
ARTICLE OPEN

A quantum annealer with fully programmable all-to-all
coupling via Floquet engineering
Tatsuhiro Onodera 1,2,3,4, Edwin Ng 2,4 and Peter L. McMahon 1,2✉

Quantum annealing is a promising approach to heuristically solving difficult combinatorial optimization problems. However, the
connectivity limitations in current devices lead to an exponential degradation of performance on general problems. We propose an
architecture for a quantum annealer that achieves full connectivity and full programmability while using a number of physical
resources only linear in the number of spins. We do so by application of carefully engineered periodic modulations of oscillator-
based qubits, resulting in a Floquet Hamiltonian in which all the interactions are tunable. This flexibility comes at the cost of the
coupling strengths between qubits being smaller than they would be compared with direct coupling, which increases the demand
on coherence times with increasing problem size. We analyze a specific hardware proposal of our architecture based on Josephson
parametric oscillators. Our results show how the minimum-coherence-time requirements imposed by our scheme scale, and we
find that the requirements are not prohibitive for fully connected problems with up to at least 1000 spins. Our approach could also
have impact beyond quantum annealing, since it readily extends to bosonic quantum simulators, and would allow the study of
models with arbitrary connectivity between lattice sites.
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INTRODUCTION
Quantum annealers are computational devices designed for
solving combinatorial optimization problems, most typically Ising
optimization problems1–3. An Ising problem is specified by
connections among N spins on a graph, as well as local fields
on each spin. One of the foremost challenges in the experimental
realization of quantum annealers is the requirement that quantum
annealers be able to represent densely connected Ising problems
with minimal overhead in the number of qubits (and other
physical components) used4–7. If a quantum annealer is not able
to directly represent a particular problem because the problem
graph has higher connectivity than the physical annealer does,
then one incurs a penalty in the number of qubits needed to
represent the Ising problem. For example, the largest fully
connected Ising problem that can be represented in the D-Wave
2000-qubit quantum annealer is one that has N= 64 spins6; this
limitation arises because the connectivity in this particular
quantum annealer is very sparse (the connectivity graph has
maximum degree six).
Superconducting circuits are one of the most prominent

technologies for realizing quantum information processing
devices, including quantum annealers, and they form the basis
for many of the major projects to construct experimental quantum
annealers8–10. However, when qubit connectivity is achieved via
physical pairwise couplers (as is the case for the efforts described
in refs. 8–10), there is a substantial engineering impediment to
realizing full connectivity: each qubit would need N − 1 physical
couplers, and arranging such couplers spatially has proven to be
impractical for large N. On the other hand, bus architectures have
been demonstrated for superconducting-circuit qubits in the
context of circuit-model quantum computing11–13, and bus-
mediated interactions naturally provide all-to-all coupling11,14,15,
with the use of one physical coupler per qubit. In this paper, we
address the challenge of realizing full programmability of these

all-to-all couplings, in the context of developing a quantum
annealer.
In classical neuromorphic computing, a scheme providing full

programmability has been proposed in an all-to-all-coupled
system of Kuramoto oscillators using periodic modulation of each
oscillator’s phase16. Separately, it has long been known that two
quantum oscillators can be coupled via phase modulation at their
difference frequency17. In much more recent work, nonlinear-
oscillator-based qubits, whose operation relies on the continuous-
variable nature of the oscillators, have been established as a
promising building block for the realization of superconducting-
circuit quantum annealers, owing partially to their resilience to
photon loss18–20. We take inspiration from all of these lines of
work, and show how we can combine them to design a quantum
annealer that comprises a system of nonlinear-oscillator-based
qubits having all-to-all coupling mediated by a bus, where
periodic modulation of the oscillators is used to provide
programmability in the couplings. Our main technical contribution
is in showing how, through careful design of the modulation of
each oscillator’s instantaneous frequency, it is possible to enable
full programmability, i.e., the realization of arbitrary connectivity
between the qubits. We utilize the mathematical tools of Floquet
theory21,22 to formulate and solve the design problem of
engineering the desired interactions between oscillators, and we
establish that the functionality of our dynamically coupled system
is equivalent to that of a statically coupled system with pairwise
physical couplers. We show that to gain arbitrary connectivity in
our scheme, one needs to trade off the strength of the effective
couplings, the main consequence of which is that longer
coherence times are needed.
Our scheme applies generically to a variety of nonlinear

oscillators, including those realized in platforms besides super-
conducting circuits, such as optics23–26 or nanomechanics27,28.
However, for concreteness, we focus on Kerr parametric
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oscillators18,29,30 in which the Kerr nonlinearity is provided by a
Josephson junction—i.e., Josephson parametric oscillators
(JPOs)19,30–34. JPOs have been utilized in two other schemes for
achieving programmable couplings: a proposed realization20 of
the LHZ architecture35 (which requires N(N − 1)/2 physical qubits
to represent N spins), and an inductive-shunt scheme19 (which
only provides OðNlogNÞ programmable parameters, out of a total
of OðN2Þ in general).
In summary, the previously known approaches to building a

quantum annealer with JPOs are, variously, incompatible with
dense connectivity due to engineering limitations; requiring of a
large overhead in the number of qubits and/or couplers (i.e.,
scaling with N2); or lacking full programmability. In contrast, our
proposal uses a bus to provide all-to-all connectivity and a
dynamical approach to coupling that enables full programmability
of N-spin Ising problems using a number of oscillators and
couplers linear in N, and at the reasonable cost of coherence-time
requirements that scale approximately linearly in N for computa-
tionally interesting problem classes.

