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Abstract: Forecasting demand for assets and services can be addressed in various markets,
providing a competitive advantage when the predictive models used demonstrate high
accuracy. However, the training of machine learning models incurs high computational
costs, which may limit the training of prediction models based on available computational
capacity. In this context, this paper presents an approach for training demand prediction
models using quantum neural networks. For this purpose, a quantum neural network
was used to forecast demand for vehicle financing. A classical recurrent neural network
was used to compare the results, and they show a similar predictive capacity between the
classical and quantum models, with the advantage of using a lower number of training
parameters and also converging in fewer steps. Utilizing quantum computing techniques
offers a promising solution to overcome the limitations of traditional machine learning
approaches in training predictive models for complex market dynamics.

Keywords: demand forecasting; quantum machine learning; quantum finance; vehicle
financing; predictive modeling

1. Introduction

A common problem experienced by companies is financial market uncertainty [1,2],
which makes accurate forecasting and budgeting challenging, becoming a risk to invest-
ments and financial stability [1–4]. Companies must adapt quickly to these changes in
order to remain competitive and mitigate any negative impacts [5]. In this context, demand
forecasting is defined as a predictive analysis strategy used to overcome this challenge us-
ing traditional computational methods or more advanced technologies, including machine
learning [6–8].

In this scenario, the demand estimation process helps companies internally plan to
meet market needs [8,9]. It involves forecasting the number of services or products a
company will sell in a future period [10]. The duration of this period can be customized
and may vary based on the company’s size and objectives [11].

In order to help managers make more assertive decisions about team planning and
demand management, forecasting takes into account internal and external factors that
meet customer needs [12]. The benefits encompass enhancements in efficiency, operational
performance, and the supply chain as it predicts the number of goods to be sold and, subse-
quently, the amount that has to be manufactured [13], thereby preventing the occurrence
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of insufficient or excessive production. Quantitatively, if a bank with an annual vehicle
financing volume of USD 10 billion, for example, uses a predictive model that results in
a 10% loss in potential revenue, an improvement in accuracy that reduces this rate to 5%
could represent an additional gain of USD 500 million annually.

Furthermore, demand forecasting can be influenced by either a qualitative or quan-
titative methodology [14]. The first case is a superficial subjective analysis of customer
behavior and market trends. In the second case, statistical data are compared and analyzed
from both the sales history and customer base to provide a more in-depth picture of the
future [6]. Accordingly, demand forecasting was traditionally based on statistical methods
and expert opinion, which often made it difficult to capture complex patterns and dynamic
market trends [15]. Given this scenario, the implementation of machine learning algorithms
in demand forecasting has resulted in notable improvements in forecast accuracy [15].

In this context, classical machine learning (ML) is a widely used computational tool for
solving the problem of demand forecasting [16]. It helps identify patterns in large volumes
of historical data and make accurate forecasts. However, as data volumes increase and
models become more complex, the processing limitations of classical models become more
apparent due to the difficulty of capturing multiple characteristics of high-dimensional
data [17]. Conversely, quantum computing has emerged as a promising solution. The ability
of quantum computers to process information in parallel offers a significant advantage,
allowing for the efficient and quick analysis of massive datasets and the optimization of
machine learning models [18,19].

Thus, quantum machine learning (QML) emerges as a promising alternative that can
accelerate information processing and provide notable improvements in the machine learn-
ing research area [19,20]. Recent advancements in this area suggest that the integration
of quantum computing with machine learning is poised to lead to groundbreaking devel-
opments in technology and data analysis [21,22]. This approach offers a way to address
the difficulties presented by conventional machine learning techniques [22,23], such as
increased learning duration caused by the expanding amount of data [24]. Hence, quantum
computing and quantum machine learning (QML) have recently experienced increased
utilization across various domains, including finance [25].

In this regard, this work presents an application for QML to predict vehicle financing
demand using a quantum neural network. For this purpose, we utilized a dataset obtained
from the Brazilian bank BV, containing financing data and other relevant features collected
from 2019 to 2023. These data were pre-processed, and smaller sets were extracted using
feature reduction techniques [26,27]. The quantum neural network was trained on these
pre-processed data to accurately predict vehicle financing demand, showcasing the potential
of quantum computing in enhancing predictive analytics. The results obtained from this
study demonstrate the promising capabilities of QML models in solving complex real-world
problems such as financial forecasting. The integration of quantum computing in predictive
analytics can revolutionize the way financial institutions make decisions and manage risks.
By leveraging the power of QML, banks can gain a competitive edge in the market by making
more accurate and timely predictions. Therefore, this research highlights the importance of
leveraging quantum computing in the financial sector to improve decision-making processes,
which represents a significant advancement in the field of predictive analytics.

2. Quantum Neural Networks

Quantum neural networks (QNNs) represent a new approach to machine learning,
combining classical data processing with the power of quantum computing [19,20,28,29].
Despite their classical foundations, QNNs are considered pure quantum models because
their execution depends on classical computing only for circuit preparation and statistical
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analysis [30]. These QNNs fall under Variational Quantum Algorithms, employing Param-
eterized Quantum Circuits (PQCs) known as ansätze (plural of ansatz), which are trained
using classical optimization techniques. The behavior of quantum neural networks (QNNs)
reflects that of classical neural networks, consisting of three main stages: data preparation,
data processing, and data output [30].

In the data preparation stage, the classical input is encoded into a quantum state using
a feature map, a circuit parameterized exclusively by the original data [31]. This coding
facilitates the integration of the classical information into the quantum structure of the
QNN. In particular, classical data may require pre-processing, such as normalization or
scaling, to optimize the coding process [31,32].

Subsequently, in the data processing stage, the QNN operates within the framework of
its ansatz. Usually structured as a layered variational circuit, the ansatz consists of multiple
layers, each defined by an independent parameter vector. Variational circuits Vj dependent
on these parameters make up each layer, with layers of entanglement Ent interspersed. An
example of a quantum ansatz is shown in Figure 1. The ansatz effectively processes quantum-
coded data, taking advantage of entanglement and parameterized gates for computation.

|ψ1⟩

Ent V1(θ1) Ent V2(θ2)

|ψ2⟩

|ψ3⟩

|ψ4⟩

Figure 1. A two-layered ansatz applied to four qubits. Each layer is defined by a variational circuit
Vj dependent on some parameters θj. The circuits Ent are used to entangle the qubits, and the state

|ψ⟩⊗n denotes the output of the feature map.

Finally, in the data output stage, the processed quantum state is converted into a classical
output via a final layer [30]. This operation is adapted to the specific problem being addressed.
For example, in a binary classification, the expected value of a single qubit selected in the
measurement can be used as the output [31]. Overall, QNNs offer a promising path for
quantum-assisted machine learning, uniting classical and quantum paradigms to address
complex computational tasks [19,20,31,32].

In this article, we use a QNN, whose architecture is described in Section 3.2, to perform
the task of forecasting the demand for used vehicle financing in Brazil.

3. Quantum Data Analysis and Model Implementation

3.1. Data Scaling and Selection Techniques

The case analyzed in this paper was the forecasting of used car prices in Brazil from
May 2022 to April 2023. The data used for training covered the period from January 2019
to April 2022, and they were provided by the Brazilian bank BV, so the application is of
practical interest in the financial sector. In all, 25 features were provided for the training.
However, 6 features were discarded because they did not contain data for 2019. The
remaining 19 features were subjected to a feature reduction process using the Principal
Component Analysis (PCA) so that the features with the greatest variance were selected.
PCA is a statistical technique that enables the reduction of data dimensionality while
preserving variance. It identifies principal components, linear combinations of initial
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features, ranked based on their total variance, ensuring that significant new features are
identified [26].

The smallest sets used had 4 and 8 features, which represented 68.69% and 92.03% of the
total variance of the dataset, respectively. In addition, the complete dataset represents 100%
of the total variance of the distribution. The cumulative variances are shown in Figure 2.

