
5.42.2

Quantum Truncated Differential
and Boomerang Attack

Huiqin Xie and Li Yang

Special Issue
Symmetry in Quantum Optics and Quantum Information Research

Edited by

Prof. Dr. Hong Guo, Dr. Ziyang Chen, Dr. Xiangyu Wang, Prof. Dr. Qiong Li and Dr. Bingjie Xu

Article

https://doi.org/10.3390/sym16091124

https://www.mdpi.com/journal/symmetry
https://www.scopus.com/sourceid/21100201542
https://www.mdpi.com/journal/symmetry/stats
https://www.mdpi.com/journal/symmetry/special_issues/99294BXD5K
https://www.mdpi.com
https://doi.org/10.3390/sym16091124

Citation: Xie, H.; Yang, L. Quantum

Truncated Differential and Boomerang

Attack. Symmetry 2024, 16, 1124.

https://doi.org/10.3390/

sym16091124

Academic Editor: Hung T. Diep

Received: 21 July 2024

Revised: 24 August 2024

Accepted: 28 August 2024

Published: 30 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Quantum Truncated Differential and Boomerang Attack

Huiqin Xie 1,2,* and Li Yang 3,4

1 Department of Cryptography Science and Technology, Beijing Electronic Science and Technology Institute,

Beijing 100070, China
2 Key Laboratory of Cryptography of Zhejiang Province, Hangzhou Normal University,

Hangzhou 311121, China
3 Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100085, China
4 Key Laboratory of Cyberspace Security Defense, Beijing 100085, China

* Correspondence: xiehuiqindky@163.com

Abstract: In order to design quantum-safe block ciphers, it is crucial to investigate the application of

quantum algorithms to cryptographic analysis tools. In this study, we use the Bernstein–Vazirani

algorithm to enhance truncated differential cryptanalysis and boomerang cryptanalysis. We first

propose a quantum algorithm for finding truncated differentials, then rigorously prove that the

output truncated differentials must have high differential probability for the vast majority of keys in

the key space. Subsequently, based on this algorithm, we design a quantum algorithm for finding

boomerang distinguishers. The quantum circuits of the two proposed quantum algorithms contain

only polynomial quantum gates and qubits. Compared with classical tools for searching truncated

differentials or boomerang distinguishers, the proposed algorithms can maintain the polynomial

complexity while fully considering the impact of S-boxes and key scheduling.

Keywords: quantum information; quantum cryptanalysis; symmetric cryptography; differential

attack; boomerang attack

PACS: 03.67.-a; 03.67.Dd

1. Introduction

Recently, research on quantum computers has continuously made new progress world-
wide. Many scientists, companies and research institutions are committed to utilizing
various quantum systems to develop quantum computers. It is foreseen that the suc-
cessful development of quantum computers will have a profound impact in many fields.
Cryptography is one such field.

The two most promising physical implementation schemes for quantum computers
are trapped-ion [1] and superconducting circuit [2]. Ion-trap quantum computers have the
advantage of great qubit connectivity and small decoherence, while superconducting quan-
tum computers have the advantage of high designability and scalability. In recent years,
investigations on ion-trap quantum computers have made great progress [3,4], especially in
the improvement of high-fidelity gate [5]. The study of superconducting quantum comput-
ers has also made remarkable progress [6–8]. Google’s Sycamore quantum computer and
IBM’s Eagle quantum computer are both based on superconductivity [9,10]. The power of
quantum computers in information processing stems from the novel properties of quantum
information that differ from those of classical information. Quantum computers possess the
natural feature of parallel computing. When an n-qubit quantum computer processes data,
operators actually operate on 2n data states simultaneously. This parallelism may make
some problems uncomputable in electronic computers become computable in quantum
computers, such as factoring large integers, which is a difficult problem that many public
key algorithms are built upon, but may be solved on quantum computers by running Shor’s
algorithm [11].

Symmetry 2024, 16, 1124. https://doi.org/10.3390/sym16091124 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16091124
https://doi.org/10.3390/sym16091124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-1466-3705
https://orcid.org/0000-0003-2091-0506
https://doi.org/10.3390/sym16091124
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16091124?type=check_update&version=1

Symmetry 2024, 16, 1124 2 of 27

The threats posed by quantum computing to symmetric algorithms have also received
considerable attention. The most typical example is Grover’s algorithm [12], which requires
only O(

√
M) complexity to search an unordered database with M elements, while O(M)

complexity is required in classical computing. Another important algorithm used to
attack symmetric schemes is Simon’s algorithm [13]. It was first used for attacking Feistel
ciphers [14–16] and EM schemes [14,16]. It was then combined with Grover’s algorithm
for extracting the keys of ciphers with FX, Feistel and generalized Feistel structures [17–19].
For SPN ciphers, Jaques et al. investigated cryptanalysis of the AES algorithm using
Grover’s algorithm [20]. Zhang utilized quantum algorithms to attack generalized Feistel
ciphers [21]. Xiang introduced a method for constructing periodic functions and used it
to attack LBlock cipher [22]. In addition to the aforementioned quantum algorithms, the
Bernstein–Vazirani (BV) algorithm [23] was recently utilized in cryptanalysis [24–27].

In addition to specific attack strategies, cryptanalytic tools are also crucial for evaluat-
ing the security of cryptosystems. In this field, quantum algorithms were first used for dif-
ferential cryptanalysis [25,28,29] and then for linear cryptanalysis [26,29,30]. Subsequently,
quantum collision attacks on hash functions were studied [31,32]. Denisenko analyzed the
complexity of quantum differential attack based on the quantum search algorithm [33].
Hosoyamada used quantum algorithms to speed-up classical multidimensional linear
attack [34]. Xu et el. applied quantum search algorithm to differential meet-in-the-middle
attack [35]. Quantum attacks under this model were also proposed [36–38]. Zhang proposed
a quantum attack under quantum-related key model against the Sum of Even–Mansour
construction [39]. Wu and Feng used BV algorithm to search for related-key differentials
and recover key based on quantum counting algorithm [40]. These attacks showcased the
superiority of quantum cryptanalytic tools over traditional cryptanalytic tools.

Many quantum attacks on block ciphers are too large in scale to be implemented or
even simulated. However, researchers may be able to simulate a small part of the whole
quantum attacks. For example, Zhou et al. simulated the quantum circuit of S-boxes
instead of the whole cipher when studying the quantum circuit of AES [41]. Qiskit SDK is
a powerful open-source tool for the simulations of quantum algorithms. Many small-scale
quantum algorithms have been simulated using Qiskit [42–44]. LIGHTER-R is another
useful tool proposed by Dasu, which can be used to design quantum circuits of Boolean
functions [45].

Contributions. In this study, we explore the applications of the Bernstein–Vazirani
algorithm to two variants of differential attacks: truncated differential and boomerang
attacks. First, we design a quantum algorithm for searching truncated differentials that
have a high probability for a large proportion of keys in the key space. Subsequently, based
on this algorithm, we construct another quantum algorithm for searching for boomerang
distinguishers. We demonstrate the correctness of both quantum algorithms using rigorous
proofs. Both quantum algorithms request only polynomial quantum gates and qubits and
have the following advantages:

• Quantum adversaries are able to perform the proposed attacks in Q1 model. Namely,
there is no need for quantum queries. Compared to many proposed quantum attack
algorithms [14–16,18,19,46] that require quantum queries, our algorithms are easier
to implement.

• Classical cryptanalytic tools for finding truncated differentials with high probability
or boomerang distinguishers usually cannot concern all of the details of the involved
S-boxes when they are not at a small-scale. The classical tools can only search for
truncated differentials or boomerang distinguishers of extremely few rounds when
the S-boxes have an 8-bit scale, which is very common in block ciphers. By compar-
ison, our quantum algorithms fully utilize the superiority of quantum computing
to improve this issue. They entirely characterized the S-boxes through the accurate
implementation of the unitary operator of the block ciphers.

Symmetry 2024, 16, 1124 3 of 27

• Classical truncated differential attacks do not involve the key scheduling under the
single-key attack model, but our algorithms incorporate the key scheduling into the
quantum circuits and thus fully reflect its impact to the differential propagation.

Related works. Paul et al. combined classical boomerang attack with Grover’s algo-
rithm to quantize the traditional boomerang attack [47]. Zhou et al. improved this quantum
attack strategy by allowing the retrieval of subkeys from both sides of block ciphers [48].
Boomerang attack includes two stages. The first stage is to find boomerang distinguishers
and the second stage is to recover the key using the found distinguishers. The works
in [47,48] only focused on the second stage. Both of them studied the use of quantum
algorithms for accelerating the retrieval of key. Our work focuses on the first stage and
studies the use of quantum algorithms for finding boomerang distinguishers.

2. Preliminaries

The main notations and their definitions are presented in Table 1.

Table 1. Notations.

Notation Definition

Cu,v
the set containing all Boolean functions
mapping u bits to v bits

Φ the empty set
S f (·) the Walsh transform of f

Enct
k a t-round block cipher

Enct
k[j]

the j-th component function of Enct
k

S/N the ratio of signal to noise

(∆x, ∆y) a differential

(∆x, ∆y) a truncated differential

2.1. Differential

Throughout this study, Enck : Fn
2 → Fn

2 denotes a block cipher, where k ∈ Fm
2 is the

master key. Encr
k = Enckr

◦ Enckr−1
◦ · · · ◦ Enck1

denotes the r-round iteration of Enck. Here
k1, · · · , kr denote the round keys generated from k according to the key scheduling.

Suppose x and x′ are two plaintexts, and Encr
k(x) = y, Encr

k(x′) = y′. We call
∆y = y′ ⊕ y an output difference and ∆x = x′ ⊕ x an input difference. (∆x, ∆y) is defined
as a differential of Encr

k. The probability of differential (∆x, ∆y) is defined as

Pr
x←Fn

2

[∆x
Encr

k→ ∆y] = Pr
x←Fn

2

[Encr
k(x⊕ ∆x)⊕ Encr

k(x) = ∆y]

=
1

2n
|{x ∈ Fn

2 |Encr
k(x⊕ ∆x)⊕ Encr

k(x) = ∆y}|.

If this value is equal to p, we call (∆x, ∆y) a p-probability differential of Encr
k.

Differential attack was proposed in 1991 and is one of the most commonly used
cryptanalysis methods [49]. It utilizes a high-probability differential to break block ciphers.
Let Enct

k = Enckt
◦ Enckt−1

◦ · · · ◦ Enck1
be the t-round iteration of Enck, where 1 < t < r.

