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Chapter 1

Introduction

1.1 Inside hadrons

An outstanding problem in particle physics is the description of the structure of

hadrons in terms of their elementary degrees of freedom, quarks and gluons (collec-

tively called partons). The most common hadrons are protons and neutrons, which

build the atomic nuclei and make up almost all the visible mass of the universe.

The fundamental theory that governs the interactions between partons is called

Quantum Chromo-Dynamics (QCD). This is a non-abelian gauge theory with local

gauge group SU(3). Similarly to the theory of electrodynamics (QED), where the

electric charge is defined with respect to the U(1) symmetry, in QCD we associate

the so-called color charges to the symmetry group SU(3). The peculiarity of QCD is

that the strength of the interaction between partons through their color charges, varies

considerably with the energy scales, being strong at low energies and progressively

becoming weaker as the energy increases, as shown in Fig. 1.1.

Hadrons at very short distances correspond to an infinite number of almost free

partons, only weakly interacting through their color (and electroweak) charges. The

appropriate degrees of freedom in the description are no longer the hadrons them-

selves, but the elementary fields. This regime of QCD is called asymptotic free-

dom [1,2]. Perturbative QCD (pQCD) methods are valid tools, because the coupling

constant of the color interaction is weak, and the interacting theory can be com-
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Chapter 1 · Introduction

puted as a perturbation of the free theory. As soon as the energy gradually decreases,

asymptotically free partons are replaced by strongly coupled constituents [3,4], which

are effectively described as a cloud of gluons and quark-antiquark pairs. The partons

appear confined inside the hadrons, and the theoretical tools available to describe

hadronic structure cannot rely any longer upon perturbation theory.

As a matter of fact, a colored particle has never been detected, and only hadrons

can eventually be observed in the detectors. It is impossible to tear them apart

to measure the constituents directly, without creating new colorless hadrons, inside

which the color interaction is contained. Information on the constituents is derived

indirectly and a consistent framework needs to be developed.

Figure 1.1: The QCD coupling constant αs(Q) from different measurements, as a function of the
energy scale Q. Figure taken from ref. [5].
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1.2 Multidimensional imaging of hadrons

1.2 Multidimensional imaging of hadrons

Several properties of hadrons, such as their mass and spin, are intimately connected

to the dynamics of partons and their distributions in position and momentum space.

High-energy processes are the perfect tools to access indirect information on quarks

and gluons at different energy and distance scales. Since both the long- and short-

distances are probed, the description of such processes contains a perturbative (cal-

culable) part and a nonperturbative part. Extracting information on the latter from

experiments must rely on a solid theoretical framework.

Parton distributions

The fundamental objects which contain the nonperturbative information about the

hadron structure in terms of the constituents are called correlators. They are not

calculable directly and can be parametrized in terms of multidimensional parton dis-

tribution functions, each of them related to different portions of the hadron phase

space.

For instance, the information about the longitudinal fraction of momentum, car-

ried by the partons, is encoded in the parton distribution functions (PDFs), while the

complete information on the motion of partons in the three-dimensional (longitudinal

and transverse) momentum space is contained in the transverse momentum depen-

dent parton distributions (TMDPDFs or TMDs). A complementary picture to the

TMDs, in a different three-dimensional portion of the hadron phase-space, is given

by the Generalized Parton Distributions (GPDs). The combined knowledge encoded

in TMDs and GPDs provides information on the transverse structure of the hadron

in momentum and coordinate space.

To reach a thorough description of the hadron structure, we also need to look

at multiple partons at the same time. If we restrict ourselves to the simplest two-

parton correlations, this information is encoded in the double parton distributions

(DPDs), which are functions of the longitudinal momentum carried by two partons

and their relative separation in the transverse plane. DPDs are accessible in exper-

iments in which two high-energetic scatterings occur simultaneously (double parton

scatterings).

All the functions mentioned above include the information on the parton spin,

and, in the DPDs case, on the other quantum numbers of the partons. If the target

spin states are also included in the description, the number of functions increases and

the information acquired comprehends several kind of spin correlations between the

partons and the hadron. However, not all the functions are involved at the same time
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Chapter 1 · Introduction

in the computation of the cross-section of high energy processes. Depending on the

specific process, the polarization state of the hadron, and the detected final states,

different projections of the hadron structure become accessible.

Combining the different parton distributions is similar to a mosaic: each piece

comes from a different place and occupies a relevant position on its own, but the final

picture is complete only once all the tiles are assembled. Aiming for such a complete

knowledge is indispensable to address the fundamental questions about the origin of

hadron mass and spin, and the mechanism of confinement.

Light-front wave functions

When dealing with nonperturbative quantities, one needs to select the most suitable

framework carefully. It is especially convenient to use the light-front quantization

of QCD, i.e. a formulation of the theory of QCD obtained by using a different time

component (light-cone time) than the usual one. Light-front QCD is widely employed

in the field of high-energy physics, as it represents a very natural choice of frame for

describing the hadron in this kinematic regime. In addition, the use of the light-front

formulation allows to express the hadron state in terms of frame-independent quan-

tities called light-front wave functions (LFWFs), that have a semiclassical interpre-

tation. Similarly to the correlators, the LFWFs are nonperturbative objects, whose

form cannot be precisely determined. In practice, the LFWFs are not directly ex-

tracted from experiments, they rather represent a powerful tool in model calculations:

modeling the LFWFs allows in principle to formally derive an explicit expression for

many parton distributions at the same time. Because of their central theoretical role,

they are considered the fundamental objects to describe the hadron [6].

1.3 This thesis

In this thesis we present a selection of topics that explore and develop certain aspects

of the hadron structure. We shortly discuss the motivations behind the choice of the

material included in the next chapters and the existing connections. We conclude this

section with an outline of the content of the manuscript.

As previously mentioned, one of the fundamental questions that arise in hadronic

physics concerns the origin of the proton spin, and how it generates in terms of

parton spin and angular momentum [7, 8]. Spin-dependent parton functions become

therefore the relevant observable to be after. The polarization of partons can be

studied in inclusive processes only if the polarization of the parent hadron is included
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1.3 This thesis

as well. This is directly connected to the fact that spin-dependent PDFs only exist if

the hadron is polarized.

One might wonder whether additional degrees of freedom enable the study of

spin-dependent distributions, both in polarized and unpolarized hadrons. Despite

not being the only possibilities, in this thesis we analyze two directions that lead to

the description of polarized partons:

1. Inclusion of parton transverse momenta. By extending the treatment to the

transverse momenta a wide range of possibilities opens up. For instance, it is

possible to probe the spin of partons in the transverse plane with respect to

the target momentum, even if no direction for the spin of the parent hadron

has been chosen. Also, many more spin-dependent effects arise when polarized

hadrons are considered. The functions encoding this information are the TMDs,

defined for quarks and gluons in unpolarized and polarized targets.

2. Double parton interactions. Since partons carry spin, their polarization states

can be correlated inside the proton. When two of them are selected simulta-

neously they can be described in terms of spin-dependent functions, also when

the parent hadron is unpolarized. This kind of inter-parton spin correlations

are encoded in the DPDs, and are typical of double parton scattering (DPS)

processes.

TMDs and DPDs are particularly interesting because they allow for the study

of polarized partons in hadrons in a complementary way: from the TMDs we can

extract information on the spin-spin and spin-orbit correlations between the parton

and the hadron. On the other hand, the analysis of double parton interactions allows

to access the spin correlations between the two partons. More in general, they both

enable to study the spin of the partons, even in the absence of hadron polarization.

The outline of the thesis is as follows:

In Chapter 2 we discuss the correlation functions as arising from the factorized

formula of the cross section of hadron-hadron collision. We define the relevant matrix

elements for quarks and gluons, in single and double parton scattering. We char-

acterize the general features of correlators, such as their symmetry properties. We

discuss the concept of universality, i.e. the property of correlators to appear (or not)

identically in all process calculations. This is in particular linked to the presence of
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Chapter 1 · Introduction

transverse gauge links, introduced in the definition of the operators to ensure gauge

invariance, which will also be discussed. The common choice of using light-front vari-

ables in high-energy process description is extensively motivated in the second part of

the chapter, and we discuss the advantages of using the Light-Front Wave Functions

(LFWFs) to modeling the hadronic state. The convenient features of the LFWFs will

be recalled in Chapter 5, where we present an explicit example of the use of LFWFs

as unifying framework to model hadronic observables.

In Chapter 3 we devote our efforts entirely to the study of TMDs, for quarks and

gluons in hadrons of spin up to 1. In particular, gluons are of utmost importance at

very high-energy, corresponding to small momentum fractions carried by the partons,

where they dominate over the valence quarks. Being massless spin-1 objects inside

the hadrons, their dynamics is described by many spin-dependent functions. We

present the complete parametrization of the correlator for unpolarized targets, as

well as vector and tensor polarized one, in fact allowing the descriptions of gluons in

momentum space of hadrons (and nuclei) of spin up to 1. We also derive positivity

bounds, i.e. relations between the TMDs that allow to relate the functions and to

estimate their magnitude.

In Chapter 4 we consider the picture of the proton resulting from the two-partons

interactions. Particular attention is given to spin and kinematic correlations between

the two quarks. We chose a process that is particularly suitable to look at double

parton scatterings: the production of a pair of same-sign W boson at the LHC. Hence,

the effects of parton polarization are investigated, not only at the level of partonic

interactions but also including the analysis of final states.

In Chapter 5 we analyze a simpler case, and we present a study of the transverse

structure of the pion in terms of its valence quarks. We use an attractive approach

based on the calculation of the LFWFs from the AdS/QCD correspondence to calcu-

late the valence quark TMDs. The pion is a spin-0 hadron, and by definition, it has no

polarization degrees of freedom. Thanks to the inclusion of the transverse momentum,

one can access both unpolarized and polarized quark TMDs in the pion. However,

the spin structure is not included in the theoretical formulation of AdS/QCD, and

it is therefore not discussed. Being the AdS/QCD correspondence a theory whose

validity lies in the intersection between the perturbative and nonperturbative QCD

domain we also discuss the QCD running coupling behavior in this context.

The covered material aims to give a contribution to the current description of

hadronic physics, especially towards less investigated and explored aspects such as

the gluonic content of spin-1 hadrons and nuclei, the multiparton correlations in the

proton, and the study of quark TMDs in the pion.

6



1.3 This thesis

We conclude the dissertation with some discussions and possible outlook in Chap-

ter 6.
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Chapter 2

QCD and hadronic

interactions

2.1 Introduction

In this Chapter, we introduce the relevant concepts that will be developed throughout

the dissertation. In particular, we dedicate the first part of the chapter to the parton

correlation functions, or correlators. These are general objects: they can be defined

for quarks and gluons, in single and double parton scattering. They are used in all

high-energy process formulae that involve hadrons and contain the full information on

partonic correlations, in a way that will be specified in the next sections and comple-

mented in Chapter 3 and 4. Assuming always factorization between the high and low

energy scales, we first discuss the concept of transverse momentum dependent (TMD)

single parton correlator in Drell-Yan process. As a straightforward generalization, the

concept of double parton correlator is introduced. The latter is the relevant quantity

that enters the cross section of a double parton scattering (DPS) process.

From the analysis of the kinematics of high-energy processes, it appears natural to

adopt light-cone coordinates. Besides being a very convenient choice in practice, using

light-cone coordinates can provide unique insights into the description of the hadron

9
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state. In the second part of the chapter, we summarize the advantages deriving from

the quantization of quantum field theories on the light-cone and focus on the special

features acquired by the relativistic hadronic wave functions in this framework.

2.2 Hadronic collisions

High-energy processes are powerful tools to investigate the hadron internal structure.

Loosely speaking, they consist of the interaction of a probe with point-like partons

extracted from the hadron, followed by the production of final states.

There are two energy scales involved: the hadron mass scale, of the order of ∼ 1

GeV, and the partonic scattering mass scale, typically much higher (e.g., ∼ 80 GeV if a

W boson is produced). The two regimes are well-separated in energies and they occur

at distances (and time) which are substantially different. This allows one to write the

cross section formula as a convolution of two distinct pieces: the partonic cross section,

calculable with standard perturbation theory methods (Feynman rules involving free

fields), convoluted with a nonperturbative object representing the probability for the

parton to be “selected” from the hadron to enter the process. This picture constitutes

the basic idea of the parton model [9,10]. We distinguish a hard part, containing all the

perturbative contributions, from a soft part, where the low-energy hadronic physics

is contained. The factorization between the hard and soft physics implies that all the

contributions that connect the two regions either cancel out or they are absorbed into

the definition of the nonperturbative quantities in a well-defined way.

In the early stages of the theoretical and experimental investigation of hadrons only

the components of the parton momenta collinear to the parent hadron were considered.

It is possible to directly generalize the parton model in order to include transverse

partonic momenta. A further generalization was introduced by Politzer [11] and is

referred to as diagrammatic approach. It introduces in a field theoretical language the

more structured concept of correlator, also accounting for the extraction of more than

one parton from the hadron. Thanks to this approach the cross section for a generic

scattering process can be derived and the factorized formulae will contain correlators

instead of free external fields.

The correlators defined in the factorized cross section formulae contain all the

nonperturbative information about hadrons and can be used to describe both the dis-

tribution of partons inside the hadron and the fragmentation of parton into hadrons,

in coordinate and momentum space. In this thesis we will not discuss fragmenta-

tion processes and the term correlator will refer to the distributions, unless otherwise

specified.

10



2.2 Hadronic collisions

Most common high-energy processes involving hadrons

Experiments involving hadrons give access to a variety of different partonic func-

tions. Including fragmentation processes only for completeness, the most important

categories of processes are:

• Inclusive deep inelastic scattering (DIS): inclusive lepton scattering off a proton

lp→ l′X.

• Semi-inclusive deep inelastic scattering (SIDIS): one-particle inclusive lepton

scattering off a proton lp→ l′hX.

• Proton-proton collision (pp) and Drell-Yan process (DY): production of W,Z, γ∗

boson and subsequent leptonic decay pp→ ll̄X. We include within this category

also the Higgs boson or heavy quark pair production through the gluon fusion.

• Electron-positron annihilation (e+e−): lepton anti-lepton annihilation and pro-

duction of hadrons ll̄→ hX. This process involves the nonperturbative physics

in the fragmentation region (i.e. in the production of hadrons in the final state).

• Deeply virtual Compton scattering (DVCS): exclusive process of a virtual pho-

ton off a proton and consequent production of a real photon and the proton

with momentum changed into p′, namely γ∗p→ γp′.

• Elastic processes: low-energy scattering between an electron and the proton,

such that the proton remains intact, with final momentum changed into p′.

Each process is relevant to the extraction of hadronic observables. For instance,

inclusive DIS can give information on the distribution of the partons along the same

direction of the proton momentum, but it is not suitable to access multi-dimensional

distributions. On the other hand, SIDIS, e+e−, and DY can be implemented such that

the transverse motion of the partons, both in the initial proton and in the fragmented

final hadrons, can be accessed. Elastic and exclusive processes are sensitive to the

distribution of partons in the transverse coordinate space and longitudinal momenta.

The processes are schematically depicted in Fig. 2.1 and Fig. 2.2.

The study of these processes relies on the validity of factorization, rigorously

demonstrated in all cases when the longitudinal momentum of the partons are con-

sidered [12]. Inclusion of transverse momenta requires a generalized form of the

collinear factorization theorems [13–15]. Factorization holds true in most of the pro-

cess above [14–16]. Examples of factorization-breaking contributions regard those pro-

cesses in which color plays a nontrivial role in the production of the final states [17–21].
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(a) (b)

(c)
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Figure 2.1: Pictorial representation of the high energy processes described in the text. The grey
area generically represents the nonperturbative physics. (a) DIS: access to quark and gluon PDFs;
(b) SIDIS: access to PDFs and TMDs, both for quarks and gluons; (c) pp collisions (e.g. DY): access
to PDFs, TMDs, DPDs for quarks and gluons.

In the context of pp collision it has been shown that factorization holds true also in the

case of two hard scatterings occurring independently, when the longitudinal momenta

of the partons are considered. The same result hold true for transverse momenta but

only in the context of the production of colorless final states [22, 23]. Finally, the

DVCS exclusive process has been proven to factorize in [24]. Factorized formulae for

the DY cross section calculations will be employed in the rest of this thesis.

Light-cone coordinates and Sudakov decomposition

Throughout the thesis, light-cone coordinates will be used. As will be discussed in

Section 2.6 this has more meaning than a simple choice of frame. In fact, the theory

of high-energy processes is naturally quantized on the light-front (LF).
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2.2 Hadronic collisions

(a) (b)

P

�
�⇤

X P
P 0

�⇤

l l0

Figure 2.2: Pictorial representation of the high energy processes desrcribed in the text. The grey
area generically represents nonperturbative physics. (a) DVCS: access to quark and gluon GPDs at
the amplitude level; (b) elastic scattering: access to electromagnetic form factors.

Choosing a light-like basis corresponds to having two light-like vectors nµ+ and nµ−
satisfying:

n+ · n− = 1, n2
+ = n2

− = 0, (2.1)

such that any four-vector a can be written as:

aµ = a+nµ+ + a−nµ− + aµT , (2.2)

where the transverse four-vector aµT has non-vanishing components a1, a2. For in-

stance, the momentum of the proton traveling along the z-direction, satisfying the

constraint P 2 = M2, reads:

Pµ = P+nµ+ +
M2

2P+
nµ−, (2.3)

while the parton extracted from the proton with fraction of longitudinal momentum

x and value of transverse momentum kT is:

kµ = xP+nµ+ + kµT + k−nµ−. (2.4)

If P+ becomes very large, the proton momentum probes the light-cone, namely the

minus component becomes insignificant and the mass is negligible compared to the

hard scale of the process.

13



Chapter 2 · QCD and hadronic interactions

Alternatively, one can employ a Sudakov-like decomposition for the vectors, which

is a more general choice of basis. That is, we choose the momentum of the proton Pµ

as being one element of the basis. The other element is a four-vector nµ that satisfies

P ·n = 1, which forces nµ to have dimension [mass]−1 (since Pµ has mass dimensions).

Further demanding P 2 = M2, any four-vector in this frame can be written using a

Sudakov decomposition:

aµ = (a · n)Pµ + aµT +
[
a·P − (a · n)M2

]
nµ, (2.5)

where the transverse vector aµT is now defined in the transverse directions with respect

to n and P . In particular, the parton momentum is expressed in terms of the proton

momentum as:

kµ = xPµ + kµT + (k·P − xM2)nµ, (2.6)

where we have defined x = k · n.

The Sudakov decomposition has the advantage that n can be specified each time

depending on the kinematics of the process. This will be preferred as far as the

parametrizations and definitions in Chapter 3 are concerned. The vector decomposi-

tions in terms of the light-like basis, as in eq. (2.2), is useful in process calculations

and will be used extensively in Section 2.3 and 2.4 and other explicit cross section

calculations.

2.3 TMD correlator from Drell-Yan process

As originally conceived by Drell and Yan [25], the Drell-Yan process consists of the

production, in pp collisions, of a pair of lepton-antilepton as the result of a virtual

photon decay. Processes in which any of the electroweak gauge bosons are produced

will be also referred to as Drell-Yan processes. As an extension, we call double Drell-

Yan process the production of two electroweak bosons in the context of double parton

scattering (see Section 2.4). The final state distributions of these types of processes

are sensitive to the proton structure.

The cross section is calculated using the diagrammatic approach, following the

simplified procedure outlined in [26]. We choose a frame where the two protons

collide along the z-direction, and they have a large and opposite component of the

momentum along this axes. This means that the momentum P of the (conventionally)

left-moving proton is dominated by the plus component P+, while the momentum P̄ of

the right-moving proton has large minus component P̄− (see eq. (2.3)). The produced

electroweak boson has momentum q that defines the hard scale of the process q2 = Q2.

14



2.3 TMD correlator from Drell-Yan process

The latter is much higher than a typical hadronic scale Λ of the order of the proton

mass, i.e. Q2 � Λ2 in the high-energy limit. The square of the centre of mass (CM)

energy is (P + P̄ )2 = s, and in the deep inelastic limit one has Q2, s → ∞, keeping

the ratio τ = Q2/s finite. The cross section reads:

dσ =
1

F
∏

f

d3Pf
(2π)32P 0

f

|M|2 (2π)4δ(4)(P + P̄ −
∑

f

Pf ), (2.7)

where F is the flux factor, and the subscript f generically labels all the momenta of

the final states crossing the final state cut in Fig. 2.3.

P

P̄

k̄

k k

k̄

�

�̄

P

P̄

H

(a) (b)

{X}

{X̄}

k k

�(x, kT ; P )

Figure 2.3: Left-side: diagram of a Drell-Yan process. Right-side: pictorial representation of the
quark TMD correlator.

One must bear in mind that there are no free fields ultimately involved: the spinors

that enter the hard scattering are extracted from the proton through a nonpertur-

bative process. Therefore, we substitute free spinors (or polarization vectors in the

gluon case) with hadronic matrix elements in the scattering amplitudeM. Assuming

factorization between the three blobs in Fig. 2.3(a), and introducing the complete set

of intermediate states {|X〉}, {|X̄〉} one has:
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Chapter 2 · QCD and hadronic interactions

dσ

dR =
(2π)4

2s

∑

X

∫
d3PX

(2π)32P 0
X

∫
d4k

(2π)4

d4k′

(2π)4
d4ξd4ξ′eik·ξ−ik

′·ξ′

×
∑

X̄

∫
d3PX̄

(2π)32P 0
X̄

∫
d4k̄

(2π)4

d4k̄′

(2π)4
d4ξ̄d4ξ̄′eik̄·ξ̄−ik̄

′·ξ̄′

× 〈P |ψ(ξ′) |X〉 〈X|ψ(ξ) |P 〉 〈P̄ |ψ(ξ̄′) |X̄〉 〈X̄|ψ(ξ̄) |P̄ 〉
×H(k, k′, k̄, k̄′)δ(4)(P + P̄ − PX − PX̄ − q), (2.8)

where, for the sake of simplicity, we temporarily omit the dependence on the hadron

spin and write the state simply as |P 〉. We denote the hard part as H(k, k′, k̄, k̄′)
and leave it unspecified, as not relevant for the present discussion. Also the Dirac

indices on the fermion fields and in the hard part are understood. The flux factor is

F = 4
√

(P · P̄ )2 −M4 ≈ 2s, the n-particle phase factor is:

dR =

n∏

f=1

d4qf
(2π)4

, (2.9)

and the completeness condition on the intermediate sets:

∑

X

∫
d3PX

(2π)32P 0
X

|X〉 〈X| = 1. (2.10)

We skip the details of the derivation of the cross section formula and list the

main steps towards the definition of the quantities relevant to our discussion. Using

the completeness (2.10) of the intermediate states one can get rid of the transition

matrix elements that appear in (2.8), such that the only matrix elements that are

left contain the expectation values of the fermion fields between the proton state.

Moreover, translational invariance allows us to shift the position of the fields, as the

matrix elements only depend on the difference of the positions. Finally, using the

momentum conservation relations one can write the cross section in terms of the hard

part and the correlation functions as:

dσ

dR ∼
∫

d4k d4 k̄δ(4)(k + k̄ − q)Hαβγδ(k, k̄, q)Φαβ(k, P )Φ̄γδ(k̄, P̄ ), (2.11)

where we have reinserted the Dirac indices α, β, γ, δ and defined the fully unintegrated
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2.3 TMD correlator from Drell-Yan process

quark correlation function as:

Φαβ(k;P ) ≡
∫

d4ξ

(2π)4
eik·ξ 〈P |ψβ(0)ψα(ξ) |P 〉 , (2.12)

and for the antiquark:

Φγδ(k̄;P ) ≡
∫

d4ξ

(2π)4
e−ik̄·ξ̄ 〈P |ψδ(0)ψγ(ξ̄) |P 〉 , (2.13)

The (2.12) is a matrix in Dirac space which depends on the momentum of the parton,

the momentum and the spin of the proton. A trace over color is understood and we

will later give further details on the color structure of the correlators. The quantity

in (2.12) is a fundamental object that encodes all the nonperturbative physics in

the high-energy processes. Choosing the light-like basis as in (2.2), the hierarchies

of the momentum components, dictated by the high-energy kinematics, become the

guiding criteria to identify the relevant components and rewrite the delta function

in (2.11). As already mentioned, the dominant component of the proton P (P̄ ) is

the plus (minus). The components of momenta in (2.11) scale like (hard scattering

approximation):

P+ ∼ k+ ∼ q+ ∼ Q, P̄− ∼ k̄− ∼ q− ∼ Q,

P− ∼ k− ∼ Λ2

Q
, P̄+ ∼ k̄+ ∼ Λ2

Q
. (2.14)

We assume that the partons entering the hard scattering are almost collinear to

the incoming hadrons, therefore all the transverse momenta are of the order of the

hadronic scale Λ, i.e.

|kT | ∼ |k̄T | ∼ |qT | ∼ Λ. (2.15)

Neglecting momenta of order Λ2/Q, the delta function can be written as:

δ(4)(k + k̄ − q) = δ(k+ + k̄+ − q+)δ(k− + k̄− − q−)δ(2)(kT + k̄T − qT )

≈ δ(k+ − q+)δ(k̄− − q−)δ(2)(kT + k̄T − qT ). (2.16)

As a consequence, one can deduce k+ ≈ q+ and k̄− ≈ q− and define the light-cone

longitudinal momentum fractions and the hard momenta as:

x =
k+

P+
≈ q+

P+
, x̄ =

k̄−

P̄−
≈ q−

P̄−
, q2 ≈ 2q+q− ≈ xx̄s. (2.17)
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Chapter 2 · QCD and hadronic interactions

Substituting in (2.11) gives:

dσ

dR ∼
∫
d2kTd

2k̄T δ
(2)(kT + k̄T − qT )Hαβγδ(k, k̄, q)

×
∫
dk−Φαβ(k, P )

∫
dk̄+Φ̄γδ(k̄, P̄ ) + {corrections}. (2.18)

We can define the transverse momentum dependent (TMD) correlator for quarks

(and similarly for antiquarks) as follows:

Φαβ(x,kT ;P ) =

∫
dk−Φαβ(k, P )

=

∫
dξ− d2ξT

(2π)3
eik·ξ 〈P |ψβ(0)ψα(ξ) |P 〉

∣∣∣∣
ξ+=0

, (2.19)

which is a matrix in Dirac space that contains the information on the transverse mo-

tion and spin of the partons. It is parametrized in terms of TMD parton distribution

functions (TMD PDFs or TMDs1).

In the collinear limit, one can perform the integration over the transverse momen-

tum of the produced particle qT in (2.19) and obtain a factorized formula containing

the collinear correlator for quark, the relevant quantity in inclusive DY processes.

The integrated correlator reads:

Φαβ(x;P ) =

∫
dξ−

2π
eik·ξ 〈P |ψβ(0)ψα(ξ) |P 〉

∣∣∣∣
ξ+=ξT=0

, (2.20)

which is parametrized in terms of parton distributions PDFs. A trace over color is

understood and the dependence on the hadron spin will be later specified.

Gluon correlator

In pp collisions the hard scattering can be initiated by gluons (see Fig. 2.4(a)), such

as in Higgs boson production, heavy quark pair or quankonium production [27–30].

Accordingly, the relevant correlator that needs to be introduced in this equation is:

Γµν;ρσ(x,kT ;P ) ≡
∫

dξ− d2ξT
(2π)3

eik·ξ 〈P |Fµν(0)F ρσ(ξ) |P 〉
∣∣∣∣
ξ+=0

, (2.21)

1In this thesis the TMD fragmentation functions are not treated, therefore unless otherwise spec-
ified the name TMDs simply refers to the TMD PDFs distributions and is not ambiguous.
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2.3 TMD correlator from Drell-Yan process

(a) (b)

H

P

P̄

P

P̄

k̄

k k

k̄

�̄

�

{X}

{X̄}

�(x, kT ; P )

k k

Figure 2.4: Left-side: Gluon fusion in pp collisions. Right-side: pictorial representation of the
gluon TMD correlator.

where once again we implicitly assume a trace over color. The quantity (2.21) is the

transverse momentum dependent (TMD) correlator for gluons. The presence of the

gauge field-strength tensor rather than the field is dictated by gauge invariance, and

the definition needs to be further completed with the Wilson lines, as explained in

Section 2.5. The quantity (2.21) is parametrized by gluon TMDs. Integration over

transverse momenta gives the definition of the collinear gluon correlator:

Γµν;ρσ(x;P ) ≡
∫

dξ−

2π
eik·ξ 〈P |Fµν(0)F ρσ(ξ) |P 〉

∣∣∣∣
ξ+=ξT=0

, (2.22)

which is parametrized in terms of gluon PDFs. The dominant terms in (2.21) and (2.22)

are the ones that contain one plus and one transverse index in the field-strength ten-

sor, as extensively explained in Chapter 3.

The correlators of eq. (2.19) and (2.21) are diagonal operators in momentum space

and they represent the probability of extracting a parton from the proton with longitu-

dinal and transverse momentum x and kT . They are usually schematically represented

as in Fig.2.3(b) and 2.4(b).
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2.4 Double parton correlator

The concept according to which, in pp collisions, only one parton from each proton

participate in the hard scattering can be extended to multipartonic interactions. In

particular, two hard scatterings can occur simultaneously, defining this process as a

double parton scattering (DPS), at variance with the usual single parton scattering

(SPS). In this Section, we consider the double Drell-Yan process (dDY), in which

two electroweak gauge bosons are produced in two distinct hard processes. The

two-parton correlation functions can be defined in a similar way as in the single

parton ones. Assuming the general validity of factorization for the DPS processes

that we consider, the double parton correlators enter the cross section calculations in

an analogous way as the correlator (2.19), with the due modifications.

2.4.1 Double Drell-Yan cross section

We start by writing the factorized cross section for the double parton scattering at

tree level. We generalize the result in Section 2.2 as in [31, 32]. The diagram we are

about to calculate is displayed in Fig. 2.5.

Without any particular choice of hierarchy, one can set hard scales of the two hard

processes to a common scale Q2 ∼ q2
1 ∼ q2

2 .

Naming the momenta as l1, l2 for the outgoing parton in the left moving proton

and l̄1, l̄2 the ones in the right moving proton, the cross section reads:

dσ

dR =
1

C

1

4PP̄

∑

X,X̄



m∏

j=1

∫
d3PXj

(2π)32P 0
Xj






n∏

j=1

∫
d3PX̄j

(2π)32P 0
X̄j




× (2π)4δ(4)




2∑

i=1

qi +

m∑

j=1

PXj +

n∑

j=1

PX̄j − P − P̄




×
2∏

i=1

∫
d4li

(2π)4

d4 l̄i
(2π)4

2∏

i=1

∫
d4l′i

(2π)4

d4 l̄′i
(2π)4

2∏

i=1

Hi(qi, li, l̄i, l
′
i, l̄
′
i)

× (2π)4δ(4)(qi − li − l̄i)(2π)4δ(4)(qi − l′i − l̄′i)

×
2∏

i=1

∫
d4ξid

4ξ̄id
4ξ′id

4ξ̄′i e
i(ξili−ξ′il′i)+i(ξ̄i l̄i−ξ̄′i l̄′i)

× 〈P | T̄ [ψ̄(ξ′1)ψ̄(ξ′2)] |X〉 〈X|T [ψ(ξ2)ψ(ξ1)] |P 〉
× 〈P̄ | T̄ [ψ(ξ̄′1)ψ(ξ̄′2)] |X̄〉 〈X̄|T [ψ̄(ξ̄2)ψ̄(ξ̄1)] |P̄ 〉 , (2.23)
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Figure 2.5: Representation of a DPS process (e.g. double Drell-Yan process).

where we have inserted the time and anti-time order operators as in [31] and:

dR =

[
2∏

i=1

d4qi
(2π)4

]
. (2.24)

The factor C is set by combinatorics and it equals 1 (or 2) if the produced particles

in the hard scatterings are different (or equal). As before, H1,2 represent the hard

part of the two processes and will be left unspecified. Let us define the symmetric

momenta:

li = ki −
ri
2
, l′i = ki +

ri
2
, i = 1, 2, (2.25)

which implies r1 = −r2 = r from momentum conservation. Translational invariance

allows us to introduce the position variables z1, z2, and y such that:

y +
1

2
z1 = ξ1 −

1

2
ξ2, y − 1

2
z1 = ξ′1 −

1

2
ξ2, z2 = ξ2. (2.26)
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Chapter 2 · QCD and hadronic interactions

The cross section becomes:

dσ

dR ∼
2∏

i=1

∫
d4ki d

4k̄iδ
(4)(qi − ki − k̄i)

∫
d4 rd4 r̄δ(4)(r + r̄)

×
2∏

i=1

Hi(qi, ki, k̄i, r, r̄)ΦDP (ki, r)Φ̄DP (k̄i, r̄). (2.27)

We define the unintegrated double parton correlator :

ΦDP (k1, k2, r) =

∫
d4z1

(2π)4

d4z2

(2π)4

d4y

(2π)4
eiz1k1+iz2k2−iyr

× 〈P, S| T̄
[
ψ̄(y − 1

2
z1)ψ̄(−1

2
z2)

]
T

[
ψ(

1

2
z2)ψ(y +

1

2
z1)

]
|P, S〉 . (2.28)

which represents the emission of two quarks in the scattering amplitude and their

reinsertion in the conjugate one. Once again, a trace over color is understood.

The hard scattering approximation described in Section 2.2 holds true also in

the double parton case, complemented by some considerations. The components of

momenta in (2.27) scale like (2.14). From the definition we also have r− ∼ r̄+ ∼ Λ2/Q,

while r+ and r̄− could in principle be of order Q, but they are fixed by momentum

conservation r + r̄ = 0 [31, 33]. Therefore one also has r+ ∼ r̄− ∼ Λ2/Q. All the

transverse momenta are of the order of the hadronic scale, i.e.

|kT i| ∼ |k̄T i| ∼ |rT | ∼ |r̄T | ∼ |qT i| ∼ Λ. (2.29)

Reducing the delta functions as in (2.16), one has:

dσ

dR ∼
2∏

i=1

Hi(q
2
i )

∫
dk−1 dk

−
2

∫
dr−ΦDP (ki, r)

∣∣∣∣
k+i ≈q

+
i , r

+≈0

×
∫
dk̄+

1 dk̄
+
2

∫
dr̄+Φ̄DP (k̄i, r̄)

∣∣∣∣
k̄−i ≈q

−
i , r̄

−≈0

+ {corrections}. (2.30)

A Fourier transform to the transverse position y, conjugate to r, brings us to the

definition of the transverse momentum dependent double parton correlator for quarks:

ΦDP (x1, x2,kT1,kT2,y) = 2P+

[
2∏

i=1

∫
dz−i
2π

d2zT i
(2π)2

eiz1k1+iz2k2

]∫
dy−
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2.4 Double parton correlator

× 〈P |
[
ψ̄(y − 1

2
z1)ψ̄(−1

2
z2)

] [
ψ(

1

2
z2)ψ(y +

1

2
z1)

]
|P 〉∣∣z+i =y+=0

, (2.31)

where we define the fractions of longitudinal momentum x1, x2, x̄1, x̄2 as obvious

extension of (2.17). The correlator (2.31) is parametrized in terms of TMD double

parton distributions (TMD DPDs).

After integration over all the transverse momenta, we obtain:

ΦDP (x1, x2,y) =
∏

i=1,2

∫
d2kT iΦDP (xi,kT i,y) (2.32)

= 2P+

[
2∏

i=1

dz−i
2π

eiz1k1+iz2k2

]∫
dy−

×〈P |
[
ψ̄(−1

2
z2)ψ(

1

2
z2)

] [
ψ̄(y − 1

2
z1)ψ(y +

1

2
z1)

]
|P 〉
∣∣∣∣ z+i =y+=0,

zT1=0T , zT2=0T

, (2.33)

which is the collinear double parton correlator, parametrized in terms of double par-

ton distributions DPDs. For later convenience we also define the non-local bilinear

operators contained between square brackets in (2.33) as:

O(y, z) = ψ̄(y − 1

2
z)ψ(y +

1

2
z). (2.34)

One can interpret (2.33) as the probability of finding two partons with momenta

aligned with the parent hadron separated in the transverse plane by a distance y. In

order for the double scattering to take place, the transverse relative distance between

the partons in the two hadrons must match. However the distance of the partons

from the centre of the parent hadron can be different [31].

Finally, we define the double gluon correlator in analogy to Section 2.3, namely:

Γij,i
′j′

DP (x1, x2,y) =

[
2∏

i=1

1

xiP+

∫
dz−i
2π

eiz1k1+iz2k2

]∫
dy−

× 〈P |
[
F+j′(−1

2
z1)F+i′(

1

2
z2)

] [
F+j(y − 1

2
z2)F+i(y +

1

2
z1)

]
|P 〉∣∣z+i =y+=0

, (2.35)

in which the dominant plus component has been chosen to simplify the notation.

However, in the rest of the thesis we will not discuss double gluon correlators and we

will focus exclusively to double parton correlators with quark fields.
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2.4.2 Single versus double parton scattering

We want to briefly discuss the impact of the double parton scattering in comparison

with the single parton counterpart [31], restricting ourselves to a qualitative discussion

based on a simple power counting argument, neglecting all the effects arising at higher

orders.