- - - - - - - - - - - - - - - - - --

1 2 3 4 5 76 8 9 10 11 12 13 14 15 16 17 18 19

Figure 2. Cumulative variance of the data. The x-axis represents the component index, while the
y-axis represents the variance. The sets used in this article were marked in black (4 features), green
(8 features), and red (19 features, the complete dataset). The bars represent the individual variance of
each component, while the blue line represents the cumulative variance.

After reducing the number of features, the data were standardized according to the
following expression [32]:

x̂ =
x − µ

σ
, (1)

where x is the original data, µ is the mean of the values, σ is the standard deviation, and
x̂ is the standardized data. This standardization assumes that the distribution of the data
is approximately normal. Standardizing the data helps to ensure that all variables are on
the same scale, which is important for many machine learning algorithms since it reduces
the scale of the dataset, thereby decreasing the differences in scale between features and
avoiding biases in features with larger scales. This process makes it easier to compare and
interpret the coefficients of different features in the model.

3.2. Quantum Neural Network Architecture

In quantum neural network architecture, qubits are used to represent data and param-
eters in the model [33]. By leveraging quantum superposition and entanglement, quantum
neural networks have the potential to outperform classical neural networks in certain
tasks by processing information in a more efficient way [30,34]. This architecture holds
promise for solving complex problems in fields such as optimization, machine learning, and
cryptography. The quantum neural network model used to process these data is presented
in Figure 3. In this model, we used Angle Embedding with RY rotation gates as our feature
map, performed after initializing the circuits in uniform superposition through Hadamard

gates. Due to the reduced number of features in our datasets, still within the range of a
classical simulator, Angle Embedding has the advantage of low cost compared with other
embeddings, only a single layer of single qubit operations. Two variational layers were
considered and are represented in Figure 4.

In order to take into account the real monetary losses due to inaccurate results, the
models were analyzed based on the mean absolute error obtained in each experiment. In
addition, the accuracy of the results obtained through the heuristics used was analyzed
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by calculating the standard deviation obtained during the 12 months of testing. Each
experiment was run 10 times.

FeatureMap Ansatz Measure

H Ry(x0)

Entanglement

R(θ0, φ0, ω0)

H Ry(x1) R(θ1, φ1, ω1)

H Ry(x2) R(θ2, φ2, ω2)

H Ry(x3) R(θ3, φ3, ω3)

Figure 3. Variational quantum circuit. The Hadamard gate layer prepares the qubits in uniform
superposition; Ry gates (red) encode the data in qubits; and the variational layer or ansatz (blue)
entangles the qubits and applies parameterized rotations, where θi, φi, and ωi represent, respectively,
the rotation angles in the x, y, and z axes in each qubit i, and are the trainable parameters of the model.
The measurement layer (green) collapses the qubits, generating the outputs [32].

(a) (b)

Figure 4. Entanglement layers used in a variational circuit (Figure 3). In (a), here named “entangle-
ment layer 1”, the qubits are entangled in pairs, and these pairs are subsequently tied together. In (b),
here named “entanglement layer 2”, the qubits are entangled in a cascade. Adapted from [32].

4. Dataset and Preprocessing

In addition to the variable to be predicted, the dataset made available for the research
contained 25 economic features relevant to the proposed model, with 52 samples collected
monthly from January 2019 to April 2023. The model’s prediction variable is the daily average
of used vehicle financing each month and was also part of the dataset made available.

During the period covered in the database, the world faced the COVID-19 pandemic,
and governments around the world shut down their countries’ economies to promote social
isolation. For this reason, we can consider this period to be anomalous.

Training the model in more predictable environments could help with the training
process, potentially leading to better results. However, removing the COVID data would
mean reducing the already scarce number of samples available for training, so they have
been kept in their original form. In addition, as it is understood that not the pandemic
itself but its impacts on economic indicators (contained in the database used) are the most
relevant features for the predictive model in question; no new features were added to the
database that could bring new information about the pandemic scenario. It should also be
considered that the proposed model must be robust to any factors that impact the financial
market, and the inability to predict such occurrences makes it necessary to measure them
indirectly through their influence on economic indicators.

When analyzing the data made available for the research, it was noticed that some
features did not contain data for 2019. As the number of instances for training was already
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low, it was necessary to remove these features since the alternatives to such exclusion would
be to exclude the data for the entire year 2019 or to infer the missing data, which could make
the model biased and was therefore not done. After excluding the 6 features that did not
contain data for 2019, a feature reduction was carried out using the PCA method [26,27].

In addition, the PCA method allows for the reduction of the number of features in a
dataset by applying a transformation to the coordinate axes. This transformation generates
new axes that point in the directions of the greatest variance in the datasets. The directions
of greatest variance are the main components of the models since they supposedly have
more information to extract during the training process and can then be used in this process.
The PCA method was used through the scikit-learn [35] machine learning library.

Based on the data available and after eliminating the data that did not have values for
2019, 3 different sets of data were generated, with 4, 8, and 19 features, which represent
68.89%, 92.03%, and 100% of the system’s total variance, respectively. These sets were
generated to assess the impact of adding new features to the models.

5. Results

The results obtained from the quantum experiments are presented in Section 5.1, while
those from the classical experiments are detailed in Section 5.2. The number of variational
layers selected for the quantum experiments includes configurations of 1, 3, and 5 layers,
chosen to assess their impact on performance.

The measurement results are presented in terms of the distributions observed. Train-
ing and test errors are illustrated graphically, focusing on the average daily financing
obtained. Additionally, the mean monthly absolute errors are provided in tables, offering a
comprehensive view of the variations and trends.

5.1. Quantum Experiments

5.1.1. Four Features

In the first considered case, the dataset was reduced from 19 initial features to 4 features.
Similar to the other quantum experiments, we considered the two quantum networks
presented in Section 3, as well as a classical RNN.

Figure 5 shows the results of the quantum networks obtained in the two experiments
using the 4-feature dataset and varying the number of variational layers. The actual
values to which the predictions should approximate are shown in the black curves. The
simulation environment is discussed in Section 5.3, and the convergence of the models is
discussed in Section 5.5. The standard deviation for each month is presented in Table A1, in
Appendix B.1, and the monthly mean absolute error for the two experiments is presented in
Table A5, in Appendix C.1. The cumulative variance of the data contained in this database
concerning the original database with 19 features is 68.69%.

Violin graphs were used to present the results of the predictions. These graphs show
the density distributions through their contours. In this way, wider points in the figures
represent a greater density of data, while sparser and more distant points represent outliers.
In addition, these graphs can reveal multimodal trends in the distributions when there
is more than one widening point. The black boxplot in the center of the figures shows
the median of the distributions through a white line in the boxes, and the first and third
quartiles are represented respectively through the lower and upper edges of the boxplot.

Considering realistic scenarios where errors are inevitable, it may be preferable to err
upwards or downwards, depending on the market and the agents involved. Nonetheless,
it is important to consider that errors above the target may be a warning of the need
for greater production of a certain product or availability of services, while errors below
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the target may represent missed opportunities to sell products or services with a higher
demand than predicted by the machine learning models.

Experiment 1 - 1 layer Experiment 2 - 1 layer

Experiment 1 - 3 layers Experiment 2 - 3 layers

Experiment 1 - 5 layers Experiment 2 - 5 layers

Figure 5. Predictions for quantum models with 4 features. (a) shows quantum experiment 1 with
1 layer, (b) quantum experiment 2 with 1 layer, (c) quantum experiment 1 with 3 layers, (d) quantum
experiment 2 with 3 layers, (e) quantum experiment 1 with 5 layers, and (f) quantum experiment 2
with 5 layers. The x-axis shows the model’s training months, while the y-axis represents average
daily financing. The distributions obtained from 10 experiments are shown in the colored violin
graphs, while the actual values are shown in the black line.

Among the quantum models consisting of 4 features, experiment 1, involving a single
variational layer, generally showed the best accuracy, with a minimum mean absolute error
of 299.90 and a 12-month mean absolute error of 682.52 ± 284.14.

