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Abstract

We measure six exclusive D; semileptonic branching ratios using CLEO-c data col-
lected at 4170 MeV. We isolate our semileptonic events by reconstructing a tagged Dy
to identify a D} Dy event, then we find an electron and the semileptonic hadron. Drop-
ping the D} daughter photon gives us additional events and avoids the need to model
soft photon backgrounds, at the expense of a clean neutrino missing mass. We obtain
B(Ds — ¢ev) = 2.14 £ 0.17 £ 0.09% and B(Ds — nev) = 2.28 + 0.14 £+ 0.20% for the

two largest branching ratios.
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10.8 Difference between the ISGW2 and pole models in the ¢? and electron
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energy distributions for Dy — ¢ev (top) and Ds — nev (bottom). Empty
boxes indicate a surplus in the ISGW2 model, while darkened boxes with
an “x” indicate a surplus in the simple pole model. The pole model has
higher electron energies in both cases, although it has higher ¢? values for
the pseudoscalar n decay and lower ¢ values for the vector ¢ decay. . . .
EvtGen produced lineshape for fy masses above and below the KK thresh-
old at 987.4 MeV. EvtGen changes its behavior from a non-relativistic
Breit-Wigner to a relativistic Breit-Wigner discontinuously as the mass
crosses threshold. . . . . . . . . ... L o
CLEO Flatté mass lineshape for fy — KK in the decay Dy — K K using
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dotted lines indicate our ¢ mass window. . . . . . . . ... .. ... ...
fo mass lineshapes for the My, Z—f, and I'y variations. The sharp peak
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D4 + v recoil mass vs. Dy invariant mass in the charm Monte Carlo.
The lower left plot shows that the two are fairly independent after mass
constraining the Dy four vector. The lines indicate our tag fit’s invariant
mass and recoil mass cuts. We scale the total and combinatoric plots by
a factor of 1/10th relative to the others to keep those plots less visually
congested. . . . . ...
Dy + 7 recoil mass distribution for the 9 tag modes in Monte Carlo. The
dotted lines give our fit results’ signal and background components. The
solid lines give the truth-tagged information: signal, combinatoric back-
ground, true D; pairing with a non-D? daughter v (false ), and false D,
paired with the D} daughter ~v. . . . . ... ... ... ... ... ...
Dy + ~v recoil mass distribution for the 9 tag modes in the data. The

dotted lines give our fit results’ signal and background components. . . .

XXV1

1162



B4

B.5

B.6

B.7

B.8

B.9

C.1

C.2

C.3

C4

C.5

Ds — ¢ev event’s missing mass distribution (v missing mass) given a best
photon candidate selection in the Monte Carlo. The vertical lines indicate
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D, invariant mass for events passing the semileptonic ¢ and electron cuts
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The n momentum distributions in Dy — nev and Ds — np both peak near
750 MeV and have comparable widths. This contrasts with the alternate
source for a clean n sample, ¢V’ — nJ/1, which creates monoenergetic n
with a momentum of 199 MeV. . . . . . .. .. .. ... ... ... ..
Ds — nev efficiency (including the 7 — ~7 branching ratio) by dataset.
The solid line gives the average across the full generic Monte Carlo sample,
while the dotted lines show the 1o range on this average. . . . . . . . ..
Top: Ds + v recoil mass in the Monte Carlo for events with a Dy + v+ p
recoil mass between 500 MeV and 600 MeV. Bottom: D; + v + p recoil
mass for Monte Carlo events that have a D4+~ recoil between 1955 MeV
and 1990 MeV. . . . . .
Top: 2D fit projections for the Ds + v recoil mass in the data from events
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Top: 2D fit projections of the Dg + 7y + p recoil mass for data events with
-3.5 < o, < 2.5. Bottom: Fit projection for the n pull mass from data
events that have a Ds + v + p recoil between 500 MeV and 600 MeV. . .
7tnt DF recoil mass fits for our ¢ kaon selections in the Monte Carlo.
The left plots show the recoil mass when we find a kaon, while the right
plots show the recoil mass when we don’t find the kaon. The top plots
contain recoil momenta below 250 MeV, the middle plots have recoil mo-
menta between 250 MeV and 500 MeV, and the bottom plots have recoil
momenta above 500 MeV. . . . . .. ..o oo
7w D recoil mass fits for our ¢ kaon selections in the data. The left plots
show the recoil mass when we find a kaon, while the right plots show the
recoil mass when we don’t find the kaon. The top plots contain recoil
momenta below 250 MeV, the middle plots have recoil momenta between

250 MeV and 500 MeV, and the bottom plots have recoil momenta above

Monte Carlo kaon efficiency for each set of kaon selections, by momentum.
Our ¢ kaon cuts (hit fraction dropped) show a higher efficiency in each
momentum range, with a particular relative advantage in the important
low momentum region. . . . . . . . ... L.
Kaon efficiencies in the data for each set of kaon selections, by momentum.
The error bars on the efficiencies (barely visible) include both a statistical
error and the systematic error from fitting. The relative difference between
the selection efficiencies roughly matches the Monte Carlo, although the
absolute efficiencies for soft kaons all fall below their corresponding Monte
Carlo efficiencies. . . . . . . . . ..
The relative difference between the kaon efficiency in data and the kaon
efficiency in Monte Carlo, by selections and momentum range. The high
momentum region requires no correction, the middle momentum region
requires a slight efficiency correction, and softest kaons require a sizable ef-
ficiency correction. The error bars include both statistical and systematic

errors from our tracking/PID reconstruction. . . . . . ... ... ... ..
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Note that the recoil mass and the invariant mass are almost entirely un-
correlated. . . . . ..
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The invariant mass vs. recoil mass distribution in data for D, tag modes
KK, KK, K,Kn°, K Ko, and K Knr®. The data distribution doesn’t
show any unexpected behavior relative to the Monte Carlo expectation. .
The invariant mass vs. recoil mass distribution in data for D, tag modes
K, K*rm, KK nm; nnm; o, ©rln; mn' 0 — mmn; 7n0%', 0 — 7an; and
' = Y.
Fits to the truth-tagged D, invariant mass from the Monte Carlo. We fix
the fit function’s shape parameters (relative normalization, relative width,
and crystal ball power law tail) from these results. These plots show the
fit results for Dy to KoK, KKn, K,K7n°, and K Kem. . . . ... .. ..
Fits to the truth-tagged D invariant mass from the Monte Carlo. We fix
the fit function’s shape parameters (relative normalization, relative width,
and crystal ball power law tail) from these results. These plots show the
fit results for Dy to KKnn?, KK tnn, KK 7w, and . . . . . . ..
Fits to the truth-tagged D, invariant mass from the Monte Carlo. We
fix the fit function’s shape parameters (relative normalization, relative
width, and crystal ball power law tail) from these results. These plots
show the fit results for Dy to mn; 7n%n; 7m0/, — wmn; 77,0 — 7rn;
and T, 0 = Py, .
Dy invariant mass fits in the weighted 20x Monte Carlo sample (charm
+ continuum), determining the total number of Dy tags for modes K K,
KKn, K,Kn0 and K JKom. . 0o 0 0o oo e e
D, invariant mass fits in the weighted 20x Monte Carlo sample (charm +
continuum), determining the total number of Dy tags for modes K K7nr?,
KKt am, KK mm, and T7m. © 0 0 o o o o o e e e e e e e e
D, invariant mass fits in the weighted 20x Monte Carlo sample (charm
+ continuum), determining the total number of Dy tags for modes 7n;
o ',y — man; 7y’ — gy and Ty = py. oL
D, invariant mass fits in the data sample using a signal histogram from
the truth-tagged Monte Carlo. These plots show our results for D, to
KK, KKn, K,Kn% and K Kom. . . . .. 0000 oo
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G.23

G.24

G.25

D, invariant mass fits in the data sample using a signal histogram from
the truth-tagged Monte Carlo. These plots show our results for D, to
KKnrn®, K,Ktnm, KK mm,and 70w, . o o o oo oo o e
D, invariant mass fits in the data sample using a signal histogram from
the truth-tagged Monte Carlo. These plots show our results for D to mn;
an'n; w0’ — won; ol 0 — wom; and w0 =y oL oL
Dy invariant mass fits for a double gaussian/gaussian+crystal ball signal
shape compared to fits with a signal histogram for modes KK, KK,
KKm0 and KoK m. o o o oo o
Dy invariant mass fits for a double gaussian/gaussian+crystal ball sig-
nal shape compared to fits with a signal histogram for modes K Knr?,
KK rm, KK mm,and T, . o o o o oo e
D, invariant mass fits for a double gaussian/gaussian+crystal ball sig-
nal shape compared to fits with a signal histogram for modes mn; 77%n;
an',n = wrn; 'y’ — won; and T 0 = py. oo
Extra showers after finding the tagged Dy, the 1, and the electron in nev
(20x MC sample). Our shower quality selections include both EE—;; 0.K.
and a splitoff rejection. The peak near 140 MeV is due to the v from D}
decays. . . . . .. e
Extra showers after finding the tagged Dy, the ', and the electron in n’ev
(20x MC sample). Our shower quality selections include both EETi O.K.
and a splitoff rejection. The peak near 140 MeV is due to the v from D}
decays. . . . .. e e e
Extra showers after finding the tagged Dy, the fy, and the electron in foer
(20x MC sample). Our shower quality selections include both 5—2"5 0.K.
and a splitoff rejection. The peak near 140 MeV is due to the v from D}
decays. . . . ... e e e e
Extra showers after finding the tagged Dj, the K, and the electron in
Ksev (20x MC sample). Our shower quality selections include both g—i
0.K. and a splitoff rejection. The peak near 140 MeV is due to the v from
Dy decays. . . . ...
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Extra showers after finding the tagged D,, the K*, and the electron in
K*ev (20x MC sample). Our shower quality selections include both 1%’5
0.K. and a splitoff rejection. The peak near 140 MeV is due to the v from
DY decays. . . . . .. e

G.27 Likelihood fit results for the Dy mass spectrum after all D; — ¢erv semi-
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leptonic cuts in the first four data-sized Monte Carlo samples. The his-
tograms show total events and Monte Carlo truth-tagged events, while
the peaking fit line gives the signal part of our fit. The two solid back-
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background subtraction. . . .. ... ..o Lo o oo
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Dy — ¢er data-sized Monte Carlo results, fourth group of datasets. . . .
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Dy — Kgev backgrounds with a true D tag (peaking background), from
the 20x Monte Carlo. These remain after Kgerv semileptonic cuts but
before any missing mass cut or other, additional background restrictions.
gev with ¢ - Ky Ks dominates. . . . . . . . ... ... ...
Ds; — Kgev backgrounds with a true D; tag (peaking background), after
all cuts. The other semileptonic modes each give some fake events, while
the dominant non-semileptonic contribution comes from Dg tag modes
with a kaon faking the electron (e.g. Dy — KKg) . . ... ... ... ..
Dy — Kgev fit results in the data, after all semileptonic cuts, for tag
modes KK, KKn, K,Kr°, K,K,m, and KKnn®. We fit the tagged

Mp, with a common signal normalization (branching ratio) for all 13 tag
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modes. Each mode does receive an independent background normalization [28§]

Ds; — Kgev fit results in the data, after all semileptonic cuts, for tag
modes K, KTrm; KK 7m; wrm; mn; mnln; o' 0’ — won; o1y, 0 —
mmn; and 7', n' — py. We fit the tagged Mp, with a common signal
normalization (branching ratio) for all 13 tag modes. Each mode does

receive an independent background normalization. . . . . . . . .. .. ..
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Ds; — K*ev backgrounds with a true Dy tag (peaking background), before
our specific K*ev cuts in the 20x Monte Carlo. Our best improvement in
peaking background will come from reducing Dy — ¢erv where one kaon

fakes a pion. . . . . . . . ..

G.37 Dy — K*ev backgrounds with a true D; tag (peaking background), after
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all cuts. The other semileptonic modes each give some fake events, while
the dominant non-semileptonic contribution comes from Dg tag modes
where a kaon fakes the electron (e.g. Dy — KKm). . ... ... .....
Ds; — K*ev fit results in the data, after all semileptonic cuts, for tag
modes K,K, KKn, K,Kn°, K,K,r, and KKnr". We fit the tagged
Mp, with a common signal normalization (branching ratio) for all 13 tag
modes. Fach mode receives an independent background normalization.

Dy — K*ev fit results in the data, after all semileptonic cuts, for tag
modes K, Ktnn; KK~ nm; nnm; my; mnln; wn,n — mrn; 7rn’, 0 —
mrn; and 7,0 — py. We fit the tagged Mp, with a common signal
normalization (branching ratio) for all 13 tag modes. Each mode does
receive an independent background normalization. . . . . . . ... .. ..
Dy — n'ev backgrounds with a true D; tag (peaking background) in the
20x Monte Carlo. nev with  — 7r(7"/v) produces the most peak-
ing background, while the dominant non-semileptonic contribution comes
from Dy tag modes with a kaon faking the electron (e.g. Dy — K Kn°) .
Ds — n'ev fit results in the data, after all semileptonic cuts, for tag modes
KK, KKm, KiK', K Ko, and KK7nr®. We fit the tagged Mp, with
a common signal normalization (branching ratio) for all 13 tag modes.
Each mode receives an independent background normalization. . . . . . .
D, — n'ev fit results in the data, after all semileptonic cuts, for tag modes
K,Ktnm, KK~ nr; mrm; on; oo, 7,0’ — nrn; ma', 9 — mrn; and
m',n — py. We fit the tagged Mp, with a common signal normaliza-
tion (branching ratio) for all 13 tag modes. Each mode does receive an

independent background normalization. . . . . . . .. ... ..o
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Ds — foev backgrounds with a true D; tag (peaking background) in the
20x Monte Carlo. n'erv with 7 — 77X provides the plurality contri-
bution, while the dominant non-semileptonic peaking background comes
from Dy tag modes where a kaon fakes the electron (e.g. Dy — KKj).

Dy — foev fit results in the data, after all semileptonic cuts, for tag modes
KK, KKm, K;Km¥) K Ko, and K K7’ We fit the tagged Mp, with
a common signal normalization (branching ratio) for all 13 tag modes.
Each mode receives an independent background normalization. . . . . . .
D — foev fit results in the data, after all semileptonic cuts, for tag modes
K, K*rm; KK nm; nnm; g ©rln; mn' 0’ — mmn; 77,0 — 7an; and
m',n" — py. We fit the tagged Mp, with a common signal normaliza-
tion (branching ratio) for all 13 tag modes. Each mode does receive an
independent background normalization. . . . . . . ... ..o
x? for data fits using various shifts and gaussian smears to the Monte
Carlo’s signal M distribution. Smaller shifts and smears tend to be

favored, implying a fairly accurate ¢ mass resolution in the Monte Carlo.

G.47 Our large My cut window means that even ¢ lineshapes that don’t fit

G.48

G.49

G.50

G.51

the data particularly well still have a relative efficiency difference from
predicted (?—05) of less than 0.1%. . . . .. ... ... ... ... ... .
The top two plots show the projections from our 2D nev fit to Dy invariant
mass (left) and » pull mass (right) over the full 20x Monte Carlo when
we tag Dy — K K. The bottom two plots do the same for Dy — K K. .
The top two plots show the projections from our 2D nev fit to Dy invariant

mass (left) and 7 pull mass (right) over the full 20x Monte Carlo when we
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tag Dy — K Knn®. The bottom two plots do the same for Dy — K Kt 7n 303l

The top two plots show the projections from our 2D nev fit to Dy invariant
mass (left) and n pull mass (right) over the full 20x Monte Carlo when
we tag Dy — mn. The bottom two plots do the same for Dy — 77%n.

The top two plots show the projections from our 2D nev fit to Dy invariant
mass (left) and n pull mass (right) over all Dy tag modes for one data-
sized Monte Carlo sample (dataset 0). The bottom two plots give the

projections for a different data-sized Monte Carlo sample (dataset 1). . .
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G.52 The top two plots show the projections from our 2D nev fit to Dy invariant
mass (left) and n pull mass (right) over all Dy tag modes for another
data-sized Monte Carlo sample (dataset 2). The bottom two plots give
the projections for a fourth data-sized Monte Carlo sample (dataset 3). .
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Preface

This dissertation uses various conventions that warrant a brief discussion.

I’ve chosen to use natural units throughout the dissertation in derivations or when
dealing with particle masses and momenta. In these units, the speed of light and the
reduced Planck constant both get set to 1 (¢ = A = 1). This simplifies the equations and
the units while also making the relationship between quantities clearer. For instance,
using 1968 MeV for the D, mass makes the maximum energy available for final states
obvious; writing 1968 MeV/c? provides exactly the same information but has more
clutter, while writing the mass in kilograms (3.5 x 10727 kg) gives almost no useful
information P’

I retain conventional units when describing most other quantities, like a 20 cm cut
on distance through the detector. In some cases, I choose units based on the context,
like a 560 nm photon when discussing the visible light in the calorimeter but a 140 MeV
photon in the D} decay. Other quantities have their own unit conventions, like 0.916 nb
for the ete™ — D!D; cross-section area (about 9.2 x 10738 m?). As a general rule,
I’ve tried to provide the most convenient unit rather than adhere to some arbitrary
standard.

Most energies/masses/momenta in this dissertation fall roughly in the 107-10° eV
range, like the 7 mass at 5.48 x 108 eV. In almost all such cases, I've chosen to write
548 MeV rather than 0.548 GeV. While many particle experimentalists find the GeV
scale more natural, I feel that using MeV for particles in this analysis’s energy range

makes it easier to compare differences with absolute quantities. For instance, I'll use

31 suppose that writing the mass in kilograms gives some sense of scale: a person’s mass compared to
the Ds mass is roughly the same as our sun’s mass compared to a person’s. This sense of scale really
only helps the first time, though; I consider this footnote to provide the “sense of scale” benefit so that
I can go ahead with more useful units in the main text.
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a 30 MeV range on the 1968 MeV D; mass, rather than a 0.030 GeV range on the
1.968 GeV mass or (egads!) a 30 MeV range on a 1.968 GeV mass.

I've seen different uses of the terms “branching ratio” and “branching fraction” in
the literature. Some people use “branching fraction” to refer to a particle’s partial
decay width divided by its total widthﬁ and “branching ratio” to refer to a ratio of two
branching fractions. While I see the appeal of this usage, I suspect that the literature
more often uses “branching ratio” as the partial width divided by the total width (with
“pbranching fraction” being synonymous). Consequently, I use “branching ratio” in
the latter sense throughout and avoid the term “branching fraction” to eliminate any
confusion.

Finally, I've chosen to use the plural “we” throughout the rest of this dissertation
rather than the singular “I.” There’s quite a bit of debate over the best first person
pronoun in scientific writing, none of which I find terribly conclusiveﬂ

When discussing derivations, usage like “we see that A=B” must be plural as it
includes the readerﬁ However, this does not extend to most of the text, as the reader
(most likely) did not perform this analysis. Additionally, I have been given suggestions
on how to proceed in some parts of this analysis. In these cases, “we” seems appropriate.
Unfortunately, I have long since forgotten what portions of the analysis this applies to,
and I wouldn’t want to parse what deserves a “we” versus an “I” in any case[]

Ultimately, using “I” or an “I/we” mixture became very jarring and distracted
from the writing. This practical effect has led to my choice of “we” throughout the
dissertation. In some cases, the “we” can be considered to include the reader; in other
cases, it reflects the assistance I've had along the way. The rest of the time, I'm just

calling it the majestic plural.

4This is just the probability that a decaying particle will wind up in a given final state.

51 do think that avoiding the first person entirely tends to go south quickly. It encourages passive voice,
which turns already dry, scientific writing into writing that’s infrared telescope worthy.

641 see that A=B” or “you see that A=B” don’t work nearly as well.

"The AIP Style Manual prefers that you determine what deserves a “we” and what deserves an “I.”
However, their style advice otherwise falls into the category of “We/I sure is a problem; sucks to be us,
doesn’t it?” In any case, the style guide last saw a serious update in 1990, and I get the sense from
the literature before and after that perspectives on this issue have changed in the last couple decades;
I won’t even go into how they cite a website.
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Chapter 1

Introduction

This dissertation describes a measurement of the D meson’s decay rate through six
different semileptonic modes. The Dy meson comprises the lowest energy bound state
between a charm quark and a strange quarkE] Its semileptonic decays involve the charm
quark converting into a lighter quark (either strange or down) with the emission of a
leptonic doublet, here an electron and a neutrinoE]

These semileptonic decay rates give insight into the D, meson’s spatial structure.
Aside from any intrinsic value, the measured rates play into the accuracy of theoretical
techniques used in fundamental measurements (Section . Further, the decay rates
tell us about the structure of the more common particles found in its final states.
They also provide a comparison point for other semileptonic measurements that probe

fundamental parameters in the Standard Model.

1.1 Standard Model

A desire to know what happens and why has been common across diverse human[ﬂ
cultures throughout history. Often, this quest for knowledge has resulted in tangible

benefits that improve the quality of human life; other times, it has merely resulted in

1Strictly speaking, the D consists of a charm and an antistrange quark, while the D has an anticharm
and a strange quark.

2Specifically, the D emits a positron and neutrino while the Dy emits an electron and an antineutrino.
3Given recent Neandertal cave art and tool discoveries, humans might not have even been the only
curious hominids on the block.



2
metaphysical satisfaction and a more fulfilled life. Science drives our understanding of
the complex world around us by testing and rejecting false ideas until we’re only left
with theories accurate enough to make sound predictions.

A reoccurring pattern in our successful theories of nature involves finding basic
elements whose properties and interactions build up the complex world we observe, from
cells in biology to atoms in chemistry. Elementary particle physics takes this pursuit
as far as possible, trying to uncover the fundamental components of our universe. The
Standard Model represents our current, established understanding of the universe’s
basic building blocksﬁ Even though physicists established the Standard Model some
time ago, it has matched every test so far, with the discovery of the missing top quark

(1995), the tau neutrino (2000), and the long-sought-after Higgs boson (2012).

1.1.1 A Quick History

The search for nature’s most basic elements has a history that stretches back thousands
of years. Even in Ancient Greece, Democritus formed the idea of “atoms” as basic, in-
divisible units with different geometries that gave matter its various properties. Galileo
held the notion of piccolissimi quanti (the “smallest quanta”). In the 1700s, Boscovich
speculated about the basic units of matter being geometric points interacting via forces,
not terribly unlike our modern concepts [1].

Particle physics really began, however, with the discovery that atoms have con-
stituent particles. In 1897, J.J. Thomson won the race to understand cathode rays
when he showed that they consisted of negatively charged particles, which we now call
electrons. Ernest Rutherford followed up with a series of experiments that defined the
nucleus, culminating in the identification of the proton in 1919. Chadwick rounded out
our knowledge of the atom by providing experimental evidence for the neutron in 1932.

Meanwhile, Finstein published his theory of special relativity in 1905, describing
the motion of high energy particles that we regularly use in particle physics todayﬂ
Always the overachiever, Einstein also described the photoelectric effect in the same

year, leading to the notion that light consists of quantized units, or photons. Several

4Well, the building blocks for the universe if you ignore the 96% made up of dark matter and dark
energy, which we don’t understand in the slightest.

5Indeed, we internally call the subject matter high energy physics for good reason, although I find
“particle physics” more straight-forward.
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physicists contributed to quantum mechanics from the late 1800s/early 1900s on, de-
scribing how particles behave and leading Dirac to predict the existence of antimatter
with the positron in 1927 (discovered in 1932).

Nature proved more interesting than having just photons, electrons, protons, neu-
trons, and their antiparticles, however. 1937 led to the discovery of the seemingly un-
necessary muonﬁ in cosmic rays [2], 1947 saw the discovery of the pion and the kaon [3],
and, just for fun, 1950 added the wholly unexpected A° [4]. The rest of the 1950s
and early 1960s followed up with a host of seemingly elementary particles, colloquially
termed the “particle zoo.”

While the number of basic particles expanded rapidly, our understanding of ba-
sic forces cleared up. A theory of gravity had been established in the 1600s by Isaac
Newton and improved upon by Einstein with general relativity in 1916E| Electromag-
netism, governing charges, magnetism, and light, had become fairly well understood by
Maxwell’s equations in 1873. The early 1960s saw electromagnetism merge with the
weak interaction, which had been originally proposed by Fermi [5] in 1933 to explain
beta decay (emission of electrons by a nucleus). These combined into the electroweak
force [6], adding the W* and Z bosons (experimentally confirmed in 1981). The late
1960s featured the incorporation of the Higgs boson [7] into the electroweak model [§],9].

The beginnings of the quark model came in 1964, independently proposed by Gell-
Mann [10] and Zweig [11], with three basic quarks that combine to form composite par-
ticles (simplifying the “particle zoo”). Of particular relevance to this analysis, Glashow
and Bjorken [12] predicted a fourth quark, the charm, although the idea didn’t catch on
until 1970 when the GIM mechanism [I3] explained the nonexistence of flavor-changing
neutral currents (like K7, — p™p~). In 1968, deep inelastic scattering showed sub-
structure to the proton [I4] [T5], initially called partons. By the early 1970s, the last
bits of the Standard Model fell into place with a formal model for the strong force
(QCD) [16l 17], the identification of partons with quarks and gluons, the prediction of
bottom and top quarks by Kobayashi and Maskawa to explain CP violation [I§], and
the discovery of the tau [19].

SConfused originally (and understandably) with Yukawa’s predicted nuclear intermediary, the pion.
"General relativity manages to be both fantastically interesting and beyond the scope of this dis-
sertation, as gravity is the only one of the four basic forces that does not play into D semileptonic
decays.



1.1.2 Model Overview

Each elementary particle has properties distinguishing it from the other particlesﬂ A
particle’s invariant mass (normally just called “mass”) defines the relationship between
the particle’s energy and momentum. A particle may have an electric charge that
governs how strongly it interacts with electromagnetism, and it may have a color charge
that governs its interactions with the strong force. A particle’s spin refers to its intrinsic
angular momentum and determines multiple particle statistics. Spin has natural units
of i, a common scale in quantum mechanics. We call particles with half-integer spin
fermions as they follow Fermi-Dirac statistics and obey the exclusion principle (no two
particles in the same quantum state). We call particles with integer spin bosons as they
follow Bose-Einstein statistics (particles prefer the same quantum state, all else equal).

The current formulation of the Standard Model includes three forcesﬂ and 17 parti-
clesm split into 12 spin—% fermions, 4 spin-1 gauge bosons, and a spin-0 Higgs bosonm
The fermions can be further divided into six leptons and six quarks, each in three
generations of two particles. Each of these particles has no substructure within the
limits of our measurement ability, so we call them elementary particles (or fundamental

particles).

1.1.3 Leptons

The six leptons consist of three charged, electron-like particles (the electron, the muon,
and the tau) and three neutral, neutrino-like particles (the electron neutrino, the muon
neutrino, and the tau neutrino). Leptons have no color charge, so they only undergo
weak and electromagnetic interactions (although the neutrinos have no electric charge

and so only interact through the weak force). We typically group the leptons into pairs,

8This section’s assertions can be found in most advanced particle physics texts, such as [20]. Particle
properties come from [21].

9Gravity, with its hypothesized spin-2 graviton, does not get included in the Standard Model. Also,
the electromagnetic and weak forces may be integrated together into a single electroweak interaction.
However, the Z and W bosons’ masses create enough interaction differences from the photon that we
tend to talk about electromagnetic and weak interactions separately.

10T our 17 particle count, we don’t add antiparticles or particles of different color charge separately. For
instance, the charm quark counts as one particle instead of 6 (red, blue, or green; charm or anticharm).
Counting these separately instead gives 61 particles.

1 Other models for the Higgs mechanism exist (and have interesting consequences), but the scalar Higgs
both fits current data and provides the simplest way to explain massive W and Z bosons.



or generations, corresponding to the mass of their electron-like particlesﬂ

GG )

For elementary particles, we base the unit of electric charge on the electron. Con-
sequently, the electron and other electron-like leptons have charge —1le (about —1.6 X
10719 C), while their antiparticles have charge +1e. The tau and the muon both decay
quickly (lifetimes of 3 x 10713 s and 2 x 1079 s, respectively) as they have masses much
larger than the light, stable electron.

This analysis involves both electrons and electron neutrinos created in Dy semilep-
tonic decays. Neutrinos only interact weakly and so pass through our detector with a
vanishingly small probability of interaction (we commonly use the rule of thumb that
a neutrino has a mean free path of about 1 light-year through lead). The neutrinos’
lost energy and momentum creates the primary challenge for this analysis. Electrons,
meanwhile, interact electromagnetically with multiple components of the detector and
get reconstructed quite cleanly when they have enough momentum to make it through

the detector’s magnetic field.

1.1.4 Quarks

Like the leptons, the six quarks may also be grouped into pairs, or generations, based

W © 0

These pairings also correspond to the strongest quark couplings with the W boson.

on their mass:

The up-like quarks (up, charm, and top) each carry a +%e charge, while the down-like
quarks (down, strange, and bottom) carry a —%e charge. Consequently, all quarks can
interact electromagnetically in addition to their weak interactions.

Quarks also carry a color charge, so they can interact through the strong force. Since
free particles must carry no color charge (color confinement, Section , quarks only
appear in composite particles named hadrons. We call hadrons that consist of only two

quarks (one quark and one antiquark) mesons, while we term hadrons that consist of

12We don’t currently know the mass hierarchy for the neutrinos.
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three quarks (all three quarks or all three antiquarks) baryons. Mesons tend to decay
away entirely, with the longest lived mesons having lifetimes shorter than 107 s. Quarks
inside a baryon can’t annihilate due to their color charges, so baryons tend to decay
down to the proton, the lightest baryon (although protons and neutrons form stable
states together when combined, as in a nucleus).

In this analysis, we deal with the Dy meson, which involves both a charm (or an-
ticharm) quark and an antistrange (or strange) quark. The semileptonic decays that
we measure all involve the weak decay of the charm quark to a strange or down quark

through a W bosonE We then see a new meson in the “final” state.

1.1.5 Gauge Bosons and Forces

The photon mediates the electromagnetic force, coupling to particles based on their
electric charge. The photon’s zero mass allows the electromagnetic interaction’s range
to extend arbitrarily far and generates the familiar 1/r2 force law between charged
particles. Additionally, emitted photons don’t decay when left to themselves, giving us
the practical benefit of being able to see the world around us.

The very massive W+ and Z° bosons mediate the weak force, limiting its range to
short distances. While high energy processes can directly generate W and Z bosons
(with a mean lifetime of around 3 x 10725 s), they more often appear in the context of
mediating particle decay processes like beta decay or the semileptonic decays considered
in this analysis. Of the four fundamental forces known to physics, only the weak force
can change lepton or quark flavor, break the parity symmetry, or break CP—symmetryE

The massless gluon mediates the strong force, coupling to particles with a color
charge. Unlike electric charge, which we can describe with just a positive or negative
sign, the color charge has three different states, which we call “red”, “green”, and “blue”.
The names for these color charges come from an analogy with the RGB color model,

as a composite particle with all three charges (or a charge and its Complement)lﬂ has

130ther modes contribute to Ds semileptonic decay, like weak annihilation, but a direct decay through
the W should dominate each decay rate.

14 Changing flavor means the weak force can change the quark or lepton type without an antiparticle
annihilation (e.g. muons can decay to electrons and neutrinos). Parity symmetry means that physics
seen in a mirror operates the same way as in our own world, while CP-symmetry combines the parity
mirror reversal (P) with a swap of the particle into its antiparticle (C).

15The complement of red may be called either antired or green-blue.
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no color, which we sometimes refer to as “white.” Quarks carry a single color charge
(or anticharge), while gluons carry both a charge and an anticharge (although never in
such a way as to make the gluon colorless).

Since gluons carry a net color, they can have strong interactions with other gluons
(self-interactions), unlike the neutral photons in electromagnetism. This leads to novel
properties for the strong force, like asymptotic freedom in which gluon self-interactions
anti-screen a bare color charge. This enhancement causes the strong interaction cou-
pling, ag, to increase at large distances (or, equivalently, as decreases at high ener-
gies)m The gluon self-interaction also causes the gluon field between two color charges
(e.g. quarks) to elongate into a tube instead of spreading out in space as in electro-
magnetism [22]. This causes the energy between the two quarks to increase linearly
(unbounded) as the distance increases, eventually generating new quarks from the vac-
uum that form colorless hadrons with the original quarks. Ultimately, particles with a
color charge can’t be isolated, an effect known as color conﬁnementm

In this analysis, electromagnetism influences various decays, notably the initial eTe™
collision and D} — Dyy. Semileptonic decays naturally involve a W boson that couples
to the quarks and to the leptonic decay products. The strong force’s large coupling pro-
vides the motivation for the analysis in the first place, as the mess of gluonic interactions

inside the initial and final state hadrons gives rise to their uncertain structure.

1.2 Motivation

Semileptonic decays of mesons with heavy quarks (B, D) have proven very useful in
determining the magnitudes of CKM elements. In particular, such decays have led to
the estimates for [Vp|, [Vus|, |Vea|, and they have contributed to the estimate for |V, [21].

While D, semileptonic decays could yield similar estimates in principle, its lower
statistics and more complicated light hadron states make direct estimates of CKM el-

ements less valuable. However, these same decays to light hadrons give insight into

Gluon interactions with quarks provide a color screening effect as well, similar to the screening of
charges in electromagnetism that leads to a very slow increase in its coupling («) with energy. However,
the anti-screening effect of gluons dominates for a reality with six quarks and three colors.

" This explanation of color confinement has not yet been established definitively; one of the seven
Millennium Prize Problems relates to part of the proof.
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calculations from lattice QCD, provide a probe into light meson spectroscopy, and com-
prise much of the inclusive spectrum that can be used for kinematic checks on D and B

decays.

1.2.1 Lattice QCD

The lattice QCD formalism allows QCD processes to be computed numerically, using
a discrete space-time grid with only the bare quark masses and « as inputs. Lattice
QCD has proven very useful in a variety of processes, including the extraction of CKM
parameters from semileptonic decays to light mesons [21].

However, the required lattice discretization size depends on the quark masses in-
volved, and smaller lattice sizes require more computing power. While a few lattice
analyses have recently begun to get down to the level of the physical light (up and down)
quark masses [23], lattice calculations still typically set the light quark masses to a higher
than physical value, expressed as a fraction of the strange quark mass [24} 25 26]. They
then use different lattice grid sizes and extrapolate to the continuum limit.

These lattice discretization effects tend to dominate lattice calculation errors. D
semileptonic decays to ss states provide an excellent test of lattice QCD procedures
as they allow lattice calculations to use the strange quark mass for the valence quarks

rather than extrapolating to light quark masses.

1.2.2 Light Meson Spectroscopy

Semileptonic Dy decays most often result in ss final states, which affords us an opportu-
nity to probe a sector that can otherwise be difficult to access cleanly [27]. In particular,
D, semileptonic decays can potentially probe the s5 content of the 1 and 7/, and they
can shed insight into the fo(980) quark content and structure.

When decaying semileptonically to pseudoscalars, the Dg couples to the s5 compo-
nent of 7 and n’. Conversely, when charged D semileptonic decays result in an 7 or 7/,
they couple to the mesons’ dd component. Since the decays have related kinematics, a
comparison of the four decay widths should determine the strange and nonstrange ¢g
content of the n/n'.

The fo(980) has been considered to consist of a g state, a qqgq state, a K K molecule,
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or even to have a gluon component [28]. Since the D, transitions to the fy particle’s
s§ component, D; — foer should provide information on the underlying quark content
of the fo. BaBar may have seen S-wave interference with the ¢ev, ¢ — K™K~ final
state [29], and this mechanism could also lead to a deeper understanding of the fy

substructure.

1.2.3 Inclusive D,

Given CLEO'’s inclusive D; measurement [30], the six Dy semileptonic modes considered
in this analysis (gev, nev, n'ev, foev, K*ev, Kgev) saturate most of the total semilep-
tonic width. Knowing the components of the D, semileptonic width should improve
phenomenological comparisons that use the inclusive Dy spectrum.

In the most prominent example, heavy quark symmetry allows a constraint on the
weak annihilation (four-quark, Figure component of B — X, v semileptonic decays
that would otherwise complicate the |V,;| measurement. This constraint comes from
comparing the difference of charged and neutral B semileptonic widths to the difference
in D, and DY semileptonic widths, which should be related up to factors like mj /m?2 [31]
32].

1.3 Theory

In D, semileptonic decays to light hadrons, the charm quark couples to a down or strange
quark through a W boson, which also couples to a lv lepton pair (Figure . The lepton
and quark states trivially separate (factorize) in the decay amplitude since the leptons
don’t feel the strong force. However, we can not simply ignore the spectator strange
quark in the ¢ — (d, s) coupling. The daughter down and strange quark masses both
fall well below Agcp, 80 A(4,5) becomes too long to benefit from asymptotic freedom (as
might be done with the short heavy quark wavelengths in b — ¢). The resultant strong
interactions with the spectator quark complicate the picture enough that it generally
becomes easier to work directly with the meson coupling (D, — X,) than with the
individual quark coupling.

Separating out the weak decay’s lepton pair gives a decay amplitude o@

'8The notation used here comes from [20].
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v
—_— /4 +
/
c L q=s,d
Dy Xq
S S

Figure 1.1: Spectator model for Dy — Xgev.

GF . _
A= %chue'm(l = 75) v (Xql 07" (1 = y5)c|Ds) (1.1)
where q corresponds to the d or s final state quark field and X, represents our final,
exclusive meson state (¢, 7,7, fo, K*, or KY). Here, we have implicitly assumed a simple

qq form for the fy and have ignored complications from weak annihilation.

C 14
D, ___<
S %% e
S
Xs
S

Figure 1.2: An example of the nonfactorizable weak annihilation contribution in Dy

semileptonic decays to an s5 state (e.g. 1,7, ¢). A similar contribution can appear in
B — X,lv, which may distort the |V,;| measurement if too large.

After summing over lepton spins, the leptonic part of the squared amplitude

> Gy, P L, 1.2
D AP = =F Vag” Ly (1.2)

spins

becomes
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Ly =2 Tr[%’m}z}e’yu(l —5)]

(1.3)
= 8((] - Pe)ap’f [ga,u,gﬁu + Jov 98 — Gap9uv + ieaﬁ,ul/] )

where k represents the neutrino’s four momentum, p, represents the electron’s four
momentum (which will be taken to be massless in what follows), and ¢ = k + p. =
PD, —PX-

As mentioned previously, the inability to separate out the spectator quark compli-
cates the hadronic part of the squared amplitude. The standard approach relates the
hadronic amplitude to a series of form factors (functions of ¢?) that weigh all the possi-
ble combinations of physical dependencies. For instance, the hadronic amplitude for a
pseudoscalar D, decay to a pseudoscalar X, (e.g. Dy — ner) can only depend on p’[")s
and p’y as no spins or orbital motion are involved (the axial part of the hadronic current

can’t contribute). We typically combine these into

(Xqlav"e|Ds) = f+(pp, +px)" + f-(pp, — Px)V, (1.4)

since the decay rate only depends upon f; in the zero lepton mass limit (¢, L*" =0
for massless leptons). Decays to vector particles follow a similar procedure but with
additional kinematic dependencies and form factors.

Different models make different assumptions about these form factors’ ¢> depen-
dence. We have used the ISGW2 model [33] 34] as a baseline in our Monte Carlo gen-
eration, but most results in the literature use some form of a nearest pole dominance
model. Although not entirely identical, both models have similar forms (if different

parametrizations) in the case of Dy decaying to pseudoscalar or vector particles.

1.3.1 Free Quark

The simplest model of D semileptonics comes from ignoring our earlier precaution
against separating out the spectator quark and considering only the charm to down/strange
coupling with the W in the decay amplitude. While this assumption should be a disaster
for the down quark, we can expect it to be merely awful when applied to the strange
quark (ms =~ 100 MeV < Agcp =~ 200 MeV). Nonetheless, it gives us a useful baseline

to compare against the more sophisticated techniques that include resonance effects.
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In the free quark case, the hadronic part of the squared amplitude becomes

H" = Tr [Py 7" (1 — )], (1.5)

where P is the momentum of the charm quark, p’ is the momentum of the final
state quark, and the factor of 2 seen in L, drops when averaging over the two initial
charm spin states. After simplifying L, H* to 8(P - k)(p' - p.) and integrating over the

massless electron and neutrino momenta in the charm rest frame, we get

T 2 . 2
O = GVl Bk (38— 20) + MEBM - 4E)] . (16)
™

where M is the mass of the decaying charm quark, m is the mass of the final state
quark, and E’ is the energy of the final state quark (which may also be written in terms
of > = M? +m? —2MFE').

The total decay rate after considering all E’ between m and % has the familiar form

2 2
I = 1;;‘:{%' f( ) (1.7)

for f(x) =1— 8z + 823 —z* — 1222 Inz.

We could further improve this by including bound state effects (e.g. time dilation
of the charm quark due to its momentum inside the D,) and QCD corrections [35].
However, the simple form above should be sufficient for our purposes since the free
quark model only serves to give an order of magnitude estimate on the inclusive decay

rate and a rough sense of the dependence on ¢?.

1.3.2 ISGW Formalism

The initial ISGW model [33] takes the most general form for the hadronic part of the
squared amplitude, then relates it to particular form factors for each exclusive decay
(ignoring nonresonant states). It uses a nonrelativistic quark potential model with a

Coulomb plus linear potential given by

Vir)=—

S
1.8
3r (1.8)
which generates wave functions for the mesons and an explicit calculation for the

form factors based on those wave functions.
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After summing over final state hadron spins, the most general hadronic portion of

the squared amplitude has the form

H" = —ag" + B4+ (pp, +px)"(pp, +px)" + B+—(pD, +px)"(PD, — Px)”
+ 6+ (pp, — px)"(pD. + px)" + B——(pp, — px)"(pD, — px)” (1.9)
+ iy (pp, + px)p(PD, — PX )0

where «, the various 3, and v may depend on ¢°.

