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Introduction

In their first seven years of running, the two experiments at the B-factories BABAR and Belle have
reached impressive results in their investigation on the Standard Model flavor sector.
The CP violation in the B meson decays has been clearly established, and the efforts of the two
collaboration are now concentrated on the attempt to over-constraint the Cabibbo-Kobayashi-
Maskawa quark mixing matrix through independent measurements of the Unitarity Triangle pa-
rameters, related to the B meson decay properties, and search for new physics effects.
Besides this primary goal, the high luminosity of PEP-II, coupled with the high acceptance of the
BABAR detector, allows competitive measurements not only in B-physics but also in other fields
such as hadron spectroscopy, charm and τ physics.

The work presented in this thesis, consists in the study of the properties of the a1 meson produced
in the B → D∗−a+

1 (a+
1 → π−π+π+) decay at the BABAR experiment.

First discovered as a ρπ resonance in pion-proton scattering, the axial vector meson a1 remained
an elusive prey due its large width and the presence of high physical backgrounds.
Two class of experiments, based on different production processes, have been performed to study
this particle: hadronic production experiments and τ → a1ντ decays. They give inconsistent
results on the measurements of the a1 pole mass and width (see section 3.3). For this reason the
Particle Data Group [13] does not quote a world average for these quantities but only provide a
conservative estimate:

mPDG
a1

= 1230 ± 40 MeV
ΓPDGa1

between 250 and 600 MeV.
(1)

Also the theoretical understanding of the a1 is not rigorous. Many models have been proposed
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[75, 49] to describe the line-shape and the resonant substructures, but none have provided an en-
tirely satisfactory description of the data. Additional experimental inputs are essential for a better
understanding of this system.

In this work, for the first time the a1 meson is studied through the B → D∗−a+
1 (a+

1 → π−π+π+)
process. The huge number of B’s produced at BABAR , together with the high branching ratio of
this decay and with the numerous kinematic constraints that can be applied in the B meson recon-
struction, make this channel a quite clean environment to study the a1 resonance.
We have performed a Dalitz plot analysis (based on the standard Isobar model described in section
5.2) of the 3 pions system produced in the B → D∗−π+ π+ π− decays. This kind of analysis al-
lows to reach to different purposes. The first one is to separate the a1 resonance from other possible
spin parity states that can contribute to the three pion mass spectrum: the resulting a1 mass distri-
bution is then used to determine the pole mass and the width of this particle. The second purpose
is the study of the substructures contributing to the a+

1 → π−π+π+ process providing information
on the strong decay dynamics.

In addition to the possibility to study the a1 meson, the B → D∗−a+
1 decay presents also other

reasons of interest, more strictly related to the B physics.
As recently suggested in [27], measuring the polarization amplitudes in the B → D∗−a+

1 decay
provides a test of the factorization assumption. Factorization represents one of the mostly used
tool to evaluate the hadronic matrix elements describing the QCD non-perturbative effects in the
B decays amplitudes. Despite this approach, and its extensions, was found to predict with good
accuracy several processes, there are cases where it fails and it is important to test it in depth in
order to verify its limits and improve our knowledge on the strong interactions effects in exclusive
weak decays of hadrons containing a b-quark.
Moreover the study of time dependent CP asymmetries in B → D∗a1 decays can be used to ex-
tract the weak phase (2β + γ), providing a further constraint on the Unitarity Triangle.

The present thesis is organized in five chapters.
Chapter 1 represents an introduction to the main topic actually under study at BABAR : the de-
termination of the Standard Model parameters through the measurements of the B meson decay
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properties.
Chapter 2 is devoted to a detailed description of the BABAR detector, built around the e+e− inter-
action region of the B-factory PEP-II.
Chapter 3 is an introduction to the study of the non-leptonic B → D∗−a+

1 mode. It contains a
summary on the current status of knowledge on the a1 meson and an introduction to the spin parity
analysis technique adopted to study the three pions system. Moreover the factorization test through
the polarization measurement and the measurement of (2β + γ) from the study of time dependent
CP asymmetries in B → D∗−a+

1 are discussed.
Chapter 4 contains a detailed description of the criteria adopted to select the B → D∗−a+

1 decay
and a discussion on the main discriminating variables used for background rejection and charac-
terization.
In chapter 5 it is described the spin parity analysis of the 3 pions system based on the Isobar
model. The results on the a1 substructure study and the measurement of the a1 mass and width are
presented.
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Chapter 1

B physics and the Standard Model

1.1 Introduction

This chapter is a theoretical introduction to the main topic actually under study by the BABAR

experiment: the determination of the Standard Model parameters through the measurements of the
B meson decay properties.
In section 1.2 is introduced the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes the
flavor-changing weak coupling between the quarks: in the Standard Model it contains the source
of CP-violation.
In section 1.3 the Unitarity Triangle is discussed. It represents the unitarity of the CKM matrix
in the b sector. The main goal of the experiments at the B -factories, Belle and BABAR , is to
over-constraint the position of the Unitarity Trianlge vertex by combining several independent
measurements of the B decays properties. The recent results on the Unitarity Triangle analysis are
reported in this section.
Section 1.4 discuss the time evolution of the neutral B meson and the so called B0B0 mixing. It
is also shown how CP violation manifests itself in time dependent asymmetries arising from the
interference between B decays with and without mixing.
The time dependent CP asymmetries can be directly related to the Unitarity Triangle angles, and,
in section 1.5, the concrete example of the sin(2β + γ) measurement in B → D (∗)h decays is
illustrated.

9



10 B physics and the Standard Model

1.2 The Standard Model and the CKM matrix

The Standard Model of particle physics [1] is a field theory, with local gauge symmetry SU(3)C ×
SU(2)L × U(1)Y , and describes the strong, weak, and electromagnetic interactions between the
known elementary particles. The electromagnetic and weak interactions are discussed in detail
in References [2, 3], while a very good introduction to the strong interaction can be found in
Reference [4].

The fundamental ingredients of the Standard Model are six leptons and six quarks divided in three
generations. Each of these particles has an antiparticle, with the same mass but opposite electrical
charge and quantum numbers, e.g. strangeness and beauty. Each quark generation, commonly
called a quark flavor, consists of three multiplets:

QI
L =

(

U I
L

DI
L

)

= (3, 2)+1/6, uIR = (3, 1)+2/3, dIR = (3, 1)−1/3, (1.1)

where (3, 2)+1/6 denotes a triplet of SU(3)C , doublet of SU(2)L with hyper-charge Y = Q−T3 =

+1/6, and similarly for the other representations.

Family Quantum Numbers

1 2 3 T T3 Y Q = Y/2 + T3

(

νe

e

)

L

(

νµ

µ

)

L

(

ντ

τ

)

L

1/2

1/2

+1/2

−1/2

−1

−1

0

−1

eR µR τR 0 0 −2 −1

(

u

d

)

L

(

c

s

)

L

(

t

b

)

L

1/2

1/2

+1/2

−1/2

+1/3

+1/3

+2/3

−1/3

uR cR tR 0 0 4/3 +2/3

dR sR bR 0 0 −2/3 −1/3

Table 1.1: Electroweak interaction multiplets.
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The interactions of quarks with the SU(2)L gauge bosons are described by the Lagrangian

LW = −1

2
gQI

Liγ
µτa1ijQ

I
LjW

a
µ + Hermitian conjugate , (1.2)

where g is the weak coupling constant, γµ operates in Lorentz space, τ a operates in SU(2)L space,
and 1 is the unit matrix operating in generation (flavor) space. This unit matrix is written explicitly
to make the transformation to mass eigenbasis clearer.

The Standard Model includes also a single Higgs scalar doublet field φ(1, 2)+1/2. The interactions
between the quarks and this field generate the fermion masses through the spontaneous symmetry
breaking mechanism [5]. The Lagrangian for these interactions is given by the Yukawa coupling:

LY = −GijQ
I
Liφd

I
Rj − FijQ

I
Liφ̃u

I
Rj + H.c., (1.3)

where G and F are general complex 3 × 3 matrices. Their complex nature is the source of CP
violation in the Standard Model. Due to the non-zero expectation value of the Higgs field in the
vacuum, 〈φ〉 = 1/

√
2(v, 0), the spontaneous symmetry breaking transforms SU(2)L ⊗ U(1)Y in

U(1)EM, and the two components of the quark doublet become distinguishable, as are the three
members of the W µ triplet. The charged current interaction in (1.2) is given by

LW = −
√

1

2
guILiγ

µ1ijd
I
LjW

+
µ + h.c.. (1.4)

The mass terms for the quarks arise from the replacement <(φ0) →
√

1
2
(v +H0) in (1.3) of the φ

field near its minimum 〈φ〉, and are given by

LM = −
√

1

2
vGijdILid

I
Rj −

√

1

2
vFijuILiu

I
Rj + H.c. , (1.5)

with
Md = Gv/

√
2, Mu = Fv/

√
2. (1.6)

The quark fields in (1.1) are eigenstates of the weak interaction but do not correspond to the quark
states in nature with definite mass. This is commonly referred to as the mass eigenstates being
rotated with respect to the eigenstates of the weak interactions [6].

Since the two eigenbases are not identical, the mass matrices Md and Mu do not correspond to
the physical masses of the quarks. These matrices can be transformed to the mass eigenbasis by
defining four unitary matrices such that

VdLMdV
†
dR = Mdiag

d , VuLMuV
†
uR = Mdiag

u , (1.7)
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where Mdiag
q are diagonal and real, while VqL and VqR are complex. In the mass basis the charged

current interactions (1.4) can be rewritten as

LW = −
√

1

2
guLiγ

µVijdLjW
+
µ + h.c.. (1.8)

Here the quark fields are in the mass eigenbasis. The matrix V = VuLV
†
dL is the unitary mixing

matrix for three quark generations.

A unitary n × n complex matrix generally depends on 2n2 parameters. The condition of unitarity
reduces this number to a total of n2 independent parameter. Using the properties of orthogonal
matrices, these parameters can be divided in

• 1
2
n(n− 1) real angles, and

• n2 − 1
2
n(n− 1) = 1

2
n(n+ 1) complex phases

For n families of quarks, there are 2n quark fields. Physical observables are invariant under phase
redefinitions of the fields, and is possible to remove 2n − 1 of the complex phases by redefining
the quark fields. Therefore, there are

• 1
2
n(n + 1) − (2n− 1 = 1

2
(n− 1)(n− 2) irreducible complex phases

in the unitary n× n complex matrix.

In case of the mass matrices, there are three real angles and six total complex phases. The number
of phases in V̄ is reduced by a transformation

V =⇒ V = PuVP∗
d, (1.9)

where Pu and Pd are diagonal matrices of pure complex phases. This transformation corresponds
to redefining the phases of the quark fields in the mass eigenbasis:

qLi → (Pq)ijqLj, qRi → (Pq)ijqRj , (1.10)

which does not change the real diagonal mass matrix Mdiag
q . The five phase differences among the

elements of Pu and Pd can be chosen so that the transformation (1.9) eliminates five of the six
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independent phases from V. The new matrix V is left with three real angles and one irreducible
complex phase.

The presence of this irreducible phase is the source of CP violation in the Standard Model. This
can be easily understood by observing that the mass lagrangian LM of eq. 1.5 is the sum of two
terms of the type

ūM(1 + γ5)u+ ūM †(1 + γ5)u = ū(M +M †)u+ ū(M +M †)γ5u. (1.11)

The properties of this term under C and P transformations are given by:

ū(M +M †)u+ ū(M +M †)γ5u 7−→ ū(M +M †)u− ū(M +M †)γ5u under P

ū(M +M †)u+ ū(M +M †)γ5u 7−→ ū(MT +M∗)u− ū(MT +M∗)γ5u under C
(1.12)

so that

ū(M +M †)u+ ū(M +M †)γ5u 7−→ ū(MT +M∗)u+ ū(MT +M∗)γ5u under CP.

(1.13)
This means that

LM 7−→ LM under CP ⇐⇒ M = M ∗, (1.14)

i.e. the presence of an irreducible phase in the results in a non CP invariant lagrangian.

This phase is called the Kobayashi-Maskawa phase [7], δKM, and the mixing matrix is called the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [8, 7].

It is important to note that the existence of the third generation of quarks is a necessary ingredient
for the presence of the complex phase, and therefore CP violation in the Standard Model. In a
Standard Model with only two generations of quarks, the procedure described above removes all
the complex phases and the 2×2 mixing matrix V is left with only one real parameter which is the
Cabibbo angle. It was this observation that led Kobayashi and Maskawa to suggest a third quark
generation in 1973 long before the discovery of the beauty quark b in 1977 [9, 10] and of the top
quark t in 1995 [11, 12].

The presence of only one complex phase in the CKM model implies that all CP -violating effects
are closely related. Therefore different physical processes, such as decays of Kaons andB mesons,
can be used to probe the same source of CP violation.
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The CKM matrix V can be symbolically written as

V ≡







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







, (1.15)

which explicitly shows the flavor-changing aspect of the weak interactions. Each element Vqiqj

determines the amplitude of interactions between quarks qi and qj. The magnitude of all nine
elements of this matrix have now been measured in the weak decays of hadrons containing the
relevant quarks, and in some cases in the deep inelastic neutrino–nucleon scattering [13]. The
precision on these elements reflects both the experimental limitations and the theoretical uncer-
tainties associated with the imprecise knowledge of the hadronic quantities required to analyze the
experimental data [6]. Present knowledge of the magnitude |Vij| of the matrix elements can be
summarized as [13]

|V| ≡







0.9739 − 0.9751 0.221 − 0.227 0.0029 − 0.0045

0.221 − 0.227 0.9730 − 0.9744 0.039 − 0.044

0.0048 − 0.014 0.037 − 0.043 0.9990 − 0.9992







. (1.16)

where the values are the 90% confidence limits on |Vij|.

1.3 The Unitarity Triangle

There are several parameterizations of the CKM matrix V that exhibit its unitarity explicitly. One
of these is considered commonly the “standard” parameterization [14] and utilizes three angles θ12,
θ23, θ13, and a complex phase δ ≡ δKM

V =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






, (1.17)

with cij ≡ cos θij and sij ≡ sin θij , and indexes i, j = 1, 2, 3 corresponding to the three quark
generations. In this parameterization, the angles θij are related to the amount of “mixing” between
two generations i and j. For example θ12 corresponds to the Cabibbo angle [8].
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The unitarity of V implies nine constraints between its elements. Three of these constraints are
relative to the elements of each row

|Vud|2 + |Vus|2 + |Vub|2 = 1 ,

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1 ,

|Vtd|2 + |Vts|2 + |Vtb|2 = 1 ,

(1.18)

while the other six express the condition of orthogonality between any pair of rows or any pair of
columns of the matrix. The six orthogonality conditions require the sum of three complex terms to
vanish and can be represented graphically as triangles in the complex plane [14, 15, 16]. All these
triangles have the same area |J |/2, with J = c12c23c

2
13s12s23s13 sin δ.

Three of these triangles, defined by

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (1.19)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (1.20)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (1.21)

are very useful in understanding the Standard Model predictions for CP violation, and are shown
in Figure 1.1.

(c)

(b)

(a)

7204A47–92

Figure 1.1: The unitarity triangles defined by (1.19) in a), (1.20) in b), and (1.21) in c). The same
scale has been used for all triangles.
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The length of the sides of these triangles can be measured from the decay rates of, respectively,
K ≡ (s̄d), Bs ≡ (b̄s), and B d ≡ (b̄d) mesons.

The size of the angles are proportional to the magnitude of CP -violating effects in the decays of,
respectively, K, Bs, and Bd mesons. In case of the K and Bs mesons, the experimental precision
needs to be high in order to be able to resolve the structure of the flat triangles.

On the contrary, the third triangle, related to theBd mesons, is expected to have large angles, which
result in large CP -violating effects. This triangle is illustrated in Figure 1.1c, and is commonly
referred to as the “Unitarity Triangle”.

It is customary to study the Unitarity Triangle with the Wolfenstein parametrization [17] of the
CKM matrix. In this parameterization, matrix V is written as [14]

V =







1 − λ2

2
λ Aλ3(ρ− iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1







+ O(λ4) , (1.22)

with λ = |Vus| = 0.22 playing the role of the expansion parameter, and A, ρ, and η real numbers
of the order of unity. The parameters of the standard parameterization (1.17) are related to the
Wolfenstein parameters in (1.22) by

s12 ≡ λ, s23 ≡ Aλ2, s13e
−iδ ≡ Aλ3(ρ− iη) . (1.23)

The CKM elements can be written in terms of the Wolfenstein parameters A, ρ, and η, by using
relation (1.23), as

Vus = λ, Vcb = Aλ2, Vub = Aλ3(ρ− iη), (1.24)

Vtd = Aλ3(1 − ρ̄− iη̄), (1.25)

ImVcd = −A2λ5η, ImVts = −Aλ4η, (1.26)

with
ρ̄ = ρ(1 − λ2/2), η̄ = η(1 − λ2/2) . (1.27)

These expressions are valid up to O(λ6) corrections and turn out to be excellent approximations to
their exact expressions[18].

The rescaled Unitarity Triangle in Figure 1.2b is derived from (1.21) by choosing a phase conven-
tion such that VcdV ∗

cb is real, dividing the lengths of all sides by VcdV ∗
cb, and aligning one side of hte
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triangle with the real axis. Two vertexes of the rescaled Unitarity Triangle are thus fixed at (0,0)
and (1,0), while the coordinates of the remaining vertex are denoted by (ρ̄, η̄). In the (ρ̄, η̄) plane,

V Vud tb
*

V Vcd cb
*

V Vtd tb
*

γ

βα

a)

V Vtd tb
*

V Vcd cb
*V Vud tb

*
V Vcd cb

*

η

ρ
γ β

α

b)
0 1

Figure 1.2: (a) The Unitarity triangle as defined in relation (1.21), and (b) the rescaled triangle,
where all sides are divided by V ∗

cbVcd.

the lengths of the sides of the triangle are given by

Rb ≡
√

ρ̄2 + η̄2 =
1 − λ2/2

λ

∣
∣
∣
∣

Vub
Vcb

∣
∣
∣
∣
, Rt ≡

√

(1 − ρ̄)2 + η̄2 =
1

λ

∣
∣
∣
∣

Vtd
Vcb

∣
∣
∣
∣
, (1.28)

Similarly, the three angles α, β, and γ are defined by

α ≡ arg

[

− VtdV
∗
tb

VudV ∗
ub

]

, β ≡ arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

, γ ≡ arg

[

−VudV
∗
ub

VcdV ∗
cb

]

≡ π − α− β . (1.29)

It is possible to perform various independent measurements of the angles and the sides which can
over-constrain the Unitarity Triangle and then test the Standard Model. Most of the constraints for
the Unitarity Triangle vertex come from measurements of rates and CP asymmetries in B mesons
decays that are actually the main goal pursued by the experiments at the B -factories BABAR and
Belle.

Various analysis exist in order to combine the various measurements and determine the posi-
tion of the (ρ̄, η̄) vertex. The standard analysis of the Unitarity Triangle proposed by the UTfit
collaboration[19] make use of the following experimental measurements:

• The CKM matrix elements |Vcb| and |Vub| can be measured from the rates of semi-leptonic
decays of the B meson in charmed and charmless mesons.
Several approaches exist to extract the matrix elements that can be divided in two categories:
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b d

bd

W- W-

u,c,t

u,c,t

Figure 1.3: Feynman diagram of the second-order weak interaction responsible for the flavor os-
cillation B0 → B0.

the exclusive measurements where single decay channels are considered( such as B →
D∗lν for |Vcb| and B → πlν for |Vub|), and the inclusive measurements which focus on the
inclusive b→ clν and b → ulν rates.
From the ratio

|Vcb|
|Vub|

=
λ

1 − λ2

2

√

ρ2 + η2 . (1.30)

results a constraint in the (ρ̄, η̄) plane that describes a circle centered at (0,0).

• In the Standard Model B0B0 oscillations occur through a second order process (a box dia-
gram) with a loop containing W and up-type quarks. The Feynman diagram for this process
is illustrated in figure 1.3. The box diagram with the top quark gives the dominant contri-
bution. The B0B0 oscillation frequency, which is related to the mass difference between the
light and the heavy mass eigenstates of the system, is expressed, in the Standard Model, as
function of ρ̄, η̄ and other elements of CKM matrix:

∆md =
G2
F

6π2
m2
W ηcS(xt) A

2λ6 [(1 − ρ)2 + η2] mBd
f 2
Bd
B̂Bd

, (1.31)

where S(xt) is Inami-Lim function [20] and xt = m2
t/M

2
W (with mt being the t quark mass

in the regularization scheme MS, mMS
t (mMS

t ), and mW the W boson mass). ηc is the short
distance correction now calculated at next-to-leading order in perturbative QCD. f 2

Bd
B̂Bd

is
a factor hiding all the non-perturbative effects that contribute to ∆md. It can be provided by
lattice QCD methods. The ∆md constraint in the (ρ̄, η̄) plane can be represented by a circle
centered at(1,0).



1.3 The Unitarity Triangle 19

• The mixing frequency ∆ms of BsB̄s oscillations is usually combined with ∆md:

∆md

∆ms

=
mBd

f 2
Bd
B̂Bd

mBsf
2
Bs
B̂Bs

(

λ

1 − λ2

2

)2

[(1 − ρ)2 + η2] . (1.32)

This gives again a circle centered at (1,0).

• Indirect CP violation in the Kaon system is usually expressed in terms of εK parameter which
is the fraction of CP violating component in the mass eigenstates. It can be related to the
Standard Model parameters by:

εK = Cε A
2λ6 η

[
−η1S(xc) + η2S(xt)

(
A2λ4 (1 − ρ)

)
+ η3S(xc, xt)

]
B̂K , (1.33)

where
Cε =

G2
Ff

2
KmKm

2
W

6
√

2π2∆mK

. (1.34)

S(xi) and S(xi, xj) again are the Inami-Lim functions [20], being xq = m2
q/m

2
W and includ-

ing NLO corrections [21, 22, 23].fK is the kaon decay constant and ∆mK the neutral kaon
system mixing frequency.

• The mixing induced CP asymmetry, aJ/ψKS,L
in the Bd → J/ψKS,L decays allows to de-

termine the sine of the angle 2β of the Unitarity Triangle almost without any hadronic un-
certainties. In this case the CP asymmetry appears in the interference between amplitudes
describing decays with and without mixing. The time dependent asymmetry for Bd →
J/ψKS,L decays is measured at the B-factories and can be related to sin 2β through:

aJ/ψKS,L
(∆t) = −ηCP sin(∆mBd

∆t) sin 2β. (1.35)

The five constraints on the (ρ̄, η̄) plane listed above are showed in figure 1.4, while the result of
the combined fit performed by the UTfit [19] collaboration is reported in figure 1.5. The actual
estimation found for the Unitarity Triangle vertex is:

ρ̄ = 0.214 ± 0.047

η̄ = 0.343 ± 0.028
(1.36)



20 B physics and the Standard Model

ρ
-1 -0.5 0 0.5 1

η

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ
-1 -0.5 0 0.5 1

η

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ
-1 -0.5 0 0.5 1

η

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ
-1 -0.5 0 0.5 1

η

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ
-1 -0.5 0 0.5 1

η

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ
-1 -0.5 0 0.5 1

η

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ
-1 -0.5 0 0.5 1

η

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ
-1 -0.5 0 0.5 1

η

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ
-1 -0.5 0 0.5 1

η

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ
-1 -0.5 0 0.5 1

η

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1.4: Constraints used for the standard analysis by the UTfit collaboration. Starting from the
upper left plot they represent respectively the measurements of |Vcb|/|Vub|, εK , ∆md, ∆md/∆ms

and sin 2β. The two bands represent the allowed regions at 68% and 95% confidence level.