In the second experiment, the best result was the one in which 5 variational layers were
considered, where the lowest mean absolute error obtained was 411.97, and the monthly
mean was 785.98 ± 192.21. In addition, this model shows considerably less variation than
the results obtained with just 1 variational layer, as well as a considerably lower mean.

Furthermore, in both cases, the means of the predictions were above the actual values,
which could imply that there is a greater supply of used car finance than there is actual
demand if these indicators are the only ones considered.
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The results obtained from experiment 2 with 1 layer consistently exceeded the target
at all times, deviating from the target especially in the final months. This outcome indicates
a lower performance of this model in comparison with the other experiments with the same
number of features.

5.1.2. Eight Features

In the second considered case, the number of features in the database was reduced to
8. This value was chosen as an intermediate value between the 4 features used initially and
the final 19 features, given that the cumulative variance for 8 features was 92.03%.

The distributions obtained are shown in Figure 6. The standard deviation for each
month is shown in Table A2, and the monthly mean absolute error for the two experiments
is shown in Table A6. The cumulative variance of the data contained in this database
concerning the original database with 19 features is 68.69%.

Experiment 1 - 1 layer Experiment 2 - 1 layer

Experiment 1 - 3 layers Experiment 2 - 3 layers

Experiment 1 - 5 layers Experiment 2 - 5 layers

Figure 6. Predictions for quantum models with 8 features. (a) shows quantum experiment 1 with
1 layer, (b) quantum experiment 2 with 1 layer, (c) quantum experiment 1 with 3 layers, (d) quantum
experiment 2 with 3 layers, (e) quantum experiment 1 with 5 layers, and (f) quantum experiment
2 with 5 layers. The x-axis shows the model’s training months, while the y-axis represents average
daily financing. The distributions obtained from 10 experiments are shown in the colored violin
graphs, while the actual values are shown in the black line.



Entropy 2025, 27, 490 9 of 28

In the quantum models containing 8 features, experiment 1 with a single variational
layer generally showed the best accuracy, with a minimum mean absolute error of 346.10
and a 12-month mean absolute error of 709.76 ± 297.93.

In the second experiment, the best result was again the one in which 5 variational
layers were considered, where the lowest mean absolute error obtained was 441.65, and the
monthly mean was 980.79 ± 239.93. As occurred in the experiment with 4 features, there
is no statistical difference between this result and the result obtained with 3 variational
layers. However, the results of this model showed considerably less variation than the
results obtained with just 1 variational layer and also a considerably lower mean.

In this case, the forecast means were more distributed compared with the target in the
best result of experiment 1, but the results of the second experiment echoed the trend of
exceeding the actual values, generating a production signal above actual demand.

As observed in the experiment with 4 features, in the experiment with 8 features, the
results obtained from experiment 2 with 1 layer remained above the target at all times,
deviating from the target in the final months. This indicates a lower performance of this
model in comparison with the others.

5.1.3. Nineteen Features

In the third considered case, the dataset was tested using all the features for which
data were available for 2019. Features that did not have data for 2019 were discarded.
The alternative to discarding these features would be to perform inference for 2019 data.
However, the amount of data that would be inferred would represent approximately 1/4
of the dataset, a portion that would compromise the model’s performance.

In order to train the model with this dataset, no transformation other than data
standardization was carried out. However, from the 8th month of the test set onwards, it
was identified that one of the features had increased significantly in relation to the others.
For this reason, it was decided to maintain these data to observe the effects that this increase
in one of the features would have on the results.

The distributions obtained are shown in the subfigures provided in Figure 7. The
standard deviation for each month is shown in Table A3, and the monthly and annual mean
absolute errors for the two experiments are shown in Table A7. Since this database contains
all the features from the original dataset, the cumulative variance of the data contained in
this database is the total variance of the original set, i.e., 100%.

In experiment 1, which was performed with 19 features, there was no significant differ-
ence between the results obtained with 1, 3, and 5 variational layers. For all three cases, the
minimum absolute mean errors obtained were 522.95, 638.46, and 533.07, and the 12-month
means were 1141.58 ± 465.98, 1054.52 ± 298.52, and 1051.39 ± 311.39, respectively. In experi-
ment 2, the smallest mean absolute monthly errors were 758.83, 552.07, and 365.82, respec-
tively, and the monthly means were 1630.98 ± 625.66, 995.71 ± 374.16, and 1074.90 ± 450.09. In
this case, however, the first result presents a larger error linked to a larger standard deviation.

Once again, the results obtained from experiment 2 with 1 layer performed worse than
the others, indicating that the model exhibited lower performance.
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Experiment 1 - 1 layer Experiment 2 - 1 layer

Experiment 1 - 3 layers Experiment 2 - 3 layers

Experiment 1 - 5 layers Experiment 2 - 5 layers

Figure 7. Predictions for quantum models with 19 features. (a) shows quantum experiment 1 with
1 layer, (b) quantum experiment 2 with 1 layer, (c) quantum experiment 1 with 3 layers, (d) quantum
experiment 2 with 3 layers, (e) quantum experiment 1 with 5 layers, and (f) quantum experiment
2 with 5 layers. The x-axis shows the model’s training months, while the y-axis represents average
daily financing. The distributions obtained from 10 experiments are shown in the colored violin
graphs, while the actual values are shown in the black line.

5.2. Classical Experiments

The classical experiments were performed as a way of comparing the results obtained
with those of traditionally used classical methods. For this purpose, a classical recurrent
neural network with 128 and 1024 neurons in the recurrent layer was considered. RNNs
were selected for benchmarking because they are a well-established method for time series
forecasting, provide a robust benchmark for comparison, and help evaluate the potential
benefits of quantum neural networks in demand prediction, as they are capable of using
temporal correlation in the data to make predictions. Figure 8 shows the results obtained
using this model, and convergence graphs are shown in Section 5.5.



Entropy 2025, 27, 490 11 of 28

Experiment 1 - 4 features Experiment 2 - 4 features

Experiment 1 - 19 features (last 5 months) Experiment 2 - 19 features (last 5 months)

Experiment 1 - 19 features (first 7 months) Experiment 2 - 19 features (first 7 months)

Experiment 1 - 8 features Experiment 2 - 8 features

Figure 8. Predictions for classical models. (a) shows classical experiment 1 with 4 features, (b) classical
experiment 2 with 4 features, (c) classical experiment 1 with 8 features, (d) classical experiment 2 with
8 features, (e) the first 7 months of classical experiment 1 with 19 features, (f) the first 7 months of
classical experiment 2 with 19 features, (g) the last 5 months of classical experiment 1 with 19 features,
and (h) the last 5 months of classical experiment 2 with 19 features. The x-axis shows the model’s
training months, while the y-axis represents average daily financing. The distributions obtained from
10 experiments are shown in the colored violin graphs, while the actual values are shown in the
black line.
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In experiment 1, involving 4 and 8 features, the results were similar, so the 12-month
means of the mean absolute errors were 774.93 ± 199.39 and 997.12 ± 331.18, respectively.
However, when all 19 initial features were taken into account, these results were skewed by
the variable that had significantly higher values in the last 5 months, so the error increased
significantly, and the 12-month mean was 90,480.42 ± 111,210.54. Given that this increase
in error and error variance only occurs in the last few months of training, the results for
19 characteristics are presented in two graphs, as the results scale has changed.

Disregarding the last 5 months, the model showed a mean absolute error of 344.19
with a mean standard deviation of 197.55, which is significantly better than all the other
models (classical or quantum) presented.

In experiment 2, involving 4 and 8 features, the results also behaved similarly so that
the 12-month means of the absolute mean errors were 643.12 ± 293.77 and 683.30 ± 332.37.
As was the case in the first experiment, when all 19 initial features were considered, these
results were biased by the variable that had significantly higher values in the last 5 months
so that the error increased significantly, and the 12-month mean in this experiment was
7965.14 ± 61,675.02. The results of this experiment, considering 19 features, were also
presented in two graphs since the scale of the results was modified.

