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Introduction

In their first seven years of running, the two experiments at the B-factories BABAR and Belle have
reached impressive results in their investigation on the Standard Model flavor sector.

The CP violation in the B meson decays has been clearly established, and the efforts of the two
collaboration are now concentrated on the attempt to over-constraint the Cabibbo-Kobayashi-
Maskawa quark mixing matrix through independent measurements of the Unitarity Triangle pa-
rameters, related to the B meson decay properties, and search for new physics effects.

Besides this primary goal, the high luminosity of PEP-II, coupled with the high acceptance of the
BABAR detector, allows competitive measurements not only in B-physics but also in other fields

such as hadron spectroscopy, charm and 7 physics.

The work presented in this thesis, consists in the study of the properties of the a; meson produced
inthe B — D*"af (af — 7 7"7") decay at the BABAR experiment.

First discovered as a pm resonance in pion-proton scattering, the axial vector meson a; remained
an elusive prey due its large width and the presence of high physical backgrounds.

Two class of experiments, based on different production processes, have been performed to study
this particle: hadronic production experiments and 7 — a v, decays. They give inconsistent
results on the measurements of the a; pole mass and width (see section 3.3). For this reason the
Particle Data Group [13] does not quote a world average for these quantities but only provide a

conservative estimate:

mPP¢ = 1230440 MeV W
e G between 250 and 600 MeV.

Also the theoretical understanding of the a; is not rigorous. Many models have been proposed
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[75, 49] to describe the line-shape and the resonant substructures, but none have provided an en-
tirely satisfactory description of the data. Additional experimental inputs are essential for a better

understanding of this system.

In this work, for the first time the a; meson is studied through the B — D*~a] (af — 7 nt7™)
process. The huge number of B’s produced at BABAR , together with the high branching ratio of
this decay and with the numerous kinematic constraints that can be applied in the B meson recon-
struction, make this channel a quite clean environment to study the a; resonance.

We have performed a Dalitz plot analysis (based on the standard Isobar model described in section
5.2) of the 3 pions system produced in the B — D*~x«+ 77 7~ decays. This kind of analysis al-
lows to reach to different purposes. The first one is to separate the a; resonance from other possible
spin parity states that can contribute to the three pion mass spectrum: the resulting a; mass distri-
bution is then used to determine the pole mass and the width of this particle. The second purpose
is the study of the substructures contributing to the a;” — 7~ 7 7" process providing information

on the strong decay dynamics.

In addition to the possibility to study the a; meson, the B — D*~a] decay presents also other
reasons of interest, more strictly related to the B physics.

As recently suggested in [27], measuring the polarization amplitudes in the B — D*~a] decay
provides a test of the factorization assumption. Factorization represents one of the mostly used
tool to evaluate the hadronic matrix elements describing the QCD non-perturbative effects in the
B decays amplitudes. Despite this approach, and its extensions, was found to predict with good
accuracy several processes, there are cases where it fails and it is important to test it in depth in
order to verify its limits and improve our knowledge on the strong interactions effects in exclusive
weak decays of hadrons containing a b-quark.

Moreover the study of time dependent CP asymmetries in B — D*a, decays can be used to ex-

tract the weak phase (203 + ), providing a further constraint on the Unitarity Triangle.

The present thesis is organized in five chapters.
Chapter 1 represents an introduction to the main topic actually under study at BABAR : the de-

termination of the Standard Model parameters through the measurements of the B meson decay
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properties.

Chapter 2 is devoted to a detailed description of the BABAR detector, built around the e e~ inter-
action region of the B-factory PEP-II.

Chapter 3 is an introduction to the study of the non-leptonic B — D*~a] mode. It contains a
summary on the current status of knowledge on the a; meson and an introduction to the spin parity
analysis technique adopted to study the three pions system. Moreover the factorization test through
the polarization measurement and the measurement of (23 + ) from the study of time dependent
CP asymmetries in B — D*~a] are discussed.

Chapter 4 contains a detailed description of the criteria adopted to select the B — D*~a; decay
and a discussion on the main discriminating variables used for background rejection and charac-
terization.

In chapter 5 it is described the spin parity analysis of the 3 pions system based on the Isobar
model. The results on the a; substructure study and the measurement of the a; mass and width are

presented.
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Chapter 1

B physics and the Standard Model

1.1 Introduction

This chapter is a theoretical introduction to the main topic actually under study by the BABAR
experiment: the determination of the Standard Model parameters through the measurements of the
B meson decay properties.

In section 1.2 is introduced the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes the
flavor-changing weak coupling between the quarks: in the Standard Model it contains the source
of CP-violation.

In section 1.3 the Unitarity Triangle is discussed. It represents the unitarity of the CKM matrix
in the b sector. The main goal of the experiments at the B -factories, Belle and BABAR , is to
over-constraint the position of the Unitarity Trianlge vertex by combining several independent
measurements of the B decays properties. The recent results on the Unitarity Triangle analysis are
reported in this section.

Section 1.4 discuss the time evolution of the neutral B meson and the so called B°B° mixing. It
is also shown how CP violation manifests itself in time dependent asymmetries arising from the
interference between B decays with and without mixing.

The time dependent CP asymmetries can be directly related to the Unitarity Triangle angles, and,
in section 1.5, the concrete example of the sin(23 4 ) measurement in B — D *)h decays is

illustrated.
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1.2 The Standard Model and the CKM matrix

The Standard Model of particle physics [1] is a field theory, with local gauge symmetry SU(3) ¢ X
SU(2)r, x U(1)y, and describes the strong, weak, and electromagnetic interactions between the
known elementary particles. The electromagnetic and weak interactions are discussed in detail
in References [2, 3], while a very good introduction to the strong interaction can be found in

Reference [4].

The fundamental ingredients of the Standard Model are six leptons and six quarks divided in three
generations. Each of these particles has an antiparticle, with the same mass but opposite electrical
charge and quantum numbers, e.g. strangeness and beauty. Each quark generation, commonly

called a quark flavor, consists of three multiplets:

UI
Qf = (zﬁ) = (3,216 wh= (3,140 diy=03.1) 1 (L1)
L

where (3, 2),1/¢ denotes a triplet of SU(3)¢, doublet of SU(2), with hyper-charge Y = Q —T5 =

+1/6, and similarly for the other representations.

Family Quantum Numbers
1 2 3 T T3 Y Q=Y/2+1T;
Ve Vy vy /2 +1/2 —1 0
¢/, mj, T ), /2 —1/2 -1 -1
€ERrR UR TR 0 0 —2 —1
( u ) ( c ) ( t ) /2 +1/2  +1/3 +2/3
d . s ), b . 1/2 —1/2 +1/3 -1/3
UR CRr tR 0 0 4/3 +2/3
dR SR bR 0 0 —2/3 —1/3

Table 1.1: Electroweak interaction multiplets.
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The interactions of quarks with the SU(2), gauge bosons are described by the Lagrangian
1 —
Lw = —§gQ£i7“T“1ijQ£jW5 + Hermitian conjugate , (1.2)

where g is the weak coupling constant, y* operates in Lorentz space, 7* operates in SU(2), space,
and 1 is the unit matrix operating in generation (flavor) space. This unit matrix is written explicitly

to make the transformation to mass eigenbasis clearer.

The Standard Model includes also a single Higgs scalar doublet field ¢(1,2).1 /2. The interactions
between the quarks and this field generate the fermion masses through the spontaneous symmetry

breaking mechanism [5]. The Lagrangian for these interactions is given by the Yukawa coupling:
Ly = —GyQLody; — FyQL duk; + Hee, (1.3)

where G and F are general complex 3 x 3 matrices. Their complex nature is the source of CP
violation in the Standard Model. Due to the non-zero expectation value of the Higgs field in the
vacuum, {¢) = 1/v/2(v,0), the spontaneous symmetry breaking transforms SU(2); ® U(1)y in
U(1)gm, and the two components of the quark doublet become distinguishable, as are the three

members of the W triplet. The charged current interaction in (1.2) is given by
1 —

The mass terms for the quarks arise from the replacement $(¢°) — \/g (v+ H°) in (1.3) of the ¢

field near its minimum (¢), and are given by

1 — 1 —
L = —\/;vGijdiidéj — \/;UFijuiiU/éj +H.c., (1.5)
with
M, = Gv/vV2, M, =Fuv/V2. (1.6)
The quark fields in (1.1) are eigenstates of the weak interaction but do not correspond to the quark

states in nature with definite mass. This is commonly referred to as the mass eigenstates being

rotated with respect to the eigenstates of the weak interactions [6].

Since the two eigenbases are not identical, the mass matrices M; and M,, do not correspond to
the physical masses of the quarks. These matrices can be transformed to the mass eigenbasis by

defining four unitary matrices such that

VMV, =M§* VvV, M, V!, =Ml (1.7)
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where M are diagonal and real, while V. and V are complex. In the mass basis the charged

current interactions (1.4) can be rewritten as

1 —

Here the quark fields are in the mass eigenbasis. The matrix V = VuLVL ;18 the unitary mixing

matrix for three quark generations.

A unitary n X n complex matrix generally depends on 2n? parameters. The condition of unitarity
reduces this number to a total of n? independent parameter. Using the properties of orthogonal

matrices, these parameters can be divided in

e sn(n — 1) real angles, and

2_ 1

o N 3

n(n — 1) = 3n(n + 1) complex phases

For n families of quarks, there are 2n quark fields. Physical observables are invariant under phase
redefinitions of the fields, and is possible to remove 2n — 1 of the complex phases by redefining

the quark fields. Therefore, there are
e in(n+1)— (2n—1 = i(n — 1)(n — 2) irreducible complex phases

in the unitary n X n complex matrix.

In case of the mass matrices, there are three real angles and six total complex phases. The number

of phases in V is reduced by a transformation
V = V=P,/VP}, (1.9)

where P, and P, are diagonal matrices of pure complex phases. This transformation corresponds

to redefining the phases of the quark fields in the mass eigenbasis:

qr; — (Pq)z‘jQLj> qri — (Pq)ijQRj> (1.10)

which does not change the real diagonal mass matrix Mgiag. The five phase differences among the

elements of P, and P, can be chosen so that the transformation (1.9) eliminates five of the six
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independent phases from V. The new matrix V is left with three real angles and one irreducible

complex phase.

The presence of this irreducible phase is the source of CP violation in the Standard Model. This
can be easily understood by observing that the mass lagrangian £,; of eq. 1.5 is the sum of two

terms of the type
aM (1 +ys)u +aMT (14 y5)u = a(M + M"u + a(M + M"ysu. (1.11)
The properties of this term under C and P transformations are given by:

(M + MNYu+ a(M + M)ysu —  @(M+ M)y —a(M + MY)ysu  under P
a(M + MYu+a(M + MYysu — a(MT + M*)u —a(MT + M*)ysu under C
(1.12)
so that

a(M + MYu+a(M + MDysu — a(MT + M*)u+ a(MT + M*)ysu under CP.
(1.13)
This means that
Ly+— Ly under CP <— M = M*, (1.14)

i.e. the presence of an irreducible phase in the results in a non CP invariant lagrangian.

This phase is called the Kobayashi-Maskawa phase [7], dkyi, and the mixing matrix is called the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [8, 7].

It is important to note that the existence of the third generation of quarks is a necessary ingredient
for the presence of the complex phase, and therefore CP violation in the Standard Model. In a
Standard Model with only two generations of quarks, the procedure described above removes all
the complex phases and the 2 x 2 mixing matrix V is left with only one real parameter which is the
Cabibbo angle. It was this observation that led Kobayashi and Maskawa to suggest a third quark
generation in 1973 long before the discovery of the beauty quark b in 1977 [9, 10] and of the top
quark ¢ in 1995 [11, 12].

The presence of only one complex phase in the CKM model implies that all CP-violating effects
are closely related. Therefore different physical processes, such as decays of Kaons and B mesons,

can be used to probe the same source of CP violation.
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The CKM matrix V can be symbolically written as

Vud Vus Vub
V=1V Ves Vo | (1.15)
Via Vis Va

which explicitly shows the flavor-changing aspect of the weak interactions. Each element V.
determines the amplitude of interactions between quarks ¢; and g;. The magnitude of all nine
elements of this matrix have now been measured in the weak decays of hadrons containing the
relevant quarks, and in some cases in the deep inelastic neutrino—nucleon scattering [13]. The
precision on these elements reflects both the experimental limitations and the theoretical uncer-
tainties associated with the imprecise knowledge of the hadronic quantities required to analyze the
experimental data [6]. Present knowledge of the magnitude |V;;| of the matrix elements can be

summarized as [13]

0.9739 — 09751 0.221 — 0.227  0.0029 — 0.0045
IVI=| 0.221-0.227 0.9730 — 0.9744  0.039 — 0.044 . (1.16)
0.0048 — 0.014  0.037 —0.043  0.9990 — 0.9992

where the values are the 90% confidence limits on |V;;|.

1.3 The Unitarity Triangle

There are several parameterizations of the CKM matrix V that exhibit its unitarity explicitly. One
of these is considered commonly the “standard” parameterization [14] and utilizes three angles 615,

B3, 013, and a complex phase = dxu

0

C12C13 512C13 S13€
_ i6 6
V= —8512C23 — C12523513€ C12C23 — 512523513€ 523C13 ) (1.17)
is 6
512823 — C12€23513€ —C12523 — 512€23513€ C23C13

with ¢;; = cosf;; and s;; = sin6,;, and indexes 4,7 = 1,2, 3 corresponding to the three quark
generations. In this parameterization, the angles 6;; are related to the amount of “mixing” between

two generations ¢ and j. For example 65 corresponds to the Cabibbo angle [8].
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The unitarity of V implies nine constraints between its elements. Three of these constraints are

relative to the elements of each row
|‘/ud|2 + ‘Vus‘2 + |‘/ub|2 = 1 )

Vaal® + |Val? + [Vul> = 1, (1.18)
Vial> + [Vil® + Vil

I
—_

while the other six express the condition of orthogonality between any pair of rows or any pair of
columns of the matrix. The six orthogonality conditions require the sum of three complex terms to
vanish and can be represented graphically as triangles in the complex plane [14, 15, 16]. All these

triangles have the same area |.J|/2, with J = ¢12¢23¢33512523513 Sin 6.

Three of these triangles, defined by

ViusVip + Vs Vi + ViV = 0, (1.20)
VaaVy + VeaVy +ViaViy, =0, (1.21)

are very useful in understanding the Standard Model predictions for CP violation, and are shown

in Figure 1.1.

(a)

(b)

7204A4

I’
(©)

Figure 1.1: The unitarity triangles defined by (1.19) in a), (1.20) in b), and (1.21) in c). The same

scale has been used for all triangles.
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The length of the sides of these triangles can be measured from the decay rates of, respectively,
K = (5d), By = (bs), and B 4 = (bd) mesons.

The size of the angles are proportional to the magnitude of CP-violating effects in the decays of,
respectively, K, B, and B; mesons. In case of the K and B, mesons, the experimental precision

needs to be high in order to be able to resolve the structure of the flat triangles.

On the contrary, the third triangle, related to the B; mesons, is expected to have large angles, which
result in large CP-violating effects. This triangle is illustrated in Figure 1.1c, and is commonly

referred to as the “Unitarity Triangle”.

It is customary to study the Unitarity Triangle with the Wolfenstein parametrization [17] of the

CKM matrix. In this parameterization, matrix V is written as [14]

1-— ’\72 A AN (p—in)
V= ~\ -2 AN + O\, (1.22)
AN(1 —p—in) —AN? 1

with A = |V,s| = 0.22 playing the role of the expansion parameter, and A, p, and 7 real numbers
of the order of unity. The parameters of the standard parameterization (1.17) are related to the

Wolfenstein parameters in (1.22) by
S12 = )\7 So3 = A)\Q, 8136_i5 = A)\g(p — Z??) . (123)

The CKM elements can be written in terms of the Wolfenstein parameters A, p, and 7, by using
relation (1.23), as

Vis =X, Vi = AN Vi = AN*(p — in), (1.24)
Via = AN'(1 = p — 47), (1.25)
ImV,g = —A?N°n, ImV,, = —A\'n, (1.26)
with
p=p(1=X/2), q=n(l-X/2). (1.27)

These expressions are valid up to O(\°) corrections and turn out to be excellent approximations to

their exact expressions[18].

The rescaled Unitarity Triangle in Figure 1.2b is derived from (1.21) by choosing a phase conven-

tion such that V;V; is real, dividing the lengths of all sides by V.4V, and aligning one side of hte
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triangle with the real axis. Two vertexes of the rescaled Unitarity Triangle are thus fixed at (0,0)

and (1,0), while the coordinates of the remaining vertex are denoted by (p, 7). In the (p, 77) plane,

Figure 1.2: (a) The Unitarity triangle as defined in relation (1.21), and (b) the rescaled triangle,
where all sides are divided by V; V...

the lengths of the sides of the triangle are given by

1 N2
D

1
, R = (1_5)27”72:}

Vub
Ve

Via

Vew

Ry =/ + 12 , (1.28)

Similarly, the three angles «, 3, and y are defined by

ViaVip

o = ar —
& { ViV VeaV

It is possible to perform various independent measurements of the angles and the sides which can
over-constrain the Unitarity Triangle and then test the Standard Model. Most of the constraints for
the Unitarity Triangle vertex come from measurements of rates and CP asymmetries in B mesons
decays that are actually the main goal pursued by the experiments at the B -factories BABAR and
Belle.

Various analysis exist in order to combine the various measurements and determine the posi-
tion of the (p,7) vertex. The standard analysis of the Unitarity Triangle proposed by the UTfit

collaboration[19] make use of the following experimental measurements:

e The CKM matrix elements |V;| and |V,,;| can be measured from the rates of semi-leptonic
decays of the B meson in charmed and charmless mesons.

Several approaches exist to extract the matrix elements that can be divided in two categories:
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u,c,t
b ——— > d
W W
d < * ﬁ‘,E,f * < b

Figure 1.3: Feynman diagram of the second-order weak interaction responsible for the flavor os-

cillation B° — B°.

the exclusive measurements where single decay channels are considered( such as B —
D*lv for |V4| and B — 7lv for |V,;]), and the inclusive measurements which focus on the
inclusive b — clv and b — ulv rates.

From the ratio

Ve A s —
||Vb‘| = TV T (1.30)
ub 1 — >

results a constraint in the (p, 77) plane that describes a circle centered at (0,0).

e In the Standard Model BB oscillations occur through a second order process (a box dia-
gram) with a loop containing W and up-type quarks. The Feynman diagram for this process
is illustrated in figure 1.3. The box diagram with the top quark gives the dominant contri-
bution. The B°B° oscillation frequency, which is related to the mass difference between the
light and the heavy mass eigenstates of the system, is expressed, in the Standard Model, as
function of p, 77 and other elements of CKM matrix:

2

G N
Ay = Shnidy neS() AN (1= )+ mu, f3,B5,, (13D

where S(z;) is Inami-Lim function [20] and x; = m? /M3, (with m; being the ¢ quark mass
in the regularization scheme M S, my_s(mM_S), and myy the I/ boson mass). 7. is the short
distance correction now calculated at next-to-leading order in perturbative QCD. f%d Bg L, 18
a factor hiding all the non-perturbative effects that contribute to Am,. It can be provided by
lattice QCD methods. The Am, constraint in the (p, 77) plane can be represented by a circle

centered at(1,0).
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e The mixing frequency Am, of BB, oscillations is usually combined with Am,g:

Amg msg, [%,Bs, A
Amy mp, f %SBBS 1

p) (1-p)° +7]. (1.32)

2

This gives again a circle centered at (1,0).

e Indirect CP violation in the Kaon system is usually expressed in terms of € ;- parameter which
is the fraction of CP violating component in the mass eigenstates. It can be related to the

Standard Model parameters by:
ex = Co A2 [—mS(x.) + n2S(w) (A2AY (1 = 7)) + m3S (2, 24)] Bre,  (1.33)

where ) )
_ Grfimxmiy

o 6\/§7T2A77’LK '

S(z;) and S(z;, x;) again are the Inami-Lim functions [20], being x, = m? /m3; and includ-

(1.34)

ing NLO corrections [21, 22, 23]. fx is the kaon decay constant and Am the neutral kaon

system mixing frequency.

e The mixing induced CP asymmetry, a;/yx , in the By — J/¢Kg 1 decays allows to de-
termine the sine of the angle 23 of the Unitarity Triangle almost without any hadronic un-
certainties. In this case the CP asymmetry appears in the interference between amplitudes
describing decays with and without mixing. The time dependent asymmetry for B; —

J /1 Kg 1 decays is measured at the B-factories and can be related to sin 23 through:

aJ/szS,L(At) = —nep sin(Amp,At) sin 23. (1.35)

The five constraints on the (p, 77) plane listed above are showed in figure 1.4, while the result of
the combined fit performed by the UTfit [19] collaboration is reported in figure 1.5. The actual

estimation found for the Unitarity Triangle vertex is:

0.214 £ 0.047
0.343 £ 0.028

el
|

(1.36)

il
|
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Figure 1.4: Constraints used for the standard analysis by the UTHfit collaboration. Starting from the
upper left plot they represent respectively the measurements of |Vep|/| V|, €x, Amg, Amg/Amy

and sin 2/3. The two bands represent the allowed regions at 68% and 95% confidence level.

1.4 Time evolution of the B" mesons

In the previous section, we have mentioned how the study of the time dependent CP-asymmetry
in B — JYKg, decays can be used to measure the angle 3 of the Unitarity Triangle. The same
physical principle allows to relate the others angles o and v to the measurements of the time de-

pendent CP-asymmetries in other B decay channels. In this section we’ll see how the CP violation
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Figure 1.5: Determination of the Unitarity Triangle vertex using the standard analysis. The con-
straints used (bands at 68% and 95% C.L.) represent the measurements of |V |/|Visl, €x, Amg,

Amg/Amg and sin 2. The results for the vertex coordinates are reported in eq. 1.36.

manifests itself in the interference between B decays with and without mixing. A concrete exam-
ple will be shown in the next section, where the relation between the angle 23 + ~ and the CP

asymmetries in B — D®*h~ (h~ being a @d meson) will be discussed.

1.4.1 B°B" mixing

The neutral B; mesons contain one b type and one d-type quark (or anti-quark). A description
of these systems can be given in terms of different states. There are the flavor eigenstates, with a
definite quark content which are relevant in particle production and particle decay processes and
there are the Hamiltonian eigenstates, with definite mass and lifetime which are relevant to describe

particle propagation through space-time.

The Hamiltonian of the system, in the flavor eigenbasis can be written [24]:

H=M-— %r, (1.37)

where M and I" are 2 x 2 Hermitian matrices. C'P7T invariance guarantees Hi; = Hss. An
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arbitrary state can be expressed by a linear combination of the neutral B meson flavor eigenstates
B® = (b,d) and B° = (b, d):
a|B%) + b| B°), (1.38)

and its evolution is governed by the time-dependent Schrédinger equation

d [a a\ i a
L)) =ar 0 (o)

A perturbative expression for H;; matrix elements ([25]) is:
: 9. 1 . - 1.
My = mpbi; + (i Hp"=|j) +PZ m(”H@B H[n) (n| Hp"="1)
Iy = 27r25 ' — mg) (1| HSP=Yn) (n| HEP=1)0) (1.40)
where P is the principal part, mp the B mass, and E,, the energy of the intermediate state |n).
As it can be seen, M, and I';5 are the dispersive and absorptive parts respectively of the transi-

tion amplitude from B° to B° and are therefore particularly relevant in discussing CP violation

phenomenology. The states B° and 5° are related through CP transformation by:
CP|B°%) = e*5|B°%), CP|B% = e 4| BY), (1.41)

where the phase {g is arbitrary. The freedom in defining it comes from the fact that flavor conser-
vation (in particular b-flavor) is a symmetry of the strong interactions. This is true for any possible

final state f and its CP conjugate e% f.