1.4 Time evolution of the B0 mesons

In the previous section, we have mentioned how the study of the time dependent CP-asymmetry
in B → JψKS,L decays can be used to measure the angle β of the Unitarity Triangle. The same
physical principle allows to relate the others angles α and γ to the measurements of the time de-
pendent CP-asymmetries in other B decay channels. In this section we’ll see how the CP violation
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Figure 1.5: Determination of the Unitarity Triangle vertex using the standard analysis. The con-
straints used (bands at 68% and 95% C.L.) represent the measurements of |Vcb|/|Vub|, εK , ∆md,
∆md/∆ms and sin 2β. The results for the vertex coordinates are reported in eq. 1.36.

manifests itself in the interference between B decays with and without mixing. A concrete exam-
ple will be shown in the next section, where the relation between the angle 2β + γ and the CP
asymmetries in B → D(∗)+h− (h− being a ūd meson) will be discussed.

1.4.1 B0B0 mixing

The neutral Bd mesons contain one b type and one d-type quark (or anti-quark). A description
of these systems can be given in terms of different states. There are the flavor eigenstates, with a
definite quark content which are relevant in particle production and particle decay processes and
there are the Hamiltonian eigenstates, with definite mass and lifetime which are relevant to describe
particle propagation through space-time.

The Hamiltonian of the system, in the flavor eigenbasis can be written [24]:

H = M − i

2
Γ, (1.37)

where M and Γ are 2 × 2 Hermitian matrices. CPT invariance guarantees H11 = H22. An
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arbitrary state can be expressed by a linear combination of the neutral B meson flavor eigenstates
B0 = (b̄, d) and B̄0 = (b, d̄):

a|B0〉 + b|B̄0〉, (1.38)

and its evolution is governed by the time-dependent Schrödinger equation

i
d

dt

(

a

b

)

= H

(

a

b

)

≡ (M − i

2
Γ)

(

a

b

)

. (1.39)

A perturbative expression for Hij matrix elements ([25]) is:

Mij = mBδij + 〈i|H∆B=2
W |j〉 + P

∑

n

1

mB − En
〈i|H∆B=1

W |n〉〈n|H∆B=1
W |j〉

Γij = 2π
∑

n

δ(En −mB)〈i|H∆B=1
W |n〉〈n|H∆B=1

W |i〉 (1.40)

where P is the principal part, mB the B0 mass, and En the energy of the intermediate state |n〉.
As it can be seen, M12 and Γ12 are the dispersive and absorptive parts respectively of the transi-
tion amplitude from B0 to B̄0 and are therefore particularly relevant in discussing CP violation
phenomenology. The states B0 and B̄0 are related through CP transformation by:

CP |B0〉 = e2iξB |B̄0〉, CP |B̄0〉 = e−2iξB |B0〉, (1.41)

where the phase ξB is arbitrary. The freedom in defining it comes from the fact that flavor conser-
vation (in particular b-flavor) is a symmetry of the strong interactions. This is true for any possible
final state f and its CP conjugate e2iξf f̄ .

The flavor eigenstates are different from the mass eigenstates (as it can be seen computing the
eigenvectors of the Hamiltonian), thus they mix up as they propagate in space and time. The light
BL and the heavy BL mass eigenstates are:

|BL〉 = p|B0〉 + q|B̄0〉, (1.42)

|BH〉 = p|B0〉 − q|B̄0〉. (1.43)

where the q and p obey the normalization condition

|q|2 + |p|2 = 1. (1.44)
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Note that arg(q/p∗) is just an overall common phase for |BL〉 and |BH〉 and has no physical
significance. The mass and lifetime difference between the two eigenstates are defined as:

∆md ≡ MH −ML, ∆ΓB ≡ ΓH − ΓL. (1.45)

∆md and ∆ΓB are related to the Hamiltonian elements by the following relations:

(∆md)
2 − 1

4
(∆ΓB)2 = 4(|M12|2 −

1

4
|Γ12|2), (1.46)

∆md∆ΓB = 4<(M12Γ
∗
12). (1.47)

The ratio q
p

can be expressed by:

q

p
= −∆md − i

2
∆ΓB

2(M12 − i
2
Γ12)

= −2(M∗
12 − i

2
Γ∗

12)

∆md − i
2
∆ΓB

. (1.48)

Experimental data from the B factories allows to assume that:

∆ΓB � ∆md. (1.49)

With this assumption, the equations 1.46, 1.47 and 1.48 simplify into

∆md = 2|M12|, ∆ΓB = 2<(M12Γ
∗
12)/|M12|, (1.50)

q/p = −|M12|/M12. (1.51)

Any B state can thus be written as a linear combination of the states BH and BL, whose coeffi-
cients aH and aL evolve in time as:

aH(t) = aH(0)e−iMHte−
1
2
ΓH t, aL(t) = aL(0)e−iMLte−

1
2
ΓLt. (1.52)

A state produced at t = 0 as a pure B0, denoted with |B0
phys〉, has aL(0) = aH(0) = 1/(2p) and

similarly for a state produced at t = 0 as a B̄0. The time evolution is given by:

|B0
phys(t)〉 = g+(t)|B0〉 + (q/p)g−(t)|B̄0〉, (1.53)

|B̄0
phys(t)〉 = (p/q)g−(t)|B0〉 + g+(t)|B̄0〉, (1.54)

where
g+(t) = e−iMte−Γt/2 cos(∆md t/2), (1.55)
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g−(t) = e−iMte−Γt/2i sin(∆md t/2), (1.56)

M = 1
2
(MH +ML) and Γ = 1

2
(ΓH + ΓL). τ = 1

Γ
is called average lifetime of the B mesons.

From the equations above it can be seen that a B meson produced at t = 0 as a B0 can become
a B̄0 and vice-versa (mixing probability). The frequency of the oscillation is the difference of the
two mass eigenstates ∆md which is therefore called the mixing frequency of the B0B̄0 system.

1.4.2 Time evolution at the Υ (4S)

In BABAR, B mesons are produced in decays of the Υ (4S), which is a bb̄ bound state similar to the
positronium state. Its mass of 10.58 GeV/c2 is slightly above the energy threshold for production
of two B mesons. About equal amounts of B+ B− and B0 B0 pair are produced in the Υ (4S)

decay. The time evolution of the B0 B0 pair represents an example of the quantum coherence.

The initial state |Υ (4S)〉 has spin S = 1, and therefore total angular momentum J = S + L = 1,
and CP eigenvalue ηCP = +1. The decay proceeds through strong interactions and therefore the
angular momentum, the beauty quantum number (b+ b̄ = 1− 1 = 0), and CP must be conserved.
The final state is given by the pair of pseudo-scalar B mesons

|B0
physB

0
phys〉 =

a√
2
|BLBH〉 +

b√
2
|BHBL〉 . (1.57)

with the usual normalization condition |a|2 + |b|2 = 1. The time evolution of |B0
physB

0
phys〉 is given

by

|B0
physB

0
phys; t1, t2〉 = a eiλ+t1eiλ−t2 |BLBH〉 + b eiλ−t1eiλ+t2 |BHBL〉 , (1.58)

where t1 and t2 are the “proper” times of the B mesons.

The Bose–Einstein statistics requires the total wave function |Ψ〉 = |Ψflavor〉|Ψspace〉 for this state
to be symmetric at all times. Since the B mesons are spin–0 particles, the total spin S is zero, and
the total angular momentum J is given by the orbital angular momentum L of the two mesons.
Conservation of J requires L = 1, and therefore the B mesons are produced in a P -wave, and
|Ψspace〉 is antisymmetric. For the total wave function |Ψ〉 to be symmetric, it is then necessary to
have a = −b = 1.

In a thought experiment, and if the lifetime τB0 was long enough, one could separate the two B
mesons and place them at two space-time points separated by a space-like distance so that events
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in one point could not influence those in the other. Nevertheless, due to the quantum coherence the
decay of one of the two mesons as a B0 would force the other meson to be necessarily a B0. This
represents an example of the Einstein-Podolsky-Rosen paradox.

Time dependent CP asymmetries can be measured in events where one of the two B meson (Btag)
decays in a flavor eigenstate ftag and the other one (Brec) decays in a finale state f which is
accessible to both the B0 and B0 mesons.
The probability of observing the final state |f ftag〉 depends on

• the difference ∆t between the decay times trec and ttag,

• decay amplitudes

Af = 〈f |H|B0〉, Āf = 〈f |H|B0〉,
Atag = 〈ftag|H|B0〉, Ātag = 〈f̄tag|H|B0〉,

(1.59)

• oscillation parameter q/p defined in 1.48, and

• flavor of Btag whether Btag = B0 or Btag = B0.

From the equations above, is possible to derive the time dependent decay rate distributions f+ (f−)

for B → f when Btag is a B0 (B0):

f± =
e−|∆t|/τ

4τ
[1 ± Sf sin(∆md∆t) ∓ Cf cos(∆md∆t)] , (1.60)

where
Sf =

2Imλf
1 + |λf |2

and Cf =
1 − |λf |2

1 + |λf |2
, (1.61)

and
λf ≡

q

p

Āf
Af

. (1.62)

The distributions above are normalized such that f+ + f− = 1. The coefficient Cf and Sf , can
be extracted by fitting the experimental decay rates of eq. 1.60. For suitable choices of the final
state f they can be related to the angles of the Unitarity Triangle. Next section shows how the time
dependent decay rates in B → D(∗)+h− decays can be used to extract the 2β + γ angle.
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Figure 1.6: Feynman diagrams for the B → D(∗)+h− transition. Left: CKM favored amplitude.
Right: CKM suppressed amplitude.

1.5 Measurement of sin(2β + γ) in the B → D (∗)h decays

The final states D(∗)+h− (here h− denotes a light ūd meson) can be produced from B0 decays,
via a CKM favored process, and from B0 decays, via a CKM suppressed diagram. Similarly, the
charged conjugate states D(∗)−h+ are accessible from both the B0 (favored) and B0 (suppressed)
decays. Feynman diagrams for these processes are shown in figure 1.6.
The ratio Āf

Af
in the definition of λf (equation 1.62) is, for the final states D(∗)+h−, given by:

ĀD(∗)+h−

AD(∗)+h−
=
VcbV

∗
ud

VcdV ∗
ub

M̄D(∗)+h−

MD(∗)+h−
, (1.63)

where M̄D(∗)+h− and MD(∗)+h− are the matrix hadronic elements for the decays which express the
fact that quarks are bound by strong interactions into color neutral hadrons. In the Standard Model,
to a good approximation (neglecting CP violation in mixing) the ratio | q

p
| can be estimated from

the box diagrams shown in Figure 1.3:

q

p
= − M∗

12

|M12|
=
V ∗
tbVtd
VtbV ∗

td

. (1.64)

Combining Equations 1.64 and 1.63 results:

λD(∗)+h− =

(
V ∗
tbVtd
VtbV ∗

td

)(
VcbV

∗
ud

VcdV ∗
ub

)
M̄D(∗)+h−

MD(∗)+h−
. (1.65)

Isolating the weak phase, using Equation 1.29 the parameter λD(∗)+h− can be written:

λD(∗)+h− = e−i(2β+γ)

( |V ∗
tbVtd|

|VtbV ∗
td|

)( |VcbV ∗
ud|

|VcdV ∗
ub|

)
M̄D(∗)+h−

MD(∗)+h−
. (1.66)
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Expliciting the phase of the hadronic matrix elements also leads to:

λD(∗)+h− = e−i(2β+γ+δ)

( |V ∗
tbVtd|

|VtbV ∗
td|

)( |VcbV ∗
ud|

|VcdV ∗
ub|

) |M̄D(∗)+h−|
|MD(∗)+h−|

, (1.67)

where δ is the strong phase difference between the hadronic matrix elements of the B̄0 → D(∗)+h−

and B0 → D(∗)+h− decays. The relation above becomes, assuming no CP violation in mixing
( |q||p| = 1):

λD(∗)+h− = e−i(2β+γ+δ)

( |VcbV ∗
ud|

|VcdV ∗
ub|

) |M̄D(∗)+h−|
|MD(∗)+h−|

. (1.68)

In the case of f = D(∗)−h+ the ratio Āf

Af
is:

ĀD(∗)−h+

AD(∗)−h+

=
VubV

∗
cd

VudV ∗
cb

M̄D(∗)−h+

MD(∗)−h+

, (1.69)

The relations M̄f = Mf̄ and M̄f̄ = Mf hold (CP conservation in strong interactions) thus the final
expression for λD(∗)−h+ is:

λD(∗)−h+ = e−i(2β+γ−δ)
( |VubV ∗

cd|
|VudV ∗

cb|

) |MD(∗)+h−|
|M̄D(∗)+h−|

, (1.70)

In conclusion opposite charge combinations of the particles in the final states have the same weak
phase (2β + γ), |λ| one the inverse of the other and difference of strong phase δ appearing with
opposite sign. The weak phase is 2β + γ is the same for all the D(∗)h final states while δ and |λ|
depend on the specific process.
Using the results obtained above, is possible to write the time dependent rates of equation 1.60 as:

f± = e−|∆t|/τ

4τ(1+|λ|2)
[1 ∓ 2|λ|sin(2β + γ − ξδ) sin(∆md∆t)

∓ ξ(1 − |λ|2) cos(∆md∆t)],
(1.71)

where -(+) are for B0 (B̄0) and ξ = 1(-1) for D(∗+)h−(D(∗−)h+) final states.

A limit of this method is in the small value of the parameter |λ| (∼ 0.02) that reduces the sensitivity
to the parameter sin(2β+γ± δ). In fact sin(2β+γ± δ) appears in the coefficient of sin(∆m∆t)

which is of order 0.04 to be compared to the coefficient of cos(∆m∆t) which is of order 1. In
particular even at high statistics, there is not enough sensitivity for extracting from a fit to the data
both sin(2β + γ ± δ) and |λ|. Thus, the parameter |λ| is needed as an external input in the fit and
must be measured independently.
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The small value of |λ| reflects the fact that the decays B0 → D(∗)+h− and B̄0 → D(∗)−h+ are
Cabibbo suppressed respect to B0 → D(∗)−h+ and B̄0 → D(∗)+h− since they contain the CKM
matrix element Vub (λ3

cab, λcab = sine of the Cabibbo angle = 0.22) as opposed to Vcb (λ2
cab). A

further suppression is given by the presence of Vcd instead of Vud (this is another factor λcab).
The uncertainty on the measurement of |λ|, is then propagated on the estimation of sin(2β+γ±δ).

Note that once s± = sin(2β + γ ± δ) is measured, 2β + γ and δ can be obtained by:

sin2(2β + γ) =
1

2

[

1 + s+s− ∓
√

(1 − s+)(1 − s−)
]

(1.72)

cos2(δ) =
1

2

[

1 + s+s− ±
√

(1 − s+)(1 − s−)
]

. (1.73)

As it can be seen, there is an eight-fold ambiguity since for each value of sin2(2β + γ) there are
four possible solutions: (2β + γ), π − (2β + γ), π + (2β + γ) and 2π − (2β + γ).

In order to overcome these limits, recently an extension of this method has been proposed [27, 26]
for decays where the finale state is a vector-vector (as in B → D∗ρ decay) or a vector-axial vector
(as in B → D∗a1). In these channels, the use of a more complicated angular-time dependent
analysis allows to extract the angle (2β + γ) without using informations on the doubly Cabibbo
suppressed amplitudes and reducing the discrete ambiguities.
The use of B → D∗a1 to measure (2β + γ) is discussed in section 3.5.



Chapter 2

BABAR Experiment at PEP-II

2.1 Introduction

The primary goal of the BABAR experiment is the study of CP -violating asymmetries in the decay
of neutral B meson. Secondary goals are precision measurement of decays of bottom and charm
mesons and of τ leptons, and searches for rare processes accessible because of the high luminosity
of PEP II B Factory.

The PEP-II B Factory is an e+e− asymmetric collider running at a center of mass energy of
10.58 GeV corresponding to the mass of the Υ (4S) resonance. The electron beam in the High En-
ergy Ring (HER) has 9.0 GeV and the positron beam in the Low Energy Ring (LER) has 3.1 GeV.
The Υ (4S) is therefore produced with a Lorentz boost of βγ = 0.56. This boost makes it possible
to reconstruct the decay vertices of the two B mesons, to determine their relative decay times ∆t,
and thus to measure the time dependence of their decay rates, since, without boost, this distance
would be too small (∼ 30 µ) to be measured by any vertex tracker.

The BABAR detector [28] has been optimized to reach the primary goal of the CP asymmetry mea-
surement. This measurement needs the complete reconstruction of a B decay in a CP eigenstate,
the flavour identification (tagging) of the non-CP B and a measure of the distance of the two decay
vertices. To fulfill these needs, a very good vertex resolution, both transverse and parallel to the
beam direction, excellent reconstruction efficiency for charged particles and a very good momen-
tum resolution, efficient electron and muon identification, with low misidentification probabilities

29
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for hadrons, are required.

A longitudinal section of the BABAR detector is shown in Fig. 2.1.The detector innermost part is
reserved for the silicon vertex tracker (SVT), then there is the drift chamber (DCH), the Čerenkov

light detector (DRC) and the CsI electromagnetic calorimeter (EMC). All those detector sub-
systems are surrounded by a solenoidal superconductor magnetic field. The iron used for the return
flux has been instrumented (IFR) for muons and neutral hadrons, like KL and neutrons, detection.

The detector geometry is cylindrical in the inner zone and hexagonal in the outermost zone: the
central part of the structure is called barrel and it’s closed forward and backward by end caps. The
covered polar angle ranges from 350 mrad, in the forward, to 400 mrad in the backward directions
(defined with respect to the high energy beam direction). The BABAR coordinate system has the
z axis along the boost direction (or the beam direction): the y axis is vertical and the x axis is
horizontal and goes toward the external part of the ring. In order to maximize the geometrical ac-
ceptance for Υ (4S) decays the whole detector is offset, with respect to the beam-beam interaction
point (IP), by 0.37 m in the direction of the lower energy beam.

A trigger system is used to separate collisions producing interesting events from those that consti-
tutes the noise, or the background, for instance, beam interactions with residual gas. The trigger
system is divided in two consequent levels: the level one trigger (L1) is hardware based and is
designed to have a maximum output rate of 2 kHz and a maximum time delay of 12 µs, while the
other level (L3), software based, has a throughput rate limited to 120Hz in order to permit an easy
storage and processing of collected data.

2.2 PEP-II B Factory

PEP-II is a system consisting of two accumulating asymmetric rings designed in order to operate at
a center of mass energy of the Υ (4S) resonance mass, 10.58 GeV. Tab. 2.1 shows the various sub-
systems parameters: a comparison between typical and design values is presented. As can be seen
from the table, PEP-II parameters have overcome the project ones in terms of instant luminosity
and daily integrated luminosity achieving recently the peak value of 1.0 × 1033 cm−2 s−1 with a
daily integrated luminosity of 700 pb−1.

Data is mostly collected at Υ (4S) peak energy. Tab. 2.2 shows the active processes cross sections
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Parameters Design Typical
Energy HER/LER (GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 1.48/2.5

# of bunch 1658 553-829
bunch time separation (ns) 4.2 6.3-10.5

σLx (µm) 110 120
σLy (µm) 3.3 5.6
σLz (µm) 9000 9000

Luminosity (1033 cm−2s−1) 3 9
Daily average integrated luminosity (pb−1/d) 135 700

Table 2.1: PEP-II beam parameters. Design and typical values are quoted and are referred to the
fourth year of machine running.

breakdown at peak energy. From now on the production of light quark pairs (u, d, s) and charm
quark pairs will be referred to as “continuum production”. In order to study this non-resonant
production ∼ 12% of data is collected with a center of mass energy 40 MeV below the Υ (4S) mass
value.

PEP-II measures radiative Bhabha scattering to provide a luminosity fast monitor useful for op-
erations. BABAR derives the absolute luminosity offline from other QED processes, mainly e+e−

and µ+µ− pairs: the systematic uncertainty on the absolute value of the luminosity is estimated
to be about 1.5%. This error is dominated by uncertainties in the MonteCarlo generator and the
simulation of the detector.

The energies of the two beams are calculated from the total magnetic bending strength and the
average deviations of the accelerating frequencies from their central values. The systematic error
on the PEP-II calculation of the absolute beam energies is estimated to be 5 − 10 MeV, while the
relative energy setting for each beam is accurate and stable to about 1 MeV.

The interaction region design, with the two beams crossing in a single interaction point with par-
ticles trajectories modified in order to have head on collisions, is realized with a magnetic field,
produced by a dipole magnetic system, acting near the interaction point. The collision axis is off-
set from the z-axis of the BABAR detector by about 20 mrad in the horizontal plane to minimize the
perturbation of the beams by the solenoidal field. In this configuration the particles and the beams
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e+e− → Cross section (nb)

bb̄ 1.05
cc̄ 1.30
ss̄ 0.35
uū 1.39
dd̄ 0.35
τ+τ− 0.94
µ+µ− 1.16
e+e− ∼ 40

Table 2.2: Various processes cross sections at
√
s = MΥ (4S). Bhabha cross section is an effective

cross section, within the experimental acceptance.

are kept far apart in the horizontal plane outside the interaction region and parassite collisions are
minimized. Magnetic quadrupoles included inside the detector’s magnetic field, and hence realized
in Samarium-Cobalt, are strongly focusing the beams inside the interaction region.

In order to keep track of PEP-II beams displacement with respect to the BABAR detector, the
interaction point position is computed on periodic intervals, using two tracks events. Interaction
region dimensions (beam-spot) computed in that way are ∼ 150 µm along x, ∼ 50 µm along y
and 1 cm along z axis. The y dimension estimate is completely dominated by tracking resolution
and can be improved by looking at luminosity variations as a function of relative beams position.
In particular, knowing the beam currents and the x beam-spot dimension, it is possible to get a
resolution on y (σy) ∼ 5 µm, value that remain stable within 10% in a one hour time scale. Those
measurements can be also verified offline by measuring multi hadrons events primary vertexes1.

Fig. 2.2 shows the integrated luminosity obtained by PEP-II and collected by BABAR from the
beginning of data taking (November 1999) to the end of September 2005.

1By reconstructing all the tracks in one event it is possible to have an estimate of primary vertex position: Υ (4S)

decay point in transversal plane. Given that the boost along the z axis produces a relative displacement of the two B

mesons this method has a relative poor resolution that get worse in presence of long-lived particles.
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September 2005.
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2.3 Tracking system

The charged particle tracking system consists of two different components: the silicon vertex
tracker (SVT) and the drift chamber (DCH): the main purpose of this tracking system is the ef-
ficient detection of charged particles and the measurement of their momentum and angles with
high precision. These track measurements are important for the extrapolation to the DIRC, the
EMC and the IFR: at lower momenta, the DCH measurements are more important while at higher
momenta the SVT dominates.

2.3.1 The Silicon Vertex Tracker: SVT .

The vertex detector has a radius of 20 cm from the primary interaction region: it is placed inside the
support tube of the beam magnets and consists of five layers of double-sided silicon strip sensors
detectors to provide five measurements of the positions of all charged particles with polar angles
in the region 20.1◦ < θ < 150◦. Because of the presence of a 1.5T magnetic field, the charged
particle tracks with transverse momenta lower than ∼ 100 MeV/c cannot reach the drift chamber
active volume. So the SVT has to provide stand-alone tracking for particles with transverse mo-
mentum less than 120 MeV/c, the minimum that can be measured reliably in the DCH alone: this
feature is essential for the identification of slow pions from D∗−meson decays. Because of these,
the SVT has to provide redundant measurements.