Combining with L, gives

Ly H" = 8{ 2a(pe - q) + Bt [2(P - q)(P - pe) = 2(P - pe)? = (4 - pe) P]
+27 [(P-q)(q-pe) — (P pe)d?] (1.10)
+[¢ = 2(q - pe)] [(B— + B-1)(P-pe) + B-—(q-pe)] },

where P = pp, + px.
Using the phase space delta function to integrate over the neutrino momenta and

d(cosfye) also conveniently gives q - p. = %, eliminating all but the «, S84y, and
terms. Defining the dimensionless variables » = E./mp, and y = ¢/ m%s leads to the

differential decay rate

T GEm [Vegl?

e 428 IETP PR S
dxdy 3273 m%s Y r m%s Y Y

2
+ vy <1—2X—4x+y }
mp.

The particular «, 844, and « depend upon the final state meson. For a decay to a
pseudoscalar, the hadronic amplitude follows Eq. with a =~y =0 and 844 = f_%

A decay into a vector particle (e.g. Ds — ¢ev) has the vector’s polarization (¢) as an

(1.11)

allowed kinematic variable in the (non-spin-averaged) amplitude. The axial and vector

amplitudes become

(X|Au|Ds) = fep+ay(e-pp,)(pp, +px)p +a—(e-pp,)(PD, — PX)u (1.12)
(X|Vy|Ds) = ig€upoc” (pp, + px)”(PD, +1x)7, (1.13)
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where f, g, and a+ are form factors that depend on ¢?>. The decay rate in this case
requires all three of «, 844, and v (e.g. v = 2¢gf).

In each case, the meson wave functions used in calculations with the potential are
taken from the harmonic oscillator

1S _ ﬂg/z —BZr2/2
'l/} = We S , (114)
™

with a free parameter (8g) that gets fixed by the variational method.

The resulting pseudoscalar and vector form factors (fy, f, g, and ay) depend upon
the quark masses, the quark model’s meson masses, and the variational parameters Sp,
and fx. Their ¢*> dependence comes in the form e~ "1 ([Gmax—a%)/ 6 where the constant 7
carries the mass and g dependence. The decay rate parameters «, B4, and y inherit
the exponential ¢> dependence from the form factors and may also contain explicit ¢?
coefficients. o and 4 contain such terms in the vector decays; for example, o contains
a term of the form g2 (mQDS —¢?). The final decay rate does not in general have a simple
¢* dependence with this model.

The updated ISGW2 model [34] that we use in our Monte Carlo generation follows
the same approach but makes a series of modifications to the original model. Most
notably, it takes advantage of heavy quark symmetry to more accurately match the
quark model form factors to the meson form factors, it adds relativistic corrections, and

it changes the form factor ¢> dependence from exponential to [1 +72(¢2,.. — ¢*)/6N]~,

where N=2 for S-wave to S-wave transitions and r3 = r? 4 (’)(mclmq).

1.3.3 Pole Model

Assuming nearest pole dominance yields an alternative form factor dependence on ¢2.
Again, the pseudoscalar to pseudoscalar form factors only involve the vector hadronic

current V,, = ¢yuc, now using the parametrization [36]

2 2

m m 7 5
(X[ V| Ds) = Fi(¢?) | (pp, +px)p — %%

m m
+Fo(q%) [Dngxqu] , (1.15)

where Fi(¢?) and Fy(q?) correspond to the two possible form factors (with the

constraint F(0) = Fy(0) to avoid an issue at ¢ = 0).
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This parametrization has the advantage that only the Fy(g?) term survives when

acted on by ¢*, allowing its identification as the scalar (Jp = 0") component of the

current. Similarly, the F(q?) form factor corresponds to the spin-1 component of the
current (orthogonal to ¢*).

In the massless electron limit, the pseudoscalar to pseudoscalar decay rate only

depends on F}(¢?) and is given by

dl _ GlVel?

2
PR ye |, (1.16)

2
px”’ |Fi(q%)
where px is the final state hadron’s three momentum in the Dy rest frame.

Since the form factors are analytic in the complex ¢ plane other than singularities
when ¢? has an on-shell intermediate particle, we can assume that the nearest meson
resonance with proper spin and quark content will dominate the form factor behavior

(Fig. [1.3). The dispersion relation gives

1 [ ImF(s)ds
2y * 1
Fl(q)_ﬂ/s—qz—ie’ (117)
with
ImF(s) = 7C §(s — M?) (1.18)

for a narrow resonance at the meson with mass M, where C is a constant that contains
the coupling strengths between both the resonance with the W and the resonance with
the decaying particle. Combining equations gives
Fi(¢*) = ——. (1.19)
-

This “simple pole” model serves well as a first order approximation for the form
factor. However, D, (and other) semileptonics have a ¢* range too wide to simply be
dominated by a single pole at one extreme point (near ¢> = ¢2,,). Various modifications
to the simple pole have been proposed [37], most of which equate to adding extra
effective poles (or multipoles) with the pole strengths and pole masses left as variables

for fitting (e.g. Fi(¢?) = (17(q/M)5)1((102a(q/M)2) [38]). At a certain point, this becomes

less about describing a perfect physical model and more about having roughly the

right form with enough free parameters to match the data. Nonetheless, having a
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Figure 1.3: Pole dominance in D, — Xgev. Here we have shown the vector meson pole
through the D* and D} resonances when the charm quark decays to a down or strange
quark, respectively.

common parametrization for comparison has value when we have multiple methodologies

(Section [L.4)).

Pseudoscalar to vector decays in the pole model commonly use the parametrization

P,

Vg%, 1.20
V) (1.20)

<X‘ VM |Ds> = 2i€uyaﬂ

(X| A, D) = (mp, +my) [ - (q‘?q] A(P)

—(e-q) [(st +0x)u  (mp, — mx)qu] As(g?) (1.21)

mp, + mx q?

6 .
oy D4y,

where A,, represents the axial current (gy,7ysc) and e represents the final vector
particle’s polarization. Only the Ag(¢?) term survives when acted on by ¢* in this
parametrization, thereby representing the pseudoscalar resonance’s form factor. V(¢?)

corresponds to the vector meson resonance, leaving A;(g?) and As(g?) to describe the

axial meson resonance exchange. We can also define

mp. +m mp. —m
A3(q2) = MAI((]?) _ "Dy — X

with the constraint that A3(0) = Ag(0) so that no pole arises at ¢> = 0.

As(q?), (1.22)

2mx 2mx

These form factors may also be written as helicity amplitudes [39] by considering

the conserved helicity between the vector meson and the W, giving
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Mp, + Mx 2 2 2 2 4M12) ‘p}P 2
Hy(¢?) = ——=———= |(M%2 — M2 —¢*)A . . (1.23
O(q ) 2MX\/(]72 [( Ds X — 49 ) 1(q ) (MDS +MX)2 2((] ) ( )

2Mp, |px]|

Hi(q%) = (Mp, + Mx) {AI(QQ) + (Mp, + Mx)?

V(qz)} : (1.24)
With these amplitudes, the decay rate takes the compact form

dr  GE|Ve” i*px
— Hi(q 1.25
dg® 963 Mp, zzo:i‘ (125)

The overall decay rate does not depend upon Ag(q?) in the limit of a massless electron
(the integrated leptonic current L*¥ for massless leptons has the form ¢#¢” — ¢?g", so
quL* = 0). From here, the Ay, Az, Ag and V form factors each get represented by
a simple pole using meson resonances with the proper axial, pseudoscalar, or vector

characteristics.

1.4 Decay Rate Predictions

QCD doesn’t particularly lend itself to precision calculations since its large s coupling
prohibits perturbative techniques. This limits an exact calculation of D, semileptonic
decay rates and form factors from first principles. However, versions of constituent quark
models, QCD sum rules, and lattice QCD have all been used to avoid the problems

intrinsic to QCD processes and predict the various Dy semileptonic decay rates.

1.41 Ds,— (n,1)ev

D, semileptonic decays to the pseudoscalar n and 7’ states hold interest for both the
n/n mixing angle (or n/n’/glue mixing [40]) and the weak annihilation process (Fig-
ure [41]. These decays have consequently seen the most discussion in recent years,
with multiple methods of calculating form factors and decay rates.

Predictions typically require a value for the mixing angle, ¢, given by

) = cos ¢ [ng) —sin @ [ns) (1.26)
') = sinng) + cosdns) (1.27)
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where |ns) = |s5) and |ng) = % |uti + dd). Methods we discuss take ¢ ~ 40° unless
otherwise noted. The octet-singlet 7g/n1 mixing angle () can also be used, which differs
from ¢ by arctan(v/2). The ¢ parametrization leads to the form factor relation

1 (@)

in the limit of no annihilation, where f. follows the definition in Equation
Methods for predicting Ds — (1,1')er decay rates have included constituent quark
models constrained by lattice results (CQM) [42], constituent quark models with dynam-
ics defined relativistically along the 2 = ¢ & 2 light front (LFQM) [43], light cone QCD
sum rules (LCSR) [44], QCD sum rules with a phenomenological adjustment for weak
annihilation (QCDS) [45], and kinematics with an intrinsic 1:3 pseudoscalar/vector rate
(KIN) [46]. Preliminary lattice calculations have also given some form factor results at

q®> = 0 [47]. We have summarized these predictions in Table

Table 1.1: Ds; — n(')ev branching ratio predictions from different analyses. When
necessary, we have used 7p, = 500 x 10~1%s and |V.s| = 0.973 for conversion to a
branching ratio. The kinematics-based analysis (KIN) uses ratios with Dy — ¢ev, so
we've taken B(Ds — ¢ev) = 2.0% (this assumption won'’t affect the n’ev/nev ratio).

Analysis B(Ds — nev) | B(Ds — n'ev) %
CQM [ 5.5% 0.93% 0.37
LEQM (fp, = 270 MeV) [43] 2.3% 0.91% 0.40
LCSR [44] 3.2% 0.97% 0.31
QCDS [3] 2.3% 1.0% 0.43
KIN (¢ = 45°) [46] 1.4% 0.43% 0.31
ISGW2 (¢ = 45°) [34] 2.7% 1.1% 0.43

1.4.2 D, — ¢ev

D, — ¢er decay rates and form factors have also seen a variety of predictive models,
including a different approach using QCD sum rules (QCDS) [48]. We also state results
from a lattice calculation that uses the Highly Improved Staggered Quark action for

valence quarks and asqtad sea quarks (LAT) [26]. We've converted these decay rates
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into branching ratios and added them to the CQM model’s prediction and the ISGW2
model’s result in Table .21

Table 1.2: D; — ¢ev branching ratio predictions from different analyses. When neces-
sary, we have used 7p, = 500 x 1071°s and |V,s| = 0.973.

Analysis B(Ds — ¢ev)
CQM [42] 2.6%
QCDS [45] 1.4%
LAT [26] 2.4%
ISGW2 [34] 2.2%

1.4.3 D, — foev

D, — foev decays provide a clean system for probing the scalar fy particle’s s5 com-
ponent. Consequently, recent years have seen a few predictions for the foer decay rate

that depend on the fy mixing angle, 8, where
| fo) = cos0sS) + sin 6 |nn) (1.29)
. _ 1 _
with |nn) = 7% |uti + dd).
Table gives the results from these analyses, which include a light front quark
model (LFQM) [49] and two different QCD sum rule methods (SUM [50] and QCDS [48]).

Table 1.3: Dy — fper branching ratios from different analyses. Each analysis’s branch-
ing ratio depends upon the s§ fraction of the fy, given by cos 6.

Analysis B(Ds — foev)
LFQM [49] | 4.2 x 1073 cos?(
%(
“(

0)
0)
0)

SUM [50] | 4.1 x 1073 cos
QCDS [48] | 5.5 x 1073 cos

1.4.4 D, — (K,K*)ev

The Cabibbo suppressed Dy — (K, K*)ev decays don’t receive the same interest as other

D, semileptonics, presumably due to the lower branching ratios, the less ambiguous
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(interesting) final meson states, and the lack of experimental data for comparison. Even
so, both the CQM model and ISGW2 extend their results from the charm-strange
interactions to the charm-down decays, with results shown in Table [[.4] Additionally,
we have used the kinematic model (KIN) to obtain an additional prediction for the ratio

of D semileptonic decays to K% and K*.

Table 1.4: Dy — (K, K*)ev branching ratio predictions from different analyses. When
necessary, we've used 7p, = 500 x 1071%s and |V,4| = 0.225 for conversion to a branching

ratio.
Analysis B(Ds — K%v) | B(Ds — K*ev) %::7?:23
KIN [40] - - 0.9
CQM [42] 0.32% 0.19% 1.7
ISGW2 (6 = 45°) [34] 0.23% 0.11% 2.0

1.5 Past Results

BaBar and CLEO-c have each made recent semileptonic measurements in the D system.
Table contains a summary of their results. Our results include the same data as
the prior CLEO-c results and in most modes (all but fy and ¢) include additional data
that roughly doubles the integrated luminosity. Further, our results include additional
events through improved efficiency, due to a combination of dropping the D} daughter

photon and using generally looser particle selections.

1.6 Summary

Measured D, semileptonic decay rates provide a cross-check on lattice calculations, give
insight into light meson quark content, and allow for phenomenological comparisons
using the total Dy semileptonic rate. This analysis simplifies comparisons for these
purposes by measuring the six dominant Dy semileptonic decay rates with a common
procedure. Further, it improves statistics in all six modes through higher efficiency and

includes twice the data sample for four modes (nev, n'ev, Kgev, K*ev).
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Table 1.5: The most recent D, semileptonic results from BaBar and CLEO-c. CLEO-c
has published two ¢er and fper results; here, we include the results with higher lumi-
nosity. BaBar saw evidence for fper from a small S-wave component in Dy — K Kev.

Ds — foev, fo — I [29] [51]
Inclusive semileptonic [30]

Mode BaBar CLEO-c

Dy — ¢ev [29] [51] (2.61 £0.03+£0.17)% | (2.36 £0.23 £0.13)%

D, — nev [52] — (2.48 +0.29 £ 0.13)%

Ds — nev [52] — (0.91 £ 0.33 £0.05)%

D, — Kgev [52] — (0.19+0.05 £ 0.01)%

Ds — K*ev [52] — (0.18 £0.07 £ 0.01)%
( )%
( )%

0.20 £0.03 £ 0.01
6.52+0.39 £0.15




Chapter 2
Experimental Apparatus

Once upon a time in upstate New York, the CLEO experiment detected the results of
electron-positron (e~e™) collisions over a variety of energies. This required two major
pieces of machinery: CESR, which made the electron and positron beams; and the
CLEO-c detector, which measured the collision results. Wilson Synchrotron Laboratory
at Cornell University in Ithaca, NY housed both the collider (which still exists) and the

detector.

2.1 CESR

The Cornell Electron Storage Ring, or CESR, collided electron and positron beams to
generate the particles ultimately detected in CLEO-c [54]. The 768 m circumference
storage ring sat about 12 m below an athletic field on the Cornell campus and had one
interaction region, located inside the detector at the ring’s south end. CESR provided
CLEO the highest possible luminosity (interactions per area per time) by balancing

limitations on the number of charges per beam and the beams’ lifetime.

2.1.1 Collider Layout

To collide two charged particle beams of a given energy, CESR had to perform three
general operations: obtain the electrons and positrons used in the beams; ramp the
particles up to the desired energy; and smash the beams together as many times as

possible to get the most interactions. Matching these three functions, CESR had three
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main components: the linear accelerator (linac), the synchrotron, and the eponymous
storage ring (Figure|2.1)). CESR also had a 150 kV electron gun, where low energy elec-
trons boiled off a filament for injection into the linac, and two transfer lines connecting

the synchrotron and the main storage ring.

CESR
Storage Ring

/

/

Synchrotron

+ e'

Transfer Line

e
Transfer Line

Linac
Converter

CHESS (CLEQO CHESS

Figure 2.1: CESR schematic showing the three main components (linac, synchrotron,
and storage ring) along with the electron gun and transfer lines.

CESR’s linac created the electron beam by taking electrons from the electron gun
and accelerating them through a series of 8 RF cavities up to an energy of around
300 MeV, then transferring them into the synchrotron. To make the positron beam,
CESR inserted a tungsten target halfway down the linac to intercept the electrons. The
150 MeV electron beam hit the high-Z target, creating e™, e™, and . Magnets selected
out the positrons and focused the beam, then the linac accelerated it up to around
200 MeV before injection into the synchrotron.

The synchrotron ring ran just inside the storage ring. It used 4 accelerating cavities,
each about 3 m long, that ramped the beam up to CLEO’s requested energy (typically

around 2 GeV). This process took of order 10 ms, or a few thousand cycles around the
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synchrotron. The synchrotron used several dipole magnets to steer the beams around the
ring, clockwise for the positrons and counterclockwise for the electrons (as viewed from
above). Once the beams had enough energy, they were injected through the appropriate
transfer line into the storage ring.

Like the synchrotron, the storage ring used dipole magnets to steer the beams into
a circle. Quadrupole magnets provided the primary focusing for the beams, while
sextupole magnets countered the divergence that the quadrupoles introduced over the
beam’s small energy spread. Superconducting RF cavities running at 500 MHz added
energy to compensate for the beams’ synchrotron radiation losses.

Rather than having a continuous beam, the electrons and positrons were created in
bunches, with as many as 5 bunches in a train and 9 bunch trains circling the storage
ring at a time. The two counter-rotating beams then had 18 regions in the storage ring
with potential crossing points, but only one point inside one region corresponded to
the desired interaction point (the detector). CESR avoided 16 of the parasitic crossing
regions through the use of 4 electrostatic horizontal separators that gave the two beams
a “pretzel” orbit (Figure . The region immediately across from the detector required
an additional pair of vertical electrostatic deflectors to redirect the beams away from the
parasitic crossings. Finally, slightly redirecting the beams to have a small crossing angle
(2.5 mrad) at the detector ensured that the interaction region had only one crossing

point.

2.1.2 Beam Considerations

CESR was initially designed for beam energies near 5 GeV, with most of its running at
the T(4S) (5.3 GeV beams). When running at energies closer to 2 GeV, the synchrotron
radiation decreases significantly (power oc E*) and doesn’t provide the needed damping
on the beam’s energy spread. CESR compensated for the lower intrinsic synchrotron
radiation by adding 12 local bend magnets, or wigglers, composed of a series of alter-
nating magnetic fields (8 poles). These fields created a tight, back-and-forth beam path
through the wiggler, greatly increasing the synchrotron radiation and shortening the
beam’s damping time from 570 ms to 55 ms [55]. The beam size, or emittance, also
increased from 30 nm-rad to 220 nm-rad, which improved beam stability by decreasing

the beams’ charge density through the interaction region.
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Figure 2.2: Exaggerated depiction of the pretzel orbit. Hash marks indicate the potential
crossing regions.

Scattering between particles in a bunch (the Touschek effect) and interactions be-
tween the beam and gas particles in the beamline limited the beam lifetime. Intrabeam
scattering depends on a variety of factors, including the beam energy, momentum spread
and acceptance, and the emittance. Beam-gas scattering depends largely on the vac-
uum in the beamline, about 1072 atm for CESR. During running, CESR also saw
significant beam-beam interactions near the interaction region caused by the CLEO-c
solenoid, which were largely corrected by installing two 2 T “anti-solenoids” [55].

The instantaneous luminosity (£) in cgs units (cm~2s~!) may be calculated from [56]:

1¢,E,
By

where r* is the vertical to horizontal beam size ratio at the interaction point, I is the

L =217 x 10%(1 + r*) (2.1)

beam current (~65 mA), Ej is the beam energy in GeV, &, is the vertical beam-beam
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parameter (~0.03), and 3 is the vertical focusing function at the interaction point in
meters (~0.012 m). “Horizontal” in this context refers to the direction perpendicular
to motion that lies in the plane of the accelerator, while “vertical” extends perpendic-
ular to the accelerator plane. The dimensionless {, depends on the damping rate and
carries additional factors of the beam energy. During the D, running, CESR attained
luminosities of around 7 x 103! cm=2s~ 1.

For a process with a given cross section, o, the number of events comes from

N = o/ﬁdt, (2.2)

where we call [£dt the integrated luminosity. CESR measured the luminosity via
the QED processes eTe™ — ete™,u"pu~, and ~v, since those modes both have well

determined cross sections and involve different detector components.

2.2 CLEO-c Detector

CLEO operated as a general purpose detector, capable of detecting both charged and
neutral particles (including hadrons, leptons, and photons) with good resolution. Most
of the cylindrically symmetric detector sat inside a solenoid 3.5 m long and 1.5 m in
radius, with an active detector region covering 93% of the solid angle. The electron-
positron beams from CESR met roughly in the detector’s center at a slight crossing
angle of 2.5 mrad to ensure a single interaction point for the bunch trains.

The CLEO detector saw a variety of modifications over time [54] 57, [58]. By CLEO-c,
the detector held an inner drift chamber (the ZD), an outer drift chamber (the DR), a
ring imaging Cherenkov detector (the RICH), a crystal calorimeter (CC), and a muon
detector (Figure . The helium-cooled, superconducting solenoid generated a 1.0 T
magnetic field, uniform to +0.02% over the tracking volume. The solenoid surrounded
the drift chambers, the RICH, and the calorimeter. The 3 layered muon detector sat
outside the magnetic field to capture muons passing through all inner material, although
we will not otherwise discuss the muon chambers as they primarily functioned in a regime
outside the scope of both this analysis and most CLEO-c analyses (detector applicable

for muon momenta 1 GeV and greater).
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Figure 2.3: The CLEO-c detector.

2.2.1 Inner Drift Chamber

The inner drift chamber, or ZD, sat nearest the beamline inside the CLEO detec-
tor. Prior versions of CLEO used a silicon vertex detector as the innermost detec-
tor. With the lower energies of CLEO-c, however, only longer lived charged particles
(e*, u*, nt, K+ p/p) traveled a measurable distance, reducing some of the silicon detec-
tor’s value. Further, the softer tracks required a minimum of material to avoid multiple
scattering, prompting a switch from the silicon wafers to a gas and wire system.

The ZD consisted of 300 cells with an aluminum-mylar skin, each 10 mm wide (5 mm
half-cell size) with a 20 pm gold-plated tungsten sense wire at +1900 V surrounded by
110 pm gold-plated aluminum field wires held at ground. When a charged particle

passed through the gas, the atoms ionized, releasing an electron and leaving an ion.
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While the ion didn’t move much due to its mass, the electron accelerated in the strong
electric field and ionized other atoms in secondary collisions. The secondary electrons
then ionized further atoms and created an electron cascade. The pulse height told us the
charged particle’s specific ionization, or dF/dx (energy lost per length). The gas drift
velocity, time of pulse, and bunch crossing time allowed us to determine the particle’s
position.

While CLEO originally used argon as the ionizing fill gas in its drift chambers
(at that time just the main drift chamber), more recent versions switched to helium
for better position resolution [59]. Propane (CsHg) acted as the quench gas to avoid
spurious signals from photon emission in atoms that became excited instead of ionized.
CLEO-c settled on a 60:40 helium-propane mixture in both the inner and the main
drift chambers, which had a long radiation length of 330 ym (important since multiple

scattering dominated momentum resolution at CLEO-c energies).

2.2.2 Main Drift Chamber

As the inner drift chamber had been modeled on the main drift chamber, the two shared
many similarities. The main drift chamber had a slightly larger cell size of 14 mm (7 mm
maximum drift distance), with the sense wire held at +2100 V. Corresponding to its
larger size, the main drift chamber held 47 layers of field and sense wires rather than the
inner drift chamber’s 6 layers. The first 16 wire layers (1696 wires in total) ran parallel
to the beam axis (axial layers), while the remaining layers (8100 wires) alternated in
stereo angle.

As a charged particle passed through the main drift chamber, the magnetic field
bent it into a helical path. A Kalman (Billoir) fitter reconstructed the wire hits from
ionization into this path, incorporating dF/dx information. The path’s curvature in the
magnetic field then allowed us to determine the particle’s momentum.

Aside from being useful in its own right, the momentum measurement combined with
the particle’s dE/dx to identify the charged particle. The deposited dE/dx depends
upon a particle’s velocity through the medium. For momenta comparable to or less
than the particle’s mass (velocities distinguishable from the speed of light), dE/dx and
the momentum gave enough combined information to determine the particle’s mass.

In the case of pions and kaons (the two most common long-lived hadrons in CLEO-c),
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this dE'/dx technique gave very good separation up to momenta near the kaon mass, as
shown in Figure In this analysis, we frequently used the deviation from expected

dE/dx under a given particle mass hypothesis, aiff/(dx, to identify (or reject) charged

tracks.

dE /dx (keV/cm)

8 IIII| 1 IIIIIII| 1 IIIIIII|

0.1 1 10
Momentum (GeV/e)

Figure 2.4: dE/dx through the drift chamber as a function of momentum for the long-
lived charged particles. Below 600 MeV or so, kaons and pions have good dE/dx

separation.

2.2.3 Ring Imaging Cherenkov Detector

While the drift chamber provided good particle identification for momenta below ~600 MeV,
dE/dx did not give sufficient separation to identify charged particles with high mo-
menta. To remedy this flaw, a prior version of CLEO (CLEO III) added a ring imag-
ing Cherenkov detector (Figure between the main drift chamber and the crystal
calorimeter’s barrel, covering about 83% of the total solid angle. The RICH detected
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Cherenkov radiation produced when charged particles moved faster than the phase ve-
locity of light in the dielectric radiator (p > 440 MeV for the kaon threshold).

The dielectric consisted of LiF crystals about 1.7 cm thick laid out in 14 rows. The
outer crystal rows had flat surfaces, but the central four rows had a sawtooth shape to
avoid total internal reflection of the 135 nm - 165 nm Cherenkov photons. The emitted
photons passed through an expansion gap filled with nitrogen (N3) to avoid difficulties
in working with a vacuum while still being transparent to the VUV photons. Following
the gap, the photons passed through CaFy windows into a multi-wire proportional
chamber filled with methane-TEA (triethylamine), where the photons converted into

photoelectrons and created an ionizing cascade much like the drift chambers.

Methane - TEA
MWPC
LiF Radlator
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Figure 2.5: CLEO-c RICH detector schematic, including the Cherenkov photon cone

from the passage of K/m through the radiator. The radiators here have the sawtooth
shape.

The RICH determined a charged particle’s mass by measuring its velocity through
the Cherenkov effect (Figure and comparing it with the momentum from the drift
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chamber. When above threshold, the dielectric medium (LiF radiators) emitted light
at an angle defined by the charged particle’s velocity (cosf = ﬂ%’ nrip = 1.4). Mea-
suring the angle of emitted light then determined the velocity and allowed a likelihood
distribution with good separation between different mass hypotheses (Figure .
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Figure 2.6: When a charged particle moves faster than the speed of light in a material,
light emitted at the critical angle cosf = Céé ? = ,Bin sees no interference at the common

tangent wavefront (the common envelope). For a thin piece of material, this results in
a thin cone of Cherenkov radiation at that angle.

2.2.4 Calorimeter

While the drift chambers and the RICH focused solely on charged particles, the crystal
calorimeter detected both charged and neutral particles. The calorimeter energy infor-
mation proved particularly useful in detecting photons and electrons, both of which we
use in this analysis.

The crystal calorimeter sat outside the RICH but still inside CLEO’s magnetic
field. The full calorimeter used nearly 7,800 thallium-doped cesium iodide crystals, each
30 cm long with a 5 cm x 5 ¢m face. The crystals’ size gave the calorimeter an angular
resolution of roughly 10 mrad. About 80% of the crystals formed the calorimeter’s barrel
region (| cosf| < 0.80), with the remainder in one of the two endcaps (0.85 < |cos | <
0.93) or in the barrel-endcap transition region (0.80 < |cos#| < 0.85). Material from
the RICH and the main drift chamber obstructed the transition region, so most analyses

(including this one) rejected data from that region (Figure [2.9).



32

0140501-006
|||||||||||||| T 1T T T ]
L e
1021 -

o .

o L K/n _

5 L i

S

z L i

o

- | \e/:r ]

©

2

© I

& 105 .

s -

g 3

£ L ]

=]

-4 - .
1 IIII|III |III |IIII
0 05 1.0 15

P (GeV/c)

Figure 2.7: RICH separation for different particle hypotheses, by momentum. K and 7
see good separation at momenta above the RICH threshold (near 500 MeV).

The crystal calorimeter’s usefulness in identifying electrons/positrons and photons
came from the particles’ propensity to give up all their energy to the calorimeter. The
small electron/positron mass meant that they deposited an energy roughly equal to
their momentum (E/p ~ 1), distinguishing e* from other charged particles. Photons
similarly deposited their energy into the crystals, with their momentum direction de-
termined by the shower location in the calorimeter.

With a Csl radiation length of 1.86 cm [21], photons underwent e™e™ pair creation
shortly after entering the crystal (photon mean free path of 9/7 the radiation length).
The newly created electrons and positrons then emitted photons via bremsstrahlung.
These new photons also underwent pair creation, with those charged particles then
emitting further bremsstrahlung, and so on, resulting in an electromagnetic shower.
Incident electrons underwent an identical process, albeit without pair creation as the
first step.

The electromagnetic shower continued until the daughter particles’ average energy
fell low enough that ionization by the charged particles dominated bremsstrahlung.

Tonized electrons and their associated holes formed weakly bound Coulomb pairs, or
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Figure 2.8: Hits in the RICH from tracks passing through the sawtooth (left) and flat
(right) LiF radiators. A ring of Cherenkov photon hits surrounds the charged particle’s
passage. Only half of the ring appears in the right image, as total internal reflection
trapped the other half of the Cherenkov photons in the radiator.

excitons, which moved through the crystal until captured by the thallium atoms. The
thallium atoms then de-excited from their new metastable states via the emission of
visible 560 nm photons, which passed through the transparent crystal.

As the magnetic field inhibited the use of photomultiplier tubes, CLEO used four
silicon photodiodes to collect the light at the end of each crystal. Each photodiode had
a separate preamplifier, with outputs combined by a mixer/shaper.

With a nuclear interaction length just over 39 cm (compared to a crystal length
of 30 ¢cm), hadrons (7, K) passing through the calorimeter sometimes formed hadronic
showers. In this case, the hadron underwent a nuclear interaction with the crystal and
generated new hadrons, including 7° that decayed to photons and deposited energy
into the calorimeters through the electromagnetic shower process. These showers don’t
have a particularly well defined energy deposition, so we didn’t use them for particle
identification (beyond rejecting the electron hypothesis). They did, however, sometimes
generate “splitoff” showers in other areas of the calorimeter that otherwise looked like

photons (a frequent complication for this analysis given its low energy photons, like the
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Figure 2.9: A side view of the CLEO-c detector.

D7 daughter).

Muons and hadrons that didn’t undergo a hadronic shower still deposited energy in
the calorimeter through ionization. Such particles over a small energy threshold (a few
hundred MeV for u/m) passed through the calorimeter entirely, depositing just under
200 MeV in the calorimeter as minimum ionizing particles (mips). While useful for

calorimeter calibration, we did not need to directly make use of mips for this analysis.

2.2.5 Trigger and Data Acquisition

Under the best running conditions (45 bunches/train, perfect crossings), CESR could
deliver bunch crossings near 20 MHz. However, with a luminosity of 1032 cm~2s~! and
a Bhabha cross section near 500 nb, even vaguely meaningful crossings only occurred
at rates near 20 Hz (with “interesting physics,” including continuum, less than a tenth
that at 4170 MeV). Since no new data could be acquired during an event read-out and
CLEO’s data acquisition (DAQ) read-out rate peaked at around 80 Hz during data
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taking, CLEQO’s trigger had to efficiently separate meaningful crossings from all possible
crossings.

The trigger required a 100 ns time resolution for the interaction, so it binned the
data into 42 ns wide slices, three times the 14 ns bunch spacing. During this period, the
main drift chamber and the crystal calorimeter both read out limited hit information,
time-aligned for the latency of roughly 2 us on tracking and 2.5 us on the calorimeter.
The number of tracks, number of showers, and event topology determined whether an
event triggered a full read-out (Table 2.1)). CLEO’s selection methodology resulted in

the needed background rejection while retaining a 99% single track efficiency.

Table 2.1: CLEO trigger line definitions. ” Axial” refers to the 16 drift chamber layers
that run along the beam line, while ”stereo” refers to the drift chamber’s stereo section.
Low, medium, and high refer to the shower’s calorimeter energy, while "B” and "E”
refer to the barrel and endcap calorimeter regions, respectively.

Name Definition
Hadronic (Naxial > 1) and (Np 10w > 0)
p-pair two back-to-back stereo tracks

Barrel Bhabha back-to-back high showers in B
Endcap Bhabha | back-to-back high showers in E
Electron + track | (Naxial > 0) and (NB meq > 0)

7/Radiative (Nstereo > 1) and (Np 10w > 0)
Two track Naxial > 1
Random Random 1 kHz source

Once a trigger passed, CLEO had to digitize some 400,000 detector channels for the
event. CLEO managed this with an average read-out time around 30 us, leaving a small
dead-time of around 0.3% while the DAQ wrote to disk. Each event averaged around
10 kB of data, with a throughput rate to disk of order 1 MB/s.

In addition to the data transfer from front end electronics to disk, the DAQ also
contained a slow control system. Slow control included alarm handling, run control,
calibration constants, and data quality checks. A fraction of the reconstructed events
went into “passl” for the data quality checks. Passl included both an online version
(Online-passl) for rapid checks and an offline version (Caliper) that included the ability

to isolate interesting physics events by making cuts.
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Table 2.2: Resolution and solid angle coverage for various CLEO-c detector components
[54].

Component Coverage and performance summary

Drift chamber 93% of 47; 0, /p = 0.35% at p =1 GeV

RICH 80% of 47; 87% kaon efficiency with 0.2% pion fake at p = 0.9 GeV
Calorimeter 93% of 4m; o /E = 4.0% (2.2%) at E = 100 MeV (1 GeV)

Muon chambers | 85% of 47 for p > 1 GeV




Chapter 3
Analysis Plan

We intend to measure branching ratios for six D; semileptonic decays (Ds — ¢ev, nev,
n'ev, foev, Ksev, and K*ev). These cover all resonant D semileptonic decays up to
the singly Cabibbo suppressed level. We use CLEO-c’s 4170 MeV data, where 95% of
the Dy sample comes from DDy events [60, 61], and the remainder come from D} D .
The D¥ decays to Dy nearly all the time (94%) [21], with D} — D,n® making up the
difference. Candidate Dy semileptonic events then contain one D, one Dy, and either
zero, one, or two photons.

For all six modes, we reconstruct the nonsemileptonic Dy through one of 13 "tag”
modes. We also reconstruct the semileptonic side’s electron and hadron (¢, n, n', fo,
K, or K*). We do not attempt to reconstruct the photon(s) from a possible D} decay,
which increases our overall efficiency but costs us a clean neutrino missing mass.

We use the following 13 D, tag modes to determine candidate events: K K; KK;
K, Kn% KK,y KKnn¥, KK, K Ko woem; oy, orln; o’y ' — worn; oo/, ) —
nrn; and 7', " — py. Of these modes, K, K, KKn, KKnn®, nnm, my, my', 0 — ©my
give the most statistical power as they contain over 60% of the tags and have lower
relative background than the other 7 modes.

The signal modes Dy — ¢ev and Dg — ner should have the largest branching ratios
(around a couple percent) due to their ss components, about an order of magnitude
higher than the Cabibbo suppressed decays to Ksev, K*ev, and foerv. We expect
Ds — n'ev to have a branching ratio somewhere in between these levels.

Ignoring the D} daughter photons does have the limitation that the branching ratio
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results cannot be easily converted into %. Consequently, we do not determine form

factors in this analysis.



Chapter 4
Data Samples and Monte Carlo

We use the CLEO-c data collected at a 4170 MeV center-of-mass energy (datasets 39,
40, 41, 47, and 48), with a total integrated luminosity of 586 pb~! (Table [4.1). At
this energy, the ete™ collisions produce both D,D and DiD,. D:D, production has
the much larger cross section at 4170 MeV, with a op:p, of 0.92 nb and a p+pr- of
0.03 nb [60]. With these cross sections, we expect to have about 1.11x10% D, mesons

in the data sample.

Table 4.1: Dataset luminosities determined from Bhabha events (ete™ — eTe™), with
statistical and systematic errors.

Dataset | Integrated lum. (pb~ )
39 55.12 £ 0.03 = 0.55
40 123.93 £ 0.05 + 1.24
41 119.11 £ 0.05 £ 1.19
47 109.78 £+ 0.05 + 1.10
48 178.23 £ 0.06 £ 1.78

Total | 586.17 £ 0.11 + 5.86

We use CLEQ’s generic ddmix Monte Carlo for each of the 4170 MeV datasets, which
generates a weighted mixture of all charm production (DD, D*D, D*D*, DsD, D% Dy).
Fach ddmix sample has 20x the data luminosity, and in all cases we use the final
regenerated sample from CLEO’s 20080404_MCGEN_1 release (which includes ISR). The

continuum, radiative return, and tau Monte Carlo samples used for backgrounds each
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simulate 5x the data luminosity, with a release that differs by dataset. Table [4.2] lists
these releases. For all six semileptonic modes, the backgrounds from charm mesons

dominate the backgrounds from continuum, radiative return, and tau production.

Table 4.2: CLEO code release used to generate each background MC sample.

Dataset Release
39 20060426 _MCGEN
40 20060426_MCGEN_2
41 20060426 _MCGEN_2
47 20080404_MCGEN_1
48 20080404_MCGEN_1

EVTGEN [62] generated the charm, continuum, and radiative return samples, while QQ
generated the tau samples. The continuum generation used the Lund area law generator.

We have also created four signal Monte Carlo samples for each of our six semilep-
tonic modes (gev, nev, n'ev, foev, Ksev, and K*ev). The four samples correspond to
different Dg production modes at 4170 MeV: DgsDg; D:Dg with DY — ~v(Ds — hev);
D:Dg with D¥ — 7% Ds — hev); and D}D; with the prompt Dy — hev. We gen-
erated 250,000 events for each of our ¢ger and nev signal Monte Carlo samples, with
100,000 events for the other semileptonic mode samples.

We processed both data and Monte Carlo with the 20060224_FULL_A_3 release to

maintain consistency with version 2 D skims [63, [64].



Chapter 5
Dy Tagging

CLEO-c produces nearly all of its D, sample at a 4170 MeV center-of-mass energy.
While this energy gives the most Dg mesons, the total Dy cross section at 4170 MeV
still falls slightly below 1.0 nb. That compares to a 9 nb total charm cross section
(dominated by D*D* at 4.7 nb and D*D at 2.6 nb) [61] and a 12 nb continuum cross
section [21 [60] at 4170 MeV. Since the lost neutrino prevents us from reconstructing
the entire D4 semileptonic decay, leaving only the hadron (¢, n, 7', fo, Ks, or K*) and
electron, we need to find some other way to isolate D, events lest we be smothered by
combinatoric background and other decays containing an electron and target hadron.

As all D; events contain two Dg mesons, we can entirely reconstruct, or tag, one
of the mesons as an event requirement for D semileptonic decay candidates. When
measuring branching ratios, D tagging yields the further benefit that the measured tags
directly provide the branching ratio denominator rather than needing to independently
estimate the data sample’s total D counts.

We use a total of 13 D, tag modes, chosen for their relative abundancy and their
separation from combinatoric background. We have mostly chosen to identify the tag
modes by their final state particles rather than their intermediate particles (e.g. KK
instead of ¢ or K*K'). This choice maintains consistency with previous CLEO work [65]
and avoids the need to worry about overlapping resonances (particularly a concern for
K K7, the most statistically significant mode).

We reconstruct the following 13 tag modes: D} — K,K*, Df — KtK nt,
D —» K,Ktn% DY - KKy, Df - KTK n"7°, D} - K;KTntn—, Df —
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KK—ntnt, DY — atate=, Df — ntn, DY — 7tx%, DF — =ty with o —

atr~n, DY — 7r% with ¥ — 7F77n, and D} — 7ty with ' — p%y. Here, and
elsewhere, the charge conjugate tag modes are also implied.

Once we have our D, tag candidates, we determine each mode’s tag counts by

fitting their invariant mass. Any event with a Dy tag passing our wide mass window

gets treated as a semileptonic decay candidate.

5.1 Basic Selection Criteria

We use a common selection criteria for daughter particles in our 13 exclusive tag modes.
We have found little gain in deviating from the standard D-tag cuts, so our selection

criteria emulates those selections [64], [66].

5.1.1 Track Selection

Our tag modes include two charged particles that leave tracks: kaons and pions. Our

selection for both K+ and n* have several track quality features in commonﬂ

o |dp| <5 mm

|z0] < b cm

x? < 100,000

| cot 0] < 2.53 (equivalent to |cosf| < 0.93)E|

Hit Fraction > 0.5

For K*, we further requireﬂ

e 0.125 GeV < pg < 2.0 GeV

a?(E/dx < 3.0

Ydy, 20, dE/dz, the hit fraction, and splitoff are all defined in the glossary (Appendix . The x? here
comes from the track fit, and its requirement only serves to throw out particularly egregious tracks.
2Here, 0 represents the angle from the beamline.

3p™ raised from 0.050 GeV to 0.125 GeV for better dFE/dx agreement between data and Monte
Carlo [65]
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e UsePID true

We use the standard CLEO parameters for UsePID. Specifically, if we have RICH
information with both 7 and K hypotheses analyzed, p > 0.7 GeV, and |cos(0)| > 0.8,
then we combine the RICH likelihood and o%®/9% by requiring:

e L=(02—-0%)+ (L —Lk)>0

2 _
e At least four RICH photons detected (Nfl CH > 3)

Otherwise, we just use dF/dz values by requiring (02 — o%.) > 0 [66].

+

Similarly, for 7= we require:

e 0.050 GeV < pr < 2.0 GeV

gdEldz) 3

e UsePID true

The UsePID true here matches that for the kaons, although now we require £ < 0.
We only apply these track cuts to the tag mode daughter particles. The daughters

of the semileptonic hadrons have their own similar, but often looser, selection criteria.

5.1.2 K, Selection

We make a 1.5750 mass cut on our tag modes’ K mesons. This corresponds to a
6.3 MeV nominal mass cut. Our K, mesons’ 7% daughters don’t have to fulfill the
standard 7w cuts listed in Section since they don’t necessarily originate from the
interaction point. Given CLEO-c’s lower energies than earlier CLEO analyses, we do

not use the CleanVO cuts, nor do we add a flight significance or distance cut.