The flavor eigenstates are different from the mass eigenstates (as it can be seen computing the
eigenvectors of the Hamiltonian), thus they mix up as they propagate in space and time. The light

By, and the heavy B mass eigenstates are:
|Br) = plB°) +4q|B%), (1.42)

|Bu) = p|B°) —q|B°). (1.43)

where the ¢ and p obey the normalization condition

lq]* + |p|” = 1. (1.44)
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Note that arg(q/p*) is just an overall common phase for |By) and |By) and has no physical

significance. The mass and lifetime difference between the two eigenstates are defined as:
Ade MH—ML, AFBE FH—FL. (145)
Amy and AT g are related to the Hamiltonian elements by the following relations:

1
(Amd)2 (AFB)2 = 4(|]\412|2 - Z|F12\2), (1.46)

1
4
AmgAT 5 = 4R(MoT%). (1.47)

The ratio % can be expressed by:

q _ Amg — %AFB _ _2(Mf2 - %Fiz) (1.48)
P 2(Myy — 5I19) Amg — 5AT'p
Experimental data from the B factories allows to assume that:
AFB < Amd. (149)
With this assumption, the equations 1.46, 1.47 and 1.48 simplify into
Amd = 2|M12‘, AFB = 2%(M12F>{2)/|M12|, (150)
q/p: —|M12\/M12- (L51)

Any B state can thus be written as a linear combination of the states By and B, whose coeffi-

cients ay and ay, evolve in time as:
ap(t) = aH(O)e_iMHte_%FHt, ap(t) = aL(O)e_iMLte_%FLt. (1.52)

A state produced at t = 0 as a pure BY, denoted with | B, ), has ar,(0) = ar(0) = 1/(2p) and

similarly for a state produced at ¢ = 0 as a B°. The time evolution is given by:
| Bonys (1) = 9+ (OIB°) + (a/p)g-(1)| B°), (1.53)

| Bonys () = (p/@)g- ()| B°) + g+ (t)| B°), (1.54)

where
gi(t) = e M2 cos(Amg t/2), (1.55)
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g_(t) = e Me T2 5in(Amg t/2), (1.56)

M = 3(My + Mp)and ' = 5(T'y + I'). 7 = £ is called average lifetime of the B mesons.

From the equations above it can be seen that a B meson produced at ¢ = 0 as a B® can become
a BY and vice-versa (mixing probability). The frequency of the oscillation is the difference of the

two mass eigenstates Am, which is therefore called the mixing frequency of the B°B° system.

1.4.2 Time evolution at the 7°(45)

In BABAR, B mesons are produced in decays of the 7°(4S5), which is a bb bound state similar to the
positronium state. Its mass of 10.58 GeV/c? is slightly above the energy threshold for production
of two B mesons. About equal amounts of B* B~ and B° B° pair are produced in the 7°(45)

decay. The time evolution of the B° B° pair represents an example of the quantum coherence.

The initial state |7°(4S5)) has spin S = 1, and therefore total angular momentum J = S + L = 1,
and CP eigenvalue ncp = +1. The decay proceeds through strong interactions and therefore the
angular momentum, the beauty quantum number (b + b = 1 — 1 = 0), and CP must be conserved.
The final state is given by the pair of pseudo-scalar B mesons

a

b
NG |BrBm) + 7 |BuBr) . (1.57)

with the usual normalization condition |a|? + |b|?> = 1. The time evolution of | B
by

1By Boie) =

phys* phys

0

_0 . .
phys Bpnys) 18 given

| By Bopgsi t1, t2) = a €12 | B By) + b e -"e™ 2By By ) (1.58)

phys~~ phys»

where ¢, and ¢, are the “proper” times of the B mesons.

The Bose—Einstein statistics requires the total wave function [V) = |Wg,u0r) | Wspace) for this state
to be symmetric at all times. Since the B mesons are spin—0 particles, the total spin S is zero, and
the total angular momentum .J is given by the orbital angular momentum L of the two mesons.
Conservation of J requires L. = 1, and therefore the B mesons are produced in a P-wave, and
|Wspace) is antisymmetric. For the total wave function |¥) to be symmetric, it is then necessary to

have a = —b = 1.

In a thought experiment, and if the lifetime 750 was long enough, one could separate the two B

mesons and place them at two space-time points separated by a space-like distance so that events
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in one point could not influence those in the other. Nevertheless, due to the quantum coherence the
decay of one of the two mesons as a B° would force the other meson to be necessarily a 5°. This

represents an example of the Einstein-Podolsky-Rosen paradox.

Time dependent CP asymmetries can be measured in events where one of the two B meson (Bq,)
decays in a flavor eigenstate fi,, and the other one (B,..) decays in a finale state f which is
accessible to both the B° and B° mesons.

The probability of observing the final state | f fi,o) depends on

o the difference At between the decay times t,c. and i,

e decay amplitudes

Ap=(fIH|B%),  A;=(f|H|B%),

0 _ _ —o (1.59)
Atag = <ftag|H‘B >a Atag = <ftag‘H|B >7

e oscillation parameter ¢/p defined in 1.48, and

e flavor of By,, whether By, = B° or B,y = B.

From the equations above, is possible to derive the time dependent decay rate distributions f (f_)
for B — f when By, is a B® (B):

—|At| /T
fo=S T [1£ Sy sin(AmyAt) F C; cos(AmaAt)], (1.60)
where 2
27 1-
p= A nd oy = 2L (161)
1+ ‘)\f‘ 1+ ‘)‘f‘
and i
_ g4y
\, = 241 (1.62)
T~ pA;

The distributions above are normalized such that f + f_ = 1. The coefficient C'y and Sy, can
be extracted by fitting the experimental decay rates of eq. 1.60. For suitable choices of the final
state f they can be related to the angles of the Unitarity Triangle. Next section shows how the time

dependent decay rates in B — D™*h~ decays can be used to extract the 23 + ~ angle.
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Figure 1.6: Feynman diagrams for the B — D®*]h~ transition. Left: CKM favored amplitude.
Right: CKM suppressed amplitude.

1.5 Measurement of sin(23 + v) in the B — D /), decays

The final states D™*h~ (here h~ denotes a light %d meson) can be produced from B° decays,
via a CKM favored process, and from B° decays, via a CKM suppressed diagram. Similarly, the
charged conjugate states D*)~h* are accessible from both the B° (favored) and B° (suppressed)
decays. Feynman diagrams for these processes are shown in figure 1.6.

The ratio ’:—; in the definition of \; (equation 1.62) is, for the final states D*)*h~, given by:

AD(*)Jrhf . ‘/cbvjd MD(*th
- )
Apen- VedVil Mpeo+p-

(1.63)

where Mp+p,— and Mp+;,- are the matrix hadronic elements for the decays which express the
fact that quarks are bound by strong interactions into color neutral hadrons. In the Standard Model,
to a good approximation (neglecting CP violation in mixing) the ratio |§| can be estimated from

the box diagrams shown in Figure 1.3:

q Miy _ VigVia

= =— = - (1.64)
P |Mio| ViV
Combining Equations 1.64 and 1.63 results:
ViV, VsV My s
Ap@rp- = ( th {‘j) ( ’ uj) DUt (1.65)
‘/tb‘/td ‘/cdvub MD(*)Jrhf

Isolating the weak phase, using Equation 1.29 the parameter A )+, can be written:

. V*Vd\ |VcbV*\ M ()4 —
)\ . _—e i(28+7) (| tb V't ) ( ud D h . 1.66
DEth ViVl ) \ VeV ) Mpeoren- (1.06)
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Expliciting the phase of the hadronic matrix elements also leads to:

i ViVial \ (Ve Vul \ [Mpeo+p-|
)\ . = 6 2(25-‘1"‘{-’(‘6) (‘ tb t ) ( ud D h , (1.67)
e VaVial ) \[VeaVia| ) [Mpeorp-|

where  is the strong phase difference between the hadronic matrix elements of the B° — D)+ h~
and B — D®+h~ decays. The relation above becomes, assuming no CP violation in mixing

(4 = 1y:

Apesn. = e~ t(26+7+9) <chVJd|) |MD(*)+h—‘ (1.68)

VeaVi | ) [ Mpeosn-|

In the case of f = D™~ h* the ratio % is:
!

AD<*)7}L+ _ Vub‘/ctl MDM,}PL (1.69)
AD<*)7h+ Vud‘/;(; MD(*)fhjL ’ ‘

The relations M = Mpand M 7 = M hold (CP conservation in strong interactions) thus the final

expression for A p—p,+ is:

| VioVAI [ Mporsp-
>\D(*)—h+ _ e—z(2ﬁ+7—5) (‘ b cd|) | D) +h ‘ (1.70)

\VudV£| |MD(*)+h*‘ 7

In conclusion opposite charge combinations of the particles in the final states have the same weak
phase (23 + =), |A| one the inverse of the other and difference of strong phase J appearing with
opposite sign. The weak phase is 23 + « is the same for all the D™} final states while § and ||
depend on the specific process.

Using the results obtained above, is possible to write the time dependent rates of equation 1.60 as:

e—lat)/r

fe = L F 2\ sin(26 + v — £6) sin(AmgAt)

(1.71)
E(1 — |A|?) cos(AmgAt)],

where -(+) are for B® (B%) and ¢ = 1(-1) for D) h=(D™~) hT) final states.

A limit of this method is in the small value of the parameter |A| (~ 0.02) that reduces the sensitivity
to the parameter sin(23 4y £ 0). In fact sin(23+ = §) appears in the coefficient of sin(AmAt)
which is of order 0.04 to be compared to the coefficient of cos(AmAt) which is of order 1. In
particular even at high statistics, there is not enough sensitivity for extracting from a fit to the data
both sin(26 + v £ 9) and |A|. Thus, the parameter || is needed as an external input in the fit and

must be measured independently.
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The small value of |)| reflects the fact that the decays B® — D®*h~ and B — D™~h* are
Clabibbo suppressed respect to B° — D®~h+ and B® — D®*h~ since they contain the CKM
matrix element V;, (Xcsab, Aeap = sine of the Cabibbo angle = 0.22) as opposed to V, (Agab). A

further suppression is given by the presence of V., instead of V,; (this is another factor A.;).

The uncertainty on the measurement of |\, is then propagated on the estimation of sin(23+~y=+4).

Note that once sy = sin(2( + v £ 0) is measured, 23 + v and 0 can be obtained by:

sin®(2B + ) = % [1 +sp5- FA/(1—st)(1 - s‘)} (1.72)

cos?(8) = % [1 +sp5- /(1 —sH)(1— s—)] . (1.73)

As it can be seen, there is an eight-fold ambiguity since for each value of sin?(23 + ~) there are

four possible solutions: (26 + ), 7 — (26 + ), 7 + (26 + v) and 27 — (203 + 7).

In order to overcome these limits, recently an extension of this method has been proposed [27, 26]
for decays where the finale state is a vector-vector (as in B — D*p decay) or a vector-axial vector
(asin B — D*ay). In these channels, the use of a more complicated angular-time dependent
analysis allows to extract the angle (23 + ) without using informations on the doubly Cabibbo
suppressed amplitudes and reducing the discrete ambiguities.

The use of B — D*a, to measure (23 + ) is discussed in section 3.5.



Chapter 2

BABAR Experiment at PEP-11

2.1 Introduction

The primary goal of the BABAR experiment is the study of CP-violating asymmetries in the decay
of neutral B meson. Secondary goals are precision measurement of decays of bottom and charm
mesons and of 7 leptons, and searches for rare processes accessible because of the high luminosity
of PEP II B Factory.

The PEP-II B Factory is an ete~ asymmetric collider running at a center of mass energy of
10.58 GeV corresponding to the mass of the 7°(4.5) resonance. The electron beam in the High En-
ergy Ring (HER) has 9.0 GeV and the positron beam in the Low Energy Ring (LER) has 3.1 GeV.
The 7°(45) is therefore produced with a Lorentz boost of 3y = 0.56. This boost makes it possible
to reconstruct the decay vertices of the two B mesons, to determine their relative decay times At,
and thus to measure the time dependence of their decay rates, since, without boost, this distance

would be too small (~ 30 p) to be measured by any vertex tracker.

The BABAR detector [28] has been optimized to reach the primary goal of the CP asymmetry mea-
surement. This measurement needs the complete reconstruction of a B decay in a CP eigenstate,
the flavour identification (tagging) of the non-CP B and a measure of the distance of the two decay
vertices. To fulfill these needs, a very good vertex resolution, both transverse and parallel to the
beam direction, excellent reconstruction efficiency for charged particles and a very good momen-

tum resolution, efficient electron and muon identification, with low misidentification probabilities

29
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for hadrons, are required.

A longitudinal section of the BABAR detector is shown in Fig. 2.1.The detector innermost part is
reserved for the silicon vertex tracker (SVT), then there is the drift chamber (DCH), the Cerenkov
light detector (DRC) and the Csl electromagnetic calorimeter (EMC). All those detector sub-
systems are surrounded by a solenoidal superconductor magnetic field. The iron used for the return

flux has been instrumented (IFR) for muons and neutral hadrons, like K';, and neutrons, detection.

The detector geometry is cylindrical in the inner zone and hexagonal in the outermost zone: the
central part of the structure is called barrel and it’s closed forward and backward by end caps. The
covered polar angle ranges from 350 mrad, in the forward, to 400 mrad in the backward directions
(defined with respect to the high energy beam direction). The BABAR coordinate system has the
z axis along the boost direction (or the beam direction): the y axis is vertical and the z axis is
horizontal and goes toward the external part of the ring. In order to maximize the geometrical ac-
ceptance for 7°(45) decays the whole detector is offset, with respect to the beam-beam interaction

point (IP), by 0.37 m in the direction of the lower energy beam.

A trigger system is used to separate collisions producing interesting events from those that consti-
tutes the noise, or the background, for instance, beam interactions with residual gas. The trigger
system is divided in two consequent levels: the level one trigger (L1) is hardware based and is
designed to have a maximum output rate of 2 kH z and a maximum time delay of 12 us, while the
other level (L3), software based, has a throughput rate limited to 120 H 2 in order to permit an easy

storage and processing of collected data.

2.2 PEP-II B Factory

PEP-II is a system consisting of two accumulating asymmetric rings designed in order to operate at
a center of mass energy of the 7°(45) resonance mass, 10.58 GeV. Tab. 2.1 shows the various sub-
systems parameters: a comparison between typical and design values is presented. As can be seen
from the table, PEP-II parameters have overcome the project ones in terms of instant luminosity

2

and daily integrated luminosity achieving recently the peak value of 1.0 x 1033 ¢m =2 57! with a

daily integrated luminosity of 700 pb—1.

Data is mostly collected at 1°(4.5) peak energy. Tab. 2.2 shows the active processes cross sections
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Figure 2.1: BABAR detector longitudinal section.
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Parameters Design  Typical
Energy HER/LER (GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 1.48/2.5
# of bunch 1658 553-829
bunch time separation (ns) 4.2 6.3-10.5
oLz (um) 110 120
oLy (m) 3.3 5.6
or, (um) 9000 9000
Luminosity (1033 ecm=2s71) 3 9
Daily average integrated luminosity (pb~!/d) 135 700

Table 2.1: PEP-II beam parameters. Design and typical values are quoted and are referred to the

fourth year of machine running.

breakdown at peak energy. From now on the production of light quark pairs (u, d, s) and charm
quark pairs will be referred to as “continuum production”. In order to study this non-resonant
production ~ 12% of data is collected with a center of mass energy 40 MeV below the 7°(4.5) mass

value.

PEP-II measures radiative Bhabha scattering to provide a luminosity fast monitor useful for op-
erations. BABAR derives the absolute luminosity offline from other QED processes, mainly e*e™
and p "~ pairs: the systematic uncertainty on the absolute value of the luminosity is estimated
to be about 1.5%. This error is dominated by uncertainties in the MonteCarlo generator and the

simulation of the detector.

The energies of the two beams are calculated from the total magnetic bending strength and the
average deviations of the accelerating frequencies from their central values. The systematic error
on the PEP-II calculation of the absolute beam energies is estimated to be 5 — 10 MeV, while the

relative energy setting for each beam is accurate and stable to about 1 MeV.

The interaction region design, with the two beams crossing in a single interaction point with par-
ticles trajectories modified in order to have head on collisions, is realized with a magnetic field,
produced by a dipole magnetic system, acting near the interaction point. The collision axis is off-
set from the z-axis of the BABAR detector by about 20 mrad in the horizontal plane to minimize the

perturbation of the beams by the solenoidal field. In this configuration the particles and the beams
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ete™ — | Cross section (nb)
bb 1.05
cc 1.30
58 0.35
ul 1.39
dd 0.35
Tt~ 0.94
whp~ 1.16
ete” ~ 40

Table 2.2: Various processes cross sections at \/'s = My 4s). Bhabha cross section is an effective

cross section, within the experimental acceptance.

are kept far apart in the horizontal plane outside the interaction region and parassite collisions are
minimized. Magnetic quadrupoles included inside the detector’s magnetic field, and hence realized

in Samarium-Cobalt, are strongly focusing the beams inside the interaction region.

In order to keep track of PEP-II beams displacement with respect to the BABAR detector, the
interaction point position is computed on periodic intervals, using two tracks events. Interaction
region dimensions (beam-spot) computed in that way are ~ 150 um along x, ~ 50 pwm along y
and 1 ¢m along z axis. The y dimension estimate is completely dominated by tracking resolution
and can be improved by looking at luminosity variations as a function of relative beams position.
In particular, knowing the beam currents and the = beam-spot dimension, it is possible to get a
resolution on y (0,) ~ 5 m, value that remain stable within 10% in a one hour time scale. Those

measurements can be also verified offline by measuring multi hadrons events primary vertexes'.

Fig. 2.2 shows the integrated luminosity obtained by PEP-II and collected by BABAR from the
beginning of data taking (November 1999) to the end of September 2005.

By reconstructing all the tracks in one event it is possible to have an estimate of primary vertex position: 7°(45)
decay point in transversal plane. Given that the boost along the z axis produces a relative displacement of the two B

mesons this method has a relative poor resolution that get worse in presence of long-lived particles.
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Figure 2.2: Integrated luminosity obtained by PEP-II and collected by BABAR from 1999 to
September 2005.
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2.3 Tracking system

The charged particle tracking system consists of two different components: the silicon vertex
tracker (SVT) and the drift chamber (DCH): the main purpose of this tracking system is the ef-
ficient detection of charged particles and the measurement of their momentum and angles with
high precision. These track measurements are important for the extrapolation to the DIRC, the
EMC and the IFR: at lower momenta, the DCH measurements are more important while at higher

momenta the SVT dominates.

2.3.1 The Silicon Vertex Tracker: SVT.

The vertex detector has a radius of 20 ¢m from the primary interaction region: it is placed inside the
support tube of the beam magnets and consists of five layers of double-sided silicon strip sensors
detectors to provide five measurements of the positions of all charged particles with polar angles
in the region 20.1° < 6 < 150°. Because of the presence of a 1.57" magnetic field, the charged
particle tracks with transverse momenta lower than ~ 100 MeV/¢ cannot reach the drift chamber
active volume. So the SVT has to provide stand-alone tracking for particles with transverse mo-
mentum less than 120 MeV/¢, the minimum that can be measured reliably in the DCH alone: this
feature is essential for the identification of slow pions from D*—meson decays. Because of these,

the SVT has to provide redundant measurements.

Beyond the stand-alone tracking capability, the SVT" provides the best measurement of track angles
which is required to achieve design resolution for the Cerenkov angle for high momentum tracks.
The SVT' is very close to the production vertex in order to provide a very precise measure of
points on the charged particles trajectories on both longitudinal (z) and transverse directions. The
longitudinal coordinate information is necessary to measure the decay vertex distance, while the
transverse information allows a better separation between secondary vertices coming from decay

cascades.

More precisely, the design of the SVT" was carried out according to some important guidelines:

e The number of impact points of a single charged particle has to be greater than 3 to make a

stand-alone tracking possible, and to provide an independent momentum measure.
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Figure 2.3: SVT schematic view: longitudinal section

e The first three layers are placed as close as possible to the impact point to achieve the best

resolution on the z position of the B meson decay vertices.

e The two outer layers are close to each other, but comparatively far from the inner layers, to

allow a good measurement of the track angles.

e The SVT must withstand 2 MRad of ionizing radiation: the expected radiation dose is 1
Rad/day in the horizontal plane immediately outside the beam pipe and 0.1 Rad/day on

average.

e Since the vertex detector is inaccessible during normal detector operations, it has to be reli-

able and robust.

These guidelines have led to the choice of a SV made of five layers of double-sided silicon
strip sensors: the spatial resolution, for perpendicular tracks must be 10 — 15 um in the three
inner layers and about 40 um in the two outer layers. The three inner layers perform the impact
parameter measurement, while the outer layers are necessary for pattern recognition and low p;
tracking. The silicon detectors are double-sided (contain active strips on both sides) because this
technology reduces the thickness of the materials the particles have to cross, thus reducing the
energy loss and multiple scattering probability compared to single-sided detectors. The sensors
are organized in modules (Fig. 2.3). The SVT five layers contain 340 silicon strip detectors with

AC-coupled silicon strips.
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Figure 2.4: Cross-sectional view of the SV in a plane perpendicular to the beam axis.

Each detector is 300 pm-thick but sides range from 41 mm to 71 mm and there are 6 different
detector types. Each of the three inner layers has a hexagonal transverse cross-section and it is
made up of 6 detector modules, arrayed azimuthally around the beam pipe, while the outer two
layers consist of 16 and 18 detector modules, respectively. The inner detector modules are barrel-
style structures, while the outer detector modules employ the novel arch structure in which the
detectors are electrically connected across an angle. This arch design was chosen to minimize the
amount of silicon required to cover the solid angle while increasing the solid angle for particles
near the edges of acceptance: having incidence angles on the detector closer to 90 degrees at small
dip angles insures a better resolution on impact points. One of the main features of the SVI" design

is the mounting of the readout electronics entirely outside the active detector volume.

The strips on the two sides of the rectangular detectors in the barrel regions are oriented parallel
(¢ strips) or perpendicular (z strips) to the beam line: in other words, the inner sides of the detec-
tors have strips oriented perpendicular to the beam direction to measure the z coordinate (2-size),
whereas the outer sides, with longitudinal strips, allow the ¢-coordinate measurement (¢-side). In
the forward and backward regions of the two outer layers, the angle between the strips on the two

sides of the trapezoidal detectors is approximately 90° and the ¢ strips are tapered.

The inner modules are tilted in ¢ by 5°, allowing an overlap region between adjacent modules: this
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provide full azimuthal coverage and is convenient for alignment. The outer modules are not tilted,

but are divided into sub-layers and placed at slightly different radii (see Fig. 2.4).

The total silicon area in the SVT is 0.94 m? and the number of readout channels is about 150 000.
The geometrical acceptance of SVT is 90% of the solid angle in the c.m. system and typically 80%

are used in charged particle tracking.