Beyond the stand-alone tracking capability, the SVT provides the best measurement of track angles
which is required to achieve design resolution for the Čerenkov angle for high momentum tracks.
The SVT is very close to the production vertex in order to provide a very precise measure of
points on the charged particles trajectories on both longitudinal (z) and transverse directions. The
longitudinal coordinate information is necessary to measure the decay vertex distance, while the
transverse information allows a better separation between secondary vertices coming from decay
cascades.

More precisely, the design of the SVT was carried out according to some important guidelines:

• The number of impact points of a single charged particle has to be greater than 3 to make a
stand-alone tracking possible, and to provide an independent momentum measure.
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Figure 2.3: SVT schematic view: longitudinal section

• The first three layers are placed as close as possible to the impact point to achieve the best
resolution on the z position of the B meson decay vertices.

• The two outer layers are close to each other, but comparatively far from the inner layers, to
allow a good measurement of the track angles.

• The SVT must withstand 2 MRad of ionizing radiation: the expected radiation dose is 1

Rad/day in the horizontal plane immediately outside the beam pipe and 0.1 Rad/day on
average.

• Since the vertex detector is inaccessible during normal detector operations, it has to be reli-
able and robust.

These guidelines have led to the choice of a SVT made of five layers of double-sided silicon
strip sensors: the spatial resolution, for perpendicular tracks must be 10 − 15µm in the three
inner layers and about 40µm in the two outer layers. The three inner layers perform the impact
parameter measurement, while the outer layers are necessary for pattern recognition and low pt

tracking. The silicon detectors are double-sided (contain active strips on both sides) because this
technology reduces the thickness of the materials the particles have to cross, thus reducing the
energy loss and multiple scattering probability compared to single-sided detectors. The sensors
are organized in modules (Fig. 2.3). The SVT five layers contain 340 silicon strip detectors with
AC-coupled silicon strips.
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Figure 2.4: Cross-sectional view of the SVT in a plane perpendicular to the beam axis.

Each detector is 300µm-thick but sides range from 41mm to 71mm and there are 6 different
detector types. Each of the three inner layers has a hexagonal transverse cross-section and it is
made up of 6 detector modules, arrayed azimuthally around the beam pipe, while the outer two
layers consist of 16 and 18 detector modules, respectively. The inner detector modules are barrel-
style structures, while the outer detector modules employ the novel arch structure in which the
detectors are electrically connected across an angle. This arch design was chosen to minimize the
amount of silicon required to cover the solid angle while increasing the solid angle for particles
near the edges of acceptance: having incidence angles on the detector closer to 90 degrees at small
dip angles insures a better resolution on impact points. One of the main features of the SVT design
is the mounting of the readout electronics entirely outside the active detector volume.

The strips on the two sides of the rectangular detectors in the barrel regions are oriented parallel
(φ strips) or perpendicular (z strips) to the beam line: in other words, the inner sides of the detec-
tors have strips oriented perpendicular to the beam direction to measure the z coordinate (z-size),
whereas the outer sides, with longitudinal strips, allow the φ-coordinate measurement (φ-side). In
the forward and backward regions of the two outer layers, the angle between the strips on the two
sides of the trapezoidal detectors is approximately 90◦ and the φ strips are tapered.

The inner modules are tilted in φ by 5◦, allowing an overlap region between adjacent modules: this
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provide full azimuthal coverage and is convenient for alignment. The outer modules are not tilted,
but are divided into sub-layers and placed at slightly different radii (see Fig. 2.4).

The total silicon area in the SVT is 0.94m2 and the number of readout channels is about 150 000.
The geometrical acceptance of SVT is 90% of the solid angle in the c.m. system and typically 80%

are used in charged particle tracking.

The z-side strips are connected to the read-out electronics with flexible Upilex fanout circuits glued
to the inner faces of half-modules: as a matter of fact, each module is divided into two electrically
separated forward and backward half-modules. The fanout circuits consist of conductive traces on
a thin flexible insulator (copper traces on Kapton): the traces are wire-bonded to the end of the
strips.

In the two outer layers, in each module the number of z strips exceeds the number of read-out
channels, so that a fraction of the strips is “ganged”, i.e., two strips are connected to the same
read-out channel. The “ganging” is performed by the fanout circuits. The length of a z strip is
about 50µm (case of no ganging) or 100µm (case of two strip connected): the ganging introduces
an ambiguity on the z coordinate measurement, which must be resolved by the pattern recognition
algorithms. The φ strips are daisy-chained between detectors, resulting in a total strip length of up
to 26 cm. Also, for the φ-side, a short fanout extension is needed to connect the ends of the strips
to the read-out electronics.

Table 2.3: Parameters of the SVT layout: these characteristics are shown for each layer.

1st 2nd 3rd 4th 5th
layer layer layer layer layer

radius (mm) 32 40 54 91-127 114-144
modules/layer 6 6 6 16 18
wafers/module 4 4 6 7 8
read-out pitch (µm)
φ 50-100 55-110 55-110 100 100
z 100 100 100 210 210

The signals from the read-out strips are processed using a new technique, bringing in several
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advantages. After amplification and shaping, the signals are compared to a preset threshold and
the time they exceed this threshold (time over threshold, or ToT) is measured. This time interval is
related to the charge induced in the strip by the charged particle crossing it. Unlike the traditional
peak-amplitude measurement in the shaper output, the ToT has the advantage of an approximately
logarithmic relation of the time interval to the charge signal. This compresses the active dynamic
range of the signal, ensuring a good sensitivity in the lower range. When a particle crosses a silicon
detector a cluster of adjoining strips producing a signal is formed. The good signal resolution in the
lower range ensures a good determination of the tails of the cluster thus improving the resolution
on the impact point measurement.

The electronic noise measured is found to vary between 700 and 1500 electrons ENC (equivalent
noise charge), depending on the layer and the readout view: this can be compared to the typical
energy deposition for a minimum ionizing particle at normal incidence, which is equivalent to
∼ 24000 electrons.

During normal running conditions, the average occupancy of the SVT in a time window of 1µs is
about 2% for the inner layers, where it is dominated by machine backgrounds, and less than 1%

for the outer layers, where noise hits dominate.

The cluster reconstruction is based on a cluster finding algorithm: first the charge pulse height of
a single pulse is calculated form the ToT value and clusters are formed grouping adjacent strips
with consistent times. The position x of a cluster formed by n strips is evaluated with an algorithm
called “head-to-tail” algorithm:

x =
(x1 + xn)

2
+
p

2

(Qn −Q1)

(Qn +Q1)

where xi and Qi are the position and the collected charge of i-th strip and p is the read-out pitch.
This formula always gives a cluster position within p/2 of the geometrical center of the cluster.
The cluster pulse height is simply the sum of the strip charges, while the cluster time is the average
of the signal times.

The SVT efficiency can be calculated for each half-module by comparing the number of associated
hits to the number of tracks crossing the active area of the half-module. Excluding defective
readout sections (9 over 208), the combined hardware and software efficiency is 97%.



40 BABAR Experiment at PEP-II

SVT Hit Resolution vs. Incident Track Angle

Monte Carlo - SP2

Layer 1 - Z View

(deg)
(µ

m
)

Data - Run 7925

B A B A R

Monte Carlo - SP2

Layer 1 - φ View

(deg)

(µ
m

)

Data - Run 7925

B A B A R

0

20

40

60

-50 0 50

0

20

40

60

-50 0 50

Figure 2.5: SVT hit resolution in the z and φ coordinate in microns, plotted as functions of the
track incident angle in degrees.

The spatial resolution of SVT hits is calculated by measuring the distance (in the plane of the
sensor) between the track trajectory and the hit, using high-momentum tracks in two prong events:
the uncertainty due to the track trajectory is subtracted from the width of the residual distribution
to obtain the hit resolution. The track hit residuals are defined as the distance between track and
hit, projected onto the wafer plane and along either the φ or z direction. The width of this residual
distribution is then the SVT hit resolution. Fig. 2.5 shows the SVT hit resolution for z and φ side
hits as a function of the track incident angle: the measured resolutions are in very good agreement
with the MonteCarlo expected ones. Over the whole SVT , resolutions are raging from 10−15µm

(inner layers) to 30 − 40µm (outer layers) for normal tracks.

For low-momentum tracks (pt < 120 MeV/c), the SVT provides the only particle identification
information. The measure of the ToT value enables to obtain the pulse height and hence the
ionization dE/dx: the value of ToT are converted to pulse height using a look-up table computed
from the pulse shapes. The double-sided sensors provide up to ten measurements of dE/dx per
track: with signals from at least four sensors, a 60% truncated mean dE/dx is calculated. For
MIPs, the resolution on the truncated mean dE/dx is approximately 14%: a 2σ separation between
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kaons and pions can be achieved up to momentum of 500 MeV/c and between kaons and protons
beyond 1 GeV/c.

2.3.2 The drift chamber: DCH .

The drift chamber is the second part of BABAR tracking system: its principal purpose is the effi-
cient detection of charged particles and the measurement of their momenta and angles with high
precision. The DCH complements the measurements of the impact parameter and the directions
of charged tracks provided by the SVT near the impact point (IP). At lower momenta, the DCH

measurements dominate the errors on the extrapolation of charged tracks to the DIRC, EMC and
IFR. The reconstruction of decay and interaction vertices outside of the SVT volume, for instance
the K0

S decays, relies only on the DCH. For these reasons, the chamber should provide maximal
solid angle coverage, good measurement of the transverse momenta and positions but also of the
longitudinal positions of tracks with a resolution of ∼ 1mm, efficient reconstruction of tracks at
momenta as low as 100 MeV/c and it has to minimally degrade the performance of the calorimeter
and particle identification devices (the most external detectors). The DCH also needs to supply
information for the charged particle trigger. For low momentum particles, the DCH is required to
provide particle identification by measuring the ionization loss (dE/dx). A resolution of about 7%

allows π/K separation up to 700 MeV/c. This particle identification (PID) measurement is com-
plementary to that of the DIRC in the barrel region, while in the extreme backward and forward
region, the DCH is the only device providing some discrimination of particles of different mass.
The DCH should also be able to operate in presence of large beam-generated backgrounds having
expected rates of about 5 kHz/cell in the innermost layers.

To meet the above requirements, the DCH is a 280 cm-long cylinder (see left plot in Fig. 2.6),
with an inner radius of 23.6 cm and an outer radius of 80.9 cm: it is bounded by the support tube
at its inner radius and the particle identification device at its outer radius. The flat end-plates are
made of aluminum: since the BABAR events will be boosted in the forward direction, the design of
the detector is optimized to reduce the material in the forward end. The forward end-plate is made
thinner (12mm) in the acceptance region of the detector compared to the rear end-plate (24mm),
and all the electronics is mounted on the rear end-plate. The device is asymmetrically located
with respect to the IP: the forward length of 174.9 cm is chosen so that particles emitted at polar
angles of 17.2◦ traverse at least half of the layers of the chamber before exiting through the front
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Figure 2.6: Side view of the BABAR drift chamber (the dimensions are in mm) and isochrones (i.e.
contours of equal drift time of ions) in cells of layer 3 and 4 of an axial super-layer. The isochrones
are spaced by 100ns.

end-plate. In the backward direction, the length of 101.5 cm means that particles with polar angles
down to 152.6◦ traverse at least half of the layers.

The inner cylinder is made of 1mm beryllium and the outer cylinder consists of two layers of car-
bon fiber glued on a Nomex core: the inner cylindrical wall is kept thin to facilitate the matching of
SVT and DCH tracks, to improve the track resolution for high momentum tracks and to minimize
the background from photon conversions and interactions. Material in the outer wall and in the
forward direction is also minimized in order not to degrade the performance of the DIRC and the
EMC.

The region between the two cylinders is filled up by a gas mixture consisting of Helium-isobutane
(80% : 20%): the chosen mixture has a radiation length that is five times larger than commonly
used argon-based gases. 40 layers of wires fill the DCH volume and form 7104 hexagonal cells
with typical dimensions of 1.2 × 1.9 cm2 along the radial and azimuthal directions, respectively
(see right plot in Fig. 2.6). The hexagonal cell configuration has been chosen because approximate
circular symmetry can be achieved over a large portion of the cell. Each cell consist of one sense
wire surrounded by six field wires: the sense wires are 20µm gold-plated tungsten-rhenium, the
field wires are 120µm and 80µm gold-plated aluminum. By using the low-mass aluminum field
wires and the helium-based gas mixture, the multiple scattering inside the DCH is reduced to a
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minimum, representing less than 0.2%X0 of material. The total thickness of the DCH at normal
incidence is 1.08%X0.

The drift cells are arranged in 10 super-layers of 4 cylindrical layers each: the super-layers contain
wires oriented in the same direction: to measure the z coordinate, axial wire super-layers and
super-layers with slightly rotated wires (stereo) are alternated. In the stereo super-layers a single
wire corresponds to different φ angles and the z coordinate is determined by comparing the φ
measurements from axial wires and the measurements from rotated wires. The stereo angles vary
between ±45 mrad and ±76 mrad.

While the field wires are at ground potential, a positive high voltage is applied to the sense wires:
an avalanche gain of approximately 5 × 104 is obtained at a typical operating voltage of 1960V

and a 80:20 helium:isobutane gas mixture.

In each cell, the track reconstruction is obtained by the electron time of flight: the precise relation
between the measured drift time and drift distance is determined from sample of e+e− and µ+µ−

events. For each signal, the drift distance is estimated by computing the distance of closest ap-
proach between the track and the wire. To avoid bias, the fit does not include the hit of the wire
under consideration. The estimated drift distances and the measured drift times are averaged over
all wires in a layer.

The DCH expected position resolution is lower than 100µm in the transverse plane, while it is
about 1mm in the z direction. The minimum reconstruction and momentum measure threshold is
about 100 MeV/c and it is limited by the DCH inner radius. The design resolution on the single
hit is about 140µm while the achieved weighted average resolution is about 125µm. Left plot in
Fig. 2.7 shows the position resolution as a function of the drift distance, separately for the left and
the right side of the sense wire. The resolution is taken from Gaussian fits to the distributions of
residuals obtained from unbiased track fits: the results are based on multi-hadron events for data
averaged over all cells in layer 18.

The specific energy loss (dE/dx) for charged particles through the DCH is derived from the
measurement of the total charge collected in each drift cell: the specific energy loss per track
is computed as a truncated mean from the lowest 80% of the individual dE/dx measurements.
Various corrections are applied to remove sources of bias: these corrections include changes in
gas pressure and temperature (±9% in dE/dx), differences in cell geometry and charge collection
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Figure 2.7: Left plot: DCH position resolution as a function of the drift chamber in layer 18,
for tracks on the left and right side of the sense wire. The data are averaged over all cells in the
layer. Right plot: measurement of dE/dx in the DCH as a function of the track momenta. The
data include large samples of beam background triggers as evident from the high rate of protons.
The curves show the Bethe-Bloch predictions derived from selected control samples of particles of
different masses.

(±8%), signal saturation due to space charge buildup (±11%), non-linearities in the most probable
energy loss at large dip angles (±2.5%) and variation of cell charge collection as a function of the
entrance angle (±2.5%).

Right plot in Fig. 2.7 shows the distribution of the corrected dE/dx measurements as a function
of track momenta: the superimposed Bethe-Bloch predictions have been determined from selected
control samples of particles of different masses. The achieved dE/dx rms resolution for Bhabha
events is typically 7.5%, limited by the number of samples and Landau fluctuations, and it is close
to the expected resolution of 7%.
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2.3.3 The charged particle tracking system.

As already said, the BABAR tracking system is based on SVT and DCH detectors: charged particle
tracking has been studied with large samples of cosmic ray muons, e+e−, µ+µ− and τ+τ− events,
as well as multi-hadrons.
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Figure 2.8: Track reconstruction efficiency in theDCH at operating voltages of 1960V and 1900V

as a function of transverse momentum (left plot) and of polar angle (right plot). The efficiency is
measured in multi-hadron events.

Charged tracks are defined by five parameters (d0, φ0, ω, z0 and tanλ) and their associated error
matrix: these parameters are measured at the point of closest approach to the z-axis and d0 and z0

are the distances of this point from the origin of the coordinate system (in the x − y plane and on
the z axix, respectively). The angle φ0 is the azimuth of the track, λ is the dip angle relative to the
transverse plane and ω is the curvature. d0 and ω have signs that depend on the particle charge.

The track finding and the fitting procedure make use of the Kalman filter algorithm that takes
into account the detailed description of material in the detector and the full map of the magnetic
field. First of all, tracks are reconstructed with DCH hits through a stand-alone DCH algorithm:
the resulting tracks are then extrapolated into the SVT and SVT track segments are added and a
Kalman fit is performed to the full set of DCH and SVT hits. Any remaining SVT hits are then
passed to the SVT stand-alone track finding algorithms. Finally, an attempt is made to combine
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tracks that are only found by one of the two tracking systems and thus recover tracks scattered in
the material of the support tube.

The efficiency for track reconstruction in the DCH has been measured as a function of transverse
momentum, polar and azimuthal angles in multi-track events. These measurement rely on specific
final states and exploit the fact that the track reconstruction can be performed independently in the
SVT and theDCH . The absoluteDCH tracking efficiency is determined as the ratio of the number
of reconstructed DCH tracks to the number of tracks detected in the SVT with the requirement
that they fall within the acceptance of the DCH . Left plot in Fig. 2.8 shows the efficiency in the
DCH as a function of transverse momentum in multi-hadron events.

At design voltage of 1960V , the efficiency averages 98 ± 1% per track above 200 MeV/c: the
data recorded at 1900V show a reduction in efficiency by about 5% for tracks almost at normal
incidence, indicating that the cells are not fully efficient at this voltage (see right plot in Fig. 2.8).
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Figure 2.9: Left plot: MonteCarlo studies of low momentum tracks in the SVT on D∗+ → D0π+

events. a) comparison with data in BB̄ events and b) efficiency for slow pion detection derived
from simulated events. Right plot: resolution in the parameters d0 and z0 for tracks in multi-hadron
events as a function of the transverse momentum.

The stand-alone SVT tracking algorithms have a high efficiency for tracks with low transverse
momentum: to estimate the tracking efficiency for these low momentum tracks, a detailed Monte-



2.4 Čerenkov light detector: DIRC 47

Carlo study was performed. The pion spectrum was derived from simulation of the inclusive D∗

production in BB̄ events and MonteCarlo events were selected in the same way as the data: since
the agreement with MonteCarlo is very good, the detection efficiency has been derived from Mon-
teCarlo simulation. The SVT extends the capability of the charge particle reconstruction down to
transverse momenta of ∼ 50 MeV/c (see left plot in Fig. 2.9).

The resolution in the five track parameters is monitored using e+e− and µ+µ− pair events: the res-
olution is derived from the difference of the measured parameters for the upper and lower halves of
the cosmic ray tracks traversing the DCH and the SVT . On this sample with transverse momenta
above 3 GeV/c, the resolution for single tracks is 23µm in d0 and 29µm in z0. To study the de-
pendence of resolution from transverse momentum, a sample of multi-hadron events is used: the
resolution is determined from the width of the distribution of the difference between the measured
parameters (d0 and z0) and the coordinates of the vertex reconstructed from the remaining tracks
in the event: right plot in Fig. 2.9 shows the dependence of the resolution in d0 and z0 as a function
of pt. The measured resolutions are about 25µm in d0 and 40µm in z0 for pt of 3 GeV/c: these
values are in good agreement with the MonteCarlo studies and in reasonable agreement also with
the results from cosmic rays.

2.4 Čerenkov light detector: DIRC

The particle identification system is crucial for BABAR since the CP violation analysis requires the
ability to fully reconstruct one of the B meson and to tag the flavour of the other B decay: the
momenta of the kaons used for flavour tagging extend up to about 2 GeV/c with most of them
below 1 GeV/c. On the other hand, pions and kaons from the rare two-body decays B0 → π+π−

and B0 → K+π− must be well separated: they have momenta between 1.7 and 4.2 GeV/c with
a strong momentum-polar angle correlation of the tracks (higher momenta occur at more forward
angles because of the c.m. system boost). So the particle identification system should be:

• thin and uniform in term of radiation lengths to minimize degradation of the calorimeter
energy resolution,

• small in the radial dimension to reduce the volume (cost) of the calorimeter,

• with fast signal response,
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• able to tolerate high background.

DIRC stands for Detection of Internally Reflected Čerenkov light and it refers to a new kind of
ring-imaging Čerenkov detector which meets the above requirements. The particle identification
in the DIRC is based on the Čerenkov radiation produced by charged particles crossing a material
with a speed higher than light speed in that material. The angular opening of the Čerenkov radiation
cone depends on the particle speed:

cos θc =
1

nβ

where θc is the Čerenkov cone opening angle, n is the refractive index of the material and β is the
particle velocity over c. The principle of the detection is based on the fact that the magnitudes of
angles are maintained upon reflection from a flat surface.
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Figure 2.10: Mechanical elements of the DIRC and schematic view of bars assembled into a
mechanical and optical sector.

Since particles are produced mainly forward in the detector because of the boost, theDIRC photon
detector is placed at the backward end: the principal components of the DIRC are shown in Fig.
2.10. The DIRC is placed in the barrel region and consists of 144 long, straight bars arranged
in a 12-sided polygonal barrel. The bars are 1.7 cm-thick, 3.5 cm-wide and 4.90m-long: they are
placed into 12 hermetically sealed containers, called bar boxes, made of very thin aluminum-hexcel
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Figure 2.11: Schematics of the DIRC fused silica radiator bar and imaging region. Not shown is a
6 mrad angle on the bottom surface of the wedge.

panels. Within a single bar box, 12 bars are optically isolated by a ∼ 150µm air gap enforced by
custom shims made from aluminum foil.

The radiator material used for the bars is synthetic fused silica: the bars serve both as radiators
and as light pipes for the portion of the light trapped in the radiator by total internal reflection.
Synthetic silica has been chosen because of its resistance to ionizing radiation, its long attenuation
length, its large index of refraction, its low chromatic dispersion within its wavelength acceptance.

The Čerenkov radiation is produced within these bars and is brought, through successive total in-
ternal reflections, in the backward direction outside the tracking and magnetic volumes: only the
backward end of the bars is instrumented. A mirror placed at the other end on each bar reflects
forward-going photons to the instrumented end. The Čerenkov angle at which a photon was pro-
duced is preserved in the propagation, modulo some discrete ambiguities (the forward-backward
ambiguity can be resolved by the photon arrival-time measurement, for example). The DIRC effi-
ciency grows together with the particle incidence angle because more light is produced and a larger
fraction of this light is totally reflected. To maximize the total reflection, the material must have
a refractive index (fused silica index is n = 1.473) higher than the surrounding environment (the
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DIRC is surrounded by air with index n = 1.0002).

Once photons arrive at the instrumented end, most of them emerge into a water-filled expansion
region (see Fig. 2.11), called the Standoff Box: the purified water, whose refractive index matches
reasonably well that of the bars (nH2O = 1.346), is used to minimize the total internal reflection at
the bar-water interface.

The standoff box is made of stainless steel and consists of a cone, cylinder and 12 sectors of PMTs:
it contains about 6000 liters of purify water. Each of the 12 PMTs sectors contains 896 PMTs in a
close-packed array inside the water volume: the PMTs are linear focused 2.9 cm diameter photo-
multiplier tubes, lying on an approximately toroidal surface.

The DIRC occupies only 8 cm of radial space, which allows for a relatively large radius for the
drift chamber while keeping the volume of the CsI Calorimeter reasonably low: it corresponds to
about 17%X0 at normal incidence. The angular coverage is the 94% of the φ azimuthal angle and
the 83% of cos θCM .