5.1.3 Photon Selection

Several tag modes include particles like 7° and 1 that ultimately decay to photons.
Also, Df — 7tn/,n — p%y has an explicit photon in the tag mode. These photons

share several different selection criteria:

e E,> 30 MeV
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Eq
No 7, cut

No splitoff rejection used

Showers with a matched track are disallowed

Showers from hot crystals are disallowed

5.1.4 7° and n Selection

In addition to the daughter photon selection, we also consider some additional selection

criteria for the 7% and 1 mesons used in Dy tags:
e The pull mass for both 7° and 7 needs to be within 3.0

e We do not reject ¥ that have both showers in the endcap

We do reject n that have both showers in the endcap

Nominal mass less than 1.0 GeV

Max number of ¢ from expected mass within 1,000

x? < 10,000

No additional energy cut on -y in the endcap

5.1.5 1’ Selection

The tag modes include 7’ reconstructed from its 777 decay mode and from its p°y decay
mode, where the p° decays to 77 ~. Each of these decay modes has additional selection
criteria.

The ' — mmn mode involves reconstructing both pions and 7 mesons. We use
the same selection criteria for these as in Section and Section [5.1.4] respectively.
Additionally, we require 947.8 MeV < M,, < 967.8 MeV

n' — pYy ultimately involves reconstructing two pions and a photon. Again, pions
share the same selection criteria as in Section [5.1.1. The photon inherits our standard

photon tagging selection. We further require:

4Energy in a shower’s 3 x 3 = 9 central crystals divided by the energy in a shower’s 5 x 5 = 25 central
crystals.
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e 0.5 GeV < M, +,- < 1.0 GeV

e 920 MeV < M,y <995 MeV

5.2 Recoil Mass

The tagged D mesons are only created in either DI D, or DyD, events, which constrains
their momentum range. The direct Ds; momenta depend only on the beam energy
(4170 MeV), while the secondary D; from the D? decay gain a slight boost. Table
gives the kinematic ranges for Dy momenta at our beam energy.

We restrict the allowed momentum range by cutting on a directly related variable,
the recoil mass, which includes the beam momentum and corresponds physically to the

other meson’s mass in the case of prompt D, decays. We define the recoil mass by

2
Mrecoﬂ = ’pcm _pDJ = \/(Ecm —\/ ’ﬁD5|2 + M12)5> - |ﬁcm _ﬁDS‘Za

where pem, Eem, and Py, correspond to the center-of-mass four vector, energy, and

momentum; Mp, comes from the PDG [2I]; and pp, denotes the reconstructed Dy
momentum.
Since we will use both the recoil mass and the D; invariant mass, we do not use

either the beam constrained mass (Mp.) or AE = Ep, — Epeam.

Table 5.1: Kinematically allowed recoil mass and momentum ranges for Ds mesons at
4170 MeV.

Dy origin Possible Momenta Possible Recoil Mass
D¢Dy 687 MeV Mp, ~ 1968 MeV
Prompt D in DD, 429 MeV Mp: ~ 2112 MeV

Dy from D} — Dgvy in DiDg | 259 MeV — 542 MeV | 2058 MeV - 2169 MeV
D, from D¥ — Dyn% in DDy | 351 MeV — 449 MeV | 2104 MeV — 2142 MeV

Our recoil mass cut varies by tag mode and depends upon the shape and combina-
toric background for that mode. Table gives our cut values by tag mode.
Figure and Figures [G.IHG.3| in Appendix [G] show each tag mode’s recoil mass

spectrum and recoil mass cut in the Monte Carlo and data. The background reduction
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Table 5.2: Recoil mass cut, by D, tag mode.

D tag modes | Minimum Recoil Mass | Maximum pp,
KK
KKr
u
', n — 7y
K Knr°
KK
KKrr®
KK nrw
KK nmw
xm0n
a0’ — mrn
™'\ — py
T 2101 MeV 455 MeV

2051 MeV 555 MeV

2099 MeV 459 MeV

from our recoil mass cut benefits us across the Dy invariant mass spectrum, as the two

variables are fairly uncorrelated (shown in Figures |G.4HG.9).

5.3 Individual Tag Mode Cuts

Each tag mode has unique backgrounds that we reduce by making a series of additional
cuts. These cuts reject D° or D mesons, reject unwanted K, or remove excess (and
often peaking) combinatoric background arising from soft pions. We chose these cuts to
maintain consistency with previous CLEO D, tagging [65] when applicable. Table
lists our rejection criteria for each tag mode. We take charges into consideration for our
stated invariant mass rejections (e.g. for K K, we only apply the Mg, rejection when
the K and 7 have opposite signs).

After making our previously listed cuts, we choose a best candidate for each tag mode

and charge by keeping only the D, with a recoil mass closest to Mpx (2112.3 MeV).
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Figure 5.1: Monte Carlo (charm and scaled continuum) simulation of the recoil mass
distribution for the D, tag modes K K, KKn, K,K7°, K,K,m, and K K7nr%. We reject
all Dy with a recoil mass below the cut line.



Table 5.3: Rejections based on individual tag modes’ daughter particles.

', n — 7

D, tag mode Daughter particle cuts (rejections)

My > 1830 MeV

KK pr < 100 MeV

KKn 1845 MeV < Mg < 1880 MeV
1860 MeV < Mgk, < 1880 MeV

KKnn© pr < 100 MeV
pro < 100 MeV
475 MeV < My, < 520 MeV
1840 MeV < M, < 1885 MeV

TIT 1845 MeV < My, < 1880 MeV, where one of

the supposed pions is treated as a kaon.

pr < 100 MeV

™

No additional cuts

M0 > 1830 MeV
1860 MeV < Mg < 1880 MeV

0
KoK pr < 100 MeV
pro < 100 MeV
K, K pr < 100 MeV, where the Dy is rejected if
KK*rm either the K meson’s daughter 7 or
KK nm the direct 7 fails the cut.
7r'n pro < 100 MeV

', n — 7y

480 MeV < My < 515 MeV
pro < 100 MeV

m',n" — py

480 MeV < M, < 515 MeV
pr < 100 MeV

48
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5.4 Fitting Procedure

Once we make the tag cuts and choose a best candidate for each mode/charge combina-
tion in the event, we determine the tag counts for a given mode by fitting its Dy mass
spectrum (combining D} and D). We model our signal mass spectrum by a double
gaussianE] for the tag modes reconstructed with only tracks (and for 7/, ' — 77n). We
use the sum of a gaussian and a crystal ball function for modes containing photons or
nontrivial FSR (77m). We take either a linear function or a quadratic function for our
background, depending upon the mode and the shape of its combinatoric background.

Table [5.4] lists the particular combination of fit functions for each tag mode.

Table 5.4: Dy invariant mass fit functions, by mode.

D, tag mode Function
KK
KKn
KK Signal: Double Gaussian
K,K*rr Background: Linear Polynomial
KK 7nrw
',y — 7y
KKn'

Signal: Gaussian + Crystal Ball

7r7]0 P Background: Linear Polynomial
mren’,n — mn

KKrr

T Signal: Gaussian + Crystal Ball
7ron Background: Quadratic Polynomial
™', 0 — py

In our signal shape functions, we use a common mean for the two gaussians (or for
the gaussian and the gaussian portion of the crystal ball). To reduce the number of
free parameters further, we fit our signal shape to a truth-tagged Monte Carlo sample,
then we use those results to fix the relative normalization and relative width of the two
signal shape component functions. We also fix the two remaining shape parameters
in the crystal ball function from the truth-tagged fit, if applicable for the mode. This

procedure leaves three free parameters for the signal shape of the reconstructed Ds mass

®Sum of two gaussian functions.
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spectrum: an overall normalization, an overall width, and the common mean. Combined
with the two or three background parameters for the linear or quadratic polynomial,

respectively, we end with five or six free parameters for the reconstructed D, mass fit.

5.5 Results

In the following sections, we present the results from our fits to the reconstructed Dy
invariant mass spectrum in both Monte Carlo and data. We only consider statistical
errors on the tag counts here. We do consider systematics associated with our tag
counting procedure in Section [[0.1.1} but we focus on the branching ratio’s systematic
error from tagging rather than on the error for raw tag counts. We typically get smaller
tag-related systematics on the branching ratio than on tag counting alone because our
procedure involves the Dy tag shape in both the branching ratio’s numerator and de-
nominator. Any comparison with other Dy tagging analyses should keep in mind that
our raw tag counts would presumably have a higher systematic error than reflected in
just our branching ratio systematics.

As mentioned in Section we first fit the truth-tagged Monte Carlo Mp, distri-
bution to fix all but three parameters for our signal shape function. Figures
show these fits’ results, by tag mode. The fit functions closely match the truth-tagged
histograms, which gives us the freedom to use our functions rather than less flexible

signal histograms when fitting the data.

5.5.1 Monte Carlo

Before we fit the data, we first build confidence in our procedure by ensuring that we
get the proper tag counts in the generic Monte Carlo sample (charm plus continuum).
Figures [G.13HG.15| show our fits to the Dy invariant mass for this sample, resulting in
the total tag counts displayed in Table While we used a 20x Monte Carlo sample,
we have scaled the table’s tag counts down to the data’s luminosity to make direct
comparisons with the data counts easier.

Fits to the modes 771’ — mmn and 7n gave the most significant deviations from
their truth-tagged counts. In both cases, the background shapes predicted by the Monte

Carlo bordered on requiring a non-linear function, like the four other crystal ball modes



Table 5.5: Tagging results from the 20x Monte Carlo sample, scaled to data size.

D, mode Fit counts Truth tagged counts W
KK 5,764.0 &+ 100.8 5,693.1 0.70
KKn 25,242.0 + 233.9 25,731.6 —2.09
K,Kn° 1,670.5 £ 157.7 1,871.2 —-1.27
K K 1,141.4 £ 69.3 1,081.5 0.86
KKrr 6,693.4 + 323.6 6,844.5 —0.47
KKtnrm 1,744.1 £ 105.5 1,717.3 0.25
KK nrm 3,246.3 + 92.2 3,200.6 0.50
T 6,081.6 + 326.3 6,197.6 —0.36
™ 2,882.3 £ 182.9 3,334.4 —2.47
mln 6,825.9 + 700.7 6,560.0 0.38
', n — mrn 2,1324 + 64.3 2,108.4 0.37
anln’ 0’ — 7y 532.5 £ 84.5 749.3 —2.57
', n — py 3,904.4 £ 245.2 4,079.9 —0.72
Sum 67,860.7 £ 959.8 69, 169.5 —1.36
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(KK7r¥; mrm; 7nn; and 7', 7" — p7y). However, we try to avoid such background
functions when we have a wide signal shape because the background function can dip
inappropriately in the D mass region. This lower background leads to an overestimate
on the tag counts. The four modes in which we do use a quadratic background have more
events than either 77,7’ — 7y or 71, and they tend to have narrower signal shapes
(7% has a wider shape but more events). These qualities make us less sensitive to the
background function when we shift to the data, where we need to be more careful in
case the Dy mass reconstruction has a poorer resolution than the Monte Carlo predicts.

In addition to procedure cross-checks, we have used the Monte Carlo to determine
our tagging efficiency within semileptonic events. As expected, we see essentially the
same tagging efficiency independent of the semileptonic mode (Section . How-
ever, our recoil mass cut does create a difference in tagging efficiency based on the Dy
production method: DsDg, D%D, with the tagged Dy from the D} (“secondary”), or
DD, where the tagged Dy does not come from the D} (“prompt”). Table gives the

efficiencies for each case.
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Table 5.6: Overall D tagging efficiency from signal Monte Carlo, including all branching
ratios. Our Dj recoil mass cut creates the efficiency difference between tags from prompt
D, and tags from secondary Ds.

D, production mode Etag
DDy 0.42% + 0.01%
D! D with prompt Ds — tag | 7.21% + 0.03%
D* D, with secondary Dy — tag | 5.69% =+ 0.03%
Weighted MC 6.22% £ 0.02%

5.5.2 Data

Figures show our fits to the combined data from datasets 39, 40, 41, 47, and 48.
Table summarizes each mode’s tag counts resulting from these fits.

Table 5.7: Tagging results from the full data sample (sum of datasets 39, 40, 41, 47,

48).

D mode Fit counts
KK 6,226.7 + 101.2
KKn 27,373.5 £+ 248.4
K;Kn° 2,246.8 + 209.9
KK, 1,125.5 + 76.5
KKnn© 7,355.5 + 377.4
K,K*rm 1,859.4 + 120.6
K K 7w 3,377.3 £ 100.0
T 6,606.3 £+ 337.7
™ 3,810.3 £ 190.8
7nn 9,476.9 £ 529.0
', g — wrn 2,386.6 = 65.6
o'y’ n — wan | 1,090.5 + 118.7
', 0 — py 4,272.3 + 193.3
Sum 77,207.5 4+ 880.2

Although not directly relevant for this analysis, we find it interesting that we see

about 14% more tags in the data than we expected from the 20x Monte Carlo sample.

This difference persists across each mode and dataset to within errors, as shown in
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Figure 5.2: D, invariant mass fits in the data, determining the total number of D, tags
for modes K K, KKn, K,Kn", and K,K,r. The peaking function reflects our fits’
signal component, while the linear/quadratic function shows our background.

Tables and

5.5.3 Cross-Checks

In addition to our fitting systematics, described in Section we have performed
two cross-checks for our fitting procedure. In the first cross-check, we use the Monte
Carlo truth-tagged histogram for our signal shape instead of the double gaussian or
gaussian + crystal ball functions. In the second, we ensure that our chosen procedure
consistently fits data-sized samples by breaking the 20x Monte Carlo into 20 equal
subsets and fitting each individually.
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Figure 5.3: D, invariant mass fits in the data, determining the total number of Dy tags
for modes K Knn', K;Ktnm, KsK~mm, and 7.

In our signal histogram cross-check, we take the D, invariant mass spectrum from the
truth-tagged Monte Carlo as the signal shape instead of a double gaussian or gaussian +
crystal ball function. The overall histogram normalization gives us our only free signal
parameter. We then add the same background function as in our standard fit (linear or
quadratic, by mode). This leaves either 3 or 4 total free parameters, depending on the
D¢ mode.

We first fit the full Monte Carlo to ensure that the signal histogram fit returns the
truth-tagged counts. This fit does match both our standard fit results and the true
number of tags to within error, as shown in Table

We then fit the data with the signal histograms and corresponding background
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Figure 5.4: Dy invariant mass fits in the data, determining the total number of D tags
for modes mn; 77%n; m', 0’ — wrn; 7y, — wan; and ™', — py.

functions. We expect the signal histogram fit to give more or less the same result as

our fit function as long as the Ds mass resolution in Monte Carlo accurately represents

the true resolution in the data.

The fit results, displayed in Figures[G.16 and summarized in Table [5.9, show

consistency between the signal histogram fit and our more flexible double gaussian/gaussian

+ crystal ball function for all modes, with the exception of 77n. This discrepancy does

not particularly surprise us since 7% has the worst signal to background ratio, has a

wide signal shape, and has a background shape that requires a quadratic function. The

combination of these issues allows the signal shape to trade off with the background’s

quadratic curvature to some extent. Since the 771 signal histogram fit clearly doesn’t
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Table 5.8: Signal histogram fit results compared to our standard double gaussian/
gaussian—+crystal ball fit results in the 20x Monte Carlo sample, scaled to data size.

Dg mode Signal histogram Standard fit Truth-tagged counts
KK 5,813.5 + 94.0 | 5,764.0 + 100.8 5,693.1
KKr 25,834.7 + 214.9 | 25,242.0 4+ 233.8 25,731.6
K K" 1,783.8 + 123.5 1,670.5 + 159.2 1,871.2
K Ky 1,161.4 £ 59.5 | 1,141.4 + 69.2 1,081.5
KKrr® 6,815.9 + 219.4 | 6,693.4 & 323.6 6,844.5
K.Ktnm 1,766.5 + 87.9 | 1,744.0 + 105.3 1,717.3
KK nm 3,326.3 = 83.1 3,246.3 + 92.2 3,200.6
T 6,220.3 + 220.9 | 6,082.3 + 309.7 6,197.6
™ 3,043.0 + 138.6 | 2,882.3 + 1824 3,334.4
xn'n 6,615.8 + 417.8 | 6,825.9 + 700.7 6,560.0
', — 7wy 2,164.2 + 58.6 | 2,132.4 + 64.3 2,108.4
a0’ — 624.4 + 77.1 532.5 + 84.0 749.3
', n — py 4,074.1 + 205.0 | 3,904.4 + 245.2 4,079.9
Sum 69,244.0 £ 656.2 | 67,861.2 £+ 954.3 69, 169.5

fit well (both visually and in terms of x2), undershooting the Dy mass distribution’s
high side and overshooting the low side, we don’t feel a need to take an additional
systematic based on its results.

For our data-sized cross-check, we split the 20x Monte Carlo sample into 20 separate
samples to ensure that our fit function will successfully and reliably converge. Table
gives our results, where the summation row states the total fit tag counts, the total
truth-tagged counts, and the total x? across the 20 samples. Our reduced x? of 1.90
represents a systematic undercounting of the true number of tags.

We believe that the slight, systematic undercounting of about 1% originates from
an imperfection in the signal fit shape. The signal function peak falls slightly below
the true peak whereas the tails have a small surplus, as seen from our signal Monte
Carlo plots in Figures When we use this signal shape in a sample with
background, the tails of the signal distribution get partially subsumed into a higher
background while the slightly low signal shape peak still matches the data peak.

The statistical errors for each tag mode exceed the slight D, tag undercounting

effect. However, since the peak region essentially acts like a double gaussian for all
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Table 5.9: Signal histogram fit results compared to our standard double gaussian/
gaussian+crystal ball fit results in the full data sample.

Ds mode Signal histogram Standard fit
K.,K 6,236.9 + 94.9 | 6,226.7 & 101.2
KKr 27,576.2 + 225.9 | 27,373.5 + 248.4
K K0 2,039.9 4+ 127.7 | 2,246.8 + 209.9
K, K. 1,155.0 £ 63.1 | 1,125.,5 + 76.5
KKnn° 7,590.2 4+ 256.7 | 7,355.5 4+ 377.4
K,K*trm 1,854.6 = 98.9 | 1,859.4 + 120.6
K, K~ rnn 3,434.5 + 89.4 | 3,377.3 &+ 100.0
T 6,437.5 + 233.2 | 6,606.3 & 337.7
m 3,527.5 + 128.7 | 3,810.3 & 190.8
) 5,848.1 + 485.2 | 9,476.9 & 529.0
', n — mrn 2,300.0 £ 58.6 | 2,386.6 £ 65.6
anln’,n’ — 7w | 1,069.8 £ 81.6 | 1,090.5 &+ 118.7
', n — py 4,265.9 + 209.8 | 4,272.3 + 193.3
Sum 73,336.1 &+ 724.2 | 77,207.5 + 880.2

modes (as the crystal ball function acts like a gaussian near the peak), we consider the
undercounting rate correlated between modes. We would treat the undercounting as a
systematic when determining the branching ratio, but this systematic gets complicated
by two factors.

The first issue with a proposed undercounting systematic comes from the fact that
we ultimately fit the Dy mass spectrum for the number of semileptonic events as well
as the number of tags. The semileptonic event counts also have a linear background
function, so the slight undercounting can appear in both our branching ratio’s numerator
and denominator, significantly shrinking the ultimate systematic.

Even if we dismiss the numerator effect, though, we have a second ameliorating
factor. Our conventional systematic (Section involves changing the Dg; mass
resolution based on results from the DT system. This systematic indicates a wider
underlying D, mass resolution than predicted by the Monte Carlo, which actually makes
our signal shape more accurate. Since the conventional systematic involves a wider
distribution and gives larger final errors (just due to the systematic’s precision), we

consider that study to measure essentially the same signal shape concern, and we don’t
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Table 5.10: Fit results from the Monte Carlo’s 20 data-sized samples. The final column
in the ”Sum” row gives the total y2.

Datasize sample Fit counts Truth tagged counts M
1 67,932.6 £ 1,022.9 70, 585 —2.59
2 71,422.1 + 1,214.3 71,265 0.13
3 71,579.7 + 1,386.5 71,112 0.34
4 71,409.4 + 919.6 71,119 0.32
5 69,774.6 £ 1,046.3 71,552 —1.70
6 69,7954 £+ 9834 71,326 —1.56
7 71,017.8 + 1,221.3 71,007 0.01
8 72,092.7 + 1,275.1 71,154 0.74
9 67,852.4 £+ 1,133.5 71,084 —2.85
10 70,128.0 = 809.5 71,044 —1.13
11 69,108.9 + 926.7 71,265 —2.33
12 70,547.9 + 1,182.5 71,208 —0.56
13 71,312.2 + 1,125.7 71,260 0.05
14 71,769.1 + 1,390.2 71,292 0.34
15 69,466.9 + 840.6 70,906 —-1.71
16 69,036.8 £ 9924 71,235 —-2.21
17 71,385.3 + 1,250.5 71,528 —0.11
18 71,574.6 + 1,352.9 70,952 0.46
19 70,312.3 + 1,266.5 71,439 —0.89
20 69,738.3 £ 1,027.0 70,842 —1.07

Sum 1,407,257.0 £ 5,060.6 1,423,175 38.04

add an additional undercounting systematic.



Chapter 6
Semileptonic Selection Criteria

While we use the D; mass spectrum in our fits for both the tag counts and the semilep-
tonic counts, we do make cuts on the other particles to ensure that we have a semilep-
tonic event. In particular, we make an electron cut that gives us the best background
rejection in our analysis. We have also studied extra track and extra shower event cuts.
While splitoff showers make any extra shower cuts problematic, we do find an extra

track cut useful in our final selection.

6.1 Electron Selection

We select electrons using the same general track quality requirements applied to D
tracks in Section Further, we use the F,,/prcp variable [67], a likelihood ratio
that tests the electron hypothesis under a weighted combination of E/p, dE/dz, and
RICH information. F,,/grrop runs from 0 to 1, with 1 being electron-like, as shown in
Figure We require F,/rrcr > 0.8.

We also add the requirement that the hit fraction falls below 1.2, although this
cut has no real impact beyond consistency with previous systematic work. We do not
attempt to reconstruct electrons with a momentum below 200 MeV. These soft electrons
cost some efficiency, but as Table [6.1] shows, we get substantial background reduction

from our combined electron cuts.
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Figure 6.1: F,,/rrcg in the 20x MC sample for good tracks that are not used in the
tagged Ds. We only plot electrons involved in one of our six semileptonic modes (¢ev,
nev, n'ev, foev, Ksev, and K*ev). The electron peak at zero comes primarily from
tracks with a momentum below 200 MeV.

6.2 FEvent Selection

We look for D, semileptonic decays in DfD, and DsD; events, where the D} decays
to a Dy with some photons (either directly to a v or via a 7¥). Consequently, we
should not have any tracks other than those from the tagged Dy, the electron, or the
semileptonic hadron. We reject any event with an extra track, which cuts out events
with an eTe™ pair that would otherwise pass our electron selection, semileptonic events
with the wrong hadron mode (e.g. Dy — n'ev faking Dy — nev), and some semileptonic
events with misreconstructed tags. Not surprisingly, we rarely throw out signal events
with our extra track cut, as shown in Table

We have considered a rejection on extra showers above various energy thresholds
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Table 6.1: Effect of the electron cuts (track and F,, grcpy) in the 20x Monte Carlo
sample for truth-tagged semileptonic and generic decay modes. These precede any
semileptonic hadron cut, but passed Dy tags must fall within the tagging fit window
(1900 MeV < Mp, < 2030 MeV).

D, semileptonic mode | # Passed D, tags | # Passed electron cuts | Cut efficiency

pev 55,399 31,864 58%

nev 50, 775 35,772 70%

n'ev 19, 282 12,038 62%

Kgev 1,022 641 63%

K*ev 4,148 2,582 62%

foev 7,132 4,411 62%

All other modes 6,741,304 204, 944 3%

(25 MeV, 100 MeV, 300 MeV, and 500 MeV), but we did not find them useful (Fig-
ures and . Our D, and electron selections keep the background levels
low, so even the handful of signal events improperly rejected by an extra shower cut
will cause a reduction in our statistical significance. Several different effects can lead to
improper signal rejection under an extra energy cut: modes containing kaons can have
decays in flight, leaving a shower without a properly matched track; the D} can decay
to a Y, yielding one extra shower; legitimate single showers sometimes get misrecon-
structed as two or more showers; and splitoff showers may not get identified as such.
Although we can reduce the impact of each effect through various selections, we have

not found that such improvements save the extra shower cut.
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Table 6.2: Effect of an extra track cut on the signal and the background in the peaking
D, mass region after all other selections (e.g. semileptonic hadron cuts) have been

2 e C e
made. We define f as S‘i—B, such that prt; measures our statistical improvement.

fpre-cu
Dy semileptonic mode | €gignal | Ebackground %
pev 99% 61% 1.01
nev 97% 42% 1.31
nev 97% 52% 1.06
Kgev 98% 69% 1.38
K*ev 98% 64% 1.40
foev 99% 59% 1.23
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Figure 6.2: Extra showers after finding the tagged Dg, the ¢, and the electron in ¢ev
(20x MC sample). Our shower quality selections include both E9 0.K. and a splitoff
rejection. The peak near 140 MeV is due to the v from D7} decays We don’t see an
improvement in our results from making a cut on any extra shower variable.



Chapter 7
Measurement of Dg — ¢ev

While we ultimately reconstruct six different Dy semileptonic modes, we use a similar
reconstruction and fitting procedure for five of them (¢ev, n'ev, foev, Ksev, and K*ev).
To illustrate the procedure, we first describe how the process works for Dy — ¢ev. Then,
in section [8, we show how the procedure differs for each of the other four semileptonic
modes that have a similar reconstruction but fewer events.

We determine the number of Dy — ¢er events by fitting the tagged D mass spec-
trum after making the electron selections in Section the ¢ cuts in Section and
the event cuts in Section We do not directly use the electron or ¢ kinematic infor-
mation beyond requiring that they pass our particle cuts, although our ¢ reconstruction

gets used indirectly in our fy — KK background subtraction.

7.1 ¢ Selection

We reconstruct the ¢ meson in Dy — ¢ev via the ¢ — KK decay mode, which makes
up roughly half of all ¢ decays. Dy — ¢ev presents a challenge in its ¢ reconstruction
as the semileptonic ¢ tends to be fairly soft (Figure [7.1p). The soft ¢ and low Q value
in the ¢ — KK decay (about 32 MeV) leads to soft daughter kaons, which decreases
our detection efficiency significantly relative to higher energy ¢ decays (e.g. Ds — ¢m).
As an additional challenge, the long tail of the ¢ Breit-Wigner forces us to use a wide
¢ mass window relative to its decay width of I'y ~ 4.26 MeV.

The combination of low Dy — ¢er background and soft kaons encourage loose kaon
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Figure 7.1: Generated and reconstructed momentum spectra from the 20x Monte Carlo.
a) ¢ from Dy — ¢ev, using our cuts. b) Electron from Ds; — ¢ev.

selection criteria. In particular, we have essentially dropped any hit fraction cut to
accommodate the higher likelihood that a soft kaon will decay in flight (Figure .
We considered loosening other typical track cuts, but we did not find the slight effi-
ciency improvement to be worth deviating from established systematic studies [68]. We

ultimately require the following cuts on the ¢ meson’s daughter kaons:

e |dy| <5 mm

e |z <5cm



e y2 < 100,000

?(E/dﬂ < 3.0

o |o

e Hit Fraction > 0.1

[ Hit fraction of ¢ daughter kaon, by momentum |

(=2}
o

66

(3]
o

B
o

——p, > 300 MeV
______ p, <300 MeV

% of Events / 0.1 HF

n w
o o

-
o

.........

L -

o
IIII|IIII|IIII|IIII|IIII|IIII

o

Ratio of reconstructed kaons with HF>.1 to HF>.5 |

1
Kaon Hit Fraction

1.3

HF > 0.1
HF > 0.5

-
N

-
o

o
©

o
©

-
o
_IIII|IIII|IIII|IIII|II I|
!
'
'
'
'
i
i
'
'
:
i
i
i
‘
‘
'
i
i
i
'
:
'
i
i
‘
‘
'
'
i
i
'
'
:
i
i
i
‘
‘
'
i
i
i
'
:
'
-
i
‘
'
'
'
i
i
'
'
:
i
i
i
'
‘
'
i
i
S
'
'
'
i
i
‘
'
'
i
i
i
‘
'

PR (YA R S S S S S S ST SR RS S SR S SR S ST
100 200 300 400 500 600 700 800

P
900 1000
P, (MeV)

Figure 7.2: Hit fraction distributions for kaons from ¢ — KK in Ds; — ¢ev. a) Per-
centage of such kaons with a given hit fraction, above and below 300 MeV (roughly
the median momentum). b) Relative improvement in our kaon reconstruction efficiency

when loosening the hit fraction cut from .5 to .1, by momentum.
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With the low combinatoric background in Dg — ¢ev and the long ¢ Breit-Wigner
tail, we extend the high side of our ¢ mass window as far as we reasonably can. On
the low side of the ¢ mass window, we run into contamination from D; — fyev, where
fo — KK. While we do measure Dg — fpev via fy — 7w and use it to guide our
background subtraction, the uncertainty in fy parameters leads us to restrict the low
¢ mass range somewhat to reduce the impact of these systematic uncertainties on our

¢ev result. For our final ¢ mass cut, shown in Figure [7.3] we use:
o —15 MeV < Mjeconstructed _ pPDG < 30 MeV

We do not attempt to reconstruct the ¢ through modes other than KK (e.g. 7).

Reconstructed ¢ — KK mass, truth-tagged |
x10°

120

100

Counts/ 2 MeV
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Figure 7.3: ¢ mass distribution when reconstructed from ¢ — KK in the 20x Monte
Carlo. The inner vertical lines represent a 10 MeV cut (roughly 2I'y), which does not
capture the high mass tail. We accept ¢ masses within the outer vertical lines.
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7.2 D, — ¢erv Reconstruction

7.2.1 Efficiency

To determine our efficiencies, we generated signal Monte Carlo samples with one Dy
decaying to ¢erv and the other decaying generically. We made four samples with
250,000 events, one for each different type of semileptonic D, production at 4170 MeV:
one sample for D} D; and three for D*D,, where the semileptonic D, can either be
“prompt” (not from the D? side) or “secondary” in one of two ways (D} — Dgy or
D¥ — DyrY).

We present the efficiencies for Dy — ¢ev in Table[7.I] for typical ¢ cuts and Table[7.2]
for this analysis’s looser ¢ cuts. We determine all our semileptonic efficiencies after suc-
cessfully reconstructing a Dy tag within the fit window (1900 MeV < Mp_ < 2030 MeV).
The efficiency for both the ¢ and the electron increases with higher momenta, as shown
in Figure This causes the overall semileptonic efficiency to be slightly lower than
the simple product of hadron and electron efficiencies, since high momentum electrons

are correlated with low momentum ¢ and vice versa.

Table 7.1: Efficiencies for semileptonic particles in Dg; — ¢er, with typical ¢ cuts
(HF > 0.5, ¢ mass within 10 MeV). The efficiencies include the ¢ — KK branch-

ing ratio.

D, production mode

€e

o

ESL

DyDy
D! Dg with D} — (Ds — ¢ev) ~
D:Dg with D} — (Ds — ¢ev) 7°
D?D; with prompt Ds — ¢ev

70.4% + 2.6%
70.2% + 0.6%
70.3% + 0.6%
70.7% £+ 0.7%

12.9% + 1.1%
15.2% + 0.3%
15.1% + 0.3%
14.1% £ 0.3%

9.4% + 1.0%
10.2% + 0.2%
10.1% + 0.2%

9.5% + 0.3%

Weighted MC

70.5% + 0.5%

14.9% + 0.2%

10.1% + 0.2%
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Table 7.2: Efficiencies for semileptonic particles in Dy — ¢er, with the ¢ cuts used in
this analysis. The efficiencies include the ¢ — K K branching ratio.

D, production mode

€e

E¢ ESL

DDy
D¥Dg with DY — (Ds — ¢ev) vy
D:Dg with D} — (Ds — ¢ev) 7°
D?Dg with prompt Dg — ¢ev

70.4% + 2.6%
70.2% + 0.6%
70.3% + 0.6%
70.7% £+ 0.7%

17.3% + 1.3%
20.9% + 0.4%
20.9% £ 0.3%
19.8% + 0.4%

12.1% £+ 1.1%
14.2% + 0.3%
14.1% + 0.3%
13.5% + 0.3%

Weighted MC

70.5% + 0.5%

20.7% £ 0.3% || 14.0% + 0.2%
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Figure 7.4: Efficiencies for individual semileptonic particles and the overall semileptonic
side (¢ + electron), by momentum. We include the ¢ — KK branching ratio in our
efficiencies, so €4 and g7, must be less than 49%. The ¢ “typical cuts” have HF > 0.5
and a 10 MeV mass cut. Section gives our looser ¢ selection.



70
7.2.2 Backgrounds

Our predicted Ds — ¢er background from the 20x Monte Carlo primarily consists of
events that don’t peak within our D mass fit region (Table [7.3). We use a linear
background function in our data fit for such events. However, we do have to take
special account of events that fake the semileptonic side (electron or ¢ — KK) while
having a true Dy tag, as these events will look like signal events in our fit to the Dy

mass spectrum.

Table 7.3: Truth-tagged breakdown for Dy — ¢ev candidates passing all cuts in the
20X ddmix and 5x continuum Monte Carlo, scaled to data size.

Event truth Passing candidates
True Dy tag, true Dy — ¢ev 210.90
True D; tag, not Dy — ¢ev 4.10
False Dg tag, true Dy — gev 46.40
False D; tag, not Ds; — ¢ev 16.55

Most events with a true D, tag that are incorrectly reconstructed as Dg — ¢ev
come from Dy — foev, where fy - KK (Figure . The large decay width of the
fo means that a nontrivial fraction of fo — KK decays have an invariant mass within
our ¢ — KK mass window. At the same time, the low overall number of Ds — fper,
fo = KK decays relative to other backgrounds (particularly combinatoric background
near KK threshold with false D tags) prevents us from simply fitting the Mk spectrum
to determine the number of fyer background events. We instead use our Dgs — fpev
(fo — mm) measurement from Section a range of l;fﬁo%ﬁ values from the Particle
Data Book [21I], and a model for the fy — KK lineshape to estimate the amount
of Dy — foev, fo — KK background that appears within our Dy — ¢er sample, as
described in Appendix [A]

We give our correction for the Dy — ¢ev branching ratio from the Dy — foev, fo —
K K peaking background and its associated systematic in Table We also include a
correction for events with a correct Dy tag that fake Dy — ¢er from sources other than
D, — foev, primarily ¢p*. We use Monte Carlo estimates for the latter correction since

the decay kinematics are well understood (relative to their statistical significance).



71

MC true D] tags for successful o+e+v

e .

¢a
7 D,, tag mode]

Figure 7.5: Dy — ¢ev backgrounds with a true D, tag (peaking background) in the 20x
Monte Carlo. Only Ds — foev, fo — KK presents a sizable peaking background for
Dy — ¢ev.

7.2.3 Fit Procedure

In most tagged neutrino analyses (e.g. [69, [70]), the event’s missing energy and momen-
tum will be reconstructed and used in some form (e.g. missing mass, AE and M;.) to
determine the number of signal events. Since we’ve dropped the D} meson’s daughter ~y
in this analysis, our missing four momentum contains both the neutrino and the photon.
The missing variables (mass, energy, momentum) are then distorted and do not give
clear separation between signal and all backgrounds (although some background may
still be rejected, as described for Kgev in Section .

When searching for an alternate fit parameter, we have noticed that a major system-

atic error in our ¢er and ner modes comes from the lineshape uncertainty associated
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Table 7.4: Absolute branching ratio correction and systematic error for B(Ds — ¢ev)
from peaking background.

Background mode BR correction
D, — foev (0.0080 = 0.0115)%
Non-semileptonic (0.0041 £ 0.0014)%
Total Dg — ¢ev correction | (0.0120 £ 0.0116)%

with the Dy tag. To minimize this systematic, we have chosen to fit the Ds mass spec-
trum for our branching ratio’s numerator as well as its denominator, which eliminates
most of the impact from our reconstructed Dy lineshape uncertainty. As described pre-
viously, we do not directly involve the ¢ or electron kinematic information in our fit,
using that particle information only to establish that we have a legitimate D; — ¢ev
event.

Even in our relatively high statistics Ds — ¢er semileptonic mode, we only expect
about 200 events spread across our 13 tag modes, with some tag modes likely to contain
only one or two events. Our low statistics semileptonic modes (7'ev, foer, Kgev, and
K*ev) have even fewer events spread across the same number of tag modes. To deal with
the errors associated with our low statistics, we use an unbinned, extended maximum
likelihood fit to our Dy mass spectrum. Further, since the small number of events per
tag mode will distort a weighted sum combining individual resultsE] we instead use a
common branching ratio parameter across all 13 tag modes.

We fix our signal Dg mass lineshape from each mode’s tag fit results. This leaves
only the normalization floating (via the common branching ratio parameter), giving us
just one signal parameter in our fit. We determine a linear background for each tag
mode from the 20x Monte Carlo, then we allow the overall normalization of this shape
to float independently for each tag mode. If we have fewer than 20 background events
for a tag mode in the 20x Monte Carlo sample (less than one expected background event
in the data), we choose a constant background function instead of a linear function as
our background shape for that tag mode.

Our fit function then has 14 floating parameters in our Dy mass fit — one signal

!Bienaymé formula for adding errors in quadrature need not apply.
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parameter (the branching ratio) and one background normalization for each of our

13 D, tag modes. We have a log likelihood function to minimize given by:

F(B,Npg) = —In L(B, NBG)

13
Z tag Z N]%G

— Zln [B ESL Nt[;]g fs[ljg](m]) +NBG fm ( )} )

:B.gSL.

where B is the branching ratio, ]\73(; is the background normalization (one per tag
mode), [j] refers to the tag mode associated with reconstructed Dy mass m;, fsiig(m)
and fho(m) are the normalized mass distributions of the signal and background for the
given tag mode, respectively, and Ntiag is the number of D, tags for mode 7. The first two
terms in our function just represent the overall signal and background normalizations,
while the third term corresponds to the sum of each event’s log likelihood given our

signal and background shapes.

7.3 Results

The fit results presented in the following subsections only involve the statistical error.
We determine our systematic errors in Section [10|and give our full errors with the final,

efficiency-corrected result in Section [11.2

7.3.1 Monte Carlo

To ensure that our procedure properly measures the branching ratio on the couple
hundred events expected in data, we have split the 20x Monte Carlo into twenty data-
sized subsamples. These subsamples allow us an in-vs.-out test in which we accurately
measure the number of truth-tagged semileptonic events, as seen from the lack of fit bias
in Table We also obtain the proper branching ratio in our Monte Carlo test after
correcting for peaking background, as demonstrated in Table with our branching

ratios’ x? of 21.6 over the twenty subsamples.
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Table 7.5: Test of potential bias in our fitting procedure for Ds; — ¢erv by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset Ng?i%t;ggm Nt L tag Difference (# o)
1 234 231.74 £ 16.58 —0.137
2 224 227.52 £ 14.79 0.238
3 199 191.93 + 15.43 —0.458
4 226 227.01 £ 16.54 0.061
) 208 202.15 £ 15.74 —0.371
6 191 191.44 + 13.94 0.032
7 240 248.97 £+ 17.05 0.526
8 222 229.31 £ 16.71 0.438
9 191 194.93 + 15.13 0.260
10 208 208.35 £ 14.50 0.024
11 194 201.72 £ 15.31 0.504
12 201 197.51 + 14.91 —0.234
13 218 217.17 £ 16.13 —0.051
14 219 226.68 £ 16.23 0.473
15 235 242.62 + 16.59 0.460
16 216 212.87 £ 15.74 —0.199
17 212 216.87 £ 15.85 0.307
18 220 212.31 £ 15.52 —0.496
19 210 212.19 £ 15.63 0.140
20 213 201.87 £ 15.55 —0.716

Sum 4281 4295.17 + 70.28 0.202

For reference, we present our fits to these twenty data-sized subsamples as Fig-

ures [G.27] in Appendix [G]
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Table 7.6: Monte Carlo comparison of the measured D; — ¢er branching ratio to its
generating branching ratio (2.170%), in data-sized samples. The weighted average line
contains the y? across the 20 samples rather than the number of o between the mea-

sured /generated branching ratios.

Dataset Raw fit BR Corrected BR #o
1 (2.439 + 0.175)% | (2.405 £ 0.175)% 1.34
2 (2.306 £ 0.150)% | (2.271 £ 0.150)% || 0.67
3 (1.917 + 0.154)% | (1.883 + 0.154)% || —1.86
4 (2.289 + 0.167)% | (2.255 + 0.167)% ||  0.51
5 (2.076 + 0.162)% | (2.041 + 0.162)% || —0.80
6 (1.972 + 0.144)% | (1.937 4 0.144)% || —1.62
7 (2.520 £ 0.173)% | (2.485 £ 0.173)% || 1.83
8 (2.300 £+ 0.168)% | (2.266 + 0.168)% 0.57
9 (2.014 £+ 0.156)% | (1.979 £ 0.156)% || —1.22
10 (2.101 + 0.146)% | (2.066 + 0.146)% || —0.71
11 (2.004 + 0.159)% | (2.059 £ 0.159)% || —0.70
12 (2.013 £ 0.152)% | (1.978 + 0.152)% || —1.26
13 (2.178 £ 0.162)% | (2.143 £ 0.162)% || —0.17
14 (2.236 £ 0.160)% | (2.201 £ 0.160)% || 0.19
15 (2.504 + 0.171)% | (2.470 + 0.171)% || 1.75
16 (2.217 + 0.164)% | (2.182 + 0.164)% || 0.07
17 (2.196 £+ 0.160)% | (2.161 4+ 0.161)% || —0.06
18 (2.138 + 0.156)% | (2.104 £ 0.156)% || —0.42
19 (2.111 £ 0.156)% | (2.076 4+ 0.156)% || —0.60
20 (2.058 + 0.158)% | (2.023 + 0.158)% || —0.93

Weighted averages/x? || (2.171 4 0.036)% | (2.137 + 0.036)% || 21.54
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7.3.2 Data

We give our measured branching ratio and number of signal events for Dy — ¢ev in
Table [7.7, which includes our correction from background with a peaking Ds mass.
The branching ratio here assumes the Monte Carlo’s efficiency; our systematics section
(Section discusses some corrections to this efficiency (Table that appear in
our final result (Table [L1.10).

