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Abstract

We measure six exclusive Ds semileptonic branching ratios using CLEO-c data col-

lected at 4170 MeV. We isolate our semileptonic events by reconstructing a tagged Ds

to identify a D∗
sDs event, then we find an electron and the semileptonic hadron. Drop-

ping the D∗
s daughter photon gives us additional events and avoids the need to model

soft photon backgrounds, at the expense of a clean neutrino missing mass. We obtain

B(Ds → φeν) = 2.14 ± 0.17 ± 0.09% and B(Ds → ηeν) = 2.28 ± 0.14 ± 0.20% for the

two largest branching ratios.
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Preface

This dissertation uses various conventions that warrant a brief discussion.

I’ve chosen to use natural units throughout the dissertation in derivations or when

dealing with particle masses and momenta. In these units, the speed of light and the

reduced Planck constant both get set to 1 (c = ~ = 1). This simplifies the equations and

the units while also making the relationship between quantities clearer. For instance,

using 1968 MeV for the Ds mass makes the maximum energy available for final states

obvious; writing 1968 MeV/c2 provides exactly the same information but has more

clutter, while writing the mass in kilograms (3.5 × 10−27 kg) gives almost no useful

information.3

I retain conventional units when describing most other quantities, like a 20 cm cut

on distance through the detector. In some cases, I choose units based on the context,

like a 560 nm photon when discussing the visible light in the calorimeter but a 140 MeV

photon in the D∗
s decay. Other quantities have their own unit conventions, like 0.916 nb

for the e+e− → D∗
sDs cross-section area (about 9.2 × 10−38 m2). As a general rule,

I’ve tried to provide the most convenient unit rather than adhere to some arbitrary

standard.

Most energies/masses/momenta in this dissertation fall roughly in the 107–109 eV

range, like the η mass at 5.48 × 108 eV. In almost all such cases, I’ve chosen to write

548 MeV rather than 0.548 GeV. While many particle experimentalists find the GeV

scale more natural, I feel that using MeV for particles in this analysis’s energy range

makes it easier to compare differences with absolute quantities. For instance, I’ll use

3I suppose that writing the mass in kilograms gives some sense of scale: a person’s mass compared to
the Ds mass is roughly the same as our sun’s mass compared to a person’s. This sense of scale really
only helps the first time, though; I consider this footnote to provide the “sense of scale” benefit so that
I can go ahead with more useful units in the main text.
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a 30 MeV range on the 1968 MeV Ds mass, rather than a 0.030 GeV range on the

1.968 GeV mass or (egads!) a 30 MeV range on a 1.968 GeV mass.

I’ve seen different uses of the terms “branching ratio” and “branching fraction” in

the literature. Some people use “branching fraction” to refer to a particle’s partial

decay width divided by its total width4 and “branching ratio” to refer to a ratio of two

branching fractions. While I see the appeal of this usage, I suspect that the literature

more often uses “branching ratio” as the partial width divided by the total width (with

“branching fraction” being synonymous). Consequently, I use “branching ratio” in

the latter sense throughout and avoid the term “branching fraction” to eliminate any

confusion.

Finally, I’ve chosen to use the plural “we” throughout the rest of this dissertation

rather than the singular “I.” There’s quite a bit of debate over the best first person

pronoun in scientific writing, none of which I find terribly conclusive.5

When discussing derivations, usage like “we see that A=B” must be plural as it

includes the reader.6 However, this does not extend to most of the text, as the reader

(most likely) did not perform this analysis. Additionally, I have been given suggestions

on how to proceed in some parts of this analysis. In these cases, “we” seems appropriate.

Unfortunately, I have long since forgotten what portions of the analysis this applies to,

and I wouldn’t want to parse what deserves a “we” versus an “I” in any case.7

Ultimately, using “I” or an “I/we” mixture became very jarring and distracted

from the writing. This practical effect has led to my choice of “we” throughout the

dissertation. In some cases, the “we” can be considered to include the reader; in other

cases, it reflects the assistance I’ve had along the way. The rest of the time, I’m just

calling it the majestic plural.

4This is just the probability that a decaying particle will wind up in a given final state.
5I do think that avoiding the first person entirely tends to go south quickly. It encourages passive voice,
which turns already dry, scientific writing into writing that’s infrared telescope worthy.
6“I see that A=B” or “you see that A=B” don’t work nearly as well.
7The AIP Style Manual prefers that you determine what deserves a “we” and what deserves an “I.”
However, their style advice otherwise falls into the category of “We/I sure is a problem; sucks to be us,
doesn’t it?” In any case, the style guide last saw a serious update in 1990, and I get the sense from
the literature before and after that perspectives on this issue have changed in the last couple decades;
I won’t even go into how they cite a website.
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Chapter 1

Introduction

This dissertation describes a measurement of the Ds meson’s decay rate through six

different semileptonic modes. The Ds meson comprises the lowest energy bound state

between a charm quark and a strange quark.1 Its semileptonic decays involve the charm

quark converting into a lighter quark (either strange or down) with the emission of a

leptonic doublet, here an electron and a neutrino.2

These semileptonic decay rates give insight into the Ds meson’s spatial structure.

Aside from any intrinsic value, the measured rates play into the accuracy of theoretical

techniques used in fundamental measurements (Section 1.2). Further, the decay rates

tell us about the structure of the more common particles found in its final states.

They also provide a comparison point for other semileptonic measurements that probe

fundamental parameters in the Standard Model.

1.1 Standard Model

A desire to know what happens and why has been common across diverse human3

cultures throughout history. Often, this quest for knowledge has resulted in tangible

benefits that improve the quality of human life; other times, it has merely resulted in

1Strictly speaking, the D+
s consists of a charm and an antistrange quark, while the D−

s has an anticharm
and a strange quark.
2Specifically, the D+

s emits a positron and neutrino while the D−
s emits an electron and an antineutrino.

3Given recent Neandertal cave art and tool discoveries, humans might not have even been the only
curious hominids on the block.
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metaphysical satisfaction and a more fulfilled life. Science drives our understanding of

the complex world around us by testing and rejecting false ideas until we’re only left

with theories accurate enough to make sound predictions.

A reoccurring pattern in our successful theories of nature involves finding basic

elements whose properties and interactions build up the complex world we observe, from

cells in biology to atoms in chemistry. Elementary particle physics takes this pursuit

as far as possible, trying to uncover the fundamental components of our universe. The

Standard Model represents our current, established understanding of the universe’s

basic building blocks.4 Even though physicists established the Standard Model some

time ago, it has matched every test so far, with the discovery of the missing top quark

(1995), the tau neutrino (2000), and the long-sought-after Higgs boson (2012).

1.1.1 A Quick History

The search for nature’s most basic elements has a history that stretches back thousands

of years. Even in Ancient Greece, Democritus formed the idea of “atoms” as basic, in-

divisible units with different geometries that gave matter its various properties. Galileo

held the notion of piccolissimi quanti (the “smallest quanta”). In the 1700s, Boscovich

speculated about the basic units of matter being geometric points interacting via forces,

not terribly unlike our modern concepts [1].

Particle physics really began, however, with the discovery that atoms have con-

stituent particles. In 1897, J.J. Thomson won the race to understand cathode rays

when he showed that they consisted of negatively charged particles, which we now call

electrons. Ernest Rutherford followed up with a series of experiments that defined the

nucleus, culminating in the identification of the proton in 1919. Chadwick rounded out

our knowledge of the atom by providing experimental evidence for the neutron in 1932.

Meanwhile, Einstein published his theory of special relativity in 1905, describing

the motion of high energy particles that we regularly use in particle physics today.5

Always the overachiever, Einstein also described the photoelectric effect in the same

year, leading to the notion that light consists of quantized units, or photons. Several

4Well, the building blocks for the universe if you ignore the 96% made up of dark matter and dark
energy, which we don’t understand in the slightest.
5Indeed, we internally call the subject matter high energy physics for good reason, although I find
“particle physics” more straight-forward.
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physicists contributed to quantum mechanics from the late 1800s/early 1900s on, de-

scribing how particles behave and leading Dirac to predict the existence of antimatter

with the positron in 1927 (discovered in 1932).

Nature proved more interesting than having just photons, electrons, protons, neu-

trons, and their antiparticles, however. 1937 led to the discovery of the seemingly un-

necessary muon6 in cosmic rays [2], 1947 saw the discovery of the pion and the kaon [3],

and, just for fun, 1950 added the wholly unexpected Λ0 [4]. The rest of the 1950s

and early 1960s followed up with a host of seemingly elementary particles, colloquially

termed the “particle zoo.”

While the number of basic particles expanded rapidly, our understanding of ba-

sic forces cleared up. A theory of gravity had been established in the 1600s by Isaac

Newton and improved upon by Einstein with general relativity in 1916.7 Electromag-

netism, governing charges, magnetism, and light, had become fairly well understood by

Maxwell’s equations in 1873. The early 1960s saw electromagnetism merge with the

weak interaction, which had been originally proposed by Fermi [5] in 1933 to explain

beta decay (emission of electrons by a nucleus). These combined into the electroweak

force [6], adding the W± and Z bosons (experimentally confirmed in 1981). The late

1960s featured the incorporation of the Higgs boson [7] into the electroweak model [8, 9].

The beginnings of the quark model came in 1964, independently proposed by Gell-

Mann [10] and Zweig [11], with three basic quarks that combine to form composite par-

ticles (simplifying the “particle zoo”). Of particular relevance to this analysis, Glashow

and Bjorken [12] predicted a fourth quark, the charm, although the idea didn’t catch on

until 1970 when the GIM mechanism [13] explained the nonexistence of flavor-changing

neutral currents (like KL → µ+µ−). In 1968, deep inelastic scattering showed sub-

structure to the proton [14, 15], initially called partons. By the early 1970s, the last

bits of the Standard Model fell into place with a formal model for the strong force

(QCD) [16, 17], the identification of partons with quarks and gluons, the prediction of

bottom and top quarks by Kobayashi and Maskawa to explain CP violation [18], and

the discovery of the tau [19].

6Confused originally (and understandably) with Yukawa’s predicted nuclear intermediary, the pion.
7General relativity manages to be both fantastically interesting and beyond the scope of this dis-
sertation, as gravity is the only one of the four basic forces that does not play into Ds semileptonic
decays.
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1.1.2 Model Overview

Each elementary particle has properties distinguishing it from the other particles.8 A

particle’s invariant mass (normally just called “mass”) defines the relationship between

the particle’s energy and momentum. A particle may have an electric charge that

governs how strongly it interacts with electromagnetism, and it may have a color charge

that governs its interactions with the strong force. A particle’s spin refers to its intrinsic

angular momentum and determines multiple particle statistics. Spin has natural units

of ~, a common scale in quantum mechanics. We call particles with half-integer spin

fermions as they follow Fermi-Dirac statistics and obey the exclusion principle (no two

particles in the same quantum state). We call particles with integer spin bosons as they

follow Bose-Einstein statistics (particles prefer the same quantum state, all else equal).

The current formulation of the Standard Model includes three forces9 and 17 parti-

cles,10 split into 12 spin-12 fermions, 4 spin-1 gauge bosons, and a spin-0 Higgs boson.11

The fermions can be further divided into six leptons and six quarks, each in three

generations of two particles. Each of these particles has no substructure within the

limits of our measurement ability, so we call them elementary particles (or fundamental

particles).

1.1.3 Leptons

The six leptons consist of three charged, electron-like particles (the electron, the muon,

and the tau) and three neutral, neutrino-like particles (the electron neutrino, the muon

neutrino, and the tau neutrino). Leptons have no color charge, so they only undergo

weak and electromagnetic interactions (although the neutrinos have no electric charge

and so only interact through the weak force). We typically group the leptons into pairs,

8This section’s assertions can be found in most advanced particle physics texts, such as [20]. Particle
properties come from [21].
9Gravity, with its hypothesized spin-2 graviton, does not get included in the Standard Model. Also,
the electromagnetic and weak forces may be integrated together into a single electroweak interaction.
However, the Z and W bosons’ masses create enough interaction differences from the photon that we
tend to talk about electromagnetic and weak interactions separately.
10In our 17 particle count, we don’t add antiparticles or particles of different color charge separately. For
instance, the charm quark counts as one particle instead of 6 (red, blue, or green; charm or anticharm).
Counting these separately instead gives 61 particles.
11Other models for the Higgs mechanism exist (and have interesting consequences), but the scalar Higgs
both fits current data and provides the simplest way to explain massive W and Z bosons.
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or generations, corresponding to the mass of their electron-like particles:12

(

e

νe

) (

µ

νµ

) (

τ

ντ

)

For elementary particles, we base the unit of electric charge on the electron. Con-

sequently, the electron and other electron-like leptons have charge −1e (about −1.6 ×
10−19 C), while their antiparticles have charge +1e. The tau and the muon both decay

quickly (lifetimes of 3× 10−13 s and 2× 10−6 s, respectively) as they have masses much

larger than the light, stable electron.

This analysis involves both electrons and electron neutrinos created in Ds semilep-

tonic decays. Neutrinos only interact weakly and so pass through our detector with a

vanishingly small probability of interaction (we commonly use the rule of thumb that

a neutrino has a mean free path of about 1 light-year through lead). The neutrinos’

lost energy and momentum creates the primary challenge for this analysis. Electrons,

meanwhile, interact electromagnetically with multiple components of the detector and

get reconstructed quite cleanly when they have enough momentum to make it through

the detector’s magnetic field.

1.1.4 Quarks

Like the leptons, the six quarks may also be grouped into pairs, or generations, based

on their mass:

(

u

d

) (

c

s

) (

t

b

)

These pairings also correspond to the strongest quark couplings with the W boson.

The up-like quarks (up, charm, and top) each carry a +2
3e charge, while the down-like

quarks (down, strange, and bottom) carry a −1
3e charge. Consequently, all quarks can

interact electromagnetically in addition to their weak interactions.

Quarks also carry a color charge, so they can interact through the strong force. Since

free particles must carry no color charge (color confinement, Section 1.1.5), quarks only

appear in composite particles named hadrons. We call hadrons that consist of only two

quarks (one quark and one antiquark) mesons, while we term hadrons that consist of

12We don’t currently know the mass hierarchy for the neutrinos.
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three quarks (all three quarks or all three antiquarks) baryons. Mesons tend to decay

away entirely, with the longest lived mesons having lifetimes shorter than 10−7 s. Quarks

inside a baryon can’t annihilate due to their color charges, so baryons tend to decay

down to the proton, the lightest baryon (although protons and neutrons form stable

states together when combined, as in a nucleus).

In this analysis, we deal with the Ds meson, which involves both a charm (or an-

ticharm) quark and an antistrange (or strange) quark. The semileptonic decays that

we measure all involve the weak decay of the charm quark to a strange or down quark

through a W boson.13 We then see a new meson in the “final” state.

1.1.5 Gauge Bosons and Forces

The photon mediates the electromagnetic force, coupling to particles based on their

electric charge. The photon’s zero mass allows the electromagnetic interaction’s range

to extend arbitrarily far and generates the familiar 1/r2 force law between charged

particles. Additionally, emitted photons don’t decay when left to themselves, giving us

the practical benefit of being able to see the world around us.

The very massive W± and Z0 bosons mediate the weak force, limiting its range to

short distances. While high energy processes can directly generate W and Z bosons

(with a mean lifetime of around 3× 10−25 s), they more often appear in the context of

mediating particle decay processes like beta decay or the semileptonic decays considered

in this analysis. Of the four fundamental forces known to physics, only the weak force

can change lepton or quark flavor, break the parity symmetry, or break CP-symmetry.14

The massless gluon mediates the strong force, coupling to particles with a color

charge. Unlike electric charge, which we can describe with just a positive or negative

sign, the color charge has three different states, which we call “red”, “green”, and “blue”.

The names for these color charges come from an analogy with the RGB color model,

as a composite particle with all three charges (or a charge and its complement)15 has

13Other modes contribute to Ds semileptonic decay, like weak annihilation, but a direct decay through
the W should dominate each decay rate.
14Changing flavor means the weak force can change the quark or lepton type without an antiparticle
annihilation (e.g. muons can decay to electrons and neutrinos). Parity symmetry means that physics
seen in a mirror operates the same way as in our own world, while CP-symmetry combines the parity
mirror reversal (P) with a swap of the particle into its antiparticle (C).
15The complement of red may be called either antired or green-blue.
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no color, which we sometimes refer to as “white.” Quarks carry a single color charge

(or anticharge), while gluons carry both a charge and an anticharge (although never in

such a way as to make the gluon colorless).

Since gluons carry a net color, they can have strong interactions with other gluons

(self-interactions), unlike the neutral photons in electromagnetism. This leads to novel

properties for the strong force, like asymptotic freedom in which gluon self-interactions

anti-screen a bare color charge. This enhancement causes the strong interaction cou-

pling, αS , to increase at large distances (or, equivalently, αS decreases at high ener-

gies).16 The gluon self-interaction also causes the gluon field between two color charges

(e.g. quarks) to elongate into a tube instead of spreading out in space as in electro-

magnetism [22]. This causes the energy between the two quarks to increase linearly

(unbounded) as the distance increases, eventually generating new quarks from the vac-

uum that form colorless hadrons with the original quarks. Ultimately, particles with a

color charge can’t be isolated, an effect known as color confinement.17

In this analysis, electromagnetism influences various decays, notably the initial e+e−

collision and D∗
s → Dsγ. Semileptonic decays naturally involve a W boson that couples

to the quarks and to the leptonic decay products. The strong force’s large coupling pro-

vides the motivation for the analysis in the first place, as the mess of gluonic interactions

inside the initial and final state hadrons gives rise to their uncertain structure.

1.2 Motivation

Semileptonic decays of mesons with heavy quarks (B, D) have proven very useful in

determining the magnitudes of CKM elements. In particular, such decays have led to

the estimates for |Vcb|, |Vub|, |Vcd|, and they have contributed to the estimate for |Vcs| [21].
While Ds semileptonic decays could yield similar estimates in principle, its lower

statistics and more complicated light hadron states make direct estimates of CKM el-

ements less valuable. However, these same decays to light hadrons give insight into

16Gluon interactions with quarks provide a color screening effect as well, similar to the screening of
charges in electromagnetism that leads to a very slow increase in its coupling (α) with energy. However,
the anti-screening effect of gluons dominates for a reality with six quarks and three colors.
17This explanation of color confinement has not yet been established definitively; one of the seven
Millennium Prize Problems relates to part of the proof.
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calculations from lattice QCD, provide a probe into light meson spectroscopy, and com-

prise much of the inclusive spectrum that can be used for kinematic checks on D and B

decays.

1.2.1 Lattice QCD

The lattice QCD formalism allows QCD processes to be computed numerically, using

a discrete space-time grid with only the bare quark masses and αs as inputs. Lattice

QCD has proven very useful in a variety of processes, including the extraction of CKM

parameters from semileptonic decays to light mesons [21].

However, the required lattice discretization size depends on the quark masses in-

volved, and smaller lattice sizes require more computing power. While a few lattice

analyses have recently begun to get down to the level of the physical light (up and down)

quark masses [23], lattice calculations still typically set the light quark masses to a higher

than physical value, expressed as a fraction of the strange quark mass [24, 25, 26]. They

then use different lattice grid sizes and extrapolate to the continuum limit.

These lattice discretization effects tend to dominate lattice calculation errors. Ds

semileptonic decays to ss̄ states provide an excellent test of lattice QCD procedures

as they allow lattice calculations to use the strange quark mass for the valence quarks

rather than extrapolating to light quark masses.

1.2.2 Light Meson Spectroscopy

Semileptonic Ds decays most often result in ss̄ final states, which affords us an opportu-

nity to probe a sector that can otherwise be difficult to access cleanly [27]. In particular,

Ds semileptonic decays can potentially probe the ss̄ content of the η and η′, and they

can shed insight into the f0(980) quark content and structure.

When decaying semileptonically to pseudoscalars, the Ds couples to the ss̄ compo-

nent of η and η′. Conversely, when charged D semileptonic decays result in an η or η′,

they couple to the mesons’ dd̄ component. Since the decays have related kinematics, a

comparison of the four decay widths should determine the strange and nonstrange qq̄

content of the η/η′.

The f0(980) has been considered to consist of a qq̄ state, a qqq̄q̄ state, aKK̄ molecule,
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or even to have a gluon component [28]. Since the Ds transitions to the f0 particle’s

ss̄ component, Ds → f0eν should provide information on the underlying quark content

of the f0. BaBar may have seen S-wave interference with the φeν, φ → K+K− final

state [29], and this mechanism could also lead to a deeper understanding of the f0

substructure.

1.2.3 Inclusive Ds

Given CLEO’s inclusive Ds measurement [30], the six Ds semileptonic modes considered

in this analysis (φeν, ηeν, η′eν, f0eν, K∗eν, Kseν) saturate most of the total semilep-

tonic width. Knowing the components of the Ds semileptonic width should improve

phenomenological comparisons that use the inclusive Ds spectrum.

In the most prominent example, heavy quark symmetry allows a constraint on the

weak annihilation (four-quark, Figure 1.2) component of B → Xulν semileptonic decays

that would otherwise complicate the |Vub| measurement. This constraint comes from

comparing the difference of charged and neutral B semileptonic widths to the difference

in Ds and D
0 semileptonic widths, which should be related up to factors likem3

b/m
3
c [31,

32].

1.3 Theory

InDs semileptonic decays to light hadrons, the charm quark couples to a down or strange

quark through a W boson, which also couples to a lν lepton pair (Figure 1.1). The lepton

and quark states trivially separate (factorize) in the decay amplitude since the leptons

don’t feel the strong force. However, we can not simply ignore the spectator strange

quark in the c → (d, s) coupling. The daughter down and strange quark masses both

fall well below ΛQCD, so λ(d,s) becomes too long to benefit from asymptotic freedom (as

might be done with the short heavy quark wavelengths in b→ c). The resultant strong

interactions with the spectator quark complicate the picture enough that it generally

becomes easier to work directly with the meson coupling (Ds → Xq) than with the

individual quark coupling.

Separating out the weak decay’s lepton pair gives a decay amplitude of18

18The notation used here comes from [20].
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W+

s̄

c

s̄

q = s, d

e+

ν

XqDs

Figure 1.1: Spectator model for Ds → Xqeν.

A =
GF√
2
V ∗
cqūeγµ(1− γ5)vν 〈Xq| q̄γµ(1− γ5)c |Ds〉 , (1.1)

where q corresponds to the d or s final state quark field and Xq represents our final,

exclusive meson state (φ, η, η′, f0,K∗, orK0). Here, we have implicitly assumed a simple

qq̄ form for the f0 and have ignored complications from weak annihilation.

Ws̄

c

s̄

s

e

ν
Ds

Xs

Figure 1.2: An example of the nonfactorizable weak annihilation contribution in Ds

semileptonic decays to an ss̄ state (e.g. η, η′, φ). A similar contribution can appear in
B → Xulν, which may distort the |Vub| measurement if too large.

After summing over lepton spins, the leptonic part of the squared amplitude

∑

spins

|A|2 = G2
F

2
|Vcq|2 LµνH

µν (1.2)

becomes
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Lµν = 2Tr[/kγµ/peγν(1− γ5)]

= 8(q − pe)
αpβe [gαµgβν + gανgβµ − gαβgµν + iǫαβµν ] ,

(1.3)

where k represents the neutrino’s four momentum, pe represents the electron’s four

momentum (which will be taken to be massless in what follows), and q ≡ k + pe =

pDs − pX .

As mentioned previously, the inability to separate out the spectator quark compli-

cates the hadronic part of the squared amplitude. The standard approach relates the

hadronic amplitude to a series of form factors (functions of q2) that weigh all the possi-

ble combinations of physical dependencies. For instance, the hadronic amplitude for a

pseudoscalar Ds decay to a pseudoscalar Xq (e.g. Ds → ηeν) can only depend on pµDs

and pµX as no spins or orbital motion are involved (the axial part of the hadronic current

can’t contribute). We typically combine these into

〈Xq| q̄γµc |Ds〉 = f+(pDs + pX)µ + f−(pDs − pX)µ, (1.4)

since the decay rate only depends upon f+ in the zero lepton mass limit (qµL
µν = 0

for massless leptons). Decays to vector particles follow a similar procedure but with

additional kinematic dependencies and form factors.

Different models make different assumptions about these form factors’ q2 depen-

dence. We have used the ISGW2 model [33, 34] as a baseline in our Monte Carlo gen-

eration, but most results in the literature use some form of a nearest pole dominance

model. Although not entirely identical, both models have similar forms (if different

parametrizations) in the case of Ds decaying to pseudoscalar or vector particles.

1.3.1 Free Quark

The simplest model of Ds semileptonics comes from ignoring our earlier precaution

against separating out the spectator quark and considering only the charm to down/strange

coupling with the W in the decay amplitude. While this assumption should be a disaster

for the down quark, we can expect it to be merely awful when applied to the strange

quark (ms ≈ 100 MeV < ΛQCD ≈ 200 MeV). Nonetheless, it gives us a useful baseline

to compare against the more sophisticated techniques that include resonance effects.
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In the free quark case, the hadronic part of the squared amplitude becomes

Hµν = Tr
[

/Pγµ /p′γν(1− γ5)
]

, (1.5)

where P is the momentum of the charm quark, p′ is the momentum of the final

state quark, and the factor of 2 seen in Lµν drops when averaging over the two initial

charm spin states. After simplifying LµνH
µν to 8(P · k)(p′ · pe) and integrating over the

massless electron and neutrino momenta in the charm rest frame, we get

dΓ

dE′ =
G2

F |Vcq|2
12π3

√

E′2 −m2
[

m2(3E′ − 2M) +ME′(3M − 4E′)
]

, (1.6)

where M is the mass of the decaying charm quark, m is the mass of the final state

quark, and E’ is the energy of the final state quark (which may also be written in terms

of q2 =M2 +m2 − 2ME′).

The total decay rate after considering all E’ between m and M
2 has the familiar form

Γ =
G2

F |Vcq|2
192π3

f

(

m2

M2

)

(1.7)

for f(x) = 1− 8x+ 8x3 − x4 − 12x2 lnx.

We could further improve this by including bound state effects (e.g. time dilation

of the charm quark due to its momentum inside the Ds) and QCD corrections [35].

However, the simple form above should be sufficient for our purposes since the free

quark model only serves to give an order of magnitude estimate on the inclusive decay

rate and a rough sense of the dependence on q2.

1.3.2 ISGW Formalism

The initial ISGW model [33] takes the most general form for the hadronic part of the

squared amplitude, then relates it to particular form factors for each exclusive decay

(ignoring nonresonant states). It uses a nonrelativistic quark potential model with a

Coulomb plus linear potential given by

V (r) = −4αs

3r
+ c+ br, (1.8)

which generates wave functions for the mesons and an explicit calculation for the

form factors based on those wave functions.
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After summing over final state hadron spins, the most general hadronic portion of

the squared amplitude has the form

Hµν = −αgµν + β++(pDs + pX)µ(pDs + pX)ν + β+−(pDs + pX)µ(pDs − pX)ν

+ β−+(pDs − pX)µ(pDs + pX)ν + β−−(pDs − pX)µ(pDs − pX)ν

+ iγǫµνρσ(pDs + pX)ρ(pDs − pX)σ,

(1.9)

where α, the various β, and γ may depend on q2.

Combining with Lµν gives

LµνH
µν = 8

{

2α(pe · q) + β++

[

2(P · q)(P · pe)− 2(P · pe)2 − (q · pe)P 2
]

+ 2γ
[

(P · q)(q · pe)− (P · pe)q2
]

+
[

q2 − 2(q · pe)
][

(β+− + β−+)(P · pe) + β−−(q · pe)
] }

,

(1.10)

where P = pDs + pX .

Using the phase space delta function to integrate over the neutrino momenta and

d(cos θqe) also conveniently gives q · pe = q2

2 , eliminating all but the α, β++, and γ

terms. Defining the dimensionless variables x ≡ Ee/mDs and y ≡ q2/m2
Ds

leads to the

differential decay rate

d2Γ

dxdy
=
G2

Fm
5
Ds

|Vcq|2
32π3

{

α

m2
Ds

y + 2β++

[

−4x2 + 2x

(

1− m2
X

m2
Ds

+ y

)

− y

]

+ γy

(

1− m2
X

m2
Ds

− 4x+ y

)

}

.

(1.11)

The particular α, β++, and γ depend upon the final state meson. For a decay to a

pseudoscalar, the hadronic amplitude follows Eq. 1.4 with α = γ = 0 and β++ = f2+.

A decay into a vector particle (e.g. Ds → φeν) has the vector’s polarization (ε) as an

allowed kinematic variable in the (non-spin-averaged) amplitude. The axial and vector

amplitudes become

〈X|Aµ |Ds〉 ≡ fεµ + a+(ε · pDs)(pDs + pX)µ + a−(ε · pDs)(pDs − pX)µ (1.12)

〈X|Vµ |Ds〉 ≡ igǫµνρσε
ν(pDs + pX)ρ(pDs + pX)σ, (1.13)
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where f , g, and a± are form factors that depend on q2. The decay rate in this case

requires all three of α, β++, and γ (e.g. γ = 2gf).

In each case, the meson wave functions used in calculations with the potential are

taken from the harmonic oscillator

ψ1S =
β
3/2
S

π3/4
e−β2

Sr
2/2, (1.14)

with a free parameter (βS) that gets fixed by the variational method.

The resulting pseudoscalar and vector form factors (f+, f , g, and a±) depend upon

the quark masses, the quark model’s meson masses, and the variational parameters βDs

and βX . Their q2 dependence comes in the form e−r21(q
2
max−q2)/6, where the constant r1

carries the mass and βS dependence. The decay rate parameters α, β++, and γ inherit

the exponential q2 dependence from the form factors and may also contain explicit q2

coefficients. α and β++ contain such terms in the vector decays; for example, α contains

a term of the form g2(m2
Ds

− q2). The final decay rate does not in general have a simple

q2 dependence with this model.

The updated ISGW2 model [34] that we use in our Monte Carlo generation follows

the same approach but makes a series of modifications to the original model. Most

notably, it takes advantage of heavy quark symmetry to more accurately match the

quark model form factors to the meson form factors, it adds relativistic corrections, and

it changes the form factor q2 dependence from exponential to [1+r22(q
2
max−q2)/6N ]−N ,

where N=2 for S-wave to S-wave transitions and r22 = r21 +O( 1
mcmq

).

1.3.3 Pole Model

Assuming nearest pole dominance yields an alternative form factor dependence on q2.

Again, the pseudoscalar to pseudoscalar form factors only involve the vector hadronic

current Vµ = q̄γµc, now using the parametrization [36]

〈X|Vµ |Ds〉 = F1(q
2)

[

(pDs + pX)µ −
m2

Ds
−m2

X

q2
qµ

]

+F0(q
2)

[

m2
Ds

−m2
X

q2
qµ

]

, (1.15)

where F1(q
2) and F0(q

2) correspond to the two possible form factors (with the

constraint F1(0) = F0(0) to avoid an issue at q2 = 0).



15

This parametrization has the advantage that only the F0(q
2) term survives when

acted on by qµ, allowing its identification as the scalar (JP = 0+) component of the

current. Similarly, the F1(q
2) form factor corresponds to the spin-1 component of the

current (orthogonal to qµ).

In the massless electron limit, the pseudoscalar to pseudoscalar decay rate only

depends on F1(q
2) and is given by

dΓ

dq2
=
G2

F |Vcq|2
24π3

pX
3
∣

∣F1(q
2)
∣

∣

2
, (1.16)

where pX is the final state hadron’s three momentum in the Ds rest frame.

Since the form factors are analytic in the complex q2 plane other than singularities

when q2 has an on-shell intermediate particle, we can assume that the nearest meson

resonance with proper spin and quark content will dominate the form factor behavior

(Fig. 1.3). The dispersion relation gives

F1(q
2) =

1

π

∫

ImF1(s)ds

s− q2 − iǫ
, (1.17)

with

ImF1(s) = πC δ(s−M2) (1.18)

for a narrow resonance at the meson with mass M, where C is a constant that contains

the coupling strengths between both the resonance with the W and the resonance with

the decaying particle. Combining equations gives

F1(q
2) =

F1(0)

1− q2

M2

. (1.19)

This “simple pole” model serves well as a first order approximation for the form

factor. However, Ds (and other) semileptonics have a q2 range too wide to simply be

dominated by a single pole at one extreme point (near q2 = q2max). Various modifications

to the simple pole have been proposed [37], most of which equate to adding extra

effective poles (or multipoles) with the pole strengths and pole masses left as variables

for fitting (e.g. F1(q
2) = F1(0)

(1−(q/M)2)(1−α(q/M)2)
[38]). At a certain point, this becomes

less about describing a perfect physical model and more about having roughly the

right form with enough free parameters to match the data. Nonetheless, having a
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D∗

(s)

W+

s̄

c

s̄

q = d, s

e+

ν

Ds Xq

Figure 1.3: Pole dominance in Ds → Xqeν. Here we have shown the vector meson pole
through the D∗ and D∗

s resonances when the charm quark decays to a down or strange
quark, respectively.

common parametrization for comparison has value when we have multiple methodologies

(Section 1.4).

Pseudoscalar to vector decays in the pole model commonly use the parametrization

〈X|Vµ |Ds〉 = 2iǫµναβ
ενpαXp

β
Ds

mDs +mX
V (q2), (1.20)

〈X|Aµ |Ds〉 = (mDs +mX)

[

εµ − (ε · q)qµ
q2

]

A1(q
2)

− (ε · q)
[

(pDs + pX)µ
mDs +mX

− (mDs −mX)qµ
q2

]

A2(q
2) (1.21)

+ 2mX
(ε · q)qµ
q2

A0(q
2),

where Aµ represents the axial current (q̄γµγ5c) and ε represents the final vector

particle’s polarization. Only the A0(q
2) term survives when acted on by qµ in this

parametrization, thereby representing the pseudoscalar resonance’s form factor. V (q2)

corresponds to the vector meson resonance, leaving A1(q
2) and A2(q

2) to describe the

axial meson resonance exchange. We can also define

A3(q
2) ≡ mDs +mX

2mX
A1(q

2)− mDs −mX

2mX
A2(q

2), (1.22)

with the constraint that A3(0) = A0(0) so that no pole arises at q2 = 0.

These form factors may also be written as helicity amplitudes [39] by considering

the conserved helicity between the vector meson and the W, giving



17

H0(q
2) ≡ MDs +MX

2MX

√

q2

[

(M2
Ds

−M2
X − q2)A1(q

2)−
4M2

Ds
| ~pX |2

(MDs +MX)2
A2(q

2)

]

, (1.23)

H±(q
2) ≡ (MDs +MX)

[

A1(q
2)∓ 2MDs | ~pX |

(MDs +MX)2
V (q2)

]

. (1.24)

With these amplitudes, the decay rate takes the compact form

dΓ

dq2
=
G2

F |Vcq|2
96π3

q2pX

MDs

∑

i=0,±

∣

∣Hi(q
2)
∣

∣

2
. (1.25)

The overall decay rate does not depend upon A0(q
2) in the limit of a massless electron

(the integrated leptonic current Lµν for massless leptons has the form qµqν − q2gµν , so

qµL
µν = 0). From here, the A1, A2, A0 and V form factors each get represented by

a simple pole using meson resonances with the proper axial, pseudoscalar, or vector

characteristics.

1.4 Decay Rate Predictions

QCD doesn’t particularly lend itself to precision calculations since its large αs coupling

prohibits perturbative techniques. This limits an exact calculation of Ds semileptonic

decay rates and form factors from first principles. However, versions of constituent quark

models, QCD sum rules, and lattice QCD have all been used to avoid the problems

intrinsic to QCD processes and predict the various Ds semileptonic decay rates.

1.4.1 Ds → (η, η′)eν

Ds semileptonic decays to the pseudoscalar η and η′ states hold interest for both the

η/η′ mixing angle (or η/η′/glue mixing [40]) and the weak annihilation process (Fig-

ure 1.2) [41]. These decays have consequently seen the most discussion in recent years,

with multiple methods of calculating form factors and decay rates.

Predictions typically require a value for the mixing angle, φ, given by

|η〉 = cosφ |ηq〉 − sinφ |ηs〉 (1.26)
∣

∣η′
〉

= sinφ |ηq〉+ cosφ |ηs〉 , (1.27)



18

where |ηs〉 = |ss̄〉 and |ηq〉 = 1√
2

∣

∣uū+ dd̄
〉

. Methods we discuss take φ ≈ 40 ◦ unless

otherwise noted. The octet-singlet η8/η1 mixing angle (θ) can also be used, which differs

from φ by arctan(
√
2). The φ parametrization leads to the form factor relation

|fη′+ (q2)|
|fη+(q2)|

= cotφ (1.28)

in the limit of no annihilation, where f+ follows the definition in Equation 1.4.

Methods for predicting Ds → (η, η′)eν decay rates have included constituent quark

models constrained by lattice results (CQM) [42], constituent quark models with dynam-

ics defined relativistically along the x± ≡ t± z light front (LFQM) [43], light cone QCD

sum rules (LCSR) [44], QCD sum rules with a phenomenological adjustment for weak

annihilation (QCDS) [45], and kinematics with an intrinsic 1:3 pseudoscalar/vector rate

(KIN) [46]. Preliminary lattice calculations have also given some form factor results at

q2 = 0 [47]. We have summarized these predictions in Table 1.1.

Table 1.1: Ds → η(′)eν branching ratio predictions from different analyses. When
necessary, we have used τDs = 500 × 10−15s and |Vcs| = 0.973 for conversion to a
branching ratio. The kinematics-based analysis (KIN) uses ratios with Ds → φeν, so
we’ve taken B(Ds → φeν) = 2.0% (this assumption won’t affect the η′eν/ηeν ratio).

Analysis B(Ds → ηeν) B(Ds → η′eν) B(Ds→η′eν)
B(Ds→ηeν)

CQM [42] 2.5% 0.93% 0.37
LFQM (fDs = 270 MeV) [43] 2.3% 0.91% 0.40
LCSR [44] 3.2% 0.97% 0.31
QCDS [45] 2.3% 1.0% 0.43
KIN (φ = 45 ◦) [46] 1.4% 0.43% 0.31
ISGW2 (φ = 45 ◦) [34] 2.7% 1.1% 0.43

1.4.2 Ds → φeν

Ds → φeν decay rates and form factors have also seen a variety of predictive models,

including a different approach using QCD sum rules (QCDS) [48]. We also state results

from a lattice calculation that uses the Highly Improved Staggered Quark action for

valence quarks and asqtad sea quarks (LAT) [26]. We’ve converted these decay rates
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into branching ratios and added them to the CQM model’s prediction and the ISGW2

model’s result in Table 1.2.

Table 1.2: Ds → φeν branching ratio predictions from different analyses. When neces-
sary, we have used τDs = 500× 10−15s and |Vcs| = 0.973.

Analysis B(Ds → φeν)

CQM [42] 2.6%
QCDS [48] 1.4%
LAT [26] 2.4%
ISGW2 [34] 2.2%

1.4.3 Ds → f0eν

Ds → f0eν decays provide a clean system for probing the scalar f0 particle’s ss̄ com-

ponent. Consequently, recent years have seen a few predictions for the f0eν decay rate

that depend on the f0 mixing angle, θ, where

|f0〉 = cos θ |ss̄〉+ sin θ |nn̄〉 (1.29)

with |nn̄〉 = 1√
2

∣

∣uū+ dd̄
〉

.

Table 1.3 gives the results from these analyses, which include a light front quark

model (LFQM) [49] and two different QCD sum rule methods (SUM [50] and QCDS [48]).

Table 1.3: Ds → f0eν branching ratios from different analyses. Each analysis’s branch-
ing ratio depends upon the ss̄ fraction of the f0, given by cos θ.

Analysis B(Ds → f0eν)

LFQM [49] 4.2× 10−3 cos2(θ)
SUM [50] 4.1× 10−3 cos2(θ)
QCDS [48] 5.5× 10−3 cos2(θ)

1.4.4 Ds → (K,K∗)eν

The Cabibbo suppressedDs → (K,K∗)eν decays don’t receive the same interest as other

Ds semileptonics, presumably due to the lower branching ratios, the less ambiguous
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(interesting) final meson states, and the lack of experimental data for comparison. Even

so, both the CQM model and ISGW2 extend their results from the charm-strange

interactions to the charm-down decays, with results shown in Table 1.4. Additionally,

we have used the kinematic model (KIN) to obtain an additional prediction for the ratio

of Ds semileptonic decays to K0 and K∗.

Table 1.4: Ds → (K,K∗)eν branching ratio predictions from different analyses. When
necessary, we’ve used τDs = 500×10−15s and |Vcd| = 0.225 for conversion to a branching
ratio.

Analysis B(Ds → K0eν) B(Ds → K∗eν) B(Ds→K0eν)
B(Ds→K∗eν)

KIN [46] — — 0.9
CQM [42] 0.32% 0.19% 1.7
ISGW2 (φ = 45 ◦) [34] 0.23% 0.11% 2.0

1.5 Past Results

BaBar and CLEO-c have each made recent semileptonic measurements in theDs system.

Table 1.5 contains a summary of their results. Our results include the same data as

the prior CLEO-c results and in most modes (all but f0 and φ) include additional data

that roughly doubles the integrated luminosity. Further, our results include additional

events through improved efficiency, due to a combination of dropping the D∗
s daughter

photon and using generally looser particle selections.

1.6 Summary

Measured Ds semileptonic decay rates provide a cross-check on lattice calculations, give

insight into light meson quark content, and allow for phenomenological comparisons

using the total Ds semileptonic rate. This analysis simplifies comparisons for these

purposes by measuring the six dominant Ds semileptonic decay rates with a common

procedure. Further, it improves statistics in all six modes through higher efficiency and

includes twice the data sample for four modes (ηeν, η′eν, Kseν, K
∗eν).
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Table 1.5: The most recent Ds semileptonic results from BaBar and CLEO-c. CLEO-c
has published two φeν and f0eν results; here, we include the results with higher lumi-
nosity. BaBar saw evidence for f0eν from a small S-wave component in Ds → KKeν.

Mode BaBar CLEO-c

Ds → φeν [29] [51] (2.61± 0.03± 0.17)% (2.36± 0.23± 0.13)%
Ds → ηeν [52] — (2.48± 0.29± 0.13)%
Ds → η′eν [52] — (0.91± 0.33± 0.05)%
Ds → Kseν [52] — (0.19± 0.05± 0.01)%
Ds → K∗eν [52] — (0.18± 0.07± 0.01)%
Ds → f0eν, f0 → π+π− [29] [51] Seen (0.20± 0.03± 0.01)%
Inclusive semileptonic [30] — (6.52± 0.39± 0.15)%



Chapter 2

Experimental Apparatus

Once upon a time in upstate New York, the CLEO experiment detected the results of

electron-positron (e−e+) collisions over a variety of energies. This required two major

pieces of machinery: CESR, which made the electron and positron beams; and the

CLEO-c detector, which measured the collision results. Wilson Synchrotron Laboratory

at Cornell University in Ithaca, NY housed both the collider (which still exists) and the

detector.