RESULTS
In this paper, we study the design of a quantum annealer whose
purpose is to solve the Ising optimization problem, defined as
finding the N-spin configuration σi 2 �1;þ1f g (i= 1, …, N) that
minimizes the classical spin energy E(σ):= ∑j≠iCijσiσj, where C is a
symmetric real matrix. A choice of C specifies a problem instance
to be solved, and C can be interpreted as the adjacency matrix of a
graph whose vertices are spins and whose edges represent spin-
spin interactions. In general, C can have OðN2Þ non-zero entries. It
is desirable for a quantum annealer to be fully programmable,
such that there are no restrictions on the structure of C, and that
the annealer not use more than N oscillators to represent a given
N-spin problem, nor use more than ∝ N other physical
components. In this paper, we show how this can be achieved
using nonlinear oscillators in a bus architecture together with
dynamically realized couplings designed via Floquet engineering.
Figure 1a shows an overview of our proposed architecture. The

N nonlinear oscillators of the quantum annealer are coupled to a
common (bus) resonator. If the center frequencies of the

oscillators are sufficiently far-detuned from the bus resonance,
then the bus mediates a photon-exchange interaction between
any pair of oscillators. In particular, denoting the annihilation
operator for the ith oscillator as âi , the bus mediates interactions
that contribute terms of the form âyi âj þ âi â

y
j to the system

Hamiltonian11 which generically couples every oscillator to every
other oscillator. Thus with N nonlinear oscillators coupled to a bus,
we can implement all-to-all coupling. However, the couplings up
to this point are not programmable. The principal result in this
paper is that we can engineer complete programmability of all the
couplings by phase-modulating the oscillators in a specific way.
In our scheme, the oscillators are, to a good approximation,

detuned from each other by multiples of a fundamental frequency
Λ, such that the kth-nearest neighbor of any given oscillator is
detuned from it by kΛ. Despite the presence of the bus, for Λ
sufficiently large the oscillators are effectively uncoupled in the
absence of modulation (by the rotating-wave approximation). To
effect dynamical coupling, each oscillator is controlled with a
phase modulation (PM) signal containing harmonics of Λ, such
that the resulting sidebands of each oscillator overlap in
frequency with the center frequencies of the other oscillators.
More precisely, the ith oscillator is phase-modulated by

δϕiðtÞ :¼ �PN�1
k¼1 F

ðkÞ
i sinðkΛtÞ, which causes its instantaneous

frequency ωi(t) to pick up a time-varying component
_δϕiðtÞ ¼ �PN�1

k¼1 F
ðkÞ
i kΛ cosðkΛtÞ. Here, the coefficients FðkÞi

encode the strength of the kth-harmonic component in the PM
of Oscillator i, and they can be summarized by a matrix F of
dimension N × (N − 1) whose kth column consists of the elements

FðkÞ1 ; ¼ ; FðkÞN . Intuitively, the strengths of the dynamically induced
couplings are determined by the strengths of the sidebands,
which in turn are controlled by the elements of F. Thus, the task of
programming these couplings reduces to making an appropriate
choice for F; we will present a method for choosing these
coefficients shortly. Figure 1b is a cartoon depicting the realization
of this PM scheme for a representative 5-spin problem instance;

the coefficients FðkÞi are shown on the left, while on the right are
the power spectral densities (PSDs) of each oscillator’s canonical
position xiðtÞ :¼ cosðR t0 ωiðt0Þdt0Þ. Each PSD shows a strong peak
at its respective oscillator’s center frequency, together with

Fig. 1 Achieving fully programmable all-to-all coupling in oscillator networks via phase modulation. An implementation-independent
overview of the architecture, showing an example with N= 5 oscillators each coupled to a common bus resonator and each driven by a set of
phase modulation (PM) signals. As depicted in (a), each oscillator is modulated by up to N − 1 harmonics with frequencies kΛ for integers k <
N. The amplitude of each harmonic for each oscillator is given by an element in a phase-modulation matrix F, an example of which is shown
on the left side of (b) (times a factor of 100 for clarity). The color of the PM signal on each oscillator indicates with which other oscillator the
PM causes an interaction: for example, the k= 1 harmonic PM applied to Oscillator 1 (shown in orange) causes it to couple with Oscillator 2,
and the k= 2 harmonic PM applied to Oscillator 1 (shown in green) causes it to couple with Oscillator 3. When a signal potentially mediates
coupling to two other oscillators (e.g., k= 2 for Oscillator 3), we color by the oscillator with the lower center frequency (larger oscillator index
i); the signals colored gray are not applied as they would not create any useful couplings. As shown in the power spectral density (PSD) of the
oscillators' canonical positions on the right side of (b), the oscillators have center frequencies spaced by Λ; thus each PM signal at frequency kΛ
creates a primary sideband which overlaps in frequency with the center frequency of the neighbor k oscillators away. Taken together, the
effect of these sideband interactions is to generate a desired effective Ising-coupling matrix (see the Supplementary Information for the
matrix used in this example).
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sidebands of various amplitudes (controlled by F) that overlap
with the center frequencies of the other oscillators.
While our method is independent of the exact type of nonlinear

oscillator used, we specialize our discussion in this paper to a
superconducting-circuits realization. For concreteness, we con-
sider JPOs19,30,31,33, although other superconducting-circuit-based
oscillators are plausible choices as well36,37. In the absence of
coupling, the eigenstates of the JPO are 0-phase and π-phase
coherent states29,38; these two eigenstates can be used to encode,
respectively, the spin-up and spin-down configurations of an Ising
spin18, and superpositions of these eigenstates (i.e., Schrödinger
cat states) have been experimentally demonstrated33. Figure 2a
shows N JPOs coupled to a superconducting resonator, which acts
as the bus in this platform. Energy is supplied to each JPO by a flux
line carrying a time-varying current. Conventionally, the dc
component of the current determines the center frequency of
the JPO, and an ac component at twice that frequency provides
the parametric drive. In our scheme, the center frequency of each
JPO is additionally modulated in time by _δϕðtÞ, which is achieved
by an additional modulation of the flux-line current corresponding
to _δϕ39,40. (In an alternative technological realization using a
system of optical oscillators, this PM could potentially be applied
by a physical phase modulator.)
For this JPO realization of a nonlinear-oscillator-based quantum