Table 1 summarizes best results of classical and quantum annual mean MAE according
to the results above and the tables in Appendix B.

Table 1. Best results of classical and quantum annual mean MAE.

Model MAE

QNN
Experiment 1 682.52 ± 284.14
Experiment 2 785.98 ± 192.21

RNN
Experiment 1 774.93 ± 199.39
Experiment 2 646.12 ± 293.77

5.3. Simulation Environment

All the simulations were performed in the PennyLane quantum computing software
development kit [36], developed by the quantum computing company Xanadu [37], also
using the TensorFlow machine learning library [38]. The simulations were carried out in an
HPC environment on Intel Xeon Platinum 8260L processors. The simulations involving
19 features were performed on 17 cores, while the simulations involving 4 and 8 features
were performed on a single core.

5.4. Training Time

The execution times for each sample of the quantum model are shown in Table 2, and
for the classical model, in Table 3. The total computing time of the runs is given by the
values in the table multiplied by ten since ten samples were extracted for each model.

Table 2. Quantum model processing times.

1 Layer 3 Layers 5 Layers

4 variáveis
Experiment 1 1 min 30 3 min 4 min
Experiment 2 1 min 30 4 min 5 min

8 variáveis
Experiment 1 3 min 6 min 10 min
Experiment 2 3 min 6.5 min 10 min

19 variáveis
Experiment 1 1 h 1 h 30 3 h 30
Experiment 2 1 h 2 h 20 3 h 30
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Table 3. Classical model processing times.

Experiment 1 Experiment 2

4 features 13 min 32 min 30
8 features 14 min 30 36 min
19 features 14 min 30 36 min

Given that the demand forecasting problem was solved through a simulation and
not on a quantum computer, it is not possible to correlate the processing times obtained
with those obtained on a quantum computer. Simulating quantum circuits is an expensive
simulation that uses an exponential number of resources in relation to the number of
qubits. This demand for resources would scale linearly on a quantum computer, since
they can naturally implement the quantum properties that must be simulated through
classical algorithms. Instead, the rapid convergence of the models can be interpreted as an
indication of shorter execution times required by the quantum model.

Processing time is often pointed out as an advantage of quantum computing since
some quantum algorithms have an advantage over the best classical algorithms that per-
form the same task. For instance, Shor’s algorithm and Grover’s algorithm are able to
perform tasks in exponentially and quadratically less time than a classic computer, respec-
tively. However, when analyzing the computational advantages, other metrics must be
taken into account, such as the accuracy of the results and the savings in computational
and energy resources.

5.5. Convergence

The research on the convergence of quantum models showed that the results converge
before the first 30 training epochs, so the 10 experiments used for the statistical analysis of
each model were carried out using only 30 epochs. This decision was based on preliminary
tests considering training with 1000 epochs, which showed rapid convergence of the models,
as shown in Figure 9 for 4 features, with marginal or zero improvements in performance
from that point onwards. Therefore, this approach optimizes the use of computational
resources and avoids overtraining. In addition, although the models were simulated in a
classical environment, quantum resources are currently scarce, so the predictive quality of
the models linked to fast and stable convergence should be considered an advantage of
these models. The convergence graphs of the models are shown in Figures 10–12.

Epoch

Figure 9. Convergence of the quantum model with the set of 4 features and 1 layer with 1000 epochs.
The x-axis shows the training epochs, while the y-axis shows the mean absolute error (standardized
values). The black curve shows the test loss, while the magenta curve shows the validation loss.
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5.5.1. Quantum Models

In this section, we present the performance of quantum models trained with 4, 8,
and 19 input features. The loss curves are shown for different configurations of quan-
tum circuits, varying the number of layers and experiment types. Figure 10 shows the
results for models with 4 features, Figure 11 for models with 8 features, and Figure 12 for
models with 19 features. Each figure illustrates the evolution of training loss over epochs,
with comparisons between test and validation losses. The results provide insights into
how circuit.

(e) (f)

(d)(c)

(a) (b)

Experiment 1 - 1 layer Experiment 2 - 1 layer

Experiment 1 - 3 layers Experiment 2 - 3 layers

Experiment 1 - 5 layers Experiment 2 - 5 layers

Figure 10. Loss for quantum models with 4 features. (a) shows the loss for quantum experiment 1
with 1 layer, (b) for quantum experiment 2 with 1 layer, (c) for quantum experiment 1 with 3 layers,
(d) for quantum experiment 2 with 3 layers, (e) for quantum experiment 1 with 5 layers, and (f) for
quantum experiment 2 with 5 layers. The x-axis shows the training epochs, while the y-axis shows the
mean absolute error (standardized values). The black curve shows the test loss, while the magenta
curve shows the validation loss.
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(c) (d)

(e) (f)

Experiment 1 - 3 layers Experiment 2 - 3 layers

Experiment 1 - 5 layers Experiment 2 - 5 layers

(a) (b)

Experiment 1 - 1 layer Experiment 2 - 1 layer

Figure 11. Loss for quantum models with 8 features. (a) shows the loss for quantum experiment 1
with 1 layer, (b) for quantum experiment 2 with 1 layer, (c) for quantum experiment 1 with 3 layers,
(d) for quantum experiment 2 with 3 layers, (e) for quantum experiment 1 with 5 layers, and (f) for
quantum experiment 2 with 5 layers. The x-axis shows the training epochs, while the y-axis shows the
mean absolute error (standardized values). The black curve shows the test loss, while the magenta
curve shows the validation loss.
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(e) (f)

Experiment 1 - 3 layers Experiment 2 - 3 layers

Experiment 1 - 5 layers Experiment 2 - 5 layers

(a) (b)

Experiment 1 - 1 layer Experiment 2 - 1 layer

(c) (d)

Figure 12. Loss for quantum models with 19 features. (a) shows the loss for quantum experiment 1
with 1 layer, (b) for quantum experiment 2 with 1 layer, (c) for quantum experiment 1 with 3 layers,
(d) for quantum experiment 2 with 3 layers, (e) for quantum experiment 1 with 5 layers, and (f) for
quantum experiment 2 with 5 layers. The x-axis shows the training epochs, while the y-axis shows the
mean absolute error (standardized values). The black curve shows the test loss, while the magenta
curve shows the validation loss.

5.5.2. Classical Models

The validation loss of the classical model with 19 features, shown in Figure 13f, indicates
that this model performs better than the other models, whether classical or quantum.
However, the model’s performance with the test data, presented in Figure 8e–h, shows
results that are not consistent with these findings. This discrepancy is due to the behavior of
one of the features described earlier, where there was a significant and sudden increase in
the data. The results that performed better with the test data, despite having a higher loss
than that shown in Figure 13f, assigned a lower weight to the feature in question.
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(e) (f)

(a) (b)

(c) (d)

Experiment 1 - 8 features Experiment 2 - 8 features

Experiment 1 - 19 features Experiment 2 - 19 features

Experiment 1 - 4 features Experiment 2 - 4 features

Epoch

Figure 13. Loss for classical models. (a) shows the loss for classical experiment 1 with 4 features,
(b) for classical experiment 2 with 4 features, (c) for classical experiment 1 with 8 features, (d) for
classical experiment 2 with 8 features, (e) for quantum experiment 1 with 19 features, and (f) for
classical experiment 2 with 19 features. The x-axis shows the training epochs, while the y-axis shows
the mean absolute error (standardized values). The black curve shows the test loss, while the magenta
curve shows the validation loss.

6. Conclusions

Here, a quantum neural network was utilized for the first time to solve the problem
of predicting short-term demand for used vehicles. The tests were carried out on datasets
with 4, 8, and 19 features. The results were compared with those obtained using a classical
recurrent neural network, showing similarities of the models in terms of accuracy in the
best case for each one, but with the quantum model using fewer features and parameters
and converging in fewer epochs than the classical model. In addition, the quantum model
showed less bias towards problematic features in the scenarios with the largest number of
features considered. Thus, the results show evidence that quantum models can be excellent
candidates for future implementation of this task in large-scale quantum computers. These
results can possibly be extended to other predictions of interest to the financial sector,
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creating a new way of forecasting in the financial industry. These results could be better
explored in subsequent stages by testing other quantum models, including quantum
analogs to classical recurrent neural networks, and comparing the results with more robust
variations of classical recurrent neural networks.