Enct
k is a reduced cipher of Encr

k. In differential attacks the adversaries first search for a
differential of Enct

k having high probability, then use this differential to screen out the right
subkey involved in the last r− t rounds of Encr

k.
Variants of differential cryptanalysis have been proposed, including impossible differ-

ential attacks [50], truncated differential attacks [51] and boomerang attacks [52]. These
attacks all utilize the no-random statistical properties of the ciphertext differences when
specifying the plaintext differences.

Inspired by the concept of differential of block ciphers, we define the differential of
Boolean functions. Let Cu,v be a set containing all Boolean functions that map u bits to v bits,

Symmetry 2024, 16, 1124 4 of 27

where u, v are arbitrary positive integers. For any f ∈ Cu,v and x, x′ ∈ Fu
2 , let f (x) = y ∈ Fv

2
and f (x′) = y′ ∈ Fv

2. We call ∆y = y′ ⊕ y an output difference and ∆x = x′ ⊕ x an input
difference. (∆x, ∆y) is defined as a differential of f . The probability of differential (∆x, ∆y)
is defined as

Pr
x←Fu

2

[∆x
f→ ∆y] = Pr

x←Fu
2

[f (x⊕ ∆x)⊕ f (x) = ∆y].

If this value is equal to p, we call (∆x, ∆y) a p-probability differential of f . Especially, for
any function f in Cu,1, we define two sets

D0
f = {∆x ∈ Fu

2 | f (x)⊕ f (x⊕ ∆x) = 0, ∀x ∈ Fu
2},

D1
f = {∆x ∈ Fu

2 | f (x)⊕ f (x⊕ ∆x) = 1, ∀x ∈ Fu
2}.

Let D f = D0
f ∪ D1

f . The vectors in D f are called complete differentials of f . For any vector

∆x ∈ Di
f (i ∈ {0, 1}), (∆x, i) is obviously a 1-probability differential. For any ∆x /∈ Di

f , ∆x

cannot form a 1-probability differential of f as an input difference.

2.2. Quantum Computing

In quantum computing theory, information is stored in qubits. A qubit can be realized
by any two-level quantum system, such as polarized photons. It is an analogue of a classical
bit, but besides the states |0⟩ and |1⟩, it can also be in a state that is a linear combination of
|0⟩ and |1⟩:

|ψ⟩ = α|0⟩+ β|1⟩,
where α and β can be any complex numbers that satisfy |α|2 + |β|2 = 1. It is usually called
a superposition state. Multiple qubits are combined via tensor product. Suppose the first
qubit is in the state |ψ1⟩ = α1|0⟩+ β1|1⟩, the second qubit is in the state |ψ2⟩ = α2|0⟩+ β2|1⟩,
then the system of these two qubits is in the state

|ψ1⟩ ⊗ |ψ2⟩ = (α1|0⟩+ β1|1⟩)⊗ (α2|0⟩+ β2|1⟩)
= α1α2|00⟩+ α1β2|01⟩+ β1α2|10⟩+ β1β2|11⟩.

Classical bits can be manipulated by logic gates such as NAND and AND gates. Similarly,
qubits are manipulated by quantum gates. Common quantum gates include Pauli-X gate
(X gate), Phase gate (S gate), Hadamard gate (H gate), Controlled-NOT gate (CNOT gate)
and Toffoli gate. These gates act according to following rules:

X|0⟩ = |1⟩, X|1⟩ = |0⟩,
S|0⟩ = |0⟩, S|1⟩ = eiπ/4|1⟩,
H|0⟩ = 1√

2
(|0⟩+ |1⟩), H|1⟩ = 1√

2
(|0⟩ − |1⟩),

CNOT|a⟩|b⟩ = |a⟩|b⊕ a⟩, ∀a, b ∈ {0, 1},
To f f oli|a⟩|b⟩|c⟩ = |a⟩|b⊕⟩|c⊕ ab⟩, ∀a, b, c ∈ {0, 1}.

These quantum gates are represented in quantum circuits as in Figure 1. A collection of
quantum gates interlinked by quantum wires is called a quantum circuit.

Define H⊗n = H ⊗ H ⊗ · · · ⊗ H. H⊗n is the tensor product of n Hadamard gates and

H⊗n|0⟩⊗n =
1√
2n

(|0⟩+ |1⟩)⊗n =
1√
2n ∑

x∈Fn
2

|x⟩.

The 2n states |00 · · · 00⟩, |00 · · · 01⟩, · · · , |11 · · · 10⟩, |11 · · · 11⟩ are all called computational
basis states. Applying quantum gate H⊗n on a initial state |0⟩⊗n yields a superposition of
all computational basis states.

Symmetry 2024, 16, 1124 5 of 27

Figure 1. The notation of common quantum gates.

For any f ∈ Cu,v, a quantum circuit realizes f is equivalent to realizing the following
operator

U f : ∑
x,y

|x⟩|y⟩ →∑
x,y

|x⟩|y⊕ f (x)⟩.

U f can be integrated into quantum circuits as presented in Figure 2.

Figure 2. Quantum gate U f .

When quantum state ∑x∈Fn
2

αx|x⟩ is measured on the computational basis states, the

probability of outputting x is equal to |αx|2. If αx = 0, the output is definitely not x. Any
block cipher Encr can be efficiently realized using a quantum circuit. Namely, there is a
quantum circuit with polynomial-complexity taking a state of plaintexts and master keys
as input, and outputting the corresponding ciphertexts, realizing the unitary operator

UEncr : ∑
k∈Fm

2
x,y∈Fn

2

|k⟩|x⟩|y⟩ → ∑
k∈Fm

2
x,y∈Fn

2

|k⟩|x⟩|y⊕ Encr
k(x)⟩.

All quantum circuits can be realized using only the gates in some universal gate set [53],
such as {π

8 , CNOT, Phase, H}. Thus, Encr can be realized using a quantum circuit contain-
ing only polynomial universal gates. Let the total amount of quantum universal gates
in this circuit be |Encr|Q. UEncr can be integrated into the quantum circuits as shown in
Figure 3.

Figure 3. Quantum gate UEncr .

Two models have been proposed to describe quantum adversaries: the Q1 and Q2

models [54–56]. Q1 adversaries can perform local quantum operations but can merely
make queries classically to the cryptography primitives. In addition to classical queries
and local quantum operations, Q2 adversaries can also query the quantum oracles of the
cryptography primitives. Q2 model is more demanding because it is difficult to achieve the
quantum oracles of cryptography primitives in practice.

Symmetry 2024, 16, 1124 6 of 27

2.3. Bernstein–Vazirani Algorithm

Bernstein–Vazirani (BV) algorithm [23] was designed to solve the problem: s ∈ {0, 1}n

being a secret vector, with a quantum circuit of function f (x) = s · x, how to obtain the
value of s. BV algorithm runs as follows:

1. Implement Hadamard transform H(n+1) on |ψ0⟩ = |0⟩⊗n|1⟩, giving

|ψ1⟩ = ∑
x∈Fn

2

|x⟩√
2n
· |0⟩ − |1⟩√

2
.

2. Using the quantum circuit of f to get

|ψ2⟩ = ∑
x∈Fn

2

(−1) f (x)|x⟩√
2n

|0⟩ − |1⟩√
2

.

3. Discarding the unentangled last qubit, perform Hadamard operator H(n) on the
remaining qubits, getting

|ψ3⟩ = ∑
y∈Fn

2

(
1

2n ∑
x∈Fn

2

(−1) f (x)+y·x)|y⟩. (1)

Since f (x) = s · x, we have

|ψ3⟩ = ∑
y∈Fn

2

(
1

2n ∑
x∈Fn

2

(−1)(s⊕y)·x)|y⟩ = |s⟩.

Therefore, measuring |ψ3⟩ gives the value of s.

For any function f : Fn
2 → F2 in Cn,1, the Walsh transform is defined as the function

S f : Fn
2 −→ F2

u −→ S f (u) =
1

2n ∑
x∈Fn

2

(−1) f (x)+u·x.

Equation (1) shows that, if BV algorithm is run on a general function f ∈ Cn,1, the final
quantum state without measured will be

∑
y∈Fn

2

S f (y)|y⟩,

where S f (·) is the Walsh transform of f . When this state is measured, the probability of

y ∈ Fn
2 being output is S f (y)

2. Thus, BV algorithm running on f must output y such that
S f (y) ̸= 0.

Figure 4 shows the circuit of BV algorithm. BV algorithm needs totally 2n + 1 + | f |Q
universal gates. The corresponding quantum circuit requires n + 1 qubits.

Figure 4. Quantum circuit of BV algorithm.

Symmetry 2024, 16, 1124 7 of 27

Utilizing the fact that BV algorithm always outputs the vectors in the support set of the
Walsh transform, Li et al. constructed a quantum algorithm used for finding differentials
with high probability [57].

For any f ∈ Cn,1, let

γ f =
1

2n
max

∆x∈Fn
2

∆x/∈D f

max
i∈{0,1}

|{x ∈ Fn
2 | f (x⊕ ∆x)⊕ f (x) = i}|

= max
∆x∈Fn

2
∆x/∈D f

max
i∈{0,1}

Pr
x←Fn

2

[∆x
f→ i].

It is easy to verified that γ f < 1. This parameter is the maximum differential probability
of f except for the probability-1 differentials. The authors of [25,57] proved the following
theorems that illustrate the soundness of the aforementioned algorithm.

Theorem 1 ([57]). If Algorithm 1 outputs two sets Z0 and Z1 when applied to a function f ∈ Cn,1,
then for any ∆x ∈ Zi (i = 0, 1), any ϵ satisfying 0 < ϵ < 1, it holds that

Pr
[

1− |{x ∈ Fn
2 | f (x⊕ ∆x) + f (x) = i}|

2n
< ϵ

]

> 1− e−2q(n)ϵ2
. (2)

Algorithm 1 Quantum algorithm for finding high-probability differentials.

Input : the quantum circuit realizing f ∈ Cn,1, a polynomial q(n) of n.
Output: a differential of function f .