2.1 CESR

The Cornell Electron Storage Ring, or CESR, collided electron and positron beams to

generate the particles ultimately detected in CLEO-c [54]. The 768 m circumference

storage ring sat about 12 m below an athletic field on the Cornell campus and had one

interaction region, located inside the detector at the ring’s south end. CESR provided

CLEO the highest possible luminosity (interactions per area per time) by balancing

limitations on the number of charges per beam and the beams’ lifetime.

2.1.1 Collider Layout

To collide two charged particle beams of a given energy, CESR had to perform three

general operations: obtain the electrons and positrons used in the beams; ramp the

particles up to the desired energy; and smash the beams together as many times as

possible to get the most interactions. Matching these three functions, CESR had three

22
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main components: the linear accelerator (linac), the synchrotron, and the eponymous

storage ring (Figure 2.1). CESR also had a 150 kV electron gun, where low energy elec-

trons boiled off a filament for injection into the linac, and two transfer lines connecting

the synchrotron and the main storage ring.

e
Transfer  Line

e +

 Transfer  Line

Linac

Converter

RF RF

CLEO

e
+ 

e

Synchrotron

CESR

Storage Ring

I
I

Gun

CHESS CHESS 

1600799-005

Figure 2.1: CESR schematic showing the three main components (linac, synchrotron,
and storage ring) along with the electron gun and transfer lines.

CESR’s linac created the electron beam by taking electrons from the electron gun

and accelerating them through a series of 8 RF cavities up to an energy of around

300 MeV, then transferring them into the synchrotron. To make the positron beam,

CESR inserted a tungsten target halfway down the linac to intercept the electrons. The

150 MeV electron beam hit the high-Z target, creating e+, e−, and γ. Magnets selected

out the positrons and focused the beam, then the linac accelerated it up to around

200 MeV before injection into the synchrotron.

The synchrotron ring ran just inside the storage ring. It used 4 accelerating cavities,

each about 3 m long, that ramped the beam up to CLEO’s requested energy (typically

around 2 GeV). This process took of order 10 ms, or a few thousand cycles around the
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synchrotron. The synchrotron used several dipole magnets to steer the beams around the

ring, clockwise for the positrons and counterclockwise for the electrons (as viewed from

above). Once the beams had enough energy, they were injected through the appropriate

transfer line into the storage ring.

Like the synchrotron, the storage ring used dipole magnets to steer the beams into

a circle. Quadrupole magnets provided the primary focusing for the beams, while

sextupole magnets countered the divergence that the quadrupoles introduced over the

beam’s small energy spread. Superconducting RF cavities running at 500 MHz added

energy to compensate for the beams’ synchrotron radiation losses.

Rather than having a continuous beam, the electrons and positrons were created in

bunches, with as many as 5 bunches in a train and 9 bunch trains circling the storage

ring at a time. The two counter-rotating beams then had 18 regions in the storage ring

with potential crossing points, but only one point inside one region corresponded to

the desired interaction point (the detector). CESR avoided 16 of the parasitic crossing

regions through the use of 4 electrostatic horizontal separators that gave the two beams

a “pretzel” orbit (Figure 2.2). The region immediately across from the detector required

an additional pair of vertical electrostatic deflectors to redirect the beams away from the

parasitic crossings. Finally, slightly redirecting the beams to have a small crossing angle

(2.5 mrad) at the detector ensured that the interaction region had only one crossing

point.

2.1.2 Beam Considerations

CESR was initially designed for beam energies near 5 GeV, with most of its running at

the Υ(4S) (5.3 GeV beams). When running at energies closer to 2 GeV, the synchrotron

radiation decreases significantly (power ∝ E4) and doesn’t provide the needed damping

on the beam’s energy spread. CESR compensated for the lower intrinsic synchrotron

radiation by adding 12 local bend magnets, or wigglers, composed of a series of alter-

nating magnetic fields (8 poles). These fields created a tight, back-and-forth beam path

through the wiggler, greatly increasing the synchrotron radiation and shortening the

beam’s damping time from 570 ms to 55 ms [55]. The beam size, or emittance, also

increased from 30 nm-rad to 220 nm-rad, which improved beam stability by decreasing

the beams’ charge density through the interaction region.
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Figure 2.2: Exaggerated depiction of the pretzel orbit. Hash marks indicate the potential
crossing regions.

Scattering between particles in a bunch (the Touschek effect) and interactions be-

tween the beam and gas particles in the beamline limited the beam lifetime. Intrabeam

scattering depends on a variety of factors, including the beam energy, momentum spread

and acceptance, and the emittance. Beam-gas scattering depends largely on the vac-

uum in the beamline, about 10−12 atm for CESR. During running, CESR also saw

significant beam-beam interactions near the interaction region caused by the CLEO-c

solenoid, which were largely corrected by installing two 2 T “anti-solenoids” [55].

The instantaneous luminosity (L) in cgs units (cm−2s−1) may be calculated from [56]:

L = 2.17× 1032(1 + r∗)
IξyEb

β∗y
, (2.1)

where r∗ is the vertical to horizontal beam size ratio at the interaction point, I is the

beam current (∼65 mA), Eb is the beam energy in GeV, ξy is the vertical beam-beam



26

parameter (∼0.03), and β∗y is the vertical focusing function at the interaction point in

meters (∼0.012 m). “Horizontal” in this context refers to the direction perpendicular

to motion that lies in the plane of the accelerator, while “vertical” extends perpendic-

ular to the accelerator plane. The dimensionless ξy depends on the damping rate and

carries additional factors of the beam energy. During the Ds running, CESR attained

luminosities of around 7× 1031 cm−2s−1.

For a process with a given cross section, σ, the number of events comes from

N = σ

∫

Ldt, (2.2)

where we call
∫

Ldt the integrated luminosity. CESR measured the luminosity via

the QED processes e+e− → e+e−, µ+µ−, and γγ, since those modes both have well

determined cross sections and involve different detector components.

2.2 CLEO-c Detector

CLEO operated as a general purpose detector, capable of detecting both charged and

neutral particles (including hadrons, leptons, and photons) with good resolution. Most

of the cylindrically symmetric detector sat inside a solenoid 3.5 m long and 1.5 m in

radius, with an active detector region covering 93% of the solid angle. The electron-

positron beams from CESR met roughly in the detector’s center at a slight crossing

angle of 2.5 mrad to ensure a single interaction point for the bunch trains.

The CLEO detector saw a variety of modifications over time [54, 57, 58]. By CLEO-c,

the detector held an inner drift chamber (the ZD), an outer drift chamber (the DR), a

ring imaging Cherenkov detector (the RICH), a crystal calorimeter (CC), and a muon

detector (Figure 2.3). The helium-cooled, superconducting solenoid generated a 1.0 T

magnetic field, uniform to ±0.02% over the tracking volume. The solenoid surrounded

the drift chambers, the RICH, and the calorimeter. The 3 layered muon detector sat

outside the magnetic field to capture muons passing through all inner material, although

we will not otherwise discuss the muon chambers as they primarily functioned in a regime

outside the scope of both this analysis and most CLEO-c analyses (detector applicable

for muon momenta 1 GeV and greater).
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Figure 2.3: The CLEO-c detector.

2.2.1 Inner Drift Chamber

The inner drift chamber, or ZD, sat nearest the beamline inside the CLEO detec-

tor. Prior versions of CLEO used a silicon vertex detector as the innermost detec-

tor. With the lower energies of CLEO-c, however, only longer lived charged particles

(e±, µ±, π±,K±, p/p̄) traveled a measurable distance, reducing some of the silicon detec-

tor’s value. Further, the softer tracks required a minimum of material to avoid multiple

scattering, prompting a switch from the silicon wafers to a gas and wire system.

The ZD consisted of 300 cells with an aluminum-mylar skin, each 10 mm wide (5 mm

half-cell size) with a 20 µm gold-plated tungsten sense wire at +1900 V surrounded by

110 µm gold-plated aluminum field wires held at ground. When a charged particle

passed through the gas, the atoms ionized, releasing an electron and leaving an ion.
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While the ion didn’t move much due to its mass, the electron accelerated in the strong

electric field and ionized other atoms in secondary collisions. The secondary electrons

then ionized further atoms and created an electron cascade. The pulse height told us the

charged particle’s specific ionization, or dE/dx (energy lost per length). The gas drift

velocity, time of pulse, and bunch crossing time allowed us to determine the particle’s

position.

While CLEO originally used argon as the ionizing fill gas in its drift chambers

(at that time just the main drift chamber), more recent versions switched to helium

for better position resolution [59]. Propane (C3H8) acted as the quench gas to avoid

spurious signals from photon emission in atoms that became excited instead of ionized.

CLEO-c settled on a 60:40 helium-propane mixture in both the inner and the main

drift chambers, which had a long radiation length of 330 µm (important since multiple

scattering dominated momentum resolution at CLEO-c energies).

2.2.2 Main Drift Chamber

As the inner drift chamber had been modeled on the main drift chamber, the two shared

many similarities. The main drift chamber had a slightly larger cell size of 14 mm (7 mm

maximum drift distance), with the sense wire held at +2100 V. Corresponding to its

larger size, the main drift chamber held 47 layers of field and sense wires rather than the

inner drift chamber’s 6 layers. The first 16 wire layers (1696 wires in total) ran parallel

to the beam axis (axial layers), while the remaining layers (8100 wires) alternated in

stereo angle.

As a charged particle passed through the main drift chamber, the magnetic field

bent it into a helical path. A Kalman (Billoir) fitter reconstructed the wire hits from

ionization into this path, incorporating dE/dx information. The path’s curvature in the

magnetic field then allowed us to determine the particle’s momentum.

Aside from being useful in its own right, the momentum measurement combined with

the particle’s dE/dx to identify the charged particle. The deposited dE/dx depends

upon a particle’s velocity through the medium. For momenta comparable to or less

than the particle’s mass (velocities distinguishable from the speed of light), dE/dx and

the momentum gave enough combined information to determine the particle’s mass.

In the case of pions and kaons (the two most common long-lived hadrons in CLEO-c),
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this dE/dx technique gave very good separation up to momenta near the kaon mass, as

shown in Figure 2.4. In this analysis, we frequently used the deviation from expected

dE/dx under a given particle mass hypothesis, σ
dE/dx
π/K , to identify (or reject) charged

tracks.

Figure 2.4: dE/dx through the drift chamber as a function of momentum for the long-
lived charged particles. Below 600 MeV or so, kaons and pions have good dE/dx
separation.

2.2.3 Ring Imaging Cherenkov Detector

While the drift chamber provided good particle identification for momenta below∼600 MeV,

dE/dx did not give sufficient separation to identify charged particles with high mo-

menta. To remedy this flaw, a prior version of CLEO (CLEO III) added a ring imag-

ing Cherenkov detector (Figure 2.5) between the main drift chamber and the crystal

calorimeter’s barrel, covering about 83% of the total solid angle. The RICH detected
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Cherenkov radiation produced when charged particles moved faster than the phase ve-

locity of light in the dielectric radiator (p > 440 MeV for the kaon threshold).

The dielectric consisted of LiF crystals about 1.7 cm thick laid out in 14 rows. The

outer crystal rows had flat surfaces, but the central four rows had a sawtooth shape to

avoid total internal reflection of the 135 nm - 165 nm Cherenkov photons. The emitted

photons passed through an expansion gap filled with nitrogen (N2) to avoid difficulties

in working with a vacuum while still being transparent to the VUV photons. Following

the gap, the photons passed through CaF2 windows into a multi-wire proportional

chamber filled with methane-TEA (triethylamine), where the photons converted into

photoelectrons and created an ionizing cascade much like the drift chambers.
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Figure 2.5: CLEO-c RICH detector schematic, including the Cherenkov photon cone
from the passage of K/π through the radiator. The radiators here have the sawtooth
shape.

The RICH determined a charged particle’s mass by measuring its velocity through

the Cherenkov effect (Figure 2.6) and comparing it with the momentum from the drift
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chamber. When above threshold, the dielectric medium (LiF radiators) emitted light

at an angle defined by the charged particle’s velocity (cos θ = 1
βn , nLiF = 1.4). Mea-

suring the angle of emitted light then determined the velocity and allowed a likelihood

distribution with good separation between different mass hypotheses (Figure 2.7).

Figure 2.6: When a charged particle moves faster than the speed of light in a material,
light emitted at the critical angle cos θ = ct/n

βct = 1
βn sees no interference at the common

tangent wavefront (the common envelope). For a thin piece of material, this results in
a thin cone of Cherenkov radiation at that angle.

2.2.4 Calorimeter

While the drift chambers and the RICH focused solely on charged particles, the crystal

calorimeter detected both charged and neutral particles. The calorimeter energy infor-

mation proved particularly useful in detecting photons and electrons, both of which we

use in this analysis.

The crystal calorimeter sat outside the RICH but still inside CLEO’s magnetic

field. The full calorimeter used nearly 7,800 thallium-doped cesium iodide crystals, each

30 cm long with a 5 cm × 5 cm face. The crystals’ size gave the calorimeter an angular

resolution of roughly 10 mrad. About 80% of the crystals formed the calorimeter’s barrel

region (| cos θ| < 0.80), with the remainder in one of the two endcaps (0.85 < | cos θ| <
0.93) or in the barrel-endcap transition region (0.80 < | cos θ| < 0.85). Material from

the RICH and the main drift chamber obstructed the transition region, so most analyses

(including this one) rejected data from that region (Figure 2.9).
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Figure 2.7: RICH separation for different particle hypotheses, by momentum. K and π
see good separation at momenta above the RICH threshold (near 500 MeV).

The crystal calorimeter’s usefulness in identifying electrons/positrons and photons

came from the particles’ propensity to give up all their energy to the calorimeter. The

small electron/positron mass meant that they deposited an energy roughly equal to

their momentum (E/p ≈ 1), distinguishing e± from other charged particles. Photons

similarly deposited their energy into the crystals, with their momentum direction de-

termined by the shower location in the calorimeter.

With a CsI radiation length of 1.86 cm [21], photons underwent e+e− pair creation

shortly after entering the crystal (photon mean free path of 9/7 the radiation length).

The newly created electrons and positrons then emitted photons via bremsstrahlung.

These new photons also underwent pair creation, with those charged particles then

emitting further bremsstrahlung, and so on, resulting in an electromagnetic shower.

Incident electrons underwent an identical process, albeit without pair creation as the

first step.

The electromagnetic shower continued until the daughter particles’ average energy

fell low enough that ionization by the charged particles dominated bremsstrahlung.

Ionized electrons and their associated holes formed weakly bound Coulomb pairs, or
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Figure 2.8: Hits in the RICH from tracks passing through the sawtooth (left) and flat
(right) LiF radiators. A ring of Cherenkov photon hits surrounds the charged particle’s
passage. Only half of the ring appears in the right image, as total internal reflection
trapped the other half of the Cherenkov photons in the radiator.

excitons, which moved through the crystal until captured by the thallium atoms. The

thallium atoms then de-excited from their new metastable states via the emission of

visible 560 nm photons, which passed through the transparent crystal.

As the magnetic field inhibited the use of photomultiplier tubes, CLEO used four

silicon photodiodes to collect the light at the end of each crystal. Each photodiode had

a separate preamplifier, with outputs combined by a mixer/shaper.

With a nuclear interaction length just over 39 cm (compared to a crystal length

of 30 cm), hadrons (π,K) passing through the calorimeter sometimes formed hadronic

showers. In this case, the hadron underwent a nuclear interaction with the crystal and

generated new hadrons, including π0 that decayed to photons and deposited energy

into the calorimeters through the electromagnetic shower process. These showers don’t

have a particularly well defined energy deposition, so we didn’t use them for particle

identification (beyond rejecting the electron hypothesis). They did, however, sometimes

generate “splitoff” showers in other areas of the calorimeter that otherwise looked like

photons (a frequent complication for this analysis given its low energy photons, like the
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Figure 2.9: A side view of the CLEO-c detector.

D∗
s daughter).

Muons and hadrons that didn’t undergo a hadronic shower still deposited energy in

the calorimeter through ionization. Such particles over a small energy threshold (a few

hundred MeV for µ/π) passed through the calorimeter entirely, depositing just under

200 MeV in the calorimeter as minimum ionizing particles (mips). While useful for

calorimeter calibration, we did not need to directly make use of mips for this analysis.

2.2.5 Trigger and Data Acquisition

Under the best running conditions (45 bunches/train, perfect crossings), CESR could

deliver bunch crossings near 20 MHz. However, with a luminosity of 1032 cm−2s−1 and

a Bhabha cross section near 500 nb, even vaguely meaningful crossings only occurred

at rates near 20 Hz (with “interesting physics,” including continuum, less than a tenth

that at 4170 MeV). Since no new data could be acquired during an event read-out and

CLEO’s data acquisition (DAQ) read-out rate peaked at around 80 Hz during data
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taking, CLEO’s trigger had to efficiently separate meaningful crossings from all possible

crossings.

The trigger required a 100 ns time resolution for the interaction, so it binned the

data into 42 ns wide slices, three times the 14 ns bunch spacing. During this period, the

main drift chamber and the crystal calorimeter both read out limited hit information,

time-aligned for the latency of roughly 2 µs on tracking and 2.5 µs on the calorimeter.

The number of tracks, number of showers, and event topology determined whether an

event triggered a full read-out (Table 2.1). CLEO’s selection methodology resulted in

the needed background rejection while retaining a 99% single track efficiency.

Table 2.1: CLEO trigger line definitions. ”Axial” refers to the 16 drift chamber layers
that run along the beam line, while ”stereo” refers to the drift chamber’s stereo section.
Low, medium, and high refer to the shower’s calorimeter energy, while ”B” and ”E”
refer to the barrel and endcap calorimeter regions, respectively.

Name Definition

Hadronic (Naxial > 1) and (NB low > 0)
µ-pair two back-to-back stereo tracks
Barrel Bhabha back-to-back high showers in B
Endcap Bhabha back-to-back high showers in E
Electron + track (Naxial > 0) and (NB med > 0)
τ/Radiative (Nstereo > 1) and (NB low > 0)
Two track Naxial > 1
Random Random 1 kHz source

Once a trigger passed, CLEO had to digitize some 400,000 detector channels for the

event. CLEO managed this with an average read-out time around 30 µs, leaving a small

dead-time of around 0.3% while the DAQ wrote to disk. Each event averaged around

10 kB of data, with a throughput rate to disk of order 1 MB/s.

In addition to the data transfer from front end electronics to disk, the DAQ also

contained a slow control system. Slow control included alarm handling, run control,

calibration constants, and data quality checks. A fraction of the reconstructed events

went into “pass1” for the data quality checks. Pass1 included both an online version

(Online-pass1) for rapid checks and an offline version (Caliper) that included the ability

to isolate interesting physics events by making cuts.
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Table 2.2: Resolution and solid angle coverage for various CLEO-c detector components
[54].

Component Coverage and performance summary

Drift chamber 93% of 4π; σp/p = 0.35% at p = 1 GeV
RICH 80% of 4π; 87% kaon efficiency with 0.2% pion fake at p = 0.9 GeV
Calorimeter 93% of 4π; σE/E = 4.0% (2.2%) at E = 100 MeV (1 GeV)
Muon chambers 85% of 4π for p > 1 GeV
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Analysis Plan

We intend to measure branching ratios for six Ds semileptonic decays (Ds → φeν, ηeν,

η′eν, f0eν, Kseν, and K∗eν). These cover all resonant Ds semileptonic decays up to

the singly Cabibbo suppressed level. We use CLEO-c’s 4170 MeV data, where 95% of

the Ds sample comes from D∗
sDs events [60, 61], and the remainder come from D+

s D
−
s .

The D∗
s decays to Dsγ nearly all the time (94%) [21], with D∗

s → Dsπ
0 making up the

difference. Candidate Ds semileptonic events then contain one D+
s , one D

−
s , and either

zero, one, or two photons.

For all six modes, we reconstruct the nonsemileptonic Ds through one of 13 ”tag”

modes. We also reconstruct the semileptonic side’s electron and hadron (φ, η, η′, f0,

Ks, or K
∗). We do not attempt to reconstruct the photon(s) from a possible D∗

s decay,

which increases our overall efficiency but costs us a clean neutrino missing mass.

We use the following 13 Ds tag modes to determine candidate events: KsK; KKπ;

KsKπ
0; KsKsπ; KKππ

0; KsK
+ππ; KsK

−ππ; πππ; πη; ππ0η; πη′, η′ → ππη; ππ0η′, η′ →
ππη; and πη′, η′ → ργ. Of these modes, KsK, KKπ, KKππ0, πππ, πη, πη′, η′ → ππη

give the most statistical power as they contain over 60% of the tags and have lower

relative background than the other 7 modes.

The signal modes Ds → φeν and Ds → ηeν should have the largest branching ratios

(around a couple percent) due to their ss̄ components, about an order of magnitude

higher than the Cabibbo suppressed decays to Kseν, K
∗eν, and f0eν. We expect

Ds → η′eν to have a branching ratio somewhere in between these levels.

Ignoring the D∗
s daughter photons does have the limitation that the branching ratio

37
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results cannot be easily converted into dΓ
dq2

. Consequently, we do not determine form

factors in this analysis.
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Data Samples and Monte Carlo

We use the CLEO-c data collected at a 4170 MeV center-of-mass energy (datasets 39,

40, 41, 47, and 48), with a total integrated luminosity of 586 pb−1 (Table 4.1). At

this energy, the e+e− collisions produce both DsDs and D∗
sDs. D

∗
sDs production has

the much larger cross section at 4170 MeV, with a σD∗
sDs of 0.92 nb and a σD+

s D−
s

of

0.03 nb [60]. With these cross sections, we expect to have about 1.11×106 Ds mesons

in the data sample.

Table 4.1: Dataset luminosities determined from Bhabha events (e+e− → e+e−), with
statistical and systematic errors.

Dataset Integrated lum. (pb−1)

39 55.12 ± 0.03 ± 0.55
40 123.93 ± 0.05 ± 1.24
41 119.11 ± 0.05 ± 1.19
47 109.78 ± 0.05 ± 1.10
48 178.23 ± 0.06 ± 1.78

Total 586.17 ± 0.11 ± 5.86

We use CLEO’s generic ddmixMonte Carlo for each of the 4170 MeV datasets, which

generates a weighted mixture of all charm production (DD, D∗D,D∗D∗, DsDs, D
∗
sDs).

Each ddmix sample has 20× the data luminosity, and in all cases we use the final

regenerated sample from CLEO’s 20080404 MCGEN 1 release (which includes ISR). The

continuum, radiative return, and tau Monte Carlo samples used for backgrounds each

39
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simulate 5× the data luminosity, with a release that differs by dataset. Table 4.2 lists

these releases. For all six semileptonic modes, the backgrounds from charm mesons

dominate the backgrounds from continuum, radiative return, and tau production.

Table 4.2: CLEO code release used to generate each background MC sample.

Dataset Release

39 20060426 MCGEN
40 20060426 MCGEN 2
41 20060426 MCGEN 2
47 20080404 MCGEN 1
48 20080404 MCGEN 1

EVTGEN [62] generated the charm, continuum, and radiative return samples, while QQ

generated the tau samples. The continuum generation used the Lund area law generator.

We have also created four signal Monte Carlo samples for each of our six semilep-

tonic modes (φeν, ηeν, η′eν, f0eν, Kseν, and K
∗eν). The four samples correspond to

different Ds production modes at 4170 MeV: DsDs; D
∗
sDs with D∗

s → γ(Ds → heν);

D∗
sDs with D∗

s → π0(Ds → heν); and D∗
sDs with the prompt Ds → heν. We gen-

erated 250,000 events for each of our φeν and ηeν signal Monte Carlo samples, with

100,000 events for the other semileptonic mode samples.

We processed both data and Monte Carlo with the 20060224 FULL A 3 release to

maintain consistency with version 2 D skims [63, 64].
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Ds Tagging

CLEO-c produces nearly all of its Ds sample at a 4170 MeV center-of-mass energy.

While this energy gives the most Ds mesons, the total Ds cross section at 4170 MeV

still falls slightly below 1.0 nb. That compares to a 9 nb total charm cross section

(dominated by D∗D∗ at 4.7 nb and D∗D at 2.6 nb) [61] and a 12 nb continuum cross

section [21, 60] at 4170 MeV. Since the lost neutrino prevents us from reconstructing

the entire Ds semileptonic decay, leaving only the hadron (φ, η, η′, f0, Ks, or K
∗) and

electron, we need to find some other way to isolate Ds events lest we be smothered by

combinatoric background and other decays containing an electron and target hadron.

As all Ds events contain two Ds mesons, we can entirely reconstruct, or tag, one

of the mesons as an event requirement for Ds semileptonic decay candidates. When

measuring branching ratios, Ds tagging yields the further benefit that the measured tags

directly provide the branching ratio denominator rather than needing to independently

estimate the data sample’s total Ds counts.

We use a total of 13 Ds tag modes, chosen for their relative abundancy and their

separation from combinatoric background. We have mostly chosen to identify the tag

modes by their final state particles rather than their intermediate particles (e.g. KKπ

instead of φπ orK∗K). This choice maintains consistency with previous CLEO work [65]

and avoids the need to worry about overlapping resonances (particularly a concern for

KKπ, the most statistically significant mode).

We reconstruct the following 13 tag modes: D+
s → KsK

+, D+
s → K+K−π+,

D+
s → KsK

+π0, D+
s → KsKsπ

+, D+
s → K+K−π+π0, D+

s → KsK
+π+π−, D+

s →

41
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KsK
−π+π+, D+

s → π+π+π−, D+
s → π+η, D+

s → π+π0η, D+
s → π+η′ with η′ →

π+π−η, D+
s → ππ0η′ with η′ → π+π−η, and D+

s → π+η′ with η′ → ρ0γ. Here, and

elsewhere, the charge conjugate tag modes are also implied.

Once we have our Ds tag candidates, we determine each mode’s tag counts by

fitting their invariant mass. Any event with a Ds tag passing our wide mass window

gets treated as a semileptonic decay candidate.

5.1 Basic Selection Criteria

We use a common selection criteria for daughter particles in our 13 exclusive tag modes.

We have found little gain in deviating from the standard D-tag cuts, so our selection

criteria emulates those selections [64, 66].

5.1.1 Track Selection

Our tag modes include two charged particles that leave tracks: kaons and pions. Our

selection for both K± and π± have several track quality features in common:1

• |db| < 5 mm

• |z0| < 5 cm

• χ2 < 100, 000

• | cot θ| < 2.53 (equivalent to | cos θ| < 0.93)2

• Hit Fraction > 0.5

For K±, we further require:3

• 0.125 GeV < pK < 2.0 GeV

•
∣

∣

∣
σ
dE/dx
K

∣

∣

∣
< 3.0

1db, z0, dE/dx, the hit fraction, and splitoff are all defined in the glossary (Appendix E). The χ2 here
comes from the track fit, and its requirement only serves to throw out particularly egregious tracks.
2Here, θ represents the angle from the beamline.
3pmin

K raised from 0.050 GeV to 0.125 GeV for better dE/dx agreement between data and Monte
Carlo [65]
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• UsePID true

We use the standard CLEO parameters for UsePID. Specifically, if we have RICH

information with both π and K hypotheses analyzed, p > 0.7 GeV, and |cos(θ)| > 0.8,

then we combine the RICH likelihood and σdE/dx by requiring:

• L ≡ (σ2π − σ2K) + (Lπ − LK) ≥ 0

• At least four RICH photons detected (NRICH
γ > 3)

Otherwise, we just use dE/dx values by requiring (σ2π − σ2K) ≥ 0 [66].

Similarly, for π± we require:

• 0.050 GeV < pπ < 2.0 GeV

•
∣

∣

∣
σ
dE/dx
π

∣

∣

∣
< 3.0

• UsePID true

The UsePID true here matches that for the kaons, although now we require L ≤ 0.

We only apply these track cuts to the tag mode daughter particles. The daughters

of the semileptonic hadrons have their own similar, but often looser, selection criteria.

5.1.2 Ks Selection

We make a 1.575σ mass cut on our tag modes’ Ks mesons. This corresponds to a

6.3 MeV nominal mass cut. Our Ks mesons’ π± daughters don’t have to fulfill the

standard π cuts listed in Section 5.1.1 since they don’t necessarily originate from the

interaction point. Given CLEO-c’s lower energies than earlier CLEO analyses, we do

not use the CleanV0 cuts, nor do we add a flight significance or distance cut.

5.1.3 Photon Selection

Several tag modes include particles like π0 and η that ultimately decay to photons.

Also, D+
s → π+η′, η′ → ρ0γ has an explicit photon in the tag mode. These photons

share several different selection criteria:

• Eγ > 30 MeV
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• No E9

E25
cut4

• No splitoff rejection used

• Showers with a matched track are disallowed

• Showers from hot crystals are disallowed

5.1.4 π0 and η Selection

In addition to the daughter photon selection, we also consider some additional selection

criteria for the π0 and η mesons used in Ds tags:

• The pull mass for both π0 and η needs to be within 3.0

• We do not reject π0 that have both showers in the endcap

• We do reject η that have both showers in the endcap

• Nominal mass less than 1.0 GeV

• Max number of σ from expected mass within 1,000

• χ2 ≤ 10, 000

• No additional energy cut on γ in the endcap

5.1.5 η′ Selection

The tag modes include η′ reconstructed from its ππη decay mode and from its ρ0γ decay

mode, where the ρ0 decays to π+π−. Each of these decay modes has additional selection

criteria.

The η′ → ππη mode involves reconstructing both pions and η mesons. We use

the same selection criteria for these as in Section 5.1.1 and Section 5.1.4, respectively.

Additionally, we require 947.8 MeV < Mη′ < 967.8 MeV

η′ → ρ0γ ultimately involves reconstructing two pions and a photon. Again, pions

share the same selection criteria as in Section 5.1.1. The photon inherits our standard

photon tagging selection. We further require:

4Energy in a shower’s 3× 3 = 9 central crystals divided by the energy in a shower’s 5× 5 = 25 central
crystals.
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• 0.5 GeV < Mπ+π− < 1.0 GeV

• 920 MeV < Mη′ < 995 MeV

5.2 Recoil Mass

The tagged Ds mesons are only created in either D∗
sDs or DsDs events, which constrains

their momentum range. The direct Ds momenta depend only on the beam energy

(4170 MeV), while the secondary Ds from the D∗
s decay gain a slight boost. Table 5.1

gives the kinematic ranges for Ds momenta at our beam energy.

We restrict the allowed momentum range by cutting on a directly related variable,

the recoil mass, which includes the beam momentum and corresponds physically to the

other meson’s mass in the case of prompt Ds decays. We define the recoil mass by

Mrecoil = |pcm − pDs | ≡
√

(

Ecm −
√

|~pDs |2 +M2
Ds

)2

− |~pcm − ~pDs |2,

where pcm, Ecm, and ~pcm correspond to the center-of-mass four vector, energy, and

momentum; MDs comes from the PDG [21]; and ~pDs denotes the reconstructed Ds

momentum.

Since we will use both the recoil mass and the Ds invariant mass, we do not use

either the beam constrained mass (Mbc) or ∆E ≡ EDs − Ebeam.

Table 5.1: Kinematically allowed recoil mass and momentum ranges for Ds mesons at
4170 MeV.

Ds origin Possible Momenta Possible Recoil Mass

DsDs 687 MeV MDs ≈ 1968 MeV
Prompt Ds in D∗

sDs 429 MeV MD∗
s
≈ 2112 MeV

Ds from D∗
s → Dsγ in D∗

sDs 259 MeV – 542 MeV 2058 MeV – 2169 MeV
Ds from D∗

s → Dsπ
0 in D∗

sDs 351 MeV – 449 MeV 2104 MeV – 2142 MeV

Our recoil mass cut varies by tag mode and depends upon the shape and combina-

toric background for that mode. Table 5.2 gives our cut values by tag mode.

Figure 5.1 and Figures G.1–G.3 in Appendix G show each tag mode’s recoil mass

spectrum and recoil mass cut in the Monte Carlo and data. The background reduction
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Table 5.2: Recoil mass cut, by Ds tag mode.

Ds tag modes Minimum Recoil Mass Maximum pDs

KsK

2051 MeV 555 MeV
KKπ
πη
πη′, η′ → ππη

KsKπ
0

2099 MeV 459 MeV

KsKsπ
KKππ0

KsK
+ππ

KsK
−ππ

ππ0η
ππ0η′, η′ → ππη
πη′, η′ → ργ

πππ 2101 MeV 455 MeV

from our recoil mass cut benefits us across the Ds invariant mass spectrum, as the two

variables are fairly uncorrelated (shown in Figures G.4–G.9).

5.3 Individual Tag Mode Cuts

Each tag mode has unique backgrounds that we reduce by making a series of additional

cuts. These cuts reject D0 or D± mesons, reject unwanted Ks, or remove excess (and

often peaking) combinatoric background arising from soft pions. We chose these cuts to

maintain consistency with previous CLEO Ds tagging [65] when applicable. Table 5.3

lists our rejection criteria for each tag mode. We take charges into consideration for our

stated invariant mass rejections (e.g. for KsK, we only apply the MKπ rejection when

the K and π have opposite signs).

After making our previously listed cuts, we choose a best candidate for each tag mode

and charge by keeping only the Ds with a recoil mass closest to MD∗
s
(2112.3 MeV).
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Figure 5.1: Monte Carlo (charm and scaled continuum) simulation of the recoil mass
distribution for the Ds tag modes KsK, KKπ, KsKπ

0, KsKsπ, and KKππ
0. We reject

all Ds with a recoil mass below the cut line.
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Table 5.3: Rejections based on individual tag modes’ daughter particles.

Ds tag mode Daughter particle cuts (rejections)

KsK
MKπ ≥ 1830 MeV
pπ ≤ 100 MeV

KKπ 1845 MeV ≤MKK ≤ 1880 MeV

KKππ0
1860 MeV ≤MKKπ ≤ 1880 MeV
pπ ≤ 100 MeV
pπ0 ≤ 100 MeV

πππ

475 MeV ≤Mππ ≤ 520 MeV
1840 MeV ≤Mππ ≤ 1885 MeV
1845 MeV ≤MKπ ≤ 1880 MeV, where one of
the supposed pions is treated as a kaon.

pπ ≤ 100 MeV

πη
No additional cuts

πη′, η′ → ππη

KsKπ
0

MKππ0 ≥ 1830 MeV
1860 MeV ≤MKππ ≤ 1880 MeV
pπ ≤ 100 MeV
pπ0 ≤ 100 MeV

KsKsπ pπ ≤ 100 MeV, where the Ds is rejected if
KsK

+ππ either the Ks meson’s daughter π or
KsK

−ππ the direct π fails the cut.

ππ0η pπ0 ≤ 100 MeV

ππ0η′, η′ → ππη
480 MeV ≤Mππ ≤ 515 MeV
pπ0 ≤ 100 MeV

πη′, η′ → ργ
480 MeV ≤Mππ ≤ 515 MeV
pπ ≤ 100 MeV
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5.4 Fitting Procedure

Once we make the tag cuts and choose a best candidate for each mode/charge combina-

tion in the event, we determine the tag counts for a given mode by fitting its Ds mass

spectrum (combining D+
s and D−

s ). We model our signal mass spectrum by a double

gaussian5 for the tag modes reconstructed with only tracks (and for πη′, η′ → ππη). We

use the sum of a gaussian and a crystal ball function for modes containing photons or

nontrivial FSR (πππ). We take either a linear function or a quadratic function for our

background, depending upon the mode and the shape of its combinatoric background.

Table 5.4 lists the particular combination of fit functions for each tag mode.

Table 5.4: Ds invariant mass fit functions, by mode.

Ds tag mode Function

KsK

Signal: Double Gaussian
Background: Linear Polynomial

KKπ
KsKsπ
KsK

+ππ
KsK

−ππ
πη′, η′ → ππη

KsKπ
0

Signal: Gaussian + Crystal Ball
Background: Linear Polynomial

πη
ππ0η′, η′ → ππη

KKππ0

Signal: Gaussian + Crystal Ball
Background: Quadratic Polynomial

πππ
ππ0η
πη′, η′ → ργ

In our signal shape functions, we use a common mean for the two gaussians (or for

the gaussian and the gaussian portion of the crystal ball). To reduce the number of

free parameters further, we fit our signal shape to a truth-tagged Monte Carlo sample,

then we use those results to fix the relative normalization and relative width of the two

signal shape component functions. We also fix the two remaining shape parameters

in the crystal ball function from the truth-tagged fit, if applicable for the mode. This

procedure leaves three free parameters for the signal shape of the reconstructed Ds mass

5Sum of two gaussian functions.
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spectrum: an overall normalization, an overall width, and the common mean. Combined

with the two or three background parameters for the linear or quadratic polynomial,

respectively, we end with five or six free parameters for the reconstructed Ds mass fit.

5.5 Results

In the following sections, we present the results from our fits to the reconstructed Ds

invariant mass spectrum in both Monte Carlo and data. We only consider statistical

errors on the tag counts here. We do consider systematics associated with our tag

counting procedure in Section 10.1.1, but we focus on the branching ratio’s systematic

error from tagging rather than on the error for raw tag counts. We typically get smaller

tag-related systematics on the branching ratio than on tag counting alone because our

procedure involves the Ds tag shape in both the branching ratio’s numerator and de-

nominator. Any comparison with other Ds tagging analyses should keep in mind that

our raw tag counts would presumably have a higher systematic error than reflected in

just our branching ratio systematics.

As mentioned in Section 5.4, we first fit the truth-tagged Monte Carlo MDs distri-

bution to fix all but three parameters for our signal shape function. Figures G.10–G.12

show these fits’ results, by tag mode. The fit functions closely match the truth-tagged

histograms, which gives us the freedom to use our functions rather than less flexible

signal histograms when fitting the data.

5.5.1 Monte Carlo

Before we fit the data, we first build confidence in our procedure by ensuring that we

get the proper tag counts in the generic Monte Carlo sample (charm plus continuum).

Figures G.13–G.15 show our fits to the Ds invariant mass for this sample, resulting in

the total tag counts displayed in Table 5.5. While we used a 20× Monte Carlo sample,

we have scaled the table’s tag counts down to the data’s luminosity to make direct

comparisons with the data counts easier.

Fits to the modes ππ0η′, η′ → ππη and πη gave the most significant deviations from

their truth-tagged counts. In both cases, the background shapes predicted by the Monte

Carlo bordered on requiring a non-linear function, like the four other crystal ball modes
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Table 5.5: Tagging results from the 20× Monte Carlo sample, scaled to data size.

Ds mode Fit counts Truth tagged counts
Nfit−NMC

σ

KsK 5,764.0 ± 100.8 5, 693.1 0.70
KKπ 25,242.0 ± 233.9 25, 731.6 −2.09
KsKπ

0 1,670.5 ± 157.7 1, 871.2 −1.27
KsKsπ 1,141.4 ± 69.3 1, 081.5 0.86
KKππ0 6,693.4 ± 323.6 6, 844.5 −0.47
KsK

+ππ 1,744.1 ± 105.5 1, 717.3 0.25
KsK

−ππ 3,246.3 ± 92.2 3, 200.6 0.50
πππ 6,081.6 ± 326.3 6, 197.6 −0.36
πη 2,882.3 ± 182.9 3, 334.4 −2.47
ππ0η 6,825.9 ± 700.7 6, 560.0 0.38
πη′, η′ → ππη 2,132.4 ± 64.3 2, 108.4 0.37
ππ0η′, η′ → ππη 532.5 ± 84.5 749.3 −2.57
πη′, η′ → ργ 3,904.4 ± 245.2 4, 079.9 −0.72

Sum 67,860.7 ± 959.8 69, 169.5 −1.36

(KKππ0; πππ; ππ0η; and πη′, η′ → ργ). However, we try to avoid such background

functions when we have a wide signal shape because the background function can dip

inappropriately in the Ds mass region. This lower background leads to an overestimate

on the tag counts. The four modes in which we do use a quadratic background have more

events than either ππ0η′, η′ → ππη or πη, and they tend to have narrower signal shapes

(ππ0η has a wider shape but more events). These qualities make us less sensitive to the

background function when we shift to the data, where we need to be more careful in

case the Ds mass reconstruction has a poorer resolution than the Monte Carlo predicts.

In addition to procedure cross-checks, we have used the Monte Carlo to determine

our tagging efficiency within semileptonic events. As expected, we see essentially the

same tagging efficiency independent of the semileptonic mode (Section 10.1.3). How-

ever, our recoil mass cut does create a difference in tagging efficiency based on the Ds

production method: DsDs, D
∗
sDs with the tagged Ds from the D∗

s (“secondary”), or

D∗
sDs where the tagged Ds does not come from the D∗

s (“prompt”). Table 5.6 gives the

efficiencies for each case.
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Table 5.6: OverallDs tagging efficiency from signal Monte Carlo, including all branching
ratios. OurDs recoil mass cut creates the efficiency difference between tags from prompt
Ds and tags from secondary Ds.

Ds production mode εtag
DsDs 0.42% ± 0.01%

D∗
sDs with prompt Ds → tag 7.21% ± 0.03%

D∗
sDs with secondary Ds → tag 5.69% ± 0.03%

Weighted MC 6.22% ± 0.02%

5.5.2 Data

Figures 5.2–5.4 show our fits to the combined data from datasets 39, 40, 41, 47, and 48.

Table 5.7 summarizes each mode’s tag counts resulting from these fits.

Table 5.7: Tagging results from the full data sample (sum of datasets 39, 40, 41, 47,
48).

Ds mode Fit counts

KsK 6,226.7 ± 101.2
KKπ 27,373.5 ± 248.4
KsKπ

0 2,246.8 ± 209.9
KsKsπ 1,125.5 ± 76.5
KKππ0 7,355.5 ± 377.4
KsK

+ππ 1,859.4 ± 120.6
KsK

−ππ 3,377.3 ± 100.0
πππ 6,606.3 ± 337.7
πη 3,810.3 ± 190.8
ππ0η 9,476.9 ± 529.0
πη′, η′ → ππη 2,386.6 ± 65.6
ππ0η′, η′ → ππη 1,090.5 ± 118.7
πη′, η′ → ργ 4,272.3 ± 193.3

Sum 77,207.5 ± 880.2

Although not directly relevant for this analysis, we find it interesting that we see

about 14% more tags in the data than we expected from the 20× Monte Carlo sample.

