure 3.8: a. A relation that follows from one-dimensionality of the Hilbert space of a

sphere with two marked points. b. The con�gurations on the left and on the right are

proportional with some coe�cient.

relation for these operators is equivalent to a geometrical identity, shown on �g. 3.6.

To obtain the state v0 ⊗ |−1〉, one inserts into the empty solid torus the operator∮
b
A−, e�ectively undoing the action of A+

a in (3.50). Similarly, the states v0⊗|0b〉 and

v0⊗|+1〉 can be obtained by inserting operators
∮
b
A+

∮
b
A− and

∮
a
A+, respectively.

On �g. 3.7, we show the operators needed to create the neutral states, which are

obtained by applying transformations T p to the S-transform of the vacuum.

3.5.3.4 OPEs of Line Operators

We would like to �nd the OPEs of our line operators. For products involving the

atypical operator Ln, the OPE is trivial: such an operator simply shifts the value of n

for the other operators, with which it is multiplied. More interesting are the products

of the typical operators Lt, n. To �nd their OPE, we will need the relation of �g. 3.8a.
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It can be derived from the fact that the Hilbert space of the two-punctured sphere is

one dimensional, and from comparison of the invariants for two linked unknots and

for a single unknot in S3.

To derive the expansion for the product Lt1, n1 × Lt2, n2 , we place two parallel

operators along the b-cycle inside a solid torus, and look at the resulting state on

the boundary T 2. Assuming that t1t2 6= 1, the Hilbert space for the torus with

this insertion is one-dimensional, and the state created by the insertion of the two

operators is proportional to the state created by Lt1t2, n1+n2 , with some proportionality

coe�cient f , which in general can be a holomorphic function of t1, t2, and also of

the holonomy tb of the background bundle along the b-cycle of the torus. To �x this

coe�cient, consider the con�guration on �g. 3.8b. To get from the l.h.s. to the r.h.s.,

one can apply the relation of �g. 3.8a twice, or one can �rst fuse Lt1, n1 and Lt2, n2 ,

and then apply the relation once. The two ways of reducing the picture should be

equivalent, and this �xes the proportionality factor f , mentioned above, to be equal

to 1− t−1
b . This leads to the following OPE,

Lt1, n1 × Lt2, n2 = Lt1t2, n1+n2 − Lt1t2, n1+n2−1 . (3.58)

(Here we absorbed a factor of t−1
b into the shift n1 + n2 → n1 + n2 − 1.)

Now let us turn to the more subtle case of t1t2 = 1. Let us write the OPE as

Lt, n1 × Lt−1, n2
= LP, n1+n2 , (3.59)

where LP, n is some new line operator, to be determined. Again, assume that the

operators Lt, n1 and Lt−1, n2
lie along the b-cycle of a solid torus. In the sector tb 6= 1,

the Hilbert space on T 2 with this insertion is one-dimensional, and one can apply the

same arguments that we used above. The result is

LP, n1+n2 = Ln1+n2 − 2Ln1+n2−1 + Ln1+n2−2 , tb 6= 1 , (3.60)

where we applied the relation (3.56) to the OPE (3.58). For tb = 1, the product

Lt, n1×Lt−1, n2
creates some state |LP, n1+n2 , 1〉 in the Hilbert space H1,1. In the ghost

sector, this state is v1 (in the notations of sec. 3.5.1), since the singularities in Lt, n1
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and Lt−1, n2
do not allow the ghosts to �uctuate. We also need to �nd, what linear

combination of the states (3.50) of the fermionic gauge �elds is created by LP, n1+n2 .

For that, we note that gluing a solid torus with the operator LP, n1+n2 to an empty

solid torus produces S1×S2 with two line operators Lt, n1 and Lt−1, n2
along S1. The

corresponding invariant is equal to one, so

(|LP, n1+n2 , 1〉, v0 ⊗ |0a〉) = 1 . (3.61)

On the other hand, if we glue the same tori, but with transformation S sliced in

between, we get a three-sphere with two unlinked unknots Lt, n1 and Lt−1, n2
inside.

The invariant for this con�guration is zero, so

(|LP, n1+n2 , 1〉, v0 ⊗ |0b〉) = 0 . (3.62)

From the two equations above, we �nd that

|LP, n1+n2 , 1〉 = v1 ⊗ |0b〉 . (3.63)

Thus, the line operator LP, n, which can be obtained from the OPE of Lt, n1 and

Lt−1, n2
, is de�ned by (3.60) in the sector tb 6= 1, and by (3.63) in the sector tb = 1.

The set of line operators Lt, n, Ln and LP, n for di�erent values of n and t 6= 1

forms a closed operator algebra. The OPEs of operators LP, n with themselves and

with Lt, n follow from (3.58) and (3.59) by associativity.

3.5.3.5 A Comment On Indecomposable Representations

It is convenient to think of the operators Lt, n as of Wilson lines, coming from the typ-

ical representations of the u(1|1) superalgebra, though, of course, this will be literally

true only in the U(1|1) theory, and not in psl(1|1). The OPE (3.58) of these operators

agrees with the tensor product decomposition (3.28) of the typical representations.