Table 7.7: Dy — ¢er measurement in the data, including the peaking background cor-
rection from Table [7.4]

Measurement Branching Ratio # Events

Raw fit result (1.935 £ 0.152)% | 208.0 £+ 16.6
Peaking BG correction | (0.012 £ 0.012)% 1.3+ 1.2

B(D, — dev) (1.923 £ 0.153)% | 206.7 = 16.7

Figure [7.6] shows the result of our likelihood fit on the Dy mass spectrum after our
¢, electron, and event selections. The plot shows the sum over all D, masses and fit
functions for simplicity, even though the underlying mass distribution varies by tag
mode. We give our individual functions and mass plots for each tag mode in Figures[7.7]
and These individual plots better represent how the likelihood fit operates, although
the common branching ratio does connect each of the tag modes’ signal normalizations

to one another.
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Figure 7.6: Dy — ¢er data results after our semileptonic selections. We fit the tagged
Mp, spectrum with a common branching ratio across all 13 tag modes. The likelihood
uses each tag mode’s signal shape on its corresponding masses; the above results show
a sum over all tag modes.
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Figure 7.7: Fit results in the data after applying Ds; — ¢er semileptonic cuts for modes
KK, KKn, K,Kn% K,K,r, and KKnn®. We fit the tagged Mp, with a common
signal normalization (branching ratio) for all 13 tag modes. Each mode does receive an
independent background normalization.
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Figure 7.8: Fit results in the data after applying D; — ¢ev semileptonic cuts for modes
K,Ktnm, KK rm; o oy mnln; o', n' — won; 7o', ' — wrn; and 71,0’ — pry.
We fit the tagged Mp, with a common signal normalization (branching ratio) for all
13 tag modes. Each mode receives an independent background normalization.



Chapter 8

Measurement of
DS — (K87 K*7 fO? U/)GV

Our procedure for the D, semileptonic modes Ksev, K*ev, foev, and n'ev closely follows
that for D; — ¢ev. We use the same Dy tags and electron selections for each of the
additional four semileptonic modes, but each mode has its own cuts for the semileptonic-
side’s hadron. In some cases, we also make additional background rejection cuts and
event missing mass cuts, as described in Sections and

8.1 General Particle Cuts

The semileptonic modes K*ev, fper, and n'erv each have pions in their final states.
CLEO has made substantial effort to understand pion behavior in the detector over a

range of momenta, so we follow the standard pion selections [68] for these modes:

° ‘U;irE/dm| < 3.0

| cos(0)| < 0.93

|dp| < 5 mm

|z0| < b cm

Y% < 10,000

80
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e Hit Fraction > 0.5

e If pr > 550 MeV and we have info from the RICH, we also require:

— 2 or more photons in the RICH (pion hypothesis)
— Particle ID: (LLH, — LLHx) + (02 — 0%) < 0,

T

where LLH refers to the RICH log likelihood and o comes from the dE/dx

measurement.

K*ev also has a kaon in its final state. While ¢er required two kaons to make a ¢
meson, the kaon in a K* reconstruction gets paired with a pion. This forces us to be
more aggressive in our kaon selections to avoid excess combinatoric pairings. Relative
to ¢ev, we have increased the hit fraction requirement (although only to 0.3), we have
added a particle ID cut, and we have slightly decreased the y? requirement. For kaons

in K*ev, we require

dE/dz
0K

| <3.0

| cos(0)| < 0.93

|dp| < 5 mm

|z0] < b cm

X% < 10,000

Hit Fraction > 0.3

If px > 550 MeV and we have info from the RICH, we also require:

— 1 or more photons in the RICH (kaon hypothesis)

where LLH refers to the RICH log likelihood and o comes from the dE/dz

measurement.

— Particle ID: (LLH, — LLHx) + (02 — 0%) > 0,

If pk < 550 MeV and we have info from the RICH, we require 4 or fewer photons
(pion hypothesis) in the RICH.
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82 D, — K.ev

Unlike Dy — ¢ev, where our signal events dominated our background even with fairly
loose cuts, Ds; — Kgev has a large background component. While some of this back-
ground comes from combinatoric effects, by far the dominant contribution comes from
other Dg semileptonic modes that have both a valid Dg; tag and a valid electron.
¢ — KpK, in ¢ev produces the most problematic background as it also has a true
K, so tightening our K-short cuts will not help our background rejection (K* — K r°
gives a similar but smaller problem).

To deal with the problem of Dy — K er background coming from other semileptonic
modes, we have reintroduced the notion of an event missing mass cut. In this case, the
missing four vector consists of both the neutrino and the D} meson’s daughter photon.
Even though the missing mass doesn’t peak at zero as it would with only a missing
neutrino, we still get good separation between K ev and ¢er since the soft photon
doesn’t push the missing mass as far as the extra K, (or, to a lesser extent, as far as
the extra 7% in K*erv). We show this missing mass separation in Figures and
We’ve optimized our missing mass cut using a simple figure of merit (Si—QB), as seen in
Figure 8.3

In addition to our peaking background, the missing mass cut rejects the majority of
our combinatoric background. However, we still retain more total combinatoric events
than signal events. As these combinatoric events often lack a true Ky, we have also
considered adding a flight significance cut to our K, selection. We again use a simple
figure of merit for events in our signal region to evaluate our potential flight significance
cut. We present this figure of merit for various flight significance cuts in Figure [8.4
While the Monte Carlo analysis favors a very large minimum flight significance, we have
elected to make the cut at 4.0 to capture most of the benefit while avoiding any potential

systematics from data/Monte Carlo deviations at higher flight significance values.
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Figure 8.1: Missing mass after finding the Dy tag, K, and electron in Dy — Kev, from
the 20x Monte Carlo. We keep all events with a MM? below the line at 0.4 GeV?2.
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Figure 8.2: Dy — K ev missing mass in the 20x Monte Carlo, by background semilep-
tonic mode. The dominant background comes from Dg — ¢ev, where ¢ — Ky K,. Our

missing mass cut removes most of this background.
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Figure 8.3: Our figure of merit for different missing mass cut values in D; — Ksev. We
only consider signal and background events that have a reasonable Dy mass, between

1955 MeV- 1985 MeV.
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Figure 8.4: Figure of merit for different flight significance cuts in Dy — K ev. We only
consider events with a Dy tag mass within 1955 MeV and 1985 MeV, since events outside
that region will be dismissed as background in our final fit.
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We make a few additional rejections on potential Kger events to avoid specific

backgrounds. In particular, we have small but identifiable backgrounds from Dy — KK

and Dy — KK % where the kaon fakes an electron. To deal with these, we treat the

electron track like a kaon and reject the event if it combines with the K (or K4 + 7°)
to have a Dy mass within 10 MeV of the PDG value.

We also see some background with real electrons, notably in Dy — 7v where a fake

K gets formed far out in the detector. We eliminate most of these events by requiring

that each m track forming the K comes from within 20 cm of the origin. This cut also
removes a small, similar background from Dg; — nev.

We give our full list of Dy — Kger semileptonic-side requirements below:

o [Myzon — MEPG| < 6.3 MeV

K flight significance > 4.0

MDM?, < 400,000 MeV? (.40 GeV?)

Reject if [MpR" — MB?G| < 10 MeV when the electron is treated as a kaon

If any 7° are found, reject if | Klomo — MB?G| < 10 MeV when the electron is

treated as a kaon

o pf = ,/d%—i—zg < 20 cm for the 7 from K

We obtain a much improved signal relative to background, particularly peaking
background, by making these cuts as seen in Table In this table, our “before cuts”
column only uses the K mass cut, while the “after cuts” column contains the events
after making the other listed cuts. Figures (before cuts) and (after cuts) in
Appendix [G] further breakdown the modes that produce a peaking background.

After all cuts, we get an efficiency for Dy — Kgev of 30.9% (including the K branch-
ing ratio). For ease of comparison, we have placed our efficiencies for this and the other
non-7n branching ratios in Table at the end of the section. Our stated efficien-
cies come from signal Monte Carlo with different Dg production modes; we cover the
systematic uncertainty from this weighting for all modes in Section

Dy — Kev still has some remaining peaking background (true D) events from each

of the other semileptonic modes we measure, as well as peaking background from events
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Table 8.1: Truth-tagged breakdown for Dy — K ev candidates in the 20x ddmix and
5x continuum Monte Carlo, scaled to data size.

Event truth Candidates before cuts | Candidates after cuts
True D tag, true Dy — Kgev 24.95 23.00
True D, tag, not Dy — Kgev 162.30 3.05
False Dy tag, true Dy — K ev 4.35 2.55
False D, tag, not Dy — Kev 292.30 62.30

with a fake electron. We correct our Dy — K er branching ratio for the semileptonic
background sources by using their faking efficiencies and our measured branching ratios.
Since the non-semileptonic fakes come from more precisely measured Dy decay modes
(primarily through some of the same decay modes that we use for tags), we simply
use a Monte Carlo estimate in their branching ratio correction. We give the individual

components and the overall sum of these corrections in Table

Table 8.2: Absolute branching ratio correction and systematic error for B(Ds; — Kgev)
from peaking background.

Background mode BR correction
Dy — nev (0.0010 % 0.0005)%

Dy — foev (0.0001 + 0.0001)%

Dy — ¢ev (0.0014 + 0.0005)%

Ds — K*ev (0.0044 + 0.0011)%
( )%

( )%

( )%

Dy — nev 0.0002 + 0.0002
Non-semileptonic 0.0052 + 0.0011
Total Dy — Kev correction | (0.0123 £ 0.0017

Asin Dy — ¢ev, we have used our twenty data-sized Monte Carlo samples for an in-
vs.-out test to ensure that our fitting procedure accurately measures the input branching
ratio. Our x? of 13.3 over the twenty samples and overall fit-to-truth difference of
0.50 gives us confidence that our underlying procedure works on this sample size and
background rate (full results in Tables and from Appendix .

We show our Dy — Kgev data fit results in Figure for the sum across all Dy
tag modes, with the component fits from each tag mode in Figures [G.34] and [G.35|
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(Appendix . We present both the raw branching ratio and our branching ratio after

correcting for peaking background (but before correcting the Monte Carlo efficiency for
systematic biases) in Table 3.3

MD after Ks'l'e Cuts, a" mOdes mass_modesum_plot_0
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Figure 8.5: Our Dy — K ev data fit to the Mp, spectrum, after all semileptonic se-
lections. This fit function represents the sum over the fit functions from each D tag
mode.
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Table 8.3: Dy — K erv measurement in the data, including the peaking background
correction from Table [8.2

Measurement Branching Ratio | # Events
Raw fit result (0.186 £ 0.035)% | 44.5 £ 8.4
Peaking BG correction | (0.012 + 0.002)% | 2.9 £ 0.4
B(Ds — Ksev) (0.173 £ 0.035)% | 41.5 + 84

8.3 D, — K'ev

D, — K*ev has a small branching ratio relative to the other D semileptonic modes
considered in this analysis, but it also has a relatively low number of background events.
Our only problematic backgrounds come from Dy — KK7 (e.g. K*K) when a kaon
fakes an electron and from Dy — ¢er when one of the kaons fakes the K* pion.

We can deal with most of the kaon-faking-electron background by simply treating
the electron as a kaon and rejecting the event if it combines with the K* to form a D;.
We similarly deal with the ¢erv background by treating the K* daughter pion as a kaon
and rejecting the event if it pairs with the other kaon to form a ¢. A missing mass
cut on the event rejects much of the combinatoric background (Figures and ,
which would otherwise present the largest remaining challenge to our measurement. As
in Dy — Ksev, our missing 4-vector consists of both the neutrino and the unobserved

D7 daughter photon, shifting the missing mass away from zero.
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Figure 8.6: D; — K*ev missing mass after finding the Dy tag, the electron, and the
K*, from the 20x Monte Carlo. Most of the peaking background has a low M M2 . but

we remove almost half of the combinatoric background with our cut.
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Figure 8.7: Our figure of merit for different missing mass cut values in Dy — K*ev. We
only consider signal and background events that have a reasonable Dg; mass, between
1955 MeV- 1985 MeV.
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Since our prior cuts remove most of the background, we only need a loose selection

on the K* invariant mass, as shown in Figures and Our figure of merit (S‘i—QB)

for the Mg~ cut window plateaus around 100 MeV. We choose to keep all K* within
106 MeV, which corresponds to a 5o mass cut (about 2I'k+).

K* mass
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Figure 8.8: K* mass for events that pass Dy, electron, and our other Dy — K*ev cuts
in the 20x Monte Carlo. Much of our background has a real K*, so we only obtain
moderate background reduction from a tighter mass cut.
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Figure 8.9: Figure of merit for different K* mass cuts in Dy — K*ev. We only consider
events that have a D, tag mass within 1955 MeV and 1985 MeV, since events outside
that region will be dismissed as background in our final fit.
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We list our final Dy — K*er cuts below:

e The K* daughter kaon’s charge must be opposite to the D, tag charge

|Mieeen — MEPG| < 106 MeV

MM?, < 450,000 MeV? (.45 GeV?)

Reject if | ME5en — MB?G| < 20 MeV when the electron is treated as a kaon

Reject if Mg < 1060 MeV when the K* daughter pion is treated as a kaon

These cuts remove over half of the peaking background and just under half of the
combinatoric background, as seen in Table The “before cuts” column only includes
the K* charge requirement and a wide K* mass cut of 150 MeV. The “after cuts”
column includes all our listed cuts. Figure gives the breakdown of our peaking
background before cuts, while Figure [G.37] shows the peaking background components
after all our cuts. We get a K*ev semileptonic-side efficiency after all cuts of 24.1%

(including the K* branching ratio).

Table 8.4: Truth-tagged breakdown for Dy — K*er candidates in the 20x ddmix and
5x continuum Monte Carlo, scaled to data size.

Event truth Candidates before cuts | Candidates after cuts
True Dy tag, true Dy — K*ev 33.05 30.15
True Dy tag, not Dy — K*ev 5.35 2.10
False D; tag, true Dy — K*ev 10.45 7.50
False D; tag, not Dy — K*ev 126.90 58.85

We correct our raw branching ratio result for peaking background from events with
a true D,. These events come from other semileptonic modes, 7v, and D, decays where
a kaon fakes the electron. As in Dy — K ev, we use our measured branching ratio for
the semileptonic correction while using the Monte Carlo rates for the non-semileptonic

correction. We show the components of this correction and their sum in Table
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Table 8.5: Absolute branching ratio correction and systematic error for B(Ds; — K*ev)
from peaking background.

Background mode BR correction
Dy — Kgev (0.0001 4 0.0001)%
Ds — foev (0.0002 £ 0.0001)%
Dy — ¢ev (0.0055 4+ 0.0012)%
Ds — nev (0.0017 + 0.0007)%
Non-semileptonic (0.0032 + 0.0010)%
Total Dy — K*ev correction | (0.0107 + 0.0017)%

Like our other semileptonic measurements, we have used our twenty data-sized
Monte Carlo samples for an in-vs.-out test to ensure that our fitting procedure works
with the signal and background levels in Dy — K*ev. We placed the results from this
test in Tables and from Appendix

Figure [8.10] contains the result of our data fits, summed over all D, tag modes.
Figures and in Appendix [G]show the fits by individual tag modes. We present
our Dy — K*ev branching ratio measurement before and after peaking background

corrections in Table [R.6]

Table 8.6: Ds — K*er measurement in the data, including the peaking background
correction from Table [8.5

Measurement Branching Ratio | # Events
Raw fit result (0.180 + 0.040)% | 33.6 £ 7.5
Peaking BG correction | (0.011 4+ 0.002)% | 2.0 £ 0.3
B(Ds — K*ev) (0.170 £ 0.040)% | 31.6 £ 7.5
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Figure 8.10: Our D; — K*ev data fit to the Mp, spectrum, after all semileptonic
selections. This fit function represents the sum over the fit functions from each D, tag
mode.
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8.4 D, —nev

Unlike our other semileptonic modes, where we observe the semileptonic side’s hadron
through its direct decay to two final state particles, we reconstruct the 1’ in Dy — nev
through its decay to wmn with  — ~~. This gives us two mass constraints, reducing both
our combinatoric and peaking background to very low levels (with signal-to-background
comparable to the much higher statistics ¢er mode). The extra constraint allows us to
use minimal rejections on the semileptonic side and maintain a high efficiency.
Although we could use the invariant mass of the 1 as a constraint, we instead
choose to use the n pull mass, which takes the different errors on each daughter photon
measurement into account. Adding on a comfortable 7’ mass cut of 10 MeV, we then

just have the D, — n’ev cuts
o |0, <3.0
o [Meor — MEPY] < 10 MeV

As seen in Table these cuts give a marginal improvement over our extremely
loose “before cuts,” with a 5.0 pull mass on the  and a 30 MeV mass cut on the 7'.
We see a semileptonic-side efficiency for n’ev of 4.0% after cuts, including all branching

ratios.

Table 8.7: Truth-tagged breakdown for Dy — 7’er candidates in the 20x ddmix and 5x
continuum Monte Carlo, scaled to data size.

Event truth Candidates before cuts | Candidates after cuts
True Dj tag, true Dg — n'ev 24.60 22.75
True Dy tag, not Dg — n'ev 0.60 0.30
False Dy tag, true Dg — n'ev 3.75 3.10
False D tag, not Ds — n'ev 12.40 6.25

What little peaking background we do see (Figure tends to come from Dy — nev,
where the n — 777%. A photon from the 7¥ then combines with another shower (like
the D} daughter photon) to make a fake n. This ner peaking background contains few
enough events relative to signal that we reject too many true events when we try a di-

rect 0 reconstruction. We instead just do a peaking background subtraction based on
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our nev measurement. We’ve given this correction and our smaller peaking background

corrections in Table R.8]

Table 8.8: Absolute branching ratio correction and systematic error for B(Ds — nev)
from peaking background.

Background mode BR correction
Dy — nev (0.0065 =+ 0.0033)%
Dy — dev (0.0002 = 0.0002)%
Non-semileptonic (0.0035 £+ 0.0024)%
Total Dy — n'ev correction | (0.0102 £+ 0.0041)%

Our in-vs.-out Monte Carlo test results for Dy — n'er can be seen in Section
Tables [F.7] and [E.8]

Figure [8.11] shows our data fits for the sum over all Dy tag modes. We have placed
our individual tag mode fits in Appendix|[G] Figures and [G.42] Table[8.9|gives our

raw Ds — n'ev measurement and the result after correcting for peaking background.

Table 8.9: Dy, — ner measurement in the data, including the peaking background cor-
rection from Table

Measurement Branching Ratio | # Events
Raw fit result (0.646 £ 0.140)% | 20.4 £ 4.5
Peaking BG correction | (0.010 £+ 0.004)% | 0.3 £ 0.1
B(Ds — nev) (0.636 £ 0.140)% | 20.1 £ 4.5
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Figure 8.11: Our Ds — n'ev data fit to the Mp_ spectrum, after all semileptonic se-
lections. This fit function represents the sum over the fit functions from each D tag
mode.
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8.5 Dy, — foev

D, decays often contain kaon final states, which makes the fy — 77 reconstruction mode
for Dy — foev fairly clean. Although fper has some peaking background from other
semileptonic modes (like Dy — n'ev, ' — 777y), most of our peaking background comes
from events with a kaon faking the electron. These events also generally involve another
kaon faking a pion, as the large Vs ensures that kaons in Dy decays tend to come in
pairs. Due to this double-fake rarity, none of the individual modes with electron faking
occur with significant frequency. Since we can’t simply reconstruct all such modes to
reject the event without hitting our signal through the combinatorics, we instead just
apply a correction using the Monte Carlo expected rates for such fakes.

As shown in Figures and we have a fairly low background in Dy — foer,
so we use a relatively broad mass cut. Other than our standard pion and electron cuts,

our fper reconstruction only contains the fp mass cut:
recon PDG

We take 980 MeV to be the fo PDG mass.

Table [8.10] shows our peaking and combinatoric background levels compared to our
signal events. Figure in Appendix [G] shows the breakdown of our true Dy tag
background, while Table has our branching ratio corrections for this peaking back-
ground. Given the uncertainty in B(fy — 7m), we've chosen to quote a result for

Dy — foev, fo — mm rather than assuming any particular branching ratio.

Table 8.10: Truth-tagged breakdown for Ds; — fyer candidates passing all cuts in the
20x ddmix and 5% continuum Monte Carlo, scaled to data size.

Event truth Passing candidates
True Dy tag, true Dy — foev 55.10
True Dy tag, not Dy — foev 3.75
False D; tag, true Dy — foev 6.70
False D; tag, not Dy — foev 171.80
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Figure 8.12: fy mass for events passing D, and electron cuts in the 20x Monte Carlo.

Table 8.11: Absolute branching ratio correction and systematic error

B(Ds — foev, fo — mm) from peaking background.

Background mode

BR correction

Ds — ¢gev

Dy, — K*ev

Ds — nev
Non-semileptonic

0.0002 +£ 0.0001
0.0001 +£ 0.0001

0.0037 + 0.0008

Total Dy — foev, fo — wm correction

0.0054 + 0.0010

( )%
( )%
(0.0014 = 0.0005)%
( )%
( )%

for
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Figure 8.13: Figure of merit for different fy mass cuts in Dy — fper, considering only
events with a D, tag mass within 1955 MeV and 1985 MeV. Since the fp width has
some uncertainty, a 60 MeV mass cut gives us a good balance between retaining most
of the signal while not allowing too much excess background.
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As with our other modes, we have done an in-vs.-out test for Dy — fper using the

twenty Monte Carlo data-sized samples. Tables and in Appendix [F] contain
the results of this comparison.

Figure has the summed results of our data fits across all Dy tag modes. Fig-

ures [G.44] and [G.45] in Appendix [G] contain the individual tag mode fits. We give our

raw measurement and background corrected branching ratio for Dy — fpev, fo — 7 in

Table

M, _after f +e cuts, all modes mass_modesum_plot_0
- — Entries 156
= ool Mean 1962
e F RMS  30.08
- 20—
2 = —
§ 18 ; 1 — Total
W 16—
- f,+e+v signal
14—
— True D, fake f /e
12—
10 - —— False D, background
s
L d

! ‘ | 1 ‘ ! 1
1960 1980 2000 _ 2020
M, (MeV)

[ L | 4 T 1
1%00 1920 1940
Figure 8.14: Our Ds — fpev data fit to the Mp, spectrum, after all semileptonic se-
lections. This fit function represents the sum over the fit functions from each Dy tag
mode.
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Table 8.12: Dy — foev, fo — mm measurement in the data, including the peaking back-

ground correction from Table [8.11

Measurement Branching Ratio | # Events
Raw fit result (0.135 + 0.024)% | 43.6 £ 7.8
Peaking BG correction | (0.005 £+ 0.001)% | 1.7 £ 0.3
B(Ds — foev, fo — mmw) | (0.130 4+ 0.024)% | 41.9 + 7.8

For comparison, we summarize all our Monte Carlo efficiencies, by semileptonic
mode, in Table We will later correct these efficiencies through the various effects
in Section (10| (Tables .23, leading to the final branching ratios in Table [11.10

Table 8.13: Semileptonic-side efficiencies for gev, nev, foev, Ksev, and K*ev, after all
cuts. The first column includes the hadron branching ratios into the efficiency, while the
second column gives the efficiency considering only hadron decays to the reconstruced

decay mode.

Semileptonic Mode €s1, ag’fl BR
D, — ¢ev (13.91 + 0.18)% | (28.33 £+ 0.38)%
Dy, — Kgev (30.93 + 0.53)% | (45.09 + 0.77)%
D, — K*ev (24.13 +£ 0.35)% | (36.25 £+ 0.53)%
Ds — nev (4.02 + 0.16)% | (23.46 + 0.96)%
Dy — foev (21.69 + 0.34)% | (41.72 £ 0.66)%




Chapter 9
Measurement of Dg — nev

We find Ds; — nev events in much the same way as Dy — ¢ev events: we reconstruct the
Dy tag, the electron, and the semileptonic-side hadron, while ignoring the D} — D,y
transition photon or other extra showers in the event. We originally made the choice
to ignore the transition photon in Dy — ¢ev because of the photon’s low efficiency,
generally low backgrounds in Dy semileptonics, and complications from splitoff show-
ers. We still benefit from leaving the transition photon out of our reconstruction for
Dy — nev, but the n — v reconstruction has higher backgrounds from both combina-
toric background and splitoff showers that contribute to fake 1. The rise in combinatoric
background doesn’t present a huge problem, as we still have a potential sideband sub-
traction and fewer background than signal events in the signal region. Splitoff showers
used in fake 1 do cause difficulties, however, since true nev events can have improperly
reconstructed n with a rate not always well modeled by the Monte Carlo.

With Dy — ¢ev, we reconstructed the ¢ but only used it as a consistency check
rather than directly involving it in the fit since false ¢ didn’t present much of an issue.
For Dy — ner, however, false ) in background modes become a problem, so we need to
use the n kinematic information directly in our fit. Specifically, we do a two-dimensional
fit to the n pull mass and the Dg; mass to determine the number of D; — nev events.

We retain the electron selections and event cuts from Sections [6.1] and respectively.

106
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9.1 1 Selection

We considered a cut on E 2 for the 1 daughter photons, but we found that the reduction
in background did not compensate for the relative 6% efficiency loss (Figure [0.1). In
general, we have found that our 2D fit to the n pull mass and D, invariant mass separates

signal from background well enough that we can use a fairly loose selection on the 7.
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c
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0.02
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Figure 9.1: The EE—; O.K. cut’s effect on the n pull mass distribution. Top: Recon-
structed n spectrum with and without the E9 0O.K. cut. Bottom: Normalized 7 spec-

trum with and without the 2 0.K. cut, showmg that the cut doesn’t disproportionally
change the pull mass dlstrlbutlon (slightly lower efficiency for large pull masses).

We make the following selections on the 1 daughter photons:

e No track matches the shower location
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e No showers may come from hot crystals

e The shower must come from the barrel or the endcap of the calorimeter, not the

transition region in between

e E, > 30 MeV

Beyond the individual photon cuts, we also make a simple 7 selection. We use the n
pull mass instead of the nominal mass to take advantage of the two showers’ uncertainty
information. Our loose pull mass cut of 5.00 ensures that we have a sideband region
for false 7 in our eventual 2D fit.

As in Section with Dy — Kgev, we have made a cut on the mass of the missing
four vector. This missing mass includes both the neutrino and the D} — Dgy transition
photon. The soft transition photon’s low energy ensures that the missing mass for
properly reconstructed events stays closer to the neutrino’s missing mass (zero) than
incorrectly reconstructed events. This allows us to cut out most of the combinatoric
background, the majority of fakes from other Dy semileptonic modes (e.g. n'ev, n' —

77%9), and a significant portion of misreconstructed 7 from true events, as seen in

Figures 0.2 and
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Figure 9.2: Ds; — nev missing mass after reconstructing a D, tag, an 1, and the electron
in the 20x Monte Carlo. The solid Dgs 4+ nev line represents all generated Dy — nev
events that have a correct Dy tag, while the dotted Dg + nev line has the additional
requirement that the n gets properly reconstructed from its daughter photons (no splitoff
or transition photon fakes).
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Figure 9.3: Our figure of merit for different missing mass cuts in the Dy — nev signal
region (within 3o of a correct Dy mass and 7 pull mass). The dark dots correspond
to the cuts from this analysis, in which we choose a maximum missing mass cut of
500 x 10% MeV? to err on the side of high efficiency. We have also tried reconstructing
the best D — Dy transition photon when available and incorporating it into the
missing four vector (light dots). However, we don’t see an improvement in our figure
of merit within the Monte Carlo by including the transition photon, and using it would
expose us to potential problems from the modeling of splitoff showers.
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Overall, we require the following cuts on the 1 beyond those for its daughter photons:
o |0, <5.0

o MM?2, < 500,000 MeV? (.50 GeV?)

9.2 D, — nev Reconstruction

9.2.1 Efficiency

As with Dy — ¢ev (Section [7.2.1]), we generated four signal Monte Carlo samples of
250,000 events for each Dy production mode (Df D, , DD, with prompt Dy — nev,
D:Dg with D} — Dgy or DX — Dgn0).
dimensional fit region (1900 MeV < Mp, < 2030 MeV and |oy| < 5.0) in Table

For comparison, we also provide the efficiency with a tighter n selection (‘0‘17‘ < 3.0) in

We give our efficiencies for our wide two-

Table [0.2] The semileptonic efficiencies include our event missing mass cut, so they’re

slightly smaller than the simple product of the electron and 7 efficiencies.

Table 9.1: Efficiencies for semileptonic particles in Dy — nev, with the n cuts used in
this analysis. The n and semileptonic efficiencies include the n — vy branching ratio.

D; production mode

€e

€n

€SL

DDy
D Dg with D} — (Ds — nev) ~
D:Dg with Df — (Ds — nev) n°
D?Dg with prompt Dy — ¢ev

81.7% + 2.7%
79.9% + 0.7%
80.7% £ 0.7%
80.4% £ 0.7%

26.8% + 1.6%
26.4% + 0.4%
26.5% £ 0.4%
26.7% + 0.5%

20.7% + 1.4%
20.7% + 0.4%
20.7% + 0.4%
20.5% + 0.4%

Weighted signal MC
Generic MC

80.2% + 0.5%
80.3% =+ 0.5%

26.6% + 0.3%
26.5% + 0.3%

20.6% =+ 0.3%
20.4% + 0.2%

We have a higher efficiency for electron detection in nerv than we do in ¢ev or most
of our other semileptonic modes. This improvement comes from the lower mass of the 7,
leading to a higher Q value in D; — nev and fewer of the low efficiency, slow electrons
(Figure . We also find that the n — ~~ efficiency does not have a strong dependence
on the n momentum (Figure , in contrast to our other semileptonic modes where

slower hadrons have difficult-to-reconstruct charged tracks.
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Table 9.2: Efficiencies for semileptonic particles in Dy, — nev, with |o,| < 3.0. The
efficiencies include the 17 — «v branching ratio.

D, production mode

€e

€n

€SL

DDy
D¥Dg with D} — (Ds — nev) ~
D*D, with D} — (Dg — nev) ©°
D?Dg with prompt Dy — ¢ev

81.7% + 2.7%
79.9% £ 0.7%
80.7% £ 0.7%
80.4% £ 0.7%

25.4% + 1.5%
24.5% + 0.4%
24.6% + 0.4%
24.9% + 0.4%

19.8% + 1.4%
19.3% + 0.3%
19.3% + 0.3%
19.2% + 0.4%

Weighted signal MC
Generic MC

80.2% + 0.5%
80.3% £ 0.5%

24.7% + 0.3%
24.7% £ 0.3%

19.3% £ 0.3%
19.1% + 0.2%

Previous CLEO 7 studies [71] suggest a correction to the relative 7 efficiency of
-5.6% with a relative systematic of 5.9%. We have done our own systematic (discussed
in Section and Appendix that does not show a needed correction, although
we get a large, relative systematic error of 7.9%. We use this systematic in our final
results, as it comes from a run environment that more closely matches our own. For
completeness, however, we also include the Dy — nev branching ratio when using the

corrected efficiency and smaller n efficiency systematic (final results in Table [9.11]).
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Figure 9.4: Generated and reconstructed momentum spectra from the 20x Monte Carlo.
a) Lab frame n momentum from Dg — nev. b) Electron momentum in Dy — nev.
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9.2.2 Backgrounds

Our event missing mass cut eliminates most of our background combinations from events
other than Dy — nev or with incorrect Dy tags (Table [9.3). We can fit the remaining
background combinations fairly well with either a linear background function in the n

pull mass, a linear background in the D mass, or both, as described in Section [9.2.3

Table 9.3: Truth-tagged breakdown for Dy — nev candidates in the 20x ddmix and 5Xx
continuum Monte Carlo, scaled to data size.

Event truth Candidates before cuts | Candidates after cuts
True D tag, true Dg — nev 604.55 499.30
True Dy tag, not Ds — nev 109.60 22.20
False Dg tag, true Ds — nev 90.80 59.05
False Dy tag, not Dy — nev 787.75 198.70

We still have a problem with combinations from true Dy — nev events where the
tagged D and electron get properly constructed, but where we have an improper 7
reconstruction (“volunteer” events). The 1 can be formed by using a splitoff shower from
one of the tagged D; tracks or by using the D} daughter transition photon (Figure .
These misreconstructed 1 combinations make up 27% of all true Dy tag, true Ds — nev
combinations in the Monte Carlo, which can be seen in the difference between the solid
and dotted Dg + nev lines in Figure [9.2

We attempted a best candidate selection on the 7, such that each true event only gets
counted once whether it has a volunteer combination or not. However, this shapes our
other false n backgrounds away from a simple linear distribution, and it still requires us
to estimate how many volunteer-only events we have for our efficiency systematic. While
we expect the Monte Carlo to model the volunteer 1 combinations from a real 7 photon
paired with the transition photon fairly well, we have found instances (e.g. Dy — ¢ev)
where the Monte Carlo underestimated the number of splitoff showers. Simply rejecting
all splitoff showers costs us too many true signal events, so we ultimately ran a separate
systematic correction to account for false n pairings with splitoff events.

For our splitoff systematic, we take advantage of CLEO’s large sample of D? and
D* events from 1)(25) — DD events at 3770 MeV. In particular, we use D° — K*n
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Origin of non-n shower in false 1 combinations

Transition y (45.6 %)

Two splitoff showers (0.7 %)
Other (4.6 %)

K—uv (3.7 %)

7° daughter (9.7 %)

n splitoff (13.9 %)

K splitoff (21.7 %)

Figure 9.6: Cause of the shower that leads to a false n combination when we have a
correct Dy in an Dy — nev event, from our 20x Monte Carlo. These false combinations
account for 27% of our counts in Ds — nev events with a valid Dy tag. Our systematic
addresses possible modeling flaws with the data for the three large, light slices (7 splitoff,
K splitoff, and K — uv).

decays, which gives us a fairly pure n sample after we do the full event reconstruction.
From this sample, we see how often we get an extra 1 combination in events with a
correct reconstruction, which tells us the false 7 rate from splitoff showers (or similar
causes, like K — pv decays from the tag side). We then scale the number of anticipated
splitoff showers from each Ds; mode by the rate of extra splitoffs that we observed in
the data from similar D° modes.

We use four different D tags (K7, Knr", Ksom, Krrr), which we link with our
13 Dy tag modes (Table to model the possible splitoff opportunities in Ds — nev
events. We cut fairly harshly on the D° to get as clean a sample as possible, requiring the

beam constrained mass to be within 5 MeV of the DY mass and the AE within 20 MeV
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of zero. We then reconstruct K* — K7 from the other tracks, requiring consistent
charges with the D tag, good tracks (within 5 cm of zg and 5 mm of dj), and that
particle ID matches the K or 7 track (£ = (02 — %) + (Lr — Lk) less than zero for
7, greater than zero for K). We also require that the reconstructed K* mass be within
35 MeV of its PDG mass.

Table 9.4: D° tag modes used to estimate splitoff systematic for D, modes.

DY mode | Corresponding Dy modes
KK
KKmn
KK
KKnn°
Gy
Krr® nnon

Kr

mn',n — 7y
ey Ry e
™', n = py
K Cross-check only
KK
K. Ktnr
KK 7nm

T

Knrrm

Once we have a reconstructed D° tag and a K*, we ensure that we have a D% — K*n
event by requiring that the recoil of the event fall near the n mass (525 MeV to 600 MeV),
as seen in Figures and We then reconstruct n — 7y with a 5o pull mass cut
and ensure that we have only properly reconstructed n by cutting tightly (£10 MeV)
on the event’s missing mass with the n included (Figures and .
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Figure 9.7: Recoil mass against the D + K* in a 20x Monte Carlo sample. We keep
events between the vertical lines.
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Figure 9.8: Recoil mass against the D 4+ K* from the 3770 MeV data.
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have only true 7, then we see if there are any other splitoff 7 combinations in the event.
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Figure 9.10: Full event missing mass, by D? tag mode for D 4+ K*n in the 3770 MeV
data. We select 77 combinations between the vertical lines to determine true 7, then we
see if there are any other splitoff 7 combinations in the event.
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When we have identified events with a correct n reconstruction, we see how many
proper events have additional 7 from splitoff showers after dropping the missing mass
requirement. By comparing the extra n from splitoff in Monte Carlo and in data, we can
determine the difference in splitoff rate (Table . We don’t see a large needed splitoff
correction for 7 reconstruction with our cuts, mostly because the photons involved have
larger energies where the Monte Carlo models splitoff better. Since our Ds; — nev fits
still depend somewhat on the Monte Carlo’s splitoff rate, we incorporate these results

in a systematic, as described in Section [10.8

Table 9.5: Rate of additional n formed using splitoff showers, by DY mode. The
data/MC splitoff correction error (extra splitoff factor) includes a small systematic from
combinatoric background.

Mode Recon Data % | Recon MC % Trult/l[l(—jt z;goged split]f));ft;:ctor
Kmn (25.9 + 3.6)% | (27.0 £ 0.8)% 27.1% 0.959 £+ 0.137
Krr (274 +25)% | (29.9 £ 0.5)% 30.0% 0.915 + 0.085
Ko (209 £ 6.2)% | (34.7 £ 1.6)% |  34.6% | 0.603 % 0.181
Krrmw (39.2 +3.4)% | (384 £ 0.7% 38.7% 1.020 £ 0.089
Integrated | (30.1 £ 1.7)% | (32.2 £ 0.4)% 32.3% 0.936 + 0.054

Foregoing any cuts on EE—;E) increases our signal at the expense of some extra splitoff
background. However, the Monte Carlo models the extra rate of background about as
well with no EETQE) cut as when we do apply an EE—; 0.K. cut, shown in Table . For our
full analysis, we simply drop EE—;S to maximize our signal and use our splitoff systematic
results to correct for the difference in splitoffs between the data and the Monte Carlo.

We also have a small, peaking background from events with a true D, and a correct
n that aren’t Dg — ner events. These events come from Dg — ¢ev where ¢ — 1y,
D — n'ev where the i’ decays to a state with no tracks and an 7, and events where
a kaon fakes the electron. Most such peaking background get rejected by our event
missing mass cut, but we use our measured Ds — ¢ev and Dy — n’ev branching factions

to correct the remainder. We give the resultant correction to our Dy — nev branching

ratio from these corrections in Table [0.7]



Table 9.6: Rate of additional n formed with splitoff showers after applying an B

Ey
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cut,

by D° mode. The data/MC splitoff correction error (extra splitoff factor) includes a
small systematic from combinatoric background.

Mode Recon Data % | Recon MC % Tru;/}f g a(;iged split]f)}lfftzzc tor
Kr (10.9 £ 2.8)% | (10.6 & 0.6)% 10.7% 1.033 + 0.266
Krr© (13.3 £ 2.1)% | (125 + 0.4)% 12.5% 1.064 + 0.169
Korr (16.7 £ 6.2)% | (13.5 &+ 1.3)% 13.8% 1.239 4 0.476
Krrm (20.2 £ 3.0)% | (16.4 &+ 0.5)% 16.5% 1.236 4 0.186
Integrated | (15.1 = 1.4)% | (13.4 £ 0.3)% 13.4% 1.127 4 0.110

Table 9.7: Absolute branching ratio correction and systematic error for B(Ds; — nev)
from peaking background.

BR correction
(0.0037 4+ 0.0011
(0.0104 + 0.0029
(0.0017 4+ 0.0008
(0.0158 + 0.0032

Background mode
Ds — ¢gev
Dy — nev
Non-semileptonic
Total Dy — nev correction

%
%
%
%0

~—— — ~—

9.2.3 Fit Procedure

In our other semileptonic modes, we had low background on the semileptonic side.
This let us fit the Dy invariant mass for both our tags and semileptonic events without
worrying about the specific reconstruction of the electron or hadron. Ds; — nev has
somewhat more background on the semileptonic side due to the relative ease of making
an 7. We solve this problem by directly incorporating the n into our fit, doing a 2D fit
to the n pull mass and the tagged Ds mass after getting a good electron.

We find no correlation between the 7 pull mass and the D, mass (as expected), so
we can use a simple product of the two distributions for our fit functions. This allows
us to reapply the Ds mass signal lineshape that we determined previously from our tag
fits for each Dy mode. We then generate a truth tagged 7 lineshape with our cuts in
the Monte Carlo, which we take to be the n signal distribution.

We use a linear background for combinations with a false n or a false Ds. We
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determine a normalized slope for the 1 background and for the background in each of
the Dg modes by fitting their 1D background projections in the Monte Carlo.

As in Dy — ¢ev, we do an unbinned, extended maximum likelihood fit over each
D, tag mode, with the fits linked by a common branching ratio parameter. However,
instead of one background normalization for each tag mode due to false Dy, we now
have the possibility of a false 7, a false D, or both.

We don’t require an extra parameter for combinations with a false n and true Dj
as we determine their rate by one of two methods. The larger component of false 7,
true Dy combinations comes from volunteer (true) events, where the reconstructed 7
contains a splitoff shower or the D} transition photon. We use our splitoft study to
estimate the splitoff combination rate, and we use the Monte Carlo for the transition
photon combination rate (which only involves kinematics). We then tie both to the rate
for correctly reconstructed, true events (the branching ratio).

The smaller component of false 7, true Ds; combinations come from events that do
not have a Dy — ner. The majority of these combinations arise from other Dy semilep-
tonic modes, where either splitoff showers combine with a real n shower or where the
semileptonic hadron decays to multiple 7°. We determine the rate of such combinations
from the Monte Carlo and correct that rate using our measured branching ratio for each
of those Dy semileptonic modes. We have a small remaining component (half an event)
expected from all other sources; we use the Monte Carlo rate for such combinations.