annealer, Fig. 2b shows a more quantitative picture of our
dynamical-coupling scheme, with plots of the instantaneous
angular frequencies ωi(t) both in the time domain (for all the
oscillators) and in the frequency domain (for the first oscillator
only). First, on the time-domain plot, we see that the effect of the
PM is to create oscillations in the instantaneous detuning Δi(t)
between the fixed bus resonance frequency and ωi(t); in the
absence of these modulations (or on time-averaging), the
oscillator frequencies are approximately evenly spaced. As
expected, the PM consists of four harmonics; looking at the
frequency-domain plot, we see that these harmonics lie in a
"coupling band” with frequency content≪ 1 GHz. These plots also
illustrate two more technical features specific to our construction
(see the Supplementary Information for more information). First,
the deviations in oscillator frequency from the center (i.e., the
modulation depths) are small compared with the mean values of
the bus-oscillator detunings; this qualitative feature ensures that
the native couplings Jij are approximately time-independent
despite the PM. Second, there is a significant gap between the
coupling band and the "pumping band” in which the parametric
drive is realized; because of this separation of time scales, we can
first design the flux-line currents to support the PM needed for
dynamical coupling, while the parametric drive simply follows that
modulation as needed. Since the ac part of the flux-line current is

directly proportional to the ac part of ωi(t) (see the Supplementary
Information), we see that the entire control signal only requires
~20 GHz of bandwidth at most, which is realizable with current
microwave technology.
We have thus far not explained how to choose the modulation

coefficients F for a given problem instance C. An intuitive, but

incorrect, choice is to simply set FðkÞi / Ci;iþk , since generating a
sideband at frequency kΛ on Oscillator i intuitively causes it to
interact with Oscillator i+ k. However, this is not entirely accurate,
as the symmetrically generated sideband at − kΛ (caused by the

same FðkÞi coefficient) also leads to the same interaction with
Oscillator i − k; for arbitrary C, these two interactions may need to
differ in general. Furthermore, we must also consider higher-order
sidebands as well: even if we were to only phase modulate
Oscillator i at frequency kΛ, weaker sidebands at ±2kΛ, ±3kΛ, and
so on are also generated, causing interactions with Oscillators i ±
2k, i ± 3k, and so on, respectively. Thus, there is a nontrivial relation
between F and the desired couplings C, and F needs to be chosen
in a way such that the various contributions of F to the effective
couplings among oscillators combine appropriately to give the
desired couplings C. To do this formally, we apply the
mathematical tools of Floquet theory21,22.
First, to more explicitly define the problem we are trying to

solve, a quantum annealer based on JPOs can be described by a
(rotating-frame) Hamiltonian of the form18,30

Ĥstatic :¼ �P
i
ðδi âyi âi þ χ

2 â
y2
i â2i Þ þ

P
i

rðtÞ
2 ðâ2i þ âi

y2Þ � λC
P
j≠i

Cij â
y
i âj;

(1)

where χ is the Kerr nonlinear rate, δi is the detuning between
Oscillator i and the half-harmonic of its parametric drive, and r(t) is
the (slowly time-varying) amplitude of the parametric drives. In
this work, we choose the detuning to be δi ¼ λC

PN
j¼1 jCijj as

prescribed by Ref. 18, and the parametric drive to be a clamped
linear ramp rðtÞ ¼ rmax minðt=T ramp; 1Þ. Here, λC is a problem-
strength parameter dictating the strength of the oscillator-
oscillator couplings Cij (which are normalized in this work to
maxj≠ijCijj ¼ 1). One way to realize such a Hamiltonian is to have
OðN2Þ physical pairwise couplers, which can be programmed
given a desired Cij; these programmed couplings can then be held
static throughout the annealing process while the parametric
drive is varied.
By contrast, our goal is to realize this annealing Hamiltonian via

dynamical control of the effective couplings among the oscillators.
As a result, we start instead with the (rotating-frame) Hamiltonian

Fig. 2 A superconducting-circuits implementation of the dynamical-coupling architecture. a Josephson parametric oscillators (JPOs),
whose frequencies can be modulated by a flux line, are coupled via a common microwave bus resonator. b Quantitative overview of the
scheme for a JPO system, using the modulations shown in Fig. 1b and depicting the instantaneous angular frequencies ωi(t) of the JPOs, both
in the time domain (left) and as a PSD of ω1 in the frequency domain (right). The PM signals manifest as modulations in the instantaneous
frequency of each JPO, or, equivalently, in the detuning Δi(t) between the bus and Oscillator i. In the PSD, the PM signal appears in a low-
frequency band (<0.5 GHz), while the parametric drive to the JPO (at twice the JPO’s frequency) occurs as usual in a high-frequency band
~ 20 GHz19,30. The parameters used for the calculation of numerical quantities in (b) are from the bus-coupled JPO model described in the
Supplementary Information.
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(see the Supplementary Information for a derivation)

Ĥdynamical :¼ �P
i
ðδi âyi âi þ χ

2 â
y2
i â2i Þ þ

P
i

rðtÞ
2 ðâ2i þ âi

y2Þ

�P
j≠i

Jij exp �iðΛði � jÞt þ δϕjðtÞ � δϕiðtÞÞ
� �

âyi âj;