For the second OPE (3.59) to agree with (3.29), we have to assume that the line

operator LP, n is actually the Wilson line for the indecomposable representation Pn,

de�ned in �g. 3.1. This statement makes sense already in the psl(1|1) theory, since Pn

is also a representation of pl(1|1). In (3.60) we found that LP, n reduces in a special
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case to a sum of atypical line operators Ln. Comparing this statement to �g. 3.1,

we see that it agrees with the decomposition that one would expect to happen for

the Wilson loop in representation Pn. (Recall that Wilson loops in reducible inde-

composable representations are naively expected to decompose into sums of Wilson

loops for irreducible representations.) But we also note that this decomposition does

not hold always. Indeed, if it were true also in the sector tb = 1, the r.h.s. of (3.60)

would tell us that LP,n is identically zero in that sector, which is not correct, since for

tb = 1 the operator LP,n actually produces a non-zero state v1 ⊗ |0b〉. This state can

be obtained by inserting the operators
∮
A+ and

∮
A−, as shown on �g. 3.7, together

with the local operator O1, to produce the ghost wavefunction v1. It is tempting

to speculate that this combination of operators should arise as some point-splitting

regularization of the Wilson loop in representation Pn, but we do not know, how to

make this statement precise.

If the typical operators Lt, n are thought of as Wilson lines in the typical repre-

sentations (w, n), then their limit for t→ 1 should correspond to Wilson lines in the

(anti-)Kac modules (0, n)±, introduced on �g. 3.1. The Torres formula (3.56) then

says that the Wilson loops in these indecomposable representations actually reduce

to sums of Wilson loops Ln for the irreducible building blocks of the indecompos-

ables. This statement, again, is true in the sector tb 6= 1. For tb = 1, one should

�nd some independent way to �x the state in H1,1, produced by the operator L1, n.

More precisely, since there are two di�erent versions (0, n)+ and (0, n)− of the limit

of (w, n) for w → 0, one would expect that there are two versions L1,n,+ and L1,n,−

of the operator limt→1 Lt,n, which produce two di�erent states in H1,1. We are not

sure, what these states are.28.

The general situation with Wilson loops in reducible indecomposable representa-

tions is the following. It is consistent to assume that they do split into sums of Wilson

28One possible guess would be that L1,n,+ for tb = 1 is equivalent to λ−δ(2)(C−, C
+

)
∮
A+, and

similarly for L1,n,−, with plus and minus indices interchanged. The reason is that this combination

is U(1)fl-invariant, and depends only on A+, and not on A−, as the Wilson line in representation

(0, n)+ should.
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loops Ln, if the background monodromy tb along the knot is non-trivial. When tb = 1,

one has to �nd some independent way to determine, what states in H1,1 they produce.

For Pn, we used the OPE of two typical operators, and for the (anti-)Kac modules

(0, n)±, one could possibly use the relation to the degeneration limit of the typical

operators. But for general indecomposable representations, there seems to be no nat-

ural way to determine the state in H1,1, and therefore it does not make much sense

to consider such Wilson loops as separate operators at all.

3.5.4 U(1|1) Chern-Simons

Since the U(1|1) theory is the Zk-orbifold of the psl(1|1) Chern-Simons, it is com-

pletely straightforward to write out its Hamiltonian quantization, once it is known for

psl(1|1). For that, one simply needs to restrict to states with U(1)fl-charge divisible

by k, and to sum over winding sectors.

For illustration, we consider explicitly the torus Hilbert space. The windings

around the two cycles will be labeled by integers w and w′, which we take to lie in

the range 0 ≤ w,w′ ≤ k − 1. The corresponding holonomies are tw = exp(2πiw/k)

and tw′ = exp(2πiw′/k). Let H0,0 be the Zk-invariant subspace of the psl(1|1) zero-

winding Hilbert space H1,1, and let Hw,w′ ≡ Htw,tw′
be the one-dimensional Hilbert

spaces in the sectors with windings w and w′. The Hilbert space of the U(1|1) theory

on T 2 is the direct sum HT 2 = ⊕w,w′Hw,w′ .

To �nd the states that are created by loop operators Lw, n, Ln and LP, n, we take

corresponding states in the psl(1|1) theory, set the longitudinal holonomy tb to be

equal to exp(2πiw′/k), and sum over the winding sectors w′ = 0, . . . k − 1. Setting

|w,w′〉 ≡ |tw, tw′〉, from the equations (3.51), (3.54), (3.57), (3.60) and (3.63) we �nd

|Lw,n〉 =
k−1∑
w′=0

exp(2πi(n− 1/2)w′/k)|w,w′〉, w 6= 0 ;

|Ln〉 = v0 ⊗ |0a〉+
1

2i

k−1∑
w′=1

exp(2πinw′/k)

sin(πw′/k)
|0, w′〉 ;

|LP,n〉 = v1 ⊗ |0b〉+ 2i
k−1∑
w′=1

sin(πw′/k) exp(2πi(n− 1)w′/k)|0, w′〉 . (3.64)
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The parameter n is periodic with period k, and we take it to belong to the interval

0 ≤ n ≤ k − 1. If we project out the subspace H0,0, the states |Ln〉 and |Lw,n〉

with n = 0, . . . k − 1, w = 1 . . . k − 1, corresponding to a restricted set of irreducible

representations, would form a basis in the remaining Hilbert space. This is what one

would have in the ordinary, bosonic Chern-Simons theory. In the full Hilbert space

HT 2 , the states created by the line operators that we have discussed do not form a

basis. More precisely, it is not even clear, what one would mean by such a basis, due

to the rather weird nature of H0,0.

The bilinear product of states in U(1|1) theory is 1/k times the product in the

psl(1|1) theory, where the factor 1/k comes from eq. (3.37). In particular, we have

(|w,w′〉, |w̃, w̃′〉) =
1

k
δw+w̃mod k, 0 δw′−w̃′mod k, 0 , (3.65)

and therefore

(|Lw,n〉, |Lw̃,ñ〉) = δw+w̃mod k, 0 δn+ñ−1 mod k, 0 . (3.66)

Let us look at the modular properties of the states, created by the line operators.