1: Define a set W := Φ;
2: for l = 1, 2, · · · , q(n) do
3: Apply BV algorithm to f , obtaining an vector u with n bits such that S f (u) ̸= 0;

4: Let W = W ∪ {u};
5: end for
6: Solve the equation {x · u = i|u ∈W}, getting the solution set Zi for both i = 0, 1;

7: if Z0 ∪ Z1 ⊆ {⃗0} then
8: Output “No”;
9: else

10: Output Z0 and Z1;
11: end if

Theorem 2 ([25]). Suppose f ∈ Cn,1 and there is a constant a0 such that γ f ≤ a0 < 1. If

Algorithm 1 outputs two sets Z0 and Z1 when applied to f with q(n) = n, then for any vector
∆x /∈ Di

f (i = 0, 1), we have

Pr[∆x ∈ Zi] ≤ an
0 .

Theorem 1 demonstrates that, for any vector ∆x ∈ Zi (i = 0, 1), the differential

probability of (∆x, i) to f is greater than 1− ϵ with a probability greater 1− e−2q(n)ϵ2
.

3. Quantum Truncated Differential Attack

Knudsen introduced the truncated differential attack in 1994 [51]. This cryptanalytic
method has been widely applied to attack symmetric ciphers [58,59]. In the initial version
of differential attacks, the adversaries utilize full differences of plaintexts and ciphertexts,
whereas in truncated differential attacks the adversaries consider differences partially
determined. The adversaries only predict some bits of the differentials rather than the
entire differentials.

We still consider the block cipher Encr
k with the key space Fm

2 . A truncated differential

(∆x, ∆y) of Encr
k is a pair of vectors such that ∆x, ∆y ∈ {∗, 0, 1}n, where ∗ denotes an

Symmetry 2024, 16, 1124 8 of 27

undetermined bit. Let ∆x = (∆x1, · · · , ∆xn), ∆y = (∆y1, · · · , ∆yn). then ∆xi, ∆yi ∈ {∗, 0, 1}.
The bits of ∆x (∆y) that take the value of zero or one are defined as predicted bits, whereas
those with a value of ∗ are defined as unpredicted bits.

A truncated difference is equivalent to a set of complete differences. Define

Ω
∆x =

{

∆x = (∆x1, · · · , ∆xn) ∈ Fn
2

∣

∣∆xi = ∆xi if ∆xi ̸= ∗, i ∈ {1, 2, · · · , n}
}

,

Ω
∆y =

{

∆y = (∆y1, · · · , ∆yn) ∈ Fn
2

∣

∣

∣
∆yi = ∆yi if ∆yi ̸= ∗, i ∈ {1, 2, · · · , n}

}

,

then truncated differences ∆x and ∆y are equivalent to Ω
∆x and Ω

∆y, respectively. If a

complete input difference ∆x is in Ω
∆x, that is, ∆xj = ∆xj for all j ∈ {1, · · · , n} such that

∆xj ̸= ∗, we say that ∆x matches the truncated difference ∆x, and this case is denoted as

∆x∼∆x. Similarly, ∆y∼∆y implies that ∆y matches the truncated difference ∆y.
Conditional probability

Pr
x←Fn

2

[∆x
Encr

k→ ∆y] = Pr
x←Fn

2

[Encr
k(x⊕ ∆x)⊕ Encr

k(x) ∼ ∆y|∆x ∼ ∆x]

= Pr
x←Fn

2

[Encr
k(x⊕ ∆x)⊕ Encr

k(x) ∈ Ω
∆y|∆x ∈ Ω

∆x]

is defined as the probability of (∆x, ∆y). If p is equal to the probability of (∆x, ∆y), we call
(∆x, ∆y) a p-probability truncated differential of Encr

k.
Let Enct (1 < t < r) be a reduced cipher of Encr. In a truncated differential attack, the

adversaries first search for a truncated differential of Enct that has a high probability and
then use this truncated differential, denoted as (∆x, ∆y), to recover the subkeys involved in
the last r− t rounds. In detail, the adversaries fix the plaintext difference ∆x and then use
2M pairs of plaintexts, whose differences match ∆x, to make encryption queries and obtain
2M pairs of corresponding ciphertexts. Subsequently, for each possible candidate subkey
of the last r− t rounds, the adversaries use it to decrypt r− t rounds to obtain M output
differences of Enct

k, in the meantime calculate the amount of the differences that match ∆y.
Finally, the right subkey is the subkey having the maximum count.

The amount of plaintext pairs required in such a counting scheme and the success
probability of obtaining the right key are determined by the ratio of signal to noise [49],
and its definition is

S/N =
L× p

α× λ
,

where L denotes the total amount of possible subkeys involved in the last r − t rounds,
p denotes the probability of (∆x, ∆y), α denotes the average count that every plaintext
pair contributes and λ denotes the proportion of pairs not discarded in the preprocessing
procedure. We do not consider any pre-discarding processes, therefore we set λ = 1. A
truncated differential attack succeeds only when S/N > 1. Thus, the adversaries should
use a truncated differential that makes the ratio of signal to noise greater than one. The
greater S/N is, the easier it is to single out the right subkey.

In the following, we propose a quantum algorithm used for finding truncated differ-
entials. In a classical truncated differential attack, because the adversaries do not know
the value of k of the reduced cipher Enct

k, they must find a truncated differential whose
probability is high regardless of the value of the key k. Therefore, our quantum algorithm is
designed to search for truncated differentials that have high probability for a large propor-
tion of keys in Fm

2 . Specifically, by choosing a polynomial τ(n), the adversaries can force
our quantum algorithm to output truncated differentials that have a high probability for
more than (1− 1

τ(n)
) proportion of keys in Fm

2 . We present the algorithm and analyze its

effectiveness and complexity.

Symmetry 2024, 16, 1124 9 of 27

3.1. Finding Truncated Differentials via BV Algorithm

Given a reduced block cipher Enct
k, let Enct

k(x) = (Enct
k[1](x), · · · , Enct

k[n](x)). That
is, Enct

k[j] denotes the j-th component function of Enct
k. An intuitive method for finding

high-probability truncated differentials is to implement Algorithm 1 on every Enct
k[j]. If

Algorithm 1 finds differentials of several component functions that all have high probability
and have a common input difference, then we can derive a truncated differential of Enct

k
that has high probability. However, running Algorithm 1 on Enct

k[j] requires quantum
queries of Enct

k. It is impossible to achieve this even under Q2 model because Enct
k is a

reduced cipher instead of the complete cipher Encr
k. In the original differential attack, the

adversaries are also not able to query the reduced version. They thus analyzed the detailed
constructions of the cipher and searched for truncated differentials whose probabilities
were high regardless of the value the key took. Inspired by this idea, we consider searching
for the truncated differentials with a high probability for most keys.

Since all constructions of the cipher Enct
k, except for the private key k, are public,

the function

Enct : {0, 1}n × {0, 1}m −→ {0, 1}n

(x , k) −→ Enct
k(x)

take the key as the input and is known and determined to the adversaries. Thus, the
adversaries have access to the quantum circuit of the unitary operator

UEnct : |x⟩|k⟩|y⟩ → |x⟩|k⟩|y⊕ Enct(x, k)⟩ = |x⟩|k⟩|y⊕ Enct
k(x)⟩.

Let |Enct|Q be the amount of quantum universal gates in this circuit. The adversaries also
have the quantum circuit of every component function

Enct[j] : {0, 1}n × {0, 1}m −→ {0, 1}n

(x , k) −→ Enct
k[j](x).

The corresponding amount of gates is |Enct[j]|Q (j = 1, · · · , n). The adversaries have the
quantum circuits of Enct[j]’s. Therefore, they can run Algorithm 1 on Enct[j]’s without
quantum queries. The adversaries can run Algorithm 1 to obtain the differentials of high
probability of every Enct[j], then by taking a common input difference of part component
functions as the input difference, they can obtain a truncated differential having high prob-
ability. According to this idea, we propose Algorithm 2 for finding truncated differentials
of block ciphers.

The flowchart of Algorithm 2 is presented in Figure 5. Steps 1–18 of Algorithm 2 are
used to determine the high-probability differentials of Enct[j] for every j = 1, · · · , n. The
purpose of steps 19–26 is to choose a difference which is a common input difference of
as many Enct[j] as possible. Algorithm 2 outputs a truncated differential (a, b) of Enct.
The symbol “∗” in b means that the corresponding bits are unpredicted. In a quantum
truncated differential attack, the adversaries first choose a polynomial τ(n) and a constant
σ (0 < σ < 1), then implement Algorithm 2 to get an output (a, b). According to Theorem
3 which is proven in Section 3.2, the differential probability of (a, b) is greater than σ for
more than (1− 1

τ(n)
) proportion of keys in Fm

2 with an overwhelming probability.

Symmetry 2024, 16, 1124 10 of 27

Algorithm 2 Quantum algorithm for finding high-probability truncated differentials

Input : The quantum circuit of Enct, a polynomial τ(n) and a constant σ (0 < σ < 1)
chosen by the adversaries.

Output: a high-probability truncated differential of Enct.

1: Let q(n) = 1
2(1−σ)2 τ(n)2n3;

2: Define a set W := Φ;
3: for j = 1, 2, · · · , n do
4: for l = 1, · · · , q(n) do
5: Apply BV algorithm to Enct[j] to get an output u = (u1, · · · , un, un+1, · · · , un+m);
6: Let W = W ∪ {(u1, · · · , un)};
7: end for
8: Solve the linear equation {x · u = ij|u ∈ W} by Gaussian elimination method,

obtaining the solution sets Z
ij

j for ij = 0, 1, respectively;

9: Compute the set Zj = Z0
j ∪ Z1

j ;

10: Let Zj = Φ;

11: for a ∈ Z0
j do

12: Let Zj = Zj ∪ {(a, 0)};
13: end for
14: for a ∈ Z1

j do

15: Let Zj = Zj ∪ {(a, 1)};
16: end for
17: Let W = Φ;
18: end for
19: for d = n, n− 1 · · · , 1 do
20: if S/N = 2dσ > 1 then
21: if there are d different subscripts j1, · · · , jd s.t. Zj1 ∩ · · · ∩ Zjd ⊋ {⃗0} then
22: Choose at random a vector a ∈ Zj1 ∩ · · · ∩ Zjd , and for j = 1, · · · , n, let

bj =

{

ij, j ∈ {j1, · · · , jd}
∗, j /∈ {j1, · · · , jd},

where ij denotes the bit appended to a in the set Zj, i.e., (a, ij) ∈ Zj;

23: Let b = (b1, · · · , bn) and return (a, b);
24: end if
25: end if
26: end for
27: Return “No”;

To implement steps 21-22, the adversaries traverse the variables j1, j2, · · · , jd in se-
quence. For j1 = 1, 2, · · · , n− d+ 1, j2 = j1, j1 + 1, · · · , n− d+ 2, · · · , jd = jd−1, jd−1 + 1, · · · ,
n, Algorithm 2 needs to compute the intersection of the sets Zj1 , Zj2 , · · · , Zjd . If the inter-
section contains nonzero vectors, Algorithm 2 randomly chooses a nonzero vector and
outputs it.