(2)

which is the same as Ĥstatic with the exception of the final coupling
term. In this case, Jij are the bus-mediated coupling rates natively
present in the system but which are not fully programmable in
general (see the Supplementary Information for the exact form).
By detuning the oscillators relative to one another by multiples of
Λ and applying PM to the oscillators according to δϕi(t), the result
is the “native” coupling term Ĥnative :¼ �Pj≠iJij exp �iðΛði � jÞtþ½
δϕjðtÞ � δϕiðtÞÞ�âyi âj . The time-varying phase factor is due to the
PM of the Λ-detuned oscillators, and control over its time
dependence forms the core of our dynamical-coupling scheme.
If we denote the coupling term in the static annealing

Hamiltonian (1) as Ĥtarget :¼ �λC
P

j≠iCij â
y
i âj , then the goal is to

achieve Ĥnative � Ĥtarget, under some appropriate sense of the
approximation. As previously mentioned, we choose the modula-

tions to be �PN�1
k¼1 F

ðkÞ
i sinðkΛtÞ, which means that Ĥnative is

periodic with frequency Λ. If Λ is much larger than all other system
timescales, then the results of Floquet theory allow us to make the
Floquet approximation Ĥnative � �λC

P
j≠iCeff ij â

y
i âj where

Ceff ij :¼
Z 2π=Λ

0

Jij
λC

cos ði � jÞΛt þ
XN�1

k¼1

FðkÞi � FðkÞj

� �
sinðkΛtÞ

" #
dt

2π=Λ

(3)

describes the effective couplings between oscillators i and j due to
all the sideband interactions. (More formally, this approximation is
the leading-order term in the Floquet-Magnus expansion of Ĥnative
in 1/Λ.) Thus, all that remains is to choose the coefficients in F such
that Ceff ij � Cij . As discussed in the Supplementary Information,
while it is possible to solve for F by direct numerical nonlinear
optimization, there are a number of ways to make this
precomputation step more tractable and robust. In particular,
one can consider a second-order Taylor expansion of Ceff ij

(intuitively, by considering effective interactions only up to the
second-order sidebands) and obtain a system of quadratic
equations that can be numerically solved.
To demonstrate the effectiveness of our approach, we perform

numerical simulations of both the statically coupled system
governed by Ĥstatic as well as the dynamically coupled system
governed by Ĥdynamical (with an appropriate choice of F given C),
and we show that they achieve nearly indistinguishable results, as
one would expect if one has achieved Ĥdynamical � Ĥstatic. Figure 3a
shows the results of simulating the quantum evolution of both
systems as they perform quantum annealing on a two-spin
problem, where the coupling between the spins is antiferromag-
netic (Table 1). The joint quantum states of the dynamically
coupled oscillators show that the system is initially in a vacuum
state (with equal probability on each of the four possible spin
configurations); by the end of the evolution, the system is in a
superposition 1ffiffi

2
p "#j i þ #"j ið Þ in the qubit basis, and would

produce one of the correct ground-state spin configurations ↑↓
or ↓↑ upon measurement. We see that the evolution of the success
probability to obtain a ground state is nearly identical for both
architectures at all times, suggesting that the dynamically coupled
system is closely mimicking the behavior of the statically coupled
system, as desired.
Figure 3b shows the same evolution of the success probability

for a particular N= 4 problem instance, chosen from the class of
finite-range, integer-valued Sherrington-Kirkpatrick (SK) instances
studied in a foundational quantum-annealing benchmark work41;

in particular, we utilize range-7 graphs (SK7) (see the Supplemen-
tary Information for details about instance generation). We again
see that the evolutions of the success probabilities match very
closely. Aside from the success probability, Fig. 3c shows the
projections of the quantum state onto the spin configurations (of
which there are 16 for N= 4), which demonstrates that the two
architectures produce nearly indistinguishable evolutions in the
projections as well.
In Fig. 3d, we show the results from N= 4 simulations for 100

different randomly generated problem instances (again drawn
from the SK7 problem class). We simulate both the statically
coupled and dynamically coupled quantum annealers and show
the correlations between their respective success probabilities. To
explore the effects of decoherence due to photon loss, we also
examine these correlations for three different values of cavity-
photon decay rate κ (which is related to the cavity-photon lifetime
as Tcav: = 1/κ). We see that even in the cases of non-zero loss (κ >
0), both annealers are still able to find ground states with high
success probability, which demonstrates the loss-resilience results
found in previous work19,20. Just as importantly, the correlations
remain strong in the presence of photon losses. As a result, the
loss resilience of the statically coupled architecture carries over to
the dynamically coupled architecture, and even for those
instances where the statically coupled system suffers in success
probability due to photon loss events, the dynamically coupled
system follows its behavior as expected.
While it would be desirable to validate our theoretical results

with quantum simulations having more than N= 4 spins, full
quantum simulations are prohibitively expensive for N > 4.
Fortunately, for an oscillator-based quantum-optical system, there
is a natural set of classical equations of motion (EOMs) which one
can derive from the quantum model; formally, this consists of
replacing the annihilation operators âi with coherent-state
amplitudes αi 2 C in the quantum Heisenberg EOMs. Such a set
of classical EOMs does not fully capture the dynamics of the
system in the quantum regime, but we can nevertheless simulate
these classical EOMs for both the statically coupled and
dynamically coupled annealers and compare their dynamical
behavior. If the two systems correspond well, we gain further
confidence that our theoretical results can lead to the desired
performance on a dynamically coupled quantum annealer. Figure 4
shows the results of simulating these classical EOMs for both
architectures on SK7 problems. Figure 4a shows the evolutions of
the success probabilities for a particular N= 10 problem instance,
while Fig. 4b shows the evolutions of the field amplitudes αi(t). We
see that both the success probabilities and the oscillator
amplitudes of the two architectures match well. Figure 4c shows
the distribution of success probabilities for different problem sizes
N up to N= 50, using 100 problem instances for N ≤ 30, and 30
instances for N= 50; the corresponding correlation plots for N= 8
and N= 30 are also shown to the bottom of the figure (additional
correlation plots can be found in the Supplementary Information).
There is good agreement between the simulation results of the
statically and dynamically coupled systems: the success prob-
ability as a function of N scales in the same way, and the
correlation plots show similar performance on an instance-by-
instance basis.
Having shown that the dynamically coupled system indeed