Under the transformation T , the state |w,w′〉 transforms into |w,w′ − w〉. The

operator Lw, n thus picks a phase exp(2πiw(n−1/2)/k). The combination w(n−1/2)

is the quadratic Casimir for the typical representation (w, n), and the framing factor

that we got is what one would expect from the conformal �eld theory. The operator

Ln is invariant under T . The operator LP, n does not transform with a simple phase,

but rather is shifted as

T |LP,n〉 = |LP, n〉+ v1 ⊗ |0a〉 . (3.67)

Geometrically, the reason is that the operator, which de�nes the state |0b〉, is given by

integration of A+ and A− over the contours of �g. 3.7. Under the T -transformation,

the winding number of the two contours changes. We note that in the sector H0,0 the

operator T is not diagonalizable. This is the signature of the logarithmic behavior of

the CFT, which presumably corresponds to our Chern-Simons theory.

Under the modular transformation S, the state |Lw, n〉 changes into
∑

R′ S
R′
w,n|LR′〉
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with

Sw
′n′

w,n =
1

k
exp(−2πi((n− 1/2)w′ + (n′ − 1/2)w)/k) , (3.68)

Sn
′

w,n =
2i sin(πw/k)

k
exp(−2πin′w/k) . (3.69)

The other line operators transform as S|Ln〉 = v0⊗|0b〉+
∑

R′ S
R′
n |LR′〉 and S|LP,n〉 =

−v1 ⊗ |0a〉+
∑

R′ S
R′
P,n|LR′〉, with

Sw
′,n′

n = − 1

2ik sin(πw′/k)
exp(−2πinw′/k) , (3.70)

Sw
′,n′

P,n = −2i sin(πw′/k)

k
exp(−2πi(n− 1)w′/k) (3.71)

Modular transformations very similar to (3.68)-(3.71) were previously derived in the

U(1|1) WZW model in [60]. There are, however, some di�erences. The transfor-

mations most similar to ours, but with H0,0 part omitted, are called �naive� in that

paper. A slightly di�erent version of transformations is derived using a particular reg-

ularization, whose role is essentially to avoid dealing with H0,0. (The Chern-Simons

interpretation of this regularization is explained on �g. 11-12 of that paper.) We will

not attempt to rederive the modular transformations with the regularization of [60],

since in our approach a regularization is not needed.

3.6 Some Generalizations

In this section, we make some brief comments on supergroup Chern-Simons theories

other than psl(1|1) or U(1|1). Much of what we are going to say here is a summary

of results of [1]. The reason we decided to make this summary is that there, the

focus was not on the three-dimensional, but on the analytically-continued version of

the theory. Here we would also like to emphasize the importance of coupling to a

background �at bundle. Our understanding of the supergroup Chern-Simons theories

is very limited, and this section will contain more questions than answers.
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3.6.1 De�nition And Brane Constructions

To de�ne a supergroup Chern-Simons theory, one needs to choose a complex Lie

superalgebra g, which possesses a non-degenerate invariant bilinear form. The bosonic

and the fermionic parts of g will be denoted by g0 and g1, respectively. One also needs

to choose a real form gR
0
for g0, and a global form G0 for the corresponding ordinary

real Lie group29. A real form for the whole superalgebra g is not needed. The action

of the theory is the usual Chern-Simons action, except that the gauge �eld is a sum of

an ordinary gR
0
-valued gauge �eld and a Grassmann g1-valued one-form. The action

is multiplied by a level k, whose quantization condition is determined by the global

form G0, as in the usual Chern-Simons theory. More precisely, the fermionic part of

the action can have a global anomaly, in which case the quantization condition for

k should be shifted by 1/2, to cancel the anomaly. To state exactly what we mean

by k, we have to specify the regularization scheme. In �at space, one can make the

path-integral absolutely convergent by adding a Yang-Mills term, at the expense of

breaking the supersymmetry from N = 4 to N = 3. The Chern-Simons level then

receives no one-loop renormalization. By k we mean this �quantum-corrected� level30.

An equivalent de�nition of k is by a brane construction, which is presented below.

On a curved space, the correct treatment of the theory at one-loop is not entirely

clear (see e.g. Appendix E of [1].)

By analogy with the ordinary Chern-Simons theory, one can de�ne an �uncor-

rected� level k′ by

k = k′ + |hg| sign(k′) , (3.72)

where hg is the dual Coxeter number of the superalgebra. One expects that this k
′ is

the level of the current algebra, which one would �nd in the Hamiltonian quantization

29One could also imagine de�ning a complex supergroup Chern-Simons theory, in which the

bosonic gauge �elds would be valued in the complex Lie algebra g0, and the fermions � in two

copies of g1. More generally, it should be possible to de�ne quivers of supergroup Chern-Simons

theories, as mentioned in section 2.2.6 of [1].
30Note that we changed notations slightly compared to chapter 2. What we call k here is equal

to what was called K in that chapter.
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Figure 3.9: Brane construction for an N = 4 Gaiotto-Witten theory. The complexi�ed

type IIB string coupling should belong to a semicircle of radius k, as shown on the left.

The relative displacement φa of the two (1, k)-branes is the SU(2)X -triplet of masses. The

D3-branes are shown slightly displaced along the direction of the NS5-brane just for clarity

of the picture.

0 1 2 3 4 5 6 7 8 9

D3 X X X (X) − − − − − −

NS5 X X X − X X X − − −

(1, k) X X X − − − − X X X

Table 3.1: Details on the brane con�guration of �g. 3.9. The D3-branes span a �nite interval

in the third direction. The R-symmetry groups SU(2)X and SU(2)Y act on the directions

456 and 789, respectively.

of the theory, but that remains to be shown. We note that, while k can be a half-

integer, with de�nition (3.72) k′ is always an integer.