The z-side strips are connected to the read-out electronics with flexible Upilex fanout circuits glued
to the inner faces of half-modules: as a matter of fact, each module is divided into two electrically
separated forward and backward half-modules. The fanout circuits consist of conductive traces on
a thin flexible insulator (copper traces on Kapton): the traces are wire-bonded to the end of the

strips.

In the two outer layers, in each module the number of z strips exceeds the number of read-out
channels, so that a fraction of the strips is “ganged”, i.e., two strips are connected to the same
read-out channel. The “ganging” is performed by the fanout circuits. The length of a z strip is
about 50 um (case of no ganging) or 100 pm (case of two strip connected): the ganging introduces
an ambiguity on the z coordinate measurement, which must be resolved by the pattern recognition
algorithms. The ¢ strips are daisy-chained between detectors, resulting in a total strip length of up
to 26 cm. Also, for the ¢-side, a short fanout extension is needed to connect the ends of the strips

to the read-out electronics.

Table 2.3: Parameters of the SV layout: these characteristics are shown for each layer.

1st 2nd 3rd 4th 5th
layer layer layer layer layer

radius (mm) 32 40 54 91-127 | 114-144
modules/layer 6 6 6 16 18
wafers/module 4 4 6 7 8
read-out pitch (um)
0] 50-100 | 55-110 | 55-110 100 100
z 100 100 100 210 210

The signals from the read-out strips are processed using a new technique, bringing in several
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advantages. After amplification and shaping, the signals are compared to a preset threshold and
the time they exceed this threshold (time over threshold, or ToT) is measured. This time interval is
related to the charge induced in the strip by the charged particle crossing it. Unlike the traditional
peak-amplitude measurement in the shaper output, the ToT has the advantage of an approximately
logarithmic relation of the time interval to the charge signal. This compresses the active dynamic
range of the signal, ensuring a good sensitivity in the lower range. When a particle crosses a silicon
detector a cluster of adjoining strips producing a signal is formed. The good signal resolution in the
lower range ensures a good determination of the tails of the cluster thus improving the resolution

on the impact point measurement.

The electronic noise measured is found to vary between 700 and 1500 electrons ENC (equivalent
noise charge), depending on the layer and the readout view: this can be compared to the typical
energy deposition for a minimum ionizing particle at normal incidence, which is equivalent to

~ 24000 electrons.

During normal running conditions, the average occupancy of the SVT" in a time window of 1 s is
about 2% for the inner layers, where it is dominated by machine backgrounds, and less than 1%

for the outer layers, where noise hits dominate.

The cluster reconstruction is based on a cluster finding algorithm: first the charge pulse height of
a single pulse is calculated form the ToT value and clusters are formed grouping adjacent strips
with consistent times. The position x of a cluster formed by n strips is evaluated with an algorithm

called “head-to-tail” algorithm:

(J;l + xn) P (Qn - Ql)
2

S R YA RGN

where x; and (); are the position and the collected charge of i-th strip and p is the read-out pitch.
This formula always gives a cluster position within p/2 of the geometrical center of the cluster.
The cluster pulse height is simply the sum of the strip charges, while the cluster time is the average

of the signal times.

The SVT efficiency can be calculated for each half-module by comparing the number of associated
hits to the number of tracks crossing the active area of the half-module. Excluding defective

readout sections (9 over 208), the combined hardware and software efficiency is 97%.
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SVT Hit Resolution vs. Incident Track Angle
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Figure 2.5: SVT hit resolution in the z and ¢ coordinate in microns, plotted as functions of the

track incident angle in degrees.

The spatial resolution of SVT hits is calculated by measuring the distance (in the plane of the
sensor) between the track trajectory and the hit, using high-momentum tracks in two prong events:
the uncertainty due to the track trajectory is subtracted from the width of the residual distribution
to obtain the hit resolution. The track hit residuals are defined as the distance between track and
hit, projected onto the wafer plane and along either the ¢ or z direction. The width of this residual
distribution is then the SVT hit resolution. Fig. 2.5 shows the SVT hit resolution for z and ¢ side
hits as a function of the track incident angle: the measured resolutions are in very good agreement
with the MonteCarlo expected ones. Over the whole SVT', resolutions are raging from 10 — 15 um

(inner layers) to 30 — 40 um (outer layers) for normal tracks.

For low-momentum tracks (p; < 120 MeV/c), the SVT provides the only particle identification
information. The measure of the ToT value enables to obtain the pulse height and hence the
ionization dE'/dx: the value of ToT are converted to pulse height using a look-up table computed
from the pulse shapes. The double-sided sensors provide up to ten measurements of dFE /dx per
track: with signals from at least four sensors, a 60% truncated mean dE/dz is calculated. For

MIPs, the resolution on the truncated mean dE'/dx is approximately 14%: a 20 separation between
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kaons and pions can be achieved up to momentum of 500 MeV/c and between kaons and protons
beyond 1 GeV/e.

2.3.2 The drift chamber: DCH.

The drift chamber is the second part of BABAR tracking system: its principal purpose is the effi-
cient detection of charged particles and the measurement of their momenta and angles with high
precision. The DCH complements the measurements of the impact parameter and the directions
of charged tracks provided by the SVT near the impact point (IP). At lower momenta, the DCH
measurements dominate the errors on the extrapolation of charged tracks to the DIRC, EMC and
IFR. The reconstruction of decay and interaction vertices outside of the SVT" volume, for instance
the K2 decays, relies only on the DCH. For these reasons, the chamber should provide maximal
solid angle coverage, good measurement of the transverse momenta and positions but also of the
longitudinal positions of tracks with a resolution of ~ 1 mm, efficient reconstruction of tracks at
momenta as low as 100 MeV/ ¢ and it has to minimally degrade the performance of the calorimeter
and particle identification devices (the most external detectors). The DCH also needs to supply
information for the charged particle trigger. For low momentum particles, the DCH is required to
provide particle identification by measuring the ionization loss (dE/dz). A resolution of about 7%
allows 7/ K separation up to 700 MeV/c. This particle identification (PID) measurement is com-
plementary to that of the DIRC in the barrel region, while in the extreme backward and forward
region, the DCH is the only device providing some discrimination of particles of different mass.
The DCH should also be able to operate in presence of large beam-generated backgrounds having

expected rates of about 5 k£ H z/cell in the innermost layers.

To meet the above requirements, the DCH is a 280 cm-long cylinder (see left plot in Fig. 2.6),
with an inner radius of 23.6 cm and an outer radius of 80.9 ¢m: it is bounded by the support tube
at its inner radius and the particle identification device at its outer radius. The flat end-plates are
made of aluminum: since the BABAR events will be boosted in the forward direction, the design of
the detector is optimized to reduce the material in the forward end. The forward end-plate is made
thinner (12 mm) in the acceptance region of the detector compared to the rear end-plate (24 mm),
and all the electronics is mounted on the rear end-plate. The device is asymmetrically located
with respect to the IP: the forward length of 174.9 cm is chosen so that particles emitted at polar

angles of 17.2° traverse at least half of the layers of the chamber before exiting through the front
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Figure 2.6: Side view of the BABAR drift chamber (the dimensions are in mm) and isochrones (i.e.
contours of equal drift time of ions) in cells of layer 3 and 4 of an axial super-layer. The isochrones

are spaced by 100 ns.

end-plate. In the backward direction, the length of 101.5 cm means that particles with polar angles

down to 152.6° traverse at least half of the layers.

The inner cylinder is made of 1 mm beryllium and the outer cylinder consists of two layers of car-
bon fiber glued on a Nomex core: the inner cylindrical wall is kept thin to facilitate the matching of
SVT and DCH tracks, to improve the track resolution for high momentum tracks and to minimize
the background from photon conversions and interactions. Material in the outer wall and in the
forward direction is also minimized in order not to degrade the performance of the DIRC and the

EmMc.

The region between the two cylinders is filled up by a gas mixture consisting of Helium-isobutane
(80% : 20%): the chosen mixture has a radiation length that is five times larger than commonly
used argon-based gases. 40 layers of wires fill the DCH volume and form 7104 hexagonal cells
with typical dimensions of 1.2 x 1.9 ¢m? along the radial and azimuthal directions, respectively
(see right plot in Fig. 2.6). The hexagonal cell configuration has been chosen because approximate
circular symmetry can be achieved over a large portion of the cell. Each cell consist of one sense
wire surrounded by six field wires: the sense wires are 20 pm gold-plated tungsten-rhenium, the
field wires are 120 pm and 80 pm gold-plated aluminum. By using the low-mass aluminum field

wires and the helium-based gas mixture, the multiple scattering inside the DCH is reduced to a
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minimum, representing less than 0.2% X of material. The total thickness of the DCH at normal
incidence is 1.08%.X.

The drift cells are arranged in 10 super-layers of 4 cylindrical layers each: the super-layers contain
wires oriented in the same direction: to measure the z coordinate, axial wire super-layers and
super-layers with slightly rotated wires (stereo) are alternated. In the stereo super-layers a single
wire corresponds to different ¢ angles and the z coordinate is determined by comparing the ¢
measurements from axial wires and the measurements from rotated wires. The stereo angles vary
between +45 mrad and £76 mrad.

While the field wires are at ground potential, a positive high voltage is applied to the sense wires:
an avalanche gain of approximately 5 x 10? is obtained at a typical operating voltage of 1960 V/

and a 80:20 helium:isobutane gas mixture.

In each cell, the track reconstruction is obtained by the electron time of flight: the precise relation
between the measured drift time and drift distance is determined from sample of eTe™ and ™y~
events. For each signal, the drift distance is estimated by computing the distance of closest ap-
proach between the track and the wire. To avoid bias, the fit does not include the hit of the wire
under consideration. The estimated drift distances and the measured drift times are averaged over

all wires in a layer.

The DCH expected position resolution is lower than 100 pm in the transverse plane, while it is
about 1 mm in the z direction. The minimum reconstruction and momentum measure threshold is
about 100 MeV/c and it is limited by the DCH inner radius. The design resolution on the single
hit is about 140 um while the achieved weighted average resolution is about 125 um. Left plot in
Fig. 2.7 shows the position resolution as a function of the drift distance, separately for the left and
the right side of the sense wire. The resolution is taken from Gaussian fits to the distributions of
residuals obtained from unbiased track fits: the results are based on multi-hadron events for data

averaged over all cells in layer 18.

The specific energy loss (dF/dx) for charged particles through the DCH is derived from the
measurement of the total charge collected in each drift cell: the specific energy loss per track
is computed as a truncated mean from the lowest 80% of the individual dF /dx measurements.
Various corrections are applied to remove sources of bias: these corrections include changes in

gas pressure and temperature (+£9% in dE'/dx), differences in cell geometry and charge collection
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Figure 2.7: Left plot: DCH position resolution as a function of the drift chamber in layer 18,
for tracks on the left and right side of the sense wire. The data are averaged over all cells in the
layer. Right plot: measurement of dF/dx in the DCH as a function of the track momenta. The
data include large samples of beam background triggers as evident from the high rate of protons.
The curves show the Bethe-Bloch predictions derived from selected control samples of particles of

different masses.

(+8%), signal saturation due to space charge buildup (+11%), non-linearities in the most probable
energy loss at large dip angles (+2.5%) and variation of cell charge collection as a function of the

entrance angle (£2.5%).

Right plot in Fig. 2.7 shows the distribution of the corrected dF /dx measurements as a function
of track momenta: the superimposed Bethe-Bloch predictions have been determined from selected
control samples of particles of different masses. The achieved dFE /dz rms resolution for Bhabha
events is typically 7.5%, limited by the number of samples and Landau fluctuations, and it is close

to the expected resolution of 7%.
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2.3.3 The charged particle tracking system.

As already said, the BABAR tracking system is based on SV1 and DCH detectors: charged particle
tracking has been studied with large samples of cosmic ray muons, ete™, u™p~ and 777~ events,

as well as multi-hadrons.
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Figure 2.8: Track reconstruction efficiency in the DCH at operating voltages of 1960 1V and 1900 V'
as a function of transverse momentum (left plot) and of polar angle (right plot). The efficiency is

measured in multi-hadron events.

Charged tracks are defined by five parameters (dy, ¢g, w, 29 and tan \) and their associated error
matrix: these parameters are measured at the point of closest approach to the z-axis and d and zg
are the distances of this point from the origin of the coordinate system (in the x — y plane and on
the z axix, respectively). The angle ¢, is the azimuth of the track, ) is the dip angle relative to the

transverse plane and w is the curvature. dy and w have signs that depend on the particle charge.

The track finding and the fitting procedure make use of the Kalman filter algorithm that takes
into account the detailed description of material in the detector and the full map of the magnetic
field. First of all, tracks are reconstructed with DCH hits through a stand-alone DCH algorithm:
the resulting tracks are then extrapolated into the SV and SVT track segments are added and a
Kalman fit is performed to the full set of DCH and SVT hits. Any remaining SVT hits are then

passed to the SV stand-alone track finding algorithms. Finally, an attempt is made to combine
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tracks that are only found by one of the two tracking systems and thus recover tracks scattered in

the material of the support tube.

The efficiency for track reconstruction in the DCH has been measured as a function of transverse
momentum, polar and azimuthal angles in multi-track events. These measurement rely on specific
final states and exploit the fact that the track reconstruction can be performed independently in the
SVT and the DCH . The absolute DCH tracking efficiency is determined as the ratio of the number
of reconstructed DCH tracks to the number of tracks detected in the SVT' with the requirement
that they fall within the acceptance of the DCH. Left plot in Fig. 2.8 shows the efficiency in the

DCH as a function of transverse momentum in multi-hadron events.

At design voltage of 1960 V, the efficiency averages 98 + 1% per track above 200 MeV/c: the
data recorded at 1900 V' show a reduction in efficiency by about 5% for tracks almost at normal

incidence, indicating that the cells are not fully efficient at this voltage (see right plot in Fig. 2.8).
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Figure 2.9: Left plot: MonteCarlo studies of low momentum tracks in the SVT on D** — DOr™
events. a) comparison with data in B events and b) efficiency for slow pion detection derived
from simulated events. Right plot: resolution in the parameters d and z, for tracks in multi-hadron

events as a function of the transverse momentum.

The stand-alone SVT tracking algorithms have a high efficiency for tracks with low transverse

momentum: to estimate the tracking efficiency for these low momentum tracks, a detailed Monte-
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Carlo study was performed. The pion spectrum was derived from simulation of the inclusive D*
production in BB events and MonteCarlo events were selected in the same way as the data: since
the agreement with MonteCarlo is very good, the detection efficiency has been derived from Mon-
teCarlo simulation. The SVT' extends the capability of the charge particle reconstruction down to

transverse momenta of ~ 50 MeV/c (see left plot in Fig. 2.9).

The resolution in the five track parameters is monitored using e*e™ and p* .~ pair events: the res-
olution is derived from the difference of the measured parameters for the upper and lower halves of
the cosmic ray tracks traversing the DCH and the SVT'. On this sample with transverse momenta
above 3 GeV/c, the resolution for single tracks is 23 um in dy and 29 pm in zy. To study the de-
pendence of resolution from transverse momentum, a sample of multi-hadron events is used: the
resolution is determined from the width of the distribution of the difference between the measured
parameters (dy and z;) and the coordinates of the vertex reconstructed from the remaining tracks
in the event: right plot in Fig. 2.9 shows the dependence of the resolution in d and 2, as a function
of p;. The measured resolutions are about 25 um in dy and 40 pum in z, for p, of 3 GeV/c: these
values are in good agreement with the MonteCarlo studies and in reasonable agreement also with

the results from cosmic rays.

2.4 Cerenkov light detector: DIRC

The particle identification system is crucial for BABAR since the CP violation analysis requires the
ability to fully reconstruct one of the B meson and to tag the flavour of the other B decay: the
momenta of the kaons used for flavour tagging extend up to about 2 GeV/c with most of them
below 1 GeV/c. On the other hand, pions and kaons from the rare two-body decays B? — 77~
and B® — K*7~ must be well separated: they have momenta between 1.7 and 4.2 GeV/c with
a strong momentum-polar angle correlation of the tracks (higher momenta occur at more forward

angles because of the c.m. system boost). So the particle identification system should be:

e thin and uniform in term of radiation lengths to minimize degradation of the calorimeter

energy resolution,
e small in the radial dimension to reduce the volume (cost) of the calorimeter,

e with fast signal response,
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e able to tolerate high background.

DIRC stands for Detection of Internally Reflected Cerenkov light and it refers to a new kind of
ring-imaging Cerenkov detector which meets the above requirements. The particle identification
in the DIRC' is based on the Cerenkov radiation produced by charged particles crossing a material
with a speed higher than light speed in that material. The angular opening of the Cerenkov radiation

cone depends on the particle speed:

cosfl, = —
n
where 6, is the Cerenkov cone opening angle, n is the refractive index of the material and (3 is the
particle velocity over c. The principle of the detection is based on the fact that the magnitudes of

angles are maintained upon reflection from a flat surface.

EPMT Module

Figure 2.10: Mechanical elements of the DIRC and schematic view of bars assembled into a

mechanical and optical sector.

Since particles are produced mainly forward in the detector because of the boost, the DIRC' photon
detector is placed at the backward end: the principal components of the DIRC' are shown in Fig.
2.10. The DIRC' is placed in the barrel region and consists of 144 long, straight bars arranged
in a 12-sided polygonal barrel. The bars are 1.7 cm-thick, 3.5 cm-wide and 4.90 m-long: they are

placed into 12 hermetically sealed containers, called bar boxes, made of very thin aluminum-hexcel
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Figure 2.11: Schematics of the DIRC fused silica radiator bar and imaging region. Not shown is a

6 mrad angle on the bottom surface of the wedge.

panels. Within a single bar box, 12 bars are optically isolated by a ~ 150 um air gap enforced by

custom shims made from aluminum foil.

The radiator material used for the bars is synthetic fused silica: the bars serve both as radiators
and as light pipes for the portion of the light trapped in the radiator by total internal reflection.
Synthetic silica has been chosen because of its resistance to ionizing radiation, its long attenuation

length, its large index of refraction, its low chromatic dispersion within its wavelength acceptance.

The Cerenkov radiation is produced within these bars and is brought, through successive total in-
ternal reflections, in the backward direction outside the tracking and magnetic volumes: only the
backward end of the bars is instrumented. A mirror placed at the other end on each bar reflects
forward-going photons to the instrumented end. The Cerenkov angle at which a photon was pro-
duced is preserved in the propagation, modulo some discrete ambiguities (the forward-backward
ambiguity can be resolved by the photon arrival-time measurement, for example). The DIRC' effi-
ciency grows together with the particle incidence angle because more light is produced and a larger
fraction of this light is totally reflected. To maximize the total reflection, the material must have

a refractive index (fused silica index is n = 1.473) higher than the surrounding environment (the
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DIRC' is surrounded by air with index n = 1.0002).

Once photons arrive at the instrumented end, most of them emerge into a water-filled expansion
region (see Fig. 2.11), called the Standoff Box: the purified water, whose refractive index matches
reasonably well that of the bars (ny,0 = 1.346), is used to minimize the total internal reflection at

the bar-water interface.

The standoff box is made of stainless steel and consists of a cone, cylinder and 12 sectors of PMTs:
it contains about 6000 liters of purify water. Each of the 12 PMTs sectors contains 896 PMTs in a
close-packed array inside the water volume: the PMTs are linear focused 2.9 cm diameter photo-

multiplier tubes, lying on an approximately toroidal surface.

The DIRC' occupies only 8 cm of radial space, which allows for a relatively large radius for the
drift chamber while keeping the volume of the CsI Calorimeter reasonably low: it corresponds to
about 17% X, at normal incidence. The angular coverage is the 94% of the ¢ azimuthal angle and
the 83% of cos Ocyy.

Cerenkov photons are detected in the visible and near-UV range by the PMT array. A small piece
of fused silica with a trapezoidal profile glued at the back end of each bar allows for significant
reduction in the area requiring instrumentation because it folds one half of the image onto the
other half. The PMTs are operated directly in water and are equipped with light concentrators: the
photo-multiplier tubes are about 1.2 m away from the end of the bars. This distance from the bar
end to the PMTs, together with the size of the bars and PMTs, gives a geometric contribution to the
single photon Cerenkov angle resolution of about 7 mrad. This is a bit larger than the resolution
contribution from Cerenkov light production (mostly a 5.4 mrad chromatic term) and transmission

dispersions. The overall single photon resolution expected is about 9 mrad.

The image from the Cerenkov photons on the sensitive part of the detector is a cone cross-section
whose opening angle is the Cerenkov angle modulo the refraction effects on the fused silica-water
surface. In the most general case, the image consists of two cone cross-sections out of phase one
from the other by a value related to an angle which is twice the particle incidence angle. In order
to associate the photon signals with a track traversing a bar, the vector pointing from the center of
the bar end to the center of each PMT is taken as a measure of the photon propagation angles o,
oy, and a,. Since the track position and angles are known from the tracking system, the three «

angles can be used to determine the two Cerenkov angles f¢ and ¢¢. In addition, the arrival time
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Figure 2.12: From di-muon data events, left plot: single photon Cerenkov angle resolution. The
distribution is fitted with a double-Gaussian and the width of the narrow Gaussian is 9.6 mrad.
Right plot: reconstructed Cerenkov angle for single muons. The difference between the measured
and expected Cerenkov angle is plotted and the curve represents a Gaussian distribution fit to the
data with a width of 2.4 mrad.

of the signal provides an independent measurement of the propagation of the photon and can be
related to the propagation angles «. This over-constraint on the angles and the signal timing are

useful in dealing with ambiguities in the signal association and high background rates.

The expected number of photo-electrons (V) is ~ 28 for a # = 1 particle entering normal to the
surface at the center of a bar and increases by over a factor of of two in the forward and backward

directions.

The time distribution of real Cerenkov photons from a single event is of the order of 50 ns wide
and during normal data taking they are accompanied by hundreds of random photons in a flat
background distribution within the trigger acceptance window. The Cerenkov angle has to be
determined in an ambiguity that can be up to 16-fold: the goal of the reconstruction program is
to associate the correct track with the candidate PMT signal with the requirement that the transit
time of the photon from its creation in the bar to its detection at the PMT be consistent with the

measurement error of about 1.5 ns.
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An unbinned maximum likelihood formalism is used to take into account all information provided
by the DIRC" the reconstruction routine provides a likelihood value for each of the five stable
particle types (e, u, m, K and p) if the track passes through the active volume of the DIRC'. These
likelihood probabilities are calculated in an iterative process by maximizing the likelihood value
for the entire event while testing different hypotheses for each track. If enough photons are found,

a fit of 0 and the number of observed signal and background photons are calculated.

In the absence of correlated systematic errors, the resolution (o, ¢44ck) On the track Cerenkov angle

should scale as

OCy

0' =
o track
' v/ Npe

where o¢ , is the single photon angle resolution. This angular resolution (obtained from di-muon

events) can be estimated to be about 10.2 mrad, in good agreement with the expected value (see left
plotin fig. 2.12). The measured time resolution is 1.7 ns close to the intrinsic 1.5 ns time spread of
the PMTs. In di-muon event data, the number of photo-electrons varies between 20 for small polar
angles at the center of the barrel and 65 at large polar angles: this is variation is well reproduced
by MonteCarlo and can be understood by the fact that the number of Cerenkov photons varies with
the path length of the track in the radiator (smaller path length at perpendicular incidence at the
center of the barrel). Also the fraction of photons trapped by total internal reflection rises with
larger values of | cos(f,ck)|: this increase in the number of photons for forward going tracks
corresponds also to an increase in momentum of the tracks and thus an improvement of the DIRC'

performance.