reproduces the behavior of the desired quantum annealer, we
now discuss an important tradeoff inherent in our PM scheme for
dynamical coupling. Examining the expression (3) for Ceff, we see
that a key parameter is the ratio between the native couplings Jij
and the desired problem-strength parameter λC. For simplicity, we
design the bus-resonator interactions in such a way that the native
couplings are approximately constant (see the Supplementary
Information for more details). Thus, let us assume that Jij ≈ λJ,
where λJ > 0 characterizes the rate at which photons are
exchanged via the bus (i.e., the strength of the native couplings).
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Fig. 3 Quantum simulations. a, b Evolution of the success probability of finding a ground state of the inset Ising problem instances, for both
a system whose couplings are implemented by static pairwise physical couplers (static coupling) and a system using this work's dynamical-
coupling approach (dynamical coupling), in the case of no dissipation. Shown to the bottom of (a) are the joint quantum states of the
oscillators (represented as probability distributions ∣ψ(x1, x2)∣2 and ∣ψ(p1, p2)∣2 in canonical position and momentum coordinates, respectively)
at three different times for the dynamically coupled system. c The probabilities of obtaining each of the possible spin configurations (i.e.,
configuration probability) as a function of the evolution time, for the problem instance and simulations shown in (b). Since the problem does
not have any external fields, each spin configuration shown is degenerate to flipping every spin; for brevity, we have added together the
probabilities corresponding to these degenerate configurations. d Correlation matrices of success probabilities Psuccess (evaluated at the end
of the computation) between the statically coupled and dynamically coupled systems, for 100 instances of the SK7 problem class. (For the
trajectory simulation data used to generate these correlation matrices, see the Supplementary Information.) Here, we also introduce a nonzero
cavity-photon decay rate κ, to show that the correlations are high even in the presence of photon losses. Projected to the sides in blue and red
are the corresponding histograms for the dynamically coupled and statically coupled systems, respectively. For simulation parameters and
methodology, see Table 1 and “Methods”.

Table 1. System parameters of the statically and dynamically coupled annealers for representative quantum (left) and classical (right) simulations in
this work.

Quantum
(NFock= 12)

rmax=χ Trampχ λC/χ λJ/χ Λ/χ Classical rmax=χ Trampχ λC/χ λJ/χ Λ/χ

N= 2, κ/χ= 0 5.0 100 2.0 10 500 N= 8 5.0 100 0.50 5 1000

N= 4, κ/χ= 0 5.0 100 1.0 5 500 N= 10 5.0 100 0.40 5 1000

N= 4, κ/χ= 2 × 10−2 4.5 25 1.2 6 500 N= 20 5.0 100 0.20 5 1000

N= 4, κ/χ= 2 × 10−1 4.0 5 1.4 7 500 N= 30 5.0 100 0.13 5 1000

Here, NFock denotes the Fock space dimension allocated for each JPO mode in the quantum simulations; for reference, the expected photon number in each
JPO mode at t ≥ Tramp is approximately rmax=χ.
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Under this framework, we can identify a "dynamical-coupling
parameter” η: = λC/λJ, which, intuitively, captures the "cost” of the
dynamical-coupling scheme as it sets the scale for how much
effective coupling we obtain for a given amount of native
coupling provided to the scheme. As we discuss later, the absolute
scale of λJ is generally hardware-limited, while for any given
problem, there is a fixed value of λC/χ required to ensure
successful annealing (see the Supplementary Information for
details). Given these constraints, larger values of η allow for larger
operating values for χ, which is advantageous in the presence of a
fixed cavity-photon lifetime. (A full account of the hierarchy of
timescales and the chain of parameter requirements is given in
the Supplementary Information.) Therefore, it is desirable to use as
high a value of η as possible.
On the other hand, a clear requirement for dynamical coupling

to work well is the ability to obtain Ceff ≈ C (so that
Ĥdynamical � Ĥstatic) for any desired C. When η becomes large,
however, the prefactor Jij/λC ≈ 1/η in (3) becomes small. As
discussed in the Supplementary Information, this effect can
become detrimental to our ability to obtain Ceff ≈ C: intuitively,
the maximum magnitude of the elements of C is by construction
unity, but for a sufficiently small prefactor for the integral (i.e.,
sufficiently small 1/η), it becomes impossible to find a suitable set
of coefficients FðkÞi that could allow the integral over the cosine to
compensate. This phenomenon is demonstrated in Fig. 5. Given a
particular target coupling matrix C, Fig. 5a shows, over a range of
values for η, the Ceff matrices corresponding to the optimal F
matrix found by our (second-order-Taylor-expansion-based)
numerical routine (see the Supplementary Information). We see
that when η is chosen to be too large, the correspondence
between C and Ceff is rather poor. However, by decreasing η, one
can achieve improved accuracy. More quantitatively, Fig. 5b shows
the maximum element-wise error ðmaxi≠j jCeff ij � CijjÞ, as a
function of η and problem size N (averaged over an ensemble
of 100 instances for each N). To show how the resulting error

