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Abstract. We calculate the spectrum of massive Dirac fermions in graphene in the presence of an inho-
mogeneous magnetic field modeled by a step function. We find an analytical universal relation between
the bandwidths and the propagating velocities of the modes at the border of the magnetic region, showing
how, by tuning the mass term, one can control the speed of these traveling edge states.

1 Introduction

Graphene is generally described by massless Dirac
fermions [1], nevertheless different techniques have been
developed for nanotechnological applications and for
exploring non-trivial topological properties, to gener-
ate a gap at the Dirac points [2–4] so to include a mass
term in the Dirac–Weyl Hamiltonian, which describes
the low-energy physics in graphene [1,5–7]. Mass terms,
confining scalar potentials or magnetic fields can spoil
the simple linear dispersion of the original massless
Dirac fermions [8–15].

In particular, applying inhomogeneous magnetic
fields perpendicularly to the graphene sheet one can
produce bound states trapped in the vicinity of the dis-
continuity of the magnetic field and propagating along
the magnetic edges [16–19]. Several bound state spec-
tra have been already obtained and scattering problems
solved for massless Dirac fermions in graphene embed-
ded in discontinuous magnetic fields employing bound-
ary conditions [16–31].

What we are going to present in this work, instead, is
the bound state spectrum for massive Dirac fermions in
the simplest inhomogeneous magnetic pattern described
by a step function, which provides a prime example of
interface between magnetic and non-magnetic regions.

We see that edge states emerge at threshold values
of a longitudinal momentum, and upon increasing its
absolute value, they rapidly approach the relativistic
bulk Landau levels. In the massless limit we recover
the known results [16,18]. We observe some universal
behaviors, in particular we show analytically that, in
this magnetic structure, for each band, the bound state
threshold does not depend on the mass term even if
the energy levels do depend on it. Moreover we show
that the maximum of the velocity of the edge modes
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propagating along the magnetic boundary, as a func-
tion of the mass term, seems to be proportional to the
bandwidth; therefore, the ratio between the bandwidth
and the corresponding maximum velocity is a mass-
independent quantity.

Our findings can be also verified experimentally.
Actually, it has been observed that a band gap of about
30 meV can be obtained placing several layers of hexag-
onal boron nitride in contact with graphene [32], or even
in a more tunable setup, by exploiting strain-induced
band-structure engineering, an energy-gap value from
zero up to 0.9 eV can be obtained by share deforma-
tions of the monolayer graphene [33]. Finally, a mag-
netic step can be easily generated by placing a ferro-
magnetic material on top of graphene.

In summary, by this analysis, we show how, by tun-
ing the mass term, feasible experimentally, one can con-
trol the propagating speed of the modes located at the
edge of a magnetic region, relevant for future tunable
graphene-based mesoscopic devices.

2 Magnetic step

Let us consider a magnetic field perpendicular to the
plane of graphene, z-direction, and with a step profile
along one direction in the plane of graphene, Bz(x) =
B θ(x), where θ(x) is the Heaviside theta function. The
potential vector is, therefore, A = (0, A(x), 0), defined
by

A(x) =
�c

el2B
x θ(x), (2.1)

where � = h/2π with h the Planck constant, c the speed
of light, e the elementary charge, and lB =

√
�c/eB

the magnetic length. We are supposing that the length
scale over which B(x) significantly varies, say λB , is
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assumed much larger than the lattice spacing so that, at
low energy scales, the two Dirac points in the massless
limit are not coupled by the magnetic field and can
be treated separately. We assume also that λB is much
smaller than the quasiparticle Fermi wavelength so that
we can safely approximate B(x) as a step function. The
massive Dirac–Weyl equation is then given by

(
υF (σxπx + σyπy) + Δσz

)
ψ(x, y) = εψ(x, y), (2.2)

with υF the Fermi velocity, σx, σy, σz the Pauli matri-
ces, π the momentum operator π = −i�∇+ e

cA and Δ
the energy gap. Because of the translational invariance
along the y-direction, the spinor can be written as

ψ(x, y) = eikyy ψ(x) ≡ eikyy

(
a(x)
b(x).

