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Chapter 1

Introduction

1.1 Inside hadrons

An outstanding problem in particle physics is the description of the structure of
hadrons in terms of their elementary degrees of freedom, quarks and gluons (collec-
tively called partons). The most common hadrons are protons and neutrons, which
build the atomic nuclei and make up almost all the visible mass of the universe.

The fundamental theory that governs the interactions between partons is called
Quantum Chromo-Dynamics (QCD). This is a non-abelian gauge theory with local
gauge group SU(3). Similarly to the theory of electrodynamics (QED), where the
electric charge is defined with respect to the U(1) symmetry, in QCD we associate
the so-called color charges to the symmetry group SU(3). The peculiarity of QCD is
that the strength of the interaction between partons through their color charges, varies
considerably with the energy scales, being strong at low energies and progressively
becoming weaker as the energy increases, as shown in Fig. 1.1.

Hadrons at very short distances correspond to an infinite number of almost free
partons, only weakly interacting through their color (and electroweak) charges. The
appropriate degrees of freedom in the description are no longer the hadrons them-
selves, but the elementary fields. This regime of QCD is called asymptotic free-
dom [1,2]. Perturbative QCD (pQCD) methods are valid tools, because the coupling
constant of the color interaction is weak, and the interacting theory can be com-
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puted as a perturbation of the free theory. As soon as the energy gradually decreases,
asymptotically free partons are replaced by strongly coupled constituents [3,4], which
are effectively described as a cloud of gluons and quark-antiquark pairs. The partons
appear confined inside the hadrons, and the theoretical tools available to describe
hadronic structure cannot rely any longer upon perturbation theory.

As a matter of fact, a colored particle has never been detected, and only hadrons
can eventually be observed in the detectors. It is impossible to tear them apart
to measure the constituents directly, without creating new colorless hadrons, inside
which the color interaction is contained. Information on the constituents is derived
indirectly and a consistent framework needs to be developed.

o LY =

S —4— CMSHAgprato  —>— HERA
g —i— CMS i prod. —— LEP
0.20 | —&— CMSincl. jet —A— PETRA
i —— CMS 3-jetmass —V— SPS 1
—(O— Tevatron |

0.15}

0.10 |

i as(Mz) = 0.1171£335%5 (3-jet mass)
0.05 | B8l as(Mz) = 0.1185 + 0.0006 (World average)

10 100 1000
Q[GeV]

Figure 1.1: The QCD coupling constant as(Q) from different measurements, as a function of the
energy scale Q. Figure taken from ref. [5].



1.2 Multidimensional imaging of hadrons

1.2 Multidimensional imaging of hadrons

Several properties of hadrons, such as their mass and spin, are intimately connected
to the dynamics of partons and their distributions in position and momentum space.

High-energy processes are the perfect tools to access indirect information on quarks
and gluons at different energy and distance scales. Since both the long- and short-
distances are probed, the description of such processes contains a perturbative (cal-
culable) part and a nonperturbative part. Extracting information on the latter from
experiments must rely on a solid theoretical framework.

Parton distributions

The fundamental objects which contain the nonperturbative information about the
hadron structure in terms of the constituents are called correlators. They are not
calculable directly and can be parametrized in terms of multidimensional parton dis-
tribution functions, each of them related to different portions of the hadron phase
space.

For instance, the information about the longitudinal fraction of momentum, car-
ried by the partons, is encoded in the parton distribution functions (PDFs), while the
complete information on the motion of partons in the three-dimensional (longitudinal
and transverse) momentum space is contained in the transverse momentum depen-
dent parton distributions (TMDPDFs or TMDs). A complementary picture to the
TMDs, in a different three-dimensional portion of the hadron phase-space, is given
by the Generalized Parton Distributions (GPDs). The combined knowledge encoded
in TMDs and GPDs provides information on the transverse structure of the hadron
in momentum and coordinate space.

To reach a thorough description of the hadron structure, we also need to look
at multiple partons at the same time. If we restrict ourselves to the simplest two-
parton correlations, this information is encoded in the double parton distributions
(DPDs), which are functions of the longitudinal momentum carried by two partons
and their relative separation in the transverse plane. DPDs are accessible in exper-
iments in which two high-energetic scatterings occur simultaneously (double parton
scatterings).

All the functions mentioned above include the information on the parton spin,
and, in the DPDs case, on the other quantum numbers of the partons. If the target
spin states are also included in the description, the number of functions increases and
the information acquired comprehends several kind of spin correlations between the
partons and the hadron. However, not all the functions are involved at the same time
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in the computation of the cross-section of high energy processes. Depending on the
specific process, the polarization state of the hadron, and the detected final states,
different projections of the hadron structure become accessible.

Combining the different parton distributions is similar to a mosaic: each piece
comes from a different place and occupies a relevant position on its own, but the final
picture is complete only once all the tiles are assembled. Aiming for such a complete
knowledge is indispensable to address the fundamental questions about the origin of
hadron mass and spin, and the mechanism of confinement.

Light-front wave functions

When dealing with nonperturbative quantities, one needs to select the most suitable
framework carefully. It is especially convenient to use the light-front quantization
of QCD, i.e. a formulation of the theory of QCD obtained by using a different time
component (light-cone time) than the usual one. Light-front QCD is widely employed
in the field of high-energy physics, as it represents a very natural choice of frame for
describing the hadron in this kinematic regime. In addition, the use of the light-front
formulation allows to express the hadron state in terms of frame-independent quan-
tities called light-front wave functions (LFWFs), that have a semiclassical interpre-
tation. Similarly to the correlators, the LEWF's are nonperturbative objects, whose
form cannot be precisely determined. In practice, the LFWFs are not directly ex-
tracted from experiments, they rather represent a powerful tool in model calculations:
modeling the LEWFs allows in principle to formally derive an explicit expression for
many parton distributions at the same time. Because of their central theoretical role,
they are considered the fundamental objects to describe the hadron [6].

1.3 This thesis

In this thesis we present a selection of topics that explore and develop certain aspects
of the hadron structure. We shortly discuss the motivations behind the choice of the
material included in the next chapters and the existing connections. We conclude this
section with an outline of the content of the manuscript.

As previously mentioned, one of the fundamental questions that arise in hadronic
physics concerns the origin of the proton spin, and how it generates in terms of
parton spin and angular momentum [7,8]. Spin-dependent parton functions become
therefore the relevant observable to be after. The polarization of partons can be
studied in inclusive processes only if the polarization of the parent hadron is included
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as well. This is directly connected to the fact that spin-dependent PDFs only exist if
the hadron is polarized.

One might wonder whether additional degrees of freedom enable the study of
spin-dependent distributions, both in polarized and unpolarized hadrons. Despite
not being the only possibilities, in this thesis we analyze two directions that lead to
the description of polarized partons:

1. Inclusion of parton transverse momenta. By extending the treatment to the
transverse momenta a wide range of possibilities opens up. For instance, it is
possible to probe the spin of partons in the transverse plane with respect to
the target momentum, even if no direction for the spin of the parent hadron
has been chosen. Also, many more spin-dependent effects arise when polarized
hadrons are considered. The functions encoding this information are the TMDs,
defined for quarks and gluons in unpolarized and polarized targets.

2. Double parton interactions. Since partons carry spin, their polarization states
can be correlated inside the proton. When two of them are selected simulta-
neously they can be described in terms of spin-dependent functions, also when
the parent hadron is unpolarized. This kind of inter-parton spin correlations
are encoded in the DPDs, and are typical of double parton scattering (DPS)
processes.

TMDs and DPDs are particularly interesting because they allow for the study
of polarized partons in hadrons in a complementary way: from the TMDs we can
extract information on the spin-spin and spin-orbit correlations between the parton
and the hadron. On the other hand, the analysis of double parton interactions allows
to access the spin correlations between the two partons. More in general, they both
enable to study the spin of the partons, even in the absence of hadron polarization.

The outline of the thesis is as follows:

In Chapter 2 we discuss the correlation functions as arising from the factorized
formula of the cross section of hadron-hadron collision. We define the relevant matrix
elements for quarks and gluons, in single and double parton scattering. We char-
acterize the general features of correlators, such as their symmetry properties. We
discuss the concept of universality, i.e. the property of correlators to appear (or not)
identically in all process calculations. This is in particular linked to the presence of
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transverse gauge links, introduced in the definition of the operators to ensure gauge
invariance, which will also be discussed. The common choice of using light-front vari-
ables in high-energy process description is extensively motivated in the second part of
the chapter, and we discuss the advantages of using the Light-Front Wave Functions
(LFWFs) to modeling the hadronic state. The convenient features of the LFWF's will
be recalled in Chapter 5, where we present an explicit example of the use of LEFWFs
as unifying framework to model hadronic observables.

In Chapter 3 we devote our efforts entirely to the study of TMDs, for quarks and
gluons in hadrons of spin up to 1. In particular, gluons are of utmost importance at
very high-energy, corresponding to small momentum fractions carried by the partons,
where they dominate over the valence quarks. Being massless spin-1 objects inside
the hadrons, their dynamics is described by many spin-dependent functions. We
present the complete parametrization of the correlator for unpolarized targets, as
well as vector and tensor polarized one, in fact allowing the descriptions of gluons in
momentum space of hadrons (and nuclei) of spin up to 1. We also derive positivity
bounds, i.e. relations between the TMDs that allow to relate the functions and to
estimate their magnitude.

In Chapter 4 we consider the picture of the proton resulting from the two-partons
interactions. Particular attention is given to spin and kinematic correlations between
the two quarks. We chose a process that is particularly suitable to look at double
parton scatterings: the production of a pair of same-sign W boson at the LHC. Hence,
the effects of parton polarization are investigated, not only at the level of partonic
interactions but also including the analysis of final states.

In Chapter 5 we analyze a simpler case, and we present a study of the transverse
structure of the pion in terms of its valence quarks. We use an attractive approach
based on the calculation of the LFWF's from the AdS/QCD correspondence to calcu-
late the valence quark TMDs. The pion is a spin-0 hadron, and by definition, it has no
polarization degrees of freedom. Thanks to the inclusion of the transverse momentum,
one can access both unpolarized and polarized quark TMDs in the pion. However,
the spin structure is not included in the theoretical formulation of AdS/QCD, and
it is therefore not discussed. Being the AdS/QCD correspondence a theory whose
validity lies in the intersection between the perturbative and nonperturbative QCD
domain we also discuss the QCD running coupling behavior in this context.

The covered material aims to give a contribution to the current description of
hadronic physics, especially towards less investigated and explored aspects such as
the gluonic content of spin-1 hadrons and nuclei, the multiparton correlations in the
proton, and the study of quark TMDs in the pion.
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We conclude the dissertation with some discussions and possible outlook in Chap-
ter 6.






Chapter 2

QCD and hadronic
interactions

2.1 Introduction

In this Chapter, we introduce the relevant concepts that will be developed throughout
the dissertation. In particular, we dedicate the first part of the chapter to the parton
correlation functions, or correlators. These are general objects: they can be defined
for quarks and gluons, in single and double parton scattering. They are used in all
high-energy process formulae that involve hadrons and contain the full information on
partonic correlations, in a way that will be specified in the next sections and comple-
mented in Chapter 3 and 4. Assuming always factorization between the high and low
energy scales, we first discuss the concept of transverse momentum dependent (TMD)
single parton correlator in Drell-Yan process. As a straightforward generalization, the
concept of double parton correlator is introduced. The latter is the relevant quantity
that enters the cross section of a double parton scattering (DPS) process.

From the analysis of the kinematics of high-energy processes, it appears natural to
adopt light-cone coordinates. Besides being a very convenient choice in practice, using
light-cone coordinates can provide unique insights into the description of the hadron



Chapter 2 - QCD and hadronic interactions

state. In the second part of the chapter, we summarize the advantages deriving from
the quantization of quantum field theories on the light-cone and focus on the special
features acquired by the relativistic hadronic wave functions in this framework.

2.2 Hadronic collisions

High-energy processes are powerful tools to investigate the hadron internal structure.
Loosely speaking, they consist of the interaction of a probe with point-like partons
extracted from the hadron, followed by the production of final states.

There are two energy scales involved: the hadron mass scale, of the order of ~ 1
GeV, and the partonic scattering mass scale, typically much higher (e.g., ~ 80 GeV if a
W boson is produced). The two regimes are well-separated in energies and they occur
at distances (and time) which are substantially different. This allows one to write the
cross section formula as a convolution of two distinct pieces: the partonic cross section,
calculable with standard perturbation theory methods (Feynman rules involving free
fields), convoluted with a nonperturbative object representing the probability for the
parton to be “selected” from the hadron to enter the process. This picture constitutes
the basic idea of the parton model [9,10]. We distinguish a hard part, containing all the
perturbative contributions, from a soft part, where the low-energy hadronic physics
is contained. The factorization between the hard and soft physics implies that all the
contributions that connect the two regions either cancel out or they are absorbed into
the definition of the nonperturbative quantities in a well-defined way.

In the early stages of the theoretical and experimental investigation of hadrons only
the components of the parton momenta collinear to the parent hadron were considered.
It is possible to directly generalize the parton model in order to include transverse
partonic momenta. A further generalization was introduced by Politzer [11] and is
referred to as diagrammatic approach. It introduces in a field theoretical language the
more structured concept of correlator, also accounting for the extraction of more than
one parton from the hadron. Thanks to this approach the cross section for a generic
scattering process can be derived and the factorized formulae will contain correlators
instead of free external fields.

The correlators defined in the factorized cross section formulae contain all the
nonperturbative information about hadrons and can be used to describe both the dis-
tribution of partons inside the hadron and the fragmentation of parton into hadrons,
in coordinate and momentum space. In this thesis we will not discuss fragmenta-
tion processes and the term correlator will refer to the distributions, unless otherwise
specified.

10
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Most common high-energy processes involving hadrons

Experiments involving hadrons give access to a variety of different partonic func-
tions. Including fragmentation processes only for completeness, the most important
categories of processes are:

e Inclusive deep inelastic scattering (DIS): inclusive lepton scattering off a proton
Ip—>UX.

e Semi-inclusive deep inelastic scattering (SIDIS): one-particle inclusive lepton
scattering off a proton Ip — I'h X.

e Proton-proton collision (pp) and Drell-Yan process (DY): production of W, Z, ~*
boson and subsequent leptonic decay pp — 11X . We include within this category
also the Higgs boson or heavy quark pair production through the gluon fusion.

e Electron-positron annihilation (e*e™): lepton anti-lepton annihilation and pro-
duction of hadrons Il — hX. This process involves the nonperturbative physics
in the fragmentation region (i.e. in the production of hadrons in the final state).

e Deeply virtual Compton scattering (DVCS): exclusive process of a virtual pho-
ton off a proton and consequent production of a real photon and the proton
with momentum changed into p’, namely v*p — ~vp'.

e Elastic processes: low-energy scattering between an electron and the proton,
such that the proton remains intact, with final momentum changed into p’.

Each process is relevant to the extraction of hadronic observables. For instance,
inclusive DIS can give information on the distribution of the partons along the same
direction of the proton momentum, but it is not suitable to access multi-dimensional
distributions. On the other hand, SIDIS, ete™, and DY can be implemented such that
the transverse motion of the partons, both in the initial proton and in the fragmented
final hadrons, can be accessed. Elastic and exclusive processes are sensitive to the
distribution of partons in the transverse coordinate space and longitudinal momenta.
The processes are schematically depicted in Fig. 2.1 and Fig. 2.2.

The study of these processes relies on the validity of factorization, rigorously
demonstrated in all cases when the longitudinal momentum of the partons are con-
sidered [12]. Inclusion of transverse momenta requires a generalized form of the
collinear factorization theorems [13-15]. Factorization holds true in most of the pro-
cess above [14-16]. Examples of factorization-breaking contributions regard those pro-
cesses in which color plays a nontrivial role in the production of the final states [17-21].

11
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X

v Z/WE

()

Figure 2.1: Pictorial representation of the high energy processes described in the text. The grey
area generically represents the nonperturbative physics. (a) DIS: access to quark and gluon PDFs;
(b) SIDIS: access to PDFs and TMDs, both for quarks and gluons; (c) pp collisions (e.g. DY): access
to PDFs, TMDs, DPDs for quarks and gluons.

In the context of pp collision it has been shown that factorization holds true also in the
case of two hard scatterings occurring independently, when the longitudinal momenta
of the partons are considered. The same result hold true for transverse momenta but
only in the context of the production of colorless final states [22,23]. Finally, the
DVCS exclusive process has been proven to factorize in [24]. Factorized formulae for
the DY cross section calculations will be employed in the rest of this thesis.

Light-cone coordinates and Sudakov decomposition

Throughout the thesis, light-cone coordinates will be used. As will be discussed in
Section 2.6 this has more meaning than a simple choice of frame. In fact, the theory
of high-energy processes is naturally quantized on the light-front (LF).

12
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(a) (b)

Figure 2.2: Pictorial representation of the high energy processes desrcribed in the text. The grey
area generically represents nonperturbative physics. (a) DVCS: access to quark and gluon GPDs at
the amplitude level; (b) elastic scattering: access to electromagnetic form factors.

Choosing a light-like basis corresponds to having two light-like vectors n and n'
satisfying:

ny-n_=1, n%=n2=0, (2.1)

such that any four-vector a can be written as:

a* =atnk +an" +a¥, (2.2)

where the transverse four-vector a’ has non-vanishing components a',a?. For in-
stance, the momentum of the proton traveling along the z-direction, satisfying the

constraint P2 = M?, reads:

2

M
Pt =Pl +

2P+n’i, (2.3)

while the parton extracted from the proton with fraction of longitudinal momentum
x and value of transverse momentum Kk, is:

k' =xPtnl +kf + k™ n. (2.4)

If P* becomes very large, the proton momentum probes the light-cone, namely the
minus component becomes insignificant and the mass is negligible compared to the
hard scale of the process.

13
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Alternatively, one can employ a Sudakov-like decomposition for the vectors, which
is a more general choice of basis. That is, we choose the momentum of the proton P*
as being one element of the basis. The other element is a four-vector n* that satisfies
P-n = 1, which forces n* to have dimension [mass]~! (since P* has mass dimensions).
Further demanding P? = M?, any four-vector in this frame can be written using a
Sudakov decomposition:

a* = (a-n)P" +a* + [a-P — (a- n)M?] n*, (2.5)

where the transverse vector a4 is now defined in the transverse directions with respect
to n and P. In particular, the parton momentum is expressed in terms of the proton
momentum as:

k' = xP" + kP 4 (k-P — xM?)n*, (2.6)

where we have defined z = k - n.

The Sudakov decomposition has the advantage that n can be specified each time
depending on the kinematics of the process. This will be preferred as far as the
parametrizations and definitions in Chapter 3 are concerned. The vector decomposi-
tions in terms of the light-like basis, as in eq. (2.2), is useful in process calculations
and will be used extensively in Section 2.3 and 2.4 and other explicit cross section
calculations.

2.3 TMD correlator from Drell-Yan process

As originally conceived by Drell and Yan [25], the Drell-Yan process consists of the
production, in pp collisions, of a pair of lepton-antilepton as the result of a virtual
photon decay. Processes in which any of the electroweak gauge bosons are produced
will be also referred to as Drell-Yan processes. As an extension, we call double Drell-
Yan process the production of two electroweak bosons in the context of double parton
scattering (see Section 2.4). The final state distributions of these types of processes
are sensitive to the proton structure.

The cross section is calculated using the diagrammatic approach, following the
simplified procedure outlined in [26]. We choose a frame where the two protons
collide along the z-direction, and they have a large and opposite component of the
momentum along this axes. This means that the momentum P of the (conventionally)
left-moving proton is dominated by the plus component P+, while the momentum P of
the right-moving proton has large minus component P~ (see eq. (2.3)). The produced
electroweak boson has momentum g that defines the hard scale of the process ¢° = Q2.
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2.3 TMD correlator from Drell-Yan process

The latter is much higher than a typical hadronic scale A of the order of the proton
mass, i.e. Q%2 > A? in the high-energy limit. The square of the centre of mass (CM)
energy is (P + P)? = s, and in the deep inelastic limit one has Q?,s — 0o, keeping
the ratio 7 = Q?/s finite. The cross section reads:

_ 1 dspf 2 45(4) >
da_]__I;[WQ|M| (2m)46 (P+P—§fjpf), (2.7)

where F is the flux factor, and the subscript f generically labels all the momenta of
the final states crossing the final state cut in Fig. 2.3.

ol

\
v/
(X}
(a) ®)

Figure 2.3: Left-side: diagram of a Drell-Yan process. Right-side: pictorial representation of the
quark TMD correlator.

One must bear in mind that there are no free fields ultimately involved: the spinors
that enter the hard scattering are extracted from the proton through a nonpertur-
bative process. Therefore, we substitute free spinors (or polarization vectors in the
gluon case) with hadronic matrix elements in the scattering amplitude M. Assuming
factorization between the three blobs in Fig. 2.3(a), and introducing the complete set
of intermediate states {|X)}, {|X)} one has:
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Chapter 2 - QCD and hadronic interactions

70— 271' Z/ d3PX / d4k d4k/ d4§d4€/6ik-ff’ik/‘£/
2m)52P0 | (2wt (27)"

&Py 'k dE o
d4 d4 & ik-E—ik'-€
XZ / 27)32PL / 2y 2yt S ee

X <le( X)) (X[9(&) [P) (Pl9(E) |X) (X|4(€) |P)
x H(k, k' k,kY0W(P+ P — Px — Px —q), (2.8)

where, for the sake of simplicity, we temporarily omit the dependence on the hadron
spin and write the state simply as |P). We denote the hard part as H(k, k', k, k)
and leave it unspecified, as not relevant for the present discussion. Also the Dirac
indices on the fermion fields and in the hard part are understood. The flux factor is

F =44/(P - P)2 — M* =~ 2s, the n-particle phase factor is:
_ ﬁ d'qy
- 4
H G
and the completeness condition on the intermediate sets:

3
Z/ df;);o|x><| 1. (2.10)

(2.9)

We skip the details of the derivation of the cross section formula and list the
main steps towards the definition of the quantities relevant to our discussion. Using
the completeness (2.10) of the intermediate states one can get rid of the transition
matrix elements that appear in (2.8), such that the only matrix elements that are
left contain the expectation values of the fermion fields between the proton state.
Moreover, translational invariance allows us to shift the position of the fields, as the
matrix elements only depend on the difference of the positions. Finally, using the
momentum conservation relations one can write the cross section in terms of the hard
part and the correlation functions as:

do

R d*kd* k0™ (k + &k — q)Huprs(k, k, @) Pos(k, P)®os(k, P), (2.11)

where we have reinserted the Dirac indices «, 3,7, § and defined the fully unintegrated
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2.3 TMD correlator from Drell-Yan process

quark correlation function as:

4
Bl P) = [ e (PITH(000(6) |P). (212)
and for the antiquark:
Tk P) = [ Gsze M PR @)1P). (213)

The (2.12) is a matrix in Dirac space which depends on the momentum of the parton,
the momentum and the spin of the proton. A trace over color is understood and we
will later give further details on the color structure of the correlators. The quantity
in (2.12) is a fundamental object that encodes all the nonperturbative physics in
the high-energy processes. Choosing the light-like basis as in (2.2), the hierarchies
of the momentum components, dictated by the high-energy kinematics, become the
guiding criteria to identify the relevant components and rewrite the delta function
in (2.11). As already mentioned, the dominant component of the proton P (P) is
the plus (minus). The components of momenta in (2.11) scale like (hard scattering

approximation):

Ptaktmgt ~Q P o~k ~g ~Q
A2 . . AZ
P~k ~ e Ptakt~ . 2.14
0 0 (2.14)

We assume that the partons entering the hard scattering are almost collinear to
the incoming hadrons, therefore all the transverse momenta are of the order of the
hadronic scale A, i.e.

kx| ~ |kr| ~ |gr| ~ A. (2.15)

Neglecting momenta of order A%2/Q, the delta function can be written as:
SOk +k—q)=6kT+kt — ¢k~ +k — ¢ )0P (ky + kr — qr)
~ (kT —qN)o(k™ —q)6® (kr + kr — qr). (2.16)

As a consequence, one can deduce k* ~ ¢t and k= ~ ¢~ and define the light-cone
longitudinal momentum fractions and the hard momenta as:
kgt k~ - 5

N—=— I=—=—~ q° ~2¢Tq" ~xTs. (2.17)

_ Kk a9
TP T P - P
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Chapter 2 - QCD and hadronic interactions

Substituting in (2.11) gives:

do

iR ~ / d2de2ET6(2)(kT + kT - QT>HaB'y§(k7 I%v q)

X /dk_¢aﬂ(k,P)/dk+‘i)75(E,P) + {corrections}. (2.18)

We can define the transverse momentum dependent (TMD) correlator for quarks
(and similarly for antiquarks) as follows:

O.5(x, kr; P) = /dk*q)ag(k,P)

= [t pm o 1n)| @)
@) -

which is a matrix in Dirac space that contains the information on the transverse mo-
tion and spin of the partons. It is parametrized in terms of TMD parton distribution
functions (TMD PDFs or TMDs!).

In the collinear limit, one can perform the integration over the transverse momen-
tum of the produced particle g, in (2.19) and obtain a factorized formula containing
the collinear correlator for quark, the relevant quantity in inclusive DY processes.
The integrated correlator reads:

A€~ ik -
Baslai P) = [ e (P30l P) , (220)
i Et=€r=0
which is parametrized in terms of parton distributions PDFs. A trace over color is
understood and the dependence on the hadron spin will be later specified.

Gluon correlator

In pp collisions the hard scattering can be initiated by gluons (see Fig. 2.4(a)), such

as in Higgs boson production, heavy quark pair or quankonium production [27-30].