If one does not integrate over transverse momenta, the relevant cross section for

the production of two particles in double parton scattering takes the form:

dσ∏2
i=1 dxi dx̄i d

2qT i
=

1

C

[
2∏

i=1

Hi(xix̄is)

][
2∏

i=1

∫
d2kT id

2k̄T iδ
(2)(qT i − kT i − k̄T i)

]

×
∫
d2yΦDP (xi,ki,y)Φ̄DP (x̄i, k̄T i,y). (2.36)

The hard cross section parts have a power behavior H ∼ Q−2, while ΦDP (xi,ki,y) ∼
Λ−2 by definition. The terms d2kT id

2k̄T iδ
(2)(qT i−kT i− k̄T i) ∼ Λ2 and the transverse

distance |y| is of the order 1/Λ. Putting all together one has:

dσ∏2
i=1 dxi dx̄i d

2qT i

∣∣∣∣
double

∼ 1

Λ2Q4
. (2.37)

On the other hand, for a more inclusive process, where the transverse momenta are

integrated over, the cross section reads:

dσ∏2
i=1 dxi dx̄i

=
1

C

[
2∏

i=1

Hi(xix̄is)

]∫
d2yΦDP (xi,y)Φ̄DP (x̄i,y), (2.38)

and it scales as:
dσ∏2

i=1 dxi dx̄i

∣∣∣∣
double

∼ Λ2

Q4
. (2.39)

With a similar logic, one can study the power behavior of the production of the same

two final states by means of single parton scattering processes. The result is:

dσ∏2
i=1 dxi dx̄i d

2qT i

∣∣∣∣
single

∼ 1

Λ2Q4
,

dσ∏2
i=1 dxi dx̄i

∣∣∣∣
single

∼ 1

Q2
. (2.40)

It turns out that, for transverse momentum dependent cross sections, the power be-

havior of single and double parton scattering is the same, i.e. there is no suppression

of the latter. For more inclusive quantities there is, in general, a power suppression
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2.5 General properties of correlation functions

of the double parton scattering with respect to the single parton one. However, there

are very interesting cases where the double parton scattering is not suppressed with

respect to the single counterpart, such as the production of a pair of W bosons with

the same electric charge. We will investigate this process in details in Section 4.5.

2.5 General properties of correlation functions

There are general properties which are common to all the correlation functions. In this

Section, we discuss some of them, focusing on gauge invariance, discrete symmetries,

and universality.

Gauge invariance

A fundamental requirement for all the correlators entering a cross section formula

is that they must be color gauge invariant objects. The definitions provided in

eqs. (2.19), (2.20), (2.21), (2.31) and (2.33) need to be modified accordingly.

The field operators for the extraction and reinsertion of the partons in the ampli-

tude and in its conjugate are located at two distinct space-time points. Consequently,

acting on them with a local gauge transformation would leave space-dependent phase

factors that do not cancel out. Let us consider the transformation of the quark fields

under a local gauge transformation:

ψ(ξ)→ V (ξ)ψ(ξ),

ψ(ξ)→ ψ(ξ)V †(ξ), (2.41)

where V is the unitary matrix of the SU(3) color gauge transformation. Similarly,

the transformation for the gauge field strength tensor reads:

Fµν(ξ)→ V (ξ)Fµν(ξ)V †(ξ). (2.42)

To restore the gauge invariance, we insert the operator U(0, ξ) and demand the new

product to transform as (a trace over color is understood):

ψ(0)U(0, ξ)ψ(ξ)→ ψ(0)V †(0)V (0)U(0, ξ)V †(ξ)V (ξ)ψ(ξ), (2.43)

and a similar transformation is required for the product Fµν(0)U(0, ξ)F ρσU ′(ξ, 0).
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Chapter 2 · QCD and hadronic interactions

We deduce that the transformation property for the U reads:

U(0, ξ)→ V (0)U(0, ξ)V †(ξ). (2.44)

The operators U are called Wilson line. They are also called gauge links because

they restore gauge invariance by “transporting” the color gauge transformation prop-

erty from one point to the other. The expression for the gauge link in a non-abelian

theory was first introduced by Wilson in [34], mimicking the structure of a path depen-

dent phase formulated in QED for the description of the Aharonov-Bohm effect [35].

In QCD it reads:

U[C] = P
{

exp

(
−ig

∫

C

dηµAµ(η)

)}
, (2.45)

where Aµ = Aaµta, where ta are the generators of the color algebra SU(3), satisfying

[ta, tb] = ifabctc, with fabc structure constants. C is the path connecting two space-

time points (the path can also reduce to a loop) and P{· · · } is the path-ordering

operator [36]. In the case of the correlators defined in the previous sections, the

links have to connect the two space-time points at which the fields are defined. The

dominant paths are the ones along the lightlike direction n, hence the (2.45) becomes:

U(0, ξ) ≡ U [n]
[0,ξ] = P

{
exp

(
−ig

∫ ξ

0

dη−An(η)

)}
, (2.46)

where we use the notation An = A·n, which is A+ in the light-cone basis (2.2). We can

now define the color gauge invariant unintegrated correlators as the ones containing

the operators U as follows2:

Φ[U ](x,kT ;P ) ≡
∫
dξ− d2ξT

(2π)3
eik·ξ 〈P |ψ(0)U(0, ξ)ψ(ξ) |P 〉

∣∣∣∣
ξ+=0

, (2.47)

Γ[U,U ′]µν;ρσ(x,kT ;P ) ≡
∫
dξ−d2ξT

(2π)3
eik·ξ 〈P |Fµν(0)U(0, ξ)F ρσ(ξ)U ′(ξ, 0) |P 〉

∣∣∣∣
ξ+=0

.

(2.48)

On a diagrammatic perspective, the inclusion of such objects in the definition of

2The superscript [U ] indicates that the correlator’s structure does depend on the presence and on
the structure of the gauge link. When not necessary, it will be understood in the notation.
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2.5 General properties of correlation functions

the correlators corresponds to resumming gluons emitted from the correlator to the

hard scattering, such as the contributions represented in Fig. 2.6. This realization

dates back to the work of Efremov and Radyushkin [37]. Most importantly, these links

need to involve transverse gluons at light cone infinity, a missing ingredient in the

earlier treatments. Later in [38–40] the complete derivation of color-gauge invariant

operators for TMD and integrated distribution was achieved, and the importance of

the transverse gluons was unravelled. The presence of gauge links is connected to a

wide variety of effects in TMD phenomenology, such as single spin asymmetry and

process dependence. They are also responsible for the survival of the T-odd functions

(as shortly discussed). The dominant gauge link structures appearing in the TMD

operators are staple-like:

U
[±]
[0,ξ] ≡ Un[0,0T ;±∞,0T ] U

T
[±∞,0T ;±∞,ξT ] U

n
[±∞,ξT ;ξ−,ξT ], (2.49)

where± indicates whether the path is future/past pointing along the direction of light-

cone infinity, as depicted in Fig. 2.7(a-b). From the basic structures U [±] it is possible

to construct all the relevant gauge links that are involved in the processes. For the DY

process that we have discussed, the gauge link is due to initial-state interactions (see,

e.g., the top-right diagram of Fig. 2.6) and is given by the past-pointing staple-like

structure (see Fig. 2.7(a)):

U
[−]
[0,ξ] ≡ Un[0−,0T ;−∞−,0T ] U

T
[−∞−,0T ;−∞−,ξT ] U

n
[−∞−,ξT ;ξ−,ξT ], (2.50)

where:

Un[0−,0T ;−∞−,0T ] ≡ P
{

exp

(
−ig

∫ −∞

0

dη−A+(η+ = 0, η−,ηT = 0T )

)}
, (2.51)

UT[−∞−,0T ;−∞−,ξT ] ≡ P
{

exp

(
−ig

∫ ξT

0

dη·A(η+ = 0, η− = −∞,ηT )

)}
, (2.52)

and similarly for the third piece of (2.50).

As far as the gluons TMDs are concerned, one needs a gauge link in the adjoint

representation or two gauge links in the fundamental representation. This allows for

a bigger number of structures that describe the color flow in the processes initiated

by gluons. In Fig. 2.7(c-f) some possibilities are sketched. For a review of the gauge

link structures, see e.g. [41, 42].

Integration over transverse momenta produce the collinear non-local matrix ele-

ments in (2.20) and (2.22). Once the transverse momentum is integrated over, the
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Figure 2.6: Diagrammatic interpretation of the gauge links of eq. (2.46), thanks to which the
gluons in the picture are included in the correlators.

transverse direction (conjugated to the momentum) vanishes, and the gauge links re-

duce to a single line that connects two points along the n direction. The much simpler

structure and the absence of the transverse pieces make the PDFs free from effects

typical of TMDs, such as the non-universality feature that we will discuss in the next

subsection.

The considerations that bring to the definition of the Wilson lines for quarks and

gluons in single parton scattering remain valid for the double parton correlators as

well, because they involve one hard scattering process at a time [31]. The procedure

is rather general and it can be repeated in the case of double and multiparton corre-

lators. Each operator of the type (2.34), that enters multiple times in a multiparton

correlator, is gauge invariant upon the insertion of gauge links as before, namely:

O[U ](y, z) = ψ

(
y − 1

2
z

)
U

(
y − 1

2
z, y +

1

2
z

)
ψ

(
y +

1

2
z

)
, (2.53)
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Figure 2.7: Fundamental gauge link structures for quarks and gluon correlators. The symbols [+]
and [-] refer to the staple-like gauge links that are past (a) or future-pointing (b). All the other
structures (c)-(f) are built from staple-like gauge links.

and the gauge invariant version of the collinear double parton correlator reads:

Φ
[U,U ′]
DP (x1, x2,y) =2P+

[
2∏

i=1

∫
d2kT i

dz−i
2π

d2zT i
(2π)2

eiz1k1+iz2k2

]∫
dy−

× 〈P, S| O[U ](0, z)O[U ′](y, z) |P, S〉
∣∣∣∣ z+i =y+=0,

zT1=0T , zT2=0T

. (2.54)

In the relevant case for our purposes, each of the extracted parton and its conjugate

partner are in a color singlet (no color octets and interference terms are present), thus

the double collinear correlator reduces to straight lines connecting the two pairs of

space-time points, in precisely the same way as the single collinear case. However, it
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Chapter 2 · QCD and hadronic interactions

is worth mentioning that the color structure of the double parton correlators is, in

general situations, more complicated than the single case also in the collinear case,

see e.g., refs. [23, 31].

Discrete symmetries

The quark and gluon operators contained in the correlators are tensors in Dirac and

Lorentz space, respectively. The matrix elements in addition depend on the kinematic

variables of the partons and of the parent hadron. It is possible to find a decomposition

of the correlators in terms of the elements of the basis of Dirac and Lorentz space

combined with

{kµ, Pµ, Sµ, · · · }, (2.55)

where the “· · · ” represent other Lorentz structures (scalar, vector and tensor) the

correlator can possibly depend on. Each term is weighted with multidimensional

functions that depend on the kinematic variables and quantum numbers of the partons

and will be generically called parton distributions. The number of terms one can

construct in this way would quickly increase once the extra degrees of freedom are

included.

Some constraints on the allowed structures come from symmetry arguments. Ac-

cordingly, we demand that this expansion is such that the correlator respects parity

and hermiticity invariance, namely for quarks:

Hermiticity: Φ[U ]†(k;P, S) = γ0Φ[U ](k;P, S)γ0, (2.56)

Parity: Φ[U ](k;P, S) = γ0Φ[U ](k̂; P̂ ,−Ŝ)γ0, (2.57)

and for gluons:

Hermiticity: Γ[U,U ′] ρσ;µν∗(k;P, S) = Γ[U,U ′]µν;ρσ(k, P, S), (2.58)

Parity: Γ[U,U ′]µν;ρσ(k;P, S) = Γ[U,U ′]
µν;ρσ (k̂, P̂ ,−Ŝ, · · · ), (2.59)

where the vector â = Pa = (a,−a) is the parity transformed of vector a, that has

a flipped sign in all the spatial coordinates 3. The transformation properties (2.57)

and (2.59) are valid for the double parton correlators as well.

The behavior of the Wilson lines under hermiticity and parity P transformations

3We do not use the barred notation for the vectors ā = (a,−aT ) as usually done in the literature,
in order to avoid confusion with Section 2.3, where the bar indicates quantities belonging to the
left-moving proton. The two vectors â, ā coincide when the transverse components are neglected.
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2.5 General properties of correlation functions

is derived straightforwardly and reads:

U†[α,ξ] = U[ξ,α], PU[α,ξ]P† = U[α̂,ξ̂], (2.60)

where â is defined as before.

The invariance under naive-time reversal transformation will instead not be im-

posed in the parametrization, as shortly explained.

Universality and process dependence

An important question about the correlators entering the factorized cross section

formulae (and the functions in the parametrizations) is whether they are universal

or they rather depend on the process under consideration. This matter is of utmost

importance from a phenomenological point of view, as it determines whether the same

partonic function can be eventually extracted from different processes. The answer

to this question is connected to the gauge link structure of the correlators, which can

vary from process to process. More precisely, the lack of universality can be related

to the behavior of the transverse momentum dependent quantities under naive time

reversal transformations. The complete treatment of this topic goes far beyond the

purpose of this thesis. For a comprehensive set of references see, e.g., [39–48] and the

dissertations in [26,49,50].

The quark and gluon correlators have the following behavior under naive time-

reversal transformations T :

Φ[U ]∗(k, P, S) = (−iγ5C)Φ[UT ](k, P, S)(−iγ5C), (2.61)

Γ[U,U ′]µν;ρσ∗(k, P, S) = Γ[UT U ′T ]
µν;ρσ (k̂, P̂ , Ŝ), (2.62)

where C = iγ2γ0. From (2.62) the behavior of the Wilson lines under naive time

reversal transformations is derived directly and it reads:

UT = T U[α,ξ]T † = U[−α̂,−ξ̂]. (2.63)

Time reversal transformations acting on the gauge links are such that future-

pointing structures are transformed into past-pointing ones and viceversa (see part

(a) and (b) of Fig. 2.7). For the TMD quark correlator this results in:

Φ[+](x,kT ;P, S)
T→ Φ[−](x,kT ;P, S). (2.64)
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Chapter 2 · QCD and hadronic interactions

One can decompose each correlator into a T-even and a T-odd part as follows [51]:

Φ[T-even](x,kT ;P, S) =
1

2

[
Φ[+](x,kT ;P, S) + Φ[−](x,kT ;P, S)

]
, (2.65)

Φ[T-odd](x,kT ;P, S) =
1

2

[
Φ[+](x,kT ;P, S)− Φ[−](x,kT ;P, S)

]
. (2.66)

In the parametrization of the correlator, naive time reversal symmetry does not impose

constraints and T-odd structures do not vanish thanks to the presence of gauge links.

We will see in Chapter 3 that one can parametrize the correlators in terms of quark

distributions that multiply (Dirac and Lorentz) structures which flip sign under time

reversal transformations. These functions, among which a famous one is the Sivers

function (see Section 3.3.1), are non universal and depend on the process through the

gauge link.

The scenario is more complex for gluons, for which there aretwo fundamental

gauge-link structures that are not linked by any time-reversal transformation [47].

They are built from two past- or future-pointing staple-like links, called Weiszäcker-

William (WW), and from one future- and one past-pointing staple-like gauge links,

called dipole-type4 (see Fig. 2.7(c)-(d) and Fig. 2.7(e)-(f) for WW and dipole-type

of gauge links respectively). As pointed out in [47], due to the properties defined

in (2.63), the WW structure [++] is transformed to [−−] under time reversal trans-

formations. Similarly, the dipole [+−] becomes [−+], whereas it is not possible to

relate the WW-type with the dipole-type. It has been first discussed in [47] that, due

to this complex color structure, the nonuniversality of gluon TMDs also involves the

T-even part of the correlators.

From (2.66) it follows that the T-odd part vanishes when Φ[+] = Φ[−]. This is

the case of the collinear correlators, where the gauge links reduce to a straight line,

regardless of the light-cone direction. In the absence of the transverse direction no

process dependence arises and PDFs are universal functions.

As a straightforward extension of the single parton case, the transverse momen-

tum dependent DPDs, similarly as the single TMD PDFs, can be process dependent,

although a precise expression for this dependence has never been derived. At vari-

ance with the single parton case, integration over transverse parton momenta does

not lead, in principle, to the universality of collinear DPDs [31]. The universality is

ensured in the cases when the two partons involved in each hard scatterings are in a

color singlet configuration. In this case, the gauge link structures reduce to segments

connecting the pairs of space-time point along the light-like direction. The lines are

4The latter nomenclature is not typically used in the field of TMD phenomenology, but it is rather
common in the field of small-x physics.
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2.6 QCD on the light-front

thus invariant under time reversal symmetry and the relevant collinear DPDs are

guaranteed to be universal, analogously to the single collinear PDFs [31,52].

To summarize, the nonperturbative physics of high-energy processes is contained

in the correlators, defined from the factorized cross section formulae. The operator

definition can be easily extended to multiparton scattering processes. Without any

further specification but the parton type, we can define the general symmetry prop-

erties of correlators, such as discrete space-time symmetries and gauge invariance.

These aspects are fundamental to define the partonic functions that will be used to

parametrize the correlators.

As discussed in Section 1.1, attempting an explicit calculation of the correlators

is prohibitive with standard field theory formalism, because of the non smallness of

the strong coupling in the low energy regime. In order to grasp information on the

nonperturbative physics one can for instance seek help from lattice QCD calcula-

tions [34,53–57], hamiltonian methods [6], model calculations [58–66], and extraction

from experiments (see e.g. [67] and references therein). From a theoretical point of

view, the hadronic matrix element contained in the definitions of the correlator can

be formally expressed in terms of an expansion of wave functions, containing all the

information about the parton dynamics and correlations. We will analyze this aspect

in the next Section.

2.6 QCD on the light-front

Employing the light-cone coordinates to describe the kinematics of high energy pro-

cesses is the natural and convenient choice, given that the dominant contribution to

the deep inelastic kinematics comes from the light-cone. The numerous advantages

of using the light-cone reference frame in the field of hadronic physics are extensively

acknowledged5 [6], and we discuss some of them in the present Section.

Field theories are quantized by introducing equal-time commutation and anti-

commutation rules. In a covariant theory, it is possible to generalize the concept of

time and space since what is called time-component is in some sense arbitrary. In

1949 Dirac [69] pointed out that there are three distinct ways to parametrize the

4-dimensional space, which are not connected by Lorentz transformations. Dirac de-

fined three forms of relativistic dynamics, characterized by different definitions of the

equal-time hyperplane where the fields are initialized. These three forms correspond to

5On the other hand, it is under debate whether this also represents an intrinsic simplification of
QCD itself, see e.g. [68]. In the following we will not discuss this controversy further.
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different time-like components. The usual quantization choice is called “instant-form”

(IF) and corresponds to a hypersurface located at t = x0 = 0, while the “light-front”

(LF), or front-form, is characterized by the initial condition x+ = (x0 + x3)/
√

2 = 0,

that represents a tangent plane to the light-cone. Being equivalent to the infinite

momentum frame [70–74], it was recognized that LF quantization is particularly suit-

able in the description of high-energy processes [75–77]. For instance, the kinematic

regime described in (2.14) naturally implies the choice ξ+ = 0, and (LF-)time-ordering

is automatic. The third form is called “point-form” and it is characterized by a

hyperboloid-shaped hypersurface always pointing inside the light-cone. The picture

in Fig. 2.8 graphically summarizes the three forms.

2 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a

Figure 2.8: Graphic representation of the different forms of relativistic dynamics as formulated
by Dirac [69]. The planes represent the hypersurface where the fields are initialized. Figure from
ref. [6].
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One can start by defining the four-vectors as in eq. (2.2) with components6 [74]:

x+ =
1√
2

(
x0 + x3

)
, x− =

1√
2

(
x0 − x3

)
, xT = (x1, x2). (2.67)

Therefore the following convention will be used:

xµ = (x+, x−,xT ). (2.68)

The metric tensor is7:

gµν = gµν =




0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1


 , (2.69)

which is used to lower or raise indices, so that x+ = x− and x− = x+. This means

that ∂+ = ∂/∂x+ = ∂− is a time-like derivative, while ∂− = ∂/∂x− = ∂+ is a

space-like derivative. Scalar products reads:

x · y = xµyµ = gµνx
µyν = x+y− + x−y+ − xT · yT . (2.70)

Other conventions and useful relations are collected in Appendix A.

Poincaré generators and Algebra

A remarkable feature of the LF quantization relies in the particular form of the

Poincaré algebra [6,74]. Dirac defines two classes of generators: dynamical and kine-

matic [69]. The latter are independent on the interaction, and they form a subgroup

of the Poincaré group which transforms the hypersurface in itself. This is called sta-

bility group. The other Poincaré generators are called dynamical, as they contain the

dynamics and transform the hypersurface into a different one. They play the role of

hamiltonians in the sense of generators of time translations.

In any form of dynamics, the four-momentum Pµ and angular-momentum Mµν =

xµP ν − xνPµ obey the standard commutation relations which define the Poincaré

group. Rotations and boosts are built as Ji = εijkMjk and Mi0 = Ki (see Ap-

pendix A). In the instant form, the three components of the boost vector Mi0 = Ki

6In the following the Kogut-Soper convention in [74] is used. A different choice of variables is the
Brodsky-Lepage convention described in [6]

7We keep the same notation gµν as for the metric in IF, since this is not ambigous

35



Chapter 2 · QCD and hadronic interactions

are dynamical, and the three components of angular momentum Ji = εijkMjk are

kinematic. Let us define the combinations:

B1 =
1√
2

(K1 + J2) , B2 =
1√
2

(K2 − J1) , (2.71)

S1 =
1√
2

(K1 − J2) , S2 =
1√
2

(K2 + J1) , (2.72)

and analyze the generators in LF. Although the full set of generators must still obey

the same Poincaré algebra, one can identify a subgroup of mutually commutant gen-

erators P−, P+, P 1, P 2, J3, B1 and B2 that satisfy the commutation rules typical of a

non-relativistic Galilean group in two-dimensions. This isomorphism between groups

implies that the dynamics in the transverse plane is equivalent to a classical system.

Moreover, the effect of the LF longitudinal boost leaves the transverse plane invariant.

Denoting with β the dimensionless parameter of the boost, one has:

aµ → a′µ = (βa+,
1

β
a−,aT ). (2.73)

Let us turn to the physical interpretation of the above discussion. During a high-

energy scattering, an energetic probe scatters off a hadron along the longitudinal

direction P+. The hadron is highly boosted along this direction. In LF quantization,

because of (2.73) the Lorentz contraction only occurs in the longitudinal direction,

while the transverse plane remains unchanged. A parton inside the hadrons carries

a fractions x of longitudinal momentum defined as x = k+/P+, which is a boost-

invariant quantity in LF quantization. The following identifications are in order:

P− → Hamiltonian; P+ → Longitudinal momentum; (2.74)

PT → Transverse momenta; J3 → Angular Momentum; (2.75)

BT → “Galilean” boosts along x and y. (2.76)

The LF Hamiltonian P− is the generator of the time evolution with respect to

the LF time x+, while the generators P+ and PT are kinematical. This identification

explains why the notation P = (P−, P+,PT ) is very often preferred in the literature.
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Dispersion relation

Given the momentum P of a massive particle of mass M , such that PµPµ = M2, one

derives the LF dispersion relation:

P− =
(PT )2 +M2

2P+
. (2.77)

The above dispersion relation is quite remarkable for the following reasons:

• It is a relativistic dispersion relation without any square root factors.

• The dependence of the energy P− on the transverse momentum is the same as

the nonrelativistic one.

• For P+ positive (negative), P− is positive (negative). This implies that it is

possible to redefine negative momenta in order to always read P+ ≥ 0 both

for particles and antiparticles. The latter constraint on the particle momenta

has been referred to as responsible for the absence of vacuum diagrams and

consequently the triviality of the QCD vacuum in LF. In [68], Collins explicitly

shown that vacuum bubble diagrams do not actually vanish as often stated, and

that the interacting QCD vacuum does not trivially coincide with the one of

the free theory. However, the LF form still provides a number of advantages for

the hadronic description as discussed in the rest of this Chapter.

2.6.1 Quantum field theories on the light-cone

An other significant feature of LF dynamics is that one can reduce the fermionic

degrees of freedom from four to two. We shall see that the components of the fields

are in fact not all independent and it is possible to define the good (bad) components

of the fields, as the ones that are (not) dynamically independent. We define the Dirac

gamma matrices in LF:

γ+ =
1√
2

(γ0 + γ3), γ− =
1√
2

(γ0 − γ3), γT = {γ1, γ2}, (2.78)

and the orthogonal projectors operators P± = 1
2γ
∓γ±:

P−P+ = P+P− = 0, P− + P+ = 1, (2.79)

which project out the good and bad field components as shortly explained. Rather

than the Dirac representation of the gamma matrices, it is more convenient to choose
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Chapter 2 · QCD and hadronic interactions

the Weyl or light-cone representation, where γ0 is not diagonal while γ5 is diagonal.

In this choice of basis, the projectors (2.79) take the explicit form:

P+ =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


 , P− =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


 . (2.80)

The effect of the operators P± is to project out the two upper and lower components

of the Dirac fields:

P+ψ = ψ+ = φ =




φ1

φ2

0

0


 , P−ψ = ψ− = χ =




0

0

χ1

χ2


 . (2.81)

Applying one projector at a time to the color Dirac equation, one obtains two

coupled equations of motion for the upper and lower components:

iγ−D+ψ− − (γT ·DT −m)ψ+ = 0, (2.82)

iγ+D−ψ+ − (γT ·DT −m)ψ− = 0. (2.83)

where D± = ∂± − igA± is the covariant derivative and it is a matrix in color space.

From eq. (2.82) one can see that ψ+ is the only independent field, since it has a non

vanishing conjugate field. We refer to it as the good field and denote it with φ. The

good fields describe a particle on its mass-shell [6]. At variance, the two components

of ψ− are not independent variables and they are constrained at any light-front time

x+ in terms of φ and A. The component A− is also not independent, and one can

usually fix a gauge where A+ = 0 (light-cone gauge) [6,74]. Therefore ψ− depends on

the only dynamical fields φ and AT .

We refer to Appendix A for the explicit form of the good fields and to [6,70–74,78]

for more details about LF quantization.

2.6.2 Light-Front Wave Functions (LFWFs)

As discussed earlier in this Chapter, the definition of the correlators contain matrix

elements in which the hadron state |P 〉 explicitly appears. Since |P 〉 can formally be

written as a bound-state of its constituents, the question is whether the formalism of

LF quantization would simplify the description of bound-states. Let us consider the

38



2.6 QCD on the light-front

relativistic bound-state problem:

H |ψ〉 =
√
M2 + P 2 |ψ〉 , (2.84)

which corresponds to the eigenvalue problem for the QCD Hamiltonian, where M is

the particle’s mass and |ψ〉 is the hadronic wavefunction, expansion of multi-particle

Fock eigenstates of the Hamiltonian |n〉, i. e. |ψ〉 =
∑
n ψn |n〉. The treatment of such

a relativistic bound-state represents a formidable challenge, both from a theoretical

and practical point of view. The theoretical problem is related to the well-known

nonperturbative nature of such an expression. The practical problems refer to the

presence of the square root operator, which brings positive (negative) energies for

particles (antiparticles), and the fact that the vacuum state is not an eigenstate of the

full Hamiltonian. Moreover, in the standard instant form quantization, one should

deal with the difficulties related to the presence of dynamical boost operators and

nontrivial QCD vacuum.

It has been argued in refs. [6,79,80] that the situation highly simplifies in the light-

front, although a firm preference for this approach in the hadronic physics community

is not unanimous (see, e.g. [81]). The hadronic eigenvalue problem simplifies in light-

front, and the hamiltonian eigenvalue problem reads:

H |ψ〉 =
M2 + P 2

T

2P+
|ψ〉 = P− |ψ〉 , (2.85)

which is a simplification because: 1) the boosts are kinematic, 2) from the on-shell

condition follows that P+ has only positive eigenvalues, and 3) the square-root oper-

ator is absent8.

The state |ψ〉 is eigenstate of a complete set of mutually commuting operators:

the mass, the three space-like momenta P+,PT , the spin four-vector squared S2 and

its longitudinal projection Sz. Namely:

|ψ〉 =
∣∣h;M,P+,PT , S

2, Sz
〉
, (2.86)

where we indicate with the index h everything that specifies the hadron, such as

charge, parity, baryon number. The |ψ〉 is expanded in terms of a complete basis of

Fock states of the type:

|N ;xi,kT i, βi〉 ,
8It is commonly added to this list that the QCD vacuum is trivially an eigenstate of the Hamil-

tonian. This statement is lively debated in the community and was formally proved to be incorrect
in [68]. The considerations on the light-front wave functions remain valid and correct even in the
absence of the vacuum triviality assumption.
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which represent the N -partons states. The indices βi includes all the other indices,

such as parton-type, helicity, etc., and (xi,kT i) are the momentum components of

each parton. Each parton in the state (quark, antiquark, gluon) with momentum

components k+,kT and helicity β is created from the vacuum state due to the action

of creation operators (b†, d†, a†) whose commutation and anticommutation rules are

listed in Appendix A. Namely9:

|q; k+,kT , β〉 = b†(k+,kT , β) |0〉 , (2.87)

|q̄; k+,kT , β〉 = d†(k+,kT , β) |0〉 , (2.88)

|g; k+,kT , β〉 = a†(k+,kT , β) |0〉 . (2.89)

The state of a hadron with momentum P and LF helicity Λ can therefore be

written as a sum over all the Fock states:

|P,Λ〉 =
∑

N,β

∫ [
dx√
x

]

N

[
d2kT

]
N
ψΛ
N,β(r) |N ; k1, · · · , kN , β1, · · · , βN 〉 , (2.90)

where the projection of the hadron state onto the N -parton Fock states ψΛ
N,β(r) are

called light-front wave functions LFWFs. We define:

r = (r1, . . . , rN ) , with ri = (xi,kT i) . (2.91)

The LFWFs are normalized as follows:

∑

N

∫ [
dx√
x

]

N

[
d2kT

]
N

∣∣ψn/h(N, xi,kT i, βi)
∣∣2 = 1, (2.92)

with the integration measures:

[
dx√
x

]

N

≡
N∏

i=1

dxi√
xi
δ

(
1−

N∑

i=1

xi

)
, (2.93)

[
d2kT

]
N
≡ 1

(16π3)N−1

N∏

i=1

d2kT iδ
(2)

(
N∑

i=1

kT i

)
. (2.94)

The LFWFs are frame independent quantities that only depend on relative coordi-

9The following property is typical of LF quantization and it is usually ascribed to the fact that,
ignoring zero-modes, the perturbative vacuum is trivial in QCD and therefore a |0〉 = 0. It has been
shown in ref. [68] that the perturbative vacuum in LF actually satisfies a |0〉 = 0 and allows the
LFWF overlap representation, without any (wrong) assumption on the vacuum triviality.
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nates xi and kTi , but not on the hadron momentum. This ultimately means the

centre of mass motion can be separated from the relative motion of the partons [69].

The LFWFs are nonperturbative quantities. In practice, the expansion (2.90)

can be used to model simultaneously several hadronic observables within a unifying

framework, such as the matrix elements defining the TMDs, DPDs, PDFs, etc. [82].

2.7 Summary

We have presented an overview of selected topics relevant to the study of the hadron

structure. This will serve as introductory material for the rest of the dissertation. An

important consideration arising from the previous sections regards the versatility of

the concept of parton correlators inside hadrons. The definition in terms of hadronic

matrix element containing fields operators is extremely general, and it is indeed used

in many contexts where one needs to specify the hadronic part in the factorized cross

section formulae.

The operator definition derived from the diagrammatic approach needs to be com-

plemented with Wilson lines to ensure gauge invariance, and this affects the univer-

sality of the correlator, which becomes process dependent in the TMD and DPS cases.

The correlators can be decomposed and parametrized in terms of functions that

encode all the nonperturbative aspects of parton dynamics inside the hadron. These

functions are related to the final state distributions and can be extracted in several

processes.

Each correlator entering a hard scattering contains a hadron state. This is a

cumbersome complication because an explicit procedure to derive the hadronic wave

function is not know. A convenient formalism is then the use of the LFWFs, frame-

independent quantities in terms of which all the partonic functions can be expressed.

This would represent a unifying way of describing the hadronic observables in the

seek of complete knowledge of hadron structure.
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Chapter 3

Quarks and gluons in

polarized hadrons and nuclei

of spin ≤ 1

3.1 Introduction

In this Chapter, we discuss the parametrization of the TMD correlator of quarks and

gluons in terms of transverse momentum-dependent parton distributions (TMDs),

starting from the matrix elements (2.47) and (2.48).

The decomposition of the correlators in terms of relevant structures allowed by

symmetry, multiplied by nonperturbative functions (TMDs), is an advantageous pro-

cedure. In fact, it enables us to single out the relevant quantities that contribute to

the cross section of a selected process. The complete parametrization of the TMD

correlator for quarks, including the T-odd structure, was given in [83] for spin-1/2

hadrons, and complemented in [84,85] with the tensor polarization part (relevant for

spin-1 and higher). As far as gluons are concerned, the first parametrization was per-

formed in [86], followed by [87]. The latter focused on spin-1/2 targets, and we recently

extended the parametrization for the complete spin-1 case in [88].

The study of the gluonic content of hadrons of spin higher than 1/2 and nuclei
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Chapter 3 · Partons in polarized hadrons of spin ≤ 1

has been recently attracting attention also from the experimental and lattice commu-

nity [89–91]. Looking at new gluon distributions, which are not related to the ones in

the nucleons, can become very interesting for instance to study exotic (non-nucleonic)

effects in the binding of nuclei.

The results we present on gluons are based on [88,92,93]. In particular, we include

the definition and parametrization of a different type of correlator, the Wilson loop

correlator, which is connected to the gluon correlator in the small-x domain [88]. For

completeness, we also include the well-known results on quarks.

3.2 TMD correlators for polarized hadrons

We present the leading-twist expansion of the TMD correlator. The dependence on

the transverse components of the parton momentum and the additional degrees of

freedom linked to the polarization of the target are responsible for the significant

number of functions appearing in the parametrization. We consider targets of spin up

to 1. We begin by reviewing the general features of the parametrization valid both

for quarks and gluons. Throughout this Chapter, a Sudakov type of decomposition

for the four-vectors is employed, as explained in Section 2.2.

Target spin: 0, 1/2, and 1

In quantum mechanics we describe mix states by means of the density matrix ρ,

defined as follows:

ρ =
∑

i

pi |i〉 〈i| , (3.1)

where |i〉 are pure states and pi is the probabilities of finding the particle in the spin

state |i〉. The density matrix of a spin-1/2 hadron which is not in a pure state can be

written as:

ρ =
1

2
(I + S · σ), (3.2)

where σ = (σ1, σ2, σ3) are Pauli matrices and the vector S = (S1, S2, S3) is identified

as the spin vector of the particle in cartesian coordinates. A generalization of spin

vectors into a covariant form can be obtained by defining the spin in the rest frame

as space-like four-vector Sµ = (0,S). In the rest frame (and in any frame) one has

P · S = 0. A possible parametrization is:

Sµ = SL
Pµ

M
+ SµT −MSL n

µ. (3.3)
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3.2 TMD correlators for polarized hadrons

The decomposition of the density matrix for a spin-1/2 particle can be generalized

for spin-1 particles. In fact, one needs a Cartesian basis of 3 × 3 matrices formed

by the identity matrix, the three-dimensional representation of the Pauli matrices

Σi (generalized Pauli matrices), and the five bilinear combinations Σij = 1
2 (ΣiΣj +

ΣjΣi)− 2
3δ
ij . The density matrix has the form:

ρ =
1

3

(
I +

3

2
SiΣi + 3T ijΣij

)
, (3.4)

where the components Si of the vector S are defined as previously and represent

the vector part of the spin. The tensor part of the spin state is represented by the

symmetric traceless tensor T ij . The generalization into a covariant form is achieved

by demanding PµT
µν = 0. The parametrization reads:

Tµν =
1

2

[
2

3
SLL g

µν
T +

4

3
SLL

PµP ν

M2
+
S
{µ
LTP

ν}

M
+ SµνTT

− 4

3
SLLP

{µnν} −MS
{µ
LTn

ν} +
4

3
M2SLL n

µnν
]
. (3.5)

The density matrix takes the form:

ρ(S, T ) =




1
3 + SL

2 + SLL
3

SxT−iSyT
2
√

2
+

SxLT−iSyLT
2
√

2

SxxTT−iSxyTT
2

SxT+iSyT
2
√

2
+

SxLT+iSyLT
2
√

2
1
3 − 2SLL

3

SxT−iSyT
2
√

2
− SxLT−iSyLT

2
√

2

SxxTT+iSxyTT
2

SxT+iSyT
2
√

2
− SxLT+iSyLT

2
√

2
1
3 − SL

2 + SLL
3



.

(3.6)

The use of the spin density matrix allows one to include the target spin in the

description in a Lorentz invariant way. The procedure is very general and can be

extended to higher spin in an analogous way [94].

Symmetric traceless tensors

Both for quarks and gluons we write parametrizatons for target spin up to one, and

employ symmetric and traceless tensors (STT) ki1...inT that are built from the partonic

momentum kT . We use the metric tensor in transverse space defined as gµνT ≡ gµν −
P {µnν} (curly brackets denote symmetrization of the indices), with nonvanishing

elements g11
T = g22

T = −1. Up to rank n = 4, the tensorial structures are given

by:
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kijT ≡ kiTkjT +
1

2
k2
Tg

ij
T , (3.7)

kijkT ≡ kiTkjTkkT +
1

4
k2
T

(
gijT k

k
T + gikT k

j
T + gjkT k

i
T

)
, (3.8)

kijklT ≡ kiTkjTkkTklT +
1

6
k2
T

(
gijT k

kl
T + gikT k

jl
T + gilT k

jk
T + gjkT k

il
T + gjlT k

ik
T + gklT k

ij
T

)

− 1

8
k4
T

(
gijT g

kl
T + gikT g

jl
T + gilT g

jk
T

)
, (3.9)

satisfying

gT ijk
ij
T = gT ijk

ijk
T = gT ijk

ijkl
T = 0. (3.10)

From this decomposition of the Lorentz structures it follows that the functions

involved in the parametrization are twist-2 TMDs of definite rank. This has the ad-

vantage that there is a one-to-one correspondence between the functions defined in kT
space and the correspondent ones that depend on the Fourier conjugate variable bT .

This property turns out to be very convenient for the TMD evolution equations [95].

Twist expansion

Once the contributions allowed by symmetries are derived, the goal is to develop a tool

to classify these terms, in order to recognize the important ones in the cross section

calculation. In other words, one needs to identify the relevant expansion parameter

that estimates the importance of each term of the correlator. This is why we need to

introduce the concept of twist.

The twist expansion was first derived in the context of the Operator Product

Expansion (OPE), proposed by Wilson in [96]. The OPE can be used to write a

nonlocal operator A(x)B(0) (e.g. the operator that enters the hadronic tensor) as an

expansion on a basis of local operators On(x) with (singular) coefficients that depend

on the nonlocality, as long as the distance |x| in spacetime is small [15], i.e.