This leaves 13 parameters (one per tag mode) for false Ds combinations with a
true n. Similarly, we have another 13 parameters for combinatoric background (false
Dy, false 1), one per tag mode. We have a total of 1 signal parameter (the common
branching ratio) and 26 background parameters in our fit.

Our log likelihood function to be minimized is given by



125

F(B,Npa, Kpc) = —In L(B, Nga, Kpg)

=B-eq - [Z tag 1+’I"
+ €mer - [Z Nt[;]g]
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mj

where

F(mj,o¥) = B-es- N2, - f9(my) - gg(ol)

+B-esL - NP f9(my) - gga (o)) - 1l
[

+ €er Nt[;g fs[fg]( ) gBG<O—nJ})
"’NJ[BJG'fBG(mJ) sig(0 [j])
+Kj[é]G'f]£3’jé(mj)'gBG(Uq[7})-

Here, B is the D, — nev branching ratio, gy, is our nev efficiency, 7' is the total
rate of false n from splitoff and transition photon combinations for D, tag mode i,
€iper is the total rate for false n combinations from all non-nev sources, NBG is the
background normalization for false D/true n events (one per tag mode), and I?BG is
the combinatoric background. [j] refers to the tag mode associated with the Dy mass,

m;. Our distributions are given by f& for the normalized signal mass distribution of

si
true D with tag mode 1, fBG for the nirmalized, linear background function from false
D, of tag mode i, gsig for the normalized pull mass distribution from true 1, and gpag
for the normalized, linear background function from false 7.

In F, the first term corresponds to the number of signal Dy — nev events. The
second term (with 7%) gives the extra false  combinations formed from true events,

while the third term gives false  combinations from other sources. The fourth and fifth
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terms combine to form the total background from false Dy tags. The last, log term gives
the sum over the distributions for each of the different signal and background sources,

explicitly stated in the definition of F'(mj, 07[7j ]).

9.3 Results

Unlike the other semileptonic modes where our statistical errors dominate, our Dy — nev
measurement has comparable levels of statistical and systematic error. The difficulty
of obtaining a clean and comparable sample for the 7 efficiency drives the systematic
error, so we have included that systematic (described with more detail in Section
in the following results. Section [11.2] contains the final result with our additional, less

dominant systematic errors from Section

9.3.1 Monte Carlo

We first break our 20x Monte Carlo into twenty data-sized samples to test our analysis
technique with a limited statistics data set. Our comparison across these data-sized
samples, given in Tables and show that our analysis reproduces the generating
D, — nev branching ratio and number of signal events to within statistical error (x? of

26.9 over 20 samples).
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Table 9.8: Monte Carlo comparison of the measured Dy — ner branching ratio to its
generating branching ratio (2.480%), in data-sized samples. The weighted average line
contains the y? across the 20 samples rather than the number of o between the mea-
sured /generated branching ratios.

Dataset Raw fit BR Corrected BR #o
1 (2712 £ 0.132)% | (2.692 £ 0.132)% || 1.60
2 (2.423 + 0.124)% | (2.404 + 0.124)% || —0.62
3 (2.251 + 0.119)% | (2.231 £ 0.119)% || —2.09
4 (2.602 £ 0.128)% | (2.583 + 0.128)% ||  0.80
) (2.313 £ 0.122)% | (2.293 £ 0.122)% || —1.53
6 (2.588 + 0.125)% | (2.568 £ 0.125)% ||  0.70
7 (2.485 + 0.122)% | (2.465 + 0.122)% || —0.12
8 (2.492 + 0.124)% | (2.473 £ 0.124)% || —0.06
9 (2.321 + 0.113)% | (2.301 £ 0.113)% || —1.58
10 (2.263 + 0.121)% | (2.243 + 0.121)% || —1.97
11 (2.530 + 0.125)% | (2.511 + 0.126)% || 0.25
12 (2.384 + 0.123)% | (2.364 + 0.123)% || —0.94
13 (2.511 + 0.123)% | (2.491 + 0.123)% ||  0.09
14 (2.480 + 0.124)% | (2.460 =+ 0.124)% || —0.16
15 (2.365 + 0.122)% | (2.346 + 0.122)% || —1.10
16 (2.758 £ 0.131)% | (2.738 £ 0.131)% || 1.98
17 (2.539 + 0.123)% | (2.519 + 0.123)% || 0.32
18 (2.354 + 0.121)% | (2.335 £ 0.121)% || —1.20
19 (2.343 + 0.120)% | (2.323 + 0.120)% || —1.31
20 (2.569 £+ 0.125)% | (2.549 + 0.125)% 0.55

Weighted averages/x? || (2.457 4+ 0.028)% | (2.437 + 0.028)% || 26.87
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Table 9.9: Test of potential bias in our fitting procedure for Dy — nerv by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset Ng?i%t;ggm Nt L tag Difference (# o)
1 369 382.00 £ 22.30 0.583
2 369 354.60 £ 21.61 —0.666
3 350 334.04 £+ 21.13 —0.755
4 397 382.58 £ 22.38 —0.644
) 343 334.00 £+ 21.03 —0.428
6 373 372.55 £ 21.62 —0.021
7 367 364.06 + 21.34 —0.138
8 348 368.40 £ 21.82 0.935
9 324 333.11 £+ 19.36 0.471
10 369 332.66 £+ 21.24 —1.711
11 369 361.51 £+ 21.47 —0.349
12 348 346.87 £+ 21.35 —0.053
13 374 371.25 £+ 21.68 —0.127
14 380 372.84 £+ 22.19 —0.323
15 361 339.79 £ 20.99 —1.011
16 370 392.65 £ 22.23 1.019
17 390 371.83 £ 21.54 —0.844
18 350 346.62 £+ 21.28 —0.159
19 348 349.24 £+ 21.32 0.058
20 377 373.66 + 21.68 —0.154

Sum 7276 7184.27 + 96.09 —0.955

Figure shows the 1D projections of our 2D fit to the D, invariant mass and
1 pull mass in the Monte Carlo, after summing over all twenty datasets and each tag
mode. We have also added the 1D projections of our Monte Carlo results for the four

highest statistics tag modes (summed over all twenty datasets) and for the first four

datasets (summed over all tag modes) in Figures from Appendix
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Figure 9.11: Dy — nev 2D fit projections for the reconstructed Dg mass (top) and 7

pull mass (bottom) in the 20x Monte Carlo, summing over all tag modes.
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9.3.2 Data

Table contains our Dy — nev branching ratio with statistical error after we correct
for true Dg, true n feedthrough from other semileptonic modes. Figure shows the
projections of our reconstruction and fit along the D; invariant mass and the n pull

mass.

Table 9.10: Dy — nev measurement in the data, including the peaking background
correction from Table 9.7

Measurement Branching Ratio # Events

Raw fit result (2.265 £+ 0.136)% | 360.7 £ 21.9
Peaking BG correction | (0.016 £ 0.003)% 25+ 05

B(Ds — nev) (2.249 + 0.136)% | 358.2 + 21.9

As the n efficiency systematic (Section dominates our error for Dy — nev (a
relative 7.9% systematic versus a relative 6.0% statistical error), we show the branching
ratio with just that systematic error added in Table For comparison, we’ve also in-
cluded the Ds — nev result when using the standard CLEO 7 efficiency systematic [71].
That analysis uses different 1 selections and has a cleaner environment (¢' — nJ/1),
extrapolating the systematic on their monoenergetic n from a 7% study. They saw a
relative systematic error of 5.9% with a relative efficiency correction of -5.6%. Although
we feel that the standard systematic provides a viable alternative, we have chosen to
use our own systematic for the final result, believing that we gain improved accuracy

at the expense of finer precision.

Table 9.11: Dy — ner branching ratio and errors under both 7 efficiency systematic
scenarios.

n efficiency systematic | Ds — ner branching ratio
This analysis (2.249 £+ 0.136 £+ 0.179)%
Alternate systematic | (2.375 £ 0.143 + 0.134)%
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Figure 9.12: Ds — nev 2D fit projections for the reconstructed Dg mass (top) and 7
pull mass (bottom) in the data, summed over all tag modes.



Chapter 10
Systematic Uncertainties

Our main limit on measurement precision in D semileptonic decays with our sample
comes from the amount of available data. However, all six of our semileptonic modes
have non-trivial errors of the “how well do we know what we know” variety, which we

have determined and enumerated to the best of our abilities in this chapter.

10.1 D, Tagging

We have a variety of possible systematic effects that could cause a mismatch between
the Monte Carlo efficiency and the true efficiency for reconstructing Dy tags, like our
recoil mass resolution or resonant substructure (e.g. KK can come from ¢m, K*K,
or be nonresonant). However, by using the Dy invariant mass for both the numerator
and denominator of our branching ratios, the effect of any such errors in our tagging
efficiency cancels out. We only have to worry about systematic effects that create

different biases in our tag counting than in our semileptonic fits.

10.1.1 Signal Shape Variation

Our Dy tag fits have either a double gaussian or a gaussian plus crystal ball for their
signal components, as mentioned in Section (Table . We use this same shape
for both the number of tags (our branching ratio denominator) and the number of
semileptonic counts (our numerator), so we don’t expect our result to depend strongly

on minor errors with our lineshape. However, we do see far more background relative

132
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to signal for our tag counts than for our semileptonic counts, so we could have some
bias due to a wider than expected signal looking like background in our tag fits.

We allow our D, mass signal shape’s overall normalization, mean, and overall width
to vary when we do the tag counts, so we should expect no bias between the data and
Monte Carlo from those parameters. However, we use the sum of two shapes for our
signal functions, and we fixed the relative normalization and relative width between
them using our predicted (Monte Carlo) histograms. While leaving the overall width
to float deals with most Mp, resolution issues, we can tell a story about the poorer
quality tracks having a worse than expected resolution while the high quality tracks
match well, or one where we have more poor quality tracks than the Monte Carlo
expects. The relative width or normalization, respectively, would then need to adjust
to properly match the true signal shape in data.

Our tagged Dy backgrounds make it impractical to simply allow the relative width
or normalization to float, so we need to look elsewhere to study any potential biases
between the Monte Carlo and data. Since the D* has similar decay modes to the Dj
(often with just a K to 7 conversion), we look at that system to study our tag signal
shapes. While probably overkill, we wanted to keep the procedure as close to our Dy
tagging as possible, so we use DD* events at 4170 MeV instead of moving to the high
data running at 3770 MeV. This costs us some precision (and generates much more
work), but it allows us to use a similar choice of a best recoil mass to protect us from
the (unlikely) possibility that a best choice somehow biases the track quality in a way
not predicted from the Monte Carlo.

We use seven different D* tag modes, each of which corresponds to one or more D,
tag modes (Table . We reconstruct the D tags with the same daughter particle
cuts as listed in Section for the D,. Our best recoil mass selection for each charge
now takes the DT with a recoil mass closest to the D** mass instead of the recoil mass
closest to a Dj.

We fit each Mp+ spectrum with our analogous Dj signal function (double gaussian
or gaussian plus crystal ball), fixing the relative normalization and relative width to the
Monte Carlo signal. Then, we fit the Mp+ spectrum in data with the relative normal-
ization or relative width allowed to float. We treat the ratio between the data’s relative

normalization (or width) and the Monte Carlo’s relative normalization (or width) as
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Table 10.1: DT tag mode used for each D, mode’s relative normalization and relative

width systematics.

D* mode | Corresponding D, modes
Krm T
Kyrr® ,KS,KWO
mn',n’ — wn
Knnn© KK
™
K KK
KK
KK K. K'tnr
KK 7w
KKr KKm
7'y
w070 a0’ — wn
™', n = py

our lo systematic variation.

Once we have the systematic variation on the relative normalizations or widths, we

redo the Dy semileptonic analyses with our rescaled values. We show the systematic on

our semileptonic branching ratios for each mode in Table

Table 10.2: Systematic errors from our D, tag fits.

Semileptonic mode | Tag statistics | Fit shape, % Fit shape, g—f Total systematic
pev 1.0% 1.5% 0.3% 1.8%
nev 1.0% 1.9% 0.7% 2.2%
n'ev 1.3% 1.6% 0.3% 2.1%
foev 1.0% 1.2% 0.3% 1.6%
Kev 0.9% 1.3% 1.5% 2.2%
K*ev 1.2% 0.5% 2.7% 3.0%

Table also gives the branching ratio systematic from the statistical uncertainty

in our Dg tag count measurements.

Since the tag counts for each mode provide an

explicit weighting in our linked semileptonic fits, we can’t simply add their errors in
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quadrature with the numerator errors. Instead, we follow each statistical variation
through the entire process and add the final results from each tag mode’s fluctuations
in quadrature. Whether this error should be considered statistical in nature because
it arises from underlying statistics on the tagging or systematic in nature because it
creates a bias in our numerator fits’ weights is a matter of philosophy; we include it
here as it has more in common with our tagging systematics than with our semileptonic

measurements.

10.1.2 Background Functions

We approximate the combinatoric backgrounds on our D; tag fits with either a linear
or quadratic background function, depending on the tag mode (Table . This gives
us some flexibility in case the data has slightly different combinatorics than predicted
by the Monte Carlo, but it may give the background too much freedom to add or steal
counts from our signal (particularly the quadratic backgrounds).

To estimate our systematic error from our choice of background function, we also fit
using a one parameter background histogram with our signal function. Our background
histogram includes both a charm and a continuum component, which we simply fix to
the Monte Carlo expectation so that we only have one free background parameter.

The histogram background fits give us roughly the same tagging results as our normal
procedure, with a relative difference in total Dy counts of less than 1%. However, since
each mode’s tag counts also act as a weighing function for our semileptonic fits, we
follow the changes through the entire procedure to our branching ratio. After adding the
branching ratio variation from each tag mode’s background histogram fit in quadrature,

we obtain the systematic errors shown in Table

10.1.3 Multiple Candidate Choice

In our D; tag selection, we make a best candidate choice based on the Dy recoil mass.
When multiple candidates exist in the event, this selection can occasionally cause us to
throw out the proper tag and instead choose the extra candidate (with a non-peaking
D, mass). The multiple candidate rate when the other side Dy decays semileptoni-

cally differs slightly from when it decays generically, creating a slight bias between tags
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Table 10.3: Systematic errors from our D, tag background shape.

Semileptonic mode | Relative systematic error
pev 1.3%
nev 0.9%
n'ev 1.3%
foev 0.8%
Kgev 0.9%
K*ev 2.1%

in semileptonic events and tags without a semileptonic event. The D, tags’ multiple
candidate efficiency comes primarily from kinematics and differences in charged /neutral
daughter hadron decay rates, both of which should be well modeled by the Monte Carlo.
We determine the systematic shown in Table by combining the tag multiple can-
didate efficiency, each semileptonic mode’s branching ratio, and the small difference in
multiple candidate efficiency for the semileptonic mode compared to the overall multiple

candidate efficiency.

Table 10.4: Relative systematic error from the multiple candidate efficiency difference
between semileptonic and all other D decay modes.

Semileptonic mode | Relative systematic
Dy — ¢ev 0.11%
Dy — nev 1.67%
Ds — nev 0.21%
D, — foev 2.20%
D, — Kgev 3.06%
D, — K*ev 0.28%
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10.2 Tracking

10.2.1 Reconstruction

Our semileptonic hadron reconstruction efficiencies in Section depend in part upon
the reconstruction efficiency for their daughter pion and kaon tracks. CLEO has per-
formed tracking systematics for m and K reconstruction using the baseline track selec-
tions that we also adopt for our D, tagging [72]. They see no correction needed between
the Monte Carlo and data track reconstruction efficiencies, with a 0.3% systematic on
7 tracks and a 0.6% systematic on kaon tracks.

The standard CLEO systematic analysis works for our typical m reconstruction,
used in foer, K*ev, and n'ev. However, the K systematic does not carry over to our
analysis for a couple reasons. The 0.6% kaon reconstruction systematic depends on a
momentum distribution peaking near 500 MeV, while we have a much softer momentum
distribution with a peak closer to 250 MeV in Dg — ¢erv. This alone might be dealt
with using CLEO’s kaon systematic broken into momentum bins, but we also loosen
the kaon cuts for both ¢ and K* reconstruction to increase the efficiency.

To this end, we have performed our own kaon systematic with the track selections
used in this analysis and a momentum binning that better follows the kaon momentum
distribution in our events. Since the standard CLEO particle ID cuts also differ from
our own, we have combined both the kaon track reconstruction and kaon particle ID
into one study, given in Appendix [D] We find that the Monte Carlo does a good job of
modeling higher momentum kaon tracks but that it overestimates the efficiency for low
momentum tracks. CLEO’s particle ID study [73] also found a large correction required
at low kaon momenta, with our work matching those results.

We incorporate the 7 tracking systematic and the kaon systematics from Appendix D

into our overall hadron efficiency systematic in Section [10.6

10.2.2 7 and K Particle ID

CLEO has performed a systematic study for the data/Monte Carlo efficiency difference
in its standard 7 and K particle ID selections [73] using D° and Dt decay modes in
the 3770 MeV data. While we have a customized kaon systematic for our looser cuts

(Appendix @, we do follow the standard cuts for pions in K*, , and f.
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The standard study sees a systematic error of 0.02% for pions with an efficiency
correction that has a strong momentum dependence. We correct each mode’s particle ID
efficiency based on that mode’s pion momenta. Our fy and K* pions have an efficiency
correction close to the average from the original study (—0.49% per pion), but our slower
7’ pions give us a slightly larger correction. We’ve summarized the integrated corrections

and systematics for these three modes from all constituent particles in Section [10.6.4

10.3 Photon reconstruction

We only reconstruct photons for use in our Dy tags and in our n modes (nev, n'ev). In
the case of the Dy tags, our reconstruction efficiency doesn’t impact our branching ratio
measurements, as mentioned in Section We also don’t need to make an explicit
photon reconstruction systematic for the 7 since we roll both daughter photon efficiencies
into our overall 7 systematic (described later in Section and in Appendix .

10.4 Electron ID

Electron systematic errors have a strong momentum dependence due both to direct
particle identification and to changes in the electron identification efficiency when in
the presence of other tracks and showers [74]. While the systematic from direct electron
identification dominates, we have also included the non-trivial environmental effects
(following the Dt — Xetv procedure). Each semileptonic mode has a distinct electron
momentum distribution, causing each mode to have its own electron systematic.

Table[10.5gives our final electron identification systematics and efficiency corrections
after integrating over momentum and combining each systematic effect. We’ve included
the different components for these systematics and corrections in Tables and
(Appendix [F)).

10.4.1 Wrong Sign Electron

Any peaking background in our six semileptonic modes requires that we have a true Dy
and that some track passes the electron cut. We explicitly correct each semileptonic

mode for peaking background due to other semileptonic modes, which leaves a small
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Table 10.5: Electron particle identification systematic and efficiency correction, by semi-
leptonic mode.

Semileptonic mode | Electron PID systematic | Electron PID correction
pev 0.68% -1.91%
nev 0.37% -1.24%
nev 0.59% -1.711%
foev 0.59% -1.69%
Kgev 0.38% -1.24%
K*ev 0.60% -1.69%

peaking component from events with no direct electrons. Some of our modes (Kgev,
K*ev) have problems with kaon tracks faking electron tracks, which we deal with by
applying a missing mass cut. After correcting for events with a direct electron and those
where another track fakes an electron, we only have to worry about real electrons that
get produced indirectly, like through photon interactions in the detector.

Since these indirect electrons don’t have a preferred sign, we can test the impact of
such events by reconstructing the entire event with the required electron sign flipped
(matching the Dy tag charge instead of the semileptonic Dy charge). We compare our
expected numbers of wrong sign electron events from the Monte Carlo to our recon-
structed wrong sign events in the data to see if we have an inconsistency.

We find very few wrong sign electron events in the data, with fit errors higher than
the number of reconstructed events in each case. As Table shows, this consistency
with zero events matches our prediction from the Monte Carlo. Only Ds — foev even
had a single measured wrong sign event in the data, and this mode also (not coinciden-
tally) had the highest background from false Ds.

The predicted indirect electron events already have a statistical error from our Monte
Carlo determined correction. We take no additional systematic for the Monte Carlo’s

modeling of such events.
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Table 10.6: Passing events with a good D, when reconstructing each semileptonic mode
using an electron of the wrong charge. Our errors for the reconstructed events in each
mode slightly exceed that mode’s counts (all six modes are consistent with zero).

Semileptonic mode | Expected data events (from MC) | Actual data events
pev 0.1 0.0
nev 0.2 0.7
n'ev 0.0 0.0
foev 0.2 1.1
Kgev 0.1 0.1
K*ev 0.1 0.1

10.5 Monte Carlo Consistency

CLEO collected the 4170 MeV data over five data sets, which correspond to roughly two
calendar time periods. The Monte Carlo generation reflects this separation in time, as
datasets 39-41 use a different code release from datasets 47 and 48. While we expect no
noticeable impact from the different generating time periods on our efficiencies, CLEO
regularly tweaked its code to improve the accuracy between data and Monte Carlo. We
have thus checked the generic Monte Carlo efficiencies for our six semileptonic modes
across each dataset, as well as checking our signal Monte Carlo against the generic
Monte Carlo (Figure [10.1]).

The fluctuation across datasets and signal Monte Carlo for Dy — nev pushed the
limits of random variation. This, combined with a different run environment and 7 mo-
mentum range than in the standard CLEQO 7 efficiency systematic, led to our performing
a custom 7 systematic that we discuss in Appendix [C]

We also find a discrepancy in the D, — Kgev efficiency between our signal Monte
Carlo and the generic Monte Carlo. We traced this to a random 3¢ fluctuation between
the two in B(Ks — n7n~). When we change our denominator to only consider events
where the K decays to charged pions, this efficiency discrepancy disappears.

We do not take any systematic to our efficiency from internal Monte Carlo incon-
sistency for the other semileptonic modes, as the efficiencies in the signal Monte Carlo

and across the five datasets falls within a reasonable distribution around the average.
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Figure 10.1: Efficiency (including hadron branching ratios) for each semileptonic mode,
by dataset. The solid lines give the average across the full generic Monte Carlo sample,
while the dotted lines show the 1o range on this average.

10.6 Hadron Efficiencies

10.6.1 ¢

We have two sources of possible systematic error to consider for our Monte Carlo de-
termined ¢ efficiency. The largest concern comes from the kaon reconstruction and
particle ID efficiencies, discussed in Appendix |D| which requires both a systematic error
and an efficiency correction. The other possible systematic arises from the possibility
that the combined kaon tracks in the data could have a broader invariant mass distri-
bution (poorer resolution) than predicted by the Monte Carlo, extending part of the ¢

distribution beyond our mass window.
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Our kaon reconstruction and identification efficiency measurement shows that we
tend to properly reconstruct soft kaons in the Monte Carlo more often than we actually
do in the data. Since the two daughter kaons from the ¢ have correlated momenta, we
need to correct our ¢ efficiencies based on each kaon momentum pair. Figure shows
the result of our ¢ efficiency correction, by momentum. For the predicted ¢ momentum
distribution from Dy — ¢er in the Monte Carlo (ISGW2 model), this results in a gev

semileptonic efficiency change of -8.2% (relative).
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Figure 10.2: Top: ¢ efficiency in the Monte Carlo, by momentum, before and after
correcting the efficiency based on the kaon systematic study in Appendix Bottom:
D, — ¢er semileptonic efficiency, by ¢ momentum, before and after correction.

We additionally obtain two systematic errors from our kaon reconstruction study in
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Appendix [D] The first comes about directly from our measurement limitations on the
kaon efficiency in each momentum bin. We treat the individual kaon systematics as
correlated and obtain a relative systematic error of 1.7% for ¢er given our ¢ momen-
tum distribution. The second systematic results from the process of splitting the kaon
momenta into bins in the first place, given that each bin may not have a constant effi-
ciency. Considering different efficiency distributions across the bins gives us a relative
systematic error of 0.5%.

In addition to finding and correctly identifying the kaons, they also have to combine
to form a ¢ mass that falls within our cut window (—15 MeV < Mg — M dl)) bG <
30 MeV). Since our mass window already captures most of the ¢ spectrum, we don’t
expect any resolution difference to significantly affect our efficiency. We explicitly test
this by assuming that the data ¢ could peak in a slightly different location (a shift)
and by taking the data resolution to have a gaussian smear convoluted with the Monte
Carlo resolution.

We don’t have enough data to test the ¢ resolution explicitly in our tagged Dy — ¢ev
analysis, so we instead use an inclusive approach by plotting the KK spectrum when
we find an electron in the event (no D tagging). We use our standard Ds — ¢ev kaon
cuts but to avoid electron-only events (e.g. ee — eecee, where two electrons fake kaons),
we also require that the kaons not pass electron cuts and that the tracks not be too
close to the beamline (|cos(#)| < 0.8). We have redone the systematic relaxing these
additional kaon restrictions with a similar result, but we get less precision due to the
extra background.

We use the Monte Carlo signal and background functions to fit our data spectrum,
allowing the signal to shift or have a poorer resolution from a gaussian smear. Figure[10.3]
shows our best fit to the data (a peak shift of —0.05 MeV and smear with a o of 0.1 MeV)
alongside the fit with no shift or smear allowed. Not only do we obtain a small relative
systematic of 0.025% from the ¢ resolution over our large window, but we find that the
Monte Carlo matches the data well enough that we’d see a small systematic even with

a tighter mass window. We also show more detailed fit results for our different shifts

and smears with Figures and [G.47] in Appendix [G]
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Figure 10.3: Top: ¢ mass fit in the data, using the signal and background produced in
the Monte Carlo. Bottom: Best ¢ mass fit in the data after allowing the signal Monte
Carlo histogram to shift its peak and convoluting it with variable width gaussians.
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10.6.2 7

The best existing study of 7 efficiency systematics at CLEO [71] uses a 30 pull mass
cut in its n selection, compared to the 5o cut we use in this analysis. That study also
uses monoenergetic 7 from ¢’ — nJ/1y with a relatively soft 7 momentum of 199 MeV.
Dy — nev involves a much wider 7 momentum spectrum, as seen in Figure [9.4 which
gives us a much wider range of resultant photon energies. Furthermore, ¢’ — nJ /1
with J/v — p*p~ produces a cleaner environment (fewer photons and poorly tracked
hadrons) than the environment we see in DD events.

For these reasons, we have decided to do our own 7 efficiency systematic study. This
results in worse precision on our systematic than the high statistics ¢’ study, but we
feel that it more accurately represents the n selections and environment in our analysis.

Our 7 efficiency systematic uses the same D, tag modes as our standard analysis,
but it takes advantage of the relatively large D¥ — p™n branching ratio to get a clean
n sample. We have described our full efficiency systematic technique and results in
Appendix [C]

Unlike the previous study of 7 efficiency systematics at CLEO, we do not find that
we need a Monte Carlo correction to match the data. That study suggested a relative
correction of -5.6% to the 7 efficiency for n without an 5—; 0O.K. cut (-6.5% for those with
an 5—2"5 O.K. cut). In our study, with a broader pull mass cut and wider 7 momentum
range, we find that the data and Monte Carlo agree to within 1.2%. This falls well
within the precision of our study, so we take no efficiency correction.

Our systematic procedure has the downside of requiring a large systematic error
given the statistical error in our ner measurement. While the previous 7 study had a
relative 5.9% efficiency systematic after extrapolating to a wider momentum region, our
7 systematic procedure yields a 7.9% relative systematic. This makes it a limiting error

in our overall Dy — nerv measurement.

10.6.3 K,

The standard CLEO systematic study on K reconstruction [75] shows no efficiency
difference between Monte Carlo and data up to 0.8%, as long as both daughter 7 tracks

have been found. However, our backgrounds in Dy — Kgev lead us to make tighter
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selections on the K than the prior study. While they used a 12 MeV mass cut with
no flight significance selection for the K, we use a 6.3 MeV mass cut and a flight
significance greater than 4.0. Furthermore, we require that the K, daughter tracks fall
within 20 cm of the origin to avoid 7v backgrounds, which the generic K, study did not
have to concern itself with.

Since our selections lead to a significantly different efficiency than the loose cuts from
the standard study (a relative difference of about 30%), we have run our own systematic
for K, reconstruction. The low statistics in our Dy — K er measurement mean that
we can have a fairly forgiving precision from our K, systematic without impacting
our overall error. We consequently try to keep our systematic study’s environment as
close to Dy — Kgev as possible by using tagged DD, decays (4170 MeV data) in our
systematic measurement rather than the higher statistics 3770 MeV data.

We compared the Ky momentum spectrum in Dy — K ev to that from several other
K modes, and we ultimately chose Dy — K K for our systematic above 650 MeV and
Dy — K*K* (Df — K KFr*rt) for our lower momentum systematic (Figure [10.4).
We use a procedure similar to that for our kaon systematic (Appendix @[) by recon-
structing all particles other than the K, then fitting the recoil mass both when we
successfully reconstruct a K, (“found” events) and when we don’t find a Ky (“not
found” events). Rather than trust that the general 7 tracking systematic applies for K
daughter tracks, we combine our track and K reconstruction into one systematic (i.e.
we don’t require two extra tracks before looking for candidate K events).

In reconstructing all other particles in the event, we need to find a D, tag, the
D7 daughter photon, and either a single kaon (for KsK) or a kaon and two pions (for
K*K*). Our D, tag involves the same 13 tag modes as our full analysis, with selections
given in Section [l For a cleaner sample, we also add a mass cut to the D, with each
tag mode’s cut listed in Table (Appendix .

We use the selections from Section for our D} daughter photons, excepting
the minimum energy cut (irrelevant here). After ensuring that the Ds + ~ recoil mass
matches a Dy (Myecoil between 1950 MeV and 1990 MeV), we improve the later resolution
slightly by rescaling our photon energy to match the D} Dy kinematic requirement. Our
kaons and non-K pions must have the proper charges relative to the tagged D, and

pass the selections from Section We also require p; > 100 MeV to eliminate soft
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Figure 10.4: Normalized Ky momentum distributions in D, decays to Ksev, K K, and
K*K* (K, KTrtnt). We use K K to study K, reconstruction above 650 MeV and
K*K* to study the systematic below 650 MeV.

pion swaps.

After reconstructing all other particles, we separate candidate events into three
systematic regions based on their recoil momentum: a high momentum K region
(650+ MeV), a medium pg, region (400 MeV- 650 MeV), and a low pg, region (200 MeV—
400 MeV). We then attempt to reconstruct a K using the selections from our Dy — Kgev
analysis in Section (|Mpeeen — MIP;]S:)G| < 6.3 MeV, K, flight significance > 4.0, and
p5 = \/d? + 2% < 20 cm for the 7 from K). We make both a “found” and “not found”

plot for the recoil mass against the K candidate in each momentum region.
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We fit each momentum region’s recoil mass plots with a double gaussian for the
signal shape and either a linear background function, a scaled histogram background,
or both depending on the characteristics of each mode (e.g. the KsK “not found” recoil
mass fit requires a Kn background shape; the K*K* requires an extra shape for softly
peaking false D daughter photons). Figure contains the “found” and “not found”
fits for our K K data, while Figure has the “found” and “not found” data fit
results for the two K*K* momentum regions. For completeness, we have also included
the fits from Monte Carlo in Figures and as part of our extra figures section
(Appendix [G]).
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Figure 10.5: D + «v + K recoil mass in data K K events for “found” and “not found”
K.

Table gives the efficiency results from our various momentum region fits. We
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Figure 10.6: Ds+v+ Kmm recoil mass in data K* K* events for “found” and “not found”
K. The top row shows only low momentum K while the bottom row gives results in
our medium K, momentum region, with pg_ determined by the recoil momentum.

had decided before the study to take a correction to our K efficiency if we found a
20 or larger difference between data and Monte Carlo, and the high momentum region
just reached this threshold. The lower K, efficiency in this region comes from the
daughter tracks themselves not being reconstructed properly. When we repeat the
analysis requiring that the event has two candidate K tracks (with invariant mass
between 300 MeV-700 MeV and a combined momentum within 60 MeV of the K,
following [75]), the difference between data and Monte Carlo disappears (with both
about 80% efficient). We get a final correction to our overall K efficiency of -11.1%
after weighting by the Ky momentum distribution in Dy, — Kev.

We base our systematic on the combination of our data precision and the Monte
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Table 10.7: K efficiency systematic and correction from our found/not found recoil
mass fits in each momentum region.

DK, region Syst. mode af\ffée Edata Correction | Systematic
200 MeV—400 MeV K*K* 18.5% | (17.7 £ 3.1)% — 21.1%
400 MeV-650 MeV K*K* 19.2% | (20.6 + 3.1)% — 15.5%

6504+ MeV KK 23.7% | (20.0 £ 1.7)% -15.2% 8.6%

Integrated Combined | N/A N/A -11.1% 7.3%

Carlo in-vs.-out precision. Since each K; momentum region has the same efficiency
to within error, we do not apply an additional systematic to account for using finite-
sized Ky momentum bins. Like our K efficiency correction, we have weighted each
momentum region’s systematic error based on the K ;er momentum spectrum to get an

integrated Dy — K ev systematic of 7.3%.

10.6.4 K*, n/, and fy

Our K*ev, n'ev, and foer modes all have hadrons with relatively broad mass distribu-
tions that decay to a final state involving pions (with one kaon for K* and one 7 for
n'). Since we do make a (broad) cut on each resonant particle’s mass distribution to
avoid allowing in too much background, we need to ensure that the mass resolution in
data matches the Monte Carlo. Additionally, each mode has a distinct momentum spec-
trum for its final particles, which we need to incorporate into our momentum dependent
tracking and particle identification systematics.

In all three semileptonic modes, we determine the mass resolution by reconstruct-
ing the candidate hadron (K*, 7/, or fp) in a fairly clean Dg mode (Ds — K*K,
Dy — m',n' — 7mn, or Dy — fomr, respectively). We fit the candidate hadron’s mass
in the data by using the Monte Carlo signal shape. However, we allow the signal mass
distribution to shift either direction, and we convolute the signal shape with a gaussian
to model potentially poorer data resolution. We take our systematic to be the relative
change in events passing our mass cut window for the smeared and unsmeared distribu-
tions. In all three cases, the systematic fell well within the precision of our measurement,

so we find no need for a correction to our efficiency.
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To get a clean sample for our mass resolution, we reconstruct a D tag, a D} daughter
photon, and a kaon (K*) or pion (7', fp), following the same procedures and particle
selections as for our K systematic (Section . We reject any events with extra
tracks after the candidate hadron reconstruction, and we cut on the momentum or

missing mass of the event to further clean up our sample, as follows:

e 650 MeV < plt P 7t < 750 MeV for the kaon in K*K
e 650 MeV < pit Ps rest < 800 MeV for the pion in fom

e 900 MeV < MP=t7+™ - 1000 MeV in ',y — 7y

recoil

MPs +y+m+n

[ ] .
recoil

‘ < 75 MeV in ', — 7wmn

We have placed the resulting K*, n/, and fp mass resolution plots in Appendix
(Figures ~[G.57). We have put our final mass resolution systematic in Table
(along with our tracking and particle identification systematics, described below).

We’ve taken a correlated 0.3% track reconstruction systematic for each 7 and elec-
tron track [72]. Since our failures in kaon track reconstruction come primarily from de-
cays in flight, we consider this uncorrelated to the other tracking systematics and have
instead incorporated it into our momentum-dependent kaon particle ID systematic. For
simplicity, we’ve also absorbed our rather large 7 reconstruction efficiency systematic
into the 1’ particle identification systematic. Only pion and kaon particle identification

require a correction to our efficiency, which we have summarized in Table

Table 10.8: Summary of semileptonic hadron systematic errors. Our kaon and 7 sys-
tematics have been included into the K* and n’ PID columns, respectively.

Semileptonic hadron | Track reconstruction | PID | Mass resolution
n 0.90% 7.90% 3.15%
fo 0.90% 0.04% 2.63%
K* 0.60% 1.21% 2.59%
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Table 10.9: Summary of hadron efficiency corrections from particle identification.

Semileptonic hadron | Relative € correction
n -2.94%
fo -0.50%
K* -2.88%

10.7 Decays in Flight

For all modes other than Dy — ner, we consider any passing event containing the semi-
leptonic mode in question as a true event, regardless of whether or not we correctly
reconstructed the semileptonic side. Normally, we don’t have any ambiguity in this
procedure because we actually did reconstruct the semileptonic side correctly according
to the Monte Carlo. However, we do see a few cases in each mode where a true semilep-
tonic event passes our cuts with an incorrectly reconstructed semileptonic-side hadron.
The vast majority of these cases come from either a kaon or pion on the semileptonic
side decaying in flight, nearly always to a muon.

The Monte Carlo should model the decay-in-flight kinematics without difficulty.
However, the “kinked” track could cause problems with tracking reconstruction and the
resultant track momentum, used indirectly (and sometimes directly) in our event recon-
struction. Given the small effect, we simply take 50% of the efficiency for true but incor-
rectly reconstructed events as our systematic error to model any possible data/Monte
Carlo differences.

Table gives the efficiency for all such true but incorrectly reconstructed events
and our ultimate systematic (expressed as a relative error). This systematic includes
both decay-in-flight events and all other events, although the efficiency from other events
always falls well below the threshold at which we include systematic errors (a relative
0.3% error).

10.8 Splitoff Rate

Our Ds — nev fits need to correct for “volunteer” combinations, which predominantly

come from either the D} daughter photon or a splitoff shower combining with a true n



153

Table 10.10: Systematic for true semileptonic events that pass with incorrect particle
identification, mostly due to m or K decays in flight to u. We take 50% of the effect’s
size in Monte Carlo as our systematic.

Semileptonic mode | €51, pass, wrong MC tag | Relative systematic
D, — ¢ev 0.023% 0.08%
D, — nev 0.040% 0.49%
Ds — foev 0.226% 0.52%
D, — Kgev 0.390% 0.63%
D, — K*ev 0.343% 0.71%

daughter photon to make an extra n candidate. Section discusses this effect with a
procedure using D° — K*n that lets us correct the splitoff rate from the Monte Carlo.
We obtained a splitoff correction consistent with the Monte Carlo rate (1o difference),
so we don’t take a bias correction from splitoff. However, our splitoff rate procedure has
an associated uncertainty, which we take as the systematic error for the Monte Carlo’s
splitoff model. Varying the splitoff rate across its lo range gives us a B(Ds — nev)

relative systematic of 1.16%.

10.9 Hadronic Branching Ratios

We measure each semileptonic hadron decay through a particular decay mode (e.g.
17 — 7). The semileptonic modes’ efficiencies depend upon the branching ratio for
these hadronic decays. However, updates to the known hadronic branching ratios from
more recent measurements require an efficiency correction, while uncertainties in those
branching ratios contribute a systematic error. Table gives these corrections and
systematics using the most recent branching ratios from the Particle Data Group [21].
The 7' decay includes both the direct uncertainty in B(n’ — 77n) and the uncertainty
from B(n — vy).
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Table 10.11: Systematic errors and efficiency corrections from uncertain or changed
branching ratios in semileptonic daughter hadron decays.

Hadron decay || Bumc Bpba Systematic | Correction
¢ — KK 49.1% | (48.9+0.5)% 1.0% —
n— vy 39.5% | (39.4+0.2)% 0.5% —
n — wmn 43.7% | (42.9+0.71)% 1.7% -1.8%
Ky — o 68.6% | (69.2+0.1)% 0.1% 0.9%

10.10 Semileptonic Fit Functions

After making our semileptonic cuts, we fit each mode’s D, mass spectrum using a linear
background function and a signal shape from the tagging fits. The D, mass signal shape
shouldn’t generate an additional systematic beyond that discussed in Section be-
cause we use the same shape for our branching ratio’s numerator and denominator.
However, we made the choice of a linear background function empirically, with param-
eters from a fit to the Monte Carlo’s predicted background.

To investigate a potential systematic from our choice of background function, we
have replaced our linear background function with a constant function and compared
the branching ratio results. A constant function generally goes beyond the 1o variation
on our linear fit to background, but we take this as a worst case scenario on the Monte
Carlo’s effective background model. The results from Table show that we get a
negligible systematic even for this worst case.

The Dy — nev mode also includes an explicit fit to the n pull mass spectrum, using
a signal histogram shape and a linear background. For this mode, we independently
take a constant background on the 7 pull mass and each Dy mode. Table contains
the results after combining all ner background systematics in quadrature, which still
yields a negligible systematic.

We took the 7 signal shape for our Dy — nev fit from the Monte Carlo. We’ve used
two techniques to obtain a systematic on this signal shape. In the first technique, we
extract an n pull mass spectrum from a clean Dy — 7 sample, we fit the data’s pull
mass spectrum with a crystal ball shape, and then we use the resultant crystal ball

function as our 7 signal shape in the branching ratio fit. For our second technique, we
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Table 10.12: Branching ratio change from a different semileptonic background function.
The Dy — nev line combines changes to both the pull mass and Ds mass backgrounds.
In all cases, the systematic from choosing a different background shape falls well below
the statistical or systematic error.

Semileptonic mode oB/B OBG syst/ Ostat
pev 0.50% 0.063
nev 0.30% 0.075
n'ev 1.04% 0.048
foev ~0.86% 0.048
Kgev 0.63% 0.034
K*ev —0.35% 0.016

convolute the Monte Carlo’s 1 pull mass spectrum with a gaussian of varying widths
and compare the best fit branching ratio to our standard branching ratio (without a
gaussian smear). Both techniques come to similar relative systematic estimations (1.0%
vs. 0.8%), but we have chosen the D; — 71 method as most closely representing the
uncertainty in signal shape.

To get our clean n pull mass spectrum from Dgs — 71, we reconstruct a tagged
Dg + v, do a basic kinematic fit on the D} daughter photon, then find the other side 7
and 7. We use the same D, tag modes and cuts as in our normal analysis (Section ,
dropping the four tag modes with 1 daughters to avoid any possible complications. We
cut on the D, mass based on its tag mode (Table in Appendix , on the Ds + v
recoil mass (1950 MeV-1990 MeV), and on the 7 momentum in the D, rest frame
(within 20 MeV of the ideal 902 MeV). Once we have a reconstructed 7, we also require
that the event’s missing mass fall within 100 MeV of zero.