Accordingly, the relevant correlator that needs to be introduced in this equation is:
dE~ dP&r iy

VP9 (g ot = e 2% po ’ )
Dok P) = [ SIS P ORT@IP| @)

n this thesis the TMD fragmentation functions are not treated, therefore unless otherwise spec-
ified the name TMDs simply refers to the TMD PDFs distributions and is not ambiguous.
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2.3 TMD correlator from Drell-Yan process

Figure 2.4: Left-side: Gluon fusion in pp collisions. Right-side: pictorial representation of the
gluon TMD correlator.

where once again we implicitly assume a trace over color. The quantity (2.21) is the
transverse momentum dependent (TMD) correlator for gluons. The presence of the
gauge field-strength tensor rather than the field is dictated by gauge invariance, and
the definition needs to be further completed with the Wilson lines, as explained in
Section 2.5. The quantity (2.21) is parametrized by gluon TMDs. Integration over
transverse momenta gives the definition of the collinear gluon correlator:

@i p) = [ S e () Q) 1P) L e
§t=€r=0

which is parametrized in terms of gluon PDFs. The dominant terms in (2.21) and (2.22)
are the ones that contain one plus and one transverse index in the field-strength ten-
sor, as extensively explained in Chapter 3.

The correlators of eq. (2.19) and (2.21) are diagonal operators in momentum space
and they represent the probability of extracting a parton from the proton with longitu-
dinal and transverse momentum x and k;. They are usually schematically represented
as in Fig.2.3(b) and 2.4(b).
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Chapter 2 - QCD and hadronic interactions

2.4 Double parton correlator

The concept according to which, in pp collisions, only one parton from each proton
participate in the hard scattering can be extended to multipartonic interactions. In
particular, two hard scatterings can occur simultaneously, defining this process as a
double parton scattering (DPS), at variance with the usual single parton scattering
(SPS). In this Section, we consider the double Drell-Yan process (dDY), in which
two electroweak gauge bosons are produced in two distinct hard processes. The
two-parton correlation functions can be defined in a similar way as in the single
parton ones. Assuming the general validity of factorization for the DPS processes
that we consider, the double parton correlators enter the cross section calculations in
an analogous way as the correlator (2.19), with the due modifications.

2.4.1 Double Drell-Yan cross section

We start by writing the factorized cross section for the double parton scattering at
tree level. We generalize the result in Section 2.2 as in [31,32]. The diagram we are
about to calculate is displayed in Fig. 2.5.

Without any particular choice of hierarchy, one can set hard scales of the two hard
processes to a common scale Q% ~ g3 ~ ¢3.

Naming the momenta as [1,ls for the outgoing parton in the left moving proton
and [1, 5 the ones in the right moving proton, the cross section reads:

do 1 1 H/ _dPx; H/ d’Px;
AR~ C PP i) @ (2n)%2P, (2m)32PY

2 m n
x (2mytet® Z‘Ji * ZPXJ' + ZPXJ' -
2 dv 2
. g7
. H/ 2myt (2t L il;[le(qz,l 1)
x (2m) 5(4)(q _y _Z)( )5 ( 1)
x H/d4§id4§_id4fgd4§_; HEili— €l +i(EL—ET)

x (P T[p(€1)¥ ()] 1X) (X T[v(§2)1(€1)] [P)
x (PIT[(E)Y ()] 1X) (X| Tl (&)¥(€)] 1P) (2.23)
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2.4 Double parton correlator

Figure 2.5: Representation of a DPS process (e.g. double Drell-Yan process).

where we have inserted the time and anti-time order operators as in [31] and:

dR = lH éwq);] . (2.24)

i=1

The factor C is set by combinatorics and it equals 1 (or 2) if the produced particles
in the hard scatterings are different (or equal). As before, H; 5 represent the hard
part of the two processes and will be left unspecified. Let us define the symmetric
momenta:

r r
lizki—é, lgzki—l—é, i=1,2, (2.25)
which implies 71 = —ry = r from momentum conservation. Translational invariance

allows us to introduce the position variables 21, zo, and y such that:

1

1 1 1
y+ga = & — 552, y—5a= & — 552, 22 = &a. (2.26)
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Chapter 2 - QCD and hadronic interactions

The cross section becomes:
dU 47, 347 <(4) 4 4 —(4)
H d*k; d*Fi 6 (¢ — ki — ki) | d*rd* 76 (r +7)

X HHi(qz',ki,Emﬁ F)®pp(ki,r)Ppp(ki,T). (2.27)

i=1
We define the unintegrated double parton correlator:
d*z d*zy dYy
Spp(ky, k =
DP( 1, 2,7") /(271_)4 (27’(’)4 (27’[’)4
1

< (PSIT by - gz T |G+ pa)| IRS). 229

iz1k1+izoke —iyr

which represents the emission of two quarks in the scattering amplitude and their
reinsertion in the conjugate one. Once again, a trace over color is understood.

The hard scattering approximation described in Section 2.2 holds true also in
the double parton case, complemented by some considerations. The components of
momenta in (2.27) scale like (2.14). From the definition we also have r= ~ 7+ ~ A%/Q,
while rT and 7~ could in principle be of order @, but they are fixed by momentum
conservation 7 + 7 = 0 [31,33]. Therefore one also has 1+ ~ 7= ~ A2/Q. All the
transverse momenta are of the order of the hadronic scale, i.e.

[eri| ~ lkri| ~ [Pr] ~ |7z] ~ |gri| ~ A. (2.29)

Reducing the delta functions as in (2.16), one has:

do 2 - -
= I_IHZ»(qf)/dk:1 dks /dr Ppp(ki,T)
i=1

x / AR+ i / A+ & pp (i, 7)

+~qt ~
kl=q,rT=0

+ {corrections}. (2.30)

, T~ =0

k; ~q;

i

A Fourier transform to the transverse position y, conjugate to r, brings us to the
definition of the transverse momentum dependent double parton correlator for quarks:

~d2 i )
(I)DP(xl,x%le,kT% ) — 2P+ Zri zz1k1+zzzk2 /dy_
27r (2m)2
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2.4 Double parton correlator

AP ity - 5o 5o (oGt o] 1Py (23D

where we define the fractions of longitudinal momentum =z, z2, T, T2 as obvious
extension of (2.17). The correlator (2.31) is parametrized in terms of TMD double
parton distributions (TMD DPDs).

After integration over all the transverse momenta, we obtain:

q)DP(xI;ZEZ y H /d sz(I)DP('rzaszay) (232)
1=1,2
2 dz_
2P+ a2 zz1k1+1sz2 /
I, | /o
1 - 1 1
(P B-geita)| (S - g g0 1P L )

z71=071, 212=07

which is the collinear double parton correlator, parametrized in terms of double par-
ton distributions DPDs. For later convenience we also define the non-local bilinear
operators contained between square brackets in (2.33) as:

Oly,2) = Ply — 320b(y + 32). (234

One can interpret (2.33) as the probability of finding two partons with momenta
aligned with the parent hadron separated in the transverse plane by a distance y. In
order for the double scattering to take place, the transverse relative distance between
the partons in the two hadrons must match. However the distance of the partons
from the centre of the parent hadron can be different [31].

Finally, we define the double gluon correlator in analogy to Section 2.3, namely:

2 _
1 dz; kitizoko / —
i iz iz d
il;ll LCZ'P+ 27 € 4

« (P {Fﬂ”(_;zl)Fﬂ'(;@)} [Fﬂ'(y _ %ZQ)FH(y n ;Zl)] Pty (239)

o
Fg’}] (x1,22,Y)

in which the dominant plus component has been chosen to simplify the notation.
However, in the rest of the thesis we will not discuss double gluon correlators and we
will focus exclusively to double parton correlators with quark fields.
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Chapter 2 - QCD and hadronic interactions

2.4.2 Single versus double parton scattering

We want to briefly discuss the impact of the double parton scattering in comparison
with the single parton counterpart [31], restricting ourselves to a qualitative discussion
based on a simple power counting argument, neglecting all the effects arising at higher
orders.

If one does not integrate over transverse momenta, the relevant cross section for
the production of two particles in double parton scattering takes the form:

2 2
do 1 _ _
=— |11 Hi(zizs) /d% ki@ (qri — kpi — i)
H3:1 dx; dz; d2qy; C };[1 ‘| L];[l T T T T T
X /dzyq)DP(xiaki»y)éDP(fEi»ETivy)’ (2.36)

The hard cross section parts have a power behavior H ~ Q~2, while ®pp(x;, ki, y) ~
A~2 by definition. The terms d?k,;d%k,;6(® (@i —kri —kri) ~ A% and the transverse
distance |y| is of the order 1/A. Putting all together one has:

do
H?:l dz; dz; d®qqr;

1

~ . (2.37)
double A2Q4

On the other hand, for a more inclusive process, where the transverse momenta are
integrated over, the cross section reads:

2
HHz(!Ezsz)] /d2y¢DP($i7y)‘i)DP(53i7y)> (2.38)

i=1

__do 1
H?:l dr; dz; C

and it scales as:
do

H?:l dx; dT;

With a similar logic, one can study the power behavior of the production of the same

A2

~ (2.39)
double Q4

two final states by means of single parton scattering processes. The result is:

do 1 do

1
oL __ | L2 (240
17, dzi d7; dqri lsinge M@ [, dzi dZ; lsnge @

It turns out that, for transverse momentum dependent cross sections, the power be-
havior of single and double parton scattering is the same, i.e. there is no suppression
of the latter. For more inclusive quantities there is, in general, a power suppression
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2.5 General properties of correlation functions

of the double parton scattering with respect to the single parton one. However, there
are very interesting cases where the double parton scattering is not suppressed with
respect to the single counterpart, such as the production of a pair of W bosons with
the same electric charge. We will investigate this process in details in Section 4.5.

2.5 General properties of correlation functions

There are general properties which are common to all the correlation functions. In this
Section, we discuss some of them, focusing on gauge invariance, discrete symmetries,
and universality.

Gauge invariance

A fundamental requirement for all the correlators entering a cross section formula
is that they must be color gauge invariant objects. The definitions provided in
egs. (2.19), (2.20), (2.21), (2.31) and (2.33) need to be modified accordingly.

The field operators for the extraction and reinsertion of the partons in the ampli-
tude and in its conjugate are located at two distinct space-time points. Consequently,
acting on them with a local gauge transformation would leave space-dependent phase
factors that do not cancel out. Let us consider the transformation of the quark fields
under a local gauge transformation:

(&) = V(E)w(E),
D(E) = P(OVT(©), (2.41)

where V is the unitary matrix of the SU(3) color gauge transformation. Similarly,
the transformation for the gauge field strength tensor reads:

Fr (&) = V() F*™ (V). (2.42)

To restore the gauge invariance, we insert the operator U(0,&) and demand the new
product to transform as (a trace over color is understood):

BO)U(0,€)1(€) — POVIOV(OU(0, )VHEV(€)v(€), (2.43)

and a similar transformation is required for the product F**(0)U(0,&)FP°U’(£,0).
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Chapter 2 - QCD and hadronic interactions

We deduce that the transformation property for the U reads:
U(0,6) = V(0)U(0,§)VI(9). (2.44)

The operators U are called Wilson line. They are also called gauge links because
they restore gauge invariance by “transporting” the color gauge transformation prop-
erty from one point to the other. The expression for the gauge link in a non-abelian
theory was first introduced by Wilson in [34], mimicking the structure of a path depen-
dent phase formulated in QED for the description of the Aharonov-Bohm effect [35].

In QCD it reads:
U =P {eXp (—ig /C dn“Au(n)) } ; (2.45)

where A, = Ajit,, where t* are the generators of the color algebra S U(3), satistying
[t?, Y] = if*°t,, with fup. structure constants. C is the path connecting two space-
time points (the path can also reduce to a loop) and P{---} is the path-ordering
operator [36]. In the case of the correlators defined in the previous sections, the
links have to connect the two space-time points at which the fields are defined. The
dominant paths are the ones along the lightlike direction n, hence the (2.45) becomes:

4
U(,¢) = U[[(;]E] =P {exp <—z’g/0 dnA”(n)) } , (2.46)

where we use the notation A™ = A-n, which is A" in the light-cone basis (2.2). We can
now define the color gauge invariant unintegrated correlators as the ones containing
the operators U as follows?:

)
Wi p) = [ EEE e pTOUO O 7| @
F[U’U']””;M(x, kr; P) =
[ s (e )0, F (€U 6 0)
(2m) £+=0
(2.48)

On a diagrammatic perspective, the inclusion of such objects in the definition of

2The superscript [U] indicates that the correlator’s structure does depend on the presence and on
the structure of the gauge link. When not necessary, it will be understood in the notation.
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the correlators corresponds to resumming gluons emitted from the correlator to the
hard scattering, such as the contributions represented in Fig. 2.6. This realization
dates back to the work of Efremov and Radyushkin [37]. Most importantly, these links
need to involve transverse gluons at light cone infinity, a missing ingredient in the
earlier treatments. Later in [38-40] the complete derivation of color-gauge invariant
operators for TMD and integrated distribution was achieved, and the importance of
the transverse gluons was unravelled. The presence of gauge links is connected to a
wide variety of effects in TMD phenomenology, such as single spin asymmetry and
process dependence. They are also responsible for the survival of the T-odd functions
(as shortly discussed). The dominant gauge link structures appearing in the TMD
operators are staple-like:

[£] — T n
U[O,é] = U[O,OT;:EOO,OT] U[:I:OO,OT;:EOO,ET] U[ioo,gT;ff,ng (2'49)

where =+ indicates whether the path is future/past pointing along the direction of light-
(%] it is possible
to construct all the relevant gauge links that are involved in the processes. For the DY

cone infinity, as depicted in Fig. 2.7(a-b). From the basic structures U

process that we have discussed, the gauge link is due to initial-state interactions (see,
e.g., the top-right diagram of Fig. 2.6) and is given by the past-pointing staple-like
structure (see Fig. 2.7(a)):

-] _— n T n
U[o,g} = U[O*,OT;—oo*,oT] U[—oo*,oT;—oo:eT] U[—oo*,éT;figT]’ (2.50)

where:
U{OL*,OT;*OO*,OT] =P {eXp <_Zg/0 dU7A+(77+ = 07777777T = OT)) } ) (251)
- . &r
Ul- o= 0ri—co&r) = P | €XP fw/o dn-A(nT =0,n" = —oo,mz) | o, (2.52)

and similarly for the third piece of (2.50).

As far as the gluons TMDs are concerned, one needs a gauge link in the adjoint
representation or two gauge links in the fundamental representation. This allows for
a bigger number of structures that describe the color flow in the processes initiated
by gluons. In Fig. 2.7(c-f) some possibilities are sketched. For a review of the gauge
link structures, see e.g. [41,42].

Integration over transverse momenta produce the collinear non-local matrix ele-
ments in (2.20) and (2.22). Once the transverse momentum is integrated over, the
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Figure 2.6: Diagrammatic interpretation of the gauge links of eq. (2.46), thanks to which the
gluons in the picture are included in the correlators.

transverse direction (conjugated to the momentum) vanishes, and the gauge links re-
duce to a single line that connects two points along the n direction. The much simpler
structure and the absence of the transverse pieces make the PDFs free from effects
typical of TMDs, such as the non-universality feature that we will discuss in the next
subsection.

The considerations that bring to the definition of the Wilson lines for quarks and
gluons in single parton scattering remain valid for the double parton correlators as
well, because they involve one hard scattering process at a time [31]. The procedure
is rather general and it can be repeated in the case of double and multiparton corre-
lators. Each operator of the type (2.34), that enters multiple times in a multiparton
correlator, is gauge invariant upon the insertion of gauge links as before, namely:

Oy, 2) =9 (y - ;Z> U <y - %zy + QZ> (0 (y + ;Z> , (2.53)
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Figure 2.7: Fundamental gauge link structures for quarks and gluon correlators. The symbols [+]
and [-] refer to the staple-like gauge links that are past (a) or future-pointing (b). All the other
structures (c)-(f) are built from staple-like gauge links.

and the gauge invariant version of the collinear double parton correlator reads:

d z
2 % 221k1+122k2
H/ e 27r @n)? U W

« (P,5| 00, z>o“” .2 |P. S>\

q)g:[)]}’;U/] (.’131,.%2, 2P+

. (2.54)

z71=07, 272=07

In the relevant case for our purposes, each of the extracted parton and its conjugate
partner are in a color singlet (no color octets and interference terms are present), thus
the double collinear correlator reduces to straight lines connecting the two pairs of
space-time points, in precisely the same way as the single collinear case. However, it
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Chapter 2 - QCD and hadronic interactions

is worth mentioning that the color structure of the double parton correlators is, in
general situations, more complicated than the single case also in the collinear case,
see e.g., refs. [23,31].

Discrete symmetries

The quark and gluon operators contained in the correlators are tensors in Dirac and
Lorentz space, respectively. The matrix elements in addition depend on the kinematic
variables of the partons and of the parent hadron. It is possible to find a decomposition
of the correlators in terms of the elements of the basis of Dirac and Lorentz space
combined with

{k#, Pr SH ..} (2.55)

(-4

where the represent other Lorentz structures (scalar, vector and tensor) the
correlator can possibly depend on. Each term is weighted with multidimensional
functions that depend on the kinematic variables and quantum numbers of the partons
and will be generically called parton distributions. The number of terms one can
construct in this way would quickly increase once the extra degrees of freedom are
included.

Some constraints on the allowed structures come from symmetry arguments. Ac-
cordingly, we demand that this expansion is such that the correlator respects parity

and hermiticity invariance, namely for quarks:

Hermiticity: @Y (k; P, S) = 1@V (k; P, 5)4°, (2.56)
Parity: ®Yl(k; P, S) = 1@ (k; P, —5)~° (2.57)
and for gluons:
Hermiticity: TI0UTeosvx (k. p gy = TI0UTmieo (. g), (2.58)
Parity: DIUUTwiee (g p gy =TIV (K, P, -8, .-, (2.59)

where the vector ¢ = Pa = (a, —a) is the parity transformed of vector a, that has
a flipped sign in all the spatial coordinates 3. The transformation properties (2.57)
and (2.59) are valid for the double parton correlators as well.

The behavior of the Wilson lines under hermiticity and parity P transformations

3We do not use the barred notation for the vectors @ = (a, —ar) as usually done in the literature,
in order to avoid confusion with Section 2.3, where the bar indicates quantities belonging to the
left-moving proton. The two vectors @, a coincide when the transverse components are neglected.
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is derived straightforwardly and reads:
Ul e = Ul PUagP' = U g (2.60)

where a is defined as before.

The invariance under naive-time reversal transformation will instead not be im-
posed in the parametrization, as shortly explained.

Universality and process dependence

An important question about the correlators entering the factorized cross section
formulae (and the functions in the parametrizations) is whether they are universal
or they rather depend on the process under consideration. This matter is of utmost
importance from a phenomenological point of view, as it determines whether the same
partonic function can be eventually extracted from different processes. The answer
to this question is connected to the gauge link structure of the correlators, which can
vary from process to process. More precisely, the lack of universality can be related
to the behavior of the transverse momentum dependent quantities under naive time
reversal transformations. The complete treatment of this topic goes far beyond the
purpose of this thesis. For a comprehensive set of references see, e.g., [39-48] and the
dissertations in [26,49,50].

The quark and gluon correlators have the following behavior under naive time-
reversal transformations 7

ok, P,S) = (—insC)0 )k, P, S)(~isC), (2.61)
rwvimser (g, p.S) = T0TI(k P,S), (2.62)

where C' = iy?4Y. From (2.62) the behavior of the Wilson lines under naive time
reversal transformations is derived directly and it reads:

UT = TU[%QTT =U (2.63)

[_éa_é].

Time reversal transformations acting on the gauge links are such that future-
pointing structures are transformed into past-pointing ones and viceversa (see part
(a) and (b) of Fig. 2.7). For the TMD quark correlator this results in:

o (2, kp; P,S) L @) (2, ks P, S). (2.64)
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One can decompose each correlator into a T-even and a T-odd part as follows [51]:

1

q)[T—even] (l‘, k']w P, S) - 5 I:(I)H_] (Z‘, kT, Pa S) + (b[_] (.’I}, kT7 P7 S):| ) <265)
1

oToddl(y k. P S) = 3 [@H] (@, kr; P, S) — B (2, koys P, S)} : (2.66)

In the parametrization of the correlator, naive time reversal symmetry does not impose
constraints and T-odd structures do not vanish thanks to the presence of gauge links.
We will see in Chapter 3 that one can parametrize the correlators in terms of quark
distributions that multiply (Dirac and Lorentz) structures which flip sign under time
reversal transformations. These functions, among which a famous one is the Sivers
function (see Section 3.3.1), are non universal and depend on the process through the
gauge link.

The scenario is more complex for gluons, for which there aretwo fundamental
gauge-link structures that are not linked by any time-reversal transformation [47].
They are built from two past- or future-pointing staple-like links, called Weiszéacker-
William (WW), and from one future- and one past-pointing staple-like gauge links,
called dipole-type? (see Fig. 2.7(c)-(d) and Fig. 2.7(e)-(f) for WW and dipole-type
of gauge links respectively). As pointed out in [47], due to the properties defined
in (2.63), the WW structure [++] is transformed to [——] under time reversal trans-
formations. Similarly, the dipole [+—] becomes [—+], whereas it is not possible to
relate the WW-type with the dipole-type. It has been first discussed in [47] that, due
to this complex color structure, the nonuniversality of gluon TMDs also involves the
T-even part of the correlators.

From (2.66) it follows that the T-odd part vanishes when ®[*] = ®[-]. This is
the case of the collinear correlators, where the gauge links reduce to a straight line,
regardless of the light-cone direction. In the absence of the transverse direction no
process dependence arises and PDFs are universal functions.

As a straightforward extension of the single parton case, the transverse momen-
tum dependent DPDs, similarly as the single TMD PDF's, can be process dependent,
although a precise expression for this dependence has never been derived. At vari-
ance with the single parton case, integration over transverse parton momenta does
not lead, in principle, to the universality of collinear DPDs [31]. The universality is
ensured in the cases when the two partons involved in each hard scatterings are in a
color singlet configuration. In this case, the gauge link structures reduce to segments
connecting the pairs of space-time point along the light-like direction. The lines are

4The latter nomenclature is not typically used in the field of TMD phenomenology, but it is rather
common in the field of small-z physics.
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2.6 QCD on the light-front

thus invariant under time reversal symmetry and the relevant collinear DPDs are
guaranteed to be universal, analogously to the single collinear PDF's [31,52].

To summarize, the nonperturbative physics of high-energy processes is contained
in the correlators, defined from the factorized cross section formulae. The operator
definition can be easily extended to multiparton scattering processes. Without any
further specification but the parton type, we can define the general symmetry prop-
erties of correlators, such as discrete space-time symmetries and gauge invariance.
These aspects are fundamental to define the partonic functions that will be used to
parametrize the correlators.

As discussed in Section 1.1, attempting an explicit calculation of the correlators
is prohibitive with standard field theory formalism, because of the non smallness of
the strong coupling in the low energy regime. In order to grasp information on the
nonperturbative physics one can for instance seek help from lattice QCD calcula-
tions [34,53-57], hamiltonian methods [6], model calculations [58-66], and extraction
from experiments (see e.g. [67] and references therein). From a theoretical point of
view, the hadronic matrix element contained in the definitions of the correlator can
be formally expressed in terms of an expansion of wave functions, containing all the
information about the parton dynamics and correlations. We will analyze this aspect
in the next Section.

2.6 QCD on the light-front

Employing the light-cone coordinates to describe the kinematics of high energy pro-
cesses is the natural and convenient choice, given that the dominant contribution to
the deep inelastic kinematics comes from the light-cone. The numerous advantages
of using the light-cone reference frame in the field of hadronic physics are extensively
acknowledged® [6], and we discuss some of them in the present Section.

Field theories are quantized by introducing equal-time commutation and anti-
commutation rules. In a covariant theory, it is possible to generalize the concept of
time and space since what is called time-component is in some sense arbitrary. In
1949 Dirac [69] pointed out that there are three distinct ways to parametrize the
4-dimensional space, which are not connected by Lorentz transformations. Dirac de-
fined three forms of relativistic dynamics, characterized by different definitions of the
equal-time hyperplane where the fields are initialized. These three forms correspond to

50n the other hand, it is under debate whether this also represents an intrinsic simplification of
QCD itself, see e.g. [68]. In the following we will not discuss this controversy further.
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different time-like components. The usual quantization choice is called “instant-form”
(IF) and corresponds to a hypersurface located at t = 20 = 0, while the “light-front”
(LF), or front-form, is characterized by the initial condition #% = (z° + 2%)/v/2 = 0,
that represents a tangent plane to the light-cone. Being equivalent to the infinite
momentum frame [70-74], it was recognized that LF quantization is particularly suit-
able in the description of high-energy processes [75-77]. For instance, the kinematic
regime described in (2.14) naturally implies the choice £ = 0, and (LF-)time-ordering
is automatic. The third form is called “point-form” and it is characterized by a
hyperboloid-shaped hypersurface always pointing inside the light-cone. The picture
in Fig. 2.8 graphically summarizes the three forms.

The instant form The front form The point form
%0 = ct %0 = ct+z %0=1 , ct= tcoshm
= x %= x X'=® , x= tsinhwsin6 cos¢
2=y 2=y %= 0 , y= tsinhosin0sing
%=z %3 = ct-z %= ¢ , x= tsinhwcosH

1o 0 0 0 0 0 ¢ 0 0 0

5 0-1 0 0 5 0 -1 0 0 - 0 0 0

Suv = 00 -1 0 Suv = 0 0 -1 0 guwv={ 0 0 —sinhlo . (7) .
00 0 -1 10 0 0 0o 0 0 —t’sinh’o sin’6

Figure 2.8: Graphic representation of the different forms of relativistic dynamics as formulated
by Dirac [69]. The planes represent the hypersurface where the fields are initialized. Figure from
ref. [6].
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One can start by defining the four-vectors as in eq. (2.2) with components® [74]:

xt = L (a2 +2%), a7 = L (2° = 2%), @ = (a',2?). (2.67)

V2 V2

Therefore the following convention will be used:

ot = (2,27, 2r). (2.68)
The metric tensor is:
01 0 O
G = 9" = (1) 8 _01 8 ; (2.69)
00 0 -1
which is used to lower or raise indices, so that ¥ = z_ and 2= = z,. This means

that 0, = 9/0x" = O~ is a time-like derivative, while _ = 9/0x~ = 9T is a
space-like derivative. Scalar products reads:

-y =a'y, = gua'y’ = sty a2y — Yo (2.70)

Other conventions and useful relations are collected in Appendix A.