Čerenkov photons are detected in the visible and near-UV range by the PMT array. A small piece
of fused silica with a trapezoidal profile glued at the back end of each bar allows for significant
reduction in the area requiring instrumentation because it folds one half of the image onto the
other half. The PMTs are operated directly in water and are equipped with light concentrators: the
photo-multiplier tubes are about 1.2m away from the end of the bars. This distance from the bar
end to the PMTs, together with the size of the bars and PMTs, gives a geometric contribution to the
single photon Čerenkov angle resolution of about 7 mrad. This is a bit larger than the resolution
contribution from Čerenkov light production (mostly a 5.4 mrad chromatic term) and transmission
dispersions. The overall single photon resolution expected is about 9 mrad.

The image from the Čerenkov photons on the sensitive part of the detector is a cone cross-section
whose opening angle is the Čerenkov angle modulo the refraction effects on the fused silica-water
surface. In the most general case, the image consists of two cone cross-sections out of phase one
from the other by a value related to an angle which is twice the particle incidence angle. In order
to associate the photon signals with a track traversing a bar, the vector pointing from the center of
the bar end to the center of each PMT is taken as a measure of the photon propagation angles αx,
αy and αz. Since the track position and angles are known from the tracking system, the three α
angles can be used to determine the two Čerenkov angles θC and φC . In addition, the arrival time
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Figure 2.12: From di-muon data events, left plot: single photon Čerenkov angle resolution. The
distribution is fitted with a double-Gaussian and the width of the narrow Gaussian is 9.6 mrad.
Right plot: reconstructed Čerenkov angle for single muons. The difference between the measured
and expected Čerenkov angle is plotted and the curve represents a Gaussian distribution fit to the
data with a width of 2.4 mrad.

of the signal provides an independent measurement of the propagation of the photon and can be
related to the propagation angles α. This over-constraint on the angles and the signal timing are
useful in dealing with ambiguities in the signal association and high background rates.

The expected number of photo-electrons (Npe) is ∼ 28 for a β = 1 particle entering normal to the
surface at the center of a bar and increases by over a factor of of two in the forward and backward
directions.

The time distribution of real Čerenkov photons from a single event is of the order of 50ns wide
and during normal data taking they are accompanied by hundreds of random photons in a flat
background distribution within the trigger acceptance window. The Čerenkov angle has to be
determined in an ambiguity that can be up to 16-fold: the goal of the reconstruction program is
to associate the correct track with the candidate PMT signal with the requirement that the transit
time of the photon from its creation in the bar to its detection at the PMT be consistent with the
measurement error of about 1.5ns.
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An unbinned maximum likelihood formalism is used to take into account all information provided
by the DIRC: the reconstruction routine provides a likelihood value for each of the five stable
particle types (e, µ, π, K and p) if the track passes through the active volume of the DIRC. These
likelihood probabilities are calculated in an iterative process by maximizing the likelihood value
for the entire event while testing different hypotheses for each track. If enough photons are found,
a fit of θC and the number of observed signal and background photons are calculated.

In the absence of correlated systematic errors, the resolution (σ
C,track) on the track Čerenkov angle

should scale as

σ
C,track =

σC,γ
√
Npe

where σC,γ is the single photon angle resolution. This angular resolution (obtained from di-muon
events) can be estimated to be about 10.2 mrad, in good agreement with the expected value (see left
plot in fig. 2.12). The measured time resolution is 1.7ns close to the intrinsic 1.5ns time spread of
the PMTs. In di-muon event data, the number of photo-electrons varies between 20 for small polar
angles at the center of the barrel and 65 at large polar angles: this is variation is well reproduced
by MonteCarlo and can be understood by the fact that the number of Čerenkov photons varies with
the path length of the track in the radiator (smaller path length at perpendicular incidence at the
center of the barrel). Also the fraction of photons trapped by total internal reflection rises with
larger values of | cos(θtrack)|: this increase in the number of photons for forward going tracks
corresponds also to an increase in momentum of the tracks and thus an improvement of the DIRC
performance.

The width of the track Čerenkov angle resolution for di-muon events is 2.4 mrad compared to the
design goal of 2.2 mrad (see right plot in Fig. 2.12). From the measured single track resolution
versus momentum in d-muon events and from the difference between the expected Čerenkov angles
of charged pions and kaons, the pion-kaon separation power of the DIRC can be evaluated: the
expected separation between pions and kaons at 3 GeV/c is about 4.2σ, within 15% of the design
goal.

The charged kaon efficiency is compared to the charged pion misidentification in Fig. 2.13. In
the reconstruction of the invariant mass of the hadronic system, given the difference in the kaon
momentum spectrum, Fig. 2.13, a ch arged track is identified as kaon if pK > 300 MeV.
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Figure 2.13: Charged kaon identification and pion misidentification probabilit y for the tight kaon
micro selector as a function of momentum (left) and polar angle (right). The solid markers indi-
cate the efficiency for positive particles, the empty markers the efficiency for negative particles.
Note the different scales for identification and misidentification on the left and right ordinates,
respectively.

2.5 Electromagnetic calorimeter: EMC

The understanding of CP violation in the B meson system requires the reconstruction of final state
containing a direct π0 or that can be reconstructed through a decay chain containing one or more
daughter π0s. The electromagnetic calorimeter is designed to measure electromagnetic showers
with excellent efficiency and energy and angular resolution over the energy range from 20 MeV

to 9 GeV. This capability should allow the detection of photons from π0 and η decays as well as
from electromagnetic and radiative processes. By identifying electrons, the EMC contributes to
the flavour tagging of neutral B mesons via semi-leptonic decays. The upper bound of the energy
range is given by the need to measure QED processes like e+e− → e+e−(γ) and e+e− → γγ for
calibration and luminosity determination. The lower bound is set by the need for highly efficient
reconstruction of B-meson decays containing multiple π0s and η0s. The measurement of very
rare decays containing π0s in the final state (for example, B0 → π0π0) puts the most stringent
requirements on energy resolution, expected to be of the order of 1 − 2%. Below 2 GeV energy,
the π0 mass resolution is dominated by the energy resolution, while at higher energies, the angular
resolution becomes dominant and it is required to be of the order of few mrad. The EMC is also
used for electron identification and for completing the IFR output on µ and K 0

L identification. It
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Figure 2.14: The electromagnetic calorimeter layout in a longitudinal cross section and a schematic
view of the wrapped CsI(Tl) crystal with the front-end readout package mounted on the rear face
(not to scale).

also has to operate in a 1.5T magnetic field.

The EMC has been chosen to be composed of a finely segmented array of thallium-doped cesium
iodide (CsI(Tl)) crystals. The crystals are read out with silicon photo-diodes that are matched to
the spectrum of scintillation light. The energy resolution of a homogeneous crystal calorimeter can
be described empirically in terms of a sum of two terms added in quadrature:

σE
E

=
a

4
√

E( GeV)
⊕ b

where E and σE refer to the energy of a photon and its rms error, measured in GeV. The energy
dependent term a(∼ 2%) arises basically from the fluctuations in photon statistics, but also from
the electronic noise of the photon detector and electronics and from the beam-generated back-
ground that leads to large numbers of additional photons. This first term dominates at low energy,
while the constant term b(∼ 1.8%) is dominant at higher energies (> 1 GeV). It derives from
non-uniformity in light collection, leakage or absorption in the material in front of the crystals and
uncertainties in the calibration.

The angular resolution is determined by the transverse crystal size and the distance from the inter-
action point: it can be empirically parameterized as a sum of an energy dependent and a constant
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term

σθ = σφ =
c

√

E( GeV)
+ d

where E is measured in GeV and with c ∼ 4 mrad and d ∼ 0 mrad.

In CsI(Tl), the intrinsic efficiency for the detection of photons is close to 100% down to a few
MeV, but the minimum measurable energy in colliding beam data is about 20 MeV for the EMC:
this limit is determined by beam and event-related background and the amount of material in front
of the calorimeter. Because of the sensitivity of the π0 efficiency to the minimum detectable photon
energy, it is extremely important to keep the amount of material in front of the EMC to the lowest
possible level.

Thallium-doped CsI has high light yield and small Molière radius in order to allow for excellent
energy and angular resolution. It is also characterized by a short radiation length for shower con-
tainment at BABAR energies. The transverse size of the crystals is chosen to be comparable to the
Molière radius achieving the required angular resolution at low energies while limiting the total
number of crystals and readout channels.

The BABAR EMC (left plot in Fig. 2.14) consists of a cylindrical barrel and a conical forward end-
cap: it has a full angle coverage in azimuth while in polar angle it extends from 15.8◦ to 141.8◦

corresponding to a solid angle coverage of 90% in the CM frame. Radially the barrel is located
outside the particle ID system and within the magnet cryostat: the barrel has an inner radius of
92 cm and an outer radius of 137.5 cm and it’s located asymmetrically about the interaction point,
extending 112.7 cm in the backward direction and 180.1 cm in the forward direction. The barrel
contains 5760 crystals arranged in 48 rings with 120 identical crystals each: the end-cap holds 820

crystals arranged in eight rings, adding up to a total of 6580 crystals. They are truncated-pyramid
CsI(Tl) crystals (right plot in Fig. 2.14): they are tapered along their length with trapezoidal
cross-sections with typical transverse dimensions of 4.7 × 4.7 cm2 at the front face, flaring out
toward the back to about 6.1.0 cm2. All crystals in the backward half of the barrel have a length
of 29.6 cm: toward the forward end of the barrel, crystal lengths increase up to 32.4 cm in order to
limit the effects of shower leakage from increasingly higher energy particles. All end-cap crystals
are of 32.4 cm length. The barrel and end-cap have total crystal volumes of 5.2m3 and 0.7m3,
respectively. The CsI(Tl) scintillation light spectrum has a peak emission at 560nm: two indepen-
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dent photodiodes collect this scintillation light from each crystal. The readout package consists
of two silicon PIN diodes, closely coupled to the crystal and to two low-noise, charge-sensitive
preamplifiers, all enclosed in a metallic housing.

A typical electromagnetic shower spreads over many adjacent crystals, forming a cluster of en-
ergy deposit: pattern recognition algorithms have been developed to identify these clusters and to
discriminate single clusters with one energy maximum from merged clusters with more than one
local energy maximum, referred to as bumps. The algorithms also determine whether a bump is
generated by a charged or a neutral particle. Clusters are required to contain at least one seed
crystal with an energy above 10 MeV: surrounding crystals are considered as part of the cluster if
their energy exceeds a threshold of 1 MeV or if they are contiguous neighbors of a crystal with at
least 3 MeV signal. The level of these thresholds depends on the current level of electronic noise
and beam-generated background.

A bump is associated with a charged particle by projecting a track to the inner face of the calorime-
ter: the distance between the track impact point and the bump centroid is calculated and if it is
consistent with the angle and momentum of the track, the bump is associated with this charged
particle. Otherwise it is assumed to originate from a neutral particle.

On average, 15.8 clusters are detected per hadronic event: 10.2 are not associated to any charged
particle. Currently, the beam-induced background contributes on average with 1.4 neutral clusters
with energy above 20 MeV.

At low energy, the energy resolution of the EMC is measured directly with a 6.13 MeV radioactive
photon source (a neutron-activated fluorocarbon fluid) yielding σE/E = 5.0 ± 0.8%. At high
energy, the resolution is derived from Bhabha scattering where the energy of the detected shower
can be predicted from the polar angle of the electrons and positrons. The measured resolution is
σE/E = 1.9 ± 0.1% at 7.5 GeV. Fig. 2.15 shows the energy resolution on data compared with
expectations from MonteCarlo. From a fit to the experimental results to eq.2.5, a = 2.32 ± 0.30%

and b = 1.85± 0.12% are obtained. The constant term comes out to be greater than expected: this
is mainly caused by a cross talk effect, still not corrected, in the front-end electronics.

The measurement of the angular resolution is based on Bhabha events and ranges between 12 mrad
and 3 mrad going from low to high energies. A fit to eq. 2.5 results in c = (3.87± 0.07)mrad and
d = (0.00 ± 0.04) mrad.
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Figure 2.15: EMC resolution as a function of the energy.

Different criteria are established to select electrons with different level of purity. Electrons are
primarily separated from charged hadrons on the basis of the ratio of the energy E deposited in the
EMC to the track momentum p (E

p
). This quantity should be compatible with the unity for electrons

since they deposit all the energy in the calorimeter. The other charged tracks should appear as
MIP (minimal ionizing particles) unless they have hadronic interactions in the calorimer crystals.
To further separate hadrons a variable describing the shape of the energy deposition in the EMC

(LAT ) is used. In addition, the dE/dx energy loss in the DCH and the DIRC Čerenkov angle are
required to be consistent with an electron and it offers a good separation in a wide range.

The track selection criteria are tightened for electrons selection to suppress background and to
ensure a reliable momentum measurement and identification efficiency: there are requirements
in addition for the transverse momentum p⊥ > 0.1 GeV/c, and NDch ≥ 12 for the number of
associated drift chamber hits. Furthermore, only tracks with a polar angle in the range 0.360 <

θlab < 2.37 and electron candidates with a laboratory momentum plab > 0.5 GeV/c are considered.

Electrons are identified using the a likelihood-based selector [30], which uses a number of discrim-
inating variables:
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• Ecal/plab, the ratio of Ecal, the energy deposited in the EMC, and plab the momentum in the
laboratory rest frame measured using the tracking system; LAT , the lateral shape of the
calorimeter deposit; ∆Φ, the azimuthal distance between the centroid of the EMC cluster
and the impact point of the track on the EMC; and Ncry, the number of crystals in the EMC

cluster;

• dE/dx, the specific energy loss in the DCH;

• the Čerenkov angle θC and NC , the number of photons measured in the DIRC.

First, muons are eliminated based on dE/dx and the shower energy relative to the momentum.
For the remaining tracks, likelihood functions are computed assuming the particle is an electron,
pion, kaon, or proton. These likelihood functions are based on probability density functions that
are derived from pure particle data control samples for each of the discriminating variables. For
hadrons, we take into account the correlations between energy and shower-shapes. Using combined
likelihood functions

L(ξ) = P (E/p, LAT,∆Φ, dE/dx, θC|ξ)
= PEmc(E/p, LAT,∆Φ|ξ) PDch(dE/dx|ξ) PDRC(θC |ξ)

for the hypotheses ξ ∈ {e, π,K, p}, the fraction

Fe =
feL(e)

∑

ξ fξL(ξ)
, (2.1)

is defined, where, for the relative particle fractions, fe : fπ : fK : fp = 1 : 5 : 1 : 0.1 is assumed.
A track is identified as an electron if Fe > 0.95.

The electron identification efficiency has been measured using radiative Bhabha events, as function
of laboratory momentum plab and polar angle θlab. The misidentification rates for pions, kaons,
and protons are extracted from selected data samples. Pure pions are obtained from kinematically
selected K0

S → π+π− decays and three prong τ± decays. Two-body Λ and D0 decays provide
pure samples of protons and charged kaons.

The performance of the likelihood-based electron identification algorithm is summarized in Fig-
ure 2.16, in terms of the electron identification efficiency and the per track probability that a hadron
is misidentified as an electron.
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Figure 2.16: Electron identification and hadron misidentification probability for the likelihood-
based electron selector as a function of momentum (left) and polar angle (right). Note the different
scales for identification and misidentification on the left and right ordinates, respectively. The
measurements are for luminosity-averaged rates for Run-1 and Run-2.

The average hadron fake rates per track are determined separately for positive and negative parti-
cles, taking into account the relative abundance from Monte Carlo simulation of BB events, with
relative systematic uncertainties of 3.5%, 15% and 20% for pions, kaons, and protons, respectively.
The resulting average fake rate per hadron track of plab > 1.0 GeV/c, is of the order of 0.05% for
pions and 0.2% for kaons.

2.6 Instrumented Flux Return: IFR

IFR (Instrumented F lux Return) detector is dedicated to muon identification and neutral hadrons
detection (mainly K0

L) in a wide range of momentum and angles.

The IFR, as all the other BABAR subsystems, has an asymmetric structure with a polar angle cov-
erage that is 17◦ ≤ θlab ≤ 150◦. The IFR (Fig. 2.17) is made of 19 layers of Resistive Plate
Chambers (RPC) in the barrel region and 18 layers in forward and backward regions, that are
placed inside the iron layers used for the solenoidal magnetic field return joke. The iron structure
is subdivided in three main parts: the barrel one surrounding the solenoid, made of 6 sextants cov-
ering the radial distance between 1.820m and 3.045m with a length of 3.750m (along the z axis);
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Figure 2.17: IFR view

the forward end-cap and backward end-cap covering the forward (positive z axis) and backward
regions. Moreover, two cylindrical RPC layers have been installed between the calorimeter and
the magnet cryostat in order to reveal particles exiting from the EMC. Those layers should cover
the φ regions not covered by the barrel. Cylindrical layers are subdivided in four sections, each of
them covering one fourth of the circumference: each of them has four RPC groups with orthogonal
readout strips. u − v helicoidal strips are placed inside along module’s diagonals while φ and z
parallel strips are placed outside. The summary of IFR readout segmentation is given in Tab. 2.4.

Each end-cap has an hexagonal shape and is vertically subdivided in two halves in order to allow
internal subsystems access, if necessary: vacuum tube and PEP-II focusing elements are placed
in the middle. Iron plates have a thickness ranging from 2 cm, for the inner ones placed nearest
to the interaction region, to 10 cm for the outer ones; this means a total thickness of steel at
normal incidence of ∼ 65 cm (nearly corresponding to ∼ 4 interaction lengths) in the barrel and
∼ 60 cm in the end-caps. Nominal distance between iron layers in the inner barrel region is
3.5 cm while is 3.2 cm everywhere else. The increased granularity of inner layers with respect
to the outer ones is due to the fact that the largest part of particles detected inside the IFR are
interacting in the very first material layers. Chosen segmentation is also the result of a compromise
between the subsystem cost (proportional to the volume) and the need of a good efficiency for low
momentum (> 700 MeV) muon detection, minimizing, at the same time, fraction of K 0

L’s that are
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# di readout # # strip strip len. strip larg. total #
section sectors coor. layer layer/sector (cm) (mm) channel
barrel 6 φ 19 96 350 19.7-32.8 ≈ 11k

z 19 96 190-318 38.5 ≈ 11k
end-cap 4 y 18 6x32 124-262 28.3 13,824

x 18 3x64 10-180 38.0 ≈ 15k
cyl. 4 φ 1 128 370 16.0 512

z 1 128 211 29.0 512
u 1 128 10-422 29.0 512
v 1 128 10-423 29.0 512

Table 2.4: IFR readout segmentation. Total number of channels is ∼ 53k.

not interacting inside the IFR. Result of this optimization is a not uniform segmentation with iron
plates that have thickness increasing with distance from beam line. RPC section is shown in Fig.
2.18.

Figure 2.18: Planar RPC section with HV connection scheme.

In each barrel sextant layers are kept together by a structure that reduces the coverage of solid angle
with active detectors of ∼ 7%. Active coverage of IFR detector is ≈ 2000 m2, for a total RPC
modules number that is ∼ 900. Signals produced by particles crossing the gas gap inside the RPCs
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are collected on both sides of the chamber by using thin strips (thickness ∼ 40 µm) with width
of the order of a centimeter. Strips are applied in two orthogonal directions on insulating planes
200 µm thick, in order to have a bi-dimensional view. In each barrel sextant each gap is hosting a
chamber. This consist of a set of 3 RPC modules of rectangular shape. Each module is ∼ 125 cm
long along beams direction with variable width in order to completely fill the gap. Each chamber
is equipped with 96 φ− strip placed along z axis that are measuring the φ angle inside the barrel
and 96 z − strip orthogonal to beams direction that are measuring z coordinate. z − strips are
subdivided into 3 panels of 32 strips with largeness, function of chamber radial position, ranging
between 1.78 and 3.37 cm. This projective geometry allows a constant number of strips for all
the various layers without decreasing detector resolution (each strip covers the same azimuthal
angle). The used gas mixture is made of 56.7% Argon, 38.8% Freon-134a and 4.5% Isobutane.
Working voltage for RPCs is ∼ 7.5 kV . Iron layers keeping apart RPC planes are chilled by a
water system that keeps the temperature ∼ 20oC. RPC efficiencies have been measured by using
cosmics taken on a weekly base.

Mean efficiency during 2000 run has been ∼ 78% for the barrel and ∼ 87% for the forward end-
cap, less than that one measured in June 1999 (∼ 92%). During the Summer 1999 the ambient
temperature increased very much reaching about 32◦ to 38◦ inside the iron. During such period the
IFR had problems to run the full detector because the dark current drawn by the chambers exceeded
the total current limit provided by the power supply. All the chambers drawing more than 200µA
were disconnected. In October the chambers were re-connected but they didn’t recover the full
efficiency. The forward end-cap has been completely reconstructed and installed in the Summer
2002: 5 intermediate RPC layers were replaced by 2.54 cm of brass, 10 cm of steel were added
after the last RPC layer, an RPC(layer 19) was added in front of the forward end-cap, an RPC belt
was added in the barrel–end-cap overlap region. Barrel efficiencies are still decreasing and are at
∼ 40% level while in the new forward end-cap, they are greater than 90%.

Muons are identified by measuring the number of traversed interaction lengths in the entire detector
and comparing it with the number of expected interaction lengths for a muon of a given momen-
tum. Moreover, the projected intersections of a track with the RPC planes are computed and, for
each readout plane, all strips clusters detected within a predefined distance from the predicted in-
tersection are associated with the track: the average number and the r.m.s. of the distribution of
RPC strips per layer gives additional µ/π discriminating power. We expect in fact the average
number of strips per layer to be larger for pions producing an hadronic interaction than for muons.
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Other variables exploiting clusters distribution shapes are constructed. Selection criteria based on
all these variables are applied to select muons. The performance of the muon selection has been
tested on samples of kinematically identified muons from µµee and µµγ final states and pions from
three-prong τ decays and KS → π+π− decays.

The muon selection procedure is as follows:

• tight criteria on tracking: p⊥ > 0.1 GeV/c, NDCH ≥ 12, 0.360 < θlab < 2.37 and plab >
1.0 GeV/c

• the energy deposited in the EMC is required to be consistent with the minimum ionizing
particle:

50 MeV < Ecal < 400 MeV;

• the number of IFR layers associated with the track has to be NL ≥ 2.

• the interaction lengths of material traversed by the track has to be λmeas > 2.2.

• The number of interaction lengths expected for a muon of the measured momentum and
angle to traverse is estimated by extrapolating the track up to the last active layer of the
IFR. This estimate takes into account the RPC efficiencies which are routinely measured and
stored. We require the difference ∆λ = λexp−λmeas to be < 1.0, for tracks with momentum
greater than 1.2 GeV/c. For track momenta between 0.5 GeV/c and 1.2 GeV/c, a variable
limit is placed: ∆λ < [(plab − 0.5)/0.7].

• The continuity of the IFR cluster is defined as Tc = NL

L−F+1
, where L and F are the last and

first layers with hit. Tc is expected to be 1.0 for muons penetrating an ideal detector whereas
is expected smaller for hadrons. We require Tc > 0.3 for tracks with 0.3 < θlab < 1.0 (i.e.
in the Forward End Cap to remove beam background).

• The observed number of hit strips in each RPC layer is used to impose the conditions on the
average number of hits, m̄ < 8, and the standard deviation, σm < 4.

• The strip clusters in the IFR layers are combined to form a track and fit to a third degree
polynomial, with the quality of the fit selected by the condition χ2

fit/DOF < 3. In addition,
the cluster centroids are compared to the extrapolated charged track, with the requirement
χ2
trk/DOF < 5.
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Figure 2.19: Muon identification and hadron misidentification probability for the tight muon se-
lector as a function of momentum (left) and polar angle (right). The solid markers indicate the
efficiency in 2000, the empty markers the efficiency in 2001. Note the different scales for identifi-
cation and misidentification on the left and right ordinates, respectively.

