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The topic of this report is the present state of the 
theory of universal weak interaction. This topic has 
been discussed in about 300 papers that have appeared 
since January 1, 1961, or that have been submitted 
to the conference in the form of preprints. 

It is obviously impossible to speak about these 
papers in one hour. Neither does it appear proper 
to deal with some of them and entirely disregard the 
others. To resolve this dilemma, I have appended 
a detailed bibliography. This will permit me, in this 
report, to confine myself to a consideration of separate 
problems. 

I. W H A T IS A UNIVERSAL INTERACTION? 

A universal interaction is the gravitational interac­
tion, which is the same for all particles. Electro­
magnetic interaction is apparently universal. At any 
rate, the electric charges of all charged particles are 
equal. But already in electrodynamics we encounter 
a deviation from universality in the form of the ano­
malous magnetic moments of baryons. 

Everything that we know about weak interaction 
indicates, without doubt, that it is universal in charac­
ter. The various processes due to this interaction are 
C and P non-invariant, but conserve combined parity. 
All leptons participate in weak interaction as two-
component particles. Various slow processes are 
characterized by comparable—and in a number of 
cases even identical (up to within a good accuracy) — 
constants. 

However, the universality of the weak interaction 
is expressed in a less clear-cut fashion than that of 
electrodynamics. To prove the universality of weak 
interaction, it is necessary to get over the impassable 
swamp of strong interaction. So far, not a single 
theoretician has been able to do this. 

Notwithstanding the fact that this report deals with 
weak interactions, we shall frequently have to speak 

of strongly interacting particles. These particles pose 
not only numerous scientific problems, but also a termi­
nological problem. The point is that " strongly inter­
acting particles " is a very clumsy term which does 
not yield itself to the formation of an adjective. For 
this reason, to take but one instance, decays into 
strongly interacting particles are called non-leptonic. 
This definition is not exact because " non-leptonic " 
may also signify " photonic ". In this report, I shall 
call strongly interacting particles hadrons, and the 
corresponding decays hadronic (the Greek âÔQoç 
signifies " large " massive in contrast to Uméç 
which means " small ", " light ") . I hope that this 
terminology will prove to be convenient. 

When reasoning about the universality of the weak 
interaction, one usually says : " Let us presume that 
the strong interaction is switched off... ". The first 
step in this direction was apparently taken by Gell-
Mann when he postulated that if the strong interaction 
is " switched off the electromagnetic interaction of 
the particles will be completely described by their 
charges (principle of minimal electromagnetic inter­
action). 

Since that time, the switching on and off of the 
interactions has become a very common occupation. 
Any theoretician can switch off any strong interaction 
of whatever strength or, at the worst, several undesir­
able mesons, all the while paying no attention whatso­
ever to nature. Nature, naturally, responds in the 
same fashion. It is quite obvious that we all realize 
how unsatisfactory these manipulations are and we 
are convinced that there is in nature a profound 
relationship between all known interactions. How­
ever, as long as this relationship remains unestablished, 
and as long as we are unable to calculate such quan­
tities as the electric charge e or the constant of weak 
interaction G, and introduce them into the theory from 
outside, we shall apparently not be able to dispense with 
" switching on and off " and with minimal principles. 
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It is ordinarily taken for granted that when switching 
off strong interaction, all known hadrons (such as, 
for instance, the n meson or the I hyperon) do not 
cease to exist. However, especially now, when we 
have such a large number of resonances, it is obvious 
that there are no grounds for such a presumption. 

The minimal principle, the formulation of which 
I shall now take up, is based on the assumption that if 
the strong interaction is switched off, then we will 
have only three fields in place of a multiplicity of 
hadrons. These fields may, for instance, be visualized 
as p, n, A — the fundamental particles of the Sakata 
model. The selection of three baryon fields is minimal 
if we require that, having switched on the strong inter­
action, all the quantum numbers describing the 
hadrons are, in principle, obtained. 

The principle of the minimal electromagnetic inter­
action may now be formulated as follows : all electro­
magnetic interactions of hadrons are due to the inter­
action of the proton charge with the photon field. 

Similarly, we can formulate the principle of the 
minimal weak interaction: all weak interactions of 
hadrons are due to the weak interaction of three 
initial fields. 

In accordance with this principle and with the theory 
of universal V-A interaction, we write the Lagrangian 
of weak interaction as 

where the current j is the sum of four currents : electro­
nic j e = eOv, muonic = JLOV, nucleonic j n = nOp 
and strange j A = AOp. The operator O = y a(l-|~y s). 

We shall not at present dwell on the question of the 
possibility of this Lagrangian being non-local. We 
shall simply note that if there exist intermediate vector 
bosons W, the interaction of the currents may be 
represented by the following scheme: 

Fig. 1 

Such weak interaction is universal since it has the 
same constant and is of the same form for different 
particles. 

We have thus formulated the universality of the 
weak interaction. We did it in the old way, in terms 
of the Lagrangian. To do this at the present time 
is almost indecent. However, to speak seriously, it 
has not been proved that the four-fermion Lagrangian 
is indeed hopelessly bad. And so far no one has 
succeeded in formulating the universality of the weak 
interaction differently. (It may be noted that without 
the hypothesis about a universal bare Lagrangian, 
it is even impossible to formulate the problem of 
radiative corrections to the rate of muon decay.) 

The universal theory about which I am speaking 
and which I shall from now on call " minimal model ", 
is in no way connected with the idea that certain 
elementary particles are more fundamental than others. 
As for the fundamental fields in this model they can 
be, not the Sakata particles p, n, A, but three other 
baryonic fields, for instance 3~, 3 ° , A, or three 
fields to which there corresponds no physical baryons: 
an isodoublet A and B and an isosinglet C (provided 
that the charges of B and C are the same). 

All the corollaries of the theory remain in this case 
unaltered. 

It is necessary to stress this because very frequently 
the question of the very existence of fundamental 
fields is confused with the question of which of the 
physical particles are more fundamental. Feynman 
recently postulated a principle according to which 
the latter question can never be answered. I do not 
think that we shall soon find out whether this prin­
ciple is correct, but it is obvious that the minimal 
model does not contradict it. 