Poincaré generators and Algebra

A remarkable feature of the LF quantization relies in the particular form of the
Poincaré algebra [6,74]. Dirac defines two classes of generators: dynamical and kine-
matic [69]. The latter are independent on the interaction, and they form a subgroup
of the Poincaré group which transforms the hypersurface in itself. This is called sta-
bility group. The other Poincaré generators are called dynamical, as they contain the
dynamics and transform the hypersurface into a different one. They play the role of
hamiltonians in the sense of generators of time translations.

In any form of dynamics, the four-momentum P* and angular-momentum M*” =
xHPY — x¥ P* obey the standard commutation relations which define the Poincaré
group. Rotations and boosts are built as J; = €;;,M;, and M;y = K; (see Ap-
pendix A). In the instant form, the three components of the boost vector M;y = K;

61n the following the Kogut-Soper convention in [74] is used. A different choice of variables is the
Brodsky-Lepage convention described in [6]
"We keep the same notation g”” as for the metric in IF, since this is not ambigous
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are dynamical, and the three components of angular momentum J; = €;;,M;;, are
kinematic. Let us define the combinations:

1 1
By = — (K1 +.2), By = — (Ko — J1), 2.71
1 \/5( 1+ J2) 2 \/5( 2 1) ( )
1 1
S1=—7=(Ki1— ), Sy =— (K2 + J1), (2.72)

V2 V2

and analyze the generators in LF. Although the full set of generators must still obey
the same Poincaré algebra, one can identify a subgroup of mutually commutant gen-
erators P—, Pt , P!, P2 Js, B; and B, that satisfy the commutation rules typical of a
non-relativistic Galilean group in two-dimensions. This isomorphism between groups
implies that the dynamics in the transverse plane is equivalent to a classical system.
Moreover, the effect of the LF longitudinal boost leaves the transverse plane invariant.
Denoting with 8 the dimensionless parameter of the boost, one has:

1
a" — a'* = (Bat, Ba_, ar). (2.73)

Let us turn to the physical interpretation of the above discussion. During a high-
energy scattering, an energetic probe scatters off a hadron along the longitudinal
direction PT. The hadron is highly boosted along this direction. In LF quantization,
because of (2.73) the Lorentz contraction only occurs in the longitudinal direction,
while the transverse plane remains unchanged. A parton inside the hadrons carries
a fractions x of longitudinal momentum defined as z = k*/P*, which is a boost-
invariant quantity in LF quantization. The following identifications are in order:

P~ — Hamiltonian; P™ — Longitudinal momentum; (2.74)
P, — Transverse momenta; J3 — Angular Momentum; (2.75)
B, — “Galilean” boosts along z and y. (2.76)

The LF Hamiltonian P~ is the generator of the time evolution with respect to
the LF time z ™, while the generators P* and P, are kinematical. This identification
explains why the notation P = (P~, PT, P;) is very often preferred in the literature.
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2.6 QCD on the light-front

Dispersion relation

Given the momentum P of a massive particle of mass M, such that P*P, = M 2. one
derives the LF dispersion relation:

(P.)? + M?

P =
2P+

(2.77)

The above dispersion relation is quite remarkable for the following reasons:
e [t is a relativistic dispersion relation without any square root factors.

e The dependence of the energy P~ on the transverse momentum is the same as
the nonrelativistic one.

e For P* positive (negative), P~ is positive (negative). This implies that it is
possible to redefine negative momenta in order to always read P™ > 0 both
for particles and antiparticles. The latter constraint on the particle momenta
has been referred to as responsible for the absence of vacuum diagrams and
consequently the triviality of the QCD vacuum in LF. In [68], Collins explicitly
shown that vacuum bubble diagrams do not actually vanish as often stated, and
that the interacting QCD vacuum does not trivially coincide with the one of
the free theory. However, the LF form still provides a number of advantages for
the hadronic description as discussed in the rest of this Chapter.

2.6.1 Quantum field theories on the light-cone

An other significant feature of LF dynamics is that one can reduce the fermionic
degrees of freedom from four to two. We shall see that the components of the fields
are in fact not all independent and it is possible to define the good (bad) components
of the fields, as the ones that are (not) dynamically independent. We define the Dirac
gamma matrices in LF:

1 1
+_ 0 3 - _ 0_ .3 12
=== +7), =—=00" -7, ={rh 2.78
gl \/é(’y 7’) gl \/i(v 7’) Yr={v7"} (2.78)
and the orthogonal projectors operators Py = %ﬂﬁ’yi:
PP, =P P =0, P_+ P, =1, (2.79)

which project out the good and bad field components as shortly explained. Rather
than the Dirac representation of the gamma matrices, it is more convenient to choose
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the Weyl or light-cone representation, where 4 is not diagonal while 75 is diagonal.
In this choice of basis, the projectors (2.79) take the explicit form:

1 00 0 000 0
01 00 000 0
P: P_: 2
+ 000 0|’ 001 0 (2.80)
000 0 00 0 1

The effect of the operators Py is to project out the two upper and lower components
of the Dirac fields:

d)l
2
Poyp=pi=o=| ¢

L P y—t —x= (2.81)

0

0

!

0 X2

Applying one projector at a time to the color Dirac equation, one obtains two
coupled equations of motion for the upper and lower components:

iy D Y — (yr - Dy —m)Ypy =0, (2.82)
iyt Dy — (yp- Dy —m)_ = 0. (2.83)

where D+ = 9% — igA* is the covariant derivative and it is a matrix in color space.

From eq. (2.82) one can see that ¢4 is the only independent field, since it has a non
vanishing conjugate field. We refer to it as the good field and denote it with ¢. The
good fields describe a particle on its mass-shell [6]. At variance, the two components
of 1_ are not independent variables and they are constrained at any light-front time
2T in terms of ¢ and A. The component A~ is also not independent, and one can
usually fix a gauge where AT = 0 (light-cone gauge) [6,74]. Therefore 1) depends on
the only dynamical fields ¢ and A,.

We refer to Appendix A for the explicit form of the good fields and to [6,70-74,78]
for more details about LF quantization.

2.6.2 Light-Front Wave Functions (LFWFs)

As discussed earlier in this Chapter, the definition of the correlators contain matrix
elements in which the hadron state |P) explicitly appears. Since |P) can formally be
written as a bound-state of its constituents, the question is whether the formalism of
LF quantization would simplify the description of bound-states. Let us consider the
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2.6 QCD on the light-front

relativistic bound-state problem:

H ) = VM? + P2 ¢), (2.84)

which corresponds to the eigenvalue problem for the QCD Hamiltonian, where M is
the particle’s mass and [¢) is the hadronic wavefunction, expansion of multi-particle
Fock eigenstates of the Hamiltonian |n), i. e. |[¢) = > 4, |n). The treatment of such
a relativistic bound-state represents a formidable challenge, both from a theoretical
and practical point of view. The theoretical problem is related to the well-known
nonperturbative nature of such an expression. The practical problems refer to the
presence of the square root operator, which brings positive (negative) energies for
particles (antiparticles), and the fact that the vacuum state is not an eigenstate of the
full Hamiltonian. Moreover, in the standard instant form quantization, one should
deal with the difficulties related to the presence of dynamical boost operators and
nontrivial QCD vacuum.

It has been argued in refs. [6,79,80] that the situation highly simplifies in the light-
front, although a firm preference for this approach in the hadronic physics community
is not unanimous (see, e.g. [81]). The hadronic eigenvalue problem simplifies in light-
front, and the hamiltonian eigenvalue problem reads:

2 P2
H) = 2T gy = P gy, (2.85)

which is a simplification because: 1) the boosts are kinematic, 2) from the on-shell
condition follows that PT has only positive eigenvalues, and 3) the square-root oper-
ator is absent®.

The state |¢)) is eigenstate of a complete set of mutually commuting operators:
the mass, the three space-like momenta P*, Py, the spin four-vector squared S? and
its longitudinal projection S,. Namely:

1Y) = |hy M, P, P;, S2,8.), (2.86)

where we indicate with the index h everything that specifies the hadron, such as
charge, parity, baryon number. The |¢) is expanded in terms of a complete basis of
Fock states of the type:

|N;xi7 kTivBi> )

81t is commonly added to this list that the QCD vacuum is trivially an eigenstate of the Hamil-
tonian. This statement is lively debated in the community and was formally proved to be incorrect
in [68]. The considerations on the light-front wave functions remain valid and correct even in the
absence of the vacuum triviality assumption.
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which represent the N-partons states. The indices §; includes all the other indices,
such as parton-type, helicity, etc., and (z;, kr;) are the momentum components of
each parton. Each parton in the state (quark, antiquark, gluon) with momentum
components k', k; and helicity 3 is created from the vacuum state due to the action
of creation operators (b, d',a’) whose commutation and anticommutation rules are
listed in Appendix A. Namely”:

g kT ker, B) = b (kT Ker, ) |0) (2.87)
G kT ker, B) = dl (K, kr, B) [0) (2.88)
kT ko, B) = al (kT r, ) |0) . (2.89)

The state of a hadron with momentum P and LF helicity A can therefore be
written as a sum over all the Fock states:

[P, A) = Z/[di] [d?kr] N (1) INs Ky ks By, B (2.90)

where the projection of the hadron state onto the N-parton Fock states 1&][\‘,’ 5(r) are
called light-front wave functions LFWFs. We define:

r=(r,...,rn), with r; = (2;kz;). (2.91)

The LEWF's are normalized as follows:
dx ] 2 2
ZN:/ [\/E o [ Ed o i B0

with the integration measures:
dl’l N
H 1= 2], (2.93)
N i=1
1 N N
[d°kz] TemNT [[ k6™ (Z kﬂ-> : (2.94)
i=1 i=1

The LEWFs are frame independent quantities that only depend on relative coordi-

9The following property is typical of LF quantization and it is usually ascribed to the fact that,
ignoring zero-modes, the perturbative vacuum is trivial in QCD and therefore a |0) = 0. It has been
shown in ref. [68] that the perturbative vacuum in LF actually satisfies a|0) = 0 and allows the
LFWF overlap representation, without any (wrong) assumption on the vacuum triviality.
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nates z; and k;,, but not on the hadron momentum. This ultimately means the
centre of mass motion can be separated from the relative motion of the partons [69].

The LFWFs are nonperturbative quantities. In practice, the expansion (2.90)
can be used to model simultaneously several hadronic observables within a unifying
framework, such as the matrix elements defining the TMDs, DPDs, PDFs, etc. [82].

2.7 Summary

We have presented an overview of selected topics relevant to the study of the hadron
structure. This will serve as introductory material for the rest of the dissertation. An
important consideration arising from the previous sections regards the versatility of
the concept of parton correlators inside hadrons. The definition in terms of hadronic
matrix element containing fields operators is extremely general, and it is indeed used
in many contexts where one needs to specify the hadronic part in the factorized cross
section formulae.

The operator definition derived from the diagrammatic approach needs to be com-
plemented with Wilson lines to ensure gauge invariance, and this affects the univer-
sality of the correlator, which becomes process dependent in the TMD and DPS cases.

The correlators can be decomposed and parametrized in terms of functions that
encode all the nonperturbative aspects of parton dynamics inside the hadron. These
functions are related to the final state distributions and can be extracted in several
processes.

Each correlator entering a hard scattering contains a hadron state. This is a
cumbersome complication because an explicit procedure to derive the hadronic wave
function is not know. A convenient formalism is then the use of the LEWFSs, frame-
independent quantities in terms of which all the partonic functions can be expressed.
This would represent a unifying way of describing the hadronic observables in the
seek of complete knowledge of hadron structure.
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Chapter 3

Quarks and gluons in
polarized hadrons and nuclei
of spin < 1

3.1 Introduction

In this Chapter, we discuss the parametrization of the TMD correlator of quarks and
gluons in terms of transverse momentum-dependent parton distributions (TMDs),
starting from the matrix elements (2.47) and (2.48).

The decomposition of the correlators in terms of relevant structures allowed by
symmetry, multiplied by nonperturbative functions (TMDs), is an advantageous pro-
cedure. In fact, it enables us to single out the relevant quantities that contribute to
the cross section of a selected process. The complete parametrization of the TMD
correlator for quarks, including the T-odd structure, was given in [83] for spin-1/2
hadrons, and complemented in [84,85] with the tensor polarization part (relevant for
spin-1 and higher). As far as gluons are concerned, the first parametrization was per-
formed in [86], followed by [87]. The latter focused on spin-1/2 targets, and we recently
extended the parametrization for the complete spin-1 case in [88].

The study of the gluonic content of hadrons of spin higher than 1/2 and nuclei
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Chapter 3 - Partons in polarized hadrons of spin < 1

has been recently attracting attention also from the experimental and lattice commu-
nity [89-91]. Looking at new gluon distributions, which are not related to the ones in
the nucleons, can become very interesting for instance to study ezotic (non-nucleonic)
effects in the binding of nuclei.

The results we present on gluons are based on [88,92,93]. In particular, we include
the definition and parametrization of a different type of correlator, the Wilson loop
correlator, which is connected to the gluon correlator in the small-z domain [88]. For
completeness, we also include the well-known results on quarks.

3.2 TMD correlators for polarized hadrons

We present the leading-twist expansion of the TMD correlator. The dependence on
the transverse components of the parton momentum and the additional degrees of
freedom linked to the polarization of the target are responsible for the significant
number of functions appearing in the parametrization. We consider targets of spin up
to 1. We begin by reviewing the general features of the parametrization valid both
for quarks and gluons. Throughout this Chapter, a Sudakov type of decomposition
for the four-vectors is employed, as explained in Section 2.2.

Target spin: 0, 1/2, and 1

In quantum mechanics we describe mix states by means of the density matrix p,
defined as follows:

p = pili) (. (3.1)

where |i) are pure states and p; is the probabilities of finding the particle in the spin
state |i). The density matrix of a spin-1/2 hadron which is not in a pure state can be
written as:

pz%([—i—Swr), (3.2)

where o = (0!, 02, 0?) are Pauli matrices and the vector § = (S1, 5%, 5%) is identified
as the spin vector of the particle in cartesian coordinates. A generalization of spin
vectors into a covariant form can be obtained by defining the spin in the rest frame
as space-like four-vector S* = (0, S). In the rest frame (and in any frame) one has
P -S =0. A possible parametrization is:

PH
S = SL 77 + Sf — MSpn. (3.3)
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The decomposition of the density matrix for a spin-1/2 particle can be generalized
for spin-1 particles. In fact, one needs a Cartesian basis of 3 x 3 matrices formed
by the identity matrix, the three-dimensional representation of the Pauli matrices
3" (generalized Pauli matrices), and the five bilinear combinations % = (7% 4
3J%%) — 26%. The density matrix has the form:

Wl

3 .. o
p= <I + 55121 + 3T”E”> , (3.4)
where the components S? of the vector S are defined as previously and represent
the vector part of the spin. The tensor part of the spin state is represented by the
symmetric traceless tensor T%. The generalization into a covariant form is achieved
by demanding P, T#" = 0. The parametrization reads:

12 4 prpv  sipn
Tﬂuzi [3SLL9#U+3SLL M2 + M +S§L—v;
4 {p, v} {m v} 4 2 gV
—gSLLP n —MSLTTL +§M Srrntn”|. (35)
The density matrix takes the form:
%+ STL + SgL 55"27;:1; + SETz—\/%SiT S;?;ZS;yT
ST+iS7 Spr+iSt, 1 2SLL Sp—iS% Str—iSir
p(S,T) = vz T avs 3773 22  2V2
Str+iSry ST+iSy _ Spp+iSi, LS. 4 Spr
2 22 2v/2 3 2 3

(3.6)

The use of the spin density matrix allows one to include the target spin in the

description in a Lorentz invariant way. The procedure is very general and can be
extended to higher spin in an analogous way [94].

Symmetric traceless tensors

Both for quarks and gluons we write parametrizatons for target spin up to one, and
employ symmetric and traceless tensors (STT) ki-i» that are built from the partonic
momentum k,. We use the metric tensor in transverse space defined as gh” = g"¥ —
Pirn¥} (curly brackets denote symmetrization of the indices), with nonvanishing
elements gl! = ¢g22 = —1. Up to rank n = 4, the tensorial structures are given

by:
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Ed =k kD 4 k2gT, (3.7)
k¥ = kLR EE + k:2 (99 K5 + g3k + g2 kL) (3.8)
kzgkl — kz k] kkkl + k2 (gzjkkl +gzkkjl +gllkjk %kk;} +g;lk;k +g§lk§?)

- gki (g?gT +9 gl + gilglt), (3.9)
satisfying
gszk gTz]kl k - ngij]kl 0~ (3.10)

From this decomposition of the Lorentz structures it follows that the functions
involved in the parametrization are twist-2 TMDs of definite rank. This has the ad-
vantage that there is a one-to-one correspondence between the functions defined in k.
space and the correspondent ones that depend on the Fourier conjugate variable b.
This property turns out to be very convenient for the TMD evolution equations [95].

Twist expansion

Once the contributions allowed by symmetries are derived, the goal is to develop a tool
to classify these terms, in order to recognize the important ones in the cross section
calculation. In other words, one needs to identify the relevant expansion parameter
that estimates the importance of each term of the correlator. This is why we need to
introduce the concept of twist.

The twist expansion was first derived in the context of the Operator Product
Expansion (OPE), proposed by Wilson in [96]. The OPE can be used to write a
nonlocal operator A(x)B(0) (e.g. the operator that enters the hadronic tensor) as an
expansion on a basis of local operators O, () with (singular) coefficients that depend
on the nonlocality, as long as the distance |z| in spacetime is small [15], i.e.

/d4xe“1 T (P A(z) Zc Y(P| O, |P). (3.11)

The crucial point is to determine which operator in the expansion contribute
the most. When applied to the DIS hadronic tensor, the singular coefficients are

proportional to:
do—n—2
MY “°©
2y o2
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3.3 Parametrization for quarks

where
t = do —n = “dimension — spin”, (3.13)

is the twist of the local operator O, and governs the relevance of the operator in the
expansion as powers of (M/Q).

Since the definition of twist is formally related to the validity of the OPE proce-
dure, such expansion is in principle allowed only for the hadronic tensor of DIS, where
22 ~ 0 (light-cone dominated) and e*e~, where x ~ 0 (short-distance dominated). In
general, the formal derivation cannot be extended to all cases and, strictly speaking,
it is not applicable to the Drell-Yan hadronic tensor.

However, the concept of twist can also be used in situations where the OPE does
not hold true, and we hereby adopt a working definition of it. In [97] it is called
twist the order in M/Q at which an operator contributes to the cross section of the
high-energy process. It is based on the realization that one can order the operators
by means of power counting, namely by counting the factors of mass M introduced in
the parametrization in order to respect the mass dimension of the correlator. A twist
t operator results in a contribution of the order

(g)t_z (3.14)

to the cross section. The lowest order in the twist expansion is referred to as twist-
two, while sub-leading terms are twist-three and higher. Throughout the Chapter, we
only deal with twist-two contributions and omit any higher-twist structure in all the
parametrizations we will present.

3.3 Parametrization for quarks
We denote the leading-twist TMD correlator as:

®(z, k) = Y2, kpin, P, S, T) (3.15)
= / d(gér);d;’%eik{ (P, S, T|¥(0)U(0,&)(&)|P, S, T) ,

£+=0

where we indicate the dependence on the lightlike four-vector n, considering that in
high energy processes one has staple-like gauge links running along the light-front
(&n = 0) via lightlike £-P = +oo0.

We show the complete parametrization for quarks in hadrons of spin up to 1, using
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Chapter 3 - Partons in polarized hadrons of spin < 1

symmetric traceless tensors [98], in a slightly different way as the original works [83—
85], where the STT form was not employed. The correlator is organized in terms of
target polarization, and schematically reads:

=Py +O, +Pr +Pr; +Pr7 + Prrp, (3.16)

with obvious meaning of the subscipts U, L, T, LL etc.. The decomposition reads:!

voteden) = 3 [P + LBt )] .17
buonks) = 351 bt k) + Bl .19
Brlo ) = 2| TP k) 4 By o k)
# B Pl o) = Sl Pl ) (3.19)
Qrr(z,kr) = %SLL [PfML + [kQT]’\f]thLL(xaki)] ; (3.20)
Srr(v,kr) = % _kq}\fT Phior(z k2) + e%\jT Pysgior(z, k3)
+ Mihuﬂ% kZ) — W}lﬂﬂ% ki)] ; (3.21)
Opr(z, ky) = % :WPflTT(kai) - %&%Pﬂmﬂkai)
BB P oy 4 S Pt )] 22

where we use the notation }épSp = v.k"*S,, and analogously for the other contrac-
tions. The transverse antisymmetric tensor is defined as €5’ = ™" with nonzero
components €12 = —e2! = 1. The f-type functions represent unpolarized parton struc-
tures, while g- and h-type functions are polarized distributions. Unless otherwise spec-
ified, the full dependence of the functions of the renormalization scale p is understood.
This aspect will be discussed in Chapter 5, where we implement the QCD evolution
of the unpolarized TMD f;(x, kr), as well as the correspondent collinear function in

'We define the transverse four-vector a% to have light cone components (0,0, ar), where ar is a
two-dimensional vector on the transverse plane. This implies e.g. that a2 = —aZ.
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3.3 Parametrization for quarks

Unpolarized Longitudinal Transverse
U f hll
g1 hf'L
T fir gir hi, hip
LL firr hir
LT firr g1LT hirr, by
TT firr 9ATT hirr, hipr

Table 3.1: Summary table of the quark TMDs in polarized targets of spin up to 1. The rows display
the target polarization (unpolarized, vector and tensor polarized) and the columns refer to the quark.
Bold-face functions survive integration over transverse momenta and have a collinear correspondent.
We do not display the collinear T-odd function h;ip7 with bold-face, see main text.

a model calculation using AdS/QCD. In table 3.1 the functions are organized and
divided according to the quark/hadron polarization.

Integration over transverse momenta

Integration over transverse momenta forces many functions to vanish. The collinear
correlator can be parametrized as follows:

O(z; P,S,T) = % Pfi(z) + SpysPoi(x) + Mlﬁ(ﬂf)

2
[$LT7P]

5 ihipr(x, k2)| (3.23)

+ SpePfioc(x) +
where fi(z) = [d*kr fi(z,k2), and similarly for the other functions. The quark
PDFs for spin-1/2 target are historically the first quantities studied to investigate
the hadronic structure. They represent the distribution of quarks in the longitudinal
momentum space of unpolarized (f1), longitudinally polarized (gi, also called Af),
and transversely polarized (h1) quarks in the proton. The spin-1 case has an extra
collinear function, in our notation called fir;. This function is usually referred to as
the by function of [99] and is particularly attractive because it contains non-nucleonic
degrees of freedom that are detectable in the nuclei. We include the collinear function

49



Chapter 3 - Partons in polarized hadrons of spin < 1

hipr which is T-odd and simultaneously survives integration over transverse mo-
menta. At first order, in the framework where we operate the function A1y appears
to vanish due to the gauge link structure and the behavior under naive time reversal
transformations. However, the complete analysis of the gluonic pole matrix element
associated with this function partially discussed in [50], might also contradict this
statement.

3.3.1 Quark TMDs phenomenology

The intrinsic motion of partons inside the proton is responsible for the specific depen-
dence of the cross section on an azimuthal angle. The various correlations encoded in
the TMDs translate into azimuthal or spin asymmetries of the measured cross sec-
tion, which are calculable assuming the validity of factorization theorems and whose
measurement gives indirect access to a variety of TMDs (both distributions and frag-
mentation functions).

Experimental information on the TMD functions is restricted to few functions,
and for unpolarized and vector polarized targets, while no data are available for the
functions related to tensor polarization. We refer to the reviews [67,100] and the
dissertation [95] for a fairly complete overview of the status and perspectives of TMD
phenomenology.

The unpolarized TMD f; is, at present, the best known TMD function. Reaching
an increasingly better accuracy in the extraction of the unpolarized TMD is surely im-
portant on its own, but particularly because its value enters in the definition of all the
asymmetries. Data on the unpolarized function are extracted from several processes
in the facilities across the globe: from SIDIS at HERMES and COMPASS [101,102],
from DY at Fermilab, and from Z boson production at LHC and Tevatron [103].
The development of the formalism and the availability of experimental data on the
nucleon led to recent extractions which are boosting the knowledge of the f; to the
level of precision physics [104-109]. The second most known function is the Sivers
function flLT, followed by the transversity hi, the Boer-Mulders hi and pretzelosity
hiz [100]. Almost no experimental information is available for all the other functions.
Worth mentioning is the history of the Sivers function fi5. It was first introduced
by Sivers [110], but later in [111] it was argued to be vanishing using time-reversal
symmetry arguments. After the calculation in [112], it became clear that the Sivers
function does not vanish thanks to the presence of the Wilson lines. The asymmetry
arising in the angular distribution of the produced particles in processes involving
transversely polarized targets was eventually calculated in [113], and this was subse-
quently called the Sivers effect. As a direct consequence of the presence of the gauge
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3.3 Parametrization for quarks

link, the quark Sivers function (likewise all the other T-odd distributions) is not uni-
versal, as mentioned in Section 2.5. In particular, as a consequence of (2.64) one has:

S @, k2) = — i (@ ), (3.24)

which is equivalent to saying that the Sivers function enters the cross section for-
mula of SIDIS process (future-pointing gauge link) with an opposite sign than the
Sivers function that enters the Drell-Yan (past-pointing gauge link). The first ex-
perimental measurements of the Sivers asymmetry were performed by the HERMES
collaboration [114], and the measurements of the sign-change in (3.24) is at present
one of the focus of the programs at the COMPASS-II experiment at CERN, at RHIC
(BNL) [115] and at Fermilab [116,117].