This difference persists across each mode and dataset to within errors, as shown in
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Figure 5.2: Ds invariant mass fits in the data, determining the total number of Ds tags
for modes KsK, KKπ, KsKπ

0, and KsKsπ. The peaking function reflects our fits’
signal component, while the linear/quadratic function shows our background.

Tables F.1 and F.2.

5.5.3 Cross-Checks

In addition to our fitting systematics, described in Section 10.1.1, we have performed

two cross-checks for our fitting procedure. In the first cross-check, we use the Monte

Carlo truth-tagged histogram for our signal shape instead of the double gaussian or

gaussian + crystal ball functions. In the second, we ensure that our chosen procedure

consistently fits data-sized samples by breaking the 20× Monte Carlo into 20 equal

subsets and fitting each individually.
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Figure 5.3: Ds invariant mass fits in the data, determining the total number of Ds tags
for modes KKππ0, KsK

+ππ, KsK
−ππ, and πππ.

In our signal histogram cross-check, we take theDs invariant mass spectrum from the

truth-tagged Monte Carlo as the signal shape instead of a double gaussian or gaussian +

crystal ball function. The overall histogram normalization gives us our only free signal

parameter. We then add the same background function as in our standard fit (linear or

quadratic, by mode). This leaves either 3 or 4 total free parameters, depending on the

Ds mode.

We first fit the full Monte Carlo to ensure that the signal histogram fit returns the

truth-tagged counts. This fit does match both our standard fit results and the true

number of tags to within error, as shown in Table 5.8.

We then fit the data with the signal histograms and corresponding background
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Figure 5.4: Ds invariant mass fits in the data, determining the total number of Ds tags
for modes πη; ππ0η; πη′, η′ → ππη; ππ0η′, η′ → ππη; and πη′, η′ → ργ.

functions. We expect the signal histogram fit to give more or less the same result as

our fit function as long as the Ds mass resolution in Monte Carlo accurately represents

the true resolution in the data.

The fit results, displayed in Figures G.16–G.21 and summarized in Table 5.9, show

consistency between the signal histogram fit and our more flexible double gaussian/gaussian

+ crystal ball function for all modes, with the exception of ππ0η. This discrepancy does

not particularly surprise us since ππ0η has the worst signal to background ratio, has a

wide signal shape, and has a background shape that requires a quadratic function. The

combination of these issues allows the signal shape to trade off with the background’s

quadratic curvature to some extent. Since the ππ0η signal histogram fit clearly doesn’t



56

Table 5.8: Signal histogram fit results compared to our standard double gaussian/
gaussian+crystal ball fit results in the 20× Monte Carlo sample, scaled to data size.

Ds mode Signal histogram Standard fit Truth-tagged counts

KsK 5,813.5 ± 94.0 5,764.0 ± 100.8 5, 693.1
KKπ 25,834.7 ± 214.9 25,242.0 ± 233.8 25, 731.6
KsKπ

0 1,783.8 ± 123.5 1,670.5 ± 159.2 1, 871.2
KsKsπ 1,161.4 ± 59.5 1,141.4 ± 69.2 1, 081.5
KKππ0 6,815.9 ± 219.4 6,693.4 ± 323.6 6, 844.5
KsK

+ππ 1,766.5 ± 87.9 1,744.0 ± 105.3 1, 717.3
KsK

−ππ 3,326.3 ± 83.1 3,246.3 ± 92.2 3, 200.6
πππ 6,220.3 ± 220.9 6,082.3 ± 309.7 6, 197.6
πη 3,043.0 ± 138.6 2,882.3 ± 182.4 3, 334.4
ππ0η 6,615.8 ± 417.8 6,825.9 ± 700.7 6, 560.0
πη′, η′ → ππη 2,164.2 ± 58.6 2,132.4 ± 64.3 2, 108.4
ππ0η′, η′ → ππη 624.4 ± 77.1 532.5 ± 84.0 749.3
πη′, η′ → ργ 4,074.1 ± 205.0 3,904.4 ± 245.2 4, 079.9

Sum 69,244.0 ± 656.2 67,861.2 ± 954.3 69, 169.5

fit well (both visually and in terms of χ2), undershooting the Ds mass distribution’s

high side and overshooting the low side, we don’t feel a need to take an additional

systematic based on its results.

For our data-sized cross-check, we split the 20× Monte Carlo sample into 20 separate

samples to ensure that our fit function will successfully and reliably converge. Table 5.10

gives our results, where the summation row states the total fit tag counts, the total

truth-tagged counts, and the total χ2 across the 20 samples. Our reduced χ2 of 1.90

represents a systematic undercounting of the true number of tags.

We believe that the slight, systematic undercounting of about 1% originates from

an imperfection in the signal fit shape. The signal function peak falls slightly below

the true peak whereas the tails have a small surplus, as seen from our signal Monte

Carlo plots in Figures G.10–G.12. When we use this signal shape in a sample with

background, the tails of the signal distribution get partially subsumed into a higher

background while the slightly low signal shape peak still matches the data peak.

The statistical errors for each tag mode exceed the slight Ds tag undercounting

effect. However, since the peak region essentially acts like a double gaussian for all
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Table 5.9: Signal histogram fit results compared to our standard double gaussian/
gaussian+crystal ball fit results in the full data sample.

Ds mode Signal histogram Standard fit

KsK 6,236.9 ± 94.9 6,226.7 ± 101.2
KKπ 27,576.2 ± 225.9 27,373.5 ± 248.4
KsKπ

0 2,039.9 ± 127.7 2,246.8 ± 209.9
KsKsπ 1,155.0 ± 63.1 1,125.5 ± 76.5
KKππ0 7,590.2 ± 256.7 7,355.5 ± 377.4
KsK

+ππ 1,854.6 ± 98.9 1,859.4 ± 120.6
KsK

−ππ 3,434.5 ± 89.4 3,377.3 ± 100.0
πππ 6,437.5 ± 233.2 6,606.3 ± 337.7
πη 3,527.5 ± 128.7 3,810.3 ± 190.8
ππ0η 5,848.1 ± 485.2 9,476.9 ± 529.0
πη′, η′ → ππη 2,300.0 ± 58.6 2,386.6 ± 65.6
ππ0η′, η′ → ππη 1,069.8 ± 81.6 1,090.5 ± 118.7
πη′, η′ → ργ 4,265.9 ± 209.8 4,272.3 ± 193.3

Sum 73,336.1 ± 724.2 77,207.5 ± 880.2

modes (as the crystal ball function acts like a gaussian near the peak), we consider the

undercounting rate correlated between modes. We would treat the undercounting as a

systematic when determining the branching ratio, but this systematic gets complicated

by two factors.

The first issue with a proposed undercounting systematic comes from the fact that

we ultimately fit the Ds mass spectrum for the number of semileptonic events as well

as the number of tags. The semileptonic event counts also have a linear background

function, so the slight undercounting can appear in both our branching ratio’s numerator

and denominator, significantly shrinking the ultimate systematic.

Even if we dismiss the numerator effect, though, we have a second ameliorating

factor. Our conventional systematic (Section 10.1.1) involves changing the Ds mass

resolution based on results from the D± system. This systematic indicates a wider

underlying Ds mass resolution than predicted by the Monte Carlo, which actually makes

our signal shape more accurate. Since the conventional systematic involves a wider

distribution and gives larger final errors (just due to the systematic’s precision), we

consider that study to measure essentially the same signal shape concern, and we don’t
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Table 5.10: Fit results from the Monte Carlo’s 20 data-sized samples. The final column
in the ”Sum” row gives the total χ2.

Datasize sample Fit counts Truth tagged counts
Nfit−NMC

σ

1 67,932.6 ± 1,022.9 70, 585 −2.59
2 71,422.1 ± 1,214.3 71, 265 0.13
3 71,579.7 ± 1,386.5 71, 112 0.34
4 71,409.4 ± 919.6 71, 119 0.32
5 69,774.6 ± 1,046.3 71, 552 −1.70
6 69,795.4 ± 983.4 71, 326 −1.56
7 71,017.8 ± 1,221.3 71, 007 0.01
8 72,092.7 ± 1,275.1 71, 154 0.74
9 67,852.4 ± 1,133.5 71, 084 −2.85
10 70,128.0 ± 809.5 71, 044 −1.13
11 69,108.9 ± 926.7 71, 265 −2.33
12 70,547.9 ± 1,182.5 71, 208 −0.56
13 71,312.2 ± 1,125.7 71, 260 0.05
14 71,769.1 ± 1,390.2 71, 292 0.34
15 69,466.9 ± 840.6 70, 906 −1.71
16 69,036.8 ± 992.4 71, 235 −2.21
17 71,385.3 ± 1,250.5 71, 528 −0.11
18 71,574.6 ± 1,352.9 70, 952 0.46
19 70,312.3 ± 1,266.5 71, 439 −0.89
20 69,738.3 ± 1,027.0 70, 842 −1.07

Sum 1,407,257.0 ± 5,060.6 1, 423, 175 38.04

add an additional undercounting systematic.
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Semileptonic Selection Criteria

While we use the Ds mass spectrum in our fits for both the tag counts and the semilep-

tonic counts, we do make cuts on the other particles to ensure that we have a semilep-

tonic event. In particular, we make an electron cut that gives us the best background

rejection in our analysis. We have also studied extra track and extra shower event cuts.

While splitoff showers make any extra shower cuts problematic, we do find an extra

track cut useful in our final selection.

6.1 Electron Selection

We select electrons using the same general track quality requirements applied to Ds

tracks in Section 5.1.1. Further, we use the Fw/RICH variable [67], a likelihood ratio

that tests the electron hypothesis under a weighted combination of E/p, dE/dx, and

RICH information. Fw/RICH runs from 0 to 1, with 1 being electron-like, as shown in

Figure 6.1. We require Fw/RICH ≥ 0.8.

We also add the requirement that the hit fraction falls below 1.2, although this

cut has no real impact beyond consistency with previous systematic work. We do not

attempt to reconstruct electrons with a momentum below 200 MeV. These soft electrons

cost some efficiency, but as Table 6.1 shows, we get substantial background reduction

from our combined electron cuts.
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Figure 6.1: Fw/RICH in the 20× MC sample for good tracks that are not used in the
tagged Ds. We only plot electrons involved in one of our six semileptonic modes (φeν,
ηeν, η′eν, f0eν, Kseν, and K∗eν). The electron peak at zero comes primarily from
tracks with a momentum below 200 MeV.

6.2 Event Selection

We look for Ds semileptonic decays in D∗
sDs and DsDs events, where the D∗

s decays

to a Ds with some photons (either directly to a γ or via a π0). Consequently, we

should not have any tracks other than those from the tagged Ds, the electron, or the

semileptonic hadron. We reject any event with an extra track, which cuts out events

with an e+e− pair that would otherwise pass our electron selection, semileptonic events

with the wrong hadron mode (e.g. Ds → η′eν faking Ds → ηeν), and some semileptonic

events with misreconstructed tags. Not surprisingly, we rarely throw out signal events

with our extra track cut, as shown in Table 6.2.

We have considered a rejection on extra showers above various energy thresholds
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Table 6.1: Effect of the electron cuts (track and Fw/RICH) in the 20× Monte Carlo
sample for truth-tagged semileptonic and generic decay modes. These precede any
semileptonic hadron cut, but passed Ds tags must fall within the tagging fit window
(1900 MeV < MDs < 2030 MeV).

Ds semileptonic mode # Passed Ds tags # Passed electron cuts Cut efficiency

φeν 55, 399 31, 864 58%
ηeν 50, 775 35, 772 70%
η′eν 19, 282 12, 038 62%
Kseν 1, 022 641 63%
K∗eν 4, 148 2, 582 62%
f0eν 7, 132 4, 411 62%

All other modes 6, 741, 304 204, 944 3%

(25 MeV, 100 MeV, 300 MeV, and 500 MeV), but we did not find them useful (Fig-

ures 6.2 and G.22–G.26). Our Ds and electron selections keep the background levels

low, so even the handful of signal events improperly rejected by an extra shower cut

will cause a reduction in our statistical significance. Several different effects can lead to

improper signal rejection under an extra energy cut: modes containing kaons can have

decays in flight, leaving a shower without a properly matched track; the D∗
s can decay

to a π0, yielding one extra shower; legitimate single showers sometimes get misrecon-

structed as two or more showers; and splitoff showers may not get identified as such.

Although we can reduce the impact of each effect through various selections, we have

not found that such improvements save the extra shower cut.
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Table 6.2: Effect of an extra track cut on the signal and the background in the peaking
Ds mass region after all other selections (e.g. semileptonic hadron cuts) have been

made. We define f as S2

S+B , such that
fpost-cut
fpre-cut

measures our statistical improvement.

Ds semileptonic mode εsignal εbackground
fpost-cut
fpre-cut

φeν 99% 61% 1.01
ηeν 97% 42% 1.31
η′eν 97% 52% 1.06
Kseν 98% 69% 1.38
K∗eν 98% 64% 1.40
f0eν 99% 59% 1.23
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Chapter 7

Measurement of Ds → φeν

While we ultimately reconstruct six different Ds semileptonic modes, we use a similar

reconstruction and fitting procedure for five of them (φeν, η′eν, f0eν, Kseν, and K
∗eν).

To illustrate the procedure, we first describe how the process works forDs → φeν. Then,

in section 8, we show how the procedure differs for each of the other four semileptonic

modes that have a similar reconstruction but fewer events.

We determine the number of Ds → φeν events by fitting the tagged Ds mass spec-

trum after making the electron selections in Section 6.1, the φ cuts in Section 7.1, and

the event cuts in Section 6.2. We do not directly use the electron or φ kinematic infor-

mation beyond requiring that they pass our particle cuts, although our φ reconstruction

gets used indirectly in our f0 → KK background subtraction.

7.1 φ Selection

We reconstruct the φ meson in Ds → φeν via the φ → KK decay mode, which makes

up roughly half of all φ decays. Ds → φeν presents a challenge in its φ reconstruction

as the semileptonic φ tends to be fairly soft (Figure 7.1a). The soft φ and low Q value

in the φ → KK decay (about 32 MeV) leads to soft daughter kaons, which decreases

our detection efficiency significantly relative to higher energy φ decays (e.g. Ds → φπ).

As an additional challenge, the long tail of the φ Breit-Wigner forces us to use a wide

φ mass window relative to its decay width of Γφ ≈ 4.26 MeV.

The combination of low Ds → φeν background and soft kaons encourage loose kaon
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Figure 7.1: Generated and reconstructed momentum spectra from the 20×Monte Carlo.
a) φ from Ds → φeν, using our cuts. b) Electron from Ds → φeν.

selection criteria. In particular, we have essentially dropped any hit fraction cut to

accommodate the higher likelihood that a soft kaon will decay in flight (Figure 7.2).

We considered loosening other typical track cuts, but we did not find the slight effi-

ciency improvement to be worth deviating from established systematic studies [68]. We

ultimately require the following cuts on the φ meson’s daughter kaons:

• |db| < 5 mm

• |z0| < 5 cm
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67

With the low combinatoric background in Ds → φeν and the long φ Breit-Wigner

tail, we extend the high side of our φ mass window as far as we reasonably can. On

the low side of the φ mass window, we run into contamination from Ds → f0eν, where

f0 → KK. While we do measure Ds → f0eν via f0 → ππ and use it to guide our

background subtraction, the uncertainty in f0 parameters leads us to restrict the low

φ mass range somewhat to reduce the impact of these systematic uncertainties on our

φeν result. For our final φ mass cut, shown in Figure 7.3, we use:

• −15 MeV < M reconstructed
φ −MPDG

φ < 30 MeV

We do not attempt to reconstruct the φ through modes other than KK (e.g. πππ0).
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Figure 7.3: φ mass distribution when reconstructed from φ → KK in the 20× Monte
Carlo. The inner vertical lines represent a 10 MeV cut (roughly 2Γφ), which does not
capture the high mass tail. We accept φ masses within the outer vertical lines.
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7.2 Ds → φeν Reconstruction

7.2.1 Efficiency

To determine our efficiencies, we generated signal Monte Carlo samples with one Ds

decaying to φeν and the other decaying generically. We made four samples with

250,000 events, one for each different type of semileptonic Ds production at 4170 MeV:

one sample for D+
s D

−
s and three for D∗

sDs, where the semileptonic Ds can either be

“prompt” (not from the D∗
s side) or “secondary” in one of two ways (D∗

s → Dsγ or

D∗
s → Dsπ

0).

We present the efficiencies for Ds → φeν in Table 7.1 for typical φ cuts and Table 7.2

for this analysis’s looser φ cuts. We determine all our semileptonic efficiencies after suc-

cessfully reconstructing aDs tag within the fit window (1900 MeV ≤MDs ≤ 2030 MeV).

The efficiency for both the φ and the electron increases with higher momenta, as shown

in Figure 7.4. This causes the overall semileptonic efficiency to be slightly lower than

the simple product of hadron and electron efficiencies, since high momentum electrons

are correlated with low momentum φ and vice versa.

Table 7.1: Efficiencies for semileptonic particles in Ds → φeν, with typical φ cuts
(HF > 0.5, φ mass within 10 MeV). The efficiencies include the φ → KK branch-
ing ratio.

Ds production mode εe εφ εSL
DsDs 70.4% ± 2.6% 12.9% ± 1.1% 9.4% ± 1.0%

D∗
sDs with D∗

s → (Ds → φeν) γ 70.2% ± 0.6% 15.2% ± 0.3% 10.2% ± 0.2%
D∗

sDs with D∗
s → (Ds → φeν) π0 70.3% ± 0.6% 15.1% ± 0.3% 10.1% ± 0.2%

D∗
sDs with prompt Ds → φeν 70.7% ± 0.7% 14.1% ± 0.3% 9.5% ± 0.3%

Weighted MC 70.5% ± 0.5% 14.9% ± 0.2% 10.1% ± 0.2%
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Table 7.2: Efficiencies for semileptonic particles in Ds → φeν, with the φ cuts used in
this analysis. The efficiencies include the φ→ KK branching ratio.

Ds production mode εe εφ εSL
DsDs 70.4% ± 2.6% 17.3% ± 1.3% 12.1% ± 1.1%

D∗
sDs with D∗

s → (Ds → φeν) γ 70.2% ± 0.6% 20.9% ± 0.4% 14.2% ± 0.3%
D∗

sDs with D∗
s → (Ds → φeν) π0 70.3% ± 0.6% 20.9% ± 0.3% 14.1% ± 0.3%

D∗
sDs with prompt Ds → φeν 70.7% ± 0.7% 19.8% ± 0.4% 13.5% ± 0.3%

Weighted MC 70.5% ± 0.5% 20.7% ± 0.3% 14.0% ± 0.2%
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Figure 7.4: Efficiencies for individual semileptonic particles and the overall semileptonic
side (φ + electron), by momentum. We include the φ → KK branching ratio in our
efficiencies, so εφ and εSL must be less than 49%. The φ “typical cuts” have HF > 0.5
and a 10 MeV mass cut. Section 7.1 gives our looser φ selection.
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7.2.2 Backgrounds

Our predicted Ds → φeν background from the 20× Monte Carlo primarily consists of

events that don’t peak within our Ds mass fit region (Table 7.3). We use a linear

background function in our data fit for such events. However, we do have to take

special account of events that fake the semileptonic side (electron or φ → KK) while

having a true Ds tag, as these events will look like signal events in our fit to the Ds

mass spectrum.

Table 7.3: Truth-tagged breakdown for Ds → φeν candidates passing all cuts in the
20× ddmix and 5× continuum Monte Carlo, scaled to data size.

Event truth Passing candidates

True Ds tag, true Ds → φeν 210.90
True Ds tag, not Ds → φeν 4.10
False Ds tag, true Ds → φeν 46.40
False Ds tag, not Ds → φeν 16.55

Most events with a true Ds tag that are incorrectly reconstructed as Ds → φeν

come from Ds → f0eν, where f0 → KK (Figure 7.5). The large decay width of the

f0 means that a nontrivial fraction of f0 → KK decays have an invariant mass within

our φ → KK mass window. At the same time, the low overall number of Ds → f0eν,

f0 → KK decays relative to other backgrounds (particularly combinatoric background

near KK threshold with falseDs tags) prevents us from simply fitting theMKK spectrum

to determine the number of f0eν background events. We instead use our Ds → f0eν

(f0 → ππ) measurement from Section 8.5, a range of
Γf0→KK

Γf0→ππ
values from the Particle

Data Book [21], and a model for the f0 → KK lineshape to estimate the amount

of Ds → f0eν, f0 → KK background that appears within our Ds → φeν sample, as

described in Appendix A.

We give our correction for the Ds → φeν branching ratio from the Ds → f0eν, f0 →
KK peaking background and its associated systematic in Table 7.4. We also include a

correction for events with a correct Ds tag that fake Ds → φeν from sources other than

Ds → f0eν, primarily φρ±. We use Monte Carlo estimates for the latter correction since

the decay kinematics are well understood (relative to their statistical significance).
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Figure 7.5: Ds → φeν backgrounds with a true Ds tag (peaking background) in the 20×
Monte Carlo. Only Ds → f0eν, f0 → KK presents a sizable peaking background for
Ds → φeν.

7.2.3 Fit Procedure

In most tagged neutrino analyses (e.g. [69, 70]), the event’s missing energy and momen-

tum will be reconstructed and used in some form (e.g. missing mass, ∆E and Mbc) to

determine the number of signal events. Since we’ve dropped the D∗
s meson’s daughter γ

in this analysis, our missing four momentum contains both the neutrino and the photon.

The missing variables (mass, energy, momentum) are then distorted and do not give

clear separation between signal and all backgrounds (although some background may

still be rejected, as described for Kseν in Section 8.2).

When searching for an alternate fit parameter, we have noticed that a major system-

atic error in our φeν and ηeν modes comes from the lineshape uncertainty associated
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Table 7.4: Absolute branching ratio correction and systematic error for B(Ds → φeν)
from peaking background.

Background mode BR correction

Ds → f0eν (0.0080 ± 0.0115)%
Non-semileptonic (0.0041 ± 0.0014)%

Total Ds → φeν correction (0.0120 ± 0.0116)%

with the Ds tag. To minimize this systematic, we have chosen to fit the Ds mass spec-

trum for our branching ratio’s numerator as well as its denominator, which eliminates

most of the impact from our reconstructed Ds lineshape uncertainty. As described pre-

viously, we do not directly involve the φ or electron kinematic information in our fit,

using that particle information only to establish that we have a legitimate Ds → φeν

event.

Even in our relatively high statistics Ds → φeν semileptonic mode, we only expect

about 200 events spread across our 13 tag modes, with some tag modes likely to contain

only one or two events. Our low statistics semileptonic modes (η′eν, f0eν, Kseν, and

K∗eν) have even fewer events spread across the same number of tag modes. To deal with

the errors associated with our low statistics, we use an unbinned, extended maximum

likelihood fit to our Ds mass spectrum. Further, since the small number of events per

tag mode will distort a weighted sum combining individual results,1 we instead use a

common branching ratio parameter across all 13 tag modes.

We fix our signal Ds mass lineshape from each mode’s tag fit results. This leaves

only the normalization floating (via the common branching ratio parameter), giving us

just one signal parameter in our fit. We determine a linear background for each tag

mode from the 20× Monte Carlo, then we allow the overall normalization of this shape

to float independently for each tag mode. If we have fewer than 20 background events

for a tag mode in the 20×Monte Carlo sample (less than one expected background event

in the data), we choose a constant background function instead of a linear function as

our background shape for that tag mode.

Our fit function then has 14 floating parameters in our Ds mass fit – one signal

1Bienaymé formula for adding errors in quadrature need not apply.
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parameter (the branching ratio) and one background normalization for each of our

13 Ds tag modes. We have a log likelihood function to minimize given by:

F(B, ~NBG) ≡ − lnL(B, ~NBG)

= B · εSL ·
[

13
∑

i=1

N i
tag

]

+

[

13
∑

i=1

N i
BG

]

−
∑

mj

ln
[

B · εSL ·N [j]
tag · f

[j]
sig(mj) +N

[j]
BG · f [j]BG(mj)

]

,

where B is the branching ratio, ~NBG is the background normalization (one per tag

mode), [j] refers to the tag mode associated with reconstructed Ds mass mj , f
i
sig(m)

and f iBG(m) are the normalized mass distributions of the signal and background for the

given tag mode, respectively, and N i
tag is the number of Ds tags for mode i. The first two

terms in our function just represent the overall signal and background normalizations,

while the third term corresponds to the sum of each event’s log likelihood given our

signal and background shapes.

7.3 Results

The fit results presented in the following subsections only involve the statistical error.

We determine our systematic errors in Section 10 and give our full errors with the final,

efficiency-corrected result in Section 11.2.

7.3.1 Monte Carlo

To ensure that our procedure properly measures the branching ratio on the couple

hundred events expected in data, we have split the 20× Monte Carlo into twenty data-

sized subsamples. These subsamples allow us an in-vs.-out test in which we accurately

measure the number of truth-tagged semileptonic events, as seen from the lack of fit bias

in Table 7.5. We also obtain the proper branching ratio in our Monte Carlo test after

correcting for peaking background, as demonstrated in Table 7.6 with our branching

ratios’ χ2 of 21.6 over the twenty subsamples.
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Table 7.5: Test of potential bias in our fitting procedure for Ds → φeν by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset N truth-tagged
SL+tag Nfit

SL+tag Difference (# σ)

1 234 231.74 ± 16.58 −0.137
2 224 227.52 ± 14.79 0.238
3 199 191.93 ± 15.43 −0.458
4 226 227.01 ± 16.54 0.061
5 208 202.15 ± 15.74 −0.371
6 191 191.44 ± 13.94 0.032
7 240 248.97 ± 17.05 0.526
8 222 229.31 ± 16.71 0.438
9 191 194.93 ± 15.13 0.260
10 208 208.35 ± 14.50 0.024
11 194 201.72 ± 15.31 0.504
12 201 197.51 ± 14.91 −0.234
13 218 217.17 ± 16.13 −0.051
14 219 226.68 ± 16.23 0.473
15 235 242.62 ± 16.59 0.460
16 216 212.87 ± 15.74 −0.199
17 212 216.87 ± 15.85 0.307
18 220 212.31 ± 15.52 −0.496
19 210 212.19 ± 15.63 0.140
20 213 201.87 ± 15.55 −0.716

Sum 4281 4295.17 ± 70.28 0.202

For reference, we present our fits to these twenty data-sized subsamples as Fig-

ures G.27–G.31 in Appendix G.
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Table 7.6: Monte Carlo comparison of the measured Ds → φeν branching ratio to its
generating branching ratio (2.170%), in data-sized samples. The weighted average line
contains the χ2 across the 20 samples rather than the number of σ between the mea-
sured/generated branching ratios.

Dataset Raw fit BR Corrected BR # σ

1 (2.439 ± 0.175)% (2.405 ± 0.175)% 1.34
2 (2.306 ± 0.150)% (2.271 ± 0.150)% 0.67
3 (1.917 ± 0.154)% (1.883 ± 0.154)% −1.86
4 (2.289 ± 0.167)% (2.255 ± 0.167)% 0.51
5 (2.076 ± 0.162)% (2.041 ± 0.162)% −0.80
6 (1.972 ± 0.144)% (1.937 ± 0.144)% −1.62
7 (2.520 ± 0.173)% (2.485 ± 0.173)% 1.83
8 (2.300 ± 0.168)% (2.266 ± 0.168)% 0.57
9 (2.014 ± 0.156)% (1.979 ± 0.156)% −1.22
10 (2.101 ± 0.146)% (2.066 ± 0.146)% −0.71
11 (2.094 ± 0.159)% (2.059 ± 0.159)% −0.70
12 (2.013 ± 0.152)% (1.978 ± 0.152)% −1.26
13 (2.178 ± 0.162)% (2.143 ± 0.162)% −0.17
14 (2.236 ± 0.160)% (2.201 ± 0.160)% 0.19
15 (2.504 ± 0.171)% (2.470 ± 0.171)% 1.75
16 (2.217 ± 0.164)% (2.182 ± 0.164)% 0.07
17 (2.196 ± 0.160)% (2.161 ± 0.161)% −0.06
18 (2.138 ± 0.156)% (2.104 ± 0.156)% −0.42
19 (2.111 ± 0.156)% (2.076 ± 0.156)% −0.60
20 (2.058 ± 0.158)% (2.023 ± 0.158)% −0.93

Weighted averages/χ2 (2.171 ± 0.036)% (2.137 ± 0.036)% 21.54
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7.3.2 Data

We give our measured branching ratio and number of signal events for Ds → φeν in

Table 7.7, which includes our correction from background with a peaking Ds mass.

The branching ratio here assumes the Monte Carlo’s efficiency; our systematics section

(Section 10) discusses some corrections to this efficiency (Table F.18) that appear in

our final result (Table 11.10).

Table 7.7: Ds → φeν measurement in the data, including the peaking background cor-
rection from Table 7.4.

Measurement Branching Ratio # Events

Raw fit result (1.935 ± 0.152)% 208.0 ± 16.6
Peaking BG correction (0.012 ± 0.012)% 1.3 ± 1.2

B(Ds → φeν) (1.923 ± 0.153)% 206.7 ± 16.7

Figure 7.6 shows the result of our likelihood fit on the Ds mass spectrum after our

φ, electron, and event selections. The plot shows the sum over all Ds masses and fit

functions for simplicity, even though the underlying mass distribution varies by tag

mode. We give our individual functions and mass plots for each tag mode in Figures 7.7

and 7.8. These individual plots better represent how the likelihood fit operates, although

the common branching ratio does connect each of the tag modes’ signal normalizations

to one another.
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MDs spectrum with a common branching ratio across all 13 tag modes. The likelihood
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Figure 7.7: Fit results in the data after applying Ds → φeν semileptonic cuts for modes
KsK, KKπ, KsKπ
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Figure 7.8: Fit results in the data after applying Ds → φeν semileptonic cuts for modes
KsK

+ππ; KsK
−ππ; πππ; πη; ππ0η; πη′, η′ → ππη; ππ0η′, η′ → ππη; and πη′, η′ → ργ.

We fit the tagged MDs with a common signal normalization (branching ratio) for all
13 tag modes. Each mode receives an independent background normalization.



Chapter 8

Measurement of

Ds → (Ks, K
∗, f0, η′)eν

Our procedure for the Ds semileptonic modesKseν, K
∗eν, f0eν, and η′eν closely follows

that for Ds → φeν. We use the same Ds tags and electron selections for each of the

additional four semileptonic modes, but each mode has its own cuts for the semileptonic-

side’s hadron. In some cases, we also make additional background rejection cuts and

event missing mass cuts, as described in Sections 8.2 and 8.3.

8.1 General Particle Cuts

The semileptonic modes K∗eν, f0eν, and η′eν each have pions in their final states.

CLEO has made substantial effort to understand pion behavior in the detector over a

range of momenta, so we follow the standard pion selections [68] for these modes:

•
∣

∣σ
dE/dx
π

∣

∣ < 3.0

• | cos(θ)| < 0.93

• |db| < 5 mm

• |z0| < 5 cm

• χ2 < 10, 000

80



81

• Hit Fraction > 0.5

• If pπ > 550 MeV and we have info from the RICH, we also require:

– 2 or more photons in the RICH (pion hypothesis)

– Particle ID: (LLHπ − LLHK) + (σ2π − σ2K) < 0,

where LLH refers to the RICH log likelihood and σ comes from the dE/dx

measurement.

K∗eν also has a kaon in its final state. While φeν required two kaons to make a φ

meson, the kaon in a K∗ reconstruction gets paired with a pion. This forces us to be

more aggressive in our kaon selections to avoid excess combinatoric pairings. Relative

to φeν, we have increased the hit fraction requirement (although only to 0.3), we have

added a particle ID cut, and we have slightly decreased the χ2 requirement. For kaons

in K∗eν, we require

•
∣

∣σ
dE/dx
K

∣

∣ < 3.0

• | cos(θ)| < 0.93

• |db| < 5 mm

• |z0| < 5 cm

• χ2 < 10, 000

• Hit Fraction > 0.3

• If pK > 550 MeV and we have info from the RICH, we also require:

– 1 or more photons in the RICH (kaon hypothesis)

– Particle ID: (LLHπ − LLHK) + (σ2π − σ2K) > 0,

where LLH refers to the RICH log likelihood and σ comes from the dE/dx

measurement.

• If pK < 550 MeV and we have info from the RICH, we require 4 or fewer photons

(pion hypothesis) in the RICH.
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8.2 Ds → Kseν

Unlike Ds → φeν, where our signal events dominated our background even with fairly

loose cuts, Ds → Kseν has a large background component. While some of this back-

ground comes from combinatoric effects, by far the dominant contribution comes from

other Ds semileptonic modes that have both a valid Ds tag and a valid electron.

φ → KLKs in φeν produces the most problematic background as it also has a true

Ks, so tightening our K-short cuts will not help our background rejection (K∗ → Ksπ
0

gives a similar but smaller problem).

To deal with the problem of Ds → Kseν background coming from other semileptonic

modes, we have reintroduced the notion of an event missing mass cut. In this case, the

missing four vector consists of both the neutrino and the D∗
s meson’s daughter photon.

Even though the missing mass doesn’t peak at zero as it would with only a missing

neutrino, we still get good separation between Kseν and φeν since the soft photon

doesn’t push the missing mass as far as the extra KL (or, to a lesser extent, as far as

the extra π0 in K∗eν). We show this missing mass separation in Figures 8.1 and 8.2.

We’ve optimized our missing mass cut using a simple figure of merit
(

S2

S+B

)

, as seen in

Figure 8.3.

In addition to our peaking background, the missing mass cut rejects the majority of

our combinatoric background. However, we still retain more total combinatoric events

than signal events. As these combinatoric events often lack a true Ks, we have also

considered adding a flight significance cut to our Ks selection. We again use a simple

figure of merit for events in our signal region to evaluate our potential flight significance

cut. We present this figure of merit for various flight significance cuts in Figure 8.4.

While the Monte Carlo analysis favors a very large minimum flight significance, we have

elected to make the cut at 4.0 to capture most of the benefit while avoiding any potential

systematics from data/Monte Carlo deviations at higher flight significance values.
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Figure 8.1: Missing mass after finding the Ds tag, Ks, and electron in Ds → Kseν, from
the 20× Monte Carlo. We keep all events with a MM2 below the line at 0.4 GeV2.
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Figure 8.4: Figure of merit for different flight significance cuts in Ds → Kseν. We only
consider events with aDs tag mass within 1955 MeV and 1985 MeV, since events outside
that region will be dismissed as background in our final fit.
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We make a few additional rejections on potential Kseν events to avoid specific

backgrounds. In particular, we have small but identifiable backgrounds fromDs → KKs

and Ds → KKsπ
0 where the kaon fakes an electron. To deal with these, we treat the

electron track like a kaon and reject the event if it combines with the Ks (or Ks + π0)

to have a Ds mass within 10 MeV of the PDG value.

We also see some background with real electrons, notably in Ds → τν where a fake

Ks gets formed far out in the detector. We eliminate most of these events by requiring

that each π track forming the Ks comes from within 20 cm of the origin. This cut also

removes a small, similar background from Ds → ηeν.

We give our full list of Ds → Kseν semileptonic-side requirements below:

• |M recon
Ks

−MPDG
Ks

| < 6.3 MeV

• Ks flight significance > 4.0

• MM2
γν < 400, 000 MeV2 (.40 GeV2)

• Reject if |M recon
KKs

−MPDG
Ds

| < 10 MeV when the electron is treated as a kaon

• If any π0 are found, reject if |M recon
KKsπ0 −MPDG

Ds
| < 10 MeV when the electron is

treated as a kaon

• ρπ0 ≡
√

d2b + z20 < 20 cm for the π from Ks

We obtain a much improved signal relative to background, particularly peaking

background, by making these cuts as seen in Table 8.1. In this table, our “before cuts”

column only uses the Ks mass cut, while the “after cuts” column contains the events

after making the other listed cuts. Figures G.32 (before cuts) and G.33 (after cuts) in

Appendix G further breakdown the modes that produce a peaking background.

After all cuts, we get an efficiency for Ds → Kseν of 30.9% (including theKs branch-

ing ratio). For ease of comparison, we have placed our efficiencies for this and the other

non-η branching ratios in Table 8.13, at the end of the section. Our stated efficien-

cies come from signal Monte Carlo with different Ds production modes; we cover the

systematic uncertainty from this weighting for all modes in Section 10.11.

Ds → Kseν still has some remaining peaking background (true Ds) events from each

of the other semileptonic modes we measure, as well as peaking background from events
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Table 8.1: Truth-tagged breakdown for Ds → Kseν candidates in the 20× ddmix and
5× continuum Monte Carlo, scaled to data size.

Event truth Candidates before cuts Candidates after cuts

True Ds tag, true Ds → Kseν 24.95 23.00
True Ds tag, not Ds → Kseν 162.30 3.05
False Ds tag, true Ds → Kseν 4.35 2.55
False Ds tag, not Ds → Kseν 292.30 62.30

with a fake electron. We correct our Ds → Kseν branching ratio for the semileptonic

background sources by using their faking efficiencies and our measured branching ratios.

Since the non-semileptonic fakes come from more precisely measured Ds decay modes

(primarily through some of the same decay modes that we use for tags), we simply

use a Monte Carlo estimate in their branching ratio correction. We give the individual

components and the overall sum of these corrections in Table 8.2.

Table 8.2: Absolute branching ratio correction and systematic error for B(Ds → Kseν)
from peaking background.

Background mode BR correction

Ds → ηeν (0.0010 ± 0.0005)%
Ds → f0eν (0.0001 ± 0.0001)%
Ds → φeν (0.0014 ± 0.0005)%
Ds → K∗eν (0.0044 ± 0.0011)%
Ds → η′eν (0.0002 ± 0.0002)%

Non-semileptonic (0.0052 ± 0.0011)%

Total Ds → Kseν correction (0.0123 ± 0.0017)%

As in Ds → φeν, we have used our twenty data-sized Monte Carlo samples for an in-

vs.-out test to ensure that our fitting procedure accurately measures the input branching

ratio. Our χ2 of 13.3 over the twenty samples and overall fit-to-truth difference of

0.5σ gives us confidence that our underlying procedure works on this sample size and

background rate (full results in Tables F.3 and F.4 from Appendix F).

We show our Ds → Kseν data fit results in Figure 8.5 for the sum across all Ds

tag modes, with the component fits from each tag mode in Figures G.34 and G.35



89

(Appendix G). We present both the raw branching ratio and our branching ratio after

correcting for peaking background (but before correcting the Monte Carlo efficiency for

systematic biases) in Table 8.3.

mass_modesum_plot_0

Entries  94

Mean     1968

RMS     26.83

 (MeV)
sD

M
1900 1920 1940 1960 1980 2000 2020

E
v

e
n

ts
 /

 6
.5

 M
e

V

0

2

4

6

8

10

12

14

16

18

20

22

mass_modesum_plot_0

Entries  94

Mean     1968

RMS     26.83

Total

 signalν+e+sK

/e
s

, fake K
s

True D

 background
s

False D

+e cuts, all modess after K
sDM
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Table 8.3: Ds → Kseν measurement in the data, including the peaking background
correction from Table 8.2.

Measurement Branching Ratio # Events

Raw fit result (0.186 ± 0.035)% 44.5 ± 8.4
Peaking BG correction (0.012 ± 0.002)% 2.9 ± 0.4

B(Ds → Kseν) (0.173 ± 0.035)% 41.5 ± 8.4

8.3 Ds → K∗eν

Ds → K∗eν has a small branching ratio relative to the other Ds semileptonic modes

considered in this analysis, but it also has a relatively low number of background events.

Our only problematic backgrounds come from Ds → KKπ (e.g. K∗K) when a kaon

fakes an electron and from Ds → φeν when one of the kaons fakes the K∗ pion.

We can deal with most of the kaon-faking-electron background by simply treating

the electron as a kaon and rejecting the event if it combines with the K∗ to form a Ds.

We similarly deal with the φeν background by treating the K∗ daughter pion as a kaon

and rejecting the event if it pairs with the other kaon to form a φ. A missing mass

cut on the event rejects much of the combinatoric background (Figures 8.6 and 8.7),

which would otherwise present the largest remaining challenge to our measurement. As

in Ds → Kseν, our missing 4-vector consists of both the neutrino and the unobserved

D∗
s daughter photon, shifting the missing mass away from zero.
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Figure 8.7: Our figure of merit for different missing mass cut values in Ds → K∗eν. We
only consider signal and background events that have a reasonable Ds mass, between
1955 MeV– 1985 MeV.
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Since our prior cuts remove most of the background, we only need a loose selection

on the K∗ invariant mass, as shown in Figures 8.8 and 8.9. Our figure of merit
(

S2

S+B

)

for the MK∗ cut window plateaus around 100 MeV. We choose to keep all K∗ within

106 MeV, which corresponds to a 5σ mass cut (about 2ΓK∗).
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Figure 8.8: K∗ mass for events that pass Ds, electron, and our other Ds → K∗eν cuts
in the 20× Monte Carlo. Much of our background has a real K∗, so we only obtain
moderate background reduction from a tighter mass cut.
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We list our final Ds → K∗eν cuts below:

• The K∗ daughter kaon’s charge must be opposite to the Ds tag charge

• |M recon
K∗ −MPDG

K∗ | < 106 MeV

• MM2
γν < 450, 000 MeV2 (.45 GeV2)

• Reject if |M recon
KKπ −MPDG

Ds
| < 20 MeV when the electron is treated as a kaon

• Reject if MKK < 1060 MeV when the K∗ daughter pion is treated as a kaon

These cuts remove over half of the peaking background and just under half of the

combinatoric background, as seen in Table 8.4. The “before cuts” column only includes

the K∗ charge requirement and a wide K∗ mass cut of 150 MeV. The “after cuts”

column includes all our listed cuts. Figure G.36 gives the breakdown of our peaking

background before cuts, while Figure G.37 shows the peaking background components

after all our cuts. We get a K∗eν semileptonic-side efficiency after all cuts of 24.1%

(including the K∗ branching ratio).

Table 8.4: Truth-tagged breakdown for Ds → K∗eν candidates in the 20× ddmix and
5× continuum Monte Carlo, scaled to data size.

Event truth Candidates before cuts Candidates after cuts

True Ds tag, true Ds → K∗eν 33.05 30.15
True Ds tag, not Ds → K∗eν 5.35 2.10
False Ds tag, true Ds → K∗eν 10.45 7.50
False Ds tag, not Ds → K∗eν 126.90 58.85

We correct our raw branching ratio result for peaking background from events with

a true Ds. These events come from other semileptonic modes, τν, and Ds decays where

a kaon fakes the electron. As in Ds → Kseν, we use our measured branching ratio for

the semileptonic correction while using the Monte Carlo rates for the non-semileptonic

correction. We show the components of this correction and their sum in Table 8.5.
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Table 8.5: Absolute branching ratio correction and systematic error for B(Ds → K∗eν)
from peaking background.