The width of the track Cerenkov angle resolution for di-muon events is 2.4 mrad compared to the
design goal of 2.2 mrad (see right plot in Fig. 2.12). From the measured single track resolution
versus momentum in d-muon events and from the difference between the expected Cerenkov angles
of charged pions and kaons, the pion-kaon separation power of the DIRC' can be evaluated: the
expected separation between pions and kaons at 3 GeV/c is about 4.20, within 15% of the design

goal.

The charged kaon efficiency is compared to the charged pion misidentification in Fig. 2.13. In
the reconstruction of the invariant mass of the hadronic system, given the difference in the kaon

momentum spectrum, Fig. 2.13, a ch arged track is identified as kaon if px > 300 MeV.
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Figure 2.13: Charged kaon identification and pion misidentification probabilit y for the tight kaon
micro selector as a function of momentum (left) and polar angle (right). The solid markers indi-
cate the efficiency for positive particles, the empty markers the efficiency for negative particles.
Note the different scales for identification and misidentification on the left and right ordinates,

respectively.

2.5 Electromagnetic calorimeter: ENMC

The understanding of CP violation in the B meson system requires the reconstruction of final state
containing a direct ¥ or that can be reconstructed through a decay chain containing one or more
daughter 7%s. The electromagnetic calorimeter is designed to measure electromagnetic showers
with excellent efficiency and energy and angular resolution over the energy range from 20 MeV
to 9 GeV. This capability should allow the detection of photons from 7 and 7 decays as well as
from electromagnetic and radiative processes. By identifying electrons, the EMC' contributes to
the flavour tagging of neutral B mesons via semi-leptonic decays. The upper bound of the energy
range is given by the need to measure QED processes like ete™ — ete () and eTe™ — 7 for
calibration and luminosity determination. The lower bound is set by the need for highly efficient
reconstruction of B-meson decays containing multiple 7% and 7s. The measurement of very
rare decays containing 7’s in the final state (for example, B® — 7%7%) puts the most stringent
requirements on energy resolution, expected to be of the order of 1 — 2%. Below 2 GeV energy,
the 7° mass resolution is dominated by the energy resolution, while at higher energies, the angular
resolution becomes dominant and it is required to be of the order of few mrad. The EMC is also

used for electron identification and for completing the /FR output on p and K'Y identification. It

Misidentification
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Figure 2.14: The electromagnetic calorimeter layout in a longitudinal cross section and a schematic
view of the wrapped CsI(T1) crystal with the front-end readout package mounted on the rear face

(not to scale).

also has to operate in a 1.57" magnetic field.

The EMC has been chosen to be composed of a finely segmented array of thallium-doped cesium
iodide (CsI(T1)) crystals. The crystals are read out with silicon photo-diodes that are matched to
the spectrum of scintillation light. The energy resolution of a homogeneous crystal calorimeter can

be described empirically in terms of a sum of two terms added in quadrature:

O'E:#@b

E 1 /E(G)
where F and o refer to the energy of a photon and its rms error, measured in GeV. The energy
dependent term a(~ 2%) arises basically from the fluctuations in photon statistics, but also from
the electronic noise of the photon detector and electronics and from the beam-generated back-
ground that leads to large numbers of additional photons. This first term dominates at low energy,
while the constant term b(~ 1.8%) is dominant at higher energies (> 1 GeV). It derives from
non-uniformity in light collection, leakage or absorption in the material in front of the crystals and

uncertainties in the calibration.

The angular resolution is determined by the transverse crystal size and the distance from the inter-

action point: it can be empirically parameterized as a sum of an energy dependent and a constant
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term

0p = O, ¢ +d
’ ¢ E(GeV)

where F is measured in GeV and with ¢ ~ 4 mrad and d ~ 0 mrad.

In CsI(T1), the intrinsic efficiency for the detection of photons is close to 100% down to a few
MeV, but the minimum measurable energy in colliding beam data is about 20 MeV for the EMC:
this limit is determined by beam and event-related background and the amount of material in front
of the calorimeter. Because of the sensitivity of the ° efficiency to the minimum detectable photon
energy, it is extremely important to keep the amount of material in front of the EMC' to the lowest

possible level.

Thallium-doped CsI has high light yield and small Moliere radius in order to allow for excellent
energy and angular resolution. It is also characterized by a short radiation length for shower con-
tainment at BABAR energies. The transverse size of the crystals is chosen to be comparable to the
Moliere radius achieving the required angular resolution at low energies while limiting the total

number of crystals and readout channels.

The BABAR EMC' (left plot in Fig. 2.14) consists of a cylindrical barrel and a conical forward end-
cap: it has a full angle coverage in azimuth while in polar angle it extends from 15.8° to 141.8°
corresponding to a solid angle coverage of 90% in the CM frame. Radially the barrel is located
outside the particle ID system and within the magnet cryostat: the barrel has an inner radius of
92 ¢m and an outer radius of 137.5 cm and it’s located asymmetrically about the interaction point,
extending 112.7 em in the backward direction and 180.1 ¢m in the forward direction. The barrel
contains 5760 crystals arranged in 48 rings with 120 identical crystals each: the end-cap holds 820
crystals arranged in eight rings, adding up to a total of 6580 crystals. They are truncated-pyramid
CsI(T1) crystals (right plot in Fig. 2.14): they are tapered along their length with trapezoidal
cross-sections with typical transverse dimensions of 4.7 x 4.7 cm? at the front face, flaring out
toward the back to about 6.1.0 cm?. All crystals in the backward half of the barrel have a length
of 29.6 cm: toward the forward end of the barrel, crystal lengths increase up to 32.4 ¢m in order to
limit the effects of shower leakage from increasingly higher energy particles. All end-cap crystals
are of 32.4 cm length. The barrel and end-cap have total crystal volumes of 5.2 m? and 0.7 m?,

respectively. The CsI(T1) scintillation light spectrum has a peak emission at 560 nm: two indepen-
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dent photodiodes collect this scintillation light from each crystal. The readout package consists
of two silicon PIN diodes, closely coupled to the crystal and to two low-noise, charge-sensitive

preamplifiers, all enclosed in a metallic housing.

A typical electromagnetic shower spreads over many adjacent crystals, forming a cluster of en-
ergy deposit: pattern recognition algorithms have been developed to identify these clusters and to
discriminate single clusters with one energy maximum from merged clusters with more than one
local energy maximum, referred to as bumps. The algorithms also determine whether a bump is
generated by a charged or a neutral particle. Clusters are required to contain at least one seed
crystal with an energy above 10 MeV: surrounding crystals are considered as part of the cluster if
their energy exceeds a threshold of 1 MeV or if they are contiguous neighbors of a crystal with at
least 3 MeV signal. The level of these thresholds depends on the current level of electronic noise

and beam-generated background.

A bump is associated with a charged particle by projecting a track to the inner face of the calorime-
ter: the distance between the track impact point and the bump centroid is calculated and if it is
consistent with the angle and momentum of the track, the bump is associated with this charged

particle. Otherwise it is assumed to originate from a neutral particle.

On average, 15.8 clusters are detected per hadronic event: 10.2 are not associated to any charged
particle. Currently, the beam-induced background contributes on average with 1.4 neutral clusters

with energy above 20 MeV.

At low energy, the energy resolution of the EMC' is measured directly with a 6.13 MeV radioactive
photon source (a neutron-activated fluorocarbon fluid) yielding op/F = 5.0 + 0.8%. At high
energy, the resolution is derived from Bhabha scattering where the energy of the detected shower
can be predicted from the polar angle of the electrons and positrons. The measured resolution is
op/E = 1.9+ 0.1% at 7.5 GeV. Fig. 2.15 shows the energy resolution on data compared with
expectations from MonteCarlo. From a fit to the experimental results to eq.2.5, a = 2.32 + 0.30%
and b = 1.85 4 0.12% are obtained. The constant term comes out to be greater than expected: this

is mainly caused by a cross talk effect, still not corrected, in the front-end electronics.

The measurement of the angular resolution is based on Bhabha events and ranges between 12 mrad
and 3 mrad going from low to high energies. A fit to eq. 2.5 results in ¢ = (3.87+0.07) mrad and
d = (0.00 £ 0.04) mrad.
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Figure 2.15: EMC resolution as a function of the energy.

Different criteria are established to select electrons with different level of purity. Electrons are
primarily separated from charged hadrons on the basis of the ratio of the energy F deposited in the
EMC to the track momentum p (%). This quantity should be compatible with the unity for electrons
since they deposit all the energy in the calorimeter. The other charged tracks should appear as
M I P (minimal ionizing particles) unless they have hadronic interactions in the calorimer crystals.
To further separate hadrons a variable describing the shape of the energy deposition in the EMC
(LAT) is used. In addition, the dE /dx energy loss in the DCH and the DIRC Cerenkov angle are

required to be consistent with an electron and it offers a good separation in a wide range.

The track selection criteria are tightened for electrons selection to suppress background and to
ensure a reliable momentum measurement and identification efficiency: there are requirements
in addition for the transverse momentum p; > 0.1 GeV/¢, and Np., > 12 for the number of
associated drift chamber hits. Furthermore, only tracks with a polar angle in the range 0.360 <

O1ap < 2.37 and electron candidates with a laboratory momentum p;,;, > 0.5 GeV/c are considered.

Electrons are identified using the a likelihood-based selector [30], which uses a number of discrim-

inating variables:
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o FE.u /D, the ratio of E.,;, the energy deposited in the EMC, and pj,; the momentum in the
laboratory rest frame measured using the tracking system; LAT, the lateral shape of the
calorimeter deposit; A®, the azimuthal distance between the centroid of the EMC cluster
and the impact point of the track on the EMC; and N.,,, the number of crystals in the EMC

cluster;
e dF/dx, the specific energy loss in the DCH;

e the Cerenkov angle - and N, the number of photons measured in the DIRC.

First, muons are eliminated based on dE/dx and the shower energy relative to the momentum.
For the remaining tracks, likelihood functions are computed assuming the particle is an electron,
pion, kaon, or proton. These likelihood functions are based on probability density functions that
are derived from pure particle data control samples for each of the discriminating variables. For
hadrons, we take into account the correlations between energy and shower-shapes. Using combined

likelihood functions

L) = P(E/p, LAT,A® dE/dz,0c|€)
= Pgme(E/p, LAT, AD|§) Ppep(dE/dz|E) Ppre(0c|€)

for the hypotheses £ € {e, 7, K, p}, the fraction

feL(e>
=L 2.1
S JL(E) @

is defined, where, for the relative particle fractions, fo : fr : fx : fp, =1 :5:1:0.11s assumed.

A track is identified as an electron if F, > 0.95.

The electron identification efficiency has been measured using radiative Bhabha events, as function
of laboratory momentum p;,;, and polar angle ¢,,,. The misidentification rates for pions, kaons,
and protons are extracted from selected data samples. Pure pions are obtained from kinematically
selected K2 — 77n~ decays and three prong 7 decays. Two-body /A and D° decays provide

pure samples of protons and charged kaons.

The performance of the likelihood-based electron identification algorithm is summarized in Fig-
ure 2.16, in terms of the electron identification efficiency and the per track probability that a hadron

is misidentified as an electron.
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Figure 2.16: Electron identification and hadron misidentification probability for the likelihood-
based electron selector as a function of momentum (left) and polar angle (right). Note the different
scales for identification and misidentification on the left and right ordinates, respectively. The

measurements are for luminosity-averaged rates for Run-1 and Run-2.

The average hadron fake rates per track are determined separately for positive and negative parti-
cles, taking into account the relative abundance from Monte Carlo simulation of B B events, with
relative systematic uncertainties of 3.5%, 15% and 20% for pions, kaons, and protons, respectively.
The resulting average fake rate per hadron track of p;,, > 1.0 GeV/c, is of the order of 0.05% for

pions and 0.2% for kaons.

2.6 Instrumented Flux Return: /FR

IFR (Instrumented Flux Return) detector is dedicated to muon identification and neutral hadrons

detection (mainly K?) in a wide range of momentum and angles.

The IFR, as all the other BABAR subsystems, has an asymmetric structure with a polar angle cov-
erage that is 17° < 6, < 150°. The IFR (Fig. 2.17) is made of 19 layers of Resistive Plate
Chambers (RPC) in the barrel region and 18 layers in forward and backward regions, that are
placed inside the iron layers used for the solenoidal magnetic field return joke. The iron structure
is subdivided in three main parts: the barrel one surrounding the solenoid, made of 6 sextants cov-

ering the radial distance between 1.820 m and 3.045 m with a length of 3.750 m (along the z axis);

Misidentification
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Figure 2.17: IFR view

the forward end-cap and backward end-cap covering the forward (positive z axis) and backward
regions. Moreover, two cylindrical RPC layers have been installed between the calorimeter and
the magnet cryostat in order to reveal particles exiting from the EMC. Those layers should cover
the ¢ regions not covered by the barrel. Cylindrical layers are subdivided in four sections, each of
them covering one fourth of the circumference: each of them has four RPC groups with orthogonal
readout strips. u — v helicoidal strips are placed inside along module’s diagonals while ¢ and z

parallel strips are placed outside. The summary of IFR readout segmentation is given in Tab. 2.4.

Each end-cap has an hexagonal shape and is vertically subdivided in two halves in order to allow
internal subsystems access, if necessary: vacuum tube and PEP-II focusing elements are placed
in the middle. Iron plates have a thickness ranging from 2 cm, for the inner ones placed nearest
to the interaction region, to 10 cm for the outer ones; this means a total thickness of steel at
normal incidence of ~ 65 cm (nearly corresponding to ~ 4 interaction lengths) in the barrel and
~ 60 cm in the end-caps. Nominal distance between iron layers in the inner barrel region is
3.5 cm while is 3.2 cm everywhere else. The increased granularity of inner layers with respect
to the outer ones is due to the fact that the largest part of particles detected inside the IFR are
interacting in the very first material layers. Chosen segmentation is also the result of a compromise
between the subsystem cost (proportional to the volume) and the need of a good efficiency for low

momentum (> 700 MeV) muon detection, minimizing, at the same time, fraction of K g’s that are
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# di readout # # strip strip len.  strip larg.  total #
section sectors COOfr. layer layer/sector (cm) (mm) channel
barrel 6 [0) 19 96 350 19.7-32.8 ~ 11k

z 19 96 190-318 38.5 ~ 11k
end-cap 4 y 18 6x32 124-262 28.3 13,824
X 18 3x64 10-180 38.0 ~ 15k
cyl. 4 [0) 1 128 370 16.0 512
z 1 128 211 29.0 512
u 1 128 10-422 29.0 512
A% 1 128 10-423 29.0 512

Table 2.4: IFR readout segmentation. Total number of channels is ~ 53k.

not interacting inside the IFR. Result of this optimization is a not uniform segmentation with iron
plates that have thickness increasing with distance from beam line. RPC' section is shown in Fig.
2.18.
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Figure 2.18: Planar RPC section with HV connection scheme.

In each barrel sextant layers are kept together by a structure that reduces the coverage of solid angle
with active detectors of ~ 7%. Active coverage of IFR detector is ~ 2000 m?, for a total RPC

modules number that is ~ 900. Signals produced by particles crossing the gas gap inside the RPCs
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are collected on both sides of the chamber by using thin strips (thickness ~ 40 pm) with width
of the order of a centimeter. Strips are applied in two orthogonal directions on insulating planes
200 pm thick, in order to have a bi-dimensional view. In each barrel sextant each gap is hosting a
chamber. This consist of a set of 3 RPC modules of rectangular shape. Each module is ~ 125 cm
long along beams direction with variable width in order to completely fill the gap. Each chamber
is equipped with 96 ¢ — strip placed along 2 axis that are measuring the ¢ angle inside the barrel
and 96 z — strip orthogonal to beams direction that are measuring z coordinate. z — strips are
subdivided into 3 panels of 32 strips with largeness, function of chamber radial position, ranging
between 1.78 and 3.37 cm. This projective geometry allows a constant number of strips for all
the various layers without decreasing detector resolution (each strip covers the same azimuthal
angle). The used gas mixture is made of 56.7% Argon, 38.8% Freon-134a and 4.5% Isobutane.
Working voltage for RPC's is ~ 7.5 kV. Iron layers keeping apart RPC planes are chilled by a
water system that keeps the temperature ~ 20°C'. RPC efficiencies have been measured by using

cosmics taken on a weekly base.

Mean efficiency during 2000 run has been ~ 78% for the barrel and ~ 87% for the forward end-
cap, less than that one measured in June 1999 (~ 92%). During the Summer 1999 the ambient
temperature increased very much reaching about 32° to 38° inside the iron. During such period the
IFR had problems to run the full detector because the dark current drawn by the chambers exceeded
the total current limit provided by the power supply. All the chambers drawing more than 200 pA
were disconnected. In October the chambers were re-connected but they didn’t recover the full
efficiency. The forward end-cap has been completely reconstructed and installed in the Summer
2002: 5 intermediate RPC layers were replaced by 2.54 cm of brass, 10 cm of steel were added
after the last RPC layer, an RPC(layer 19) was added in front of the forward end-cap, an RPC belt
was added in the barrel-end-cap overlap region. Barrel efficiencies are still decreasing and are at

~ 40% level while in the new forward end-cap, they are greater than 90%.

Muons are identified by measuring the number of traversed interaction lengths in the entire detector
and comparing it with the number of expected interaction lengths for a muon of a given momen-
tum. Moreover, the projected intersections of a track with the RPC planes are computed and, for
each readout plane, all strips clusters detected within a predefined distance from the predicted in-
tersection are associated with the track: the average number and the r.m.s. of the distribution of
RPC strips per layer gives additional y /7 discriminating power. We expect in fact the average

number of strips per layer to be larger for pions producing an hadronic interaction than for muons.
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Other variables exploiting clusters distribution shapes are constructed. Selection criteria based on
all these variables are applied to select muons. The performance of the muon selection has been
tested on samples of kinematically identified muons from ppee and gy final states and pions from

three-prong 7 decays and K¢ — 77~ decays.

The muon selection procedure is as follows:

e tight criteria on tracking: p; > 0.1GeV/c, Npog > 12, 0.360 < 0,4, < 2.37 and pjpp >
1.0GeV/e

e the energy deposited in the EMC is required to be consistent with the minimum ionizing

particle:

50 MeV < E., < 400 MeV;
e the number of IFR layers associated with the track has to be N, > 2.
e the interaction lengths of material traversed by the track has to be \,,,c.s > 2.2.

e The number of interaction lengths expected for a muon of the measured momentum and
angle to traverse is estimated by extrapolating the track up to the last active layer of the
IFR. This estimate takes into account the RPC efficiencies which are routinely measured and
stored. We require the difference A\ = A.;, — Apeqs to be < 1.0, for tracks with momentum
greater than 1.2 GeV/c. For track momenta between 0.5 GeV/c and 1.2 GeV/c, a variable
limit is placed: A\ < [(piap — 0.5)/0.7].

e The continuity of the IFR cluster is defined as T, = L_N—;H, where L and F' are the last and
first layers with hit. 7. is expected to be 1.0 for muons penetrating an ideal detector whereas
is expected smaller for hadrons. We require 7,. > 0.3 for tracks with 0.3 < 6,4, < 1.0 (i.e.

in the Forward End Cap to remove beam background).

e The observed number of hit strips in each RPC layer is used to impose the conditions on the

average number of hits, m < 8, and the standard deviation, o, < 4.

e The strip clusters in the IFR layers are combined to form a track and fit to a third degree
polynomial, with the quality of the fit selected by the condition xfcit /DOF < 3. In addition,
the cluster centroids are compared to the extrapolated charged track, with the requirement
X2, /DOF < 5.
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Figure 2.19: Muon identification and hadron misidentification probability for the tight muon se-
lector as a function of momentum (left) and polar angle (right). The solid markers indicate the
efficiency in 2000, the empty markers the efficiency in 2001. Note the different scales for identifi-

cation and misidentification on the left and right ordinates, respectively.

The muon identification efficiency has been measured using x4~ () events and two-photon pro-
duction of p™p~ pairs. The misidentification rates for pions, kaons, and protons are extracted
from selected data samples. The performance of the muon identification algorithm is summarized
in Fig. 2.19, in terms of the muon identification efficiency and the per track probability that a
hadron is misidentified as a muon. Only tracks in the fiducial volume, i.e. with a polar angle in the
range 20.6 < 0, < 135.9°, are considered. The errors shown are statistical only, the systematic

error is dominated by variations in the performance of the IFR as a function of position and time.

At the end of the summer 2004 RPC from Top and Bottom Barrel sextant has been substituted
with limited streamer tube (LST). Data recording Run-5 has been started only in the second half

of April 2005 so there aren’t still enough data to evaluate LST efficiency and performances.

Misidentification



Chapter 3

Introduction to the study of the
B — D*_a,iF decay

3.1 Introduction

This chapter represents a brief introduction to the study of the non-leptonic B — D*"a] decay

channel.

As recently suggested in [27], measuring the polarization amplitudes in the B — D*~a; decay,
which represents the main contribution to B — D* 7" 7t 7= , provides a test of the factor-
ization assumption. As we’ll see in the next, the factorization represents one of the mostly used
tool to evaluate the hadronic matrix elements describing the QCD non-perturbative effects in the
B decays amplitudes. Despite this approach, and its extensions, was found to predict with good
accuracy several processes, there are cases where it fails and it is important to test it in depth in
order to verify its limits and improve our knowledge on the strong interactions effects in exclusive
weak decays of hadrons containing a b-quark.

In section 1.5, we have seen how the study of time dependent CP asymmetries in B — D)}
decays can be used to extract the weak phase (23 + ). When the two meson in the final state have
both spin equal to one, as in B — D*~aj , itis possible to improve the method by performing a
time dependent angular analysis that allows a determination of (23 + 7) without using the infor-
mation on the (hard to measure) doubly Cabibbo suppressed amplitude and resolving the discrete

ambiguities discussed in 1.5.

65
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Figure 3.1: Tree diagram b — ctd, with a spectator quark d, affected by gluon exchange.

As anecessary preliminary step, it is important to correctly identify the aj — 7™ 7" 7~ contribution

to the 3 pions in B — D* "« 77 7~ and disentangle it from other possible resonant structures.
This is a challenging issue since the a;(1260) meson mass and width are poorly known [13]. The
currently available measurements on the a; parameters give, in fact, inconsistent results. The a;
parameters can be studied through the B — D*~a] decay which represents a quite clean envi-
ronment to measure them.

The work presented in this thesis focus on the study of the a;(1260) meson properties.

In order to separate the a; from other possible contributions to the 3 pion systemin B — D* 7t 7t 7

and to study the aj — 7" 7 7~ decay, a partial wave analysis is performed. The 3 pions mass
spectrum is divided in several intervals and, in each interval, the Dalitz plot of the 3 body decay is

analyzed.

Section 3.2 contains a brief introduction on the non-leptonic B decays. The effective Hamilto-
nian, obtained within the Operator Product Expansion, is shown and principles and limits of the
factorization approach are discussed. In section 3.3 the current experimental measurements of
the a;(1260) properties are summarized, and the advantages to study it through the B — D*"a
decay are illustrated. Sections 3.4 and 3.5 discuss the proposed factorization test and sin(23 +
~) measurements with B — D*"a] . An introduction to the partial wave analysis technique

adopted in this thesis to study the 3 pions system is given in section 3.6.
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Figure 3.2: Tree diagrams (q1, ¢2 € {u, c}).