∫
d4xeiq·x 〈P |A(x)B(0) |P 〉 =

∑

n

Cn(q) 〈P |On |P 〉 . (3.11)

The crucial point is to determine which operator in the expansion contribute

the most. When applied to the DIS hadronic tensor, the singular coefficients are

proportional to: (
M

Q

)dO−n−2

, (3.12)
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3.3 Parametrization for quarks

where

t = dO − n = “dimension− spin”, (3.13)

is the twist of the local operator O, and governs the relevance of the operator in the

expansion as powers of (M/Q).

Since the definition of twist is formally related to the validity of the OPE proce-

dure, such expansion is in principle allowed only for the hadronic tensor of DIS, where

x2 ∼ 0 (light-cone dominated) and e+e−, where x ∼ 0 (short-distance dominated). In

general, the formal derivation cannot be extended to all cases and, strictly speaking,

it is not applicable to the Drell-Yan hadronic tensor.

However, the concept of twist can also be used in situations where the OPE does

not hold true, and we hereby adopt a working definition of it. In [97] it is called

twist the order in M/Q at which an operator contributes to the cross section of the

high-energy process. It is based on the realization that one can order the operators

by means of power counting, namely by counting the factors of mass M introduced in

the parametrization in order to respect the mass dimension of the correlator. A twist

t operator results in a contribution of the order

(
M

Q

)t−2

(3.14)

to the cross section. The lowest order in the twist expansion is referred to as twist-

two, while sub-leading terms are twist-three and higher. Throughout the Chapter, we

only deal with twist-two contributions and omit any higher-twist structure in all the

parametrizations we will present.

3.3 Parametrization for quarks

We denote the leading-twist TMD correlator as:

Φ(x,kT ) ≡ Φ[U ](x,kT ;n, P, S, T ) (3.15)

≡
∫
d(ξ·P )d2kT

(2π)3
eik·ξ 〈P, S, T |ψ(0)U(0, ξ)ψ(ξ) |P, S, T 〉

∣∣∣∣
ξ+=0

,

where we indicate the dependence on the lightlike four-vector n, considering that in

high energy processes one has staple-like gauge links running along the light-front

(ξ·n = 0) via lightlike ξ·P = ±∞.

We show the complete parametrization for quarks in hadrons of spin up to 1, using
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symmetric traceless tensors [98], in a slightly different way as the original works [83–

85], where the STT form was not employed. The correlator is organized in terms of

target polarization, and schematically reads:

Φ = ΦU + ΦL + ΦT + ΦLL + ΦLT + ΦTT , (3.16)

with obvious meaning of the subscipts U, L, T, LL etc.. The decomposition reads:1

ΦU (x,kT ) =
1

2

[
/Pf1(x,k2

T ) +
[/k
T
, /P ]

2M
ih⊥1 (x,k2

T )

]
, (3.17)

ΦL(x,kT ) =
1

2
SL

[
γ5 /Pg1(x,k2

T ) +
[/k
T
, /P ]

2M
γ5h
⊥
1L

]
, (3.18)

ΦT (x,kT ) =
1

2

[
εST kTT

M
/Pf⊥1T (x,k2

T ) +
kT ·ST
M

γ5 /Pg1T (x,k2
T )

+
[/ST , /P ]γ5

2
h1(x,k2

T )− STρ[/k
ρ
T
, /P ]γ5

2M2
h⊥1T (x,k2

T )

]
, (3.19)

ΦLL(x,kT ) =
1

2
SLL

[
/Pf1LL +

[/k
T
, /P ]

2M
ih⊥1LL(x,k2

T )

]
, (3.20)

ΦLT (x,kT ) =
1

2

[
kT ·ST
M

/Pf1LT (x,k2
T ) +

εSLT kTT

M
/Pγ5g1LT (x,k2

T )

+
[/SLT , /P ]

2
i h1LT (x,k2

T )− iSLTρ[/k
ρ
T
, /P ]

2M2
h⊥1LT (x,k2

T )

]
, (3.21)

ΦTT (x,kT ) =
1

2

[
kµνT STTµν

M2
/Pf1TT (x,k2

T )− εTµνk
µρ
T STTρν
M2

γ5 /Pg1TT (x,k2
T )

− kρT [/STTρ, /P ]

M
ih1TT (x,k2

T ) +
STTρσ[/k

ρσ
T
, /P ]

M3
ih⊥1TT (x,k2

T )

]
, (3.22)

where we use the notation /k
ρ
Sρ = γµk

µρSρ, and analogously for the other contrac-

tions. The transverse antisymmetric tensor is defined as εµνT ≡ εPnµν , with nonzero

components ε12
T = −ε21

T = 1. The f -type functions represent unpolarized parton struc-

tures, while g- and h-type functions are polarized distributions. Unless otherwise spec-

ified, the full dependence of the functions of the renormalization scale µ is understood.

This aspect will be discussed in Chapter 5, where we implement the QCD evolution

of the unpolarized TMD f1(x,kT ), as well as the correspondent collinear function in

1We define the transverse four-vector aµT to have light cone components (0, 0,aT ), where aT is a
two-dimensional vector on the transverse plane. This implies e.g. that a2

T = −a2
T .
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3.3 Parametrization for quarks

Unpolarized Longitudinal Transverse

U f1 h⊥1

L g1 h⊥1L

T f⊥1T g1T h1, h
⊥
1T

LL f1LL h⊥1LL

LT f1LT g1LT h1LT , h
⊥
1LT

TT f1TT g1TT h1TT , h
⊥
1TT

Table 3.1: Summary table of the quark TMDs in polarized targets of spin up to 1. The rows display
the target polarization (unpolarized, vector and tensor polarized) and the columns refer to the quark.
Bold-face functions survive integration over transverse momenta and have a collinear correspondent.
We do not display the collinear T-odd function h1LT with bold-face, see main text.

a model calculation using AdS/QCD. In table 3.1 the functions are organized and

divided according to the quark/hadron polarization.

Integration over transverse momenta

Integration over transverse momenta forces many functions to vanish. The collinear

correlator can be parametrized as follows:

Φ(x;P, S, T ) =
1

2

[
/Pf1(x) + SLγ5 /Pg1(x) +

[/ST , /P ]γ5

2
h1(x)

+ SLL /Pf1LL(x) +
[/SLT , /P ]

2
i h1LT (x,k2

T )

]
, (3.23)

where f1(x) ≡
∫
d2kT f1(x,k2

T ), and similarly for the other functions. The quark

PDFs for spin-1/2 target are historically the first quantities studied to investigate

the hadronic structure. They represent the distribution of quarks in the longitudinal

momentum space of unpolarized (f1), longitudinally polarized (g1, also called ∆f),

and transversely polarized (h1) quarks in the proton. The spin-1 case has an extra

collinear function, in our notation called f1LL. This function is usually referred to as

the b1 function of [99] and is particularly attractive because it contains non-nucleonic

degrees of freedom that are detectable in the nuclei. We include the collinear function
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h1LT which is T-odd and simultaneously survives integration over transverse mo-

menta. At first order, in the framework where we operate the function h1LT appears

to vanish due to the gauge link structure and the behavior under naive time reversal

transformations. However, the complete analysis of the gluonic pole matrix element

associated with this function partially discussed in [50], might also contradict this

statement.

3.3.1 Quark TMDs phenomenology

The intrinsic motion of partons inside the proton is responsible for the specific depen-

dence of the cross section on an azimuthal angle. The various correlations encoded in

the TMDs translate into azimuthal or spin asymmetries of the measured cross sec-

tion, which are calculable assuming the validity of factorization theorems and whose

measurement gives indirect access to a variety of TMDs (both distributions and frag-

mentation functions).

Experimental information on the TMD functions is restricted to few functions,

and for unpolarized and vector polarized targets, while no data are available for the

functions related to tensor polarization. We refer to the reviews [67, 100] and the

dissertation [95] for a fairly complete overview of the status and perspectives of TMD

phenomenology.

The unpolarized TMD f1 is, at present, the best known TMD function. Reaching

an increasingly better accuracy in the extraction of the unpolarized TMD is surely im-

portant on its own, but particularly because its value enters in the definition of all the

asymmetries. Data on the unpolarized function are extracted from several processes

in the facilities across the globe: from SIDIS at HERMES and COMPASS [101,102],

from DY at Fermilab, and from Z boson production at LHC and Tevatron [103].

The development of the formalism and the availability of experimental data on the

nucleon led to recent extractions which are boosting the knowledge of the f1 to the

level of precision physics [104–109]. The second most known function is the Sivers

function f⊥1T , followed by the transversity h1, the Boer-Mulders h⊥1 and pretzelosity

h⊥1T [100]. Almost no experimental information is available for all the other functions.

Worth mentioning is the history of the Sivers function f⊥1T . It was first introduced

by Sivers [110], but later in [111] it was argued to be vanishing using time-reversal

symmetry arguments. After the calculation in [112], it became clear that the Sivers

function does not vanish thanks to the presence of the Wilson lines. The asymmetry

arising in the angular distribution of the produced particles in processes involving

transversely polarized targets was eventually calculated in [113], and this was subse-

quently called the Sivers effect. As a direct consequence of the presence of the gauge
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3.3 Parametrization for quarks

link, the quark Sivers function (likewise all the other T-odd distributions) is not uni-

versal, as mentioned in Section 2.5. In particular, as a consequence of (2.64) one has:

f
⊥[+]
1T (x,k2

T ) = −f⊥[−]
1T (x,k2

T ), (3.24)

which is equivalent to saying that the Sivers function enters the cross section for-

mula of SIDIS process (future-pointing gauge link) with an opposite sign than the

Sivers function that enters the Drell-Yan (past-pointing gauge link). The first ex-

perimental measurements of the Sivers asymmetry were performed by the HERMES

collaboration [114], and the measurements of the sign-change in (3.24) is at present

one of the focus of the programs at the COMPASS-II experiment at CERN, at RHIC

(BNL) [115] and at Fermilab [116,117].

Similarly to the Sivers, the functions h⊥1 , g1LT , g1TT , h⊥1LL, h1LT , h⊥1LT , h⊥1TT ,

h⊥⊥1TT are odd under naive time reversal transformations (T -odd). The Boer-Mulders

function h⊥1 , first defined in [51], is related to the density number of transversely

polarized quarks in an unpolarized target in the current program of COMPASS. This

T-odd function is a h-type function, which means that it is also chiral-odd because

it describes a flip in the quark chirality. Likewise all the chiral-odd quark functions,

their study is limited to those processes where they can couple with another chiral-odd

structure, being a TMD PDF (double Boer-Mulders effect in Drell-Yan) or a TMD

fragmentation function (the chiral-odd Collins function, for instance in SIDIS [118])

or with a mass term.

Almost no information is available for the tensor polarized functions, except in

the collinear case. The function called here f1LL is related to the structure func-

tion called b1 in the deuteron. This was the object of a study by Hoodboy and Jaffe

in [99], where, for the first time, was pointed out that in high-energy processes involv-

ing spin-1 hadrons one can define collinear quark structure functions (called b1,2,3,4)

that can be measured in experiments of inclusive deep inelastic scattering of an elec-

tron off a tensor polarized target. The extraction of the function b1 for the deuteron

was performed by the HERMES collaboration in 2005 [119]. The data collected and

the parametrization proposed [120] deviate significantly from the standard theoret-

ical predictions [99, 121–123], both for the x behavior and the magnitude, although

the experimental uncertainties leave room for improvements. This suggests that, for

the deuteron, dynamics beyond quarks and gluons confined within the individual nu-

cleons is needed to describe it. More measurements of b1 will be performed as part

of the 12 GeV program at Jefferson Lab (JLab) [124]. Ideally, information on other

spin-1 targets such as (virtual) ρ mesons would allow us to thoroughly study such

different quark contributions and dynamics [65]. However, this is currently beyond
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Chapter 3 · Partons in polarized hadrons of spin ≤ 1

any experimental reach.

3.4 Gluons in polarized hadrons and nuclei

Whereas considerable knowledge has been acquired on the quarks over the past

decades, understanding the gluonic content of hadrons is a challenging task far from

being accomplished. Gluon observables are typically overwhelmed by the valence

quark ones, as far as present experimental facilities are concerned. However, at higher

energies, the gluon (and the quark sea) distributions become important, and they

need to be studied in details [125].

The gluon TMDs are relevant for processes where the hard scattering is initiated

by gluons rather than quarks. An example is the gluon-gluon fusion that leads to the

production of a colorless final state (for example the Higgs boson). More generically

one can have a partonic scattering involving gluons (or mixed quark/gluon distribu-

tions) resulting in the production of jets, or hadrons or photons at high transverse

momentum.

The dominance of gluon quantities occurs in experiments which probe a region

of low fraction of momentum x, as planned for the future Electron-Ion Collider

(EIC) [126,127]. Relevant small-x regions are accessible also when the centre of mass

energy of the collisions increases, as expected for the LHC within the high-luminosity

program. A new program of QCD precision physics will then be possible, in which

the gluons will play a very important role.

An interesting and even less investigated aspect is the gluonic structure linked to

the polarization of the target of spin ≤ 1, where non-nucleonic dynamics becomes

accessible. The inclusion of tensor polarization, related to particles of spin larger than

1/2, could yield new insights into the internal dynamics of hadrons and nuclei.

3.4.1 Gluon correlation function

In 2001, Mulders and Rodrigues presented the first parametrization of the gluon

TMD correlator at twist-two [86], considering both unpolarized and vector polarized

hadrons, relevant for target of spin 0 and 1/2. In Ref. [88] we extended the analyses of

refs. [86,87] by parametrizing the gluon correlator for unpolarized, vector polarized, as

well as tensor polarized hadrons. In the same work, a connection between the gluon

TMD operator, calculated at small-x, and the Wilson loop operator, that will be

defined later in Section 3.4.3, was explored. A systematic way of naming the various

TMDs was used, keeping and extending the notation proposed in Ref. [87].
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3.4 Gluons in polarized hadrons and nuclei

The parametrization of the unintegrated correlator

Γ[U,U ′]µν;ρσ(k;P ) ≡
∫

d4k

(2π)4
eik·ξ 〈P |Fµν(0)U(0, ξ)F ρσ(ξ)U ′(ξ, 0) |P 〉 (3.25)

is constrained by hermiticity and parity conservation and respects the relations in-

duced by time reversal (see Section 2.5). This is a fundamental criterion to perform

a first decomposition in terms of the allowed Loretz structures, which, in the unpo-

larized target case, explicitly reads:

Γ[U,U ′]µν;ρσ(k;P, n) = M2A1 ε
µναβερσαβ +A2 P

[µgν][ρPσ] +A3 k
[µgν][ρkσ]

+ (A4 + iA5)P [µgν][ρkσ] + (A4 − iA5) k[µgν][ρPσ]

+ (A6/M
2)P [µkν]P [ρkσ] +M4A′7 n

[µgν][ρnσ]

+M2(A′8 + iA′9)P [µgν][ρnσ] +M2(A′8 − iA′9)n[µgν][ρPσ]

+M2(A′10 + iA′11) k[µgν][ρnσ] +M2(A′10 − iA′11)n[µgν][ρkσ]

+M2A′12 P
[µnν]P [ρnσ] +M2A′13 k

[µnν]k[ρnσ]

+ (A′14 + iA′15)P [µkν]P [ρnσ] + (A′14 − iA′15)P [µnν]P [ρkσ]

+ (A′16 + iA′17)P [µkν]k[ρnσ] + (A′16 − iA′17) k[µnν]P [ρkσ]

+M2(A′18 + iA′19)P [µnν]k[ρnσ]

+M2(A′18 − iA′19) k[µnν]P [ρnσ], (3.26)

where Ai = Ai(k·n, k·P, k2). Relevant mass dimensions are [Γ] = −2 and [Ai] = −4.

Terms with coefficients A5, A
′
9, A

′
11, A

′
15, A

′
17, A

′
19 are T -odd. A prime on the coefficient

indicates that the corresponding Lorentz structure includes the four-vector n. These n-

dependent structures give rise to higher twist TMDs (see ref. [128] for the analogous

case for quarks) and will be omitted in the following, as we are only interested in

leading-twist functions. For the same decomposition of the correlator when vector

and tensor polarization are considered, we refer to Appendix B and [88].

Integrating eq. (3.25) over k·P leads to the TMD (light-front) correlator (2.48).

By counting power of M/Q as explained earlier, the leading-twist terms are identified

as the ones containing the contraction of the field strength tensor with n and one

transverse index (i, j = 1, 2). Explicitly indicating the dependence of vector and tensor

part of the spin, the correlator is then:

Γij(x,kT ) ≡ Γ[U,U ′]ni;nj(x,kT ;P, n, S, T )
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Chapter 3 · Partons in polarized hadrons of spin ≤ 1

≡
∫
d(ξ·P )d2kT

(2π)3
eik·ξ 〈P, S, T |Fµν(0)U(0, ξ) F ρσ(ξ)U ′(ξ, 0) |P, S, T 〉

∣∣∣∣
ξ+=0

, (3.27)

where a trace over color is understood and we omit the dependence on the gauge links

unless needed. After the separation in terms of the possible hadronic polarization

states, the correlator in eq. (3.27) can be schematically written as:

Γij = ΓijU + ΓijL + ΓijT + ΓijLL + ΓijLT + ΓijTT . (3.28)

The parametrization in terms of TMDs, separated in different polarization reads:

ΓijU (x,kT ) =
x

2

[
− gijT f1(x,k2

T ) +
kijT
M2

h⊥1 (x,k2
T )

]
, (3.29)

ΓijL (x,kT ) =
x

2

[
iεijT SL g1(x,k2

T ) +
ε
{i
T αk

j}α
T SL

2M2
h⊥1L(x,k2

T )

]
, (3.30)

ΓijT (x,kT ) =
x

2

[
− gijT ε

ST kT
T

M
f⊥1T (x,k2

T ) +
iεijT kT ·ST

M
g1T (x,k2

T )

− ε
kT {i
T S

j}
T + ε

ST {i
T k

j}
T

4M
h1(x,k2

T )− ε
{i
T αk

j}αST
T

2M3
h⊥1T (x,k2

T )

]
, (3.31)

ΓijLL(x,kT ) =
x

2

[
− gijT SLL f1LL(x,k2

T ) +
kijT SLL
M2

h⊥1LL(x,k2
T )

]
, (3.32)

ΓijLT (x,kT ) =
x

2

[
− gijT kT ·SLT

M
f1LT (x,k2

T ) +
iεijT ε

SLT kT
T

M
g1LT (x,k2

T )

+
S
{i
LT k

j}
T

M
h1LT (x,k2

T ) +
kijαT SLT α

M3
h⊥1LT (x,k2

T )

]
, (3.33)

ΓijTT (x,kT ) =
x

2

[
− gijT k

αβ
T STT αβ
M2

f1TT (x,k2
T ) +

iεijT ε
β
T γk

γα
T STT αβ
M2

g1TT (x,k2
T )

+SijTT h1TT (x,k2
T ) +

S
{i
TT αk

j}α
T

M2
h⊥1TT (x,k2

T )

+
kijαβT STT αβ

M4
h⊥⊥1TT (x,k2

T )

]
, (3.34)

where there is a implicit dependence of the TMDs on the gauge link, i.e. f
g[U,U ′]
1 (x,k2

T ).
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3.4 Gluons in polarized hadrons and nuclei

We omit any label on the functions that refers to gluons, being understood that we will

only discuss the gluons in this Section. We also omit the dependence of the functions

on the renormalization scale.

To be more precise, the polarized correlators that is parametrized in (3.30)-(3.34)

are in fact defined as:

∆Γµν;ρσ(x,kT ;P, S) ≡ 1

2
[Γµν;ρσ(x,kT ;P, S)− Γµν;ρσ(x,kT ;P,−S)] , (3.35)

and

∆Γµν;ρσ(x,kT ;P, T ) ≡ 1

2
[Γµν;ρσ(x,kT ;P, T )− Γµν;ρσ(x,kT ;P,−T )] , (3.36)

but we will not use the notation “∆Γ” throughout the thesis for the sake of simplicity.

The expressions of the TMDs in terms of the coefficients Ai can be found in

appendix B. The functions h⊥1L, f⊥1T , g1LT , g1TT , h1, and h⊥1T are T-odd. The link to

the more traditional parametrizations of [86, 87] is found in [88], and is based on the

following identity:

ε
{i
T αk

j}αβ
T ST β = ε

kT {i
T k

j}
T kT ·ST +

1

4
k2
T

(
S
{j
T ε

i}kT
T + k

{j
T ε

i}ST
T

)
. (3.37)

The function h1 is a rank-1 function, h1T of [87] contains both rank-1 and rank-3

pieces, and h⊥1T is a rank-3 function.

Integrating the TMD correlator in eq. (3.27) over transverse momentum, we obtain

the collinear correlator:

Γij(x) ≡
∫

dξ·P
2π

eik·ξ 〈P, S, T |Fni(0)U[0,ξ]F
nj(ξ)U ′[ξ,0] |P, S, T 〉

∣∣∣∣
ξ·n=ξT=0

. (3.38)

The parametrization of this correlator in terms of collinear PDFs is given by

Γij(x) =
x

2

[
− gijT f1(x) + iεijT SL g1(x)− gijT SLL f1LL(x) + SijTT h1TT (x)

]
. (3.39)

The surviving collinear PDF for vector polarization is the rank-0 function g1,

where we have omitted the subscript ‘L’ on g1 ≡ g1L, while in the tensor polarized

case two more function f1LL(x) and h1TT (x) survive. The former function is analogous

of what was called b1 in the quark case, and the latter function shows up in the

structure function ∆(x) discussed in ref. [129] and is called ∆2G(x) in ref. [130]. The

gluon structure function ∆(x) and, equivalently, the PDF h1TT (x) are related to the
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Chapter 3 · Partons in polarized hadrons of spin ≤ 1

double-helicity flip scattering amplitude in processes involving hadrons of spin ≥ 1. At

the parton level, h1TT (x) represents the distribution of linearly polarized gluons in a

transversely tensor polarized target sometimes referred to as “gluon transversity” [89–

91]. An overview of the functions in terms of target/gluon polarization is shown in

Table 3.2

3.4.2 The gluon correlator at small-x

The gluon TMD correlator greatly simplifies in the small-x limit for the so-called

dipole-type gauge link structure [+,−], as shown in [88, 131]. In particular, in [88]

we elaborated on the link between the gluon correlator at x = 0 and the operator

depending on the same [+,−] gauge link structure, where the gluon fields are absent.

The relation reads:

Γ[+,−] ij(0,kT ) =

∫
dξ·P d2ξT

(2π)3
eik·ξ 〈P |Fni(0)U

[+]
[0,ξ] F

nj(ξ)U
[−]
[ξ,0] |P 〉

∣∣∣∣
ξ·n=k·n=0

=
1

2πL

∫
dξ·P d2ξT

(2π)3
eik·ξ 〈P |Fni(0)U

[+]
[0,ξ] F

nj(ξ)U
[−]
[ξ,0] |P 〉

∣∣∣∣
ξ·n=k·n=0

=
4

2πL

∫
d2ξT
(2π)2

eikT ·ξT 〈P |GiT (0)U
[+]
[0,ξ]G

j
T (ξ)U

[−]
[ξ,0] |P 〉

∣∣∣∣
ξ·n=0

. (3.40)

Eventually we can write [88]:

Γ[+,−] ij(0,kT ) =
kiTk

j
T

2πL
Γ

[�]
0 (kT ), (3.41)

where L ≡
∫
dξ·P = 2π δ(0) and we defined:

Γ
[�]
0 (kT ) =

∫
d2ξT
(2π)2

eikT ·ξT 〈P |U [+]
[0,ξ] (ξ)U

[−]
[ξ,0] |P 〉

∣∣∣∣
ξ·n=0

. (3.42)

The latter is called Wilson loop correlator and it will be properly defined in Sec-

tion 3.4.3 (see eq. (3.46)). The loop is built from a future and a past pointing staple-like

gauge link, that enter the rectangular Wilson loop U [�] ≡ U
[+]
[0,ξ]U

[−]
[ξ,0]. More generi-

cally, one can write a loop as the square of the form O(0)O†(ξ) for a specific nonlocal

operator O as follows:

U [�] = Un[−∞,0T ;∞,0T ]U
T
[∞,0T ;∞,ξT ]U

n
[∞,ξT ;−∞,ξT ]U

T
[−∞,ξT ;∞,0T ]
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=
(
UT[−∞,∞T ;−∞,0T ]U

n
[−∞,0T ;∞,0T ]U

T
[∞,0T ;∞,∞T ]

)

×
(
UT[−∞,∞T ;−∞,ξT ]U

n
[−∞,ξT ;∞,ξT ]U

T
[∞,ξT ;∞,∞T ]

)†
. (3.43)

In the last step of (3.40), we use the results in eq. (15) of ref. [48] to calculate

kiTk
j
TΓ0. We performed one partial integration in 0 and the other in ξ and used the

relevant gluonic pole factor C
[�]
GG = 4.

As will be shown in Section 3.4.4, the above results agree with the results in [47,131]

and implies a relation between gluon TMDs at x → 0 and the TMD functions that

parametrize the Wilson correlator (see Section 3.4.3)

3.4.3 Wilson loop correlator

We define the fully unintegrated Wilson loop operator as:

Γ
[U,U ′]
0 (k;P, n) ≡

∫
d4ξ

(2π)4
eik·ξ 〈P |U[0,ξ]U

′
[ξ,0] |P 〉 , (3.44)

where we implicitly include color tracing. The absence of the gluon fields and the

structure of the loop on the light-front still allows integration over k·P , and invariance

in the ξ·P direction implies a delta function δ(k·n):

Γ
[U,U ′]
0 (x,kT ;P, n) ≡

∫
dξ·P d2ξT

(2π)3
eik·ξ 〈P |U[0,ξ]U

′
[ξ,0] |P 〉

∣∣∣∣
ξ·n=0

= δ(x) Γ
[U,U ′]
0 (kT ;P, n), (3.45)

where the loop correlator integrated over k·P and k·n is given by

Γ
[U,U ′]
0 (kT ;P, n) ≡

∫
d2ξT
(2π)2

eikT ·ξT 〈P |U[0,ξ]U
′
[ξ,0] |P 〉

∣∣∣∣
ξ·n=0

. (3.46)

Bearing in mind the proportionality to the longitudinal extent L of the loop,

L ≡
∫
dξ·P = 2π δ(0), the light-front correlator in eq. (3.46) is parametrized in terms

of TMDs as follows (we suppress now the dependence on P and n) [88]:

Γ
[�]
0 (kT ) =

πL

M2

[
e(k2

T ) +
εST kTT

M
eT (k2

T ) + SLL eLL(k2
T )

57



Chapter 3 · Partons in polarized hadrons of spin ≤ 1

+
kT ·SLT
M

eLT (k2
T ) +

kαβT STT αβ
M2

eTT (k2
T )

]
. (3.47)

An overview of the Wilson loop functions in terms of the target polarization is

given in Table 3.2.

Unpolarized Circular Linear Wilson loop

U f1 h⊥1 e

L g1 h⊥1L

T f⊥1T g1T h1, h
⊥
1T eT

LL f1LL h⊥1LL eLL

LT f1LT g1LT h1LT , h
⊥
1LT eLT

TT f1TT g1TT
h1TT , h⊥1TT

h⊥⊥1TT

eTT

Table 3.2: Gluon and Wilson loop TMD functions, divided in terms of target polarization. The
bold-face functions survive integration over transverse momenta. The functions in column 2, 3, and
4 are gluon TMDs and have dependence f ≡ f(x,k2

T ), whereas in column 5 the functions read
e ≡ e(k2

T ).

Similarly to the gluon case, the object that is parametrized is defined as:

∆Γ
[U,U ′]
0 (kT ;P, S, n) ≡ 1

2

[
Γ

[U,U ′]
0 (kT ;P, S, n)− Γ

[U,U ′]
0 (kT ;P,−S, n)

]
, (3.48)

and

∆Γ
[U,U ′]
0 (kT ;P, T, n) ≡ 1

2

[
Γ

[U,U ′]
0 (kT ;P, T, n)− Γ

[U,U ′]
0 (kT ;P,−T, n)

]
, (3.49)

but the notation “∆Γ0” is once again discarded for simplicity.

3.4.4 The correspondence at small-x

The relation in eq. (3.41) between the gluon correlator (3.27) and the Wilson loop (3.46)

is exact for x = 0. However, we can use this relation to infer the behavior of the gluon
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TMDs at small-x, i.e.:

lim
x→0

Γ[+,−] ij(x,kT ) =
kiTk

j
T

2πL
Γ

[�]
0 (kT ). (3.50)

In practice, we exploit the correspondence in (3.50) to obtain direct relations

between the functions in the parametrization of Section 3.4.1 and 3.4.3. Since the cor-

respondence must involve symmetric tensors, the functions related to longitudinally

polarized target do not have any relation to the e-type of functions. This implies

that g1 and h⊥1L are less divergent than 1/x in the limit of small x, given that an

enhancement proportional to 1/x at small-x is predicted for the other functions. For

each type of target polarization we find:

lim
x→0

xf1(x,k2
T ) =

k2
T

2M2
lim
x→0

xh⊥1 (x,k2
T ) =

k2
T

2M2
e(k2

T ). (3.51)

lim
x→0

xf⊥1T (x,k2
T ) = lim

x→0
xh1(x,k2

T ) = − k2
T

2M2
lim
x→0

xh⊥1T (x,k2
T )

=
1

2
lim
x→0

xh1T (x,k2
T ) =

k2
T

2M2
eT (k2

T ), (3.52)

lim
x→0

xf1LL(x,k2
T ) =

k2
T

2M2
lim
x→0

xh⊥1LL(x,k2
T ) =

k2
T

2M2
eLL(k2

T ). (3.53)

lim
x→0

xf1LT (x,k2
T ) = lim

x→0
xh1LT (x,k2

T ) = − k2
T

4M2
lim
x→0

xh⊥1LT (x,k2
T ) =

k2
T

4M2
eLT (k2

T ).

(3.54)

lim
x→0

xf1TT (x,k2
T ) =

2M2

3k2
T

lim
x→0

xh1TT (x,k2
T ) = −1

2
lim
x→0

xh⊥1TT (x,k2
T )

=
k2
T

6M2
lim
x→0

xh⊥⊥1TT (x,k2
T ) =

k2
T

6M2
eTT (k2

T ). (3.55)

The relations (3.51)-(3.55) are valid modulo resummation of large logarithms in

1/x and higher twist effects.

The results (3.52) for the transversely polarized target are in agreement with [131],

where the enhancement at small-x was investigated. For further discussion we refer
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to [88] and reference therein. We mention that such a relation between matrix ele-

ments, which is made possible by specifically considering the dipole-type gauge link

structure, has been extended to the GTMD correlator in [132].

For our purposes, it is relevant to notice that these relations serve as a guiding

criteria in estimating the relative magnitude of functions. Combined with the informa-

tion given by the positivity bounds discussed in Section 3.5, they allow to determine

whether a function is enhanced or suppressed with respect to the other functions in

the appropriate kinematical region. The latter consideration might become useful for

applications especially in the future era of the EIC [126].

3.4.5 Gluon TMDs phenomenology

Currently, the experimental information on gluon distributions is scarce and almost

completely restricted to the collinear gluon PDFs for spin-1/2 targets. Gluon TMDs

are mostly unknown because the kinematical regions in which they are relevant are

hardly accessible by present experiments.

As a matter of fact, most of the available information about gluons is at present

delivered by LHC at CERN, even though it was not initially devised for accessing the

desirable range of x-values, and from RHIC at Brookhaven National Lab. A proposal

for implementing a fixed-target experiment within the LHC facilities is currently in

progress. In fact, the realization of AFTER@LHC [133–135] would undoubtedly bring

a significant improvement to the gluon and TMD physics program at the LHC.

Most of the phenomenological studies aim at characterizing the appropriate angu-

lar distribution to access gluon distributions. The extraction of these functions should

rely on all-order TMD factorization, even though, for processes initiated by gluons,

factorization breaking effects are often present [17–21], for instance for hadroproduc-

tion in pp collisions. In general cases, to avoid factorization breaking complications

due to color entanglement, color-singlet configurations in the final states have often

been considered.

On a different note, it is important to stress that the extraction of the gluon

TMDs from different high energy processes requires to account for the appropriate

gauge link structures, shown in the panels (c)-(f) of Fig. 2.7. Two fundamental gauge

link structures exist for gluons (WW- and dipole-type), and different processes can

probe either type or a mixture of them. For instance, the WW-type [+,+] (Fig. 2.7(d))

is related to color flow into the final state, which is the case for e.g. quark-antiquark

pair production in semi-inclusive deep-inelastic scattering [29]. The structure [−,−]

in Fig. 2.7(c) appears in processes with color flow annihilated within the initial state,

such as the pp collision with Higgs production through gluon fusion (gg → h) [136,
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137]. When the color flow involves both initial and final states, the dipole-type gauge

links [−,+] and [+,−] appear (see Fig. 2.7(e) and Fig. 2.7(f) respectively). This is, for

instance, the case of the partonic processes with qg → qg and q̄g → q̄g contributions

respectively. When more hadrons are involved, the gauge links can be combinations

of future- and past-pointing Wilson lines, with the possibility of additional loops [42].

Thus far, a significant effort has been devoted to the study of unpolarized and lin-

early polarized gluon TMDs in unpolarized targets (f1 and h⊥1 ). They have been stud-

ied through the q⊥-spectrum of the Higgs boson produced from gluon fusions [136–

138]. More interestingly, it has been argued that the quark-antiquark pair and quarko-

nium production at the LHC [27,29, 139–142] have an even more sizable dependence

on linearly polarized gluons.

Among the other distributions, the gluon Sivers function occupies a special place.

At present, it can be studied at RHIC and COMPASS, which can provide the trans-

verse polarization of the target. The Sivers function can be accessed through the

measurement of the Sivers asymmetry in pp↑ → πX at RICH and COMPASS, even

though the information in the region of small-x, that is expected to be the most im-

portant, is still mostly missing. The asymmetry measurements have the complication

that they actually give indirect information on the Sivers function [143–145], rather

than the function as arising from the proper definition in TMD factorization proce-

dure. As far as the universality of the gluon Sivers function is concerned, we should

expect a sign-change analogously to the quark case [30,143], namely:

f
[++]
1T (x,k2

T ) = −f [−−]
1T (x,k2

T ); f
[+−]
1T (x,k2

T ) = −f [−+]
1T (x,k2

T ). (3.56)

Among the most promising processes that can be used in the (near) future to access

it, there are ep↑ → e′QQ̄X, which probes f
[++]
1T , pp↑ → γγX, which probes f

[−−]
1T ,

and pp↑ → γjetX, which probes f
[+−]
1T .

Being intrinsically different, the WW- and dipole-type structures probe in principle

two distinct functions. Some of these gluon TMDs can be studied at RHIC, but

especially the future electron-ion collider EIC [126] and the fixed target experiment

AFTER@LHC will be ideal, because they will cover a kinematical region in which

gluon functions are important [125,127].

Being able to probe experimentally the low-x region dominated by gluons in its full

richness would be extremely interesting in order for the theoretical predictions to find

validations. The predictions about the reduction of the number of gluon TMDs in this

region is very interesting from a theoretical point of view. In fact, as we have discussed

in Section 3.40 and [88], the gluon correlator with dipole-type gauge links is related

to the expectation value of a single Wilson loop, confirming the results of [47,131]. It
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turns out that only a few of the gluon TMDs survive in the small-x regime, among

which the linear gluon polarization. Of course, it is crucial that any simplifications

at small-x needs first to be tested for validity. Still on the small-x domain, there are

theoretical indications that the partons undergo a BFKL type of dynamics, which only

recently started to be considered in extractions of collinear quantities [146]. Effects

like parton saturation could interestingly be measured as well [147].

Little information is available on spin-1 targets, mostly restricted to the Sivers

asymmetry of the deuteron. No information is available on the tensor polarization.

On this respect, the interest on the gluon content of nuclei is growing, even if restricted

to the collinear quantities. The collinear structure function for gluons in spin-1 targets,

called ∆(x), was first defined by Jaffe and Manohar in [129]. The authors pointed out

that this observable is related to a transfer of two units of helicity to the nuclear

target, and vanishes for any target of spin smaller than 1. They recognized that there

must exist a tower of gluon operators contributing to the scattering amplitude with

such a double-helicity flip that cannot be linked to single nucleons; instead, they are

exclusive to hadrons and nuclei of spin ≥ 1. In the parton model language, ∆(x)

describes linearly polarized gluons in targets with transverse tensor polarization, and

it is related to the function that we called h1TT . Aspects of this function (its first

moment and a positivity bound) have recently been studied on the lattice in [89,90],

and also experimental interest has been shown [91].

3.5 Positivity bounds

The correlators in eq. (3.15) and (3.27) have been averaged over the target spin states.

In order to single out the hadron spin, we can write the correlators as:

Φ(x,kT ;S, T ) ≡Tr (ρ(S, T )F (x,kT )) , (3.57)

Γij(x,kT ;S, T ) ≡Tr
(
ρ(S, T )Gij(x,kT )

)
, (3.58)

where the information on the spin states of the parent hadron is encoded in the 3× 3

density matrix ρ(S, T ) defined as (3.6) and the combined information on the hadron

and parton spins is contained in the matrices F (x,kT ) and Gij(x,kT ).

As is well known, one can impose positivity constraints on the hadronic tensor and

find a probabilistic interpretation for some of the distribution functions [148]. In this

Section we describe how to derive the positivity relations for gluons in spin-1 targets

and eventually review the quark case. Some general considerations on the positivity

bounds will follow.
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3.5.1 Positivity bounds on gluon distributions

Positivity bounds on gluon TMDs were studied in [86] for spin-1/2 hadrons and, by

applying the same strategy, we extended this analysis to spin-1 hadrons in [93]. The

starting point is the idea that the correlator Γ can be seen as a 2 × 2 matrix in the

two gluon polarizations, given by Γij = ρs′sG
ij
ss′ (see eq. (3.58)), where s, s′ label

the hadronic polarization states. The quantity G is a 6 × 6 matrix in the gluon ⊗
hadron spin space. As we will show explicitly, G turns out to be positive semidefinite,

a property which allows for setting constraints on the gluon distributions. We will

derive bounds for the TMD case and subsequently consider the transverse momentum

integrated case. For completeness, we will also include the bounds that apply to spin-
1/2 hadrons, completing the study of [86] where T-odd functions were not included.