Background mode BR correction

Ds → Kseν (0.0001 ± 0.0001)%
Ds → f0eν (0.0002 ± 0.0001)%
Ds → φeν (0.0055 ± 0.0012)%
Ds → η′eν (0.0017 ± 0.0007)%

Non-semileptonic (0.0032 ± 0.0010)%

Total Ds → K∗eν correction (0.0107 ± 0.0017)%

Like our other semileptonic measurements, we have used our twenty data-sized

Monte Carlo samples for an in-vs.-out test to ensure that our fitting procedure works

with the signal and background levels in Ds → K∗eν. We placed the results from this

test in Tables F.5 and F.6 from Appendix F.

Figure 8.10 contains the result of our data fits, summed over all Ds tag modes.

Figures G.38 and G.39 in Appendix G show the fits by individual tag modes. We present

our Ds → K∗eν branching ratio measurement before and after peaking background

corrections in Table 8.6.

Table 8.6: Ds → K∗eν measurement in the data, including the peaking background
correction from Table 8.5.

Measurement Branching Ratio # Events

Raw fit result (0.180 ± 0.040)% 33.6 ± 7.5
Peaking BG correction (0.011 ± 0.002)% 2.0 ± 0.3

B(Ds → K∗eν) (0.170 ± 0.040)% 31.6 ± 7.5
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Figure 8.10: Our Ds → K∗eν data fit to the MDs spectrum, after all semileptonic
selections. This fit function represents the sum over the fit functions from each Ds tag
mode.
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8.4 Ds → η′eν

Unlike our other semileptonic modes, where we observe the semileptonic side’s hadron

through its direct decay to two final state particles, we reconstruct the η′ in Ds → η′eν

through its decay to ππη with η → γγ. This gives us two mass constraints, reducing both

our combinatoric and peaking background to very low levels (with signal-to-background

comparable to the much higher statistics φeν mode). The extra constraint allows us to

use minimal rejections on the semileptonic side and maintain a high efficiency.

Although we could use the invariant mass of the η as a constraint, we instead

choose to use the η pull mass, which takes the different errors on each daughter photon

measurement into account. Adding on a comfortable η′ mass cut of 10 MeV, we then

just have the Ds → η′eν cuts

• |ση| < 3.0

• |M recon
η′ −MPDG

η′ | < 10 MeV

As seen in Table 8.7, these cuts give a marginal improvement over our extremely

loose “before cuts,” with a 5.0 pull mass on the η and a 30 MeV mass cut on the η′.

We see a semileptonic-side efficiency for η′eν of 4.0% after cuts, including all branching

ratios.

Table 8.7: Truth-tagged breakdown for Ds → η′eν candidates in the 20× ddmix and 5×
continuum Monte Carlo, scaled to data size.

Event truth Candidates before cuts Candidates after cuts

True Ds tag, true Ds → η′eν 24.60 22.75
True Ds tag, not Ds → η′eν 0.60 0.30
False Ds tag, true Ds → η′eν 3.75 3.10
False Ds tag, not Ds → η′eν 12.40 6.25

What little peaking background we do see (Figure G.40) tends to come fromDs → ηeν,

where the η → πππ0. A photon from the π0 then combines with another shower (like

the D∗
s daughter photon) to make a fake η. This ηeν peaking background contains few

enough events relative to signal that we reject too many true events when we try a di-

rect π0 reconstruction. We instead just do a peaking background subtraction based on
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our ηeν measurement. We’ve given this correction and our smaller peaking background

corrections in Table 8.8.

Table 8.8: Absolute branching ratio correction and systematic error for B(Ds → η′eν)
from peaking background.

Background mode BR correction

Ds → ηeν (0.0065 ± 0.0033)%
Ds → φeν (0.0002 ± 0.0002)%

Non-semileptonic (0.0035 ± 0.0024)%

Total Ds → η′eν correction (0.0102 ± 0.0041)%

Our in-vs.-out Monte Carlo test results for Ds → η′eν can be seen in Section F,

Tables F.7 and F.8.

Figure 8.11 shows our data fits for the sum over all Ds tag modes. We have placed

our individual tag mode fits in Appendix G, Figures G.41 and G.42. Table 8.9 gives our

raw Ds → η′eν measurement and the result after correcting for peaking background.

Table 8.9: Ds → η′eν measurement in the data, including the peaking background cor-
rection from Table 8.8.

Measurement Branching Ratio # Events

Raw fit result (0.646 ± 0.140)% 20.4 ± 4.5
Peaking BG correction (0.010 ± 0.004)% 0.3 ± 0.1

B(Ds → η′eν) (0.636 ± 0.140)% 20.1 ± 4.5
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8.5 Ds → f0eν

Ds decays often contain kaon final states, which makes the f0 → ππ reconstruction mode

for Ds → f0eν fairly clean. Although f0eν has some peaking background from other

semileptonic modes (like Ds → η′eν, η′ → ππγ), most of our peaking background comes

from events with a kaon faking the electron. These events also generally involve another

kaon faking a pion, as the large Vcs ensures that kaons in Ds decays tend to come in

pairs. Due to this double-fake rarity, none of the individual modes with electron faking

occur with significant frequency. Since we can’t simply reconstruct all such modes to

reject the event without hitting our signal through the combinatorics, we instead just

apply a correction using the Monte Carlo expected rates for such fakes.

As shown in Figures 8.12 and 8.13, we have a fairly low background in Ds → f0eν,

so we use a relatively broad mass cut. Other than our standard pion and electron cuts,

our f0eν reconstruction only contains the f0 mass cut:

• |M recon
f0

−MPDG
f0

| < 60 MeV

We take 980 MeV to be the f0 PDG mass.

Table 8.10 shows our peaking and combinatoric background levels compared to our

signal events. Figure G.43 in Appendix G shows the breakdown of our true Ds tag

background, while Table 8.11 has our branching ratio corrections for this peaking back-

ground. Given the uncertainty in B(f0 → ππ), we’ve chosen to quote a result for

Ds → f0eν, f0 → ππ rather than assuming any particular branching ratio.

Table 8.10: Truth-tagged breakdown for Ds → f0eν candidates passing all cuts in the
20× ddmix and 5× continuum Monte Carlo, scaled to data size.

Event truth Passing candidates

True Ds tag, true Ds → f0eν 55.10
True Ds tag, not Ds → f0eν 3.75
False Ds tag, true Ds → f0eν 6.70
False Ds tag, not Ds → f0eν 171.80
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Figure 8.12: f0 mass for events passing Ds and electron cuts in the 20× Monte Carlo.

Table 8.11: Absolute branching ratio correction and systematic error for
B(Ds → f0eν, f0 → ππ) from peaking background.

Background mode BR correction

Ds → φeν (0.0002 ± 0.0001)%
Ds → K∗eν (0.0001 ± 0.0001)%
Ds → η′eν (0.0014 ± 0.0005)%

Non-semileptonic (0.0037 ± 0.0008)%

Total Ds → f0eν, f0 → ππ correction (0.0054 ± 0.0010)%
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Figure 8.13: Figure of merit for different f0 mass cuts in Ds → f0eν, considering only
events with a Ds tag mass within 1955 MeV and 1985 MeV. Since the f0 width has
some uncertainty, a 60 MeV mass cut gives us a good balance between retaining most
of the signal while not allowing too much excess background.
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As with our other modes, we have done an in-vs.-out test for Ds → f0eν using the

twenty Monte Carlo data-sized samples. Tables F.9 and F.10 in Appendix F contain

the results of this comparison.

Figure 8.14 has the summed results of our data fits across all Ds tag modes. Fig-

ures G.44 and G.45 in Appendix G contain the individual tag mode fits. We give our

raw measurement and background corrected branching ratio for Ds → f0eν, f0 → ππ in

Table 8.12.
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lections. This fit function represents the sum over the fit functions from each Ds tag
mode.
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Table 8.12: Ds → f0eν, f0 → ππ measurement in the data, including the peaking back-
ground correction from Table 8.11.

Measurement Branching Ratio # Events

Raw fit result (0.135 ± 0.024)% 43.6 ± 7.8
Peaking BG correction (0.005 ± 0.001)% 1.7 ± 0.3

B(Ds → f0eν, f0 → ππ) (0.130 ± 0.024)% 41.9 ± 7.8

For comparison, we summarize all our Monte Carlo efficiencies, by semileptonic

mode, in Table 8.13. We will later correct these efficiencies through the various effects

in Section 10 (Tables F.20–F.23), leading to the final branching ratios in Table 11.10.

Table 8.13: Semileptonic-side efficiencies for φeν, η′eν, f0eν, Kseν, and K
∗eν, after all

cuts. The first column includes the hadron branching ratios into the efficiency, while the
second column gives the efficiency considering only hadron decays to the reconstruced
decay mode.

Semileptonic Mode εSL εexcl BR
SL

Ds → φeν (13.91 ± 0.18)% (28.33 ± 0.38)%
Ds → Kseν (30.93 ± 0.53)% (45.09 ± 0.77)%
Ds → K∗eν (24.13 ± 0.35)% (36.25 ± 0.53)%
Ds → η′eν (4.02 ± 0.16)% (23.46 ± 0.96)%
Ds → f0eν (21.69 ± 0.34)% (41.72 ± 0.66)%



Chapter 9

Measurement of Ds → ηeν

We find Ds → ηeν events in much the same way as Ds → φeν events: we reconstruct the

Ds tag, the electron, and the semileptonic-side hadron, while ignoring the D∗
s → Dsγ

transition photon or other extra showers in the event. We originally made the choice

to ignore the transition photon in Ds → φeν because of the photon’s low efficiency,

generally low backgrounds in Ds semileptonics, and complications from splitoff show-

ers. We still benefit from leaving the transition photon out of our reconstruction for

Ds → ηeν, but the η → γγ reconstruction has higher backgrounds from both combina-

toric background and splitoff showers that contribute to fake η. The rise in combinatoric

background doesn’t present a huge problem, as we still have a potential sideband sub-

traction and fewer background than signal events in the signal region. Splitoff showers

used in fake η do cause difficulties, however, since true ηeν events can have improperly

reconstructed η with a rate not always well modeled by the Monte Carlo.

With Ds → φeν, we reconstructed the φ but only used it as a consistency check

rather than directly involving it in the fit since false φ didn’t present much of an issue.

For Ds → ηeν, however, false η in background modes become a problem, so we need to

use the η kinematic information directly in our fit. Specifically, we do a two-dimensional

fit to the η pull mass and the Ds mass to determine the number of Ds → ηeν events.

We retain the electron selections and event cuts from Sections 6.1 and 6.2, respectively.

106
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9.1 η Selection

We considered a cut on E9

E25
for the η daughter photons, but we found that the reduction

in background did not compensate for the relative 6% efficiency loss (Figure 9.1). In

general, we have found that our 2D fit to the η pull mass andDs invariant mass separates

signal from background well enough that we can use a fairly loose selection on the η.
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Figure 9.1: The E9

E25
O.K. cut’s effect on the η pull mass distribution. Top: Recon-

structed η spectrum with and without the E9

E25
O.K. cut. Bottom: Normalized η spec-

trum with and without the E9

E25
O.K. cut, showing that the cut doesn’t disproportionally

change the pull mass distribution (slightly lower efficiency for large pull masses).

We make the following selections on the η daughter photons:

• No track matches the shower location
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• No showers may come from hot crystals

• The shower must come from the barrel or the endcap of the calorimeter, not the

transition region in between

• Eγ > 30 MeV

Beyond the individual photon cuts, we also make a simple η selection. We use the η

pull mass instead of the nominal mass to take advantage of the two showers’ uncertainty

information. Our loose pull mass cut of 5.0σ ensures that we have a sideband region

for false η in our eventual 2D fit.

As in Section 8.2 with Ds → Kseν, we have made a cut on the mass of the missing

four vector. This missing mass includes both the neutrino and the D∗
s → Dsγ transition

photon. The soft transition photon’s low energy ensures that the missing mass for

properly reconstructed events stays closer to the neutrino’s missing mass (zero) than

incorrectly reconstructed events. This allows us to cut out most of the combinatoric

background, the majority of fakes from other Ds semileptonic modes (e.g. η′eν, η′ →
π0π0η), and a significant portion of misreconstructed η from true events, as seen in

Figures 9.2 and 9.3.
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Figure 9.3: Our figure of merit for different missing mass cuts in the Ds → ηeν signal
region (within 3σ of a correct Ds mass and η pull mass). The dark dots correspond
to the cuts from this analysis, in which we choose a maximum missing mass cut of
500× 103 MeV2 to err on the side of high efficiency. We have also tried reconstructing
the best D∗

s → Dsγ transition photon when available and incorporating it into the
missing four vector (light dots). However, we don’t see an improvement in our figure
of merit within the Monte Carlo by including the transition photon, and using it would
expose us to potential problems from the modeling of splitoff showers.
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Overall, we require the following cuts on the η beyond those for its daughter photons:

• |ση| < 5.0

• MM2
γν < 500, 000 MeV2 (.50 GeV2)

9.2 Ds → ηeν Reconstruction

9.2.1 Efficiency

As with Ds → φeν (Section 7.2.1), we generated four signal Monte Carlo samples of

250,000 events for each Ds production mode (D+
s D

−
s , D

∗
sDs with prompt Ds → ηeν,

D∗
sDs with D∗

s → Dsγ or D∗
s → Dsπ

0). We give our efficiencies for our wide two-

dimensional fit region (1900 MeV ≤ MDs ≤ 2030 MeV and
∣

∣ση
∣

∣ < 5.0) in Table 9.1.

For comparison, we also provide the efficiency with a tighter η selection (
∣

∣ση
∣

∣ < 3.0) in

Table 9.2. The semileptonic efficiencies include our event missing mass cut, so they’re

slightly smaller than the simple product of the electron and η efficiencies.

Table 9.1: Efficiencies for semileptonic particles in Ds → ηeν, with the η cuts used in
this analysis. The η and semileptonic efficiencies include the η → γγ branching ratio.

Ds production mode ǫe ǫη ǫSL
DsDs 81.7% ± 2.7% 26.8% ± 1.6% 20.7% ± 1.4%

D∗
sDs with D∗

s → (Ds → ηeν) γ 79.9% ± 0.7% 26.4% ± 0.4% 20.7% ± 0.4%
D∗

sDs with D∗
s → (Ds → ηeν) π0 80.7% ± 0.7% 26.5% ± 0.4% 20.7% ± 0.4%

D∗
sDs with prompt Ds → φeν 80.4% ± 0.7% 26.7% ± 0.5% 20.5% ± 0.4%

Weighted signal MC 80.2% ± 0.5% 26.6% ± 0.3% 20.6% ± 0.3%
Generic MC 80.3% ± 0.5% 26.5% ± 0.3% 20.4% ± 0.2%

We have a higher efficiency for electron detection in ηeν than we do in φeν or most

of our other semileptonic modes. This improvement comes from the lower mass of the η,

leading to a higher Q value in Ds → ηeν and fewer of the low efficiency, slow electrons

(Figure 9.4). We also find that the η → γγ efficiency does not have a strong dependence

on the η momentum (Figure 9.5), in contrast to our other semileptonic modes where

slower hadrons have difficult-to-reconstruct charged tracks.
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Table 9.2: Efficiencies for semileptonic particles in Ds → ηeν, with |ση| < 3.0. The
efficiencies include the η → γγ branching ratio.

Ds production mode ǫe ǫη ǫSL
DsDs 81.7% ± 2.7% 25.4% ± 1.5% 19.8% ± 1.4%

D∗
sDs with D∗

s → (Ds → ηeν) γ 79.9% ± 0.7% 24.5% ± 0.4% 19.3% ± 0.3%
D∗

sDs with D∗
s → (Ds → ηeν) π0 80.7% ± 0.7% 24.6% ± 0.4% 19.3% ± 0.3%

D∗
sDs with prompt Ds → φeν 80.4% ± 0.7% 24.9% ± 0.4% 19.2% ± 0.4%

Weighted signal MC 80.2% ± 0.5% 24.7% ± 0.3% 19.3% ± 0.3%
Generic MC 80.3% ± 0.5% 24.7% ± 0.3% 19.1% ± 0.2%

Previous CLEO η studies [71] suggest a correction to the relative η efficiency of

-5.6% with a relative systematic of 5.9%. We have done our own systematic (discussed

in Section 10.6.2 and Appendix C) that does not show a needed correction, although

we get a large, relative systematic error of 7.9%. We use this systematic in our final

results, as it comes from a run environment that more closely matches our own. For

completeness, however, we also include the Ds → ηeν branching ratio when using the

corrected efficiency and smaller η efficiency systematic (final results in Table 9.11).
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9.2.2 Backgrounds

Our event missing mass cut eliminates most of our background combinations from events

other than Ds → ηeν or with incorrect Ds tags (Table 9.3). We can fit the remaining

background combinations fairly well with either a linear background function in the η

pull mass, a linear background in the Ds mass, or both, as described in Section 9.2.3.

Table 9.3: Truth-tagged breakdown for Ds → ηeν candidates in the 20× ddmix and 5×
continuum Monte Carlo, scaled to data size.

Event truth Candidates before cuts Candidates after cuts

True Ds tag, true Ds → ηeν 604.55 499.30
True Ds tag, not Ds → ηeν 109.60 22.20
False Ds tag, true Ds → ηeν 90.80 59.05
False Ds tag, not Ds → ηeν 787.75 198.70

We still have a problem with combinations from true Ds → ηeν events where the

tagged Ds and electron get properly constructed, but where we have an improper η

reconstruction (“volunteer” events). The η can be formed by using a splitoff shower from

one of the tagged Ds tracks or by using the D∗
s daughter transition photon (Figure 9.6).

These misreconstructed η combinations make up 27% of all true Ds tag, true Ds → ηeν

combinations in the Monte Carlo, which can be seen in the difference between the solid

and dotted Ds + ηeν lines in Figure 9.2.

We attempted a best candidate selection on the η, such that each true event only gets

counted once whether it has a volunteer combination or not. However, this shapes our

other false η backgrounds away from a simple linear distribution, and it still requires us

to estimate how many volunteer-only events we have for our efficiency systematic. While

we expect the Monte Carlo to model the volunteer η combinations from a real η photon

paired with the transition photon fairly well, we have found instances (e.g. Ds → φeν)

where the Monte Carlo underestimated the number of splitoff showers. Simply rejecting

all splitoff showers costs us too many true signal events, so we ultimately ran a separate

systematic correction to account for false η pairings with splitoff events.

For our splitoff systematic, we take advantage of CLEO’s large sample of D0 and

D± events from ψ(2S) → DD events at 3770 MeV. In particular, we use D0 → K∗η
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Figure 9.6: Cause of the shower that leads to a false η combination when we have a
correct Ds in an Ds → ηeν event, from our 20× Monte Carlo. These false combinations
account for 27% of our counts in Ds → ηeν events with a valid Ds tag. Our systematic
addresses possible modeling flaws with the data for the three large, light slices (π splitoff,
K splitoff, and K → µν).

decays, which gives us a fairly pure η sample after we do the full event reconstruction.

From this sample, we see how often we get an extra η combination in events with a

correct reconstruction, which tells us the false η rate from splitoff showers (or similar

causes, like K → µν decays from the tag side). We then scale the number of anticipated

splitoff showers from each Ds mode by the rate of extra splitoffs that we observed in

the data from similar D0 modes.

We use four different D0 tags (Kπ, Kππ0, Ksππ, Kπππ), which we link with our

13 Ds tag modes (Table 9.4) to model the possible splitoff opportunities in Ds → ηeν

events. We cut fairly harshly on theD0 to get as clean a sample as possible, requiring the

beam constrained mass to be within 5 MeV of the D0 mass and the ∆E within 20 MeV
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of zero. We then reconstruct K∗ → Kπ from the other tracks, requiring consistent

charges with the D0 tag, good tracks (within 5 cm of z0 and 5 mm of db), and that

particle ID matches the K or π track (L = (σ2π − σ2K) + (Lπ − LK) less than zero for

π, greater than zero for K). We also require that the reconstructed K∗ mass be within

35 MeV of its PDG mass.

Table 9.4: D0 tag modes used to estimate splitoff systematic for Ds modes.

D0 mode Corresponding Ds modes

Kπ
KsK
KKπ

Kππ0

KsKπ
0

KKππ0

πη
ππ0η

πη′, η′ → ππη
ππ0η′, η′ → ππη
πη′, η′ → ργ

Ksππ Cross-check only

Kπππ

KsKsπ
KsK

+ππ
KsK

−ππ
πππ

Once we have a reconstructed D0 tag and a K∗, we ensure that we have a D0 → K∗η

event by requiring that the recoil of the event fall near the η mass (525 MeV to 600 MeV),

as seen in Figures 9.7 and 9.8. We then reconstruct η → γγ with a 5σ pull mass cut

and ensure that we have only properly reconstructed η by cutting tightly (±10 MeV)

on the event’s missing mass with the η included (Figures 9.9 and 9.10).
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Figure 9.9: Full event missing mass, by D0 tag mode for D0 + K∗η in a 20× Monte
Carlo sample. We select η combinations between the vertical lines so that we know we
have only true η, then we see if there are any other splitoff η combinations in the event.
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Figure 9.10: Full event missing mass, by D0 tag mode for D0 +K∗η in the 3770 MeV
data. We select η combinations between the vertical lines to determine true η, then we
see if there are any other splitoff η combinations in the event.
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When we have identified events with a correct η reconstruction, we see how many

proper events have additional η from splitoff showers after dropping the missing mass

requirement. By comparing the extra η from splitoff in Monte Carlo and in data, we can

determine the difference in splitoff rate (Table 9.5). We don’t see a large needed splitoff

correction for η reconstruction with our cuts, mostly because the photons involved have

larger energies where the Monte Carlo models splitoff better. Since our Ds → ηeν fits

still depend somewhat on the Monte Carlo’s splitoff rate, we incorporate these results

in a systematic, as described in Section 10.8.

Table 9.5: Rate of additional η formed using splitoff showers, by D0 mode. The
data/MC splitoff correction error (extra splitoff factor) includes a small systematic from
combinatoric background.

Mode Recon Data % Recon MC %
Truth-tagged Extra

MC % splitoff factor

Kπ (25.9 ± 3.6)% (27.0 ± 0.8)% 27.1% 0.959 ± 0.137
Kππ0 (27.4 ± 2.5)% (29.9 ± 0.5)% 30.0% 0.915 ± 0.085
Ksππ (20.9 ± 6.2)% (34.7 ± 1.6)% 34.6% 0.603 ± 0.181
Kπππ (39.2 ± 3.4)% (38.4 ± 0.7)% 38.7% 1.020 ± 0.089

Integrated (30.1 ± 1.7)% (32.2 ± 0.4)% 32.3% 0.936 ± 0.054

Foregoing any cuts on E9

E25
increases our signal at the expense of some extra splitoff

background. However, the Monte Carlo models the extra rate of background about as

well with no E9

E25
cut as when we do apply an E9

E25
O.K. cut, shown in Table 9.6. For our

full analysis, we simply drop E9

E25
to maximize our signal and use our splitoff systematic

results to correct for the difference in splitoffs between the data and the Monte Carlo.

We also have a small, peaking background from events with a true Ds and a correct

η that aren’t Ds → ηeν events. These events come from Ds → φeν where φ → ηγ,

Ds → η′eν where the η′ decays to a state with no tracks and an η, and events where

a kaon fakes the electron. Most such peaking background get rejected by our event

missing mass cut, but we use our measured Ds → φeν and Ds → η′eν branching factions

to correct the remainder. We give the resultant correction to our Ds → ηeν branching

ratio from these corrections in Table 9.7.
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Table 9.6: Rate of additional η formed with splitoff showers after applying an E9

E25
cut,

by D0 mode. The data/MC splitoff correction error (extra splitoff factor) includes a
small systematic from combinatoric background.

Mode Recon Data % Recon MC %
Truth-tagged Extra

MC % splitoff factor

Kπ (10.9 ± 2.8)% (10.6 ± 0.6)% 10.7% 1.033 ± 0.266
Kππ0 (13.3 ± 2.1)% (12.5 ± 0.4)% 12.5% 1.064 ± 0.169
Ksππ (16.7 ± 6.2)% (13.5 ± 1.3)% 13.8% 1.239 ± 0.476
Kπππ (20.2 ± 3.0)% (16.4 ± 0.5)% 16.5% 1.236 ± 0.186

Integrated (15.1 ± 1.4)% (13.4 ± 0.3)% 13.4% 1.127 ± 0.110

Table 9.7: Absolute branching ratio correction and systematic error for B(Ds → ηeν)
from peaking background.

Background mode BR correction

Ds → φeν (0.0037 ± 0.0011)%
Ds → η′eν (0.0104 ± 0.0029)%

Non-semileptonic (0.0017 ± 0.0008)%

Total Ds → ηeν correction (0.0158 ± 0.0032)%

9.2.3 Fit Procedure

In our other semileptonic modes, we had low background on the semileptonic side.

This let us fit the Ds invariant mass for both our tags and semileptonic events without

worrying about the specific reconstruction of the electron or hadron. Ds → ηeν has

somewhat more background on the semileptonic side due to the relative ease of making

an η. We solve this problem by directly incorporating the η into our fit, doing a 2D fit

to the η pull mass and the tagged Ds mass after getting a good electron.

We find no correlation between the η pull mass and the Ds mass (as expected), so

we can use a simple product of the two distributions for our fit functions. This allows

us to reapply the Ds mass signal lineshape that we determined previously from our tag

fits for each Ds mode. We then generate a truth tagged η lineshape with our cuts in

the Monte Carlo, which we take to be the η signal distribution.

We use a linear background for combinations with a false η or a false Ds. We
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determine a normalized slope for the η background and for the background in each of

the Ds modes by fitting their 1D background projections in the Monte Carlo.

As in Ds → φeν, we do an unbinned, extended maximum likelihood fit over each

Ds tag mode, with the fits linked by a common branching ratio parameter. However,

instead of one background normalization for each tag mode due to false Ds, we now

have the possibility of a false η, a false Ds, or both.

We don’t require an extra parameter for combinations with a false η and true Ds

as we determine their rate by one of two methods. The larger component of false η,

true Ds combinations comes from volunteer (true) events, where the reconstructed η

contains a splitoff shower or the D∗
s transition photon. We use our splitoff study to

estimate the splitoff combination rate, and we use the Monte Carlo for the transition

photon combination rate (which only involves kinematics). We then tie both to the rate

for correctly reconstructed, true events (the branching ratio).

The smaller component of false η, true Ds combinations come from events that do

not have a Ds → ηeν. The majority of these combinations arise from other Ds semilep-

tonic modes, where either splitoff showers combine with a real η shower or where the

semileptonic hadron decays to multiple π0. We determine the rate of such combinations

from the Monte Carlo and correct that rate using our measured branching ratio for each

of those Ds semileptonic modes. We have a small remaining component (half an event)

expected from all other sources; we use the Monte Carlo rate for such combinations.

This leaves 13 parameters (one per tag mode) for false Ds combinations with a

true η. Similarly, we have another 13 parameters for combinatoric background (false

Ds, false η), one per tag mode. We have a total of 1 signal parameter (the common

branching ratio) and 26 background parameters in our fit.

Our log likelihood function to be minimized is given by
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F(B, ~NBG, ~KBG) ≡ − lnL(B, ~NBG, ~KBG)

= B · εSL ·
[

13
∑

i=1

N i
tag · (1 + ri)

]

+ ǫ!ηeν ·
[

13
∑

i=1

N
[j]
tag

]

+

[

13
∑

i=1

N i
BG

]

+

[

13
∑

i=1

Ki
BG

]

−
∑

mj

lnF (mj , σ
[j]
η ),

where

F (mj , σ
[j]
η ) ≡ B · εSL ·N [j]

tag · f
[j]
sig(mj) · gsig(σ[j]η )

+ B · εSL ·N [j]
tag · f

[j]
sig(mj) · gBG(σ

[j]
η ) · r[j]

+ ǫ!ηeν ·N [j]
tag · f

[j]
sig(mj) · gBG(σ

[j]
η )

+N
[j]
BG · f [j]BG(mj) · gsig(σ[j]η )

+K
[j]
BG · f [j]BG(mj) · gBG(σ

[j]
η ).

Here, B is the Ds → ηeν branching ratio, εSL is our ηeν efficiency, ri is the total

rate of false η from splitoff and transition photon combinations for Ds tag mode i,

ǫ!ηeν is the total rate for false η combinations from all non-ηeν sources, ~NBG is the

background normalization for false Ds/true η events (one per tag mode), and ~KBG is

the combinatoric background. [j] refers to the tag mode associated with the Ds mass,

mj . Our distributions are given by f isig for the normalized signal mass distribution of

true Ds with tag mode i, f iBG for the normalized, linear background function from false

Ds of tag mode i, gsig for the normalized pull mass distribution from true η, and gBG

for the normalized, linear background function from false η.

In F , the first term corresponds to the number of signal Ds → ηeν events. The

second term (with ri) gives the extra false η combinations formed from true events,

while the third term gives false η combinations from other sources. The fourth and fifth



126

terms combine to form the total background from false Ds tags. The last, log term gives

the sum over the distributions for each of the different signal and background sources,

explicitly stated in the definition of F (mj , σ
[j]
η ).

9.3 Results

Unlike the other semileptonic modes where our statistical errors dominate, ourDs → ηeν

measurement has comparable levels of statistical and systematic error. The difficulty

of obtaining a clean and comparable sample for the η efficiency drives the systematic

error, so we have included that systematic (described with more detail in Section 10.6.2)

in the following results. Section 11.2 contains the final result with our additional, less

dominant systematic errors from Section 10.

9.3.1 Monte Carlo

We first break our 20× Monte Carlo into twenty data-sized samples to test our analysis

technique with a limited statistics data set. Our comparison across these data-sized

samples, given in Tables 9.8 and 9.9, show that our analysis reproduces the generating

Ds → ηeν branching ratio and number of signal events to within statistical error (χ2 of

26.9 over 20 samples).
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Table 9.8: Monte Carlo comparison of the measured Ds → ηeν branching ratio to its
generating branching ratio (2.480%), in data-sized samples. The weighted average line
contains the χ2 across the 20 samples rather than the number of σ between the mea-
sured/generated branching ratios.

Dataset Raw fit BR Corrected BR # σ

1 (2.712 ± 0.132)% (2.692 ± 0.132)% 1.60
2 (2.423 ± 0.124)% (2.404 ± 0.124)% −0.62
3 (2.251 ± 0.119)% (2.231 ± 0.119)% −2.09
4 (2.602 ± 0.128)% (2.583 ± 0.128)% 0.80
5 (2.313 ± 0.122)% (2.293 ± 0.122)% −1.53
6 (2.588 ± 0.125)% (2.568 ± 0.125)% 0.70
7 (2.485 ± 0.122)% (2.465 ± 0.122)% −0.12
8 (2.492 ± 0.124)% (2.473 ± 0.124)% −0.06
9 (2.321 ± 0.113)% (2.301 ± 0.113)% −1.58
10 (2.263 ± 0.121)% (2.243 ± 0.121)% −1.97
11 (2.530 ± 0.125)% (2.511 ± 0.126)% 0.25
12 (2.384 ± 0.123)% (2.364 ± 0.123)% −0.94
13 (2.511 ± 0.123)% (2.491 ± 0.123)% 0.09
14 (2.480 ± 0.124)% (2.460 ± 0.124)% −0.16
15 (2.365 ± 0.122)% (2.346 ± 0.122)% −1.10
16 (2.758 ± 0.131)% (2.738 ± 0.131)% 1.98
17 (2.539 ± 0.123)% (2.519 ± 0.123)% 0.32
18 (2.354 ± 0.121)% (2.335 ± 0.121)% −1.20
19 (2.343 ± 0.120)% (2.323 ± 0.120)% −1.31
20 (2.569 ± 0.125)% (2.549 ± 0.125)% 0.55

Weighted averages/χ2 (2.457 ± 0.028)% (2.437 ± 0.028)% 26.87
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Table 9.9: Test of potential bias in our fitting procedure for Ds → ηeν by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset N truth-tagged
SL+tag Nfit

SL+tag Difference (# σ)

1 369 382.00 ± 22.30 0.583
2 369 354.60 ± 21.61 −0.666
3 350 334.04 ± 21.13 −0.755
4 397 382.58 ± 22.38 −0.644
5 343 334.00 ± 21.03 −0.428
6 373 372.55 ± 21.62 −0.021
7 367 364.06 ± 21.34 −0.138
8 348 368.40 ± 21.82 0.935
9 324 333.11 ± 19.36 0.471
10 369 332.66 ± 21.24 −1.711
11 369 361.51 ± 21.47 −0.349
12 348 346.87 ± 21.35 −0.053
13 374 371.25 ± 21.68 −0.127
14 380 372.84 ± 22.19 −0.323
15 361 339.79 ± 20.99 −1.011
16 370 392.65 ± 22.23 1.019
17 390 371.83 ± 21.54 −0.844
18 350 346.62 ± 21.28 −0.159
19 348 349.24 ± 21.32 0.058
20 377 373.66 ± 21.68 −0.154

Sum 7276 7184.27 ± 96.09 −0.955

Figure 9.11 shows the 1D projections of our 2D fit to the Ds invariant mass and

η pull mass in the Monte Carlo, after summing over all twenty datasets and each tag

mode. We have also added the 1D projections of our Monte Carlo results for the four

highest statistics tag modes (summed over all twenty datasets) and for the first four

datasets (summed over all tag modes) in Figures G.48–G.52 from Appendix G.



129

 (MeV)
s

D
M

1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

 M
e

V

0

200

400

600

800

1000

All recon

νeη + !sD

νeη + s!D

νeη + sD

νeη + !s!D

 for full MC, all modes
sDM

ησ
-4 -2 0 2 4

σ
C

o
u

n
ts

 /
 0

.2
5

 

0

100

200

300

400

500

600

700

800

 for full MC, all modes
η

σ

Figure 9.11: Ds → ηeν 2D fit projections for the reconstructed Ds mass (top) and η
pull mass (bottom) in the 20× Monte Carlo, summing over all tag modes.
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9.3.2 Data

Table 9.10 contains our Ds → ηeν branching ratio with statistical error after we correct

for true Ds, true η feedthrough from other semileptonic modes. Figure 9.12 shows the

projections of our reconstruction and fit along the Ds invariant mass and the η pull

mass.

Table 9.10: Ds → ηeν measurement in the data, including the peaking background
correction from Table 9.7.

Measurement Branching Ratio # Events

Raw fit result (2.265 ± 0.136)% 360.7 ± 21.9
Peaking BG correction (0.016 ± 0.003)% 2.5 ± 0.5

B(Ds → ηeν) (2.249 ± 0.136)% 358.2 ± 21.9

As the η efficiency systematic (Section 10.6.2) dominates our error for Ds → ηeν (a

relative 7.9% systematic versus a relative 6.0% statistical error), we show the branching

ratio with just that systematic error added in Table 9.11. For comparison, we’ve also in-

cluded the Ds → ηeν result when using the standard CLEO η efficiency systematic [71].

That analysis uses different η selections and has a cleaner environment (ψ′ → ηJ/ψ),

extrapolating the systematic on their monoenergetic η from a π0 study. They saw a

relative systematic error of 5.9% with a relative efficiency correction of -5.6%. Although

we feel that the standard systematic provides a viable alternative, we have chosen to

use our own systematic for the final result, believing that we gain improved accuracy

at the expense of finer precision.

Table 9.11: Ds → ηeν branching ratio and errors under both η efficiency systematic
scenarios.

η efficiency systematic Ds → ηeν branching ratio

This analysis (2.249 ± 0.136 ± 0.179)%
Alternate systematic (2.375 ± 0.143 ± 0.134)%
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Chapter 10

Systematic Uncertainties

Our main limit on measurement precision in Ds semileptonic decays with our sample

comes from the amount of available data. However, all six of our semileptonic modes

have non-trivial errors of the “how well do we know what we know” variety, which we

have determined and enumerated to the best of our abilities in this chapter.

10.1 Ds Tagging

We have a variety of possible systematic effects that could cause a mismatch between

the Monte Carlo efficiency and the true efficiency for reconstructing Ds tags, like our

recoil mass resolution or resonant substructure (e.g. KKπ can come from φπ, K∗K,

or be nonresonant). However, by using the Ds invariant mass for both the numerator

and denominator of our branching ratios, the effect of any such errors in our tagging

efficiency cancels out. We only have to worry about systematic effects that create

different biases in our tag counting than in our semileptonic fits.

10.1.1 Signal Shape Variation

Our Ds tag fits have either a double gaussian or a gaussian plus crystal ball for their

signal components, as mentioned in Section 5.4 (Table 5.4). We use this same shape

for both the number of tags (our branching ratio denominator) and the number of

semileptonic counts (our numerator), so we don’t expect our result to depend strongly

on minor errors with our lineshape. However, we do see far more background relative

132
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to signal for our tag counts than for our semileptonic counts, so we could have some

bias due to a wider than expected signal looking like background in our tag fits.

We allow our Ds mass signal shape’s overall normalization, mean, and overall width

to vary when we do the tag counts, so we should expect no bias between the data and

Monte Carlo from those parameters. However, we use the sum of two shapes for our

signal functions, and we fixed the relative normalization and relative width between

them using our predicted (Monte Carlo) histograms. While leaving the overall width

to float deals with most MDs resolution issues, we can tell a story about the poorer

quality tracks having a worse than expected resolution while the high quality tracks

match well, or one where we have more poor quality tracks than the Monte Carlo

expects. The relative width or normalization, respectively, would then need to adjust

to properly match the true signal shape in data.

Our tagged Ds backgrounds make it impractical to simply allow the relative width

or normalization to float, so we need to look elsewhere to study any potential biases

between the Monte Carlo and data. Since the D± has similar decay modes to the Ds

(often with just a K to π conversion), we look at that system to study our tag signal

shapes. While probably overkill, we wanted to keep the procedure as close to our Ds

tagging as possible, so we use DD∗ events at 4170 MeV instead of moving to the high

data running at 3770 MeV. This costs us some precision (and generates much more

work), but it allows us to use a similar choice of a best recoil mass to protect us from

the (unlikely) possibility that a best choice somehow biases the track quality in a way

not predicted from the Monte Carlo.

We use seven different D± tag modes, each of which corresponds to one or more Ds

tag modes (Table 10.1). We reconstruct the D± tags with the same daughter particle

cuts as listed in Section 5.1 for the Ds. Our best recoil mass selection for each charge

now takes the D± with a recoil mass closest to the D∗+ mass instead of the recoil mass

closest to a D∗
s .

We fit each MD± spectrum with our analogous Ds signal function (double gaussian

or gaussian plus crystal ball), fixing the relative normalization and relative width to the

Monte Carlo signal. Then, we fit the MD± spectrum in data with the relative normal-

ization or relative width allowed to float. We treat the ratio between the data’s relative

normalization (or width) and the Monte Carlo’s relative normalization (or width) as
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Table 10.1: D± tag mode used for each Ds mode’s relative normalization and relative
width systematics.

D± mode Corresponding Ds modes

Kππ πππ

Ksππ
0 KsKπ

0

πη′, η′ → ππη

Kπππ0
KKππ0

πη

Ksπ KsKsπ

KsK
KsK

KsK
+ππ

KsK
−ππ

KKπ KKπ

ππ0π0
ππ0η

ππ0η′, η′ → ππη
πη′, η′ → ργ

our 1σ systematic variation.

Once we have the systematic variation on the relative normalizations or widths, we

redo the Ds semileptonic analyses with our rescaled values. We show the systematic on

our semileptonic branching ratios for each mode in Table 10.2.

Table 10.2: Systematic errors from our Ds tag fits.

Semileptonic mode Tag statistics Fit shape, N2

N1
Fit shape, σ2

σ1
Total systematic

φeν 1.0% 1.5% 0.3% 1.8%
ηeν 1.0% 1.9% 0.7% 2.2%
η′eν 1.3% 1.6% 0.3% 2.1%
f0eν 1.0% 1.2% 0.3% 1.6%
Kseν 0.9% 1.3% 1.5% 2.2%
K∗eν 1.2% 0.5% 2.7% 3.0%

Table 10.2 also gives the branching ratio systematic from the statistical uncertainty

in our Ds tag count measurements. Since the tag counts for each mode provide an

explicit weighting in our linked semileptonic fits, we can’t simply add their errors in
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quadrature with the numerator errors. Instead, we follow each statistical variation

through the entire process and add the final results from each tag mode’s fluctuations

in quadrature. Whether this error should be considered statistical in nature because

it arises from underlying statistics on the tagging or systematic in nature because it

creates a bias in our numerator fits’ weights is a matter of philosophy; we include it

here as it has more in common with our tagging systematics than with our semileptonic

measurements.

10.1.2 Background Functions

We approximate the combinatoric backgrounds on our Ds tag fits with either a linear

or quadratic background function, depending on the tag mode (Table 5.4). This gives

us some flexibility in case the data has slightly different combinatorics than predicted

by the Monte Carlo, but it may give the background too much freedom to add or steal

counts from our signal (particularly the quadratic backgrounds).

To estimate our systematic error from our choice of background function, we also fit

using a one parameter background histogram with our signal function. Our background

histogram includes both a charm and a continuum component, which we simply fix to

the Monte Carlo expectation so that we only have one free background parameter.

The histogram background fits give us roughly the same tagging results as our normal

procedure, with a relative difference in total Ds counts of less than 1%. However, since

each mode’s tag counts also act as a weighing function for our semileptonic fits, we

follow the changes through the entire procedure to our branching ratio. After adding the

branching ratio variation from each tag mode’s background histogram fit in quadrature,

we obtain the systematic errors shown in Table 10.3.

10.1.3 Multiple Candidate Choice

In our Ds tag selection, we make a best candidate choice based on the Ds recoil mass.

When multiple candidates exist in the event, this selection can occasionally cause us to

throw out the proper tag and instead choose the extra candidate (with a non-peaking

Ds mass). The multiple candidate rate when the other side Ds decays semileptoni-

cally differs slightly from when it decays generically, creating a slight bias between tags
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Table 10.3: Systematic errors from our Ds tag background shape.

Semileptonic mode Relative systematic error

φeν 1.3%
ηeν 0.9%
η′eν 1.3%
f0eν 0.8%
Kseν 0.9%
K∗eν 2.1%

in semileptonic events and tags without a semileptonic event. The Ds tags’ multiple

candidate efficiency comes primarily from kinematics and differences in charged/neutral

daughter hadron decay rates, both of which should be well modeled by the Monte Carlo.