Completely analogously to the psl(1|1) case, the fermionic part of the gauge sym-

metry can be globally gauge-�xed. This introduces g1-valued bosonic superghost C

and antighost C, as well as a fermionic g1-valued Lagrangian multiplier λ. Observ-

ables of the topological theory are then in the cohomology of a BRST charge Q. This

partial gauge-�xing procedure for supergroup Chern-Simons was �rst described in

[24].

As was found in [24], supergroup Chern-Simons theories can be obtained by topo-

logical twisting from the N = 4 Chern-Simons-matter theories of [23]. For unitary

and orthosymplectic gauge groups, the latter can be engineered in type IIB string

theory by brane constructions [119], [120], [121]. For the U(m|n) theory, the brane
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con�guration is shown on �g. 3.9. Table 3.1 shows, in which directions the branes

are stretched. For eight supersymmetries to be preserved, the complexi�ed type IIB

coupling should lie on a semicircle of radius k, as shown on the left of �g. 3.9. The

coupling constant can thus be of order g2 ∼ 1/k, so, the theory has a well-de�ned

perturbative expansion in 1/k. The level k for U(m|n) should satisfy the general-

ized s-rule condition |k| ≥ |n −m|, and otherwise the theory breaks supersymmetry

[36], [119], [122], [123]. One can also turn on an SU(2)X-triplet of masses φa, which

correspond in the brane picture to the relative displacement of the (1, k)-branes in

directions 456, as shown on �g. 3.9. For this deformation to preserve supersymmetry,

the generalized s-rule requires |k| ≥ max(m,n).

Let us also discuss brane construction for the orthosymplectic theories. For that,

we add an orientifold three-plane to the con�guration of �g. 3.6.3. (For a review of

orientifold planes, see [25], [26], or section 2.5.1.) Recall that the orientifold three-

planes have two Z2-charges, one of which is usually denoted by plus or minus, and the

other by a tilde. Upon crossing a (p, q)-�vebrane, the type of the orientifold changes:

if p mod 2 6= 0, then plus is exchanged with minus, and if q mod 2 6= 0, then the tilde

is added or removed. A possible con�guration is shown on �g. 3.10. In the interval

between the two (1, k)-�vebranes, the gauge group is O(2m+1) on the left and Sp(2n)

on the right. The leftmost and rightmost orientifold planes on the �gure have a tilde,

if k is even, and do not have it, if k is odd. If the Õ3
−
-plane would appear on the far

right, the theory would have an extra three-dimensional hypermultiplet, coming from

the fundamental strings that join the D3-branes and the Õ3
−
-plane. That would give

a theory di�erent from what we want. Therefore, we have to take k to be an odd

integer. In the OSp(2m+ 1|2n) Chern-Simons, we normalize the action to be

kosp
4π

∫
Str

(
AdA+

2

3
A3

)
, (3.73)

where Str is the supertrace in the fundamental representation of the supergroup. Here

kosp = k/2, where the factor of 1/2 comes from the orientifolding. Let us call a bosonic

Chern-Simons term canonically-normalized, if it transforms by arbitrary multiples of

2π under large gauge transformations, assuming that the gauge group is connected
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Figure 3.10: The brane construction for the N = 4 Gaiotto-Witten theory, which upon

twisting would give OSp(2m+ 1|2n) Chern-Simons. The leftmost and rightmost orientifold

planes are Õ3
±
, if k is even, and O3±, if k is odd.

and simply-connected. With the normalization (3.73), the level kosp multiplies the

canonically-normalized Chern-Simons term for the Sp(2n) subgroup, and twice the

canonically-normalized action31 for Spin(2m+ 1). From what we have said about the

brane con�guration, we see that k is odd, and thus kosp ∈ 1/2 + Z. Therefore, the

Sp(2n) part of the bosonic action is anomalous under large gauge transformations.

But that precisely compensates for the anomaly for 2m + 1 hypermultiplets in the

fundamental of Sp(2n), so, the theory is well-de�ned. For any supergroup Chern-

Simons theory, one expects the analog of the s-rule to be |kg| ≥ |hg|. This is equivalent

to the requirement that k′g, as de�ned in (3.72), does exist. For OSp(2m+ 1|2n), this

condition reads as |k| ≥ |2(n−m) + 1|.

For the even orthosymplectic group OSp(2m|2n), the brane con�guration is shown

on �g. 3.11. To avoid having an Õ3
−
-plane and an extra hypermultiplet, this time we

have to take k to be even, and therefore kosp = k/2 is an arbitrary integer, consistently

with the fact that the fermionic determinant has no global anomaly. The generalized

s-rule is |k| ≥ 2|n−m+ 1|.