But then maybe the minimal model is altogether 
without content? Maybe we would obtain the same 
results if we assumed that there exist not 3 but 5 
fundamental fields, for example, p, /?, £ + , 1° , I ~ . 
It is easy to see that this is not so. If we considered 
all five fields on an equal basis, without imposing, 
ad hoc, additional symmetries and selection rules, we 
would straight away obtain, for instance, such a weak 
current as T*n, for which AQ = —AS and which is 
forbidden in the minimal model. The list of such 
instances can be readily extended. 

To summarize: the minimal model may be verified 
by experiments and rejected if experiments do not 
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corroborate its predictions. Conversely, confirmation 

of all corollaries of the model will indicate the correct­

ness of the formulation of the universality given above. 

The minimal model scheme of the weak interaction 

will serve me as a basis for presenting and discussing 

the variety of papers dealing with the weak interaction 

theory. I shall try not to turn it into a Procrustean 

bed. 

II. LEPTONIC CURRENTS 

Conversion of the pair Jiv into the pair (ye) yields 

(in accordance with the scheme of Fig. 1) the decay 

ji-^e+v+v. But this normal process has long since 

ceased to interest the theoreticians. What they were 

interested in is the question of why the neutrino and 

the antineutrino produced in this process cannot 

annihilate virtually and lead to processes that are 

forbidden by experiment: 

The calculations of such processes, both in the model 

with W-mesons and with the four-fermion interaction 

in higher order approximations, were—on the whole — 

completed as early as in 1960 and were submitted at 

the last Rochester Conference. Subsequent theoret­

ical investigation of these questions did not alter the 

basic conclusion : the absence of neutrinoless \i-e tran­

sitions appears very strange if the electronic and the 

muonic neutrinos are identical. Now the Brook-

haven experiment (Danby et aï) has confirmed this 

conclusion. 

At present, a large number of possible schemes are 

under discussion, in which neutrinoless ji-e transitions 

are forbidden. I believe the most attractive scheme 

is the one proposed in 1959 by Lipmanov. In this 

scheme, e~, v are leptons, while e+, v are 

anti-leptons and neutrinoless \i-e transitions are for­

bidden by conservation of the leptonic charge. In 

this scheme the ordinary decay of a muon occurs 

with the emission of two v's (and not v and v). Ac­

cording to Lipmanov, the neutrino, like the other 

fermions, is a four-component particle. Two of its 

ine attractive ieature 01 mis scneme is its economy: 

a separate muonic charge is not introduced, and use 

is made of all four components of the neutrino wave 

function. 

If the neutrino mass is different from zero, this 

scheme should exhibit a transition of electronic com­

ponents of the neutrino into muonic ones so that 

e.g. the neutrinos produced in the decay 7 r ~ - ^ / i ~ + v 

could give rise to the reaction v-\-n-^e~ -\-p. An­

other example: the decay K+-+n~ +e+ +p+ which 

would be possible in higher order approximations of 

the weak interactions. But due to the small neutrino 

mass (we know that mVe < 200 eV), these effects 

would be exceedingly small. 

Unfortunately, for a massless neutrino one cannot 

contemplate experiments that would be capable of 

distinguishing the Lipmanov scheme from the ordinary 

one in which a muon and muonic neutrino have a 

conserved " muonic charge while the leptonic charge 

+ 1 is possessed by e~, ve9 v M , and both and 

ve are left-polarized. But I think that Lipmanov's 

scheme may be of heuristic value. I hope that, in 

due time, we will know regarding the leptonic charge, 

not only that it is conserved, but also something else, 

something more dynamic; and then the question as 

to which particles are leptons and which are anti-

leptons will in no way be immaterial. 

As early as at the Kiev Conference, Marshak noted 

that the Lipmanov scheme contradicts the Kiev sym­

metry (A<r-*/.r, /?<-»v, n^e~). There are several 

attempts to preserve a sort of lepton-baryon symmetry 

(Nakamura and Sato, Maki, Iso). Iso, particularly, 

attempted to bring this scheme into agreement with 

a symmetry of the form A^p+, n*->e~, p<-*\\ Unfor­

tunately, the current 

1. 

2. 

3. 

4. 

5. 

components (the left-handed ones) enter into the elec­

tronic bracket, and the two right-handed ones in the 

muonic bracket; the leptonic current has the form 

does not satisfy this new symmetry, while the following 

leads to non-conservation of the electric charge. But 

are such simple symmetries between leptons and 

baryons necessary? 
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Let us now take another point of view, according 

to which there is such a conserved quantity as the 

muonic charge, which is equal to + 1 for \i and vM 

and is equal to zero for other particles. In this case 

it is natural to expect that the muonic neutrino will 

possess properties quite unlike those of the electronic 

neutrino. Thus, for example, it can possess mass. 

(The present upper limit for the mass of a muonic 

neutrino is & 3 MeV.) Furthermore, the muonic 

neutrino can possess some kind of anomalous inter­

action. This possibility is particularly probable if it 

turns out that the muon has an anomalous interaction, 

which is absent in the case of the electron. The 

anomalous interaction of the muon could lead to a 

violation of the universality of weak interaction, due 

to the " anomalous " renormalization of the wave 

function of the muon. But universality is practically 

not violated if not only the muon, but also the muonic 

neutrino possess an anomalous interaction. In this 

case, renormalization of the wave functions of the 

muon and neutrino is nearly compensated for by 

renormalization of the vertex part of the weak inter­

action. This result has a simple physical interpret­

ation. In the former case, the muon, having emitted 

a virtual quantum of the " anomalous " field, cannot 

decay because there is no body to absorb this quantum. 

This leads to a reduction in the probability of muon 

decay. In the latter case, decay can occur because the 

" anomalous " quantum can be absorbed by the 

muonic neutrino. 

The limit for the magnitude and radius of the ano­

malous interaction of the muon (which limit follows 

from experiments on g—2, and the scattering of muons 

by nuclei) yields an upper bound for the cross-section 

of the anomalous scattering of a neutrino of energy 

of the order of GeV by a nucléon of roughly 1 0 " 3 1 cm 2 . 