The muon identification efficiency has been measured using µ+µ−(γ) events and two-photon pro-
duction of µ+µ− pairs. The misidentification rates for pions, kaons, and protons are extracted
from selected data samples. The performance of the muon identification algorithm is summarized
in Fig. 2.19, in terms of the muon identification efficiency and the per track probability that a
hadron is misidentified as a muon. Only tracks in the fiducial volume, i.e. with a polar angle in the
range 20.6 < θlab < 135.9◦, are considered. The errors shown are statistical only, the systematic
error is dominated by variations in the performance of the IFR as a function of position and time.

At the end of the summer 2004 RPC from Top and Bottom Barrel sextant has been substituted
with limited streamer tube (LST). Data recording Run-5 has been started only in the second half
of April 2005 so there aren’t still enough data to evaluate LST efficiency and performances.



Chapter 3

Introduction to the study of the
B → D

∗−
a

+
1 decay

3.1 Introduction

This chapter represents a brief introduction to the study of the non-leptonic B → D∗−a+
1 decay

channel.
As recently suggested in [27], measuring the polarization amplitudes in the B → D∗−a+

1 decay,
which represents the main contribution to B → D∗−π+ π+ π− , provides a test of the factor-
ization assumption. As we’ll see in the next, the factorization represents one of the mostly used
tool to evaluate the hadronic matrix elements describing the QCD non-perturbative effects in the
B decays amplitudes. Despite this approach, and its extensions, was found to predict with good
accuracy several processes, there are cases where it fails and it is important to test it in depth in
order to verify its limits and improve our knowledge on the strong interactions effects in exclusive
weak decays of hadrons containing a b-quark.
In section 1.5, we have seen how the study of time dependent CP asymmetries in B → D(∗)h

decays can be used to extract the weak phase (2β+ γ). When the two meson in the final state have
both spin equal to one, as in B → D∗−a+

1 , it is possible to improve the method by performing a
time dependent angular analysis that allows a determination of (2β + γ) without using the infor-
mation on the (hard to measure) doubly Cabibbo suppressed amplitude and resolving the discrete
ambiguities discussed in 1.5.

65
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d

b

-W

d
c

d

u

Figure 3.1: Tree diagram b → cūd, with a spectator quark d̄, affected by gluon exchange.

As a necessary preliminary step, it is important to correctly identify the a+
1 → π+ π+ π− contribution

to the 3 pions in B → D∗−π+ π+ π− and disentangle it from other possible resonant structures.
This is a challenging issue since the a1(1260) meson mass and width are poorly known [13]. The
currently available measurements on the a1 parameters give, in fact, inconsistent results. The a1

parameters can be studied through the B → D∗−a+
1 decay which represents a quite clean envi-

ronment to measure them.
The work presented in this thesis focus on the study of the a1(1260) meson properties.
In order to separate the a1 from other possible contributions to the 3 pion system inB → D∗−π+ π+ π−

and to study the a+
1 → π+ π+ π− decay, a partial wave analysis is performed. The 3 pions mass

spectrum is divided in several intervals and, in each interval, the Dalitz plot of the 3 body decay is
analyzed.

Section 3.2 contains a brief introduction on the non-leptonic B decays. The effective Hamilto-
nian, obtained within the Operator Product Expansion, is shown and principles and limits of the
factorization approach are discussed. In section 3.3 the current experimental measurements of
the a1(1260) properties are summarized, and the advantages to study it through the B → D∗−a+

1

decay are illustrated. Sections 3.4 and 3.5 discuss the proposed factorization test and sin(2β +

γ) measurements with B → D∗−a+
1 . An introduction to the partial wave analysis technique

adopted in this thesis to study the 3 pions system is given in section 3.6.
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b q1

q̄2

d (s)

W

Figure 3.2: Tree diagrams (q1, q2 ∈ {u, c}).

3.2 Non-leptonic B decays

Studies of non-leptonic decays of B mesons are very useful to gain a better understanding of the
dynamics of strong interactions, which are responsible for the bounding of quarks and gluons into
hadrons. The complexity of the processes involved in non-leptonic decays is illustrated in fig 3.1
where it is shown how strong interactions of quarks can affect a simple b → c u d tree diagram.
The theoretical approach to these decays is based on low energy effective Hamiltonians which
are calculated by making use of the “Operator Product Expansion” [31]. In this framework the
factorization prescription [32] allows us to write the decay amplitudes in terms of a product of
hadronic current matrix elements. Here are summarized the main concepts of this approach1.

3.2.1 Classification

The most complicated B decays are the non-leptonic transitions, which are mediated by b →
q1 q̄2 d (s) quark-level processes, with q1, q2 ∈ {u, d, c, s}. There are two kinds of topologies
contributing to such decays: tree-diagram-like and “penguin” topologies. The latter consist of
gluonic (QCD) and electroweak (EW) penguins. In Figs. 3.2–3.4, the corresponding leading-order
Feynman diagrams are shown. Depending on the flavor content of their final states, we may classify
b→ q1 q̄2 d (s) decays as follows:

• q1 6= q2 ∈ {u, c}: only tree diagrams contribute (class I).

• q1 = q2 ∈ {u, c}: tree and penguin diagrams contribute (class II).
1the discussion in this section follows an interesting review from Robert Fleisher[33]
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b d (s)
u, c, t

W

G

q1

q̄2 = q̄1

Figure 3.3: QCD penguin diagrams (q1 = q2 ∈ {u, d, c, s}).

b d (s)
u, c, t

W

Z, γ

q1

q̄2 = q̄1

b d (s)
u, c, t

W

Z, γ

q1

q̄2 = q̄1

Figure 3.4: Electroweak penguin diagrams (q1 = q2 ∈ {u, d, c, s}).

• q1 = q2 ∈ {d, s}: only penguin diagrams contribute (class III).

3.2.2 Low-Energy Effective Hamiltonians

In order to analyze non-leptonic B decays theoretically, one uses low-energy effective Hamiltoni-
ans, which are calculated by making use of the “operator product expansion”, yielding transition
matrix elements of the following structure:

〈f |Heff |i〉 =
GF√

2
λCKM

∑

k

Ck(µ)〈f |Qk(µ)|i〉 . (3.1)

The technique of the operator product expansion allows us to separate the short-distance contri-
butions to this transition amplitude from the long-distance ones, which are described by perturba-
tive quantities Ck(µ) (“Wilson coefficient functions”) and non-perturbative quantities 〈f |Qk(µ)|i〉
(“hadronic matrix elements”), respectively. Here GF is the Fermi constant, whereas λCKM is a
CKM factor and µ denotes an appropriate renormalization scale. The Qk are local operators,
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which are generated by electroweak interactions and QCD, and govern “effectively” the decay in
question. The Wilson coefficients Ck(µ) can be considered as scale-dependent couplings related
to the vertexes described by the Qk.

In order to illustrate this rather abstract formalism, let us consider the decays of the type B̄0
d →

D(∗)+h−, which allow a transparent discussion of the evaluation of the corresponding low-energy
effective Hamiltonian. Since this transition originates from a b → cūd quark-level process, it is a
pure “tree” decay, i.e. we do not have to deal with penguin topologies, which simplifies the analysis
considerably. The leading-order Feynman diagram contributing to B̄0

d → D(∗)+h− is illustrated in
figure 3.1. Evaluating the Feynman diagram describing the weak transition yields

− g2
2

8
V ∗
udVcb [s̄γ

ν(1 − γ5)u]

[
gνµ

k2 −M2
W

]

[c̄γµ(1 − γ5)b] . (3.2)

Because of k2 ∼ m2
b �M2

W , it is possible to “integrate out” the W boson, and arrive at

HEFF =
GF√

2
V ∗
udVcb

[
d̄αγµ(1 − γ5)uα

]
[c̄βγ

µ(1 − γ5)bβ]

=
GF√

2
V ∗
udVcb(d̄αuα)V–A(c̄βbβ)V–A ≡ GF√

2
V ∗
udVcbO2 , (3.3)

where α and β denote the color indices of the SU(3)C gauge group of QCD. Effectively, the
b→ cūd decay process is now described by the “current–current” operator O2.

Taking the QCD corrections into account, operator mixing induces a second “current–current”
operator, which is given by

O1 ≡
[
d̄αγµ(1 − γ5)uβ

]
[c̄βγ

µ(1 − γ5)bα] . (3.4)

Consequently, a low-energy effective Hamiltonian of the following structure is obtained:

Heff =
GF√

2
V ∗
udVcb [C1(µ)O1 + C2(µ)O2] , (3.5)

where C1(µ) 6= 0 and C2(µ) 6= 1 are due to QCD renormalization effects [34]. These coefficients
can be evaluated by first calculating the QCD corrections to the decay processes both in the full
theory (i.e. with W exchange) and in the effective theory (where the W is integrated out) and
then express the QCD-corrected transition amplitude in terms of QCD-corrected matrix elements
and Wilson coefficients as in (3.1). This procedure is called “matching” between the full and the
effective theory. The µ dependence of the Wilson coefficients assures that the physics is indepen-
dent of the renormalization scale. However, an appropriate choice of µ permits to disentangle the
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physics of hard QCD interactions from the physics of soft gluon exchanges. Indeed, the effects
of heavy degrees of freedom, which have been integrated out of the theory, are included in the
coefficients Ci. They therefore need to be evaluated at a scale µ where perturbative expansion is
possible. The effects of long-distance interactions, instead, are included in the hadronic matrix
elements 〈D(∗)+h−|Oi|B〉 and cannot be evaluated by perturbative methods.

Non leptonic decays belonging to the class II of the classification shown in section 3.2.1 receives
contributions both from tree and from penguin topologies. In this case, the operator basis is much
larger than in the class I decays, where only the “tree” decay contributes. In this case the effective
Hamiltonian can be written as:

Heff =
GF√

2

[
∑

j=u,c

V ∗
jrVjb

{
2∑

k=1

Ck(µ)Qjr
k +

10∑

k=3

Ck(µ)Qr
k

}]

. (3.6)

Here another quark-flavor label j ∈ {u, c} has been introduced, and the Qjr
k can be classified as

follows:

• Current–current operators:

Qjr
1 = (r̄αjβ)V–A(j̄βbα)V–A

Qjr
2 = (r̄αjα)V–A(j̄βbβ)V–A.

(3.7)

• QCD penguin operators:

Qr
3 = (r̄αbα)V–A

∑

q′(q̄
′
βq

′
β)V–A

Qr
4 = (r̄αbβ)V–A

∑

q′(q̄
′
βq

′
α)V–A

Qr
5 = (r̄αbα)V–A

∑

q′(q̄
′
βq

′
β)V+A

Qr
6 = (r̄αbβ)V–A

∑

q′(q̄
′
βq

′
α)V+A.

(3.8)

• EW penguin operators (the eq′ denote the electrical quark charges):

Qr
7 = 3

2
(r̄αbα)V–A

∑

q′ eq′(q̄
′
βq

′
β)V+A

Qr
8 = 3

2
(r̄αbβ)V–A

∑

q′ eq′(q̄
′
βq

′
α)V+A

Qr
9 = 3

2
(r̄αbα)V–A

∑

q′ eq′(q̄
′
βq

′
β)V–A

Qr
10 = 3

2
(r̄αbβ)V–A

∑

q′ eq′(q̄
′
βq

′
α)V–A.

(3.9)
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The current–current, QCD and EW penguin operators are related to the tree, QCD and EW penguin
processes shown in Figs. 3.2–3.4. At a renormalization scale µ = O(mb), the Wilson coefficients
of the current–current operators are C1(µ) = O(10−1) and C2(µ) = O(1), whereas those of the
penguin operators are O(10−2) [35, 36].

The low-energy effective Hamiltonians discussed above apply to all B decays that are caused by
the same quark-level transition, i.e. they are “universal”. Consequently, the differences between
the various exclusive modes of a given decay class arise within this formalism only through the
hadronic matrix elements of the relevant four-quark operators. Unfortunately, the evaluation of
such matrix elements is associated with large uncertainties and is a very challenging task. In this
context, “factorization” is a widely used concept, and will be illustrated in the following subsection.

3.2.3 Factorization of Hadronic Matrix Elements

In order to discuss “factorization”, let us consider once more the decays of type B̄0
d → D(∗)+h−.

The corresponding transition amplitude contains the hadronic matrix elements of theO1,2 operators
between the 〈h−D(∗)+| final and the |B̄0

d〉 initial states. If we use the well-known SU(NC) color-
algebra relation

T aαβT
a
γδ =

1

2

(

δαδδβγ −
1

NC

δαβδγδ

)

(3.10)

to rewrite the operator O1, we obtain

〈h−D(∗)+|Heff |B̄0
d〉 =

GF√
2
V ∗
udVcb

[

a1〈h−D(∗)+|(d̄αuα)V–A(c̄βbβ)V–A|B̄0
d〉

+2C1〈h−D(∗)+|(d̄α T aαβ uβ)V–A(c̄γ T
a
γδ bδ)V–A|B̄0

d〉
]

,

with
a1 = C1/NC + C2 ∼ 1. (3.11)

The “factorization” of the hadronic matrix elements is given by:

〈h−D(∗)+|(d̄αuα)V–A(c̄βbβ)V–A|B̄0
d〉
∣
∣
fact

= 〈h−|
[
d̄αγµ(1 − γ5)uα

]
|0〉〈D(∗)+| [c̄βγµ(1 − γ5)bβ] |B̄0

d〉
= ifh

︸︷︷︸

decay constant
× F

(BD)
0 (M2

K)
︸ ︷︷ ︸

B → D form factor

× (M2
B −M2

D),
︸ ︷︷ ︸

kinematical factor

(3.12)
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〈h−D(∗)+|(d̄α T aαβ uβ)V–A(c̄γ T
a
γδ bδ)V–A|B̄0

d〉
∣
∣
fact

= 0. (3.13)

The quantity a1 is a phenomenological “color factor”, which governs “color-allowed” decays; the
decays B̄0

d → D(∗)+h− belongs to this category, since the color indexes of the h− meson and the
B̄0
d–D(∗)+ system run independently from each other in the corresponding leading-order diagram.

On the other hand, in the case of “color-suppressed” modes, for instance B̄0
d → π0D0, where only

one color index runs through the whole diagram, we have to deal with the combination

a2 = C1 + C2/NC ∼ 0.25. (3.14)

The concept of factorizing the hadronic matrix elements of four-quark operators into the product
of hadronic matrix elements of quark currents has a long history [37], and can be justified, for
example, in the large-NC limit [38]. Interesting recent developments are the following:

• “QCD factorization” [39], which is in accordance with the old picture that factorization
should hold for certain decays in the limit of mb � ΛQCD [40], provides a formalism to
calculate the relevant amplitudes at the leading order of aΛQCD/mb expansion. The resulting
expression for the transition amplitudes incorporates elements both of the naı̈ve factorization
approach sketched above and of the hard-scattering picture. Let us consider a decay B̄ →
M1M2, where M1 picks up the spectator quark. If M1 is either a heavy (D) or a light (π, K)
meson, and M2 a light (π, K) meson, QCD factorization gives a transition amplitude of the
following structure:

A(B̄ →M1M2) = [“naı̈ve factorization”] × [1 + O(αs) + O(ΛQCD/mb)] . (3.15)

While the O(αs) terms, i.e. the radiative non-factorizable corrections, can be calculated sys-
tematically, the main limitation of the theoretical accuracy originates from the O(ΛQCD/mb)

terms.

• Another QCD approach to deal with non-leptonic B-meson decays – the “perturbative hard-
scattering approach ” (PQCD) – was developed independently in [41], and differs from the
QCD factorization formalism in some technical aspects.

• A very useful technique for “factorization proofs” is provided by the framework of the “soft
collinear effective theory” (SCET) [42].

• Non-leptonicB decays can also be studied within QCD light-cone sum-rule approaches [43].
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Despite factorization gives reliable results in describing several processes, in particular in the ex-
tended form of QCD-factorization [37], recently there have been found cases in which large non-
factorizable corrections [44, 45] are present, as in B → ππ and B → φK∗ decays. It is very
important to quantitatively test the limits of factorization in depth in order to improve our knowl-
edge on the strong interaction effects in exclusive weak decays of the B mesons.

3.3 The a1(1260)

The a1(1260) particle is an axial vector meson whose quantum numbers are IG(JPC) = 1−(1++).
It was discovered as a broad ρ − π resonance in 1964 in pion-proton scattering scattering exper-
iments [46], and it remains nowadays poorly known due to the discordant measurements of its
parameters. The present status of our knowledge of this resonance come from two kind of experi-
ments: hadronic production and τ decays.
The first class of experiments comprises diffractive and charge exchange production with incident
pions on fixed target and central production in pp collisions. These experiments are characterized
by very high statistics but are made difficult by the presence of high physical backgrounds due to
the other spin parity resonances contributing to the three pions system.
The decay τ− → [3π]−ντ provides a cleanest environment to study the a1 meson. Because of
the transformation properties of the weak current under parity and G-parity, τ lepton decay to an
odd number of pions is expected to occur exclusively through the axial vector current, ignoring
isospin-violating effects. Thus the only possible spin-parity quantum numbers for 3π system in
this decay are JP = 0− or 1+, simplifying the analysis with respect to the hadronic production.
However, due the small mass difference between the τ and the a1, a kinematic cutoff prevent to
fully exploit the high mass tail of the 3 pion spectrum.
In table 3.1 are reported the results of the measurements of the mass and width of the a1 meson.
Despite the models adopted by the various experiments to fit the a1 line-shape are different, the
discrepancies between the measurements can be only partly attributed to model dependent system-
atic uncertainties. In particular the measurements of the width assume values that vary between
230±50 MeV [47] and 814±36±13 [48]. For this reason the PDG has chosen to don’t perform
an average of the available measurements of the a1 mass and width and provides a conservative
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Experiment mass measurement width measurement
CLEO 1331±10± 3 MeV 814± 36± 13 MeV

DELPHI (1) 1255± 7± 6 MeV 587± 27± 21 MeV
DELPHI (2) 1207± 5± 8 MeV 478± 3± 15 MeV
DELPHI (3) 1196± 4± 5 MeV 245± 14± 8 MeV

OPAL (1) 1262± 9± 7 MeV 621± 32± 58 MeV
OPAL (1) 1210± 7± 2 MeV 457± 15± 17 MeV
ARGUS 1211± 7+50

−0 MeV 446± 21+140
−0 MeV

KEK 1121± 8 MeV 266± 13 MeV
DELCO 1242± 37 MeV 465+228

−143 MeV
MARK-II 1260± 14 MeV 298+40

−34 MeV
ARGUS (2) 1250± 9 MeV 488 ± 32 MeV

WA76 1208± 15 MeV 430±50 MeV
WA103 1240± 10 MeV 400±35 MeV
MAC 1166± 18± 11 MeV 405±75±17 MeV

AMST (1) 1280± 30 MeV 300±50 MeV
AMST (2) 1041± 13 MeV 230±50 MeV

ISGUR reanalysis of
ARGUS(2)-MARK-II-DELCO 1220± 15 420±40 MeV

BOWLER reanalysis of
ARGUS(2)-AMST(1) 1260± 25 396±43 MeV

Table 3.1: Available measurements of the a1 mass and width as reported from the Particle Data
Group [13]
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estimate of their values:
mPDG
a1

= 1230 ± 40MeV
ΓPDGa1 between 250 and 600MeV.

(3.16)

In the present work we present a measurement of the a1 parameters in a different environment: the
production through B → D∗−a+

1 (→ π+π+π−) decays.
The high branching ratio for this process (∼ 1%) and the kinematic constraints coming from the
reconstruction of the full B meson decay chain, make this channel a quite clean environment to
study the a1 meson. Weak current structure together with factorization predicts that the main
contribution to the 3 pions system produced in B → D∗−π+ π+ π− is due to the JP = 1+ state,
i.e. to the a1. However contributions from JP = 0− states are possible and factorization breaking
effects can induce also spin 2 states. For this reason a Dalitz plot analysis of the 3 pions system
is needed to separate the different spin parity components (section 3.6). This kind of analysis also
allow us to study the intermediate resonance contributing to the process a1 → πππ through the
decay chain a1 → Xπ,X → ππ, as was recently done by a CLEO analysis [48] of the a1 produced
in τ decays. They found significant contributions of σπ, f0(1370)π and f2(1270)π in addition to
the dominant ρπ amplitude.

3.4 Polarization in B → D∗−a+
1

As recently suggested in [27], decay processes of the type B →VA, involving vector and axial
mesons in the final state can be used to provide a test of factorization. The B → D∗−a+

1 decay
belong to this kind of processes and, due to its high branching ratio, is the best candidate to per-
form the proposed factorization test.
The decay amplitude for B → D∗−a+

1 can be written as a sum over polarization of weak de-
cay amplitudes, multiplying corresponding strong decay amplitudes Ai for a+

1 → π+ π+ π− (i =
0,+,−),

A(B0 → D∗−π+(p1)π
+(p2)π

−(p3)) = Σi=0,+,−HiAi. (3.17)

The dominant process contributing to a+
1 → π+ π+ π− is a+

1 → ρ0π+, ρ0 → π+π−,

Ai = Ai(a
+
1 → ρ0π+(p2)) + Ai(a

+
1 → ρ0π+(p1)),
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where the two terms correspond to the two possible ways of forming a ρ meson from π+ π− pairs.
The a1ρπ coupling can be written in terms of two invariant amplitudes,

A(a1(p, ε) → ρ(p′, ε′)π) = A(ε · ε′∗) +B(ε · p′)(ε′∗ · p),

where (p, ε) and (p′, ε′) are the momenta and polarization vectors of the a1 and ρ respectively. A
and B can be related with the S and D-wave amplitudes by [49]:

A = AS + 1√
(2)
AD

B =
[
−
(
1 − mρ

Eρ

)
AS −

(
+ 2mρ

Eρ

)
1√
(2)
AD
] Eρ

mρ~p2ρ
,

(3.18)

where the ρ energy and momentum are given in the a1 rest frame.
The strong decay amplitude a+

1 → π+ π+ π− is obtained by convoluting the a+
1 → ρ0π+ with the

amplitude for ρ0(ε′) → π+(pi)π
−(pj) which is proportional to ε′ · (pi − pj). One finds:

A(a+
1 (p, ε) → π+(p1)π

+(p2)π
−(p3)) ∝ C(s13, s23)ε · p1 + (p1 ↔ p2),

where sij = (pi + pj)
2 and :

C(s13, s23) =
[
A+Bma1(E3 − E2)

]
Bρ(s23) + 2ABρ(s13).

Here Bρ(sij) = (sij −m2
ρ − imρΓρ)

−1, and pion energies are given in the a1 rest frame.
In the a1 rest frame the three pions are emitted in a plane whose normal unit vector is n̂ ≡ (~p1 ×
~p2)/|~p1 × ~p2|. The B decay amplitude into final hadronic states depends on the angle θ between
n̂ and the direction ẑ opposite to the D∗ (or B ) momentum, and on other two angles φ and ψ.
φ is an angle in the a1 decay plane (I), defining the direction of one of the three pions (say p3),
while ψ define the line of intersection of the D∗ decay plane with a plane(II) perpendicular to ẑ.
Both φ and ψ are measured with respect to the line of intersection of the two planes I and II. With
these notations, squaring the amplitude 3.17 and integrating over φ and ψ one finds the following
expression for the decay distribution in θ:

∫ ∫
dφdψ|A(B → D∗3π)|2 ∝ |H0|2 sin2 θ| ~J |2

+ (|H+|2 + |H−|2)1
2
(1 + cos2 θ)| ~J|2

+ (|H+|2 − |H−|2) cos θIm
[
( ~J × ~J∗) · n̂

]
.