3.6.2 Some Properties

Importantly, for Lie superalgebras there exist automorphisms, which commute with

the bosonic subalgebra. For the so-called type I superalgebras, the group of these

31More precisely, this is true for m > 1. For m = 1, it is four times the canonically-normalized

action.
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Figure 3.11: The brane construction for the N = 4 Gaiotto-Witten theory, which upon

twisting would give OSp(2m|2n) Chern-Simons. The leftmost and rightmost orientifold

planes are O3±, if k is even, and Õ3
±
, if k is odd.

automorphisms is U(1). Type I superalgebras are gl(m|n), together with the sub-

quotients sl and psl, and the orthosymplectic superalgebras osp(2|2n). The fermionic

part g1 for type I decomposes under the action of g0 into a direct sum of two represen-

tations. The U(1)-automorphism acts on them with charges ±1. For superalgebras of

type II, which are all the other superalgebras, the relevant group of automorphisms is

only Z2. It acts trivially on g0, and �ips the sign of elements of g1. In Chern-Simons

theory, one can use these automorphisms to couple the theory to a background �at

connection. For type I, this can be a complex �at line bundle, just as we found for

psl(1|1) and U(1|1). The partition function of the theory depends on the background

complex �at connection holomorphically. In �at space, the imaginary part of the

background �at connection can be identi�ed with the SU(2)X-triplet of masses, men-

tioned above. For a theory with a type II superalgebra, the background bundle can

only be a Z2-bundle. Equivalently, one can assign antiperiodic boundary conditions

around various cycles of the three-manifold for the g1-valued �elds.

Line observables of the supergroup Chern-Simons theory include Wilson lines in

various representations of the supergroup, as well as vortex operators, which are

expected to be equivalent to the Wilson lines, at least modulo Q. One can also

construct twist line operators by turning on a singular holonomy for the background

�at gauge �eld, as we did in simple examples in the present chapter. For special values

of the holonomy, those operators can be equivalent to ordinary vortex operators.

Consider the theory on R3, or other space with three non-compact directions, and
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assume that the background �at bundle was turned o�. It is then possible to give

vevs to the scalar superghost �elds C and C and to partially Higgs the theory. For

example, the U(m|n) gauge supergroup can in this way be reduced down to U(|n−m|).

(In the brane picture, this corresponds to recombining a number of D3-branes and

taking them away from the NS5-brane in the directions 789.) Since the superghosts

appear only in Q-exact terms, this procedure does not change the expectation values

of observables in the Q-cohomology. By this Higgsing argument one can see that the

expectation values of Wilson loops vanish for almost all representations, except for

the maximally-atypical ones. The classes of maximally-atypical representations are

in a natural correspondence with representations of U(|n−m|), and the Wilson loops

in those representations reduce to Wilson loops of the ordinary, bosonic U(|n −m|)

Chern-Simons theory upon Higgsing. Thus, on R3 the U(m|n) supergroup theory does

not produce new knot invariants. (A similar story holds for other supergroups32.) It

is however interesting to turn on a background �at bundle, which in �at space means

just a constant SU(2)X-triplet of mass terms. Looking at the brane picture, one

would expect that for large φa the U(m|n) theory would reduce to U(m) × U(n)

Chern-Simons. If this were true, then, in particular, we would have a knot invariant,

which interpolates between the U(|n−m|) and the U(m)× U(n) invariants. This is

certainly very puzzling. Unfortunately, we cannot test this in the simple examples

considered in this chapter, since the atypical representations of U(1|1) do not produce

non-trivial knot invariants.

On a compact closed three-manifold, the theory has both bosonic and fermionic

zero modes. To get a well-de�ned invariant, one needs to turn on a background �at

bundle. The partition function is then a holomorphic function thereof. Alternatively,

one can insert loops with vortex operators. As discussed in section 2.3.2, to remove

all the zero modes by a single vortex operator, it has to be labeled by a typical weight

32Almost all supergroup Chern-Simons theories can be reduced in this way to bosonic Chern-

Simons. One exception is the series OSp(2m + 1|2n), which can be Higgsed only to OSp(1|2n).

However, we found in section 2.5.5 that the analytically-continued version of OSp(1|2n) Chern-

Simons is dual to the ordinary Chern-Simons with gauge group O(2n+ 1).
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Figure 3.12: The S-dual of the brane con�guration, which describes the U(m|n) Chern-

Simons theory.

of the superalgebra.

3.6.3 Dualities

The con�guration of �g. 3.9 is clearly similar to the brane contruction for the analytically-

continued theory, discussed in Chapter 2. If we moved the (1, k)-branes along the third

direction away to in�nity, we would recover precisely the con�guration studied in [6]

and in the previous Chapter. In the language of the analytically-continued theory, the

role of the (1, k)-branes is to choose the real integration contour for the path-integral.

Indeed, the �uctuations of the D3-branes in the directions 456 are described in the

4d N = 4 Yang-Mills theory by three components of the adjoint-valued scalar �eld.

Upon twisting, those become the imaginary part of the gauge �eld of the analytically-

continued Chern-Simons theory. At the positions of the (1, k)-branes these �elds are

set to zero, which means that we are working with the real integration contour.

Having a brane construction, one can apply various string theory dualities. In

the analytically-continued Chern-Simons, it has been shown that the S-dual theory

gives a new way to compute the Chern-Simons invariants [6], [74]. One might ask,

whether we can obtain anything useful by considering the S-dual of our con�guration

of �g. 3.9, which is shown on �g. 3.12. Unfortunately, this does not seem to be the

case, beyond the duality for the psl(1|1) and U(1|1) theory, which has been considered

in previous sections.

The problem is that the S-dual con�guration of �g. 3.12 contains D3-branes ending

on (k, 1)-�vebranes. The low energy �eld theory for such a �tail� has been described in
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Figure 3.13: The interaction of n D3-branes with a (k, 1)-brane is described by coupling

the D3-brane gauge �elds to the T (U(n)) theory via the U(n) symmetry of the Higgs branch

of T (U(n)), and gauging the Coulomb branch of T (U(n)) with a U(n) Chern-Simons gauge

�eld at level k.

Figure 3.14: A brane con�guration, which produces a free U(n)×U(m) bifundamental

hypermultiplet. There are m and n D5-branes on the left and on the right, arranged so as

to impose the Dirichlet boundary condition in the 4d N = 4 Yang-Mills theory.