depends on the structure of C, we consider three problem classes:
the SK7 class discussed above, the class of unweighted MAX-CUT
problems with 50% edge density, and the class of unweighted
MAX-CUT problems on cubic graphs (see the Supplementary
Information for details about instance generation). As expected
from our intuition about the role of η, the particular scaling of the
error with η depends on the type of problems considered: for SK7,
the required η goes approximately as η ∝ 1/N, while for dense
MAX-CUT, η / 1=ðNlog NÞ; in contrast with these two dense
problem classes, cubic MAX-CUT problems require η / 1=logN.
From this figure, we see that, assuming we can tolerate an upper
limit for the error in Ceff (say, of 3%), there is a maximum value for
η that we are able to use for any given N. By staying below this
maximal value, we can ensure feasible solutions for the
modulation coefficients FðkÞi which generate effective couplings
to within the acceptable error. In the Supplementary Information,
we derive for each problem class an explicit, functional form of η
with respect to problem size N such that we are guaranteed an
error of at most 3%, but which is also not so conservative that the
resulting nonlinear rate χ is unnecessarily low.
Finally, to study the technological feasibility of our dynamical-

coupling scheme, it is important to understand how this tradeoff
between the accuracy of the effective couplings and the nonlinear
rate—in combination with the requirements for the Floquet
approximation—translate into concrete scaling requirements for
hardware figures of merit as a function of problem size. As
previously mentioned, two relevant hardware limitations are the
maximum coupling rate gmax between each oscillator and the bus,
as well as the maximum realizable detuning Δmax between the bus
and each oscillator. In the presence of these two limitations, we
find (see the Supplementary Information for a full analysis) that
there is a maximum allowable nonlinear rate χmax for dynamical
coupling to work.
In Fig. 6a, we show χmax as a function of problem size N, upon

varying the hardware limits gmax and Δmax (for the SK7 problem

Fig. 4 Simulations of classical equations of motion. a Evolution of the success probability of finding a ground state of the inset 10-spin Ising
problem instance, for both a system whose couplings are implemented by static pairwise physical couplers (static coupling) and a system
using this work's dynamical-coupling approach (dynamical coupling). To estimate the probability, we sample random initial conditions
according to a Gaussian distribution (see the Supplementary Information, ref. 18). b Trajectories of the classical field amplitudes of each of the
10 oscillators, for one of the samples constituting the simulation in (a). c Histograms of the success probability Psuccess for various problem
sizes N, each estimated using 100 instances of the SK7 problem class. The diamonds indicate the average success probability, while the
horizontal bars show the histogram. For N= 8 and N= 30, the correlation matrices between statically and dynamically coupled systems are
shown at the bottom (For the correlation matrices for all other problem sizes, see the Supplementary Information). Projected to the sides of
the correlation matrices, in blue and red, are the corresponding histograms for the dynamically coupled and statically coupled systems,
respectively. For simulation parameters and methodology, see Table 1 and “Methods”.
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class; see the Supplementary Information for MAX-CUT). We
observe that at fixed values of gmax and Δmax, χmax decreases as N
increases. To more concretely interpret the implications of the
requirement χ � χmax, we note that κ ≪ χ is a necessary condition
for the annealer to operate in the quantum, rather than the
dissipative, regime. Thus, the requirement of χ � χmax translates
directly to a minimum required value for the cavity-photon
lifetime Tcav= 1/κ. Taking κ= χ/5 for concreteness, we plot the
minimum required cavity-photon lifetime Tcav on the right axis of
Fig. 6b as a function of N, for gmax=2π ¼20MHz and
Δmax=2π ¼5 GHz. This plot indicates that Tcav ≈ 100 μs is required
to achieve N= 1000.
The values for gmax and Δmax are readily achievable experimen-

tally; regarding the Tcav requirement, transmon qubits with T1
times of around 50 μs–100 μs have been measured42,43. We also
mention that, in the spirit of refs. 3,8, one could also ignore this
latter requirement on Tcav and build a system with the best Tcav
one can achieve—even if it is smaller than the required Tcav to
satisfy κ ≤ χ/5—and experimentally explore the performance of a
highly dissipative quantum annealer. For a small experimental
demonstration that still obeys the κ ≤ χ/5 requirement, Tcav ~ 10 μs
should be sufficient to realize an N= 10 version of the system.

DISCUSSION
There are two fundamental tradeoffs that one is making by
adopting our dynamical-coupling architecture versus a static-
coupling architecture: firstly, it is necessary to perform some
classical precomputation to obtain the PM coefficients (i.e., the
matrix F), and secondly, as alluded to in the discussion about the
dynamical-coupling parameter η, each oscillator’s cavity-photon
lifetime in a dynamical-coupling architecture will need to be

longer than it would in a static-coupling architecture. In exchange
for accepting these two downsides, one is able to build a fully
programmable, fully connected N-spin quantum annealer with a
number of qubits and couplers that only scales as N, as opposed to
current proposals for statically coupled quantum annealers, which
require a number of qubits and/or couplers that scales as N2.
Our method for computing F—by minimizing a second-order

Taylor approximation of effective coupling error—requires only
OðN3Þ time, which is efficient, and remarkably so given that the
Ising problem matrix contains OðN2Þ entries in general, hence the
runtime could at best be OðN2Þ. Moreover, in our numerical
experiments, the wall-clock times when running our implementa-
tion of the method on a single-core processor were ~2min for
N= 1000, so the precomputation time should not be a significant
practical concern, given the difficulty of solving hard instances of
Ising problems.
With regards to the required cavity-photon lifetime, we have

provided (in the Supplementary Information) a prescription for the
parameters in the dynamical-coupling scheme such that the error
in the realized couplings will be at most ~3%, and we have
computed the resulting cavity-photon-lifetime requirement as a
function of N. Current experimental efforts with JPOs33,34 have
shown promising development. In particular, a single cat qubit
with a JPO was demonstrated in Ref. 34, and the qubit had T1 and
T2 values of 15.5 μs and 3.4 μs respectively. While the use of
dynamic flux modulation to induce multimode couplings among
JPOs (with or without a bus) has not yet been experimentally
investigated to the best of our knowledge, flux modulation has
been used to construct two-qubit gates between transmon
qubits40 as well as to couple multiple modes of a transmission
line44. Meanwhile, bus-mediated multi-qubit couplings achieving
all-to-all entanglement have now reached the scale of up to 20