In order to demonstrate the feasibility of the output truncated differential (a, b), it
is necessary to compute the ratio of signal to noise S/N. To this end, we first calculate
the parameter α, which is equal to the average count that every plaintext pair contributes.
There are d bits of the difference b predicted, therefore a total of 2n−d output differences
matching the truncated difference b. In the counting process, the ciphertexts of a fixed pair
of plaintexts are decrypted using L candidate subkeys. The resulting L output differences
can be viewed as random vectors. Therefore, every plaintext pair contributes

α =
2n−d

2n
× L =

L

2d

Symmetry 2024, 16, 1124 11 of 27

counts on average. Then

N/S ≥ L× σ
L
2d × 1

= 2dσ > 1.

This value is greater than one because of the condition 2dσ > 1 in the step 14 of Algorithm 2.
After obtaining the output (a, b), the adversaries can utilize it to find the right subkey
involved in the last r− t rounds, similar to the traditional truncated differential attack. This
attack should work for at least (1− 1

τ(n)
) proportion of keys in Fm

2 . Even if “No” is output,

the adversaries can adjust the polynomial τ(n) and σ to increase the success probability.

Figure 5. The flowchart of Algorithm 2.

3.2. Analysis of Algorithm 2

We analyze the correctness and efficiency of Algorithm 2. Theorem 3 indicates the
correctness of Algorithm 2.

Theorem 3. Suppose Algorithm 2 outputs (a, b), then with an overwhelming probability, there is a
subset S ⊆ Fm

2 satisfying that |S|/|Fm
2 | > 1− 1

τ(n)
, and for every key k ∈ S,

|{x ∈ Fn
2 |Enct

k(x⊕ a) + Enct
k(x) ∼ b}|

2n
> σ.

That is, the differential probability of (a, b) is greater than σ for more than (1− 1
τ(n)

) proportion of

keys in Fm
2 .

Proof. b has d predicted bits, whose subscripts are j1, · · · , jd. Appending m zeros after the
vector a gives an (n + m)-bit vector (a∥0, · · · , 0). Since a · (u1, · · · , un) = 0, it holds that

(a∥0, · · · , 0) · (u1, · · · , un, un+1, · · · , un+m) = 0.

The (n + m)-bit vector (a∥0, · · · , 0) can be viewed as the output of Algorithm 2 when it is
applied to Enct[j] for all j ∈ {j1, j2, · · · , jd}. From Theorem 1, the probability that

|{z ∈ Fn+m
2 |Enct[j](z⊕ (a∥0, · · · , 0))⊕ Enct[j](z) = bj)}|

2n+m
> 1− ϵ, ∀j ∈ {j1, j2, · · · , jd}

Symmetry 2024, 16, 1124 12 of 27

holds is greater than (1− e−2q(n)ϵ2
)d. If the above inequality holds, then the number of z

that satisfies
Enct[j]

(

z⊕ (a∥0, · · · , 0)
)

⊕ Enct[j](z) = bj (3)

for both j = j1 and j = j2 is greater than 2n+m[2(1− ϵ)− 1] = 2n+m(1− 2ϵ). Likewise,
the number of z satisfying Equation (3) for all j = j1, j2, j3 is greater than 2n+m(1− 3ϵ). By
induction, the number of z that satisfies Equation (3) for all j ∈ {j1, j2, · · · , jd} is more than
2n+m(1− dϵ). Therefore, the probability that

|{z ∈ Fn+m
2 |Enct(z⊕ (a∥0, · · · , 0))⊕ Enct(z) ∼ b)}|

2n+m
> 1− dϵ.

holds is greater than (1− e−2q(n)ϵ2
)d, which is equivalent to

|{(x, k) ∈ Fn
2 × Fm

2 |Enct
k(x⊕ a)⊕ Enct

k(x) ∼ b}|
2n+m

> 1− dϵ. (4)

Let

Z(k) =
|{x ∈ Fn

2 |Enct
k(x⊕ a) + Enct

k(x) ∼ b}|
2n

.

Equation (4) indicates that Ek[Z(k)] > 1− dϵ. Here Ek[Z(k)] is the statistical expectation of
Z(k) and the variable k follows the uniform distribution of Fm

2 . Therefore, when Equation (4)
holds, we have

Pr
k

[

Z(k) > 1− τ(n)dϵ
]

> 1− 1

τ(n)

for any polynomial τ(n). This is because, if not, then Prk←Fm
2
[1− Z(k) ≥ τ(n)dϵ] ≥ 1

τ(n)
,

which means

Ek[Z(k)]

=1−Ek[1− Z(k)]

≤1− 1

τ(n)
· τ(n)dϵ

=1− dϵ.

This leads to a contradiction. Thus, as long as Equation (4) holds, the proportion of the
keys satisfying Z(k) > 1− τ(n)dϵ in Fm

2 must be greater than (1− 1
τ(n)

). Let S be a set of

all such keys. We have |S|/|Fm
2 | > 1− 1

τ(n)
, and for every k ∈ S,

Z(k) =
|{x ∈ Fn

2 |Enct
k(x⊕ a) + Enct

k(x) ∼ b}|
2n

> 1− τ(n)dϵ.

Let ϵ = 1−σ
τ(n)d

. Since q(n) = 1
2(1−σ)2 τ(n)2n3, the probability that Equation (4) holds is larger

than 1− ne−n. Therefore, with an overwhelming probability, there is a subset S ⊆ Fm
2

satisfying that |S|/|Fm
2 | > 1− 1

τ(n)
, and for every k ∈ S,

|{x ∈ Fn
2 |Enct

k(x⊕ a) + Enct
k(x) ∼ b}|

2n
> 1− τ(n)dϵ = σ,

which means that the differential probability of (a, b) is greater than σ for more than
(1− 1

τ(n)
) proportion of keys in Fm

2

When implementing a truncated differential attack, the adversaries first choose a
polynomial τ(n) and a parameter σ, then run Algorithm 2 to get (a, b). The polynomial
τ(n) is used to characterize the expected proportion of keys under which (a, b) has high
probability. The parameter σ is used characterize the expected differential probability. Ac-

Symmetry 2024, 16, 1124 13 of 27

cording to Theorem 3, with an overwhelming probability, for at least (1− 1
τ(n)

) proportion

of keys in Fm
2 the probability of (a, b) is greater than σ. Then the adversaries can use (a, b)

to determine the subkey of the last r− t rounds as in a traditional truncated differential
attack. This attack works for at least the (1− 1

τ(n)
) proportion of keys in Fm

2 . The amount

of plaintext pairs required in the counting process is determined by the value of S/N.
Based on experimental observations, about 20 to 40 appearances of right plaintext pairs are
enough [49]. Therefore, about 40

σ plaintext pairs are sufficient.
For analyzing the complexity, we first calculate the amounts of universal gates and

qubits required and then estimate the complexity of the classical computing involved.
In Algorithm 2, BV algorithm is performed on each Enct[j] for q(n) times (j ∈ {1, 2, · · · ,

n}). Every call requires the execution of 2(m + n) + 1 Hadamard gates and one quantum
circuit of Enct[j]. Thus, each call requires 2(m + n) + 1 + |Enct[j]|Q quantum universal
gates. The total number of Hadamard gates required for Algorithm 2 is

q(n)
n

∑
j=1

[

2(m + n) + 1
]

=q(n)
[

(2m + 1)n + 2n2
]

=
1

2(1− σ)2
τ(n)2n4(2n + 2m + 1).

Since it holds that

q(n)
n

∑
j=1

|Enct[j]|Q

=q(n)|Enct|Q

=
1

2(1− σ)2
τ(n)2n3|Enct|Q,

the total number of times Algorithm 2 needs to execute the quantum circuit of Enct is
1

2(1−σ)2 τ(n)2n3. In summary, Algorithm 2 requires

1

2(1− σ)2
τ(n)2n3[2n2 + (2m + 1)n + |Enct|Q] (5)

universal gates in total. This number is a polynomial of n and m.
Classical computing part is to solve the linear system {x · u = ij|u ∈ W} for each

j = 1, 2, · · · , n and ij = 0, 1. The adversaries need to solve a total of 2n systems, and every
system has q(n) equations and n unknowns. Therefore, the classical complexity of this
part is O(2q(n)n3) = O(1

(1−σ)2 τ(n)2n6). Applying BV algorithm to every Enct[j] requires

m + n + 1 qubits. Thus, Algorithm 2 requires

q(n)(n + m + 1) =
1

2(1− σ)2
τ(n)2n3(n + m + 1) (6)

qubits in total.
The parameters involved in Algorithm 2 include the constant σ, polynomial τ(n),

blocksize n and key length m. For the convenience of parameter analysis, we list the
quantum resources required for Algorithm 2 in Table 2, then analyze the influence of these
parameters on the complexity of Algorithm 2.

Symmetry 2024, 16, 1124 14 of 27

Table 2. Quantum resources required for Algorithm 2.

Hadamard Gate Quantum Execution of Enc
t Qubit

1
2(1−σ)2 τ(n)2n4(2m + 2n + 1) 1

2(1−σ)2 τ(n)2n3 1
2(1−σ)2 τ(n)2n3(m + n + 1)

The parameter σ is chosen by the adversary and satisfies 0 < σ ≤ 1. σ is the lower
bound of the probability of truncated differentials desired by the adversary. Since truncated
differentials have at least one predicted bit, the probability of any truncated differential
of a random permutation is no more than 1

2 . Taking σ = 1
2 is sufficient to ensure that

the truncated differential output by Algorithm 2 is an effective differential. When more
than one bit is predicted, the value of σ can take a smaller value. Therefore, the coefficient

1
2(1−σ)2 in Table 2 usually can be seen as a small constant.