Bounds on transverse momentum dependent functions

In this subsection, we derive bounds for the gluons TMDs that appear in the parametriza-

tion given in eq. (3.28). We choose the same basis for the matrix G as in [86], namely

we use circular gluon polarizations, given by |±〉 = ∓ 1√
2

(|x〉 ± i |y〉). At leading twist,

this matrix is given by

G =
x

2

(
A B

B† C

)
, (3.59)

where [93]:

A =




f1+ f1LL
2
−g1

e−iφk√
2M

(
f̃−g̃+h1LT

)
e−2iφk2

M2

(
f1TT+ig1TT−h⊥1TT

)
eiφk√

2M

(
f̃∗−g̃∗+h1LT

)
f1−f1LL − e

−iφk√
2M

(
f̃∗+g̃∗+h1LT

)
e2iφk2

M2

(
f1TT−ig1TT−h⊥1TT

)
− eiφk√

2M

(
f̃+g̃+h1LT

)
f1+ f1LL

2
+g1


 ,

B =




− e
−2iφk2

4M2

(
2h⊥1 +h⊥1LL−2ih⊥1L

)
e−3iφk3

2
√

2M3

(
h⊥1LT+ih⊥1T

)
− e
−4iφk4

2M4 h⊥⊥1TT

− e
−iφk√
2M

(2h1LT−ih1) − e
−2iφk2

2M2

(
h⊥1 −h⊥1LL

)
− e
−3iφk3

2
√

2M3

(
h⊥1LT−ih

⊥
1T

)
−2h1TT

e−iφk√
2M

(2h1LT+ih1) − e
−2iφk2

4M2

(
2h⊥1 +h⊥1LL+2ih⊥1L

)

 ,

C =




f1+ f1LL
2

+g1
e−iφk√

2M

(
f̃+g̃+h1LT

)
e−2iφk2

M2

(
f1TT−ig1TT−h⊥1TT

)
eiφk√

2M

(
f̃∗+g̃∗+h1LT

)
f1−f1LL − e

−iφk√
2M

(
f̃∗−g̃∗+h1LT

)
e2iφk2

M2

(
f1TT+ig1TT−h⊥1TT

)
− eiφk√

2M

(
f̃−g̃+h1LT

)
f1+ f1LL

2
−g1


 ,
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where for convenience we have suppressed the argument (x,k2
T ) of the functions and

defined f̃ ≡ f1LT + if⊥1T and g̃ ≡ g1T + ig1LT . Furthermore, we have expressed kT
in terms of its polar coordinates (k, φ). From symmetry considerations it follows that

the block C is the parity transformed of A and the off-diagonal blocks are Hermitian

conjugates.

To make the properties of the matrix G more apparent, we write its elements in

the following form:

Gijss′(x,kT ) ≡
∫

dξ·P d2ξT
(2π)3

eik·ξ 〈P ; s|Fni(0)Fnj(ξ) |P ; s′〉
∣∣∣∣
ξ·n=0

=
∑

m

〈Pm|Fni(0) |P ; s〉∗ 〈Pm|Fnj(0) |P ; s′〉

× δ(Pm·n− (1− x)) δ(2)(PmT + kT ), (3.60)

where we inserted a complete set of momentum eigenstates {|Pm〉}. Eq. (3.60) states

that, in any basis, the diagonal elements are given by absolute squares. In particular,

it follows that the eigenvalues of G in eq. (3.59) must be ≥ 0, or, equivalently, that G

is positive semidefinite. This can be used to set constraints on the TMDs. Diagonal-

ization of the full 6 × 6 matrix would involve a relation between all the functions at

the same time and it would not be ideal for applications. We rather restrict ourselves

to finding the eigenvalues of the 2 × 2 principal minors, a procedure which would

provide less strict bounds. Due to the symmetry properties of G, some minors yield

the same bounds. From the independent minors we derive 9 inequalities:

k2
T

2M2
|h⊥1 − h⊥1LL| ≤ f1 − f1LL, (3.61)

k4
T

16M4

[
4(h⊥1L)2 + (2h⊥1 + h⊥1LL)2

]
≤
(
f1 +

f1LL

2
+ g1

)(
f1 +

f1LL

2
− g1

)
, (3.62)

k2
T

2M2

(
h2

1 + 4h2
1LT

)
≤ (f1 − f1LL)

(
f1 +

f1LL

2
+ g1

)
, (3.63)

k6
T

8M6

[
(h⊥1T )2 + (h⊥1LT )2

]
≤ (f1 − f1LL)

(
f1 +

f1LL

2
− g1

)
, (3.64)

k2
T

2M2

[
(f⊥1T + g1LT )2 + (f1LT + g1T + h1LT )2

]
≤ (f1 − f1LL)

(
f1 +

f1LL

2
+ g1

)
,

(3.65)
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k2
T

2M2

[
(f⊥1T − g1LT )2 + (f1LT − g1T + h1LT )2

]
≤ (f1 − f1LL)

(
f1 +

f1LL

2
− g1

)
,

(3.66)

|h1TT | ≤
1

2

(
f1 +

f1LL

2
+ g1

)
, (3.67)

k4
T

2M4
|h⊥⊥1TT | ≤ f1 +

f1LL

2
− g1, (3.68)

k4
T

M4

[
g2

1TT + (f1TT − h⊥1TT )2
]
≤
(
f1 +

f1LL

2
+ g1

)(
f1 +

f1LL

2
− g1

)
. (3.69)

Finally, we also include the bounds that apply to spin-1/2 hadrons. This case has

been discussed already in [86] excluding the T-odd TMDs. The parametrization of

the correlator for a spin-1/2 hadron is given by the sum of the terms (3.29)–(3.31).

The density matrix is now parametrized in terms of the spin vector only and it is

a 2 × 2 matrix in hadron spin space. Using the decomposition in eq. (3.58), G is a

4 × 4 matrix in gluon ⊗ hadron spin space and its explicit form (that does contain

the T-odd functions) is given in [86]. From that matrix we can extract the following

bounds from its 2× 2 principal minors:

|g1| ≤ f1, (3.70)

k4
T

4M4

[
(h⊥1L)2 + (h⊥1 )2

]
≤ (f1 + g1)(f1 − g1), (3.71)

|kT |
M
|h1| ≤ f1 + g1, (3.72)

|kT |3
2M3

|h⊥1T | ≤ f1 − g1, (3.73)

k2
T

M2

[
(f⊥1T )2 + g2

1T

]
≤ (f1 + g1)(f1 − g1). (3.74)

Upon omitting tensor polarization (and discarding all functions related to it) in

bounds (3.61)–(3.92), which is mathematically equivalent to considering the spin-
1/2 case, one obtains a set of bounds that is less strict (but consistent with) the

bounds (3.70)–(3.74). In general, these less strict bounds can be sharpened upon con-

sidering the eigenvalues of higher-dimensional principal minors. We stress that the

dependence on the gauge links and on the renormalization scale is understood. How-

ever, further comments on the consequences of these dependences on the bounds will

be given in Section 3.6.
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Bounds on transverse momentum integrated functions

We now turn to the transverse momentum integrated case, i.e. we will establish re-

lations between the collinear PDFs appearing in eq. (3.39). This case was covered

in [92]. The 3× 3 blocks of the matrix G in eq. (3.59) are now given by:

A =




f1 + f1LL
2 − g1 0 0

0 f1 − f1LL 0

0 0 f1 + f1LL
2 + g1


 , B =




0 0 0

0 0 0

−2h1TT 0 0


 ,

C =




f1 + f1LL
2 + g1 0 0

0 f1 − f1LL 0

0 0 f1 + f1LL
2 − g1


 ,

where we have suppressed the argument (x) of the functions. From integration of

eq. (3.60) over transverse momentum, it follows that G is positive semidefinite also in

this case. In contrast to the TMD case, we can easily diagonalize the full matrix and

we obtain the following three bounds:

|g1| ≤ f1 +
f1LL

2
, (3.75)

f1LL ≤ f1, (3.76)

|h1TT | ≤
1

2

(
f1 +

f1LL

2
+ g1

)
. (3.77)

Including also the trivial relation f1 ≥ 0, these inequalities hold for any process, as

PDFs are universal. In the spin-1/2 case, one simply has the bound |g1| ≤ f1.

Recently in [89] the first moment of a bound analogous to (3.77) was studied on

the lattice considering a φ meson (ss̄). The bounds (3.75)–(3.77) will be relevant e.g.

for the extraction of ∆(x), which has been proposed to occur at JLab using nitrogen

targets [149], and which could also be achieved within the program of the EIC [126].

3.5.2 Positivity bounds on the Wilson loop correlator

In this Section, we will consider bounds on the gluon TMDs in the small-x kinematic

region, by exploiting the correspondence (3.50). Let us derive positivity bounds for

the Wilson loop operator. In fact, also the Wilson loop correlator Γ
[�]
0 is a spin-

averaged correlator, given by Γ
[�]
0 = ρs′sG

[�]
0 ss′ (analogously to eq. (3.58)). Inverting
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this relation, we find that G
[�]
0 is given by

G
[�]
0 =

πL

M2




e+ eLL
2

e−iφk√
2M

(eLT + ieT ) e−2iφk2

M2 eTT

eiφk√
2M

(eLT − ieT ) e− eLL − e−iφk√
2M

(eLT − ieT )

e2iφk2

M2 eTT − eiφk√
2M

(eLT + ieT ) e+ eLL
2


 ,

(3.78)

where we have suppressed the argument (k2
T ) of the functions. In analogy to eq. (3.60),

we can write the elements of G
[�]
0 in the following form:

G
[�]
0 ss′(kT ) ≡

∫
d2ξT
(2π)2

e−ikT ·ξT 〈P ; s|U [�] |P ; s′〉
∣∣∣∣
ξ·n=0

=
∑

m

〈Pm|UT[∞,∞T ;∞,0T ] U
n
[∞,0T ;−∞,0T ] U

T
[−∞,0T ;−∞,∞T ] |P ; s〉∗

×〈Pm|UT[∞,∞T ;∞,0T ] U
n
[∞,0T ;−∞,0T ] U

T
[−∞,0T ;−∞,∞T ] |P ; s′〉

∣∣∣
ξ·n=0

× δ(2)(PmT + kT ), (3.79)

where we inserted a complete set a momentum eigenstates {|Pm〉} and we used (3.43).

From eq. (3.79) it follows that G
[�]
0 is positive semidefinite, thus its eigenvalues must

be ≥ 0. To establish bounds for the Wilson loop TMDs, we again restrict ourselves

to two-dimensional principal minors. We obtain the following two inequalities:

k2
T

2M2

(
e2
T + e2

LT

)
≤ (e− eLL)

(
e+

eLL
2

)
, (3.80)

k2
T

M2
|eTT | ≤ e+

eLL
2
. (3.81)

Applying the small-x limit to the bounds (3.61)–(3.92), one indeed recovers the

bounds (3.80) and (3.81). Besides these two bounds, we also have e ≥ 0 (this fol-

lows from eq. (3.43)).

The case of a spin-1/2 hadron follows straightforwardly. The parametrization of

the Wilson loop correlator for spin-1/2 hadrons is given in terms of the two functions

e and eT . In this case G
[�]
0 reads:

G
[�]
0 =

πL

M2


 e ie−iφk

M eT

− ieiφkM eT e


 , (3.82)
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from which we can derive the following upper bound for eT :

|kT |
M
|eT | ≤ e. (3.83)

Note that upon omitting tensor polarization and discarding all functions related to it

(this is, in fact, mathematically equivalent to the reduction to a spin-1/2 description),

the bounds (3.80) and (3.81) reduce to a bound that is consistent with but less strict

than (3.83). We can also obtain (3.83) by applying the small-x limit to the bounds

for spin-1/2 hadrons given in (3.70)–(3.74).

3.5.3 The quark case

Positivity bounds for quark TMDs and PDFs in hadrons up to spin-1 have been

derived in [85,150,151]. Starting from (3.58), on similar lines as Section 3.5.1, one has

to construct the 6×6 matrix F (x,kT ) in the quark ⊗ hadron polarization space. This

matrix is positive semidefinite and an equation similar to (3.60) can be obtained for

the quark case as well. Afterwards, the calculation of the bounds is straightforward.

The 9 independent inequalities on quark TMDs read:

|h̃1|2 ≤
1

2

(
f1 +

2f1LL

3

)(
f1 + g̃1 −

f1LL

3

)
, (3.84)

k2
T

2M2
|g1T + f̃1LT |2 ≤

(
f1 +

2f1LL

3

)(
f1 + g̃1 −

f1LL

3

)
, (3.85)

k2
T

2M2
|g1T − f̃1LT |2 ≤

(
f1 +

2f1LL

3

)(
f1 − g̃1 −

f1LL

3

)
, (3.86)

k4
T

2M4
|h̃⊥1T | ≤

(
f1 +

2f1LL

3

)(
f1 − g̃1 −

f1LL

3

)
, (3.87)

k6
T

M6
h⊥1TT

2 ≤
(
f1 − g̃1 −

f1LL

3

)2

, (3.88)

k2
T

M2

(
h̃⊥1 +

2h⊥1LL
3

)2

≤
(
f1 +

2f1LL

3

)2

, (3.89)

k2
T

4M2
h2

1TT ≤
1

4

(
f1 + g̃1 −

f1LL

3

)2

, (3.90)

k2
T

2M2

[(
h⊥1 −

h⊥1LL
3

)2

+ h⊥1L

]
≤
(
f1 + g̃1 −

f1LL

3

)(
f1 − g̃1 −

f1LL

3

)
, (3.91)
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k4
T

4M4
|f̃1TT |2 ≤

(
f1 + g̃1 −

f1LL

3

)(
f1 − g̃1 −

f1LL

3

)
, (3.92)

where the following definitions have been employed for convenience in the notation:

g̃1 → g1 − if⊥1T , (3.93)

f̃1LT → f1LT − ig1LT , (3.94)

f̃1TT → f1TT − ig⊥1TT , (3.95)

h̃1 → h1 + ih1LT , (3.96)

h̃⊥1T → h⊥1T − ih⊥1LT . (3.97)

These bounds reduce to the well-known relations between PDFs if one integrates

over the transverse momenta.

3.6 Comments on the bounds

Positivity bounds are powerful tools in phenomenological studies, that have been em-

ployed in many context to pin down the magnitude or the shape of some unknown

functions with respect to the known ones. However, some comments that apply irre-

spective of the parton type (both quark and gluons) are in order.

Since we look at TMDs, one must worry about the process dependence coming

from the different types of gauge links [48]. In fact, the inequalities (3.61)–(3.92)

and (3.70)–(3.74) do not hold generally true for any correlator. The matrices F (for

quarks) and G (for gluons and Wilson correlator) is positive semidefinite only for

field combinations, including gauge links, that factorize into the form O†(0)O(ξ).

The simplest gauge link structures for which this holds are [+,+], [−,−], [+,−], and

[−,+]. Additionally, the process dependence is not always directly calculable in the

form of color factors, but it rather implies that the dependence of the distributions

on k2
T may require additional functions involving gluonic poles [152].

The results presented can be relevant for proposed experiments at JLab and a

future EIC involving polarized targets. In practical situations, the bounds become

useful in model and lattice calculations, or as a way to obtain an estimate on the

order of magnitude of the functions. They are used to constrain the size of the less-

known functions with respect to the better-known ones (e.g. polarized distributions

with respect to the unpolarized ones). The latter is commonly done by saturating

the bounds. These estimates for the functions can translate in estimates of specific

measurement outcomes, e.g. azimuthal and spin asymmetries. Positivity bounds can

69



Chapter 3 · Partons in polarized hadrons of spin ≤ 1

be defined for all the correlators that are positive semidefinite, therefore extensions to

the double parton correlator are possible and interesting, as we shall see in Chapter 4.

In addition to these points, one might also worry about the effects of QCD evo-

lution on the validity of the bounds. In the collinear case, the Soffer bound involving

three quark functions [153] has been shown to be preserved up to next-to-leading

order accuracy [154–156]. However, to our knowledge, there are no clear conclusions

on the stability of bounds under TMD evolution equations.

The issue might be important for instance when the bound are used to compare

functions that are extracted at different scales. The fact that the evolution kernel

for TMDs is independent of spin [137, 157], might suggest that in the appropriate

kT -regime where TMD factorization is valid, positivity bounds are respected also in

this case. However, the latter could depend on the specific implementation of TMD

evolution. This topic remains open to further investigation.

3.7 Discussion and conclusions

We have parametrized the quark and gluon correlation functions for target of spin

up to 1, in terms of TMD functions of definite rank, reviewing the quark case and

presenting the gluon results as originally derived in [88].

Concerning gluons, especially the small-x region is important, which is why we

have also studied the gluon correlator in the small-x limit. To this end, we have

derived and exploited the correspondence between the gluon correlator containing a

dipole-type gauge link structure and a correlator containing a single Wilson loop [88].

The latter correlator can also be parametrized in terms of TMDs.

When only little information is available on the functions, useful tools to have in

hands are the positivity bounds. These are model-independent relations that allows to

relate one or more functions with each other. We have discussed positivity bounds on

gluon correlators for hadrons of spin up to 1, thus looking at the unpolarized, vector

polarized, and tensor polarized cases [92, 93]. The bounds have been derived using

the fact that the correlators, even including gauge links that bridge the nonlocality,

can be expressed as momentum densities. For both the TMD and collinear cases,

we have obtained relations between the distribution functions that appear in the

parametrization of the leading-twist gluon correlator.

These inequalities are relevant for the study of tensor polarized gluon TMDs

at e.g. the EIC possibility at JLab (JLEIC) [125, 127, 158] or COMPASS [102] us-

ing tensor polarized deuterons. The proposed fixed-target experiment at LHC (AF-

TER@LHC) [133–135] would also allow to investigate the gluon TMDs, with the
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possibility of including the ones related to tensor polarization.
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Chapter 4

Pairs of polarized partons

inside the proton

4.1 Introduction

In this Chapter, we discuss the possibility of studying interparton correlations through

the double parton scattering (DPS) processes. The DPS factorized cross section

leads to the definition of the double parton correlator of eq. (2.33). The latter is

parametrized in terms of double parton distributions (DPDs), that are currently al-

most unknown because of the very limited experimental information on DPS com-

pared to the single parton case. However, the experimental accessibility of many DPS

processes is rapidly growing and their measurements will become more relevant in the

future era of precision particle physics at high energies.

As a first approximation, the theoretical framework needed to describe double

parton scatterings can be considered as an extension of the single parton description.

However, this is often not sufficient, especially when dealing with physical concepts

that are exclusive of multiparton interactions (such as the concept of quantum inter-

ference and correlation). A significant effort has been put into the formulation of a

theory for double parton interactions. The complete review of this topic goes beyond

the scope of this thesis and adequately comprehensive set of references that we point
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Chapter 4 · Pairs of polarized partons inside the proton

out to the reader is [22,23,31,159,160].

The cross section formula for multiple hard scatterings has been derived in Sec-

tion 2.4.1 using the standard factorized form, both for the TMD and collinear case,

leading to the definition of TMD and collinear double parton correlator, respectively.

Intriguing aspects, such as interference and correlation effects, are encoded in the

tree-level expression of the cross section formulae.

The concept of quantum interference is remarkable and regards the fact that quan-

tum numbers, such as the fermion and flavor number, have to be conserved globally

(within the parton pair) in the amplitude and the conjugate one, but not necessarily

between one parton and its conjugate partner. Interference terms of this sort would

be forbidden in single parton scattering because of quantum number violation [31,33].

Some of these contributions, such as fermion number interference and color interfer-

ence (see Section 4.4.2) are expected to be suppressed at high energy scales, even

though a precise estimate of their magnitude has never been obtained, and usually

they are excluded from phenomenological models.

The other peculiar feature of double parton theory is the presence of interparton

correlation, extensively discussed in the rest of this Chapter. In the first part we

mainly discuss two types of parton-parton correlations: quantum and kinematic. This

information is formally entirely contained in the correlator and, consequently, in the

DPDs. Therefore, different models for the DPDs, tailored to study correlations, are

presented and discussed. In the second part of the Chapter, we present a study of

correlation effects in the production of a pair of W bosons with the same charge at

the LHC. In the hunt for possibilities to measure double parton scatterings, it has

been recognized that this process is one of the most promising, thanks to its very

clear signature. We focus on this process with the goal of characterizing signals of

quark-quark correlations. In particular, we devote particular attention to studying the

quantum correlation between the spin of the two partons and the kinematic correlation

between their longitudinal momentum fractions.

Multiple interactions and interparton correlations change the structure of the final

states. We discuss the modification of the final-state distributions due to the corre-

lation effects at the level of partonic interactions and we subsequently extend the

analysis to the final-state distributions at the LHC.

4.2 Double parton distributions

The phenomenology of double parton interactions relies on models that provide phys-

ically intuitive pictures but involve major simplifications. In fact, nearly nothing is
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4.2 Double parton distributions

experimentally known about the double parton distributions, so we need to make as-

sumptions based on the accessible theoretical and experimental information. In other

words, one needs to find reasonable approximations that relate the double parton

distributions to the single parton counterparts (about which much more information

is known), postponing the detailed analysis to the moment when experiments will

deliver more data.

To be able to deal with the single parton operator, we need to simplify the dou-

ble parton correlator into a combination of multiple one-parton operators. Let us

start from the definition (2.33) and insert a complete set of states. By recalling the

notation (2.34), one reads:

〈P | O(0, z2)O(y, z1) |P 〉 =
∑

X

〈P | O(0, z2) |X〉 〈X| O(y, z1) |P 〉 . (4.1)

The usual choice taken in the literature is to assume that, among all the states {|X〉},
the dominant one is the proton state. We call it |P ′〉 to indicate that this might (and

actually is) a different momentum vector with respect to the original one. There is

no theoretical motivation to reduce the sum over the intermediate states to a single

proton state. However, in the absence of experimental data to test this hypothesis on,

one can use it as a first approximation and exploit the knowledge on the single parton

distributions. Omitting some details of the derivation (that are available in [31]), it

turns out that:

〈P | O(0, z2) |P ′〉 〈P ′| O(y, z1) |P 〉 (4.2)

is related to the product of two generalized transverse momentum dependent corre-

lation functions for a single parton.

These quantities depend on the collinear fraction of parton momentum x1, the

intrinsic transverse momentum k1T , and the unbalance of momenta (off-forwardness)

between the initial and final-state proton. We define the transverse component of the

difference between the proton momentum in the initial and final state as:

∆ = P ′ − P , (4.3)

such that the DP correlator can be related to the single parton GTMD correlator

[31].

The Fourier conjugate of the ∆ is the impact parameter b, a transverse coordinate,

which is related to the single GPD operator. The collinear double parton distributions,
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Chapter 4 · Pairs of polarized partons inside the proton

like the ones entering eq. (2.38), can be written as follows1:

ΦDP (x1, x2,y) ≈
∫
d2bΦSP (x1, b)ΦSP (x2, b+ y), (4.4)

which relates the DPDs to two single parton distributions. Despite the fact that the

validity of this approximation cannot be quantified in practice, the relation in (4.4)

offers some indication and guidance to estimate the size and the interplay between

longitudinal and transverse variables, otherwise unaccessible. Pushing further the sim-

plifications, if one assumes that the y-dependent part is universal and factorizes out,

the collinear part is the product of single parton PDFs, i.e.:

ΦDP (x1, x2,y) ≈ ΦDP (x1, x2)G(y) ≈ ΦSP (x1)ΦSP (x2)G(y). (4.5)

Inserting (4.5) in (2.38) we can define the effective cross section as:

1

σeff
=

∫
d2yG2(y) (4.6)

such that the cross section of a double parton scattering process is factorized into the

so-called pocket formula:

σDP =
1

C

σ1σ2

σeff
, (4.7)

where σ1,2 are the cross sections of the single parton scattering process necessary to

produce the final states, and σeff represents the “strength” of double parton contribu-

tion over the separated single parton ones. The expression (4.7) implies that all the

correlations between partons in the proton are zero. One of the focus of this Chapter

is to go beyond this approximation.

4.2.1 Effective cross section σeff and beyond

The approximations that lead to eq. (4.7) are quite drastic, and one can expect them

to fail in many respects. We summarize the problem of having such a crude estimate

of the cross section for double parton scattering.

The first part of the factorization (4.5) eliminates all possible correlations between

collinear momenta and transverse separation, which is contradicted by the majority

of model calculations [161–166]. The second part of (4.5) excludes in addition all pos-

1When necessary, we will use the subscript DP and SP to indicate the double and single parton
operators respectively. When not ambiguous, we will drop this label and consistently refer to the
double parton operators.
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sible correlations between parton momenta. The validity of this approximation fails

if one considers the natural kinematical constraint of double parton scattering, i.e.

x1 + x2 ≤ 1. In spite of its validity on the right-hand site of (4.7), the single parton

quantities on the left-hand side are not constrained in the same way, but only as x1 ≤ 1

and x2 ≤ 1. Taking into account the conservation of momentum implies the introduc-

tion of longitudinal correlations and the breakdown of (4.5). This would imply the

explicit xi-dependence of the σeff, as predicted by several models [162, 165, 167]. The

factorization between longitudinal momenta and transverse separation is also violated

by the presence of longitudinal-transverse correlations of the type (4.4), although the

identification of such correlations is challenging because y is not a measurable quantity

and it is integrated over.

However, the definition of the effective cross section through (4.7), states the in-

dependence of this quantity on longitudinal momenta, type of partons involved and,

consequently, processes. More generically, the factorization of the double parton quan-

tities into a product of single parton distributions eliminates all correlations between

partons, including the quantum-mechanical ones, i.e., correlations deriving from the

pairwise quantum interactions of partons through their spin, color, fermion and flavor

number. Despite its usefulness as a first approximation, the approach according to

which the quantity σeff is a universal number, independent on all kinematical variable

and quantum numbers, is theoretically unsatisfactory to describe double parton scat-

tering. The next era of high luminosity at the LHC is undoubtedly an opportunity to

refine and test the theory of DPS and to go beyond the σeff approximation. In this

Chapter, we will contribute to this goal with a closer look at feasible ways to measure

correlations and extend the factorized approach.

4.3 Experimental status of double parton scattering

measurements

Double parton scattering raised interest in the experimental community quite soon af-

ter the first theoretical works appeared. The first DPS process probed experimentally

is the production of 4 jets. First measurements were performed first at CERN at the

Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS) [168,169],

and Fermilab [170], followed by more recent measurements at the LHC [171,172]. To

increase the cleanliness of the signal, the D0 collaboration at Tevatron has also used

processes with the production of one (or two) photon accompanied by jets [173–176].

The direct photon is more easily detectable and it can be distinguished from the

hadronic matter in the final-states [177].
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On the other hand, at LHC processes with more clear signatures, with less number

of jets or no jets involved, are preferred. The ATLAS, CMS, LHCb, and ALICE

collaborations produced, in the first round of LHC, measurements on the following

(subset of) processes:

• vector bosons and jets: Z/W + jj [178,179];

• vector bosons pair: ZZ/W±W±/WZ [180];

• meson pair: J/ψ or open charm [181–184].

The σeff values derived in all these measurements are displayed in Figure 4.1, and in

a summary Table 4.1 taken from ref. [185]. The numbers vary approximately between

10 and 20 mb. A commonly used value for applications is σeff = 15.

Figure 4.1: Schematic overview of the measurements of the effective cross sections as a function of
the CM energy

√
s. Figure from ref [186].
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DPS
channel

σeff (mb) Collaboration Collider Luminosity

jj ⊗ jj 12.1+10.7
−5.4 CDF [170]

1.8 TeV
Tevatron

325 nb−1

J/Ψ⊗D
14.9+2.6

−3.1

17.6+3.1
−4.0

12.8+2.6
−3.2

18.0+4.8
−5.5

LHCb [182]
7 TeV
LHC

355 pb−1

W ⊗ jj 15.0+5.8
−4.2 ATLAS [178]

7 TeV
LHC

36 pb−1

W± ⊗W± > 5.91 CMS [187]
8 TeV
LHC

19.7 fb−1

W ⊗ jj 20.7+6.6
−6.6 CMS [179]

7 TeV
LHC

5 fb−1

γj ⊗ jj 12.7+1.3
−1.3

14.5+3.3
−5.3

D0 [175]
1.96 TeV
Tevatron

8.1 fb−1

jj ⊗ jj 16.1+6.4
−7.0 ATLAS [172]

7 TeV
LHC

37.3 pb−1

γγ ⊗ jj 19.3+7.9
−7.9 D0 [176]

1.96 TeV
Tevatron

8.7 fb−1

J/Ψ⊗ J/Ψ 4.80+2.55
−2.55 D0 [188]

1.96 TeV
Tevatron

8.1 fb−1

J/Ψ⊗ J/Ψ
14.4+4.9

−4.9

9.2+3.9
−3.9

11.3+1.5
−1.5

LHCb [184]
13 TeV
LHC

5 fb−1

Table 4.1: Overview of the principal measurements of σeff performed by different experiments at
various energies. Different values quoted by the same experimental analysis refer to different different
decay modes [182], different models [184], or different data samplings [175]. Table from ref. [185].
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The double parton scattering in same-sign W boson pair production is consid-

ered one of the most promising process for the measurements of DPS thanks to its

clear signature. It has been studied extensively in [177,189–192] and finally measured

in [180]. The price to pay, for such an ideal process from the theory point of view, is

that the DPS cross section is very small and therefore quite some effort has been put

in the extraction [180]. We will examine in more details the production of W+W+ in

Section 4.5.

4.4 Parton correlations in double parton scattering

As previously mentioned, the pocket formula (4.7) and the concept of a universal

value for σeff are based on the assumptions that all the interparton correlation effects

are not relevant. In reality, the question about how important correlations in DPS can

be is currently open, and this problem has been tackled from different perspectives

(for a review of the state of the art of parton correlation in DPS see, e.g., [193]).

The potential importance of quantum and kinematic correlations are confirmed by

numerous model calculations, at least at low scales and in the valence region [162,163].

For instance, spin correlations are studied in [162,163,166] and they are predicted to

be sizable at the higher scales as well. Kinematic correlations, i.e. those which would

be responsible for the violation of (4.5) ( related to the longitudinal correlations and

longitudinal-transverse correlations) are treated in [161–166], with the conclusions

that they can be relevant. As largely acknowledged in most of the theoretical works,

the characterization of all kind of correlations would shed light on the proton structure

at a more fundamental level.

4.4.1 Spin correlations

The cross section formula in eq. (2.38) is quite general because both the hard scat-

tering parts Hi and the correlators Φ depend in principle on all possible indices (such

as parton-type, spin, color, fermion and flavor number).

Similarly to the decompositions of the single parton correlators in Chapter 3,

also the double parton correlator can be decomposed in different structures that

explicitly contain the dependence on the quantum numbers. In addition to the degrees

of freedom typical of the parton-hadron system, the extension from the single to the

double parton description introduces new degrees of freedom linked to the parton-

parton system. This fact leads to the definition of a big number of DPDs, especially

when the spin of the target and intrinsic parton momenta are included. As a matter
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of fact, not all the DPDs contribute significantly to the physical processes. For this

reason, we restrict ourselves to the collinear DPDs in unpolarized targets, which can

in principle be accessed in the near future experiments. We refer to [31, 32, 194] for

further information.

Quarks and gluons carry spin, and they can have a definite polarization when

they enter the hard scatterings. In eq. (2.38) we omitted all the indices that Hi and

Φ depend on. Now the parton spin indices will be reinserted, while the others are left

out. The i-th (with i = 1, 2) hard scattering matrices Hi and the correlators Φ (Φ̄) are

matrices in the Dirac space. Showing the indices, one has the following contraction:

Φα1β1,α2β2Φ̄ᾱ1β̄1,ᾱ2β̄2
H1,α1ᾱ1,β1β̄1

H2,α2ᾱ2,β2β̄2
, (4.8)

We consider one hard scattering at a time, focusing on the contraction between the in-

dices labeled as “1” and we further restrict ourselves to the lower part of the graph in

Fig. 2.5, i.e., the left-moving proton (all the other indices are dropped for simplicity).

One can decompose H1,α1β1 in terms of Dirac structures and an analogous decom-

position can be used for Φα1β1
.We select the dominant terms in the correlators that,

in exact analogy with the single parton case, correspond to the plus-components in

the correlator Φα1β1
.The contraction between the correlator of the left-moving proton

and the hard scattering reads:

Hi,β1α1
Φα1β1

= Tr

(
1

2
γ−Hi

)
Tr

(
1

2
γ+Φ

)
+ Tr

(
1

2
γ−γ5Hi

)
Tr

(
1

2
γ+γ5Φ

)

+ Tr

(
1

2
iσj−γ5Hi

)
Tr

(
1

2
iσj+γ5Φ

)
+ {higher-twist terms}. (4.9)

The different terms in (4.9) corresponds to the scattering of quarks that are re-

spectively unpolarized, longitudinally polarized and transversely polarized [195]. Ac-

cordingly, we denote:

Φ[Γ] =
1

2
Tr(ΦΓ) (4.10)

and identify three different Γ structures responsible for selecting unpolarized (q),

longitudinally (∆q), and transversely polarized (δq) quarks in the proton:

Γq =
1

2
γ+, Γ∆q =

1

2
γ+γ5, Γjδq =

1

2
iσj+γ5. (4.11)

The same considerations hold true for the polarization of the antiquark coming from

the right-moving proton.
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We recall the definition of the double parton correlator (2.33) and relabel the

fermion fields as ψ → q in the correlator. The DPDs for two quarks are:

Fa1a2(x1, x2,y) =

2P+

∫
dz−1 dz

−
2

(2π)2
dy− eix1z

−
1 P

++ix2z
−
2 P

+ 〈P | OΓa1 (0, z2)OΓa2 (y, z1) |P 〉
∣∣∣∣ z+1 =z+2 =y+=0,

zT1=zT2=0T .

,

(4.12)

where:

OΓa(y, z) = q̄(y − 1

2
z)Γaq(y +

1

2
z). (4.13)

�
�DP

1 2 3 4

y +
1

2
z1 y � 1

2
z1�1

2
z1

1

2
z1

Figure 4.2: Graphic explanation for the notation in eq. (4.14)-(4.16)

We now use the enumeration on the quark fields as in Fig. 4.2, and we drop the

dependence of the spinors on the variables z and y. The double parton distribution

for two quarks, quarks and antiquarks, and two antiquarks are written as (FT briefly

indicates Fourier transforms and integration over y as in eq. (4.12)):

Fa1a2 = FT 〈P | (q̄3Γa2q2)(q̄4Γa1q1) |P 〉 , (4.14)

Fa1ā2 = FT 〈P | (q̄2Γa2q3)(q̄4Γa1q1) |P 〉 , (4.15)

Fā1ā2 = FT 〈P | (q̄2Γa2q3)(q̄1Γa1q4) |P 〉 , (4.16)

with the relations:

Fa1a2(x1, x2,y) = ηa2Fa1ā2(x1,−x2,y), (4.17)

Fa1a2(x1, x2,y) = Fā1ā2(−x1,−x2,y), (4.18)

with ηq = ηδq = 1 and η∆q = −1. One can, therefore, decompose the F further
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into [31]:

Fqq(x1, x2,y) = fqq(x1, x2, y),

F∆q∆q(x1, x2,y) = f∆q∆q(x1, x2, y),

F jqδq(x1, x2,y) = εjyMfqδq(x1, x2, y) = εjyhqδq(x1, x2, y),

F jδqq(x1, x2,y) = εjyMfδqq(x1, x2, y) = εjyhδqq(x1, x2, y),

F jj
′

δqδq(x1, x2,y) = δjj
′
fδqδq(x1, x2, y) + (2yjyj

′ − y2δjj
′
)M2f tδqδq(x1, x2, y)

= δjj
′
hδqδq(x1, x2, y) + (2yjyj

′ − y2δjj
′
)htδqδq(x1, x2, y) (4.19)

Some combinations are not present as they violate parity (q∆q) and time reversal

(∆qδq). In fact, we only want to deal with the cases for which time reversal odd

collinear DPDs vanish because of the gauge link structure [31]. We denote all the

distributions that contain transverse spin (helicity flip) with h as in the single parton

case. In the production of double W bosons, the two bosons only couple with left-

handed (right-handed) particles (antiparticles), therefore no helicity flip is allowed.

Gathering all the information in a compact form, the cross section can be written

in the following factorized form [31]:

dσ∏
i=1,2 dxidx̄i

=
1

C

∑

q,∆q,δq

q̄,∆q̄,δq̄

∫
d2yσ̂1,a1,b1 σ̂2,a2,b2Fa1,a2(x1, x2,y)Fb1,b2(x̄1, x̄2,y),

(4.20)

where the indices a1, a2, b1, b2 run over all polarizations of quarks and antiquarks, and

implicitly over flavors. The dependence of the partonic cross section on xix̄is ≈ q2
i is

understood and the symmetry factor C equals 2 if the produced final states are the

same, while it is set to 1 when the two hard scatterings produce different particles.

This form will be used to calculate the cross section of the W+ pair production in pp

collision.

Interpretation of the functions and positivity bounds

The collinear double parton correlator is, in the very same way as the single one, a

positive semidefinite matrix. In fact, it can be shown that it is a diagonal operator,
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namely:

Φ(x1, x2,y) =

∫
dz−1 dz

−
2

(2π)2
dy− eik

+
1 z
−
1 +ik+2 z

−
2

× 〈P | q̄(−1

2
z2)q(

1

2
z2)q̄(y − 1

2
z1)q(y +

1

2
z1) |P 〉

∣∣∣∣ z+1 =z+2 =y+=0;

zT1=zT2=0T .

(4.21)

=

∫
dy−

∑

X

〈PX | q(0)q(y) |P 〉∗ 〈PX | q(0)q(y) |P 〉 δ(P+
X − (1− x1 − x2)P+)

∣∣∣∣
y+=0

,

(4.22)

where we have inserted a complete set of momentum eigenstates |PX〉. In order to

derive positivity bounds, which would provide the relations between the DPDs, one

has to construct the relevant density matrix. In this case, being the spin of the proton

not involved, the density matrix will be a 4 × 4 matrix defined in the parton1⊗
parton2 spin space. Each entry of this matrix would accordingly contain the combined

information about the polarization of each parton.