)
(2.3)

Let us split the space in two regions, I and II.
Region I. For x > 0, from Eq. (2.2), we can write the

following equations for the two components

Δa(x) − iυF

[
�

d
dx

+
(

�ky +
eA(x)

c

)]
b(x) = ε a(x)

(2.4)

− iυF

[
�

d
dx

−
(

�ky +
eA(x)

c

)]
a(x) − Δb(x) = ε b(x).

(2.5)

From these equations, putting one into the other, we
obtain

[

l2B�
2 d2

dx2
−

(
�kylB +

(
elB
c

)
A(x)

)2

−
(

l2Be

c

) (
dA(x)

dx

)
+

l2B
υ2

F

(
ε2 − Δ2

)]
a(x) = 0.

(2.6)

Using Eq. (2.1), we can write the following equation,
for x > 0,

⎡

⎢
⎣

d2

d
(

x
lB

)2 − (kylB + x/lB)2 − 1 +
l2B

�2υ2
F

(
ε2 − Δ2

)

⎤

⎥
⎦

a(x) = 0. (2.7)

Notice that this is an effective one-dimensional
Schrödinger equation where, for ky < 0, the potential
develops a minimum within the magnetic region for
which bound state solutions exist, with energies such
that |ky| >

√
(ε2 − Δ2)/�υF , as we will verify in what

follows. Making the following change of variables:

ξ = kylB + x/lB , (2.8)

Eq. (2.7) becomes simply

(
d2

dξ2
− ξ2 − 1 + 2η

)
a(x) = 0, (2.9)

where we defined the quantity, which is generally a real
number,

η =
l2B

2�2υ2
F

(
ε2 − Δ2

)
. (2.10)

The normalizable solution of Eq. (2.9) is

a(x) = cI Dη−1(
√

2 ξ), (2.11)

where Dη(z) is a parabolic cylinder function and cI
a constant value. Notice that if η = n is a non-
negative integer number, one can write Dn(

√
2ξ) =

2−n/2e−ξ2/2Hn(ξ), namely in terms of the Hermite
polynomials Hn(ξ) = (−1)neξ2 dn

dξn e−ξ2
. To find the sec-

ond component of the spinor we can write

(ε + Δ)b(x) = −i
�υF

lB

(
d
dξ

− ξ

)
a(x), (2.12)

and using the recursive relation

d
dz

Dη−1(z) − z

2
Dη−1(z) + Dη(z) = 0 (2.13)

we get the complete spinorial wavefunction

ψ(x) = cI

(
Dη−1(

√
2 ξ)

i
√
2 �υF

(ε+Δ)lB
Dη(

√
2 ξ)

)

. (2.14)

Region II. For x < 0, we obtain the following equa-
tion by placing A(x) = 0 in Eqs. (2.4), (2.5)

(ε − Δ)
�υF

a(x) + i

(
d
dx

+ ky

)
b(x) = 0 (2.15)

(ε + Δ)
�υF

b(x) + i

(
d
dx

− ky

)
a(x) = 0 (2.16)

so that, analogously to what done in the other case, we
can write

[
d2

dx2
− k2

y +

(
ε2 − Δ2

)

�2υ2
F

]

a(x) = 0 (2.17)

whose solution can be written as

a(x) = cII
(
ekxx + r e−kxx

)
(2.18)

with cII and r constant values and where we defined

kx =
√

k2
y − (ε2 − Δ2) /�2υ2

F . (2.19)
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The bound state solutions are those with k2
y >(

ε2 − Δ2
)
/�

2υ2
F so that, for x < 0, the only nor-

malizable contribution in Eq. (2.18) is the first one,
a(x) = cIIe

kxx. Using Eq. (2.16) we get the other com-
ponent of the spinor, b(x) = −i �υF

(ε+Δ)

(
d
dx − ky

)
a(x),

getting the following bound-state wavefunction

ψ(x) = cII ekxx

( 1
i�υF (ky−kx)

(ε+Δ)

)
. (2.20)

Imposing the matching condition at x = 0, from
Eqs. (2.14) and (2.20) we find

lB (ky − kx) D(ε2l2B−Δ2l2B)/(2�2υ2
F )−1(

√
2 kylB)

=
√

2 D(ε2l2B−Δ2l2B)/(2�2υ2
F ) (

√
2 kylB),

(2.21)

where we used Eq. (2.10) and where kx is defined in
Eq. (2.19).