Code Availability: The code used in the experiments is available through the following
link: https://github.com/morgoth00/quantum-demand-forecasting, accessed on 25
February 2025.
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Appendix A. The Algorithm

Appendix A.1. Encoding

The first step of the algorithm involves encoding classical data into quantum bits.
Initially, all qubits are prepared in a uniform superposition state using the Hadamard gate.
This gate is a fundamental tool in quantum computing and is represented by the matrix
shown in Equation (A1). The Hadamard gate ensures that each qubit has an equal probability
of being measured in either the |0⟩ or |1⟩ state, thus enabling subsequent operations to be
performed on superposed states. Figure A1 shows the visual representation of the action of
this quantum logic gate on a qubit.

(a) Initial state (b) Apply H gate

x y

z

x y

z

Figure A1. Bloch sphere representation of the H gate acting on a single qubit. (a) shows the initial
qubit state, while (b) shows the state after applying this gate.

https://github.com/morgoth00/quantum-demand-forecasting
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H =
1√
2

[

1 −1
1 1

]

. (A1)

However, at this stage, classical data have not yet been fully transformed into quantum
states. The encoding process is achieved by applying an Ry rotation gate to each qubit.
The Ry gate introduces a parameterized rotation around the y-axis of the Bloch sphere,
effectively encoding numerical classical data into quantum amplitudes. This encoding step
is pivotal, as it translates classical information into the quantum domain, enabling compu-
tations that exploit quantum mechanics. Equation (A2) provides the matrix representation
of the Ry gate, illustrating its dependence on the rotation angle parameter. Figure A2 shows
a visual representation of the action of this quantum logic gate on a qubit.

Ry(θ) =

[

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]

, (A2)

(a) Initial state (b) Apply Ry gate

x y

z

x y

z

Figure A2. Bloch sphere representation of the Ry(θ) gate acting on a single qubit. (a) shows the initial
qubit state, while (b) shows the state after applying this gate.

Appendix A.2. Ansatz

The optimization process of the algorithm is implemented through an ansatz, which is
a variational quantum circuit designed for specific problem-solving tasks. The ansatz is
composed of various quantum gates, including the Ry gate (introduced in Equation (A2)),
as well as Rx, Rz, and CNOT gates. The Rx and Rz gates perform rotations around the X
and Z axes of the Bloch sphere, respectively, allowing for adjustments to the phase and
amplitude of the quantum states. Figures A3 and A4 show the visual representation of the
individual action of these gates on a qubit. The CNOT gate, a two-qubit entangling gate,
introduces correlations between qubits, which are essential for harnessing the power of
entanglement in quantum algorithms. The matrix representations of these gates, provided
below, further detail their contributions to the ansatz structure.

Rx(θ) =

[

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

]

, (A3)

Rz(θ) =

[

e−iθ/2 0
0 eiθ/2

]

. (A4)

CNOT =











1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0











(A5)
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(a) Initial state (b) Apply Ry gate

x y

z

x y

z

Figure A3. Bloch sphere representation of the Rx(θ) gate acting on a single qubit. (a) shows the initial
qubit state, while (b) shows the state after applying this gate.

(a) Initial state (b) Apply Rz gate

x y

z

x y

z

Figure A4. Bloch sphere representation of the Rz(θ) gate acting on a single qubit. (a) shows the initial
qubit state, while (b) shows the state after applying this gate.

Appendix A.3. Measurements

Measurements at the end of the quantum circuit are carried out by projecting the
states of the qubits onto the Z basis, effectively collapsing the superposition states into
classical bits. This process is probabilistic, as the outcome depends on the quantum state
amplitudes defined during the encoding and optimization steps. To ensure reliable results,
a statistically significant number of measurements must be performed, with outcomes
aggregated to determine the probabilities of each result. This measurement step is critical
for extracting meaningful information from quantum computations.

Appendix A.4. Optimization

The optimization step is performed classically. In this step, the angles of the gates
in the ansatz are adjusted by a classical optimizer. This optimizer iteratively refines the
gate parameters to minimize a cost function that is typically related to the target problem
being solved. Once the optimizer determines new optimal angles, these updated angles are
applied to a new quantum circuit. The circuit retains the same structure as the previous
one but incorporates the new angles into the ansatz. This iterative process continues until
convergence is achieved or a predefined criterion is met, ensuring an efficient approach to
solving the problem at hand.

Appendix B. Standard Deviation

The monthly standard deviation obtained in each experiment is presented in this
section. Appendix B.1 shows the deviations obtained in the quantum experiments, while
Appendix B.2 shows the deviations obtained in the classical experiments.
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Appendix B.1. Quantum Experiments

Tables A1–A3 show the standard deviation obtained in the quantum experiments
carried out with 4, 8, and 19 features, respectively. The columns of the tables represent
each experiment and the number of layers used, while the rows represent the deviations
in each month. The last two rows represent the mean and median deviations over the
12-month period.

Table A1. Monthly standard deviation for quantum experiments with 4 features. The columns represent
each experiment with a number of 1, 3, and 5 variational layers, and the lines represent the months. The
last two lines show the 12-month mean and median of the mean absolute error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 175.8777 449.1271 579.0006 292.4347 781.3115 945.6261
Month 2 160.8550 454.754 541.9076 311.3989 697.3065 928.2651
Month 3 243.3442 517.2781 590.0444 324.5650 812.6765 100.6944
Month 4 348.6137 574.0108 598.8600 410.6001 871.5712 1111.7944
Month 5 384.9921 710.9180 472.9006 355.1420 780.3099 795.7520
Month 6 443.4344 770.3615 422.4470 326.7457 730.8906 498.5881
Month 7 345.1314 893.0815 746.0978 629.6234 858.7378 506.8464
Month 8 815.3586 990.5417 737.8833 707.0781 1085.2201 506.1400
Month 9 543.9914 982.4916 804.3594 871.3573 1055.3599 458.0408
Month 10 643.1245 810.9172 597.7432 578.6797 931.9728 502.1143
Month 11 738.7717 658.1062 395.4243 347.0588 1020.1457 794.2041
Month 12 905.4925 695.5312 451.0824 302.2530 1077.0132 679.5169

Mean 479.0823 708.8950 578.1459 454.7447 891.8763 727.3819
Median 414.2133 703.2246 584.5225 351.1004 865.1545 736.8605

Table A2. Monthly standard deviation for quantum experiments with 8 features. The columns represent
each experiment with a number of 1, 3, and 5 variational layers, and the lines represent the months. The
last two lines show the 12-month mean and median of the mean absolute error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 160.8833 252.3982 326.4278 121.1870 540.7551 466.1218
Month 2 389.2180 321.1851 321.9523 115.6250 544.9329 578.9061
Month 3 199.1200 407.9355 427.0799 116.9056 628.8543 312.7844
Month 4 317.9407 397.5779 462.1943 276.6656 595.7785 338.2273
Month 5 406.4636 597.9564 480.5169 345.8178 437.5681 255.3891
Month 6 710.3341 482.3563 550.8562 235.6304 739.2531 322.0360
Month 7 557.0957 722.5253 642.4665 575.8245 602.2518 353.3172
Month 8 1059.4827 621.9092 885.9215 693.9122 616.6715 352.7128
Month 9 758.2744 793.3121 874.5666 801.1654 976.0197 579.2410
Month 10 841.0811 915.8552 820.2909 697.0682 655.6456 514.6416
Month 11 793.1211 887.0502 612.1734 269.6858 615.5451 507.4711
Month 12 1245.5292 529.3304 646.7094 483.5458 799.0230 362.0224