We determine the systematic shown in Table 10.4 by combining the tag multiple can-

didate efficiency, each semileptonic mode’s branching ratio, and the small difference in

multiple candidate efficiency for the semileptonic mode compared to the overall multiple

candidate efficiency.

Table 10.4: Relative systematic error from the multiple candidate efficiency difference
between semileptonic and all other Ds decay modes.

Semileptonic mode Relative systematic

Ds → φeν 0.11%
Ds → ηeν 1.67%
Ds → η′eν 0.21%
Ds → f0eν 2.20%
Ds → Kseν 3.05%
Ds → K∗eν 0.28%
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10.2 Tracking

10.2.1 Reconstruction

Our semileptonic hadron reconstruction efficiencies in Section 10.6 depend in part upon

the reconstruction efficiency for their daughter pion and kaon tracks. CLEO has per-

formed tracking systematics for π and K reconstruction using the baseline track selec-

tions that we also adopt for our Ds tagging [72]. They see no correction needed between

the Monte Carlo and data track reconstruction efficiencies, with a 0.3% systematic on

π tracks and a 0.6% systematic on kaon tracks.

The standard CLEO systematic analysis works for our typical π reconstruction,

used in f0eν, K
∗eν, and η′eν. However, the K systematic does not carry over to our

analysis for a couple reasons. The 0.6% kaon reconstruction systematic depends on a

momentum distribution peaking near 500 MeV, while we have a much softer momentum

distribution with a peak closer to 250 MeV in Ds → φeν. This alone might be dealt

with using CLEO’s kaon systematic broken into momentum bins, but we also loosen

the kaon cuts for both φ and K∗ reconstruction to increase the efficiency.

To this end, we have performed our own kaon systematic with the track selections

used in this analysis and a momentum binning that better follows the kaon momentum

distribution in our events. Since the standard CLEO particle ID cuts also differ from

our own, we have combined both the kaon track reconstruction and kaon particle ID

into one study, given in Appendix D. We find that the Monte Carlo does a good job of

modeling higher momentum kaon tracks but that it overestimates the efficiency for low

momentum tracks. CLEO’s particle ID study [73] also found a large correction required

at low kaon momenta, with our work matching those results.

We incorporate the π tracking systematic and the kaon systematics from Appendix D

into our overall hadron efficiency systematic in Section 10.6.

10.2.2 π and K Particle ID

CLEO has performed a systematic study for the data/Monte Carlo efficiency difference

in its standard π and K particle ID selections [73] using D0 and D+ decay modes in

the 3770 MeV data. While we have a customized kaon systematic for our looser cuts

(Appendix D), we do follow the standard cuts for pions in K∗, η′, and f0.



138

The standard study sees a systematic error of 0.02% for pions with an efficiency

correction that has a strong momentum dependence. We correct each mode’s particle ID

efficiency based on that mode’s pion momenta. Our f0 and K∗ pions have an efficiency

correction close to the average from the original study (−0.49% per pion), but our slower

η′ pions give us a slightly larger correction. We’ve summarized the integrated corrections

and systematics for these three modes from all constituent particles in Section 10.6.4.

10.3 Photon reconstruction

We only reconstruct photons for use in our Ds tags and in our η modes (ηeν, η′eν). In

the case of the Ds tags, our reconstruction efficiency doesn’t impact our branching ratio

measurements, as mentioned in Section 10.1. We also don’t need to make an explicit

photon reconstruction systematic for the η since we roll both daughter photon efficiencies

into our overall η systematic (described later in Section 10.6.2 and in Appendix C).

10.4 Electron ID

Electron systematic errors have a strong momentum dependence due both to direct

particle identification and to changes in the electron identification efficiency when in

the presence of other tracks and showers [74]. While the systematic from direct electron

identification dominates, we have also included the non-trivial environmental effects

(following the D+ → Xe+ν procedure). Each semileptonic mode has a distinct electron

momentum distribution, causing each mode to have its own electron systematic.

Table 10.5 gives our final electron identification systematics and efficiency corrections

after integrating over momentum and combining each systematic effect. We’ve included

the different components for these systematics and corrections in Tables F.12 and F.13

(Appendix F).

10.4.1 Wrong Sign Electron

Any peaking background in our six semileptonic modes requires that we have a true Ds

and that some track passes the electron cut. We explicitly correct each semileptonic

mode for peaking background due to other semileptonic modes, which leaves a small
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Table 10.5: Electron particle identification systematic and efficiency correction, by semi-
leptonic mode.

Semileptonic mode Electron PID systematic Electron PID correction

φeν 0.68% -1.91%
ηeν 0.37% -1.24%
η′eν 0.59% -1.71%
f0eν 0.59% -1.69%
Kseν 0.38% -1.24%
K∗eν 0.60% -1.69%

peaking component from events with no direct electrons. Some of our modes (Kseν,

K∗eν) have problems with kaon tracks faking electron tracks, which we deal with by

applying a missing mass cut. After correcting for events with a direct electron and those

where another track fakes an electron, we only have to worry about real electrons that

get produced indirectly, like through photon interactions in the detector.

Since these indirect electrons don’t have a preferred sign, we can test the impact of

such events by reconstructing the entire event with the required electron sign flipped

(matching the Ds tag charge instead of the semileptonic Ds charge). We compare our

expected numbers of wrong sign electron events from the Monte Carlo to our recon-

structed wrong sign events in the data to see if we have an inconsistency.

We find very few wrong sign electron events in the data, with fit errors higher than

the number of reconstructed events in each case. As Table 10.6 shows, this consistency

with zero events matches our prediction from the Monte Carlo. Only Ds → f0eν even

had a single measured wrong sign event in the data, and this mode also (not coinciden-

tally) had the highest background from false Ds.

The predicted indirect electron events already have a statistical error from our Monte

Carlo determined correction. We take no additional systematic for the Monte Carlo’s

modeling of such events.



140

Table 10.6: Passing events with a good Ds when reconstructing each semileptonic mode
using an electron of the wrong charge. Our errors for the reconstructed events in each
mode slightly exceed that mode’s counts (all six modes are consistent with zero).

Semileptonic mode Expected data events (from MC) Actual data events

φeν 0.1 0.0
ηeν 0.2 0.7
η′eν 0.0 0.0
f0eν 0.2 1.1
Kseν 0.1 0.1
K∗eν 0.1 0.1

10.5 Monte Carlo Consistency

CLEO collected the 4170 MeV data over five data sets, which correspond to roughly two

calendar time periods. The Monte Carlo generation reflects this separation in time, as

datasets 39-41 use a different code release from datasets 47 and 48. While we expect no

noticeable impact from the different generating time periods on our efficiencies, CLEO

regularly tweaked its code to improve the accuracy between data and Monte Carlo. We

have thus checked the generic Monte Carlo efficiencies for our six semileptonic modes

across each dataset, as well as checking our signal Monte Carlo against the generic

Monte Carlo (Figure 10.1).

The fluctuation across datasets and signal Monte Carlo for Ds → ηeν pushed the

limits of random variation. This, combined with a different run environment and η mo-

mentum range than in the standard CLEO η efficiency systematic, led to our performing

a custom η systematic that we discuss in Appendix C.

We also find a discrepancy in the Ds → Kseν efficiency between our signal Monte

Carlo and the generic Monte Carlo. We traced this to a random 3σ fluctuation between

the two in B(Ks → π+π−). When we change our denominator to only consider events

where the Ks decays to charged pions, this efficiency discrepancy disappears.

We do not take any systematic to our efficiency from internal Monte Carlo incon-

sistency for the other semileptonic modes, as the efficiencies in the signal Monte Carlo

and across the five datasets falls within a reasonable distribution around the average.
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Figure 10.1: Efficiency (including hadron branching ratios) for each semileptonic mode,
by dataset. The solid lines give the average across the full generic Monte Carlo sample,
while the dotted lines show the 1σ range on this average.

10.6 Hadron Efficiencies

10.6.1 φ

We have two sources of possible systematic error to consider for our Monte Carlo de-

termined φ efficiency. The largest concern comes from the kaon reconstruction and

particle ID efficiencies, discussed in Appendix D, which requires both a systematic error

and an efficiency correction. The other possible systematic arises from the possibility

that the combined kaon tracks in the data could have a broader invariant mass distri-

bution (poorer resolution) than predicted by the Monte Carlo, extending part of the φ

distribution beyond our mass window.
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Our kaon reconstruction and identification efficiency measurement shows that we

tend to properly reconstruct soft kaons in the Monte Carlo more often than we actually

do in the data. Since the two daughter kaons from the φ have correlated momenta, we

need to correct our φ efficiencies based on each kaon momentum pair. Figure 10.2 shows

the result of our φ efficiency correction, by momentum. For the predicted φ momentum

distribution from Ds → φeν in the Monte Carlo (ISGW2 model), this results in a φeν

semileptonic efficiency change of -8.2% (relative).
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Figure 10.2: Top: φ efficiency in the Monte Carlo, by momentum, before and after
correcting the efficiency based on the kaon systematic study in Appendix D. Bottom:
Ds → φeν semileptonic efficiency, by φ momentum, before and after correction.

We additionally obtain two systematic errors from our kaon reconstruction study in
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Appendix D. The first comes about directly from our measurement limitations on the

kaon efficiency in each momentum bin. We treat the individual kaon systematics as

correlated and obtain a relative systematic error of 1.7% for φeν given our φ momen-

tum distribution. The second systematic results from the process of splitting the kaon

momenta into bins in the first place, given that each bin may not have a constant effi-

ciency. Considering different efficiency distributions across the bins gives us a relative

systematic error of 0.5%.

In addition to finding and correctly identifying the kaons, they also have to combine

to form a φ mass that falls within our cut window (−15 MeV < M recon
φ −MPDG

φ <

30 MeV). Since our mass window already captures most of the φ spectrum, we don’t

expect any resolution difference to significantly affect our efficiency. We explicitly test

this by assuming that the data φ could peak in a slightly different location (a shift)

and by taking the data resolution to have a gaussian smear convoluted with the Monte

Carlo resolution.

We don’t have enough data to test the φ resolution explicitly in our taggedDs → φeν

analysis, so we instead use an inclusive approach by plotting the KK spectrum when

we find an electron in the event (no Ds tagging). We use our standard Ds → φeν kaon

cuts but to avoid electron-only events (e.g. ee→ eeee, where two electrons fake kaons),

we also require that the kaons not pass electron cuts and that the tracks not be too

close to the beamline (| cos(θ)| < 0.8). We have redone the systematic relaxing these

additional kaon restrictions with a similar result, but we get less precision due to the

extra background.

We use the Monte Carlo signal and background functions to fit our data spectrum,

allowing the signal to shift or have a poorer resolution from a gaussian smear. Figure 10.3

shows our best fit to the data (a peak shift of −0.05 MeV and smear with a σ of 0.1 MeV)

alongside the fit with no shift or smear allowed. Not only do we obtain a small relative

systematic of 0.025% from the φ resolution over our large window, but we find that the

Monte Carlo matches the data well enough that we’d see a small systematic even with

a tighter mass window. We also show more detailed fit results for our different shifts

and smears with Figures G.46 and G.47 in Appendix G.
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Figure 10.3: Top: φ mass fit in the data, using the signal and background produced in
the Monte Carlo. Bottom: Best φ mass fit in the data after allowing the signal Monte
Carlo histogram to shift its peak and convoluting it with variable width gaussians.
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10.6.2 η

The best existing study of η efficiency systematics at CLEO [71] uses a 3σ pull mass

cut in its η selection, compared to the 5σ cut we use in this analysis. That study also

uses monoenergetic η from ψ′ → ηJ/ψ with a relatively soft η momentum of 199 MeV.

Ds → ηeν involves a much wider η momentum spectrum, as seen in Figure 9.4, which

gives us a much wider range of resultant photon energies. Furthermore, ψ′ → ηJ/ψ

with J/ψ → µ+µ− produces a cleaner environment (fewer photons and poorly tracked

hadrons) than the environment we see in D∗
sDs events.

For these reasons, we have decided to do our own η efficiency systematic study. This

results in worse precision on our systematic than the high statistics ψ′ study, but we

feel that it more accurately represents the η selections and environment in our analysis.

Our η efficiency systematic uses the same Ds tag modes as our standard analysis,

but it takes advantage of the relatively large D±
s → ρ±η branching ratio to get a clean

η sample. We have described our full efficiency systematic technique and results in

Appendix C.

Unlike the previous study of η efficiency systematics at CLEO, we do not find that

we need a Monte Carlo correction to match the data. That study suggested a relative

correction of -5.6% to the η efficiency for η without an E9

E25
O.K. cut (-6.5% for those with

an E9

E25
O.K. cut). In our study, with a broader pull mass cut and wider η momentum

range, we find that the data and Monte Carlo agree to within 1.2%. This falls well

within the precision of our study, so we take no efficiency correction.

Our systematic procedure has the downside of requiring a large systematic error

given the statistical error in our ηeν measurement. While the previous η study had a

relative 5.9% efficiency systematic after extrapolating to a wider momentum region, our

η systematic procedure yields a 7.9% relative systematic. This makes it a limiting error

in our overall Ds → ηeν measurement.

10.6.3 Ks

The standard CLEO systematic study on Ks reconstruction [75] shows no efficiency

difference between Monte Carlo and data up to 0.8%, as long as both daughter π tracks

have been found. However, our backgrounds in Ds → Kseν lead us to make tighter
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selections on the Ks than the prior study. While they used a 12 MeV mass cut with

no flight significance selection for the Ks, we use a 6.3 MeV mass cut and a flight

significance greater than 4.0. Furthermore, we require that the Ks daughter tracks fall

within 20 cm of the origin to avoid τν backgrounds, which the generic Ks study did not

have to concern itself with.

Since our selections lead to a significantly different efficiency than the loose cuts from

the standard study (a relative difference of about 30%), we have run our own systematic

for Ks reconstruction. The low statistics in our Ds → Kseν measurement mean that

we can have a fairly forgiving precision from our Ks systematic without impacting

our overall error. We consequently try to keep our systematic study’s environment as

close to Ds → Kseν as possible by using tagged D∗
sDs decays (4170 MeV data) in our

systematic measurement rather than the higher statistics 3770 MeV data.

We compared the Ks momentum spectrum in Ds → Kseν to that from several other

Ks modes, and we ultimately chose Ds → KsK for our systematic above 650 MeV and

Ds → K∗K∗ (D±
s → KsK

∓π±π±) for our lower momentum systematic (Figure 10.4).

We use a procedure similar to that for our kaon systematic (Appendix D) by recon-

structing all particles other than the Ks, then fitting the recoil mass both when we

successfully reconstruct a Ks (“found” events) and when we don’t find a Ks (“not

found” events). Rather than trust that the general π tracking systematic applies for Ks

daughter tracks, we combine our track and Ks reconstruction into one systematic (i.e.

we don’t require two extra tracks before looking for candidate Ks events).

In reconstructing all other particles in the event, we need to find a Ds tag, the

D∗
s daughter photon, and either a single kaon (for KsK) or a kaon and two pions (for

K∗K∗). Our Ds tag involves the same 13 tag modes as our full analysis, with selections

given in Section 5. For a cleaner sample, we also add a mass cut to the Ds, with each

tag mode’s cut listed in Table F.11 (Appendix F).

We use the selections from Section 9.1 for our D∗
s daughter photons, excepting

the minimum energy cut (irrelevant here). After ensuring that the Ds + γ recoil mass

matches aDs (Mrecoil between 1950 MeV and 1990 MeV), we improve the later resolution

slightly by rescaling our photon energy to match the D∗
sDs kinematic requirement. Our

kaons and non-Ks pions must have the proper charges relative to the tagged Ds and

pass the selections from Section 8.1. We also require pπ > 100 MeV to eliminate soft
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Figure 10.4: Normalized Ks momentum distributions in Ds decays to Kseν, KsK, and
K∗K∗ (KsK

∓π±π±). We use KsK to study Ks reconstruction above 650 MeV and
K∗K∗ to study the systematic below 650 MeV.

pion swaps.

After reconstructing all other particles, we separate candidate events into three

systematic regions based on their recoil momentum: a high momentum Ks region

(650+MeV), a medium pKs region (400 MeV– 650 MeV), and a low pKs region (200 MeV–

400 MeV). We then attempt to reconstruct aKs using the selections from ourDs → Kseν

analysis in Section 8.2 (|M recon
Ks

−MPDG
Ks

| < 6.3 MeV, Ks flight significance > 4.0, and

ρπ0 =
√

d2b + z20 < 20 cm for the π from Ks). We make both a “found” and “not found”

plot for the recoil mass against the Ks candidate in each momentum region.
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We fit each momentum region’s recoil mass plots with a double gaussian for the

signal shape and either a linear background function, a scaled histogram background,

or both depending on the characteristics of each mode (e.g. the KsK “not found” recoil

mass fit requires a Kη background shape; the K∗K∗ requires an extra shape for softly

peaking false D∗
s daughter photons). Figure 10.5 contains the “found” and “not found”

fits for our KsK data, while Figure 10.6 has the “found” and “not found” data fit

results for the two K∗K∗ momentum regions. For completeness, we have also included

the fits from Monte Carlo in Figures G.53 and G.54 as part of our extra figures section

(Appendix G).
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Figure 10.5: Ds + γ +K recoil mass in data KsK events for “found” and “not found”
Ks.

Table 10.7 gives the efficiency results from our various momentum region fits. We
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Figure 10.6: Ds+γ+Kππ recoil mass in data K∗K∗ events for “found” and “not found”
Ks. The top row shows only low momentum Ks while the bottom row gives results in
our medium Ks momentum region, with pKs determined by the recoil momentum.

had decided before the study to take a correction to our Ks efficiency if we found a

2σ or larger difference between data and Monte Carlo, and the high momentum region

just reached this threshold. The lower Ks efficiency in this region comes from the

daughter tracks themselves not being reconstructed properly. When we repeat the

analysis requiring that the event has two candidate Ks tracks (with invariant mass

between 300 MeV–700 MeV and a combined momentum within 60 MeV of the Ks,

following [75]), the difference between data and Monte Carlo disappears (with both

about 80% efficient). We get a final correction to our overall Ks efficiency of -11.1%

after weighting by the Ks momentum distribution in Ds → Kseν.

We base our systematic on the combination of our data precision and the Monte
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Table 10.7: Ks efficiency systematic and correction from our found/not found recoil
mass fits in each momentum region.

pKs region Syst. mode εtrueMC εdata Correction Systematic

200 MeV–400 MeV K∗K∗ 18.5% (17.7 ± 3.7)% — 21.1%
400 MeV–650 MeV K∗K∗ 19.2% (20.6 ± 3.1)% — 15.5%

650+ MeV KsK 23.7% (20.0 ± 1.7)% -15.2% 8.6%

Integrated Combined N/A N/A -11.1% 7.3%

Carlo in-vs.-out precision. Since each Ks momentum region has the same efficiency

to within error, we do not apply an additional systematic to account for using finite-

sized Ks momentum bins. Like our Ks efficiency correction, we have weighted each

momentum region’s systematic error based on the Kseν momentum spectrum to get an

integrated Ds → Kseν systematic of 7.3%.

10.6.4 K∗, η′, and f0

Our K∗eν, η′eν, and f0eν modes all have hadrons with relatively broad mass distribu-

tions that decay to a final state involving pions (with one kaon for K∗ and one η for

η′). Since we do make a (broad) cut on each resonant particle’s mass distribution to

avoid allowing in too much background, we need to ensure that the mass resolution in

data matches the Monte Carlo. Additionally, each mode has a distinct momentum spec-

trum for its final particles, which we need to incorporate into our momentum dependent

tracking and particle identification systematics.

In all three semileptonic modes, we determine the mass resolution by reconstruct-

ing the candidate hadron (K∗, η′, or f0) in a fairly clean Ds mode (Ds → K∗K,

Ds → πη′, η′ → ππη, or Ds → f0π, respectively). We fit the candidate hadron’s mass

in the data by using the Monte Carlo signal shape. However, we allow the signal mass

distribution to shift either direction, and we convolute the signal shape with a gaussian

to model potentially poorer data resolution. We take our systematic to be the relative

change in events passing our mass cut window for the smeared and unsmeared distribu-

tions. In all three cases, the systematic fell well within the precision of our measurement,

so we find no need for a correction to our efficiency.



151

To get a clean sample for our mass resolution, we reconstruct aDs tag, aD
∗
s daughter

photon, and a kaon (K∗) or pion (η′, f0), following the same procedures and particle

selections as for our Ks systematic (Section 10.6.3). We reject any events with extra

tracks after the candidate hadron reconstruction, and we cut on the momentum or

missing mass of the event to further clean up our sample, as follows:

• 650 MeV < pin Ds rest
K < 750 MeV for the kaon in K∗K

• 650 MeV < pin Ds rest
π < 800 MeV for the pion in f0π

• 900 MeV < MDs+γ+π
recoil < 1000 MeV in πη′, η′ → ππη

•
∣

∣

∣
MDs+γ+π+η′

recoil

∣

∣

∣
< 75 MeV in πη′, η′ → ππη

We have placed the resulting K∗, η′, and f0 mass resolution plots in Appendix G

(Figures G.55 – G.57). We have put our final mass resolution systematic in Table 10.8

(along with our tracking and particle identification systematics, described below).

We’ve taken a correlated 0.3% track reconstruction systematic for each π and elec-

tron track [72]. Since our failures in kaon track reconstruction come primarily from de-

cays in flight, we consider this uncorrelated to the other tracking systematics and have

instead incorporated it into our momentum-dependent kaon particle ID systematic. For

simplicity, we’ve also absorbed our rather large η reconstruction efficiency systematic

into the η′ particle identification systematic. Only pion and kaon particle identification

require a correction to our efficiency, which we have summarized in Table 10.9.

Table 10.8: Summary of semileptonic hadron systematic errors. Our kaon and η sys-
tematics have been included into the K∗ and η′ PID columns, respectively.

Semileptonic hadron Track reconstruction PID Mass resolution

η′ 0.90% 7.90% 3.15%
f0 0.90% 0.04% 2.63%
K∗ 0.60% 1.21% 2.59%
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Table 10.9: Summary of hadron efficiency corrections from particle identification.

Semileptonic hadron Relative ε correction

η′ -2.94%
f0 -0.50%
K∗ -2.88%

10.7 Decays in Flight

For all modes other than Ds → ηeν, we consider any passing event containing the semi-

leptonic mode in question as a true event, regardless of whether or not we correctly

reconstructed the semileptonic side. Normally, we don’t have any ambiguity in this

procedure because we actually did reconstruct the semileptonic side correctly according

to the Monte Carlo. However, we do see a few cases in each mode where a true semilep-

tonic event passes our cuts with an incorrectly reconstructed semileptonic-side hadron.

The vast majority of these cases come from either a kaon or pion on the semileptonic

side decaying in flight, nearly always to a muon.

The Monte Carlo should model the decay-in-flight kinematics without difficulty.

However, the “kinked” track could cause problems with tracking reconstruction and the

resultant track momentum, used indirectly (and sometimes directly) in our event recon-

struction. Given the small effect, we simply take 50% of the efficiency for true but incor-

rectly reconstructed events as our systematic error to model any possible data/Monte

Carlo differences.

Table 10.10 gives the efficiency for all such true but incorrectly reconstructed events

and our ultimate systematic (expressed as a relative error). This systematic includes

both decay-in-flight events and all other events, although the efficiency from other events

always falls well below the threshold at which we include systematic errors (a relative

0.3% error).

10.8 Splitoff Rate

Our Ds → ηeν fits need to correct for “volunteer” combinations, which predominantly

come from either the D∗
s daughter photon or a splitoff shower combining with a true η
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Table 10.10: Systematic for true semileptonic events that pass with incorrect particle
identification, mostly due to π or K decays in flight to µ. We take 50% of the effect’s
size in Monte Carlo as our systematic.

Semileptonic mode εSL pass, wrong MC tag Relative systematic

Ds → φeν 0.023% 0.08%
Ds → η′eν 0.040% 0.49%
Ds → f0eν 0.226% 0.52%
Ds → Kseν 0.390% 0.63%
Ds → K∗eν 0.343% 0.71%

daughter photon to make an extra η candidate. Section 9.2.2 discusses this effect with a

procedure using D0 → K∗η that lets us correct the splitoff rate from the Monte Carlo.

We obtained a splitoff correction consistent with the Monte Carlo rate (1σ difference),

so we don’t take a bias correction from splitoff. However, our splitoff rate procedure has

an associated uncertainty, which we take as the systematic error for the Monte Carlo’s

splitoff model. Varying the splitoff rate across its 1σ range gives us a B(Ds → ηeν)

relative systematic of 1.16%.

10.9 Hadronic Branching Ratios

We measure each semileptonic hadron decay through a particular decay mode (e.g.

η → γγ). The semileptonic modes’ efficiencies depend upon the branching ratio for

these hadronic decays. However, updates to the known hadronic branching ratios from

more recent measurements require an efficiency correction, while uncertainties in those

branching ratios contribute a systematic error. Table 10.11 gives these corrections and

systematics using the most recent branching ratios from the Particle Data Group [21].

The η′ decay includes both the direct uncertainty in B(η′ → ππη) and the uncertainty

from B(η → γγ).
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Table 10.11: Systematic errors and efficiency corrections from uncertain or changed
branching ratios in semileptonic daughter hadron decays.

Hadron decay BMC BPDG Systematic Correction

φ→ KK 49.1% (48.9± 0.5)% 1.0% —
η → γγ 39.5% (39.4± 0.2)% 0.5% —
η′ → ππη 43.7% (42.9± 0.7)% 1.7% −1.8%
Ks → ππ 68.6% (69.2± 0.1)% 0.1% 0.9%

10.10 Semileptonic Fit Functions

After making our semileptonic cuts, we fit each mode’s Ds mass spectrum using a linear

background function and a signal shape from the tagging fits. The Ds mass signal shape

shouldn’t generate an additional systematic beyond that discussed in Section 10.1.1 be-

cause we use the same shape for our branching ratio’s numerator and denominator.

However, we made the choice of a linear background function empirically, with param-

eters from a fit to the Monte Carlo’s predicted background.

To investigate a potential systematic from our choice of background function, we

have replaced our linear background function with a constant function and compared

the branching ratio results. A constant function generally goes beyond the 1σ variation

on our linear fit to background, but we take this as a worst case scenario on the Monte

Carlo’s effective background model. The results from Table 10.12 show that we get a

negligible systematic even for this worst case.

The Ds → ηeν mode also includes an explicit fit to the η pull mass spectrum, using

a signal histogram shape and a linear background. For this mode, we independently

take a constant background on the η pull mass and each Ds mode. Table 10.12 contains

the results after combining all ηeν background systematics in quadrature, which still

yields a negligible systematic.

We took the η signal shape for our Ds → ηeν fit from the Monte Carlo. We’ve used

two techniques to obtain a systematic on this signal shape. In the first technique, we

extract an η pull mass spectrum from a clean Ds → πη sample, we fit the data’s pull

mass spectrum with a crystal ball shape, and then we use the resultant crystal ball

function as our η signal shape in the branching ratio fit. For our second technique, we
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Table 10.12: Branching ratio change from a different semileptonic background function.
The Ds → ηeν line combines changes to both the pull mass and Ds mass backgrounds.
In all cases, the systematic from choosing a different background shape falls well below
the statistical or systematic error.

Semileptonic mode δB/B σBG syst/σstat
φeν 0.50% 0.063
ηeν 0.39% 0.075
η′eν 1.04% 0.048
f0eν −0.86% 0.048
Kseν 0.63% 0.034
K∗eν −0.35% 0.016

convolute the Monte Carlo’s η pull mass spectrum with a gaussian of varying widths

and compare the best fit branching ratio to our standard branching ratio (without a

gaussian smear). Both techniques come to similar relative systematic estimations (1.0%

vs. 0.8%), but we have chosen the Ds → πη method as most closely representing the

uncertainty in signal shape.

To get our clean η pull mass spectrum from Ds → πη, we reconstruct a tagged

Ds + γ, do a basic kinematic fit on the D∗
s daughter photon, then find the other side π

and η. We use the same Ds tag modes and cuts as in our normal analysis (Section 5),

dropping the four tag modes with η daughters to avoid any possible complications. We

cut on the Ds mass based on its tag mode (Table F.11 in Appendix F), on the Ds + γ

recoil mass (1950 MeV–1990 MeV), and on the π momentum in the Ds rest frame

(within 20 MeV of the ideal 902 MeV). Once we have a reconstructed η, we also require

that the event’s missing mass fall within 100 MeV of zero.

Events passing all our Ds → πη cuts have nearly no background, giving us a very

pure η sample. We fit the data’s pull mass spectrum to a crystal ball function and use

that (slightly wider than Monte Carlo) shape in our branching ratio fit. Our branching

ratio changes by a relative 1.0%, so we take that to be our η signal shape’s systematic.
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10.11 Ds Production Efficiencies

Tagged and semileptonic Ds get created through multiple modes at 4170 MeV. The

e+e− collision can directly produce D+
s D

−
s (σDsDs = 0.034 nb), or it can produce D∗

sDs

(σD∗
sDs = 0.916 nb) [61]. Further, the D∗

s may decay to either Dsγ (94%) or to Dsπ
0

(6%) [21]. Each of these Ds production mechanisms have associated uncertainties, while

the Monte Carlo that we use to determine our semileptonic efficiency simply takes each

production mode’s most likely value.

To incorporate the Ds production mode uncertainty into our overall error, we have

determined each process’s tag and semileptonic efficiencies (Table 5.6 for tags; Ta-

bles 7.2, 9.1, and F.14–F.17 for semileptonics). We then vary each Ds production

uncertainty by 1σ and take the change in our average efficiency as a systematic. In

practice, DsD
∗
s , D

∗
s → Dsγ production dominates our efficiency. This dominance and

the fact that each production mode has similar semileptonic efficiencies makes the Ds

production systematic negligible (Table 10.13).

Table 10.13: Relative systematic for various Ds production rate uncertainties. This
combines the uncertainties from the DsDs and D∗

sDs cross sections at 4170 MeV with
the uncertainty from the D∗

s branching ratio (the fraction going to Dsγ vs. Dsπ
0).

These combined effects still contribute a negligible systematic.

Semileptonic
σsystDsDs

σsystD∗
sDs

B(D∗
s → Dsπ

0)syst
Total

mode relative systematic

Ds → φeν 0.0033% -0.0018% -0.0028% 0.0047%
Ds → ηeν -0.0001% 0.0001% -0.0000% 0.0001%
Ds → η′eν -0.0091% 0.0050% -0.0192% 0.0218%
Ds → f0eν -0.0035% 0.0019% 0.0072% 0.0082%
Ds → Kseν -0.0019% 0.0011% 0.0316% 0.0317%
Ds → K∗eν 0.0029% -0.0016% 0.0113% 0.0118%

10.12 Final State Radiation

When the Ds decays to charged particles, the decay can also include photons emitted

via an electromagnetic interaction with the final state charged particle. This final state
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radiation (FSR) doesn’t cause us a problem in tagged Ds, as any tag efficiency drop

will be reflected proportionally in our branching ratio’s numerator and denominator.

However, the quarks that make up the semileptonic hadron and particularly the elec-

tron produced in the semileptonic decay may have FSR that distorts the semileptonic

efficiency. We use the PHOTOS 2.0 package to estimate FSR in our Monte Carlo.

Since FSR emission from charged particles mostly results in soft photons and our

particle efficiencies stay fairly flat outside the extreme regions, our decays’ efficiencies

don’t change much with the inclusion of FSR. Only about 2% of semileptonic decays

(varying slightly by mode) have FSR that alters daughter particle momenta enough

to push the combined heν momenta outside its allowed kinematic range. Of those

decays, 90% still have relative efficiencies within 5% of the non-FSR efficiency. Roughly

0.2% of semileptonic decays see a significant efficiency drop, mostly due to the electron

momentum falling below threshold.

Table 10.14 gives the efficiency difference with and without FSR for each semileptonic

mode. Past work [65] has taken 30% of this difference as a systematic, but none of our

efficiency variations affect the overall systematic error even if we take the entire drop

as our systematic. We include the results here for reference, but we otherwise dismiss

FSR as a systematic effect.

Table 10.14: Efficiency difference due to final state radiation, by Ds semileptonic mode.

Semileptonic mode Relative systematic

Ds → φeν 0.19%
Ds → ηeν 0.06%
Ds → η′eν 0.06%
Ds → f0eν 0.28%
Ds → Kseν 0.19%
Ds → K∗eν 0.28%

10.13 Initial State Radiation

In the initial e+e− collision, one of the two charged particles may emit a soft photon.

This initial state radiation (ISR) lowers the collision’s center-of-mass energy. Since
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CLEO-c ran at 4170 MeV, just above theD∗
sDs threshold of 4081 MeV, theDs momenta

for events with even moderate ISR can vary significantly.

Fortunately, the Monte Carlo provides a good model for ISR, with Ds single tags at

4170 MeV matching the Monte Carlo’s ISR prediction to within 0.6% [65]. Nonetheless,

the Monte Carlo predicts that just over 10% of events in our sample will have a center

of mass below 4160 MeV, so we have checked the semileptonic efficiency difference for

events produced at lower center-of-mass energies.

Table 10.15 gives the efficiency difference between events produced without ISR and

events that include ISR. Not surprisingly, we find very little difference between the two

given the fairly flat efficiency across Ds momenta and the fact that most events don’t

have significant ISR. Even if the Monte Carlo had too little ISR by 30% (well above the

precision extrapolated from the single tag study mentioned previously), we could ignore

this systematic. We thus take no additional systematic from ISR effects.

Table 10.15: Efficiency difference due to initial state radiation, by Ds semileptonic
mode.

Semileptonic mode ∆ε/ε

Ds → φeν 0.12%
Ds → ηeν 0.79%
Ds → η′eν 0.09%
Ds → f0eν 0.09%
Ds → Kseν 0.77%
Ds → K∗eν 0.27%

10.14 Generating Models

Our semileptonic efficiency primarily depends on the electron and hadron momenta in

the detector (the lab frame). These momentum distributions and their correlations are

determined in part by the form factors’ q2 dependence, which isn’t easily calculable from

first principles. Our Monte Carlo uses the ISGW2 [34] quark model when generating

the semileptonic Ds decay, but various pole dominance models [36] offer alternate form

factor dependencies and consequent momentum distributions. While we believe the



159

ISGW2 model best represents the underlying physics given the relatively heavy c quark

and the wide q2 range relative to the number of close resonances in the charm system, the

pole model has been used most often in the literature and gives us a simple alternative

to estimate our efficiencies’ form factor model dependence.

We have used the pole model’s simplest form as our point of comparison, in which

a single resonance dominates the form factors. In this case, each form factor has a

(1 − q2

M2 )
−1 dependence on q2, where M is the mass of the nearest meson resonance

with appropriate quantum numbers. We use a D∗
s pole mass for our vector form factors

and a Ds1(2460) pole mass for our axial form factors, matching prior work [53]. For Ds

decays to vector hadrons (φ,K∗), we have three form factors and also need the relative

normalizations between them; we use rv = 1.81 and r2 = 0.82, where rv = V (0)
A1(0)

and

r2 =
A2(0)
A1(0)

are the relative normalizations at q2 = 0 for the vector/axial and axial/axial

form factors, respectively.

We generate our Ds decays using both our baseline model (ISGW2) and the simple

pole model, then we treat the difference between the two as a 1σ systematic arising from

the generating model. The default CLEO Monte Carlo had some minor coding errors

in the masses for its ISGW2 implementation; we corrected those in our own implemen-

tation but found that the final systematic didn’t change. For a further comparison

point between models, we also include the original, less sophisticated ISGW model (no

relativistic corrections, exponential form factor dependence). We did not use the ISGW

model in our systematic estimate, although it would have had only a minor effect in

any case.

Table 10.16 contains our systematic for each semileptonic decay mode. In all cases,

the pole model created events with a higher efficiency than the ISGW2 model. The

slightly more energetic electron spectrum in pole model events dominated this effi-

ciency increase with fewer electrons below our 200 MeV minimum pe cut (Figure 10.7).

While decays to pseudoscalar and scalar hadrons have similar q2/Ee correlations be-

tween models and thus don’t have a significant efficiency change beyond the higher

electron efficiency, decays to vector hadrons see a further efficiency increase in the pole

model from a more beneficial q2/Ee correlation, pairing lower q2 (higher Ehadron) with

more energetic electrons (Figure 10.8).
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Table 10.16: Relative systematic from different generating models’ reconstruction effi-
ciency.

Ds mode εPole−εMC

εPole

Ds → φeν 2.9%
Ds → ηeν 0.7%
Ds → η′eν 1.6%
Ds → f0eν 2.3%
Ds → Kseν 1.4%
Ds → K∗eν 5.1%

In our extra figures section, we have included the lab frame hadron and electron mo-

menta for each of the other four semileptonic modes (Figures G.58 and Figures G.59).

We’ve also included the q2 and q2 vs. Ee distributions for the different models in

Ds → φeν and Ds → ηeν decays (Figures G.60–G.62).
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Figure 10.7: Top: Lab frame electron energy (left) and φ momentum (right) in
Ds → φeν for the ISGW2 and pole models. The electron energy has a noticeable in-
crease from ISGW2 to the pole model. Bottom: Lab frame electron energy and η
momentum in Ds → ηeν. The decay to a pseudoscalar has a smaller but still positive
electron energy shift.
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Figure 10.8: Difference between the ISGW2 and pole models in the q2 and electron
energy distributions for Ds → φeν (top) and Ds → ηeν (bottom). Empty boxes indicate
a surplus in the ISGW2 model, while darkened boxes with an “x” indicate a surplus
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10.15 Sum of Systematic Errors

Each Ds semileptonic decay mode has its own collection of systematic biases and errors,

as described earlier in this section. Our extra tables section contains a full systematic

error and bias listing for each mode. The systematic bias corrections can be found in

Tables F.18-F.23, while the relative systematic errors can be found in Tables F.24-F.29.

We’ve included a summary of our total systematics here, with Table 10.17 giving the

efficiency corrections from biasing effects and Table 10.18 giving each mode’s relative

systematic errors.

Table 10.17: Efficiency for each Ds semileptonic mode before and after corrections
from systematic biases. These efficiencies include the hadronic branching ratio (taking
B(f0 → ππ) = 52% for f0eν).

Semileptonic mode εMC εcorrected
φeν 13.9% 12.5%
ηeν 20.6% 20.4%
η′eν 4.0% 3.8%
f0eν 21.7% 21.2%
Kseν 30.9% 27.4%
K∗eν 24.1% 23.0%

Table 10.18: Total systematic errors (relative) for each Ds semileptonic decay mode.

Semileptonic mode Relative systematic error

φeν 4.46%
ηeν 8.70%
η′eν 10.11%
f0eν 4.91%
Kseν 8.56%
K∗eν 7.13%

In five of our six modes, the statistics available limits our branching ratio measure-

ment rather than our systematic errors. Even the one exception, Ds → ηeν, effectively

gets restricted by statistics because that’s the limiting factor in the dominantDs → ρ+η
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systematic. Our largest required efficiency bias corrections come in Ds → φeν, driven by

soft kaon track reconstruction (true either with our custom kaon selections or with the

default CLEO cuts), and in Ds → Kseν, driven by high momentum Ks reconstruction.

Incorporating our efficiency corrections and systematic errors into our measurements

gives us the final branching ratio results shown in Table 10.19.

Table 10.19: Branching ratios for each Ds semileptonic mode before and after our
systematic biases and errors.

Decay mode Raw B Corrected B
Ds → φeν (1.92± 0.15)% (2.14± 0.17± 0.09)%
Ds → ηeν (2.25± 0.14)% (2.28± 0.14± 0.20)%
Ds → η′eν (0.64± 0.14)% (0.68± 0.15± 0.06)%
Ds → f0eν, f0 → ππ (0.13± 0.02)% (0.13± 0.02± 0.01)%
Ds → Kseν (0.17± 0.03)% (0.20± 0.04± 0.01)%
Ds → K∗eν (0.17± 0.04)% (0.18± 0.04± 0.01)%



Chapter 11

Conclusion

Ds semileptonic decays have seen relatively few measurements over the years despite

their use in lattice calculations, light meson spectroscopy, and comparisons to other

mesons’ semileptonic decays. CLEO-c’s 4170 MeV run has given us an opportunity

to improve the exclusive Ds semileptonic measurements for the six dominant modes

in a fairly clean environment. Low backgrounds made maximizing the signal a prior-

ity, so Table 11.1 summarizes the number of signal events we obtained over CLEO-c’s

integrated luminosity of 586 pb−1.

Table 11.1: Number of observed signal events for each of our six semileptonic modes.
We include the branching ratios with their statistical errors for reference.

Semileptonic mode B Signal Events

Ds → φeν (2.14± 0.17)% 206.7 ± 16.4
Ds → ηeν (2.28± 0.14)% 358.2 ± 21.6
Ds → η′eν (0.68± 0.15)% 20.1 ± 4.4
Ds → f0eν, f0 → ππ (0.13± 0.03)% 41.9 ± 7.8
Ds → Kseν (0.20± 0.04)% 41.5 ± 8.3
Ds → K∗eν (0.18± 0.04)% 31.6 ± 7.5

Table 11.10 in Section 11.2 contains our full results, including all systematics. Sec-

tion 11.2 also contains a synopsis of this Ds semileptonic analysis.
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11.1 Comparisons

Section 1.4 and Section 1.5 in our introduction contained theoretical predictions from

the literature and a summary of priorDs semileptonic measurements, respectively. Here,

we compare our results to those predictions and measurements with a brief discussion.

11.1.1 Theory

Our six Ds semileptonic modes each provide tests for different theoretical models and

parameters. In the following section, we’ve grouped together modes that explore sim-

ilar terrain and give a short discussion of how our measurements fit into the various

predictions.

In the spectator model, Ds semileptonic decays to the η and η′ pseudoscalar states

probe the η/η′ mixing angle by coupling to the mesons’ ss̄ component. The possibility

of weak annihilation (Figure 1.2) or η/η′ glueball mixing complicates this interpretation,

but an explicit measurement should still give a first order estimate for the mixing angle.

Table 11.2 compares the ranges from six different predictions to our branching ratios

for η, η′, and their ratio.

Table 11.2: Theoretical prediction range for B(Ds → ηeν) and B(Ds → η′eν) compared
to our measurements. Our η measurement matches four of the six predictions, while
our measured η′ falls below the expected values.