3.2 Non-leptonic B decays

Studies of non-leptonic decays of B mesons are very useful to gain a better understanding of the
dynamics of strong interactions, which are responsible for the bounding of quarks and gluons into
hadrons. The complexity of the processes involved in non-leptonic decays is illustrated in fig 3.1
where it is shown how strong interactions of quarks can affect a simple b — ¢ u d tree diagram.
The theoretical approach to these decays is based on low energy effective Hamiltonians which
are calculated by making use of the “Operator Product Expansion” [31]. In this framework the
factorization prescription [32] allows us to write the decay amplitudes in terms of a product of

hadronic current matrix elements. Here are summarized the main concepts of this approach’.

3.2.1 Classification

The most complicated B decays are the non-leptonic transitions, which are mediated by b —
¢1 G2 d (s) quark-level processes, with ¢1,q2 € {u,d,c,s}. There are two kinds of topologies
contributing to such decays: tree-diagram-like and “penguin” topologies. The latter consist of
gluonic (QCD) and electroweak (EW) penguins. In Figs. 3.2-3.4, the corresponding leading-order
Feynman diagrams are shown. Depending on the flavor content of their final states, we may classify

b — q1 @2 d (s) decays as follows:

e ¢1 # ¢ € {u,c}: only tree diagrams contribute (class I).

e ¢ = ¢ € {u,c}: tree and penguin diagrams contribute (class II).

Ithe discussion in this section follows an interesting review from Robert Fleisher[33]
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Figure 3.3: QCD penguin diagrams (¢; = ¢2 € {u,d, ¢, s}).

w u, C,t
u,c,t b d(s)
b d(s)
w
Z,y 2=aq Z,y @2=q
q1 q1

Figure 3.4: Electroweak penguin diagrams (¢; = ¢ € {u,d, ¢, s}).

e ¢ = ¢ € {d, s}: only penguin diagrams contribute (class III).

3.2.2 Low-Energy Effective Hamiltonians

In order to analyze non-leptonic B decays theoretically, one uses low-energy effective Hamiltoni-
ans, which are calculated by making use of the “operator product expansion”, yielding transition

matrix elements of the following structure:
(f[Hesli) ACKMZCk (f1Qu(p)d) - (3.1)

The technique of the operator product expansion allows us to separate the short-distance contri-
butions to this transition amplitude from the long-distance ones, which are described by perturba-
tive quantities C, (1) (“Wilson coefficient functions”) and non-perturbative quantities (f[Q(u)]7)
(“hadronic matrix elements”), respectively. Here G is the Fermi constant, whereas \cxy 1S a

CKM factor and p denotes an appropriate renormalization scale. The @) are local operators,
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which are generated by electroweak interactions and QCD, and govern “effectively” the decay in
question. The Wilson coefficients C}, () can be considered as scale-dependent couplings related

to the vertexes described by the ().

In order to illustrate this rather abstract formalism, let us consider the decays of the type BY —
D™+ k= which allow a transparent discussion of the evaluation of the corresponding low-energy
effective Hamiltonian. Since this transition originates from a b — cud quark-level process, it is a
pure “tree” decay, i.e. we do not have to deal with penguin topologies, which simplifies the analysis
considerably. The leading-order Feynman diagram contributing to B9 — D®™)*h~ is illustrated in

figure 3.1. Evaluating the Feynman diagram describing the weak transition yields

2
92 1 rx - U 9v _
=g VaaVer [577(1 = 75)u] [k2 e } [Ev*(1 = 5)0] - (3.2)
Because of k* ~ m? < MZ,, it is possible to “integrate out” the W boson, and arrive at
G - -
Herr = —=VigVes [davu(1 — 75)ua] [E57"(1 — 75)bg]
\/5
Vi Vi (dtia)vea (E5bg) SIAVRYRe (3.3)
eb\Balla )v-A\C308 ) v-A = V2, .
\/_ \/_

where « and [ denote the color indices of the SU(3)c gauge group of QCD. Effectively, the

b — cud decay process is now described by the “current—current” operator Os.

Taking the QCD corrections into account, operator mixing induces a second ‘“‘current—current”

operator, which is given by

O1 = [dau(1 = 75)us] [E57" (1 = 75)bal (34)
Consequently, a low-energy effective Hamiltonian of the following structure is obtained:

Hesr = [C1 ()01 + Ca(1)Os] (3.5)

\/— ud cb
where C' (1) # 0 and Cy(u) # 1 are due to QCD renormalization effects [34]. These coefficients
can be evaluated by first calculating the QCD corrections to the decay processes both in the full
theory (i.e. with W exchange) and in the effective theory (where the W is integrated out) and
then express the QCD-corrected transition amplitude in terms of QCD-corrected matrix elements
and Wilson coefficients as in (3.1). This procedure is called “matching” between the full and the
effective theory. The 1 dependence of the Wilson coefficients assures that the physics is indepen-

dent of the renormalization scale. However, an appropriate choice of p permits to disentangle the
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physics of hard QCD interactions from the physics of soft gluon exchanges. Indeed, the effects
of heavy degrees of freedom, which have been integrated out of the theory, are included in the
coefficients C;. They therefore need to be evaluated at a scale ;1 where perturbative expansion is
possible. The effects of long-distance interactions, instead, are included in the hadronic matrix

elements (D™)*h~|0;| B) and cannot be evaluated by perturbative methods.

Non leptonic decays belonging to the class II of the classification shown in section 3.2.1 receives
contributions both from tree and from penguin topologies. In this case, the operator basis is much
larger than in the class I decays, where only the “tree” decay contributes. In this case the effective

Hamiltonian can be written as:

2 10
Mo = LZ ViV {Z Cil(p) QY + > Cilp) Q;H . (3.6)
\/§ k=1 k=3

j=u,c

Here another quark-flavor label j € {u, c} has been introduced, and the fo can be classified as

follows:

e Current—current operators:

j?” _ _ . - b
Q;r (fajg)v_A({g a)V-A 3.7)
QQ = (Taja)V—A(]ﬁbﬁ)V—A'
e QCD penguin operators:
Qg = (fozba)V—A Zq/(%%)\/—A
Q] (Fabg)ven 220 (T300)v-a 38)
Q5 (Taba)voa D (T505)vea
Qs = (Tabg)vea 2oy (T540)vea
e EW penguin operators (the e, denote the electrical quark charges):
Q7 = 3(Faba)va > € (Tpds)van
Qs %(fabﬁ)VfA Dy € (Tp0)v+a (3.9)
Qg %(faba)V—A Zq/ €y (q/ﬁq/ﬁ)V—A
0 = %(fabﬁ)V—A Zq/ Cq (qlﬁqg)V—A-
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The current—current, QCD and EW penguin operators are related to the tree, QCD and EW penguin
processes shown in Figs. 3.2-3.4. At a renormalization scale ;. = O(my,), the Wilson coefficients
of the current—current operators are C'y (1) = O(107!) and Cy(p) = O(1), whereas those of the
penguin operators are O(1072) [35, 36].

The low-energy effective Hamiltonians discussed above apply to all B decays that are caused by
the same quark-level transition, i.e. they are “universal”. Consequently, the differences between
the various exclusive modes of a given decay class arise within this formalism only through the
hadronic matrix elements of the relevant four-quark operators. Unfortunately, the evaluation of
such matrix elements is associated with large uncertainties and is a very challenging task. In this

context, “factorization” is a widely used concept, and will be illustrated in the following subsection.

3.2.3 Factorization of Hadronic Matrix Elements

In order to discuss “factorization”, let us consider once more the decays of type B — D®+h~,
The corresponding transition amplitude contains the hadronic matrix elements of the O, , operators
between the (h~ D™)*| final and the | BY) initial states. If we use the well-known SU(N¢) color-

algebra relation
| 1
15155 = 3 <5m;557 — N—Céagéwg) (3.10)

to rewrite the operator O, we obtain

_ G . _
(h™DWF |Heg| BY) = %VJd‘/cb [@1<h_D(*)+|(daua)V—A(Eﬁbﬁ)V—A|Bg>

+2C (DY |(da Ty ug v a (e, T bs)veal B
with
&1201/Nc+02’\'1. (311)

The “factorization” of the hadronic matrix elements is given by:

(h™ D™ |(douia)v-n (Caba)val B |,
= (h™| [dau(1 = v5)ua] [0)(DWF| [Egv*(1 — 75)bs] | BY)
= ify x  RPP(ME) O x (MR- M3), (3.12)
~~ ——_——— N— ———

decay constant B — D form factor  kinematical factor



72 Introduction to the study of the B — D*~a decay

(h™ D |(dy T 5 up)v-a(Cy Tl bs)v-a| BY = 0. (3.13)

Miaer
The quantity a; is a phenomenological “color factor”, which governs “color-allowed” decays; the
decays B9 — D®*h~ belongs to this category, since the color indexes of the h~ meson and the
Bj-D™* system run independently from each other in the corresponding leading-order diagram.
On the other hand, in the case of “color-suppressed” modes, for instance BY — 7°D°, where only

one color index runs through the whole diagram, we have to deal with the combination

a9 — Cl + CQ/NC ~ 0.25. (314)

The concept of factorizing the hadronic matrix elements of four-quark operators into the product
of hadronic matrix elements of quark currents has a long history [37], and can be justified, for

example, in the large- N limit [38]. Interesting recent developments are the following:

e “QCD factorization” [39], which is in accordance with the old picture that factorization
should hold for certain decays in the limit of m, > Aqcp [40], provides a formalism to
calculate the relevant amplitudes at the leading order of a Aqcp/my, expansion. The resulting
expression for the transition amplitudes incorporates elements both of the naive factorization
approach sketched above and of the hard-scattering picture. Let us consider a decay 5B —
My M, where M, picks up the spectator quark. If M is either a heavy (D) or a light (7, K)
meson, and M, a light (7, K) meson, QCD factorization gives a transition amplitude of the

following structure:
A(B — M, M,) = [“naive factorization”] X [1 + O(a,) + O(Aqep/ms)] - (3.15)

While the O(«) terms, i.e. the radiative non-factorizable corrections, can be calculated sys-
tematically, the main limitation of the theoretical accuracy originates from the O(Aqcp /M)

terms.

e Another QCD approach to deal with non-leptonic B-meson decays — the “perturbative hard-
scattering approach ” (PQCD) — was developed independently in [41], and differs from the

QCD factorization formalism in some technical aspects.

e A very useful technique for “factorization proofs” is provided by the framework of the “soft
collinear effective theory” (SCET) [42].

e Non-leptonic B decays can also be studied within QCD light-cone sum-rule approaches [43].
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Despite factorization gives reliable results in describing several processes, in particular in the ex-
tended form of QCD-factorization [37], recently there have been found cases in which large non-
factorizable corrections [44, 45] are present, as in B — 7w and B — ¢K* decays. It is very
important to quantitatively test the limits of factorization in depth in order to improve our knowl-

edge on the strong interaction effects in exclusive weak decays of the B mesons.

3.3 The a;(1260)

The a;(1260) particle is an axial vector meson whose quantum numbers are ¢ (JF¢) = 17 (11+).
It was discovered as a broad p — 7 resonance in 1964 in pion-proton scattering scattering exper-
iments [46], and it remains nowadays poorly known due to the discordant measurements of its
parameters. The present status of our knowledge of this resonance come from two kind of experi-
ments: hadronic production and 7 decays.

The first class of experiments comprises diffractive and charge exchange production with incident
pions on fixed target and central production in pp collisions. These experiments are characterized
by very high statistics but are made difficult by the presence of high physical backgrounds due to
the other spin parity resonances contributing to the three pions system.

The decay 7~ — [37] v, provides a cleanest environment to study the a; meson. Because of
the transformation properties of the weak current under parity and G-parity, 7 lepton decay to an
odd number of pions is expected to occur exclusively through the axial vector current, ignoring
isospin-violating effects. Thus the only possible spin-parity quantum numbers for 37 system in
this decay are J* = 0~ or 1%, simplifying the analysis with respect to the hadronic production.
However, due the small mass difference between the 7 and the a;, a kinematic cutoff prevent to
fully exploit the high mass tail of the 3 pion spectrum.

In table 3.1 are reported the results of the measurements of the mass and width of the a; meson.
Despite the models adopted by the various experiments to fit the a; line-shape are different, the
discrepancies between the measurements can be only partly attributed to model dependent system-
atic uncertainties. In particular the measurements of the width assume values that vary between
230+50 MeV [47] and 814436413 [48]. For this reason the PDG has chosen to don’t perform

an average of the available measurements of the a; mass and width and provides a conservative
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Experiment mass measurement | width measurement
CLEO 1331£10+ 3 MeV | 814+ 36+ 13 MeV
DELPHI (1) 1255+ 7 6 MeV | 587+ 27+ 21 MeV
DELPHI (2) 1207+ 5£ 8 MeV | 478+ 3+ 15 MeV
DELPHI (3) 11964+ 44+ 5MeV | 245+ 14+ 8§ MeV
OPAL (1) 1262+ 9+ 7 MeV | 621+ 32+ 58 MeV
OPAL (1) 1210+ 7£ 2 MeV | 457+ 15+ 17 MeV
ARGUS 12114 775° MeV | 446+ 217 MeV
KEK 1121+ 8 MeV 266+ 13 MeV
DELCO 1242+ 37 MeV 4657755 MeV
MARK-II 1260+ 14 MeV 298731 MeV
ARGUS (2) 1250+ 9 MeV 488 £+ 32 MeV
WAT76 1208+ 15 MeV 430+50 MeV
WA103 1240+ 10 MeV 400435 MeV
MAC 1166+ 184+ 11 MeV | 405£75+17 MeV
AMST (1) 1280+ 30 MeV 300£50 MeV
AMST (2) 1041+ 13 MeV 230+£50 MeV
ISGUR reanalysis of
ARGUS(2)-MARK-II-DELCO 1220+ 15 420+40 MeV
BOWLER reanalysis of
ARGUS(2)-AMST(1) 1260+ 25 396+43 MeV

Table 3.1: Available measurements of the a; mass and width as reported from the Particle Data

Group [13]
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estimate of their values:
mPPG = 1230 4+ 40MeV

“ (3.16)
IPPY between 250 and 600MeV.

In the present work we present a measurement of the a; parameters in a different environment: the
production through B — D*~a] (— 77" 7~) decays.
The high branching ratio for this process (~ 1%) and the kinematic constraints coming from the
reconstruction of the full B meson decay chain, make this channel a quite clean environment to
study the a; meson. Weak current structure together with factorization predicts that the main
contribution to the 3 pions system produced in B — D*~n+ 77 7~ is due to the J¥ = 17 state,
i.e. to the a;. However contributions from J = 0~ states are possible and factorization breaking
effects can induce also spin 2 states. For this reason a Dalitz plot analysis of the 3 pions system
is needed to separate the different spin parity components (section 3.6). This kind of analysis also
allow us to study the intermediate resonance contributing to the process a; — wmm through the
decay chain a; — X7, X — 77, as was recently done by a CLEO analysis [48] of the a; produced
in 7 decays. They found significant contributions of o7, fo(1370)7 and f5(1270)7 in addition to

the dominant p amplitude.

3.4 Polarizationin B — D* a

As recently suggested in [27], decay processes of the type B — VA, involving vector and axial
mesons in the final state can be used to provide a test of factorization. The B — D*~a; decay
belong to this kind of processes and, due to its high branching ratio, is the best candidate to per-

form the proposed factorization test.

The decay amplitude for B — D*"a] can be written as a sum over polarization of weak de-

cay amplitudes, multiplying corresponding strong decay amplitudes A; for aj — 7t 7t 7~ (i =

07 +7 _)’

™

A(BY — D* 7t (p) 7t (p2)7 (p3)) = Zicor. Hi As. (3.17)

The dominant process contributing to a” — 77 77 7~ isaf — p'7n", p° — 7777,

Ai = Ai(af — "1 (p2)) + Ai(al — 7" (1)),
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where the two terms correspond to the two possible ways of forming a p meson from 77 7~ pairs.

The a; pm coupling can be written in terms of two invariant amplitudes,

Alar(p,e) — pp',€)m) = A(e - €") + B(e - p') (" - p),

where (p, €) and (p/, €') are the momenta and polarization vectors of the a; and p respectively. A
and B can be related with the S and D-wave amplitudes by [49]:

A = AS+ﬁAD
) o 5, (3.18)
B = [—( _E_p)AS_<+2E_p)WAD]mPﬁ%’

where the p energy and momentum are given in the a; rest frame.

The strong decay amplitude a — 7 7 7~ is obtained by convoluting the a] — p°7" with the

amplitude for p°(¢') — 7 (p;)7~ (p;) which is proportional to €’ - (p; — p;). One finds:
Ay (p,€) = 7" (p1)7 " (p2)7 (p3)) o< C(s13, 593)€ - p1 + (p1 < p2),
where s;; = (p; + p;)? and :
C(s13, 523) = [A+ Bmg, (B3 — E)| By(s23) + 2AB,(s13).

. —1 . . . .
Here B,(sij) = (s;; —m% —im,I',)" ", and pion energies are given in the a; rest frame.

P
In the a; rest frame the three pions are emitted in a plane whose normal unit vector is n = (p; X
p3)/|p1 X p3|. The B decay amplitude into final hadronic states depends on the angle 6 between
n and the direction Z opposite to the D* (or B ) momentum, and on other two angles ¢ and .
¢ is an angle in the a; decay plane (I), defining the direction of one of the three pions (say ps),
while ¢ define the line of intersection of the D* decay plane with a plane(II) perpendicular to Z.
Both ¢ and ¢ are measured with respect to the line of intersection of the two planes I and II. With
these notations, squaring the amplitude 3.17 and integrating over ¢ and 1) one finds the following

expression for the decay distribution in 6:

[ [ dpdy|A(B — D*3m)|* o |Ho|?sin6].J]2
+ (JH P+ |H-[*) (1 + cos?0)|J]? (3.19)
+ ([Ho > = |H_[?) cosOIm[(J x J*) - 7a].

The vector .J is defined in the rest frame of the a1 resonance,

J = C(s12, s13)p1 + C(S23, S13)P2-
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A fit to the angular decay distribution 3.19 enables separate measurements of the three terms | Hy|?,
|Ho [?+ [H-?, [Hy |? = |H- %,

The three helicity amplitudes Hy 1 in B — D*~a] can be calculated using factorization [32] and

heavy quark symmetry [50]. The theoretical predictions reported in [27] are:

Hy = =SEVaVae(D'a)fulmpmp:)

xR (y 4 1)E(y),
H, = %Vcbvjdcl(D*&l)fal\ﬂmBmD*)

x [—w+1) £/ - D))

Here £(y) is the value of the Isgur-Wise function [50] at y = (m% + m}. —m2))/(2mpmp-) =

(3.20)

1.43, f,, is the a; decay constant and ¢;(D*a;) is a QCD factor which is close to one. The
numerical values of these factors do not affect the polarization prediction, for which one uses the

normalization |Ho|* + |H|? + [H_|* = 1:
|Ho|* = 0.75; |Ho|* = 0.21; |H_|*> = 0.04.

These predictions, obtained in factorization, can be tested by measuring the polarization squared

moduli | H;|? by means of a fit to the decay angular distribution in 6 defined in equation 3.19.

3.5 CPyviolationin B — D* af

In section 1.5 we have seen how it is possible to extract the Unitarity Triangle parameter 25 +
by measuring the CP asymmetries in B — D)) decays.

The BABAR and Belle collaborations have recently published measurements of sin(23 + 7) with
this method, usingthe B — D 7w, B — D *mand B — D p decay channels [51, 52, 53, 54].
One important limit of these analyises come from the uncertainty on the ratio of magnitudes of the

suppressed and favored amplitudes, e.g. for the B — D 7 channel:

T = = 3' 1

Each of the ratios rp,, 7p+r and rp, is expected to be about O(10~2) but a precise determination
is very difficult, since the doubly Cabibbo suppressed amplitude is not directly accessible due the

the small branching ratio and the huge background from the favored channel. Current estimations
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for these ratios come from the decay rate measurements of the corresponding charged B decays,
(e.g. BT — D*7") using isospin symmetry, or from self-tagging decays with strangeness (e.g.
B® — DFr™) using SU(3). In the latter case, the theoretical uncertainties are hard to quantify.
Forthe B — VV and B — V A (vector-vector and vector-axial vector finale states) channels, it
is possible to overcome this problem [26].
By expliciting the three polarization amplitudes for the CKM favored and suppressed amplitudes,
we obtain the following expressions:
— 0 —
L e 622
i=0,[|,L "hidti

For the B® — D*~a; the A; are calculable complex functions of the angles 6, 1) and ¢ defined in
the previous section. Following the procedure described in sections 1.4 and 1.5 one arrives at the

following time-dependent rate:

DBO(t) = f) oo (JAP+]AP) + (AP — [A]) cos(Amt)+

I (3.23)
2Im(e?? AA*) sin(Amt).

The three coefficients in this expression, involve bilinear expressions in f; and h; multiplying
calculable functions if the angle variables. The constant and cos Amt terms in 3.23 determine
the real and imaginary parts of H,;H; (and h;h7) for all pairs of transversity amplitude, while the

coefficient of sin Amt contains terms
Im [eziﬁ(Hih;‘ + H;h?)| Re(A;A?) + Re|e®P(Hiht — H;h:) | Re(A:A7). (3.24)

Writing H; = |H;|e*®, h; = |h;|e®e™", where A; and §; are the strong interaction phases, and
using the above and similar information from Bo(t) — f it is possible to show (see [27] and [26]
for details) that a fit to the time dependent angular distributions allows to extract (23 + ), without
using information on the CKM suppressed decay rate and free of the discrete ambiguities discussed

in section 1.5.

3.6 Partial wave analysis for the 3 pions system

The work presented in this thesis focus on the study of the 3 pions system produced in the

B — D*'xt 7~ 7~ decay.
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In this section the problem of the 3 body decay will be discussed. We’ll first construct a three-
particle system in a definite angular momentum state and then apply the formalism to a case of a
resonance decaying into three particles. Finally, we’ll see how a partial wave analysis can be used
to identify the different spin parity components contributing to the 3 pions system.

A complete discussion on these topics can be found in [55].

3.6.1 Notations

In the following, we will denote by |7, m) the single particle at rest state, where j is the spin and m
is the z-component of the spin.

A finite rotation of a physical system (with respect to fixed coordinate axes) may be denoted by
R(a, B,7) where «, (3, and +y are the standard Euler angles. To each R, there corresponds a uni-
tary operator U[R], which acts on the states |j,m). The angular momentum operators are the

infinitesimal generators of the rotations:
UlR(a, B,7)] = e *ze P lve=ir7x (3.25)
The rotation of a state |j, m) is given by:

[(aﬂvb,-4§]m a, 8,7), (3.26)

where D7, (R) is the standard rotation matrix [56]:

D), (R)y=D!, (a.B,y) = (j,m'|U[R]|j,m)

o , (3.27)
= e Um adfn/m(ﬂ)e—zmyj
with:
&, (B) = (G, m|e" 7| j,m) (3.28)
An important property of the D functions is the orthonormality:
ik 2 872
dRDplml (R)D/J,ng (R) = m5j1j2§M1M2 §m1m27 (329)

where dR = dad cos 3dy.
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Relativistic one-particle state with momentum 5 may be obtained by applying on the states |j, m)
an unitary operator which represent a Lorentz transformation that takes a particle at rest to a particle
of momentum p. There are two ways of doing this, leading to canonical and helicity descriptions
of relativistic free particle states. If we denote with U|[L.(p)| the operator representing the pure
time-like Lorentz transformation along the z-axis and with I%(gb, 0,0) the rotation taking the z-axis

into the direction of 7 with spherical angles (6, ¢) the canonical state is defined by:
7. jm) = UR(6,0,0)]U[L (p)]U~" [R(6,6, 0)]j,m), (3:30)
while the helicity state is:
17.5X) = ULR(6,6,0)]U[L-(p)]|. N). (331)

In the helicity states the quantization axis is rotated along the p’ direction. There is a simple con-

nection between the canonical and helicity description. From the definitions above one finds:

15,50) =Y DLA(R)[B, jm). (3.32)

3.6.2 Three particle system

Consider a system of three particles and let’s use the notations s;, 7;, A; and w; to indicate the spin,
parity, helicity and mass of the particle 7 (¢ = 1,2, 3). In the rest frame (r.f.) of the three particles,
the momentum and energy of the particle ¢ will be denoted by p; and E;. In the r.f., the “standard
orientation” of the three-particle system is shown in figure 3.5. This coordinate system may be
rotated by the Euler angles «, (3, and ~y to obtain a system with arbitrary orientation.