Mean 619.8787 577.4493 587.5963 394.4194 646.0249 411.9059
Median 633.7149 563.6434 581.5148 311.2417 616.1083 357.6698
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Table A3. Monthly standard deviation for quantum experiments with 19 features. The columns represent
each experiment with a number of 1, 3, and 5 variational layers, and the lines represent the months. The
last two lines show the 12-month mean and median of the mean absolute error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 516.7164 494.9935 578.7277 355.9007 427.1650 521.0726
Month 2 572.1335 685.2427 280.9679 145.9410 421.7772 693.0295
Month 3 586.1252 738.5064 532.6228 675.5994 658.4324 688.9236
Month 4 598.8343 669.0032 586.9466 590.2582 758.9672 748.5518
Month 5 639.3816 539.5154 444.1018 266.6220 437.0098 685.1440
Month 6 1091.7456 705.1529 436.6959 519.9328 534.6220 579.4321
Month 7 999.3549 665.8485 439.2488 413.0658 689.7512 570.5552
Month 8 647.7254 797.2639 559.3305 932.4816 570.7285 670.7190
Month 9 967.2389 707.2880 587.0741 1128.5844 684.2530 737.8799
Month 10 1389.6125 641.6429 565.2284 1301.0933 705.1833 659.6317
Month 11 953.2446 811.4675 466.9461 920.2317 748.9888 479.6019
Month 12 995.1870 863.9411 424.4394 959.6248 798.4880 565.5388

Mean 829.7750 693.3222 491.8608 648.1113 619.6139 633.3400
Median 800.4850 695.1979 499.7845 632.9288 671.3427 665.1754

Appendix B.2. Classical Experiments

Table A4 shows the standard deviation obtained in the classical experiments carried
out with 4, 8, and 19 features. The columns of the table represent each experiment and the
number of features used, while the rows represent the deviations in each month. The last
two rows represent the average and median deviations over the 12-month period.

Table A4. Monthly standard deviation for classical experiments with 4, 8, and 19 features. The columns
represent each experiment with a number of 4, 8, and 19 features, and the lines represent the months.
The last two lines show the 12-month mean and median of the mean absolute error.

Classical Experiment 1 Classical Experiment 2
4 Features 8 Features 19 Features 4 Features 8 Features 19 Features

Month 1 308.17 515.30 983.76 99.29 189.26 263.49
Month 2 354.86 592.63 928.49 258.99 240.52 368.53
Month 3 528.00 597.08 684.88 221.78 155.91 158.13
Month 4 495.66 797.64 817.02 321.39 252.95 190.64
Month 5 472.31 703.64 676.05 333.65 171.95 136.29
Month 6 552.07 611.75 748.18 287.49 197.82 353.89
Month 7 484.05 613.97 494.19 346.032 230.98 327.44
Month 8 521.11 929.49 218,484.99 492.37 213.54 66,181.53
Month 9 766.99 729.89 217,021.29 573.75 204.83 87,269.59
Month 10 809.57 621.17 224,172.77 623.91 312.91 94,615.78
Month 11 797.50 760.97 231,876.29 322.52 218.21 63,811.92
Month 12 697.86 751.18 260,196.92 385.86 154.92 55,942.54

Mean 565.68 685.39 96,423.73 355.59 211,598 30,801.65
Median 524.55 662.40 956.13 328.09 209.19 361.21

Appendix C. Mean Absolute Error

The mean absolute error obtained in each experiment is presented in this sec-
tion. Appendix C.1 presents the errors obtained in the quantum experiments, while
Appendix C.2 presents the errors obtained in the classical experiments.

Appendix C.1. Quantum Experiments

Tables A5–A7 show the mean absolute error obtained in the quantum experiments
carried out with 4, 8, and 19 features, respectively. The columns of the tables represent
each experiment and the number of layers used, while the rows represent the errors in
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each month. The last row represents the average of the mean absolute errors over the
12-month period.

Table A5. Monthly mean absolute error for quantum experiments with 4 features. The columns
represent each experiment with a number of 1, 3, and 5 variational layers, and the lines represent the
months. The last line shows the 12-month mean of the mean absolute error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 650.18 401.92 530.33 792.33 1463.55 871.18
Month 2 1175.84 536.48 646.12 805.95 1469.63 951.18
Month 3 635.44 485.10 496.18 1117.42 1479.38 944.70
Month 4 299.90 453.46 513.00 804.10 1120.72 929.66
Month 5 334.44 707.43 858.72 1560.78 738.46 673.11
Month 6 493.43 658.21 842.96 2249.48 698.33 411.97
Month 7 733.64 886.78 717.68 2770.17 912.10 626.01
Month 8 1144.93 1027.13 827.18 2888.23 1013.24 867.35
Month 9 566.27 1390.83 1297.83 3154.11 885.93 522.42
Month 10 577.18 898.56 698.99 2561.83 1130.34 742.62
Month 11 596.82 1036.78 1036.90 1979.68 821.36 849.04
Month 12 982.13 792.25 641.45 2048.10 1066.48 1042.62

Mean 682.52 ± 284.14 772.91 ± 292.49 758.94 ± 234.12 1894.35 ± 865.87 1066.63 ± 279.64 785.98 ± 192.21

Table A6. Monthly mean absolute error for quantum experiments with 8 features. The columns
represent each experiment with a number of 1, 3, and 5 variational layers, and the lines represent the
months. The last line shows the 12-month mean of the mean absolute error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 512.12 732.27 401.66 1097.63 1217.56 951.43
Month 2 616.63 794.92 530.46 1091.54 1366.40 1290.20
Month 3 410.03 795.86 393.68 1316.14 1277.38 1179.36
Month 4 346.10 439.18 431.12 724.89 835.73 683.89
Month 5 398.91 585.06 832.43 1327.13 647.49 441.65
Month 6 850.79 427.59 632.40 2452.52 1028.89 1035.87
Month 7 760.58 767.84 921.27 2418.72 1075.02 993.72
Month 8 1008.91 782.52 1008.66 2852.20 938.75 1180.06
Month 9 705.20 1388.40 1597.51 2948.62 884.34 941.42
Month 10 692.89 952.77 1075.67 1764.08 916.54 935.58
Month 11 806.42 1036.14 1186.70 1923.66 684.19 899.97
Month 12 1408.56 596.32 881.29 1709.09 1053.04 1236.42

Mean 709.76 ± 297.93 774.90 ± 266.34 824.40 ± 366.91 1802.19 ± 730.42 993.78 ± 222.06 980.79 ± 239.93

Table A7. Monthly mean absolute error for quantum experiments with 19 features. The columns
represent each experiment with a number of 1, 3, and 5 variational layers, and the lines represent the
months. The last line shows the 12-month mean of the mean absolute error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 1290.76 1271.09 1184.78 2580.36 1465.18 1669.35
Month 2 1138.65 1341.46 1113.86 2454.71 1664.07 1878.59
Month 3 1012.17 864.44 852.39 1860.12 1122.22 1412.05
Month 4 990.79 990.92 1030.96 1660.29 801.17 1150.94
Month 5 522.95 651.76 533.07 1597.31 987.06 1119.59
Month 6 935.99 1132.94 1024.33 1732.11 785.72 775.02
Month 7 835.87 1570.97 1529.91 2496.80 1508.08 1190.74
Month 8 525.35 1240.00 1177.67 758.83 967.37 1232.49
Month 9 1090.46 710.54 629.81 1014.02 592.40 564.18
Month 10 2013.58 1264.20 1509.81 1208.45 623.42 892.39
Month 11 1442.46 638.46 791.39 967.58 552.07 365.82
Month 12 1899.93 977.43 1238.75 1241.23 879.85 647.64

Mean 1141.58 ± 465.98 1054.52 ± 298.52 1051.39 ± 311.39 1630.98 ± 625.66 995.71 ± 374.16 1074.90 ± 450.09
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Appendix C.2. Classical Experiments

Table A8 shows the mean absolute error obtained in the classical experiments carried
out with 4, 8, and 19 features. The columns of the table represent each experiment and the
number of features used, while the rows represent the error obtained in each month. The
last two rows represent the average and deviations over the 12-month period.