[29], and is shown on �g. 3.13. The U(n) gauge theory of n D3-branes is coupled to the

Higgs branch of the three-dimensional theory T (U(n)), the Coulomb branch of which

is gauged by a level k Chern-Simons gauge �eld. The T (U(n)) theory with non-abelian

symmetries of the Coulomb branch gauged does not have a Lagrangian description,

and therefore the con�guration of �g. 3.12 does not seem to be particularly useful for

the purpose of studying supergroup topological invariants.

More precisely, there exists one case, where gauging the Coulomb branch of

T (U(n)) is easy [29] � namely, n = 1. Using the description of this case in [29],

one can readily see that the con�guration of �g. 3.12 for m = n = 1 gives the mirror

of U(1|1) Chern-Simons, which was considered in section 3.4.4.

One can alternatively view the mirror transformation of the U(m|n) theory as

follows. We represent the bifundamental hypermultiplet of the U(m|n) theory as the

IR limit of the Coulomb branch of some UV theory, and then couple it to bosonic

Chern-Simons gauge �elds. The relevant UV theory can be found by replacing the

(1, k)-�vebranes on �g. 3.9 by a bunch of D5-branes, so as to impose the Dirichlet
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Figure 3.15: A quiver gauge theory, which is obtained by S-duality and a sequence of

Hanany-Witten moves from the brane con�guration of �g. 3.14.. We follow the notations of

[29]: the circles denote unitary gauge groups, the square is the fundamental hypermultiplet,

and connecting lines are bifundamental hypermultiplets.

boundary condition (see �g. 3.14), and then applying the S-duality and making some

Hanany-Witten moves. (For n = m = 1, this procedure would give the psl(1|1)

theory and its mirror.) The resulting UV theory is given by the quiver of �g. 3.15.

It is an �ugly� quiver, in the terminology of [29]. As demonstrated in section 2.4

of that paper, it has nm monopole operators, which in the IR give rise to nm free

hypermultiplets, as expected.

Again, this description is not useful for non-abelian supergroup Chern-Simons

theories, since the non-abelian symmetry of the Coulomb branch of the quiver emerges

only in the IR. We can nevertheless play a game similar to what we did for the single

hypermultiplet. We can couple the quiver theory to n+m−1 �at GL(1) gauge �elds,

using the dual photon translation symmetries and FI terms of the UV theory. On the

one hand, it is clear from the IR theory that the resulting invariant is a product of

nm abelian torsions. On the other hand, it can be computed by solving non-abelian

Seiberg-Witten equations33 for the quiver of �g. 3.15. One expects that the solutions

to those equations, in the limit of large FI terms, can be obtained by embedding nm

solutions of the abelian equations, so as to reproduce a product of abelian torsions.

Since, anyway, this invariant does not produce anything new, we will not consider it

in more detail.

33Those equations are completely analogous to the abelian ones, and are written out in

Appendix3.7.
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There is one last case, where the mirror symmetry can be useful for supergroup

Chern-Simons. This is when the level k is equal to one. The reason is that a (1, 1)-

�vebrane can be related by S-duality, say, to a D5-brane, while preserving the NS5-

brane in the con�guration of �g. 3.9. The generalized s-rule requires in this case that

|n−m| ≤ 1. By applying a further S-duality, the theory can be mapped to an N = 4

Yang-Mills with no matter or with a single fundamental hypermultiplet. In this way,

e.g., the U(n|n) Chern-Simons theory at level one would be related to the non-abelian

U(n) Seiberg-Witten equations. The problem, however, is that the s-rule in this case

does not allow us to turn on a background �at bundle, except for the case of the

U(1|1) theory. Therefore, even if the mirror theory does compute some non-trivial

invariant, it will not be computable in the U(m|n) supergroup Chern-Simons. It is

possible that in the orthosymplectic OSp(2m+ 1|2n) case the situation is better, and

one can turn on a background Z2-bundle and get a non-trivial duality of invariants,

but we will not explore this here.

3.7 Appendix A: Details On The N = 4 QCD

Here we describe the �elds, the BRST transformations and the Lagrangian for the

topologically twisted N = 4 SQCD with one fundamental �avor. The bosonic �elds

of the theory are the gauge �eld A, the triplet of scalars, which we write as a complex

scalar σ and a real �eld Y1, and the hypermultiplet scalar �elds, which upon twisting

become a spinor Zα. The fermions of the vector multiplet transform in the (2, 2, 2)

representation of the Lorentz and R-symmetry groups, and upon twisting produce

fermionic scalars η and ψ̃ of ghost numbers −1 and +1, a one-form ψ of ghost number

+1, and a two-form χ of ghost number −1. The fermions of the hypermultiplet after

twisting remain spinors, and will be denoted by ζu (of ghost number +1) and ζv (of

ghost number −1).

The BRST transformations of the �elds can be obtained by dimensional reduc-
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tion34 from the formulas of Chapter 2,

δA = ψ , δσ = 0 , δσ = η , δY1 = ψ̃ , δZ = ζu

δη = i[σ, σ] , δψ = −dAσ , δψ̃ = i[σ, Y1] , δχ = H , δζu = iσZ , δζv = f .

Here µ = iZα ⊗ Zβσ
β
α is the moment map, and H and f are auxiliary �elds. The

equations of motion set H = F + ?
(
dAY1 + 1

2
µ− 1

2
e2φ
)
and f = /DZ + iY1Z, and the

Seiberg-Witten equations are

F + ?