Fig. 5 Accuracy of the effective couplings. a Comparison of the effective coupling matrices Ceff (target Ising problem matrix C shown to the
left) for different settings of the dynamical-coupling parameter η, which sets the ratio between the effective coupling strength and the
strength of the native coupling provided via the bus. As η is decreased, the accuracy of the Ceff increases. b The maximum entry-wise error in
the effective coupling matrix Ceff, averaged over 100 problem instances for each size N, as a function of the dynamical-coupling parameter η.
We show the scaling for three different classes of Ising problems, with illustrative examples of instances shown as insets. For all panels, the
modulation matrix F used to produce Ceff is found by a numerical optimizer that attempts to maximize the accuracy by using a second-order
Taylor approximation to (3), with native couplings Jij constructed to be approximately uniform (see the Supplementary Information).
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transmon qubits on a single chip15. These experimental mile-
stones, together with the generally rapid progress in super-
conducting circuit hardware, indicate that the coherence-time
requirements found in our scaling analysis—10 μs for a small-scale
near-term demonstration and 100 μs for a 1000-spin machine—
are within optimistic experimental reach.
In the current approach from D-Wave Systems6,8,45, as well as

the proposed approaches in refs. 20,35, realizing a 1000-spin
quantum annealer for fully connected problems would require on
the order of 106 qubits. This stands in contrast to our proposed
architecture, which would require only 1000 oscillators to achieve
the same number of spins. Beyond the engineering expense of
implementing a relatively larger number of qubits, quantum
annealers using problem embedding can also suffer from an
additional exponential degradation in success probability6. The
dynamical-coupling approach uses the minimal number of
physical qubits possible, and hence avoids this additional penalty
in performance.
Outside the context of quantum annealing for solving

optimization problems, our work has a strong connection with
Floquet engineering of quantum simulators and quantum spin
chains46–50. A quantum annealer, in addition to being an
optimization machine, is also a realization of a quantum simulator
of the transverse-field Ising model51. We anticipate that our
techniques for dynamic control of the couplings in a spin system
will also enable the realization of novel simulation capabilities for
more general spin Hamiltonians. Furthermore, our technique and
derivations are not restricted to simulators of spin systems, but
apply directly to generic bosonic simulators, and may allow more
complex Hamiltonians to be engineered than are currently
realized with pairwise physical couplers in Bose-Hubbard simula-
tors built with superconducting circuits52–56.

METHODS
Ising problem classes and problem instance generation
We consider problem instances drawn from the following three specific
classes of Ising problems, characterized by the statistical distribution of the
Cij couplings specifying the Ising problem:

● Integer Sherrington-Kirkpatrick graphs with range 7 (SK7)41: Every
upper-triangular element of C is independently chosen with equal
probability from 14 discrete values �7; ¼ ;�1; 1; ¼ ; 7f g. Then C is
normalized by its maximum amplitude: C 7!C=maxijðjCij jÞ.

● Dense MAX-CUT graphs: Every upper-triangular element of C is
independently chosen with 50% probability to be either 0 or 1.

● Cubic MAX-CUT graphs: We sample uniformly from the set of 3-regular
graphs, where every vertex has degree 3. These graphs were
generated with the LightGraphs.jl package57.

Solving for modulation coefficients
The problem of finding the matrix of modulation coefficients F is to satisfy
Cij � Ceff ij , as defined in (3). In a fully numerical approach, this problem can
be solved by numerically minimizing the objective function

X
i≠j

λCCij �
Z 2π

0
Jij cos ði � jÞt þ

XN�1

k¼1

FðkÞi � FðkÞj

� �
sin kt

" #
dt
2π

 !2

: (4)

For N < 100, we numerically optimize a relaxed version of this problem
(using an iterative approach; see the Supplementary Information), which
for these values of N provides low-error solutions.
For N > 100, the above procedure scales poorly with N, so we turn to an

approximate approach. If we assume the total phase deviationPN�1
k¼1 FðkÞi � FðkÞj

h i
sinðkΛtÞ � ζ where ζ ≪ 1 (i.e., the modulations are

small), then the equation Cij ¼ Ceff ij can be expanded to second order in ζ
to obtain the equations

λCCij

Jij
¼ � 1

2 Fði�jÞ
i � Fði�jÞ

j

� �
� 1

8

PN�1�ði�jÞ

l¼1
FðlÞi � FðlÞj
� �

Fði�jþlÞ
i � Fði�jþlÞ

j

� �

� 1
8

PN�1

l¼i�jþ1
FðlÞi � FðlÞj
� �

Fðl�iþjÞ
i � Fðl�iþjÞ

j

� �

þ 1
8

Pi�j�1

l¼1
FðlÞi � FðlÞj
� �

Fði�j�lÞ
i þ Fði�j�lÞ

j

� �
:

(5)

An exact solution to these equations does not necessarily solve Cij ¼ Ceff ij ,
but the errors should be small if ζ≪ 1. Since this small-modulation
approximation significantly reduces the nonlinearity of the problem, we
utilize this second-order approximation as our definition of the design
problem to be solved when N ≥ 100. To solve the problem in this
approximation, we again apply a relaxation to solve these algebraic
equations via solving an optimization problem instead, with objective
functions (one for each k= 1, …, N − 1):