Similarly to the Sivers, the functions hi, gir7, 9177, hfLL, hir, hfLT, thT,
hiz are odd under naive time reversal transformations (7-odd). The Boer-Mulders
function hi-, first defined in [51], is related to the density number of transversely
polarized quarks in an unpolarized target in the current program of COMPASS. This
T-odd function is a h-type function, which means that it is also chiral-odd because
it describes a flip in the quark chirality. Likewise all the chiral-odd quark functions,
their study is limited to those processes where they can couple with another chiral-odd
structure, being a TMD PDF (double Boer-Mulders effect in Drell-Yan) or a TMD
fragmentation function (the chiral-odd Collins function, for instance in SIDIS [118])
or with a mass term.

Almost no information is available for the tensor polarized functions, except in
the collinear case. The function called here fi; is related to the structure func-
tion called by in the deuteron. This was the object of a study by Hoodboy and Jaffe
in [99], where, for the first time, was pointed out that in high-energy processes involv-
ing spin-1 hadrons one can define collinear quark structure functions (called b1 2.3 4)
that can be measured in experiments of inclusive deep inelastic scattering of an elec-
tron off a tensor polarized target. The extraction of the function b; for the deuteron
was performed by the HERMES collaboration in 2005 [119]. The data collected and
the parametrization proposed [120] deviate significantly from the standard theoret-
ical predictions [99,121-123], both for the x behavior and the magnitude, although
the experimental uncertainties leave room for improvements. This suggests that, for
the deuteron, dynamics beyond quarks and gluons confined within the individual nu-
cleons is needed to describe it. More measurements of b; will be performed as part
of the 12 GeV program at Jefferson Lab (JLab) [124]. Ideally, information on other
spin-1 targets such as (virtual) p mesons would allow us to thoroughly study such
different quark contributions and dynamics [65]. However, this is currently beyond
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Chapter 3 - Partons in polarized hadrons of spin < 1

any experimental reach.

3.4 Gluons in polarized hadrons and nuclei

Whereas considerable knowledge has been acquired on the quarks over the past
decades, understanding the gluonic content of hadrons is a challenging task far from
being accomplished. Gluon observables are typically overwhelmed by the valence
quark ones, as far as present experimental facilities are concerned. However, at higher
energies, the gluon (and the quark sea) distributions become important, and they
need to be studied in details [125].

The gluon TMDs are relevant for processes where the hard scattering is initiated
by gluons rather than quarks. An example is the gluon-gluon fusion that leads to the
production of a colorless final state (for example the Higgs boson). More generically
one can have a partonic scattering involving gluons (or mixed quark/gluon distribu-
tions) resulting in the production of jets, or hadrons or photons at high transverse
momentum.

The dominance of gluon quantities occurs in experiments which probe a region
of low fraction of momentum =z, as planned for the future Electron-Ion Collider
(EIC) [126,127]. Relevant small-x regions are accessible also when the centre of mass
energy of the collisions increases, as expected for the LHC within the high-luminosity
program. A new program of QCD precision physics will then be possible, in which
the gluons will play a very important role.

An interesting and even less investigated aspect is the gluonic structure linked to
the polarization of the target of spin < 1, where non-nucleonic dynamics becomes
accessible. The inclusion of tensor polarization, related to particles of spin larger than
1/2, could yield new insights into the internal dynamics of hadrons and nuclei.

3.4.1 Gluon correlation function

In 2001, Mulders and Rodrigues presented the first parametrization of the gluon
TMD correlator at twist-two [86], considering both unpolarized and vector polarized
hadrons, relevant for target of spin 0 and 1/2. In Ref. [88] we extended the analyses of
refs. [86,87] by parametrizing the gluon correlator for unpolarized, vector polarized, as
well as tensor polarized hadrons. In the same work, a connection between the gluon
TMD operator, calculated at small-z, and the Wilson loop operator, that will be
defined later in Section 3.4.3, was explored. A systematic way of naming the various
TMDs was used, keeping and extending the notation proposed in Ref. [87].
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3.4 Gluons in polarized hadrons and nuclei

The parametrization of the unintegrated correlator

UU uvspo (1.. Y = d47k ik-& 2% po !
r (k; P) = ami° (PIF*(0)U(0,)F?7 (UL 0)|P)  (3.25)

is constrained by hermiticity and parity conservation and respects the relations in-
duced by time reversal (see Section 2.5). This is a fundamental criterion to perform
a first decomposition in terms of the allowed Loretz structures, which, in the unpo-
larized target case, explicitly reads:

v’ VP9 (ks Pon) = M2A, Guuaﬁepaaﬁ 1+ A, p[ugl/][ppff] + A k[ugv}[pkd]

+ (A4 +i45) plegillegel 4 (Ag —iAs) ke gVlle pol

+ (Ag/M?) PP Rel 4 M4 AL plt g o]

+M2( g+z’A§)P[“g”Hpn"] + MQ(AQ _ iAg)n[”g””pP”]

+ MP (Al +iAL) kg PRl + M2 (AL — iAYy) nltg PR

+ M2 A, PlepIPlensl o N2 A, krn T ElPn]

+ (AL, +iAL) PlrgYiplensl 4 (Ah, —iAlL) PlrnYl plegel

+ (AL +iAL) Pl Elend 4 (AL — i AL klnv Pl ko)

+ M?(Alg +iA}g) PlinIglon?)

+ M?(Alg —iALy) keI Plenel, (3.26)
where A; = A;(k-n, k-P,k?). Relevant mass dimensions are [['] = —2 and [4;] = —4.
Terms with coefficients Az, Aj, A}, Als, Al7, Alg are T-odd. A prime on the coeflicient
indicates that the corresponding Lorentz structure includes the four-vector n. These n-
dependent structures give rise to higher twist TMDs (see ref. [128] for the analogous
case for quarks) and will be omitted in the following, as we are only interested in

leading-twist functions. For the same decomposition of the correlator when vector
and tensor polarization are considered, we refer to Appendix B and [88].

Integrating eq. (3.25) over k-P leads to the TMD (light-front) correlator (2.48).
By counting power of M/Q as explained earlier, the leading-twist terms are identified
as the ones containing the contraction of the field strength tensor with n and one
transverse index (i, j = 1, 2). Explicitly indicating the dependence of vector and tensor
part of the spin, the correlator is then:

T (2, ky) = TOVIMm (3 o Pon, S, T)
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2
= [ RS T P 0) U(0.9) PO U 0) P S.T) L B

where a trace over color is understood and we omit the dependence on the gauge links
unless needed. After the separation in terms of the possible hadronic polarization
states, the correlator in eq. (3.27) can be schematically written as:

9 =T& +T%9 4T 4179 419 4179, (3.28)

The parametrization in terms of TMDs, separated in different polarization reads:

M (oken) = & |- g (o k) + L k)} , (3.20)
MY k) = s (o) + ek St hﬁ(aki)} , (3.30)
Por) = | EO k) RS k)
B eiT{isi}4Le§T{ikﬂT'} k) W th(:v,ki)] s
Oy k) = 5 [g;jsu fonte k) + 58 o k)] (3.32)
Do) = 3 [— DRESIE o)+ T e k)
PSRk S ki)} , (339

ii ied el kX*Str
(e, kr) = frrr(z, k2) + — T7M2 8 girr(z, k)

g;jk‘?BSTTaﬂ
M2

N8

ij 2 Si{“ZT ijl}a 2
+ SIJT thT(xa kT) + W thT(xa k:T)

k;"]aBSTTa,B

T b (o, K2 (334)

where there is a implicit dependence of the TMDs on the gauge link, i.e. f{’[U’U’] (v, k2).
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3.4 Gluons in polarized hadrons and nuclei

We omit any label on the functions that refers to gluons, being understood that we will
only discuss the gluons in this Section. We also omit the dependence of the functions
on the renormalization scale.

To be more precise, the polarized correlators that is parametrized in (3.30)-(3.34)
are in fact defined as:

ATH#7 (3, Ky P, S) = = [P (2, ks P, S) — TH7 (2, Ky P,—S)],  (3.35)

1
2
and

_ 1 _
AT (@, ks P,T) = 3 [0 (2, ks P.T) = D0 (2, ks P, =T)], - (3.36)

but we will not use the notation “AI'” throughout the thesis for the sake of simplicity.

The expressions of the TMDs in terms of the coefficients A; can be found in
appendix B. The functions hi;, fiz, gioT, 9171, b1, and hiz are T-odd. The link to
the more traditional parametrizations of [86,87] is found in [88], and is based on the
following identity:

i Lita i 1 i j i
kD80 = Tk S, + (K2 (SPET 4 1P 5T) . (3.7)

The function hy is a rank-1 function, hyr of [87] contains both rank-1 and rank-3
pieces, and hiy is a rank-3 function.

Integrating the TMD correlator in eq. (3.27) over transverse momentum, we obtain
the collinear correlator:

Pia) = [ S 6 (P S T PO U g () Uy [P S.T) (3.3%)

&n=€£r=0

The parametrization of this correlator in terms of collinear PDFs is given by

Tii(g) = =

5 [— 93 f1(z) + i€ Sp g1(x) — g4 Spr froo (@) + Sip thT(I)] - (3.39)

The surviving collinear PDF for vector polarization is the rank-0 function g,
where we have omitted the subscript ‘L’ on g1 = g1, while in the tensor polarized
case two more function fir,(x) and hypr(x) survive. The former function is analogous
of what was called b; in the quark case, and the latter function shows up in the
structure function A(z) discussed in ref. [129] and is called AyG(z) in ref. [130]. The
gluon structure function A(z) and, equivalently, the PDF hipp(z) are related to the
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Chapter 3 - Partons in polarized hadrons of spin < 1

double-helicity flip scattering amplitude in processes involving hadrons of spin > 1. At
the parton level, hipr(z) represents the distribution of linearly polarized gluons in a
transversely tensor polarized target sometimes referred to as “gluon transversity” [89—
91]. An overview of the functions in terms of target/gluon polarization is shown in
Table 3.2

3.4.2 The gluon correlator at small-x

The gluon TMD correlator greatly simplifies in the small-z limit for the so-called
dipole-type gauge link structure [+, —], as shown in [88,131]. In particular, in [88]
we elaborated on the link between the gluon correlator at x = 0 and the operator
depending on the same [+, —] gauge link structure, where the gluon fields are absent.

The relation reads:

g d¢-Pd“&r -
o k) = [ BT s o o) o) P U P

(271-)3 [0.¢] &-n=k-n=0
_ 1 d§ Pd gT lk{ ni [+] nj [—]
- 27rL/ (2m)3 (PLE(0) Upg F™(6) Ue ) 1P P ——
4 Per g i [+ i (-]
= 50z | G PIGRO UL GO Uy P) . (3.40)
Eventually we can write [88]:
ke k2,
Pl 0, ky) = S i (k,), (3.41)
where L = [d¢-P =27 §(0) and we defined:
= PEr ke [+ eyl
0 (g, = / o TP © U P (3.42)

The latter is called Wilson loop correlator and it will be properly defined in Sec-
tion 3.4.3 (see eq. (3.46)). The loop is built from a future and a past pointing staple-like
gauge link, that enter the rectangular Wilson loop UM = U[[(Ii] U[[E_»(]J]' More generi-
cally, one can write a loop as the square of the form O(0)OT(¢) for a specific nonlocal
operator O as follows:

O
U = UL o 07500,00) Ubo 000,01 Voo s— 50,621 Ul 0,060,071
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3.4 Gluons in polarized hadrons and nuclei

T n T
= (U[foo,ooT;foo,OT] U[foo,OT;oo,OT]U[oo,OT;oo,ooT])

T n
% (U[_oo,mT;_oc,gT]U[_

T 1
0°7§T§007§T]U[00,§T;00700T]) . (343)

In the last step of (3.40), we use the results in eq. (15) of ref. [48] to calculate
kikiTo. We performed one partial integration in 0 and the other in ¢ and used the
relevant gluonic pole factor C’gj(]; =4.

As will be shown in Section 3.4.4, the above results agree with the results in [47,131]
and implies a relation between gluon TMDs at £ — 0 and the TMD functions that
parametrize the Wilson correlator (see Section 3.4.3)

3.4.3 Wilson loop correlator

We define the fully unintegrated Wilson loop operator as:

v’ _ [ 4

06" (s ) = / @) e (P|Up Ui 0 1P) (3.44)

where we implicitly include color tracing. The absence of the gluon fields and the

structure of the loop on the light-front still allows integration over k- P, and invariance

in the &P direction implies a delta function §(k-n):
dg'Pd2£T ik-€

v _
I‘([) ](w,kT;Rn) = /We (P| U[o,g]U[lg,o] |P)

= 5(2) TV ey P ), (3.45)

&-n=0

where the loop correlator integrated over k-P and k-n is given by

, &2e.
8" ey Pon) = / £ (P Uy Ul P) (8.46)

(2r)?

&-n=0

Bearing in mind the proportionality to the longitudinal extent L of the loop,
L= [d¢-P =2m6(0), the light-front correlator in eq. (3.46) is parametrized in terms
of TMDs as follows (we suppress now the dependence on P and n) [88]:

wL eprhr
P () = 25 fe(k2) + o en(k2) + Spp evr (K2)
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kr-Scr k22 Srre
= err(k2) + TTQB err(k2)| . (3.47)

An overview of the Wilson loop functions in terms of the target polarization is
given in Table 3.2.

Unpolarized Circular Linear Wilson loop
U fi hi e
L g1 hit
T fiz gir hy, hip er
LL firr hirr err
LT firr giLt hirr, hfLT LT
TT firr qirT th";;thlLTT err
ITT

Table 3.2: Gluon and Wilson loop TMD functions, divided in terms of target polarization. The
bold-face functions survive integration over transverse momenta. The functions in column 2, 3, and
4 are gluon TMDs and have dependence f = f(z,k2), whereas in column 5 the functions read
e = e(k2).

Similarly to the gluon case, the object that is parametrized is defined as:
’ ]_ ! ’
AT (kg PoSim) = 5 [T (e PoSin) =00 s P=Sim)| . (3.48)

and
’ 1 ! i
ATV (keys P T, 0) = = {rﬁ}*” ks P T, 0) — TV (ke P, —T, n)} . (3.49)

but the notation “AI'y” is once again discarded for simplicity.
3.4.4 The correspondence at small-z

The relation in eq. (3.41) between the gluon correlator (3.27) and the Wilson loop (3.46)
is exact for = 0. However, we can use this relation to infer the behavior of the gluon
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3.4 Gluons in polarized hadrons and nuclei

TMDs at small-z, i.e.:

i 7.0
lim T4 (2, ky) = 2F7 plo]

lim () (3.50)

In practice, we exploit the correspondence in (3.50) to obtain direct relations
between the functions in the parametrization of Section 3.4.1 and 3.4.3. Since the cor-
respondence must involve symmetric tensors, the functions related to longitudinally
polarized target do not have any relation to the e-type of functions. This implies
that g; and hi; are less divergent than 1/x in the limit of small z, given that an
enhancement proportional to 1/x at small-z is predicted for the other functions. For
each type of target polarization we find:

2 2
hm zfi(z, k%) = 2M2 hm zhi(z, k) = 2M2 e(k2). (3.51)
2
}1_>mo zfir(z, k2) = il_r)% xhy(z, k2) = 2M2 hm xhip(z, k2)
= D i whr (e k2) = T en(i2), (3.52)
2 IH%J rnyT\x 2M2 .
k2 k2 ,
hm rfipr(x,k2) = ik hm whip (z, k%) = WE err(kZ). (3.53)
. 2 . 2 kS 1 2 7 2
J%I—>HIO xflLT(mva) = PL% xhlLT(kaT) = _47]\;2 ;l_r)% xhlLT(kaT) 4M2 eLT(k )
(3.54)
. 2M? 1.
Y o frrr (@, k) = - iy ahirr (o, k) = =5 limy whizr (v, k2)
k2 k2
hm chizr(z,k2) = err(k2). (3.55)

T 6MZa 6M?

The relations (3.51)-(3.55) are valid modulo resummation of large logarithms in
1/x and higher twist effects.

The results (3.52) for the transversely polarized target are in agreement with [131],
where the enhancement at small-z was investigated. For further discussion we refer
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to [88] and reference therein. We mention that such a relation between matrix ele-
ments, which is made possible by specifically considering the dipole-type gauge link
structure, has been extended to the GTMD correlator in [132].

For our purposes, it is relevant to notice that these relations serve as a guiding
criteria in estimating the relative magnitude of functions. Combined with the informa-
tion given by the positivity bounds discussed in Section 3.5, they allow to determine
whether a function is enhanced or suppressed with respect to the other functions in
the appropriate kinematical region. The latter consideration might become useful for
applications especially in the future era of the EIC [126].

3.4.5 Gluon TMDs phenomenology

Currently, the experimental information on gluon distributions is scarce and almost
completely restricted to the collinear gluon PDFs for spin-1/2 targets. Gluon TMDs
are mostly unknown because the kinematical regions in which they are relevant are
hardly accessible by present experiments.

As a matter of fact, most of the available information about gluons is at present
delivered by LHC at CERN, even though it was not initially devised for accessing the
desirable range of z-values, and from RHIC at Brookhaven National Lab. A proposal
for implementing a fixed-target experiment within the LHC facilities is currently in
progress. In fact, the realization of AFTERQLHC [133-135] would undoubtedly bring
a significant improvement to the gluon and TMD physics program at the LHC.

Most of the phenomenological studies aim at characterizing the appropriate angu-
lar distribution to access gluon distributions. The extraction of these functions should
rely on all-order TMD factorization, even though, for processes initiated by gluons,
factorization breaking effects are often present [17-21], for instance for hadroproduc-
tion in pp collisions. In general cases, to avoid factorization breaking complications
due to color entanglement, color-singlet configurations in the final states have often
been considered.

On a different note, it is important to stress that the extraction of the gluon
TMDs from different high energy processes requires to account for the appropriate
gauge link structures, shown in the panels (¢)-(f) of Fig. 2.7. Two fundamental gauge
link structures exist for gluons (WW- and dipole-type), and different processes can
probe either type or a mixture of them. For instance, the WW-type [+, +] (Fig. 2.7(d))
is related to color flow into the final state, which is the case for e.g. quark-antiquark
pair production in semi-inclusive deep-inelastic scattering [29]. The structure [—, —]
in Fig. 2.7(c) appears in processes with color flow annihilated within the initial state,
such as the pp collision with Higgs production through gluon fusion (g9 — h) [136,
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3.4 Gluons in polarized hadrons and nuclei

137]. When the color flow involves both initial and final states, the dipole-type gauge
links [—, +] and [+, —] appear (see Fig. 2.7(e) and Fig. 2.7(f) respectively). This is, for
instance, the case of the partonic processes with qg — qg and gg — ¢g contributions
respectively. When more hadrons are involved, the gauge links can be combinations
of future- and past-pointing Wilson lines, with the possibility of additional loops [42].

Thus far, a significant effort has been devoted to the study of unpolarized and lin-
early polarized gluon TMDs in unpolarized targets (f; and hi ). They have been stud-
ied through the g, -spectrum of the Higgs boson produced from gluon fusions [136—
138]. More interestingly, it has been argued that the quark-antiquark pair and quarko-
nium production at the LHC [27,29,139-142] have an even more sizable dependence
on linearly polarized gluons.

Among the other distributions, the gluon Sivers function occupies a special place.
At present, it can be studied at RHIC and COMPASS, which can provide the trans-
verse polarization of the target. The Sivers function can be accessed through the
measurement of the Sivers asymmetry in pp" — 7X at RICH and COMPASS, even
though the information in the region of small-z, that is expected to be the most im-
portant, is still mostly missing. The asymmetry measurements have the complication
that they actually give indirect information on the Sivers function [143-145], rather
than the function as arising from the proper definition in TMD factorization proce-
dure. As far as the universality of the gluon Sivers function is concerned, we should
expect a sign-change analogously to the quark case [30,143], namely:

B, k2) = — 7 @ k2); ), k2) = — 15 (e, K2). (3.56)

Among the most promising processes that can be used in the (near) future to access
it, there are ep’ — ¢’QQX, which probes fl[JTrH, ppt — y+vX, which probes fl[;_},
and pp! — ~jetX, which probes fl[;r].

Being intrinsically different, the WW- and dipole-type structures probe in principle
two distinct functions. Some of these gluon TMDs can be studied at RHIC, but
especially the future electron-ion collider EIC [126] and the fixed target experiment
AFTERQLHC will be ideal, because they will cover a kinematical region in which
gluon functions are important [125,127].

Being able to probe experimentally the low-z region dominated by gluons in its full
richness would be extremely interesting in order for the theoretical predictions to find
validations. The predictions about the reduction of the number of gluon TMDs in this
region is very interesting from a theoretical point of view. In fact, as we have discussed
in Section 3.40 and [88], the gluon correlator with dipole-type gauge links is related
to the expectation value of a single Wilson loop, confirming the results of [47,131]. It
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turns out that only a few of the gluon TMDs survive in the small-x regime, among
which the linear gluon polarization. Of course, it is crucial that any simplifications
at small-z needs first to be tested for validity. Still on the small-z domain, there are
theoretical indications that the partons undergo a BFKL type of dynamics, which only
recently started to be considered in extractions of collinear quantities [146]. Effects
like parton saturation could interestingly be measured as well [147].

Little information is available on spin-1 targets, mostly restricted to the Sivers
asymmetry of the deuteron. No information is available on the tensor polarization.
On this respect, the interest on the gluon content of nuclei is growing, even if restricted
to the collinear quantities. The collinear structure function for gluons in spin-1 targets,
called A(z), was first defined by Jaffe and Manohar in [129]. The authors pointed out
that this observable is related to a transfer of two units of helicity to the nuclear
target, and vanishes for any target of spin smaller than 1. They recognized that there
must exist a tower of gluon operators contributing to the scattering amplitude with
such a double-helicity flip that cannot be linked to single nucleons; instead, they are
exclusive to hadrons and nuclei of spin > 1. In the parton model language, A(x)
describes linearly polarized gluons in targets with transverse tensor polarization, and
it is related to the function that we called hipp. Aspects of this function (its first
moment and a positivity bound) have recently been studied on the lattice in [89,90],
and also experimental interest has been shown [91].

3.5 Positivity bounds

The correlators in eq. (3.15) and (3.27) have been averaged over the target spin states.
In order to single out the hadron spin, we can write the correlators as:

®(z,kr; S, T) =Tr (p(S,T) F(z, k), (3.57)
I (2,kr; S, T) =Tr (p(S,T) GV (2, kr)) (3.58)

where the information on the spin states of the parent hadron is encoded in the 3 x 3
density matrix p(S,T) defined as (3.6) and the combined information on the hadron
and parton spins is contained in the matrices F(x,k,) and G (x, k).

As is well known, one can impose positivity constraints on the hadronic tensor and
find a probabilistic interpretation for some of the distribution functions [148]. In this
Section we describe how to derive the positivity relations for gluons in spin-1 targets
and eventually review the quark case. Some general considerations on the positivity
bounds will follow.
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3.5.1 Positivity bounds on gluon distributions

Positivity bounds on gluon TMDs were studied in [86] for spin-!/2 hadrons and, by
applying the same strategy, we extended this analysis to spin-1 hadrons in [93]. The
starting point is the idea that the correlator I' can be seen as a 2 x 2 matrix in the
two gluon polarizations, given by I'V = p, GZ, (see eq. (3.58)), where s, s’ label
the hadronic polarization states. The quantity G is a 6 x 6 matrix in the gluon ®
hadron spin space. As we will show explicitly, G turns out to be positive semidefinite,
a property which allows for setting constraints on the gluon distributions. We will
derive bounds for the TMD case and subsequently consider the transverse momentum
integrated case. For completeness, we will also include the bounds that apply to spin-
1/2 hadrons, completing the study of [86] where T-odd functions were not included.

Bounds on transverse momentum dependent functions

In this subsection, we derive bounds for the gluons TMDs that appear in the parametriza-
tion given in eq. (3.28). We choose the same basis for the matrix G as in [86], namely
we use circular gluon polarizations, given by |£) = F % (l=) £1i]y)). At leading twist,
this matrix is given by

T A B
G=— 3.59
s\ gt oo ) (3.59)
where [93]:
. —2i¢ )2
f1+f1“‘ —g1 fM (f 9+h1LT) ET (flTT-HngT hizpr)
zd)
A= k (f*—g +h1LT) fi—fire \FM (f*-‘rg +h1LT) ,
2L¢ 2 i 7o~
% (firr—igrrr—hipT) *EfTﬁ <f+g+h1LT) f1+fl%+gl
—2i¢p,2 . —3i¢ )3 . o—didpd
Ry ye (2hL+h1LL_27’h%L) W (hipr+ihiz) _th‘TJ_T
202 _3id .3 .
B = fM ¢ (2hipr—ihy) - 2M2IC (hi=hizr) Q\fﬂfa (hizr—ihi7) )
_2h1TT flw (2]’L1LT+Zh1) - 4M2 (2hL+h1LL+2ihf‘L)
—igp ~ —2i¢ .2 .
f1+f1LL +g1 e\@Mk (f+g+h1LT) ¢ (firr—igirr—hipr)
L¢ —iby (e -
C= k (f“rg +h1LT) fi—fire *eﬁMk (f**g*JrhuT) ,
21¢> 2 i .
% (firr+igirr—hipr) *\5/5151 (f*g+h1LT) f1+fl%*gl

63



Chapter 3 - Partons in polarized hadrons of spin < 1

where for convenience we have suppressed the argument (z, k2) of the functions and
defined f = fipr +i fiz and § = gir + igipr. Furthermore, we have expressed K,
in terms of its polar coordinates (k, ¢). From symmetry considerations it follows that
the block C'is the parity transformed of A and the off-diagonal blocks are Hermitian
conjugates.