A system with standard orientation can be written:
3
1000, E\i) = N T 155, i), (3.33)
i=1

where N is a normalization factor and |pj, s;\;) are the single particle helicity states.
A three particle system with an arbitrary orientation in the r.f. can now be obtained by applying a

rotation R(«, (3,) to the state 3.33:

By, Eidi) = UlR(a, 5,7)]|000, E;A;). (3.34)
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ol
o

pel’

Figure 3.5: Standard orientation for the three particle rest system. Note that the y-axis is defined

along the negative direction of p3, and the z-axis along p; X po

It is now possible to build a state of definite angular momentum:

N .

where N is a normalization constant. It can be shown that this state represents a definite angular

momentum state by applying an arbitrary rotation R’ and verifying that:

U[RN|IMp, EN) = Dipng(R)TM i, EiN). (3.36)
IVE
This relation also shows that in addition to the obvious invariants £; and \;, the quantity p is also
an invariant. It represents the z-component of angular momentum whose quantization axis itself
rotates under a rotation of the system.

Transformation under parity of the state 3.35 reads:
H|JM/L7 E’L)\Z> = 7’]17’]2773(—1)81+82+8:5_M‘JM,[L, EZ, _)\7,>7 (337)
while the operator P, which exchange the particle 1 and 2 acts on the system as follows:

Pio| JM i, Ei ) = (1) JM — i, Ex)g, Ey)y, Es)s). (3.38)
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3.6.3 Three body decays

Let us consider a process in which a resonance with spin parity J”7 and mass w decays into three
particles. In the rest frame of the resonance (JRF), let the angles («, 3, ) describe the orientation

of the three particle system. The decay amplitude may be written:

A = {apy, BN M|JM)
(B, Ehi| IMpEN) (J M pE;N| M|JM) (3.39)

\J/VT%FHJ(Ez‘)\z')D}\I/}L(OﬁW)

If the “decay operator”” M is rotationally invariant, the decay amplitude /' should depend only on

the rotational invariants, i.e.:
J —_
F(EiNi) = (IMpEN| M|JTM). (3.40)
If parity is conserved (as in the strong interaction processes), [ satisfy the symmetry:
FI(EN) = nmunans(—)* 2 BB, —X). (3.41)

If particles 1 and 2 are identical: If parity is conserved (as in the strong interaction processes), F’

satisfy the symmetry:
F,;](El)\l, EyXg, Eshg) = i(—)H”FL]u(Ez)\Q, E1)\, E3)3) (3.42)

where the plus sign holds for identical bosons and the minus sign for fermions.

Let us consider now the case of interest for this thesis, i.e. the decay process B® — D**X~,
X~ — w7 7~ where, in principle, more resonances X with different spins and parities can be
produced, each decaying into the three pions system.

Pions are pseudo-scalar mesons, so we have s; = 0, \; = 0, n; = —1, and their state is described

by the three four-momenta p!’. The three mass shell conditions
Py pip = mz, (3.43)

and the constraints from the four-momentum conservation reduce the number of independent pa-
rameters from twelve to five.

In the X resonance rest frame the kinematical configuration of the system is given by the 3 Euler
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angles («, 3, ), describing the orientation of the system with respect to the “standard orientation”
introduced in subsection 3.6.2, and by other two independent variables that can be choose in sev-
eral different ways. Since the decay operator is invariant under rotations, the decay amplitude does
not depend on the Euler angles but only on these other two variables. The scatter plot of these
variables is called the “Dalitz plot” [57] of the three body decay. The most common used choice

of the Dalitz plot variables is in terms of the invariants:

m%z = (p1+p2)"(p1 +Pp2)p

9 (3.44)
mis = (p1+p3)"(p1+p3)u

Four momentum conservation defines a kinematical allowed region for the Dalitz plot. The area
of this region increase with the total mass w of the system. The kinematical bounds of the two

variables above for a given value of w are defined by:

(my +m9)? <=mi, <= (w—m3)?

(3.45)

mis[min)(w,mi, ) <=miy <= mis[maz](w,mi, ),

where:

2
mis[maz](w,mi, ) = (E5+ Ej)? (\/E —mj — \/E _mg) ;
2

(3.46)
mis[maz](w,mi, ) = (E5+ Ej)? (\/E —mj + \/E§2 - m%) ;

with E3= (m%, —m? + m3)/2m, and Ej= (w? — m3, —m32)/2m,, representing the energies
of the particles 2 and 3 in the m 5 rest frame.

Another set of Dalitz variables is given by the pair (£, E5) indicating the energies of the particles
1 and 2 in the resonance rest frame. The following considerations are independent of the particular
choice of the Dalitz plot coordinates.

Suppose that two resonance with spins J; and .J; are possible for the three pions system. From eq.

3.39 it’s possible to derive the over-all amplitude:

mp~ S TiD (0, B F (B )+ Y ToDE, (. B, F2(En Es),  (3.47)
My p1 Mapz
where T is the production amplitude for the resonance J;. If J; # J,, the Dalitz plot distribution
is given by:

J J
dwdEldE2 Z BELP+ D ITE (3.48)

Mapz
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after integrating on the Euler angles and using the orthogonality of the D functions (eq.3.29). This
shows that states of different spin does not interfere in the Dalitz plot distribution. If the two

resonances have the same spin but opposite parities the integration over the Euler angles yields:

do

— ~ T, F’ + TyF’|? 3.49
dwdE,dE, %‘ F T (3.49)

where F indicates a decay amplitude of opposite parity to that of F. Applying parity conservation,
one may rewrite the equation above with a relative minus sign between the two terms, which means
that the interference is identically zero, again obtaining the result 3.48.

In conclusion, we have seen that, as long as one integrates over the orientation of the three particle
system, states of different spin-parity do not interfere with one another in a Dalitz plot analysis.
This means that with a suitable model to describe the decay amplitudes F;fiip ‘(w, B, Es) (or equiv-
alently F/*(w,m3, ,m3, )) it is possible to separate the different .J* contribution to the 3 pions
system by fitting the experimental Dalitz plot distribution.

As will be shown in the next two chapters, in this thesis we have performed a Dalitz plot spin
parity analysis to separate the dominant J” = 1% contribution to the 3 pions system produced
in B— D* 7" 7t 7~ from other possible resonances. The model used to describe the decay
amplitudes is the standard Isobar model and will be discussed in detail in the section 5.2. Since

our goal is to measure the a; mass distribution, the 3 pions system mass spectrum is divided in

several intervals, and the Dalitz plot analysis is performed in each bin.



Chapter 4

The B — D"‘_a,IL decay reconstruction

4.1 Introduction

This chapter describes the criteria adopted to select a sample of events mainly containing the

B — D*~af (af — 7" 7 7 ) signal decay.

The data analyzed were recorded in 1999-2004 and the integrated luminosity is 208.7fb~! cor-
responding to about 230 Million of BB pairs. Events are first pre-selected with loose requirements
in order to reduce the amount of data in input to the analysis. B mesons are then reconstructed
combining the decay daughters in the mode considered after reconstruction of the full decay chain.
The D** is reconstructed via the decay chain D** — D%+ DY — Kn (Knnrw) and it is associ-

ated with a 3 pions system to form the B meson candidate.

A critical issue for this analysis is to suppress the combinatorial background, arising from ran-
dom combination of the tracks from e*e™ — ¢g (¢ = u,d,s,c) or ete™” — BB events. Backgrounds
can be rejected on the basis of discriminating quantities whose distribution is different for signal
and background events. In order to study the background properties, suitable control samples are

selected on the experimental data.

The first step in the reconstruction process is the selection of BB events, which is described in

Section 4.2. Section 4.3 describes the cuts applied to ensure a good reconstruction quality for the

85
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final state tracks. Section 4.4 contains the particle identification criteria used to select the kaons
and pions belonging to the decay chain. In section 4.5 are shown the selection cuts for the D° and
D** mesons reconstruction. The final B selection and the discriminating variables used for the

background suppression and characterization are presented in section 4.6.

4.2 Event selection

Production cross sections for the physics processes at the 7°(4.5) energy were listed in Table 2.2. In
addition to the 7°(4S) — BB decay, these processes include continuum ¢7 and QED events such
asete” — eTe ,utu, 7777, and 7. The event topology is significantly different for each type
of processes. Table 4.1 summarizes the main characteristics of each process.

In order to reduce the amount of data in input to the analysis a pre-selection is applied which
enhances the number of BB and BTB~ events over the background from ¢g and QED processes.
A fiducial volume of the detector is defined as a region characterized by well-measured recon-
struction efficiency and an accurate modeling of the detector material in the Monte Carlo (MC)
simulations. The fiducial volume for tracks is 0.41 < 6;,, < 2.54 rad, while for neutrals is
0.41 < ;4 < 2.409, where 6, is the polar angle in the laboratory frame.

The QED events are discriminated by selecting events with three well reconstructed charged tracks
in the fiducial volume and a total visible energy W greater than 4.5 GeV.

The three tracks above are required to have at least 12 hits released in the Drift Chamber, to ensure
that their momenta and dE/dx are well measured. In addition they are required to have transverse
momentum pr > 100 MeV/c, and to point back to the nominal interaction point within 1.5cm in
the xy-plane and 3 cm along the z-axis. Moreover, the primary vertex, constructed from the tracks
above, must be within 0.5 cm of the average position of the interaction point in the xy plane and
within 6 cm in the z direction.

The visible energy W is defined as the sum of energies associated to all the charged tracks and
neutral candidates detected in the fiducial volume.

The distributions of the number of well reconstructed charged tracks and of the visible energy W
are shown in figures 4.1 and 4.2. The distributions are normalized to the same area, hence only
the shapes are meaningful. The above requirements remove, almost entirely, the QED events and

select the hadronic BB and continuum ¢g events.
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Event type Main characteristics

ete” —ete” Two high-momentum back-to-back

tracks, and associated energy

deposit in the EMC

ete” —utu~ Two high-momentum back-to-back
tracks

ete” -7t Back-to-back topology with large

missing energy, due neutrinos from

semileptonic 7 decays

ete” —yy Large missing energy, and small
number of tracks due to preferential
production of particles along the

beam direction

*te~ —qq with q = u,d,s,c Large number of hadrons and jet-like
topology, due to the hadronization of

the quarks which are produced back-to-back

ete” =7 (45) Large number of hadrons and

isotropic topology due to the B decays

Table 4.1: Main characteristics of the processes at the T (45) energy

In order to reduce the amount of continuum ¢q events the normalized second Fox-Wolfram moment

[58] R, is used. The [ Fox-Wolfram moment H; is the momentum-weighted sum of Legendre

lth

polynomial of [*" order, computed from the cosine of the angle between all pairs of tracks:

il |p;| Pi(cos0;;)
L2 '

VLS

Hl = Zz’,j

Each H, is basically a multipole moment of the momentum distribution in an event. The Hy mo-
ment is the analog of the electric charge distribution. The first moment H; is zero because the

momentum is not a signed quantity (unlike the electric charge) and therefore can not have a dipole
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Figure 4.1: Distribution of the number of well reconstructed charged tracks in the main physics

processes at the 7°(4.5) energy. The distributions are normalized to the same area.

moment. The quadrupole moment /{, can instead discriminate events with a jet-like structure of
momentum (¢g events) from those with a more spherically symmetric topology (BB events). The
normalized ratio Ry = Hs/H, is therefore very close to unity for events with back-to-back tracks
such as QED events, and approaches 0 for isotropic events like BB events.

The distribution of R, for the physics processes at the 7°(4.5) energy is shown in Figure 4.3.

The efficiency of the pre-selection described in this section on the bb events is 95.6% as esti-

mated from the Monte Carlo simulation.

4.3 Tracks selection

The final state of the B meson decay chain is exclusively constituted of charged particles that are
reconstructed by means of the BABAR tracking system (sec. 2.3 ).

Tracks selection criteria are summarized in Table 4.2.
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Figure 4.2: Distribution of the visible energy 1/ in the main physics processes at the 7°(4.5) energy.

The distributions are normalized to the same area.

e Tracks are required to be within the polar angle acceptance of the detector: 0.410 < 0, <

2.54 rad. This ensures a well-understood tracking efficiency.

e A cut on the distance of closest approach to the beam spot in the x —y plane (|d,,| < 1.5 cm)
and along the z axis (|d,| < 10cm) is applied. This reduces fake tracks and background

tracks not originating from the vicinity of the interaction point.

e A cut on the maximum momentum of p;,, < 10 GeV/c, where py, is the laboratory momen-

tum of the track is applied. This removes tracks not compatible with the beam energies.

e The kaon candidate track used for the reconstruction of the D° — K 3n decay channel is also
required to have a transverse momentum greater than 100 MeV and at least 12 hits detected

in the Drift Chamber. This cuts are applied to reduce the combinatorial background.
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Figure 4.3: Distribution of R, for the main physics processes at the 1°(4.5) energy. The distribu-

tions are normalized to the same area.

4.4 Particle identification

Kaons are distinguished from pions and protons on the basis of specific energy-loss measurements
dE/dx in SVT and DCH, and the number of Cerenkov photons V., and the Cerenkov angle 6, in
the DIRC (sections 2.3,2.4).

The standard BABAR identification algorithm for kaons and pions is based on the likelihood ratio
technique. The probability density functions for the discriminating variables dE/dx, IV, and ¢, are
measured from control samples and are used to compute likelihoods corresponding to the different
particle hypotheses.

A purity category for the kaon hypothesis is defined by assigning a threshold value r for the ratio
between the likelihoods corresponding to the kaon and pion hypotheses and selecting candidates
that satisfy:

Ly/Ly >

Particle hypothesis likelihoods are obtained using the DIRC informations for candidates with mo-

mentum above the pion Cerenkov threshold and using the dE/dx measurements for lower momen-
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Table 4.2: Summary of track selection criteria.

Select tracks with Selection criteria
geometrical acceptance 0.410 < ;4 < 2.54 rad
distance in x — y plane |dyy| < 1.5cm

distance in z axis |d.| < 10cm
maximum momentum Dy < 10GeV/e

Additional cuts for kaons from D° — K37

minimum transverse momentum Pl < 10GeV/c
Np;te 1n the Drift Chamber Npire > 12

tum candidates.

The difference between the measured truncated-mean dE/dx in the DCH, and the expected mean
for the pion, kaon, and proton hypotheses, with typical resolution of 7.5%, is used to compute
likelihoods L , Lx and £, , assuming Gaussian distributions. The distribution of the measured
dE/dx in the DCH for selected control samples, as a function of momentum, is shown in Figure
4.4.

The difference between the measured 60% truncated-mean dE/dx in the SVT and the expected
dE/dx is described by an asymmetric Gaussian distribution. For minimum-ionizing particles, the
resolution on the SVT truncated mean is about 14% which allows a 20 separation between pions

and kaons up to momentum of 500 MeV/c, and between kaons and protons beyond 1 GeV/c.

The DIRC provides 7/K separation of 40 or greater, for all tracks from B-meson decays, with
momenta from the pion Cerenkov threshold, up to 4.2 GeV/c. In the DIRC, a likelihood is ob-
tained for each particle hypothesis from the product of two components: the expected number N of
Cerenkov photons, with a Poisson distribution, and the difference between the measured average
Cerenkov angle 0. (Figure 4.5) and the expected angle 6°, for a given mass hypothesis, assuming

a Gaussian distribution.

For this analysis the likelihood ratio threshold required for the kaon candidates used in the

D° — K7 (Krrm) decay reconstruction ensures a selection efficiency greater than 90% and a
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Figure 4.4: Measurement of dE/dx in the DCH as a function of track momenta. The data include
large samples of beam background triggers, evident from the high rate of protons. The curves show

the Bethe-Bloch predictions derived from selected control samples of particles of different masses.
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Figure 4.5:  Distribution of the measured Cerenkov angle 0. in a control sample of D° —

K decays
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pion misidentification probability less than 15%.
The three pion candidates used to build the a; meson are required to fail (kaon veto) the selection

criteria adopted to define a highly pure (misidentification probability less than 5%) kaon sample.

4.5 Charmed Mesons reconstruction

4.5.1 D' meson reconstruction

The decay modes D° — K7 and D° — K3 are used to reconstruct the D° mesons. The branch-
ing ratios for these two channels are respectively 3.80 = 0.09% and 7.46 4 0.31% [13].

Charged tracks, selected as described in section 2.3, are combined to form the D° candidate. Kaons
candidates are required to satisfy the identification criteria described in the previous section and a
mass hypothesis is assigned to them accordingly.

The D candidate is required to have a mass in a 30 window of its nominal value (1.86 GeV/c?).

The mass distribution for the selected D candidates is shown in figure 4.6.

4.5.2 D* meson reconstruction

The D* meson is reconstructed via the decay channel D** — D% which has a branching ratio
of 67.7 + 0.5%[13]. The D° candidate, selected as described in the previous section, is associated
with a pion candidate, taking into account the right correlation between the pion charge and the D°
flavor.

Since the small mass difference between the D* and the D° mesons, the phase space available for
the pion is small and it is emitted with low momentum in the D* reference frame. For this reason
the pion emitted from the D* decay is commonly called so ft pion. Soft pions candidates selected
in this analysis are requested to have momentum lower than 450MeV/c?.

The mass difference ém = m(D°- 7) - m(D°) between the D°-7 invariant mass and the D° mass is
used to select D* candidates. The resolution on dm is improved by constraining the D° candidate

mass to its nominal value, and by using the beam-spot as an additional geometric constraint for the
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Figure 4.6: Distribution of the reconstructed D° mass in events that pass the pre-selection cuts

described in 4.2 and the requirements on |cos8p,s| and P(x?) described in section 4.6.

soft pion, when the D* decay vertex is computed (see Figure 4.8).
The distribution of dm for selected candidates is shown in Figure 4.7. The D°-7 candidates with a
mass difference dm within 2.5 standard deviations o4, of the expected value dmg = 145.4 MeV/c2

are selected.

4.6 B Meson selection

The D** candidates are combined with three charged tracks to reconstructthe B — D*Txt 7= 7~
decay.

In order to reject background, different cuts are applied on discriminating quantities described
in the next sub-sections. The first quantity, the trhust angle, is a topological variable wich sup-
press background from continuum events, like the normalized Fox-Wolfram momenta described
in section 4.2. The probability of the kinematic fit to all the final state candidates is used to reject
the background arising from random combinations of the tracks used to compose the B meson.

The energy substituted mass (mgs) and the energy difference (AFE) variables use the kinematic
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Figure 4.7: Distribution of the mass difference dm = m(D°r~ ) — m(D°) for D*~ candidates
in events that pass the pre-selection cuts described in 4.2 and the requirements on |cos8,,.s;| and

P(x?) described in section 4.6.

constraints from the initial state to finally select the B candidates.

4.6.1 Discriminating variables

e Thrust angle

The thrust axis [59] of a set of particles is defined to be the direction which maximizes
the sum of the longitudinal momenta of the particles. The thrust angle ;.. is the angle
between the thrust axis of the B candidate and the thrust axis of the rest of the event. As
explained in section 4.2, continuum background events tend to have a jet-like shape. Fake
B candidates reconstructed in continuum events are built with particle that come from one
of the two jets. Thus the decay axis of the B candidate is roughly collinear with the thrust
axis for the rest of the event and the variable |cosf,,.s:| is peaked at one.

For signal events, the B decay axis is uncorrelated with the thrust axis of the rest of the
event (which in that case comes from the decay of the other B meson) resulting in a flat

distribution for |cos0;p,yst|. Figure 4.9 shows the distribution of |cos0;p,,s:| for signal and
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Figure 4.8: The blown up beam-spot (dashed ellipse) is used as an additional constraint on the
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Figure 4.9: Comparison between the |cosyy,.,s| distributions for signal events form Monte Carlo

simulation (continuum histogram) and background from data sideband (blue dots).

background events.
B candidates selected for this analysis are requested to satisfy the condition

|cosOiprust| < 0.9.

e Probability of the kinematic fit
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Figure 4.10: Comparison between the —log(P(x?)) distributions for signal events form Monte

Carlo simulation (continuum histogram) and background from data sideband (blue dots).

A kinematic fit on all the tracks used to reconstruct the B meson is performed. Particles
momenta are re-calculated in the fit. A better resolution on the momenta is obtained by im-
posing some geometric and mass constraints. The D** candidate and the three pions tracks
are requested to come from a common decay vertex taking into account the flightlenght of
the B meson. The D decay daughters invariant mass is constrained to nominal D° mass
and the Do—ﬂ'soft invariant mass is fixed to D* mass. The x? Probability of the kinematic
fit is used to reject combinatorial background. For this analysis, only candidates with a x?
probability P(y?) greater than 0.01% are selected. Figure 4.10 shows the x? probabilty dis-
trubution for the kinematic fit for signal and background events.

Further details on the kinematic and vertex fit tecniques can be found here [60].

e Energy difference

After the cuts on the quantities described above, the final B candidate selection is performed
using a pair of nearly uncorrelated kinematic variables which exploit the kinematic constraint
from the 7°(4.5) decay into a BB pair [61].
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The first variable, AFE, can be expressed in Lorentz invariant form as:

AE = (2qpq0 — 5)/2V/s, 4.1)

where \/s=2F}

beam

is the total energy of the e*e~ system in the center of mass frame, and
qp and qq are the Lorentz vectors representing the quadri-momenta of the B candidate and

of the eTe™ system, gy = g+ + g.-. In the center of mass frame, AF takes the form:
AE =FEy—E; | (4.2)

where E} is the reconstructed energy of the B meson. In this frame A E ’s physical meaning
becomes clear: itis the difference between the reconstructed and the expected B energy. The
expected value of AF is thus zero. The RMS spread o(AFE) is given by the uncertainty o g

on the measured energy and by the spread oz of the true B meson energy
0*(AE) = 0% + 0% . (4.3)

The uncertainty o in the B — D**7™ 7~ 7~ channel is found to be about 20 MeV. The
measured spread in the beam energies result in variations of the 7°(4.5) energy and are the
main contribution to 0. The beam-energy spread is of the order of a few MeV (see Sec-
tion 2.2) and therefore o (AFE) is dominated by 0. Figure 4.11 shows the AFE distribution

for events that satisfy all the selection criteria described above.