XN�k

j¼1

λCC
ðkÞ
j

JðkÞj

þ 1
4

FðkÞjþk � FðkÞj

� �
2þ θN�1

2k Fð2kÞjþk � Fð2kÞj

� ih �
þ uðkÞj

 !2

; (6)

where θNM ¼ 1 iff N ≥M and

uðkÞj :¼ 1
8

PN�1�k

l¼1
1� δk;l
� �

FðlÞjþk � FðlÞj
� �

FðkþlÞ
jþk � FðkþlÞ

j

� �

þ 1
8

PN�1

l¼kþ1
1� δ2k;l
� �

FðlÞjþk � FðlÞj
� �

Fðl�kÞ
jþk � Fðl�kÞ

j

� �

� 1
8

Pk�1

l¼1
FðlÞjþk � FðlÞj
� �

Fðk�lÞ
jþk � Fðk�lÞ

j

� �
:

(7)

Our approach is to iteratively optimize these objective functions one at a
time, repeating until convergence or after a fixed number of optimizations
have been performed. For additional information, see the Supplementary
Information.

Quantum simulations
We perform quantum simulations in this work to analyze the performance
of the dynamical-coupling scheme relative to the statically coupled system,

Fig. 6 Scaling requirements for SK7 problems. Due to the tradeoff
between accuracy of the effective couplings and the required
strength of native couplings, hardware limitations on the achievable
bus-oscillator detunings and bus-oscillator couplings impose a
maximum allowable nonlinear rate χ in the system. a The maximum
allowable nonlinear rate as a function of the desired problem size N
and the hardware-limited bus-oscillator coupling rate gmax (left, with
Δmax=2π ¼ 5 GHz) and the hardware-limited bus-oscillator detuning
Δmax (right, with gmax=2π ¼ 20 MHz). Dashed vertical lines in blue
indicate the slice of these plots shown in (b) below. b The black line
(left axis) shows the maximum allowable nonlinear rate as a function
of problem size for fixed Δmax=2π ¼ 5 GHz and gmax=2π ¼ 20 MHz.
The green line (right axis) shows the consequence of the maximum
allowable nonlinear rate for the minimum required cavity-photon
lifetime Tcav, assuming that the quantum annealer requires χ ≥ 5κ.
See the Supplementary Information for the corresponding scaling
requirements for MAX-CUT problem classes.
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especially in the presence of dissipation. Our dissipative quantum model is
described by the standard Lindblad master equation

dρ̂
dt

¼ �i½Ĥ; ρ̂� þ
X
i

L̂i ρ̂L̂
y
i �

1
2
L̂
y
i L̂i ρ̂�

1
2
ρ̂L̂

y
i L̂i

	 

; (8)

where Ĥ is the Hamiltonian of the system, and L̂i are the Lindblad
operators that describe the effect of dissipation due to coupling to the
environment; the time dependence of all operators has been omitted for
brevity. For the statically coupled scheme, the Hamiltonian is given by (1)
while the Lindblad operators are given by L̂i ¼

ffiffiffi
κ

p
âi . For the dynamical-

coupling scheme, the Hamiltonian is given by (2), while the Lindblad
operators remain L̂i ¼

ffiffiffi
κ

p
âi , since the terms in (8) involving the Lindblad

operators are invariant under the overall frame rotations imposed by the
dynamical-coupling scheme (see the Supplementary Information for more
details).
Directly simulating (8) is difficult due to the large Hilbert-space

dimension of the quantum state. To circumvent the memory requirement
of storing a full density matrix, we utilize the Monte-Carlo wavefunction
method (i.e., quantum-jump method) to solve (8) via stochastic sampling 58.
Numerically, the simulations were performed with the QuTiP library (version
4.3.1) in Python59.
Given a spin configuration σ ¼ σ1; ¼ ; σNð Þ where σi= ±1, we can

define the probability of the quantum state ^ρðtÞ being in the specific spin
configuration (i.e., configuration probability) σ as18

PσðtÞ :¼
YN

i¼1

Z
sgn xi¼σi

dxi

	 

x1; ¼ ; xNh j ^ρðtÞ x1; ¼ ; xNj i: (9)

This definition of the success probability is motivated by the fact that the
final state of the JPO system is approximately a superposition of coherent
states ± αij i for each JPO, and we interpret these coherent states to
encode the Ising spins σi= ±1.

Classical simulations
For the statically coupled system, we simulate the following classical EOMs:

dαi
dt

¼ i δi þ χjαi j2
� �

αi � irα�i þ iλC
X
i≠j

Cijαj : (10)

For the dynamically coupled system, we simulate the following classical
EOMs:

dαi
dt

¼ i δi þ χjαi j2
� �

αi � irα�i

þ iλC
P
j≠i

Jij exp �iΛðj � iÞt þ iδϕjðtÞ � iδϕiðtÞ
� �

αj :
(11)

We simulate both sets of classical EOMs using the ODE solver library
DifferentialEquations.jl (version 4.5.0) in Julia60. Regarding the initial conditions
of the ODE, we follow the approach of Ref. 18 and sample random initial-field
amplitudes αi(t= 0), according to αiðt ¼ 0Þ ¼ ffiffiffiffiffiffiffiffiffiffi

n0=2
p

e2πiui zi , where zi are iid
random variables drawn from the standard normal distribution, while ui are iid
random variables drawn from the uniform distribution on the interval [0, 1].
For all classical simulations, we choose n0= 10−2. As with the quantum
simulations, we simulate the classical EOMs on a finite number of trajectories.
In our classical simulations, we identify the spin configuration of a

trajectory α(t) using the relation σiðtÞ ¼ sgn Re αiðtÞð Þ. The spin configura-
tions over the ensemble of trajectories then determine the success
probability.

DATA AVAILABILITY
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CODE AVAILABILITY
The source code for running both quantum and semiclassical simulations of the
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