Events passing all our Dy — 71 cuts have nearly no background, giving us a very
pure 1 sample. We fit the data’s pull mass spectrum to a crystal ball function and use
that (slightly wider than Monte Carlo) shape in our branching ratio fit. Our branching

ratio changes by a relative 1.0%, so we take that to be our 7 signal shape’s systematic.
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10.11 D, Production Efficiencies

Tagged and semileptonic Dy get created through multiple modes at 4170 MeV. The
ete” collision can directly produce DY Dy (op,p, = 0.034 nb), or it can produce DD,
(opsp, = 0.916 nb) [61]. Further, the D} may decay to either Dyy (94%) or to Dym
(6%) [21]. Each of these Dy production mechanisms have associated uncertainties, while
the Monte Carlo that we use to determine our semileptonic efficiency simply takes each
production mode’s most likely value.

To incorporate the D, production mode uncertainty into our overall error, we have
determined each process’s tag and semileptonic efficiencies (Table for tags; Ta-
bles and for semileptonics). We then vary each D production
uncertainty by lo and take the change in our average efficiency as a systematic. In
practice, DsD7, Dy — Dy production dominates our efficiency. This dominance and

S
the fact that each production mode has similar semileptonic efficiencies makes the D

production systematic negligible (Table [10.13]).

Table 10.13: Relative systematic for various D, production rate uncertainties. This
combines the uncertainties from the DsDg and D} D, cross sections at 4170 MeV with
the uncertainty from the D? branching ratio (the fraction going to Dgy vs. Dgm®).
These combined effects still contribute a negligible systematic.

Semileptonic syst syst . Total
mode 7b.D, Ug§ p, | B(D;— Dsm’)™ relative systematic
Dy — ¢ev 0.0033% | -0.0018% -0.0028% 0.0047%
Ds — nev -0.0001% | 0.0001% -0.0000% 0.0001%
Ds — n'ev -0.0091% | 0.0050% -0.0192% 0.0218%
Dy — foev -0.0035% | 0.0019% 0.0072% 0.0082%
Ds — Kgev || -0.0019% | 0.0011% 0.0316% 0.0317%
D, — K*ev 0.0029% | -0.0016% 0.0113% 0.0118%

10.12 Final State Radiation

When the Dy decays to charged particles, the decay can also include photons emitted

via an electromagnetic interaction with the final state charged particle. This final state
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radiation (FSR) doesn’t cause us a problem in tagged D;, as any tag efficiency drop
will be reflected proportionally in our branching ratio’s numerator and denominator.
However, the quarks that make up the semileptonic hadron and particularly the elec-
tron produced in the semileptonic decay may have FSR that distorts the semileptonic
efficiency. We use the PHOTOS 2.0 package to estimate FSR in our Monte Carlo.

Since FSR emission from charged particles mostly results in soft photons and our
particle efficiencies stay fairly flat outside the extreme regions, our decays’ efficiencies
don’t change much with the inclusion of FSR. Only about 2% of semileptonic decays
(varying slightly by mode) have FSR that alters daughter particle momenta enough
to push the combined her momenta outside its allowed kinematic range. Of those
decays, 90% still have relative efficiencies within 5% of the non-FSR efficiency. Roughly
0.2% of semileptonic decays see a significant efficiency drop, mostly due to the electron
momentum falling below threshold.

Table[10.14] gives the efficiency difference with and without FSR for each semileptonic
mode. Past work [65] has taken 30% of this difference as a systematic, but none of our
efficiency variations affect the overall systematic error even if we take the entire drop

as our systematic. We include the results here for reference, but we otherwise dismiss

FSR as a systematic effect.

Table 10.14: Efficiency difference due to final state radiation, by D, semileptonic mode.

Semileptonic mode | Relative systematic
Dy — ¢ev 0.19%
D, — nev 0.06%
Ds — nev 0.06%
D, — foev 0.28%
D, — Kgev 0.19%
D, — K*ev 0.28%

10.13 Initial State Radiation

In the initial eTe™ collision, one of the two charged particles may emit a soft photon.

This initial state radiation (ISR) lowers the collision’s center-of-mass energy. Since
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CLEO-c ran at 4170 MeV, just above the D} Dy threshold of 4081 MeV, the Dy momenta

for events with even moderate ISR can vary significantly.

Fortunately, the Monte Carlo provides a good model for ISR, with Dy single tags at
4170 MeV matching the Monte Carlo’s ISR prediction to within 0.6% [65]. Nonetheless,
the Monte Carlo predicts that just over 10% of events in our sample will have a center
of mass below 4160 MeV, so we have checked the semileptonic efficiency difference for
events produced at lower center-of-mass energies.

Table gives the efficiency difference between events produced without ISR and
events that include ISR. Not surprisingly, we find very little difference between the two
given the fairly flat efficiency across Ds; momenta and the fact that most events don’t
have significant ISR. Even if the Monte Carlo had too little ISR by 30% (well above the
precision extrapolated from the single tag study mentioned previously), we could ignore

this systematic. We thus take no additional systematic from ISR effects.

Table 10.15: Efficiency difference due to initial state radiation, by D, semileptonic
mode.

Semileptonic mode | Ag/e
Dy — ¢gev 0.12%
Ds — nev 0.79%
Ds — nev 0.09%
Ds — foev 0.09%
Dy — Kgev 0.77%
D, — K*ev 0.27%

10.14 Generating Models

Our semileptonic efficiency primarily depends on the electron and hadron momenta in
the detector (the lab frame). These momentum distributions and their correlations are
determined in part by the form factors’ ¢> dependence, which isn’t easily calculable from
first principles. Our Monte Carlo uses the ISGW2 [34] quark model when generating
the semileptonic Dy decay, but various pole dominance models [36] offer alternate form

factor dependencies and consequent momentum distributions. While we believe the
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ISGW2 model best represents the underlying physics given the relatively heavy ¢ quark
and the wide ¢? range relative to the number of close resonances in the charm system, the
pole model has been used most often in the literature and gives us a simple alternative
to estimate our efficiencies’ form factor model dependence.
We have used the pole model’s simplest form as our point of comparison, in which
a single resonance dominates the form factors. In this case, each form factor has a
(1-— ]3[—22)_1 dependence on ¢?, where M is the mass of the nearest meson resonance
with appropriate quantum numbers. We use a D} pole mass for our vector form factors
and a Dg1(2460) pole mass for our axial form factors, matching prior work [53]. For Dj
decays to vector hadrons (¢, K*), we have three form factors and also need the relative

normalizations between them; we use 7, = 1.81 and ro = 0.82, where r, = 1}(1((00)) and

o = i?gg; are the relative normalizations at ¢ = 0 for the vector/axial and axial /axial

form factors, respectively.

We generate our Dy decays using both our baseline model (ISGW2) and the simple
pole model, then we treat the difference between the two as a 1o systematic arising from
the generating model. The default CLEO Monte Carlo had some minor coding errors
in the masses for its ISGW2 implementation; we corrected those in our own implemen-
tation but found that the final systematic didn’t change. For a further comparison
point between models, we also include the original, less sophisticated ISGW model (no
relativistic corrections, exponential form factor dependence). We did not use the ISGW
model in our systematic estimate, although it would have had only a minor effect in
any case.

Table contains our systematic for each semileptonic decay mode. In all cases,
the pole model created events with a higher efficiency than the ISGW2 model. The
slightly more energetic electron spectrum in pole model events dominated this effi-
ciency increase with fewer electrons below our 200 MeV minimum p, cut (Figure .
While decays to pseudoscalar and scalar hadrons have similar ¢%/FE, correlations be-
tween models and thus don’t have a significant efficiency change beyond the higher
electron efficiency, decays to vector hadrons see a further efficiency increase in the pole
model from a more beneficial ¢?/E, correlation, pairing lower ¢? (higher Fpagron) With

more energetic electrons (Figure [10.8]).
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Table 10.16: Relative systematic from different generating models’ reconstruction effi-
ciency.

D mode EPole “EMC
s €Pole
Dy — ¢ev 2.9%
Dy — nev 0.7%
Dy, — nev 1.6%

D, — foev 2.3%
D, — Kgev 1.4%
D, — K*ev 5.1%

In our extra figures section, we have included the lab frame hadron and electron mo-
menta for each of the other four semileptonic modes (Figures and Figures |G.59)).

We've also included the ¢? and ¢? vs. E, distributions for the different models in

Dy — ¢ev and Ds — nev decays (Figures G.62).
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Figure 10.7: Top: Lab frame electron energy (left) and ¢ momentum (right) in
Dy — ¢ev for the ISGW2 and pole models. The electron energy has a noticeable in-
crease from ISGW2 to the pole model. Bottom: Lab frame electron energy and n
momentum in Dg — nev. The decay to a pseudoscalar has a smaller but still positive
electron energy shift.



162

| 92 vs. E,, D_— ¢ev, ISGW2 - Pole |

o o
es S
E Q
| £
1 o
o o
|% ........ ..-----_-m
1 LELHTLT
1 10000000
i 0000000000000
1s “ 0000000000000
1= R LLLLECDTELEREERELT ©00000000000000(
i » i RRARRRER R HARACRRA 8RN +000000000000000]
i BRAERRNRES 1000000000000
i ++ 0000000000000
o ++ 0000000000000 “.0
R +- 0000 0000OOONCIIT]R
v 00000000000 .
Ho o
T I 3
'8
n LLLEEEEEELEEEEEEED] S o
1] 0 R R ERRRBRRBRR A 88+ 00000 i)
LLLTIIE ~ 0B R RHRRERERR R AR AR8 s + - 0000000)
«0 N .
oQoooooooonee i
s(000000000 000 Ho o
S E
Ho
]
1 [oooooose-
[ 0000000 i 1
[ 0000002« + 1§8BRY ] 1]
[ lo 2 -+ +unon000000000]]
1 S s IR
o []] H ' -+ +an 000000000
of]] i m -+ 0000000000
1 g ] - +vrn0000000(]
- ) -« 0000000e
R = BT
. W BT
= sornl
T BT
__________________ g o’ ____________________________________:.(
o o o o o o - o o o o o (=] o (=3 o o
E 8 8 8 8§ &§ | EE8EREEE SR
¢
(zA3W) b | Grow) b
-3

Figure 10.8: Difference between the ISGW2 and pole models in the ¢? and electron

energy distributions for Dy — ¢ev (top) and Ds — nev (bottom). Empty boxes indicate

a surplus in the ISGW2 model, while darkened boxes with an “x” indicate a surplus

in the simple pole model. The pole model has higher electron energies in both cases,

although it has higher ¢? values for the pseudoscalar n decay and lower ¢* values for

the vector ¢ decay.
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10.15 Sum of Systematic Errors

Each D, semileptonic decay mode has its own collection of systematic biases and errors,
as described earlier in this section. Our extra tables section contains a full systematic
error and bias listing for each mode. The systematic bias corrections can be found in
Tables while the relative systematic errors can be found in Tables
We’ve included a summary of our total systematics here, with Table [I0.17] giving the
efficiency corrections from biasing effects and Table giving each mode’s relative

systematic errors.

Table 10.17: Efficiency for each D; semileptonic mode before and after corrections
from systematic biases. These efficiencies include the hadronic branching ratio (taking
B(fo — ) = 52% for foev).

Semileptonic mode EMC Ecorrected
pev 13.9% 12.5%
nev 20.6% 20.4%
n'ev 4.0% 3.8%
foev 21.7% 21.2%
Kgev 30.9% 27.4%
K*ev 24.1% 23.0%

Table 10.18: Total systematic errors (relative) for each Dy semileptonic decay mode.

Semileptonic mode | Relative systematic error
pev 4.46%
nev 8.70%
n'ev 10.11%
foev 4.91%
Kgev 8.56%
K*ev 7.13%

In five of our six modes, the statistics available limits our branching ratio measure-
ment rather than our systematic errors. Even the one exception, Dy — nev, effectively

gets restricted by statistics because that’s the limiting factor in the dominant Dy, — p+n
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systematic. Our largest required efficiency bias corrections come in D; — ¢ev, driven by
soft kaon track reconstruction (true either with our custom kaon selections or with the
default CLEO cuts), and in Dy — Kev, driven by high momentum K reconstruction.

Incorporating our efficiency corrections and systematic errors into our measurements

gives us the final branching ratio results shown in Table [10.19

Table 10.19: Branching ratios for each D, semileptonic mode before and after our
systematic biases and errors.

Decay mode Raw B Corrected B

Ds — ¢ev (1.924+0.15)% | (2.14+£0.17 £ 0.09)%

D, — nev (2.25+0.14)% | (2.28 +0.14 + 0.20)%

Dy — nev (0.64 +0.14)% | (0.68 +0.15 £ 0.06)%
( ( )%
( ( )%
( ( )%

Dy — foev, fo — mm | (0.134+0.02)% | (0.13 + 0.02 & 0.01
Dy — Kgev 0.17 +0.03)% | (0.20 + 0.04 + 0.01
D, — K*ev 0.17 4 0.04)% | (0.18 + 0.04 & 0.01

— — N —




Chapter 11

Conclusion

D, semileptonic decays have seen relatively few measurements over the years despite
their use in lattice calculations, light meson spectroscopy, and comparisons to other
mesons’ semileptonic decays. CLEO-c’s 4170 MeV run has given us an opportunity
to improve the exclusive D, semileptonic measurements for the six dominant modes
in a fairly clean environment. Low backgrounds made maximizing the signal a prior-
ity, so Table summarizes the number of signal events we obtained over CLEO-c’s
integrated luminosity of 586 pb~!.

Table 11.1: Number of observed signal events for each of our six semileptonic modes.
We include the branching ratios with their statistical errors for reference.

Semileptonic mode B Signal Events
D, — pev (214 +0.17)% | 206.7 + 16.4
Ds — nev (2.28+0.14)% | 358.2 + 21.6
Ds — n'ev (0.68+0.15)% | 20.1+ 44
Dy — foev, fo — mm | (0.13+£0.03)% | 419+ 7.8
Dy — Kgev (0.20 £0.04)% | 415+ 8.3
Dy, — K*ev (0.18 +0.04)% 316 &£ 7.5

Table [11.10] in Section [11.2] contains our full results, including all systematics. Sec-
tion also contains a synopsis of this Dy semileptonic analysis.
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11.1 Comparisons

Section and Section [I.5] in our introduction contained theoretical predictions from
the literature and a summary of prior D, semileptonic measurements, respectively. Here,

we compare our results to those predictions and measurements with a brief discussion.

11.1.1 Theory

Our six Dy semileptonic modes each provide tests for different theoretical models and
parameters. In the following section, we’ve grouped together modes that explore sim-
ilar terrain and give a short discussion of how our measurements fit into the various
predictions.

In the spectator model, Dy semileptonic decays to the n and 7’ pseudoscalar states
probe the /7’ mixing angle by coupling to the mesons’ s§ component. The possibility
of weak annihilation (Figure[1.2)) or n/n’ glueball mixing complicates this interpretation,
but an explicit measurement should still give a first order estimate for the mixing angle.
Table compares the ranges from six different predictions to our branching ratios

for n, n’, and their ratio.

Table 11.2: Theoretical prediction range for B(Ds; — nev) and B(Ds — n'ev) compared
to our measurements. Our n measurement matches four of the six predictions, while
our measured 7’ falls below the expected values.

B(Ds — nfev) | B(Dy — nev) | ELs=10ew)

B(Ds — nev)
Predictions [44, 46, 42, 43, 45, 34] | (0.43 - L.1)% | (1.4-3.2)% | 0.31-0.43
This analysis (0.68 £0.16)% | (2.28+0.24)% | 0.30£0.07

Our B(Ds — nev) matches all but the two extreme predictions (1.4% and 3.2%),
while our B(Ds; — ner) measurement falls about 1.50 below all but the smallest pre-
diction. Consequently, we see a lower 7' /n ratio than any of our predictions, although
our large error on the ratio covers most of the predicted range. Even at 1.50, our n'/n
ratio comes within the range of reasonable prediction and measurement error. More

exotically but less likely, a low 7//n ratio could indicate some glue mixing or a mixing
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angle smaller than ¢ =~ 40°.

Since the ¢ meson contains only an ss component, B(Ds — ¢ev) creates a good
testing ground for a variety of theoretical approaches. Our measurement matches the
ISGW2 prediction [34] almost exactly, and it matches a basic lattice calculation [26]
to within combined error. Our measurement lies about 2.5¢ and 4¢ from the other
two models’ predictions (a constituent quark model constrained by lattice results [42]
and an approach using QCD sum rules [48]). Table shows how our measurement

compares to the full range of predictions.

Table 11.3: Theoretical prediction range for B(Ds — ¢ev) compared to our measure-
ment. Our result matches the ISGW2 and lattice predictions from Section [1.4.2

B(Ds — ¢ev)
Predictions [48, 34, 26 [42] | (1.4 -2.6)%
This analysis (2.14 +0.19)%

Like n and 7/, the fp(980) composition has an s5 component along with a component
from lighter quarks (or even a possible gluonic contribution [28]). By comparing to the
predictions from various models, we can estimate a reasonable range for the ss mixing
angle. If we take fy = cosf|sS) + sin@ |other) and use the predicted branching ratio
range in Table we get an ss mixing angle, 6, of 30°-50° for the fy.

Table 11.4: Theoretical prediction range for B(Ds; — foper) compared to our measure-
ment. We have assumed B(fy — nm) = 0.52 for the comparison. Our result with these
predictions implies an s5 mixing angle () in fy of 30°-50°.

B(Ds — fOel/)
Predictions [50, 49, 48] | (0.41 — 0.55)% x cos® @
This analysis (0.26 + 0.05)%

Our B(Ds — Kgev) and B(Ds — K*ev) results match one of the two predictions
we consider to within 1o (a constituent quark model with lattice input [42]). The
absolute Kger and K*ev branching ratio measurements each fall 20 below the ISGW2
prediction [34], but the ratio between our two results comes within 0.30 of ISGW2’s

predicted ratio. Table gives our measurements compared to the range of predictions,
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including an extension of a straight-forward kinematic model [46] that only yields a ratio
prediction (about 20 different from our measurement and a similar distance from the

other predictions).

Table 11.5: Theoretical prediction range for B(Ds — Kev) and B(Ds — K*ev) com-
pared to our measurements. Our Kgev/K*ev ratio matches two of three predictions
closely, but it differs from a simple model by 20.

B(Ds — Kgev) | B(Ds — K*ev) %

Predictions [46, 42, 34] | (0.115 - 0.16)% | (0.11 - 0.19)% | 0.45 — 1.0
This analysis (0.20+0.04)% | (0.1840.04)% | 1.10+0.35

11.1.2 Previous Measurements

The Particle Data Group [21] currently uses three different sets of measurements for their
exclusive D, semileptonic branching ratios. One set comes from BaBar [29], which used
charm continuum production when running at the Y (45) resonance. They reconstructed
a Dy — ¢m tag and used the two jets formed during c¢¢ hadronization to isolate Dy —
K Kev on the other side. Aside from detector differences, the backgrounds involved
in the BaBar analysis differ significantly from ours. We thus have a statistically and
systematically independent measurement from BaBar.

However, the other two sets of measurements both come from CLEO-c [51], 52]. One
set measures Dy — ¢erv and Dy — fyer over the same sample that we use, while the
other set measures all modes but over only half the sample. The other two CLEO
measurements use roughly the same technique, which differs significantly from our own.

The main difference between the other CLEO-c analyses and our analysis lies in
the D} daughter photon reconstruction. Spurious soft photons in the event create a
peaking background on the event’s missing mass. In our analysis, we avoid this problem
by dropping the photon entirely, sacrificing the event’s zero missing mass in the process
(but gaining statistics from the photon reconstruction efficiency).

The other two analyses retain the photon reconstruction but only keep the best can-
didate photon. The branching ratio denominator then becomes a Ds++ tag (determined

by a 2D Mp,/ Mgffly fit). This combination requires those analyses to either treat false
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~ tags as valid for the branching ratio denominator, or it requires the analyses to reject
the soft, peaking background from false 7 events in the branching ratio numerator (the
event missing mass). The analyses take the latter approach, using the Monte Carlo to
estimate the false v rate and deducting that from the signal.

In addition to the major analysis difference in D} daughter photon reconstruction,
the other two CLEO-c analyses also have other, minor differences from our own. They
use 9 D, tagging modes, while we use 13 modes. Eight of the modes overlap closely, but
we have looser constraints on K;K 7w, add three more K; modes (KSKﬂ'O, KK,
K K*rr), and add n7%, 7' — 7mn. We also try to take advantage of the low back-
ground by using looser semileptonic hadron cuts.

Table shows our B(Ds — ¢ev) and B(Ds — foer) measurements compared
to both the BaBar and prior CLEO measurements. BaBar obtains a much larger
B(Ds — ¢ev) than we see, with their systematic error limiting their measurement. We
obtain a lower branching ratio (statistically significant) for both ¢er and fper than the
alternate CLEO measurement [51], with improved error in ¢er due to our higher statis-
tics. Our ¢gev and fper measurements do match the previous CLEO measurements [52]
that used the same general technique as the newest incarnation but involved half the

data sample]T]

Table 11.6: We find lower B(Ds — ¢er) and B(Ds — fpev) than prior measurements.
BaBar observed Dy — fpev using fo — KK.

Experiment B(Ds — ¢ev) B(Ds — foev, fo — )
BaBar [29] (2.61£0.03+0.17)% Seen

CLEO [5I] | (2.36+0.23+0.13)% | (0.20 % 0.03 £ 0.01)%
This analysis | (2.14 £0.17 £0.09)% | (0.13 +£0.03 +0.01)%

We see lower B(Ds — nev) and B(Ds — n'ev) than the previous measurements by
CLEO over half the data sample, as shown in Table The different systematics for
nev and the low statistics in 1)’er do make the difference in measurements reasonable. We

obtain a lower statistical error in both cases but a larger systematic error. The applied

"We do not include the prior CLEO measurements in the table as the Particle Data Group does
not use them. For completeness, they saw B(Ds — ¢ev) = 2.29 + 0.37 £ 0.11 and B(Ds — foev) =
0.13 +0.04 £ 0.01.
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7 systematic (Section dominates the difference between systematic errors in the
two analyses.

The prior CLEO measurement adopts a 2% relative systematic for 7 reconstruction,
based simply on a 1% relative systematic for each photon reconstruction. After con-
sidering CLEQO’s standard 5.9% relative systematic on 7 reconstruction with its -5.6%
relative efficiency correction [71]E| we decided to do our own 7 systematic as described in
Appendix [C| This gave us our 7.9% relative systematic for 7 reconstruction, leading to
a much larger final systematic error on B(Ds — nev) and B(Ds; — n'ev) than the other

analysis.

Table 11.7: Our B(Ds — nev) and B(Ds — n'ev) both fall below the prior measure-
ment using half the CLEO-c data. We also differ with the previous experiment on the
reconstruction systematic for the final state 1 in both modes.

Experiment B(Ds — nev) B(Ds — nev)
CLEO [52] | (248 +0.20 £ 0.13)% | (0.91 £ 0.33 £ 0.05)%
This analysis | (2.28 £0.14 +0.19)% | (0.68 = 0.15 £+ 0.06)%

As Table indicates, our B(Ds; — Ksev) and B(Ds; — K*ev) measurements al-
most exactly match CLEQO’s prior result. By virtue of having more data available,
this analysis’s measurement has lower statistical error while having essentially the same

systematic error.

Table 11.8: Our B(Ds; — Ksev) and B(Ds — K*er) almost exactly match the previous
CLEO-c result on half the data sample.

Experiment B(Ds — Ksev) B(Ds — K*ev)
CLEO [52] (0.19 £0.05+0.01)% | (0.18 +0.07 = 0.01)%
This analysis | (0.20 +0.04 +0.01)% | (0.18 +0.04 £ 0.01)%

In addition to the exclusive measurements, CLEO-c has measured inclusive semilep-
tonic decays [30]. Table shows that our six exclusive modes cover most of the Dj

semileptonic spectrum. Roughly 14% of Dy semileptonic decays may go to nonresonant

*Determined from v’ — 7J /1 with a momentum extrapolation based on similar 7°
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or other modes, although the difference between the inclusive rate and the exclusive

sum has a large associated error. Only 1.60 separates the inclusive/exclusive difference.

Table 11.9: Comparison of CLEO-c’s inclusive D4 semileptonic branching ratio with the
sum of this analysis’s six branching ratios. The difference shows some room for other
semileptonic modes, with relatively large error.

B(Ds — hev)
Inclusive [30] (6.52 = 0.39 £ 0.15)%
Sum of exclusive | (5.60 &+ 0.27 4 0.28)%
Difference (0.92 4+ 0.48 +0.32)%

11.2 Summary

We’ve measured D, semileptonic branching ratios for six modes: Dg — ¢ev, Dy — nev,
Dy, — n'ev, Dy — foev, Dy — Kgev, and Dy — K*ev. We primarily used CLEO-c’s
DD, sample, where the D} generally decays to a Dy via a soft photon emission. One
Dy gave us a tag to identify the event, while the other became a candidate for our target
semileptonic decays.

As the soft D} photon had a low reconstruction efficiency and dubious background
predictions from our Monte Carlo, we sacrificed the ability to reconstruct a zero neutrino
missing mass in exchange for additional events by dropping the photon reconstruction.
Since each mode showed fairly low background even without the photon, we could safely
loosen our other particle cuts in the key ¢erv and nerv modes to gain further signal events.
These looser cuts required new analysis for these particles’ reconstruction efficiencies,
but the atypically slow kaons and relatively unexplored 1 momentum range warranted
such study in any case.

Table states our final results for all six D, semileptonic modes, including all

statistical and systematic errors.



Decay Mode

Branching ratio

Dy — ¢gev

Dy — nev

Dy, — n'ev

Ds — foev, fo — 7
Dy — Kgev

Dy, — K*ev

2.139 £0.170 £ 0.086
2.277£0.137 £0.196
0.680 £ 0.150 = 0.064

0.196 £ 0.039 £ 0.015
0.178 £0.042 £ 0.012

AN AN N N S

V%
)%
)%
0.133 £ 0.025 = 0.006)%
)%
)%
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Table 11.10: This analysis’s measured branching ratios for each Dy semileptonic mode.
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Appendix A

fo — KK Models

fo = KK decays present a unique problem for the Dy — ¢er analysis as the fy reso-
nance lies very near (and likely below) the KK threshold, yet the fy’s wide decay width
extends its mass spectrum well into the ¢ mass region. Thus, Dy — foerv events where
the fo — KK invariant mass falls within the ¢ mass region become effectively indis-
tinguishable from D; — ¢er events and need to be deducted from our ¢ev signal. To
remove these fper events, we use our Dy — fper measurement from the fo — 77 mode

via

B(fo — K+K—) N €fo—KK
B(fo—=7tm™)  epmkxK

fwindowy
(A1)
where fyingow represents the fraction of fy — KK decays with an invariant mass in

the ¢ mass cut window (—15 MeV < M(;econ — M(EDG < 30 MeV) and €f,—KK 18 the

B(Ds — ¢eu)correm°n = B(Ds — foev, fo — 7m) *

reconstruction efficiency for fy within the mass window.

The fraction of fy — KK decays that fall within our ¢ mass window (fwindow)
depends upon the fy — KK mass lineshape. Regardless of the underlying model, this
lineshape will necessarily depend upon parameters such as the fy resonant mass and
width, which have large uncertainties from previous measurements [21I]. Unfortunately,
EvtGen does not describe this lineshape in a consistent manner for resonant masses
across the KK mass threshold, as described below, so we have used our own model

based on a Flatté parametrization [79, [80].
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The Particle Data Book estimates the fp physical mass at 980 MeV + 10 MeV [21],
which extends both above and below the K™K~ threshold near 987.4 MeV. We chose
to use the central mass (980 MeV) as the input value for our B(Ds — ¢er) correction
from Dy — foev, fo — KK, then we estimate one systematic error on the correction by
varying the physical mass throughout the 1o mass range (10 MeV). We use a similar
method to vary the total and partial fy widths. However, since the Particle Data Book
does not give a central value for either, we chose 50 MeV as a reasonable value for the
total width (with 40 MeV to 100 MeV as our lo systematic variation) and 0.80 as the
central value for - Loz

=t KK
each of these values independently in our systematic. This may not be entirely appro-

(with 0.52 to 0.82 for our 1o systematic variation). We vary

priate since the three different fy parameter values contributed by each experiment are
correlated, but we find it prohibitively time-consuming and of marginal benefit to disen-
tangle each experiment’s correlations (if even possible without delving into unpublished
results).

In section we discuss the models available in EvtGen that we have chosen not
to use, as the information may prove useful to others using EvtGen or similar software.

We discuss the Flatté model that we instead use, along with its results, in section

A.1 EvtGen Models

A.1.1 Default Model (Breit-Wigner)

In the CLEO Monte Carlo, the mass and width of a particle can be altered by changing
its values from the evt.pdl file and passing the modified pdl file to EvtGen. However,
EvtGen switches the generating model used when the fy resonant mass sits below the KK
mass threshold from its model for fy above the KK mass threshold. Specifically, EvtGen
uses a non-relativistic Breit-Wigner (Equation for the fo — KK mass lineshape
when the fy resonant mass lies below threshold, and it uses a relativistic Breit-Wigner
(Equation for the lineshape when the resonant mass lies above KK threshold:

2
(A.2)

i NR B-W 1
dm

— ;Lo
m—mo+ 15
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2
T Rel B-W Ty <p%>
e X

dm (m? — mg) +imoplo (%) (p%)

(A.3)

where I'y is the fy width, mg is the resonant mass, m is the invariant KK mass, p
is the daughter kaon momentum in the rest frame of m, and pg is the daughter kaon
momentum in the rest frame of mg.

The different lineshapes and their dependence on different fy masses can be seen in

Figure [A1]
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Figure A.1: EvtGen produced lineshape for fy masses above and below the KK threshold
at 987.4 MeV. EvtGen changes its behavior from a non-relativistic Breit-Wigner to a
relativistic Breit-Wigner discontinuously as the mass crosses threshold.

The discontinuous change in lineshape models as the f resonant mass crosses the
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KK threshold produces the dominant effect in our systematic when we try these models,
with fingow between the relativistic and non-relativistic Breit-Wigners differing by a
factor of two or more. Ultimately, we do not believe this systematic represents true
variation across the threshold, nor do we think that a Breit-Wigner properly models
the fo near threshold in any case, so we instead use a Flatté model to describe the

lineshape.

A.1.2 Flatté Model

The fo mass lies very near (likely just below) 2m g+, which leads to substantial threshold
effects in fo — K™K~ decays that a simple Breit-Wigner does not model well. One
can fix the biggest issue by changing the constant width, I', to a momentum-dependent
width. However, the fy requires still more work, as the opening of the KK decay mode
also alters the 7 mass lineshape below threshold due to analyticity, with non-trivial
effects for both modes. The Flatté model gives a form for the lineshape that preserves
unitarity and analyticity in the threshold region [81], making it appropriate for analysis
of the fo.

EvtGen does have a Flatté model available, and while CLEO doesn’t use it for all fj
decays (as shown in the previous section), it does use the model for one of six resonances

in the Dy — K K7 Dalitz decay. EvtGen’s Flatté model for this mode uses the formula:

2

dTl CLEO Flatté
. ps, (A.4)

dm X

1
—md+i (9% xpK + 925Pr)

prm) = 41— (Qm)

m2

m

[\

1-— (QmK ) above KK threshold,

m

i (Q’"—K)2 —1 Dbelow KK threshold,

m

pr(m) =

where mg here is the bare mass of the fy and ps(m) is the three-body phase space

factor (relevant in Dy — K K7 but not our semileptonic decay):
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2 2
m My
p3(m) = MpK A <17 I::| ’ I: :| )7
Mpy Mpy
Ma,b,¢) = a® +b*+ 2 — 2ab — 2bc — 2ac,

Figure shows the fo — KK mass lineshape generated from this model with the
default parameters mg = 965 MeV, gxx = 800 MeV, and g, = 406 MeV.

M, CLEO Flatte in D_ — KKr
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EvtGen Generated
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e e e e O O N
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Figure A.2: CLEO Flatté mass lineshape for fy — KK in the decay Dy; — K K7 using
the default parameters.

While this Flatté model uses reasonable parameters and gives a more sensible fj

mass lineshape than the basic Breit-Wigner, we have chosen to use our own model for
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a couple reasons. The EvtGen parameters are essentially hard-wired, such that we have
to recompile EvtGen each time we want to try a new parameter set. Further, the Flatté
model only incorporates the K™K~ and 777~ decay modes of the fy, while the fy can
also decay to K Ure (and 7°7%). The K 0%’ mode becomes relevant when we do our
systematic variation across the f; mass range listed in the Particle Data Book, as the
range extends to 990 MeV— higher than 2m g+ but below 2m go, leading the K-coupling

to split into both real and imaginary parts.

A.2 Flatté Parametrization

Our Flatté model follows the notation of the original paper [79] with the dimensionless

coupling constants gx and g :

6 2
dr i Pt ~ VTl i (A5)
dm m2 —m2+im, (Tx +Tgo+Tr+T0)| ’ '
where

Fﬂ' (m) = YxPr,
m\2 2
uc m above KK threshold,

FK (m) — 9K ( 2 ) K

igK\/m%( — (%)2 below KK threshold,

with m, as the resonant (bare) mass of the fp and I'g as the fp width at the physical
mass. [0 and I'jo follow the same equations as I'; and 'k, respectively, with the
appropriate mass differences and I' ;0 = %gﬂpwo due to isospinﬂ

To get the Dy — foev correction on our Dy — ¢er measurement from equation [A.T]
we need to determine both the relative amounts of 777~ to KTK~ and the fraction

of KTK~ that falls within our ¢ mass window. Specifically, we need to use our Flatté
B(fo»KTK™)

BfomnFrs) X fwindow for our parameters’ central values and

model to get the product
for their 1o variations.
In our formula, we have three parameters we can vary: the bare mass; I'g; and the

ratio of couplings, %—f. As stated previously, the Particle Data Book gives experimental

1Or due to the fundamental behavior of states with identical bosons in quantum mechanics. Whatever
explanation strikes your fancy.
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ranges for three related fy parameters: the physical mass, I' (which we take as the width

o
| +FKK

bare mass, m,, using the quadratic given by

at the physical mass, I'y), and . We can convert the physical mass, Mg, to the

m2 4+ m,gx [\/m%+ - (%)2 + \/mi(o - (%)2} below K™K~ threshold,

m2 + My g\ Mo — (%)2 above KT K~ threshold.

by running across a range of different gg—f values, then integrating

Mg =

Fﬂ'ﬂ'
We vary s

the resulting lineshapes for I';; and I'g . Our default value of 0.80 stated previously

Fﬂ'ﬂ'
fOl" F7r7r+FKK
from about 1.8 to 9.2. This range also covers most of the results given from experiments
in the literature [82 [83], although not quite all [84].

We find that gg—f, I'g, and My are weakly correlated in their effect on

corresponds to a default 99—}; coupling ratio of about 2, with a 1o range

B(fooK+TK™)
B(fo—ntn™)
fwindow, SO we get our final systematic by adding the results of each variation in quadra-

ture. We give the default value of % X fwindow and the extreme values for each

X

parameter variation in Table The mass lineshapes for each fy mode are shown with

the same parameter values in Figure and Figure [A.4]

Table A.1: fy parameter variations used to determine our fy — KK correction in
Dy — ¢ev. Our variations correspond to the PDG ranges for the physical mass, Iy,

and Fl;%m In practice, we vary gg—K instead of directly varying FFJF%KK since
gg—K has less correlation with the mass and I'g. We use f X %K—K as shorthand for
B(fo»K+TK™)

Jwindow X B(foontn) -

Physical mass r Bare mass

y(MeV) (MeOV) Fﬂﬂr_‘:f‘rKK (MGV) 9K %: fwindow f X %KT?
980 50 0.796 969.6 0.142 2 0.281 0.0587
990 50 0.733 986.4 0.140 2 0.314 0.0939
970 50 0.834 955.5 0.143 2 0.257 0.0411
980 79 0.749 963.6 0.224 2 0.233 0.0622
980 40 0.818 971.7 0.113 2 0.299 0.0547
980 50 0.523 933.2 0.652 | 9.196 0.187 0.1355
980 50 0.811 970.6 0.128 | 1.804 0.286 0.0544




186

Flatté f, lineshape, default f0 parameters

1 I
dr, /dM -
_ — Total
0.8 __ —_ Tc"'Tc'
0_0
i T
0.6 — KK’
- —K°K°
04—
0.2— ‘ |
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Figure A.3: fy mass lineshapes for My = 980 MeV, gg—’; = 2, and I'j = 50 MeV. The
dotted lines indicate our ¢ mass window.

+ -
% X fwindow correspond to the extreme values of

our systematic range for the physical mass and for le:r%m
%((j})oiim X fwindow Occurs in the middle of our I'y range (79 MeV). This maxima
remains even if we extend our possible I'g up to 200 MeV, to match some values found
in the literature [85 [86], [87].

We present our final correction to the Ds; — ¢er branching ratio after combining the

The extreme values of

. However, the maximum

variations in My, Z—K, and I'g with the uncertainty in the Dy — fyer branching ratio in

Table [A.2
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Figure A.4: fy mass lineshapes for the My, T and I'g variations. The sharp peak
occurs when My > 2mp+.

Table A.2: Correction and systematic for B(Ds — ¢ev) from Ds — foev, fo — KK
background.

€fookK | B(fooKTK~
B(Ds — foev, fo — mm) | Lot B<( fﬁﬁﬂ,)) X fyindow || B(Ds — ¢ev)® | N

(0.135 + 0.025)% 1.0 0.059 J.143 (0.00875:503)% | 0.852%9




Appendix B

Alternate Ds; — ¢ev

Reconstruction Methods

In our various D, semileptonic measurements, we elected not to reconstruct the photon
from D — Dy~ decays. We made this choice for multiple reasons, notably the efficiency
hit for the soft photon, potential systematic issues arising from extra candidate showers
in the event (from splitoffs or decay-in-flight tracking failures), and the otherwise low
background in Dy semileptonic measurements thanks to the electron and Dy tag.

However, we are aware that analyses of this type (e.g. [T7]) typically use full event
reconstruction to identify the neutrino by its missing mass. Further, other analyses on
the CLEO data sample [69, [88] have arrived at a somewhat different B(Ds — ¢er) using
the missing mass and the D} meson’s daughter photon in their tagging procedure. To
accommodate any misgivings over the approach that we have taken in our primary anal-
ysis, we have also measured B(Ds — ¢ev) using six variant procedures that approximate
the CLEO analyses and other potential approaches.

In four of our six alternate approaches, we reconstruct the D} meson’s daughter
photon and estimate the number of tags from the D + v recoil mass spectrum. We
measure the number of semileptonic decays by using the event’s missing mass; we get
four slightly different combinations by toggling the missing mass fit range and whether
or not we make a best candidate choice for the photon. In another alternate approach,

we reconstruct the D} daughter photon and require that the Dg + 7 recoil mass falls

188
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in a reasonable range, but we fit the Dy invariant mass spectrum without the photon
for the number of tags. This allows true semileptonic events containing false photon
combinations to pass our selection, and it gives us a data estimate for the rate of such
false photon combinations when combined with our Dy + - recoil mass tags. Finally,
we do an intermediate approach where we use the same D tag modes as the other
approaches, but we do not reconstruct the D} daughter photon. In this case, we do a
simple fit to the D; invariant mass after all cuts to determine the number of semileptonic
events, much like our standard analysis.

We have also tested an approach that uses a two dimensional tagging fit to the
D, invariant mass and the Dy + v recoil mass. We found that this method gave us
essentially the same results as when we cut on the Dg mass and fit the Dg 4+ v recoil
spectrum. However, our fits to the two dimensional spectrum become sensitive to initial
parameters, possibly due to a small remaining correlation between the two variables.
Since our fit shape systematic dominates the tagging errors, we have chosen to drop this

method and focus on the one dimensional fits instead.

B.1 Particle Selections for Alternate Methods

Given the significant differences in B(Ds — ¢er) between our primary analysis and
another analysis on the CLEO data sample [88], we have attempted to eliminate any
comparison complications by using that analysis’s particle selections for all six of our
alternate measurement approaches.

We restrict ourselves to 9 of our 13 tag modes: K K, KKn, KKnn®, KK,
mrnw, ™, ©n’n, m™',n' — wmn, and 7',n’ — py. We drop our normal D, momentum
cut (in the form of a recoil mass cut that varies by mode) since we will instead be using
the Dy + v recoil mass for our fits and selections. Also, we add a 150 MeV p cut in
Dy — mr%n. We otherwise retain the individual tag mode cuts listed in Table

We use the same electron cuts as in our primary analysis, with the sole excep-
tion that we adopt a slightly more conservative | cosf.| < 0.90 angle cut instead of
|cos(fe)| < 0.93.

'For our intermediate method (Method 6), we do not find the D meson’s daughter photon. While
we still restrict ourselves to the 9 tag modes, we otherwise maintain the D, tag cuts from our primary
analysis.
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Although we loosen the overall ¢ mass requirement to 60 MeV for all of our alternate
methods, we otherwise adopt tighter kaon cuts. Specifically, we institute a minimum
hit fraction cut of 0.5 rather than the token hit fraction cut of 0.1 from our primary

dE/dx

analysis. In addition to our standard dE/dz consistency cut of ‘ < 3.0, we also

add an additional rejection from a basic particle ID. If we have [px > 700 MeV|, then
we use both 0?%/%% and the RICH likelihood by requiring (62 — %) + (Lr — L) > 0;
otherwise, we drop the RICH likelihood and simply require (o2 — UK) > 0.

We require that candidate showers for the D} meson’s daughter photon do not come
from hot channels in the calorimeter, they can’t have an associated track, and they need
to pass CLEQO’s EE—;; 0.K. cut Showers must have an energy above 50 MeV if in the
endcap or 30 MeV in the barrel, although the kinematic range of the D} photon limits
these extremes in any case. We also reject any event with an unused shower that meets

the above criteria but has an energy above 300 MeV.