A special experiment performed at Dubna (Vasilevsky 

et al) yielded roughly 1 0 " 3 2 cm 2 for the upper bound 

of this cross-section. As Pontecorvo and Chudakov 

have noted, the data obtained recently by Miyaka 

et ai, studying penetrating radiation at great depths, 

give an upper bound of approximately 1 0 " 3 4 cm 2 

for this cross-section. According to Schwartz, the 

neutrino experiment at Brookhaven gives an upper 

limit for a possible anomalous interaction of neutrinos 

with nucléons of the order of 1 0 " 3 8 cm 2 . So it seems 

that the muonic neutrino does not possess an anoma­

lous interaction with nucléons. This may be a serious 

argument in favour of the absence of an anomalous 

nucleon-muon interaction. It is worthwhile to mention 

that the upper limit for the anomalous (vju) ( ^ - i n t e r ­

action is much weaker now and that the corresponding 

experiments are of great interest. I shall not dwell 

upon other ideas connected with the question of two 

neutrinos, such as the multiplicative muonic quantum 

number (Feinberg and Weinberg), or the neutrino 

flip (Feinberg, Giirsey and Pais), or the hypothesis 

by von Dardel and Ghani that there exist four (or 

even six) different types of neutrinos. 

In addition to the problem of two neutrinos, lep-

tonic currents confront us with at least two other 

extremely important problems. Firstly, the question 

of the existence of neutrino scattering on electron 

(and muon). Secondly, the question of the existence 

of neutral leptonic currents. 

The existence of weak (ve)(ëv) or (v/x)(vju) interac­

tions is a direct consequence of the hypothesis of the 

product of currents. The observation of ve (or v^i) 

scattering (due to this interaction) in laboratory con­

ditions is a problem of extraordinary difficulty. An 

experiment on the production of e+e" or pairs 

in the scattering of energetic neutrinos on the nuclear 

Coulomb field, may prove simpler: 

However, from astrophysical data, it has not been 

possible to find out whether these reactions actually 

occur in stars. 

The scheme of Fig. 1 contains only charged currents. 

However, experiment does not exclude the existence 

of neutral leptonic currents like êe, JIJA, VV. On the 

basis of the experimental evidence 

In stars, the (ve)(ev) interaction could make the neutrino 

radiation of stars become more essential than their 

photon radiation. A large number of processes of 

neutrino radiation in stars have been considered 

theoretically: 

1. 

2. 

3. 

4. 

5. 

6. 
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it may be taken that the interaction of neutral leptonic 
currents with a neutral strange current of the same 
strength as the ordinary weak interaction, is excluded. 
However, their weak interaction with one another 
and with a neutral nucleonic current, if it exists, is 
either masked by the considerably more intense electro­
magnetic interaction, or leads to processes which are 
very difficult to observe: i.e., of the type of weak 
scattering of neutrinos on nuclei. The search for 
neutral leptonic currents is of very great interest. Various 
aspects associated with these currents are mentioned 
in the papers by Bludman, Pontecorvo and King. 

In conclusion, we shall dwell upon the role of the 
neutrino in cosmology. A number of papers are 
devoted to discussions of the possible neutrino fluxes 
in the universe: Pontecorvo and Smorodinsky, 
Zel'dovich and Smorodinsky, Kharitonov, and Wein­
berg. The latter paper, for instance, points to the 
fact that there should be a degenerate neutrino sea 
in the universe. The Fermi energy EF of this sea 
(its depth) differs for different models of the universe. 
However, this sea is so shallow in all cases, that the 
effects due to it (such as distortion of the /? spectrum) 
are very difficult to observe. The foregoing authors 
note that the gravitational action of neutrinos (if their 
fluxes are sufficiently great) could play a significant 
role in the evolution of the universe. 

It is interesting to note that the gravitational field, 
if its interaction with neutrinos conserves parity, should 
generate also right-handed neutrinos and left-handed 
antineutrinos, in addition to left neutrinos and right 
antineutrinos. These anomalous particles will not be 
able to participate in weak interactions and will be 
absolutely " sterile ". It may be noted that if the 
Lipmanov scheme, mentioned above, held, then the 
" anomalous " components would be muonic neutrinos 
and antineutrinos, and, consequently, would not be 
" sterile 

III. IS N U C L E O N I C VECTOR C U R R E N T 
CONSERVED ? 

At the last Rochester Conference, Feynman stressed 
the fact that the constants of vector interaction deter­
mined from O 1 4 decay and ft decay differ by about 1 % 
and that when account is taken of electromagnetic 
corrections, this difference is doubled. This difference 
of constants contradicts the conservation of vector 
current, which in the minimal model is obligatory. 

Our faith in the conservation of vector current has 
now substantially risen mainly due to experimental 
studies viz. the measurement of the decay constants 
n+-+7i0jre+ + v (Dunaitsev et ai; Depommier et ai; 
Larsen et al.) and the measurement of weak magnetism 
(Mayer-Kuckuck) in the decays of N 1 2 and B 1 2 , 
the results of which are in good agreement with theory. 
But in what state is the theoretical analysis of radiative 
corrections to [i decay and of deviations from isotopic 
invariance in the O 1 4 nucleus? It is well known that 
a rigorous calculation of radiative corrections to 
/? decay cannot be carried out consistently in modern 
theory due to the virtual strong interactions and to 
the logarithmic divergence. Nevertheless Feynman 
had argued that the main part of these corrections 
caused by relatively soft virtual photons is quite 
reliable. 

Geshkenbein and Popov and also Berman have 
considered earlier disregarded diagrams in which a 
virtual photon emerges from a four-fermion vertex. 
These diagrams are due to virtual strong interaction, 
and their exact calculation is impossible. The estimates 
depend very strongly upon what is assumed about 
virtual strong interaction. Geshkenbein and Popov 
conclude that the contribution of these diagrams may 
compensate the contribution of the " ordinary " ones. 
Berman's conclusion is that these diagrams are un­
important and that perhaps electromagnetic correc­
tion of virtual W mesons is responsible for the existing 
[i-p discrepancy. 

The isotopic non-invariant corrections in O 1 4 were 
discussed by Blin-Stoyle and Tourneaux. They con­
sider that these corrections can diminish the matrix 
element by roughly 1 % and consequently, can be 
responsible for the above mentioned discrepancy. 
Yesterday I was told by Berman that, according to 
recent calculations of MacDonald and Altman, these 
corrections are smaller by three orders of magnitude. 
It would be very interesting to know what the truth is. 

Spector and Blin-Stoyle, and also Fujita have ana­
lyzed the RaE decay and on this basis they have 
adduced some additional arguments in favour of the 
conservation of vector current. 

I think that we have no serious grounds for doubting 
the conservation of vector current. Nevertheless, it 
would be very good to increase by an order of magni­
tude the accuracy of the measurement for the decay 
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where d(q2) and b(q2) for small q2 are almost constant 

and taking into account that 

and the A + n system has rather large dimensions. 