Energy substituted mass

The beam-energy—substituted mass mgg is defined as

mps = \/ Ef? — p*? (4.4)

where £} is again the beam energy and p* is the measured momentum of the B candidate
in the 7°(45) center-of-mass frame, derived from the momenta of its decay products. mgg is
the B mass computed substituting the B meson energy by E; The RMS spread of mgg

beam*

is given by [61]

2
p
o?(mgs) = 0 + (E) o (4.5)
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Figure 4.11: Distribution of the reconstructed energy difference A F for events selected in the mgg

peak region.

where o, is the uncertainty on the measured momentum. Unlike o(AE), since p/Mp ~
(325 MeV/c]/[5279 MeV/c?] ~ 0.06¢, the uncertainty o(mgs) is dominated by the beam-

energy spread op.

Although mgs and AFE are both evaluated from the beam energy FE;, the main sources of
their experimental smearing are different (beams energy for mpg and detector momentum
resolution for AF). As a consequence these two variables are nearly uncorrelated. The mgg

distribution for selected B — D*"nt 7~ ©~ candidates is shown in figure 4.12.

4.6.2 Signal and background samples

Figure 4.13 shows the distribution of mpg versus AFE for the decay mode B — D*" 7t 7~ 7~

Signal candidates accumulate around mgs = mp GeV/ c?and AE = 0 MeV.

The signal region is defined in the (mgs, AF) plane by:

5.27 < mgs < 5.29GeV/c* and |AE*| < 0.05,
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Figure 4.12: Distribution of the reconstructed beam energy substituted mass mgg for events se-

lected in the A E peak region.
2 .

(GeV)

0.15

0.05

-0.05

-0.1

-0.15

o : 3l E ARERREERS, |
218 5.2 522 524 526 528 5.3
mgs (GeV/c?)

Figure 4.13: Distribution of AFE vs. mgg for selected B — D*'nt 7~ 7~ candidates. Left

bidimensional view; Right tridimensional view.

For the purpose of determining event yields and purities and in order to study the backgorunds
properties, four regions are defined in the (mgs, AFE) plane. These regions are listed in Table 4.3.
The selection cuts described in this chapter, were applied to a sample of 209 fb~! of data taken at

the 7°(495) resonance, resulting in 23204 events in the signal box.
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Table 4.3: Definitions of subsamples of the selcted events used in the analysis.

Region Selection criteria

Signal region | 5.27 < mgg < 5.29 GeV/c?
IAE| < 0.05 GeV
mgs Sideband | 5.2 < mpg < 5.26 GeV/c?
IAE| < 0.05 GeV
Grand Sideband | 5.2 < mpg < 5.26 GeV/c?
IAE| < 0.15 GeV
Fit Sample 5.2 < mgg < 5.29 GeV/c?
IAE| < 0.15 GeV

In order to estimate the contributions of signal and background to the signal box a fit to the mpg
distribution (including mgg sideband events) was performed.

The combinatorial background arises from random combinations of charged particles that pass all
the selection cuts. For these events the mgg variable is smoothly distributed and does not peak near

the B mass. This is parameterized with a threshold function

A(mgs; mo, &) = Ngmpgsy/1 — (mgs/mo)? S (1~ (mES/mO)2)> (4.6)

commonly called the ARGUS function [62], where m is the upper kinematic limit fixed at the
beam energy £, Np is the normalization factor, and £ controls the slope of the function. The
effect of variations in £ is illustrated in Figure 4.14.

The mgg distribution for signal events peak at the B mass. This distribution can be parameterized
by a double gaussian.

The signal yield and the sample purity are determined from a fit to the mgg distributions of the Ny
candidates contained in the signal and mgg-sideband regions, with a sum of a Double Gaussian G
for the signal and an ARGUS function A for the background

f(mES) - Nsig g(mES> + (Ntot - Nsig )A(mES) . (47)

The purity P of the selected sample is defined as

f5?2b7 deS g (mES)

P=— _
f5.2b7 dmgs (G(mes) + A(mgs))

4.8)
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Figure 4.14: The shape of the ARGUS function for { > 0, = 0, and £ < 0.

Figure 4.15 shows the results of the mgg fit on the full sample of selected events. We obtatains
16500+120 peaking events with a purity of 71%

Background contamination depends on the three pions system invariant mass M3, , this is shown
in figures 4.16 and 4.17 where are reported the mgg fit results for the 0.5 < M3, < 1.5 GeV and
1.5 <Ms, < 2.5 GeV intervals.

4.6.3 Three pions mass spectrum

As described in section 3.6, in order to study the properties of the 3 pions system the sample of
events is divided in several sub-samples each charachterized by a range of values for the 3 pions
invariant mass Ms,. . In each bin a Dalitz plot analysis allows to separate the .J© = 1* contribution
from other possible J* states.

The 3 pions mass spectrum is shown in figure 4.18 The red histogram represents the M3, distri-
bution for combinatorial background events. The shape for this distribution is taken from the mgg
sideband control sample while the normalization is obtained by integrating the fitted argus function
on the signal region.

In addition to the broad structure around 1.2 GeV/c? mainly due to the a; meson a very narrow
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peak is evident at ~1.970 GeV/c?. It correspond to the D resonace decaying into 3 pions. In other
words, the peak corresponds to the B — D*~ D} decay with D} — 777", Since this charmed
resonance is very narrow, we have choose to apply a veto in the D region and we don’t use events
in the 1.8-2.0 GeV/c? for our spin parity analysis. With this choice of the veto region, we also
reject B — D*~ D}, Df — K~ K*rn™ events, where two Kaons are wrongly identified as pions,
resulting in a total invariant mass lower than the nominal mass of the D} (Mp, = 1968.6 £ 0.6
MeV[13]). Monte Carlo simulation have shown that these events are almost completely rejected
with this veto.

The choice of the intervals in which we divide the M3, spectrum for our spin parity analysis is the
result of a compromise between two opposite needs. On one side we would have bins as much as
possible small to describe precisely the a; lineshape, but we have to ensure sufficient statistics to
perform the Dalitz plot analysis in each bin.

The final choice is to use 17 not-uniform bins:

0.8—-0.9, 09-095 095-1.0, 1.0-1.05, 1.05—-1.1, 1.1—1.15,
1.16-1.2, 1.2-1.25, 1.25-13, 1.3—-1.35, 1.35—-14, 1.4 —1.45, 4.9)
145—-15, 1.5-16, 16-17, 1.7-1.8, 2.0-2.2, GeV/c2.

The low statistcs and high backgruond contamination prevent us to have stable results for the Dalitz

plot analysis above 2.2 GeV.
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Figure 4.15: Fit to the mgg distribution for the full sample of selected events. The combinatorial
background is modeled with an argus function (dashed line) while signal si modeled by a double

Gaussian.
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Figure 4.16: Fit to the mgg distribution for the sample of selected events with Mj, < 1.5 GeV.
The combinatorial background is modeled with an argus function (dashed line) while signal si

modeled by a double Gaussian.
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Figure 4.17: Fit to the mgg distribution for the sample of selected events with Mj;, > 1.5 GeV.
The combinatorial background is modeled with an argus function (dashed line) while signal si

modeled by a double Gaussian.
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signal region. The colored histogram shows the combinatorial background distribution obtained
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Chapter 5

Study of the a1(1260) meson

5.1 Introduction

In this chapter it is described the study of the three pions system produced inthe B — D* 7" 7 7~
decays and the measure of the a; meson parameters.

In section 3.6 we have seen that the analysis of the Dalitz plot can be used to identify the different
spin parity contributions to the the three pions.

In order to measure the a; line-shape, the three pions mass spectrum is divided in several bins and
a Dalitz plot analysis is performed in each of them to extract the J© = 17 yields, thus obtaining
the a; mass distribution M, .

We have used the Isobar model to describe each J¥ — mrw decay. It is based on the assumption

that the three body decay is dominated by a sequence of two body decays:

JP = Xn

X — 7,

(5.1)

where more intermediate resonances X can contribute to the total amplitude. In this framework, the
Dalitz plot analysis allows to separate the a; meson from other possible resonances and to measure
the contributions of the various intermediate resonances X contributing to the a; — 77w decay.

In order to obtain reliable results, it is important to correctly describe the combinatorial back-
ground, whose contribution to the signal sample increase in the high M3, region (4.6). Events

selected in the mgs — AFE “Grand Sideband” control sample ( defined in section 4.6 ) are used to

107
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* .*
. .
* *
- -

Figure 5.1: Three body decays in the Isobar Model. The decay amplitude is the sum of several

amplitudes each characterized by a different intermediate resonance.

model the background Dalitz plot distribution.

Non uniformity in the phase space of the selection efficiency may affect the Dalitz plot and the
extracted M, distributions. These effects has been studied by measuring the selection efficiency
in a Monte Carlo sample of signal events.

The Isobar model adopted in this analysis is described in detail in section 5.2. Section 5.3 contains
the background characterization while the determination of the selection efficiencies is discussed
in section 5.4. The results of the Isobar model fit in the various M3, bins are presented in section
5.5. The study of the a; — X7 (X — 7m) substructures is presented in section 5.6, while the
line-shape fit determining mass and width of the a; meson is shown in section 5.7. Section 5.8
contains the discussion on the main sources for the systematic uncertainty affecting the analysis

that will be evaluated in the prosecution of the work.

5.2 The Isobar Model

We adopted the standard Isobar model [63] to describe the process J¥ — 77 as a chain of two
body decays.
Figure 5.1 shows the schematic diagram ‘a la Feynman used to build the total amplitude. It

is obtained as a sum of amplitudes each describing a two body chain process with a different
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propagating intermediate resonance:

AY — 7mrr) = Z crAx, (5.2)
k

where the ¢, are phenomenological complex coefficients to be determined from the experiments.

The two body chain amplitudes Ax, are given by:
Axk(m%m m%3|J, M, L) = Ry(m12)Trarji(p1, pe, p3) + 2 < 3, (5.3)

where Rj(mjz) is the intermediate resonance mass term and 77,5 provides the angular prob-
ability distribution depending on the spins of the initial state and of the intermediate resonance
X} and on the orbital angular momentum between X and the other pion. Since in this analysis

we have two identical pions in the final state the amplitude is symmetrized for the exchange 2 < 3.

5.2.1 Mass term

The mass term Ry, is given by a relativistic Breit Wigner describing the intermediate resonance
propagation:

(m§ —miy) +imel' (my2)
(mg — miy)? + mgl2(m)’

where the decay width of the resonance depends on the invariant mass of the two pions daughters:

. q 2511, FJ'Q(Q)
Flms) = To( ™ G ) Bty

(5.5)

The quantity q is the momentum of either daughter pion in the rest of frame of the intermediate

1
q= 5\/771%2 — 4m?2. (5.6)

The symbol ¢y denotes the value of ¢ when mi5 = my, the pole mass of the intermediate res-

resonance and is given by

onance. The functions Fj(q) are the Blatt-Weisskopf barrier form factors [64]. These functions
account of the fact that the maximum angular momentum L in a strong decay is limited by the
linear momentum ¢. Decay particles moving slowly with an impact parameter R (meson radius)

of order 1 fm have difficulty generating sufficient angular momentum to conserve the spin of the
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resonance. The explicit expressions for the Blatt-Weisskopf functions corresponding to j=1,2,3

are:
b =1

F = 1/(1+ 22) 5.7
By, = J/1/(z*+322+9),
where z = Rq, and R is the radius of the barrier, which is taken to be 1.5 GeV~! ~ 0.3 fm.

5.2.2 Angular distribution

The angular distribution function 7'y/;(p1, p2, ps) is evaluated from the three pions four momenta
D1, P2, p3 With the Zemach formalism approach [65]. The reaction of type 5.1, is characterized
by four angular momentum quantum numbers: the spin J of the initial state and its component
M along the quantization axis, the spin j of the intermediate resonance X and the orbital angular

momentum [ between X and the third pion:
JE — P+ 1. (5.8)

Zemach has demonstrated the connection existing between the spin dynamics and the final state
observables represented by the momenta of the three pions. This connection is given by the sym-
metric traceless Cartesian tensors formed by the particle four-momenta. A rank j tensor of this
types has 2j+1 independent components, and represents an element of an irreducible subspace. In
other words, it is isomorphous to a rank j spinor.
Recently Filippini, Fontana and Rotondi [66] have developed a covariant formulation of the Zemach
formalism in which the spin tensors are represented in the Minkowski space as symmetric traceless
tensor orthogonal to the particle four-velocity.
For a spin 1 particle decaying in two pions with momenta p; and p, the covariant Zemach tensor
is given by:

S = — (g wu,, (5.9)
where ¢* = p{' — ph is the break-up four momentum, while u* = (p} + ph)/2mys is the four-

velocity of the particle. The spin-2 tensor is instead given by:
1
Ty = S5, — gSz(gW — U,U,). (5.10)

To obtain the angular distribution function 7'y (p1, p2, p3), the Zemach prescription consists in

the following steps:
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e Build the Zemach tensors S and L representing the final state angular momenta j and [
e Combine these tensors to obtain a j+/ rank tensor .S x L

e Contract this tensor with the spin |JM) Lorentz invariant wave function in the j+/ dimen-

sional space e,&‘?,,um (M).

For a spin 1 particle of momentum p the three wave functions corresponding to M = =£1,0 are
given by [55]:
Do = ipy
+1 + P2(pe F 1 E+
e(F) == | TP (v jFZ?y)/( m o (5.11)
V2 | Fim+ py(pe Fipy)/(E +m)

p=(pz Fipy)/(E +m)

22
1 zMx E +
(o) = L | Pepe/(EAm) (5.12)
Mo papy/(E+m)
m + p2(E +m)
The general spin functions can be obtained from the spin 1 wave functions using the Clebsh-Gordan

series. For example the three rank-2 functions |JM) with J = 0, 1, 2 are given by:

eN(M) = (Tmy; Ima| TM)e, (my)e, (my). (5.13)

M=mi+mz2

With the prescriptions above it is possible to write the angular distribution functions for all the
possible combinations of initial and final spin states. Since the 3 pions system is described by
the two independent Dalitz variables the distribution functions turn out to depend only on these

variables.

Figure 5.2 shows the simulated Dalitz plot distributions for the decay processes 1t — pm (1 =0,2),
0~ — pr (I=1),2% — pr (I = 1) with a total invariant mass M = 1.7 GeV.

5.2.3 Selection rules

Since we deal with strong decays, the amplitudes appearing in equation 5.2 have to be chosen

taking into account parity conservation as well as angular momentum conservation. The following
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Figure 5.2: Comparison between Dalitz plots for the J© — pr decay for different initial states

spins and orbital angular momenta.

selection rules hold:

71—l <=J<=j+1,

p=(-1),

P = (=1)it+1,

(5.14)

In our analysis we neglected contributions of spin and orbital angular momenta greater than 2.

From the selection rules above follows that the a; meson (J© = 1%) decays via scalar mesons

intermediate resonances (o, f,(980), fo(1370),... ) only in p-wave while for the pseudo-vector

mediated decays (p,p’) both s-wave and d-wave may contribute. It is also possible a spin 2 inter-

mediate resonance (f2(1270)) in a p-wave state.

Table 5.1 resumes the allowed amplitudes for other possible .J states.
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JP — P+ intermediate resonance | orbital angular momentum state
0" — 0" +0 | om fo(980)7, fo(1370)7 S-wave
1= +1 pm, p'm P-wave
2T +2 forr D-wave
1" — 0"+ 1| om fo(980)m, fo(1370)7 P-wave
1I=+0 pm, p'm S-wave
17 +2 pm, p'm D-wave
2T +1 for P-wave
2= — 0" +2 | om, fo(980)7, fo(1370)7 D-wave
1= +1 pm, p'm P-wave
2T +0 for S-wave
2T 42 for D-wave
2t — 17 +2 pm, p'm D-wave
2T +1 for P-wave

Table 5.1: Allowed amplitudes for the different J¥ — 7+7t 7~ processes.

5.3 Combinatorial Background model

In order to build the probability density functions modeling the background Dalitz distribution in
the 18 bins of M3, we make use of the control sample of events from the “Grand Sideband” region
defined in table 4.3.

The Probability density functions are built from the binned Dalitz distributions smoothed by means
of a bilinear interpolation technique [67].

It should be noticed that we can not use the bidimensional histogram in the usual coordinates (m?, ,
m?, ), since the Dalitz plot bounds in this coordinates depend on the total mass Ms, (eq. 3.46),
while the histogram we take from the control sample is integrated on a finite range of M3,. The

Pdf fu,( M3, m2, ,m?; ) obtained from this histogram is normalized as:
Mo
/ d Mz, / dm3y dmiy forg(Msx, m3y ,miy) =1, (5.15)
M D.P.(M,)

where M, and M, are the bounds of the Mj, bin, and D.P.(Ms) is surface in the (m3,, m2;)

plane corresponding to M3, = M.
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The correct normalization we would obtain is instead:

Mo
dMs, / dmiy dmiy forg(Maz,mis ,mis ) = 1. (5.16)

M D.P.(Msy)
To build the correctly normalized Pdf, we use a co-ordinate transformation to a square Dalitz plot

defined as [68]:

(M37r> m%Q >m%3 ) - (M?,nr? m/> 9/)

M; = Ms,
m' = =Zarccos(2——fE—THETR 1)
™ my 4 [max]—m4 4 [min]
v = %9++a

where m, is the invariant mass between the two pions with the same charge, m . [maz] =
Ms, — m, and m [min] = 2m, are its kinematical boundaries while 6, , is the helicity angle
between one of the like-sign pions and the three pions system momentum in the 7+ 7" rest frame.
The new variables (m/’, #") range from O to 1 for each value of Ms;,.

The correctly normalized Probability density functions are obtained from the experimental his-

tograms in these coordinates by means of the Jacobian of the transformation defined as:
dm?2, dm3; = |J|dm'de’. (5.18)

The determinant of the Jacobian |.J| is given by:

m am++ 30089++
om 00

|J| = 4|p% | (5.19)

where [p? | is the momentum of the like-sign pions in the rest frame of the 7 "7 system and the

partial derivative above are given by:

Tt = —Zsin(rm')(myy [mazx] —m.y[min)) (5.20)

Figure 5.3 shows the usual and the square Dalitz plot experimental distributions for “Grand Side-

band” events in the [1.5,1.6] Ms, interval. The Jacobian determinant function is illustrated in
figure 5.4.
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Figure 5.3: Dalitz plot distributions in the “usual” (left) and in the “square” coordinates for “Grand

Sideband” events with M3, in the [1.5, 1.6] interval.

5.4 Selection efficiency

In order to study the effects of the efficiency selection on the M3, and Dalt plot distributions, we
make use of a sample of Monte Carlo simulated signal events. Our sample consist of about 60000
of reconstructed B — D* 7t ™ ©~ events, which corresponds to approximately 4 times the
number of signal events in the data. In order to cover almost uniformly the whole M3, spectrum,
the MC sample used is a cocktail of B — D*_OL;r events with M3, mainly distributing in the [0.5
GeV,1.5 GeV] range and of non-resonant B — D* pr~ and B — D* 7" 7" 7~ events mainly
covering the M3, > 1.5GeV region.
In each bin i in which we divided the M3, spectrum for the spin-parity analysis, we evaluate the
overall efficiency as the ratio ¢; = N /NF" where NF" and N are respectively the total
number of generated events and the number of selected events in that bin. The distribution of the
efficiency over the Dalitz plots is obtained by the ratio between the reconstructed and generated
Dalitz plots. With the currently available Monte Carlo statistics we cannot perform a fine binning
to estimate the Dalitz plot efficiency. We find that the Dalitz efficiency functions are consistent
with a flat distribution within the statistical error. The efficiency distributions over the Dalitz plot
for the [1.3, 1.35 GeV] and [1.6,1.7 GeV] M3, bins are shown in figure 5.5.

Figure 5.6 shows the measured overall efficiencies ¢; as a function of the total 3 pions mass
Ms,.. The decreasing trend is related with the D* reconstruction. At increasing values of M3,

correspond decreasing values of the D* momentum and, as a consequence, lower values for the
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Figure 5.4: Jacobian determinant function for the (m2, ,m%3 )—(m’, 8’) coordinate transformation.

transverse momentum of the soft pion (see section 4.5.2 ) from the D*~ — D%z~ decay. The soft
pion is the slower particle in the event and its reconstruction efficiency drops for small transverse
momenta (figure 2.9).

The measured ¢; of figure 5.6 are used to correct the number of a; events extracted from the

spin-parity analysis in the various bin of M3, thus obtaining the a; mass distribution.
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Figure 5.5: Selection efficiency in the symmetrized half-Dalitz plot for the [1.3, 1.35 GeV] (left)
and [1.6,1.7 GeV] (right) M3, bins. The distributions are obtained in Monte Carlo events.
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5.5 Dalitz plot analysis

5.5.1 The likelihood function

The spin parity analysis we have performed in each of the 17 Mj3, bins defined in eq. 4.9 consists
in an extended unbinned maximum likelihood fit to the mgg, Ma;, m3, , m3, distribution. The
likelihood function we use is defined as:
L= Z NJPPJP -+ kagpbkg, (5.21)
JFP
where P;r and Py, are the product of the normalized Probability Density Functions (PDFs) for

mgs, Ms,, and the Dalitz variables:
P = Pmgg X Pus, X Pp.P.(Msy)- (5.22)

The signal and background PDFs for the mpg variable are described in section 4.6.2. We model
the mgg signal distribution with a double Gaussian while the background distribution is modeled
by the Argus function (eq. 4.6).
In each of the 17 bins, the 3 pions mass distribution for signal and background events are well
modeled by first order polynomials described by the slope parameters cs;, and ¢y We assume the
same Pppq and Py, PDFs for the different spin parity states which are discriminated by means
of the Dalitz plot PDF.
The Dalitz plot distribution for a given J* state is obtained using the Isobar model described in
e Ay mi )

P e TY e,y i, P 629

where the sum runs over the possible intermediate states contributing to the J© — 777 decay and

¢; = |c;|e* are the phenomenological complex coefficients weighing each intermediate states and
have to be determined from the fit. Each amplitude A; is given by the product of the mass and
angular terms defined in sections 5.2.1 and 5.2.2. The list of the intermediate resonances used in
the fit is given in table 5.1, the values for their Breit-Wigner pole masses and widths are taken from
PDG [13].

To obtain normalized Pdfs we have to evaluate the integral appearing at the denominator of eq.
5.23. This term can be re-written as:

// | Z ciAi(m2, ,m3s ) [Pdm?3, dm?y = Z ciCLij(Msy), (5.24)
D.P.(M3y) ij

%
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where:
L;i(Ms,) = / / A Asdms, dmiy . (5.25)
D.P.(Msy)

The integral terms [;; are evaluated by means of a toy-Monte Carlo technique by generating an
high statistics sample of 3 pions systems with total invariant mass M3, and flat in the phase space.
The algorithm used to generate this sample is GENBOD [69].

The model for the background Dalitz plot PDF is obtained from the experimental distribution of

events in the “Grand Sideband” region and has been discussed in detail in section 5.3.