The parameter τ(n) is a polynomial chosen by the adversary. It characterizes the
expected proportion of keys under which the output differential has high probability. The
larger the value of τ(n), the more keys are feasible for the attack, but at the same time,
the complexity also increases. The adversary can choose τ(n) based on the expected key
proportion and acceptable complexity. Especially, τ(n) can be chosen as a constant t0, then
the number of Hadamard gates is O(n5). The number of times Enct needs to be executed
quantumly is O(n3) and the number of qubits is O(n4). Here we omit m because usually
m = O(n).

The values of parameters n, m depend on which block cipher is attacked. For common
non-lightweight block ciphers, the value of the blocksize n is generally between 128 and 256,
the value of the key length m is generally between 128 and 256. For common lightweight
block ciphers, the value of the blocksize n is generally between 32 and 128, the value of
the key length m is generally between 64 and 256. We take σ = 1

2 , τ(n) = 2 as an example
and list the values of these parameters of several block ciphers and the corresponding
complexity of Algorithm 2 in Table 3.

Table 3. Quantum complexity of Algorithm 2 on specific block ciphers 1.

Block Cipher n m Hadamard Gate Quantum Execution of Enc
t Qubit

LBlock 64 80 235.2 221.0 228.2

PRESENT-80 64 80 235.2 221.0 228.2

SPECK32/64 32 64 230.6 218.0 224.6

Simon-32/64 32 64 230.6 218.0 224.6

1 Complexity is calculated by taking σ = 1
2 and τ(n) = 2.

At present, the largest quantum chip is released by IBM, supporting over 1000-plus
qubits [60]. IBM quantum platform supports the quantum circuits of 100-plus qubits.
According to Table 3, it is unfeasible to completely implement or simulate Algorithm 2 on a
block cipher.

3.3. Simulation

In this subsection, we simulate Algorithm 2 acting on a simple Boolean function. This
demonstrates the practicality and correctness of Algorithm 2. Specifically, we choose a
Boolean function F : F4

2 → F4
2, whose truth table in presented in Table 4. Let F = (F1, F2, F3, F4).

To simulate Algorithm 2 with Qiskit, we need to construct the quantum circuit of each
component function Fi (i = 1, 2, 3, 4), then apply BV algorithm on each Fi to find high-
probability differentials of Fi. Using LIGHTER-R tool or manual deduction it is easy to
obtain the construction of quantum circuits of all component functions F′i s. The code of the
simulation is presented on GitHub [61].

After constructing the quantum circuit of F1 on Qiskit, we use the draw method to
generate the quantum circuit diagram of BV algorithm acted on F1. The circuit diagram is

Symmetry 2024, 16, 1124 15 of 27

shown in Figure 6. The symbol M denotes the measurement on the computational basis
states. We add a dotted box to mark the part of quantum circuit implementing F1.

Figure 6. Quantum circuit diagram of BV algorithm acted on F1 generated by Qiskit.

Table 4. Truth table of F.

x1 x2 x3 x4 F x1 x2 x3 x4 F

0 0 0 0 0000 1 0 0 0 1001

0 0 0 1 0010 1 0 0 1 1111

0 0 1 0 0110 1 0 1 0 1111

0 0 1 1 1101 1 0 1 1 0000

0 1 0 0 1111 1 1 0 0 0111

0 1 0 1 1101 1 1 0 1 0001

0 1 1 0 1000 1 1 1 0 0000

0 1 1 1 0011 1 1 1 1 1111

The measurement results simulated by Qiskit are shown in Figure 7. They only take
four values: 1100, 1110, 1101 and 1111. Then solving the equation















(1100) · x = 0
(1110) · x = 0
(1101) · x = 0
(1111) · x = 0

gives a fundamental solution system: {(1100)}. The solution set of the above equation is
Z0

1 = {(1100), (0000)}. The solution set of the equation















(1100) · x = 1
(1110) · x = 1
(1101) · x = 1
(1111) · x = 1

is Z1
1 = {(1000), (0100)}. According to step 9 of Algorithm 2, we let Z1 = Z0

1 ∪ Z1
1 =

{(1100), (0000), (1000), (0100)}.

Symmetry 2024, 16, 1124 16 of 27

Figure 7. Measurement results on F1 simulated by Qiskit.

By employing a similar method, we construct the quantum circuit of F2 on Qiskit and
use the draw method to generate the quantum circuit diagram of BV algorithm acted on F2.
The circuit diagram is shown in Figure 8. We add a dotted box to mark the part of quantum
circuit implementing F2.

The measurement results simulated by Qiskit are shown in Figure 9. They only take
four values: 0110, 1110, 0111 and 1111. Solving the equation















(0110) · x = 0
(1110) · x = 0
(0111) · x = 0
(1111) · x = 0

gives a fundamental solution system: {(0110)}. The solution set of the above equation is
Z0

2 = {(0110), (0000)}. The solution set of the equation















(0110) · x = 1
(1110) · x = 1
(0111) · x = 1
(1111) · x = 1

is Z1
2 = {(0100), (0010)}. According to step 9 of Algorithm 2, we let Z2 = Z0

2 ∪ Z1
2 =

{(0110), (0000), (0100), (0010)}.

Figure 8. Quantum circuit diagram of BV algorithm acted on F2 generated by Qiskit.

Symmetry 2024, 16, 1124 17 of 27

Figure 9. Measurement results on F2 simulated by Qiskit.

Similarly, we construct the quantum circuit of F3 on Qiskit and use the draw method
to generate the quantum circuit diagram of BV algorithm acted on F3. The circuit dia-
gram is shown in Figure 10. We add a dotted box to mark the part of quantum circuit
implementing F3.

Figure 10. Quantum circuit diagram of BV algorithm acted on F3 generated by Qiskit.

The measurement results simulated by Qiskit are shown in Figure 11. They only take
one value: 0111. Solving the equation (0111) · x = 0 gives a fundamental solution system:
{(1000), (0101), (0011)}. The solution set of this equation is Z0

3 = {(0000), (1000), (0101),
(0011), (1101), (0110), (1011), (1110)}. The solution set of the equation (0111) · x = 1 is
Z1

3 = {(0001), (1001), (0100), (0010), (1100), (0111), (1010), (1111)}. According to step 9 of
Algorithm 2, we let

Z3 = Z0
3 ∪ Z1

3 = {(0000), (1000), (0101), (0011), (1101), (0110), (1011), (1110), (0001),

(1001), (0100), (0010), (1100), (0111), (1010), (1111)}.

Figure 11. Measurement results on F3 simulated by Qiskit.

Symmetry 2024, 16, 1124 18 of 27

Then we construct the quantum circuit of F4 on Qiskit and use the draw method
to generate the quantum circuit diagram of BV algorithm acted on F4. The circuit dia-
gram is shown in Figure 12. We add a dotted box to mark the part of quantum circuit
implementing F4.

Figure 12. Quantum circuit diagram of BV algorithm acted on F4 generated by Qiskit.

The measurement results simulated by Qiskit are shown in Figure 13. All vectors in
F4

2 appear in the measurement results. The system of linear equations {u · x = 0|u ∈ F4
2}

has only one solution Z0
4 = {(0000)}. The solution set of the system of linear equations

{u · x = 1|u ∈ F4
2} is the empty set, that is, Z1

4 = Φ. According to step 9 of Algorithm 2, we
let Z4 = Z0

4 ∪ Z1
4 = {(0000)}

Figure 13. Measurement results on F4 simulated by Qiskit.

Since Z1 ∩ Z2 ∩ Z3 ∩ Z4 = {(0000)}, Z1 ∩ Z2 ∩ Z3 = {(0000), (0100)} and (0100) ∈
Z1

1 ∩ Z1
2 ∩ Z1

3 , Algorithm 2 chooses a = (0100) and let b = (111∗), then output (a, b). It
is easy to verify that F(x ⊕ (0100)) ⊕ F(x)∼b holds for all x ∈ F4

2. The probability of
the truncated differential (a, b) is one. This indicates that Algorithm 2 can indeed find
high-probability truncated differentials.

4. Quantum Boomerang Attack

4.1. Quantum Algorithm for Finding Boomerang Distinguisher

Since its proposal in 1999, the boomerang attack [52] has been widely used as a crypt-
analysis method. The principle of boomerang cryptanalysis is to connect two differential
paths having a high probability such that the adversaries can attack more rounds. This
attack was proposed because, when constructing the differential characteristics of block
ciphers, the probability of the differential rapidly decreases as the round number increases.
It works in cases where it is difficult to find a (t1 + t2)-round differential characteristic
of some block ciphers that has high probability, while it is possible to find t1-round and
t2-round differential characteristics having high probability.

Suppose Encr
k(x) = Enct2

k ◦ Enc
t1
k (x), where t1 + t2 = r, Enc

t1
k has a p1-probability

truncated differential (∆x, ∆y) and the inverse function Enct2
k

−1
of Enct2

k has a p2-probability

truncated differential (∇x,∇y). As shown in Figure 14, P, P′, Q, Q′ are four plaintexts and

Symmetry 2024, 16, 1124 19 of 27

the corresponding ciphertexts under Encr
k are C, C′, D, D′, respectively. P, P′ are said to

satisfy the differential (∆x, ∆y) of Enc
t1
k , if P⊕ P′∼∆x and Enc

t1
k (P)⊕ Enc

t1
k (P′)∼∆y. If

both P, P′ and Q, Q′ satisfy the differential (∆x, ∆y) of Enc
t1
k , and both C, D and C′, D′

satisfy the differential (∇x,∇y) of Enct2
k

−1
, then (P, P′, Q, Q′) is called a right quadruple.

Such two differentials are called a boomerang distinguisher of Encr
k. Quadruples can be

generated via the following method:

1. Choose two plaintexts (P, P′) satisfying P ⊕ P∼∆x and denote the corresponding
ciphertexts as (C, C′).

2. Compute D = C ⊕∇y and D′ = C′ ⊕∇y, and decrypt D, D′ to obtain the corre-
sponding plaintexts Q, Q′.

3. Test whether it holds that Q⊕Q′∼∆x.

Figure 14. Boomerang attack.

The probability that (P, P′) satisfies differential (∆x, ∆y) is p1. The probability of
(C, D) satisfying the differential (∇x,∇y) is p2. The probability of (C′, D′) satisfying
the differential (∇x,∇y) is also p2. Under these three conditions, it naturally holds that

Enc
t1
k (Q)⊕ Enc

t1
k (Q

′)∼∆y, so that the probability of Q⊕ Q′∼∆x is p1. In summary, the
probability of a quadruple generated by the above method being a right quadruple is
(p1 p2)

2. For a random permutation, this probability is 2−d, where d is the number of
determined bits of ∆x. If (p1 p2)

2 > 2−d, then the block cipher can be distinguished from a
random permutation through data analysis. A boomerang distinguisher can be used to
search for the subkey involved in the last several rounds of the attacked block cipher.