To make the properties of the matrix G more apparent, we write its elements in
the following form:
. dé-P d? . ) )
Gk = [ TGS SR P F0) () (i)
| 2r)? o

= Z (P E™(0) | Py 5)" (Pn] F™(0) | P; ')
X §(Ppn—(1—2)) 6 (Puy +ky), (3.60)

where we inserted a complete set of momentum eigenstates {| P, )}. Eq. (3.60) states
that, in any basis, the diagonal elements are given by absolute squares. In particular,
it follows that the eigenvalues of G in eq. (3.59) must be > 0, or, equivalently, that G
is positive semidefinite. This can be used to set constraints on the TMDs. Diagonal-
ization of the full 6 x 6 matrix would involve a relation between all the functions at
the same time and it would not be ideal for applications. We rather restrict ourselves
to finding the eigenvalues of the 2 x 2 principal minors, a procedure which would
provide less strict bounds. Due to the symmetry properties of GG, some minors yield
the same bounds. From the independent minors we derive 9 inequalities:

2
21;\;'2 \hi = hipol < fi = fioe, (3.61)
k3 1 1 fier fir
1M [4(h1)® + (201 + hip)’] < (fl ) (fl —91> ., (3.62)
2
oipz (1 +4hier) < (fi = fieo) (fl fiie +91> 7 (3.63)
6
SI;;G [(hiz)* + (hizr)?] < (f1 = firr) (fl fis 91) , (3.64)
k7

[(fir + 1e7)? + (fir + g1 + hazr)®] < (fr = fiee) (fl +fre 91) :

202 2
(3.65)
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2
2’;\;2 [(fir — g1er)* + (fier — ir + harr)®] < (f1 = fier) <f1 + f12LL _ 91) ’
(3.66)
lhirr| < 5 (f1 + f12LL +gl) : (3.67)
4
k S |hir| < f1+ f12LL - g1, (3.68)

4
],\24 [ngT + (firr — hirr) ] (fl flLL ) (fl firz —91> . (3.69)

Finally, we also include the bounds that apply to spin-!/2 hadrons. This case has
been discussed already in [86] excluding the T-odd TMDs. The parametrization of
the correlator for a spin-1/2 hadron is given by the sum of the terms (3.29)-(3.31).
The density matrix is now parametrized in terms of the spin vector only and it is
a 2 x 2 matrix in hadron spin space. Using the decomposition in eq. (3.58), G is a
4 x 4 matrix in gluon ® hadron spin space and its explicit form (that does contain
the T-odd functions) is given in [86]. From that matrix we can extract the following
bounds from its 2 x 2 principal minors:

lg1] < f1, (3.70)

4’;\34 [(hi2)* + (h)°] < (fi +91) (i = 90), (3.71)
|kT‘ ha] < fi + g1, (3.72)

|k | 5 [hirl < fi = g1, (3.73)

kié [(f%T)2 +gir] < (fi+90)(h — 1) (3.74)

Upon omitting tensor polarization (and discarding all functions related to it) in
bounds (3.61)—(3.92), which is mathematically equivalent to considering the spin-
1/2 case, one obtains a set of bounds that is less strict (but consistent with) the
bounds (3.70)—(3.74). In general, these less strict bounds can be sharpened upon con-
sidering the eigenvalues of higher-dimensional principal minors. We stress that the
dependence on the gauge links and on the renormalization scale is understood. How-
ever, further comments on the consequences of these dependences on the bounds will
be given in Section 3.6.
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Bounds on transverse momentum integrated functions

We now turn to the transverse momentum integrated case, i.e. we will establish re-
lations between the collinear PDFs appearing in eq. (3.39). This case was covered
in [92]. The 3 x 3 blocks of the matrix G in eq. (3.59) are now given by:

fi+ L — g 0 0 0 00
A= 0 fi— fire 0 , B= 0 0 01,
0 0 fi+ D22 4ogy —2hirr 0 O
f1+f12““+91 0 0
C= 0 Ji— fire 0 )
0 0 h+iE-a

where we have suppressed the argument (z) of the functions. From integration of
eq. (3.60) over transverse momentum, it follows that G is positive semidefinite also in
this case. In contrast to the TMD case, we can easily diagonalize the full matrix and
we obtain the following three bounds:

g1 < i+ fl;L7 (3.75)
firr < fi, (3.76)
|hirr| < % (f1 + fl;L +g1) . (3.77)

Including also the trivial relation f; > 0, these inequalities hold for any process, as
PDFs are universal. In the spin-1/2 case, one simply has the bound |g1| < f;.
Recently in [89] the first moment of a bound analogous to (3.77) was studied on
the lattice considering a ¢ meson (s5). The bounds (3.75)—(3.77) will be relevant e.g.
for the extraction of A(x), which has been proposed to occur at JLab using nitrogen
targets [149], and which could also be achieved within the program of the EIC [126].

3.5.2 Positivity bounds on the Wilson loop correlator

In this Section, we will consider bounds on the gluon TMDs in the small-z kinematic
region, by exploiting the correspondence (3.50). Let us derive positivity bounds for
the Wilson loop operator. In fact, also the Wilson loop correlator FED] is a spin-
averaged correlator, given by F([)D] = ps’s ngs]s' (analogously to eq. (3.58)). Inverting
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this relation, we find that G([)D] is given by

e e Pk . e 2102
e+ &L eI (erT + ier) 1z eTT
GED] = LL <k (err — ier) €e—erLrL ek (eLr —ier) )
M2 V2M V2M
e2ib L2 ek . erLrL
z o eTT —VBM (err +ier) e+ =5

(3.78)
where we have suppressed the argument (k2) of the functions. In analogy to eq. (3.60),
we can write the elements of G([)D] in the following form:

O d2£T —ikp-
G([) s]s'(kT) = / @n)? e tkr&r (P; 3| yH] |P;s") -

T n T Lo\ *
= Z <Pm| U[oo,ooT;oo,OT] U[OO,OT;—DO,OT] U[—oo,[)T;—oo,ooT] |Pﬂ S>

T n T
X (P U[OO7°°T;<>O70T] U[O°70T§—0070T] U[—N70T§—0°:°°T] |P; S/> £n=0

X 6 Py + ko), (3.79)

where we inserted a complete set a momentum eigenstates {|P,,)} and we used (3.43).
From eq. (3.79) it follows that GgD] is positive semidefinite, thus its eigenvalues must
be > 0. To establish bounds for the Wilson loop TMDs, we again restrict ourselves
to two-dimensional principal minors. We obtain the following two inequalities:

k2
i (h+ehr) < (e—ewr) (e+ E5) (3.80)
k:2
a2 lerrl <et QLTL. (3.81)

Applying the small-z limit to the bounds (3.61)—(3.92), one indeed recovers the
bounds (3.80) and (3.81). Besides these two bounds, we also have e > 0 (this fol-
lows from eq. (3.43)).

The case of a spin-1/2 hadron follows straightforwardly. The parametrization of
the Wilson loop correlator for spin-1/2 hadrons is given in terms of the two functions
e and er. In this case GBD] reads:

ie” "k
o _ 7L € ™ T
S VEN (PR ! (3.82)
T °T ¢
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from which we can derive the following upper bound for er:
k
% ler| <e. (3.83)

Note that upon omitting tensor polarization and discarding all functions related to it
(this is, in fact, mathematically equivalent to the reduction to a spin-1/2 description),
the bounds (3.80) and (3.81) reduce to a bound that is consistent with but less strict
than (3.83). We can also obtain (3.83) by applying the small-z limit to the bounds
for spin-1/2 hadrons given in (3.70)—(3.74).

3.5.3 The quark case

Positivity bounds for quark TMDs and PDFs in hadrons up to spin-1 have been
derived in [85,150,151]. Starting from (3.58), on similar lines as Section 3.5.1, one has
to construct the 6 x 6 matrix F'(x, kr) in the quark ® hadron polarization space. This
matrix is positive semidefinite and an equation similar to (3.60) can be obtained for
the quark case as well. Afterwards, the calculation of the bounds is straightforward.
The 9 independent inequalities on quark TMDs read:

| [* < < ) <f1+ g - flg), (3.84)

2]\;2 lg1r + fror]? < (fl + flLL) (fl +4g1— flgLL) ; (3.85)
2];\;2 lg1r — fror]? < (fl + flLL) (f - g1 — f13LL> ; (3.86)
% |ty < (f1 + 2f§”) g flg) : (3.87)
]I\ZethTQ < <f1 — g1 - fl?fL) : (3.88)
J’\% (/}% + 2}11;“)2 (f1 QfQLL) : (3.89)
4];\;2 hirp < i (f1 vt 13“)2, (3.90)

k2 i\
s | (ot = M)

< <f1+§1 _ f1LL> (f1 — i — flgLL), (3.91)
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4 ~
4];\;4|f1TT|2§ <f1 +§1—f13LL> <f1—§1—f13LL), (3.92)

where the following definitions have been employed for convenience in the notation:

g1 91— ifiy, (3.93)

firr = firr —igirr, (3.94)
firr = firr — gty (3.95)
hi — hi 4 ihipr, (3.96)
(3.97)

P 1 sl
hiy — hip —ihipr.

These bounds reduce to the well-known relations between PDFs if one integrates
over the transverse momenta.

3.6 Comments on the bounds

Positivity bounds are powerful tools in phenomenological studies, that have been em-
ployed in many context to pin down the magnitude or the shape of some unknown
functions with respect to the known ones. However, some comments that apply irre-
spective of the parton type (both quark and gluons) are in order.

Since we look at TMDs, one must worry about the process dependence coming
from the different types of gauge links [48]. In fact, the inequalities (3.61)—(3.92)
and (3.70)—(3.74) do not hold generally true for any correlator. The matrices F' (for
quarks) and G (for gluons and Wilson correlator) is positive semidefinite only for
field combinations, including gauge links, that factorize into the form OT(0)O(¢).
The simplest gauge link structures for which this holds are [+, +], [-, —], [+, —], and
[—, +]. Additionally, the process dependence is not always directly calculable in the
form of color factors, but it rather implies that the dependence of the distributions
on k2 may require additional functions involving gluonic poles [152].

The results presented can be relevant for proposed experiments at JLab and a
future EIC involving polarized targets. In practical situations, the bounds become
useful in model and lattice calculations, or as a way to obtain an estimate on the
order of magnitude of the functions. They are used to constrain the size of the less-
known functions with respect to the better-known ones (e.g. polarized distributions
with respect to the unpolarized ones). The latter is commonly done by saturating
the bounds. These estimates for the functions can translate in estimates of specific
measurement outcomes, e.g. azimuthal and spin asymmetries. Positivity bounds can
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be defined for all the correlators that are positive semidefinite, therefore extensions to
the double parton correlator are possible and interesting, as we shall see in Chapter 4.

In addition to these points, one might also worry about the effects of QCD evo-
lution on the validity of the bounds. In the collinear case, the Soffer bound involving
three quark functions [153] has been shown to be preserved up to next-to-leading
order accuracy [154-156]. However, to our knowledge, there are no clear conclusions
on the stability of bounds under TMD evolution equations.

The issue might be important for instance when the bound are used to compare
functions that are extracted at different scales. The fact that the evolution kernel
for TMDs is independent of spin [137,157], might suggest that in the appropriate
k,-regime where TMD factorization is valid, positivity bounds are respected also in
this case. However, the latter could depend on the specific implementation of TMD
evolution. This topic remains open to further investigation.

3.7 Discussion and conclusions

We have parametrized the quark and gluon correlation functions for target of spin
up to 1, in terms of TMD functions of definite rank, reviewing the quark case and
presenting the gluon results as originally derived in [88].

Concerning gluons, especially the small-z region is important, which is why we
have also studied the gluon correlator in the small-z limit. To this end, we have
derived and exploited the correspondence between the gluon correlator containing a
dipole-type gauge link structure and a correlator containing a single Wilson loop [88].
The latter correlator can also be parametrized in terms of TMDs.

When only little information is available on the functions, useful tools to have in
hands are the positivity bounds. These are model-independent relations that allows to
relate one or more functions with each other. We have discussed positivity bounds on
gluon correlators for hadrons of spin up to 1, thus looking at the unpolarized, vector
polarized, and tensor polarized cases [92,93]. The bounds have been derived using
the fact that the correlators, even including gauge links that bridge the nonlocality,
can be expressed as momentum densities. For both the TMD and collinear cases,
we have obtained relations between the distribution functions that appear in the
parametrization of the leading-twist gluon correlator.

These inequalities are relevant for the study of tensor polarized gluon TMDs
at e.g. the EIC possibility at JLab (JLEIC) [125,127,158] or COMPASS [102] us-
ing tensor polarized deuterons. The proposed fixed-target experiment at LHC (AF-
TERQLHC) [133-135] would also allow to investigate the gluon TMDs, with the
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possibility of including the ones related to tensor polarization.
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Chapter 4

Pairs of polarized partons
inside the proton

4.1 Introduction

In this Chapter, we discuss the possibility of studying interparton correlations through
the double parton scattering (DPS) processes. The DPS factorized cross section
leads to the definition of the double parton correlator of eq. (2.33). The latter is
parametrized in terms of double parton distributions (DPDs), that are currently al-
most unknown because of the very limited experimental information on DPS com-
pared to the single parton case. However, the experimental accessibility of many DPS
processes is rapidly growing and their measurements will become more relevant in the
future era of precision particle physics at high energies.

As a first approximation, the theoretical framework needed to describe double
parton scatterings can be considered as an extension of the single parton description.
However, this is often not sufficient, especially when dealing with physical concepts
that are exclusive of multiparton interactions (such as the concept of quantum inter-
ference and correlation). A significant effort has been put into the formulation of a
theory for double parton interactions. The complete review of this topic goes beyond
the scope of this thesis and adequately comprehensive set of references that we point
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out to the reader is [22,23,31,159,160].

The cross section formula for multiple hard scatterings has been derived in Sec-
tion 2.4.1 using the standard factorized form, both for the TMD and collinear case,
leading to the definition of TMD and collinear double parton correlator, respectively.
Intriguing aspects, such as interference and correlation effects, are encoded in the
tree-level expression of the cross section formulae.

The concept of quantum interference is remarkable and regards the fact that quan-
tum numbers, such as the fermion and flavor number, have to be conserved globally
(within the parton pair) in the amplitude and the conjugate one, but not necessarily
between one parton and its conjugate partner. Interference terms of this sort would
be forbidden in single parton scattering because of quantum number violation [31,33].
Some of these contributions, such as fermion number interference and color interfer-
ence (see Section 4.4.2) are expected to be suppressed at high energy scales, even
though a precise estimate of their magnitude has never been obtained, and usually
they are excluded from phenomenological models.

The other peculiar feature of double parton theory is the presence of interparton
correlation, extensively discussed in the rest of this Chapter. In the first part we
mainly discuss two types of parton-parton correlations: quantum and kinematic. This
information is formally entirely contained in the correlator and, consequently, in the
DPDs. Therefore, different models for the DPDs, tailored to study correlations, are
presented and discussed. In the second part of the Chapter, we present a study of
correlation effects in the production of a pair of W bosons with the same charge at
the LHC. In the hunt for possibilities to measure double parton scatterings, it has
been recognized that this process is one of the most promising, thanks to its very
clear signature. We focus on this process with the goal of characterizing signals of
quark-quark correlations. In particular, we devote particular attention to studying the
quantum correlation between the spin of the two partons and the kinematic correlation
between their longitudinal momentum fractions.

Multiple interactions and interparton correlations change the structure of the final
states. We discuss the modification of the final-state distributions due to the corre-
lation effects at the level of partonic interactions and we subsequently extend the
analysis to the final-state distributions at the LHC.

4.2 Double parton distributions

The phenomenology of double parton interactions relies on models that provide phys-
ically intuitive pictures but involve major simplifications. In fact, nearly nothing is
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experimentally known about the double parton distributions, so we need to make as-
sumptions based on the accessible theoretical and experimental information. In other
words, one needs to find reasonable approximations that relate the double parton
distributions to the single parton counterparts (about which much more information
is known), postponing the detailed analysis to the moment when experiments will
deliver more data.

To be able to deal with the single parton operator, we need to simplify the dou-
ble parton correlator into a combination of multiple one-parton operators. Let us
start from the definition (2.33) and insert a complete set of states. By recalling the
notation (2.34), one reads:

(P]O(0,2)0(y, 21) |P) = Y _(P|O(0,22) |X) (X| O(y, 21) |P). (4.1)
X

The usual choice taken in the literature is to assume that, among all the states {|X)},
the dominant one is the proton state. We call it |P’) to indicate that this might (and
actually is) a different momentum vector with respect to the original one. There is
no theoretical motivation to reduce the sum over the intermediate states to a single
proton state. However, in the absence of experimental data to test this hypothesis on,
one can use it as a first approximation and exploit the knowledge on the single parton
distributions. Omitting some details of the derivation (that are available in [31]), it
turns out that:

(P1O(0, 22) |[P') (P| O(y, 21) | P) (4.2)

is related to the product of two generalized transverse momentum dependent corre-
lation functions for a single parton.

These quantities depend on the collinear fraction of parton momentum zi, the
intrinsic transverse momentum kir, and the unbalance of momenta (off-forwardness)
between the initial and final-state proton. We define the transverse component of the
difference between the proton momentum in the initial and final state as:

A=P - P, (4.3)

such that the DP correlator can be related to the single parton GTMD correlator
[31].

The Fourier conjugate of the A is the impact parameter b, a transverse coordinate,
which is related to the single GPD operator. The collinear double parton distributions,
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like the ones entering eq. (2.38), can be written as follows!:

Opp(z1,22,Yy) = /de Osp(x1,b)Psp(z2,b+1y), (4.4)

which relates the DPDs to two single parton distributions. Despite the fact that the
validity of this approximation cannot be quantified in practice, the relation in (4.4)
offers some indication and guidance to estimate the size and the interplay between
longitudinal and transverse variables, otherwise unaccessible. Pushing further the sim-
plifications, if one assumes that the y-dependent part is universal and factorizes out,
the collinear part is the product of single parton PDFs, i.e.:

®pp(r1,22,y) = Ppp(21,22)G(Y) = Psp(21)Psp(22)G(y). (4.5)

Inserting (4.5) in (2.38) we can define the effective cross section as:

1

Oeff

- / d*y G2(y) (4.6)

such that the cross section of a double parton scattering process is factorized into the
so-called pocket formula:

(4.7)

where 0, o are the cross sections of the single parton scattering process necessary to
produce the final states, and o.g represents the “strength” of double parton contribu-
tion over the separated single parton ones. The expression (4.7) implies that all the
correlations between partons in the proton are zero. One of the focus of this Chapter
is to go beyond this approximation.

4.2.1 Effective cross section o.g and beyond

The approximations that lead to eq. (4.7) are quite drastic, and one can expect them
to fail in many respects. We summarize the problem of having such a crude estimate
of the cross section for double parton scattering.

The first part of the factorization (4.5) eliminates all possible correlations between
collinear momenta and transverse separation, which is contradicted by the majority
of model calculations [161-166]. The second part of (4.5) excludes in addition all pos-

1When necessary, we will use the subscript DP and SP to indicate the double and single parton
operators respectively. When not ambiguous, we will drop this label and consistently refer to the
double parton operators.
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sible correlations between parton momenta. The validity of this approximation fails
if one considers the natural kinematical constraint of double parton scattering, i.e.
21 + 22 < 1. In spite of its validity on the right-hand site of (4.7), the single parton
quantities on the left-hand side are not constrained in the same way, but only as 1 < 1
and zo < 1. Taking into account the conservation of momentum implies the introduc-
tion of longitudinal correlations and the breakdown of (4.5). This would imply the
explicit z;-dependence of the o.g, as predicted by several models [162,165,167]. The
factorization between longitudinal momenta and transverse separation is also violated
by the presence of longitudinal-transverse correlations of the type (4.4), although the
identification of such correlations is challenging because vy is not a measurable quantity
and it is integrated over.

However, the definition of the effective cross section through (4.7), states the in-
dependence of this quantity on longitudinal momenta, type of partons involved and,
consequently, processes. More generically, the factorization of the double parton quan-
tities into a product of single parton distributions eliminates all correlations between
partons, including the quantum-mechanical ones, i.e., correlations deriving from the
pairwise quantum interactions of partons through their spin, color, fermion and flavor
number. Despite its usefulness as a first approximation, the approach according to
which the quantity oeg is a universal number, independent on all kinematical variable
and quantum numbers, is theoretically unsatisfactory to describe double parton scat-
tering. The next era of high luminosity at the LHC is undoubtedly an opportunity to
refine and test the theory of DPS and to go beyond the o.g approximation. In this
Chapter, we will contribute to this goal with a closer look at feasible ways to measure
correlations and extend the factorized approach.

4.3 Experimental status of double parton scattering
measurements

Double parton scattering raised interest in the experimental community quite soon af-
ter the first theoretical works appeared. The first DPS process probed experimentally
is the production of 4 jets. First measurements were performed first at CERN at the
Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS) [168,169],
and Fermilab [170], followed by more recent measurements at the LHC [171,172]. To
increase the cleanliness of the signal, the DO collaboration at Tevatron has also used
processes with the production of one (or two) photon accompanied by jets [173-176].
The direct photon is more easily detectable and it can be distinguished from the
hadronic matter in the final-states [177].
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Chapter 4 - Pairs of polarized partons inside the proton

On the other hand, at LHC processes with more clear signatures, with less number
of jets or no jets involved, are preferred. The ATLAS, CMS, LHCb, and ALICE
collaborations produced, in the first round of LHC, measurements on the following
(subset of) processes:

e vector bosons and jets: Z/W + jj [178,179];
e vector bosons pair: ZZ/W*TW* /W Z [180];
e meson pair: J/1 or open charm [181-184].

The o.g values derived in all these measurements are displayed in Figure 4.1, and in
a summary Table 4.1 taken from ref. [185]. The numbers vary approximately between
10 and 20 mb. A commonly used value for applications is o.g = 15.

30\|l|| T T LI —

— ATLAS (Jhp + Jhp, is = 8 TeV)
ATLAS

—= ATLAS (4 jets, (s =7 TeV)
—— D0 (2y + 2jets, Vs = 1.96 TeV)
DO (Jhp + Y, Vs = 1.96 TeV)
LHCb (Y(1S) + D**, Vs = 7 TeV)
LHCb (Y(1S) + D**, /s = 8 Tev)
------ ATLAS (Z + JAp - lower limit, (s = 8 TeV)
—— D0 (Jhp + Jhp, Vs =1.96 TeV)
—— DO {y + 3 jets, 2014, s = 1.96 TeV)
—— D0 (y +blc + 2 jets, s =1.96 TeV)
—=- CMS (W + 2 jets, s =7 TeV)
—— ATLAS (W + 2 jets, s =7 TeV)
—— LHCb (Jiap +D°, (s =7 TeV)
DO (y + 3 jets, Vs = 1.96 TeV)
- CDF (y + 3 jets, /s =1.8 TeV)
—- CDF (4 jets, Vs = 1.8 TeV)
— - UAZ2 (4 jets - lower limit, Vs = 0.63 TeV)
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Figure 4.1: Schematic overview of the measurements of the effective cross sections as a function of
the CM energy +/s. Figure from ref [186].
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4.3 Experimental status of double parton scattering measurements

DPS

channel Ot (b) Collaboration  Collider Luminosity
. 1.8 TeV _
jj® 75 12.11397 CDF [170] Tevatron 325 nb ™!
14.972¢
17.675 0 7 TeV 1
J/U®D 19,820 LHCbD [182] LHC 355 pb
18,0748
-~ ' 7 TeV N
W ® jj 15.0755 ATLAS [178] LHC 36 pb "
WE @ W > 5.91 CMS [187] éﬁfg 19.7 fbh~*
.. S 7 TeV _
W ® jj 20.7+8-8 CMS [179] LHC 5 fb!
. 12.7713 1.96 TeV _
R 14.5'%‘5 Do [175] Tevatron 817"
J7 ® jj 16.1164 ATLAS [172] 7L§IGCV 37.3 pb~!
— 1.96 TeV -
Y ® jj 19.377-9 DO [176] Tovatron 8.7 fb~!
1.96 TeV _
+2.55 1
J)V @ J/U 4.80125 DO [188] Tevatron 8.1 fb
14.4753
T/ ® I/ 9.2+30 LHCb [184] by 5 b
11.3772

Table 4.1: Overview of the principal measurements of o.g performed by different experiments at
various energies. Different values quoted by the same experimental analysis refer to different different
decay modes [182], different models [184], or different data samplings [175]. Table from ref. [185].
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Chapter 4 - Pairs of polarized partons inside the proton

The double parton scattering in same-sign W boson pair production is consid-
ered one of the most promising process for the measurements of DPS thanks to its
clear signature. It has been studied extensively in [177,189-192] and finally measured
in [180]. The price to pay, for such an ideal process from the theory point of view, is
that the DPS cross section is very small and therefore quite some effort has been put
in the extraction [180]. We will examine in more details the production of WTW™ in
Section 4.5.

4.4 Parton correlations in double parton scattering

As previously mentioned, the pocket formula (4.7) and the concept of a universal
value for o are based on the assumptions that all the interparton correlation effects
are not relevant. In reality, the question about how important correlations in DPS can
be is currently open, and this problem has been tackled from different perspectives
(for a review of the state of the art of parton correlation in DPS see, e.g., [193]).
The potential importance of quantum and kinematic correlations are confirmed by
numerous model calculations, at least at low scales and in the valence region [162,163].
For instance, spin correlations are studied in [162,163,166] and they are predicted to
be sizable at the higher scales as well. Kinematic correlations, i.e. those which would
be responsible for the violation of (4.5) ( related to the longitudinal correlations and
longitudinal-transverse correlations) are treated in [161-166], with the conclusions
that they can be relevant. As largely acknowledged in most of the theoretical works,
the characterization of all kind of correlations would shed light on the proton structure
at a more fundamental level.