Table A8. Monthly mean absolute error for classical experiments with 4, 8, and 19 features. The
columns represent each experiment with a number of 4, 8, and 19 features, and the lines represent the
months. The last line shows the 12-month mean of the mean absolute error.

Classical Experiment 1 Classical Experiment 2
4 Features 8 Features 19 Features 4 Features 8 Features 19 Features

Month 1 1080.65 1214.68 1083.70 852.70 806.36 331.93
Month 2 772.14 1195.05 1083.74 549.44 886.17 497.79
Month 3 934.07 1513.97 1422.53 821.23 1255.03 700.34
Month 4 658.06 1244.07 806.78 332.87 781.47 229.77
Month 5 549.08 1104.81 796.94 272.64 584.70 97.59
Month 6 725.33 1006.55 894.82 380.18 1035.19 289.33
Month 7 909.29 1425.20 535.88 539.62 1021.39 262.57
Month 8 477.09 663.75 191,450.99 286.32 357.82 83,613.94
Month 9 967.82 663.77 207,996.69 1005.15 199.17 178,754.93
Month 10 802.83 645.03 232,189.14 850.08 302.93 129,657.59
Month 11 933.40 673.35 211,070.68 1136.52 557.77 175,224.64
Month 12 489.41 615.22 236,433.09 726.71 411.61 170,439.79

Mean 774.93 ± 199.39 997.12 ± 331.18 90,480.42 ± 111,210.54 646.12 ± 293.77 683.30 ± 332.37 79,695.14 ± 61,675.02

Appendix D. Mean Absolute Percentage Error

The mean absolute percentage error obtained in each experiment is presented in this
section. Appendix D.1 presents the errors obtained in the quantum experiments, while
Appendix D.2 presents the errors obtained in the classical experiments.

Appendix D.1. Quantum Experiments

Table A9. Monthly mean absolute percentage error for quantum experiments with 4 features. The
columns represent each experiment with a number of 1, 3, and 5 variational layers, and the lines
represent the months. The last line shows the 12-month mean of the mean absolute percentage error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 5.78 3.57 4.71 7.05 13.02 7.75
Month 2 10.58 4.83 5.82 7.25 13.23 8.56
Month 3 5.68 4.34 4.43 9.99 13.22 8.44
Month 4 2.57 3.88 4.39 6.88 9.59 7.96
Month 5 2.77 5.87 7.12 12.95 6.13 5.58
Month 6 4.13 5.51 7.06 18.83 5.85 3.45
Month 7 6.45 7.79 6.30 24.34 8.01 5.50
Month 8 10.04 9.01 7.25 25.33 8.89 7.61
Month 9 4.79 11.77 10.98 26.69 7.50 4.42
Month 10 5.02 7.82 6.08 22.30 9.84 6.46
Month 11 4.99 8.66 8.66 16.54 6.86 7.09
Month 12 8.49 6.85 5.55 17.71 9.22 9.01

Mean 5.94 ± 2.22 6.65 ± 2.34 6.53 ± 1.88 16.32 ± 6.93 9.28 ± 2.22 6.82 ± 1.53

Table A10. Monthly mean absolute percentage error for quantum experiments with 8 features. The
columns represent each experiment with a number of 1, 3, and 5 variational layers, and the lines
represent the months. The last line shows the 12-month mean of the mean absolute percentage error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 4.56 6.51 3.57 9.76 10.83 8.46
Month 2 5.55 7.16 4.77 9.82 12.30 11.61
Month 3 3.66 7.11 3.52 11.76 11.42 10.54
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Table A10. Cont.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 4 2.96 3.76 3.69 6.21 7.15 5.85
Month 5 3.31 4.85 6.91 11.01 5.37 3.66
Month 6 7.12 3.58 5.29 20.53 8.61 8.67
Month 7 6.68 6.75 8.09 21.25 9.44 8.73
Month 8 8.85 6.86 8.84 25.01 8.23 10.35
Month 9 5.97 11.75 13.52 24.95 7.48 7.97
Month 10 6.03 8.29 9.36 15.35 7.98 8.14
Month 11 6.74 8.66 9.91 16.07 5.72 7.52
Month 12 12.18 5.16 7.62 14.78 9.11 10.69

Mean 6.13 ± 2.38 6.70 ± 2.06 7.09 ± 2.81 15.54 ± 5.78 8.64 ± 1.87 8.52 ± 2.13

Table A11. Monthly mean absolute percentage error for quantum experiments with 19 features. The
columns represent each experiment with a number of 1, 3, and 5 variational layers, and the lines
represent the months. The last line shows the 12-month mean of the mean absolute percentage error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 11.48 11.31 10.54 22.95 13.03 14.85
Month 2 10.25 12.07 10.03 22.10 14.98 16.91
Month 3 9.05 7.73 7.62 16.63 10.03 12.62
Month 4 8.48 8.48 8.82 14.21 6.86 9.85
Month 5 4.34 5.41 4.42 13.25 8.19 9.29
Month 6 7.84 9.48 8.57 14.50 6.58 6.49
Month 7 7.34 13.80 13.44 21.93 13.25 10.46
Month 8 4.60 10.87 10.33 6.66 8.48 10.81
Month 9 9.23 6.01 5.33 8.58 5.01 4.77
Month 10 17.53 11.00 13.14 10.52 5.43 7.77
Month 11 12.05 5.33 6.61 8.08 4.61 3.06
Month 12 16.43 8.45 10.71 10.73 7.61 5.60

Mean 9.88 ± 3.71 9.16 ± 2.53 9.13 ± 2.74 14.18 ± 4.74 8.67 ± 3.27 9.37 ± 3.86

Appendix D.2. Classical Experiments

Table A12. Monthly mean absolute percentage error for classical experiments with 4, 8, and features.
The columns represent each experiment with a number of 4, 8, and 19 features, and the lines represent
the months. The last line shows the 12-month mean of the mean absolute percentage error.

Classical Experiment 1 Classical Experiment 2
4 Features 8 Features 19 Features 4 Features 8 Features 19 Features

Month 1 9.61 10.80 9.64 7.58 7.17 2.95
Month 2 6.95 10.76 9.76 4.95 7.98 4.48
Month 3 8.35 13.53 12.71 7.34 11.22 6.26
Month 4 5.63 10.65 6.91 2.85 6.69 1.97
Month 5 4.56 9.17 6.61 2.26 4.85 0.81
Month 6 6.07 8.43 7.49 3.18 8.67 2.42
Month 7 7.99 12.52 4.71 4.74 8.97 2.30
Month 8 4.18 5.82 1679.05 2.51 3.14 733.31
Month 9 8.19 5.62 1759.88 8.50 1.68 1512.47
Month 10 6.99 5.61 2021.14 7.40 2.64 1128.63
Month 11 7.80 5.62 1763.24 9.50 4.66 1463.79
Month 12 4.23 5.32 2044.47 6.28 3.56 1473.82

Mean 6.71 ± 1.61 8.65 ± 2.74 777.13 ± 841.90 5.59 ± 2.08 5.93 ± 2.56 527.77 ± 599.01
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Appendix E. Mean Squared Error

Appendix E.1. Quantum Experiments

Table A13. Monthly mean squared error for quantum experiments with 4 features. The columns
represent each experiment with a number of 1, 3, and 5 variational layers, and the lines represent the
months. The last line shows the 12-month mean of the mean squared error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 4.51 × 105 2.39 × 105 3.69 × 105 7.05 × 105 2.45 × 106 1.21 × 106