5.5.2 Goodness of fit

To compare the fit results with the data, we have developed a toy Monte Carlo to generate high
statistics samples of events according with the fitted parameters. Starting from a sample of events
uniformly distributed in the phase space, we apply the hit-or-miss technique to obtain the distribu-
tion described by our PDF.
A x? comparison between the data and the toy MC Dalitz plots gives us an estimate of the goodness
of the fit. However, as pointed out in [70], the use of evenly spaced bins may cause an unreliable
value of the 2 due to the presence of low populated bins. For this reason we have implemented
an adaptive binning algorithm to represent the Dalitz plot. The bins of the resulting histogram are
partitioned according to the density of the data and are nearly equally populated.
The binning algorithm is described in detail in [71]. The starting point is a cell that contains all the
data points in the (m?, ,m?, ) plane. The cell is splitted in two parts by a line passing for its cen-
troid. Among the two possible cell-cut directions (vertical and horizontal), the algorithm choose
the one that minimize the difference between the number of points contained in two resulting sub-
cell. This criterion is applied iteratively to each sub-cell which is splitted as long as the number of
events contained exceed a threshold value.
Once the partitioning is completed, at each cell is assigned a x? value given by:

( Ndata _ Nfit

ce ce )2
Xgell = ”Ndata 4 ) (526)

where N, C]Zli is estimated by means of the toy MC. The sum of the x2, quantities is the bidimen-

sional x? of our fit.
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5.5.3 Fit strategy

The event sample given in input to the fit program is the “Fit Sample” defined in table 4.3.

In order to reduce the number of free parameters in the fit, the mgg and Ms;, shape parameters
are fixed from a previous unbinned maximum likelihood fit in which the Dalitz variables are not
considered. The free parameters for the likelihood of eq. 5.21 are the N ;r, Ny, yields and the
Isobar model parameters |c;] i | and qb;] "' Each J” PDF is defined up to a not-observable complex

constant. A convention choice can be done to fix one of the coefficients c;] " in 5.23 as:

|Cl\

5 0 (5.27)
. =

The other complex coefficient fitted are so relative to the fixed one. The results on the observables
yields N;r, Ny, does not depend on the convention choice. Moreover, from the fitted c; it is
possible to define other physical quantities that does not depend on the convention choice and can
be used for comparison between the experiments (section 5.6).

Since the available statistics is not enough to obtain stable results from a simultaneous fit of all the
possible J¥ states and intermediate resonance of table 5.1 we decided to perform, in each bin of
Ms,., a set of independent fits each characterized by a choice of a reduced number of contribut-
ing amplitudes and to adopt the above defined y? criterion to select the configuration that better

describe the data.

5.5.4 Results

The results of the maximum likelihood fits in the 17 M3, bins are shown in figures 5.7-5.23 . For

each bin we report:

e the mpg and M3, distributions with the fit result superimposed.
e The symmetrized Dalitz plot distribution,

e The m_. _ projection of the symmetrized Dalitz plot. It is compared with the fit expecta-
tion histogram generated by means of the toy Monte Carlo described in subsection 5.5.2.

Different colors are used to identify the different J* and background contributions.
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e The distribution of the x? on the adaptively binned Dalitz plot.

e A table summarizing the results of the fit.

Below 1.5 GeV/c?, the data are well reproduced by the only J© = 17 state, corresponding to
the a; resonance. The intermediate resonances contributing to the the total amplitude are (1t —
PT)s—wave> that gives the main contribution, 17 — om, (17 — p7)4_wave, and 17 — p'm. The
peak of the p resonance is clearly visible in the m_ _ distribution and in the Dalitz plot.

Above 1.5 GeV/c? also the f,(1270) peak is evident in the two opposite-sign pions mass spectrum
but the 1t — fym amplitude is not useful to well reproduce the data. The introduction of a
JP = 27 state is needed describe the data in the Ms, > 1.5 GeV intervals. We find significant
contributions of the 2= — fom, and 2= — pr amplitudes. The J¥ = 2~ state is found in a mass
region that corresponds to the 75(1600) resonance. The presence of a spin 2 resonant contribution
to the 3 pion system in B — D* 7t 7t 7= decay may indicate that non-factorizable terms are
not negligible in this process, since the CKM favored diagram for a two body B — D*~ X+ decay
is expected to be suppressed in QCD factorization [72] for a resonance X with spin higher than 1.

We don’t find significant contributions of any other .J¥ state to the mass spectrum.
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Symmetrized m,. projection: data vs fit

0.8 GeV<=M, <=0.9 GeV

? distribution

N, =308+ 28
- . *IN,,,=14.013/10=1.401
chi2<1.
1.<chi2<3. P(x?)=17.242%
3.<chi2<5. Nyyg = 124 £ 20

chi2 > 5. 1'— nnr significant substructures

pﬂ:(L=0): Ie| =1.0, $=0.0

om:  |c|=1.00.3, 9=-0.10:0.18

x?ng ,,=14/10

Prob(x2) = 17%

Figure 5.7: Results of the spin parity analysis in the [0.8 GeV, 0.9 GeV] M3, interval. Top-left:
muyg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: 2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

0.9 GeV<= M,_ <= 0.95 GeV

? distribution

N, = 422+ 30
- chi2 <1 XPIN 4, =13.6/13=1.046
P(x?)=40.257%
1.<chi2<3. Ny =79+ 17
Il 3. <chi2<s. 1'— nnn significant substructures
M chi2-s. pm 1 lc|=1.0, 0=0.0

(L=0)"
om:  |c| = 0.73£0.13, ¢=0.8+0.2

x?n,,=13.6/13
pr _:lc|=1.9+1.3, ¢=-1.9+0.8

= Prob(y2) = 40%

Figure 5.8: Results of the spin parity analysis in the [0.9 GeV, 0.95 GeV] M3, interval. Top-left:
muyg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: x? distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

0.95 GeV<= M, <=1.0 GeV

? distribution

N, = 628+ 38
- chi2 <1. $IN,,=19.818/22=0.901
P(1?)=59.442% l
1.<chi2<3. Ny = 104+ 19

Il 3. <chi2<5.

1" nnn significant substructures
Bl chi2> 5.
Py o) |c| = 1.0, 0=0.0

on: |c| = 0.39+0.04, ¢=1.2+0.4

x2ng ,=19.8/22
pr, ¢ lcl=1.9413, ¢=-1.6:0.3
= Prob( %) = 59%

Figure 5.9: Results of the spin parity analysis in the [0.95 GeV, 1.0 GeV] M3, interval. Top-left:
mugg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: x? distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

1.0 GeV<=M, <=1.05GeV

? distribution

N,. = 960 + 40
B chi2 <1
P(x?)=48.799%
1.<chi2 < 3.
Bl 3. <chi2<5. Nyyg = 106 + 20
Il chi2>5. 1'> nnn significant substructures
pr i le[=1.0, ¢=0.0

(L=0)"
on:  |c| = 0.49+0.05, ¢=0.86+0.16

x2ng , =41/42

Prob(x2) = 49%

Figure 5.10: Results of the spin parity analysis in the [1.0 GeV, 1.05 GeV] M3, interval. Top-left:
mugg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: x? distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

1.05 GeV<= M, <=1.1 GeV

? distribution

N, = 1154+ 50
B chi2 <1
1.<chi2 <3. P(x)=17.033%
BN 3. < chi2<5. Ny = 1345 22

Bl chi2> 5. 1'— nnr significant substructures

pﬂ:(L=0): Ic| =1.0, 0=0.0

on: |c| = 0.44+0.06, ¢=0.53+0.2

P |e|=0.5+0.5, ¢=2.8+1.6
x?ngy , =54/45
pr i lc|=1.4%0.3, ¢=-2.31:0.3

= Prob(y2) = 49%

Figure 5.11: Results of the spin parity analysis in the [1.05 GeV, 1.1 GeV] M3, interval. Top-left:
muyg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: 2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

1.1 GeV<= M3n <=1.15 GeV

? distribution

N, = 1233+ 54
" chi2<1.
i
1.<chi2 <3. P(x)=30.538%
Il 3. <chi2<5. Ny = 169 23

Il chi2> 5.

1" nnn significant substructures

pﬂ:(L=0): Ic| =1.0, 0=0.0

om:  |c| = 0.260.05, 0=0.7+0.3

pn:  |c| =0.88+0.23, ¢= 1.9+0.6
x?/ny ,=50.3/45
pr _:lc|=1.1£0.3, ¢=-2.3+0.2

(L=2) Prob( x?) = 30.5%

Figure 5.12: Results of the spin parity analysis in the [1.1 GeV, 1.15 GeV] M3, interval. Top-left:
mugg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: x? distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

1.15 GeV<= M, <=1.2 GeV

? distribution

N,.=1281+ 44
B chi2 < 1.
i
1.<chi2<3. P(x%)=36.143%
I 3. <chi2<5.
M chi2 > 5. Ny =172+ 24

1" nnn significant substructures

pﬂ:(L=0): Ic| =1.0, 0=0.0

om:  |c| = 0.32+0.04, ¢=0.9+0.2

pm: || = 0.6:0.3, o¢=1.4+0.5
¥2In, , =50.86/48
P, Ic| = 1.40:0.23, 9=-2.03:0.14

5 Prob(x?) = 36.1%

Figure 5.13: Results of the spin parity analysis in the [1.15 GeV, 1.2 GeV] M3, interval. Top-left:
muyg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: 2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized Dalitz plot

Symmetrized m,. projection: data vs fit

? distribution

i chi2<1.

1.<chi2<3.
M 3. <chi2 < 5.
M chi2 > 5.

P(x*)=9.767%

1.2 GeV<= M,_<= 1.25 GeV

N, = 1234 + 47

Nyyg = 186 % 25

1" nnn significant substructures

Pn(L:O): le| =1.0, 0=0.0

om:  |c| = 0.37+0.06, ¢=0.42+0.13

P || = 0.87+0.21, ¢= 2.6+0.3
x?/n,,,=61/48
pr _: |c| = 0.72+0.15, =-2.4+0.2

= Prob(y?) = 9.8%

Figure 5.14: Results of the spin parity analysis in the [1.2 GeV, 1.25 GeV] M3, interval. Top-left:
mugg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized

Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-

pared with the fit results (colored histograms). Bottom-left: x? distribution on the half symmetrized

Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

1.25 GeV<= M, <=1.3 GeV

? distribution

N, = 1140+ 40
m chi2< 1.
1.<chi2<3.
m 3. < chi2 < 5.
m chi2 > 5. Ny = 199+ 26

1" nnn significant substructures

pﬂ:(L=0): Ic| =1.0, 0=0.0

om:  |c| = 0.44+0.07, ¢=0.26+0.10

pm || = 1.01£0.21, ¢= 2.82+0.19
x?ngy,=61/48
pr _: |c| = 0.53+0.12, $=3.0+0.3

= Prob(y?) = 9.8%

Figure 5.15: Results of the spin parity analysis in the [1.25 GeV, 1.3 GeV] M3, interval. Top-left:
muyg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: 2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

1.3 GeV<=M, <=1.35GeV

? distribution

mchi2<1 N = = N,. = 883+ 80
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1.<chi2<3.
m 3. < chi2 < 5.
m chi2 > 5. o

1" nnn significant substructures

pﬂ:(L=0): Ic| =1.0, 0=0.0

om  |c| = 0.22+0.08, 9=0.29+0.2

pm: el =1.3:0.3, o¢=2.5pm0.2

x2ng , =44.0/37
pr_: |c| = 0.72+0.15, ¢= -2.3+0.2

(L=2) Prob(x?) = 19.8%

Figure 5.16: Results of the spin parity analysis in the [1.3 GeV, 1.35 GeV] M3, interval. Top-left:
mugg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: x? distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

1.35 GeV<= M, <=1.4 GeV

? distribution

N,. =811t 55
m chi2 < 1.
1.<chi2<3.
m 3. <chi2 <5.
chi2 > 5.
Noig = 21125

1" nnn significant substructures

pﬂ:(L=0): Ic| =1.0, 0=0.0

om:  |c| = 0.34+0.08, $=0.29+0.2

pn:  |c| =1.05£0.19, ¢= -3.3£0.25
x?ng . =50/31
pr__: |c| =0.74£0.12, ¢= 3.7£0.3

= Prob(y?) = 1.5%

Figure 5.17: Results of the spin parity analysis in the [1.35 GeV, 1.4 GeV] M3, interval. Top-left:
muyg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: 2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

1.4 GeV<=M, <=1.45GeV

N,. = 582t 60
1.<chi2<3.
m 3. < chi2 <5. Neyg = 233+ 28

1" nnn significant substructures

pﬂ:(L=0): Ic| =1.0, 0=0.0

om:  |c| = 0.25+0.12, ¢=0.3+0.3

P || = 0.85+0.21, ¢= 2.7+0.3
x2ng o =17/21
pr _: |c| = 0.23+0.21, ¢= -3.88+1.2

(L=2) Prob( x?) = 69.6%

Figure 5.18: Results of the spin parity analysis in the [1.4 GeV, 1.45 GeV] M3, interval. Top-left:
mugg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: x? distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

1.45 GeV<= M, <=1.5GeV

N,. = 416+ 50
1.<chi2<3.
m3.<chi2<5. Ngig = 218+ 27

1" nnn significant substructures

pﬂ:(L=0): Ic| =1.0, 0=0.0

om:  |c| = 0.074+0.099=1.90+2.7

p'm: |c| =1.810.4, ¢=2.1+0.7
x?n,,=18.4/114
prt_:]c|=0.7£0.3, ¢=-3.7+0.8

(L=2) Prob(x?) = 18.7%

Figure 5.19: Results of the spin parity analysis in the [1.45 GeV, 1.5 GeV] M3, interval. Top-left:
muyg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: 2 distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.



5.5 Dalitz plot analysis

135

Symmetrized Dalitz plot

? distribution

chi2 < 1.
1.<chi2<3.
3.<chi2<5.
chi2 > 5.

Symmetrized m,. projection: data vs fit
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pr _:lc|=0.8+0.2, ¢=-3.3+0.3

= Prob(y2) = 23.4%

Figure 5.20: Results of the spin parity analysis in the [1.5 GeV, 1.6 GeV] M3, interval. Top-left:
mugg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized

Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-

pared with the fit results (colored histograms). Bottom-left: x? distribution on the half symmetrized

Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit
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Figure 5.21: Results of the spin parity analysis in the [1.6 GeV, 1.7 GeV] M3, interval. Top-left:
mugg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: x? distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit
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Figure 5.22: Results of the spin parity analysis in the [1.7 GeV, 1.8 GeV] M3, interval. Top-left:
mugg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized

Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-

pared with the fit results (colored histograms). Bottom-left: x? distribution on the half symmetrized

Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Symmetrized m,. projection: data vs fit

2.0 GeV<=M, <=2.2 GeV

N, = 275+ 75 2 — nnn significant substructures
N, = 385+ 56 f,i:  |c|=1.0, 0=0.0
Noyg = 668+ 53 pm: |c| = 0.70+0.09, ¢=-0.23+0.22

1" nnn significant substructures

pﬂ:(L=0): Ic| =1.0, 0=0.0

on: |c| = 0.54+0.06 ¢=0.0+0.3

x2ng,=51.2/43
P, ¢ Il = 0.48+0.12, o= 2.6+0.26
= Prob(x?) = 18.3%

Figure 5.23: Results of the spin parity analysis in the [2.0 GeV, 2.2 GeV] M3, interval. Top-left:
mugg distribution (data vs. fit). Top-right: M3, distribution (data vs. fit). Middle-left: Symmetrized
Dalitz plot distribution. Middle-right: Symmetrized m . _ distribution (2 entries per event) com-
pared with the fit results (colored histograms). Bottom-left: x? distribution on the half symmetrized
Dalitz plot. Bottom-right: Summary table with the fitted coefficients (moduli and phases) for the

intermediate states that significantly contribute to the total amplitude.
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Figure 5.24: “Decay fractions” for the a; — 777 substructures.

5.6 a1(1260) decay fractions

From the Isobar complex coefficients appearing in 5.23 it is possible to define the quantities:

/M2 CiC;Iij (M)

fij = dMP(M)

My > iy ciciii (M)

The diagonal terms f;; are real and are usually interpreted as the “decay fraction” in the intermedi-

(5.28)

ate state i. However, due to the interference terms, these fractions does not sum to one while from

the above definition follows

> fii=1L (5.29)
(2]

These quantities are widely used in the Dalitz plot analysis as their values does not depend on the
convention choice adopted in the fit of the Isobar coefficient ¢; (eq.5.27).
For the a, resonance we have found significant contributions of the a; — pm (S and D waves),
a; — om and a; — p'7 channels. Figure 5.24 shows the central values of these “decay fractions”
as a function of the 3 pions mass M3, .

The pm s-wave contribution is the dominant one, as expected, with a decay rate around 70% in

qualitatively agreement with the CLEO analysis [48].



140 Study of the a;(1260) meson

The o coefficient |c,,| significantly differ from zero in each M3, interval.

Its decay fraction increase in the a; tail region. Also the pm d-wave amplitude become more im-
portant at high M3, values.

In the most populated bins (1.2-1.5 GeV) we also have sensitivity to the p'7 contribution.

We don’t find significant contribution for the other scalar intermediate states ( f(980), fo(1370)).

The determination of the statistic uncertainties o ( f;;) on the decay fractions require a careful treat-
ment of the correlation between the complex coefficients ¢; and is actually under study. A possible
strategy is to apply the same Monte Carlo technique often used in the D — 3 bodies Dalitz plot
analyses [73]. Once the fit is converged and the covariance matrix is available, the solution from
the fit is randomly modified according to the covariance matrix [74]. For each iteration, new frac-
tions have to be computed and the resulting distributions can be fitted with Gaussian whose ¢’s

give the errors on the fractions.

5.7 a1(1260) line-shape measurement

The spin-parity analysis described in section 5.5 allows us to extract the N+ yields in each bin of
the three pions mass spectrum.
From these quantities we obtain the a; mass distribution by unfolding for the efficiencies effects
estimated from the Monte Carlo simulation as described in section 5.4.
The a; line-shape can be modeled with a relativistic Breit Wigner, using the following expression
[75]:

N _ My Ly () (5.30)

dm (m? —m2 )2 +T?(m)m?a;’

where I, (m) is a mass dependent width of the form:

f(m)
f(ma,)

and f(m) is a phase space factor term, here parametrized by a 2"¢ order polynomial.

Fal (m> = Fal (mm)

(5.31)

We performed a minimum 2 fit to the a; line-shape to determine the line-shape parameters. The

x? is defined as:
Npins (Nz — N¢ )2
2 a expected
=D R (5.32)
ai

i=1
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Figure 5.25: Fit to the efficiency unfolded a; mass distribution.

Here N! is the measured number of .J P = 17 events in the i-th bin divided by the selection

efficiency in that bin and (N, ) is the error on N/ obtained by propagating the statistical un-

certainty on N}, (quoted from the Dalitz plot fit) and the error on the efficiency, due to the finite

Monte Carlo statistics. The quantity JV, ;'Ipected is given by:

' max|i] AN
N;xpected - / dm——

where min[i] and max[i] are the bounds of the i-th bin.

The result of the fit is shown in figure 5.25.

We find the following values for the mass and width of the a; meson:

Mg, = 1.207 £ 0.008 GeV/c?

and
[, = 450 £ 0.035 MeV/c?,

(5.33)

(5.34)

(5.35)
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with a x%/ng.. 7. = 18/12. The errors here quoted ere statistic only. The systematic uncertainties
will be evaluated in the prosecution of the work. Section 5.8 contains a discussion on the main
systematic uncertainty sources affecting this measurement.

Our measurements of m,, and I',, are in good agreement with the PDG estimates[13]. It should
be noticed, however, that a direct comparison between the currently available measurements of the
a; parameters is not completely meaningful since different experiments use different models to
parametrize the a; line-shape. The model used here, was previously adopted by the WA76 [76]
and WA103 [77] collaborations that give consistent results.

5.8 Plan for systematic uncertainties study

We summarize here the main sources of the systematic uncertainty affecting the a; parameters
measurement. A quantitative determination of their impact on our measurement will be achieved

in the prosecution of the work.

5.8.1 Model assumptions

A first class of systematic uncertainties is due to the assumptions made in our Isobar model pa-
rameterization. We have fixed the intermediate resonance masses and widths in the Breit-Wigner
expressions taking their values from the PDG. However some of these quantity are not well deter-
mined and their uncertainty affect the yields determination in each M3, bin. A systematic uncer-
tainty can be evaluated by repeating the Isobar fit with these parameter modified within the errors

and by measuring how the resulting a; mass distribution is modified.

It should be noticed, however, that the standard Isobar model, we have adopted in this work, is not
the only available model to describe three body decays. An alternative approach is the so called
K-matrix formalism [78]. It results particularly suitable to treat the case of overlapping intermedi-
ate states with the same quantum numbers. The diffusion of this approach is increasing in the last
years, in particular in the analysis of the spin-less charmed meson decays. Its application to the
analysis presented year is made difficult by the need of take into account initial states with higher

spin.
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5.8.2 Background shape uncertainties

As we have seen in section 5.3, the PDFs describing the combinatorial background in the various
bins are obtained by smoothing the “Grand Sideband” experimental Dalitz plot histograms in the
(m/,0") coordinates. Each bin of these histogram is affected by a statistical error that is neglected
in the smoothing procedure. To estimate the impact of this effect on the Isobar fit results we plan
to repeat our fits in several configurations each obtained by random fluctuating the bin contents in
accordance with their errors. The widths of the distributions of the results on the fitted parameters

can be taken as systematic uncertainties.

5.8.3 Efficiency across the Dalitz plot

In section 5.4, we have seen how the selection efficiency effects are evaluated from the Monte
Carlo simulation. Although the efficiency distributions across the Dalitz plots in the various
M3, intervals was found to be flat within the errors, the Monte Carlo statistics actually available is
not sufficient to perform a finely binned map. A Monte Carlo production of a 10 times higher pop-
ulated sample of signal events is planned to improve our understanding of the efficiency distorting

effects on the Dalitz plot distributions.

5.8.4 Efficiency vs M3,

The statistical uncertainties on the efficiencies is taken into account in the unfolding of the a;
mass distribution. However, the data Monte Carlo discrepancies have to be taken into account as
a source of systematic uncertainty on the M3, distribution. These effects can be studied by means
of suitable control samples [79]. Since the line-shape measurement is affected by the slope that
describe the variations across the M5, bins and not on the absolute values of the efficiencies, the
main source of systematic error is expected to be the due to the simulation of the soft pion tracking
efficiency (see 5.4). A control sample of inclusive D** mesons decaying to D7 (D° — K—7™)

and charge-conjugate processes can be used to evaluate this effect and how it contribute to the total
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systematic error.



Conclusions

This thesis has presented a data analysis work performed in the context of the BABAR experiment
and aimed at studying the properties of the a; meson produced in B — D*~a] decays.

The analysis is based on data collected by BABAR in 1999-2004 corresponding to an integrated
luminosity of 208.7 fb—*.

The selected sample of events is divided in 17 bins of the 3 pions invariant mass and in each interval
a Dalitz plot analysis, based on the Isobar model, was performed to disentangle the a; meson
(JP = 1%) from other possible spin parity states. We have found that below 1.5 GeV the only
contributing resonance is the a; meson while at higher values of M3, also a significant contribution
of a J¥ = 2~ state was found,corresponding to the 75(1600) mass region. The extracted a; mass
distribution was fitted with a relativistic Breit-Wigner to determine the line-shape parameters. We

found the following preliminary results for the a; pole mass and width:

M, = 1.207 £ 0.008 GeV/c? (5.36)
and

[, = 450 £ 0.035 MeV/c?, (5.37)

where the quoted error are statistic only. These results are in agreement with the PDG estimates
[13]. The main sources of systematic uncertainty to this measurement were detected and a quanti-

tative determination will be achieved in the prosecution of the work.

The study of the a; substructures has pointed out that, beside to the main (17 — p7)s_yape ampli-
tude, also the 17 — o7, (17 — p7)4_wave, and 17 — p'm intermediate states give not negligible

contributions to the total a* — 7~ 77" amplitude.
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