B(Ds → η′eν) B(Ds → ηeν)
B(Ds → η′eν)
B(Ds → ηeν)

Predictions [44, 46, 42, 43, 45, 34] (0.43 – 1.1)% (1.4 – 3.2)% 0.31 – 0.43
This analysis (0.68± 0.16)% (2.28± 0.24)% 0.30± 0.07

Our B(Ds → ηeν) matches all but the two extreme predictions (1.4% and 3.2%),

while our B(Ds → η′eν) measurement falls about 1.5σ below all but the smallest pre-

diction. Consequently, we see a lower η′/η ratio than any of our predictions, although

our large error on the ratio covers most of the predicted range. Even at 1.5σ, our η′/η

ratio comes within the range of reasonable prediction and measurement error. More

exotically but less likely, a low η′/η ratio could indicate some glue mixing or a mixing
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angle smaller than φ ≈ 40 ◦.

Since the φ meson contains only an ss̄ component, B(Ds → φeν) creates a good

testing ground for a variety of theoretical approaches. Our measurement matches the

ISGW2 prediction [34] almost exactly, and it matches a basic lattice calculation [26]

to within combined error. Our measurement lies about 2.5σ and 4σ from the other

two models’ predictions (a constituent quark model constrained by lattice results [42]

and an approach using QCD sum rules [48]). Table 11.3 shows how our measurement

compares to the full range of predictions.

Table 11.3: Theoretical prediction range for B(Ds → φeν) compared to our measure-
ment. Our result matches the ISGW2 and lattice predictions from Section 1.4.2.

B(Ds → φeν)

Predictions [48, 34, 26, 42] (1.4 – 2.6)%
This analysis (2.14± 0.19)%

Like η and η′, the f0(980) composition has an ss̄ component along with a component

from lighter quarks (or even a possible gluonic contribution [28]). By comparing to the

predictions from various models, we can estimate a reasonable range for the ss̄ mixing

angle. If we take f0 = cos θ |ss̄〉 + sin θ |other〉 and use the predicted branching ratio

range in Table 11.4, we get an ss̄ mixing angle, θ, of 30◦–50◦ for the f0.

Table 11.4: Theoretical prediction range for B(Ds → f0eν) compared to our measure-
ment. We have assumed B(f0 → ππ) = 0.52 for the comparison. Our result with these
predictions implies an ss̄ mixing angle (θ) in f0 of 30◦–50◦.

B(Ds → f0eν)

Predictions [50, 49, 48] (0.41 – 0.55)% × cos2 θ
This analysis (0.26± 0.05)%

Our B(Ds → Kseν) and B(Ds → K∗eν) results match one of the two predictions

we consider to within 1σ (a constituent quark model with lattice input [42]). The

absolute Kseν and K∗eν branching ratio measurements each fall 2σ below the ISGW2

prediction [34], but the ratio between our two results comes within 0.3σ of ISGW2’s

predicted ratio. Table 11.5 gives our measurements compared to the range of predictions,
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including an extension of a straight-forward kinematic model [46] that only yields a ratio

prediction (about 2σ different from our measurement and a similar distance from the

other predictions).

Table 11.5: Theoretical prediction range for B(Ds → Kseν) and B(Ds → K∗eν) com-
pared to our measurements. Our Kseν/K

∗eν ratio matches two of three predictions
closely, but it differs from a simple model by 2σ.

B(Ds → Kseν) B(Ds → K∗eν) B(Ds → Kseν)
B(Ds → K∗eν)

Predictions [46, 42, 34] (0.115 – 0.16)% (0.11 – 0.19)% 0.45 – 1.0
This analysis (0.20± 0.04)% (0.18± 0.04)% 1.10± 0.35

11.1.2 Previous Measurements

The Particle Data Group [21] currently uses three different sets of measurements for their

exclusive Ds semileptonic branching ratios. One set comes from BaBar [29], which used

charm continuum production when running at the Υ(4S) resonance. They reconstructed

a Ds → φπ tag and used the two jets formed during cc̄ hadronization to isolate Ds →
KKeν on the other side. Aside from detector differences, the backgrounds involved

in the BaBar analysis differ significantly from ours. We thus have a statistically and

systematically independent measurement from BaBar.

However, the other two sets of measurements both come from CLEO-c [51, 52]. One

set measures Ds → φeν and Ds → f0eν over the same sample that we use, while the

other set measures all modes but over only half the sample. The other two CLEO

measurements use roughly the same technique, which differs significantly from our own.

The main difference between the other CLEO-c analyses and our analysis lies in

the D∗
s daughter photon reconstruction. Spurious soft photons in the event create a

peaking background on the event’s missing mass. In our analysis, we avoid this problem

by dropping the photon entirely, sacrificing the event’s zero missing mass in the process

(but gaining statistics from the photon reconstruction efficiency).

The other two analyses retain the photon reconstruction but only keep the best can-

didate photon. The branching ratio denominator then becomes aDs+γ tag (determined

by a 2D MDs/M
recoil
Ds+γ fit). This combination requires those analyses to either treat false



169

γ tags as valid for the branching ratio denominator, or it requires the analyses to reject

the soft, peaking background from false γ events in the branching ratio numerator (the

event missing mass). The analyses take the latter approach, using the Monte Carlo to

estimate the false γ rate and deducting that from the signal.

In addition to the major analysis difference in D∗
s daughter photon reconstruction,

the other two CLEO-c analyses also have other, minor differences from our own. They

use 9 Ds tagging modes, while we use 13 modes. Eight of the modes overlap closely, but

we have looser constraints on KsK
−ππ, add three more Ks modes (KsKπ

0, KsKsπ,

KsK
+ππ), and add ππ0η′, η′ → ππη. We also try to take advantage of the low back-

ground by using looser semileptonic hadron cuts.

Table 11.6 shows our B(Ds → φeν) and B(Ds → f0eν) measurements compared

to both the BaBar and prior CLEO measurements. BaBar obtains a much larger

B(Ds → φeν) than we see, with their systematic error limiting their measurement. We

obtain a lower branching ratio (statistically significant) for both φeν and f0eν than the

alternate CLEO measurement [51], with improved error in φeν due to our higher statis-

tics. Our φeν and f0eν measurements do match the previous CLEO measurements [52]

that used the same general technique as the newest incarnation but involved half the

data sample.1

Table 11.6: We find lower B(Ds → φeν) and B(Ds → f0eν) than prior measurements.
BaBar observed Ds → f0eν using f0 → KK.

Experiment B(Ds → φeν) B(Ds → f0eν, f0 → ππ)

BaBar [29] (2.61± 0.03± 0.17)% Seen
CLEO [51] (2.36± 0.23± 0.13)% (0.20± 0.03± 0.01)%
This analysis (2.14± 0.17± 0.09)% (0.13± 0.03± 0.01)%

We see lower B(Ds → ηeν) and B(Ds → η′eν) than the previous measurements by

CLEO over half the data sample, as shown in Table 11.7. The different systematics for

ηeν and the low statistics in η′eν do make the difference in measurements reasonable. We

obtain a lower statistical error in both cases but a larger systematic error. The applied

1We do not include the prior CLEO measurements in the table as the Particle Data Group does
not use them. For completeness, they saw B(Ds → φeν) = 2.29 ± 0.37 ± 0.11 and B(Ds → f0eν) =
0.13± 0.04± 0.01.
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η systematic (Section 10.6.2) dominates the difference between systematic errors in the

two analyses.

The prior CLEO measurement adopts a 2% relative systematic for η reconstruction,

based simply on a 1% relative systematic for each photon reconstruction. After con-

sidering CLEO’s standard 5.9% relative systematic on η reconstruction with its -5.6%

relative efficiency correction [71]2 we decided to do our own η systematic as described in

Appendix C. This gave us our 7.9% relative systematic for η reconstruction, leading to

a much larger final systematic error on B(Ds → ηeν) and B(Ds → η′eν) than the other

analysis.

Table 11.7: Our B(Ds → ηeν) and B(Ds → η′eν) both fall below the prior measure-
ment using half the CLEO-c data. We also differ with the previous experiment on the
reconstruction systematic for the final state η in both modes.

Experiment B(Ds → ηeν) B(Ds → η′eν)
CLEO [52] (2.48± 0.29± 0.13)% (0.91± 0.33± 0.05)%
This analysis (2.28± 0.14± 0.19)% (0.68± 0.15± 0.06)%

As Table 11.8 indicates, our B(Ds → Kseν) and B(Ds → K∗eν) measurements al-

most exactly match CLEO’s prior result. By virtue of having more data available,

this analysis’s measurement has lower statistical error while having essentially the same

systematic error.

Table 11.8: Our B(Ds → Kseν) and B(Ds → K∗eν) almost exactly match the previous
CLEO-c result on half the data sample.

Experiment B(Ds → Kseν) B(Ds → K∗eν)
CLEO [52] (0.19± 0.05± 0.01)% (0.18± 0.07± 0.01)%
This analysis (0.20± 0.04± 0.01)% (0.18± 0.04± 0.01)%

In addition to the exclusive measurements, CLEO-c has measured inclusive semilep-

tonic decays [30]. Table 11.9 shows that our six exclusive modes cover most of the Ds

semileptonic spectrum. Roughly 14% of Ds semileptonic decays may go to nonresonant

2Determined from ψ′
→ ηJ/ψ with a momentum extrapolation based on similar π0
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or other modes, although the difference between the inclusive rate and the exclusive

sum has a large associated error. Only 1.6σ separates the inclusive/exclusive difference.

Table 11.9: Comparison of CLEO-c’s inclusive Ds semileptonic branching ratio with the
sum of this analysis’s six branching ratios. The difference shows some room for other
semileptonic modes, with relatively large error.

B(Ds → heν)

Inclusive [30] (6.52± 0.39± 0.15)%
Sum of exclusive (5.60± 0.27± 0.28)%

Difference (0.92± 0.48± 0.32)%

11.2 Summary

We’ve measured Ds semileptonic branching ratios for six modes: Ds → φeν, Ds → ηeν,

Ds → η′eν, Ds → f0eν, Ds → Kseν, and Ds → K∗eν. We primarily used CLEO-c’s

D∗
sDs sample, where the D∗

s generally decays to a Ds via a soft photon emission. One

Ds gave us a tag to identify the event, while the other became a candidate for our target

semileptonic decays.

As the soft D∗
s photon had a low reconstruction efficiency and dubious background

predictions from our Monte Carlo, we sacrificed the ability to reconstruct a zero neutrino

missing mass in exchange for additional events by dropping the photon reconstruction.

Since each mode showed fairly low background even without the photon, we could safely

loosen our other particle cuts in the key φeν and ηeν modes to gain further signal events.

These looser cuts required new analysis for these particles’ reconstruction efficiencies,

but the atypically slow kaons and relatively unexplored η momentum range warranted

such study in any case.

Table 11.10 states our final results for all six Ds semileptonic modes, including all

statistical and systematic errors.
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Table 11.10: This analysis’s measured branching ratios for each Ds semileptonic mode.

Decay Mode Branching ratio

Ds → φeν (2.139± 0.170± 0.086)%
Ds → ηeν (2.277± 0.137± 0.196)%
Ds → η′eν (0.680± 0.150± 0.064)%
Ds → f0eν, f0 → ππ (0.133± 0.025± 0.006)%
Ds → Kseν (0.196± 0.039± 0.015)%
Ds → K∗eν (0.178± 0.042± 0.012)%
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Appendix A

f0 → KK Models

f0 → KK decays present a unique problem for the Ds → φeν analysis as the f0 reso-

nance lies very near (and likely below) the KK threshold, yet the f0’s wide decay width

extends its mass spectrum well into the φ mass region. Thus, Ds → f0eν events where

the f0 → KK invariant mass falls within the φ mass region become effectively indis-

tinguishable from Ds → φeν events and need to be deducted from our φeν signal. To

remove these f0eν events, we use our Ds → f0eν measurement from the f0 → ππ mode

via

B(Ds → φeν)correction = B(Ds → f0eν, f0 → ππ) ∗ B(f0 → K+K−)

B(f0 → π+π−)
∗ εf0→KK

εφ→KK
∗ fwindow,

(A.1)

where fwindow represents the fraction of f0 → KK decays with an invariant mass in

the φ mass cut window (−15 MeV < M recon
φ −MPDG

φ < 30 MeV) and εf0→KK is the

reconstruction efficiency for f0 within the mass window.

The fraction of f0 → KK decays that fall within our φ mass window (fwindow)

depends upon the f0 → KK mass lineshape. Regardless of the underlying model, this

lineshape will necessarily depend upon parameters such as the f0 resonant mass and

width, which have large uncertainties from previous measurements [21]. Unfortunately,

EvtGen does not describe this lineshape in a consistent manner for resonant masses

across the KK mass threshold, as described below, so we have used our own model

based on a Flatté parametrization [79, 80].
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The Particle Data Book estimates the f0 physical mass at 980 MeV± 10 MeV [21],

which extends both above and below the K+K− threshold near 987.4 MeV. We chose

to use the central mass (980 MeV) as the input value for our B(Ds → φeν) correction

from Ds → f0eν, f0 → KK, then we estimate one systematic error on the correction by

varying the physical mass throughout the 1σ mass range (10 MeV). We use a similar

method to vary the total and partial f0 widths. However, since the Particle Data Book

does not give a central value for either, we chose 50 MeV as a reasonable value for the

total width (with 40 MeV to 100 MeV as our 1σ systematic variation) and 0.80 as the

central value for Γππ

Γππ+ΓKK
(with 0.52 to 0.82 for our 1σ systematic variation). We vary

each of these values independently in our systematic. This may not be entirely appro-

priate since the three different f0 parameter values contributed by each experiment are

correlated, but we find it prohibitively time-consuming and of marginal benefit to disen-

tangle each experiment’s correlations (if even possible without delving into unpublished

results).

In section A.1, we discuss the models available in EvtGen that we have chosen not

to use, as the information may prove useful to others using EvtGen or similar software.

We discuss the Flatté model that we instead use, along with its results, in section A.2.

A.1 EvtGen Models

A.1.1 Default Model (Breit-Wigner)

In the CLEO Monte Carlo, the mass and width of a particle can be altered by changing

its values from the evt.pdl file and passing the modified pdl file to EvtGen. However,

EvtGen switches the generating model used when the f0 resonant mass sits below the KK

mass threshold from its model for f0 above the KK mass threshold. Specifically, EvtGen

uses a non-relativistic Breit-Wigner (Equation A.2) for the f0 → KK mass lineshape

when the f0 resonant mass lies below threshold, and it uses a relativistic Breit-Wigner

(Equation A.3) for the lineshape when the resonant mass lies above KK threshold:

dΓ

dm

NR B-W

∝
∣

∣

∣

∣

∣

1

m−m0 + iΓ0

2

∣

∣

∣

∣

∣

2

, (A.2)
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dΓ

dm

Rel B-W

∝

∣

∣

∣

∣

∣

∣

Γ0

(

p
p0

)

(m2 −m2
0) + im0Γ0

(

m0

m

)

(

p
p0

)

∣

∣

∣

∣

∣

∣

2

, (A.3)

where Γ0 is the f0 width, m0 is the resonant mass, m is the invariant KK mass, p

is the daughter kaon momentum in the rest frame of m, and p0 is the daughter kaon

momentum in the rest frame of m0.

The different lineshapes and their dependence on different f0 masses can be seen in

Figure A.1.
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Figure A.1: EvtGen produced lineshape for f0 masses above and below the KK threshold
at 987.4 MeV. EvtGen changes its behavior from a non-relativistic Breit-Wigner to a
relativistic Breit-Wigner discontinuously as the mass crosses threshold.

The discontinuous change in lineshape models as the f0 resonant mass crosses the
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KK threshold produces the dominant effect in our systematic when we try these models,

with fwindow between the relativistic and non-relativistic Breit-Wigners differing by a

factor of two or more. Ultimately, we do not believe this systematic represents true

variation across the threshold, nor do we think that a Breit-Wigner properly models

the f0 near threshold in any case, so we instead use a Flatté model to describe the

lineshape.

A.1.2 Flatté Model

The f0 mass lies very near (likely just below) 2mK+ , which leads to substantial threshold

effects in f0 → K+K− decays that a simple Breit-Wigner does not model well. One

can fix the biggest issue by changing the constant width, Γ, to a momentum-dependent

width. However, the f0 requires still more work, as the opening of the KK decay mode

also alters the ππ mass lineshape below threshold due to analyticity, with non-trivial

effects for both modes. The Flatté model gives a form for the lineshape that preserves

unitarity and analyticity in the threshold region [81], making it appropriate for analysis

of the f0.

EvtGen does have a Flatté model available, and while CLEO doesn’t use it for all f0

decays (as shown in the previous section), it does use the model for one of six resonances

in the Ds → KKπ Dalitz decay. EvtGen’s Flatté model for this mode uses the formula:

dΓKK

dm

CLEO Flatté

∝
∣

∣

∣

∣

∣

1

m2 −m2
0 + i

(

g2KKρK + g2ππρπ
)

∣

∣

∣

∣

∣

2

ρ3, (A.4)

ρπ(m) =

√

1−
(

2mπ

m

)2

,

ρK(m) =







√

1−
(

2mK

m

)2
above KK threshold,

i

√

(

2mK

m

)2 − 1 below KK threshold,

where m0 here is the bare mass of the f0 and ρ3(m) is the three-body phase space

factor (relevant in Ds → KKπ but not our semileptonic decay):
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ρ3(m) = mρK

√

√

√

√λ

(

1,

[

m

mDs

]2

,

[

mπ

mDs

]2
)

,

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ac.

Figure A.2 shows the f0 → KK mass lineshape generated from this model with the

default parameters m0 = 965 MeV, gKK = 800 MeV, and gππ = 406 MeV.
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Figure A.2: CLEO Flatté mass lineshape for f0 → KK in the decay Ds → KKπ using
the default parameters.

While this Flatté model uses reasonable parameters and gives a more sensible f0

mass lineshape than the basic Breit-Wigner, we have chosen to use our own model for
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a couple reasons. The EvtGen parameters are essentially hard-wired, such that we have

to recompile EvtGen each time we want to try a new parameter set. Further, the Flatté

model only incorporates the K+K− and π+π− decay modes of the f0, while the f0 can

also decay to K0K
0
(and π0π0). The K0K

0
mode becomes relevant when we do our

systematic variation across the f0 mass range listed in the Particle Data Book, as the

range extends to 990 MeV— higher than 2mK+ but below 2mK0 , leading the K-coupling

to split into both real and imaginary parts.

A.2 Flatté Parametrization

Our Flatté model follows the notation of the original paper [79] with the dimensionless

coupling constants gK and gπ:

dΓKK

dm

Flatté

∝
∣

∣

∣

∣

√
Γ0ΓK

m2 −m2
r + imr (ΓK + ΓK0 + Γπ + Γπ0)

∣

∣

∣

∣

2

, (A.5)

where

Γπ(m) = gπpπ,

ΓK(m) =







gK

√

(

m
2

)2 −m2
K above KK threshold,

igK

√

m2
K −

(

m
2

)2
below KK threshold,

with mr as the resonant (bare) mass of the f0 and Γ0 as the f0 width at the physical

mass. Γπ0 and ΓK0 follow the same equations as Γπ and ΓK , respectively, with the

appropriate mass differences and Γπ0 = 1
2gπpπ0 due to isospin.1

To get the Ds → f0eν correction on our Ds → φeν measurement from equation A.1,

we need to determine both the relative amounts of π+π− to K+K− and the fraction

of K+K− that falls within our φ mass window. Specifically, we need to use our Flatté

model to get the product B(f0→K+K−)
B(f0→π+π−)

× fwindow for our parameters’ central values and

for their 1σ variations.

In our formula, we have three parameters we can vary: the bare mass; Γ0; and the

ratio of couplings, gK
gπ

. As stated previously, the Particle Data Book gives experimental

1Or due to the fundamental behavior of states with identical bosons in quantum mechanics. Whatever
explanation strikes your fancy.
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ranges for three related f0 parameters: the physical mass, Γ (which we take as the width

at the physical mass, Γ0), and
Γππ

Γππ+ΓKK
. We can convert the physical mass, M0, to the

bare mass, mr, using the quadratic given by

M2
0 =











m2
r +mrgK

[

√

m2
K+ −

(

M0

2

)2
+

√

m2
K0 −

(

M0

2

)2
]

below K+K− threshold,

m2
r +mrgK

√

m2
K0 −

(

M0

2

)2
above K+K− threshold.

We vary Γππ

Γππ+ΓKK
by running across a range of different gK

gπ
values, then integrating

the resulting lineshapes for Γππ and ΓKK . Our default value of 0.80 stated previously

for Γππ

Γππ+ΓKK
corresponds to a default gK

gπ
coupling ratio of about 2, with a 1σ range

from about 1.8 to 9.2. This range also covers most of the results given from experiments

in the literature [82, 83], although not quite all [84].

We find that gK
gπ

, Γ0, and M0 are weakly correlated in their effect on B(f0→K+K−)
B(f0→π+π−)

×
fwindow, so we get our final systematic by adding the results of each variation in quadra-

ture. We give the default value of B(f0→K+K−)
B(f0→π+π−)

× fwindow and the extreme values for each

parameter variation in Table A.1. The mass lineshapes for each f0 mode are shown with

the same parameter values in Figure A.3 and Figure A.4.

Table A.1: f0 parameter variations used to determine our f0 → KK correction in
Ds → φeν. Our variations correspond to the PDG ranges for the physical mass, Γ0,
and Γππ

Γππ+ΓKK
. In practice, we vary gK

gπ
instead of directly varying Γππ

Γππ+ΓKK
since

gK
gπ

has less correlation with the mass and Γ0. We use f × BKK

Bππ
as shorthand for

fwindow × B(f0→K+K−)
B(f0→π+π−)

.

Physical mass Γ0 Γππ

Γππ+ΓKK

Bare mass
gK

gK
gπ

fwindow f × BKK

Bππ(MeV) (MeV) (MeV)

980 50 0.796 969.6 0.142 2 0.281 0.0587

990 50 0.733 986.4 0.140 2 0.314 0.0939
970 50 0.834 955.5 0.143 2 0.257 0.0411

980 79 0.749 963.6 0.224 2 0.233 0.0622
980 40 0.818 971.7 0.113 2 0.299 0.0547

980 50 0.523 933.2 0.652 9.196 0.187 0.1355
980 50 0.811 970.6 0.128 1.804 0.286 0.0544
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Figure A.3: f0 mass lineshapes for M0 = 980 MeV, gK
gπ

= 2, and Γ0 = 50 MeV. The
dotted lines indicate our φ mass window.

The extreme values of B(f0→K+K−)
B(f0→π+π−)

× fwindow correspond to the extreme values of

our systematic range for the physical mass and for Γππ

Γππ+ΓKK
. However, the maximum

B(f0→K+K−)
B(f0→π+π−)

× fwindow occurs in the middle of our Γ0 range (79 MeV). This maxima

remains even if we extend our possible Γ0 up to 200 MeV, to match some values found

in the literature [85, 86, 87].

We present our final correction to the Ds → φeν branching ratio after combining the

variations in M0,
gK
gπ

, and Γ0 with the uncertainty in the Ds → f0eν branching ratio in

Table A.2.
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Figure A.4: f0 mass lineshapes for the M0,
gK
gπ

, and Γ0 variations. The sharp peak
occurs when M0 > 2mK+ .

Table A.2: Correction and systematic for B(Ds → φeν) from Ds → f0eν, f0 → KK
background.

B(Ds → f0eν, f0 → ππ)
εf0→KK

εφ→KK

B(f0→K+K−)
B(f0→π+π−)

× fwindow B(Ds → φeν)cor N cor
events

(0.135 ± 0.025)% 1.0 0.059 0.143
0.040 (0.008+0.012

−0.003)% 0.85 2.09
0.54



Appendix B

Alternate Ds → φeν

Reconstruction Methods

In our various Ds semileptonic measurements, we elected not to reconstruct the photon

from D∗
s → Dsγ decays. We made this choice for multiple reasons, notably the efficiency

hit for the soft photon, potential systematic issues arising from extra candidate showers

in the event (from splitoffs or decay-in-flight tracking failures), and the otherwise low

background in Ds semileptonic measurements thanks to the electron and Ds tag.

However, we are aware that analyses of this type (e.g. [77]) typically use full event

reconstruction to identify the neutrino by its missing mass. Further, other analyses on

the CLEO data sample [69, 88] have arrived at a somewhat different B(Ds → φeν) using

the missing mass and the D∗
s meson’s daughter photon in their tagging procedure. To

accommodate any misgivings over the approach that we have taken in our primary anal-

ysis, we have also measured B(Ds → φeν) using six variant procedures that approximate

the CLEO analyses and other potential approaches.

In four of our six alternate approaches, we reconstruct the D∗
s meson’s daughter

photon and estimate the number of tags from the Ds + γ recoil mass spectrum. We

measure the number of semileptonic decays by using the event’s missing mass; we get

four slightly different combinations by toggling the missing mass fit range and whether

or not we make a best candidate choice for the photon. In another alternate approach,

we reconstruct the D∗
s daughter photon and require that the Ds + γ recoil mass falls

188
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in a reasonable range, but we fit the Ds invariant mass spectrum without the photon

for the number of tags. This allows true semileptonic events containing false photon

combinations to pass our selection, and it gives us a data estimate for the rate of such

false photon combinations when combined with our Ds + γ recoil mass tags. Finally,

we do an intermediate approach where we use the same Ds tag modes as the other

approaches, but we do not reconstruct the D∗
s daughter photon. In this case, we do a

simple fit to the Ds invariant mass after all cuts to determine the number of semileptonic

events, much like our standard analysis.

We have also tested an approach that uses a two dimensional tagging fit to the

Ds invariant mass and the Ds + γ recoil mass. We found that this method gave us

essentially the same results as when we cut on the Ds mass and fit the Ds + γ recoil

spectrum. However, our fits to the two dimensional spectrum become sensitive to initial

parameters, possibly due to a small remaining correlation between the two variables.

Since our fit shape systematic dominates the tagging errors, we have chosen to drop this

method and focus on the one dimensional fits instead.

B.1 Particle Selections for Alternate Methods

Given the significant differences in B(Ds → φeν) between our primary analysis and

another analysis on the CLEO data sample [88], we have attempted to eliminate any

comparison complications by using that analysis’s particle selections for all six of our

alternate measurement approaches.

We restrict ourselves to 9 of our 13 tag modes: KsK, KKπ, KKππ0, KsK
−ππ,

πππ, πη, ππ0η, πη′, η′ → ππη, and πη′, η′ → ργ. We drop our normal Ds momentum

cut (in the form of a recoil mass cut that varies by mode) since we will instead be using

the Ds + γ recoil mass for our fits and selections. Also, we add a 150 MeV ρ cut in

Ds → ππ0η. We otherwise retain the individual tag mode cuts listed in Table 5.3.1

We use the same electron cuts as in our primary analysis, with the sole excep-

tion that we adopt a slightly more conservative | cos θe| < 0.90 angle cut instead of

| cos(θe)| < 0.93.

1For our intermediate method (Method 6), we do not find the D∗
s meson’s daughter photon. While

we still restrict ourselves to the 9 tag modes, we otherwise maintain the Ds tag cuts from our primary
analysis.
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Although we loosen the overall φ mass requirement to 60 MeV for all of our alternate

methods, we otherwise adopt tighter kaon cuts. Specifically, we institute a minimum

hit fraction cut of 0.5 rather than the token hit fraction cut of 0.1 from our primary

analysis. In addition to our standard dE/dx consistency cut of
∣

∣

∣
σ
dE/dx
K

∣

∣

∣
< 3.0, we also

add an additional rejection from a basic particle ID. If we have |pK > 700 MeV|, then
we use both σdE/dx and the RICH likelihood by requiring (σ2π − σ2K) + (Lπ − LK) ≥ 0;

otherwise, we drop the RICH likelihood and simply require (σ2π − σ2K) ≥ 0.

We require that candidate showers for the D∗
s meson’s daughter photon do not come

from hot channels in the calorimeter, they can’t have an associated track, and they need

to pass CLEO’s E9

E25
O.K. cut.2 Showers must have an energy above 50 MeV if in the

endcap or 30 MeV in the barrel, although the kinematic range of the D∗
s photon limits

these extremes in any case. We also reject any event with an unused shower that meets

the above criteria but has an energy above 300 MeV.

B.2 Methods 1-4: Cut on Ds Invariant Mass, Fit Ds + γ

Recoil Mass

Our first four alternate methods all use the Ds + γ recoil mass to tag candidate events.

We first restrict the Ds invariant mass to the range |M recon
Ds

−MPDG
Ds

| < 17.5 MeV. We

then allow each passing Ds to pair with any valid shower to form a Ds+γ tag candidate.

We determine the number of Ds+ γ tags by fitting the recoil mass spectrum, where the

recoil four momentum is given by precoil = pbeam − (pmass constrained
Ds

+ pγ). By using the

mass constrained Ds four vector for our Ds + γ recoil, we make the recoil mass fairly

independent of the reconstructed invariant mass (Fig. B.1). Aside from conceptual

simplicity, this also reduces the remaining recoil background after our basic invariant

mass cut.

We fit the recoil mass from each Ds tag mode separately, using a crystal ball func-

tion and 4th degree polynomial background function. This gives us a total of five signal

parameters and five background parameters. We use the Monte Carlo to fix the crystal

2The energy dependent “ E9

E25
O.K.” cut requires a minimum E9

E25
value for the shower. For low energy

photons, the central nine crystals must contain around 80% of the total shower energy. This minimum
smoothly scales to requiring roughly 90% of the energy in the central crystals for higher energy photons.
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Figure B.1: Ds + γ recoil mass vs. Ds invariant mass in the charm Monte Carlo. The
lower left plot shows that the two are fairly independent after mass constraining the Ds

four vector. The lines indicate our tag fit’s invariant mass and recoil mass cuts. We
scale the total and combinatoric plots by a factor of 1/10th relative to the others to
keep those plots less visually congested.

ball function’s mean, its α (the number of σ at which the gaussian turns into a polyno-

mial), and its n (polynomial power). We allow the signal normalization, the signal width

(σ), and all of the background parameters to float. We only count Ds + γ tags that

have a recoil mass within 3.782 GeV2 < M2
recoil < 4.0 GeV2, in accordance with [88];

not only does this match our recoil mass cut for the full event reconstruction, but it

prevents our tagging counts from being unduly influenced by the long crystal ball tail.

We give our Ds + γ tag fit results in Table B.1, with Figure B.2 (Monte Carlo) and

Figure B.3 (data) showing the actual fits.

For two of our four methods, we use all Ds+γ combinations with a valid recoil mass
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Table B.1: Ds + γ recoil mass tags in the data and Monte Carlo. The crystal ball
function tends to undercount the number of tags across all modes, so we adjust the final
branching ratio for this systematic effect.

Ds mode Data tags MC, fit tags MC, truth tags

KsK 3,772 ± 90 72,405 ± 370 74, 138
KKπ 16,069 ± 218 326,072 ± 887 341, 134
KKππ0 5,254 ± 251 97,446 ± 934 118, 900
KsK

−ππ 2,273 ± 109 50,753 ± 436 53, 110
πππ 4,618 ± 189 89,019 ± 511 96, 594
πη 1,863 ± 78 36,095 ± 265 37, 198
ππ0η 3,168 ± 152 74,488 ± 516 74, 635
πη′, η′ → ππη 1,419 ± 56 26,888 ± 226 26, 681
πη′, η′ → ργ 3,351 ± 144 62,202 ± 444 63, 918

Sum 41,788 ± 468 835,368 ± 1,683 886, 308

when reconstructing a semileptonic event. In the other two methods, we choose a best

γ candidate from among those that pass the recoil mass window. We choose this best

γ by determining what its lab energy should have been given the Ds + γ recoil mass

and the shower’s position in the calorimeter, then choosing the photon whose energy

lies closest to its ideal energy. This procedure provides a slight improvement toward

choosing the correct photon in Monte Carlo over simply taking the candidate with the

best recoil mass, and it produces less shaping of the final missing mass spectrum. We

call the former two methods our “multiple candidate” methods and the latter two our

“best candidate” methods, in both cases referring to candidate photons allowed to pair

with our Ds.

Once we have our Ds+γ tags, we look for a passing φ meson and a passing electron

from the semileptonic Ds decay. We then calculate the event four vector. The φ width

prevents us from improving its resolution with a kinematic fit, but we are able to improve

the D∗
s daughter photon resolution. For all four of our methods, we adjust the photon

energy to its ideal energy, essentially doing a one variable kinematic fit by using the

fact that we know the photon location much better than its energy. We then calculate

the missing mass from the sum of all four vectors, the beam energy, and the beam

momentum: pmissing mass = pbeam − (pmass constrained
Ds

+ pcorrectedγ + pφ + pe).
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Figure B.2: Ds + γ recoil mass distribution for the 9 tag modes in Monte Carlo. The
dotted lines give our fit results’ signal and background components. The solid lines give
the truth-tagged information: signal, combinatoric background, true Ds pairing with a
non-D∗

s daughter γ (false γ), and false Ds paired with the D∗
s daughter γ.

We determine the number of signal counts from the missing mass plot, with two

signal region possibilities. For our “tight” missing mass range, we consider a signal

region with |MM2| < 40, 000 MeV2. Our “wide” missing mass range extends over

|MM2| < 400, 000 MeV2.

The two MM2 ranges deal differently with events that have a true Ds → φeν decay

but whose Ds tag has been paired with an incorrect D∗
s daughter photon. Such false

γ events do not peak in our Ds + γ recoil mass spectrum and consequently do not get

counted as tags. We then need to cut such events out of our branching ratio’s numerator

with a background subtraction (the “tight” methods), or we need to trust the Monte

Carlo to correct our efficiency properly for such surplus events (the “wide” methods).
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Figure B.3: Ds+γ recoil mass distribution for the 9 tag modes in the data. The dotted
lines give our fit results’ signal and background components.

Both the “tight” and “wide” cut regions have their own difficulties. The “wide”

missing mass range covers nearly all semileptonic events (true D∗
s daughter photon or

otherwise). We have doubts about using the Monte Carlo to get the false γ rate correct

for this method, as we discuss in Section B.4.3 Combinatoric background also enters

into the signal region, which we estimate with the Monte Carlo.4

The “tight” background subtraction gets complicated because false γ events peak

softly in the |MM2| distribution. We need to rely on the Monte Carlo to determine the

3We can also try estimating the false γ rate from a Ds+γ recoil sideband. However, this gets conflated
with combinatoric background in the sideband, and it requires us to trust the Monte Carlo to correctly
extrapolate the false γ distribution from the sideband to signal region in any case.
4We could estimate the background with a Ds mass sideband, but we’d still be relying on the Monte
Carlo to estimate how that sideband propagates through the recoil mass distribution with its false γ
combinations. We find it best to make Monte Carlo dependence explicit, especially with a small effect
like this.
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soft peak’s shape, as a flat background non-trivially overestimates the branching ratio.

Every method also has the same peaking background from Ds → f0eν, f0 → KK

that we see in our standard analysis. For this comparison, we just use the Monte Carlo

to correct the f0eν rate.

Overall, we get four slightly different methods of determining a branching ratio, by

taking either a tight/wide missing mass range and by allowing either the best candi-

date/multiple candidates for the D∗
s daughter photon. We give our missing mass plots

from the Monte Carlo and the data for each type of candidate selection in Figures B.4–

B.7.
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Figure B.4: Ds → φeν event’s missing mass distribution (ν missing mass) given a best
photon candidate selection in the Monte Carlo. The vertical lines indicate our “tight”
cut. The wide histogram shows true Ds → φeν events that get reconstructed with a
false D∗

s daughter photon.
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Figure B.5: Ds → φeν event’s missing mass distribution (ν missing mass) given a best
photon candidate selection in the data.
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Figure B.6: Ds → φeν event’s missing mass distribution in the Monte Carlo when we
allow multiple photon candidates.
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Figure B.7: Ds → φeν event’s missing mass distribution in the data when we allow
multiple photon candidates.
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B.2.1 Comparison of Methods 1-4

Each method’s photon candidate multiplicity and |MM2| cut range gives it particular

advantages and drawbacks, which we briefly discuss below. As in the previous section,

we refer to Ds+γ tags with a γ that did not come from a D∗
s daughter photon as “false

γ” combinations. In particular, we address the case with more false γ in the data than

predicted by the Monte Carlo (although the same problems would occur in reverse if

the data has fewer false γ candidates than the Monte Carlo predicts).

Our best tight method (best photon candidate, tight |MM2| range) has the potential
flaw that when we get more false γ tag combinations than expected from the Monte

Carlo, the false γ contribution to the MM2 spectrum becomes more peaked than pre-

dicted (a consequence of choosing the best γ). This effect causes us to slightly under

subtract false γ background from the signal region, leading to an overestimate of the

branching ratio. On the other hand, we choose the correct γ less often than predicted

with our efficiency (since more false photons exist to potentially make a best candidate),

giving us a slight underestimate of the branching ratio. The former effect dominates,

as false γ events get pushed into the signal region with the extra combinations more

frequently than events with a correct γ get thrown out.

The best wide method allows both false and true γ combinations into our |MM2|
range, so we don’t have to worry about whether we chose the correct γ combination

or not. However, since the Ds + γ tag spectrum only peaks with true D∗
s daughter

photons, the efficiency determined by the Monte Carlo implicitly assumes a certain

rate of extra events from false γ. When we have more false γ than expected, we get

more events in the |MM2| range than we took credit for given our tags and efficiency,

causing us to overestimate the branching ratio. We also need to trust the Monte Carlo

to determine the number of combinatoric and false Ds background, since our |MM2|
range extends far enough that a sideband subtraction isn’t reasonable; this estimate

could be systematically high or low, sending the branching ratio either way.

Our multiple tight method solves both flaws of the best tight method since we don’t

have a best candidate choice to shape the false γ background, nor do we have an

efficiency issue when choosing false γ in place of true γ. We do have the statistical

drawback that we aren’t making use of true Ds → φeν events that happen to have only

false D∗
s daughter photons, but that’s also true of the best tight method and doesn’t
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drive our error in any case. Although different from the best candidate methods used

in prior analyses [88], we consider this the most accurate of our four methods that use

Ds + γ recoil mass tags.

We include a multiple wide method for completeness, although this suffers from a

larger efficiency sensitivity to false γ than the other methods. This occurs because we

can frequently get false γ combinations even when the correct γ was found and had the

best combination, with no sideband available to estimate such combinations. We expect

this method to overestimate the branching ratio due to the extra false γ events (or due

to the low Monte Carlo efficiency, depending on your perspective).

Keeping these potential systematic biases in mind, we compare the results from each

of our four methods in Table B.2 for the Monte Carlo and in Table B.3 for the data

sample. We used a Monte Carlo input Ds → φeν branching ratio of 2.170%.

Table B.2: Branching ratios in Monte Carlo for each of the four methods that use Ds+γ
tags. Errors are statistical only.

Allowed candidates MM2 range εSL NSL+Ds+γ B(Ds → φeν)

Best candidate Narrow 9.63% 1836 ± 51 (2.150 ± 0.059)%
Best candidate Wide 13.24% 2505 ± 52 (2.134 ± 0.045)%

Multiple candidate Narrow 10.89% 2080 ± 59 (2.156 ± 0.061)%
Multiple candidate Wide 18.85% 3561 ± 64 (2.132 ± 0.038)%

Table B.3: Branching ratios in the data for each of the four methods that use Ds + γ
tags. Errors are statistical only.

Allowed candidates MM2 range εSL NSL+Ds+γ B(Ds → φeν)

Best candidate Narrow 9.63% 90.1 ± 11.1 (2.110 ± 0.260)%
Best candidate Wide 13.24% 118.5 ± 11.4 (2.019 ± 0.195)%

Multiple candidate Narrow 10.89% 98.3 ± 12.9 (2.036 ± 0.269)%
Multiple candidate Wide 18.85% 173.7 ± 14.0 (2.079 ± 0.170)%

We get largely similar branching ratios from each of our four methods that use

Ds + γ tags. At worst, our relative systematic error based on the |MM2| cut window

and choice of best candidate comes to around 4%, which can be ignored given our 13%



201

relative statistical error and our 10% relative systematic error from the tag fits.

B.3 Method 5: Cut on Ds+γ Recoil Mass, Fit Ds Invariant

Mass

Fitting the Ds + γ recoil mass spectrum suffers from the problem of non-linear back-

ground, which gets exacerbated by the signal’s long power law tail from photon recon-

struction. In contrast, the Ds invariant mass spectrum has a fairly flat background, and

a smaller power law tail even in photon tag modes since we have one fewer photon to

reconstruct. To take advantage of the cleaner fitting while retaining the D∗
s daughter

photon reconstruction, we have tried one method using Ds invariant mass tags after

cutting on the Ds + γ recoil mass.

We allow a Ds tag to enter our invariant mass plot once if it pairs with one or more

photons to create a Ds + γ recoil mass within 3.782 GeV2 < M2
recoil < 4.0 GeV2. We

then fit the Ds invariant mass spectrum for each tag mode with a linear background

function and the sum of a gaussian and crystal ball to represent the signal. We fix the

relative normalization and relative width of the gaussian and crystal ball in the Monte

Carlo, as well as the crystal ball function’s α and n parameters. We allow all other

parameters to float in our fit, including both linear background parameters and the

common mean for the gaussian and crystal ball.

We count tags within |M recon
Ds

−MPDG
Ds

| < 17.5 MeV, since we only allow Ds within

this mass range to later combine with an electron and φ meson for our full semileptonic

event. We give our Ds invariant mass tagging results from both the Monte Carlo and the

data in Table B.4, with the fits shown in Figure G.63 and Figure G.64 (Appendix G).

Since we use the sameDs invariant mass andDs+γ recoil mass ranges as our previous

four methods, we have exactly the same missing mass reconstruction (Figures B.4–B.7).

Unlike the Ds+ γ recoil mass tagging, our Ds invariant mass tags peak whether the D∗
s

daughter photon is true or false. Rather than trust the Monte Carlo to estimate how

many tags come from true photon combinations, we use a best candidate selection over

the “wide” range for the |MM2|, giving one potential event for each tag and keeping

both true and false photons. This procedure means that we only have to use our Monte

Carlo to provide the efficiency for the φ and electron, independent of the false photon
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Table B.4: Ds invariant mass tags in the data and Monte Carlo after cutting on the
Ds+γ recoil mass. We only allow each Ds mass to enter once, regardless of the number
of Ds + γ combinations.

Ds mode Data tags MC, fit tags MC, truth tags

KsK 4,726 ± 76 87,061 ± 317 86, 050
KKπ 21,603 ± 181 402,906 ± 742 405, 485
KKππ0 8,498 ± 241 149,721 ± 920 145, 063
KsK

−ππ 3,887 ± 96 66,833 ± 348 63, 501
πππ 6,490 ± 186 109,144 ± 460 111, 756
πη 2,341 ± 80 42,248 ± 229 42, 876
ππ0η 3,329 ± 143 90,113 ± 505 86, 663
πη′, η′ → ππη 1,754 ± 47 31,320 ± 191 30, 930
πη′, η′ → ργ 3,388 ± 135 71,189 ± 425 74, 086

Sum 56,017 ± 434 1,050,530 ± 1,534 1, 046, 410

rate.