4.4.1 Spin correlations

The cross section formula in eq. (2.38) is quite general because both the hard scat-
tering parts H; and the correlators ® depend in principle on all possible indices (such
as parton-type, spin, color, fermion and flavor number).

Similarly to the decompositions of the single parton correlators in Chapter 3,
also the double parton correlator can be decomposed in different structures that
explicitly contain the dependence on the quantum numbers. In addition to the degrees
of freedom typical of the parton-hadron system, the extension from the single to the
double parton description introduces new degrees of freedom linked to the parton-
parton system. This fact leads to the definition of a big number of DPDs, especially
when the spin of the target and intrinsic parton momenta are included. As a matter
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4.4 Parton correlations in double parton scattering

of fact, not all the DPDs contribute significantly to the physical processes. For this
reason, we restrict ourselves to the collinear DPDs in unpolarized targets, which can
in principle be accessed in the near future experiments. We refer to [31,32,194] for
further information.

Quarks and gluons carry spin, and they can have a definite polarization when
they enter the hard scatterings. In eq. (2.38) we omitted all the indices that H; and
® depend on. Now the parton spin indices will be reinserted, while the others are left
out. The i-th (with i = 1,2) hard scattering matrices H; and the correlators ® (®) are
matrices in the Dirac space. Showing the indices, one has the following contraction:
)

o (4.8)

a1Bi,a2B2 > &y By ,62 B2 H17a1&1 8151 H27C¥25t27ﬂ2[§2 )

We consider one hard scattering at a time, focusing on the contraction between the in-
dices labeled as “1” and we further restrict ourselves to the lower part of the graph in
Fig. 2.5, i.e., the left-moving proton (all the other indices are dropped for simplicity).
One can decompose H; o, 4, in terms of Dirac structures and an analogous decom-
position can be used for ®,, 3, .We select the dominant terms in the correlators that,
in exact analogy with the single parton case, correspond to the plus-components in
the correlator ®,, g, . The contraction between the correlator of the left-moving proton
and the hard scattering reads:

1 1 1 1
H; 0, Payp, =Tr (2'7_Hi) Tr <27+‘1>> + Tr (27_’75Hi> Tr (27+75<I>>

1. 1.
+Tr <2i03_'y5Hi> Tr <2iJJ+’75(I)> + {higher-twist terms}. (4.9)

The different terms in (4.9) corresponds to the scattering of quarks that are re-
spectively unpolarized, longitudinally polarized and transversely polarized [195]. Ac-
cordingly, we denote:

ol = %Tr(@l“) (4.10)

and identify three different T’ structures responsible for selecting unpolarized (q),
longitudinally (Agq), and transversely polarized (d¢g) quarks in the proton:

1 1 ; 1. .
Fq = 5’7+a FAq = §’Y+py5a F{Sq - §ZUJ+P)/5' (411)

The same considerations hold true for the polarization of the antiquark coming from
the right-moving proton.
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Chapter 4 - Pairs of polarized partons inside the proton

We recall the definition of the double parton correlator (2.33) and relabel the
fermion fields as ¢ — ¢ in the correlator. The DPDs for two quarks are:

Falaz (xla T2, y) =

b

dzTdzs o o
2t [ Sy o T (PO (0,20) 0% (5,21) )

2t =z =yt =0,

zr1=272=07.

(4.12)

where: .
O (y,2) = aly — 52)Taq(y + 37): (4.13)

Figure 4.2: Graphic explanation for the notation in eq. (4.14)-(4.16)

We now use the enumeration on the quark fields as in Fig. 4.2, and we drop the
dependence of the spinors on the variables z and y. The double parton distribution
for two quarks, quarks and antiquarks, and two antiquarks are written as (F7T briefly
indicates Fourier transforms and integration over y as in eq. (4.12)):

Fll1a2 =FT <P‘ (673FG2QQ)(674FL11(]1) ‘P> ) (414>

Foyay = FT (P (3210,93) (@4l e, q1) | P) (4.15)

Faya, = FT (P (@2la,93) (@110, qa) [ P) (4.16)
with the relations:

Fa1a2($1,$2,y) :nazFalag(zla_x27y)7 (417)

Fa1a2($17$27y) = Fala2(—x17—$27y)a (418)
with 7, = 7sq = 1 and nay = —1. One can, therefore, decompose the F' further
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4.4 Parton correlations in double parton scattering

into [31]:

qu($1,$2,y) :qu(l'lyx%y)a
FAqu(Ihl‘g,'y) = quAq(x17x23y)7
Fgéq(xlaany) = Eijfng(xl,l'g,

)

y) = €Yhgsq(1,72,y)
ngq(xl)xQ’y) = Y M fsqq(21, 22, y) ),
Fflsa (w1, m2,y) = 07 figsq (w1, 02,9) + 24747 — 207 )M fl o5, (21, 72,y)

( y) + 2yly" — PV s (1, w2,y)  (419)

Yy
= Yhsgq(w1, 22,y
.7

= 0% héqéq Z1,T2,

Some combinations are not present as they violate parity (¢Ag) and time reversal
(Agdq). In fact, we only want to deal with the cases for which time reversal odd
collinear DPDs vanish because of the gauge link structure [31]. We denote all the
distributions that contain transverse spin (helicity flip) with h as in the single parton
case. In the production of double W bosons, the two bosons only couple with left-
handed (right-handed) particles (antiparticles), therefore no helicity flip is allowed.

Gathering all the information in a compact form, the cross section can be written
in the following factorized form [31]:

do 1
2 A ~ _
H dacda? = 5 E d yal,al,bl a?,ag,szal,az ('le T2, y)Fb1,b2 (21317 T, y)a
i=1,2 AL T4
q,Aq,0q
q,Aq,6q

(4.20)

where the indices a1, as, b1, by run over all polarizations of quarks and antiquarks, and
implicitly over flavors. The dependence of the partonic cross section on z;7;s ~ ¢? is
understood and the symmetry factor C equals 2 if the produced final states are the
same, while it is set to 1 when the two hard scatterings produce different particles.
This form will be used to calculate the cross section of the W pair production in pp
collision.

Interpretation of the functions and positivity bounds

The collinear double parton correlator is, in the very same way as the single one, a
positive semidefinite matrix. In fact, it can be shown that it is a diagonal operator,
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Chapter 4 - Pairs of polarized partons inside the proton

namely:

dzy dzo - gt -
O(z1,72,y) = / ?;W)zQ dy~ etz +iks =z
1

1 _ 1 1
< Plat-peaalgeaty — gadal+ 52 1P| L
zr1=212=0r7.

(4.21)

)
y+=0

(4.22)

= /dy— Y (Pxla(0)a(y) IP)" {Px|a(0)aly) |P) 6(PF — (1 — 21 — a) PY)
X

where we have inserted a complete set of momentum eigenstates |Px). In order to
derive positivity bounds, which would provide the relations between the DPDs, one
has to construct the relevant density matrix. In this case, being the spin of the proton
not involved, the density matrix will be a 4 x 4 matrix defined in the parton;®
partons spin space. Each entry of this matrix would accordingly contain the combined
information about the polarization of each parton.

The value of the operator I'y, in (4.13) is chosen as in eq (4.11), and it is responsible
for selecting the spin structure of each parton. This structure is the same as the
single parton case, and the interpretation of the DPD functions as spin densities (or
combination of spin densities) can be found in a very similar way. We can use the
knowledge acquired on the good and bad components of the fermion fields to make
the meaning of the DPDs more apparent. We recall the well-known procedure for the
PDFs, and treat the DPDs as a straightforward extansions.

The contraction of the correlator with the appropriate structures as in (4.11),
leads to the definition of the single parton PDF's as follows:

all}, =  Tx(@spT), (4.23)

one has:
fiw = aly) =5 [ S piomeP) (1.21)
o) =25y =5 [ Goe P SO P S 6
i) =05 = 5 [ S PS50 [$r. ] v 1P S 42
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4.4 Parton correlations in double parton scattering

It can be shown [97,196] that all the above contractions automatically reduce to a
bilocal operator with only good fields, going in fact from a 4-dimensional to a 2-
dimensional space. For instance:

D(0)hw(€) — ¢'(0)6(6), (4.27)

and similarly for the others. One can use different spin basis to unravel the meaning of
the above distributions. One can construct the helicity basis, where 5 and the matrix
of the spin rotation along z-direction ¥3 = % [fyl, 'yﬂ are diagonal [97]. We define the
Dirac field only in terms of good field as:

b+
¢ = b- ) (4.28)

0
0

where the components of ¢, are related to + helicity states. This is also eigenstate of
the chirality operator v5 (which commutes with Py) in the massless limit, namely:

+o+ ®R
| - | | oL
V5P = 0 = 0 . (4.29)
0 0

Alternatively one can use the transversity basis, by defining the “transverse-spin-up”
and “transverse-spin-down” states as follows

ot Or + OL
e | 1| or—9L
or=1| 4 |= 7 0 , (4.30)
0 0

which is an eigenstate of the operator y'v5 (or equivalently v2vs) that selects the
transverse components of the parton spin. In this framework the functions have a
clear interpretation as densities:

e Helicity basis:

fi ~ (P ¢hor + 6oL |P),
g1 ~(P,Sp|ohor — ¢l or |P,SL), (4.31)
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hi ~ (P, Sr| ¢} ér |P,St) .

e Transversity basis:

fi ~ (Pl dLor + ], |P)
g1 ~ (P, St| ¢$¢¢ |P,SL), (4.32)
Iy ~ (P, St| Ly — @16, |P, Sr).

The unpolarized distribution has the obvious meaning of an average over polariza-
tion states, in both basis. The function g has, in the helicity basis, the interpretation
as the number density of partons with a neat polarization along the direction of the
proton spin, and hj represents in the transversity basis the number density of partons
with polarization along a direction transverse to the proton spin.

As far as the double parton correlator is concerned, the generalization is direct,
and the interpretation of the DPDs as linear combination of two-parton densities
follows straightforwardly. The DPDs in the helicity basis are defined as:

Fuq ~(¢! p018) (Shpdor) + (01 6110)(dh; dor)

+ (@1, 1) (D gbar) + (0] wb1Rr) (D5 Po1), (4.33)
Fagaq ~(01po1r) (9 pdor) + (6] ¢10) (0} d2r)
— (#]1.610) ($hpo2r) — (D] pd1R) (Db, 21, (4.34)

and analogous expression for Fj4s, in the transversity basis:

Fyqsg ~(815011) (@h1021) + (8], 611) (0}, 621)
— (01,01) (s 021) — (814611 (8} D20)- (4.35)
The connection between Fyq, Faqag, and Fsesq to the single case is a convenient
illustrative procedure. However, one shoud bear in mind that the physical meaning
of the quantities is completely different, being the DPDs densities (or interference) of

two-parton polarizations that can be defined irrespective of the presence of the proton
spin.

In order to finally build the two-parton density matrix, we single out the operators
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projecting the helicity state of the good components of the fields into [197]:

1+75) : - 1 -
ry, = +(7, with T = — , 4.36
++ =7 1 (G \/§¢L¢L (4.36)
iot! - 1 -
Ooy= 2 (=), with Iy = —bnor, (4.37)
T —io™ (14+45), with §Ty ¢ = g0 (4.38)
_ = ,  wi Y =— , .
+ 4 V5 + /2 LPR
1—15) . — 1 -
r-_= +(7, with ¢YI'__¢ = — , 4.39
Y 1 Y4 \/§¢R¢R (4.39)
Using this basis, one can write the correlator as:
(b = ©++,++ + (I)++7+_ + (I)++7_+ + (I>++7__ + etc.., (440)
where
Dyt ~ (Pl (U 10) (VT4 h) [P (4.41)
Using the functions defined in (4.19), one reads:
faq + faqag _iewthﬁq _iewyhéqq 2e2ify2hgq6q
p= 1 ie_z_(’pyhéqq faa = Fagaq 2hsq54 _iez_wthéq (4.42)
4 ie”"Yyhesq 2hsqsq faa = faqaq  —i€¥yhsgq ’

—2ip, 27t - P
2e7 "y hsysq 1€ PYhgsq 1€ Yhseq  faq T fagag

with y = y(cos,sinp). A basis transformation can be performed to simplify the
expression of the matrix as in [32]. In every basis, the diagonal elements are positive
semidefinite and can be interpreted as probabilities of finding the two partons with
the same helicities (fyq + faqaq) or opposite helicities (fqq — faqagq). This constraint
leads to the first bound:

| faqaql < faq- (4.43)

The other bounds follow from the diagonalization of the 2 x 2 sub matrices and they
read:

2y2 ‘hgq5q| < faq + fagaq ( )
2 |h5q5q| < faa — faqag (4.45)
y2 h?aq < (foq + fagng) (foq — fagag), ( )

92 h<25qq < (qu + quAq)(qu - quAq)' ( )
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More strict bounds are derived from the diagonalization of 3 x 3 submatrices and
the eigenvalues of the whole matrix. As extensively discussed in Chapter 3, positivity
bounds can be powerful tools to derive information about quantities that are mostly
unknown, and whose magnitude and behavior is otherwise difficult to access without
any experimental information. For instance, the bound (4.43) is used to have an low-
scale ansatz about the size of the longitudinally polarized DPDs compared to the
unpolarized ones [32].

4.4.2 Other quantum correlations

We reinsert the indices of the correlator and consider the decomposition in color struc-
tures. The basis of the SU(3) color space is used, and correspondent projections in
color space select whether the quark in the amplitude and its partner in the conjugate
amplitude are in a singlet or octet representation. We define the correlator as ®;;/ pi
and use a color Fierz transformation to decompose it in terms of the singlet and octet
color structures, weighted with the singlet (1F) and octet (8F) DPDs, i.e.:

2N
VNZ 1

where ¢4 are the generators of the color algebra SU (3), satisfying [t4,t8] = i f4B%c,
with fapc structure constants. The structures which project the singlet and the octet

(I)jj'kk' = <(5]‘j/5]€k/1F+ t‘;qj/t;:}k/sF> 5 (448)

1
N2

out from @ are respectively:

2N
VNT—1

Following the notation used for spin correlations in (4.12), one reads:

5j’j5k/kq>jj’kk’ = 1F7 tﬁjt?’k@jj’kk’ =8F (4.49)

CFalaz (331,332,'!;/) = (450)

dzydzy | _ - iTazs c c
/ g Q€T T (P 00, (0,22) O0s (3:21) IP)

3
zl+ :7;2+ :er:O7

zr1=272=07,

(4.51)

where ¢ is the label that indicates whether the selected part is the singlet (¢ = 1) or
the octet (¢ = 8) and:

1 1
Y04y, 2) = (y — 52)51'3"%(3/ + 52)7 (4.52)
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*Ouly, 2) =2y (y — 52)tfa;y + 52). (4.5
When color singlets are produced in the hard process, the singlet (octect) represen-
tations from each hadron have to match to produce a color singlet final state. For
a thorough study of color correlations and color effects in double parton scattering
one can refer to [31,52,198,199] and references therein, where is shown that they are
suppressed by Sudakov logarithms at high energy scales.

f1: f2i if1 :fz hd h f2 \ f2

(a) (b)

At h S \A Y fa N\ 2

(©) (d)

Figure 4.3: Flavor and fermion number interference diagrams. Diagrams in (a) and (b): flavor
interference; diagram (c): fermion number interference; diagram (d): combination of both types.

The are other quantum numbers that one can consider: parton-type, fermion and
flavor number. They can be responsible for interference diagrams [194,200]. The con-
cept of quantum interference is remarkable and regards the fact that quantum num-
bers, such as the fermion and flavor number, have to be conserved globally (within
the parton pair) in the amplitude and the conjugate one, but not necessarily along
each parton leg. Interference terms of this sort would be forbidden in single parton
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scattering because of quantum number violation. To summarize the situation one can
look at Fig 4.3, where a variety of diagrams with interference terms are displayed.
Flavor interference terms are those where two quarks of flavors f, f’ in the amplitude
are paired up with their conjugate partners with interchanged flavors. This kind of
process does not bring any flavor number violation in DPS, and it is, therefore, a
valid term in the correlator. The same holds with fermion number interference and
parton-type interference (quark/gluons). The combined flavor- and fermion-number
interference is also allowed, and it is shown in Fig. 4.3(d). Similarly to color correla-
tions, they also become small at high energy scales due to the presence of the Sudakov
factor [199].

Gluons

Double parton distribution involving one or two gluons have been defined and studied
in [31, 32,194, 201]. The case of double gluon distributions is quite analog to the
case of quarks as far as the polarization correlations are concerned. Gluons have
polarization states which can modify final-state distributions [201]. The starting point
is the realization that both the hard part and the double gluon correlator [''J’
are Lorentz tensors, whose indices are only transverse (i.e. i,7,4',57° = 1,2). The
decompositions are analog to (4.9), where the Lorentz basis is used instead of the
Dirac one [31]. The relevant structures that select the gluon polarization are:

0 =69, Wi, =ie’, TP =7k (4.54)

with:

Tk — = (gikgit  gilgik g gkly (4.55)

1
2
that is a symmetric traceless tensor. The three structures above select respectively
unpolarized, circularly polarized and linearly polarized gluons. The DPDs are defined

as in (4.12) with the operators defined as:
M.] Uy — L iy 4k
Oy, 2) = T FH(y — S2) FHi(y + 321). (4.56)

Finally, a comment on the color correlations is in order. The case of two gluon
DPDs, or one quark and one gluon DPD, is more complex than the one for two-
quarks. In fact, many more representations arise when combining two color octets in
the 8 ®8 representation (two gluons), or one color octet and a color singlet in the 8®3
representations (mixed gluon-quark distributions) [31,194]. It is possible to establish
positivity bounds for color DPDs [194] and study evolution effects. In [199] is showed
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4.4 Parton correlations in double parton scattering

that color correlation is washed out by evolution in the quark case. Suppression of the
same kind is expected to happen in the gluons, and the mixed quark-gluon sectors,
even though the precise expression has not been studied.

4.4.3 Kinematic correlations

As previously mentioned, the factorized ansatz (4.7) has been used with success in
the earliest attempts of measuring signals of DPS. Despite its limitations, there are
motivations behind the existence and usage of this formula. They are based on the
argument that, even though the product of single PDFs naively violates the DPS
momentum sum rule for large-z, double parton scattering occurs in a region of small-
x values which would be safely away from the thread. Early experimental results did
not contradict this arguments, as the measurements of o.g were compatible with the
z-independence statement over a quite wide range [173,174].

On a theoretical ground, there are many reasons to discard the factorized ansatz.
The first source of violation would be the effect of evolution. In fact, even if one as-
sumes the factorized ansatz to hold at a specific energy scale, this cannot be preserved
at any other scale due to double DGLAP (dDGLAP) evolution equations [202,203].

The latter involve two independent evolutions, one for each parton? [31,194]. For
the unpolarized DPD it reads explicitly:

Ofqrgn (1, 2,5 11)
BETTZ0 = 2 [Prigy @1 faree + Paaas ®2 faras

0log p? o7
+ P‘hg @1 fng + qu ®1 flhg] ) (4'57)
where the convolution is defined as:
=22 oy [z
Pab(') ®1 f(,.’EQ,y,,LL) = / 71 <1) fqﬂm(ulavay;:u’)? (458)
1 Ui U1

and analogously for the ®5. The splitting functions P,;, are the same as for the stan-
dard DGLAP equations. From the integral in (4.58) it follows immediately that the
r1 — o kinematic correlation is present at any scale different from the initial one.
The second relevant problem regards the theoretical requirement of respecting sum
rules. The issue was first studied in [161]. Even in lack of a first-principle procedure,
the authors derive momentum and number sum rules, that are general enough and are

2There are subtleties related to the region of small y that also receives single parton-like of
contributions. This problem can affect the evolution of multiparton distribution in a non trivial way,
see, e.g., [159].
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Chapter 4 - Pairs of polarized partons inside the proton

valid at all order. Accordingly, momentum sum rules for DPDs have to account for
the fact that z; + z2 cannot exceed 1, and that extracting a parton with momentum
x reduces the probability of extracting the second parton with the same fraction of
momentum. Also, extracting a parton with a certain flavor reduces the probability
of extracting the second parton with the same flavor. In the factorized ansatz these
requirements are violated, and the problem is circumvented with the argument that,
at small values of x, the number of partons is high and the joint probabilities factorize.
Since the factorized ansatz violates the sum rules, one needs to build new DPDs that
respect them at all order and simultaneously preserve the advantage of using the
single PDF's.

The authors of [161] proposed a phase-space factor that multiplies the product of
single PDF at an initial energy scale and it reads®:

Xeorr (T1,22) = (1 — 21 — 22)2(1 — 21) "2(1 — a2) 2. (4.59)

This choice accounts for momentum sum rule and valence quark number con-
servation, and ensures that they are preserved during evolution. The chosen input
DPDs are built from single PDFs with modified MSTW2008lo distributions [204],
multiplied by the phase factor (4.59) at an initial scale Qg. Then the dDGLAP evo-
lution up to a scale @ is implemented. This approach introduces a double source
of longitudinal correlation: one that is due to the phase-space factor, and a further
source that is introduced by the dDGLAP effect. The transverse part is still factored
out and the kinematic correlations introduced are purely longitudinal. This is to say,
the DPDs are the ones parametrizing the correlator as in the first part of (4.5), i.e.
O(x1,22,y) =~ P(x1,22)G(y). We will analyze the effect of this type of correlations
in the context of WTW™ production through DPS at the LHC. In addition, also
polarization can be added and we will investigate the combined.

Transverse separation and longitudinal momenta

Assuming the absence of correlations between the longitudinal momenta and the par-
ton separation is not realistic. It is reasonable to think that the partons inside the
proton are subjected to an interplay between their momenta and the transverse sepa-
ration, connected to the fact that they are confined to the proton [161]. Many model
calculations (Bag model, constituent quark model, light-cone models) confirm that,
in principle, the factorization between the longitudinal and the transverse part should

3An improved version of this factor has been proposed in the same work [161]. However, this will
not be objective of our study.
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4.5 Polarization in same-sign W boson pair productions

not hold. The previous types of correlations we presented were purely longitudinal, so
they regarded the first part of (4.5). On the other hand, the interplay between x and
y is expressed by (4.4), by making use of single parton quantities. In particular, the
picture according to which DPDs are generated from the product of GPDs can already
suggest a nontrivial interplay between x and y, in the very characteristic way known
from the study of the GPDs [166,205]. The fact that vy is integrated over is a compli-
cation, because the dependence on y has to be indirectly inferred, and only consists
in a numerical factor after integration. All longitudinal and longitudinal-transverse
correlations reflect their presence on the fact that o.g must exhibit an x-dependence,
but distinguishing the source of correlation would need much more extensive knowl-
edge on the distributions.

To summarize, as a general strategy, since the shape and the magnitude of the
DPDs is not known, the identifications of the different type of correlations should
rely on a qualitative change in suitable quantities (such as final state distributions or
asymmetries). Such variables should used to detect signs of correlations. The study
presented in Section 4.5 aims at this goal. Ideally, an increasingly better knowledge
of the distributions will allow for a proper evaluation of each type of correlations.

4.5 Polarization in same-sign W boson pair produc-
tions

The theory of double parton scattering is rich and can predict a large number of
effects. Unfortunately, the suppressed nature (see Section 2.4.2) of most of double
parton process makes it challenging to identify to which extent they are measurable
in real experiments. One of the most promising processes to access double parton
scattering is the production of a pair of W bosons of the same electric charge. This
process was described in [206,207] as a special case of the double Drell-Yan process.
Its relevance has later been pointed out, for instance, in [32,191], and recently the
CMS collaboration has presented the first measurement of the cross section [180].
This is an example of a process where double parton scattering observables, both
inclusive and less inclusive cross sections, are not suppressed compared to to the
single parton scattering. In Fig. 4.4 one possible diagram for the production of two W
bosons through single parton scattering process is depicted (left side), together with
the correspondent DPS process (right side). The SPS diagram is of order aa? and
implies the production, together with the lepton pair, of two high energetic quarks
in the final state. This feature makes it possible to distinguish between the signature
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Chapter 4 - Pairs of polarized partons inside the proton

of the two processes and to impose limits on the number of produced jets in order to
suppress the contribution of the single parton scattering [180,191]. The DPS signal
also competes with other background processes which produce a muon pair and need
to be taken into account.

(b)

Figure 4.4: Pictorial representation of the production of two W¥ bosons. Part (a): SPS mechanism
called WW3j in the text; part (b): DPS process.

In this Section, we exploit the information on the production of two W bosons
through DPS to analyze different types of two-parton correlations inside the proton
at the LHC. The primary focus is to study the effect of these interparton correlations
at the level of the partonic cross sections, by modeling the DPDs at an initial low
scale. Subsequently, we study the effect of correlations on final-state distributions,
eventually adding the analysis of the relevant background processes. We identify two
main observables (the distribution of the product of the muon rapidities and the
asymmetry number, that will be defined later) that are a proxy of the presence of
correlations.