If we put Δ = 0 in Eq. (2.21), the matching condition
reduces to that of the gapless graphene [16]. In this
case in addition to the finite-energy states, solution of
the above equation, there is also the zero energy state,
ε̃0 = 0, for ky < 0, whose wavefunction is

ψ0(x) =
(

0
1

) (
θ(−x) + θ(x)e−x2/2

)
e−kyx. (2.22)

To find the finite-energy spectrum defined by Eq. (2.21),
in the general case of gapped graphene, it is convenient
to introduce the dimensionless parameters

ε̃2 = (ε2l2B)/(υ2
F �

2), (2.23)

Δ̃2 = (Δ2l2B)/(υ2
F �

2), (2.24)

k̃y = kylB , (2.25)

such that Eq. (2.21) can be written as it follows:

(
k̃y −

√
k̃2

y − (ε̃2 − Δ̃2)
)

D(ε̃2−Δ̃2)/2−1(
√

2 k̃y)

=
√

2 D(ε̃2−Δ̃2)/2(
√

2 k̃y), (2.26)

whose solutions are quantized, ε̃n, with n = 1, 2, 3, . . ..
Notice that Eq. (2.26) is valid for ε̃ �= −Δ̃. Also in
this case there is an extra-state with a completely flat
band at ε̃0 = −Δ̃ whose wavefunctions is described by
Eq. (2.22), localized at the edge, where the discontinu-
ity of the magnetic field is located, but whose band is
not dispersive.

3 Results

The dispersive energy levels are obtained by solving
the matching condition Eq. (2.26). We verified that the

bound states exist for ky < 0 and for

ε̃2 ≤ k̃2
y + Δ̃2, (3.27)

as shown in Fig. 1. For ky → −∞ the energies ε̃n, solu-
tions of Eq. (2.26), approach the Landau levels for rel-
ativistic massive particles

Ẽn = ±
√

Δ̃2 + 2n (3.28)

with n positive integer numbers. In this limit the wave-
functions are written in terms of Hermite polynomials,
as already mentioned.

For any n, Ẽn is the maximum value of ε̃n. The min-
imum value of ε̃n is located at the threshold, k̃y = pn ≡
−

√
ε̃2n − Δ̃2, solution of the following equation:

pn Dp2
n/2−1(

√
2 pn) −

√
2 Dp2

n/2(
√

2 pn) = 0; (3.29)

therefore pn does not depend on the mass term, as
shown in Fig. 2 (first two plots).

For instance, numerically, we get p1 ≈ −1.31325,
p2 ≈ −1.92427, p3 ≈ −2.38626 and so on. We have
then

min
[
ε̃n(k̃y)

]
= ε̃n(pn) =

√
Δ̃2 + p2n, (3.30)

see Fig. 3 (first plot) where these quantities are reported
as functions of the mass term Δ̃. These bands are dis-
persive and the corresponding bandwidths can be easily
calculated

δε̃n = Ẽn − ε̃n(pn) =
√

Δ̃2 + 2n −
√

Δ̃2 + p2n.

(3.31)
In Fig. 3 (second plot), the bandwidths of the first

three levels as functions of the mass Δ̃ are reported.
The wavefunctions associated to the dispersive part of
the band ε̃n are states localized at the edge of the mag-
netic field. These edge states provide one-dimensional
channels freely propagating along the magnetic bound-
ary. Indeed, we can define the following velocities:

ṽn(k̃y) =
dε̃n

dk̃y

, (3.32)

and observe that their maximum absolute values are
reached right at the threshold

max
∣∣ṽn(k̃y)

∣∣ = |ṽn(pn)| (3.33)

while for modes with |ky| > |pn|, |ṽn(k̃y)| are smaller,
see Fig. 2 (last plot) for n = 1, 2. In particular, for
Δ̃ = 0 we have |ṽn(pn)| = 1, while increasing the mass
term the modulus of the velocity decreases. Surprisingly
we find that the ratios between the bandwidths and
the maximum velocities, although both functions of the
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Fig. 1 Spectrum of the low-lying positive-energy edge states at a magnetic step for Δ̃ = 0 (left), Δ̃ = 1 (middle) and