(3.19)

The vector ~J is defined in the rest frame of the a1 resonance,

~J = C(s12, s13)~p1 + C(s23, s13)~p2.
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A fit to the angular decay distribution 3.19 enables separate measurements of the three terms |H0|2,
|H+|2 + |H−|2, |H+|2 − |H−|2.
The three helicity amplitudes H0,± in B → D∗−a+

1 can be calculated using factorization [32] and
heavy quark symmetry [50]. The theoretical predictions reported in [27] are:

H0 = − GF√
(2)
VcbV

∗
udc1(D

∗a1)fa1
√

(mBmD∗)

× mB−m∗
D

ma1
(y + 1)ξ(y),

H± = GF√
(2)
VcbV

∗
udc1(D

∗a1)fa1
√

(mBmD∗)

×
[
− (y + 1) ±

√

(y2 − 1)
]
ξ(y)

(3.20)

Here ξ(y) is the value of the Isgur-Wise function [50] at y = (m2
B + m2

D∗ −m2
a1

)/(2mBmD∗) =

1.43, fa1 is the a1 decay constant and c1(D
∗a1) is a QCD factor which is close to one. The

numerical values of these factors do not affect the polarization prediction, for which one uses the
normalization |H0|2 + |H+|2 + |H−|2 = 1:

|H0|2 = 0.75; |H0|2 = 0.21; |H−|2 = 0.04.

These predictions, obtained in factorization, can be tested by measuring the polarization squared
moduli |Hi|2 by means of a fit to the decay angular distribution in θ defined in equation 3.19.

3.5 CP violation in B → D∗−a+
1

In section 1.5 we have seen how it is possible to extract the Unitarity Triangle parameter 2β + γ

by measuring the CP asymmetries in B → D(∗)h decays.
The BABAR and Belle collaborations have recently published measurements of sin(2β + γ) with
this method, using the B → D π, B → D ∗π and B → D ρ decay channels [51, 52, 53, 54].
One important limit of these analyises come from the uncertainty on the ratio of magnitudes of the
suppressed and favored amplitudes, e.g. for the B → D π channel:

rDπ =
|A(B0 → D+π−)|
|A(B̄0 → D+π−)| (3.21)

Each of the ratios rDπ, rD∗π and rDρ is expected to be about O(10−2) but a precise determination
is very difficult, since the doubly Cabibbo suppressed amplitude is not directly accessible due the
the small branching ratio and the huge background from the favored channel. Current estimations
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for these ratios come from the decay rate measurements of the corresponding charged B decays,
(e.g. B + → D+π0) using isospin symmetry, or from self-tagging decays with strangeness (e.g.
B0 → D+

s π
−) using SU(3). In the latter case, the theoretical uncertainties are hard to quantify.

For the B → V V and B → V A (vector-vector and vector-axial vector finale states) channels, it
is possible to overcome this problem [26].
By expliciting the three polarization amplitudes for the CKM favored and suppressed amplitudes,
we obtain the following expressions:

A ≡ A(B0 → f) =
∑

i=0,‖,⊥HiAi,

Ā ≡ A(B̄0 → f) =
∑

i=0,‖,⊥ hiAi.
(3.22)

For the B0 → D∗−a+
1 the Ai are calculable complex functions of the angles θ, ψ and φ defined in

the previous section. Following the procedure described in sections 1.4 and 1.5 one arrives at the
following time-dependent rate:

Γ(B 0(t) → f) ∝ (|A|2 + |Ā|2) + (|A|2 − |Ā|2) cos(∆mt)+

2Im(e2iβAĀ∗) sin(∆mt).
(3.23)

The three coefficients in this expression, involve bilinear expressions in Hi and hi multiplying
calculable functions if the angle variables. The constant and cos ∆mt terms in 3.23 determine
the real and imaginary parts of HiH

∗
j (and hih∗j ) for all pairs of transversity amplitude, while the

coefficient of sin ∆mt contains terms

Im
[

e2iβ(Hih
∗
j +Hjh

∗
i )
]

Re(AiA
∗
j) +Re

[

e2iβ(Hih
∗
j −Hjh

∗
i )
]

Re(AiA
∗
j). (3.24)

Writing Hi = |Hi|ei∆i , hi = |hi|eiδie−iγ , where ∆i and δi are the strong interaction phases, and
using the above and similar information from B0(t) → f̄ it is possible to show (see [27] and [26]
for details) that a fit to the time dependent angular distributions allows to extract (2β+ γ), without
using information on the CKM suppressed decay rate and free of the discrete ambiguities discussed
in section 1.5.

3.6 Partial wave analysis for the 3 pions system

The work presented in this thesis focus on the study of the 3 pions system produced in the
B → D∗+π+ π− π− decay.
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In this section the problem of the 3 body decay will be discussed. We’ll first construct a three-
particle system in a definite angular momentum state and then apply the formalism to a case of a
resonance decaying into three particles. Finally, we’ll see how a partial wave analysis can be used
to identify the different spin parity components contributing to the 3 pions system.
A complete discussion on these topics can be found in [55].

3.6.1 Notations

In the following, we will denote by |j,m〉 the single particle at rest state, where j is the spin and m
is the z-component of the spin.
A finite rotation of a physical system (with respect to fixed coordinate axes) may be denoted by
R(α, β, γ) where α, β, and γ are the standard Euler angles. To each R, there corresponds a uni-
tary operator U [R], which acts on the states |j,m〉. The angular momentum operators are the
infinitesimal generators of the rotations:

U [R(α, β, γ)] = e−iαJze−iβJye−iγJz . (3.25)

The rotation of a state |j,m〉 is given by:

U [R(α, β, γ)]|j,m〉 = |
∑

m′

|j,m′〉Dj
m′m(α, β, γ), (3.26)

where Dj
m′m(R) is the standard rotation matrix [56]:

Dj
m′m(R) ≡ Dj

m′m(α, β, γ) = 〈j,m′|U [R]|j,m〉
= e−im

′αdjm′m(β)e−imγ ,
(3.27)

with:
djm′m(β) = 〈j,m′|e−iβJy |j,m〉 (3.28)

An important property of the D functions is the orthonormality:
∫

dRDj1∗
µ1m1

(R)Dj2
µ2m2

(R) =
8π2

2j1 + 1
δj1j2δµ1µ2δm1m2 , (3.29)

where dR = dαd cosβdγ.
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Relativistic one-particle state with momentum ~p may be obtained by applying on the states |j,m〉
an unitary operator which represent a Lorentz transformation that takes a particle at rest to a particle
of momentum ~p. There are two ways of doing this, leading to canonical and helicity descriptions
of relativistic free particle states. If we denote with U [Lz(p)] the operator representing the pure
time-like Lorentz transformation along the z-axis and with R̂(φ, θ, 0) the rotation taking the z-axis
into the direction of ~p with spherical angles (θ, φ) the canonical state is defined by:

|~p, jm〉 = U [ ˆR(φ, θ, 0)]U [Lz(p)]U
−1[ ˆR(φ, θ, 0)]|j,m〉, (3.30)

while the helicity state is:

|~p, jλ〉 = U [ ˆR(φ, θ, 0)]U [Lz(p)]|j, λ〉. (3.31)

In the helicity states the quantization axis is rotated along the ~p direction. There is a simple con-
nection between the canonical and helicity description. From the definitions above one finds:

|~p, jλ〉 =
∑

m

Dj
mλ(R̂)|~p, jm〉. (3.32)

3.6.2 Three particle system

Consider a system of three particles and let’s use the notations si, ηi, λi and wi to indicate the spin,
parity, helicity and mass of the particle i (i = 1, 2, 3). In the rest frame (r.f.) of the three particles,
the momentum and energy of the particle i will be denoted by ~pi and Ei. In the r.f., the “standard
orientation” of the three-particle system is shown in figure 3.5. This coordinate system may be
rotated by the Euler angles α, β, and γ to obtain a system with arbitrary orientation.
A system with standard orientation can be written:

|000, Eiλi〉 = N
3∏

i=1

|~pi, siλi〉, (3.33)

where N is a normalization factor and |~pi, siλi〉 are the single particle helicity states.
A three particle system with an arbitrary orientation in the r.f. can now be obtained by applying a
rotation R(α, β, γ) to the state 3.33:

|αβγ, Eiλi〉 = U [R(α, β, γ)]|000, Eiλi〉. (3.34)
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x

y

3
p

1p2p

Figure 3.5: Standard orientation for the three particle rest system. Note that the y-axis is defined
along the negative direction of ~p3, and the z-axis along ~p1 × ~p2

It is now possible to build a state of definite angular momentum:

|JMµ,Eiλi〉 =
NJ√
2π

∫

dRDj∗
Mµ(α, β, γ)|αβγ, Eiλi〉, (3.35)

where NJ is a normalization constant. It can be shown that this state represents a definite angular
momentum state by applying an arbitrary rotation R′ and verifying that:

U [R′]|JMµ,Eiλi〉 =
∑

M ′

DJ
M ′M(R′)|JM ′µ,Eiλi〉. (3.36)

This relation also shows that in addition to the obvious invariants Ei and λi, the quantity µ is also
an invariant. It represents the z-component of angular momentum whose quantization axis itself
rotates under a rotation of the system.
Transformation under parity of the state 3.35 reads:

Π|JMµ,Eiλi〉 = η1η2η3(−1)s1+s2+s3−µ|JMµ,Ei,−λi〉, (3.37)

while the operator P12 which exchange the particle 1 and 2 acts on the system as follows:

P12|JMµ,Eiλi〉 = (−1)J+µ|JM − µ,E2λ2, E1λ1, E3λ3〉. (3.38)
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3.6.3 Three body decays

Let us consider a process in which a resonance with spin parity J η and mass w decays into three
particles. In the rest frame of the resonance (JRF), let the angles (α, β, γ) describe the orientation
of the three particle system. The decay amplitude may be written:

A = 〈αβγ, Eiλi|M|JM〉
= 〈αβγ, Eiλi|JMµEiλi〉〈JMµEiλi|M|JM〉
= NJ√

2π
F J
µ (Eiλi)D

J∗
Mµ(αβγ)

(3.39)

If the “decay operator” M is rotationally invariant, the decay amplitude F should depend only on
the rotational invariants, i.e.:

F J
µ (Eiλi) = 〈JMµEiλi|M|JM〉. (3.40)

If parity is conserved (as in the strong interaction processes), F satisfy the symmetry:

F J
µ (Eiλi) = ηη1η2η3(−)s1+s2+s3+µF J

µ (Ei,−λi). (3.41)

If particles 1 and 2 are identical: If parity is conserved (as in the strong interaction processes), F
satisfy the symmetry:

F J
µ (E1λ1, E2λ2, E3λ3) = ±(−)J+µF J

−µ(E2λ2, E1λ1, E3λ3) (3.42)

where the plus sign holds for identical bosons and the minus sign for fermions.

Let us consider now the case of interest for this thesis, i.e. the decay process B0 → D∗+X−,
X− → π+π−π− where, in principle, more resonances Xk with different spins and parities can be
produced, each decaying into the three pions system.
Pions are pseudo-scalar mesons, so we have si = 0, λi = 0, ηi = −1, and their state is described
by the three four-momenta pµi . The three mass shell conditions

pµi piµ = m2
π, (3.43)

and the constraints from the four-momentum conservation reduce the number of independent pa-
rameters from twelve to five.
In the X resonance rest frame the kinematical configuration of the system is given by the 3 Euler
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angles (α, β, γ), describing the orientation of the system with respect to the “standard orientation”
introduced in subsection 3.6.2, and by other two independent variables that can be choose in sev-
eral different ways. Since the decay operator is invariant under rotations, the decay amplitude does
not depend on the Euler angles but only on these other two variables. The scatter plot of these
variables is called the “Dalitz plot” [57] of the three body decay. The most common used choice
of the Dalitz plot variables is in terms of the invariants:

m2
12 = (p1 + p2)

µ(p1 + p2)µ

m2
13 = (p1 + p3)

µ(p1 + p3)µ.
(3.44)

Four momentum conservation defines a kinematical allowed region for the Dalitz plot. The area
of this region increase with the total mass w of the system. The kinematical bounds of the two
variables above for a given value of w are defined by:

(m1 +m2)
2 <= m2

12 <= (w −m3)
2

m2
13[min](w,m2

12 ) <= m2
13 <= m2

13[max](w,m
2
12 ),

(3.45)

where:

m2
13[max](w,m

2
12 ) = (E∗

2 + E∗
3)

2 −
(√

E∗2
2 −m2

2 −
√

E∗2
3 −m2

3

)2

,

m2
13[max](w,m

2
12 ) = (E∗

2 + E∗
3)

2 −
(√

E∗2
2 −m2

2 +
√

E∗2
3 −m2

3

)2

,
(3.46)

with E∗
2= (m2

12 −m2
1 + m2

2)/2m12 and E∗
3= (w2 −m2

12 −m2
3)/2m12 representing the energies

of the particles 2 and 3 in the m12 rest frame.
Another set of Dalitz variables is given by the pair (E1, E2) indicating the energies of the particles
1 and 2 in the resonance rest frame. The following considerations are independent of the particular
choice of the Dalitz plot coordinates.
Suppose that two resonance with spins J1 and J2 are possible for the three pions system. From eq.
3.39 it’s possible to derive the over-all amplitude:

mfi ∼
∑

M1µ1

T1D
J1∗
M1µ1

(α, β, γ)F J1
µ1

(E1, E2) +
∑

M2µ2

T2D
J2∗
M2µ2

(α, β, γ)F J2
µ2

(E1, E2), (3.47)

where Ti is the production amplitude for the resonance Ji. If J1 6= J2, the Dalitz plot distribution
is given by:

dσ

dwdE1dE2
∼
∑

M1µ1

|T1F
J1
µ1
|2 +

∑

M2µ2

|T2F
J2
µ2
|2 (3.48)
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after integrating on the Euler angles and using the orthogonality of the D functions (eq.3.29). This
shows that states of different spin does not interfere in the Dalitz plot distribution. If the two
resonances have the same spin but opposite parities the integration over the Euler angles yields:

dσ

dwdE1dE2
∼
∑

Mµ

|T1F
J
µ + T2F̄

J
µ |2 (3.49)

where F̄ indicates a decay amplitude of opposite parity to that of F . Applying parity conservation,
one may rewrite the equation above with a relative minus sign between the two terms, which means
that the interference is identically zero, again obtaining the result 3.48.
In conclusion, we have seen that, as long as one integrates over the orientation of the three particle
system, states of different spin-parity do not interfere with one another in a Dalitz plot analysis.
This means that with a suitable model to describe the decay amplitudes F JiPi

µi
(w,E1, E2) (or equiv-

alently F JiPi
µi

(w,m2
12 , m

2
13 )) it is possible to separate the different JP contribution to the 3 pions

system by fitting the experimental Dalitz plot distribution.
As will be shown in the next two chapters, in this thesis we have performed a Dalitz plot spin
parity analysis to separate the dominant JP = 1+ contribution to the 3 pions system produced
in B → D∗−π+ π+ π− from other possible resonances. The model used to describe the decay
amplitudes is the standard Isobar model and will be discussed in detail in the section 5.2. Since
our goal is to measure the a1 mass distribution, the 3 pions system mass spectrum is divided in
several intervals, and the Dalitz plot analysis is performed in each bin.



Chapter 4

The B → D
∗−

a
+
1 decay reconstruction

4.1 Introduction

This chapter describes the criteria adopted to select a sample of events mainly containing the
B → D∗−a+

1 (a−1 → π+ π− π− ) signal decay.

The data analyzed were recorded in 1999-2004 and the integrated luminosity is 208.7 fb−1 cor-
responding to about 230 Million of BB pairs. Events are first pre-selected with loose requirements
in order to reduce the amount of data in input to the analysis. B mesons are then reconstructed
combining the decay daughters in the mode considered after reconstruction of the full decay chain.
The D∗+ is reconstructed via the decay chain D∗+ → D0π+ , D0 → Kπ (Kπππ) and it is associ-
ated with a 3 pions system to form the B meson candidate.

A critical issue for this analysis is to suppress the combinatorial background, arising from ran-
dom combination of the tracks from e+e− → qq (q = u,d,s,c) or e+e− →BB events. Backgrounds
can be rejected on the basis of discriminating quantities whose distribution is different for signal
and background events. In order to study the background properties, suitable control samples are
selected on the experimental data.

The first step in the reconstruction process is the selection of BB events, which is described in
Section 4.2. Section 4.3 describes the cuts applied to ensure a good reconstruction quality for the
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final state tracks. Section 4.4 contains the particle identification criteria used to select the kaons
and pions belonging to the decay chain. In section 4.5 are shown the selection cuts for the D0 and
D∗+ mesons reconstruction. The final B selection and the discriminating variables used for the
background suppression and characterization are presented in section 4.6.

4.2 Event selection

Production cross sections for the physics processes at the Υ (4S) energy were listed in Table 2.2. In
addition to the Υ (4S) → BB decay, these processes include continuum qq and QED events such
as e+e− → e+e−,µ+µ−,τ+τ−, and γγ. The event topology is significantly different for each type
of processes. Table 4.1 summarizes the main characteristics of each process.

In order to reduce the amount of data in input to the analysis a pre-selection is applied which
enhances the number of BB and B+B− events over the background from qq and QED processes.
A fiducial volume of the detector is defined as a region characterized by well-measured recon-
struction efficiency and an accurate modeling of the detector material in the Monte Carlo (MC)
simulations. The fiducial volume for tracks is 0.41 < θlab < 2.54 rad, while for neutrals is
0.41 < θlab < 2.409, where θlab is the polar angle in the laboratory frame.
The QED events are discriminated by selecting events with three well reconstructed charged tracks
in the fiducial volume and a total visible energy W greater than 4.5 GeV.
The three tracks above are required to have at least 12 hits released in the Drift Chamber, to ensure
that their momenta and dE/dx are well measured. In addition they are required to have transverse
momentum pT > 100 MeV/c, and to point back to the nominal interaction point within 1.5cm in
the xy-plane and 3 cm along the z-axis. Moreover, the primary vertex, constructed from the tracks
above, must be within 0.5 cm of the average position of the interaction point in the xy plane and
within 6 cm in the z direction.
The visible energy W is defined as the sum of energies associated to all the charged tracks and
neutral candidates detected in the fiducial volume.
The distributions of the number of well reconstructed charged tracks and of the visible energy W
are shown in figures 4.1 and 4.2. The distributions are normalized to the same area, hence only
the shapes are meaningful. The above requirements remove, almost entirely, the QED events and
select the hadronic BB and continuum qq events.



4.2 Event selection 87

Event type Main characteristics
e+e− →e+e− Two high-momentum back-to-back

tracks, and associated energy
deposit in the EMC

e+e− →µ+µ− Two high-momentum back-to-back
tracks

e+e− →τ+τ− Back-to-back topology with large
missing energy, due neutrinos from
semileptonic τ decays

e+e− →γγ Large missing energy, and small
number of tracks due to preferential
production of particles along the
beam direction

e+e− →qq with q = u,d,s,c Large number of hadrons and jet-like
topology, due to the hadronization of
the quarks which are produced back-to-back

e+e− →Υ (4S) Large number of hadrons and
isotropic topology due to the B decays

Table 4.1: Main characteristics of the processes at the Υ (4S) energy

In order to reduce the amount of continuum qq events the normalized second Fox-Wolfram moment
[58] R2 is used. The l

th Fox-Wolfram moment Hl is the momentum-weighted sum of Legendre
polynomial of l

th order, computed from the cosine of the angle between all pairs of tracks:

Hl = Σi,j
|pi||pj|Pl(cosθij)

E2
vis

.

Each Hl is basically a multipole moment of the momentum distribution in an event. The H0 mo-
ment is the analog of the electric charge distribution. The first moment H1 is zero because the
momentum is not a signed quantity (unlike the electric charge) and therefore can not have a dipole
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Figure 4.1: Distribution of the number of well reconstructed charged tracks in the main physics
processes at the Υ (4S) energy. The distributions are normalized to the same area.

moment. The quadrupole moment H2 can instead discriminate events with a jet-like structure of
momentum (qq events) from those with a more spherically symmetric topology (BB events). The
normalized ratio R2 = H2/H0 is therefore very close to unity for events with back-to-back tracks
such as QED events, and approaches 0 for isotropic events like BB events.
The distribution of R2 for the physics processes at the Υ (4S) energy is shown in Figure 4.3.

The efficiency of the pre-selection described in this section on the bb events is 95.6% as esti-
mated from the Monte Carlo simulation.

4.3 Tracks selection

The final state of the B meson decay chain is exclusively constituted of charged particles that are
reconstructed by means of the BABAR tracking system (sec. 2.3 ).
Tracks selection criteria are summarized in Table 4.2.
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Figure 4.2: Distribution of the visible energyW in the main physics processes at the Υ (4S) energy.
The distributions are normalized to the same area.

• Tracks are required to be within the polar angle acceptance of the detector: 0.410 < θlab <

2.54 rad. This ensures a well-understood tracking efficiency.

• A cut on the distance of closest approach to the beam spot in the x−y plane (|dxy| < 1.5 cm)
and along the z axis (|dz| < 10 cm) is applied. This reduces fake tracks and background
tracks not originating from the vicinity of the interaction point.

• A cut on the maximum momentum of plab < 10 GeV/c, where plab is the laboratory momen-
tum of the track is applied. This removes tracks not compatible with the beam energies.

• The kaon candidate track used for the reconstruction of theD0 → K3π decay channel is also
required to have a transverse momentum greater than 100 MeV and at least 12 hits detected
in the Drift Chamber. This cuts are applied to reduce the combinatorial background.
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Figure 4.3: Distribution of R2 for the main physics processes at the Υ (4S) energy. The distribu-
tions are normalized to the same area.

4.4 Particle identification

Kaons are distinguished from pions and protons on the basis of specific energy-loss measurements
dE/dx in SVT and DCH, and the number of Cerenkov photons Nγ and the Cerenkov angle θc in
the DIRC (sections 2.3,2.4).

The standard BABAR identification algorithm for kaons and pions is based on the likelihood ratio
technique. The probability density functions for the discriminating variables dE/dx, Nγ and θc are
measured from control samples and are used to compute likelihoods corresponding to the different
particle hypotheses.
A purity category for the kaon hypothesis is defined by assigning a threshold value r for the ratio
between the likelihoods corresponding to the kaon and pion hypotheses and selecting candidates
that satisfy:

LK/Lπ > r.

Particle hypothesis likelihoods are obtained using the DIRC informations for candidates with mo-
mentum above the pion Cerenkov threshold and using the dE/dx measurements for lower momen-
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Table 4.2: Summary of track selection criteria.

Select tracks with Selection criteria

geometrical acceptance 0.410 < θlab < 2.54 rad
distance in x− y plane |dxy| < 1.5 cm

distance in z axis |dz| < 10 cm

maximum momentum plab < 10 GeV/c

Additional cuts for kaons from D0 → K3π

minimum transverse momentum pTlab < 10 GeV/c

Nhits in the Drift Chamber Nhits ≥ 12

tum candidates.

The difference between the measured truncated-mean dE/dx in the DCH, and the expected mean
for the pion, kaon, and proton hypotheses, with typical resolution of 7.5%, is used to compute
likelihoods Lπ , LK and Lp , assuming Gaussian distributions. The distribution of the measured
dE/dx in the DCH for selected control samples, as a function of momentum, is shown in Figure
4.4.