The key to a boomerang attack is to find the boomerang distinguisher, namely, a

t1-round truncated differential of Enc
t1
k and a t2-round truncated differential of Enct2

k

−1

that have a high probability. Thus, the essence of boomerang attack is to find two trun-
cated differentials that have a high probability, which can be achieved using Algorithm 2.
According to these analysis, we propose Algorithm 3 for finding boomerang distinguishers.

Steps 4–22 of Algorithm 3 are used to find a truncated differential (a, b) of Enct1 . The
probability of (a, b) is larger than σ for at least 1− 1/τ(n) proportion of keys in Fm

2 . Steps

26–43 are used to find a truncated differential (α, β) of Enct2
−1

. The probability of (α, β)
is also larger than σ for at least 1− 1/τ(n) proportion of keys in Fm

2 . Steps 23–25 are to
determine whether the truncated differential of Enct1 has been found. If η = 0, no satisfied
truncated differential of Enct1 is found, then break out of the current loop and try the next
t1. If (a, b) and (α, β) are successfully found, these two differentials form a boomerang

Symmetry 2024, 16, 1124 20 of 27

distinguisher {(a, b), (α, β)} of Encr
k. The probability of the corresponding quadruple is

σ4 for more than 1− 2/τ(n) proportion of keys in Fm
2 . The flowchart of Algorithm 3 is

presented in Figure 15.

Algorithm 3 Quantum algorithm for finding boomerang distinguishers.

Input : The quantum circuit of Encr, a polynomial τ(n) and a constant σ (0 < σ < 1)
chosen by the adversaries.

Output: a boomerang distinguisher of Encr.

1: Let q(n) = 1
2(1−σ)2 τ(n)2n3;

2: Define a set W := Φ;
3: for t1 = 1, 2, · · · , r− 1 do
4: for j = 1, 2, · · · , n do
5: for l = 1, · · · , q(n) do
6: Apply BV algorithm to Enct1 [j] to get an output u = (u1, · · · , un, · · · , un+m);
7: Let W = W ∪ {(u1, · · · , un)};
8: end for

9: Solve the linear equation {u · x = ij|u ∈W} to get solution sets Z
ij

j for ij = 0, 1;

10: Compute the set Zj = Z0
j ∪ Z1

j ;

11: Compute the set Zj = {(a, ij)|a ∈ Z
ij

j , ij = 0, 1};
12: Let W = Φ;
13: end for
14: Let η = 0;
15: for d = n, n− 1 · · · , 1 do
16: if S/N = 2dσ > 1 then
17: if there are d different subscripts j1, · · · , jd s.t. Zj1 ∩ · · · ∩ Zjd ⊋ {⃗0} then
18: Choose at random a vector a ∈ Zj1 ∩ · · · ∩ Zjd , and for j = 1, · · · , n, let

bj =

{

ij, j ∈ {j1, · · · , jd}
∗, j /∈ {j1, · · · , jd},

where ij denotes the bit appended to a in the set Zj, i.e., (a, ij) ∈ Zj;

19: Let b = (b1, · · · , bn). Let η = 1 and break out of the current loop;
20: end if
21: end if
22: end for
23: if η = 0 then
24: Break out of the current loop;
25: end if
26: for j = 1, 2, · · · , n do
27: for l = 1, · · · , q(n) do

28: Apply BV algorithm to Enct2
−1

[j] to get output u = (u1, · · · , un, · · · , un+m);
29: Let W = W ∪ {(u1, · · · , un)};
30: end for

31: Solve the linear equation {u · x = ij|u ∈W}, to get solution sets V
ij

j for

ij = 0, 1, respectively;

32: Compute the set Vj = V0
j ∪V1

j ;

33: Compute the set V j = {(a, ij)|a ∈ V
ij

j , ij = 0, 1};
34: Let W = Φ;
35: end for

Symmetry 2024, 16, 1124 21 of 27

Algorithm 3 Cont.

36: for d = n, n− 1 · · · , 1 do
37: if S/N = 2dσ > 1 then
38: if there are d different subscripts j1, · · · , jd s.t. Vj1 ∩ · · · ∩Vjd ⊋ {⃗0} then
39: Choose at random a vector α ∈ Vj1 ∩ · · · ∩Vjd , and for j = 1, · · · , n, let

β j =

{

ij, j ∈ {j1, · · · , jd}
∗, j /∈ {j1, · · · , jd},

where ij denotes the bit appended to α in the set V j, i.e., (α, ij) ∈ V j;

40: Let β = (β1, · · · , βn). Output [(a, b), (α, β), t1] and stop;
41: end if
42: end if
43: end for
44: end for
45: Output “No” and stop;

Figure 15. The flowchart of Algorithm 3.

Symmetry 2024, 16, 1124 22 of 27

4.2. Analysis of Algorithm 3

The process of Algorithm 3 is actually to call Algorithm 2 on Enct1 and Enct2
−1

,
respectively, for all t1 = 1, 2,· · · , n and t2 = r− t1. Therefore, the total number of Hadamard
gates required for Algorithm 3 is

r−1

∑
t1=1

1

2(1− σ)2
τ(n)2n3

[

4n2 + (4m + 2)n
]

=
r− 1

(1− σ)2
τ(n)2n4(2n + 2m + 1).

Since it holds that

r−1

∑
t1=1

1

2(1− σ)2
τ(n)2n3(|Enct1 |Q + |Enct2

−1|Q)

=
r−1

∑
t1=1

1

2(1− σ)2
τ(n)2n3(|Enct1 |Q + |Enct2 |Q)

=
r−1

∑
t1=1

1

2(1− σ)2
τ(n)2n3|Encr|Q

=
r− 1

2(1− σ)2
τ(n)2n3|Encr|Q,

the total number of times Algorithm 3 needs to execute the quantum circuit of Encr is
r−1

2(1−σ)2 τ(n)2n3. This number is a polynomial of n and m. In summary, Algorithm 3 requires

r− 1

2(1− σ)2
τ(n)2n3(4n2 + 4mn + 2n + |Encr|Q) (7)

universal gates in total.

Algorithm 3 calls Algorithm 2 on Enct1 and Enct2
−1

, respectively, for all t1 = 1, 2, · · · ,
r− 1 and t2 = r− t1. Thus, Algorithm 3 requires

1

2(1− σ)2
τ(n)2n3(m + n + 1)× 2× (r− 1) =

r− 1

(1− σ)2
τ(n)2n3(m + n + 1) (8)

qubits in total.
The parameters involved in Algorithm 3 include the constant σ, polynomial τ(n),

blocksize n, number of rounds r and key length m. For the convenience of parameter
analysis, we list the numbers of quantum resources required for Algorithm 3 in Table 5,
then analyze the influence of parameters on the complexity of Algorithm 3.

Table 5. Quantum resources required for Algorithm 3.

Hadamard Gate Quantum Execution of Enc
r Qubit

r−1
(1−σ)2 τ(n)2n4(2m + 2n + 1) r−1

2(1−σ)2 τ(n)2n3 r−1
(1−σ)2 τ(n)2n3(m + n + 1)

Similar to Algorithm 2, the parameters σ of Algorithm 3 are chosen by the adversary. σ4

is the lower bound of the probability of boomerang distinguishers desired by the adversary.
Since the probability of any boomerang distinguisher of a random permutation is no more
than 1

24 , taking σ = 1
2 is sufficient to ensure that the boomerang distinguisher output by

Algorithm 3 is an effective distinguisher.
The parameter τ(n) is a polynomial chosen by the adversary. It characterizes the

expected proportion of keys under which the output boomerang distinguisher has high
probability. Specifically, τ(n) can be chosen as a constant t0, then the number of Hadamard

Symmetry 2024, 16, 1124 23 of 27

gates is O(rn5), the number of times Encr needs to be executed quantumly is O(rn3) and
the number of qubits is O(rn4). Here, we omit m because usually m = O(n).

The values of parameters n, r, m depend on which block cipher is attacked. For
common non-lightweight block ciphers, the value of the blocksize n is generally between
128 and 256, the value of the round number r is generally between 10 and 40 and the
value of the key length m is generally between 128 and 256. For common lightweight
block ciphers, the value of the blocksize n is generally between 32 and 128, the value of
the round number r is generally between 32 and 80 and the value of the key length m is
generally between 64 and 256. We take σ = 1

2 , τ(n) = 2 as an example and list the values
of these parameters of several common block ciphers and the corresponding complexity of
Algorithm 3 in Table 6.

Table 6. Quantum complexity of Algorithm 3 on specific block ciphers 1.

Block Cipher n r m Hadamard Gate Quantum Execution of Enc
r Qubit

LBlock 64 32 80 241.1 226.0 234.1

PRESENT-80 64 31 80 241.1 225.9 234.1

SPECK32/64 32 22 64 236.0 222.4 230.0

Simon-32/64 32 32 64 236.5 223.0 230.6

1 Complexity is calculated by taking σ = 1
2 and τ(n) = 2.

Since IBM quantum platform only supports operations of 100-plus qubits, according to
Table 6, it is unfeasible to completely implement or simulate Algorithm 3 on a block cipher.

5. Results

We apply BV algorithm to truncated differential cryptanalysis and boomerang crypt-
analysis and propose two quantum algorithms for finding high-probability truncated
differentials and boomerang distinguishers, respectively.

For truncated differential cryptanalysis, we propose Algorithm 2 for finding truncated
differentials that have high probability. Given the quantum circuit of a block cipher Enct,
Algorithm 2 takes the key as a part of the input and repeats running BV algorithm on each
component function of Enct to find truncated differentials of each Enct[j], then obtains
a truncated differential of Enct by searching for a common input difference of as many
component functions as possible. When executing Algorithm 2, the adversary first chooses
parameters σ and τ(n), Algorithm 2 is then run to obtain a truncated differential. We use
quantum information theory and probability theory to rigorously prove that the probability
of the truncated differential output by Algorithm 2 must be greater than σ for more than
(1− 1

τ(n)
) proportion of keys in Fm

2 . Algorithm 2 can be run by Q1 quantum adversaries

and the complexity is at polynomial level. We take σ = 1
2 as an example and list numbers

of universal gates and qubits of Algorithm 2 under different values of τ(n) in Table 7. The
values in Table 7 are obtained according to Equations (5) and (6).