The value of the operator Γa in (4.13) is chosen as in eq (4.11), and it is responsible

for selecting the spin structure of each parton. This structure is the same as the

single parton case, and the interpretation of the DPD functions as spin densities (or

combination of spin densities) can be found in a very similar way. We can use the

knowledge acquired on the good and bad components of the fermion fields to make

the meaning of the DPDs more apparent. We recall the well-known procedure for the

PDFs, and treat the DPDs as a straightforward extansions.

The contraction of the correlator with the appropriate structures as in (4.11),

leads to the definition of the single parton PDFs as follows:

Φ
[Γ]
SP =

1

2
Tr(ΦSPΓ), (4.23)

one has:

f1(x) = Φ
[γ+]
SP =

1

2

∫
dξ−

2π
eik·ξ 〈P | ψ̄(0)/nψ(ξ) |P 〉∣∣

ξ+=ξT=0

, (4.24)

g1(x) = Φ
[γ+γ5]
SP =

1

2

∫
dξ−

2π
eik·ξ 〈P, SL| ψ̄(0)/nγ5ψ(ξ) |P, SL〉∣∣

ξ+=ξT=0

, (4.25)

h1(x) = Φ
[σi+γ5]
SP =

1

2

∫
dξ−

2π
eik·ξ 〈P, ST | ψ̄(0)

[
/ST , /n

]
ψ(ξ) |P, ST 〉∣∣

ξ+=ξT=0

. (4.26)
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4.4 Parton correlations in double parton scattering

It can be shown [97, 196] that all the above contractions automatically reduce to a

bilocal operator with only good fields, going in fact from a 4-dimensional to a 2-

dimensional space. For instance:

ψ(0)/nψ(ξ)→ φ†(0)φ(ξ), (4.27)

and similarly for the others. One can use different spin basis to unravel the meaning of

the above distributions. One can construct the helicity basis, where γ5 and the matrix

of the spin rotation along z-direction Σ3 = i
2

[
γ1, γ2

]
are diagonal [97]. We define the

Dirac field only in terms of good field as:

φh =




φ+

φ−
0

0


 , (4.28)

where the components of φh are related to ± helicity states. This is also eigenstate of

the chirality operator γ5 (which commutes with P±) in the massless limit, namely:

γ5φh =




+φ+

−φ−
0

0


 =




φR
−φL

0

0


 . (4.29)

Alternatively one can use the transversity basis, by defining the “transverse-spin-up”

and “transverse-spin-down” states as follows

φT =




φ↑
φ↓
0

0


 =

1√
2




φR + φL
φR − φL

0

0


 , (4.30)

which is an eigenstate of the operator γ1γ5 (or equivalently γ2γ5) that selects the

transverse components of the parton spin. In this framework the functions have a

clear interpretation as densities:

• Helicity basis:

f1 ∼〈P |φ†RφR + φ†LφL |P 〉 ,
g1 ∼〈P, SL|φ†RφR − φ†LφL |P, SL〉 , (4.31)
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Chapter 4 · Pairs of polarized partons inside the proton

h1 ∼〈P, ST |φ†LφR |P, ST 〉 .

• Transversity basis:

f1 ∼〈P |φ†↑φ↑ + φ†↓φ↓ |P 〉 ,
g1 ∼〈P, SL|φ†↑φ↓ |P, SL〉 , (4.32)

h1 ∼〈P, ST |φ†↑φ↑ − φ
†
↓φ↓ |P, ST 〉 .

The unpolarized distribution has the obvious meaning of an average over polariza-

tion states, in both basis. The function g has, in the helicity basis, the interpretation

as the number density of partons with a neat polarization along the direction of the

proton spin, and h1 represents in the transversity basis the number density of partons

with polarization along a direction transverse to the proton spin.

As far as the double parton correlator is concerned, the generalization is direct,

and the interpretation of the DPDs as linear combination of two-parton densities

follows straightforwardly. The DPDs in the helicity basis are defined as:

Fqq ∼(φ†1Rφ1R)(φ†2Rφ2R) + (φ†1Lφ1L)(φ†2Lφ2L)

+ (φ†1Lφ1L)(φ†2Rφ2R) + (φ†1Rφ1R)(φ†2Lφ2L), (4.33)

F∆q∆q ∼(φ†1Rφ1R)(φ†2Rφ2R) + (φ†1Lφ1L)(φ†2Lφ2L)

− (φ†1Lφ1L)(φ†2Rφ2R)− (φ†1Rφ1R)(φ†2Lφ2L), (4.34)

and analogous expression for Fδqδq in the transversity basis:

Fδqδq ∼(φ†1↑φ1↑)(φ
†
2↑φ2↑) + (φ†1↓φ1↓)(φ

†
2↓φ2↓)

− (φ†1↓φ1↓)(φ
†
2↑φ2↑)− (φ†1↑φ1↑)(φ

†
2↓φ2↓). (4.35)

The connection between Fqq, F∆q∆q, and Fδqδq to the single case is a convenient

illustrative procedure. However, one shoud bear in mind that the physical meaning

of the quantities is completely different, being the DPDs densities (or interference) of

two-parton polarizations that can be defined irrespective of the presence of the proton

spin.

In order to finally build the two-parton density matrix, we single out the operators

86



4.4 Parton correlations in double parton scattering

projecting the helicity state of the good components of the fields into [197]:

Γ++ = γ+ (1 + γ5)

4
, with ψ̄Γ++ψ =

1√
2
φ̄LφL, (4.36)

Γ−+ =
iσ+1

4
(1− γ5), with ψ̄Γ−+ψ =

1√
2
φ̄RφL, (4.37)

Γ+− =
−iσ+1

4
(1 + γ5), with ψ̄Γ+−ψ =

1√
2
φ̄LφR, (4.38)

Γ−− = γ+ (1− γ5)

4
, with ψ̄Γ−−ψ =

1√
2
φ̄RφR, (4.39)

Using this basis, one can write the correlator as:

Φ = Φ++,++ + Φ++,+− + Φ++,−+ + Φ++,−− + etc.., (4.40)

where

Φ++,++ ∼ 〈P | (ψ̄Γ++ψ) (ψ̄Γ++ψ) |P 〉 . (4.41)

Using the functions defined in (4.19), one reads:

ρ =
1

4




fqq + f∆q∆q −ieiϕyhqδq −ieiϕyhδqq 2e2iϕy2htδqδq
ie−iϕyhδqq fqq − f∆q∆q 2hδqδq −ieiϕyhqδq
ie−iϕyhqδq 2hδqδq fqq − f∆q∆q −ieiϕyhδqq

2e−2iϕy2htδqδq ie−iϕyhqδq ie−iϕyhδqq fqq + f∆q∆q


 , (4.42)

with y = y(cosϕ, sinϕ). A basis transformation can be performed to simplify the

expression of the matrix as in [32]. In every basis, the diagonal elements are positive

semidefinite and can be interpreted as probabilities of finding the two partons with

the same helicities (fqq + f∆q∆q) or opposite helicities (fqq − f∆q∆q). This constraint

leads to the first bound:

|f∆q∆q| ≤ fqq. (4.43)

The other bounds follow from the diagonalization of the 2× 2 sub matrices and they

read:

2y2
∣∣htδqδq

∣∣ ≤ fqq + f∆q∆q, (4.44)

2 |hδqδq| ≤ fqq − f∆q∆q, (4.45)

y2 h2
qδq ≤ (fqq + f∆q∆q)(fqq − f∆q∆q), (4.46)

y2 h2
δqq ≤ (fqq + f∆q∆q)(fqq − f∆q∆q). (4.47)
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Chapter 4 · Pairs of polarized partons inside the proton

More strict bounds are derived from the diagonalization of 3 × 3 submatrices and

the eigenvalues of the whole matrix. As extensively discussed in Chapter 3, positivity

bounds can be powerful tools to derive information about quantities that are mostly

unknown, and whose magnitude and behavior is otherwise difficult to access without

any experimental information. For instance, the bound (4.43) is used to have an low-

scale ansatz about the size of the longitudinally polarized DPDs compared to the

unpolarized ones [32].

4.4.2 Other quantum correlations

We reinsert the indices of the correlator and consider the decomposition in color struc-

tures. The basis of the SU(3) color space is used, and correspondent projections in

color space select whether the quark in the amplitude and its partner in the conjugate

amplitude are in a singlet or octet representation. We define the correlator as Φjj′,kk′

and use a color Fierz transformation to decompose it in terms of the singlet and octet

color structures, weighted with the singlet (1F ) and octet (8F ) DPDs, i.e.:

Φjj′kk′ =
1

N2

(
δjj′δkk′

1F +
2N√
N2 − 1

tAjj′t
A
kk′

8F

)
, (4.48)

where tA are the generators of the color algebra SU(3), satisfying [tA, tB ] = ifABCtC ,

with fABC structure constants. The structures which project the singlet and the octet

out from Φ are respectively:

δj′jδk′kΦjj′kk′ = 1F,
2N√
N2 − 1

tAj′jt
A
k′kΦjj′kk′ = 8F. (4.49)

Following the notation used for spin correlations in (4.12), one reads:

cFa1a2(x1, x2,y) = (4.50)
∫
dz−1 dz

−
2

(2π)2
dy− eix1z

−
1 P

++ix2z
−
2 P

+ 〈P |cOa1(0, z2)cOa2(y, z1) |P 〉
∣∣∣∣ z+1 =z+2 =y+=0,

zT1=zT2=0T ,

,

(4.51)

where c is the label that indicates whether the selected part is the singlet (c = 1) or

the octet (c = 8) and:

1Oa(y, z) =q̄j′(y −
1

2
z)δjj′qj(y +

1

2
z), (4.52)
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4.4 Parton correlations in double parton scattering

8Oa(y, z) =q̄j′(y −
1

2
z)tAjj′qj(y +

1

2
z). (4.53)

When color singlets are produced in the hard process, the singlet (octect) represen-

tations from each hadron have to match to produce a color singlet final state. For

a thorough study of color correlations and color effects in double parton scattering

one can refer to [31,52,198,199] and references therein, where is shown that they are

suppressed by Sudakov logarithms at high energy scales.

�
�DP

�
�DP

�
�DP

(a) (b)

(c) (d)

�
�DP

f1 f2 f̄2f̄1

f1f̄1 f̄1f1 f̄1f1

f2

f̄2

f̄1f1

f2

f̄2

Figure 4.3: Flavor and fermion number interference diagrams. Diagrams in (a) and (b): flavor
interference; diagram (c): fermion number interference; diagram (d): combination of both types.

The are other quantum numbers that one can consider: parton-type, fermion and

flavor number. They can be responsible for interference diagrams [194,200]. The con-

cept of quantum interference is remarkable and regards the fact that quantum num-

bers, such as the fermion and flavor number, have to be conserved globally (within

the parton pair) in the amplitude and the conjugate one, but not necessarily along

each parton leg. Interference terms of this sort would be forbidden in single parton
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Chapter 4 · Pairs of polarized partons inside the proton

scattering because of quantum number violation. To summarize the situation one can

look at Fig 4.3, where a variety of diagrams with interference terms are displayed.

Flavor interference terms are those where two quarks of flavors f, f ′ in the amplitude

are paired up with their conjugate partners with interchanged flavors. This kind of

process does not bring any flavor number violation in DPS, and it is, therefore, a

valid term in the correlator. The same holds with fermion number interference and

parton-type interference (quark/gluons). The combined flavor- and fermion-number

interference is also allowed, and it is shown in Fig. 4.3(d). Similarly to color correla-

tions, they also become small at high energy scales due to the presence of the Sudakov

factor [199].

Gluons

Double parton distribution involving one or two gluons have been defined and studied

in [31, 32, 194, 201]. The case of double gluon distributions is quite analog to the

case of quarks as far as the polarization correlations are concerned. Gluons have

polarization states which can modify final-state distributions [201]. The starting point

is the realization that both the hard part and the double gluon correlator Γij,i
′j′

are Lorentz tensors, whose indices are only transverse (i.e. i, j, i′, j′ = 1, 2). The

decompositions are analog to (4.9), where the Lorentz basis is used instead of the

Dirac one [31]. The relevant structures that select the gluon polarization are:

Πij
g = δij , Πij

∆g = iεij , Πij,kl
δg = τ ij,kl, (4.54)

with:

τ ij,kl =
1

2
(δikδjl + δilδjk − δijδkl), (4.55)

that is a symmetric traceless tensor. The three structures above select respectively

unpolarized, circularly polarized and linearly polarized gluons. The DPDs are defined

as in (4.12) with the operators defined as:

O[Πa](y, z) = Πij
a F

+j(y − 1

2
z2)F+i(y +

1

2
z1). (4.56)

Finally, a comment on the color correlations is in order. The case of two gluon

DPDs, or one quark and one gluon DPD, is more complex than the one for two-

quarks. In fact, many more representations arise when combining two color octets in

the 8⊗8 representation (two gluons), or one color octet and a color singlet in the 8⊗3

representations (mixed gluon-quark distributions) [31,194]. It is possible to establish

positivity bounds for color DPDs [194] and study evolution effects. In [199] is showed
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4.4 Parton correlations in double parton scattering

that color correlation is washed out by evolution in the quark case. Suppression of the

same kind is expected to happen in the gluons, and the mixed quark-gluon sectors,

even though the precise expression has not been studied.

4.4.3 Kinematic correlations

As previously mentioned, the factorized ansatz (4.7) has been used with success in

the earliest attempts of measuring signals of DPS. Despite its limitations, there are

motivations behind the existence and usage of this formula. They are based on the

argument that, even though the product of single PDFs naively violates the DPS

momentum sum rule for large-x, double parton scattering occurs in a region of small-

x values which would be safely away from the thread. Early experimental results did

not contradict this arguments, as the measurements of σeff were compatible with the

x-independence statement over a quite wide range [173,174].

On a theoretical ground, there are many reasons to discard the factorized ansatz.

The first source of violation would be the effect of evolution. In fact, even if one as-

sumes the factorized ansatz to hold at a specific energy scale, this cannot be preserved

at any other scale due to double DGLAP (dDGLAP) evolution equations [202,203].

The latter involve two independent evolutions, one for each parton2 [31,194]. For

the unpolarized DPD it reads explicitly:

∂fq1q2(x1, x2, y;µ)

∂ logµ2
=
αs
2π

[Pq1q1 ⊗1 fq1q2 + Pq2q2 ⊗2 fq1q2

+ Pq1g ⊗1 fgq2 + Pq2g ⊗1 fq1g] , (4.57)

where the convolution is defined as:

Pab(·)⊗1 f(·, x2, y;µ) =

∫ 1−x2

x1

du1

u1

(
x1

u1

)
fq1q2(u1, x2, y;µ), (4.58)

and analogously for the ⊗2. The splitting functions Pab are the same as for the stan-

dard DGLAP equations. From the integral in (4.58) it follows immediately that the

x1 − x2 kinematic correlation is present at any scale different from the initial one.

The second relevant problem regards the theoretical requirement of respecting sum

rules. The issue was first studied in [161]. Even in lack of a first-principle procedure,

the authors derive momentum and number sum rules, that are general enough and are

2There are subtleties related to the region of small y that also receives single parton-like of
contributions. This problem can affect the evolution of multiparton distribution in a non trivial way,
see, e.g., [159].

91



Chapter 4 · Pairs of polarized partons inside the proton

valid at all order. Accordingly, momentum sum rules for DPDs have to account for

the fact that x1 + x2 cannot exceed 1, and that extracting a parton with momentum

x reduces the probability of extracting the second parton with the same fraction of

momentum. Also, extracting a parton with a certain flavor reduces the probability

of extracting the second parton with the same flavor. In the factorized ansatz these

requirements are violated, and the problem is circumvented with the argument that,

at small values of x, the number of partons is high and the joint probabilities factorize.

Since the factorized ansatz violates the sum rules, one needs to build new DPDs that

respect them at all order and simultaneously preserve the advantage of using the

single PDFs.

The authors of [161] proposed a phase-space factor that multiplies the product of

single PDF at an initial energy scale and it reads3:

Xcorr(x1, x2) = (1− x1 − x2)2(1− x1)−2(1− x2)−2. (4.59)

This choice accounts for momentum sum rule and valence quark number con-

servation, and ensures that they are preserved during evolution. The chosen input

DPDs are built from single PDFs with modified MSTW2008lo distributions [204],

multiplied by the phase factor (4.59) at an initial scale Q0. Then the dDGLAP evo-

lution up to a scale Q is implemented. This approach introduces a double source

of longitudinal correlation: one that is due to the phase-space factor, and a further

source that is introduced by the dDGLAP effect. The transverse part is still factored

out and the kinematic correlations introduced are purely longitudinal. This is to say,

the DPDs are the ones parametrizing the correlator as in the first part of (4.5), i.e.

Φ(x1, x2,y) ≈ Φ(x1, x2)G(y). We will analyze the effect of this type of correlations

in the context of W+W+ production through DPS at the LHC. In addition, also

polarization can be added and we will investigate the combined.

Transverse separation and longitudinal momenta

Assuming the absence of correlations between the longitudinal momenta and the par-

ton separation is not realistic. It is reasonable to think that the partons inside the

proton are subjected to an interplay between their momenta and the transverse sepa-

ration, connected to the fact that they are confined to the proton [161]. Many model

calculations (Bag model, constituent quark model, light-cone models) confirm that,

in principle, the factorization between the longitudinal and the transverse part should

3An improved version of this factor has been proposed in the same work [161]. However, this will
not be objective of our study.
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4.5 Polarization in same-sign W boson pair productions

not hold. The previous types of correlations we presented were purely longitudinal, so

they regarded the first part of (4.5). On the other hand, the interplay between x and

y is expressed by (4.4), by making use of single parton quantities. In particular, the

picture according to which DPDs are generated from the product of GPDs can already

suggest a nontrivial interplay between x and y, in the very characteristic way known

from the study of the GPDs [166,205]. The fact that y is integrated over is a compli-

cation, because the dependence on y has to be indirectly inferred, and only consists

in a numerical factor after integration. All longitudinal and longitudinal-transverse

correlations reflect their presence on the fact that σeff must exhibit an x-dependence,

but distinguishing the source of correlation would need much more extensive knowl-

edge on the distributions.

To summarize, as a general strategy, since the shape and the magnitude of the

DPDs is not known, the identifications of the different type of correlations should

rely on a qualitative change in suitable quantities (such as final state distributions or

asymmetries). Such variables should used to detect signs of correlations. The study

presented in Section 4.5 aims at this goal. Ideally, an increasingly better knowledge

of the distributions will allow for a proper evaluation of each type of correlations.

4.5 Polarization in same-sign W boson pair produc-

tions

The theory of double parton scattering is rich and can predict a large number of

effects. Unfortunately, the suppressed nature (see Section 2.4.2) of most of double

parton process makes it challenging to identify to which extent they are measurable

in real experiments. One of the most promising processes to access double parton

scattering is the production of a pair of W bosons of the same electric charge. This

process was described in [206, 207] as a special case of the double Drell-Yan process.

Its relevance has later been pointed out, for instance, in [32, 191], and recently the

CMS collaboration has presented the first measurement of the cross section [180].

This is an example of a process where double parton scattering observables, both

inclusive and less inclusive cross sections, are not suppressed compared to to the

single parton scattering. In Fig. 4.4 one possible diagram for the production of two W

bosons through single parton scattering process is depicted (left side), together with

the correspondent DPS process (right side). The SPS diagram is of order αα2
s and

implies the production, together with the lepton pair, of two high energetic quarks

in the final state. This feature makes it possible to distinguish between the signature
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Chapter 4 · Pairs of polarized partons inside the proton

of the two processes and to impose limits on the number of produced jets in order to

suppress the contribution of the single parton scattering [180, 191]. The DPS signal

also competes with other background processes which produce a muon pair and need

to be taken into account.

�

�̄

W+

W+

�̄DP

�DP

W+

W+

(a) (b)

Figure 4.4: Pictorial representation of the production of two W+ bosons. Part (a): SPS mechanism
called WWjj in the text; part (b): DPS process.

In this Section, we exploit the information on the production of two W+ bosons

through DPS to analyze different types of two-parton correlations inside the proton

at the LHC. The primary focus is to study the effect of these interparton correlations

at the level of the partonic cross sections, by modeling the DPDs at an initial low

scale. Subsequently, we study the effect of correlations on final-state distributions,

eventually adding the analysis of the relevant background processes. We identify two

main observables (the distribution of the product of the muon rapidities and the

asymmetry number, that will be defined later) that are a proxy of the presence of

correlations.

4.5.1 Parton level result: cross section

Let us consider the process in which the two W+ bosons are produced with positive

charges. The signature of the process is the detection of two muons µ+ (or electrons)

in the final states as result of the leptonic decay of each W+, and missing energy

due to the invisibility of the neutrinos. Quarks exclusively initiate the DPS process,

and we study the tree-level results from quark-antiquark annihilation for the flavors
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4.5 Polarization in same-sign W boson pair productions

u, d, c, s. Each hard process is then of the kind:

qq̄ →W+ +X → µ+νµ +X. (4.60)

We assume factorization between the hard part and the correlators in every corre-

lation scenario that we present. The starting point is the investigation of polarization

effects. The cross section for double W+ production (integrated over the transverse

momenta of the bosons) can be calculated from (4.20). In this special case, only the

unpolarized (fqq) and longitudinally polarized (f∆q∆q) distributions for quarks and

antiquarks enter the cross section. The transverse quark polarization does not con-

tribute since this is given by the operator that corresponds to a chirality flip for the

quark in the amplitude and the conjugate one, and this is prevented by the impossi-

bility for a right-handed (left-handed) quark (antiquark) to couple to the W+. The

expression of the polarized cross section can already be found in [32], expressed in the

rest frame of the W boson. Starting from this, we obtain an equivalent expression for

the cross section in the laboratory frame, fully differential in the transverse momenta

of the muons and rapidities of the muons and neutrinos.

dσ∏2
i=1 dη

′
µidkTi

2dη′νi
=

(
4π

s

)2
1

C

∑

q1q2q3q4

Kq1q̄3Kq2q̄4

×
{(
ω−1 ω

−
2

)2 ∫
d2y(fq1q2 + f∆q1∆q2)(f̄q̄3q̄4 + f̄∆q̄3∆q̄4)

+
(
ω−1 ω

+
2

)2 ∫
d2y(fq1q̄4 − f∆q1∆q̄4)(f̄q̄3q2 − f̄∆q̄3∆q2)

+
(
ω+

1 ω
−
2

)2 ∫
d2y(fq̄3q2 − f∆q̄3∆q2)(f̄q1q̄4 − f̄∆q1∆q̄4)

+
(
ω+

2 ω
+
2

)2 ∫
d2y(fq̄3q̄4 + f∆q̄3∆q̄4)(f̄q1q2 + f̄∆q1∆q2)

}

+ {flavor interference}, (4.61)

where ω±i = 1± tanh
(

1
2 (η′µi − η′νi)

)
. The quantities η′µi and η′νi are the pseudorapidi-

ties of the produced leptons (muons and neutrinos). The superscript “prime” indicates

that η′ is the transformed quantity of the pseudorapidity η after a boost from the

rest frame of the W boson to the laboratory frame. We recall the definition of the

pseudorapidity, namely:

η = − ln tan

(
θcm

2

)
, (4.62)
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where θcm is the polar angle between the lepton plane and the z-direction, measured in

the W boson rest frame. From this moment onwards, we will refer to the muon pseu-

dorapidity in the laboratory reference simply as rapidity, and we drop the superscript

from all the variables.

The kTi are the muons transverse momenta, C is the symmetry factor which is set

to 2 because of the indistinguishability of the two particles in the final state and
√
s

is the center of mass energy. The fractions of longitudinal momenta xi, x̄i read:

xi =
kT√
s

(eηµi + eηνi ); x̄i =
kT√
s

(e−ηµi + e−ηνi ), (4.63)

and the arguments of the distributions read f(x1, x2,y;Q) and f̄(x̄1, x̄2,y;Q), where

Q will be set to the W+ boson mass for both hard processes. We notice that the

inclusion of the longitudinally polarized distributions contributes to the change both in

magnitude and shape of the final state distributions. The cross section formula (4.61)

is useful for applications once it is fed with different input DPDs at an arbitrary

scale Q. In particular, given a form for the DPDs at an initial energy scale Q0 we

implement (un)polarized double DGLAP evolution equations to obtain the results

at a higher scale Q, which is typically equal to the mass of the produced particle.

Unless otherwise specified, the dependence of the functions on the final scale Q will

be understood.

Since the leptons are the result of the decay of a W boson with mass M and width

ΓW , we introduce the factors Kqiq̄j given by:

Kqiq̄j =
α2

4Nc

|Vqiqj |2
(2 sin θw)4

q2
i

(q2
i −m2

W )2 +m2
WΓ2

W

, (eqi − eqj = 1), (4.64)

where Nc = 3 is the number of colors, Vqiqj a CKM matrix element, θw the weak

mixing angle, α the electromagnetic fine structure constant and eqi the charge of

quark qi. The relevant elements in the CKM matrix are Vud, Vub, Vcd, Vcs, Vcb [208].

Finally, by exploiting eq. (4.63) and the relation q2
i = xix̄is in Section 2.4.1, one has:

q2
i = 2k2

T [1 + cosh(ηµi − ηνi)]. (4.65)

If Γ � M we can use the narrow-width approximation (NWA), i.e. the limit in

which W is on the mass-shell:

1

π
lim
Γ→0

mΓ

(q2
i −m2

W )2 +m2
WΓ2

W

= δ(q2
i −m2

W ). (4.66)
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The (4.64) becomes:

KNWA
qiq̄j ≈ α2

4Nc

|Vqiqj |2
(2 sin θw)4

πq2
i

mWΓ
δ(q2

i −m2
W ). (4.67)

When useful, we will make use of this approximation in the following.

4.5.2 Spin and kinematic correlations

In order to study how correlations affect the cross section calculations, we implement

different model-based scenario for the DPDs at the initial scale. These different DPDs

are supposed to encode the correlations and are used as input to the cross section

formula (4.61). In the first part of this analysis, we will calculate the interaction of

pointlike partons extracted from the proton (this is what we will call parton level

results). The evolution equations account for gluon radiation that is absorbed in the

definition of the DPDs. Other initial state radiations, that are the main contributions

to be added when interested in the final-state distributions, will be considered in

Section 4.5.3. The parton level results on the differential cross sections will then be

recalculated after accounting for initial and final state radiations and compared to

background processes, whose signatures are the same of, or can be misinterpreted as,

the leptonic decay of two W+.

The type of correlations under investigations are shortly described. While present-

ing the four main DPD models used for studying correlations we also include the case

where correlations are absent.

No correlation

The input DPDs are defined as the product of single PDFs at any scale, that is:

f(x1, x2,y;Q) = f(x1;Q)f(x2;Q)G(y), (4.68)

with
∫
d2yG(y) = σ−1

eff . If the two hard processes are independent, the single PDFs

evolve separately under unpolarized single DGLAP evolution equation. The factorized

form (4.69) is then valid across all energy scales, and the (separate) evolution of the

two single PDFs does not create correlations.
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Minimal correlation

The input DPDs are defined as the product of single PDFs at the initial scale, that

is:

f(x1, x2,y;Q0) = f(x1;Q0)f(x2;Q0)G(y). (4.69)

The eq. (4.69) implies that all kind of correlations are set to zero at the initial scale.

As a first step, a minimal source of correlation is introduced by the use of the double

DGLAP evolution equations. The longitudinal correlations arise at higher scales as the

result of evolution. In fact, even if the form (4.69) holds at the initial scale, evolution

creates correlation between xi, and the factorized form is no longer valid. We will call

this scenario “minimally correlated” and the cross section σmin-corr is given by (4.61)

in which the polarized distributions are set to zero.

Polarization

The cross section σpol is the expression (4.61) in which, in addition to the unpolarized

distributions, we include polarization in the max-scenario, i.e. the polarized distribu-

tions individually saturate the positivity bound (4.43) and equal the unpolarized ones

at the initial scale [166, 209]. The factorized form (4.69) is still valid but only at the

initial scale, while at higher scales the polarized double DGLAP evolution equation

introduces the correlations as previously described. One has:

f∆q∆q(x1, x2,y;Q0) = fqq(x1, x2,y;Q0) = f(x1;Q0)f(x2;Q0)G(y). (4.70)

Kinematic correlations

Longitudinal kinematical correlations are explicitly introduced. The product of single

PDFs used as initial ansatz is corrected by the xi-dependent factor in (4.59), to ac-

count for the kinematical constraint of double parton scattering as explained in [161].

The factorized form (4.69) is no longer valid at the initial scale:

f(x1, x2,y;Q0) = f(x1;Q0)f(x2;Q0)Xcorr(x1, x2)G(y), (4.71)

with
∫
d2yG(y) = σ−1

eff and Xcorr(x1, x2) is defined in (4.59). Longitudinal correlations

are present at the initial scale thanks to the factor explicitly introduced, and they

travel towards smaller momentum fractions during evolution. The cross section σx-corr

is given by (4.61) without any polarized distributions.
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Polarization and kinematic correlations

This scenario assembles all the above mentioned correlations: we include the polarized

distributions on top of the ansatz (4.71) and we evolve them up to the final scale with

the polarized dDGLAP evolution equations. The cross section σx-corr pol is given by

the full expression of (4.61).

Except for the total cross section results, we will not, in general, include the “no

correlation” scenario in our results, obtained by neglecting all correlations between

the two partons inside each proton. One should bear in mind that imposing separately

x1 < 1 and x2 < 1 does not ensure x1 +x2 < 1, as required in the case of two partons

coming from the same parent hadron. However, in the kinematical region we are

interested in, the routine for numerical integration Vegas does not significantly enter

the unphysical region (in the context of NWA the latter is an exact statement).

The scenario with no correlation differs from a theoretical viewpoint from the min-

imal correlated one. In practice, the correction introduced by the use of unpolarized

double DGLAP evolution rather than two DGLAP evolution kernels are minimal,

such that the minimally correlated scenario is equivalent to the uncorrelated one at

this level of accuracy of our results.

Let us specify the relevant quantities that will be used in this study. As previously

mentioned, we first address the calculation of the inclusive cross section, using the

different inputs for the DPDs outlined above. We set the initial scale Q0 = 1 GeV

and implement double DGLAP evolution (unpolarized and polarized) to a final scale

Q = mW [31]. The single parton PDFs used are the leading-order MSTW2008lo dis-

tributions [204]. The choice of the initial scale Q0 and the specific PDF set used can,

in principle, have an effect on the parton level and final-state results. This aspect

is currently under investigation, but it will not be discussed further in this thesis.

The numerical integration is performed with the Vegas routine within the Cuba Li-

brary [210]. The results are obtained either through fully numerical integration with

Vegas or employing a combination of Vegas and analytical integrations using the

NWA. We will specify each time when the NWA approximation is used. Throughout

the rest of this Chapter we fix the value of σeff (4.6) and the CM energy
√
s as follows:

σeff = 15 mb,
√
s = 13 TeV. (4.72)

We define the relevant ratios, that will be used in the following, each time with

the obvious substitutions:
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RS =
[Polarization]

[Minimal correlation]
, RI =

[No correlations]

[Minimal correlation]
, (4.73)

RX =
[Polarization x-correlation]

[x-correlation]
, RXS =

[x-correlation]

[Minimal correlation]
[1pt] (4.74)

Unless otherwise specified, all the parton level results of this Section are calculated

using the following cuts on the variables (“zeroth selection”):

4 GeV ≤ kTi ≤ 45.5 GeV, |ηµi | ≤ 3.3, |ηνi | ≤ 10. (4.75)

The neutrino rapidity range is chosen such that in essence no cuts are imposed. This

implies that, for intervals |ην | ≤ ηmax
ν with ηmax

ν ≥ 10, all our parton level results are

independent on ηmax
ν . Similarly, the constraint kTi ≤ 45.5 GeV does not produce any

change in the results, because the amount of the cross section that would be included

by extending further the upper value for kT is negligible. The range of ηµ is chosen

wider than the experimental acceptance typical of the LHC and it will be tightened

later on to match the detector ranges. This selection of values serves as starting point

for the study of final-state distributions in Section 4.5.3.

We now turn to the presentation and discussion of the numerical results. In the

second column of Table 4.2 we summarize all the results for the total cross section, for

all correlation types including σno-corr. We observe that the presence of polarization

increases the cross section with respect to the unpolarized case, while the x-dependent

factor (which is always smaller than 1) is responsible for its decrease.

The results for less inclusive quantities are now in turn, in order to examine to

which extent these quantities are sensitive to the DPS correlations effects. At this

stage we can still label the muons as µ1 and µ2, implying that they originate from

the first and second hard interactions. They are equivalent, as we do not assume any

hierarchy in magnitude between the hard scales. However, in the real analysis of the

data on final muons, there is in no longer knowledge about the origin of the lepton

pairs, as discussed in Section 4.5.3.

With numerical integrations, we calculate the cross section differential in the ra-

pidity and transverse momentum of the muon. The results are shown in Fig. 4.5.

The muon kT -distributions in Fig. 4.5(b) are all peaked around kpeak
T ∈ [39.72, 40.75]

GeV, i.e.around the value kT = mW /2. The cross section value, for all the curves, de-

creases of nearly two orders of magnitude from the value at the peak and kTmax = 45

GeV, which indicates that the interval of transverse momenta in (4.75) only excludes

negligible portion of cross section. A different situation is represented in Fig. 4.5(a).
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cross section [fb] Asymmetry

σno-corr 1.77 0.00

σmin-corr 1.74 0.00

σpol 1.90 -0.05

σx-corr 1.37 0.01

σx-corr Pol 1.48 -0.03

RS =
σpol

σmin-corr
1.09 -

RI = σno-corr

σmin-corr
1.02 -

RX =
σx-corr pol

σx-corr
1.07 -

RXS = σx-corr

σmin-corr
0.78 -

Table 4.2: Results for the full cross sections and asymmetry values (4.77) in the different four
DPDs scenarios as described in the text, with cuts as in (4.75). The cross section values and relevant
ratios (4.73) are shown in the second column. All the values of the table are obtained by numerical
integration performed with Cuba Library [210]. We made no use of NWA for these results. The third
column contain the values of the asymmetry parameter (4.77) calculated with NWA.

The muon rapidity range selected in (4.75) leaves out a non negligible portion of the

total (theoretical) cross section. The distribution is symmetric under ηµi → −ηµi for

all the correlations, as expected upon noticing that the cross section formula (4.61)

is invariant under the exchange of η → −η. The maximum values of the cross sec-

tion are reached at ηµ1 ∈ [1.8, 2.1]. For all curves, the cross section decreases both

towards central and peripheral values of the rapidity interval. At the bottom part of

the panels we also include the ratio as defined in (4.74). The ratios R{S,X,XS}(kT )

and R{S,X,XS}(ηµ), as defined in (4.73), are displayed over the entire range of kT and

ηµ. From the ratios we notice that for these two observables, there is a hardly visible

shape difference between the different correlations.

By employing a combination of Vegas and NWA, we calculate the cross section

differential in the sum and absolute value of the difference of the muon rapidities.

They are displyed in Fig 4.6, considering once more the four different scenarios and
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Figure 4.5: Results for the rapidity (left panel), transverse momentum (right panel) profiles of the
muon, and relevant ratios as in (4.73), with cuts as in (4.75). The results are obtained by numerical
integration performed with Cuba Library [210] with no use of the NWA. The four different scenarios
and the definition of the ratios are as described in the text.

the relevant ratios. Both panels of the figure show symmetric curves, reaching the

maximum at zero value of the sum (Fig 4.6(a)) and difference (Fig 4.6(b)) of muon

rapidities. The cross section differential with respect to the rapidity difference (ηµ1 −
ηµ2

) is not observable experimentally and such a difference of rapidity can only be

defined theoretically. Therefore, we shall rather consider the absolute value of the

difference |ηµ1
−ηµ2

|. However, since the information about the origin of muons is lost

in real experiment, one should define different criteria for labeling the detected muons

and constructing an analogous observable to Fig 4.6(b), as discussed in Section 4.5.3.

Thus far, the distributions we presented are not manifestly changed by the presence

of correlations. In practice, these observables are not ideal for discriminating the

change of shape related to polarization and longitudinal correlations.

A very promising observable we want to draw attention to is the cross section

differential in the the rapidity product:

dσ

d(ηµ1
× ηµ2

)
. (4.76)
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Figure 4.6: Summary plots for the difference (left), sum (right) of muon rapidities, and relevant
ratios as in (4.73), with cuts as in (4.75). Plots (a) and (b) contain the comparison between the four
scenarios as defined in the text. The results are obtained by using the NWA.

This quantity gives the probability that the final state muons are detected in the

same or different hemisphere. The amount of cross section correspondent to the region

where the muons are detected in the same hemisphere (ηµ1×ηµ2 > 0) equals the cross

section for the muons detected in the opposite one (ηµ1 × ηµ2 < 0) in absence of any

correlations. We stress that this is a very convenient observable to look at correlations,

because any deviation from this symmetric picture is a footprint of correlations. In

particular, generalizing the definition of [191] for all kind of correlations under study,

we define the asymmetry:

A =
σ(ηµ1

× ηµ2
< 0)− σ(ηµ1

× ηµ2
> 0)

σ(ηµ1 × ηµ2 < 0) + σ(ηµ1 × ηµ2 > 0)
. (4.77)

Its value must be exactly zero when the partonic cross section is calculated in the

fully uncorrelated scenario. A non-zero value represents the unbalance in the direc-

tion of muons detected (same/opposite hemisphere) occurring in any scenario when

correlation effects are included, as shown in Fig. 4.7.

The Fig. 4.7 shows the observable in (4.76) calculated with the four different input
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Figure 4.7: Cross section differential in the product of muon rapidities for the different types of
correlations, and relevant ratios as defined in (4.73), with cuts as in (4.75). (a): comparison between
the four scenarios as described in the text and relevant ratios RS , RX , RXS ; (b): comparison between
the normalized cross section in the minimally correlated case and the polarization case in the max
scenario.

for the DPDs that contain correlations. The distribution is symmetric, as expected,

in the minimal correlated case (blue line) which plays the role of a truly uncorrelated

case, while it loses its symmetry when including the polarized and kinematic correlated

terms (orange, red, and green lines). In particular, the “amount” of cross section

appears to be shifted towards the positive value of the product for all scenario, i.e., the

two muons would prefer to travel towards the detector along the same direction rather

than opposite directions. The Fig. 4.8 displays the same situation in the η1−η2 plane.