4.5.1 Parton level result: cross section

Let us consider the process in which the two W bosons are produced with positive
charges. The signature of the process is the detection of two muons ™ (or electrons)
in the final states as result of the leptonic decay of each W, and missing energy
due to the invisibility of the neutrinos. Quarks exclusively initiate the DPS process,
and we study the tree-level results from quark-antiquark annihilation for the flavors
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4.5 Polarization in same-sign W boson pair productions

u,d, ¢, s. Each hard process is then of the kind:
@@= W+ X —pty, + X. (4.60)

We assume factorization between the hard part and the correlators in every corre-
lation scenario that we present. The starting point is the investigation of polarization
effects. The cross section for double W+ production (integrated over the transverse
momenta of the bosons) can be calculated from (4.20). In this special case, only the
unpolarized (fyq) and longitudinally polarized (faqaq) distributions for quarks and
antiquarks enter the cross section. The transverse quark polarization does not con-
tribute since this is given by the operator that corresponds to a chirality flip for the
quark in the amplitude and the conjugate one, and this is prevented by the impossi-
bility for a right-handed (left-handed) quark (antiquark) to couple to the W+. The
expression of the polarized cross section can already be found in [32], expressed in the
rest frame of the W boson. Starting from this, we obtain an equivalent expression for
the cross section in the laboratory frame, fully differential in the transverse momenta
of the muons and rapidities of the muons and neutrinos.

do _<477)21ZKK
H,?:l dnLLdkTZQdT],/,L s C q1493~-"q4244

914929394
_ N2 _ _
X {(wl Wo ) /de(f!hqz + fAQ1AQ2)(f!?3¢74 + fA%A!h)
_ 2 = =
+(rwd)” [ Pyl — Fansa) T — Fanan)
N2 z z
+ (WTWZ ) /d2y(f§3QZ - fAfjsAlh)(fm@ - fAth@)
2 — —

+ (W;w;) /dzy(qulh + fA§3A174)(fq1lI2 + qu1qu)}

+ {flavor interference}, (4.61)
where wF = 1+ tanh (%(% —1),)). The quantities 1., and 7, are the pseudorapidi-
ties of the produced leptons (muons and neutrinos). The superscript “prime” indicates
that 7’ is the transformed quantity of the pseudorapidity n after a boost from the

rest frame of the W boson to the laboratory frame. We recall the definition of the
pseudorapidity, namely:

Oem
n= —lntan( CQ > , (4.62)
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where 0., is the polar angle between the lepton plane and the z-direction, measured in
the W boson rest frame. From this moment onwards, we will refer to the muon pseu-
dorapidity in the laboratory reference simply as rapidity, and we drop the superscript
from all the variables.

The k7, are the muons transverse momenta, C' is the symmetry factor which is set
to 2 because of the indistinguishability of the two particles in the final state and /s
is the center of mass energy. The fractions of longitudinal momenta x;, Z; read:

%(e”/w + e’lw); Ti = %(e—’ﬂw + e—”lw)’ (463)
and the arguments of the distributions read f(z1, 22, ¥y;Q) and f(Z1, %2, y; Q), where
@ will be set to the W+ boson mass for both hard processes. We notice that the
inclusion of the longitudinally polarized distributions contributes to the change both in
magnitude and shape of the final state distributions. The cross section formula (4.61)
is useful for applications once it is fed with different input DPDs at an arbitrary

€T; =

scale . In particular, given a form for the DPDs at an initial energy scale Qg we
implement (un)polarized double DGLAP evolution equations to obtain the results
at a higher scale @), which is typically equal to the mass of the produced particle.
Unless otherwise specified, the dependence of the functions on the final scale @ will
be understood.

Since the leptons are the result of the decay of a W boson with mass M and width
'y, we introduce the factors K4, given by:
o? |V:h q; |2 qi2

s = - , eq, —€q. = 1), 4.64
94N, (2sin6,)* (2 — m¥,)? + m3 Ty, (€q — €4, ) ( )

where N, = 3 is the number of colors, V,,,, a CKM matrix element, ¢,, the weak
mixing angle, o the electromagnetic fine structure constant and e,;, the charge of
quark g;. The relevant elements in the CKM matrix are Vi, Vip, Ved, Ves, Vep [208].
Finally, by exploiting eq. (4.63) and the relation ¢? = z;7;s in Section 2.4.1, one has:

qi2 = 2k%[1 + COSh(’?m - nVi)]‘ (465)

If ' < M we can use the narrow-width approximation (NWA), i.e. the limit in
which W is on the mass-shell:

1. ml’ oo 9
i e = 0laE — miy). (4.66)
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The (4.64) becomes:

2 V.2 2
vwa o, & WVagl”  7q 5(a2 2
WA ~ LA - S —miy). 4.67
4id; 4N, (2sin6,)* my T (4 ) (4.67)

When useful, we will make use of this approximation in the following.

4.5.2 Spin and kinematic correlations

In order to study how correlations affect the cross section calculations, we implement
different model-based scenario for the DPDs at the initial scale. These different DPDs
are supposed to encode the correlations and are used as input to the cross section
formula (4.61). In the first part of this analysis, we will calculate the interaction of
pointlike partons extracted from the proton (this is what we will call parton level
results). The evolution equations account for gluon radiation that is absorbed in the
definition of the DPDs. Other initial state radiations, that are the main contributions
to be added when interested in the final-state distributions, will be considered in
Section 4.5.3. The parton level results on the differential cross sections will then be
recalculated after accounting for initial and final state radiations and compared to
background processes, whose signatures are the same of, or can be misinterpreted as,
the leptonic decay of two WT.

The type of correlations under investigations are shortly described. While present-
ing the four main DPD models used for studying correlations we also include the case
where correlations are absent.

No correlation

The input DPDs are defined as the product of single PDF's at any scale, that is:

flx1,0,4;Q) = f(w1;Q) f(22; Q)G (y), (4.68)

with [ d?yG(y) = oe}fl. If the two hard processes are independent, the single PDFs
evolve separately under unpolarized single DGLAP evolution equation. The factorized
form (4.69) is then valid across all energy scales, and the (separate) evolution of the
two single PDFs does not create correlations.
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Minimal correlation

The input DPDs are defined as the product of single PDFs at the initial scale, that
is:

f(z1, 20,95 Qo) = f(w1; Qo) f(22; Qo)G(y). (4.69)

The eq. (4.69) implies that all kind of correlations are set to zero at the initial scale.
As a first step, a minimal source of correlation is introduced by the use of the double
DGLAP evolution equations. The longitudinal correlations arise at higher scales as the
result of evolution. In fact, even if the form (4.69) holds at the initial scale, evolution
creates correlation between x;, and the factorized form is no longer valid. We will call
this scenario “minimally correlated” and the cross section opin.corr is given by (4.61)
in which the polarized distributions are set to zero.

Polarization

The cross section opo is the expression (4.61) in which, in addition to the unpolarized
distributions, we include polarization in the max-scenario, i.e. the polarized distribu-
tions individually saturate the positivity bound (4.43) and equal the unpolarized ones
at the initial scale [166,209]. The factorized form (4.69) is still valid but only at the
initial scale, while at higher scales the polarized double DGLAP evolution equation
introduces the correlations as previously described. One has:

Jfagag(z1, w2,y Qo) = feq(x1, 22,95 Qo) = f(21; Qo) f(22; Qo)G(y). (4.70)

Kinematic correlations

Longitudinal kinematical correlations are explicitly introduced. The product of single
PDFs used as initial ansatz is corrected by the x;-dependent factor in (4.59), to ac-
count for the kinematical constraint of double parton scattering as explained in [161].
The factorized form (4.69) is no longer valid at the initial scale:

flx1, 22,95 Qo) = f(21; Qo) f(22; Qo) Xeorr (21, 22)G(y), (4.71)

with [ *yG(y) = ogﬁl and Xcorr (21, 22) is defined in (4.59). Longitudinal correlations
are present at the initial scale thanks to the factor explicitly introduced, and they
travel towards smaller momentum fractions during evolution. The cross section ox_corr
is given by (4.61) without any polarized distributions.
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Polarization and kinematic correlations

This scenario assembles all the above mentioned correlations: we include the polarized
distributions on top of the ansatz (4.71) and we evolve them up to the final scale with
the polarized dDGLAP evolution equations. The cross section ox.corr pol 18 given by
the full expression of (4.61).

Except for the total cross section results, we will not, in general, include the “no
correlation” scenario in our results, obtained by neglecting all correlations between
the two partons inside each proton. One should bear in mind that imposing separately
x1 < 1 and 22 < 1 does not ensure z1 + 2 < 1, as required in the case of two partons
coming from the same parent hadron. However, in the kinematical region we are
interested in, the routine for numerical integration Vegas does not significantly enter
the unphysical region (in the context of NWA the latter is an exact statement).

The scenario with no correlation differs from a theoretical viewpoint from the min-
imal correlated one. In practice, the correction introduced by the use of unpolarized
double DGLAP evolution rather than two DGLAP evolution kernels are minimal,
such that the minimally correlated scenario is equivalent to the uncorrelated one at
this level of accuracy of our results.

Let us specify the relevant quantities that will be used in this study. As previously
mentioned, we first address the calculation of the inclusive cross section, using the
different inputs for the DPDs outlined above. We set the initial scale Qg = 1 GeV
and implement double DGLAP evolution (unpolarized and polarized) to a final scale
@ = mw [31]. The single parton PDF's used are the leading-order MSTW2008lo dis-
tributions [204]. The choice of the initial scale Q¢ and the specific PDF set used can,
in principle, have an effect on the parton level and final-state results. This aspect
is currently under investigation, but it will not be discussed further in this thesis.
The numerical integration is performed with the Vegas routine within the Cuba Li-
brary [210]. The results are obtained either through fully numerical integration with
Vegas or employing a combination of Vegas and analytical integrations using the
NWA. We will specify each time when the NWA approximation is used. Throughout
the rest of this Chapter we fix the value of oo (4.6) and the CM energy /s as follows:

oo = 15mb, /s =13TeV. (4.72)

We define the relevant ratios, that will be used in the following, each time with
the obvious substitutions:
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[Polarization] [No correlations]
Rq = R, = 4.73
®~ [Minimal correlation]’ ' [Minimal correlation]’ (4.73)

[Polarization x-correlation] [x-correlation]

Rx =

, RBxs= [1pt]  (4.74)

[x-correlation] [Minimal correlation]

Unless otherwise specified, all the parton level results of this Section are calculated
using the following cuts on the variables (“zeroth selection”):

4GeV < ky, <45.5GeV,  |n,,| <33, |n,] <10. (4.75)

The neutrino rapidity range is chosen such that in essence no cuts are imposed. This

implies that, for intervals |n, | < n2** with n*** > 10, all our parton level results are
independent on n***. Similarly, the constraint k,, < 45.5 GeV does not produce any
change in the results, because the amount of the cross section that would be included
by extending further the upper value for k, is negligible. The range of 7, is chosen
wider than the experimental acceptance typical of the LHC and it will be tightened
later on to match the detector ranges. This selection of values serves as starting point
for the study of final-state distributions in Section 4.5.3.

We now turn to the presentation and discussion of the numerical results. In the
second column of Table 4.2 we summarize all the results for the total cross section, for
all correlation types including opo.corr- We observe that the presence of polarization
increases the cross section with respect to the unpolarized case, while the z-dependent
factor (which is always smaller than 1) is responsible for its decrease.

The results for less inclusive quantities are now in turn, in order to examine to
which extent these quantities are sensitive to the DPS correlations effects. At this
stage we can still label the muons as p; and po, implying that they originate from
the first and second hard interactions. They are equivalent, as we do not assume any
hierarchy in magnitude between the hard scales. However, in the real analysis of the
data on final muons, there is in no longer knowledge about the origin of the lepton
pairs, as discussed in Section 4.5.3.

With numerical integrations, we calculate the cross section differential in the ra-
pidity and transverse momentum of the muon. The results are shown in Fig. 4.5.
The muon k,-distributions in Fig. 4.5(b) are all peaked around k2°** € [39.72,40.75]
GeV, i.e.around the value k; = my /2. The cross section value, for all the curves, de-
creases of nearly two orders of magnitude from the value at the peak and k;max = 45
GeV, which indicates that the interval of transverse momenta in (4.75) only excludes
negligible portion of cross section. A different situation is represented in Fig. 4.5(a).
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cross section [fb] Asymmetry

Ono-corr 1.77 0.00

Omin-corr 1.74 0.00

Opol 1.90 -0.05

Ox-corr 1.37 0.01

Ox-corr Pol 1.48 -0.03
Rg = ;-2 1.09 -
Rr= % 1.02 -
Ry = “xeomee 1.07 -
Rxg = Grecen 0.78 -

Table 4.2: Results for the full cross sections and asymmetry values (4.77) in the different four
DPDs scenarios as described in the text, with cuts as in (4.75). The cross section values and relevant
ratios (4.73) are shown in the second column. All the values of the table are obtained by numerical
integration performed with Cuba Library [210]. We made no use of NWA for these results. The third
column contain the values of the asymmetry parameter (4.77) calculated with NWA.

The muon rapidity range selected in (4.75) leaves out a non negligible portion of the
total (theoretical) cross section. The distribution is symmetric under n,, — —n,, for
all the correlations, as expected upon noticing that the cross section formula (4.61)
is invariant under the exchange of  — —n. The maximum values of the cross sec-
tion are reached at n,, € [1.8,2.1]. For all curves, the cross section decreases both
towards central and peripheral values of the rapidity interval. At the bottom part of
the panels we also include the ratio as defined in (4.74). The ratios Ryg, x x s} (kr)
and Ryg x x5} (1u), as defined in (4.73), are displayed over the entire range of k, and
7Nu- From the ratios we notice that for these two observables, there is a hardly visible
shape difference between the different correlations.

By employing a combination of Vegas and NWA, we calculate the cross section
differential in the sum and absolute value of the difference of the muon rapidities.
They are displyed in Fig 4.6, considering once more the four different scenarios and
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Figure 4.5: Results for the rapidity (left panel), transverse momentum (right panel) profiles of the
muon, and relevant ratios as in (4.73), with cuts as in (4.75). The results are obtained by numerical
integration performed with Cuba Library [210] with no use of the NWA. The four different scenarios
and the definition of the ratios are as described in the text.

the relevant ratios. Both panels of the figure show symmetric curves, reaching the
maximum at zero value of the sum (Fig 4.6(a)) and difference (Fig 4.6(b)) of muon
rapidities. The cross section differential with respect to the rapidity difference (1,, —
Tu,) is not observable experimentally and such a difference of rapidity can only be
defined theoretically. Therefore, we shall rather consider the absolute value of the
difference |1, —n,,|. However, since the information about the origin of muons is lost
in real experiment, one should define different criteria for labeling the detected muons
and constructing an analogous observable to Fig 4.6(b), as discussed in Section 4.5.3.

Thus far, the distributions we presented are not manifestly changed by the presence
of correlations. In practice, these observables are not ideal for discriminating the
change of shape related to polarization and longitudinal correlations.

A very promising observable we want to draw attention to is the cross section
differential in the the rapidity product:

do

d(Npy X Npy) . (4.76)
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Figure 4.6: Summary plots for the difference (left), sum (right) of muon rapidities, and relevant
ratios as in (4.73), with cuts as in (4.75). Plots (a) and (b) contain the comparison between the four
scenarios as defined in the text. The results are obtained by using the NWA.

This quantity gives the probability that the final state muons are detected in the
same or different hemisphere. The amount of cross section correspondent to the region
where the muons are detected in the same hemisphere (7, X n,, > 0) equals the cross
section for the muons detected in the opposite one (1, x 1,, < 0) in absence of any
correlations. We stress that this is a very convenient observable to look at correlations,
because any deviation from this symmetric picture is a footprint of correlations. In
particular, generalizing the definition of [191] for all kind of correlations under study,
we define the asymmetry:

A= 0(77#1 X Ny < 0) B 0(77#1 X Npo > 0)

. 4.77
U(nm X Ny < 0) + 0(77#1 X Nuy > 0) ( )

Its value must be exactly zero when the partonic cross section is calculated in the
fully uncorrelated scenario. A non-zero value represents the unbalance in the direc-
tion of muons detected (same/opposite hemisphere) occurring in any scenario when
correlation effects are included, as shown in Fig. 4.7.

The Fig. 4.7 shows the observable in (4.76) calculated with the four different input
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Figure 4.7: Cross section differential in the product of muon rapidities for the different types of
correlations, and relevant ratios as defined in (4.73), with cuts as in (4.75). (a): comparison between
the four scenarios as described in the text and relevant ratios Rg, Rx, Rx s; (b): comparison between
the normalized cross section in the minimally correlated case and the polarization case in the max
scenario.

for the DPDs that contain correlations. The distribution is symmetric, as expected,
in the minimal correlated case (blue line) which plays the role of a truly uncorrelated
case, while it loses its symmetry when including the polarized and kinematic correlated
terms (orange, red, and green lines). In particular, the “amount” of cross section
appears to be shifted towards the positive value of the product for all scenario, i.e., the
two muons would prefer to travel towards the detector along the same direction rather
than opposite directions. The Fig. 4.8 displays the same situation in the 1; — 7 plane.
The plot (a) is symmetric with respect to the origin, while the others are distorted.
In the polarized cases (b) and (d), there is a clear pattern showing the increase of
the cross section in the quadrants 1 and 4 (same hemisphere). In the unpolarized -
dependent case this shift does not occur in the same way, although a small distortion
from the symmetric pattern is also visible.

The asymmetry values are listed in the third column of Table 4.2. The values vary
from zero, which are the effectively uncorrelated scenario, to values different from zero,
which refer to the correlated situations. In all polarized cases, the asymmetry number
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4.5 Polarization in same-sign W boson pair productions

migrates towards negative values, corresponding to an increase of the amount of cross
section of two muons in the same hemisphere. The longitudinal correlations exhibit
an asymmetry different from zero even in the absence of polarization, as expected.
However, the distortion occurs in the opposite direction (i.e., towards positive values).
In the next Section 4.5.3 we show how much this situation changes as effects of the
initial and final state radiations and when the background is included.
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Figure 4.8: Density plots for the cross section as a function of muon rapidities, with cuts as in (4.75).
Different correlations are displayed: (a) minimal correlation; (b) polarization; (c¢) x correlation; (d)
polarization x correlation.
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4.5.3 Final-state analysis

With the parton level results at hand, we now turn into the analysis at the hadron
level, which mainly corresponds to initial state radiations for the W boson production.
The ultimate aim is the identification of the kinematic region where the signal process
is measurable and enhanced compared to the background processes. In essence, one
needs to distinguish the same-sign muon pair originated in DPS by the two W™
boson decays from the same-sign muons that make up (part of) the signature of
other processes in pp collisions. To suppress these unwanted contributions one needs
information on the underlying event (UE) surrounding the actual process.

In this Section, we discuss how to embed the results on correlations presented in
Section 4.5.2 into the study of the final-state particle distributions. We use general-
purpose Monte Carlo generators of pp collisions, namely Herwig 7 and Pythia 8 [211,
212], and we show a selection of preliminary results on this type of analysis. The
results of this section and the previous section will be presented in a more definitive
form in [213].

Signal process

The first part of the final-state study is performed by using the Monte-Carlo event
generator Herwig 7.1.2 (in the following called H7) [211]. The Herwig program pro-
duces the full information on proton-proton collisions at the hadron level, providing
the four-momenta of all particles in the final state (FS). In particular, it generates the
elementary hard scatterings (matrix element — ME), parton showers for initial- and
final- state QCD radiations (ISR and FSR), heavy object decays, and hadronization
processes.

Herwig is in principle fully capable of generating double W production events.
However, in its default setting, it is not tailored to produce entirely independent hard
scatterings (more details will be given later and in [213]). Our method for preparing
the hadron level event datasets is based on a re-weighting procedure. We initially
calculate the partonic cross section differential in four variables (kr,, kry, My s Mps)
using the different DPDs and the integration methods as explained in Section 4.5.2.
We chose 495616 (32 x 32 x 22 x 22) points in the phase space region (4.75) with
unequal spacing. The same four times differential cross section is then obtained from
the event generator using the same grid of points and the outputs are compared. The
advantage of using the Herwig program is the possibility of accessing the information
about the outgoing partons directly from the matrix element (ME) before the hard
matrix element correction is applied on their momenta. We, therefore, change the
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4.5 Polarization in same-sign W boson pair productions

weights (equal to one by default in the Herwig generation) of the DPS WW events
into new weights according to our results for the cross section. We repeat the same
procedure for all type of correlations.
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Figure 4.9: Comparison between the calculated distributions (dashed lines, same as in Fig. 4.5(a))
and the reweighted distributions from Herwig generator at ME level (solid lines) with cuts as in (4.75).
These distributions are identical so the dashed lines are not visible. The two lines in the middle
(pink and purple) represent the two types of Herwig events (explained in the text). Ratio plots at
the bottom of the panel, with R: Rg (dashed line), Rx (dotted)

After the reweighting process, the distributions generated by Herwig at the ME
level are identical to the ones we have calculated in Section 4.5.2, as shown in Fig. 4.9,
where the two types of distributions are compared in each correlation scenario. Solid
lines represent the Herwig results after the reweighting procedure, while the results
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Chapter 4 - Pairs of polarized partons inside the proton

of the distributions calculated in Section 4.5.2 are included with dashed lines (not
visible in the plot). The distributions are identical and the curves overlap (see e.g.
Fig. 4.5 (a)for comparison). This validates the procedure of reweighting, which has
been found sufficient and fully reliable. The hadron level distributions that we obtain
from the reweighted generator, produce FS as we had showers and hadronizations
directly from the new parton events.

Two additional solid lines are included in Fig. 4.9, that serve as a comparison
between the results generated by Herwig before and after the reweighting procedure.
As previously mentioned, the Herwig generator can in principle be used to generate
this type of DPS events (resulting in fact in the independent production of two W).
However, an event is discarded when it violates momentum conservation. This event
veto effectively modifies the distributions, producing a difference between the first
and second production of W, although the generation tries to prepare them inde-
pendently at first. These results are indicated as “H7 DPS” in Fig. 4.9. This dataset is
eventually compared to a random combination of two single W events together (line
labeled as “H7 mix”). The solid lines for H7 DPS and H7 mix are very similar and
differ only in normalization, as mixed events are more likely not to pass the phase
space cuts (4.75)

To demonstrate the quantitative effect of the generator correction, i.e. the dif-
ferences between parton and final-state distributions, we first have to reduce the
phase-space with respect to (4.75). The larger zeroth selection is needed because the
momenta of the leptons (and partons from UE) are modified during the generation
process, so the values of the rapidities and transverse momenta can migrate out of
or into the new phase space. However, we need to define an experimentally accessible
region, which correspond to a narrower interval of rapidity (e.g. ATLAS and CMS
experiments have their tracker acceptance within || < 2.5). At this stage we keep
the transverse momenta as low as possible to demonstrate the gradual effect of the
phase space restriction on the studied distributions. The following “first selection” is
considered:

kr, >5GeV, |n,| <25, |n,|<10. (4.78)

The Table 4.3 summarizes the total cross sections and asymmetry values for all
four types of correlations. We can observe a 40% decrease in the cross section with
respect to zeroth selection due to the significant reduction of rapidity range (see
Fig. 4.5(a) for comparison).

Fig. 4.10 shows the results for the transverse momentum and rapidity profile, ob-
tained from sharpening the cuts from (4.75) to (4.78). The left-side panels corresponds
to ME level events while the right-panels show the effect of the full event generator (F'S
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4.5 Polarization in same-sign W boson pair productions

cross section [fb] ME Asymmetry FS Asymmetry

Ormin_corr 1.06 0.00 0.00
Tpol 1.15 —0.04 -0.04
Tx_corr 0.85 0.00 0.00
Ox_corr_pol 0.92 —0.03 -0.03

Table 4.3: Results for the full cross section and asymmetry values in the different four DPDs
scenarios as described in the text, with cuts as in (4.78). The third and fourth columns contain the
values of the asymmetry in the different scenarios before (ME) and after (FS) the parton showers
from Herwig.

level) 4. The ratios Rg, Rx and Rxg are also displayed. We can observe a significant
smearing of the sharp transverse momenta peak, and small statistical fluctuations in
the rapidity distributions.

In Fig. 4.11 we show the cross section as a function of the sum (a), absolute
difference (b), and product (c)-(d) of final-state muon rapidities. The cuts in (4.78)
are responsible, at the ME level, both for the decrease of the total cross section
and for the change in the asymmetry values (4.77) (see Table 4.3, in comparison to
Table 4.2). In general, we observe that the distortions introduced by correlations,
quantitatively indicated by the asymmetry values in Table 4.2, are not washed out
by the effects of the parton showers. In particular, in the presence of polarization
correlations, the muons would be more probably detected in the same rather than
the opposite hemisphere, and this remains true also when the FS distributions are
considered. In Fig. 4.11(c) one can observe more closely the ratio Rs(n,,1,,) between
uncorrelated and polarized distribution. It is shown in Fig. 4.11(c) that there is a clear
change in the shape of the distribution towards positive values of n,, x n,, in the
presence of correlations.

An additional promising observable to look at is the slope of the 1, x 7, distri-
bution. As will be explained while discussing the background, an advantage related to
this variable is that selecting the events corresponding to having both muons in the
opposite hemispheres of the detector can help to distinguish the correlated DPS sce-
narios from the background processes. We postpone this discussion to the appropriate
next Section.

4These data samples contain around 2 millions of events, a number that allows to illustrate the
results as smooth functions. The real measured distributions will only have few thousands of events.
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Figure 4.11: Final-state distributions with phase-space cuts as in (4.78) in all correlation scenarios.
Ratio plots at the bottom of panels (a),(b), and (c), with R: Rg (dashed line), Rx (dotted). Left/right
asymmetry is displayed at the bottom in panel(d). Top left: F'S distribution of the absolute value of
the difference of muon rapidities. Top right: distribution of the sum of muon rapidities. Left bottom:
F'S distribution of the product of rapidities. Bottom right: F'S distribution of the product of rapidities
and left/right asymmetry at the bottom.
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Finally, to gain a better intuition about the modifications introduced by initial-
and final-state radiations, we display in Fig. 4.12 the results for the cross section
double differential in the muon rapidities. These figures are related to the previous
Fig. 4.8. Thanks to the reweighting procedure, the ME level results (which we do not
show for semplicity), corresponding to the FS results shown in Fig. 4.12, are the same
as the ones in Fig. 4.8 but with the reduced phase-space. We observe that, both at

the ME and the FS level, passing from the uncorrelated to the correlated cases always
causes a drift towards an asymmetric pattern.
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Figure 4.12: FS results for the cross section double differential in 7, and 7,,, with selection (4.78).