Δ̃ = 2 (right). The dashed line denotes the threshold value for edge state solutions, ε̃ =
√

k̃2
y + Δ̃2. For large negative k̃y

the levels rapidly approach the Landau level values
√

Δ̃2 + 2n, with n ≥ 1 positive integer numbers. The negative-energy
spectrum is specular with, in addition, the flat zeroth energy level ε̃0 = −Δ̃

Fig. 2 First energy level ε̃1 (left) and second energy level ε̃2 (middle), solutions of Eq. (2.26), for increasing values of the

mass term, Δ̃ = 0 (blue line), Δ̃ = 1 (red line), Δ̃ = 1.5 (yellow line), Δ̃ = 2 (green line). (Right) Modulus of the velocities,

in log-scale, associated to the first and the second energy levels, defined as ṽn = ∂k̃y
ε̃n, for the same values of Δ̃ as in the

first two plots, Δ̃ = 0, 1, 1.5, 2

Fig. 3 (Left) Minima of the first three energy levels ε̃n(ky), with n = 1 (blue solid line), n = 2 (red solid line), n = 3
(yellow solid line), associated to the edge modes with ky = pn, as functions of the mass term (solid lines). The dashed lines
are the corresponding energy levels in the deep bulk embedded by a uniform magnetic field, described by the Landau levels

Ẽn =
√

Δ̃2 + 2n. (Middle) Bandwidths of the first three levels, defined as the difference between the Landau levels, at the

bulk, and the energy at the boundary, δε̃n = Ẽn − min(ε̃n). (Right) Maximum velocities obtained at the threshold of the
three levels, see Fig. 2, as functions of the mass term. In all the plots, the blue lines correspond to n = 1, the red lines to
n = 2, the yellow lines to n = 3

mass term, are universal quantities, namely, in their
turn, the ratios do not depend on the mass, but are
equal to the bandwidths in the massless case, namely
at Δ̃ = 0. Actually we observe numerically, at least for
the first three levels reported in Fig. 3, that

δε̃n[Δ̃]
δε̃n[0]

= |ṽn(pn)|[Δ̃]. (3.34)

We checked that the curves in the second and third
plots of Fig. 3 perfectly overlaps after rescaling accord-
ing to Eq. (3.34). This observation allows us to explic-
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itly write the highest velocities as analytical functions
of the mass parameter Δ̃

|ṽn(pn)| =
1√

2n − |pn|

(√
Δ̃2 + 2n −

√
Δ̃2 + p2n

)
,

(3.35)
with pn solution of Eq. (3.29). We finally notice that
all curves representing ṽn(k̃y) in log-scale reported in
the last plot of Fig. 3 collapse into a single curve after
a rescaling, ṽn(k̃y)[Δ̃] = ṽn(k̃y)[0]|ṽn(pn)|[Δ̃]. Calling,
for each band, ṽo

n(k̃y) ≡ ṽn(k̃y)[Δ̃ = 0] the velocity in
the massless case, we have the following simple scaling
law for the velocities in the presence of a gap

ṽn(k̃y) =
ṽo

n(k̃y)√
2n − |pn|

(√
Δ̃2 + 2n −

√
Δ̃2 + p2n

)
.

(3.36)

4 Conclusion

In this paper we derived the bound state spectrum for
massive Dirac fermions in graphene subjected to a per-
pendicular magnetic field with a step function profile.
We showed that the energy levels approach the relativis-
tic Landau levels while the dispersive parts of the bands
exhibit some universal behaviors. We find that the mass
term modifies the bulk spectrum while reducing the
number and the speed of the traveling modes at the
border of the magnetic region, however the threshold of
each bound states does not depends on the mass term
and the ratio between the maximum propagating veloc-
ities and the bandwidths is also a mass-independent
quantity. In conclusion, we show how, by tuning the
mass term, one can control the speed of the edge modes
traveling along the boundary of the magnetic region,
paving the way for novel tunable graphene-based meso-
scopic devices.
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