The plot (a) is symmetric with respect to the origin, while the others are distorted.

In the polarized cases (b) and (d), there is a clear pattern showing the increase of

the cross section in the quadrants 1 and 4 (same hemisphere). In the unpolarized x-

dependent case this shift does not occur in the same way, although a small distortion

from the symmetric pattern is also visible.

The asymmetry values are listed in the third column of Table 4.2. The values vary

from zero, which are the effectively uncorrelated scenario, to values different from zero,

which refer to the correlated situations. In all polarized cases, the asymmetry number
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migrates towards negative values, corresponding to an increase of the amount of cross

section of two muons in the same hemisphere. The longitudinal correlations exhibit

an asymmetry different from zero even in the absence of polarization, as expected.

However, the distortion occurs in the opposite direction (i.e., towards positive values).

In the next Section 4.5.3 we show how much this situation changes as effects of the

initial and final state radiations and when the background is included.
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Figure 4.8: Density plots for the cross section as a function of muon rapidities, with cuts as in (4.75).
Different correlations are displayed: (a) minimal correlation; (b) polarization; (c) x correlation; (d)
polarization x correlation.
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4.5.3 Final-state analysis

With the parton level results at hand, we now turn into the analysis at the hadron

level, which mainly corresponds to initial state radiations for the W boson production.

The ultimate aim is the identification of the kinematic region where the signal process

is measurable and enhanced compared to the background processes. In essence, one

needs to distinguish the same-sign muon pair originated in DPS by the two W+

boson decays from the same-sign muons that make up (part of) the signature of

other processes in pp collisions. To suppress these unwanted contributions one needs

information on the underlying event (UE) surrounding the actual process.

In this Section, we discuss how to embed the results on correlations presented in

Section 4.5.2 into the study of the final-state particle distributions. We use general-

purpose Monte Carlo generators of pp collisions, namely Herwig 7 and Pythia 8 [211,

212], and we show a selection of preliminary results on this type of analysis. The

results of this section and the previous section will be presented in a more definitive

form in [213].

Signal process

The first part of the final-state study is performed by using the Monte-Carlo event

generator Herwig 7.1.2 (in the following called H7) [211]. The Herwig program pro-

duces the full information on proton-proton collisions at the hadron level, providing

the four-momenta of all particles in the final state (FS). In particular, it generates the

elementary hard scatterings (matrix element – ME), parton showers for initial- and

final- state QCD radiations (ISR and FSR), heavy object decays, and hadronization

processes.

Herwig is in principle fully capable of generating double W production events.

However, in its default setting, it is not tailored to produce entirely independent hard

scatterings (more details will be given later and in [213]). Our method for preparing

the hadron level event datasets is based on a re-weighting procedure. We initially

calculate the partonic cross section differential in four variables (kT1
, kT2

, ηµ1
, ηµ2

)

using the different DPDs and the integration methods as explained in Section 4.5.2.

We chose 495616 (32 × 32 × 22 × 22) points in the phase space region (4.75) with

unequal spacing. The same four times differential cross section is then obtained from

the event generator using the same grid of points and the outputs are compared. The

advantage of using the Herwig program is the possibility of accessing the information

about the outgoing partons directly from the matrix element (ME) before the hard

matrix element correction is applied on their momenta. We, therefore, change the
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weights (equal to one by default in the Herwig generation) of the DPS WW events

into new weights according to our results for the cross section. We repeat the same

procedure for all type of correlations.
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Figure 4.9: Comparison between the calculated distributions (dashed lines, same as in Fig. 4.5(a))
and the reweighted distributions from Herwig generator at ME level (solid lines) with cuts as in (4.75).
These distributions are identical so the dashed lines are not visible. The two lines in the middle
(pink and purple) represent the two types of Herwig events (explained in the text). Ratio plots at
the bottom of the panel, with R: RS (dashed line), RX (dotted)

After the reweighting process, the distributions generated by Herwig at the ME

level are identical to the ones we have calculated in Section 4.5.2, as shown in Fig. 4.9,

where the two types of distributions are compared in each correlation scenario. Solid

lines represent the Herwig results after the reweighting procedure, while the results
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of the distributions calculated in Section 4.5.2 are included with dashed lines (not

visible in the plot). The distributions are identical and the curves overlap (see e.g.

Fig. 4.5 (a)for comparison). This validates the procedure of reweighting, which has

been found sufficient and fully reliable. The hadron level distributions that we obtain

from the reweighted generator, produce FS as we had showers and hadronizations

directly from the new parton events.

Two additional solid lines are included in Fig. 4.9, that serve as a comparison

between the results generated by Herwig before and after the reweighting procedure.

As previously mentioned, the Herwig generator can in principle be used to generate

this type of DPS events (resulting in fact in the independent production of two W+).

However, an event is discarded when it violates momentum conservation. This event

veto effectively modifies the distributions, producing a difference between the first

and second production of W+, although the generation tries to prepare them inde-

pendently at first. These results are indicated as “H7 DPS” in Fig. 4.9. This dataset is

eventually compared to a random combination of two single W events together (line

labeled as “H7 mix”). The solid lines for H7 DPS and H7 mix are very similar and

differ only in normalization, as mixed events are more likely not to pass the phase

space cuts (4.75)

To demonstrate the quantitative effect of the generator correction, i.e. the dif-

ferences between parton and final-state distributions, we first have to reduce the

phase-space with respect to (4.75). The larger zeroth selection is needed because the

momenta of the leptons (and partons from UE) are modified during the generation

process, so the values of the rapidities and transverse momenta can migrate out of

or into the new phase space. However, we need to define an experimentally accessible

region, which correspond to a narrower interval of rapidity (e.g. ATLAS and CMS

experiments have their tracker acceptance within |η| < 2.5). At this stage we keep

the transverse momenta as low as possible to demonstrate the gradual effect of the

phase space restriction on the studied distributions. The following “first selection” is

considered:

kTi ≥ 5 GeV, |ηµi | ≤ 2.5, |ηνi | ≤ 10. (4.78)

The Table 4.3 summarizes the total cross sections and asymmetry values for all

four types of correlations. We can observe a 40% decrease in the cross section with

respect to zeroth selection due to the significant reduction of rapidity range (see

Fig. 4.5(a) for comparison).

Fig. 4.10 shows the results for the transverse momentum and rapidity profile, ob-

tained from sharpening the cuts from (4.75) to (4.78). The left-side panels corresponds

to ME level events while the right-panels show the effect of the full event generator (FS
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cross section [fb] ME Asymmetry FS Asymmetry

σmin corr 1.06 0.00 0.00

σpol 1.15 −0.04 -0.04

σx corr 0.85 0.00 0.00

σx corr pol 0.92 −0.03 -0.03

Table 4.3: Results for the full cross section and asymmetry values in the different four DPDs
scenarios as described in the text, with cuts as in (4.78). The third and fourth columns contain the
values of the asymmetry in the different scenarios before (ME) and after (FS) the parton showers
from Herwig.

level) 4. The ratios RS , RX and RXS are also displayed. We can observe a significant

smearing of the sharp transverse momenta peak, and small statistical fluctuations in

the rapidity distributions.

In Fig. 4.11 we show the cross section as a function of the sum (a), absolute

difference (b), and product (c)-(d) of final-state muon rapidities. The cuts in (4.78)

are responsible, at the ME level, both for the decrease of the total cross section

and for the change in the asymmetry values (4.77) (see Table 4.3, in comparison to

Table 4.2). In general, we observe that the distortions introduced by correlations,

quantitatively indicated by the asymmetry values in Table 4.2, are not washed out

by the effects of the parton showers. In particular, in the presence of polarization

correlations, the muons would be more probably detected in the same rather than

the opposite hemisphere, and this remains true also when the FS distributions are

considered. In Fig. 4.11(c) one can observe more closely the ratio RS(ηµ1ηµ2) between

uncorrelated and polarized distribution. It is shown in Fig. 4.11(c) that there is a clear

change in the shape of the distribution towards positive values of ηµ1
× ηµ2

in the

presence of correlations.

An additional promising observable to look at is the slope of the ηµ1 × ηµ2 distri-

bution. As will be explained while discussing the background, an advantage related to

this variable is that selecting the events corresponding to having both muons in the

opposite hemispheres of the detector can help to distinguish the correlated DPS sce-

narios from the background processes. We postpone this discussion to the appropriate

next Section.

4These data samples contain around 2 millions of events, a number that allows to illustrate the
results as smooth functions. The real measured distributions will only have few thousands of events.
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Figure 4.10: Transverse momentum and rapidity profile at the ME level events (left-side panels)
and after the effect of the full event generator (FS level), with phase space selection (4.78) in all
correlation scenarios. Ratio plots at the bottom of each panel, with R: RS (dashed line), RX (dotted).
Top left: rapidity profile of the muon at the level of ME . Top right: rapidity profile of the muon
at the FS level with selection (4.78). Bottom left: Transverse momentum of the muon at the level
of ME with selection (4.78). All the four scenario of correlations are displayed and relevant ratios.
Bottom right: transverse momentum profile at the FS level with selection (4.78) .
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Figure 4.11: Final-state distributions with phase-space cuts as in (4.78) in all correlation scenarios.
Ratio plots at the bottom of panels (a),(b), and (c), with R: RS (dashed line), RX (dotted). Left/right
asymmetry is displayed at the bottom in panel(d). Top left: FS distribution of the absolute value of
the difference of muon rapidities. Top right: distribution of the sum of muon rapidities. Left bottom:
FS distribution of the product of rapidities. Bottom right: FS distribution of the product of rapidities
and left/right asymmetry at the bottom.
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Finally, to gain a better intuition about the modifications introduced by initial-

and final-state radiations, we display in Fig. 4.12 the results for the cross section

double differential in the muon rapidities. These figures are related to the previous

Fig. 4.8. Thanks to the reweighting procedure, the ME level results (which we do not

show for semplicity), corresponding to the FS results shown in Fig. 4.12, are the same

as the ones in Fig. 4.8 but with the reduced phase-space. We observe that, both at

the ME and the FS level, passing from the uncorrelated to the correlated cases always

causes a drift towards an asymmetric pattern.
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Figure 4.12: FS results for the cross section double differential in ηµ1 and ηµ2 , with selection (4.78).
Different correlation scenario: (a) minimal correlatation, (b) polarization, (c)x-correlation, and (d)x-
correlation polarization .
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A clarification on the different ways of collecting muons is in order. Thus far, the

muons are still distinguishable and can be labeled as µ1 and µ2, implying that they

are originated from the first or second interaction respectively. They are equivalent,

i.e., give rise to identical distributions upon interchange µ1 ↔ µ2. This is true both

at the ME and FS level. In reality, there is no possibility of distinguishing the two

muons. Therefore, a second type of muon collection can be created. The two hardest

muons among the final states are selected every time, and marked as leading and sub-

leading, µlead µsub. We will need to switch to this type of muon collection technique

for the analysis of the background events.

Background processes

We now turn into the analysis of the processes whose signature contains a pair of

muons, which constitute the relevant background for the double W production in

DPS. The ultimate goal will be to find the ideal selection of cuts and the best theo-

retical framework that will allow for the measurement of the two-parton correlations

in DPS, in the future era of LHC. The results we now present are in a preliminary

form, and therefore they will serve as an illustration of the current stage of the analy-

sis, rather than as concluding results. Therefore we point to an upcoming work [213]

for the complete discussion of the final results.

The major contributions to the background of a same-sign muon-pair production

come from SPS processes such as:

• Heavy flavor production, represented by the (dominant) tt̄ process. In this pro-

cess, one lepton is generated in the first top decay and another lepton, with the

same sign, arises from a bottom quark emitted by the other top quark. Since

we aim to remove these type of events as much as possible, there is no real need

to go through all possible flavors, as the top quark has the largest chance to

produce a muon.

• Diboson production. The SPS processes producing a pair of gauge bosons are

the most direct background processes. We distinguish three types of processes:

ZZ, WZ and WW . The latter is strongly suppressed by the presence of two

additional strong vertices at the lowest order diagram and we mark it as WWjj

process. We note that Z stands for both Z boson and virtual photon.

• Single Drell-Yan. It belongs to a class of background processes in which the

muon charge is mis-measured. We do not provide any quantitative prediction

for this background and assume it negligible.
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As previously mentioned, we stress that the parton level cuts for the event gener-

ation were chosen wide enough to allow the secure reduction of the final state phase

space restriction. For simplicity, in comparison with the background processes, we

only show the FS level results of the minimally correlated scenario. We use the PDF

set MSTW2008 and a combination of the Monte-Carlo event generators Herwig and

Pythia. For the diboson process also MadGraph5 aMC@NLO is used [214].

The production of a pair of W -boson with the same electric charge in DPS has

been measured for the first time by the CMS collaboration very recently in [180].

Accordingly, in the hunt for the optimal event selection, we will try to preserve the

CMS definitions as much as possible. In the second column of Table 4.4 we show the

value of the cross section for the signal (DPS WW ) calculated with the cuts in 4.78,

and the initial cross section values for the background processes (WWjj, WZ, ZZ,

and tt̄). The complete set of cuts used for a first look at the background data is labeled

as “second selection” (these are CMS-based):

|ηµi | < 2.4, kµlead
T > 20 GeV kµsub

T > 20 GeV,

kµ3
T < 5 GeV, /ET > 20 GeV, dR(ηµi , φi) > 0.1, (4.79)

where /ET is the missing energy in the transverse plane due to the presence of the

elusive neutrinos, and dR is the distance of the two muons in the plane formed by their

rapidities ηµi and the azimuthal scattering angles φi (see, e.g., [208]). The constraint

on dR is imposed in order to prevent the muons to be too close to each other. The

effect of the above selection is shown in the third columns of Table 4.4 and Fig. 4.13.

In the former, the values for the cross section are displayed. We mention that the

veto to the third muon transverse momentum particularly reduce the WZ decay and

almost completely removes ZZ events. The situation is sketched in the two upper

panels of Fig. 4.13, where the distribution of the muon transverse momenta (leading

muon in panel (a) and subleading muon in panel (b)) are plotted for all the processes.

We include the ratio R defined as:

R =
[Total (Background + DPS signal)]

[Background]
. (4.80)

Jet vetoes can further constrain the WWjj and tt̄ contributions, i.e., a constraint

on the maximal allowed kT value for jets is imposed. In the lower part of Fig. 4.13

(panel (c) and (d)) the transverse momentum distribution of the first two leading jets

is represented. A value of kT lower than 25 GeV is applied on the second leading
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Figure 4.13: Results for the distributions of the transverse momenta of the muons and the jets
calculated with cuts as in (4.79), for the signal and background processes (with different colors in
the plot). Ratio plots at the bottom show the comparison between the total (background + signal)
and the background processes. From top to bottom: (a) leading muon, (b) subleading muon, (c) first
leading jet, and (d) second leading jet

jet (jet2) to suppress the most significant part of WWjj events and another relevant

portion of tt̄ events. The cut on jet1 is instead left less strict and a maximum value of

50 GeV is chosen. Moreover, in the seek for an active suppression of the tt̄ background,

a widely used procedure is the reconstruction of b-jets, i.e., jets containing hadrons

deriving from the fragmentation of b-quarks (see, for instance [215, 216] and [213]

for the extra information on the adopted procedure and efficiency). The assumed
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2nd selection 3rd selection final selection

DPS WW 1.06 0.67 0.48 0.11
WWjj 2.32 1.30 0.03 0.00
WZ 148.2 4.93 1.77 0.08
ZZ 59.1 0.00 0.00 0.00
tt̄ 3.6× 106 939. 2.51 0.08

Table 4.4: Cross section values in fb for the DPS signal and the relevant background processes
described in the text. The results of each column are calculated with phase space cuts. Columns
from left to right: type of process; cross section values in the first generation of backgrounds (WWjj,
WZ, ZZ, tt̄) and for signal DPS WW with selection (4.78); cross section value for the second
selection (4.79); cross section value for the third selection (4.81); cross section value for the and
“temporarily” final selection (4.82)

efficiency of the b-jet tagging procedure is: 75% for kjet
T ∈ [25 − 30] GeV, 80% for

kjet
T ∈ [30− 40] GeV, and 85% for kjet

T ∈ [40− 50] GeV [213].

Another basic part of the selection is to restrict the allowed transverse momenta

of muons to a smaller window. We can see in Fig 4.13 that the DPS signal is well

located around 38 GeV (25 GeV) for a leading muon (sub-leading muon). Gathering

together the above considerations, we define the “third selection” as follows:

|ηµi | < 2.4, 25 GeV < kµlead
T < 50 GeV, 15 GeV < kµsub

T < 40 GeV,

kµ3
T < 5 GeV, /ET > 20 GeV, dR(ηµ, φµ) > 0.1,

k
jet1
T < 50 GeV, k

jet2
T < 25 GeV + jet b-tagging. (4.81)

The results on the cross section are reported in the fourth column of Table 4.4,

where the successful suppression of the WWjj background is apparent. On the other

hand, we notice that both tt̄ and WZ backgrounds are still dominant with respect to

the signal.

The optimal strategy to eventually achieve the suppression is still under investiga-

tion. We outline a possible direction and temporarily call it “final selection”. Generally

speaking, the tt̄ process might be reduced below the signal by imposing veto cuts on

charged particle multiplicities (tracks). This step has to be considered very carefully

from a theoretical point of view because selecting particles introduces a theoretical

uncertainty that we have not estimated. However, in the current stage, the checks per-

formed on how much this procedure affects the signal and the background show that
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Figure 4.14: Comparison between results obtained with the phase space cuts as in (4.81) (upper
panels) and (4.82) (lower panels) for all processes. Ratio as defined in (4.80) is displayed. Panel (a)
distribution of the rapidity of the muon pair with third selection (4.81), panel (b) missing transverse
energy with cuts (4.81). Panels (c) and (d): product of rapidities for the third selection (4.81) and
final selection (4.82), respectively.

the signal is not significantly affected, while the tt̄ process is massively reduced [213].

The theoretical validity of the track selection procedure remains to be understood.

We present the results obtained by vetoes on the track transverse momentum of 1, 5,

and 15 GeV, even though future investigations are needed.

The suppression of the WZ process remains complex because its signature is very

close to the signal one. In Fig 4.14 we show two possibilities that can be explored.
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The upper left panel shows the rapidity of muon pair and on the right we display

the missing transverse energy. In practice, one could for instance attempt to impose

cuts on the rapidity of the combined muon system, or require a minimal transverse

energy. We explore the latter possibility and define a temporarily “final selection”.

This contains, in addition to (4.81), the above mentioned selection of tracks and the

requirement of minimal transverse energy. Namely:

(4.81) + track selection + /ET > 70 GeV. (4.82)

We observe that the background suppression is remarkable compared to the third

selection (see the last column of Table 4.4), and the signal process represents the

prominent value, as desired. To further underline the improvement produced by the

final choices (4.82), we display in the lower panels of Fig. 4.14 the rapidity product

distributions for the third selection (left) and the final selection (right). We notice that

the selection (4.82) works well for negative values of ηµ1
× ηµ2

, where the suppression

of background is more satisfactory.

Final results and promising directions

Fig. 4.15 contains the final results for the FS product and the difference of muon

rapidities, in all four correlation scenarios including background, using the final se-

lection (4.82). An outstanding signal of correlation is still missing, as reported in

Table 4.5. Discriminating any variations in the asymmetry values is probably of hard

experimental reach at the present stage of our study.

Fig. 4.14 (d) shows that the remaining background is manifestly asymmetric to-

wards the positive values of the rapidity product. Because of this, the asymmetry

value will be primarily determined by the non-DPS background rather than the DPS

σ [fb] Asymmetry (Total) Asymmetry (DPS only)

Min-corr 0.105 -0.307 0.003
Pol 0.112 -0.314 -0.033

x-corr 0.092 -0.329 0.005
x-cor Pol 0.086 -0.333 -0.028

Table 4.5: Results for the cross section and asymmetry values for the DPS process in the four dif-
ferent correlation scenarios. The results are calculated with the final selection (4.82) to appropriately
suppress background as outlined in the text.
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Figure 4.15: Final results for the FS distributions for all correlation scenarios, using the final
selection (4.82), and relevant ratios, with R: RS (dashed line), RX (dotted), as defined in (4.74).
Left-side panel: DPS cross section differential with respect to the product of rapidities of the muon.
Right-side panel: cross section differential with respect to the absolute value of the difference of muon
rapidities

signal and will be shifted towards large negative values, as shown in Fig. 4.15(a) and

Table 4.5. This is the main reason to argue that measuring the slope of the distribution

is in principle a valuable alternative, as the signal entirely dominates the measure-

ment for only negative values of ηµ1
× ηµ2

. A measurement of the slope consists of

counting the total number of events (signal plus background) of muons going to the

opposite hemisphere. Such a measurement would demand a great accuracy in the

modeling of the signal and background processes, and the main sources of theoretical

uncertainties should be carefully evaluated. These considerations are still open and

under investigation.

As a concluding remark, we discuss the strategy under investigation to obtain a de-

cisive improvement on the background suppression, and we outline a possible new

scenario on spin correlations that can be measured at the LHC. If we resume our

analysis after the third selection (4.81), we are left with two prominent background

processes: WZ and tt̄ production. In order to avoid to perform the track selection,
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one can rather use the theoretical calculations combined with data-driven methods

to efficiently suppress these processes. The fact that the WZ process is relatively

well understood from the theoretical point of view makes it possible to assume that

this contribution can be effectively subtracted, leaving a theoretical uncertainty to

be added to the signal. Not as simple as the WZ is the case of the tt̄ process, for

which the status of the theoretical calculations is not as good. In this case, one can

adopt methods of muon isolations which are proven to be extremely efficient in sep-

arating the prompt muons from the muons produced by meson decays [217]. In this

ideal background-free situation, a remaining question would be whether one can push

the theoretical assumptions further in order to create a scenario where correlations

are detectable. Within what is allowed by the positivity bounds, we can build new

longitudinally polarized DPDs that still saturate the bound (4.43) but with difference

signs, depending on the type of parton entering the distributions (two quarks, two

antiquarks or a mixture of quark-antiquark). By modifying the sign of the polarized

distributions at the initial scale as will be explained in [213] we observe an increase

of the absolute value of the asymmetry up to the capabilities of the LHC (in our

preliminary investigations we could observe an increase of about 3-4 times compared

to the numbers in Table 4.2). This direction is promising and the new scenario on

spin correlations could be tested through the asymmetry measurement quite directly.

4.6 Discussion and conclusions

We conclude the Chapter with a brief summary and some comments.

The concept of double parton scattering has been attracting theoretical and exper-

imental interest for several years. It is a generalization of the single parton scatterings

that potentially creates a very rich phenomenology. In fact, extending the description

from a single to a double parton description is a unique opportunity to grasp the

structure of the hadrons with nonstandard (multipartonic) eyes. In particular, one

can study, in a complementary framework, a bigger number (and different in nature)

of correlations, especially in comparison to standard single parton PDFs. The addi-

tion of extra degrees of freedom is practically similar, even though conceptually very

different, to the extension of the description from the collinear to the transverse space:

the presence of the transverse momenta is crucial to introduce quantum and kinemat-

ical correlations that are responsible for the manifestation of fundamental properties

of QCD: color entanglement, gauge invariance, and universality. The theory of DPS is

in this sense younger, even though several of the single parton theory concepts have

been developed and are becoming part of the DPS theory as well (such as TMD and
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collinear factorization, QCD evolution, description of universality). In addition, very

peculiar of DPS is the concept of quantum interference and correlations.

In this Chapter, we have discussed two-parton correlations, a type of correlation

that is already included in the double parton correlator from its very first definition.

The spin correlation of two partons, also in an unpolarized proton, is a particularly

interesting type of correlation. In fact, it is the only correlation which gives a direct

(calculable in the hard part of the cross section) effect on the distributions of final

states. The other types of correlations are responsible for the interplay between the

kinematic variables xi in a way that is not exactly specified. Since the dependence of

the unpolarized DPDs on xi and y separately is also currently unknown, the predic-

tions are to be taken with care.

We have presented a study of the production of same-sign W -boson pair produc-

tion in presence of correlations. The analysis has been carried out on the partonic and

final-state level, including the relevant background processes. We also identify the key

observables that would allow the discrimination of correlations in DPS. The results

on the final-state distributions including background are presented, although in a pre-

liminary form. The optimal phase-space portion that would need to be used to detect

correlations is still under examination, and a definitive response on the feasibility of

measuring correlations in DPS has not been determined. Nevertheless, theoretical and

experimental improvements are currently under investigations.
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Chapter 5

Quarks in unpolarized targets

in AdS/QCD correspondence

5.1 Introduction

In this Chapter, we introduce the main features of the AdS/QCD correspondence,

where “AdS” stands for anti-de Sitter space. Through this approach, we derive the

LFWFs of mesons and employ it to the study of the pion structure. The pion was

theoretically predicted by Yukawa in 1935 [218] as the mediator of the short-range

nuclear force, and it was observed experimentally for the first time in 1947 [219].

Across the decades, formidable developments have been achieved in the theory of the

strong force. Nowadays the pion has been recognized as having a crucial role in many

aspects of the standard model and in the study of QCD and confinement. It is the

Goldstone boson of the chiral symmetry breaking, a mechanism which is responsible

for dynamically creating most of the visible mass of the universe [220, 221]. On the

other hand, it is the simplest hadron in nature: it is the lightest QCD bound state,

made up of u and d valence (anti)quarks, and its spin is zero. Thus, no target spin

degrees of freedom enter the description.

These complementary pictures emerge when we study different properties of the

pion’s interior, such as elastic and transition electromagnetic form factors (see e.g. [222–
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226]), distribution amplitude (see e.g. [227, 228]), PDFs (see e.g. [229–232]), GPDs

(see e.g. [233–239]), TMDs (see e.g. [62,240,241]), and Fragmentation Functions (see,

e.g., [242–245]). The comparison with experiment is crucial to draw definitive conclu-

sions, and the experiments planned at JLab 12 [246], and the new mesonic Drell-Yan

measurements at modern facilities [247,248] can provide valuable information.

Since there are no spin states available in the target, a big simplification arises in

the description of the distribution functions. Focusing on the quark TMDs at leading-

twist, only two functions are involved: the unpolarized f1 and the Boer-Mulders h⊥1 .

However, the absence of experimental information on the TMD structure of the pion

prevents us from a direct comparison between theory and experiments, conferring an

exploratory connotation to this study.

The internal structure of the pion, as well as other hadrons, can be studied by using

different approaches, such as constituent quark models (see e.g. [62, 240]), covariant

models and Schwinger-Dyson equations [221, 249], lattice QCD methods [34, 54, 56],

and the formulation of the AdS/QCD correspondence [250]. We investigate the op-

portunities offered by the latter, as being an appealing approach from the theoretical

point of view.

The AdS/QCD correspondence in the form of the light-front holography was for-

mulated in 2006 by Brodsky and de Teramond [251,252]. It has a number of features

that will be briefly reviewed in Section 5.2.1. Among those, there is the capability of

providing an expression for the LFWF of the valence state of the mesons. As shown

later in the Chapter, it has a very simple form and, in its original version, only one

free parameter. In essence, very little modification is needed in order to employ it

in a phenomenological study. We aim to study quark TMDs in this framework, and

discuss some aspects that arise from the transition from the nonperturbative nature

of the AdS/QCD description and the perturbative regions.

5.2 Meson LFWF from AdS/QCD

In this Section, we first review the main properties of the LFWFs and we show that

the knowledge of such quantities is important in the seek of a unifying framework to

describe simultaneously hadronic and partonic observables, since quantities such as

TMDs, PDFs, and electromagnetic form factors, can be written as overlap of LFWFs.

With these concepts at hand, we can turn to the actual use of the LFWF for the

pion derived in the AdS/QCD correspondence.

In the context of QCD, LFWFs are not known and not calculable perturbatively.

They have for example been constructed within the framework of light-front con-
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stituent quark models [59,253–256] and used in the calculations of TMDs, GPDs, and

GTMDs. As we shall see shortly, the AdS/QCD approach provides an expression for

the meson LFWFs directly. The limitation is that the complexity of the hadron spin

structure remains unexplored, as the LFWFs has a very simple, spin-independent

form. We thus continue this dissertation by looking more closely at unpolarized quan-

tities. On the other hand, this offers the opportunity to look simultaneously at many

observable within a unified formalism.

LFWFs overlap representation

The observables under investigation in this Chapter are the electromagnetic form

factor, the valence quark PDF and the TMD of the pion. Electromagnetic form factors

are measurable quantities in elastic processes. Those processes are quite different from

the ones we have been dealing with so far, at least in their much less energetic nature.

In fact, a very moderate Q2 value is needed to investigate the electromagnetic property

of the hadrons without resolving the partonic nature (the data on the pion form factor

that will be analyzed have a maximum value smaller than Q2 ∼ 10 GeV2).

In terms of operators, the form factors parametrize a non-forward matrix element

containing a local current operator, i.e. 〈P | Jµ(0) |P ′〉. The kinematic is space-like

and the virtual photon of momentum qµ can be chosen such that q+ = 0, with

Q2 = −q2. This choice is useful because in LF quantization, where plus momenta

cannot be negative, only processes with the same number of initial and final particles

are allowed. The relevant component of the current is the plus component J+ (0) =∑
q eqψ̄q (0) γ+ψq (0), where eq is the electric charge of the constituent. This is the only

contribution because it contains the good components of the fields, while J− contains

bad components and it is not a one-body contribution. For a spin-1/2 hadron the

parametrization of the transition matrix element reads:

〈P ′,Λ′| J+ (0) |P,Λ〉 = ūLF (P ′,Λ′)

[
F1

(
Q2
)
γ+ + F2

(
Q2
) i

2M
σ+αqα

]
uLF (P,Λ) ,

(5.1)

where uLF (ūLF ) are the LF Dirac spinors as in Appendix A. The form factors F1 and

F2 are called Dirac and Pauli form factors respectively, and they are a measure of the

electric and magnetic charge distributions in the hadron. The hadron initial and final

momenta are chosen as [257]:

P =
(
P+, P−,PT

)
=

(
P+,

M2

2P+
,0T

)
, (5.2)
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P ′ =
(
P ′+, P ′−,P ′T

)
=

(
P+,

M2 + q2
T

2P+
, qT

)
, (5.3)

q =
(
q+, q−, qT

)
= (0, 0, qT ) . (5.4)

We can write the form factors of eq. (5.1) in terms of helicity conserving and helicity

flip amplitudes as follows:

F1

(
Q2
)

= 〈P + q, +| J
+ (0)

2P+
|P, +〉 =

1

2P+
F++, (5.5)

−
(
q1 − iq2

) F2

(
Q2
)

2M
= 〈P + q, +| J

+ (0)

2P+
|P, −〉 =

1

2P+
F+−, (5.6)

where

FΛ′Λ(Q2) = 〈P ′,Λ′| J+ (0) |P,Λ〉 =
∑

q

eq 〈P ′,Λ′| ψ̄q (0) γ+ψq (0) |P,Λ〉 , (5.7)

with Λ,Λ′ light-front helicity states of the initial and final state of the hadron. After

inserting the expression (2.90) for the hadron state in the matrix element (5.7), one

has:

FΛΛ′
(
Q2
)

= 2P+
N∑

j=1

∑

q

∑

β=β′

eqδsjq

∫
[dx]N

[
d2kT

]
N

Ψ∗Λ
′

N,β′ (r
′) ΨΛ

N,β (r) , (5.8)

where N is the number of particles in the n-th Fock state and the integrations mea-

sures are defined as in (2.93) and (2.94). The expression (5.8) allows one to compute

the form factors once the form of the LFWF ΨΛ
N,β (r) is known. In the case of a spin-0

particle, like the pion, only the form factor F1 exists and reds:

F
(
Q2
)
≡ F1

(
Q2
)

=

N∑

j=1

∑

q

∑

β=β′

eqδsjq

∫
[dx]N

[
d2kT

]
N

Ψ∗Λ
′

N,β′ (r
′) ΨΛ

N,β (r) , (5.9)

With the same logic as for the form factor, one can plug in the expansion (2.90) in

operator definition of the TMDs and PDFs and find an expression for the unpolarized

TMD f1(x,k2
T ) and the PDF f1(x) as:

f1(x,kT ) =
∑

β′

N∑

j=1

∫
[dx′]

(j)
N

[
d2k′T

](j)
N

∣∣ΨΛ
N,β′

(
x,kT ; r′(j)

)∣∣2, (5.10)
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f1(x) =
∑

β′

N∑

j=1

∫
[dx′]

(j)
N

∣∣ΨΛ
N,β′

(
x; r′(j)

)∣∣2, (5.11)

where the following notations are used:





[dx′](j)N =
∏N
l=1
l 6=j

dx′lδ
(
x− x′j

)
,

[
d2k′T

](j)
N

= 1
(16π3)N−1

∏N
l=1
l 6=j

d2k′T δ
(2)
(
kT − k′Tj

)
,

ΨΛ
N,β′

(
r; r′(j)

)
= ΨΛ

N,β′ (. . . , rj−1, r, rj+1, . . .) .

(5.12)

The AdS/QCD correspondence provides an expression for the meson valence state,

i.e. only the |qq̄〉 first Fock state is present in the expansion. The above expressions will

be then extremely simplified and they become as shortly defined in eq. (5.25), (5.27),

and (5.24).

5.2.1 The AdS/QCD correspondence

With the name AdS/CFT correspondence [258,259] (also called gauge/gravity duality

or Maldacena conjecture) we refer to the connection between a string theory defined

in a d dimensional anti-de Sitter (AdS) space, and a conformal field theory (CFT)

defined in a flat space with d − 1 dimension. This represents a realization of the

holographic principle, because the relation involves theories defined in spaces with

different dimensions. In particular, the conjecture states that it is possible to relate

a gauge theory in standard (3 + 1) Minkowski space-time to a gravitational theory

in five dimension, with the remarkable advantage that the two theories have inverse

couplings. The line element in the AdS metric reads:

ds2 =
R2

z2

(
3∑

i=0

dxidx
i − dz2

)
, (5.13)

where R is the AdS curvature radius. The 5-th coordinate z is called holographic vari-

able. The Anti-de Sitter AdS space is is a maximally symmetric Lorentzian manifold

with constant negative scalar curvaturethe and a four dimensional boundary. Due to

the high number of symmetries on the gravity side, the correspondent dual gauge

theory consists in a conformal and supersymmetric Yang-Mills theory.
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Bottom-up approach and LF Holography

The idea expressed by the gauge/gravity duality is certainly intriguing, and during

the past twenty years people have been devoting a lot of work in developing AdS/CFT

methods. The aspiration of applying such a conjecture (or a modified version of it) to

a strongly-coupled theory existing in nature, such as QCD, has grown. The underlying

logic is to match the nonperturbative observables of QCD to other observables that

would be calculable in the gravity theory with perturbative methods. However, as soon

as the role of the supersymmetric Yang-Mills theory is played by QCD, one should

desist from any attempt of implementing AdS/CFT in its original formulation. Since

a gravity dual to QCD is not known, one needs to modify the gravitational theory on

the AdS side. In this bottom-up approach, the dual gravitational theory is constructed

such that all the characteristics of QCD would be implemented: conformality in the

massless quarks limit, asymptotic freedom for small distances and confinement in the

large distance domain.

The implementation of the AdS/QCD correspondence in the form of Light-Front

Holography (LFH) is inspired by these principles [251,252]. In the so-called “soft-wall”

version of AdS/QCD correspondence [260], conformal invariance is broken thanks to

the effect of a harmonic confining potential (whose strength is determined by a mass

parameter κ), producing a distortion of the AdS geometry near a large infrared value of

z. If one identifies this value with z ∼ 1/ΛQCD, the scale of the strong interactions can

be found. The soft-wall is realized by the insertion of a scalar dilaton field ϕ(z) = κ2z2

in the 5-dimensional action, namely:

S =

∫
d4xdz

√
|g|eϕ(z)

(
gMN∂MΦ(x, z)∂NΦ(x, z)−m2Φ2(x, z)

)
, (5.14)

where uppercase indices M and N run from 1 to 5, gMN is the metric tensor of the

AdS space such that ds2 = gMNdx
MdxN with xM = (xµ, z) and m is an arbitrary

mass parameter. The scalar normalizable modes in AdS can be written as Φ(x, z) =

e−iP ·xφ(z), i.e. plane waves along Minkowski coordinates xµ and a profile function

φ(z) along the holographic coordinate z.

It can be shown that the equation of motion of φ(z), derived from the modified

AdS action, corresponds to the equation for the transverse part of the LFWF [250],

with a non-vanishing harmonic potential and with the identification of z with the

impact parameter coordinate in LF [261]. Therefore, the connection established holds

between the 5-dimensional gravity theory in modified AdS space and LF formulation

of QCD [250]. The consistency of the choice of the harmonic oscillator is supported by

several arguments [250]. It is relevant to mention that this is, for instance, consistent
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with the fact that a harmonic shape of the potential in LF corresponds to a linear

potential in usual IF [262].

Hadronic physics in the AdS/QCD approach

Light-front holographic QCD methods (see [250] and references therein for a complete

review on the topic) have been employed in a number of recent works to obtain new

insights into the structure of hadrons [250–252,260,263,264].

For instance, the approach leads to linear Regge trajectories [260] for light mesons

and baryon, one of the major success of the approach. From the light meson and

baryon mass spectra one can extract a possible value of the universal parameter κ, as

discussed later in the Chapter and extensively in [250].

Most relevant to our purposes is the achievements of light-front holographic QCD

in providing a theory-based expression for the light-front wave function (LFWF) for

the valence Fock-state component of mesons. This makes it possible to obtain direct

information about many hadronic observables, which can be expressed in terms of

overlaps of LFWFs.