(
dAY1 +

1

2
µ− 1

2
e2φ

)
= 0 , (3.74)

/DZ + iY1Z = 0 . (3.75)

The FI one-form φ is valued in the center of u(n). Here are a couple of useful identities,∫
d3x
√
γ

(
DiZαD

iZα + Zα

(
Y 2

1 +
1

4
R

)
Zα

)
=

∫
d3x
√
γ |f |2 −

∫
d3x
√
γ tr

(
Y1Diµ

i
)

+

∫
d3x tr (F ∧ µ) , (3.76)∫

d3x
√
γ tr

(
1

2
F 2
ij + (DiY )2 +

1

4
(µi − e2φi)

2 − e2φiDiY1

)
=

∫
tr (H ∧ ?H) +

∫
tr (F ∧ e2φ− F ∧ µ) +

∫
d3x
√
γ tr (Y1Diµ

i) . (3.77)

where R is the scalar curvature. These identities allow to rewrite the SQCD action

in the form (3.15)-(3.16). (Our normalization of the coupling constant is such that

the gauge �eld kinetic term is
∫

trF 2
ij/4πe

2.)

The action of the twisted theory in general contains the term Y1D
iφi, which breaks

the SU(2)Y -symmetry. This, in fact, is the same term that we saw in section 3.2.1 in

the electric theory. If d ?φ = 0, the symmetry is restored. For an irreducible solution

of the Seiberg-Witten equations, one then has Y1 = σ = σ = 0, and the equations

(3.74)-(3.75) can be simpli�ed to (3.19). For a more general φ, the �eld Y1 is non-zero

and can be found by applying dA to the equation (3.74).

We focused on the QCD with one fundamental �avor, but this twisting procedure

generalizes in an obvious way to an arbitrary quiver theory with vector multiplets

and hypermultiplets.

34Our notations here are slightly di�erent from Chapter 2 in that here the adjoint-valued �elds

are Hermitian. The covariant di�erential is dA = d+ iA.
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3.8 Appendix B: Boundary Conditions Near A Line

Operator

In general, in giving a de�nition of a disorder operator, one needs to specify the

boundary conditions for the �elds near the singularity, to ensure that the Hamiltonian

in presence of the operator remains self-adjoint. (A closely related condition is that

in Euclidean signature the kinetic operator of the �elds should remain Fredholm.)

For that, the boundary conditions should satisfy two requirements. First, to verify

the Hermiticity of the Hamiltonian, one integrates by parts, and the boundary term

should vanish. Second, the boundary conditions should set to zero half of the modes

near the boundary. Here we would like to sketch these boundary conditions for our

disorder operators Lt, n, since we use them explicitly in section 3.5.2.2. (Note that

sometimes in similar problems there exist families of possible boundary conditions,

and this leads to important physical consequences [124], [125]. In our case, nothing

like this happens.)

We consider an operator Lt, n, stretched along a straight line in R3. The coordi-

nate along the operator will be denoted by t and will be treated as time, and the

polar coordinates in the transverse plane will be denoted by r and θ. For the back-

ground gauge �eld, we choose the gauge in which B is zero, but �elds with positive

U(1)fl-charge are multiplied by t in going around the operator. We assume t to be

unimodular and write it as t = exp(2πia), with a ∈ (0, 1).

For the scalar �eld C+, we want to impose a boundary condition with which the

two-dimensional Laplacian ∆ would be self-adjoint. The �eld can be expanded in

modes of di�erent angular momentum `, valued in a+Z. Near r = 0, the modes with

angular momentum ` behave like r±|`|. We impose the boundary condition C|r→0 = 0.

It actually implies that C vanishes at least as rmin(a,1−a). This boundary condition

has the required properties.

The Q transformations act as

δA0 = −∂tC , δA = −dC , δC = λ , (3.78)
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where we separated the fermionic gauge �eld into its time component A0 and com-

ponents A in the transverse plane. The boundary condition for the fermions, which

is compatible with vanishing of C and with Q-invariance, is to require that λ and A0

vanish at r = 0, and that A is less singular than 1/r, in an orthonormal frame. Then,

in fact, the �elds λ, A0 and rA vanish at least as rmin(a,1−a), and are square-integrable.

The fermionic Hamiltonian is the operator d+d∗ in two dimensions, acting on the �eld

A = A0 +A+ ?λ, where ? is the 2d Hodge operator. It is easy to see (on the physical

level of rigor) that with our boundary condition the Hamiltonian is self-adjoint. If

z = r exp(iθ) is the complex coordinate, then the operator reduces to 0 −∂

∂ 0

 , (3.79)

acting on the doublet ((A0 + iλ)/2, Az), plus a similar operator for the other pair of

�elds ((A0 − iλ)/2, Az). In verifying the Hermiticity of this operator, the boundary

term in the integration by parts vanishes. The boundary condition sets to zero a

minimal possible number of modes, so one expects that the operator is not only

Hermitian, but is self-adjoint.

3.9 Appendix C: Skein Relations For The Multivari-

able Alexander Polynomial

Here we derive two skein relations for the multivariable Alexander polynomial, which

are known [117] to de�ne it completely, together with the skein relation of �g. 3.4,

the normalization (3.55), the formula of �g. 3.8a, and the fact that the invariant is

zero for a disjoint link.

Consider the case of two strands, labeled by holonomies t1 and t2. The sphere

with four punctures t1, t
−1
1 , t2, t

−1
2 and two basis contours is shown on �g. 3.16a.