This permits the determination of glAn in a way similar to 

that in which gaNN is determined for the deuteron. To the 
2 

quantity A œ 70 MeV corresponds « 1.5, which 

471 

in turn gives A « 7. (Let it be recalled that experi­

ment yields / « Such a large magnitude of 4̂ 

gives for the decay rate of I-^A+e+v a value which 

is roughly 0.5% of the probability of hadronic decays. 

Disregarding the relation that this result has to the 

experiment, let us examine more carefully the physics 

behind it. This physics is very strange. Indeed, 

let us consider the imaginary I hyperon for which 

A <| ix. Taking into account that in this limiting 

case glAn&>JA, it is easy to find that A will become 

of the order of unity when A 1 MeV. We thus 

find that a system A+n of very large dimensions has 

a matrix element of the same magnitude as the neutron. 

Since this system can undergo /? decay only when the 

A and the n that form a I hyperon approach each other 

IV. " ALMOST " C O N S E R V E D AXIAL C U R R E N T ? 

In the minimal model, the form of the axial current 

pyj5n is defined uniquely. This current, in conjunc­

tion with virtual strong interactions, yields all the 

known axial matrix elements, such as 

in the decays 7 i -> /+v where <fi is the wave function 

of the n meson and / is the constant to be used in the 

Goldberger-Treiman formula (see below) 

in neutron /? decay or in \i capture. 

in the decays I~^A + e+v. 

At present we are not able to calculate the scalar 

functions of q2 in these matrix elements. Particularly, 

we cannot explain why the quantity a(0) is so close 

to unity. At the 10th Rochester Conference attempts 

to establish a relationship between the above mentioned 

functions were considered in very great detail. Under­

lying these attempts was the hypothesis that axial 

current is " almost " conserved : 

where n means the n meson field. For the matrix 

element Mx, this hypothesis is actually equivalent to 

the presumption that both the quantity B(q2) and the 

divergence qaM* = GD{q2)ûAy5uI must (for small q2) 

be determined by the n meson pole. 

Assuming 

b 
whence A = . If we now take it that 

MS±MA 

B = gIAnf (pole approximation), the following rela­

tion results: 

in which the plus sign corresponds to the same parity 

of I and A (PIA = + 1 ) , and the minus sign to opposite 

(PiA = I n the first case, we have a result similar 

to the well known Goldberger-Treiman formula: 

As we shall now see, the result for the case PIA = — 1 

is very strange and indicates that the initial hypothesis 

concerning the almost conserved axial current is doubt­

ful. The case of PIA = —1 has been considered in 

detail by Bernstein and Oehme. They substituted 

into the expression for A the quantity g1An , which 

is obtained on the basis of the " deuteron " model of 

the Z hyperon. According to this model, most of 

the time the I hyperon exists in the form of A+n, 

which are in the S state. In this case, the binding 

energy of the n meson is not very great 
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In this case A m is very small and the axial constant 

would come out as a number of tremendous magni­

tude. But the entire picture will be distorted here by 

anomalous singularities and it is natural to expect 

that the one-pion pole is negligible in this case. 

The principal argument supporting the hypothesis 

of the almost conserved current is the agreement of 

the Goldberger-Treiman formula with experiment. 

However, it may be that this agreement is accidental. 

I will not give the contents of the other papers devot­

ed to the hypothesis of the almost conserved axial 

current and will pass on to a consideration of the 

strange current. 

V. STRANGE C U R R E N T A N D UNIVERSALITY 

All the recently obtained experimental data either 

confirm the hypothesis that strange current consists 

of two components, V and A, or do not contradict it. 

It is remarkable that all leptonic decays of the hadrons 

with change of strangeness are suppressed by roughly 

an order of magnitude as compared with similar 

decays in which the strangeness is conserved. This 

suppression may be an expression either of the non-

universality of weak interaction (the bare constant 

of the j6 decay of the A hyperon GA is about three to 

When £<U, we get R = 0.65. Several experiments 

give the following limits: 0 . 5 7 ^ / ? ^ 2 . 3 0 , the most 

recent data being R = 0.95±0.15. In this connec­

tion, an accurate (within 5 %) measurement of the mag­

nitude of R is of considerable interest. The muon 

spectrum in Kll3 decay was measured in two experiments. 

The first of them (Dobbs et al) gives £ « —9, the second 

(Brown et al) gives £ & 1. Very important for veri­

fying the magnitude of Ç is an experiment measuring 

the polarization of muons in decay. If £ is small, 

it must be right-handed; if £ is large, left-handed. 

If it turns out that |£|§> 1, then this will mean that 

the leptonic decays of hadrons are not the object where 

at small distances, it follows that the cross-section for 

the reaction A+n-^e+v+A must be very large so as 

to compensate for the small frequency of An colli­

sions. The objection may be raised that for such 

small A an appreciable role will be played by structure 

singularities, not taken into account in these arguments. 

Another limiting case, when M1->MA (A->p), also 

appears strange, for if the quantity gIAn is bounded, 

then A increases indefinitely for A-^p. But physically 

this is absolutely improbable. The foregoing reason­

ing, which is due to Kobzarev, Pomeranchuk and 

myself, shows that the hypothesis of the pole-like 

character of the divergence and the equivalent hypo­

thesis about the almost conserved axial current are 

in no way obvious or even likely. 

Even if the parities of I and A are indeed the same, 

these arguments may be applied to the /? decay of some 

appropriate resonance. Similar reasoning may be 

applied also to transitions between a pair of nuclear 

levels of opposite parity. For example 

four times less than G), or of the renormalization 

effects of strong interaction, or of both together. 

The latter possibility is so depressing that we shall 

not consider it and only dwell on the first two. 

In a large number of papers (Ikeda, Ogawa and 

Miyachi; Cabibbo and Gat to; Gell-Mann; Kobzarev 

and Okun; Shekhter) it was presumed on the basis 

of a unitary symmetry of strong interaction that 

G J G « 1/4 and the renormalization effects are small. 

According to this picture the leptonic decays with 

change of strangeness should be similar to decays in 

which strangeness is conserved up to numerical coeffi­

cients of the type In particular, in the /? decay 

of the A hyperon the matrix element (like the neutron 

matrix element) must be close to the form V-A. 