B.2 Methods 1-4: Cut on D, Invariant Mass, Fit D, + v
Recoil Mass

Our first four alternate methods all use the Dy + « recoil mass to tag candidate events.
We first restrict the D invariant mass to the range [Mpe" — Mg?G| < 17.5 MeV. We
then allow each passing D, to pair with any valid shower to form a D+~ tag candidate.
We determine the number of D4 + v tags by fitting the recoil mass spectrum, where the
recoil four momentum is given by Precoil = Pheam — (p%sass constrained D). By using the
mass constrained Dy four vector for our Dg 4 7 recoil, we make the recoil mass fairly
independent of the reconstructed invariant mass (Fig. . Aside from conceptual
simplicity, this also reduces the remaining recoil background after our basic invariant
mass cut.

We fit the recoil mass from each Dy tag mode separately, using a crystal ball func-
tion and 4th degree polynomial background function. This gives us a total of five signal

parameters and five background parameters. We use the Monte Carlo to fix the crystal

2The energy dependent “ E" 0O.K.” cut requires a minimum 5—9 value for the shower. For low energy

photons, the central nine crystals must contain around 80% of fhe total shower energy. This minimum
smoothly scales to requiring roughly 90% of the energy in the central crystals for higher energy photons.
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Figure B.1: Dg + v recoil mass vs. D invariant mass in the charm Monte Carlo. The
lower left plot shows that the two are fairly independent after mass constraining the Dy
four vector. The lines indicate our tag fit’s invariant mass and recoil mass cuts. We
scale the total and combinatoric plots by a factor of 1/10th relative to the others to
keep those plots less visually congested.

ball function’s mean, its o (the number of o at which the gaussian turns into a polyno-
mial), and its n (polynomial power). We allow the signal normalization, the signal width
(o), and all of the background parameters to float. We only count Ds + v tags that
have a recoil mass within 3.782 GeV? < Mfecoﬂ < 4.0 GeV?, in accordance with [88];
not only does this match our recoil mass cut for the full event reconstruction, but it
prevents our tagging counts from being unduly influenced by the long crystal ball tail.
We give our Dy + v tag fit results in Table with Figure (Monte Carlo) and
Figure (data) showing the actual fits.

For two of our four methods, we use all Ds 4+~ combinations with a valid recoil mass
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Table B.1: Dy + ~ recoil mass tags in the data and Monte Carlo. The crystal ball
function tends to undercount the number of tags across all modes, so we adjust the final
branching ratio for this systematic effect.

D, mode Data tags MC, fit tags MC, truth tags
KK 3,772 + 90 72,405 + 370 74,138
KKmn 16,069 4+ 218 || 326,072 & 887 341,134
KKnr® 5,254 + 251 97,446 + 934 118,900
KK nm 2,273 £ 109 50,753 + 436 53,110
T 4,618 £+ 189 89,019 £ 511 96, 594
™ 1,863 &= 78 36,095 £ 265 37,198
7m0n 3,168 + 152 || 74,488 & 516 74,635
', — 7y 1,419 + 56 26,888 + 226 26,681
', n — py 3,351 £ 144 62,202 £ 444 63,918
Sum 41,788 + 468 || 835,368 4+ 1,683 886, 308

when reconstructing a semileptonic event. In the other two methods, we choose a best
~ candidate from among those that pass the recoil mass window. We choose this best
~v by determining what its lab energy should have been given the Dy + ~ recoil mass
and the shower’s position in the calorimeter, then choosing the photon whose energy
lies closest to its ideal energy. This procedure provides a slight improvement toward
choosing the correct photon in Monte Carlo over simply taking the candidate with the
best recoil mass, and it produces less shaping of the final missing mass spectrum. We
call the former two methods our “multiple candidate” methods and the latter two our
“best candidate” methods, in both cases referring to candidate photons allowed to pair
with our Ds.

Once we have our Dg +~ tags, we look for a passing ¢ meson and a passing electron
from the semileptonic D, decay. We then calculate the event four vector. The ¢ width
prevents us from improving its resolution with a kinematic fit, but we are able to improve
the D} daughter photon resolution. For all four of our methods, we adjust the photon
energy to its ideal energy, essentially doing a one variable kinematic fit by using the
fact that we know the photon location much better than its energy. We then calculate
the missing mass from the sum of all four vectors, the beam energy, and the beam

momentum: Pmissing mass = Pbeam — (panjSS constrained + p’cyorrected + Py + pe)'
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Figure B.2: Dy 4 « recoil mass distribution for the 9 tag modes in Monte Carlo. The
dotted lines give our fit results’ signal and background components. The solid lines give
the truth-tagged information: signal, combinatoric background, true Dy pairing with a
non-D¥ daughter v (false ), and false Dy paired with the D¥ daughter ~.

We determine the number of signal counts from the missing mass plot, with two
signal region possibilities. For our “tight” missing mass range, we consider a signal
region with |[MM?| < 40,000 MeV2. Our “wide” missing mass range extends over
|MM?| < 400,000 MeV?.

The two M M? ranges deal differently with events that have a true Dy — ¢er decay
but whose D, tag has been paired with an incorrect D} daughter photon. Such false
~ events do not peak in our Ds + v recoil mass spectrum and consequently do not get
counted as tags. We then need to cut such events out of our branching ratio’s numerator
with a background subtraction (the “tight” methods), or we need to trust the Monte

Carlo to correct our efficiency properly for such surplus events (the “wide” methods).
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Figure B.3: D4+~ recoil mass distribution for the 9 tag modes in the data. The dotted
lines give our fit results’ signal and background components.

Both the “tight” and “wide” cut regions have their own difficulties. The “wide”
missing mass range covers nearly all semileptonic events (true D} daughter photon or
otherwise). We have doubts about using the Monte Carlo to get the false « rate correct
for this method, as we discuss in Section Combinatoric background also enters
into the signal region, which we estimate with the Monte Carloﬁ

The “tight” background subtraction gets complicated because false v events peak

softly in the | M M?| distribution. We need to rely on the Monte Carlo to determine the

$We can also try estimating the false + rate from a D+~ recoil sideband. However, this gets conflated
with combinatoric background in the sideband, and it requires us to trust the Monte Carlo to correctly
extrapolate the false v distribution from the sideband to signal region in any case.

“We could estimate the background with a D, mass sideband, but we’d still be relying on the Monte
Carlo to estimate how that sideband propagates through the recoil mass distribution with its false
combinations. We find it best to make Monte Carlo dependence explicit, especially with a small effect
like this.
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soft peak’s shape, as a flat background non-trivially overestimates the branching ratio.
Every method also has the same peaking background from Dy, — foev, fo = KK
that we see in our standard analysis. For this comparison, we just use the Monte Carlo
to correct the fyev rate.
Overall, we get four slightly different methods of determining a branching ratio, by
taking either a tight/wide missing mass range and by allowing either the best candi-
date/multiple candidates for the D} daughter photon. We give our missing mass plots

from the Monte Carlo and the data for each type of candidate selection in Figures|B.4

B.1
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Figure B.4: Dy — ¢er event’s missing mass distribution (v missing mass) given a best
photon candidate selection in the Monte Carlo. The vertical lines indicate our “tight”
cut. The wide histogram shows true Dgs — ¢ev events that get reconstructed with a
false D} daughter photon.
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B.2.1 Comparison of Methods 1-4

Each method’s photon candidate multiplicity and |M M?| cut range gives it particular
advantages and drawbacks, which we briefly discuss below. As in the previous section,
we refer to D + v tags with a y that did not come from a D} daughter photon as “false
~” combinations. In particular, we address the case with more false v in the data than
predicted by the Monte Carlo (although the same problems would occur in reverse if
the data has fewer false v candidates than the Monte Carlo predicts).

Our best tight method (best photon candidate, tight |M M?| range) has the potential
flaw that when we get more false v tag combinations than expected from the Monte
Carlo, the false v contribution to the M M? spectrum becomes more peaked than pre-
dicted (a consequence of choosing the best ). This effect causes us to slightly under
subtract false v background from the signal region, leading to an overestimate of the
branching ratio. On the other hand, we choose the correct « less often than predicted
with our efficiency (since more false photons exist to potentially make a best candidate),
giving us a slight underestimate of the branching ratio. The former effect dominates,
as false v events get pushed into the signal region with the extra combinations more
frequently than events with a correct v get thrown out.

The best wide method allows both false and true v combinations into our |M M?|
range, so we don’t have to worry about whether we chose the correct v combination
or not. However, since the D; + v tag spectrum only peaks with true D} daughter
photons, the efficiency determined by the Monte Carlo implicitly assumes a certain
rate of extra events from false v. When we have more false v than expected, we get
more events in the |M M?| range than we took credit for given our tags and efficiency,
causing us to overestimate the branching ratio. We also need to trust the Monte Carlo
to determine the number of combinatoric and false Dg background, since our |M M?|
range extends far enough that a sideband subtraction isn’t reasonable; this estimate
could be systematically high or low, sending the branching ratio either way.

Our multiple tight method solves both flaws of the best tight method since we don’t
have a best candidate choice to shape the false « background, nor do we have an
efficiency issue when choosing false v in place of true 7. We do have the statistical
drawback that we aren’t making use of true Dy — ¢ev events that happen to have only

false D} daughter photons, but that’s also true of the best tight method and doesn’t
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drive our error in any case. Although different from the best candidate methods used
in prior analyses [88], we consider this the most accurate of our four methods that use
Dy + ~y recoil mass tags.

We include a multiple wide method for completeness, although this suffers from a
larger efficiency sensitivity to false « than the other methods. This occurs because we
can frequently get false v combinations even when the correct v was found and had the
best combination, with no sideband available to estimate such combinations. We expect
this method to overestimate the branching ratio due to the extra false v events (or due
to the low Monte Carlo efficiency, depending on your perspective).

Keeping these potential systematic biases in mind, we compare the results from each
of our four methods in Table [B.2] for the Monte Carlo and in Table [B.3] for the data
sample. We used a Monte Carlo input Dgs — ¢ev branching ratio of 2.170%.

Table B.2: Branching ratios in Monte Carlo for each of the four methods that use D+~
tags. Errors are statistical only.

Allowed candidates | M M? range ESL Nsr4+Dy+~y B(Ds — ¢ev)
Best candidate Narrow 9.63% | 1836 + 51 | (2.150 4+ 0.059)%
Best candidate Wide 13.24% | 2505 £ 52 | (2.134 £+ 0.045)%

Multiple candidate Narrow 10.89% | 2080 + 59 | (2.156 + 0.061)%

Multiple candidate Wide 18.85% | 3561 + 64 | (2.132 + 0.038)%

Table B.3: Branching ratios in the data for each of the four methods that use Dg + ~
tags. Errors are statistical only.

Allowed candidates | M M? range ESL Nsr4+Dy+~y B(Ds — ¢ev)
Best candidate Narrow 9.63% | 90.1 £ 11.1 | (2.110 & 0.260)%
Best candidate Wide 13.24% | 118.5 £ 11.4 | (2.019 £ 0.195)%

Multiple candidate Narrow 10.89% 98.3 + 12.9 | (2.036 + 0.269)%

Multiple candidate Wide 18.85% | 173.7 £ 14.0 | (2.079 £ 0.170)%

We get largely similar branching ratios from each of our four methods that use
Dy + 7y tags. At worst, our relative systematic error based on the |[MM?| cut window

and choice of best candidate comes to around 4%, which can be ignored given our 13%
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relative statistical error and our 10% relative systematic error from the tag fits.

B.3 Method 5: Cut on D;++v Recoil Mass, Fit D, Invariant
Mass

Fitting the D4 + v recoil mass spectrum suffers from the problem of non-linear back-
ground, which gets exacerbated by the signal’s long power law tail from photon recon-
struction. In contrast, the D, invariant mass spectrum has a fairly flat background, and
a smaller power law tail even in photon tag modes since we have one fewer photon to
reconstruct. To take advantage of the cleaner fitting while retaining the D} daughter
photon reconstruction, we have tried one method using D, invariant mass tags after
cutting on the Dg + v recoil mass.

We allow a D, tag to enter our invariant mass plot once if it pairs with one or more
photons to create a D, 4 7 recoil mass within 3.782 GeV? < M2 4 < 4.0 GeVZ. We
then fit the Dy invariant mass spectrum for each tag mode with a linear background
function and the sum of a gaussian and crystal ball to represent the signal. We fix the
relative normalization and relative width of the gaussian and crystal ball in the Monte
Carlo, as well as the crystal ball function’s o and n parameters. We allow all other
parameters to float in our fit, including both linear background parameters and the
common mean for the gaussian and crystal ball.

We count tags within [MJ®" — MB?G| < 17.5 MeV, since we only allow Dy within
this mass range to later combine with an electron and ¢ meson for our full semileptonic
event. We give our Dy invariant mass tagging results from both the Monte Carlo and the
data in Table with the fits shown in Figure and Figure (Appendix .

Since we use the same D invariant mass and Ds+ recoil mass ranges as our previous
four methods, we have exactly the same missing mass reconstruction (Figures|B.4HB.7)).
Unlike the D4 + v recoil mass tagging, our Dy invariant mass tags peak whether the D}
daughter photon is true or false. Rather than trust the Monte Carlo to estimate how
many tags come from true photon combinations, we use a best candidate selection over
the “wide” range for the |M M?|, giving one potential event for each tag and keeping
both true and false photons. This procedure means that we only have to use our Monte

Carlo to provide the efficiency for the ¢ and electron, independent of the false photon
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Table B.4: Dy invariant mass tags in the data and Monte Carlo after cutting on the
Dy + 7 recoil mass. We only allow each D mass to enter once, regardless of the number
of D + v combinations.

D, mode Data tags MC, fit tags MC, truth tags
K,K 4,726 + 76 87,061 £ 317 86,050
KKn 21,603 + 181 402,906 + 742 405, 485
KKrr° 8,498 + 241 149,721 + 920 145,063
KK rn 3,887 £ 96 66,833 £ 348 63,501
s 6,490 + 186 109,144 + 460 111,756
mn 2,341 + 80 42,248 + 229 42,876
7nm0n 3,329 + 143 90,113 + 505 86,663
',y — wan || 1,754 £ 47 31,320 £ 191 30,930
', — py 3,388 4+ 135 71,189 + 425 74,086
Sum 56,017 + 434 || 1,050,530 & 1,534 | 1,046,410

rate.

Aside from the possibility that the Monte Carlo underestimates the combinatoric
background (less than a 4% effect), we do have a slight complication with our Dy tags
in this method. Generic D decays may have photons as final decay products, while real
Ds — ¢ev events do not (at least not for our reconstructed mode of ¢ — KK). This
means that generic Dy decays have a slightly higher rate of photon candidates available
to create a passing D+ recoil mass than Dy, — ¢ev decays, allowing relatively more D
tags with fake D} daughter photons in generic decays than we see with real ¢ev events
(about a 3% correction). If the Monte Carlo underestimates the number of generic Dy
decay photons, we will also slightly underestimate our branching ratio.

Overall, we expect a relative systematic from this method of 6%, which is partially
independent of the systematic from our recoil mass tag methods. We state our branching
ratio results for this method in our summary section, with Tables and giving

the results in Monte Carlo and data, respectively.
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B.4 D! Daughter Photon Efficiencies

Some of our alternate Dy — ¢erv methods depend upon the Monte Carlo predicted rates
for reconstructing the D} daughter photon. Fortunately, with the various tagging meth-
ods that we’ve performed (and an additional fit for the number of Dy before combining
with photons), we can get an estimate for the actual photon efficiency in data. We can
also get an estimate for the rate at which events without a true D} daughter photon still
pass the Ds+ recoil mass cut by pairing with another shower (the “false 4” rate). This
cross-check indicates both that the D} daughter photon gets successfully reconstructed
at a lower rate than expected from the Monte Carlo and that false showers allow the
D, to pass our Dg + v cut more often than expected.

To determine our true efficiency for the D} daughter photon reconstruction, we
perform an additional fit to the D, invariant mass before it combines with a photon.
This gives us our efficiency denominator, which we can combine with our number of
Dy + v tags to get the efficiency. We use the same fitting methodology for this Mp, fit
that we used when determining invariant mass tags (method 5), although here we don’t
cut on the Dy + v recoil mass before getting our invariant mass distribution. As seen
in Table we obtain a lower photon efficiency in data by about 8% (relative) than
we get in the Monte Carlo. We don’t list the errors on the efficiency, as the systematics
from tagging dominate the small (sub-percent) level statistical errors (we haven’t done
a thorough systematic evaluation, but a relative 3%-4% seems likely given our previous

work).

Table B.5: D} daughter photon efficiency in data and Monte Carlo.

Sample type NEZCEFIEY Ngze'remﬂ Evy
MC, truth-tagged 886,308 1,267,860 69.9%
MC, fit 886,309 + 1,785 | 1,268,470 + 1,821 || 69.9%
Data, fit 44,336 == 497 68,999 &+ 561 || 64.3%

The D, tag can combine with showers from sources other than the D} daughter
photon (false ) to form a passing Dy + v recoil mass. These showers can come from

real photons on the other side (untagged) D, decay, or they can arise when the Dy
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decays to soft kaons. The kaons have a high rate of unmatched showers due to splitoff
and decays in flight that may not be well determined in the Monte Carlo. Although we
don’t use this result directly, we can get a feel for the data/Monte Carlo difference by
looking at how often a tag passes the Dy + « recoil by pairing with a false v when the
real photon was not found.

We use the number of tags from our recoil mass fit (methods 1-4), our invariant
mass fit tags after a Dg + « recoil cut (method 5), and the previously determined
photon efficiency to determine the rate of fake v. As seen in Table the data has
a 10% higher likelihood of finding such a fake shower than the Monte Carlo predicts.
This gives us the sense that either generic Dy decays have more photons than the Monte
Carlo, or we have more non-photon extra showers from D, decay products than we’d
expect. The former effect will distort our efficiency estimate for the invariant mass tag
procedure (method 5), while the latter particularly affects Dy — ¢er and can distort

all of our recoil mass results other than the multiple tight method.

Table B.6: Rate at which valid D without a correctly reconstructed D} daughter photon
will still pass all tagging cuts (including the Dy + ~ recoil mass).

Sample type N gji{ly N g:St'reCOﬂ Ey frake ~
MC, truth-tagged 886,308 1,046,410 69.9% | 42.0%
MC, fit 886,309 + 1,785 | 1,050,530 + 1,534 || 69.9% | 43.0%
Data, fit 44,336 £ 497 56,017 &= 434 || 64.3% | 47.4%

We can also get a more direct estimate for the rate of false D} daughter photons
in Dy — ¢ev decays by comparing our multiple tight method’s background estimates
in data and Monte Carlo. Background makes up about 45.4% of events in the Monte
Carlo compared to 47.3% for the data. Since combinatoric background only makes up
some 5% of the total events (according to the Monte Carlo), it’s likely that these surplus
data background primarily come from false photon combinations. If we interpret the
extra background in data as entirely false photon combinations, we estimate a relative
7% higher rate of false v combinations for Ds — ¢er events over what the Monte Carlo

predicts.
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B.5 Method 6: No D} Photon Reconstruction

For ease of comparison, we also include a simplified version of our primary analysis
that uses cuts and fits similar to the other five alternate methods. As in our primary
analysis, we do not attempt to reconstruct the D} daughter photon, instead using the
D, invariant mass spectrum for both tags and the number of semileptonic events.

We reconstruct the same 9 D, tag modes listed in [B.I] leaving out four of the
higher background modes from our primary analysis (K,K7°; K K,m; K,K*t7m; and
ar'n’,n' — mrn). Since we do not reconstruct a potential D¥ daughter photon, we
don’t have a D+ - recoil mass available for our selection. Instead, we use our primary
analysis’s D; momentum cut in the form of the D; recoil mass range from Table

Once we’ve selected our Dy candidates, we determine the number of Dy tags by fit-
ting the invariant mass spectrum. As in our previous Ds; — ¢ev reconstruction method
using the D, invariant mass for tags (method 5), we fit each tag mode to the sum of a
gaussian and crystal ball for the signal with a linear background function (using fixed
signal shape parameters from the Monte Carlo). This fit choice differs from our primary
analysis, where we sometimes use a double gaussian or a quadratic background, based on
the tag mode. While our choice of fit function for this alternate method may not be as
accurate as in our primary analysis, it does reduce the likelihood that any difference in
results between the alternate methods came from a fit systematic on the tags. Overall,
we see an 8% difference in tags from our primary analysis over these modes, although
77’7 drives nearly the entire difference with its non-linear background shape. Our tag
results for this method are given in Table [B.7] with our data fits shown in Figure

After making the same electron and ¢ cuts as for our other alternate methods (rather
than the ¢/e cuts from our primary analysis), we again plot the Dy invariant mass. We
fit each tag mode with the signal shape determined from our tag fits (only the overall
normalization floats), plus a linear background function. Unlike our primary analysis,
we refrain from using a common branching ratio to ensure that this method remains
both simple and as similar as possible to the other alternate methods. We thus fit each
tag mode independently.

Figures and show our Monte Carlo and data plots for the Dy mass after

making our semileptonic selections. We include the results in our summary section with
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Table B.7: D, invariant mass tags in the data and Monte Carlo after a Dy momentum
cut. We do not require a pairing with a photon.

D, mode Data tags MC, fit tags MC, truth tags
KK 6,277 = 95 115,958 += 380 113,885
KK 27,676 + 225 510,195 + 888 514,865
KKrm 6,731 + 203 119,558 &= 750 136,976
KK 7w 3,411 + 88 65,749 + 351 64,034
T 5,992 + 201 118,575 + 521 124,024
™™ 3,809 + 135 64,179 + 317 66, 758
xn'n 5,718 + 331 108,063 + 800 131,334
', — mrn || 2,412 £ 60 42,550 + 232 42,181
m',n — py 3,487 + 158 72,327 + 453 81,611
Sum 65,513 + 553 || 1,217,150 + 1,700 1,275,670

Tables and [B.9
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Figure B.8: D invariant mass for events passing the semileptonic ¢ and electron cuts
in the Monte Carlo.
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B.6 Comparison of Alternate Methods

Our best Dy — ¢erv measurement using Ds +~ recoil mass tags comes from the multiple
tight method, so we compare it, the D, invariant mass tag method, and our simplified no
D7 photon analysis in Tables and for the Monte Carlo and data, respectively.
The multiple tight method and the simplified no photon method give us the biggest
branching ratio range, with a relative difference of about 10%. We expected our non-
correlated systematic errors between methods to also be at about the 10% relative
level, so this relative difference seems reasonable. Note that while the statistical errors
also cover this range, they don’t completely explain the difference since they have a

correlation with each other (all methods run over the same data sample).

Table B.8: Branching ratios in Monte Carlo for our different Dy — ¢er alternate
methodologies. Errors are statistical only.

tags

D, — ¢er method NEw €SI, NS14+D, 4+ B(Ds — ¢ev

Ds+vy

Ml tags, multiple tight 835,368 + 1,683 | 10.89% | 2080 + 59 || (2.156 + 0.061
Mp, tags, best wide 1,050,530 + 1,534 | 11.48% | 2505 + 52 || (2.150 + 0.045
Mp, tags & signal, no v 1,216,450 + 1,698 | 13.97% | 3160 £+ 61 || (2.150 £+ 0.042)%

)

V%
)%
)

Table B.9: Branching ratios in the data for our different Ds; — ¢ev alternate method-
ologies. Errors are statistical only.

tags

Dy — ¢ev method Nraw €SI, NSL 4D+ B(Ds — ¢ev

Ds+y

Mp, tags, best wide 56,017.1 4+ 433.6 | 11.48% | 118.5 + 11.4 || (1.908 £+ 0.183)%

)

M tags, multiple tight || 41,787.7 + 468.1 | 10.89% | 98.3 = 12.9 || (2.036 £ 0.269)%
)

Mp, tags & signal, no v 65,476.6 + 551.6 | 13.97% | 144.8 + 13.3 || (1.831 £ 0.169)%

Our primary analysis yields a branching ratio roughly in the middle range of our
alternate methods, with the full range covered by its statistical error. We take this to
mean that our primary Ds; — ¢ev result is fairly robust to the changes in fit function,
particle cuts, and D} photon reconstruction considered in this appendix.

Our multiple tight method and our D, invariant mass tag method both involve an
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fo — KK correction based on our Monte Carlo. Given the discussion in Appendix [A]
the Monte Carlo likely has more fy — KK than the data, so this could lead to an
underestimate of the branching ratio by a relative 2%-3%. We do not attempt an
fo — KK correction in our simplified no D} photon analysis; this could lead to an
overestimate of our branching ratio by up to a relative 2%. However, the systematic
error from our (different) fy correction methodologies comes out to roughly the size of

the correction itself, so this doesn’t alter the consistency between our different methods.



Appendix C
Ds — nev Efficiency Systematic

As described in Section we have elected to create our own 7 efficiency systematic
rather than adopting a preexisting one. This gives us an 7 reconstruction efficiency with
our exact 7 selections, a comparable 7 lab momentum range (Figure , and a run
environment similar to that in the Dy — nev analysis.

In addition to these benefits, our Dy — ner Monte Carlo datasets show an nev
efficiency variation that borders on the edge of allowed random variation (Figure .
Of course, with six semileptonic modes, it shouldn’t be shocking if one mode’s efficiency
variations have a one in six chance of being consistent with a random distribution. Even
so, creating our own systematic for the efficiency from the same datasets gives us more
confidence that our analysis has a sound foundation.

We obtain an 7 sample by taking advantage of the large (8.9%) D — p*n branching
ratio [89]. We determine the presence of an 7 by finding the recoil mass after recon-
structing a Dy tag, the D} daughter photon, and a p. Then, we explicitly reconstruct
the n — v with our analysis’s n selection to get an n efficiency. As this can be done in
both data and Monte Carlo, we can compare the efficiencies for our overall systematic.

For our D, tag, we use the same 13 tag modes as our full analysis, described in
Section [5} Since we don’t need to fit the Dy mass spectrum, we make the additional
mode-dependent D, mass cuts shown in Table (Appendix . We follow the se-
lections from Section for our D} daughter photon candidates, with the exception of
the irrelevant minimum energy cut.

For the p*, we reconstruct a 7% and a 7°. Our charged 7 follow the same selection
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Figure C.1: The n momentum distributions in D, — nev and Dy — np both peak near
750 MeV and have comparable widths. This contrasts with the alternate source for

a clean n sample, ' — nJ/1, which creates monoenergetic 7 with a momentum of
199 MeV.

criteria as in Section although we make minor adjustments by lowering the x?
threshold to 1,000, we don’t allow hit fractions above 1.2, and we drop the ‘J;irE/ dm‘ < 3.0
cut when we have both RICH information and p; > 550 MeV. The m and D, tag must
have opposite charges, and the event can have no other charged tracks. We require a
3.0 pull mass cut on the 7%, and its showers must meet the requirements from Section
(although we drop the distinction between barrel and endcap showers).

The background to Dy — pn mostly consists of events with soft pions. We can
eliminate much of this background by adding cuts on the p. Specifically, we require
600 MeV < M, < 960 MeV and 500 MeV < p, < 1000 MeV. We also eliminate

particular backgrounds by rejecting 7% that have a rest frame momentum within 5 MeV
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Figure C.2: Dy — nev efficiency (including the n — -~ branching ratio) by dataset.
The solid line gives the average across the full generic Monte Carlo sample, while the
dotted lines show the 1o range on this average.

of 712 MeV, 743 MeV, or 902 MeV for D, to w¢, mr/, and 7, respectively.

To determine our number of Dy — pn events, we perform a 2D fit to the Ds+y recoil
mass and the Dy + v + p recoil mass. We use the Monte Carlo to get four lineshapes
for the fit corresponding to events with true or false n and true or false Ds+ v+ p. The
Monte Carlo accurately reproduces the widths of these lineshapes in data, but the peak
locations have a slight shift. We allow the distributions to shift in each dimension and
take the best x2. In the data, this shifts our D, + v recoil mass fit function by 1.3 MeV
and our Dy + v + p recoil fit function by 4.5 MeV. We give our projections for each fit
dimension in Figures (Monte Carlo) and (data).

After identifying events with an 7, we explicitly reconstruct the n — 7 using the

same shower selections as for the 7° from the p. We only consider events with a Dy 4
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Figure C.3: Top: Dg +  recoil mass in the Monte Carlo for events with a Dgs + v + p
recoil mass between 500 MeV and 600 MeV. Bottom: Dg + v+ p recoil mass for Monte
Carlo events that have a Dg + v recoil between 1955 MeV and 1990 MeV.

recoil mass between 1950 MeV and 1990 MeV.

Once we have our reconstructed 7, we get our efficiency’s numerator by doing a 2D
fit to the n pull mass and the Dg + v + p recoil mass. We again take lineshapes from
the Monte Carlo, keeping the same 4.5 MeV shift to the Ds 4 v + p recoil mass that we
obtained from our previous fit. We show our distributions from this fit for the Monte
Carlo in Figure [C.5 and for the data in Figure [C.6

We expected to see a lower n efficiency from the data than the Monte Carlo, in
accordance with a previous CLEO analysis using 1)’ — nJ/1 that saw a relative 5.6%
correction to the n efficiency [71]. However, with our 7 environment and selections,

we only see a relative 1.2% lower efficiency in the data compared to the Monte Carlo
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Figure C.4: Top: 2D fit projections for the D + v recoil mass in the data from events
with a Dy + v 4 p recoil mass between 500 MeV and 600 MeV. Bottom: Fit projection
for the Ds + v + p recoil mass from data events that have a Dg + 7 recoil between
1955 MeV and 1990 MeV.

(32.7% to 33.1%), well within our error. Consequently, we do not take a correction to
our 7 efficiency.

Our systematic error on the efficiency comes almost equally from our error on the
numerator (2D pull mass/Ds + 7 + p recoil fit) and our error on the denominator (2D
Ds + v + p recoil/Dg 4 ~ recoil fit). We use a binomial error for the our efficiency,
although we have to adjust it upward by a factor of 1.2 to account for fit backgrounds.
Ultimately, we obtain an 7 efficiency in the data of (32.7+ 2.6)%, giving us a relative 7
efficiency systematic of 7.9%.
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Appendix D

Kaon Tracking and Particle 1D

Systematic

While all track reconstructions depend on the particle’s momentum to some extent, kaon
reconstruction and identification have a particularly strong dependence on momentum
given the possibility of the kaon decaying within the detector. Kaons in D semileptonic
decays tend to have lower momenta than kaons in D°/D7 decays, so we use loose cuts
to gain efficiency for those otherwise low yield kaons. However, that means that our cuts
don’t match the prior CLEO systematics, requiring us to perform our own systematic
study for kaons. We choose an approach that combines the reconstruction and particle
ID efficiencies, giving a single, momentum-dependent systematic error for kaons.

We initially looked in the Dy system for a kaon systematic, given the relatively large
numbers of kaons produced thanks to the Dy meson’s strange component. However,
our systematic errors from these studies typically came out to about 3% per kaon, or
about 6% for Dy — ¢ev as a whole given the correlation between the systematics on
the two kaons. The higher statistics from Dt — K~ n"7nt (and its charge conjugate)
during CLEQO’s 3770 MeV running allow us to achieve a lower systematic on the kaons,
at the expense of not having an exactly identical run environment. While we don’t
use it directly, our original Dy — K K study yielded roughly the same needed kaon
efficiency correction (with higher errors) that we will see from our DT study below.

To isolate D — Knr decays, we first reconstruct a D* tag. We use five modes in
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our DF tag reconstruction: Knmw, KKn, K,r, K;on®, and Knrr®. We ensure that
we have a DT D™ event by requiring that the tag’s beam constrained mass falls within
5 MeV of the D™ mass and that the AFE falls within 20 MeV of zero. We then choose
each charge’s best tag by DT invariant mass. Once we have a DT tag candidate, we
rescale its total momentum to match D™D~ production, improving the resolution of
our later recoil masses.

After finding a tag, we look for two additional tracks with proper charges passing
pion particle ID. We reject any event with a total extra energy above 250 MeV or with
an extra track passing simple electron cuts, avoiding backgrounds from 7° modes and
semileptonic modes, respectively. We can then identify D — Knw events by checking
that the recoil mass against the D and two m matches a kaon.

From here, we have two ways of calculating the kaon efficiency. We can take all
events with a recoil mass near the kaon mass as the denominator, then obtain our
numerator by explicitly reconstructing the kaon and finding a zero missing mass for the
event. Alternately, we can try to find the kaon, plotting the “found” recoil mass when we
reconstruct it and the “not found” recoil mass when we don’t, with ex = %
giving the total kaon efficiency. As it turns out, the found/not found approach makes
it slightly easier in practice to get good precision from our fitting because nearly all
the background comes from events without a found kaon, allowing us to focus on those
events as the source of any nonstatistical error.

To get separate efficiencies for each kaon momentum region, we split our sample
into three bins based on the D + 77 recoil momentum: one for kaon momenta below
250 MeV, one for kaons between 250 MeV and 500 MeV, and one for kaon momenta
above 500 MeV. We’ve chosen these momentum regions so that Dy — ¢erv kaons split
roughly evenly between the lowest and middle bins. We fit to the “found” and ‘“not
found” plots in each of these regions using histogram shapes from the Monte Carlo, with
a fit systematic error determined by doing a simple cut and count to the same plots.

When fitting, we discovered that the recoil kaon mass in the data tends to fall slightly
below the recoil mass in the Monte Carlo. To account for this, we allow our signal shape
to shift by small amounts to the left, and we take the best x? from all such shifts (which
results in a recoil shift of about 0.8 MeV). We show the final Monte Carlo and data

Tom momentum region for our ¢ meson n ions in Figur n
lots from each moment egion for o eson’s kaon selections in F es|D.1] and
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[D-2] respectively.
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Figure D.1: 757t DT recoil mass fits for our ¢ kaon selections in the Monte Carlo.
The left plots show the recoil mass when we find a kaon, while the right plots show the
recoil mass when we don’t find the kaon. The top plots contain recoil momenta below
250 MeV, the middle plots have recoil momenta between 250 MeV and 500 MeV, and
the bottom plots have recoil momenta above 500 MeV.
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Figure D.2: 7w D recoil mass fits for our ¢ kaon selections in the data. The left plots
show the recoil mass when we find a kaon, while the right plots show the recoil mass
when we don’t find the kaon. The top plots contain recoil momenta below 250 MeV,
the middle plots have recoil momenta between 250 MeV and 500 MeV, and the bottom
plots have recoil momenta above 500 MeV.
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In our analysis, we use three different sets of selections for kaons: one for ¢ (Sec-
tion ; one for K* (Section ; and one for Dy tags (Section , where our kaon
selections for the Dy tags follow the standard CLEO kaon cuts. We have repeated our
systematic for each of these kaon cuts, with the final efficiencies across our kaon selec-
tions and momentum regions shown in Figure for the Monte Carlo and Figure [D.4]
for the data reconstruction. In all cases, we find that the data efficiency deviates from
the Monte Carlo efficiency for soft kaons and requires an efficiency correction, as shown
in Figure and from our final results in Tables [D.1HD.3]

o Loose K selection (¢)
e Medium K selection (K*)

Standard selection

0IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

100 200 300 400 500 600 700 800 900 1000
P, (MeV)

o

Figure D.3: Monte Carlo kaon efficiency for each set of kaon selections, by momentum.
Our ¢ kaon cuts (hit fraction dropped) show a higher efficiency in each momentum
range, with a particular relative advantage in the important low momentum region.
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Figure D.4: Kaon efficiencies in the data for each set of kaon selections, by momentum.
The error bars on the efficiencies (barely visible) include both a statistical error and the
systematic error from fitting. The relative difference between the selection efficiencies
roughly matches the Monte Carlo, although the absolute efficiencies for soft kaons all
fall below their corresponding Monte Carlo efficiencies.
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Figure D.5: The relative difference between the kaon efficiency in data and the kaon
efficiency in Monte Carlo, by selections and momentum range. The high momentum
region requires no correction, the middle momentum region requires a slight efficiency
correction, and softest kaons require a sizable efficiency correction. The error bars
include both statistical and systematic errors from our tracking/PID reconstruction.



Table D.1: Relative kaon systematic and efficiency correction for our loose (¢er) kaon

selection.
. Statistical Fit Total €K
Momentum region . . .
error systematic || systematic || correction
pr < 250 MeV 1.59% 1.69% 2.32% -9.47%
250 MeV < px < 500 MeV 0.43% 0.08% 0.44% -1.35%
500 MeV < pg 0.18% 0.59% 0.62% N/A

Table D.2: Relative kaon systematic and efficiency correction for our medium (K*ev)

kaon selection.

. Statistical Fit Total €K
Momentum region . . .
error systematic || systematic || correction
pr < 250 MeV 1.78% 1.69% 2.45% -9.08%
250 MeV < pg < 500 MeV 0.60% 0.08% 0.60% -1.50%
500 MeV < pg 1.37% 0.59% 1.49% N/A

Table D.3: Relative kaon systematic and efficiency correction for our standard kaon

selection.
. Statistical Fit Total €K
Momentum region . . .
error systematic || systematic || correction
pr < 250 MeV 1.67% 1.69% 2.38% -7.21%
250 MeV < pgx < 500 MeV 0.76% 0.08% 0.76% N/A
500 MeV < pk 0.51% 0.59% 0.78% N/A

Our large momentum bins mean that the kaon momentum distribution within each
bin (e.g. 250 MeV < px < 500 MeV) can differ between D — K7 and the semileptonic
mode, shown for Dy — ¢erv in Figure We add an additional systematic to the
efficiency error for this effect by splitting the momentum bin into two halves and allowing
each half of the bin to have a different efficiency correction, constrained by the bin’s
total kaon efficiency and the adjacent bins’ efficiency corrections. This procedure results

in a relative 0.5% systematic error for Dy — ¢ev.
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Since the ¢ meson’s daughter kaons tend to have strongly correlated momenta, we
correct our ¢ger efficiency based on the daughter kaon momentum pairs rather than on

the individual ¢er kaon momentum distribution.
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Figure D.6: D — Knm and Dy — ¢ev daughter kaon momentum distributions, scaled to
line up the left momentum bin. Because the kaon momentum distribution for Dy — ¢ev
falls off so sharply in the middle bin relative to K 7w, we perform an additional system-
atic by splitting the bin into two halves and doing a separate efficiency correction for
each.



Appendix E

Glossary

As a discipline becomes more and more specialized, it gains its own terminology. While
I can’t speak to the blechyuckiness of business speak, scientific disciplines really do
require some arcane terminology because the English language frankly lacks words with
the proper precisionE] With this glossary, I intend to clarify some of the terms such that
someone with a general science background doesn’t feel totally lost (just partially)E] I've

also added a quick note on the particles relevant to this analysis.

E.1 General Terminology

e Breit-Wigner Function — A probability density function that describes the mass
distribution for a particular resonance/particle. The relativistic version has the

form:

C
(M? — M3)? + M?T%’

where C is a normalization constant, M is the particle’s mass, M is the resonance’s

Prob(M) =

mass, and I' is the resonance width.

e Branching Ratio — The fraction of a particle’s decays that end in a given final

'Let alone the proper compactness. Without detailed terminology and implicit understanding, this
dissertation’s three word title could easily become “Measuring the rate at which an atom-like object
made up of a charm and a strange quark transitions into other particles while giving off an electron and
a neutrino, compared to how often that same atom-like object transitions into all other particles.”

2I'm using my Dad, an electrical engineer, to calibrate the target audience for this section.
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state, often expressed as a percentage. This is the same as the decay’s partial

width divided by the particle’s total width.

9

Bremsstrahlung — “Braking radiation,” emitted when a charged particle slows

down (decelerates) or deflects.

Cherenkov (Cerenkov) Radiation — Light emitted in a cone when a charged

particle moves faster than the speed of light (phase velocity) in a material.

CKM Matrix — The Cabibbo-Kobayahsi-Maskawa matrix that connects the free
quark eigenstates to states that take part in the weak interaction. Matrix elements
along the diagonal (Vq, Ves, Vi) have the largest magnitudes, and interactions
that involve those elements are called Cabibbo favored, while interactions involving

the off-diagonal elements are Cabibbo suppressed.

Combinatoric Background — The eTe™ collisions create all kinds of charm
events that we don’t care about (background). Sometimes through sheer numbers,
these background events will happen to have the same particles we’re looking for
with just the right combinations of energy and momenta to fake a signal event.
Every extra particle requirement tends to reduce this background, and it can

usually be estimated from sideband regions.

Continuum — eTe™ collision events that don’t generate the targeted particle
states (nonresonant). While ete™ collisions can make a charm-anticharm pair,
some of which split into the D} we want, they can also make up-antiup, down-
antidown, or strange-antistrange quark pairs that we don’t care about in the

slightest (continuum).

Cross Section — The quantum mechanical analogue of the classical area exposed
by an object to a third dimension. In particle physics, the cross section relates to

the interaction probability but carries units of area, typically measured in barns
(10728 m?).

Crystal Ball Function — A function named after the Crystal Ball experiment

that splices a Gaussian together with a power law tail, keeping the function and
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first derivative continuous. We usually use these in the context of photons detected

in a calorimeter, as their measured energies tend to exhibit a power law tail.

dp, — Radial distance from the beamline. We use this as a constraint on our drift

chamber tracks to ensure that the particle started from the eTe™ collision point.

dE/dx — Energy lost due to ionization per length by a charged particle moving
through material. Particles with different masses have different amounts of dE /dx
at a given momentum, allowing us to identify particles by comparing our measured
dE /dz to the particle’s ideal dE/dx (o%/®).

EE—; — Energy in a shower’s 3 x 3 = 9 central crystals divided by the energy

in a shower’s 5 x 5 = 25 central crystals. We often discuss an 5—; 0.K. cut,
which scales smoothly from requiring the center crystals to hold about 80% of
the shower energy for soft photons to around 90% of the shower energy for higher
energy photons. Photon showers show this pattern, while hadronic showers tend

to be more spread out.

Flight Significance — A K, variable that ensures the K, travels a minimum
distance from the interaction point before decaying. This helps distinguish K

from nonresonant 7w or random combinations.

Form Factor — The Fourier transform (in momentum space) of a hadron’s spatial
structure. This relates to both the physical size of the hadron and its decays to

particles with various spin/parity characteristics.

FSR - Final state radiation, where a final state charged particle emits a soft

photon, decreasing its energy and momentum.