The difference between the measured 60% truncated-mean dE/dx in the SVT and the expected
dE/dx is described by an asymmetric Gaussian distribution. For minimum-ionizing particles, the
resolution on the SVT truncated mean is about 14% which allows a 2σ separation between pions
and kaons up to momentum of 500 MeV/c, and between kaons and protons beyond 1 GeV/c.

The DIRC provides π/K separation of 4σ or greater, for all tracks from B-meson decays, with
momenta from the pion Cerenkov threshold, up to 4.2 GeV/c. In the DIRC, a likelihood is ob-
tained for each particle hypothesis from the product of two components: the expected number N of
Cerenkov photons, with a Poisson distribution, and the difference between the measured average
Cerenkov angle θc (Figure 4.5) and the expected angle θ0

c , for a given mass hypothesis, assuming
a Gaussian distribution.

For this analysis the likelihood ratio threshold required for the kaon candidates used in the
D0 → Kπ (Kπππ) decay reconstruction ensures a selection efficiency greater than 90% and a
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Figure 4.4: Measurement of dE/dx in the DCH as a function of track momenta. The data include
large samples of beam background triggers, evident from the high rate of protons. The curves show
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pion misidentification probability less than 15%.
The three pion candidates used to build the a1 meson are required to fail (kaon veto) the selection
criteria adopted to define a highly pure (misidentification probability less than 5%) kaon sample.

4.5 Charmed Mesons reconstruction

4.5.1 D0 meson reconstruction

The decay modes D0 → Kπ and D0 → K3π are used to reconstruct the D0 mesons. The branch-
ing ratios for these two channels are respectively 3.80 ± 0.09% and 7.46 ± 0.31% [13].
Charged tracks, selected as described in section 2.3, are combined to form theD0 candidate. Kaons
candidates are required to satisfy the identification criteria described in the previous section and a
mass hypothesis is assigned to them accordingly.
The D0 candidate is required to have a mass in a 3σ window of its nominal value (1.86 GeV/c2).
The mass distribution for the selected D0 candidates is shown in figure 4.6.

4.5.2 D∗ meson reconstruction

The D∗ meson is reconstructed via the decay channel D∗+ → D0π+ which has a branching ratio
of 67.7 ± 0.5%[13]. The D0 candidate, selected as described in the previous section, is associated
with a pion candidate, taking into account the right correlation between the pion charge and the D0

flavor.
Since the small mass difference between the D∗ and the D0 mesons, the phase space available for
the pion is small and it is emitted with low momentum in the D∗ reference frame. For this reason
the pion emitted from the D∗ decay is commonly called soft pion. Soft pions candidates selected
in this analysis are requested to have momentum lower than 450MeV/c2.
The mass difference δm = m(D0- π) - m(D0) between the D0-π invariant mass and the D0 mass is
used to select D∗ candidates. The resolution on δm is improved by constraining the D0 candidate
mass to its nominal value, and by using the beam-spot as an additional geometric constraint for the
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Figure 4.6: Distribution of the reconstructed D0 mass in events that pass the pre-selection cuts
described in 4.2 and the requirements on |cosθthrust| and P(χ2) described in section 4.6.

soft pion, when the D∗ decay vertex is computed (see Figure 4.8).
The distribution of δm for selected candidates is shown in Figure 4.7. The D0-π candidates with a
mass difference δm within 2.5 standard deviations σδm of the expected value δm0 = 145.4 MeV/c2
are selected.

4.6 B Meson selection

TheD∗+ candidates are combined with three charged tracks to reconstruct theB → D∗+π+ π− π−

decay.
In order to reject background, different cuts are applied on discriminating quantities described
in the next sub-sections. The first quantity, the trhust angle, is a topological variable wich sup-
press background from continuum events, like the normalized Fox-Wolfram momenta described
in section 4.2. The probability of the kinematic fit to all the final state candidates is used to reject
the background arising from random combinations of the tracks used to compose the B meson.
The energy substituted mass (mES) and the energy difference (∆E) variables use the kinematic
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in events that pass the pre-selection cuts described in 4.2 and the requirements on |cosθthrust| and
P(χ2) described in section 4.6.

constraints from the initial state to finally select the B candidates.

4.6.1 Discriminating variables

• Thrust angle

The thrust axis [59] of a set of particles is defined to be the direction which maximizes
the sum of the longitudinal momenta of the particles. The thrust angle θthrust is the angle
between the thrust axis of the B candidate and the thrust axis of the rest of the event. As
explained in section 4.2, continuum background events tend to have a jet-like shape. Fake
B candidates reconstructed in continuum events are built with particle that come from one
of the two jets. Thus the decay axis of the B candidate is roughly collinear with the thrust
axis for the rest of the event and the variable |cosθthrust| is peaked at one.
For signal events, the B decay axis is uncorrelated with the thrust axis of the rest of the
event (which in that case comes from the decay of the other B meson) resulting in a flat
distribution for |cosθthrust|. Figure 4.9 shows the distribution of |cosθthrust| for signal and



96 The B → D∗−a+
1 decay reconstruction

πs

D0

Beamspot

Figure 4.8: The blown up beam-spot (dashed ellipse) is used as an additional constraint on the
trajectory of the soft pion πs.
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Figure 4.9: Comparison between the |cosθthrust| distributions for signal events form Monte Carlo
simulation (continuum histogram) and background from data sideband (blue dots).

background events.
B candidates selected for this analysis are requested to satisfy the condition
|cosθthrust| < 0.9.

• Probability of the kinematic fit
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A kinematic fit on all the tracks used to reconstruct the B meson is performed. Particles
momenta are re-calculated in the fit. A better resolution on the momenta is obtained by im-
posing some geometric and mass constraints. The D∗+ candidate and the three pions tracks
are requested to come from a common decay vertex taking into account the flightlenght of
the B meson. The D0 decay daughters invariant mass is constrained to nominal D0 mass
and the D0-πsoft invariant mass is fixed to D∗ mass. The χ2 Probability of the kinematic
fit is used to reject combinatorial background. For this analysis, only candidates with a χ2

probability P(χ2) greater than 0.01% are selected. Figure 4.10 shows the χ2 probabilty dis-
trubution for the kinematic fit for signal and background events.
Further details on the kinematic and vertex fit tecniques can be found here [60].

• Energy difference

After the cuts on the quantities described above, the final B candidate selection is performed
using a pair of nearly uncorrelated kinematic variables which exploit the kinematic constraint
from the Υ (4S) decay into a BB̄ pair [61].
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The first variable, ∆E, can be expressed in Lorentz invariant form as:

∆E = (2qBq0 − s)/2
√
s, (4.1)

where
√
s=2E∗

beam is the total energy of the e+e− system in the center of mass frame, and
qB and q0 are the Lorentz vectors representing the quadri-momenta of the B candidate and
of the e+e− system, q0 = qe+ + qe− . In the center of mass frame, ∆E takes the form:

∆E = E∗
B − E∗

beam, (4.2)

whereE∗
B is the reconstructed energy of theB meson. In this frame ∆E ’s physical meaning

becomes clear: it is the difference between the reconstructed and the expectedB energy. The
expected value of ∆E is thus zero. The RMS spread σ(∆E) is given by the uncertainty σE
on the measured energy and by the spread σB of the true B meson energy

σ2(∆E) = σ2
B + σ2

E . (4.3)

The uncertainty σE in the B → D∗+π+ π− π− channel is found to be about 20 MeV. The
measured spread in the beam energies result in variations of the Υ (4S) energy and are the
main contribution to σB . The beam-energy spread is of the order of a few MeV (see Sec-
tion 2.2) and therefore σ(∆E) is dominated by σE . Figure 4.11 shows the ∆E distribution
for events that satisfy all the selection criteria described above.

• Energy substituted mass

The beam-energy–substituted mass mES is defined as

mES =
√

E∗
b
2 − p∗2 (4.4)

where E∗
b is again the beam energy and p∗ is the measured momentum of the B candidate

in the Υ (4S) center-of-mass frame, derived from the momenta of its decay products. mES is
the B mass computed substituting the B meson energy by E∗

beam. The RMS spread of mES

is given by [61]

σ2(mES) ≈ σ2
B +

(
p

MB

)2

σ2
p (4.5)
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Figure 4.11: Distribution of the reconstructed energy difference ∆E for events selected in the mES

peak region.

where σp is the uncertainty on the measured momentum. Unlike σ(∆E), since p/MB ≈
[325 MeV/c]/[5279 MeV/c2] ≈ 0.06c, the uncertainty σ(mES) is dominated by the beam-
energy spread σB .

Although mES and ∆E are both evaluated from the beam energy E∗
b , the main sources of

their experimental smearing are different (beams energy for mES and detector momentum
resolution for ∆E). As a consequence these two variables are nearly uncorrelated. The mES

distribution for selected B → D∗+π+ π− π− candidates is shown in figure 4.12.

4.6.2 Signal and background samples

Figure 4.13 shows the distribution of mES versus ∆E for the decay mode B → D∗+π+ π− π− .
Signal candidates accumulate around mES = mB GeV/c2 and ∆E = 0 MeV.

The signal region is defined in the (mES, ∆E) plane by:

5.27 < mES < 5.29GeV/c2 and |∆E∗| < 0.05,
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Figure 4.12: Distribution of the reconstructed beam energy substituted mass mES for events se-
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Figure 4.13: Distribution of ∆E vs. mES for selected B → D∗+π+ π− π− candidates. Left
bidimensional view; Right tridimensional view.

For the purpose of determining event yields and purities and in order to study the backgorunds
properties, four regions are defined in the (mES, ∆E) plane. These regions are listed in Table 4.3.
The selection cuts described in this chapter, were applied to a sample of 209 fb−1 of data taken at

the Υ (4S) resonance, resulting in 23204 events in the signal box.
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Table 4.3: Definitions of subsamples of the selcted events used in the analysis.

Region Selection criteria

Signal region 5.27 < mES < 5.29 GeV/c2

|∆E| < 0.05 GeV
mES Sideband 5.2 < mES < 5.26 GeV/c2

|∆E| < 0.05 GeV
Grand Sideband 5.2 < mES < 5.26 GeV/c2

|∆E| < 0.15 GeV
Fit Sample 5.2 < mES < 5.29 GeV/c2

|∆E| < 0.15 GeV

In order to estimate the contributions of signal and background to the signal box a fit to the mES

distribution (including mES sideband events) was performed.
The combinatorial background arises from random combinations of charged particles that pass all
the selection cuts. For these events themES variable is smoothly distributed and does not peak near
the B mass. This is parameterized with a threshold function

A(mES;m0, ξ) = NBmES

√

1 − (mES/m0)2 eξ
(
1 − (mES/m0)

2
)

, (4.6)

commonly called the ARGUS function [62], where m0 is the upper kinematic limit fixed at the
beam energy Eb, NB is the normalization factor, and ξ controls the slope of the function. The
effect of variations in ξ is illustrated in Figure 4.14.
The mES distribution for signal events peak at the B mass. This distribution can be parameterized

by a double gaussian.
The signal yield and the sample purity are determined from a fit to themES distributions of theNtot

candidates contained in the signal and mES-sideband regions, with a sum of a Double Gaussian G
for the signal and an ARGUS function A for the background

f(mES) = Nsig G(mES) + (Ntot −Nsig )A(mES) . (4.7)

The purity P of the selected sample is defined as

P =

∫ Eb

5.27
dmES G(mES)

∫ Eb

5.27
dmES (G(mES) + A(mES))

. (4.8)
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Figure 4.14: The shape of the ARGUS function for ξ > 0, ξ = 0, and ξ < 0.

Figure 4.15 shows the results of the mES fit on the full sample of selected events. We obtatains
16500±120 peaking events with a purity of 71%
Background contamination depends on the three pions system invariant mass M3π , this is shown
in figures 4.16 and 4.17 where are reported the mES fit results for the 0.5 < M3π < 1.5 GeV and
1.5 <M3π < 2.5 GeV intervals.

4.6.3 Three pions mass spectrum

As described in section 3.6, in order to study the properties of the 3 pions system the sample of
events is divided in several sub-samples each charachterized by a range of values for the 3 pions
invariant massM3π . In each bin a Dalitz plot analysis allows to separate the JP = 1+ contribution
from other possible JP states.
The 3 pions mass spectrum is shown in figure 4.18 The red histogram represents the M3π distri-
bution for combinatorial background events. The shape for this distribution is taken from the mES

sideband control sample while the normalization is obtained by integrating the fitted argus function
on the signal region.
In addition to the broad structure around 1.2 GeV/c2 mainly due to the a1 meson a very narrow
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peak is evident at ∼1.970 GeV/c2. It correspond to theD+
s resonace decaying into 3 pions. In other

words, the peak corresponds to the B → D∗−D+
s decay with D+

s → π−π+π+. Since this charmed
resonance is very narrow, we have choose to apply a veto in the D+

s region and we don’t use events
in the 1.8-2.0 GeV/c2 for our spin parity analysis. With this choice of the veto region, we also
reject B → D∗−D+

s , D+
s → K−K+π+ events, where two Kaons are wrongly identified as pions,

resulting in a total invariant mass lower than the nominal mass of the D+
s (MDs = 1968.6 ± 0.6

MeV[13]). Monte Carlo simulation have shown that these events are almost completely rejected
with this veto.
The choice of the intervals in which we divide the M3π spectrum for our spin parity analysis is the
result of a compromise between two opposite needs. On one side we would have bins as much as
possible small to describe precisely the a1 lineshape, but we have to ensure sufficient statistics to
perform the Dalitz plot analysis in each bin.
The final choice is to use 17 not-uniform bins:

0.8 − 0.9, 0.9 − 0.95, 0.95 − 1.0, 1.0 − 1.05, 1.05 − 1.1, 1.1 − 1.15,

1.15 − 1.2, 1.2 − 1.25, 1.25 − 1.3, 1.3 − 1.35, 1.35 − 1.4, 1.4 − 1.45,

1.45 − 1.5, 1.5 − 1.6, 1.6 − 1.7, 1.7 − 1.8, 2.0 − 2.2, GeV/c2.
(4.9)

The low statistcs and high backgruond contamination prevent us to have stable results for the Dalitz
plot analysis above 2.2 GeV.
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Figure 4.15: Fit to the mES distribution for the full sample of selected events. The combinatorial
background is modeled with an argus function (dashed line) while signal si modeled by a double
Gaussian.

)2 (GeV/cESm
5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29

)2
ev

en
ts

/(0
.9

 M
eV

&c

0

200

400

600

800

1000

1200

1400

1600

1800

 < 1.5)
π3

 fit (MESm

m1=5.28006+/-0.000011
sigma1=0.0023+/-0.0002
mean2=5.28012+/-0.00002
sigma2=0.0027+/-0.0003

=11019+/-88peakN
purity 82%

Figure 4.16: Fit to the mES distribution for the sample of selected events with M3π < 1.5 GeV.
The combinatorial background is modeled with an argus function (dashed line) while signal si
modeled by a double Gaussian.
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Figure 4.17: Fit to the mES distribution for the sample of selected events with M3π > 1.5 GeV.
The combinatorial background is modeled with an argus function (dashed line) while signal si
modeled by a double Gaussian.
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taking the shape from the mES sideband region and the normalization from the fit to mES.
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Chapter 5

Study of the a1(1260) meson

5.1 Introduction

In this chapter it is described the study of the three pions system produced in theB → D∗−π+ π+ π−

decays and the measure of the a1 meson parameters.
In section 3.6 we have seen that the analysis of the Dalitz plot can be used to identify the different
spin parity contributions to the the three pions.
In order to measure the a1 line-shape, the three pions mass spectrum is divided in several bins and
a Dalitz plot analysis is performed in each of them to extract the JP = 1+ yields, thus obtaining
the a1 mass distribution Ma1 .
We have used the Isobar model to describe each JP → πππ decay. It is based on the assumption
that the three body decay is dominated by a sequence of two body decays:

JP → Xπ

X → ππ,
(5.1)

where more intermediate resonances X can contribute to the total amplitude. In this framework, the
Dalitz plot analysis allows to separate the a1 meson from other possible resonances and to measure
the contributions of the various intermediate resonances X contributing to the a1 → πππ decay.
In order to obtain reliable results, it is important to correctly describe the combinatorial back-
ground, whose contribution to the signal sample increase in the high M3π region (4.6). Events
selected in the mES − ∆E “Grand Sideband” control sample ( defined in section 4.6 ) are used to
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Y
× 1c

1X

1π

2π
3π

+
Y

× 2c
2X

1π

2π
3π

+ ....

Figure 5.1: Three body decays in the Isobar Model. The decay amplitude is the sum of several
amplitudes each characterized by a different intermediate resonance.

model the background Dalitz plot distribution.
Non uniformity in the phase space of the selection efficiency may affect the Dalitz plot and the
extracted Ma1 distributions. These effects has been studied by measuring the selection efficiency
in a Monte Carlo sample of signal events.
The Isobar model adopted in this analysis is described in detail in section 5.2. Section 5.3 contains
the background characterization while the determination of the selection efficiencies is discussed
in section 5.4. The results of the Isobar model fit in the various M3π bins are presented in section
5.5. The study of the a1 → Xπ (X → ππ) substructures is presented in section 5.6, while the
line-shape fit determining mass and width of the a1 meson is shown in section 5.7. Section 5.8
contains the discussion on the main sources for the systematic uncertainty affecting the analysis
that will be evaluated in the prosecution of the work.

5.2 The Isobar Model

We adopted the standard Isobar model [63] to describe the process JP → πππ as a chain of two
body decays.

Figure 5.1 shows the schematic diagram ‘a la Feynman used to build the total amplitude. It
is obtained as a sum of amplitudes each describing a two body chain process with a different
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propagating intermediate resonance:

A(Y → πππ) =
∑

k

ckAXk
(5.2)

where the ck are phenomenological complex coefficients to be determined from the experiments.
The two body chain amplitudes AXk

are given by:

AXk
(m2

12, m
2
13|J,M, L) = Rk(m12)TJMjl(p1, p2, p3) + 2 ↔ 3, (5.3)

where Rk(m12) is the intermediate resonance mass term and TJMjl provides the angular prob-
ability distribution depending on the spins of the initial state and of the intermediate resonance
Xk and on the orbital angular momentum between Xk and the other pion. Since in this analysis
we have two identical pions in the final state the amplitude is symmetrized for the exchange 2 ↔ 3.

5.2.1 Mass term

The mass term Rk is given by a relativistic Breit Wigner describing the intermediate resonance
propagation:

Rk(m12) =
(m2

0 −m2
12) + im0Γ(m12)

(m2
0 −m2

12)
2 +m2

0Γ
2(m)

, (5.4)

where the decay width of the resonance depends on the invariant mass of the two pions daughters:

Γ(m12) = Γ0(
q

q0
)2j+1(

m0

m12
)
F 2
j (q)

F 2
j (q0)

. (5.5)

The quantity q is the momentum of either daughter pion in the rest of frame of the intermediate
resonance and is given by

q =
1

2

√

m2
12 − 4m2

π. (5.6)

The symbol q0 denotes the value of q when m12 = m0, the pole mass of the intermediate res-
onance. The functions Fj(q) are the Blatt-Weisskopf barrier form factors [64]. These functions
account of the fact that the maximum angular momentum L in a strong decay is limited by the
linear momentum ~q. Decay particles moving slowly with an impact parameter R (meson radius)
of order 1 fm have difficulty generating sufficient angular momentum to conserve the spin of the
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resonance. The explicit expressions for the Blatt-Weisskopf functions corresponding to j=1,2,3
are:

F0 = 1

F1 =
√

1/(1 + z2)

F2 =
√

1/(z4 + 3z2 + 9),

(5.7)

where z = Rq, and R is the radius of the barrier, which is taken to be 1.5 GeV−1 ' 0.3 fm.

5.2.2 Angular distribution

The angular distribution function TJMjl(p1, p2, p3) is evaluated from the three pions four momenta
p1, p2, p3 with the Zemach formalism approach [65]. The reaction of type 5.1, is characterized
by four angular momentum quantum numbers: the spin J of the initial state and its component
M along the quantization axis, the spin j of the intermediate resonance X and the orbital angular
momentum l between X and the third pion:

JP → jp + l. (5.8)

Zemach has demonstrated the connection existing between the spin dynamics and the final state
observables represented by the momenta of the three pions. This connection is given by the sym-
metric traceless Cartesian tensors formed by the particle four-momenta. A rank j tensor of this
types has 2j+1 independent components, and represents an element of an irreducible subspace. In
other words, it is isomorphous to a rank j spinor.
Recently Filippini, Fontana and Rotondi [66] have developed a covariant formulation of the Zemach
formalism in which the spin tensors are represented in the Minkowski space as symmetric traceless
tensor orthogonal to the particle four-velocity.
For a spin 1 particle decaying in two pions with momenta p1 and p2 the covariant Zemach tensor
is given by:

Sµ = qµ − (q · u)uµ, (5.9)

where qµ = pµ1 − pµ2 is the break-up four momentum, while uµ = (pµ1 + pµ2)/2m12 is the four-
velocity of the particle. The spin-2 tensor is instead given by:

Tµν = SµSν −
1

3
S2(gµν − uµuν). (5.10)

To obtain the angular distribution function TJMjl(p1, p2, p3), the Zemach prescription consists in
the following steps:
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• Build the Zemach tensors S and L representing the final state angular momenta j and l

• Combine these tensors to obtain a j+l rank tensor S × L

• Contract this tensor with the spin |JM〉 Lorentz invariant wave function in the j+l dimen-
sional space e(J)

µ1...µj+l(M).

For a spin 1 particle of momentum p the three wave functions corresponding to M = ±1, 0 are
given by [55]:

eµ(∓1) =
±1√

2









px ± ipy

m+ px(px ∓ ipy)/(E +m)

∓im + py(px ∓ ipy)/(E +m)

pz(px ∓ ipy)/(E +m)









, (5.11)

eµ(0) =
1

m









pz

pzpx/(E +m)

pzpy/(E +m)

m + p2
z(E +m)









. (5.12)

The general spin functions can be obtained from the spin 1 wave functions using the Clebsh-Gordan
series. For example the three rank-2 functions |JM〉 with J = 0, 1, 2 are given by:

e(J)
µν (M) =

∑

M=m1+m2

〈1m1; 1m2|JM〉eµ(m1)eν(m2). (5.13)

With the prescriptions above it is possible to write the angular distribution functions for all the
possible combinations of initial and final spin states. Since the 3 pions system is described by
the two independent Dalitz variables the distribution functions turn out to depend only on these
variables.

Figure 5.2 shows the simulated Dalitz plot distributions for the decay processes 1+ → ρπ (l =0,2),
0− → ρπ (l = 1), 2+ → ρπ (l = 1) with a total invariant mass M = 1.7 GeV.

5.2.3 Selection rules

Since we deal with strong decays, the amplitudes appearing in equation 5.2 have to be chosen
taking into account parity conservation as well as angular momentum conservation. The following
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Figure 5.2: Comparison between Dalitz plots for the JP → ρπ decay for different initial states
spins and orbital angular momenta.

selection rules hold:
|j − l| <= J <= j + l,

p = (−1)j,

P = (−1)j+l+1,

(5.14)

In our analysis we neglected contributions of spin and orbital angular momenta greater than 2.
From the selection rules above follows that the a1 meson (JP = 1+) decays via scalar mesons
intermediate resonances (σ, f0(980), f0(1370),... ) only in p-wave while for the pseudo-vector
mediated decays (ρ,ρ′) both s-wave and d-wave may contribute. It is also possible a spin 2 inter-
mediate resonance (f2(1270)) in a p-wave state.
Table 5.1 resumes the allowed amplitudes for other possible JP states.
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JP → jp + l intermediate resonance orbital angular momentum state
0− → 0+ + 0 σπ, f0(980)π, f0(1370)π S-wave

1− + 1 ρπ, ρ′π P-wave
2+ + 2 f2π D-wave

1+ → 0+ + 1 σπ, f0(980)π, f0(1370)π P-wave
1− + 0 ρπ, ρ′π S-wave
1− + 2 ρπ, ρ′π D-wave
2+ + 1 f2π P-wave

2− → 0+ + 2 σπ, f0(980)π, f0(1370)π D-wave
1− + 1 ρπ, ρ′π P-wave
2+ + 0 f2π S-wave
2+ + 2 f2π D-wave

2+ → 1− + 2 ρπ, ρ′π D-wave
2+ + 1 f2π P-wave

Table 5.1: Allowed amplitudes for the different JP → π+π+π− processes.