Aside from the possibility that the Monte Carlo underestimates the combinatoric

background (less than a 4% effect), we do have a slight complication with our Ds tags

in this method. Generic Ds decays may have photons as final decay products, while real

Ds → φeν events do not (at least not for our reconstructed mode of φ → KK). This

means that generic Ds decays have a slightly higher rate of photon candidates available

to create a passingDs+γ recoil mass thanDs → φeν decays, allowing relatively moreDs

tags with fake D∗
s daughter photons in generic decays than we see with real φeν events

(about a 3% correction). If the Monte Carlo underestimates the number of generic Ds

decay photons, we will also slightly underestimate our branching ratio.

Overall, we expect a relative systematic from this method of 6%, which is partially

independent of the systematic from our recoil mass tag methods. We state our branching

ratio results for this method in our summary section, with Tables B.8 and B.9 giving

the results in Monte Carlo and data, respectively.
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B.4 D∗
s Daughter Photon Efficiencies

Some of our alternate Ds → φeν methods depend upon the Monte Carlo predicted rates

for reconstructing the D∗
s daughter photon. Fortunately, with the various tagging meth-

ods that we’ve performed (and an additional fit for the number of Ds before combining

with photons), we can get an estimate for the actual photon efficiency in data. We can

also get an estimate for the rate at which events without a true D∗
s daughter photon still

pass the Ds+γ recoil mass cut by pairing with another shower (the “false γ” rate). This

cross-check indicates both that the D∗
s daughter photon gets successfully reconstructed

at a lower rate than expected from the Monte Carlo and that false showers allow the

Ds to pass our Ds + γ cut more often than expected.

To determine our true efficiency for the D∗
s daughter photon reconstruction, we

perform an additional fit to the Ds invariant mass before it combines with a photon.

This gives us our efficiency denominator, which we can combine with our number of

Ds + γ tags to get the efficiency. We use the same fitting methodology for this MDs fit

that we used when determining invariant mass tags (method 5), although here we don’t

cut on the Ds + γ recoil mass before getting our invariant mass distribution. As seen

in Table B.5, we obtain a lower photon efficiency in data by about 8% (relative) than

we get in the Monte Carlo. We don’t list the errors on the efficiency, as the systematics

from tagging dominate the small (sub-percent) level statistical errors (we haven’t done

a thorough systematic evaluation, but a relative 3%-4% seems likely given our previous

work).

Table B.5: D∗
s daughter photon efficiency in data and Monte Carlo.

Sample type N recoil
Ds+γ Npre-recoil

Ds
εγ

MC, truth-tagged 886,308 1,267,860 69.9%
MC, fit 886,309 ± 1,785 1,268,470 ± 1,821 69.9%
Data, fit 44,336 ± 497 68,999 ± 561 64.3%

The Ds tag can combine with showers from sources other than the D∗
s daughter

photon (false γ) to form a passing Ds + γ recoil mass. These showers can come from

real photons on the other side (untagged) Ds decay, or they can arise when the Ds
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decays to soft kaons. The kaons have a high rate of unmatched showers due to splitoff

and decays in flight that may not be well determined in the Monte Carlo. Although we

don’t use this result directly, we can get a feel for the data/Monte Carlo difference by

looking at how often a tag passes the Ds + γ recoil by pairing with a false γ when the

real photon was not found.

We use the number of tags from our recoil mass fit (methods 1-4), our invariant

mass fit tags after a Ds + γ recoil cut (method 5), and the previously determined

photon efficiency to determine the rate of fake γ. As seen in Table B.6, the data has

a 10% higher likelihood of finding such a fake shower than the Monte Carlo predicts.

This gives us the sense that either generic Ds decays have more photons than the Monte

Carlo, or we have more non-photon extra showers from Ds decay products than we’d

expect. The former effect will distort our efficiency estimate for the invariant mass tag

procedure (method 5), while the latter particularly affects Ds → φeν and can distort

all of our recoil mass results other than the multiple tight method.

Table B.6: Rate at which validDs without a correctly reconstructedD∗
s daughter photon

will still pass all tagging cuts (including the Ds + γ recoil mass).

Sample type N recoil
Ds+γ Npost-recoil

Ds
εγ ffake γ

MC, truth-tagged 886,308 1,046,410 69.9% 42.0%
MC, fit 886,309 ± 1,785 1,050,530 ± 1,534 69.9% 43.0%
Data, fit 44,336 ± 497 56,017 ± 434 64.3% 47.4%

We can also get a more direct estimate for the rate of false D∗
s daughter photons

in Ds → φeν decays by comparing our multiple tight method’s background estimates

in data and Monte Carlo. Background makes up about 45.4% of events in the Monte

Carlo compared to 47.3% for the data. Since combinatoric background only makes up

some 5% of the total events (according to the Monte Carlo), it’s likely that these surplus

data background primarily come from false photon combinations. If we interpret the

extra background in data as entirely false photon combinations, we estimate a relative

7% higher rate of false γ combinations for Ds → φeν events over what the Monte Carlo

predicts.
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B.5 Method 6: No D∗
s Photon Reconstruction

For ease of comparison, we also include a simplified version of our primary analysis

that uses cuts and fits similar to the other five alternate methods. As in our primary

analysis, we do not attempt to reconstruct the D∗
s daughter photon, instead using the

Ds invariant mass spectrum for both tags and the number of semileptonic events.

We reconstruct the same 9 Ds tag modes listed in B.1, leaving out four of the

higher background modes from our primary analysis (KsKπ
0; KsKsπ; KsK

+ππ; and

ππ0η′, η′ → ππη). Since we do not reconstruct a potential D∗
s daughter photon, we

don’t have a Ds + γ recoil mass available for our selection. Instead, we use our primary

analysis’s Ds momentum cut in the form of the Ds recoil mass range from Table 5.2.

Once we’ve selected our Ds candidates, we determine the number of Ds tags by fit-

ting the invariant mass spectrum. As in our previous Ds → φeν reconstruction method

using the Ds invariant mass for tags (method 5), we fit each tag mode to the sum of a

gaussian and crystal ball for the signal with a linear background function (using fixed

signal shape parameters from the Monte Carlo). This fit choice differs from our primary

analysis, where we sometimes use a double gaussian or a quadratic background, based on

the tag mode. While our choice of fit function for this alternate method may not be as

accurate as in our primary analysis, it does reduce the likelihood that any difference in

results between the alternate methods came from a fit systematic on the tags. Overall,

we see an 8% difference in tags from our primary analysis over these modes, although

ππ0η drives nearly the entire difference with its non-linear background shape. Our tag

results for this method are given in Table B.7, with our data fits shown in Figure G.65.

After making the same electron and φ cuts as for our other alternate methods (rather

than the φ/e cuts from our primary analysis), we again plot the Ds invariant mass. We

fit each tag mode with the signal shape determined from our tag fits (only the overall

normalization floats), plus a linear background function. Unlike our primary analysis,

we refrain from using a common branching ratio to ensure that this method remains

both simple and as similar as possible to the other alternate methods. We thus fit each

tag mode independently.

Figures B.8 and B.9 show our Monte Carlo and data plots for the Ds mass after

making our semileptonic selections. We include the results in our summary section with
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Table B.7: Ds invariant mass tags in the data and Monte Carlo after a Ds momentum
cut. We do not require a pairing with a photon.

Ds mode Data tags MC, fit tags MC, truth tags

KsK 6,277 ± 95 115,958 ± 380 113, 885
KKπ 27,676 ± 225 510,195 ± 888 514, 865
KKππ0 6,731 ± 203 119,558 ± 750 136, 976
KsK

−ππ 3,411 ± 88 65,749 ± 351 64, 034
πππ 5,992 ± 201 118,575 ± 521 124, 024
πη 3,809 ± 135 64,179 ± 317 66, 758
ππ0η 5,718 ± 331 108,063 ± 800 131, 334
πη′, η′ → ππη 2,412 ± 60 42,550 ± 232 42, 181
πη′, η′ → ργ 3,487 ± 158 72,327 ± 453 81, 611

Sum 65,513 ± 553 1,217,150 ± 1,700 1, 275, 670

Tables B.8 and B.9.
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Figure B.8: Ds invariant mass for events passing the semileptonic φ and electron cuts
in the Monte Carlo.



208

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

 M
e

V
  

  

0

0.5

1

1.5

2

2.5

3

3.5

 K
s

 & e cuts, Kφ after 
sD

M  K
s

 & e cuts, Kφ after 
sD

M

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

 M
e

V
  

  

0

2

4

6

8

10

12

π & e cuts, K K φ after 
sD

M π & e cuts, K K φ after 
sD

M

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

 M
e

V
  

  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0
π π & e cuts, K K φ after 

s
D

M
0

π π & e cuts, K K φ after 
s

D
M

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

 M
e

V
  

  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

π π 
-

 K
s

 & e cuts, Kφ after 
sD

M π π 
-

 K
s

 & e cuts, Kφ after 
sD

M

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

 M
e

V
  

  

0

1

2

3

4

5

6

π π π & e cuts, φ after 
sD

M π π π & e cuts, φ after 
sD

M

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

 M
e

V
  

  

0

0.5

1

1.5

2

2.5

3

3.5

η π & e cuts, φ after 
sD

M η π & e cuts, φ after 
sD

M

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

 M
e

V
  

  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

η 
0

π π & e cuts, φ after 
s

D
M η 

0
π π & e cuts, φ after 

s
D

M

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

 M
e

V
  

  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

η π π’ -> η’, η π & e cuts, φ after 
sD

M η π π’ -> η’, η π & e cuts, φ after 
sD

M

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

 M
e

V
  

  

0

0.5

1

1.5

2

2.5

3

3.5

γ ρ’ -> η’, η π & e cuts, φ after 
sD

M γ ρ’ -> η’, η π & e cuts, φ after 
sD

M

Figure B.9: Ds invariant mass for events passing the semileptonic φ and electron cuts
in the data.
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B.6 Comparison of Alternate Methods

Our best Ds → φeν measurement using Ds+γ recoil mass tags comes from the multiple

tight method, so we compare it, the Ds invariant mass tag method, and our simplified no

D∗
s photon analysis in Tables B.8 and B.9 for the Monte Carlo and data, respectively.

The multiple tight method and the simplified no photon method give us the biggest

branching ratio range, with a relative difference of about 10%. We expected our non-

correlated systematic errors between methods to also be at about the 10% relative

level, so this relative difference seems reasonable. Note that while the statistical errors

also cover this range, they don’t completely explain the difference since they have a

correlation with each other (all methods run over the same data sample).

Table B.8: Branching ratios in Monte Carlo for our different Ds → φeν alternate
methodologies. Errors are statistical only.

Ds → φeν method N raw
tags εSL NSL+Ds+γ B(Ds → φeν)

M recoil
Ds+γ tags, multiple tight 835,368 ± 1,683 10.89% 2080 ± 59 (2.156 ± 0.061)%

MDs tags, best wide 1,050,530 ± 1,534 11.48% 2505 ± 52 (2.150 ± 0.045)%
MDs tags & signal, no γ 1,216,450 ± 1,698 13.97% 3160 ± 61 (2.150 ± 0.042)%

Table B.9: Branching ratios in the data for our different Ds → φeν alternate method-
ologies. Errors are statistical only.

Ds → φeν method N raw
tags εSL NSL+Ds+γ B(Ds → φeν)

M recoil
Ds+γ tags, multiple tight 41,787.7 ± 468.1 10.89% 98.3 ± 12.9 (2.036 ± 0.269)%

MDs tags, best wide 56,017.1 ± 433.6 11.48% 118.5 ± 11.4 (1.908 ± 0.183)%
MDs tags & signal, no γ 65,476.6 ± 551.6 13.97% 144.8 ± 13.3 (1.831 ± 0.169)%

Our primary analysis yields a branching ratio roughly in the middle range of our

alternate methods, with the full range covered by its statistical error. We take this to

mean that our primary Ds → φeν result is fairly robust to the changes in fit function,

particle cuts, and D∗
s photon reconstruction considered in this appendix.

Our multiple tight method and our Ds invariant mass tag method both involve an
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f0 → KK correction based on our Monte Carlo. Given the discussion in Appendix A,

the Monte Carlo likely has more f0 → KK than the data, so this could lead to an

underestimate of the branching ratio by a relative 2%-3%. We do not attempt an

f0 → KK correction in our simplified no D∗
s photon analysis; this could lead to an

overestimate of our branching ratio by up to a relative 2%. However, the systematic

error from our (different) f0 correction methodologies comes out to roughly the size of

the correction itself, so this doesn’t alter the consistency between our different methods.



Appendix C

Ds → ηeν Efficiency Systematic

As described in Section 10.6.2, we have elected to create our own η efficiency systematic

rather than adopting a preexisting one. This gives us an η reconstruction efficiency with

our exact η selections, a comparable η lab momentum range (Figure C.1), and a run

environment similar to that in the Ds → ηeν analysis.

In addition to these benefits, our Ds → ηeν Monte Carlo datasets show an ηeν

efficiency variation that borders on the edge of allowed random variation (Figure C.2).

Of course, with six semileptonic modes, it shouldn’t be shocking if one mode’s efficiency

variations have a one in six chance of being consistent with a random distribution. Even

so, creating our own systematic for the efficiency from the same datasets gives us more

confidence that our analysis has a sound foundation.

We obtain an η sample by taking advantage of the large (8.9%)D±
s → ρ±η branching

ratio [89]. We determine the presence of an η by finding the recoil mass after recon-

structing a Ds tag, the D∗
s daughter photon, and a ρ. Then, we explicitly reconstruct

the η → γγ with our analysis’s η selection to get an η efficiency. As this can be done in

both data and Monte Carlo, we can compare the efficiencies for our overall systematic.

For our Ds tag, we use the same 13 tag modes as our full analysis, described in

Section 5. Since we don’t need to fit the Ds mass spectrum, we make the additional

mode-dependent Ds mass cuts shown in Table F.11 (Appendix F). We follow the se-

lections from Section 9.1 for our D∗
s daughter photon candidates, with the exception of

the irrelevant minimum energy cut.

For the ρ±, we reconstruct a π± and a π0. Our charged π follow the same selection

211
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criteria as in Section 8.1, although we make minor adjustments by lowering the χ2

threshold to 1,000, we don’t allow hit fractions above 1.2, and we drop the
∣

∣σ
dE/dx
π

∣

∣ < 3.0

cut when we have both RICH information and pπ > 550 MeV. The π and Ds tag must

have opposite charges, and the event can have no other charged tracks. We require a

3.0 pull mass cut on the π0, and its showers must meet the requirements from Section 9.1

(although we drop the distinction between barrel and endcap showers).

The background to Ds → ρη mostly consists of events with soft pions. We can

eliminate much of this background by adding cuts on the ρ. Specifically, we require

600 MeV < Mρ < 960 MeV and 500 MeV < pρ < 1000 MeV. We also eliminate

particular backgrounds by rejecting π± that have a rest frame momentum within 5 MeV
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Figure C.2: Ds → ηeν efficiency (including the η → γγ branching ratio) by dataset.
The solid line gives the average across the full generic Monte Carlo sample, while the
dotted lines show the 1σ range on this average.

of 712 MeV, 743 MeV, or 902 MeV for Ds to πφ, πη′, and πη, respectively.

To determine our number of Ds → ρη events, we perform a 2D fit to the Ds+γ recoil

mass and the Ds + γ + ρ recoil mass. We use the Monte Carlo to get four lineshapes

for the fit corresponding to events with true or false η and true or false Ds+ γ+ ρ. The

Monte Carlo accurately reproduces the widths of these lineshapes in data, but the peak

locations have a slight shift. We allow the distributions to shift in each dimension and

take the best χ2. In the data, this shifts our Ds+ γ recoil mass fit function by 1.3 MeV

and our Ds + γ + ρ recoil fit function by 4.5 MeV. We give our projections for each fit

dimension in Figures C.3 (Monte Carlo) and C.4 (data).

After identifying events with an η, we explicitly reconstruct the η → γγ using the

same shower selections as for the π0 from the ρ. We only consider events with a Ds + γ
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Figure C.3: Top: Ds + γ recoil mass in the Monte Carlo for events with a Ds + γ + ρ
recoil mass between 500 MeV and 600 MeV. Bottom: Ds + γ + ρ recoil mass for Monte
Carlo events that have a Ds + γ recoil between 1955 MeV and 1990 MeV.

recoil mass between 1950 MeV and 1990 MeV.

Once we have our reconstructed η, we get our efficiency’s numerator by doing a 2D

fit to the η pull mass and the Ds + γ + ρ recoil mass. We again take lineshapes from

the Monte Carlo, keeping the same 4.5 MeV shift to the Ds + γ+ ρ recoil mass that we

obtained from our previous fit. We show our distributions from this fit for the Monte

Carlo in Figure C.5 and for the data in Figure C.6.

We expected to see a lower η efficiency from the data than the Monte Carlo, in

accordance with a previous CLEO analysis using ψ′ → ηJ/ψ that saw a relative 5.6%

correction to the η efficiency [71]. However, with our η environment and selections,

we only see a relative 1.2% lower efficiency in the data compared to the Monte Carlo
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Figure C.4: Top: 2D fit projections for the Ds + γ recoil mass in the data from events
with a Ds + γ + ρ recoil mass between 500 MeV and 600 MeV. Bottom: Fit projection
for the Ds + γ + ρ recoil mass from data events that have a Ds + γ recoil between
1955 MeV and 1990 MeV.

(32.7% to 33.1%), well within our error. Consequently, we do not take a correction to

our η efficiency.

Our systematic error on the efficiency comes almost equally from our error on the

numerator (2D pull mass/Ds + γ + ρ recoil fit) and our error on the denominator (2D

Ds + γ + ρ recoil/Ds + γ recoil fit). We use a binomial error for the our efficiency,

although we have to adjust it upward by a factor of 1.2 to account for fit backgrounds.

Ultimately, we obtain an η efficiency in the data of (32.7± 2.6)%, giving us a relative η

efficiency systematic of 7.9%.
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Figure C.5: Top: Ds + γ + ρ recoil mass in the Monte Carlo for events with
−3.5 < ση < 2.5. Bottom: η pull mass for Monte Carlo events that have a Ds+γ+ρ
recoil between 500 MeV and 600 MeV.
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−3.5 < ση < 2.5. Bottom: Fit projection for the η pull mass from data events that
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Appendix D

Kaon Tracking and Particle ID

Systematic

While all track reconstructions depend on the particle’s momentum to some extent, kaon

reconstruction and identification have a particularly strong dependence on momentum

given the possibility of the kaon decaying within the detector. Kaons in Ds semileptonic

decays tend to have lower momenta than kaons in D0/D+ decays, so we use loose cuts

to gain efficiency for those otherwise low yield kaons. However, that means that our cuts

don’t match the prior CLEO systematics, requiring us to perform our own systematic

study for kaons. We choose an approach that combines the reconstruction and particle

ID efficiencies, giving a single, momentum-dependent systematic error for kaons.

We initially looked in the Ds system for a kaon systematic, given the relatively large

numbers of kaons produced thanks to the Ds meson’s strange component. However,

our systematic errors from these studies typically came out to about 3% per kaon, or

about 6% for Ds → φeν as a whole given the correlation between the systematics on

the two kaons. The higher statistics from D+ → K−π+π+ (and its charge conjugate)

during CLEO’s 3770 MeV running allow us to achieve a lower systematic on the kaons,

at the expense of not having an exactly identical run environment. While we don’t

use it directly, our original Ds → KKπ study yielded roughly the same needed kaon

efficiency correction (with higher errors) that we will see from our D+ study below.

To isolate D → Kππ decays, we first reconstruct a D± tag. We use five modes in
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our D± tag reconstruction: Kππ, KKπ, Ksπ, Ksππ
0, and Kπππ0. We ensure that

we have a D+D− event by requiring that the tag’s beam constrained mass falls within

5 MeV of the D+ mass and that the ∆E falls within 20 MeV of zero. We then choose

each charge’s best tag by D± invariant mass. Once we have a D+ tag candidate, we

rescale its total momentum to match D+D− production, improving the resolution of

our later recoil masses.

After finding a tag, we look for two additional tracks with proper charges passing

pion particle ID. We reject any event with a total extra energy above 250 MeV or with

an extra track passing simple electron cuts, avoiding backgrounds from π0 modes and

semileptonic modes, respectively. We can then identify D → Kππ events by checking

that the recoil mass against the D and two π matches a kaon.

From here, we have two ways of calculating the kaon efficiency. We can take all

events with a recoil mass near the kaon mass as the denominator, then obtain our

numerator by explicitly reconstructing the kaon and finding a zero missing mass for the

event. Alternately, we can try to find the kaon, plotting the “found” recoil mass when we

reconstruct it and the “not found” recoil mass when we don’t, with εK = Nfound

Nfound+Nnot found

giving the total kaon efficiency. As it turns out, the found/not found approach makes

it slightly easier in practice to get good precision from our fitting because nearly all

the background comes from events without a found kaon, allowing us to focus on those

events as the source of any nonstatistical error.

To get separate efficiencies for each kaon momentum region, we split our sample

into three bins based on the D+ + ππ recoil momentum: one for kaon momenta below

250 MeV, one for kaons between 250 MeV and 500 MeV, and one for kaon momenta

above 500 MeV. We’ve chosen these momentum regions so that Ds → φeν kaons split

roughly evenly between the lowest and middle bins. We fit to the “found” and “not

found” plots in each of these regions using histogram shapes from the Monte Carlo, with

a fit systematic error determined by doing a simple cut and count to the same plots.

When fitting, we discovered that the recoil kaon mass in the data tends to fall slightly

below the recoil mass in the Monte Carlo. To account for this, we allow our signal shape

to shift by small amounts to the left, and we take the best χ2 from all such shifts (which

results in a recoil shift of about 0.8 MeV). We show the final Monte Carlo and data

plots from each momentum region for our φ meson’s kaon selections in Figures D.1 and
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Figure D.1: π±π±D∓ recoil mass fits for our φ kaon selections in the Monte Carlo.
The left plots show the recoil mass when we find a kaon, while the right plots show the
recoil mass when we don’t find the kaon. The top plots contain recoil momenta below
250 MeV, the middle plots have recoil momenta between 250 MeV and 500 MeV, and
the bottom plots have recoil momenta above 500 MeV.
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Figure D.2: ππD recoil mass fits for our φ kaon selections in the data. The left plots
show the recoil mass when we find a kaon, while the right plots show the recoil mass
when we don’t find the kaon. The top plots contain recoil momenta below 250 MeV,
the middle plots have recoil momenta between 250 MeV and 500 MeV, and the bottom
plots have recoil momenta above 500 MeV.
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In our analysis, we use three different sets of selections for kaons: one for φ (Sec-

tion 7.1); one for K∗ (Section 8.1); and one for Ds tags (Section 5.1.1), where our kaon

selections for the Ds tags follow the standard CLEO kaon cuts. We have repeated our

systematic for each of these kaon cuts, with the final efficiencies across our kaon selec-

tions and momentum regions shown in Figure D.3 for the Monte Carlo and Figure D.4

for the data reconstruction. In all cases, we find that the data efficiency deviates from

the Monte Carlo efficiency for soft kaons and requires an efficiency correction, as shown

in Figure D.5 and from our final results in Tables D.1–D.3.
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Figure D.3: Monte Carlo kaon efficiency for each set of kaon selections, by momentum.
Our φ kaon cuts (hit fraction dropped) show a higher efficiency in each momentum
range, with a particular relative advantage in the important low momentum region.
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Figure D.4: Kaon efficiencies in the data for each set of kaon selections, by momentum.
The error bars on the efficiencies (barely visible) include both a statistical error and the
systematic error from fitting. The relative difference between the selection efficiencies
roughly matches the Monte Carlo, although the absolute efficiencies for soft kaons all
fall below their corresponding Monte Carlo efficiencies.
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Figure D.5: The relative difference between the kaon efficiency in data and the kaon
efficiency in Monte Carlo, by selections and momentum range. The high momentum
region requires no correction, the middle momentum region requires a slight efficiency
correction, and softest kaons require a sizable efficiency correction. The error bars
include both statistical and systematic errors from our tracking/PID reconstruction.
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Table D.1: Relative kaon systematic and efficiency correction for our loose (φeν) kaon
selection.

Momentum region
Statistical Fit Total εK

error systematic systematic correction

pK < 250 MeV 1.59% 1.69% 2.32% -9.47%
250 MeV < pK < 500 MeV 0.43% 0.08% 0.44% -1.35%

500 MeV < pK 0.18% 0.59% 0.62% N/A

Table D.2: Relative kaon systematic and efficiency correction for our medium (K∗eν)
kaon selection.

Momentum region
Statistical Fit Total εK

error systematic systematic correction

pK < 250 MeV 1.78% 1.69% 2.45% -9.08%
250 MeV < pK < 500 MeV 0.60% 0.08% 0.60% -1.50%

500 MeV < pK 1.37% 0.59% 1.49% N/A

Table D.3: Relative kaon systematic and efficiency correction for our standard kaon
selection.

Momentum region
Statistical Fit Total εK

error systematic systematic correction

pK < 250 MeV 1.67% 1.69% 2.38% -7.21%
250 MeV < pK < 500 MeV 0.76% 0.08% 0.76% N/A

500 MeV < pK 0.51% 0.59% 0.78% N/A

Our large momentum bins mean that the kaon momentum distribution within each

bin (e.g. 250 MeV < pK < 500 MeV) can differ between D → Kππ and the semileptonic

mode, shown for Ds → φeν in Figure D.6. We add an additional systematic to the

efficiency error for this effect by splitting the momentum bin into two halves and allowing

each half of the bin to have a different efficiency correction, constrained by the bin’s

total kaon efficiency and the adjacent bins’ efficiency corrections. This procedure results

in a relative 0.5% systematic error for Ds → φeν.
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Since the φ meson’s daughter kaons tend to have strongly correlated momenta, we

correct our φeν efficiency based on the daughter kaon momentum pairs rather than on

the individual φeν kaon momentum distribution.
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Figure D.6: D → Kππ andDs → φeν daughter kaon momentum distributions, scaled to
line up the left momentum bin. Because the kaon momentum distribution for Ds → φeν
falls off so sharply in the middle bin relative to Kππ, we perform an additional system-
atic by splitting the bin into two halves and doing a separate efficiency correction for
each.



Appendix E

Glossary

As a discipline becomes more and more specialized, it gains its own terminology. While

I can’t speak to the blechyuckiness of business speak, scientific disciplines really do

require some arcane terminology because the English language frankly lacks words with

the proper precision.1 With this glossary, I intend to clarify some of the terms such that

someone with a general science background doesn’t feel totally lost (just partially).2 I’ve

also added a quick note on the particles relevant to this analysis.

E.1 General Terminology

• Breit-Wigner Function – A probability density function that describes the mass

distribution for a particular resonance/particle. The relativistic version has the

form:

Prob(M) =
C

(M2 −M2
0 )

2 +M2Γ2
,

where C is a normalization constant,M is the particle’s mass,M0 is the resonance’s

mass, and Γ is the resonance width.

• Branching Ratio – The fraction of a particle’s decays that end in a given final

1Let alone the proper compactness. Without detailed terminology and implicit understanding, this
dissertation’s three word title could easily become “Measuring the rate at which an atom-like object
made up of a charm and a strange quark transitions into other particles while giving off an electron and
a neutrino, compared to how often that same atom-like object transitions into all other particles.”
2I’m using my Dad, an electrical engineer, to calibrate the target audience for this section.
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state, often expressed as a percentage. This is the same as the decay’s partial

width divided by the particle’s total width.

• Bremsstrahlung – “Braking radiation,” emitted when a charged particle slows

down (decelerates) or deflects.

• Cherenkov (Čerenkov) Radiation – Light emitted in a cone when a charged

particle moves faster than the speed of light (phase velocity) in a material.

• CKM Matrix – The Cabibbo-Kobayahsi-Maskawa matrix that connects the free

quark eigenstates to states that take part in the weak interaction. Matrix elements

along the diagonal (Vud, Vcs, Vtb) have the largest magnitudes, and interactions

that involve those elements are called Cabibbo favored, while interactions involving

the off-diagonal elements are Cabibbo suppressed.

• Combinatoric Background – The e+e− collisions create all kinds of charm

events that we don’t care about (background). Sometimes through sheer numbers,

these background events will happen to have the same particles we’re looking for

with just the right combinations of energy and momenta to fake a signal event.

Every extra particle requirement tends to reduce this background, and it can

usually be estimated from sideband regions.

• Continuum – e+e− collision events that don’t generate the targeted particle

states (nonresonant). While e+e− collisions can make a charm-anticharm pair,

some of which split into the D∗
s we want, they can also make up-antiup, down-

antidown, or strange-antistrange quark pairs that we don’t care about in the

slightest (continuum).

• Cross Section – The quantum mechanical analogue of the classical area exposed

by an object to a third dimension. In particle physics, the cross section relates to

the interaction probability but carries units of area, typically measured in barns

(10−28 m2).

• Crystal Ball Function – A function named after the Crystal Ball experiment

that splices a Gaussian together with a power law tail, keeping the function and
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first derivative continuous. We usually use these in the context of photons detected

in a calorimeter, as their measured energies tend to exhibit a power law tail.

• db – Radial distance from the beamline. We use this as a constraint on our drift

chamber tracks to ensure that the particle started from the e+e− collision point.

• dE/dx – Energy lost due to ionization per length by a charged particle moving

through material. Particles with different masses have different amounts of dE/dx

at a given momentum, allowing us to identify particles by comparing our measured

dE/dx to the particle’s ideal dE/dx (σdE/dx).

• E9

E25
– Energy in a shower’s 3 × 3 = 9 central crystals divided by the energy

in a shower’s 5 × 5 = 25 central crystals. We often discuss an E9

E25
O.K. cut,

which scales smoothly from requiring the center crystals to hold about 80% of

the shower energy for soft photons to around 90% of the shower energy for higher

energy photons. Photon showers show this pattern, while hadronic showers tend

to be more spread out.

• Flight Significance – A Ks variable that ensures the Ks travels a minimum

distance from the interaction point before decaying. This helps distinguish Ks

from nonresonant ππ or random combinations.

• Form Factor – The Fourier transform (in momentum space) of a hadron’s spatial

structure. This relates to both the physical size of the hadron and its decays to

particles with various spin/parity characteristics.

• FSR – Final state radiation, where a final state charged particle emits a soft

photon, decreasing its energy and momentum.

• Hit Fraction – The number of actual drift chamber wire “hits” in a charged

particle’s track relative to the expected number of hits. Good tracks tend to have

a hit fraction close to 1.0, but particles that decay in flight don’t make it all the

way through the drift chamber and so leave fewer hits than expected.

• Hot Crystal – A crystal/photodiode in our calorimeter known to register signals

when we have none. We typically throw out signals from such crystals in our

analysis.



230

• ISR – Initial state radiation, where one of the colliding e+ or e− emits a soft

photon, lowering the collision’s energy.

• Lattice QCD – A formulation of quantum chromodynamics (QCD), the theory

of strong interactions, on a discrete space-time lattice. QCD calculations tend to

be intractable analytically, but the lattice formalism brings computers into play by

making the calculation precision dependent on the lattice size and spacing. This

allows the result precision to depend on the computing power available, although

lattice calculations still frequently need additional simplifying assumptions.

• Lineshape – Shorthand for the mass lineshape, a particle’s mass distribution (e.g.

a Breit-Wigner function).

• Luminosity – Interactions per area per time. We often integrate the luminosity

over the run time for an experiment, giving the integrated luminosity, the inter-

actions per area. We can then just multiply by an interaction’s cross section (an

area) to get the number of such events.

• Missing Mass/Recoil Mass – The mass created by missing energy and missing

momentum via E2 = p2 + m2. The missing energy and momentum comes from

deducting all the reconstructed energy and momenta from the initial energy and

momenta. If the reconstruction left exactly one missing particle, the missing/recoil

mass should match up with that particle’s mass. Informally, we tend to use

“missing mass” when we don’t intend to look for the particle and “recoil mass”

when we expect the particle to have left some trace that may factor in the later

analysis.

• Mixing Angle – A way of describing the connection between a particle’s state

and the linear combination of states that make it up. The component states’

coefficients add in quadrature to one, much like cosine and sine, making the notion

of an angle a useful way to describe the coefficients. For example, the π0 is a

combination of up-antiup and down-antidown states in the form |π0〉 = cos θ |uū〉+
sin θ |dd̄〉, where θ = −45 ◦.

• Monte Carlo – A computer generating technique where you set up the general

rules (the physics) but use random numbers to construct the particular events.
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Typically, we run many more simulated events than we have real events to inves-

tigate any biases or flaws in methodology.

• Nonresonant – Decays to final states that don’t go through intermediate particles

on the way. For instance, this analysis considers the resonant Ds → φeν, where

φ → KK and we observe the two kaons. In principle, we could also look for

nonresonant Ds → KKeν, although these decays happen to be less favored.

• Pole Dominance – Tendency of a particular interaction to favor an interme-

diate resonance, or pole. The pole has the associated particle’s mass and other

characteristics (propagator).

• Pull Mass – Reconstructed mass precision, given the error in constituent parti-

cles. We usually use this in the context of π0 → γγ or η → γγ, where each photon

may have a very different associated error. In this case, we want to incorporate

those errors into our mass reconstruction precision rather than just taking the

energies without error and calculating a nominal mass.

• Q Value – The energy difference between the decaying particle’s mass and the

rest masses of the final state particles, generally in the decaying particle’s rest

frame. This corresponds to the total kinetic energy released in the decay.

• QCD – Quantum chromodynamics, the theory that describes strong force inter-

actions.

• Recoil Mass – See missing mass.

• RF Cavity – A radio frequency cavity with an oscillating electric field timed to

accelerate charged particles when they pass through (here, e+ and e−). Somewhat

self-correcting: a particle with too much energy has a larger radius and arrives

at the cavity late, gaining less energy since it’s not timed as precisely with the

oscillating electric field.

• Semileptonic Decay – A decay that includes both leptons (e.g. an electron and

an antineutrino) and hadrons (e.g. a φ meson) in its ending state. We call decays

with only leptons leptonic, and we call decays with only hadrons hadronic.
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• Sideband – Reconstructed events that miss some cut window and fall just out-

side the signal region. These kind of events give an idea of how much random

background extends into the signal region (combinatoric background, background

with one misreconstructed particle, etc.).

• Spin – Intrinsic angular momentum of a particle. When we’re discussing a com-

posite particle, we use spin to mean the particle’s total spin (J) rather than its

constituent particles’ angular momentum (L) or spin (S).

• Splitoff Showers – When particles, particularly kaons, hit the crystals in our

calorimeter, they induce reactions that sometimes involve “backscatter,” where

some of the resultant particles get shunted off and interact with nearby crystals.

This looks like a new hit in our calorimeter without an associated drift chamber

path, which we usually (and here, incorrectly) interpret as a photon.

• Synchrotron Radiation – Photon emission from a charged particle (here, e+ and

e−) when accelerated into a circle (radially), since accelerating charged particles

can radiate.

• Systematic Errors – Errors (imprecision or biases) due to the measurement

procedure/apparatus rather than statistical fluctuations.

• Tag (Ds tag) – A reconstruction that identifies the right kind of event. We want

only semileptonic Ds decays from the whole mess produced by e+e− collisions at

4170 MeV. Since Ds get produced in pairs (D∗
sDs), we find one Ds in the event

through a complete reconstruction; this lets us know that there’s another Ds in

the event and that we should look for a semileptonic decay.

• z0 – Longitudinal (axial) distance from the e+e− collision point. We use this as

a constraint on our drift chamber tracks to ensure that the particle started from

the interaction region.

E.2 Particle Zoo

Particles and related terms used in this dissertation.
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• Baryon – Particle consisting of three quarks (all three quarks or all three anti-

quarks).

• Boson – Particle with integer spin. Multiple bosons can exist in the same quantum

state. The force carriers (e.g. photon, gluon) are all bosons.

• Fermion – Particle with half-integer spin (typically spin-12). No two fermions can

exist in the same quantum state (the exclusion principle).

• Hadron – General term for a composite particle consisting of multiple quarks.

• Meson – Hadron consisting of two quarks (a quark and an antiquark).

• Pseudoscalar (Scalar) Particle – A spin-0 meson whose quantum state flips

sign (does not flip sign) under a parity inversion (~x→ −~x).

• Quark – Spin-12 elementary particles that have color and so interact under the

strong force. We sometimes separate these into light quarks (up, down, and

strange) with masses less than the characteristic strong force scale, ΛQCD, and

heavy quarks (charm, bottom, and top) with masses above ΛQCD.

• Vector (Axial) Particle – A spin-1 meson whose quantum state flips sign (does

not flip sign) under a parity inversion (~x → −~x). Axial vector mesons are also

sometimes called pseudovector mesons.

• Ds – The lowest energy bound state formed by a charm quark and an antistrange

quark (or an anticharm quark and a strange quark). It has a mean lifetime of a

whopping 5.00× 10−13 seconds and travels a good 3 micrometers in our detector

before breaking up, both of which are actually quite long compared to some other

particles we deal with.

• D∗
s – The next-to-lowest energy bound state formed by a charm and an antistrange

quark (or anticharm/strange). Unlike the spin-0 Ds, it has spin-1, which can

roughly be thought of as having the charm and strange spins aligned instead

of antialigned. It quickly transitions to a Ds in a spin-flip decay via a photon

emission.
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• φ – Vector meson consisting of a ss̄ state. The φ usually decays to KK, but its

mass sits just above the KK threshold. It has a relatively wide mass distribution

(Γ = 4.26 MeV) with a long, high-side tail.

• η – Pseudoscalar mixture of uū, dd̄, and ss̄, with a plurality decay to γγ. The η

mostly consists of the uds meson octet’s η8.

• η′ – Pseudoscalar mixture of uū, dd̄, and ss̄. Heavier than the η, the η′ mostly

consists of the η1 =
uū+dd̄+ss̄√

3
singlet. The η′ meson has a plurality decay to ππη.

• Ks – The shorter-lived neutral kaon (lifetime of 9× 10−11 s) that decays to π+π−

just over 2/3 of the time. The pseudoscalar Ks consists of a down and strange

quark, roughly in the form ds̄−sd̄√
2

.

• K∗ – The neutral vector K∗ meson consists of a ds̄/d̄s state that decays to Kπ.

Charged K∗ mesons also exist (us̄/ūs), with the K∗ charge usually clear from

context. Our semileptonic decays involve the neutral K∗.

• f0 – A scalar state with unknown composition, probably with an ss̄ component.

It has also been thought to have a KK̄ molecule, four quark, or gluon component.

• ρ0 – A wide, vector meson resonance that appears frequently and quickly decays

to π+π−. The related ρ± decays to π±π0.



Appendix F

Extra Tables

Table F.1: Number of Ds tags in data and Monte Carlo, by dataset. We fit each dataset
independently for this comparison and scale the Monte Carlo to data size.

Dataset Data fit counts MC fit counts
Nfit−NMC

NMC

39 7,246.8 ± 255.3 6,482.8 ± 308.6 (11.8 ± 6.6)%
40 15,609.7 ± 414.2 14,278.5 ± 422.0 ( 9.3 ± 4.3)%
41 16,308.6 ± 443.9 13,886.4 ± 438.2 (17.4 ± 4.9)%
47 14,686.3 ± 408.9 12,940.5 ± 396.6 (13.5 ± 4.7)%
48 23,823.5 ± 752.0 20,283.1 ± 580.2 (17.5 ± 5.0)%

Sum 77,674.9 ± 2,274.3 67,871.3 ± 2,145.6 (14.4 ± 4.9)%

235
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Table F.2: Number of Ds tags in data and Monte Carlo, by mode. We scale the Monte
Carlo to the data luminosity.

Ds mode Data fit counts MC fit counts
Nfit−NMC

NMC

KsK 6,226.7 ± 101.2 5,764.0 ± 100.8 ( 8.0 ± 2.6)%
KKπ 27,373.5 ± 248.4 25,242.0 ± 233.9 ( 8.4 ± 1.4)%
KsKπ

0 2,246.8 ± 209.9 1,670.5 ± 157.7 (34.5 ± 17.9)%
KsKsπ 1,125.5 ± 76.5 1,141.4 ± 69.3 (-1.4 ± 9.0)%
KKππ0 7,355.5 ± 377.4 6,693.4 ± 323.6 ( 9.9 ± 7.7)%
KsK

+ππ 1,859.4 ± 120.6 1,744.1 ± 105.5 ( 6.6 ± 9.5)%
KsK

−ππ 3,377.3 ± 100.0 3,246.3 ± 92.2 ( 4.0 ± 4.3)%
πππ 6,606.3 ± 337.7 6,081.6 ± 326.3 ( 8.6 ± 8.0)%
πη 3,810.3 ± 190.8 2,882.3 ± 182.9 (32.2 ± 10.7)%
ππ0η 9,476.9 ± 529.0 6,825.9 ± 700.7 (38.8 ± 16.2)%

πη′, η′ → ππη 2,386.6 ± 65.6 2,132.4 ± 64.3 (11.9 ± 4.6)%
ππ0η′, η′ → ππη 1,090.5 ± 118.7 532.5 ± 84.5 (104.8 ± 39.4)%
πη′, η′ → ργ 4,272.3 ± 193.3 3,904.4 ± 245.2 ( 9.4 ± 8.5)%

Sum 77,207.5 ± 880.2 67,860.7 ± 959.8 (13.8 ± 2.1)%
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Table F.3: Test of potential bias in our fitting procedure for Ds → Kseν by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset N truth-tagged
SL+tag Nfit

SL+tag Difference (# σ)

1 27 23.95 ± 5.72 −0.533
2 25 26.86 ± 6.08 0.306
3 37 39.67 ± 7.79 0.343
4 35 28.34 ± 6.15 −1.083
5 23 25.55 ± 5.94 0.429
6 23 19.51 ± 5.79 −0.603
7 18 20.18 ± 5.91 0.368
8 29 23.20 ± 5.90 −0.982
9 26 21.46 ± 6.59 −0.689
10 29 26.82 ± 6.19 −0.353
11 20 22.74 ± 5.78 0.474
12 22 23.99 ± 5.88 0.339
13 22 27.44 ± 6.13 0.888
14 22 18.36 ± 5.09 −0.715
15 37 31.85 ± 6.52 −0.790
16 28 32.67 ± 6.59 0.710
17 25 17.67 ± 5.99 −1.224
18 26 26.27 ± 6.26 0.043
19 20 23.32 ± 5.61 0.592
20 27 23.80 ± 5.83 −0.549

Sum 521 503.66 ± 27.31 −0.635
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Table F.4: Monte Carlo comparison of the measured Ds → Kseν branching ratio to
its generating branching ratio (0.090%), in data-sized samples. The weighted average
line contains the χ2 across the 20 samples rather than the number of σ between the
measured/generated branching ratios.