Exceedingly clear-cut predictions arise also for Kei 

and K decays. Generally speaking, the matrix ele­

ments of these decays are of the form 

where p = kK+kn , q = kK—kn . If the unitary sym­

metry in Ke3 decays is not greatly violated, the matrix 

element of these decays must be similar to the matrix 

element of the decay of 7 i + - > 7 i ° - f £ + v and, conse­

quently, the condition £ =f_/f+ must be fulfilled. 

From experiments on the Ke3 decays of K+ mesons 

(Brown et al) and K°2 mesons (Luers et al.; also see 

an analysis of this experiment in a paper by Valuev) 

it follows that f+(q2) is but weakly dependent on q2. 

Assuming that / + and / _ are constants, it is easy to 

calculate the ratio R of the probabilities of A^3 and 

Ke3 decays: 
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the unitary symmetry of strong interaction is most 

vividly manifested. The large magnitude of £ would 

strike a blow not only at the above-mentioned " uni­

tary " schemes, but also at a variety of other hypo­

theses, such as the almost-conserved strange current 

advanced by Gandelman, and the " polological " 

hypothesis of Bernstein and Weinberg (in this connec­

tion, see a paper by Chew). Neither do the form 

factors considered by Acioli and MacDowell agree 

with |£| > 1. 

In bringing to a close this survey of papers on K C 3 de­

cays, I should like to mention a paper by Brene et al, 

in which very detailed calculations (with numerous 

graphs) are made of the spectra and polarizations of 

particles in these decays; a study by Bolsteri and 

Geffen, and a paper by MacDowell, in which methods 

are proposed for treating experimental spectra and 

angular distributions. These methods can help to 

solve the problem of a possible admixture of S and 

T interactions and to find the dependence of /+ and 

/ _ upon q2. 

If we now return to the problem of the universality 

of weak interactions, it may be thought, apparently, 

that the suppression of leptonic decays of strange 

particles is due to " non unitary " strong interactions 

and does not represent a challenge to the idea of 

universality, at least not in the form in which the latter 

is embodied in the minimal model. 

VI. DOES THE AQ = AS RULE HOLD? 

Crawford has discussed experimental results which 

indicate the existence of decays 

yield in the first order with respect to the weak inter­

action a frequency of transition K°->K°, and conse­

quently also a mass difference Am of the order of 10 7 , 

which contradicts experiment (see Fig. 2). 

Another interesting remark connected with Am is 

given by Ioffe. He pointed out that virtual K°e3 and 

K° 3 transitions would give large Am, if the AQ = AS 

rule is violated, provided the weak interaction of 

virtual leptons has a large cut-off. 

I shall explain this in more detail. Consider a 

diagram of the type shown in Fig. 3. 

where A is the cut-off energy for weak interactions of 

leptons, and M has the same meaning for hadrons. 

If we assume that M is of the order of magnitude 

of the nucléon mass and take the Am from experiment, 

then we get A&M. Another possible solution of this 

problem which Ioffe proposes is that the leptonic 

loop does not contain the quadratic divergence, like 

corresponding loops in quantum electrodynamics. 

(2) A strange current with AQ = — AS does not 

satisfy the condition AT = 1/2. Indeed, from the 

very definition of strangeness (Q = T3+B/2+S/2) it 

follows that iï AQ= -AS =1, then AT3 = 3/2, and 

consequently AT ^: 3/2. Thus, the strange current 

ought to contain components not only with AT = 1/2, 

but also with AT = 3/2. In support of the point that 

the strange current satisfies the AT = 1/2 was the 

fact that, in experiments by Neagu et al and Luers 

et ai, the probabilities of decays K°2-^e++vJ

r%~ and 

K+~>e++v+n° were roughly equal. But recent 

These decays violate the A Q = AS rule, which follows 

from the minimal model, and their existence would 

mean a serious, possibly fatal, blow to this model. 

The confirmation of the violation of the A Q = AS rule 

would drastically change the simple model of weak 

interaction and would give rise to a whole series of 

very important consequences. 

(1) The current x current hypothesis would be 

excluded because the product of currents with A Q = AS 

and with A Q = —AS will yield transitions with AS =2. 

Thus the existence of K°~>n+ and K°-^n+ transitions 

Fig. 3 

Its contribution will be of the order 

Fig. 2 
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In connection with the possible violation of the 
AQ = AS rule, the search for these decays becomes 
exceedingly interesting. 

I shall not dwell on other corollaries of violation of 
the AS = AQ rule. They have been considered in 
detail in the papers by Behrends and Sirlin, Takeda, 
Pais, Sachs and Treiman. I shall only mention the 
fact that the number of intermediate W mesons, if 
they exist, becomes very large; in some schemes it 
reaches 16 ! 

I should like once again to stress the importance of 
the problem of the AQ ~ AS rule and to call on 
experimentalists to investigate this matter whatever 
the effort involved. Experimental clarification of this 
problem will greatly stimulate progress of the weak 
interaction theory. 

V I I . N E U T R A L K - M E S O N S 

The question of which is heavier, K°t or K2, is 
considered in a number of papers. Barger and Kazes, 
and also Nilsson have tried to give an answer to this 
question. I should like to make a few remarks in this 
connection. 

If the world were organized so that the mass of the 
% meson were greater than that of the K meson, and 
if there were no leptons and photons at all, then the 
K mesons would be stable. We could then apply to 
the consideration of the question of Am the Lehman 
theorem, according to which any interaction reduces 
the mass of a stable boson; 

to states with minimal mass and if we take into account 
the transititions K^->2n and K2->3n, we could obtain 
\ôm\\>\dm\\, and, consequently, Am — ml— m2<0. 

Unfortunately, even within the framework of the 
above mentioned extreme simplifications we would not 
be completely consistent, for the lightest intermediate 
state for K°2 is not the three-pion state but a one-pion 
state and its contribution can be decisive. It is clear 
that if we now return to our real world, where the 
mass of % mesons is equal to mn , and the K mesons 
are non-stable ( K Q < m 2 ) , then dm2 can have any sign 
and it is difficult to say anything definite about the 
sign of Am. Barger and Kazes took into account the 
contribution of two-pion decay to the mass of K\ and 
found that the sign of Am depends upon the phase of 
%% scattering. Nilsson considered virtual baryonic 
loops and obtained Am<0. These authors did not 
take into consideration the one-pion diagram. I think 
that everyone will agree with me that we do not as 
yet know which of the mesons K°x , or K°2 will be 
heavier in experiment. Experiments that could give 
an answer to this question are discussed by Good and 
Pauli, and also by Matinyan. They are, apparently, 
quite realistic. 