Once the correspondence has been found, one can proceed in building the dic-

tionary of the LF Holography. Brodsky and de Teramond in [261], inspired by the

work of Polchinski and Strassler [265, 266], matched the spinless string modes in

five-dimensional AdS space with the meson LFWFs. The original procedure carried

out by Brodsky and de Teramond is extensively explained in, e.g., [261] and will not

be repeated here. The matching involves the following quantities:

∫
d4x

∫
dz
√
g AM (x, z) Φ∗P ′ (x, z)

←→
∂ MΦP (x, z) (5.15)

m
(2π) δ(4) (P ′ − P − q) εµ (P ′ + P )

µ
F
(
Q2
)
, (5.16)

where the top line (5.15) represents the expression for the transition matrix element

of the free electromagnetic current AM (x, z) propagating in the AdS space, evaluated

between five-dimensional AdS modes Φ(x, z) that correspond to the incoming (P )

and outgoing (P ′) meson states in a soft-wall model effective potential. The bottom

line (5.16) represents the same transition amplitude in the physical Minkowski space-

time, i.e. 〈P ′| Jµ(0) |P 〉 = (P + P ′)µF (Q2). The meson momentum changes from P

to P ′ as the result of the interaction with a photon with space-like momentum qµ and

polarization vector εµ. As previously explained in this Section, one can conveniently

choose a frame where the photon momentum is only in the transverse direction. The

F (Q2) in (5.16) is then the form factor of the meson expressed in terms of the impact
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parameter coordinates bT , Fourier transform of the transferred momentum qT , rather

than in momentum space as in (5.9). The matching provides the expression for the

LFWFs for the valence state qq̄ of a meson h in the impact parameter space1:

F
(
Q2
)

=
∑

q

eq

∫
dxd2bT exp (iqT · (1− x)bT )

∣∣ψqq̄/h (x, bT )
∣∣2 . (5.17)

The identification is openly valid only for the first Fock state and the LFWF derived

has the form that we will write in eq. (5.18).

The procedure in [261] was based on the correspondence between a free current

propagating in AdS and the LFWF overlap representation of the form factor, and it

would be exact if one included all the infinite number of Fock states. Later in [267], the

mapping with a “dressed current” incorporating non valence Fock state was developed,

which led to the expression in eq. (5.22). This wave function is supposed to effectively

describe the hadron.

The two forms for the LFWF obtained have been used as the starting point to

calculate collinear and transverse-momentum dependent parton distributions (PDFs

and TMDs, respectively), generalized parton distributions (GPDs) and other parton

densities both for mesons and nucleons (see for instance [167,268–284]).

In Section 5.3 we will review the characteristics of these two forms and we will

investigate the phenomenological implications on the simplest mesonic state: the pion.

5.3 The pion in AdS/QCD correspondence

In this Section, we present the results from [66], where we used the LFWFs from the

AdS/QCD correspondence to study the 3D internal structure and dynamics of the

pion in momentum space.

5.3.1 Pion LFWFs

As previously mentioned, studying the structure of the pion has attracted interest

since the pion was predicted and detected experimentally. It can be seen as the

simplest realization of a QCD bound state of quark and anti-quark as well as the

Nambu-Goldstone boson of the dynamically broken Chiral Symmetry in QCD.

The expressions of the LFWFs coming from the soft-wall model of the AdS/QCD

correspondence were originally derived in two different matching procedures [261,267].

Brodsky and de Teramond in [261], inspired by [265, 266], perform the matching

1The matching only provides the s-wave contribution to the LFWFs.
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procedure taking into account only the two-parton valence component. The explicit

expression for the pion LFWF reads

ψVqq/π (x, kT ) ∼ 1

κ
√

(1− x)x
e
− 1

2

k2T
κ2x(1−x) , (5.18)

where the superscript V indicates that we are considering the LFWF for the pure-

valence state of the pion. The quark masses in the pion LFWF are included following

the prescription suggested in [285], i.e. by completing the invariant mass of the system

as

M2 =
∑

i

m2
i + k2

T i

xi
=
m2 + k2

T

x(1− x)
, (5.19)

where m = m1 = m2 and, from momentum conservation, kT = kT1 = −kT2 and

x = x1 = 1− x2. As a result, the expression (5.18) becomes

ψVqq/π (x, kT ) = A
4π

κ
√

(1− x)x
e
− 1

2κ2

(
m2

x(1−x) +
k2T

x(1−x)

)
, (5.20)

where A is a normalization constant fixed by the condition

∫ 1

0

dx

∫ +∞

−∞

d2kT
16π3

|ψVqq/π (x, kT ) |2 = 1. (5.21)

An alternative expression for the LFWF has been derived in [267], considering the

mapping of the matrix element of a confined electromagnetic current propagating in

a warped AdS space to the pion form factor. In this case, one obtains a LFWF which

provides the expected pole structure for the form factor in the time-like region. Fur-

thermore it incorporates the effects due to non-valence higher-Fock states generated

by the “dressed” confined current and represents an effective two-parton state of the

pion. It reads

ψEqq/π (x, kT ) ∼

√
log
(

1
x

)

κ (1− x)
e
− log(1/x)

(1−x)2
k2T
2κ2 , (5.22)

where the superscript E indicates that we are considering an “effective-valence” com-

ponent of the LFWF. At variance with the pure-valence LFWF, the effective-valence

LFWF is not symmetric in the longitudinal variables x and 1 − x of the active and

spectator quark, respectively. Introducing the quark mass dependence as outlined
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above, the effective-valence LFWF becomes

ψEqq/π (x, kT ) = 4πA

√
log
(

1
x

)

κ (1− x)
e
− log(1/x)

(1−x)2
k2T+m2

2κ2 , (5.23)

where the parameter A is once more fixed by demanding the validity of (5.21).

5.3.2 PDF and Form Factor

Using the LFWF overlap representation of the PDF and form factor for the first Fock

state in the expansion, in the valence case (5.20), we obtain

fV1 (x;Q0) =

∫ +∞

−∞

d2kT
16π3

|ψVqq/π (x, kT ) |2 = A2e

(
− m2

κ2x
− m2

κ2(1−x)

)
, (5.24)

FVπ (Q2) =
∫ +∞

−∞

d2kT
16π3

dxψ∗Vqq/π (x, kT + (1− x)qT )ψVqq/π (x, kT )

=

∫ 1

0

dxA2e

(
− m2

κ2x
− m2

κ2(1−x)
−Q

2(1−x)
4κ2x

)
, (5.25)

where |qT |2 = Q2. The condition (5.21) implies that
∫ 1

0
dxfV1 (x;Q0) = FVπ (Q2 =

0) = 1. Throughout this analysis fq1 (x) = fq1 (x) is always consistently understood

and we discuss results for the π+ hadron, as the distributions for the π0 and π− can

be related by isospin and charge conjugation symmetry.

The corresponding expressions for the PDF and the form factor using (5.23) are

given by

fE1 (x;Q0) = A2e
− log(1/x)

(1−x)2
m2

κ2 ,

FEπ (Q2) =

∫ 1

0

dxA2e
− log(1/x)

4κ2

(
Q2+ 4m2

(1−x)2

)
. (5.26)

We fix the parameters of the LFWFs (5.20) and (5.26) by fitting the available ex-

perimental data for the pion electromagnetic form factor [286–288]2 and the parametriza-

tion of the pion PDF in [289]. For the fit of the PDF, we apply the DGLAP evolution

2We point out the difference with our publication [66], where the bibliographic indications for the
used data points was not given correctly.
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equations at next-to-leading-order (NLO) to evolve the PDF from the (low) scale of

the model Q0 to the scale Q = 5 GeV of the parametrization, using the HOPPET

code [290]. We leave in the initial scale Q0 as an additional free parameter to be

fitted with the data. Starting from the functional form of the parametrization [289],

we select 61 equally-spaced points from x = 0.2 to x = 0.8 and for each of them we

construct error bars by propagation of the errors on the individual parameters. Sum-

ming the PDF points and the 58 form factor points (45 data points from [286], 5 data

points from [287], and 8 from [288], which includes the reanalized points of [291,292]),

we perform the fit using in total 119 points. In the case of the pure-valence LFWF

we consider two different fitting strategies: either we fix the quark mass to a constant

value (“current quark” mass m = 0.005 GeV and “constituent quark” mass m = 0.2

GeV) or, alternatively, we let the quark mass entering as an additional fit param-

eter. For the effective-valence LFWF, we fix the quark mass to the same values as

before, but we include also the limit of massless quarks (leaving the quark mass as

a free parameter in this case leads anyway to a vanishing mass). The results of the

fit are summarized in Tab. 5.1. In the following we discuss the results for two sets

of parameters in Tab. 5.1 corresponding with the lowest value of the total χ2
d.o.f. for

non-vanishing quark mass.

In Fig. 1 we show the results for the form factor of the pure-valence (solid curve)

and effective-valence (dashed curve) LFWF. The corresponding results for the PDF

are shown in the upper and lower panel, respectively. The solid lines show the results

at the hadronic scale, and the dashed lines are obtained after NLO evolution to Q = 5

GeV. The shaded band corresponds to the results from the parametrization at Q = 5

GeV of Ref. [289].

The results from the pure-valence LFWF are in good agreement with the available

experimental and phenomenological information, while a worst comparison, especially

for the form factor, is obtained in the case of the effective-valence LFWF.

The mass parameter κ plays a very important role, as it is originally the only free

parameter of the theory and it is related to the strength of the confining harmonic

potential in the soft-wall model [252, 262]. The value κ ≈ 0.37 GeV obtained in the

pure-valence LFWF case is similar to what was obtained in Ref. [261], whereas in

the study of the effective-valence LFWF we obtain smaller values, κ ≈ 0.26 GeV,

compared to previous analyses [270,274].

A larger value of κ, namely κ = 0.54 GeV, is needed in order to describe the

hadronic mass spectra and the Regge trajectories [293–295] and this value has been

quite extensively used (see [250, 272] for a more complete overview). Recent works

[296–299] quote a larger value of approximately κ = 0.5 GeV to reproduce Regge
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Figure 5.1: Results for the pion electromagnetic form factor from the pure-valence LFWF (solid
curve) and the effective-valence LFWF (dashed curve) with the two sets of parameters in Tab. 5.1
corresponding with the lowest values of χ2

d.o.f. for non-vanishing quark mass. The experimental data
are from Refs. [286–288].

slopes for mesons and baryons and to realize the transition from the non-perturbative

(described by light-front holography) and the perturbative regimes, which occurs at an

energy scale of about 1 GeV. However, as outlined in [250], the scale κ is systematically

lower for form factors, as compared with the values required to account for the mass

spectrum. In fact, even though the effective model for the LFWF at zero quark masses

reproduces the pole structure of the form factor in the time-like region, the position

of the poles does not correspond to the one in the vector meson spectra. Thus, for a

meaningful comparison with experimental data, one needs to shift the poles to their

physical locations, meaning in fact an extension of the effective model. For the valence

Fock state of the pion this simply consists of a rescaling of the κ towards lower values

which are compatible with our results. The inclusion of higher Fock states implies the

shift of a series of poles to their physical mass and a simple rescaling of the parameter

is no longer possible.

Our result for the initial scale is Q0 ∼ 0.5 GeV in the pure-valence case and

is consistent with the values obtained in different phenomenological quark models

[62,238], where the scale is fixed by requiring that the model results for the momentum
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Figure 5.2: Results for the quark PDF of the pion as function of x from the pure-valence LFWF
(upper panel) and the effective-valence LFWF (lower panel), with the two sets of parameters in
Tab. 5.1 corresponding with the lowest values of χ2

d.o.f. for non-vanishing quark mass. Solid curves:
results at the initial scale of the model. Dashed curves: results after NLO evolution to Q = 5 GeV.
Dashed band: parametrization at Q = 5 GeV from Ref. [289].

carried by the valence quarks match the experimental value, after DGLAP evolution,

but it disagree with the LFH results. We will further comment on this result more
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LFWF m (GeV) κ (GeV) Q0 (GeV) χ2
d.o.f.

(
χ2
FF+χ2

PDF

N−Npar

)

0.005 (fixed) 0.397± 0.003 0.500± 0.003 3.15
ψVqq/π 0.200 (fixed) 0.351± 0.003 0.491± 0.003 11.76

0.0500± 0.00004 0.371± 0.002 0.498± 0.002 2.25

0.005 (fixed) 0.261± 0.002 0.498± 0.003 5.44
ψEqq/π 0.200 (fixed) 0.322± 0.002 0.630± 0.008 12.96

0. (fixed) 0.262± 0.002 0.498± 0.003 5.38

Table 5.1: Results from the fit of the pure- and effective-valence LFWFs in different quark mass
scenarios. In the last column χ2

d.o.f. indicates the sum of the FF and PDF total values divided by
the total degrees of freedom (total number of points N minus the number of free parameters Npar).

extensively in Section 5.4.

We also notice that the fit of the quark mass provides a value that is quite close

to the average effective light-quark mass obtained in LF holographic QCD from the

meson spectrum [250]. In the case of the effective-valence LFWF, we expect that the

inclusion of the effects of higher-order Fock state components should correspond to

a higher hadronic scale. This is the case when comparing the results between the

effective-valence and pure-valence LFWF with m = 200 MeV and similar values of κ.

However, for the other quark-mass scenarios we find similar values of Q0 in the two

models, which are compensated by much lower values for the parameter κ in the case

of the effective-valence LFWF. Both the values of κ and the initial scale Q0 differ

with respect to [296–299].

5.3.3 Unpolarized TMD and effect of evolution

At leading twist, the pion transverse momentum dependent quark-quark correlator

consists of two functions, the unpolarized TMD function f1(x,k2
T ) and the Boer-

Mulders TMD function h⊥1 (x,k2
T ). We restrict ourselves to discuss the unpolarized

TMD, since the Boer-Mulders function would require to construct a spin-dependent

LFWF, which is not naturally present in the original AdS/QCD approach (see for

example the phenomenological pion LFWF of [270] and [272]).

The unpolarized TMD f1(x,k2
T ) can be obtained from the following LFWF over-

lap [62]

f1(x,k2
T ;Q0) =

1

16π3
|ψqq/π (x, kT ) |2, (5.27)
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which reduces to the PDF in Eq. (5.24) after integration over kT . Using the expressions

in Eqs. (5.20) and (5.23), one finds that the TMD in both models is a Gaussian

distribution in kT , with an x-dependent mean square transverse momenta, i.e.

fV1 (x,k2
T ;Q0) =

A2

πκ2x(1− x)
e
− k2T+m2

κ2x(1−x) ,

〈k2
T (x;Q0)〉V = κ2x(1− x), (5.28)

fE1 (x,k2
T ;Q0) =

A2 log
(

1
x

)

πκ2(1− x)2
e
− log( 1

x )
k2T+m2

κ2(1−x)2 ,

〈k2
T (x;Q0)〉E =

κ2(1− x)2

log(1/x)
, (5.29)

where kT = |kT | and

〈k2
T (x;Q0)〉V/E =

∫
d2kTk

2
Tf

V/E
1 (x,k2

T ;Q0)
∫
d2kTf

V/E
1 (x,k2

T ;Q0)
, (5.30)

is the width of the distribution at Q0. In Fig. 5.3 we show the results for the TMD in

the two models, as function of x and k2
T . As in the case of the PDF, the pure-valence

model is symmetric under the exchange of x → 1 − x, while this symmetry is lost

when including effects beyond the valence sector in the effective-valence LFWF. The

fall-off in k2
T is Gaussian in both models.

The width of the distribution 〈k2
T (x)〉 is shown as function of x in Fig. 5.4. It

is slightly larger in the pure-valence model, with a maximum at x = 0.5 and the

characteristic symmetric behaviour around the maximum. Integrating over x, one

obtains 〈k2
T 〉V = 0.023 GeV2. In the case of the effective-valence LFWF the maximum

is shifted at lower values of x, i.e. x = 0.28, and the result after x-integration is

〈k2
T 〉E = 0.020 GeV2.

As explained before, the AdS/QCD LFWF and the resulting TMDs are obtained

at a scale of about 0.5 GeV. In order to be able to compare with data or extractions,

TMDs need to be evolved according to TMD evolution equations (see, e.g., Ref. [300]).

These equations describe the broadening of the initial TMD due to gluon radiation.

TMD evolution implementation

Even though TMD evolution equations are based on perturbative QCD calculations,

their implementation requires the introduction of some prescriptions to avoid extend-

ing the calculations outside their region of validity. In general, such prescriptions have
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Figure 5.3: Results for the quark TMD of the pion as function of x and k2
T from the pure-valence

LFWF (left) and the effective-valence LFWF (right) with the two sets of parameters in Tab. 5.1
corresponding with the lowest values of χ2

d.o.f. for non-vanishing quark mass.

the effect of inhibiting perturbative gluon radiation at low transverse momentum and

at low Q, but must be complemented with an additional component of gluon radia-

tion, usually referred to as nonperturbative component of TMD evolution [301]. This

component cannot be predicted by perturbative QCD, but has to be extracted from

experimental measurements, taking advantage of the fact that it is highly universal

(i.e., it is independent of the quark’s flavor and spin, the parent hadron, the type of

process, and whether one considers TMD distribution and fragmentation functions).

A recent example of a computation of the behavior of the nonperturbative component

of TMD evolution can be found in [302].

Several prescriptions have been proposed in the literature (see, e.g. [14, 106, 108,

301, 303–305]). In principle, if complemented with the appropriate nonperturbative

components, they should lead to compatible results for the evolved TMDs. However,

there is still considerable uncertainty on the nonperturbative components and sys-

tematic studies of these uncertainty are still lacking. We therefore choose a specific

implementation of TMD evolution equations, which has been successfully applied to

the description of data in the range 1.2 GeV . Q . 80 GeV. Details of this imple-

mentation are discussed in Ref. [108]. We summarize here the most important points.

TMD evolution is implemented in the space Fourier-conjugate to k⊥. Therefore,

we first define the Fourier-transformed TMDs

f̃1(x, b2⊥;µ) =

∫ ∞

0

dk⊥k⊥J0

(
b⊥k⊥

)
f1(x, k2

⊥;µ) (5.31)
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Figure 5.4: Results for the width 〈k2
T (x)〉 as a function of x for the pure-valence LFWF (solid

curve) and the effective-valence LFWF (dashed curve), with the two sets of parameters in Tab. 5.1
corresponding with the lowest values of χ2

d.o.f. for non-vanishing quark mass.

and we use the following form for the evolved TMDs in b⊥ space (see Refs. [15,306])

f̃a1 (x, b2⊥;µ) =
∑

i=q,q̄,g

(
C̃a/i ⊗ f i1

)
(x;µb)e

S̃(b̄∗;µb,µ)egK(b⊥) ln µ
Q0 f̃a1 (x, b2⊥;Q0), (5.32)

where the label a indicates the parton type. We consider the above equation at Next-

to-Leading Logarithmic (NLL) approximation and at leading order in αs. In this case,

the convolution at the beginning of the evolved formula reduces simply to

∑

i=q,q̄,g

(
Ca/i ⊗ f i1

)
(x;µ2

b) ≈ fa1 (x;µ2
b), (5.33)

and the expression for the Sudakov form factor S̃(b̄∗;µb, µ) can be found, e.g., in

Ref. [307,308]. We further use

µb =
2e−γE

b̄∗
, gK = −g2b

2
⊥/2, Q0 = 0.5 GeV. (5.34)
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Figure 5.5: Left panel: results for the quark TMD of the pion, multiplied by kT , from the pure-
valence LFWF for the m = 50 MeV scenario, as function of k⊥ and at fixed x = 0.5. The solid line
shows the result at the scale of the model, Q0 = 0.5 GeV, corresponding with the initial scale for the
TMD evolution. The shaded band gives the spread of the results after evolution of the TMD to 1
GeV with three different values of g2: 0.09 GeV2 (dashed curve), 0.11 GeV2 (dotted curve) and 0.13
GeV2 (dashed-dotted curve). Right panel: results for kTMAX as function of x, at the scale of the
model (solid curve) and after TMD evolution to Q = 1 GeV (lower band) and Q = 5 GeV (upper
band) with three different values of g2: 0.09 GeV2 (dashed curve), 0.11 GeV2 (dotted curve) and
0.13 GeV2 (dashed-dotted curve).

We introduced the following variable

b̄∗ ≡ bmax

(
1− e−b4⊥/b4max

1− e−b4⊥/b4min

)1/4

, (5.35)

with

bmax = 2e−γE/Q0 = 2.246 GeV−1, bmin = 2e−γE/Q . (5.36)

The above choice guarantee that at the initial scale Q = Q0 any effect of TMD

evolution is absent. The model results are thus preserved and in particular the relation

between TMD and collinear PDF is maintained.

The value of the g2 parameter should be extracted from experimental data, keeping

all other choices fixed. In a recent analysis, the parameter was found to be 0.13±0.01

GeV2 in combination with a bmax that was half of the value we assume here. Since bmax

and g2 are in general anticorrelated, we choose for the present analysis the following

three values

g2 = 0.09, 0.11, 0.13 GeV2. (5.37)
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Figure 5.6: Left panel: results for the quark TMD of the pion, multiplied by kT , from the effective-
valence LFWF for the m = 50 MeV scenario as function of k⊥ and at fixed x = 0.5. The solid line
shows the result at the scale of the model, Q0 = 0.5 GeV, corresponding with the initial scale for the
TMD evolution. The shaded band gives the spread of the results after evolution of the TMD to 1
GeV with three different values of g2: 0.09 GeV2(dashed curve), 0.11 GeV2 (dotted curve) and 0.13
GeV2 (dashed-dotted curve). Right panel: results for kTMAX as function of x, at the scale of the
model (solid curve) and after TMD evolution to Q = 1 GeV (lower band) and Q = 5 GeV (upper
band) with three different values of g2: 0.09 GeV2 (dashed curve), 0.11 GeV2 (dotted curve) and
0.13 GeV2 (dashed-dotted curve).

Figures 5.5(a) and 5.6(a) show the effect of TMD evolution when going from the

model scale to 1 GeV and 5 GeV (at an illustrative value of x = 0.5). The value of kT
corresponding to the position of the peak of the distributions kTf1(x, k2

T ) can be used

as a measure of the width of the TMDs. The peak moves from about 0.1 to 0.3 GeV,

showing that there is a broadening of the width of the distributions. Even if this not

evident from the plot, the distributions are no longer Gaussian.

Figures 5.5(b) and 5.6(b) show the position of the peak for x between 0.1 and 0.8

and for three values of Q. At the scale of the model, this is an analytic function which

reads:

kTMAX(x) =

√
〈k2
T (x)〉
2

. (5.38)

After evolution to 1 GeV, as already observed, the width of the TMD increases to

about 0.3 GeV in both versions of the model. The x dependence of the TMD width

is rather flat. The symmetry about x = 0.5 of the pure-valence model is lost. The

two models become quite similar to each other: the position of the peak is the same

within a 5% error. At 5 GeV, the width of the TMD increases to about 0.7 GeV at

x = 0.5 and increases at low x, and is again very similar in the two versions of the
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model. We do not display the functions at 5 GeV in the left panels of Figures 5.5 and

5.6 for simplicity. The distributions kT f
V/E
1 (x = 0.5; kT ;Q = 5 GeV) are very wide in

kT and they loose any Gaussian shape.

In summary, TMD evolution from the model scale (0.5 GeV) to a typical experi-

mental scale of 5 GeV increases the width of the TMD of almost one order of mag-

nitude and leads to an x dependence of the width that is different from the original

one, with no strong difference between the two versions of the model.

5.3.4 Summary of the results

We took into consideration two different versions of the pion LFWFs: pure-valence

and effective-valence. For each version, the model contains three free parameters: the

mass parameter κ (expressing the strength of the confining harmonic potential that

breaks conformal invariance), the quark mass, and the scale of the model. We fix

the parameters by comparison to experimental information on pion form factors and

PDFs.

We obtain a value of κ in agreement with previous estimate [261], for the pure-

valence version of the model. For the effective-valence version, we obtain a smaller

value [270,274]. These values are both different from the ones obtained from the mass

spectra.

In order to achieve a fair agreement with the pion PDF at 5 GeV, the model scale

has to be set to about 0.5 GeV. This turns out to be true both for the pure-valence and

the effective-valence LFWF. We further comment on this results in the next Section.

The sets of parameters obtained have then been used to study the unpolarized

TMD of the pion. At the model scale, the resulting TMD has a Gaussian shape with

a width (defined as the position of the peak of the distributions kTf1(x, k2
T )) of about

0.1 GeV at x = 0.5. The x dependence of this width is different in the two versions of

the model: in the pure-valence model the TMD attains its maximal width at x = 0.5;

in the effective model, this happens at x = 0.28. After the TMD is evolved to a

typical experimental scale of about 5 GeV, its width increases by almost one order of

magnitude. The x dependence is different from the one at the model scale: the width

grows monotonically as x decreases, and the differences between the two versions of

the model fade away.
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5.4 The QCD running coupling

A crucial ingredient of our calculation is to identify the energy scale where the model is

valid. In our work, we have assumed that the transition between the nonperturbative

regime (where the model is applicable) and the perturbative regime (where pQCD is

applicable) occurs at a precise scale, which we define as the model scale. We fix this

scale by fitting the pion PDF to available phenomenological parametrizations, after

applying DGLAP evolution equations [309,310]. The value for the initial scale Q0 is set

uniquely from the DGLAP evolution to the low scale Q0 = 0.5 GeV, a value which is

needed in order to reach the agreement with the parametrization. One should take this

outcome cautiously, as we are stretching the validity of the perturbative calculations

down to an energy scale where these methods do not in principle hold (the value of

αs in the MS scheme is larger than 1 for this Q value).

In Table 5.2 we show the values of the best fit parameters when the initial scale is

instead fixed to some values Qh, with Qh > 0.5 GeV. The description of the PDF data

becomes substantially worse. One can see that the χ2
PDF and the total χ2

d.o.f increase

of almost one order of magnitude with respect to the best values we obtained from

the fitting strategy explained in the text (see Table 5.1 and the Table 1 in [66]). That

is, fixing a higher model scale by hand would lead to a very unsatisfactory description

of the data at the energy scale of the parametrization.

To solve this, one can interpret the result as an indication about the fact that the

model must be valid at a scale lower than Q2 ≈ 0.75 GeV2, assuming a “grey area”

where the transition from the perturbative to the nonperturbative physics described

by the AdS/QCD correspondence occurs.

Describing a smooth transition at a fixed calculable Q0 value is also possible from

LFWF m (GeV) κ (GeV) Q0(fixed) (GeV) χ2
PDF χ2

d.o.f.

ψVqq/π 0.00± 0.6 0.397± 0.004 0.86 3465 31.8

0.00± 0.6 0.40± 0.2 1.00 4665 42.2

ψEqq/π 0.180± 0.003 0.30± 0.002 0.86 645 16.6

0.201± 0.003 0.310± 0.002 1.00 1014.6 20.3

Table 5.2: Results from the fit of the pure- and effective-valence LFWFs with fixed values of the
initial scale. In the last column χ2

d.o.f. is defined as in Table 5.1. In the fifth column we now display
explicitly the χ2 of the PDF fit.
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a theoretical viewpoint, and it has been recently presented in [298, 299]. The value

of the mass parameter used is κ = 0.51 ± 0.04 GeV, derived from the linear Regge

slope of the ρ meson and the nucleon3. The expression of the coupling constant in

the LF holographic theory is given by the coupling of the AdS theory modified by the

soft-wall:

αLFH(Q2) = αLFH(0)e−Q
2/4κ2

. (5.39)

3Deriving the parameter κ from a Renormalization Scheme (RS) invariant quantity would be
preferable, but the values obtained with this methods do not manage to describe the PDF values.

Figure 5.7: Figure from [298]. Strong coupling αs as defined in eq. (5.42) over all range of Q.
The procedure performs the matching between the pQCD coupling constant in the MS scheme at
N3LO and NNLO (continue black lines) and the LF Holography description (dashed black line).
The transition point, calculated as explained in [298], is Q2

0 = 0.75 GeV2 for MS scheme and it is
indicated by a black arrow. A value of κ = 0.51 GeV is used. The green, blue, and red lines are
the similar results for different renormalization schemes. In particular the blue line represents the
effective Bjorken coupling αg1 for which the matching procedure was originally devised [311,312].
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According to [298], the coupling (5.39) represents the nonperturbative extension of

the αs defined in a specific scheme, e.g. the MS scheme. In order for (5.39) to be the

smooth extension of the pQCD expression these conditions must hold:

{
αLFH(Q0) = αMS(Q0)

βLFH(Q0) = βMS(Q0),
(5.40)

which fix the value of Q0, α(0). The β function is defined in terms of the coupling

constant α (pQCD and LFH) as:

β(αs) = Q2 ∂αs
∂Q2

. (5.41)

For the MS scheme at three loop level the transition occur at the scale Q2
0 = 0.75

GeV [298]. The strong coupling constant can be then defined over all ranges of Q as:

αs(Q) =

{
αLFH(Q) Q ≤ Q0

αMS(Q) Q > Q0,
(5.42)

This result is obtained at a fixed order in pQCD, regardless the possible variations

that different values of the initial conditions can produce at lower scales (e.g. input

values of αs or ΛMS). The transition has been studied for different definitions of the

coupling in [298], and this method was originally tailored for describing the effective

coupling αg1 = g2
1/4π defined from the Bjorken sum rule [313] (see also [263,299,311,

312] for more details on the topic). The situation is displayed in Figure 5.7, where

other schemes besides MS are included and compared.

Using our values of κ and the scale Q0, that are most suitable for the description of

PDF and Form Factor (see Table 5.1), the smooth matching is a too rigid procedure

However, one can still attempt to describe the transition in the same way, by relax-

ing the condition (5.40), only imposing the continuity of the coupling at the matching

point αLFH(Q0) = αMS(Q0). The situation obtained is displayed in Figure 5.8. We

vary the values of αs at the Z boson mass and eventually display the results for

αs(MZ) = 0.118. The solid lines on the pQCD side (right side of the plot) correspond

to LO and NLO results and they are continuously joined to the LFH curves. We use

the two values of κ that correspond to our best results for the fit procedures. The sta-

bility of the perturbative calculation is arguable at such lower scales, but, as already

stressed earlier, it is necessary to use such a low scale to provide a good agreement

with the collinear PDF.
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Figure 5.8: Right part of the plot: the continue line represents the value of αs in pQCD at LO
(black) and NLO (red) extracted by the HOPPET [290] routine with input value of 0.118 at the
Z-boson mass. Left part: matching LFH lines with the values of κ from Section 5.3.2, and α(0) fixed
by the first of the conditions in (5.40). The dashed lines refer to κ = 0.37 GeV and match the LO
(dashed black) and NLO (dashed red) calculations in pQCD. The dotted lines refer to κ = 0.26 GeV
and match the LO (dotted black) and NLO (dotted red) calculations in pQCD.

5.5 Discussion and conclusions

In this Chapter we developed the study of the pion, a spin-zero hadron. An explicit

form for the LFWFs is a very powerful tool in order to study several hadronic ob-

servables simultaneously. The LFWFs, when all the Fock states are included, contain

in principle a complete information of the internal dynamics of the hadron in terms

of all quantum numbers of the partons and their intrinsic momentum and spatial

coordinates, .

We choose to analyze the phenomenological implications resulting from the LFWFs

provided by the AdS/QCD correspondence, in the context of the LF Holography for-

mulation. This approach has some advantages: the derivation and the idea underlying

the LFWF matching procedure is quite simple and attractive. It is based on a mod-

ified version of the gauge/gravity duality that was specifically tailored to the study
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of QCD in the nonperturbative region. There is only one free parameter, which is in

principle universal and it can be extracted from different observables.

Despite its attractive theoretical simplicity, the approach is however suitable to

only account for a few degrees of freedom. Phenomenology-based modifications are

possible and have been attempted in the literature. However, the choice of this work

was to use the original functional forms with as little modifications as possible. We

deliberately do not attempt to build a phenomenological LFWF starting from the

original form and therefore we need to restrict ourselves to the study of unpolarized

quarks in an unpolarized meson.

On the phenomenological side, with small changes from the original version of

the LFWF and with some caveats, we obtained a qualitatively good description of

the pion form factors and PDF, and we predicted pion TMD. We also studied the

behavior of αs in the nonperturbative regime and we found encouraging results.
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Chapter 6

Summary, conclusions, and

outlook

This thesis has been mainly devoted to the study of (single and double) parton dis-

tributions, with particular attention to the transverse momentum dependent parton

distribution functions (TMDs) and the collinear double parton distributions (DPDs).

They are of utmost importance for the present understanding of the hadron struc-

ture, as they contain rich information about the spin-spin and spin-orbit correlations

between the partons and the hadron, and they play an essential role in the phe-

nomenology of azimuthal and spin asymmetries. Moreover, DPDs are the ideal tool

to investigate the internal structure of hadrons from a different perspective: rather

than exploring the correlations between the parton and the parent hadron, they shed

light on the quantum and kinematic correlations between partons.

In the following we summarize the contributions of this thesis to each of the topic

mentioned above and we discuss some possible future directions.

Transverse-momentum dependent parton distributions for gluons in po-

larized hadrons

The full three-dimensional image of hadrons in momentum space is encoded in the

quark and gluon TMDs, which appear in the transverse-momentum dependent corre-
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lator. In the case of gluons, the latter is a nonlocal matrix element containing the gluon

field operators and Wilson lines (also called gauge links), bridging the nonlocality to

guarantee color gauge invariance. The gauge link structure of the correlators depends

on the specific process and can lead to a universality breaking of the TMDs [39,40,42].

In Chapter 3, we parametrized the gluon-gluon correlator in terms of gluon TMDs

and we considered targets that are unpolarized, vector polarized (relevant for spin-

1/2 and spin-1), and tensor polarized (relevant for hadrons and nuclei of spin-1).

We derived positivity bounds, i.e. model-independent inequalities, that help to relate

and estimate the magnitude of the gluon TMDs about which very little, or almost

nothing, is currently known. In fact, the gluon observables are typically much smaller

than the valence quark ones, as far as present experimental facilities are concerned.

However, at higher energies, the gluon distributions become the dominant ones and

they need to be studied in detail. As a generalization of the previous results in the

literature [47, 131], we found that in the kinematical region of low parton momen-

tum x, the gluon correlator with a specific gauge link structure (called dipole-type)

reduces to the matrix element of a single closed Wilson loop operator, where explicit

gluon fields are absent [88]. The gluon TMDs are either suppressed or they become

proportional to the functions appearing in the parametrization of the Wilson loop

correlator. The gluonic contributions to the internal structure of hadrons, as well as

nuclei, could be studied at the experiments planned in the context of the 12GeV pro-

gram at Jefferson Lab, as well as at the Large Hadron Collider (LHC), and in the

future at AFTER@LHC [133] and Electron-Ion Collider (EIC) [126].

Opportunities for gluon TMDs

A novel physics program will become possible at the future EIC [126]. The use of

(un)polarized nuclear targets will shed light on the nuclear structure as well as fun-

damental QCD concepts. Outstanding questions concern, for instance, the spin-orbit

and azimuthal asymmetries in scattering with ions and nuclei, and the role of these

experiments in revealing non-nucleonic degrees of freedom, i.e., related to the partons

which are not confined within one single nucleon. In the kinematical region probed

by these future experiments, the gluon observables become accessible and this would

pave the way to study the gluonic content of nuclei and hadrons of spin higher than

1/2. Consequently, it is important to investigate further the gluon TMDs and PDFs

studied in [88,93] for spin-1 targets, and devote theoretical effort in implementing for

the first time model calculations on these functions, as it has been already partially

done for the quark case.
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Double parton distributions and parton correlations at the LHC

The production of a pair of W bosons with the same charge at the LHC is one of the

clearest processes to look at while hunting for DPSs, as the equivalent single parton

contribution at the same order is forbidden in the Standard Model [191]. DPDs in-

volve correlations between two partons extracted simultaneously from a proton and

participating in two hard scatterings. They depend on the momentum fractions of the

two extracted quarks, their transverse separation, and the quark quantum numbers,

i.e. spin, flavor, and color [31]. In Chapter 4, we focused on the characterization of

quark-quark correlations at the parton level, exploring various different correlation

scenarios. We considered the production of a pair of W bosons at the LHC and per-

formed a final-state analysis of the partonic results, with the inclusion of the relevant

background processes. We referred to the asymmetry value as the key measurement

for identifying double parton correlations in DPS. This observable is extremely at-

tractive from the theoretical point of view: any value of the asymmetry different from

zero would unequivocally be a sign of parton correlations in double parton scattering.

The results were presented in a preliminary form, and a conclusive verdict on the

possibility of measuring correlations in DPS could not be stated but promising direc-

tions have been identified [213]. Although the current results of our analysis would

not allow us to observe a clear sign of parton correlations, it contributes in setting

the stage for a fruitful interplay of theory and experiments in the field of multiparton

interactions. At present, all DPDs are almost unknown. However, the experimental

effort to measure DPS is growing and the number of experimental analysis on DPS

processes is increasing. This will soon open up the possibility of boosting the field of

DPS phenomenology towards a more precise level.

Light-front wave functions in AdS/QCD correspondence

In 2006 a new way of looking at QCD had been proposed by Brodsky and de Ter-

amond [251, 252]. The use of the AdS/QCD correspondence based on the light-front

formalism has provided a remarkable tool to access the hadron mass spectra and

several hadronic observables. Moreover, a particular form for the valence-state light-

front wave function (LFWF) of the mesons has been derived. This allows one to com-

pute nonperturbative observables, including form factors and parton distributions,

e.g., collinear parton distributions functions PDFs, generalized parton distributions

GPDs, TMDs and DPDs DPDs [250]. In Chapter 5, based on the work done in [66,282]

we used this meson LFWF and performed a phenomenological analysis on the pion.

The purpose was to treat the functional form provided by the Light-front holography
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approach as a non-perturbative starting point and then conduct an analysis on the

transition to the perturbative one, by studying the pion form factor (FF) and the

evolution of the pion PDF in the framework of collinear factorization and DGLAP

evolution equations. By fitting the free parameters to the available experimental in-

formation, we found the best value for the energy scale at which the transition from

the holographic description to the perturbative QCD occurs. In the analysis of the

pion TMD (for which experimental data are not available yet) we used such a value as

the lowest scale in the implementation of the TMD evolution equations. As expected,

the resulting effect is a considerable increase of the transverse-momentum width of

the distributions and a change in the shape of TMDs.