Month 2 1.41 × 106 4.37 × 105 5.26 × 105 7.37 × 105 2.53 × 106 1.32 × 106

Month 3 4.57 × 105 2.78 × 105 3.42 × 105 1.34 × 106 2.54 × 106 1.39 × 106

Month 4 1.53 × 105 4.73 × 105 5.86 × 105 7.98 × 105 1.53 × 106 1.26 × 106

Month 5 1.35 × 105 9.53 × 105 9.39 × 105 2.55 × 106 7.09 × 105 5.80 × 105

Month 6 2.99 × 105 9.33 × 105 8.71 × 105 5.16 × 106 6.20 × 105 2.24 × 105

Month 7 6.68 × 105 1.19 × 106 8.19 × 105 7.75 × 106 1.12 × 106 5.96 × 105

Month 8 1.74 × 106 1.61 × 106 9.34 × 105 8.47 × 106 1.39 × 106 9.68 × 105

Month 9 4.16 × 105 2.68 × 106 2.01 × 106 1.00 × 107 1.07 × 106 4.14 × 105

Month 10 4.72 × 105 1.06 × 106 6.28 × 105 6.62 × 106 1.57 × 106 7.37 × 105

Month 11 5.18 × 105 1.46 × 106 1.22 × 106 4.03 × 106 9.90 × 105 1.01 × 106

Month 12 1.35 × 106 9.83 × 105 5.95 × 105 4.28 × 106 1.52 × 106 1.37 × 106

Mean
6.72 × 105 ±

4.00 × 105
1.02 × 106 ±

6.88 × 105
8.20 × 105 ±

4.98 × 105
4.37 × 106 ±

2.36 × 106
1.50 × 106 ±

6.52 × 105
9.23 × 105 ±

4.34 × 105

Table A14. Monthly mean squared error for quantum experiments with 8 features. The columns
represent each experiment with a number of 1, 3, and 5 variational layers, and the lines represent the
months. The last line shows the 12-month mean of the mean squared error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 2.86 × 105 5.94 × 105 2.35 × 105 1.22 × 106 1.75 × 106 1.10 × 106

Month 2 4.47 × 105 7.25 × 105 3.75 × 105 1.20 × 106 2.13 × 106 1.97 × 106

Month 3 2.04 × 105 7.83 × 105 2.57 × 105 1.74 × 106 1.99 × 106 1.48 × 106

Month 4 1.70 × 105 2.67 × 105 2.50 × 105 5.94 × 105 8.84 × 105 5.71 × 105

Month 5 2.42 × 105 4.18 × 105 8.87 × 105 1.87 × 106 5.92 × 105 2.54 × 105

Month 6 1.06 × 106 3.28 × 105 5.46 × 105 6.06 × 106 1.31 × 106 1.17 × 106

Month 7 8.11 × 105 6.86 × 105 9.48 × 105 5.97 × 106 1.45 × 106 1.10 × 106

Month 8 1.61 × 106 7.27 × 105 1.38 × 106 8.32 × 106 1.21 × 106 1.52 × 106

Month 9 7.26 × 105 2.41 × 106 2.99 × 106 8.78 × 106 1.03 × 106 1.11 × 106

Month 10 6.80 × 105 1.37 × 106 1.57 × 106 3.49 × 106 1.15 × 106 1.11 × 106

Month 11 9.36 × 105 1.46 × 106 1.75 × 106 3.77 × 106 6.26 × 105 1.04 × 106

Month 12 3.08 × 106 4.89 × 105 1.15 × 106 3.13 × 106 1.49 × 106 1.65 × 106

Mean
8.54 × 105 ±

7.39 × 105
8.55 × 105 ±

5.70 × 105
1.03 × 106 ±

7.15 × 105
3.85 × 106 ±

2.07 × 106
1.30 × 106 ±

5.56 × 105
1.17 × 106 ±

4.58 × 105

Table A15. Monthly mean squared error for quantum experiments with 19 features. The columns
represent each experiment with a number of 1, 3, and 5 variational layers, and the lines represent the
months. The last line shows the 12-month mean of the mean squared error.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 1 1.91 × 106 1.84 × 106 1.71 × 106 6.77 × 106 2.31 × 106 3.03 × 106

Month 2 1.59 × 106 2.22 × 106 1.31 × 106 6.04 × 106 2.93 × 106 3.96 × 106

Month 3 1.33 × 106 1.20 × 106 9.82 × 105 3.87 × 106 1.65 × 106 2.42 × 106

Month 4 1.30 × 106 1.38 × 106 1.28 × 106 3.07 × 106 1.08 × 106 1.75 × 106

Month 5 4.01 × 105 6.40 × 105 4.26 × 105 2.62 × 106 1.15 × 106 1.68 × 106

Month 6 1.39 × 106 1.73 × 106 1.22 × 106 3.24 × 106 8.46 × 105 9.03 × 105
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Table A15. Cont.

Experiment 1 Experiment 2
1 Layer 3 Layers 5 Layers 1 Layer 3 Layers 5 Layers

Month 7 9.67 × 105 2.93 × 106 2.48 × 106 6.36 × 106 2.65 × 106 1.70 × 106

Month 8 3.77 × 105 2.02 × 106 1.61 × 106 8.48 × 105 1.14 × 106 1.91 × 106

Month 9 1.72 × 106 7.92 × 105 5.83 × 105 1.37 × 106 4.76 × 105 6.51 × 105

Month 10 5.15 × 106 1.95 × 106 2.54 × 106 1.75 × 106 5.42 × 105 1.15 × 106

Month 11 2.90 × 106 7.33 × 105 8.23 × 105 1.19 × 106 5.05 × 105 2.53 × 105

Month 12 4.50 × 106 1.57 × 106 1.70 × 106 1.89 × 106 8.39 × 105 6.90 × 105

Mean
1.96 × 106 ±
1.29 × 106

1.58 × 106 ±
6.39 × 105

1.39 × 106 ±
6.87 × 105

3.25 × 106 ±
1.91 × 106

1.34 × 106 ±
7.34 × 105

1.67 × 106 ±
1.04 × 106

Appendix E.2. Classical Experiments

Table A16. Monthly mean squared error for classical experiments with 4, 8 and 19 features. The
columns represent each experiment with a number of 4, 8 and 19 features, and the lines represent the
months. The last line shows the 12-month mean of the mean squared error.

Experiment 1 Experiment 2
4 Features 8 Features 19 Features 4 Features 8 Features 19 Features

Month 1 1.25 × 106 1.71 × 106 1.90 × 106 7.36 × 105 6.82 × 105 1.45 × 105

Month 2 7.10 × 105 1.74 × 106 1.95 × 106 3.62 × 105 8.37 × 105 3.63 × 105

Month 3 1.12 × 106 2.61 × 106 2.45 × 106 7.19 × 105 1.60 × 106 5.13 × 105

Month 4 5.92 × 105 2.06 × 106 1.11 × 106 1.70 × 105 6.68 × 105 8.55 × 104

Month 5 4.35 × 105 1.67 × 106 8.97 × 105 1.03 × 105 3.68 × 105 1.77 × 104

Month 6 7.87 × 105 1.35 × 106 1.18 × 106 1.85 × 105 1.11 × 106 1.72 × 105

Month 7 1.06 × 106 2.37 × 106 4.64 × 105 3.56 × 105 1.08 × 106 1.02 × 105

Month 8 3.90 × 105 6.08 × 105 5.00 × 1010 1.53 × 105 1.70 × 105 8.06 × 109

Month 9 1.15 × 106 6.14 × 105 6.98 × 1010 1.10 × 106 5.65 × 104 3.63 × 1010

Month 10 9.54 × 105 6.45 × 105 9.01 × 1010 8.30 × 105 1.08 × 105 2.40 × 1010

Month 11 1.23 × 106 7.69 × 105 8.20 × 1010 1.39 × 106 3.54 × 105 3.44 × 1010

Month 12 4.39 × 105 5.14 × 105 8.58 × 1010 6.62 × 105 1.91 × 105 3.19 × 1010

Mean
8.44 × 105 ±

3.12 × 105
1.39 × 106 ±

7.14 × 105
3.15 × 1010 ±

3.84 × 1010
5.64 × 105 ±

3.95 × 105
6.02 × 105 ±

4.62 × 105
1.12 × 1010 ±
1.49 × 1010
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