A beam of neutral K mesons with its fanciful pro­
perties has become the favourite toy of physicists, 
who are devising all manner of Gedanken experiments 
with it. I shall mention only two examples. Various 
authors, a.o. Lee and Yang (unpublished), Day, Inglis, 
Ogievetsky, consider interference effects in a system 
of two neutral K mesons, which are a magnificent illus­
tration of quantum-mechanical paradoxes, associated 
with reduction of the wave packet. 

Another example, as Good has noted, the existence 
of long-lived K2 mesons indicates the absence of 
antigravitation in the case of neutral K mesons, for 
if (in contrast to K° mesons) K° mesons were repulsed 
from the earth, then the gravitational interaction would 
rather quickly transform K°2 into K\ , just as nuclear 
interaction does. A note by Okonov et al. is devoted 
to this same idea. 

VII I . T - D E C A Y 

The available data on n meson spectra in various 
T decays are well described by a linear distribution 
rvF fhp fnrm and consequently, om2<0, if xl>m2. If we now 

assume that the K\ — K°2 mass difference is due mainly 

results by Alexander et al do not confirm this equality 
which, predicted on the basis of the AT = 1/2 rule, 
appears purely accidental when AT — 3/2 is present. 

(3) Other decays must exist with AQ = —AS, 
such as 
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These data are usually compared with the Khuri-
Treiman formula, in accordance with which a + « 0.1 ac, 
where ac is the 5-wave amplitude of charge exchange 
of n mesons in units of the n meson Compton wave­
length. 

A large number of papers published recently indicate 
that there are not enough grounds for such a compa­
rison. In the works of Barton and Kacser, Baqi Bég 
and De Celles, Riazuddin and Fayyazuddin, there 
is an indication that the linear dependence with s may 
be partly due to P-wave effects. In particular, in the 
latter two papers there is a discussion of the contri­
bution of resonance vector states (p meson and K* me­
son). I should like to mention that the A.B.C. reso­
nance, if it exists, would give an important contribution 
to T decay. 

In a paper by Gribov, the effect of nn interaction 
on the distribution of n mesons in % decay is considered 
in an approximation ka<4l, kr0<^l, a&rQ , where k is 
the maximum momentum of the n meson in T decay, 
a is the amplitude of nn interaction, and y0 is the radius 
of strong interaction. Gribov takes into account the 
contribution of all diagrams of the type shown in Fig. 4. 
He proceeds from the fact that the only source of 
information concerning the n-n interaction are terms 

proportional to A / S — 1 , and not to (s — 1), because the 
latter arise not only due to expansion with respect 
to the parameter ka (71-71 interaction) but also due to 
expansion with respect to the parameter kr0 (structu­
ral effects of the P wave type). 

Gribov's results show that to find terms of the 
type — 1 experimentally is a very difficult task. 
In the n ~ meson spectrum in the decay t + - > 2 ^ + + 7 i ~ , 
they are practically absent. They can yield an effect 
of several tens of percent in the n+ meson spectrum 
in the decay T+-+2n°+n + if the charge-exchange 

Fig. 4 

cross-section n + J

rn~~>2n0, to which these terms are 
proportional, is sufficiently large. In addition they 
yield a certain rather small asymmetry of angular 
distribution of n mesons in % decay, for the observation 
of which 10 4 -10 5 events are necessary. The search 
for these effects is a very interesting and important 
task. But what are we to do with the already experi­
mentally available linear dependence upon e? I think 
that there is sense in continuing Gribov's calculation, 
making the additional assumption that r 0 <^a, and 
(on the basis of diagrams (a) and (b)) calculating also 
the terms that are linear with respect to e. This 
would permit determining what magnitude of n-n inter­
action is necessary to obtain the experimentally ob­
served values of a and further, knowing the n-n scat­
tering from independent experiments, it would be 
possible to isolate the contribution of structural effects. 

A step in this direction has been made by Lomon 
et al.; however, they took into consideration only a 
few of the terms arising on the basis of diagrams of 
type (b). 

IX. C O N C L U D I N G REMARKS 

In spite of the 300 papers which I mentioned at the 
beginning of my talk there was almost no marked 
progress in the weak interaction theory during the 
two years since the 1960 Rochester Conference. I 
think this was mainly due to experimental uncertainty 
concerning a large number of very important points, 
such as the two neutrino problem, or the A Q = AS 
rule, or the AT = 1/2 rule. 

Due to lack of experimental facts it was impossible 
either to disprove the simplest weak interaction theory, 
such as the minimal model, or to confirm it. Now, 
when the experimental situation is changing radically, 
we may expect that during the next two years important 
progress in the weak interaction theory will be made. 

where e is the energy of an odd n meson divided by 
its maxima] value ( O ^ e ^ l ) . According to Ferro-
Luzzi et al 1347 x~ and 899 T + decays yield 
a ± = 0 .53±0 .07 , while 119 x decays yield 
a ' = — 1 . 0 ± 0 . 4 . According to Luers et al. the 
n° meson spectrum in 52 decays of T°-+n* + n~ +n° 

is characterized by a = —1.5 ±0.6 . These data do 
not contradict the AT =1/2 rule, from which it 
follows that 
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I would like to express my gratitude to I. Kobzarev 
for numerous discussions of the situation in weak 
interactions. In preparing this report I have used 
widely the arguments which we both published in a 
number of our papers. 

I am very grateful to Dr. Rollnik for his help in 
preparing this report. 

I am indebted to a number of the participants of 
this conference for reading the preliminary version 
of this report and making valuable remarks. 

D I S C U S S I O N 

FAISSNER: I have a remark pertaining to the question of a 
possible anomalous scattering of muon-neutrinos from nucléons. 
I do not think that the neutrino experiment done by Schwartz 
and co-workers does exclude an anomalous VU scattering with 
a cross-section much higher than that of the conventional lepton 
"scattering" VU + N->JBI-{-N'. The reason is that the recoil 
proton in a hypothetical ^/?-scattering would have, depending 
on the form factor, a momentum of the order of some 100 MeV/c 
at most which in terms of energy is only a few tens MeV. 
Such a recoil proton would have been ascribed invariably to 
the neutron background which was present in the Brookhaven-
Columbia neutrino experiment. Looking for the anomalous 
muon-neutrino scattering would require a quite different neutrino 
experiment, sensitive to low-energy protons, with a very good 
shielding against slow and medium-fast neutrons. 