Table 7. Quantum complexity of Algorithm 2 under σ = 1
2 .

τ(n) Universal Gate Qubit

2 8n3(2n2 + 2mn + n + |Enct|Q) 8n3(n + m + 1)

n/2 1
2 n5(2n2 + 2mn+ n+ |Enct|Q) 1

2 n5(n + m + 1)

n 2n5(2n2 + 2mn + n + |Enct|Q) 2n5(n + m + 1)

For boomerang cryptanalysis, we propose Algorithm 3 for finding boomerang dis-
tinguishers. Given the quantum circuit of a block cipher Encr, Algorithm 3 traverses the
value of t1 from 1 to r− 1 and calls Algorithm 2 to find the truncated differentials of Enct1

Symmetry 2024, 16, 1124 24 of 27

and Enct2 , respectively, where t2 = r − t1. When executing Algorithm 3, the adversary
also needs to choose parameters σ and τ(n), then runs Algorithm 3 to obtain a boomerang
distinguisher of Encr. The probability of generating a right quadruple of this boomerang
distinguisher is greater than σ4 for more than (1− 2

τ(n)
) proportion of keys in Fm

2 . Algo-

rithm 3 can be run by Q1 quantum adversaries and the complexity is at polynomial level.
We take σ = 1

2 as an example, and list number of universal gates and qubits of Algorithm 3
under different values of τ(n) in Table 8. The values in Table 8 are obtained according to
Equations (7) and (8).

Table 8. Quantum complexity of Algorithm 3 under σ = 1
2 .

τ(n) Universal Gate Qubit

2 8(r− 1)n3(4n2 + 4mn + 2n + |Encr|Q) 16(r− 1)n3(n + m + 1)

n/2 1
2 (r− 1)n5(4n2 + 4mn+ 2n+ |Encr|Q) (r− 1)n5(n + m + 1)

n 2(r− 1)n5(4n2 + 4mn + 2n + |Encr|Q) 4(r− 1)n5(n + m + 1)

Both Algorithm 2 and Algorithm 3 can be executed in Q1 model. As shown in
Tables 7 and 8, the quantum complexity of both algorithms are at the polynomial level.
They show the superiority of quantum computing in cryptanalysis.

6. Conclusions

In this study, we further explored the superior computing power of quantum algo-
rithms when applied to the field of cryptanalysis. We used BV algorithm to enhance two
variants of differential cryptanalysis: truncated differential cryptanalysis and boomerang
cryptanalysis. We constructed two quantum algorithms that can find truncated differentials
and boomerang distinguishers of block ciphers. We prove with an overwhelming probabil-
ity, that the truncated differentials or boomerang distinguishers found by our algorithms
have a high probability for the most keys in the key space.

The complexity of our algorithms is at the polynomial level and adversaries can realize
them in Q1 model. Compared to many proposed quantum attack algorithms [14–16,18,19,46]
which demand quantum queries, our algorithms are more practical for realization. Classical
automatic tools for searching truncated differentials with high probability or boomerang
distinguishers were unable to consider all the details of S-boxes when the S-boxes were
not small-scale. For example, in the case of the widely used 8-bit S-boxes, the classical
searching tools can only work for extremely few rounds. In comparison, our algorithms
fully utilize the strengths of quantum computing to compensate for this shortcoming.
Their quantum circuits strictly compute the S-boxes when performing the operator UEnct

and only have polynomial quantum gates. Moreover, classical truncated differential and
boomerang attacks are unable to consider the influence of key scheduling in the attack
model of single-key, but the proposed algorithms incorporate the key scheduling into the
operator UEnct and thus fully consider the impact of the key scheduling. We believe the
study of quantum cryptanalysis is crucial for the design of quantum-secure cryptosystems
in order to prepare for the arrival of quantum computers.

For further research, reducing the quantum complexity of the proposed algorithms is
a meaningful direction. It would also be interesting to explore the possible applications
of quantum algorithms in other cryptanalytic tools such as integral and algebraic attacks.
Quantum key distribution technique uses quantum systems to generate and distribute keys.
The quantum algorithms proposed in this paper are used to attack traditional block ciphers
that encrypt classical information. Investigating a combination of the proposed algorithms
with quantum key distribution technique may be an interesting research direction.

Symmetry 2024, 16, 1124 25 of 27

Author Contributions: Conceptualization, H.X. and L.Y.; Formal analysis, H.X.; Funding acquisi-

tion, H.X.; Investigation, H.X.; Methodology, H.X.; Validation, H.X. and L.Y.; Visualization, H.X.;

Writing—original draft, H.X.; Writing—review and editing, H.X. and L.Y. All authors have read and

agreed to the published version of the manuscript.

Funding: This research was supported by the Beijing Natural Science Foundation (no.4234084) and

Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province (no.ZCL21012).

Data Availability Statement: The original contributions presented in the study are included in the

article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Cirac, J.I.; Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 1995, 74, 4091–4094. [CrossRef] [PubMed]

2. Wendin, G. Quantum information processing with superconducting circuits: A review. Rep. Prog. Phys. 2017, 80, 106001.

[CrossRef]

3. Malinowski, M.; Allcock, D.T.C.; Ballance, C.J. How to wire a 1000-qubit trapped-ion quantum computer. PRX Quantum 2023, 4,

040313. [CrossRef]

4. Jain, S.; Sägesser, T.; Hrmo, P.; Torkzaban, C.; Stadler, M.; Oswald, R.; Axline, C.; Bautista-Salvador, A.; Ospelkaus, C.; Kienzler,

D.; et al. Penning micro-trap for quantum computing. Nature 2024, 627, 510–514. [CrossRef]

5. Leung, P.H.; Landsman, K.A.; Figgatt, C.; Linke, N.M.; Monroe, C.; Brown, K.R. Robust 2-qubit gates in a linear ion crystal using

a frequency-modulated driving force. Phys. Rev. Lett. 2018, 120, 020501. [CrossRef]

6. Bao, Z.; Li, Y.; Wang, Z.; Wang, J.; Yang, J.; Xiong, H.; Song, Y.; Wu, Y.; Zhang, H.; Duan, L. A cryogenic on-chip microwave pulse

generator for large-scale superconducting quantum computing. Nat. Commun. 2024, 15, 5958. [CrossRef] [PubMed]

7. Zhang, Y.; Ge, Y.Q.; Liu, Y. Simulation of Kitaev chain using one-dimensional chain of superconducting qubits and environmental

effects on topological states. J. Appl. Phys. 2024, 136, 064401. [CrossRef]

8. Aumentado, J.; Catelani, G.; Serniak, K. Quasiparticle poisoning in superconducting quantum computers. Phys. Today 2023, 76,

34–39. [CrossRef]

9. Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al.

Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [CrossRef] [PubMed]

10. Edman, B.T. A Hardware-Focused Tour of IBM’s 127-Qubit Eagle Processor. Vanderbilt Undergrad. Res. J. 2024, 14, 21–30.

11. Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134.

12. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.

13. Simon, D.R. On the power of quantum computation. SIAM J. Comput. 1997, 10, 1474–1483. [CrossRef]

14. Kuwakado, H.; Morii, M. Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In Proceedings

of the IEEE International Symposium on Information Theory, Austin, TX, USA, 13–18 June 2010; pp. 2682–2685.

15. Santoli, T.; Schaffner, C. Using Simon’s algorithm to attack symmetric-key cryptographic primitives. Quantum Inf. Comput. 2017,

17, 65–78. [CrossRef]

16. Kaplan, M.; Leurent, G.; Leverrier, A.; Naya-Plasencia, M. Breaking symmetric cryptosystems using quantum period finding. In

Proceedings of the CRYPTO’16: 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2016;

pp. 207–237.

17. Leander, G.; May, A. Grover Meets Simon–Quantumly Attacking the FX-construction. In Proceedings of the ASIACRYPT’17:

23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China,

3–7 December 2017; pp. 161–178.

18. Dong, X.; Wang, X. Quantum key-recovery attack on Feistel structures. Sci. China Inf. Sci. 2018, 10, 240–246. [CrossRef]

19. Dong, X.; Wang, X. Quantum cryptanalysis on some generalized Feistel schemes. Sci. China Inf. Sci. 2019, 62, 22501:1–22501:12.

[CrossRef]

20. Jaques, S.; Naehrig, M.; Roetteler, M.; Virdia, F. Implementing Grover Oracles for Quantum Key Search on AES and LowMC. In

Proceedings of the EUROCRYPT’20: 39th Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Zagreb, Croatia, 10–14 May 2020; pp. 280–310.

21. Zhang, Z.; Wu, W.; Sui, H.; Wang, B. Quantum attacks on type-3 generalized Feistel scheme and unbalanced Feistel scheme with

expanding functions. Chin. J. Electron. 2023, 32, 209–216. [CrossRef]

22. Xiang, Z.; Wang, X.; Yu, B.; Sun, B.; Zhang, S.; Zeng, X.; Shen, X.; Li, N. Links between Quantum Distinguishers Based on Simon’s

Algorithm and Truncated Differentials. IACR Trans. Symmetric Cryptol. 2024, 2024, 296–321. [CrossRef]

23. Bernstein, E.; Vazirani, U. Quantum complexity theory. SIAM J. Comput. 1997, 26, 1411–1473. [CrossRef]

24. Li, H.; Yang, L. Quantum differential cryptanalysis to the block ciphers. In Proceedings of the International Conference on

Applications and Techniques in Information Security, Beijing, China, 4–6 November 2015; pp. 44–51.

http://doi.org/10.1103/PhysRevLett.74.4091
http://www.ncbi.nlm.nih.gov/pubmed/10058410
http://dx.doi.org/10.1088/1361-6633/aa7e1a
http://dx.doi.org/10.1103/PRXQuantum.4.040313
http://dx.doi.org/10.1038/s41586-024-07111-x
http://dx.doi.org/10.1103/PhysRevLett.120.020501
http://dx.doi.org/10.1038/s41467-024-50333-w
http://www.ncbi.nlm.nih.gov/pubmed/39009574
http://dx.doi.org/10.1063/5.0224271
http://dx.doi.org/10.1063/PT.3.5291
http://dx.doi.org/10.1038/s41586-019-1666-5
http://www.ncbi.nlm.nih.gov/pubmed/31645734
http://dx.doi.org/10.1137/S0097539796298637
http://dx.doi.org/10.26421/QIC17.1-2-4
http://dx.doi.org/10.1007/s11432-017-9468-y
http://dx.doi.org/10.1007/s11432-017-9436-7
http://dx.doi.org/10.23919/cje.2021.00.294
http://dx.doi.org/10.46586/tosc.v2024.i2.296-321
http://dx.doi.org/10.1137/S0097539796300921

Symmetry 2024, 16, 1124 26 of 27

25. Xie, H.; Yang, L. Using Bernstein-Vazirani algorithm to attack block ciphers. Des. Codes Cryptogr. 2019, 86, 1161–1182. [CrossRef]

26. Chen, H.; Li, Y.; Abla, P.; Li, Z.; Jiao, L.; Wang, M. Quantum Algorithm for Finding Impossible Differentials and Zero-Correlation

Linear Hulls of Symmetric Ciphers. In Proceedings of the Australasian Conference on Information Security and Privacy, Brisbane,

Australia, 5–7 July 2023; pp. 431–451.