The many unanswered questions regarding TMDs and DPDs, and their impor-

tance in our understanding of the proton structure will benefit from the dedicated

experiments planned for the next future at the LHC and the upcoming EIC. It is

therefore essential to theoretically identify the processes where these distributions are

sizeable and to drive the experimental searches. Only with a synergic effort between

theory and experiments, physicists can aim at unravelling the numerous remaining

open questions in the field.
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Appendix A

Notation, conventions, and

useful relations

Light-cone spinors in standard representation

The free light-front Dirac spinor uLF (k, λ) and antispinor vLF (k, λ) are given by

(light-cone standard representation):

uLF (k,+) = 1√
23/2k+




√
2k+ +m

k1 + ik2
√

2k+ −m
k1 + ik2


 , uLF (k,−) = 1√

23/2k+




−k1 + ik2
√

2k+ +m

k1 − ik2

−
√

2k+ +m


 ,

vLF (k,+) = − 1√
23/2k+




−k1 + ik2
√

2k+ −m
k1 − ik2

−
√

2k+ +m


 , vLF (k,−) = − 1√

23/2k+




√
2k+ −m
k1 + ik2
√

2 +m

k1 + ik2


 .

The “good” components of the light-cone spinors and antispinors are given by

P+uLF (k, λ) = u+ (k, λ) and P+vLF (k, λ) = v+ (k, λ). In standard representation
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(Dirac), the projector operator P+ is defined as:

P+ =
1

2
γ−γ+ =




1 0 1 0

0 1 0 −1

1 0 1 0

0 −1 0 1


 . (A.1)

The LF spinors explicitly read:

u+ (k,+) =
√

k+

21/2




1

0

1

0


 , u+ (k,−) =

√
k+

21/2




0

1

0

−1


 , (A.2)

v+ (k,+) =
√

k+

21/2




0

−1

0

1


 , v+ (k,−) =

√
k+

21/2




−1

0

−1

0


 . (A.3)

Good fields

At a given light-cone time, say x+ = 0, the independent dynamical components (good

field) of the free quark fields have Fourier expansion in momentum space:

φ(x)

∣∣∣∣
x+=0

=

∫
dk+d2kT
2k+(2π)3

θ(k+)
[
b(k+,kT )u+(k+,kT , λ)e−ik·x (A.4)

+d†(k+,kT )v+(k+,kT , λ)eik·x
] ∣∣∣∣
x+=0

, (A.5)

where u+, v+ are the good components of the spinors as earlier defined, and λ =

±1/2 denotes the helicity of the quarks. The operators b and d† are respectively the

annihilation of the good components of the quark fields and the creation operator of

the good component of the antiquark fields. The anticommutation relations for the

quark (antiquark) creation and annihilation operators are:

{
b(k+,kT ), b†(k′+,k′T )

}
= 2k+(2π)3δ(k+ − k′+)δ(2)(kT − k′T )δλλ′ , (A.6)

and the same holds for d, d†.
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The free gluon field reads:

Ai(x)

∣∣∣∣
x+=0

=

∫
dkd2kT

2k+(2π)3
θ(k+)

∑

α

[
aα(k+,kT )εiα(k+,kT )e−ik·x (A.7)

+a†α(k+,kT )εi∗α (k+,kT )eik·x
] ∣∣∣∣
x+=0

, (A.8)

where ε is the transverse component of the gluon polarization vector, α = ±1 denotes

the gluon polarization states. The creation and annihilation operators for the gluon

fields a, a† obey commutation relations:

[
aα(k), a†α′(k

′)
]

= 2k+(2π)3δ(k+ − k′+)δ(2)(kT − k′T )δαα′ . (A.9)

Poicaré algebra in LF

The four-momentum Pµ and angular-momentum Mµν = xµP ν−xνPµ obey standard

commutation relations which define the Poincaré group:

[P ρ,Mµν ] = i (gρµP ν − gρνPµ) ,

[P ρ, Pµ] = 0, (A.10)

[Mρσ,Mµν ] = i (gρνMσµ + gσµMρν − gρµMσν − gσνMρµ) .

with the basic commutator [xµ, pν ] = δνµ.

In the front-form the matrix Mµν takes the form:

Mµν =




0 K3 − 1√
2

(K1 − J2) − 1√
2

(K2 + J1)

−K3 0 − 1√
2

(K1 + J2) − 1√
2

(K2 − J1)
1√
2

(K1 − J2) 1√
2

(K1 + J2) 0 J3

1√
2

(K2 + J1) − 1√
2

(K2 − J1) −J3 0




(A.11)

and defining:

B1 =
1√
2

(K1 + J2) ; B2 =
1√
2

(K2 − J1) ; (A.12)

S1 =
1√
2

(K1 − J2) ; S2 =
1√
2

(K2 + J1) (A.13)

155



Chapter A · Notation, conventions, and useful relations

Mµν =




M++ M+− M+1 M+2

M−+ M−− M−1 M−2

M1+ M1− M11 M12

M2+ M2− M21 M22


 =




0 K3 −S1 −S2

−K3 0 −B1 −B2

S1 B1 0 J3

S2 B2 −J3 0


 (A.14)

The seven generators P−, P+, P 1, P 2, J3, B1 and B2 are mutually commutant and

satisfy different commutation relations, namely:

[
P−PT

]
=
[
P−, P+

]
=
[
PT , P

+
]

= 0
[
J3, P

−] =
[
J3, P

+
]

=
[
BT , P

+
]

= 0; (A.15)

[J3, Pk] = iεklPl, [J3, Bk] = iεklBl,
[
Bk, P

+
]

= −iP k, [Bk, Pl] = −iδklP+.

where (B1, B2) = BT . The subgroup of the Poincare group generated by Pµ, J3 and

BT in the light-front is isomorphous to the non-relativistic Galilean group.
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Appendix B

Definitions of gluon TMDs

In this appendix the definitions of the various TMDs are given in terms of the coef-

ficients Ai and Bi that have been introduced in the parametrizations at the level of

the unintegrated correlators.

B.1 The gluon-gluon correlator

As we are only interested in leading twist functions, we omit the terms containing n

(the situation is analogous to the quark case, see ref. [128]). We split the following

results in terms of target polarization, i.e. unpolarized, vector, and tensor polarized.

Γ[U,U ′]µν;ρσ(k;P ) = M2A1 ε
µναβερσαβ +A2 P

[µgν][ρPσ] +A3 k
[µgν][ρkσ]

+ (A4 + iA5)P [µgν][ρkσ] + (A4 − iA5) k[µgν][ρPσ]

+ (A6/M
2)P [µkν]P [ρkσ], (B.1)

Γµν;ρσ(k;P, S) =− 2MA7 ε
µνρσk·S + iMA8

(
εµνP [ρSσ] − ερσP [µSν]

)

+ iMA9

(
εµνS[ρPσ] − ερσS[µP ν]

)
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+ iMA10

(
εµνk[ρSσ] − ερσk[µSν]

)

+ iMA11

(
εµνS[ρkσ] − ερσS[µkν]

)

+
iA12

M

(
εµνP [ρPσ] − ερσP [µP ν]

)
k·S

+
iA13

M

(
εµνk[ρkσ] − ερσk[µkν]

)
k·S

+
iA14

M

(
εµνP [ρkσ] − ερσP [µkν]

)
k·S

+
iA15

M

(
εµνk[ρPσ] − ερσk[µP ν]

)
k·S +

A16 + iA17

M
εµνPSk[ρPσ]

+
A16 − iA17

M
ερσPSk[µP ν] +

A18 + iA19

M
εµνkSk[ρPσ]

+
A18 − iA19

M
ερσkSk[µP ν] +

A20 + iA21

M
εµνkPP [ρSσ]

+
A20 − iA21

M
ερσkPP [µSν] +

A22 + iA23

M
εµνkP k[ρSσ]

+
A22 − iA23

M
ερσkP k[µSν] +

A24 + iA25

M3
εµνkP k[ρPσ]k·S

+
A24 − iA25

M3
ερσkP k[µP ν]k·S, (B.2)

Γµν;ρσ(k;P, T ) = A26 k
[µT ν][ρkσ] +A27 P

[µT ν][ρPσ] + (A28 + iA29) k[µT ν][ρPσ]

+ (A28 − iA29)P [µT ν][ρkσ] +
A30 + iA31

M2
kαT

α[µkν]k[ρPσ]

+
A30 − iA31

M2
kαT

α[ρkσ]k[µP ν] +
A32 + iA33

M2
kαT

α[µP ν]k[ρPσ]

+
A32 − iA33

M2
kαT

α[ρPσ]k[µP ν] +M2A34

(
gµ[ρTσ]ν − gν[ρTσ]µ

)

+ (A35 + iA36) kαT
α[µgν][ρkσ] + (A35 − iA36) kαT

α[ρgσ][µkν]

+ (A37 + iA38) kαT
α[µgν][ρPσ] + (A37 − iA38) kαT

α[ρgσ][µP ν]

+A39 kαkβT
αβεµνκλερσκλ +

A40

M2
kαkβT

αβP [µgν][ρPσ]

+
A41

M2
kαkβT

αβk[µgν][ρkσ] +
(A42 + iA43)

M2
kαkβT

αβP [µgν][ρkσ]

+
(A42 − iA43)

M2
kαkβT

αβk[µgν][ρPσ]
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B.1 The gluon-gluon correlator

+
A44

M4
kαkβT

αβP [µkν]P [ρkσ], (B.3)

where Ai = Ai(k·n, k·P, k2). Terms with coefficients A5, A7, A16, A18, A20, A22,

A24, A29, A31, A33, A36, A38, A43 are T -odd, and we note that the ones with coeffi-

cients A8 up to A15 are slightly different from those in ref. [86].

Let us now denote by Γ(k) the gluon-gluon correlator for any type of polarization,

then the light-front correlator is defined as

Γ(x,kT ) ≡
∫
dk·P Γ(k) =

M2

2

∫
[dσdτ ] Γ(k), (B.4)

where we have introduced the shorthand notation

[dσdτ ] ≡ dσdτ δ
(
τ − xσ + x2 +

k2
T

M2

)
, (B.5)

with the dimensionless invariants σ and τ given by

σ ≡ 2k·P
M2

, τ ≡ k2

M2
, (B.6)

spanning regions in remnant mass M2
R ≡ (P − k)2 and in the partonic virtuality k2.

For both of these, the main contribution comes from small (hadronic) values (i.e. σ

and τ of order one).

The (leading twist) TMDs that occur in the parametrization of the gluon-gluon

correlator for the various types of polarization in eqs. (3.29)-(3.34), are related to the

coefficients Ai as follows:

xf1(x,k2
T ) ≡M2

∫
[dσdτ ]

(
A2 + 2xA4 + x2A3 +

k2
T

2M2
A6

)
, (B.7)

xh⊥1 (x,k2
T ) ≡M2

∫
[dσdτ ]A6, (B.8)

xg1(x,k2
T ) ≡ 2M2

∫
[dσdτ ]

{
A8 +A9 + x (A10 +A11)

+
(σ

2
− x
) [
A12 + x (A14 +A15) + x2A13

]

+
k2
T

2M2

[
A19 +A23 +

(σ
2
− x
)
A25

]}
, (B.9)

xh⊥1L(x,k2
T ) ≡ −2M2

∫
[dσdτ ]

[
A18 +A22 +

(σ
2
− x
)
A24

]
, (B.10)
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Chapter B · Definitions of gluon TMDs

xf⊥1T (x,k2
T ) ≡M2

∫
[dσdτ ] [A16 −A20 + x (A18 −A22)] , (B.11)

xg1T (x,k2
T ) ≡ −M2

∫
[dσdτ ]

[
2A12 +A17 +A21 + 2x (A14 +A15)

+x (A19 +A23) + 2x2A13 +
k2
T

M2
A25

]
, (B.12)

xh1(x,k2
T ) ≡ 2M2

∫
[dσdτ ]

[
A16 +A20 + x (A18 +A22) +

k2
T

2M2
A24

]
, (B.13)

xh⊥1T (x,k2
T ) ≡ 2M2

∫
[dσdτ ]A24, (B.14)

xf1LL(x,k2
T ) ≡ M2

3

∫
[dσdτ ]

{
A27 − 2A34 + 2xA28 + x2A26

+ 2(σ − 2x) (A37 + xA35)

+
(σ − 2x)2

2

(
A40 + 2xA42 + x2A41

)

− k
2
T

M2

[
A26 −A32 + A40 + 2xA42 + x2A41+

(σ − 3x)A30 −
(

(σ − 2x)2

4
− k2

T

2M2

)
A44

]}
, (B.15)

xh⊥1LL(x,k2
T ) ≡ −2M2

3

∫
[dσdτ ]

[
A26 −A32 + (σ − 3x)A30

−
(

(σ − 2x)2

4
− k2

T

2M2

)
A44

]
, (B.16)

xf1LT (x,k2
T ) ≡ −M2

∫
[dσdτ ]

{
A37 + xA35 +

(σ
2
− x
) (
A40 + 2xA42 + x2A41

)

− k2
T

4M2

[
A30 +

(
x− σ

2

)
A44

]}
, (B.17)

xg1LT (x,k2
T ) ≡ −M

2

2

∫
[dσdτ ]

[
A29 +

(
x− σ

2

)
(A33 + xA31)

]
, (B.18)

xh1LT (x,k2
T ) ≡ M2

2

∫
[dσdτ ]

{
A28 + xA26 +

(σ
2
− x
)

(A32 + xA30)

+
k2
T

2M2

[
A30 +

(
x− σ

2

)
A44

]}
, (B.19)

xh⊥1LT (x,k2
T ) ≡ −M2

∫
[dσdτ ]

[
A30 +

(
x− σ

2

)
A44

]
, (B.20)
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xf1TT (x,k2
T ) ≡ M2

2

∫
[dσdτ ]

(
A40 + 2xA42 + x2A41 +

k2
T

6M2
A44

)
, (B.21)

xg1TT (x,k2
T ) ≡ M2

2

∫
[dσdτ ] (A33 + xA31) , (B.22)

xh1TT (x,k2
T ) ≡ −M

2

2

∫
[dσdτ ]

[
A27 + 2xA28 + x2A26 +

k2
T

M2
(A32 + xA30)

− k4
T

4M4
A44

]
, (B.23)

xh⊥1TT (x,k2
T ) ≡ M2

2

∫
[dσdτ ]

(
A32 + xA30 −

k2
T

3M2
A44

)
, (B.24)

xh⊥⊥1TT (x,k2
T ) ≡ M2

2

∫
[dσdτ ]A44. (B.25)

B.2 The Wilson loop correlator

For the Wilson loop correlator, translation invariance in the ξ·P direction forces k·n =

x to be zero and the integration over x is actually naturally the first to be done, even

before the integration over k·P . The remaining dependence is on the invariant k2,

which for vanishing x is just k2 = k2
T = −k2

T . The parametrization of the Wilson loop

correlator for the various types of polarization in Eq. (3.47) depend on t = k2 and

reads:

Γ
[U,U6′]
0 (k;P, S, T, n) =

B1

M2
+
B2

M3
εnPkS +

B3

M4
kµkνT

µν

+B4nµnνT
µν +

B5

M4
kµnνT

µν . (B.26)

The TMDs in the parametrization are related to the coefficients Bi as follows:

e(k2
T ) ≡ M2

2πL

∫
dx dσ B1, (B.27)

eT (k2
T ) ≡ M2

2πL

∫
dx dσ B2, (B.28)

eLL(k2
T ) ≡ −M

2

4πL

∫
dx dσ

[
2B4 + (σ − 2x)B5 +

(
(σ − 2x)2

2
− k2

T

M2

)
B3

]
, (B.29)

eLT (k2
T ) ≡ −M

2

4πL

∫
dx dσ [B5 + (σ − 2x)B3] , (B.30)
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eTT (k2
T ) ≡ M2

4πL

∫
dx dσ B3. (B.31)
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Appendix C

Summary

No problem is too small or too trivial if you can

really do something about it.

R. Feynman

The great challenge of modern physics is to discover the fundamental constituents

of the universe and explain how they behave and interact to eventually build the world

in the form we see it. Since the earliest days of the modern science history (which

dates back to the beginning of the 17th century when Galileo Galilei established the

scientific methods and started the scientific revolution), the interest for examining

deeper and deeper inside every object, in order to reach their building blocks, has

never stopped. The first tools constructed to zoom in an object were simple systems

of two curved lenses, but they soon were replaced by more sophisticated arrangements

of lenses that led to the first optical microscopes.

When people became able to almost “observe” the atoms, it was soon realized that

microscopes would have not allowed to diving into the subatomic matter, and some

other tools were needed to enter the scene. Scattering processes between molecules and

atoms were found to be perfect for accessing subatomic structures. The experiment of

Rutherford, in the first decade of the 20th century, is the first of this type and it led to

the discovery of the structure of the atom. Nowadays, a century after the Rutherford

experiments, the scattering of particles off a target and the collisions between particles

are still the best magnifiers ever devised by mankind and the most used tool to access
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subatomic and subnuclear structures.

In this dissertation, we want to contribute to the field of hadronic physics by

studying the internal structure of subatomic particles called hadrons. They are not el-

ementary particles but they are built from elementary (point-like) constituents: quarks

and gluons. Despite being extremely small (about a hundred of million times smaller

than a human blood cell, for instance), in the landscape of the subatomic particles

hadrons are “large” objects and their internal structure deserves to be studied. At

least, we want to study hadrons such as protons and neutrons because they constitute

the nuclei and the great majority of the visible matter.

What is special about hadrons is that their “macroscopic” properties are deter-

mined by the elementary constituents in a way that is not directly calculable. Inter-

estingly enough, the mass of the proton originates from a rather complex interplay of

different dynamical contributions and cannot be explained as a simple “sum” of the

masses of its substructures. Quarks and gluons are confined inside their hadronic box

and they have never been observed experimentally as free particles.

The difficulty in describing the proton and the other hadrons in high-energy

scattering processes is due to the unicity of the interaction that governs its con-

stituents. The theory that describes this interaction is called Quantum ChromoDy-

namics (QCD). Loosely speaking, QCD describes the interaction between quarks and

gluons inside the hadrons, collectively called partons, through their color charge. This

is conceptually similar to describing the interactions between electrons by means of

their electric charge. The peculiarity of QCD is that the strength of the interaction

varies considerably with the distances, being large at large distances and progres-

sively becoming smaller as the distance decreases. If we could directly look inside

the hadrons at very small distances, we would see an infinite number of almost free

partons, that are oblivious of each other because their interaction is very weak. This

regime of QCD is called asymptotic freedom. As soon as the distance gradually in-

creases, asymptotically free partons are replaced by strongly coupled constituents, and

because the intensity of the interaction is very strong, the partons remain confined

inside the hadrons and they cannot escape. This phenomenon is called confinement.

The concept according to which a “macroscopic” object can manifest itself differ-

ently depending on the length scale at which it is observed is something that scientists

have always been familiar with. For instance, if we zoom in molecules and atoms (the

main objects studied by chemistry and atomic physics) new pictures can be resolved

in terms of electrons and nuclei. These constituents can be observed and measured

and they become the main elements in terms of which we can describe atoms and

molecules. Proceeding towards smaller distances inside the nuclei, we eventually en-
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counter the protons and nucleons, solid containers of the color interaction. Differently

from the cases in which the substructures are free and can be observed through more

and more powerful magnifiers, in the case of QCD the partons live freely only in-

side the hadrons and cannot manifest themselves as free particles in the experiments.

When a scattering process occurs, the partons get kicked out from the parent hadron

very energetically, but as soon as they start interacting with each other they immedi-

ately recombine themselves into new hadrons. Reading out the information about the

hadronic structure from the results of the experiments is a bit of an art: one needs an

optimal interplay between the theoretical predictions and the experimental results,

and these two aspects feed each other continuously.

The fact that the information about the hadron internal structure is not easily

and readily accessible does not mean that we cannot do something about it. Building

a theoretical framework from first-principles and symmetry arguments allows the

physicists to characterize the hadrons and establish which portion of their internal

space is being probed in the high-energy process.

The quantities that contain the information about a specific portion of the hadron

space are multidimensional functions that depend on the kinematical variables of

the partons. For instance, the information about the momentum carried by each

parton along the direction of motion of the parent hadron is encoded in the par-

ton distribution functions (PDFs), while the complete information on the motion of

each parton in the three-dimensional momentum-space is contained in the transverse-

momentum-dependent parton distributions (TMDs). The above-mentioned functions

contain single parton information, and they neglect aspects deriving from looking at

multiple partons at the same time. The latter information is typical of the double

parton distributions (DPDs), which also take into account the distribution and cor-

relation between pairs of partons. DPDs are accessible in experiments in which two

partons from the same hadron are kicked out simultaneously to participate into two

distinct high-energetic scatterings.

Parton distributions also account for the fact that partons have quantum proper-

ties other than color charge. Most importantly for the purposes of this thesis, partons

carry spin, one of the most intriguing quantum mechanical properties of each parti-

cle. The spin of an elementary particle does not refer to any property in the physical

space (there is no actual rotation involved), but to the intrinsic nature of the particle.

However, with some caution one can visualize quarks and gluons inside the hadrons

as a bunch of “spinning” toys as in Fig. C.1. When they all spin randomly, no pre-

ferred rotational direction can be selected and the spin states are averaged out as if

none of the parton carried spin. On the other hand, when there is a neat majority of
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Figure C.1: A basket full of tops, like the partons that carry spin inside the proton. Their velocity
distributions in the three-dimensional basket space is described by the Transverse-momentum de-
pendent distribution functions (TMDs). The probability of being extracted pairwise from the basket
is described by the double parton distributions (DPDs)

partons whose spin states “point” towards a specific direction, i.e. they are polarized,

then their distributions and dynamics inside the parent hadron are actually modified.

The effect of spin can generate distortions and asymmetries that can be studied and

characterized.

In this thesis, we focused on the TMDs and DPDs to study the properties of the

polarized quarks and gluons inside the hadrons. Throughout the chapters we have

presented our original results and in the following we summarize the most relevant

ones.

• TMDs: we have studied the TMD functions that describe the gluons inside

the hadrons. The quantities that are related to gluons are difficult to study

thoroughly because the experimental information on them is currently very

limited. They become the dominant entities only when the energy increases.

At present, none of the existing facilities around the world is tailored to access

this regime of energies. For the first time, we have defined the TMD functions

that describe polarized gluons inside hadrons that have spin-1 (for example the

deuteron, which is a system of a proton and a neutron) and derived the relations

between these functions that will be useful for future experiments. We have also

predicted and shown that, when the energy drastically increases, only a few of

the numerous gluon functions survive and become relevant.
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• DPDs: we have studied the correlations between pairs of quarks inside the pro-

ton. Extending the description from a single to a double parton description is

a unique opportunity to grasp the structure of the hadrons with nonstandard

(multipartonic) eyes. Also in this case, the experimental information on the

double parton scattering processes is still very limited. We have focused on the

theoretical framework that describes inter-parton correlation and we have care-

fully analyzed the possibility of measuring for the first time quantities that will

be a clear sign of parton correlations at the Large Hadron Collider (LHC) in

the near future.

The result of the combination of different parton distributions is similar to a

mosaic: each piece comes from a different place and occupies a relevant position on

its own, but the final picture is complete only once all the tiles are combined.
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Appendix D

Riassunto

Nessun problema è troppo piccolo o troppo irrilevante

se possiamo fare qualcosa per risolverlo.

R. Feynman

La grande missione della fisica moderna è quella di individuare i costituenti fon-

damentali dell’universo, descrivere la loro natura e le loro mutue interazioni, al fine

di spiegare l’origine del mondo nella forma in cui lo percepiamo. Sin da quando la

scienza moderna ha mosso i primi passi (ovvero quando Galileo Galilei nel diciassettes-

imo secolo formulò il metodo scientifico e sanc̀ı l’inizio della rivoluzione scientifica) il

tentativo dell’uomo di studiare sempre più approfonditamente la composizione degli

oggetti per conoscerne la loro struttura interna non si è mai fermato. Se inizialmente

i primi strumenti atti a questo scopo erano semplici lenti curve che riuscivano a in-

grandire gli oggetti della vita quotidiana, ben presto vennero realizzati sistemi di lenti

molto più complessi, e i primi microscopi iniziarono ad essere utilizzati per osservare

oggetti non accessibili dall’occhio umano. Tuttavia, sebbene i microscopi ottici di-

vennero sempre più potenti, si cap̀ı che per raggiungere la struttura dell’atomo e la

materia subatomica sarebbero stati necessari altri strumenti, e si sent̀ı la necessit di

fare nuovi esperimenti che consentissero di addentrarsi sempre più a fondo nella mate-

ria. Il primo di questi esperimenti fu condotto da Rutherford agli inizi del 1900. Esso

ha portato alla scoperta della struttura dell’atomo mediante un processo di collisione

tra le particelle di una sorgente radioattiva e gli atomi di una lamina d’oro. Ancora
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oggi, a più di cento anni dall’esperimento di Rutherford, i processi di collisione tra

particelle rappresentano le più potenti lenti di ingrandimento mai realizzate dall’uomo

per accedere allo studio delle strutture subatomiche e subnucleari.

L’obiettivo di questa tesi è proprio quello di fornire un contributo alla fisica subnu-

cleare e precisamente al campo della fisica adronica, branca che studia delle particelle

chiamate adroni. Si tratta di particelle non elementari che hanno una estensione nello

spazio (anche se molto limitato) e contengono delle sottostrutture che sono invece

particelle elementari e puntiformi: i quark e i gluoni. Sebbene gli adroni siano la cosa

più piccola che ognuno di noi possa sforzarsi di immaginare (centinaia di milioni di

volte più piccoli di una cellula di sangue umano), se considerati nella rosa delle parti-

celle subnucleari, essi sono “grandi” e spaziosi e la loro struttura, ancora misteriosa,

merita di essere studiata attentamente. D’altra parte, studiare la struttura interna

degli adroni assume grande rilevanza se si considera che il protone e il neutrone,

che costituiscono la maggior parte della materia ordinaria e che formano tutti i nu-

clei atomici, sono essi stessi adroni. La peculiarità di dette particelle è che le loro

caratteristiche macroscopiche non sono direttamente riconducibili ai loro costituenti

elementari. Ne un esempio la massa del protone che viene originata dai sui costituenti

interni grazie a dei complessi meccanismi che governano la dinamica del sistema e non

può essere ricavata dalla semplice somma delle masse dei suoi costituenti.

Questa difficoltà nello studio degli adroni è in primo luogo riconducibile al fatto

che quark e gluoni, collettivamente chiamati partoni, interagiscono in modo alquanto

singolare. La teoria che descrive questa interazione fondamentale è chiamata CromoD-

inamica Quantistica (QCD). La QCD descrive essenzialmente la capacità dei partoni

di interagire tra loro grazie ad una proprietà chiamata colore. La situazione è analoga

alla capacità delle particelle elettricamente cariche di interagire tra di loro perché

dotate di una proprietà detta carica elettrica. La particolarità della QCD risiede nel

fatto che l’intensità della interazione di colore dipende dalla distanza: in particolare le

particelle colorate interagiscono in modo molto forte quando sono lontane e in modo

debole quando si trovano a breve distanza. Se potessimo direttamente guardare tanto

in profondità da raggiungere distanze piccolissime all’interno degli adroni vedremmo

un numero enorme di partoni praticamente liberi e non interagenti tra loro. Infatti

a queste distanze l’intensità dell’interazione di colore è talmente blanda da rendere i

partoni delle entità indipendenti e isolate, incuranti dei propri vicini. Questo regime

della QCD è chiamato libertà asintotica. Tuttavia, non appena le distanze crescono

l’interazione si incrementa moltissimo e i partoni interagiscono intensamente tra loro,

tanto da non riuscire ad allontanarsi oltre una certa distanza all’interno dell’adrone

stesso, restandone intrappolati. Questo fenomeno per cui i quark e gluoni rimangono
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imprigionati dentro la loro scatola adronica è chiamato confinamento ed è responsabile

del fatto che nessuna di queste particelle possa raggiungere i rivelatori di particelle

ed essere direttamente misurata in laboratorio.

Il principio secondo cui un oggetto si palesa in modo differente a seconda di quanto

vicino lo si guarda non è affatto nuovo ai fisici, che hanno sempre avuto a che fare

con strutture che contengono al loro interno delle sottostrutture. Basti pensare alle

molecole e gli atomi (studiati in chimica e fisica atomica): quando li si guarda da una

certa distanza essi appaio come oggetti compatti, ma appena ci si avvicina la loro

sottostruttura, composta di elettroni e nuclei, viene rivelata e la loro descrizione fisica

cambia. Se si fa un’ulteriore zoom sui nuclei atomici ci si imbatte immediatamente

nei protoni e i neutroni, ovvero i contenitori ermetici dell’interazione di colore. Al

contrario del caso precedente, in cui le sottostrutture sono accessibili e misurabili,

nel caso del protone e del neutrone i costituenti vivono unicamente dentro le scatole

adroniche e non possono essere osservati come particelle libere. Durante gli esperi-

menti di collisione con gli adroni, i partoni vengono sbalzati fuori energeticamente

ma non appena tentano di sfuggire e allontanarsi la loro interazione di colore diventa

talmente forte da fare in modo che essi si assemblino immediatamente sotto forma

di nuovi adroni. Interpretare e usare le informazioni che vengono da questi esperi-

menti è un’operazione molto delicata, in quanto è necessario possedere una ottima

conoscenza teorica per fare predizioni dei risultati sperimentali e, allo stesso tempo,

bisogna estrarre continuamente informazioni dagli esperimenti per ottenere predizioni

più affidabili. Ne consegue che una conoscenza teorica il più completa possibile ci per-

mette di capire quale porzione dello spazio interno degli adroni può essere studiata in

un certo esperimento.

Le quantità che definiamo per descrivere le informazioni sulla struttura interna

delle particelle sono delle funzioni multidimensionali che dipendono dalle variabili

cinematiche dei partoni stessi. Per esempio, la distribuzione della velocità dei par-

toni lungo la direzione del moto del protone è descritta dalle funzioni di distribuzione

partoniche (PDF), mentre la stessa informazione estesa a uno spazio tridimension-

ale delle velocità è contenuta nelle funzioni di distribuzioni partoniche dipendenti dal

momento transverso (TMD). Le PDF e TMD sono dunque quantità che descrivono

l’interno del protone in termini di un singolo partone alla volta e ignorano gli effetti

derivanti dall’analisi di due o più partoni contemporaneamente. Quest’ultima infor-

mazione è tipica delle funzioni di distribuzioni a due partoni (DPD), che tengono in

considerazione proprio le coppie di partoni, aprendo di fatto la strada allo studio delle

correlazioni tra i partoni. Le DPD, inoltre, sono misurabili in esperimenti in cui due

partoni vengono sbalzati fuori dal protone contemporaneamente e partecipano a due

171



Figure D.1: Un cesto di trottole, che simboleggiano i partoni con spin all’interno del protone. La
distribuzione delle velocità delle trottole nello spazio tridimensionale è descritto dalle funzioni TMD.
La probabilità che una coppia di trottole con un certo spin venga estratta dal cesto è descritta dalle
funzioni DPD.

processi indipendenti di collisione ad alta energia.

Le funzioni di distribuzione partonica tengono anche conto delle proprietà quantis-

tiche dei partoni (e degli adroni). Oltre alla carica di colore, i partoni hanno anche lo

spin, una delle proprietà più affascinanti della descrizione quantistica delle particelle.

A dispetto del nome (che suggerirebbe una rotazione), lo spin non ha in realtà nulla a

che vedere con una rotazione fisica della particella, ma, al contrario, si riferisce a una

sua proprietà intrinseca. Con un po’ di cautela nell’interpretazione, possiamo tuttavia

immaginare le particelle con spin come fossero delle trottole come in Fig. D.1; del resto

la descrizione puramente matematica dello spin è in effetti analoga a quella dei mo-

menti angolari. Per capire il ruolo dello spin dei partoni nello studio della struttura

degli adroni basti considerare la seguente situazione. Quando i partoni ruotano in

maniera casuale non c’è nessuna direzione di rotazione preferenziale nella collettività

dei partoni e una media sugli stati di spin equivale a dire che lo spin dei partoni non

ha globalmente alcun effetto nel loro moto interno. Al contrario, quando la rotazione

delle trottole predilige una direzione anziché un’altra, allora si ha una polarizzazione

netta dei partoni all’interno dell’adrone e questa proprietà modifica effettivamente la

distribuzione dei costituenti, generando ad esempio delle distorsioni e delle asimmetrie

che possono essere studiate e caratterizzate di volta in volta.

In questa tesi ci siamo concentrati proprio sullo studio dei partoni polarizzati
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tramite lo studio delle funzioni TMD e DPD. Nel corso dei capitoli abbiamo presentato

i risultati originali, di cui nel seguito riassumiamo i passi pi importanti:

• TMDs: abbiamo studiato le funzioni TMD che descrivono i gluoni all’interno

degli adroni. Le quantità relative ai gluoni sono complesse da studiare perché le

informazioni che ricaviamo dagli esperimenti sono molto limitate. Queste quan-

tità diventano rilevanti quando si va ad alte energie, ma a tutt’oggi nessuno

degli acceleratori esistenti è in grado di dare accesso alle regioni dove i gluoni

sono più “visibili”. Abbiamo per la prima volta definito le funzioni TMD che

descrivono i gluoni all’interno degli adroni con spin uguale a 1 (ad esempio il

deutone, che è un nucleo atomico formato da un protone e un neutrone). Abbi-

amo derivato delle relazioni tra le TMD dei gluoni che saranno utili per le future

estrazioni sperimentali di alcune di queste funzioni. Infine, abbiamo mostrato

che, ad energie molto elevate, non tutte le TMD dei gluoni sono importanti, ma

soltanto alcune tra queste.

• DPDs: abbiamo studiato le correlazioni di coppia tra partoni, cosa possibile

grazie al formalismo delle DPDs. Questa informazione a due partoni permette

di guardare al protone con uno sguardo meno standard rispetto che alle funzioni

di singolo partone. Anche in questo caso i dati sperimentali a disposizione sono

molto limitati. Abbiamo quindi studiato una strategia ottimale per osservare le

correlazioni a due partoni dovute allo spin in un prossimo futuro all’acceleratore

LHC di Ginevra.

Concludendo, il processo di raccolta di informazione sulla struttura interna degli

adroni tramite le funzioni di distribuzione partoniche è paragonabile alla creazione

di un mosaico: ogni funzione arriva da un posto diverso ed occupa una posizione a

sé stante, ma l’opera finale sarà completa solo quando tutti i tasselli verranno messi

insieme.
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[261] S. J. Brodsky and G. F. de Téramond, Light-Front Dynamics and AdS/QCD

Correspondence: The Pion Form Factor in the Space- and Time-Like Regions,

Phys.Rev. D77 (2008) 056007, [0707.3859].

[262] A. P. Trawiński, S. D. Glazek, S. J. Brodsky, G. F. de Téramond and H. G.
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Meson/Baryon/Tetraquark Supersymmetry from Superconformal Algebra and

Light-Front Holography, Int. J. Mod. Phys. A31 (2016) 1630029,

[1606.04638].

[297] A. Deur, S. J. Brodsky and G. F. de Téramond, Determination of ΛM̄S at five
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Scale to the Fundamental Mass Scale of Quantum Chromodynamics, Phys.

Lett. B750 (2015) 528–532, [1409.5488].

[313] A. Deur, V. Burkert, J.-P. Chen and W. Korsch, Experimental determination

of the effective strong coupling constant, Phys. Lett. B650 (2007) 244–248,

[hep-ph/0509113].

202

http://dx.doi.org/10.1007/JHEP11(2015)076
http://arxiv.org/abs/1508.00402
http://arxiv.org/abs/1803.11089
http://dx.doi.org/10.1103/PhysRevD.83.114042
http://arxiv.org/abs/1101.5057
http://dx.doi.org/10.1016/S0550-3213(98)00853-0
http://arxiv.org/abs/hep-ph/9809367
http://dx.doi.org/10.1140/epjc/s10052-013-2636-y
http://arxiv.org/abs/1208.1281
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1103/PhysRevD.81.096010
http://dx.doi.org/10.1103/PhysRevD.81.096010
http://arxiv.org/abs/1002.3948
http://dx.doi.org/10.1016/j.physletb.2015.09.063
http://dx.doi.org/10.1016/j.physletb.2015.09.063
http://arxiv.org/abs/1409.5488
http://dx.doi.org/10.1016/j.physletb.2007.05.015
http://arxiv.org/abs/hep-ph/0509113

	Scientific publications
	Introduction
	Inside hadrons
	Multidimensional imaging of hadrons
	This thesis

	QCD and hadronic interactions
	Introduction
	Hadronic collisions
	TMD correlator from Drell-Yan process
	Double parton correlator
	Double Drell-Yan cross section
	Single versus double parton scattering

	General properties of correlation functions
	QCD on the light-front
	Quantum field theories on the light-cone
	Light-Front Wave Functions (LFWFs)

	Summary

	Partons in polarized hadrons of spin  1
	Introduction
	TMD correlators for polarized hadrons
	Parametrization for quarks
	Quark TMDs phenomenology

	Gluons in polarized hadrons and nuclei 
	Gluon correlation function
	The gluon correlator at small-x
	Wilson loop correlator 
	The correspondence at small-x
	Gluon TMDs phenomenology

	Positivity bounds
	Positivity bounds on gluon distributions
	Positivity bounds on the Wilson loop correlator
	The quark case

	Comments on the bounds
	Discussion and conclusions

	Pairs of polarized partons inside the proton
	Introduction
	Double parton distributions
	Effective cross section eff and beyond

	Experimental status of double parton scattering measurements
	Parton correlations in double parton scattering
	Spin correlations
	Other quantum correlations
	Kinematic correlations 

	Polarization in same-sign W boson pair productions
	Parton level result: cross section
	Spin and kinematic correlations
	Final-state analysis

	Discussion and conclusions

	Quarks in unpolarized targets in AdS/QCD correspondence
	Introduction
	Meson LFWF from AdS/QCD
	The AdS/QCD correspondence

	The pion in AdS/QCD correspondence
	Pion LFWFs 
	PDF and Form Factor
	Unpolarized TMD and effect of evolution
	Summary of the results

	The QCD running coupling
	Discussion and conclusions

	Summary, conclusions, and outlook
	Notation, conventions, and useful relations
	Definitions of gluon TMDs
	The gluon-gluon correlator
	The Wilson loop correlator

	Summary
	Riassunto