You quoted an upper limit of ^ 1 0 3 8 cm 2 for the cross-
section. My statement is that, taking the Brookhaven-Columbia 
results by themselves, this limit could easily be 10 3 7 or even 
10~ 3 6 cm 2. 

OKUN: The limit of 10~3 8 cm 2 was quoted yesterday by 
Schwartz. 

SCHWARTZ: I pointed out yesterday that in our experiment 
we would be insensitive to neutrino-proton elastic scattering, 
because of the triggering difficulty and because of the neutron 
background. If single n°'s were produced in neutrino collisions, 
without the production of a lepton, we should have observed 
them if they had energies of the order of several hundred MeV. 
We have observed none. We have observed two events which 
do not show an obvious lepton. These can be explained by 
having a muon produced at an angle such that it would not be 
observed in the spark chamber. 

TREIMAN: I did not understand your discussion of Ke3 
decay. Why is there expected to be any relation between Ke3 and 
3i+-^7i0+ei-v decays in your model? Who said the couplings 
should be the same? Your bare couplings did not involve K 
mesons at all. 

OKUN: What I was referring to is the so-called "unitary 
symmetry " ; in the Sakata model this is the symmetry between 
p, n and A. When referring to the discrepancy between GA 

and Gm it is usually tacitly assumed that the effects of the strong 
" non unitary " interactions are negligible. Now, let us do this 
in a consistent way, and assume that they are small also in 
the decay of a Kr into with emission of leptons. In the 
limit of unitary symmetry, the mass of K+ is equal to the mass 
of and only the sum of the momentum four-vectors will 
appear in the matrix element. If now the unitary symmetry 
violating interaction is turned on, this form of the matrix element 
will be spoilt, but if unitary symmetry makes any sense, it will 
not be spoilt entirely. This was expressed by the relation f < 1 . 
If experiment will tell that 1^1 then this would mean that 

" non-unitary 15 interaction is important and may be responsible 
for the suppression of the leptonic decays of strange particles. 

G. MORPURGO: With which confidence do the present 
results of the B12 experiments discriminate between the conserved 
vector current and a theory with bare nucléons? 

OKUN: AS for the I ? 1 2 experiment, I know only that the 
authors claim to have proved weak magnetism, but Wolfenstein, 
in his talk, expressed some doubts on this. 

WOLFENSTEIN: The experiment on the 7V1 2 and B12 f) decay 
showed agreement with the conserved vector current theory 
in the difference between the N12 and B12 spectra. However, 
each spectrum alone differed from the theoretical expectations 
(as investigated by Morita), and this is the reason for the doubts 
I expressed. 

VAN DE WALLE : I have a comment pertinent to the question 
of the conserved strange current. In Berkeley we have looked 
at the energy dependence in the form factors implied by 
the conserved vector current theory for strangeness non- con­
serving currents and we were able to exclude such an energy 
dependence with a x 2 probability of 98%. Our data are com­
patible with the less drastic energy dependences required by 
the theory of the partially conserved current. 

FEINBERG : I would like to ask a question regarding the 
model that you suggested, where both the muon-neutrino and 
the muon interact with some new field. You said that in that 
case you would get no renormalization of the fi decay coupling 
constant. Is that true only if you neglect the mass of the /LI 
meson ? 

OKUN: Yes, that is only true if you neglect the mass of 
the muon in comparison with the mass of that intermediate 
particle, X say. 

FAISSNER : Is the existence of such a field not already excluded 
by the precision measurements on the electromagnetic properties 
of the muon, in particular by g-2 ? 

OKUN: Estimates of the possible anomalous interaction 
of the neutrino were made on the basis of the g-2 experiment. 
If we suppose that there is some anomalous interaction we can 
calculate, in addition to a g-2 value, the cross-section for a 
possible anomalous neutrino interaction and this comes out to 
be of the order of 1 0 - 3 1 cm 2. 

MANDELSTAM: With regard to the discrepancy between the 
vector coupling constants in p and /u decay, I should like to 
point out that we do not really know how to define universality 
to an accuracy of 1 %, i.e., to an accuracy where electromagnetic 
corrections are not negligible. The reason is that the definition 
of universality depends on a conserved vector current, and the 
vector current is no longer conserved when electromagnetic 
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interactions are included. The usual treatment in such cases 
is based on the assumption that the bare coupling constants 
in the Lagrangian are equal. When one tries to deduce observable 
consequences of such an assumption, one arrives at infinite 
results. It may be that if we were clever enough to calculate 
without perturbation theory, the results would be finite, but it 
may also be that it is meaningless to talk about unrenormalized 
coupling constants and that we do not know how to define 
universality when the appropriate conservation laws are not 
satisfied. 

MORPURGO: The Blin-Stoyle and Tourneux calculation 
takes into account the effect of the cr° mass difference in 
destroying charge independence, if I am correct. Does the 
paper by MacDonaid, which you mentioned, also treat the 
TI^—TI0 mass difference or simply the effect of the Coulomb 
potential ? 

OKUN: I hope so. 

MORPURGO: Which is the more likely estimate of the rate 
of the n+~->7iQJ

re
+ ~\-v if the conserved vector current theory 

were not true? I know, of course, that there are divergences. 
Do you know about any other calculation of the ji+->7i°+e+-i~v 
decay without conserved vector current ? 

OKUN ; There was a very old calculation of this type which 
was done by Zel'dovich in the Middle Ages. Then I was told 
by Dr. Rollnik just two days ago, that some students of his 
have calculated these things. 

ROLLNIK: The result of a simple perturbation calculation 
depends strongly on a cut-off and if you take this cut-off at the 
energy of a nucléon mass, you get approximately the same decay 
rate as in the conserved vector theory. But, if you increase 
the cut-off to 2 nucléon masses, the result is four times larger 
or so. 

YAMAGUCHI : I would like to add one remark on the reference. 
The hypothesis of minimal electromagnetic interaction has 
been introduced by Wick in his paper published in the middle 
of the thirties C). 