27. Zhou, B.M.; Yuan, Z. Quantum Attacks without Superposition Queries: The Offline Bernstein-Vazirani Meets Grover Algorithm.

In Proceedings of the 2nd International Conference on Computing, Communication, Perception and Quantum Technology,

Xiamen, China, 4–7 August 2023; pp. 68–71.

28. Zhou, Q.; Lu, S.; Zhang, Z.; Sun, J. Quantum differential cryptanalysis. Quantum Inf. Process. 2015, 14, 2101–2109. [CrossRef]

29. Kaplan, M.; Leurent, G.; Leverrier, A.; Naya-Plasencia, M. Quantum differential and linear cryptanalysis. IACR Trans. Symmetric

Cryptol. 2016, 2016, 71–94. [CrossRef]

30. Shi, R.; Xie, H.; Feng, H.; Yuan, F.; Liu, B. Quantum zero correlation linear cryptanalysis. Quantum Inf. Process. 2022, 21, 293.

[CrossRef]

31. Hosoyamada, A.; Sasaki, Y. Finding Hash Collisions with Quantum Computers by Using Differential Trails with Smaller

Probability than Birthday Bound. In Proceedings of the EUROCRYPT’20: 39th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Zagreb, Croatia, 10–14 May 2020; pp. 249–279.

32. Dong, X.; Sun, S.; Shi, D.; Gao, F.; Wang, X.; Hu, L. Quantum Collision Attacks on AES-Like Hashing with Low Quantum Random

Access Memories. In Proceedings of the ASIACRYPT’20: International Conference on the Theory and Application of Cryptology

and Information Security, Daejeon, Republic of Korea, 7–11 November 2020; pp. 727–757.

33. Denisenko, D. Quantum differential cryptanalysis. J. Comput. Virol. Hacking Tech. 2022, 18, 3–10. [CrossRef]

34. Hosoyamada, A. Quantum Speed-Up for Multidimensional (Zero Correlation) Linear Distinguishers. In Proceedings of the

29th International Conference on the Theory and Application of Cryptology and Information Security, Guangzhou, China,

4–8 December 2023; pp. 311–345.

35. Xu, Y.S.; Cai, B.B.; Yuan, Z.; Qin, S.J.; Gao, F.; Wen, Q.Y. Quantum Differential Meet-In-The-Middle Attack and Some Applications

to Lightweight Ciphers. Adv. Quantum Technol. 2024, 2400157. [CrossRef]

36. Roetteler, M.; Steinwandt, R. A note on quantum related-key attacks. Inf. Process. Lett. 2015, 115, 40–44. [CrossRef]

37. Hosoyamada, A.; Aoki, K. On quantum related-key attacks on iterated Even-Mansour ciphers. IEICE Trans. Fundam. Electron.

Commun. Comput. Sci. 2019, 102, 27–34. [CrossRef]

38. Xie, H.; Yang, L. A quantum related-key attack based on the Bernstein-Vazirani algorithm. Quantum Inf. Process. 2020, 19, 240.

[CrossRef]

39. Zhang, P. Quantum Related-Key Attack Based on Simon’s Algorithm and Its Applications. Symmetry 2023, 15, 972. [CrossRef]

40. Wu, H.; Feng, X. Quantum related-key differential cryptanalysis. Quantum Inf. Process. 2024, 23, 269. [CrossRef]

41. Zou, J.; Wei, Z.; Sun, S.; Liu, X.; Wu, W. Quantum circuit implementations of AES with fewer qubits. In Proceedings of the 26th

International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, Republic of Korea,

7–11 December 2020; pp. 697–726.

42. Kanazawa, N.; Egger, D.J.; Ben-Haim, Y.; Zhang, H.; Shanks, W.E.; Aleksandrowicz, G.; Wood, C.J. Qiskit experiments: A python

package to characterize and calibrate quantum computers. J. Open Source Softw. 2023, 8, 5329. [CrossRef]

43. Tudorache, A.G. Graph Generation for Quantum States Using Qiskit and Its Application for Quantum Neural Networks.

Mathematics 2023, 11, 1484. [CrossRef]

44. Khaleel, F.A.; Tawfeeq, S.K. Implementation of a modified noise-free and noisy multistage quantum cryptography protocol using

QISKIT. Quantum Stud. Math. Found. 2024, 1–12. [CrossRef]

45. Dasu, V.A.; Baksi, A.; Sarkar, S.; Chattopadhyay, A. Lighter-r: Optimized reversible circuit implementation for sboxes. In

Proceedings of the 32nd IEEE International System-on-Chip Conference (SOCC), Singapore, 3–6 September 2019; pp. 260–265.

46. Kuwakado, H.; Morii, M. Security on the quantum-type Even-Mansour cipher. In Proceedings of the 2012 International

Symposium on Information Theory and Its Applications, Honolulu, HI, USA, 28–31 October; pp. 312–316.

47. Frixons, P.; Naya-Plasencia, M.; Schrottenloher, A. Quantum boomerang attacks and some applications. In Proceedings of the

28th International Conference on Selected Areas in Cryptography, Virtual Event, 29 September–1 October 2021; pp. 332–352.

48. Zou, H.; Zou, J.; Luo, Y. New results on quantum boomerang attacks. Quantum Inf. Process. 2023, 22, 171. [CrossRef]

49. Biham, E.; Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 1991, 4, 3–72. [CrossRef]

50. Biham, E.; Biryukov, A.; Shamir, A. Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. In Proceedings

of the International Conference on the Theory and Applications of Cryptographic Techniques, Prague, Czech Republic, 2–6 May

1999; pp. 12–23.

51. Knudsen, L.R. Truncated and higher order differentials. In Fast Software Encryption: Second International Workshop Leuven, Belgium,

December 14–16, 1994 Proceedings 2; Springer: Berlin/Heidelberg, Germany, 1994; pp. 196–211.

52. Wagner, D. The boomerang attack. In Fast Software Encryption: 6th International Workshop, FSE’99 Rome, Italy, March 24-26, 1999

Proceedings; Springer: Berlin/Heidelberg, Germany, 1999; pp. 156–170.

53. Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information, 1st ed.; Cambridge University Press: Cambridge,

UK, 2000.

54. Damgård, I.; Funder, J.; Nielsen, J.B.; Salvail, L. Superposition attacks on cryptographic protocols. In Proceedings of the

International Conference on Information Theoretic Security, Cham, Switzerland, 28–30 November 2013; pp. 142–161.

http://dx.doi.org/10.1007/s10623-018-0510-5
http://dx.doi.org/10.1007/s11128-015-0983-3
http://dx.doi.org/10.46586/tosc.v2016.i1.71-94
http://dx.doi.org/10.1007/s11128-022-03642-2
http://dx.doi.org/10.1007/s11416-021-00395-x
http://dx.doi.org/10.1002/qute.202400157
http://dx.doi.org/10.1016/j.ipl.2014.08.009
http://dx.doi.org/10.1587/transfun.E102.A.27
http://dx.doi.org/10.1007/s11128-020-02741-2
http://dx.doi.org/10.3390/sym15050972
http://dx.doi.org/10.1007/s11128-024-04472-0
http://dx.doi.org/10.21105/joss.05329
http://dx.doi.org/10.3390/math11061484
http://dx.doi.org/10.1007/s40509-024-00344-5
http://dx.doi.org/10.1007/s11128-023-03921-6
http://dx.doi.org/10.1007/BF00630563

Symmetry 2024, 16, 1124 27 of 27

55. Boneh, D.; Zhandry, M. Secure signatures and chosen ciphertext security in a quantum computing world. In Proceedings of the

CRYPTO’13: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 2013; pp. 361–379.

56. Gagliardoni, T.; Hlsing, A.; Schaffner, C. Semantic security and indistinguishability in the quantum world. In Proceedings of the

CRYPTO’16: 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2016; pp. 60–89.

57. Li, H.; Yang, L. A quantum algorithm to approximate the linear structures of Boolean functions. Math. Struct. Comput. Sci 2018,

28, 1–13. [CrossRef]

58. Knudsen, L.R.; Berson, T.A. Truncated differentials of SAFER. In Fast Software Encryption: Third International Workshop Cambridge,

UK, February 21–23 1996 Proceedings 3; Springer: Berlin/Heidelberg, Germany, 1996; pp. 15–26.

59. Knudsen, L.R.; Robshaw, M.J. Truncated differentials and Skipjack. In Proceedings of the CRYPTO’99: 19th Annual International

Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 1999; pp. 165–180.

60. Davide, C. IBM releases first-ever 1,000-qubit quantum chip. Nature 2023, 624, 238.

61. Simulation-with-Qiskit. Available online: https://github.com/huiqinxie/Simulation-with-Qiskit (accessed on 22 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1017/S0960129516000013
https://github.com/huiqinxie/Simulation-with-Qiskit

	Introduction
	Preliminaries
	Differential
	Quantum Computing
	Bernstein–Vazirani Algorithm

	Quantum Truncated Differential Attack
	Finding Truncated Differentials via BV Algorithm
	Analysis of Algorithm 2
	Simulation

	Quantum Boomerang Attack
	Quantum Algorithm for Finding Boomerang Distinguisher
	Analysis of Algorithm 3

	Results
	Conclusions
	References