Dataset Raw fit BR Corrected BR # σ

1 (0.113 ± 0.027)% (0.100 ± 0.027)% 0.36
2 (0.122 ± 0.028)% (0.109 ± 0.028)% 0.68
3 (0.178 ± 0.035)% (0.165 ± 0.035)% 2.13
4 (0.129 ± 0.028)% (0.115 ± 0.028)% 0.89
5 (0.118 ± 0.027)% (0.104 ± 0.027)% 0.52
6 (0.090 ± 0.027)% (0.077 ± 0.027)% −0.49
7 (0.092 ± 0.027)% (0.078 ± 0.027)% −0.44
8 (0.105 ± 0.027)% (0.091 ± 0.027)% 0.04
9 (0.100 ± 0.031)% (0.086 ± 0.031)% −0.13
10 (0.122 ± 0.028)% (0.108 ± 0.028)% 0.64
11 (0.106 ± 0.027)% (0.093 ± 0.027)% 0.09
12 (0.110 ± 0.027)% (0.096 ± 0.027)% 0.24
13 (0.124 ± 0.028)% (0.110 ± 0.028)% 0.73
14 (0.081 ± 0.023)% (0.068 ± 0.023)% −0.98
15 (0.148 ± 0.030)% (0.134 ± 0.030)% 1.46
16 (0.153 ± 0.031)% (0.139 ± 0.031)% 1.60
17 (0.080 ± 0.027)% (0.067 ± 0.027)% −0.85
18 (0.119 ± 0.028)% (0.105 ± 0.028)% 0.54
19 (0.104 ± 0.025)% (0.091 ± 0.025)% 0.03
20 (0.109 ± 0.027)% (0.096 ± 0.027)% 0.21

Weighted averages/χ2 (0.112 ± 0.006)% (0.099 ± 0.006)% 14.38
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Table F.5: Test of potential bias in our fitting procedure for Ds → K∗eν by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset N truth-tagged
SL+tag Nfit

SL+tag Difference (# σ)

1 28 27.80 ± 6.33 −0.032
2 37 33.39 ± 5.24 −0.689
3 35 35.63 ± 7.18 0.087
4 28 29.57 ± 6.48 0.242
5 33 34.40 ± 6.73 0.208
6 34 29.57 ± 6.72 −0.660
7 33 26.81 ± 6.75 −0.916
8 35 35.68 ± 6.96 0.098
9 27 26.01 ± 6.83 −0.144
10 38 40.91 ± 7.10 0.411
11 36 30.72 ± 6.98 −0.756
12 33 38.05 ± 7.58 0.667
13 37 42.45 ± 7.28 0.749
14 28 30.47 ± 6.74 0.367
15 38 31.65 ± 6.73 −0.945
16 29 24.58 ± 6.64 −0.665
17 31 34.54 ± 6.63 0.534
18 24 25.21 ± 5.65 0.214
19 29 29.34 ± 6.52 0.052
20 30 24.11 ± 5.97 −0.987

Sum 643 630.89 ± 29.84 −0.406
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Table F.6: Monte Carlo comparison of the measured Ds → K∗eν branching ratio to
its generating branching ratio (0.190%), in data-sized samples. The weighted average
line contains the χ2 across the 20 samples rather than the number of σ between the
measured/generated branching ratios.

Dataset Raw fit BR Corrected BR # σ

1 (0.169 ± 0.038)% (0.157 ± 0.038)% −0.86
2 (0.195 ± 0.031)% (0.183 ± 0.031)% −0.22
3 (0.205 ± 0.041)% (0.193 ± 0.041)% 0.08
4 (0.172 ± 0.038)% (0.160 ± 0.038)% −0.79
5 (0.204 ± 0.040)% (0.192 ± 0.040)% 0.04
6 (0.176 ± 0.040)% (0.164 ± 0.040)% −0.66
7 (0.156 ± 0.039)% (0.145 ± 0.039)% −1.15
8 (0.206 ± 0.040)% (0.194 ± 0.040)% 0.11
9 (0.155 ± 0.041)% (0.143 ± 0.041)% −1.15
10 (0.238 ± 0.041)% (0.226 ± 0.041)% 0.87
11 (0.184 ± 0.042)% (0.172 ± 0.042)% −0.43
12 (0.224 ± 0.045)% (0.212 ± 0.045)% 0.49
13 (0.245 ± 0.042)% (0.234 ± 0.042)% 1.03
14 (0.173 ± 0.038)% (0.161 ± 0.038)% −0.75
15 (0.188 ± 0.040)% (0.176 ± 0.040)% −0.34
16 (0.148 ± 0.040)% (0.136 ± 0.040)% −1.36
17 (0.202 ± 0.039)% (0.190 ± 0.039)% −0.01
18 (0.146 ± 0.033)% (0.134 ± 0.033)% −1.69
19 (0.168 ± 0.037)% (0.156 ± 0.037)% −0.90
20 (0.142 ± 0.035)% (0.130 ± 0.035)% −1.72

Weighted averages/χ2 (0.183 ± 0.009)% (0.171 ± 0.009)% 15.92
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Table F.7: Test of potential bias in our fitting procedure for Ds → η′eν by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset N truth-tagged
SL+tag Nfit

SL+tag Difference (# σ)

1 32 29.34 ± 5.77 −0.461
2 10 8.33 ± 4.01 −0.417
3 27 21.86 ± 5.02 −1.023
4 24 25.28 ± 5.52 0.231
5 15 13.87 ± 4.29 −0.264
6 19 17.85 ± 4.34 −0.265
7 32 33.64 ± 5.46 0.300
8 23 21.90 ± 4.88 −0.226
9 23 22.66 ± 5.42 −0.062
10 16 11.48 ± 4.08 −1.109
11 27 27.47 ± 5.37 0.087
12 16 15.18 ± 4.70 −0.176
13 22 21.65 ± 4.84 −0.073
14 26 24.09 ± 4.96 −0.386
15 18 15.75 ± 4.38 −0.513
16 17 20.49 ± 4.74 0.736
17 19 20.03 ± 4.15 0.249
18 23 20.65 ± 4.94 −0.476
19 27 28.88 ± 5.35 0.351
20 31 22.83 ± 5.41 −1.509

Sum 447 423.20 ± 21.96 −1.084
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Table F.8: Monte Carlo comparison of the measured Ds → η′eν branching ratio to its
generating branching ratio (0.860%), in data-sized samples. The weighted average line
contains the χ2 across the 20 samples rather than the number of σ between the mea-
sured/generated branching ratios. The abnormally high χ2 just reflects low Ds → η′eν
statistics that distort gaussian error sums (Table F.7 gives a more meaningful compar-
ison for this mode).

Dataset Raw fit BR Corrected BR # σ

1 (1.068 ± 0.210)% (1.057 ± 0.210)% 0.94
2 (0.292 ± 0.141)% (0.281 ± 0.141)% −4.12
3 (0.755 ± 0.173)% (0.744 ± 0.173)% −0.67
4 (0.881 ± 0.193)% (0.871 ± 0.193)% 0.05
5 (0.492 ± 0.152)% (0.481 ± 0.152)% −2.48
6 (0.636 ± 0.154)% (0.625 ± 0.155)% −1.52
7 (1.177 ± 0.191)% (1.166 ± 0.191)% 1.60
8 (0.760 ± 0.169)% (0.749 ± 0.169)% −0.66
9 (0.809 ± 0.194)% (0.799 ± 0.194)% −0.32
10 (0.400 ± 0.142)% (0.389 ± 0.142)% −3.31
11 (0.986 ± 0.193)% (0.975 ± 0.193)% 0.60
12 (0.535 ± 0.165)% (0.524 ± 0.165)% −2.03
13 (0.751 ± 0.168)% (0.740 ± 0.168)% −0.72
14 (0.821 ± 0.169)% (0.810 ± 0.169)% −0.29
15 (0.562 ± 0.156)% (0.551 ± 0.157)% −1.97
16 (0.738 ± 0.171)% (0.727 ± 0.171)% −0.78
17 (0.701 ± 0.145)% (0.690 ± 0.145)% −1.17
18 (0.719 ± 0.172)% (0.708 ± 0.172)% −0.88
19 (0.993 ± 0.184)% (0.982 ± 0.184)% 0.66
20 (0.805 ± 0.191)% (0.794 ± 0.191)% −0.35

Weighted averages/χ2 (0.702 ± 0.038)% (0.691 ± 0.038)% 53.13
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Table F.9: Test of potential bias in our fitting procedure for Ds → f0eν by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset N truth-tagged
SL+tag Nfit

SL+tag Difference (# σ)

1 56 62.93 ± 9.28 0.747
2 52 45.11 ± 8.09 −0.851
3 49 45.96 ± 7.14 −0.425
4 51 42.88 ± 8.17 −0.994
5 57 48.99 ± 7.61 −1.053
6 51 53.61 ± 8.27 0.316
7 52 48.57 ± 8.07 −0.425
8 49 44.73 ± 8.02 −0.533
9 56 57.19 ± 8.96 0.133
10 46 40.18 ± 7.58 −0.769
11 70 77.54 ± 9.43 0.799
12 42 43.89 ± 7.42 0.255
13 45 43.39 ± 8.09 −0.199
14 59 65.11 ± 9.08 0.674
15 53 52.42 ± 7.20 −0.080
16 53 63.73 ± 8.71 1.232
17 63 61.51 ± 9.16 −0.163
18 56 53.97 ± 8.40 −0.242
19 48 53.70 ± 8.33 0.684
20 46 41.28 ± 7.31 −0.647

Sum 1054 1046.68 ± 36.87 −0.198
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Table F.10: Monte Carlo comparison of the measured Ds → f0eν branching ratio to
its generating branching ratio (0.310%), in data-sized samples. The weighted average
line contains the χ2 across the 20 samples rather than the number of σ between the
measured/generated branching ratios.

Dataset Raw fit BR Corrected BR # σ

1 (0.425 ± 0.063)% (0.413 ± 0.063)% 1.65
2 (0.293 ± 0.053)% (0.282 ± 0.053)% −0.54
3 (0.294 ± 0.046)% (0.283 ± 0.046)% −0.59
4 (0.277 ± 0.053)% (0.266 ± 0.053)% −0.83
5 (0.323 ± 0.050)% (0.311 ± 0.050)% 0.03
6 (0.354 ± 0.055)% (0.343 ± 0.055)% 0.60
7 (0.315 ± 0.052)% (0.304 ± 0.052)% −0.12
8 (0.288 ± 0.052)% (0.276 ± 0.052)% −0.65
9 (0.379 ± 0.059)% (0.368 ± 0.059)% 0.97
10 (0.260 ± 0.049)% (0.248 ± 0.049)% −1.25
11 (0.516 ± 0.063)% (0.505 ± 0.063)% 3.10
12 (0.287 ± 0.048)% (0.276 ± 0.049)% −0.71
13 (0.279 ± 0.052)% (0.268 ± 0.052)% −0.81
14 (0.412 ± 0.057)% (0.401 ± 0.057)% 1.58
15 (0.347 ± 0.048)% (0.336 ± 0.048)% 0.54
16 (0.426 ± 0.058)% (0.414 ± 0.058)% 1.79
17 (0.399 ± 0.059)% (0.388 ± 0.059)% 1.31
18 (0.349 ± 0.054)% (0.337 ± 0.054)% 0.50
19 (0.343 ± 0.053)% (0.331 ± 0.053)% 0.40
20 (0.270 ± 0.048)% (0.258 ± 0.048)% −1.08

Weighted averages/χ2 (0.333 ± 0.012)% (0.321 ± 0.012)% 27.42
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Table F.11: Allowed Ds mass range at 3σ, from a gaussian fit. We allow a broader range
of masses for the full analysis, but we use this restricted range for systematic checks.

Ds tag mode Minimum Ds mass (MeV) Maximum Ds mass (MeV)

KsK 1,949.69 1,987.31
KKπ 1,952.93 1,984.07
KsKπ

0 1,941.32 1,995.68
KsKsπ 1,951.94 1,985.06
KKππ0 1,944.48 1,992.52
KsK

+ππ 1,953.76 1,983.24
KsK

−ππ 1,953.60 1,983.40
πππ 1,948.80 1,988.20
πη 1,934.89 2,002.11
ππ0η 1,930.60 2,006.40

πη′, η′ → ππη 1,945.81 1,991.19
ππ0η′, η′ → ππη 1,939.39 1,997.61
πη′, η′ → ργ 1,938.02 1,998.98
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Table F.12: Summary of various systematic errors for our electron identification.

SL mode
Base Base eID Base eID Event Event
eID correction correction environ. environ. Total

systematic uncert. adjust. correct. uncert. systematic

φeν 0.23% 0.03% 0.39% 0.48% 0.16% 0.68%
ηeν 0.10% 0.03% 0.28% 0.20% 0.10% 0.37%
η′eν 0.16% 0.03% 0.35% 0.42% 0.14% 0.59%
f0eν 0.17% 0.03% 0.34% 0.42% 0.14% 0.59%
Kseν 0.13% 0.03% 0.28% 0.19% 0.11% 0.38%
K∗eν 0.18% 0.03% 0.34% 0.44% 0.14% 0.60%

Table F.13: Relative corrections to the electron identification efficiency for each of our
six semileptonic modes.

Semileptonic mode Base electron ID Event environment Total correction

φeν -1.55% -0.36% -1.91%
ηeν -1.10% -0.14% -1.24%
η′eν -1.38% -0.32% -1.71%
f0eν -1.37% -0.32% -1.69%
Kseν -1.12% -0.13% -1.24%
K∗eν -1.36% -0.33% -1.69%
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Table F.14: Semileptonic-side efficiencies in Ds → η′eν, including the η′ → ππη and
η → γγ branching ratios.

Ds production mode εe εη′ εSL
DsDs 75.5% ± 4.2% 7.1% ± 1.3% 5.5% ± 1.1%

D∗
sDs with D∗

s → (Ds → η′eν) γ 74.9% ± 1.0% 5.5% ± 0.3% 3.8% ± 0.2%
D∗

sDs with D∗
s → (Ds → η′eν) π0 75.5% ± 1.1% 5.0% ± 0.3% 3.6% ± 0.2%

D∗
sDs with prompt Ds → η′eν 74.0% ± 1.1% 6.2% ± 0.3% 4.4% ± 0.3%

Table F.15: Semileptonic-side efficiencies in Ds → f0eν, including the f0 → ππ branch-
ing ratio.

Ds production mode εe εf0 εSL
DsDs 78.7% ± 4.3% 32.7% ± 2.8% 24.6% ± 2.4%

D∗
sDs with D∗

s → (Ds → f0eν) γ 72.6% ± 1.0% 30.1% ± 0.6% 21.7% ± 0.6%
D∗

sDs with D∗
s → (Ds → f0eν) π

0 73.2% ± 1.0% 30.5% ± 0.7% 22.1% ± 0.6%
D∗

sDs with prompt Ds → f0eν 72.7% ± 1.1% 29.7% ± 0.7% 21.6% ± 0.6%
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Table F.16: Semileptonic-side efficiencies inDs → Kseν, including theKs → ππ branch-
ing ratio.

Ds production mode εe εKs εSL
DsDs 81.7% ± 6.3% 44.2% ± 4.6% 33.2% ± 4.0%

D∗
sDs with D∗

s → (Ds → Kseν) γ 80.5% ± 1.5% 41.8% ± 1.1% 30.6% ± 0.9%
D∗

sDs with D∗
s → (Ds → Kseν) π

0 81.8% ± 1.5% 44.0% ± 1.1% 33.1% ± 1.0%
D∗

sDs with prompt Ds → Kseν 81.0% ± 1.6% 43.3% ± 1.2% 31.0% ± 1.0%

Table F.17: Semileptonic-side efficiencies in Ds → K∗eν, including the K∗ → Kπ
branching ratio.

Ds production mode εe εK∗ εSL
DsDs 65.1% ± 4.1% 32.9% ± 2.9% 21.3% ± 2.3%

D∗
sDs with D∗

s → (Ds → K∗eν) γ 71.8% ± 1.0% 34.8% ± 0.7% 24.1% ± 0.6%
D∗

sDs with D∗
s → (Ds → K∗eν) π0 71.6% ± 1.0% 35.7% ± 0.7% 24.8% ± 0.6%

D∗
sDs with prompt Ds → K∗eν 71.6% ± 1.1% 35.1% ± 0.8% 24.0% ± 0.7%
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Table F.18: All systematic efficiency corrections (relative) for Ds → φeν.

Systematic Relative ε correction

Kaon track efficiency −8.17%
Electron ID −1.91%

Total −10.08%

Table F.19: All systematic efficiency corrections (relative) for Ds → ηeν.

Systematic Relative ε correction

Electron ID −1.24%

Total −1.24%

Table F.20: All systematic efficiency corrections (relative) for Ds → η′eν.

Systematic Relative ε correction

Electron ID −1.71%
π (and K) ID −2.94%
Semileptonic hadron B −1.83%

Total −6.48%
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Table F.21: All systematic efficiency corrections (relative) for Ds → f0eν.

Systematic Relative ε correction

Electron ID −1.69%
π (and K) ID −0.50%

Total −2.19%

Table F.22: All systematic efficiency corrections (relative) for Ds → Kseν.

Systematic Relative ε correction

Ks efficiency −11.08%
Electron ID −1.24%
Semileptonic hadron B 0.86%

Total −11.46%

Table F.23: All systematic efficiency corrections (relative) for Ds → K∗eν.

Systematic Relative ε correction

Electron ID −1.69%
π (and K) ID −2.88%

Total −4.57%
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Table F.24: All systematic errors (relative) for Ds → φeν.

Systematic Relative systematic error

Distribution within pK bin 0.54%
Kaon track reconstruction 1.71%
Ds tag signal fitting 1.80%
Ds tag BG shape 1.27%
Electron ID 0.68%
Form factor model 2.91%
Multiple candidate choice 0.11%
Semileptonic hadron B 1.02%
Track reconstruction 0.30%
Efficiency statistics 1.33%

Total 4.46%
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Table F.25: All systematic errors (relative) for Ds → ηeν.

Systematic Relative systematic error

Ds tag signal fitting 2.23%
Ds tag BG shape 0.92%
Electron ID 0.37%
Form factor model 0.73%
Signal shape 1.04%
Multiple candidate choice 1.67%
Semileptonic hadron B 0.51%
Particle ID 7.90%
Track reconstruction 0.30%
Efficiency statistics 1.07%
Splitoff rate 1.16%

Total 8.70%

Table F.26: All systematic errors (relative) for Ds → η′eν.

Systematic Relative systematic error

Ds tag signal fitting 2.07%
Ds tag BG shape 1.31%
Particle ID 7.90%
Track reconstruction 0.90%
Mass resolution 3.15%
Electron ID 0.59%
Form factor model 1.64%
Multiple candidate choice 0.21%
Decay in flight 0.49%
Semileptonic hadron B 1.71%
Efficiency statistics 4.09%

Total 10.11%
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Table F.27: All systematic errors (relative) for Ds → f0eν.

Systematic Relative systematic error

Ds tag signal fitting 1.60%
Ds tag BG shape 0.80%
Particle ID 0.04%
Track reconstruction 0.90%
Mass resolution 2.63%
Electron ID 0.59%
Form factor model 2.29%
Multiple candidate choice 2.20%
Decay in flight 0.52%
Efficiency statistics 1.57%

Total 4.91%

Table F.28: All systematic errors (relative) for Ds → Kseν.

Systematic Relative systematic error

Ds tag signal fitting 2.20%
Ds tag BG shape 0.86%
Ks efficiency 7.28%
Electron ID 0.38%
Form factor model 1.35%
Multiple candidate choice 3.05%
Decay in flight 0.63%
Semileptonic hadron B 0.07%
Track reconstruction 0.30%
Efficiency statistics 1.72%

Total 8.56%
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Table F.29: All systematic errors (relative) for Ds → K∗eν.

Systematic Relative systematic error

Ds tag signal fitting 2.97%
Ds tag BG shape 2.08%
Particle ID 1.21%
Track reconstruction 0.60%
Mass resolution 2.59%
Electron ID 0.60%
Form factor model 5.10%
Multiple candidate choice 0.28%
Decay in flight 0.71%
Efficiency statistics 1.47%

Total 7.13%
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Figure G.1: Monte Carlo (charm and scaled continuum) simulation of the recoil mass
distribution for the Ds tag modes KsK

+ππ; KsK
−ππ; πππ; πη; ππ0η; πη′, η′ → ππη;

ππ0η′, η′ → ππη; and πη′, η′ → ργ. Again, we reject all Ds with a recoil mass below the
cut line.
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Figure G.2: Recoil mass distribution for theDs tag modesKsK, KKπ, KsKπ
0, KsKsπ,

and KKππ0 in the data. We reject Ds with a recoil mass below the cut line.
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Figure G.3: Recoil mass distribution for the Ds tag modes KsK
+ππ; KsK

−ππ; πππ;
πη; ππ0η; πη′, η′ → ππη; ππ0η′, η′ → ππη; and πη′, η′ → ργ in the data. We reject Ds

with a recoil mass below the cut line.
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Figure G.4: Monte Carlo truth tagged plots of the invariant mass vs. recoil mass
distribution for Ds tag modes KsK, KKπ, KsKπ

0, KsKsπ, and KKππ0. Note that
the recoil mass and the invariant mass are almost entirely uncorrelated.
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Figure G.5: Monte Carlo truth tagged plots of the invariant mass vs. recoil mass
distribution for Ds tag modes KsK

+ππ; KsK
−ππ; πππ; πη; ππ0η; πη′, η′ → ππη;

ππ0η′, η′ → ππη; and πη′, η′ → ργ. Again, the recoil mass and the invariant mass show
little correlation.
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Figure G.6: Monte Carlo plots of the invariant mass vs. recoil mass distribution, in-
cluding properly weighted charm and continuum background, for Ds tag modes KsK,
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Figure G.7: Monte Carlo plots of the invariant mass vs. recoil mass distribution, includ-
ing properly weighted charm and continuum background, for Ds tag modes KsK

+ππ;
KsK

−ππ; πππ; πη; ππ0η; πη′, η′ → ππη; ππ0η′, η′ → ππη; and πη′, η′ → ργ.
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Figure G.8: The invariant mass vs. recoil mass distribution in data for Ds tag modes
KsK, KKπ, KsKπ

0, KsKsπ, and KKππ0. The data distribution doesn’t show any
unexpected behavior relative to the Monte Carlo expectation.
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Figure G.9: The invariant mass vs. recoil mass distribution in data for Ds tag modes
KsK

+ππ; KsK
−ππ; πππ; πη; ππ0η; πη′, η′ → ππη; ππ0η′, η′ → ππη; and πη′, η′ → ργ.
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Figure G.10: Fits to the truth-tagged Ds invariant mass from the Monte Carlo. We fix
the fit function’s shape parameters (relative normalization, relative width, and crystal
ball power law tail) from these results. These plots show the fit results for Ds to KsK,
KKπ, KsKπ

0, and KsKsπ.
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Figure G.11: Fits to the truth-tagged Ds invariant mass from the Monte Carlo. We fix
the fit function’s shape parameters (relative normalization, relative width, and crystal
ball power law tail) from these results. These plots show the fit results forDs toKKππ

0,
KsK

+ππ, KsK
−ππ, and πππ.
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Figure G.12: Fits to the truth-tagged Ds invariant mass from the Monte Carlo. We fix
the fit function’s shape parameters (relative normalization, relative width, and crystal
ball power law tail) from these results. These plots show the fit results for Ds to πη;
ππ0η; πη′, η′ → ππη; ππ0η′, η′ → ππη; and πη′, η′ → ργ.
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Figure G.13: Ds invariant mass fits in the weighted 20× Monte Carlo sample (charm +
continuum), determining the total number of Ds tags for modes KsK, KKπ, KsKπ

0,
and KsKsπ.
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Figure G.14: Ds invariant mass fits in the weighted 20× Monte Carlo sample (charm
+ continuum), determining the total number of Ds tags for modes KKππ0, KsK

+ππ,
KsK

−ππ, and πππ.
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Figure G.15: Ds invariant mass fits in the weighted 20× Monte Carlo sample (charm +
continuum), determining the total number ofDs tags for modes πη; ππ0η; πη′, η′ → ππη;
ππ0η′, η′ → ππη; and πη′, η′ → ργ.



270

 (MeV)
sD

M
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

0
 M

e
V

0

100

200

300

400

500

600

700

 K
s

Best invariant mass for mode K  / ndf 2χ  92.69 / 97
 signalN  0.0016± 0.1082 

 
lin

const  2.2± 120.3 
 

lin
slope  0.0262± -0.3653 

 K
s

Best invariant mass for mode K

 (MeV)
sD

M
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

0
 M

e
V

0

500

1000

1500

2000

2500

3000

3500

4000

4500

πBest invariant mass for mode K K  / ndf 2χ  253.1 / 97
 signalN  0.0009± 0.1072 

 
lin

const  7.1±  1254 
 

lin
slope  0.089± -2.123 

πBest invariant mass for mode K K 

 (MeV)
sD

M
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

0
 M

e
V

0

100

200

300

400

500

0π K 
s

Best invariant mass for mode K  / ndf 2χ  90.59 / 97
 signalN  0.0068± 0.1082 

 
lin

const  4.3±   463 
 

lin
slope  0.052± -1.289 

0π K 
s

Best invariant mass for mode K

 (MeV)
sD

M
1900 1920 1940 1960 1980 2000 2020

C
o

u
n

ts
 /

 1
.3

0
 M

e
V

0

50

100

150

200

250

300

π s K
s

Best invariant mass for mode K  / ndf 2χ   77.5 / 97
 signalN  0.0058± 0.1055 

 
lin

const  2.8± 201.6 
 

lin
slope  0.0343± -0.5096 

π s K
s

Best invariant mass for mode K

Figure G.16: Ds invariant mass fits in the data sample using a signal histogram from
the truth-tagged Monte Carlo. These plots show our results for Ds to KsK, KKπ,
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0, and KsKsπ.
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Figure G.17: Ds invariant mass fits in the data sample using a signal histogram from the
truth-tagged Monte Carlo. These plots show our results for Ds to KKππ0, KsK

+ππ,
KsK

−ππ, and πππ.
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Figure G.18: Ds invariant mass fits in the data sample using a signal histogram from the
truth-tagged Monte Carlo. These plots show our results for Ds to πη; ππ0η; πη′, η′ →
ππη; ππ0η′, η′ → ππη; and πη′, η′ → ργ.
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Figure G.19: Ds invariant mass fits for a double gaussian/gaussian+crystal ball signal
shape compared to fits with a signal histogram for modes KsK, KKπ, KsKπ

0, and
KsKsπ.
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Figure G.20: Ds invariant mass fits for a double gaussian/gaussian+crystal ball signal
shape compared to fits with a signal histogram for modes KKππ0, KsK
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Figure G.21: Ds invariant mass fits for a double gaussian/gaussian+crystal ball signal
shape compared to fits with a signal histogram for modes πη; ππ0η; πη′, η′ → ππη;
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Figure G.22: Extra showers after finding the tagged Ds, the η, and the electron in ηeν
(20× MC sample). Our shower quality selections include both E9

E25
O.K. and a splitoff

rejection. The peak near 140 MeV is due to the γ from D∗
s decays.
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Figure G.23: Extra showers after finding the tagged Ds, the η
′, and the electron in η′eν

(20× MC sample). Our shower quality selections include both E9

E25
O.K. and a splitoff

rejection. The peak near 140 MeV is due to the γ from D∗
s decays.
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Figure G.24: Extra showers after finding the tagged Ds, the f0, and the electron in f0eν
(20× MC sample). Our shower quality selections include both E9

E25
O.K. and a splitoff

rejection. The peak near 140 MeV is due to the γ from D∗
s decays.
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Figure G.25: Extra showers after finding the tagged Ds, the Ks, and the electron in
Kseν (20× MC sample). Our shower quality selections include both E9

E25
O.K. and a

splitoff rejection. The peak near 140 MeV is due to the γ from D∗
s decays.
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Figure G.26: Extra showers after finding the tagged Ds, the K
∗, and the electron in

K∗eν (20× MC sample). Our shower quality selections include both E9

E25
O.K. and a

splitoff rejection. The peak near 140 MeV is due to the γ from D∗
s decays.
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Figure G.27: Likelihood fit results for the Ds mass spectrum after all Ds → φeν semi-
leptonic cuts in the first four data-sized Monte Carlo samples. The histograms show
total events and Monte Carlo truth-tagged events, while the peaking fit line gives the
signal part of our fit. The two solid background fit lines represent the non-peaking
background fit and our peaking background subtraction.
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Figure G.28: Ds → φeν data-sized Monte Carlo results, second group of datasets.
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Figure G.29: Ds → φeν data-sized Monte Carlo results, third group of datasets.
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Figure G.30: Ds → φeν data-sized Monte Carlo results, fourth group of datasets.
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Figure G.31: Ds → φeν data-sized Monte Carlo results, fifth group of datasets.
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Figure G.33: Ds → Kseν backgrounds with a true Ds tag (peaking background), after
all cuts. The other semileptonic modes each give some fake events, while the dominant
non-semileptonic contribution comes from Ds tag modes with a kaon faking the electron
(e.g. Ds → KKs)
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Figure G.34: Ds → Kseν fit results in the data, after all semileptonic cuts, for tag modes
KsK, KKπ, KsKπ

0, KsKsπ, and KKππ0. We fit the tagged MDs with a common
signal normalization (branching ratio) for all 13 tag modes. Each mode does receive an
independent background normalization.
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Figure G.35: Ds → Kseν fit results in the data, after all semileptonic cuts, for tag modes
KsK

+ππ; KsK
−ππ; πππ; πη; ππ0η; πη′, η′ → ππη; ππ0η′, η′ → ππη; and πη′, η′ → ργ.

We fit the tagged MDs with a common signal normalization (branching ratio) for all
13 tag modes. Each mode does receive an independent background normalization.
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Figure G.36: Ds → K∗eν backgrounds with a true Ds tag (peaking background), before
our specific K∗eν cuts in the 20× Monte Carlo. Our best improvement in peaking
background will come from reducing Ds → φeν where one kaon fakes a pion.
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Figure G.37: Ds → K∗eν backgrounds with a true Ds tag (peaking background), after
all cuts. The other semileptonic modes each give some fake events, while the dominant
non-semileptonic contribution comes from Ds tag modes where a kaon fakes the electron
(e.g. Ds → KKπ).
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Figure G.38: Ds → K∗eν fit results in the data, after all semileptonic cuts, for tag modes
KsK, KKπ, KsKπ

0, KsKsπ, and KKππ0. We fit the tagged MDs with a common
signal normalization (branching ratio) for all 13 tag modes. Each mode receives an
independent background normalization.



293

mass_plot_0_5

Entries  9

Mean     1978

RMS     36.77

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

E
v

e
n

ts
 /

 6
.5

 M
e

V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

mass_plot_0_5

Entries  9

Mean     1978

RMS     36.77

π π + K
s

 after K*+e cuts, K
s

D
M mass_plot_0_6

Entries  4

Mean     1950

RMS     17.76

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

E
v

e
n

ts
 /

 6
.5

 M
e

V

0

0.5

1

1.5

2

2.5

3

3.5

mass_plot_0_6

Entries  4

Mean     1950

RMS     17.76

π π 
-

 K
s

 after K*+e cuts, K
sD

M mass_plot_0_7

Entries  9

Mean     1970

RMS     28.86

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

E
v

e
n

ts
 /

 6
.5

 M
e

V

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

mass_plot_0_7

Entries  9

Mean     1970

RMS     28.86

π π π after K*+e cuts, 
sD

M

mass_plot_0_8

Entries  2

Mean     1940

RMS     35.38

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

E
v

e
n

ts
 /

 6
.5

 M
e

V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

mass_plot_0_8

Entries  2

Mean     1940

RMS     35.38

η π after K*+e cuts, 
sD

M mass_plot_0_9

Entries  20

Mean     1966

RMS     31.27

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

E
v

e
n

ts
 /

 6
.5

 M
e

V

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

mass_plot_0_9

Entries  20

Mean     1966

RMS     31.27

η 0
π π after K*+e cuts, 

s
D

M mass_plot_0_10

Entries  1

Mean     1965

RMS         0

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

E
v

e
n

ts
 /

 6
.5

 M
e

V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

mass_plot_0_10

Entries  1

Mean     1965

RMS         0

η π π’ -> η’, η π after K*+e cuts, 
sD

M

mass_plot_0_11

Entries  2

Mean     1965

RMS     7.984

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

E
v

e
n

ts
 /

 6
.5

 M
e

V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

mass_plot_0_11

Entries  2

Mean     1965

RMS     7.984

η π π’ -> η’, η 0
π π after K*+e cuts, 

sD
M mass_plot_0_12

Entries  6

Mean     1933

RMS     28.93

 (MeV)
s

DM
1900 1920 1940 1960 1980 2000 2020

E
v

e
n

ts
 /

 6
.5

 M
e

V

0

0.5

1

1.5

2

2.5

3

3.5

mass_plot_0_12

Entries  6

Mean     1933

RMS     28.93

γ ρ’ -> η’, η π after K*+e cuts, 
sD

M

Total

 signalνK*+e+

Background

Figure G.39: Ds → K∗eν fit results in the data, after all semileptonic cuts, for tag modes
KsK

+ππ; KsK
−ππ; πππ; πη; ππ0η; πη′, η′ → ππη; ππ0η′, η′ → ππη; and πη′, η′ → ργ.

We fit the tagged MDs with a common signal normalization (branching ratio) for all
13 tag modes. Each mode does receive an independent background normalization.
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Figure G.41: Ds → η′eν fit results in the data, after all semileptonic cuts, for tag modes
KsK, KKπ, KsKπ

0, KsKsπ, and KKππ0. We fit the tagged MDs with a common
signal normalization (branching ratio) for all 13 tag modes. Each mode receives an
independent background normalization.
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Figure G.42: Ds → η′eν fit results in the data, after all semileptonic cuts, for tag modes
KsK

+ππ; KsK
−ππ; πππ; πη; ππ0η; πη′, η′ → ππη; ππ0η′, η′ → ππη; and πη′, η′ → ργ.

We fit the tagged MDs with a common signal normalization (branching ratio) for all
13 tag modes. Each mode does receive an independent background normalization.



297

 (
4
4
.9

%
)

eν +
’ 
e

η

, ta
g mode (32.7%)

sD

 (12.2%
)

e
ν 
+ eφ

 hadronic, non-tag (10.2%)

s
D

ν+e+
0

 tags for successful f
+
sMC true D

eν 
+

 eφ

eν 
+

’ eη

, tag modesD

 hadronic, non-tagsD

ν+e+
0

 tags for successful f
+
sMC true D

Figure G.43: Ds → f0eν backgrounds with a true Ds tag (peaking background) in the
20× Monte Carlo. η′eν with η′ → ππX provides the plurality contribution, while the
dominant non-semileptonic peaking background comes from Ds tag modes where a kaon
fakes the electron (e.g. Ds → KKs).
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Figure G.44: Ds → f0eν fit results in the data, after all semileptonic cuts, for tag modes
KsK, KKπ, KsKπ

0, KsKsπ, and KKππ0. We fit the tagged MDs with a common
signal normalization (branching ratio) for all 13 tag modes. Each mode receives an
independent background normalization.
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Figure G.45: Ds → f0eν fit results in the data, after all semileptonic cuts, for tag modes
KsK

+ππ; KsK
−ππ; πππ; πη; ππ0η; πη′, η′ → ππη; ππ0η′, η′ → ππη; and πη′, η′ → ργ.

We fit the tagged MDs with a common signal normalization (branching ratio) for all
13 tag modes. Each mode does receive an independent background normalization.



300

 (MeV)gauss smearσ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

2
Χ

126

128

130

132

134

136

138

140
Mass shift, -0.10 MeV

Mass shift, -0.05 MeV

Mass shift, 0.00 MeV

Mass shift, 0.05 MeV

Mass shift, 0.10 MeV

σ vs. 2
Χ

Figure G.46: χ2 for data fits using various shifts and gaussian smears to the Monte
Carlo’s signal Mφ distribution. Smaller shifts and smears tend to be favored, implying
a fairly accurate φ mass resolution in the Monte Carlo.
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Figure G.48: The top two plots show the projections from our 2D ηeν fit to Ds invariant
mass (left) and η pull mass (right) over the full 20× Monte Carlo when we tag Ds →
KsK. The bottom two plots do the same for Ds → KKπ.
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Figure G.49: The top two plots show the projections from our 2D ηeν fit to Ds invariant
mass (left) and η pull mass (right) over the full 20× Monte Carlo when we tag Ds →
KKππ0. The bottom two plots do the same for Ds → KsK

+ππ.
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Figure G.50: The top two plots show the projections from our 2D ηeν fit to Ds invariant
mass (left) and η pull mass (right) over the full 20× Monte Carlo when we tag Ds → πη.
The bottom two plots do the same for Ds → ππ0η.
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Figure G.51: The top two plots show the projections from our 2D ηeν fit to Ds invariant
mass (left) and η pull mass (right) over all Ds tag modes for one data-sized Monte Carlo
sample (dataset 0). The bottom two plots give the projections for a different data-sized
Monte Carlo sample (dataset 1).
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Figure G.52: The top two plots show the projections from our 2D ηeν fit to Ds invariant
mass (left) and η pull mass (right) over all Ds tag modes for another data-sized Monte
Carlo sample (dataset 2). The bottom two plots give the projections for a fourth data-
sized Monte Carlo sample (dataset 3).
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Figure G.53: Ds + γ +K recoil mass in KsK events for “found” and “not found” Ks,
from the Monte Carlo.
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Figure G.54: Ds + γ +Kππ recoil mass in K∗K∗ events for “found” and “not found”
Ks, from the Monte Carlo. The top row corresponds to low momentum Ks while the
bottom row corresponds to our medium Ks momentum region, as determined by the
recoil momentum.



309

 (MeV)
K*

M
700 750 800 850 900 950 1000 1050 1100

C
o

u
n

ts
 /

 4
.0

 M
e

V

0

5

10

15

20

25

30

35

40

, No signal smear or shift
K*

M  / ndf 2χ  82.64 / 50
  

sig
N  0.00261± 0.04375 

 
tagged BG

N  1.2661± 0.0101 
 comb BGN  0.0920± 0.0841 

, No signal smear or shift
K*

M

 (MeV)
K*

M
700 750 800 850 900 950 1000 1050 1100

C
o

u
n

ts
 /

 4
.0

 M
e

V

0

5

10

15

20

25

30

35

40

, Best fit (5.6 MeV smear, -0.8 MeV shift)
K*

M  / ndf 2χ   75.6 / 50
  

sig
N  0.00248± 0.04501 

 
tagged BG

N  2.807e-01± 2.771e-12 
 comb BGN  0.07198± 0.06375 

, Best fit (5.6 MeV smear, -0.8 MeV shift)
K*

M
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K∗ momentum in Ds → K∗eν.
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Figure G.64: Ds invariant mass fits after making a Ds + γ recoil mass cut in the data.
The dotted lines give our signal and background fit functions.
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Figure G.65: Ds invariant mass fits using a gaussian+crystal ball signal shape and a
linear background fit function.


	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Preface
	Introduction
	Standard Model
	A Quick History
	Model Overview
	Leptons
	Quarks
	Gauge Bosons and Forces

	Motivation
	Lattice QCD
	Light Meson Spectroscopy
	Inclusive Ds

	Theory
	Free Quark
	ISGW Formalism
	Pole Model

	Decay Rate Predictions
	Ds (, ') e 
	Ds e 
	Ds f0 e 
	Ds (K, K*) e 

	Past Results
	Summary

	Experimental Apparatus
	CESR
	Collider Layout
	Beam Considerations

	CLEO-c Detector
	Inner Drift Chamber
	Main Drift Chamber
	Ring Imaging Cherenkov Detector
	Calorimeter
	Trigger and Data Acquisition


	Analysis Plan
	Data Samples and Monte Carlo
	Ds Tagging
	Basic Selection Criteria
	Track Selection
	Ks Selection
	Photon Selection
	0 and  Selection
	' Selection

	Recoil Mass
	Individual Tag Mode Cuts
	Fitting Procedure
	Results
	Monte Carlo
	Data
	Cross-Checks


	Semileptonic Selection Criteria
	Electron Selection
	Event Selection

	Measurement of Ds e 
	 Selection
	Ds e  Reconstruction
	Efficiency
	Backgrounds
	Fit Procedure

	Results
	Monte Carlo
	Data


	Measurement of Ds (Ks, K*, f0, ') e 
	General Particle Cuts
	Ds Ks e 
	Ds K* e 
	Ds ' e 
	Ds f0 e 

	Measurement of Ds e 
	 Selection
	Ds e  Reconstruction
	Efficiency
	Backgrounds
	Fit Procedure

	Results
	Monte Carlo
	Data


	Systematic Uncertainties
	Ds Tagging
	Signal Shape Variation
	Background Functions
	Multiple Candidate Choice

	Tracking
	Reconstruction
	 and K Particle ID

	Photon reconstruction
	Electron ID
	Wrong Sign Electron

	Monte Carlo Consistency
	Hadron Efficiencies
	
	
	Ks
	K*, ', and f0

	Decays in Flight
	Splitoff Rate
	Hadronic Branching Ratios
	Semileptonic Fit Functions
	Ds Production Efficiencies
	Final State Radiation
	Initial State Radiation
	Generating Models
	Sum of Systematic Errors

	Conclusion
	Comparisons
	Theory
	Previous Measurements

	Summary

	References
	 Appendix A.  f0 KK Models
	EvtGen Models
	Default Model (Breit-Wigner)
	Flatté Model

	Flatté Parametrization

	 Appendix B.  Alternate Ds e  Reconstruction Methods
	Particle Selections for Alternate Methods
	Methods 1-4: Cut on Ds Invariant Mass, Fit Ds +  Recoil Mass
	Comparison of Methods 1-4

	Method 5: Cut on Ds +  Recoil Mass, Fit Ds Invariant Mass
	Ds* Daughter Photon Efficiencies
	Method 6: No Ds* Photon Reconstruction
	Comparison of Alternate Methods

	 Appendix C.  Ds e  Efficiency Systematic
	 Appendix D.  Kaon Tracking and Particle ID Systematic
	 Appendix E.  Glossary
	General Terminology
	Particle Zoo

	 Appendix F.  Extra Tables
	 Appendix G.  Extra Figures