MARSHAK: I know that it was implicit in your talk, but I 
would like to emphasise again the difference between the break­
down of the AQ = AS and the \AT\ = 1/2 selection rules. 
Within the framework of your Anp model one likes very much 
a T — 7a strangeness non-conserving current which, combined 
with the nucléon current gives both \AT\ = 1/2 and \AT\ = 3/2. 
Hence the new evidence which is appearing now against the 
ATI = 1/2 rule should be considered independently of the 

evidence for AS = —AQ. For example, difficulty of the 
K®—Kl mass difference would not arise if the \AT\ — 1/2 selec­
tion rule is incorrect, as long as the T = 1 / 2 current suffices. 

THIRRING: You gave a Goldberger-Treiman-like relation 
for the Z->A+e+v decay. Then you showed that it contra­
dicts common sense. Does it also contradict the meagre ex­
perimental information we have on this decay? 

OKUN: We do not know what the relative EA. parity is. 
If it is negative then there is a contradiction. 

NAMBU: I would like to comment on the argument of 
Dr. Okun against the partially conserved axial vector current. 
I think that is a very interesting example. However, in order 
to establish a strict conservation, you have to switch off the 
mass of the pion, or at least one has to neglect the mass of the 
pion in comparison to the nucléon mass. Now, in the case 
of an odd EA parity in the formula you wrote down, there 
appeared the difference of the Ey A masses, which is small 
compared to the baryon mass itself. Nobody knows what this 
difference in the masses is due to. It could be that this mass 
difference is also related to the violation of the conservation 
law of the axial current, that is, related to the pion mass. In 
such a case one must be careful because it may be that one 
cannot apply the conservation idea in a simple way. I must 
also say that if we take the view that the axial vector conserva­
tion is O.K., then we can derive not only consequences for the 
weak interactions, but also for the strong ones, namely one 
can relate in any process where soft pions are emitted, the soft 
pion emission amplitude to the non-pion emission amplitude 
and this could give you another test of the underlying idea of 
the conserved axial vector current. 

OEHME (added after the session): I would like to add a 
remark to Okun's discussion of dispersion relations for the 
axial current in the decay E->A+e+v. There are two essential 
assumptions: (1) that one can write an unsubtracted dispersion 
relation for the matrix element of the divergence of the current, 
and (2) that the contribution of the pion pole is dominant. If 
one takes assumption (1) as a postulate, then the validity of 
the approximation (2) depends very much upon the actual 
mass ratios in the EAn system, and I do not think that one can 
simply extrapolate our results to the limits mE-*mA^-mn and 
mr-^mA . In the case of weak binding, structure singularities 
become relevant. Concerning the limit of tight binding, it 
may even be quite satisfactory that, within this framework, one 
cannot make the mass difference ms—mA arbitrarily small 
without drastically changing other parameters like the pion 
mass or the coupling constant f£An . 

(*) G. C. Wick, Accad. Lincei, Atti 27, 170, (1935). 
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Celles; Bonnevay; Gribov; Lomon, 
Morris, Irwin and Truong; Sawada, 
Ueda and Yonezawa; Riazuddin and 
Fayyazuddin ; |[Danilov and Dyatlov ; 
deltsveig and Solovyev. 

22. Parity non-conservation in nuclear forces 

Theory: Vladimirsky and Andreev; Blin-Stoyle 
and Spector; Flamm and Freund. 

23. Neutral barryonic currents 

Markov and Nguyen Van-hieu. 

RADIATIVE DECAYS 

24. K-+2%y decay 

Experiment: Monti et al ; Stern. 

Theory: Chew; Barshai and Iso; Ivanter. 

25. K->evy decay 

Theory: Berman, Ghani and Salmeron; Kanaza-
wa, Sugawara and Tanaka; Neville. 

26. S~>py and S~>nn+y decays 

Experiment: Schneps and Kang (py); Glasser et al 
(py); Quareni et al (nn+y). 

Theory: Calucci and Furlan (py) ; Sawamura (py) ; 
Iwao and Leitner (nn+y); Prakash and 
Zimerman (py); Lyaginanad, Ginzburg 
(pe~~e+ and ppTfi+). 

27. Other radiative decays 

Experiment: Binnie et al (n->pvy) ; Depommier et al 
(n+->e+vy); G. Conforto et al (p+Z~~> 
Z ' + v + y ) . 

Theory: Lobov and Shapiro (pT +p->n + y + v). 

NEUTRAL K-MESONS 

28. Kf-K^ mass difference and lifetime 

Experiment: Camerini et al (Am = 1 ,51Q[1); Fitch 

(4#w = 0.85:S;;5); Darmon et al (life™ 
time of A:^). (See also § 18). 

Theory: Good and Pauli; Matinyan; Barger and 
Kazes; Glashow; Ioffe; Nilsson; Kob­
zarev; Okun. (See also §29 and 18.) 

29. Interference effects 

Theory: Good ; Okonov, Podgoretsky and Khrus-
talev (gravitation); Day; Inglis; Ogie-
vetsky, Okonov and Podgoretsky (K, K); 
Dreitlein and Primakoff (K~+2y) ; Bar-
shay and Iso (K->2ny). 

INTERMEDIATE MESONS 

30. Production and decay of co mesons 

Theory: Lee, Markstein and Yang; Ebel and 
Walker; Lee; Solovyev and Tsukerman; 
Bernstein and Feinberg; Dombey; Frôh-
lich (classification); Lee and Yang. 

31. Possible indirect evidence for co mesons 

Theory: Lee; Berman; Kanazawa et al (Keyv); 
Nakamura and Itani; Matthews and 
Salam; Oneda, Pati and Sakita. 

GENERAL SYMMETRIES 

32. CP-conservation 

Experiment: Anikina et al (K°2) ; Charpak et al 

Theory: Sachs and Treiman ; Shirokov; Ekstein ; 
Bell. 

OTHER SYMMETRIES 
33. 

Coleman and Glashow; d'Espagnat and 
Prentki; Pais; Gupta; Gell-Mann and 
Zachariasen; G. Giirsey; Behrends and 
Sir] in; Bludman; Fujii; Gell-Mann; 
Glashow; Ikeda, Mijachi, Ogawa; Itô 
and Fujii; Lipmanov; Okubo and Mar-
shak; Salam and Ward. 

REVIEW ARTICLES A N D LECTURES 
34. 

Adair; Lee; Feynman; Garwin; Okun; 
Pais; Berman; Feinberg; Merrison. Good et al 
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