Upon performing a braiding transformation, which brings the marked point t2 around

the point t1, we arrive at the picture on �g. 3.16b. The contour C1 gets a factor of t1

in crossing the left cut. To compare to �g. 3.16a, we also need to move the right cut
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Figure 3.16: a. Two cuts and two basis contours for a four-punctured sphere. b. The result

of the braiding transformation. The contour C1 got multiplied by t1 in crossing the left cut.

It will also get a factor of t2, when the right cut is moved back to its place.

Figure 3.17: A skein relation for the multivariable Alexander polynomial.

back to its place. That will multiply the contour C1 by a factor of t2. Overall, the

transformation acts on the contours as C′1

C′2

 =

 t1t2 0

0 1

 C1

C2

 . (3.80)

Therefore, the state of U(1)fl-charge −1 transforms by a factor (t1t2)−1/2, and the

two U(1)fl-neutral states are transformed by a matrix with eigenvalues (t1t2)1/2 and

(t1t2)−1/2. (In taking a square root, we made a choice of sign such that the resulting

skein relation for t1 = t2 is consistent with �g. 3.4.) The skein relation that we �nd

is shown on �g. 3.17.

To completely characterize the multivariable Alexander polynomial, one more

skein relation is needed [117]. It relates seven three-strand con�gurations, shown

on �g. 3.18. The existence of this skein relation follows from the fact that the dimen-
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Figure 3.18: Braids for the 3-strand skein relation.

sion of the U(1)fl-invariant subspace of the Hilbert space of the six-punctured sphere,

according to (3.44), is
(

4
2

)
= 6.

We need to �nd the action of the braiding transformations of �g. 3.18 on the

four contours that generate the twisted homology of the six-punctured sphere. For

example, let us consider the link L2211. The basis contours and the result of the

braiding transformation are shown on �g. 3.19. On the contours C1 and C2 we put

cross-marks at some points, which are not moved in the transformation. At these

points the one-form, which is being integrated over the contour, is taken on the �rst

sheet, and on the rest of the contour it is de�ned by analytic continuation. The �rst

step in comparing �gures 3.19b and 3.19a is to bring the middle cut back to its place.

On the way, it will cross the contours C1 and C2, and that will multiply them by t2.

On �g. 3.20, we show the contour t2C2. We need to expand it in the new basis C′1

and C′2, which is shown by dashed lines. We start comparing the contours from the

cross-mark, and add a factor of t−1 each time we cross a cut counterclockwise around

a puncture t. We �nd

t2C1 = C′1 + C′2 + t−1
3 (−C′2 − C′1 + t−1

1 C′1) . (3.81)

Repeating the same steps for C2, and for each link from �g. 3.18, we �nd the braiding
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Figure 3.19: a. A particular choice of cuts and basis contours for the six-punctured sphere.

b. The result of the braiding transformation, corresponding to the link L2211.

Figure 3.20: Contour t2C1, which comes from C1 of �g. 3.19 after moving the middle cut

back to its place. We show the new basis contours C′1 and C′2 by dashed lines.
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matrices

B2112 = t3

 1 0

t2(t1 − 1) t1t2

 , B1221 = t1

 t2t3 t3 − 1

0 1

 ,

B2211 = t2

 t1 t1(1− t3)

1− t1 1− t1 + t1t3

 , B1122 = t2

 1− t3 + t1t3 t−1
2 (1− t3)

t2t3(1− t1) t3

 ,

B11 =

 t1t2 0

t2(1− t1) 1

 , B22 =

 1 1− t3

0 t2t3

 , B0 =

 1 0

0 1

 . (3.82)

Here we de�ned the matrices by (C′1,C
′
2)T = B(C1,C2)T . The contours C3 and C4 are

transformed trivially.

Let a+
1,2,3,4 be the four creation operators, obtained by integrating the fermionic

gauge �eldA+ over the corresponding contours. The Hilbert space of the six-punctured

sphere contains one state of charge −2, from which we build the other states by ap-

plying a+
• . The six neutral states, which we are interested in, are

a+
1 a

+
2 |−2〉,

a+
1 a

+
3 |−2〉, a+

2 a
+
3 |−2〉,

a+
1 a

+
4 |−2〉, a+

2 a
+
4 |−2〉,

a+
3 a

+
4 |−2〉 . (3.83)

The highest weight state |−2〉 transforms under braiding by a factor det−1/2B, and

therefore so does the state a+
3 a

+
4 |−2〉. The state a+

1 a
+
2 |−2〉 transforms by a factor

det1/2B. The states in the second and the third lines of (3.83) transform in doublets

by the matrix B det−1/2B. In total, for each braiding transformation, the 6 × 6

braiding matrix has 1 + 1 + 4 = 6 independent matrix elements. We can collect them

in a 7×6 matrix, in which the rows correspond to the diagrams of �g. 3.18. The null-

vector of this matrix will give us the skein relation. Let us set g±(t) = t1/2 ± t−1/2.

Using the explicit expressions for the braiding matrices (3.82), one �nds the skein

relation to be

g+(t1)g−(t2)L2112 − g−(t2)g+(t3)L1221 + g−(t1t
−1
3 )(L2211 + L1122)

+ g−(t2t3t
−1
1 )g+(t3)L11 − g−(t1t2t

−1
3 )g+(t1)L22 + g−(t2

1t
−2
3 )L0 = 0 . (3.84)
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This, indeed, is the correct skein relation for the multivariable Alexander polynomial.

Together with other relations and normalization conditions that we have found, it

�xes the knot invariant completely [117]. We should note, however, that we did not

explain, how to properly choose the square root of the determinant of the braiding

matrix in the transformation of the highest weight state. Thus, our derivation does

not allow to unambiguously �x relative signs of di�erent diagrams in the skein relation.
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