Hit Fraction — The number of actual drift chamber wire “hits” in a charged
particle’s track relative to the expected number of hits. Good tracks tend to have
a hit fraction close to 1.0, but particles that decay in flight don’t make it all the

way through the drift chamber and so leave fewer hits than expected.

Hot Crystal — A crystal/photodiode in our calorimeter known to register signals
when we have none. We typically throw out signals from such crystals in our

analysis.
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e ISR - Initial state radiation, where one of the colliding e™ or e~ emits a soft

photon, lowering the collision’s energy.

e Lattice QCD — A formulation of quantum chromodynamics (QCD), the theory
of strong interactions, on a discrete space-time lattice. QCD calculations tend to
be intractable analytically, but the lattice formalism brings computers into play by
making the calculation precision dependent on the lattice size and spacing. This
allows the result precision to depend on the computing power available, although

lattice calculations still frequently need additional simplifying assumptions.

e Lineshape — Shorthand for the mass lineshape, a particle’s mass distribution (e.g.

a Breit- Wigner function).

e Luminosity — Interactions per area per time. We often integrate the luminosity
over the run time for an experiment, giving the integrated luminosity, the inter-
actions per area. We can then just multiply by an interaction’s cross section (an

area) to get the number of such events.

e Missing Mass/Recoil Mass — The mass created by missing energy and missing
momentum via E? = p? + m?. The missing energy and momentum comes from
deducting all the reconstructed energy and momenta from the initial energy and
momenta. If the reconstruction left exactly one missing particle, the missing/recoil
mass should match up with that particle’s mass. Informally, we tend to use
“missing mass” when we don’t intend to look for the particle and “recoil mass”
when we expect the particle to have left some trace that may factor in the later

analysis.

e Mixing Angle — A way of describing the connection between a particle’s state
and the linear combination of states that make it up. The component states’
coefficients add in quadrature to one, much like cosine and sine, making the notion
of an angle a useful way to describe the coefficients. For example, the ¥ is a
combination of up-antiup and down-antidown states in the form |7%) = cos § |uu)+

sin @ |dd), where § = —45°.

e Monte Carlo — A computer generating technique where you set up the general

rules (the physics) but use random numbers to construct the particular events.
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Typically, we run many more simulated events than we have real events to inves-

tigate any biases or flaws in methodology.

Nonresonant — Decays to final states that don’t go through intermediate particles
on the way. For instance, this analysis considers the resonant Dy — ¢ev, where
¢ — KK and we observe the two kaons. In principle, we could also look for

nonresonant D, — K Kev, although these decays happen to be less favored.

Pole Dominance — Tendency of a particular interaction to favor an interme-
diate resonance, or pole. The pole has the associated particle’s mass and other

characteristics (propagator).

Pull Mass — Reconstructed mass precision, given the error in constituent parti-
cles. We usually use this in the context of 7% — v or  — 77, where each photon
may have a very different associated error. In this case, we want to incorporate
those errors into our mass reconstruction precision rather than just taking the

energies without error and calculating a nominal mass.

Q Value — The energy difference between the decaying particle’s mass and the
rest masses of the final state particles, generally in the decaying particle’s rest

frame. This corresponds to the total kinetic energy released in the decay.

QCD - Quantum chromodynamics, the theory that describes strong force inter-

actions.
Recoil Mass — See missing mass.

RF Cavity — A radio frequency cavity with an oscillating electric field timed to
accelerate charged particles when they pass through (here, et and e~). Somewhat
self-correcting: a particle with too much energy has a larger radius and arrives
at the cavity late, gaining less energy since it’s not timed as precisely with the

oscillating electric field.

Semileptonic Decay — A decay that includes both leptons (e.g. an electron and
an antineutrino) and hadrons (e.g. a ¢ meson) in its ending state. We call decays

with only leptons leptonic, and we call decays with only hadrons hadronic.
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e Sideband — Reconstructed events that miss some cut window and fall just out-
side the signal region. These kind of events give an idea of how much random
background extends into the signal region (combinatoric background, background

with one misreconstructed particle, etc.).

e Spin — Intrinsic angular momentum of a particle. When we’re discussing a com-
posite particle, we use spin to mean the particle’s total spin (J) rather than its

constituent particles’ angular momentum (L) or spin (S).

e Splitoff Showers — When particles, particularly kaons, hit the crystals in our
calorimeter, they induce reactions that sometimes involve “backscatter,” where
some of the resultant particles get shunted off and interact with nearby crystals.
This looks like a new hit in our calorimeter without an associated drift chamber

path, which we usually (and here, incorrectly) interpret as a photon.

e Synchrotron Radiation — Photon emission from a charged particle (here, et and
e~ ) when accelerated into a circle (radially), since accelerating charged particles

can radiate.

e Systematic Errors — Errors (imprecision or biases) due to the measurement

procedure/apparatus rather than statistical fluctuations.

e Tag (D; tag) — A reconstruction that identifies the right kind of event. We want
only semileptonic D, decays from the whole mess produced by eTe™ collisions at
4170 MeV. Since Dy get produced in pairs (D Dy), we find one Dy in the event
through a complete reconstruction; this lets us know that there’s another Dy in

the event and that we should look for a semileptonic decay.

e 7o — Longitudinal (azial) distance from the eTe™ collision point. We use this as
a constraint on our drift chamber tracks to ensure that the particle started from

the interaction region.

E.2 Particle Zoo

Particles and related terms used in this dissertation.
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Baryon — Particle consisting of three quarks (all three quarks or all three anti-

quarks).

Boson — Particle with integer spin. Multiple bosons can exist in the same quantum

state. The force carriers (e.g. photon, gluon) are all bosons.

Fermion — Particle with half-integer spin (typically Spin-%). No two fermions can

exist in the same quantum state (the exclusion principle).
Hadron — General term for a composite particle consisting of multiple quarks.
Meson — Hadron consisting of two quarks (a quark and an antiquark).

Pseudoscalar (Scalar) Particle — A spin-0 meson whose quantum state flips

sign (does not flip sign) under a parity inversion (¥ — —).

Quark — Spin—% elementary particles that have color and so interact under the
strong force. We sometimes separate these into light quarks (up, down, and
strange) with masses less than the characteristic strong force scale, Aqcp, and

heavy quarks (charm, bottom, and top) with masses above Aqcp.

Vector (Axial) Particle — A spin-1 meson whose quantum state flips sign (does
not flip sign) under a parity inversion (¥ — —). Axial vector mesons are also

sometimes called pseudovector mesons.

D — The lowest energy bound state formed by a charm quark and an antistrange
quark (or an anticharm quark and a strange quark). It has a mean lifetime of a
whopping 5.00 x 10! seconds and travels a good 3 micrometers in our detector
before breaking up, both of which are actually quite long compared to some other

particles we deal with.

D — The next-to-lowest energy bound state formed by a charm and an antistrange
quark (or anticharm/strange). Unlike the spin-0 Dy, it has spin-1, which can
roughly be thought of as having the charm and strange spins aligned instead
of antialigned. It quickly transitions to a D; in a spin-flip decay via a photon

emission.
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¢ — Vector meson consisting of a ss state. The ¢ usually decays to KK, but its

mass sits just above the KK threshold. It has a relatively wide mass distribution
(T' = 4.26 MeV) with a long, high-side tail.

n — Pseudoscalar mixture of ui, dd, and s5, with a plurality decay to . The 7

mostly consists of the uds meson octet’s ng.

n' — Pseudoscalar mixture of ui, dd, and s5. Heavier than the 7, the 7/ mostly

consists of the n; = %ﬁ“g singlet. The 7’ meson has a plurality decay to 7.

K, — The shorter-lived neutral kaon (lifetime of 9 x 107! s) that decays to 7 7~

just over 2/3 of the time. The pseudoscalar K consists of a down and strange
ds—sd

quark, roughly in the form 7

K* — The neutral vector K* meson consists of a d5/ds state that decays to K.
Charged K* mesons also exist (uS/us), with the K* charge usually clear from

context. Our semileptonic decays involve the neutral K*.

fo — A scalar state with unknown composition, probably with an s§ component.

It has also been thought to have a K K molecule, four quark, or gluon component.

p° — A wide, vector meson resonance that appears frequently and quickly decays

to 77, The related p* decays to 7+70.



Appendix F

Extra Tables

Table F.1: Number of D, tags in data and Monte Carlo, by dataset. We fit each dataset
independently for this comparison and scale the Monte Carlo to data size.

Dataset Data fit counts MC fit counts M]@_TZMC
39 7,246.8 £ 255.3 6,482.8 + 308.6 | (11.8 £+ 6.6

1%
40 15,609.7 = 414.2 | 14,278.5 + 422.0 ( 9.3 £+ 4.3)%
41 16,308.6 + 443.9 | 13,886.4 £ 438.2 | (17.4 + 4.9%
47 14,686.3 + 408.9 | 12,940.5 + 396.6 | (13.5 + 4.1)%
48 23,823.5 £ 752.0 | 20,283.1 =+ 580.2 | (17.5 £ 5.0)%

Sum 77,674.9 £ 2,274.3 | 67,871.3 + 2,145.6 | (14.4 £ 4.9)%
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D, mode Data fit counts MC fit counts Nﬁ#j\:\w
KK 6,226.7 & 101.2 | 5,764.0 £ 100.8 (8.0+ 2.6)%
KKr 27,373.5 + 248.4 | 25,242.0 &+ 233.9 (84+ 1.4)%

K Kn° 2,246.8 + 209.9 | 1,670.5 + 157.7 | (34.5 + 17 9)%
KK 1,125.5 = 76.5 1,141.4 + 69.3 (-1.4 + 9.0)%

KKnn© 7,355.5 £ 377.4 | 6,693.4 £+ 323.6 (99+ 7.71%

K, K nrm 1,859.4 + 120.6 1,744.1 + 105.5 (6.6 + 9.5)%

KK rnm 3,377.3 £ 100.0 | 3,246.3 = 92.2 (4.0+ 4.3)%
T 6,606.3 + 337.7 | 6,081.6 &= 326.3 (8.6 + 8.0)%

) 3,810.3 + 190.8 | 2,882.3 + 182.9 | (32.2 + 10.7)%

xm0n 9,476.9 + 529.0 | 6,825.9 + 700.7 | (38.8 + 16.2)%
', — 7y 2,386.6 £ 65.6 | 2,1324+ 643 | (11.9+ 4.6)%
o'y, — 7y | 1,090.5 + 118.7 532.5 £ 84.5 | (104.8 &+ 39.4)%
™' 0 — py 42723 £ 1933 | 39044 £ 2452 | (94 + 85)%
Sum 77,207.5 + 880.2 | 67,860.7 £ 959.8 | (13.8 £ 2.1)%
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Table F.2: Number of Dy tags in data and Monte Carlo, by mode. We scale the Monte
Carlo to the data luminosity.
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Table F.3: Test of potential bias in our fitting procedure for Dy — K er by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset N;rili};;;gged Nt L tag Difference (# o)
1 27 23.95 + 5.72 —0.533
2 25 26.86 = 6.08 0.306
3 37 39.67 £ 7.79 0.343
4 35 28.34 £ 6.15 —1.083
) 23 25.55 = 5.94 0.429
6 23 19.51 £ 5.79 —0.603
7 18 20.18 £ 5.91 0.368
8 29 23.20 £ 5.90 —0.982
9 26 21.46 £ 6.59 —0.689
10 29 26.82 £ 6.19 —0.353
11 20 2274 + 5.78 0.474
12 22 23.99 £ 5.88 0.339
13 22 27.44 £ 6.13 0.888
14 22 18.36 £ 5.09 —0.715
15 37 31.85 = 6.52 —0.790
16 28 32.67 £ 6.59 0.710
17 25 17.67 £ 5.99 —1.224
18 26 26.27 = 6.26 0.043
19 20 23.32 £ 5.61 0.592
20 27 23.80 £ 5.83 —0.549

Sum 521 503.66 + 27.31 —0.635
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Table F.4: Monte Carlo comparison of the measured D; — K ev branching ratio to
its generating branching ratio (0.090%), in data-sized samples. The weighted average
line contains the x? across the 20 samples rather than the number of o between the
measured /generated branching ratios.

Dataset Raw fit BR Corrected BR # o
1 (0.113 £ 0.027)% | (0.100 £ 0.027)% || 0.36
2 (0.122 + 0.028)% | (0.109 + 0.028)% || 0.68
3 (0.178 £+ 0.035)% | (0.165 £ 0.035)% 2.13
4 (0.129 + 0.028)% | (0.115 + 0.028)% ||  0.89
) (0.118 + 0.027)% | (0.104 £ 0.027)% 0.52
6 (0.090 £+ 0.027)% | (0.077 4+ 0.027)% || —0.49
7 (0.092 + 0.027)% | (0.078 £ 0.027)% || —0.44
8 (0.105 £ 0.027)% | (0.091 £ 0.027)% 0.04
9 (0.100 + 0.031)% | (0.086 =+ 0.031)% || —0.13
10 (0.122 £ 0.028)% | (0.108 + 0.028)% 0.64
11 (0.106 + 0.027)% | (0.093 £ 0.027)% || 0.09
12 (0.110 £ 0.027)% | (0.096 + 0.027)% || 0.24
13 (0.124 £+ 0.028)% | (0.110 £ 0.028)% 0.73
14 (0.081 £ 0.023)% | (0.068 + 0.023)% || —0.98
15 (0.148 + 0.030)% | (0.134 £ 0.030)% || 1.46
16 (0.153 £+ 0.031)% | (0.139 £ 0.031)% 1.60
17 (0.080 £+ 0.027)% | (0.067 £+ 0.027)% || —0.85
18 (0.119 £+ 0.028)% | (0.105 + 0.028)% 0.54
19 (0.104 £ 0.025)% | (0.091 £ 0.025)% 0.03
20 (0.109 + 0.027)% | (0.096 £ 0.027)% || 0.21

Weighted averages/x? || (0.112 4 0.006)% | (0.099 + 0.006)% || 14.38
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Table F.5: Test of potential bias in our fitting procedure for Dy — K*ev by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset Ng?ﬁ:;gged NE g Difference (# o)
1 28 27.80 £ 6.33 —0.032
2 37 33.39 =+ 5.24 —0.689
3 35 35.63 £ 7.18 0.087
4 28 29.57 = 6.48 0.242
5 33 3440 £ 6.73 0.208
6 34 29.57 £ 6.72 —0.660
7 33 26.81 £ 6.75 —0.916
8 35 35.68 £ 6.96 0.098
9 27 26.01 £ 6.83 —0.144
10 38 4091 £ 7.10 0.411
11 36 30.72 £ 6.98 —0.756
12 33 38.05 £ 7.58 0.667
13 37 42.45 £ 7.28 0.749
14 28 30.47 £ 6.74 0.367
15 38 31.65 £ 6.73 —0.945
16 29 24.58 + 6.64 —0.665
17 31 34.54 £ 6.63 0.534
18 24 25.21 £ 5.65 0.214
19 29 29.34 + 6.52 0.052
20 30 24.11 £ 5.97 —0.987

Sum 643 630.89 £+ 29.84 —0.406
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Table F.6: Monte Carlo comparison of the measured Ds; — K*er branching ratio to
its generating branching ratio (0.190%), in data-sized samples. The weighted average
line contains the x? across the 20 samples rather than the number of o between the
measured /generated branching ratios.

Dataset Raw fit BR Corrected BR #o
1 (0.169 £+ 0.038)% | (0.157 4+ 0.038)% || —0.86
2 (0.195 4+ 0.031)% | (0.183 £ 0.031)% || —0.22
3 (0.205 + 0.041)% | (0.193 £ 0.041)% 0.08
4 (0.172 + 0.038)% | (0.160 £ 0.038)% || —0.79
5 (0.204 £ 0.040)% | (0.192 + 0.040)% || 0.04
6 (0.176 + 0.040)% | (0.164 + 0.040)% || —0.66
7 (0.156 + 0.039)% | (0.145 £+ 0.039)% || —1.15
8 (0.206 £ 0.040)% | (0.194 £ 0.040)% || 0.1
9 (0.155 £ 0.041)% | (0.143 £ 0.041)% || —1.15
10 (0.238 £+ 0.041)% | (0.226 £+ 0.041)% 0.87
11 (0.184 + 0.042)% | (0.172 =+ 0.042)% || —0.43
12 (0.224 + 0.045)% | (0.212 £ 0.045)% ||  0.49
13 (0.245 + 0.042)% | (0.234 £ 0.042)% || 1.03
14 (0.173 £ 0.038)% | (0.161 £+ 0.038)% || —0.75
15 (0.188 + 0.040)% | (0.176 £ 0.040)% || —0.34
16 (0.148 + 0.040)% | (0.136 + 0.040)% || —1.36
17 (0.202 + 0.039)% | (0.190 =+ 0.039)% || —0.01
18 (0.146 + 0.033)% | (0.134 £ 0.033)% || —1.69
19 (0.168 + 0.037)% | (0.156 =+ 0.037)% || —0.90
20 (0.142 + 0.035)% | (0.130 £ 0.035)% || —1.72

Weighted averages/x? || (0.183 £ 0.009)% | (0.171 £ 0.009)% || 15.92
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Table F.7: Test of potential bias in our fitting procedure for Dy — n'ev by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset Ng?ﬁ:;gged NE g Difference (# o)
1 32 29.34 £ 5.77 —0.461
2 10 8.33 £ 4.01 —0.417
3 27 21.86 £ 5.02 —1.023
4 24 25.28 &+ 5.52 0.231
) 15 13.87 £ 4.29 —0.264
6 19 17.85 £ 4.34 —0.265
7 32 33.64 £ 5.46 0.300
8 23 21.90 &+ 4.88 —0.226
9 23 22.66 = 5.42 —0.062
10 16 11.48 £ 4.08 —1.109
11 27 2747 + 5.37 0.087
12 16 15.18 £ 4.70 —0.176
13 22 21.65 = 4.84 —0.073
14 26 24.09 £ 4.96 —0.386
15 18 15.75 £ 4.38 —0.513
16 17 20.49 + 4.74 0.736
17 19 20.03 = 4.15 0.249
18 23 20.65 = 4.94 —0.476
19 27 28.88 £ 5.35 0.351
20 31 22.83 +£ 5.41 —1.509

Sum 447 423.20 £+ 21.96 —1.084
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Table F.8: Monte Carlo comparison of the measured Dy — n’ev branching ratio to its
generating branching ratio (0.860%), in data-sized samples. The weighted average line
contains the y? across the 20 samples rather than the number of o between the mea-
sured /generated branching ratios. The abnormally high y? just reflects low Dy — n'ev
statistics that distort gaussian error sums (Table gives a more meaningful compar-

ison for this mode).

Dataset Raw fit BR Corrected BR #o
1 (1.068 + 0.210)% | (1.057 £+ 0.210)% 0.94
2 (0.292 £+ 0.141)% | (0.281 £+ 0.141)% || —4.12
3 (0.755 £ 0.173)% | (0.744 £ 0.173)% || —0.67
4 (0.881 4+ 0.193)% | (0.871 4+ 0.193)% 0.05
) (0.492 + 0.152)% | (0.481 £ 0.152)% || —2.48
6 (0.636 + 0.154)% | (0.625 + 0.155)% || —1.52
7 (1.177 £ 0.191)% | (1.166 + 0.191)% 1.60
8 (0.760 £+ 0.169)% | (0.749 4+ 0.169)% || —0.66
9 (0.809 + 0.194)% | (0.799 £ 0.194)% || —0.32
10 (0.400 £+ 0.142)% | (0.389 4+ 0.142)% || —3.31
11 (0.986 £ 0.193)% | (0.975 £ 0.193)% || 0.60
12 (0.535 + 0.165)% | (0.524 + 0.165)% || —2.03
13 (0.751 4+ 0.168)% | (0.740 £ 0.168)% || —0.72
14 (0.821 + 0.169)% | (0.810 + 0.169)% || —0.29
15 (0.562 4+ 0.156)% | (0.551 4+ 0.157)% || —1.97
16 (0.738 £ 0.171)% | (0.727 £ 0.171)% || —0.78
17 (0.701 4+ 0.145)% | (0.690 4+ 0.145)% || —1.17
18 (0.719 £ 0.172)% | (0.708 £ 0.172)% || —0.88
19 (0.993 4+ 0.184)% | (0.982 4+ 0.184)% 0.66
20 (0.805 £+ 0.191)% | (0.794 £ 0.191)% || —0.35

Weighted averages/x? || (0.702 £ 0.038)% | (0.691 + 0.038)% || 53.13
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Table F.9: Test of potential bias in our fitting procedure for Dy — fper by comparing
the number of truth-tagged semileptonic events to the fit result. We allow cross-feed
from other semileptonic modes for this fitting comparison, as those events produce real
peaking background that we deal with outside the fitting apparatus.

Dataset Ng?i%;gged Nt L tag Difference (# o)
1 56 62.93 £ 9.28 0.747
2 52 45.11 + 8.09 —0.851
3 49 45.96 + 7.14 —0.425
4 51 42.88 &+ 8.17 —0.994
) 57 48.99 + 7.61 —1.053
6 51 53.61 £ 8.27 0.316
7 52 48.57 £ 8.07 —0.425
8 49 44.73 £ 8.02 —0.533
9 56 57.19 + 8.96 0.133
10 46 40.18 = 7.58 —0.769
11 70 77.54 £ 9.43 0.799
12 42 43.89 £ 7.42 0.255
13 45 43.39 + 8.09 —0.199
14 59 65.11 £ 9.08 0.674
15 53 52.42 £ 7.20 —0.080
16 53 63.73 = 8.71 1.232
17 63 61.51 = 9.16 —0.163
18 56 53.97 =+ 8.40 —0.242
19 48 53.70 =+ 8.33 0.684
20 46 41.28 + 7.31 —0.647

Sum 1054 1046.68 + 36.87 —0.198
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Table F.10: Monte Carlo comparison of the measured D; — fper branching ratio to
its generating branching ratio (0.310%), in data-sized samples. The weighted average
line contains the x? across the 20 samples rather than the number of o between the

measured /generated branching ratios.

Dataset Raw fit BR Corrected BR # o
1 (0.425 £ 0.063)% | (0.413 £ 0.063)% || 1.65
2 (0.293 + 0.053)% | (0.282 £ 0.053)% || —0.54
3 (0.294 + 0.046)% | (0.283 £ 0.046)% || —0.59
4 (0.277 £ 0.053)% | (0.266 £ 0.053)% || —0.83
) (0.323 + 0.050)% | (0.311 £ 0.050)% 0.03
6 (0.354 £ 0.055)% | (0.343 £ 0.055)% 0.60
7 (0.315 + 0.052)% | (0.304 + 0.052)% || —0.12
8 (0.288 £+ 0.052)% | (0.276 £+ 0.052)% || —0.65
9 (0.379 £ 0.059)% | (0.368 £ 0.059)% || 0.97
10 (0.260 + 0.049)% | (0.248 £+ 0.049)% || —1.25
11 (0.516 £ 0.063)% | (0.505 £ 0.063)% || 3.10
12 (0.287 + 0.048)% | (0.276 =+ 0.049)% || —0.71
13 (0.279 + 0.052)% | (0.268 £ 0.052)% || —0.81
14 (0.412 £ 0.057)% | (0.401 + 0.057)% || 1.58
15 (0.347 + 0.048)% | (0.336 £ 0.048)% || 0.54
16 (0.426 £ 0.058)% | (0.414 + 0.058)% || 1.79
17 (0.399 + 0.059)% | (0.388 £ 0.059)% 1.31
18 (0.349 + 0.054)% | (0.337 £ 0.054)% ||  0.50
19 (0.343 £ 0.053)% | (0.331 £ 0.053)% 0.40
20 (0.270 + 0.048)% | (0.258 =+ 0.048)% || —1.08

Weighted averages/x? || (0.333 4 0.012)% | (0.321 4+ 0.012)% || 27.42
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Table F.11: Allowed D4 mass range at 3o, from a gaussian fit. We allow a broader range
of masses for the full analysis, but we use this restricted range for systematic checks.

D tag mode | Minimum D, mass (MeV) | Maximum D, mass (MeV)
KK 1,949.69 1,987.31
KKn 1,952.93 1,984.07

K,Kn° 1,941.32 1,995.68

K K 1,951.94 1,985.06
KKnr® 1,944.48 1,992.52
K, Ktnn 1,953.76 1,983.24
KK~ 7mm 1,953.60 1,983.40
TT 1,948.80 1,988.20

™ 1,934.89 2,002.11
an0n 1,930.60 2,006.40
', n — 7y 1,945.81 1,991.19
arln’ 0’ — nrn 1,939.39 1,997.61
', n — py 1,938.02 1,998.98
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Table F.12: Summary of various systematic errors for our electron identification.

Base Base eID | Base elD Event Event
SL mode elD correction | correction | environ. | environ. Total
systematic uncert. adjust. correct. | uncert. || systematic
pev 0.23% 0.03% 0.39% 0.48% 0.16% 0.68%
nev 0.10% 0.03% 0.28% 0.20% 0.10% 0.37%
n'ev 0.16% 0.03% 0.35% 0.42% 0.14% 0.59%
foev 0.17% 0.03% 0.34% 0.42% 0.14% 0.59%
Kgev 0.13% 0.03% 0.28% 0.19% 0.11% 0.38%
K*ev 0.18% 0.03% 0.34% 0.44% 0.14% 0.60%

Table F.13: Relative corrections to the electron identification efficiency for each of our

six semileptonic modes.

Semileptonic mode | Base electron ID | Event environment || Total correction
pev -1.55% -0.36% -1.91%
nev -1.10% -0.14% -1.24%
n'ev -1.38% -0.32% -1.71%
foev -1.37% -0.32% -1.69%
Kgev -1.12% -0.13% -1.24%
K*ev -1.36% -0.33% -1.69%
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Table F.14: Semileptonic-side efficiencies in Dy — nev, including the ' — 77y and
1n — 7y branching ratios.

D, production mode €e Eqy ESL
DDy 75.5% £+ 4.2% | 7.1% £ 1.3% || 5.5% + 1.1%
D:Dg with D} — (Ds — n'ev) v | 74.9% £+ 1.0% | 5.5% £ 0.3% || 3.8% =+ 0.2%
D:D; with Df — (Ds — n'ev) «° | 75.5% + 1.1% | 5.0% + 0.3% || 3.6% & 0.2%
D: Dy with prompt Dy — n'ev | 74.0% + 1.1% | 6.2% £ 0.3% || 4.4% =+ 0.3%

Table F.15: Semileptonic-side efficiencies in Dy — fpev, including the fo — w7 branch-

ing ratio.

D, production mode

e

€fo

ESL

DDy

D:Dg with D} — (Ds — foev) ~y
D*D, with D — (Ds — foev) ©°
DD, with prompt Dy — foev

78.7% + 4.3%
72.6% + 1.0%
73.2% + 1.0%
72.7% £ 1.1%

32.7% + 2.8%
30.1% £ 0.6%
30.5% £+ 0.7%
29.7% £ 0.7%

24.6% + 2.4%
21.7% £ 0.6%
22.1% + 0.6%
21.6% £ 0.6%
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Table F.16: Semileptonic-side efficiencies in Dy — K ev, including the Ky — 7w branch-

ing ratio.

D, production mode

e

EK,

ESL

D,Dy
D:Dg with D} — (Ds — Kgev) v
D:Dg with Df — (D5 — Kgev) m°
D:Dg with prompt Dy — Kgev

81.7% + 6.3%
80.5% + 1.5%
81.8% + 1.5%
81.0% + 1.6%

44.2% + 4.6%
41.8% + 1.1%
44.0% £ 1.1%
43.3% + 1.2%

33.2% + 4.0%
30.6% + 0.9%
33.1% + 1.0%
31.0% + 1.0%

Table F.17: Semileptonic-side efficiencies in Dy — K*ev, including the K* — K
branching ratio.
D, production mode Ce Ex* €SI

DyDy
D¥Dg with D¥ — (Ds — K*ev) v
DD with D} — (Ds — K*ev) 7
D?Dg with prompt Dy — K*ev

65.1% + 4.1%
71.8% + 1.0%
71.6% + 1.0%
71.6% + 1.1%

32.9% + 2.9%
34.8% + 0.7%
35.7% £ 0.7%
35.1% + 0.8%

21.3% + 2.3%
24.1% £+ 0.6%
24.8% £ 0.6%
24.0% £+ 0.7%
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Table F.18: All systematic efficiency corrections (relative) for Dy — ¢ev.

Systematic Relative e correction
Kaon track efficiency —8.17%
Electron ID —-1.91%
Total —10.08%

Table F.19: All systematic efficiency corrections (relative) for Dy — nev.

Systematic | Relative € correction
Electron ID —1.24%
Total —1.24%

Table F.20: All systematic efficiency corrections (relative) for Dy — n'ev.

Systematic Relative € correction
Electron ID -1.71%
7 (and K) ID —2.94%
Semileptonic hadron B —1.83%
Total —6.48%




Table F.21: All systematic efficiency corrections (relative) for Dy — foev.

Systematic Relative € correction
Electron ID —1.69%
7 (and K) ID —0.50%
Total —2.19%

Table F.22: All systematic efficiency corrections (relative) for Dy — Kgev.

Systematic Relative € correction
K efficiency —11.08%
Electron ID —1.24%
Semileptonic hadron B 0.86%
Total —11.46%

Table F.23: All systematic efficiency corrections (relative) for Dy — K*ev.

Systematic Relative € correction
Electron ID —1.69%
7 (and K) ID —2.88%
Total —4.57%
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Table F.24: All systematic errors (relative) for Dy — ¢ev.

Systematic Relative systematic error
Distribution within px bin 0.54%
Kaon track reconstruction 1.71%
Dy tag signal fitting 1.80%
D, tag BG shape 1.27%
Electron ID 0.68%
Form factor model 2.91%
Multiple candidate choice 0.11%
Semileptonic hadron B 1.02%
Track reconstruction 0.30%
Efficiency statistics 1.33%
Total 4.46%
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Table F.25: All systematic errors (relative) for Dy — nev.

Systematic Relative systematic error
D, tag signal fitting 2.23%
D, tag BG shape 0.92%
Electron ID 0.37%
Form factor model 0.73%
Signal shape 1.04%
Multiple candidate choice 1.67%
Semileptonic hadron B 0.51%
Particle ID 7.90%
Track reconstruction 0.30%
Efficiency statistics 1.07%
Splitoff rate 1.16%
Total 8.70%

Table F.26: All systematic errors (relative) for Dy — n'ev.

Systematic Relative systematic error
D; tag signal fitting 2.07%
Dy tag BG shape 1.31%
Particle ID 7.90%
Track reconstruction 0.90%
Mass resolution 3.15%
Electron ID 0.59%
Form factor model 1.64%
Multiple candidate choice 0.21%
Decay in flight 0.49%
Semileptonic hadron B 1.71%
Efficiency statistics 4.09%
Total 10.11%




253

Table F.27: All systematic errors (relative) for Dy — foev.

Systematic Relative systematic error
Dy tag signal fitting 1.60%
D; tag BG shape 0.80%
Particle ID 0.04%
Track reconstruction 0.90%
Mass resolution 2.63%
Electron ID 0.59%
Form factor model 2.29%
Multiple candidate choice 2.20%
Decay in flight 0.52%
Efficiency statistics 1.57%
Total 4.91%

Table F.28: All systematic errors (relative) for Dy — Kgev.

Systematic Relative systematic error
D, tag signal fitting 2.20%
Dy tag BG shape 0.86%
K efficiency 7.28%
Electron ID 0.38%
Form factor model 1.35%
Multiple candidate choice 3.05%
Decay in flight 0.63%
Semileptonic hadron B 0.07%
Track reconstruction 0.30%
Efficiency statistics 1.72%
Total 8.56%
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Table F.29: All systematic errors (relative) for Dy — K*ev.

Systematic Relative systematic error
D; tag signal fitting 2.97%
D; tag BG shape 2.08%
Particle ID 1.21%
Track reconstruction 0.60%
Mass resolution 2.59%
Electron ID 0.60%
Form factor model 5.10%
Multiple candidate choice 0.28%
Decay in flight 0.71%
Efficiency statistics 1.47%
Total 7.13%
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Figure G.8: The invariant mass vs. recoil mass distribution in data for Dy tag modes

KK, KKn, K,Kn°, K,K,r, and KK7n®. The data distribution doesn’t show any

unexpected behavior relative to the Monte Carlo expectation.
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Figure G.10: Fits to the truth-tagged Dy invariant mass from the Monte Carlo. We fix
the fit function’s shape parameters (relative normalization, relative width, and crystal
ball power law tail) from these results. These plots show the fit results for D, to K K,
KKrn, K;Kn°0 and K K.
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Figure G.11: Fits to the truth-tagged Dy invariant mass from the Monte Carlo. We fix
the fit function’s shape parameters (relative normalization, relative width, and crystal
ball power law tail) from these results. These plots show the fit results for Dy to K K77,

K,Ktnr, KK 7w, and mr.
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Figure G.12: Fits to the truth-tagged Dy invariant mass from the Monte Carlo. We fix
the fit function’s shape parameters (relative normalization, relative width, and crystal
ball power law tail) from these results. These plots show the fit results for Dy to 7n;
a0 ',y — wan; 7y’ 0’ — wan; and 7',y — py.
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Figure G.13: D, invariant mass fits in the weighted 20x Monte Carlo sample (charm +
continuum), determining the total number of D tags for modes K K, KKm, K K7,
and K K.
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Figure G.14: Dy invariant mass fits in the weighted 20x Monte Carlo sample (charm
+ continuum), determining the total number of Dy tags for modes K Knn", K K7,
K,K nm, and wrr.
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Figure G.15: D, invariant mass fits in the weighted 20x Monte Carlo sample (charm +
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Figure G.17: D invariant mass fits in the data sample using a signal histogram from the
truth-tagged Monte Carlo. These plots show our results for Dy to KKnn°, K KT,
K,K nm, and wrr.
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Figure G.22: Extra showers after finding the tagged Dy, the 1, and the electron in nev
(20x MC sample). Our shower quality selections include both 5—295 O.K. and a splitoff
rejection. The peak near 140 MeV is due to the v from D7 decays.
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Figure G.23: Extra showers after finding the tagged D, the 7/, and the electron in n’ev
(20x MC sample). Our shower quality selections include both 5—; O.K. and a splitoff
rejection. The peak near 140 MeV is due to the v from D7 decays.
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Figure G.24: Extra showers after finding the tagged Dy, the fy, and the electron in fpev
(20x MC sample). Our shower quality selections include both 5—; O.K. and a splitoff
rejection. The peak near 140 MeV is due to the v from D7 decays.
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Figure G.25: Extra showers after finding the tagged D;, the K, and the electron in
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Ksev (20x MC sample). Our shower quality selections include both =2 O.K. and a
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splitoff rejection. The peak near 140 MeV is due to the v from D} decays.
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Figure G.27: Likelihood fit results for the D, mass spectrum after all Dy — ¢ev semi-
leptonic cuts in the first four data-sized Monte Carlo samples. The histograms show
total events and Monte Carlo truth-tagged events, while the peaking fit line gives the

signal part of our fit.

background fit and our peaking background subtraction.

The two solid background fit lines represent the non-peaking
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Figure G.28: Dy — ¢erv data-sized Monte Carlo

results, second group of datasets.
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Figure G.29: Ds — ¢ev data-sized Monte Carlo results, third group of datasets.
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Figure G.30: Dy — ¢ev data-sized Monte Carlo results, fourth group of datasets.
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Figure G.31: Dy — ¢ev data-sized Monte Carlo results, fifth group of datasets.
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Figure G.32: Dy — Kev backgrounds with a true D tag (peaking background), from
the 20x Monte Carlo. These remain after Kger semileptonic cuts but before any missing
mass cut or other, additional background restrictions. ¢er with ¢ — Ky K, dominates.
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Figure G.33: Ds — Kev backgrounds with a true Dy tag (peaking background), after
all cuts. The other semileptonic modes each give some fake events, while the dominant
non-semileptonic contribution comes from D, tag modes with a kaon faking the electron
(e.g. Dy — KKj)
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Figure G.34: Dy, — Kev fit results in the data, after all semileptonic cuts, for tag modes
KK, KKn, K,Kn% K,K,r, and KKnn®. We fit the tagged Mp, with a common
signal normalization (branching ratio) for all 13 tag modes. Each mode does receive an
independent background normalization.
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Figure G.35: Dy — Kev fit results in the data, after all semileptonic cuts, for tag modes
K, Ktnm, KK nm; noms; oy wnln; o', n' — won; 7o', 0" — wrn; and 7,0’ — pry.
We fit the tagged Mp, with a common signal normalization (branching ratio) for all
13 tag modes. Each mode does receive an independent background normalization.
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Figure G.36: Dy — K*ev backgrounds with a true Dj tag (peaking background), before
our specific K*ev cuts in the 20x Monte Carlo. Our best improvement in peaking
background will come from reducing Dy — ¢er where one kaon fakes a pion.
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Figure G.37: D; — K*ev backgrounds with a true D, tag (peaking background), after
all cuts. The other semileptonic modes each give some fake events, while the dominant

non-semileptonic contribution comes from D, tag modes where a kaon fakes the electron
(e.g. Dy — KKr).



292

S after K*+e cuts, Ks mass_plot_0_0 MDE after K*+e cuts, KK n] mass_plot_0_1
> Entries 6 > E Entries 20
2 s Mean 1972 2 e Mean 1965
3 RMS 24.11 P oE- RMS 20.56
g ¢ s F
§ 35 § s/
@ @ E
3 E
25 4 ?
2 3
15 s ;
1 E
05 3N T
A e 0 A T . .
MD. (MeV) MD. (MeV)
M, after K*+e cuts, K_Kn® I mass_plot_0_2 MD, after K'+e cufts, Ks Kﬁ\] mass_plot_0_3
S = Entries 9 r = Entries 1
2 4sE Mean 1957 2 2f Mean 1906
@ E RMS 29.55 g 18f RMS 0
s ‘E 2 16f7
£ E £ E
2 3.5 E 2 14 ET
3 12
25 3 1B
2E 08T
15 06
15 - -T- T - 04fr
05 02f é>
foos ﬂ‘!‘g‘ Toa0 7960 7980 fooo 7960 7980
M,_ (MeV) Mo, (MeV)
My, after K*+e cuts, KK x° ' mass_plot 0_4
= - Entries 3
= 12 Mean 1962
o — Total
2 E -+ B
£
2 o
Woos|— * -
oo — K*+e+v signal
04—
Wl —— Background
r v
B p— 0 T 7 =

Mo, (MeV)

Figure G.38: Dy, — K*ev fit results in the data, after all semileptonic cuts, for tag modes
KK, KKn, K,Kn% K,K,r, and KKnn®. We fit the tagged Mp, with a common
signal normalization (branching ratio) for all 13 tag modes. Each mode receives an
independent background normalization.
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Figure G.39: Dy — K*ev fit results in the data, after all semileptonic cuts, for tag modes
K, Ktnm, KK nm; o oy wnln; o', n' — won; oo, ' — wrn; and 7,0’ — pry.
We fit the tagged Mp, with a common signal normalization (branching ratio) for all
13 tag modes. Each mode does receive an independent background normalization.
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Figure G.40: Dy — n'ev backgrounds with a true Dy tag (peaking background) in the
20x Monte Carlo. nev with  — 7r(7°/7) produces the most peaking background,
while the dominant non-semileptonic contribution comes from D tag modes with a
kaon faking the electron (e.g. Dy — K K¢7°)
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Figure G.41: Dy — nev fit results in the data, after all semileptonic cuts, for tag modes
KK, KKn, K,Kn% K,K,r, and KKnn®. We fit the tagged Mp, with a common
signal normalization (branching ratio) for all 13 tag modes. Each mode receives an
independent background normalization.
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Figure G.42: Dy — nev fit results in the data, after all semileptonic cuts, for tag modes
K, Ktnm, KK nm; o oy wnln; o', n' — won; 7o', ' — wrn; and 70,0’ — pry.
We fit the tagged Mp, with a common signal normalization (branching ratio) for all
13 tag modes. Each mode does receive an independent background normalization.
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Figure G.43: Dy — foev backgrounds with a true Dy tag (peaking background) in the
20x Monte Carlo. n'ev with ' — 7w X provides the plurality contribution, while the
dominant non-semileptonic peaking background comes from Dy tag modes where a kaon
fakes the electron (e.g. Dy — KKj).
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Figure G.44: Dy — fyev fit results in the data, after all semileptonic cuts, for tag modes
KK, KKn, K,Kn% K,K,r, and KKnn®. We fit the tagged Mp, with a common
signal normalization (branching ratio) for all 13 tag modes. Each mode receives an
independent background normalization.
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Figure G.45: Dy — fyev fit results in the data, after all semileptonic cuts, for tag modes
K,Ktnm, KK rm; o oy mnln; o', n' — won; 7o', ' — wrn; and 7,0’ — pry.
We fit the tagged Mp, with a common signal normalization (branching ratio) for all
13 tag modes. Each mode does receive an independent background normalization.
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Figure G.46: 2 for data fits using various shifts and gaussian smears to the Monte
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a fairly accurate ¢ mass resolution in the Monte Carlo.
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less than 0.1%.
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Figure G.48: The top two plots show the projections from our 2D nev fit to D, invariant
mass (left) and n pull mass (right) over the full 20x Monte Carlo when we tag Ds —
K K. The bottom two plots do the same for Dy — K K.
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Figure G.49: The top two plots show the projections from our 2D nev fit to Dy invariant
mass (left) and 7 pull mass (right) over the full 20x Monte Carlo when we tag Dy —
K K% The bottom two plots do the same for Dy — K K+,
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Figure G.51: The top two plots show the projections from our 2D nev fit to D, invariant
mass (left) and 7 pull mass (right) over all Dy tag modes for one data-sized Monte Carlo
sample (dataset 0). The bottom two plots give the projections for a different data-sized
Monte Carlo sample (dataset 1).
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Figure G.55: Top: Signal shape fit to the K* mass in K*K. Bottom: K* mass fit after
allowing the Mg~ signal shape to shift left or right and convoluting it with a variable
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Figure G.64: Dy invariant mass fits after making a Dy + - recoil mass cut in the data.
The dotted lines give our signal and background fit functions.
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linear background fit function.
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