5.3 Combinatorial Background model

In order to build the probability density functions modeling the background Dalitz distribution in
the 18 bins of M3π, we make use of the control sample of events from the “Grand Sideband” region
defined in table 4.3.
The Probability density functions are built from the binned Dalitz distributions smoothed by means
of a bilinear interpolation technique [67].
It should be noticed that we can not use the bidimensional histogram in the usual coordinates (m2

12 ,
m2

13 ), since the Dalitz plot bounds in this coordinates depend on the total mass M3π (eq. 3.46),
while the histogram we take from the control sample is integrated on a finite range of M3π. The
Pdf fbkg(M3π, m

2
12 , m

2
13 ) obtained from this histogram is normalized as:

∫ M2

M1

dM3π

∫

D.P.(M2)

dm2
12 dm

2
13 fbkg(M3π, m

2
12 , m

2
13 ) = 1, (5.15)

where M1 and M2 are the bounds of the M3π bin, and D.P.(M2) is surface in the (m2
12 , m2

13 )
plane corresponding to M3π = M2.
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The correct normalization we would obtain is instead:
∫ M2

M1

dM3π

∫

D.P.(M3π)

dm2
12 dm

2
13 fbkg(M3π, m

2
12 , m

2
13 ) = 1. (5.16)

To build the correctly normalized Pdf, we use a co-ordinate transformation to a square Dalitz plot
defined as [68]:

(M3π, m
2
12 , m

2
13 ) → (M ′

3π, m
′, θ′)

M ′
3π = M3π

m′ = 1
π
arccos(2 m++−m++[min]

m++[max]−m++[min]
− 1)

θ′ = 1
π
θ++,

(5.17)

where m++ is the invariant mass between the two pions with the same charge, m++[max] =

M3π − mπ and m++[min] = 2mπ are its kinematical boundaries while θ++ is the helicity angle
between one of the like-sign pions and the three pions system momentum in the π+π+ rest frame.
The new variables (m′, θ′) range from 0 to 1 for each value of M3π.
The correctly normalized Probability density functions are obtained from the experimental his-
tograms in these coordinates by means of the Jacobian of the transformation defined as:

dm2
12 dm

2
13 = |J |dm′dθ′. (5.18)

The determinant of the Jacobian |J | is given by:

|J | = 4|p∗+|2m++
∂m++

∂m′
∂cosθ++

∂θ′
, (5.19)

where |p∗+| is the momentum of the like-sign pions in the rest frame of the π+π+ system and the
partial derivative above are given by:

∂m++

∂m′ = −π
2
sin(πm′)(m++[max] −m++[min])

∂cosθ++

∂θ′
= −πsin(πθ′).

(5.20)

Figure 5.3 shows the usual and the square Dalitz plot experimental distributions for “Grand Side-
band” events in the [1.5, 1.6] M3π interval. The Jacobian determinant function is illustrated in
figure 5.4.
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Figure 5.3: Dalitz plot distributions in the “usual” (left) and in the “square” coordinates for “Grand
Sideband” events with M3π in the [1.5, 1.6] interval.

5.4 Selection efficiency

In order to study the effects of the efficiency selection on the M3π and Dalt plot distributions, we
make use of a sample of Monte Carlo simulated signal events. Our sample consist of about 60000
of reconstructed B → D∗−π+ π+ π− events, which corresponds to approximately 4 times the
number of signal events in the data. In order to cover almost uniformly the whole M3π spectrum,
the MC sample used is a cocktail of B → D∗−a+

1 events with M3π mainly distributing in the [0.5
GeV,1.5 GeV] range and of non-resonant B → D∗−ρπ− and B → D∗−π+ π+ π− events mainly
covering the M3π > 1.5GeV region.
In each bin i in which we divided the M3π spectrum for the spin-parity analysis, we evaluate the
overall efficiency as the ratio εi = NSel

i /NGen
i where NGen

i and NSel
i are respectively the total

number of generated events and the number of selected events in that bin. The distribution of the
efficiency over the Dalitz plots is obtained by the ratio between the reconstructed and generated
Dalitz plots. With the currently available Monte Carlo statistics we cannot perform a fine binning
to estimate the Dalitz plot efficiency. We find that the Dalitz efficiency functions are consistent
with a flat distribution within the statistical error. The efficiency distributions over the Dalitz plot
for the [1.3, 1.35 GeV] and [1.6,1.7 GeV] M3π bins are shown in figure 5.5.

Figure 5.6 shows the measured overall efficiencies εi as a function of the total 3 pions mass
M3π. The decreasing trend is related with the D∗ reconstruction. At increasing values of M3π

correspond decreasing values of the D∗ momentum and, as a consequence, lower values for the
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Figure 5.4: Jacobian determinant function for the (m2
12 ,m2

13 )→(m′, θ′) coordinate transformation.

transverse momentum of the soft pion (see section 4.5.2 ) from the D∗− → D̄0π− decay. The soft
pion is the slower particle in the event and its reconstruction efficiency drops for small transverse
momenta (figure 2.9).

The measured εi of figure 5.6 are used to correct the number of a1 events extracted from the
spin-parity analysis in the various bin of M3π thus obtaining the a1 mass distribution.



5.4 Selection efficiency 117

)4/c2 (GeV12
2m

0.2 0.4 0.6 0.8 1 1.2 1.4

)4
/c2

 (G
eV

132
m

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.05

0.1

0.15

0.2

0.25

0.3

Efficiency DistrDalitz plot Efficiency 2 <= 1.35 GeV/cπ3 <= M21.3 GeV/c

)4/c2 (GeV12
2m

0.5 1 1.5 2 2.5

)4
/c2

 (G
eV

132
m

0.5

1

1.5

2

2.5

0

0.05

0.1

0.15

0.2

0.25

0.3Efficiency DistrDalitz plot Efficiency

2 <= 1.7 GeV/cπ3 <= M21.6 GeV/c
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5.5 Dalitz plot analysis

5.5.1 The likelihood function

The spin parity analysis we have performed in each of the 17 M3π bins defined in eq. 4.9 consists
in an extended unbinned maximum likelihood fit to the mES , M3π, m2

12 , m2
13 distribution. The

likelihood function we use is defined as:

L =
∑

JP

NJPPJP +NbkgPbkg, (5.21)

where PJP and Pbkg are the product of the normalized Probability Density Functions (PDFs) for
mES , M3π, and the Dalitz variables:

P = PmES × PM3π × PD.P.(M3π). (5.22)

The signal and background PDFs for the mES variable are described in section 4.6.2. We model
the mES signal distribution with a double Gaussian while the background distribution is modeled
by the Argus function (eq. 4.6).
In each of the 17 bins, the 3 pions mass distribution for signal and background events are well
modeled by first order polynomials described by the slope parameters csig and cbkg. We assume the
same PmES and PM3π PDFs for the different spin parity states which are discriminated by means
of the Dalitz plot PDF.
The Dalitz plot distribution for a given JP state is obtained using the Isobar model described in
section 5.2:

PD.P.(M3π) =
|
∑

i ciAi(m
2
12 , m

2
13 )|2

∫ ∫

D.P.(M3π)
|∑i ciAi(m

2
12 , m

2
13 )|2dm

2
12 dm

2
13 , (5.23)

where the sum runs over the possible intermediate states contributing to the JP → πππ decay and
ci = |ci|eiφi are the phenomenological complex coefficients weighing each intermediate states and
have to be determined from the fit. Each amplitude Ai is given by the product of the mass and
angular terms defined in sections 5.2.1 and 5.2.2. The list of the intermediate resonances used in
the fit is given in table 5.1, the values for their Breit-Wigner pole masses and widths are taken from
PDG [13].
To obtain normalized Pdfs we have to evaluate the integral appearing at the denominator of eq.
5.23. This term can be re-written as:

∫ ∫

D.P.(M3π)

|
∑

i

ciAi(m
2
12 , m

2
13 )|2dm2

12 dm
2
13 =

∑

i,j

cic
∗
jIij(M3π), (5.24)
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where:
Iij(M3π) =

∫ ∫

D.P.(M3π)

AiA
∗
jdm

2
12 dm

2
13 . (5.25)

The integral terms Iij are evaluated by means of a toy-Monte Carlo technique by generating an
high statistics sample of 3 pions systems with total invariant mass M3π and flat in the phase space.
The algorithm used to generate this sample is GENBOD [69].
The model for the background Dalitz plot PDF is obtained from the experimental distribution of
events in the “Grand Sideband” region and has been discussed in detail in section 5.3.

5.5.2 Goodness of fit

To compare the fit results with the data, we have developed a toy Monte Carlo to generate high
statistics samples of events according with the fitted parameters. Starting from a sample of events
uniformly distributed in the phase space, we apply the hit-or-miss technique to obtain the distribu-
tion described by our PDF.
A χ2 comparison between the data and the toy MC Dalitz plots gives us an estimate of the goodness
of the fit. However, as pointed out in [70], the use of evenly spaced bins may cause an unreliable
value of the χ2 due to the presence of low populated bins. For this reason we have implemented
an adaptive binning algorithm to represent the Dalitz plot. The bins of the resulting histogram are
partitioned according to the density of the data and are nearly equally populated.
The binning algorithm is described in detail in [71]. The starting point is a cell that contains all the
data points in the (m2

12 ,m2
13 ) plane. The cell is splitted in two parts by a line passing for its cen-

troid. Among the two possible cell-cut directions (vertical and horizontal), the algorithm choose
the one that minimize the difference between the number of points contained in two resulting sub-
cell. This criterion is applied iteratively to each sub-cell which is splitted as long as the number of
events contained exceed a threshold value.
Once the partitioning is completed, at each cell is assigned a χ2 value given by:

χ2
cell =

(Ndata
cell −Nfit

cell)
2

Ndata
, (5.26)

where N fit
cell is estimated by means of the toy MC. The sum of the χ2

cell quantities is the bidimen-
sional χ2 of our fit.
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5.5.3 Fit strategy

The event sample given in input to the fit program is the “Fit Sample” defined in table 4.3.
In order to reduce the number of free parameters in the fit, the mES and M3π shape parameters
are fixed from a previous unbinned maximum likelihood fit in which the Dalitz variables are not
considered. The free parameters for the likelihood of eq. 5.21 are the NJP , Nbkg yields and the
Isobar model parameters |cJ,Pi | and φJ,Pi . Each JP PDF is defined up to a not-observable complex
constant. A convention choice can be done to fix one of the coefficients cJ,Pi in 5.23 as:

|c1| = 1

φ1 = 0
(5.27)

The other complex coefficient fitted are so relative to the fixed one. The results on the observables
yields NJP , Nbkg does not depend on the convention choice. Moreover, from the fitted ci it is
possible to define other physical quantities that does not depend on the convention choice and can
be used for comparison between the experiments (section 5.6).
Since the available statistics is not enough to obtain stable results from a simultaneous fit of all the
possible JP states and intermediate resonance of table 5.1 we decided to perform, in each bin of
M3π, a set of independent fits each characterized by a choice of a reduced number of contribut-
ing amplitudes and to adopt the above defined χ2 criterion to select the configuration that better
describe the data.

5.5.4 Results

The results of the maximum likelihood fits in the 17 M3π bins are shown in figures 5.7-5.23 . For
each bin we report:

• the mES and M3π distributions with the fit result superimposed.

• The symmetrized Dalitz plot distribution,

• The m+− projection of the symmetrized Dalitz plot. It is compared with the fit expecta-
tion histogram generated by means of the toy Monte Carlo described in subsection 5.5.2.
Different colors are used to identify the different JP and background contributions.
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• The distribution of the χ2 on the adaptively binned Dalitz plot.

• A table summarizing the results of the fit.

Below 1.5 GeV/c2, the data are well reproduced by the only JP = 1+ state, corresponding to
the a1 resonance. The intermediate resonances contributing to the the total amplitude are (1+ →
ρπ)s−wave, that gives the main contribution, 1+ → σπ, (1+ → ρπ)d−wave, and 1+ → ρ′π. The
peak of the ρ resonance is clearly visible in the m+− distribution and in the Dalitz plot.
Above 1.5 GeV/c2 also the f2(1270) peak is evident in the two opposite-sign pions mass spectrum
but the 1+ → f2π amplitude is not useful to well reproduce the data. The introduction of a
JP = 2− state is needed describe the data in the M3π > 1.5 GeV intervals. We find significant
contributions of the 2− → f2π, and 2− → ρπ amplitudes. The JP = 2− state is found in a mass
region that corresponds to the π2(1600) resonance. The presence of a spin 2 resonant contribution
to the 3 pion system in B → D∗−π+ π+ π− decay may indicate that non-factorizable terms are
not negligible in this process, since the CKM favored diagram for a two body B → D∗−X+ decay
is expected to be suppressed in QCD factorization [72] for a resonance X with spin higher than 1.
We don’t find significant contributions of any other JP state to the mass spectrum.
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Figure 5.7: Results of the spin parity analysis in the [0.8 GeV, 0.9 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.8: Results of the spin parity analysis in the [0.9 GeV, 0.95 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.9: Results of the spin parity analysis in the [0.95 GeV, 1.0 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.10: Results of the spin parity analysis in the [1.0 GeV, 1.05 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.11: Results of the spin parity analysis in the [1.05 GeV, 1.1 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.12: Results of the spin parity analysis in the [1.1 GeV, 1.15 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.13: Results of the spin parity analysis in the [1.15 GeV, 1.2 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.14: Results of the spin parity analysis in the [1.2 GeV, 1.25 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.15: Results of the spin parity analysis in the [1.25 GeV, 1.3 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.16: Results of the spin parity analysis in the [1.3 GeV, 1.35 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.17: Results of the spin parity analysis in the [1.35 GeV, 1.4 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.18: Results of the spin parity analysis in the [1.4 GeV, 1.45 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.19: Results of the spin parity analysis in the [1.45 GeV, 1.5 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.20: Results of the spin parity analysis in the [1.5 GeV, 1.6 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.21: Results of the spin parity analysis in the [1.6 GeV, 1.7 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.22: Results of the spin parity analysis in the [1.7 GeV, 1.8 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.23: Results of the spin parity analysis in the [2.0 GeV, 2.2 GeV] M3π interval. Top-left:
mES distribution (data vs. fit). Top-right: M3π distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m+− distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: χ2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the
intermediate states that significantly contribute to the total amplitude.
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Figure 5.24: “Decay fractions” for the a1 → πππ substructures.

5.6 a1(1260) decay fractions

From the Isobar complex coefficients appearing in 5.23 it is possible to define the quantities:

fij =

∫ M2

M1

dMP(M)
cic

∗
jIij(M)

∑

i,j cic
∗
jIij(M)

. (5.28)

The diagonal terms fii are real and are usually interpreted as the “decay fraction” in the intermedi-
ate state i. However, due to the interference terms, these fractions does not sum to one while from
the above definition follows

∑

i,j

fi,j = 1. (5.29)

These quantities are widely used in the Dalitz plot analysis as their values does not depend on the
convention choice adopted in the fit of the Isobar coefficient ci (eq.5.27).
For the a1 resonance we have found significant contributions of the a1 → ρπ (S and D waves),
a1 → σπ and a1 → ρ′π channels. Figure 5.24 shows the central values of these “decay fractions”
as a function of the 3 pions mass M3π .
The ρπ s-wave contribution is the dominant one, as expected, with a decay rate around 70% in

qualitatively agreement with the CLEO analysis [48].
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The σπ coefficient |cσπ| significantly differ from zero in each M3π interval.
Its decay fraction increase in the a1 tail region. Also the ρπ d-wave amplitude become more im-
portant at high M3π values.
In the most populated bins (1.2-1.5 GeV) we also have sensitivity to the ρ′π contribution.
We don’t find significant contribution for the other scalar intermediate states (f0(980), f0(1370)).
The determination of the statistic uncertainties σ(fii) on the decay fractions require a careful treat-
ment of the correlation between the complex coefficients ci and is actually under study. A possible
strategy is to apply the same Monte Carlo technique often used in the D0 → 3 bodies Dalitz plot
analyses [73]. Once the fit is converged and the covariance matrix is available, the solution from
the fit is randomly modified according to the covariance matrix [74]. For each iteration, new frac-
tions have to be computed and the resulting distributions can be fitted with Gaussian whose σ’s
give the errors on the fractions.

5.7 a1(1260) line-shape measurement

The spin-parity analysis described in section 5.5 allows us to extract the N1+ yields in each bin of
the three pions mass spectrum.
From these quantities we obtain the a1 mass distribution by unfolding for the efficiencies effects
estimated from the Monte Carlo simulation as described in section 5.4.
The a1 line-shape can be modeled with a relativistic Breit Wigner, using the following expression
[75]:

dN

dm
= N

ma1Γa1(m)

(m2 −m2
a1)

2 + Γ2(m)m2a1

, (5.30)

where Γa1(m) is a mass dependent width of the form:

Γa1(m) = Γa1(ma1)
f(m)

f(ma1)
(5.31)

and f(m) is a phase space factor term, here parametrized by a 2nd order polynomial.

We performed a minimum χ2 fit to the a1 line-shape to determine the line-shape parameters. The
χ2 is defined as:

χ2 =

Nbins∑

i=1

(N i
a1
−N i

expected)
2

σ2(N i
a1

)
. (5.32)
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Figure 5.25: Fit to the efficiency unfolded a1 mass distribution.

Here N i
a1

is the measured number of JP = 1+ events in the i-th bin divided by the selection
efficiency in that bin and σ2(N i

a1) is the error on N i
a1 obtained by propagating the statistical un-

certainty on N i
1+ (quoted from the Dalitz plot fit) and the error on the efficiency, due to the finite

Monte Carlo statistics. The quantity N i
expected is given by:

N i
expected =

∫ max[i]

min[i]

dm
dN

dm
, (5.33)

where min[i] and max[i] are the bounds of the i-th bin.
The result of the fit is shown in figure 5.25.

We find the following values for the mass and width of the a1 meson:

ma1 = 1.207 ± 0.008 GeV/c2 (5.34)

and
Γa1 = 450 ± 0.035 MeV/c2, (5.35)
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with a χ2/nd.o.f. = 18/12. The errors here quoted ere statistic only. The systematic uncertainties
will be evaluated in the prosecution of the work. Section 5.8 contains a discussion on the main
systematic uncertainty sources affecting this measurement.
Our measurements of ma1 and Γa1 are in good agreement with the PDG estimates[13]. It should
be noticed, however, that a direct comparison between the currently available measurements of the
a1 parameters is not completely meaningful since different experiments use different models to
parametrize the a1 line-shape. The model used here, was previously adopted by the WA76 [76]
and WA103 [77] collaborations that give consistent results.

5.8 Plan for systematic uncertainties study

We summarize here the main sources of the systematic uncertainty affecting the a1 parameters
measurement. A quantitative determination of their impact on our measurement will be achieved
in the prosecution of the work.

5.8.1 Model assumptions

A first class of systematic uncertainties is due to the assumptions made in our Isobar model pa-
rameterization. We have fixed the intermediate resonance masses and widths in the Breit-Wigner
expressions taking their values from the PDG. However some of these quantity are not well deter-
mined and their uncertainty affect the yields determination in each M3π bin. A systematic uncer-
tainty can be evaluated by repeating the Isobar fit with these parameter modified within the errors
and by measuring how the resulting a1 mass distribution is modified.

It should be noticed, however, that the standard Isobar model, we have adopted in this work, is not
the only available model to describe three body decays. An alternative approach is the so called
K-matrix formalism [78]. It results particularly suitable to treat the case of overlapping intermedi-
ate states with the same quantum numbers. The diffusion of this approach is increasing in the last
years, in particular in the analysis of the spin-less charmed meson decays. Its application to the
analysis presented year is made difficult by the need of take into account initial states with higher
spin.
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5.8.2 Background shape uncertainties

As we have seen in section 5.3, the PDFs describing the combinatorial background in the various
bins are obtained by smoothing the “Grand Sideband” experimental Dalitz plot histograms in the
(m′,θ′) coordinates. Each bin of these histogram is affected by a statistical error that is neglected
in the smoothing procedure. To estimate the impact of this effect on the Isobar fit results we plan
to repeat our fits in several configurations each obtained by random fluctuating the bin contents in
accordance with their errors. The widths of the distributions of the results on the fitted parameters
can be taken as systematic uncertainties.

5.8.3 Efficiency across the Dalitz plot

In section 5.4, we have seen how the selection efficiency effects are evaluated from the Monte
Carlo simulation. Although the efficiency distributions across the Dalitz plots in the various
M3π intervals was found to be flat within the errors, the Monte Carlo statistics actually available is
not sufficient to perform a finely binned map. A Monte Carlo production of a 10 times higher pop-
ulated sample of signal events is planned to improve our understanding of the efficiency distorting
effects on the Dalitz plot distributions.

5.8.4 Efficiency vs M3π

The statistical uncertainties on the efficiencies is taken into account in the unfolding of the a1

mass distribution. However, the data Monte Carlo discrepancies have to be taken into account as
a source of systematic uncertainty on the M3π distribution. These effects can be studied by means
of suitable control samples [79]. Since the line-shape measurement is affected by the slope that
describe the variations across the M3π bins and not on the absolute values of the efficiencies, the
main source of systematic error is expected to be the due to the simulation of the soft pion tracking
efficiency (see 5.4). A control sample of inclusive D∗+ mesons decaying to D0π+ (D0 → K−π+)
and charge-conjugate processes can be used to evaluate this effect and how it contribute to the total



144 Study of the a1(1260) meson

systematic error.



Conclusions

This thesis has presented a data analysis work performed in the context of the BABAR experiment
and aimed at studying the properties of the a1 meson produced in B → D∗−a+

1 decays.
The analysis is based on data collected by BABAR in 1999-2004 corresponding to an integrated
luminosity of 208.7 fb−1.
The selected sample of events is divided in 17 bins of the 3 pions invariant mass and in each interval
a Dalitz plot analysis, based on the Isobar model, was performed to disentangle the a1 meson
(JP = 1+) from other possible spin parity states. We have found that below 1.5 GeV the only
contributing resonance is the a1 meson while at higher values ofM3π also a significant contribution
of a JP = 2− state was found,corresponding to the π2(1600) mass region. The extracted a1 mass
distribution was fitted with a relativistic Breit-Wigner to determine the line-shape parameters. We
found the following preliminary results for the a1 pole mass and width:

ma1 = 1.207 ± 0.008 GeV/c2 (5.36)

and
Γa1 = 450 ± 0.035 MeV/c2, (5.37)

where the quoted error are statistic only. These results are in agreement with the PDG estimates
[13]. The main sources of systematic uncertainty to this measurement were detected and a quanti-
tative determination will be achieved in the prosecution of the work.

The study of the a1 substructures has pointed out that, beside to the main (1+ → ρπ)s−wave ampli-
tude, also the 1+ → σπ, (1+ → ρπ)d−wave, and 1+ → ρ′π intermediate states give not negligible
contributions to the total a+ → π−π+π+ amplitude.
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