Different correlation scenario: (a) minimal correlatation, (b) polarization, (c)x-correlation, and (d)x-
correlation polarization .
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4.5 Polarization in same-sign W boson pair productions

A clarification on the different ways of collecting muons is in order. Thus far, the
muons are still distinguishable and can be labeled as pq and pg, implying that they
are originated from the first or second interaction respectively. They are equivalent,
i.e., give rise to identical distributions upon interchange p; <+ po. This is true both
at the ME and FS level. In reality, there is no possibility of distinguishing the two
muons. Therefore, a second type of muon collection can be created. The two hardest
muons among the final states are selected every time, and marked as leading and sub-
leading, pead Msub- We will need to switch to this type of muon collection technique
for the analysis of the background events.

Background processes

We now turn into the analysis of the processes whose signature contains a pair of
muons, which constitute the relevant background for the double W production in
DPS. The ultimate goal will be to find the ideal selection of cuts and the best theo-
retical framework that will allow for the measurement of the two-parton correlations
in DPS, in the future era of LHC. The results we now present are in a preliminary
form, and therefore they will serve as an illustration of the current stage of the analy-
sis, rather than as concluding results. Therefore we point to an upcoming work [213]
for the complete discussion of the final results.

The major contributions to the background of a same-sign muon-pair production
come from SPS processes such as:

e Heavy flavor production, represented by the (dominant) ¢ process. In this pro-
cess, one lepton is generated in the first top decay and another lepton, with the
same sign, arises from a bottom quark emitted by the other top quark. Since
we aim to remove these type of events as much as possible, there is no real need
to go through all possible flavors, as the top quark has the largest chance to
produce a muon.

e Diboson production. The SPS processes producing a pair of gauge bosons are
the most direct background processes. We distinguish three types of processes:
Z7Z, WZ and WW. The latter is strongly suppressed by the presence of two
additional strong vertices at the lowest order diagram and we mark it as WWjj
process. We note that Z stands for both Z boson and virtual photon.

e Single Drell-Yan. It belongs to a class of background processes in which the
muon charge is mis-measured. We do not provide any quantitative prediction
for this background and assume it negligible.
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Chapter 4 - Pairs of polarized partons inside the proton

As previously mentioned, we stress that the parton level cuts for the event gener-
ation were chosen wide enough to allow the secure reduction of the final state phase
space restriction. For simplicity, in comparison with the background processes, we
only show the FS level results of the minimally correlated scenario. We use the PDF
set MSTW2008 and a combination of the Monte-Carlo event generators Herwig and
Pythia. For the diboson process also MadGraph5_aMC@NLO is used [214].

The production of a pair of W-boson with the same electric charge in DPS has
been measured for the first time by the CMS collaboration very recently in [180].
Accordingly, in the hunt for the optimal event selection, we will try to preserve the
CMS definitions as much as possible. In the second column of Table 4.4 we show the
value of the cross section for the signal (DPS WW) calculated with the cuts in 4.78,
and the initial cross section values for the background processes (WWjj, WZ, ZZ,
and tt). The complete set of cuts used for a first look at the background data is labeled
as “second selection” (these are CMS-based):

u,] <24, ket >20GeV  kEew > 20 GeV,
ks <5GeV, F,.>20GeV, dR(n,,,¢:) > 0.1, (4.79)

where [, is the missing energy in the transverse plane due to the presence of the
elusive neutrinos, and dR is the distance of the two muons in the plane formed by their
rapidities 7, and the azimuthal scattering angles ¢, (see, e.g., [208]). The constraint
on dR is imposed in order to prevent the muons to be too close to each other. The
effect of the above selection is shown in the third columns of Table 4.4 and Fig. 4.13.
In the former, the values for the cross section are displayed. We mention that the
veto to the third muon transverse momentum particularly reduce the WZ decay and
almost completely removes ZZ events. The situation is sketched in the two upper
panels of Fig. 4.13, where the distribution of the muon transverse momenta (leading
muon in panel (a) and subleading muon in panel (b)) are plotted for all the processes.
We include the ratio R defined as:

[Total (Background + DPS signal)]

R =
[Background]

(4.80)

Jet vetoes can further constrain the WW jj and tt contributions, i.e., a constraint
on the maximal allowed kp value for jets is imposed. In the lower part of Fig. 4.13
(panel (c) and (d)) the transverse momentum distribution of the first two leading jets
is represented. A value of kp lower than 25 GeV is applied on the second leading
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Figure 4.13: Results for the distributions of the transverse momenta of the muons and the jets
calculated with cuts as in (4.79), for the signal and background processes (with different colors in
the plot). Ratio plots at the bottom show the comparison between the total (background + signal)
and the background processes. From top to bottom: (a) leading muon, (b) subleading muon, (c) first
leading jet, and (d) second leading jet

jet (jeta) to suppress the most significant part of WW jj events and another relevant
portion of £ events. The cut on jet; is instead left less strict and a maximum value of
50 GeV is chosen. Moreover, in the seek for an active suppression of the £ background,
a widely used procedure is the reconstruction of b-jets, i.e., jets containing hadrons
deriving from the fragmentation of b-quarks (see, for instance [215,216] and [213]
for the extra information on the adopted procedure and efficiency). The assumed
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2nd selection 3rd selection final selection

DPS WwW 1.06 0.67 0.48 0.11
WWij 2.32 1.30 0.03 0.00
wZz 148.2 4.93 1.77 0.08
47 59.1 0.00 0.00 0.00

tt 3.6 x 10° 939. 2.51 0.08

Table 4.4: Cross section values in fb for the DPS signal and the relevant background processes
described in the text. The results of each column are calculated with phase space cuts. Columns
from left to right: type of process; cross section values in the first generation of backgrounds (WW 37,
WZ, ZZ, tt) and for signal DPS WW with selection (4.78); cross section value for the second
selection (4.79); cross section value for the third selection (4.81); cross section value for the and
“temporarily” final selection (4.82)

efficiency of the b-jet tagging procedure is: 75% for k' € [25 — 30] GeV, 80% for
Kt € [30 — 40] GeV, and 85% for K € [40 — 50] GeV [213].

Another basic part of the selection is to restrict the allowed transverse momenta
of muons to a smaller window. We can see in Fig 4.13 that the DPS signal is well
located around 38 GeV (25 GeV) for a leading muon (sub-leading muon). Gathering
together the above considerations, we define the “third selection” as follows:

Mus| < 2.4, 25GeV < kMesd < 50GeV, 15GeV < kt=b < 40 GeV,
ks <5GeV, F,>20GeV, dR(n,,d,) > 0.1,

K < 50GeV, K2 <25GeV  +  jet b-tagging. (4.81)

The results on the cross section are reported in the fourth column of Table 4.4,
where the successful suppression of the WW jj background is apparent. On the other
hand, we notice that both ¢ and W Z backgrounds are still dominant with respect to
the signal.

The optimal strategy to eventually achieve the suppression is still under investiga-
tion. We outline a possible direction and temporarily call it “final selection”. Generally
speaking, the tf process might be reduced below the signal by imposing veto cuts on
charged particle multiplicities (tracks). This step has to be considered very carefully
from a theoretical point of view because selecting particles introduces a theoretical
uncertainty that we have not estimated. However, in the current stage, the checks per-
formed on how much this procedure affects the signal and the background show that
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Figure 4.14: Comparison between results obtained with the phase space cuts as in (4.81) (upper
panels) and (4.82) (lower panels) for all processes. Ratio as defined in (4.80) is displayed. Panel (a)
distribution of the rapidity of the muon pair with third selection (4.81), panel (b) missing transverse
energy with cuts (4.81). Panels (c) and (d): product of rapidities for the third selection (4.81) and

final selection (4.82), respectively.

the signal is not significantly affected, while the ¢ process is massively reduced [213].
The theoretical validity of the track selection procedure remains to be understood.

We present the results obtained by vetoes on the track transverse momentum of 1, 5,
and 15 GeV, even though future investigations are needed.

The suppression of the W Z process remains complex because its signature is very
close to the signal one. In Fig 4.14 we show two possibilities that can be explored.
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The upper left panel shows the rapidity of muon pair and on the right we display
the missing transverse energy. In practice, one could for instance attempt to impose
cuts on the rapidity of the combined muon system, or require a minimal transverse
energy. We explore the latter possibility and define a temporarily “final selection”.
This contains, in addition to (4.81), the above mentioned selection of tracks and the
requirement of minimal transverse energy. Namely:

(4.81) + track selection + [F, > T70GeV. (4.82)

We observe that the background suppression is remarkable compared to the third
selection (see the last column of Table 4.4), and the signal process represents the
prominent value, as desired. To further underline the improvement produced by the
final choices (4.82), we display in the lower panels of Fig. 4.14 the rapidity product
distributions for the third selection (left) and the final selection (right). We notice that
the selection (4.82) works well for negative values of 1, x 1,,, where the suppression
of background is more satisfactory.

Final results and promising directions

Fig. 4.15 contains the final results for the FS product and the difference of muon
rapidities, in all four correlation scenarios including background, using the final se-
lection (4.82). An outstanding signal of correlation is still missing, as reported in
Table 4.5. Discriminating any variations in the asymmetry values is probably of hard
experimental reach at the present stage of our study.

Fig. 4.14 (d) shows that the remaining background is manifestly asymmetric to-
wards the positive values of the rapidity product. Because of this, the asymmetry
value will be primarily determined by the non-DPS background rather than the DPS

o [fb] Asymmetry (Total) Asymmetry (DPS only)

Min-corr 0.105 -0.307 0.003
Pol 0.112 -0.314 -0.033
X-COIT 0.092 -0.329 0.005
x-cor Pol 0.086 -0.333 -0.028

Table 4.5: Results for the cross section and asymmetry values for the DPS process in the four dif-
ferent correlation scenarios. The results are calculated with the final selection (4.82) to appropriately
suppress background as outlined in the text.
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Figure 4.15: Final results for the FS distributions for all correlation scenarios, using the final
selection (4.82), and relevant ratios, with R: Rg (dashed line), Rx (dotted), as defined in (4.74).
Left-side panel: DPS cross section differential with respect to the product of rapidities of the muon.
Right-side panel: cross section differential with respect to the absolute value of the difference of muon
rapidities

signal and will be shifted towards large negative values, as shown in Fig. 4.15(a) and
Table 4.5. This is the main reason to argue that measuring the slope of the distribution
is in principle a valuable alternative, as the signal entirely dominates the measure-
ment for only negative values of n,, X 7,,. A measurement of the slope consists of
counting the total number of events (signal plus background) of muons going to the
opposite hemisphere. Such a measurement would demand a great accuracy in the
modeling of the signal and background processes, and the main sources of theoretical
uncertainties should be carefully evaluated. These considerations are still open and
under investigation.

As a concluding remark, we discuss the strategy under investigation to obtain a de-
cisive improvement on the background suppression, and we outline a possible new
scenario on spin correlations that can be measured at the LHC. If we resume our
analysis after the third selection (4.81), we are left with two prominent background
processes: W Z and tt production. In order to avoid to perform the track selection,
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one can rather use the theoretical calculations combined with data-driven methods
to efficiently suppress these processes. The fact that the W Z process is relatively
well understood from the theoretical point of view makes it possible to assume that
this contribution can be effectively subtracted, leaving a theoretical uncertainty to
be added to the signal. Not as simple as the WZ is the case of the tf process, for
which the status of the theoretical calculations is not as good. In this case, one can
adopt methods of muon isolations which are proven to be extremely efficient in sep-
arating the prompt muons from the muons produced by meson decays [217]. In this
ideal background-free situation, a remaining question would be whether one can push
the theoretical assumptions further in order to create a scenario where correlations
are detectable. Within what is allowed by the positivity bounds, we can build new
longitudinally polarized DPDs that still saturate the bound (4.43) but with difference
signs, depending on the type of parton entering the distributions (two quarks, two
antiquarks or a mixture of quark-antiquark). By modifying the sign of the polarized
distributions at the initial scale as will be explained in [213] we observe an increase
of the absolute value of the asymmetry up to the capabilities of the LHC (in our
preliminary investigations we could observe an increase of about 3-4 times compared
to the numbers in Table 4.2). This direction is promising and the new scenario on
spin correlations could be tested through the asymmetry measurement quite directly.

4.6 Discussion and conclusions

We conclude the Chapter with a brief summary and some comments.

The concept of double parton scattering has been attracting theoretical and exper-
imental interest for several years. It is a generalization of the single parton scatterings
that potentially creates a very rich phenomenology. In fact, extending the description
from a single to a double parton description is a unique opportunity to grasp the
structure of the hadrons with nonstandard (multipartonic) eyes. In particular, one
can study, in a complementary framework, a bigger number (and different in nature)
of correlations, especially in comparison to standard single parton PDFs. The addi-
tion of extra degrees of freedom is practically similar, even though conceptually very
different, to the extension of the description from the collinear to the transverse space:
the presence of the transverse momenta is crucial to introduce quantum and kinemat-
ical correlations that are responsible for the manifestation of fundamental properties
of QCD: color entanglement, gauge invariance, and universality. The theory of DPS is
in this sense younger, even though several of the single parton theory concepts have
been developed and are becoming part of the DPS theory as well (such as TMD and
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collinear factorization, QCD evolution, description of universality). In addition, very
peculiar of DPS is the concept of quantum interference and correlations.

In this Chapter, we have discussed two-parton correlations, a type of correlation
that is already included in the double parton correlator from its very first definition.
The spin correlation of two partons, also in an unpolarized proton, is a particularly
interesting type of correlation. In fact, it is the only correlation which gives a direct
(calculable in the hard part of the cross section) effect on the distributions of final
states. The other types of correlations are responsible for the interplay between the
kinematic variables z; in a way that is not exactly specified. Since the dependence of
the unpolarized DPDs on z; and y separately is also currently unknown, the predic-
tions are to be taken with care.

We have presented a study of the production of same-sign W-boson pair produc-
tion in presence of correlations. The analysis has been carried out on the partonic and
final-state level, including the relevant background processes. We also identify the key
observables that would allow the discrimination of correlations in DPS. The results
on the final-state distributions including background are presented, although in a pre-
liminary form. The optimal phase-space portion that would need to be used to detect
correlations is still under examination, and a definitive response on the feasibility of
measuring correlations in DPS has not been determined. Nevertheless, theoretical and
experimental improvements are currently under investigations.
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Chapter 5

Quarks in unpolarized targets
in AdS/QCD correspondence

5.1 Introduction

In this Chapter, we introduce the main features of the AdS/QCD correspondence,
where “AdS” stands for anti-de Sitter space. Through this approach, we derive the
LFWFs of mesons and employ it to the study of the pion structure. The pion was
theoretically predicted by Yukawa in 1935 [218] as the mediator of the short-range
nuclear force, and it was observed experimentally for the first time in 1947 [219].
Across the decades, formidable developments have been achieved in the theory of the
strong force. Nowadays the pion has been recognized as having a crucial role in many
aspects of the standard model and in the study of QCD and confinement. It is the
Goldstone boson of the chiral symmetry breaking, a mechanism which is responsible
for dynamically creating most of the visible mass of the universe [220,221]. On the
other hand, it is the simplest hadron in nature: it is the lightest QCD bound state,
made up of u and d valence (anti)quarks, and its spin is zero. Thus, no target spin
degrees of freedom enter the description.

These complementary pictures emerge when we study different properties of the
pion’s interior, such as elastic and transition electromagnetic form factors (see e.g. [222—
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226]), distribution amplitude (see e.g. [227,228]), PDFs (see e.g. [229-232]), GPDs
(see e.g. [233-239]), TMDs (see e.g. [62,240,241]), and Fragmentation Functions (see,
e.g., [242-245]). The comparison with experiment is crucial to draw definitive conclu-
sions, and the experiments planned at JLab 12 [246], and the new mesonic Drell-Yan
measurements at modern facilities [247,248] can provide valuable information.

Since there are no spin states available in the target, a big simplification arises in
the description of the distribution functions. Focusing on the quark TMDs at leading-
twist, only two functions are involved: the unpolarized f; and the Boer-Mulders hi .
However, the absence of experimental information on the TMD structure of the pion
prevents us from a direct comparison between theory and experiments, conferring an
exploratory connotation to this study.

The internal structure of the pion, as well as other hadrons, can be studied by using
different approaches, such as constituent quark models (see e.g. [62,240]), covariant
models and Schwinger-Dyson equations [221,249], lattice QCD methods [34, 54, 56],
and the formulation of the AdS/QCD correspondence [250]. We investigate the op-
portunities offered by the latter, as being an appealing approach from the theoretical
point of view.

The AdS/QCD correspondence in the form of the light-front holography was for-
mulated in 2006 by Brodsky and de Teramond [251,252]. It has a number of features
that will be briefly reviewed in Section 5.2.1. Among those, there is the capability of
providing an expression for the LFWF of the valence state of the mesons. As shown
later in the Chapter, it has a very simple form and, in its original version, only one
free parameter. In essence, very little modification is needed in order to employ it
in a phenomenological study. We aim to study quark TMDs in this framework, and
discuss some aspects that arise from the transition from the nonperturbative nature
of the AdS/QCD description and the perturbative regions.

5.2 Meson LFWF from AdS/QCD

In this Section, we first review the main properties of the LFWFs and we show that
the knowledge of such quantities is important in the seek of a unifying framework to
describe simultaneously hadronic and partonic observables, since quantities such as
TMDs, PDFs, and electromagnetic form factors, can be written as overlap of LFWFs.

With these concepts at hand, we can turn to the actual use of the LFWF for the
pion derived in the AdS/QCD correspondence.

In the context of QCD, LEWF's are not known and not calculable perturbatively.
They have for example been constructed within the framework of light-front con-
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stituent quark models [59,253-256] and used in the calculations of TMDs, GPDs, and
GTMDs. As we shall see shortly, the AdS/QCD approach provides an expression for
the meson LFWFs directly. The limitation is that the complexity of the hadron spin
structure remains unexplored, as the LFWFs has a very simple, spin-independent
form. We thus continue this dissertation by looking more closely at unpolarized quan-
tities. On the other hand, this offers the opportunity to look simultaneously at many
observable within a unified formalism.

LFWFs overlap representation

The observables under investigation in this Chapter are the electromagnetic form
factor, the valence quark PDF and the TMD of the pion. Electromagnetic form factors
are measurable quantities in elastic processes. Those processes are quite different from
the ones we have been dealing with so far, at least in their much less energetic nature.
In fact, a very moderate Q? value is needed to investigate the electromagnetic property
of the hadrons without resolving the partonic nature (the data on the pion form factor
that will be analyzed have a maximum value smaller than Q2 ~ 10 GeV?).

In terms of operators, the form factors parametrize a non-forward matrix element
containing a local current operator, i.e. (P|J*(0)|P’). The kinematic is space-like
and the virtual photon of momentum ¢* can be chosen such that ¢t = 0, with
Q? = —¢?. This choice is useful because in LF quantization, where plus momenta
cannot be negative, only processes with the same number of initial and final particles
are allowed. The relevant component of the current is the plus component J* (0) =
> eq¥q (0) 71, (0), where e, is the electric charge of the constituent. This is the only
contribution because it contains the good components of the fields, while J~ contains
bad components and it is not a one-body contribution. For a spin-1/2 hadron the
parametrization of the transition matrix element reads:

0 %o | urLr (P,A),

(5.1)
where uyp(trp) are the LF Dirac spinors as in Appendix A. The form factors F; and
F; are called Dirac and Pauli form factors respectively, and they are a measure of the

(PNTF(0) [PA) = e (P A) | Fy (@) 7 + B2 (@) 5y

electric and magnetic charge distributions in the hadron. The hadron initial and final
momenta are chosen as [257]:

P:P*PfP:PJrEO 5.2
( 9 7T) a2P+aT7 ()
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o (5.3)

q=(¢t.q".qr) =(0,0,qs). (5.4)

M2 2
P/:(Pl+,Pl_,P;):<P+, +QT’ T))

We can write the form factors of eq. (5.1) in terms of helicity conserving and helicity
flip amplitudes as follows:

J*(0)
F(Q%) = (P+g, + Sp 1P +) = 2P+f++, (5.5)
2 +
(q *iq)F22(]C\j) :<P+q7 +| JQP(-"(-))| 77> 2P+f+ s (56)

where

Faa(@) = (PN J7(0) [P, A) = Zeq (P N 0q (0)7 g (0) [P A), (5.7

with A, A’ light-front helicity states of the initial and final state of the hadron. After
inserting the expression (2.90) for the hadron state in the matrix element (5.7), one
has:

N
Fan (@) =273 T % eq5é]q/[dm] (k] U () WY, (1), (5.8)

Jj=1 q B=p’

where N is the number of particles in the n-th Fock state and the integrations mea-
sures are defined as in (2.93) and (2.94). The expression (5.8) allows one to compute
the form factors once the form of the LEFWF \I/?V 5 (r) is known. In the case of a spin-0
particle, like the pion, only the form factor F} exists and reds:

N
F(@)=F (@) =35 3 eaby [ ldely (k] Uy ) W5 (), (59)

Jj=1 a pB=p

With the same logic as for the form factor, one can plug in the expansion (2.90) in
operator definition of the TMDs and PDFs and find an expression for the unpolarized
TMD f(x,k2) and the PDF f;(x) as

ZZ/ (J d2k’ (J)M’Nﬁ’ (x,kT;T'(j))F, (5.10)

B j=1
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N .
fi(z) = ZZ/[dx']g\J,) |\Il%’5, (a:;r’(j))|2, (5.11)

B j=1

where the following notations are used:

j N
d'|) =TIy daié (@ = %)

(AN e H%} k6 (ky — k) (5.12)

\IJQ,B’ (’l”; r’(j)) = \I//RCB' ( ey P15 T 41, - ) .

The AdS/QCD correspondence provides an expression for the meson valence state,
i.e. only the |gq) first Fock state is present in the expansion. The above expressions will
be then extremely simplified and they become as shortly defined in eq. (5.25), (5.27),
and (5.24).

5.2.1 The AdS/QCD correspondence

With the name AdS/CFT correspondence [258,259] (also called gauge/gravity duality
or Maldacena conjecture) we refer to the connection between a string theory defined
in a d dimensional anti-de Sitter (AdS) space, and a conformal field theory (CFT)
defined in a flat space with d — 1 dimension. This represents a realization of the
holographic principle, because the relation involves theories defined in spaces with
different dimensions. In particular, the conjecture states that it is possible to relate
a gauge theory in standard (3 + 1) Minkowski space-time to a gravitational theory
in five dimension, with the remarkable advantage that the two theories have inverse
couplings. The line element in the AdS metric reads:

, R : i 2
ds = deidx —dz* |, (5.13)

=0

where R is the AdS curvature radius. The 5-th coordinate z is called holographic vari-
able. The Anti-de Sitter AdS space is is a maximally symmetric Lorentzian manifold
with constant negative scalar curvaturethe and a four dimensional boundary. Due to
the high number of symmetries on the gravity side, the correspondent dual gauge
theory consists in a conformal and supersymmetric Yang-Mills theory.
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Bottom-up approach and LF Holography

The idea expressed by the gauge/gravity duality is certainly intriguing, and during
the past twenty years people have been devoting a lot of work in developing AdS/CFT
methods. The aspiration of applying such a conjecture (or a modified version of it) to
a strongly-coupled theory existing in nature, such as QCD, has grown. The underlying
logic is to match the nonperturbative observables of QCD to other observables that
would be calculable in the gravity theory with perturbative methods. However, as soon
as the role of the supersymmetric Yang-Mills theory is played by QCD, one should
desist from any attempt of implementing AdS/CFT in its original formulation. Since
a gravity dual to QCD is not known, one needs to modify the gravitational theory on
the AdS side. In this bottom-up approach, the dual gravitational theory is constructed
such that all the characteristics of QCD would be implemented: conformality in the
massless quarks limit, asymptotic freedom for small distances and confinement in the
large distance domain.

The implementation of the AdS/QCD correspondence in the form of Light-Front
Holography (LFH) is inspired by these principles [251,252]. In the so-called “soft-wall”
version of AdS/QCD correspondence [260], conformal invariance is broken thanks to
the effect of a harmonic confining potential (whose strength is determined by a mass
parameter k), producing a distortion of the AdS geometry near a large infrared value of
z. If one identifies this value with z ~ 1/Agcp, the scale of the strong interactions can
be found. The soft-wall is realized by the insertion of a scalar dilaton field p(2) = k2?22
in the 5-dimensional action, namely:

S = /d4xdz\/|g|e‘p(z) (gMN O ®(z, 2)ON D (2, 2) — M* PP (2, 2)), (5.14)

where uppercase indices M and N run from 1 to 5, g™¥ is the metric tensor of the
AdS space such that ds? = gy ndzMdx” with 2™ = (2, 2) and m is an arbitrary
mass parameter. The scalar normalizable modes in AdS can be written as ®(z,z) =
e P p(2), i.e. plane waves along Minkowski coordinates z,, and a profile function
¢(z) along the holographic coordinate z.

It can be shown that the equation of motion of ¢(z), derived from the modified
AdS action, corresponds to the equation for the transverse part of the LEFEWF [250],
with a non-vanishing harmonic potential and with the identification of z with the
impact parameter coordinate in LF [261]. Therefore, the connection established holds
between the 5-dimensional gravity theory in modified AdS space and LF formulation
of QCD [250]. The consistency of the choice of the harmonic oscillator is supported by
several arguments [250]. It is relevant to mention that this is, for instance, consistent
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with the fact that a harmonic shape of the potential in LF corresponds to a linear
potential in usual IF [262].

Hadronic physics in the AdS/QCD approach

Light-front holographic QCD methods (see [250] and references therein for a complete
review on the topic) have been employed in a number of recent works to obtain new
insights into the structure of hadrons [250-252, 260, 263, 264].

For instance, the approach leads to linear Regge trajectories [260] for light mesons
and baryon, one of the major success of the approach. From the light meson and
baryon mass spectra one can extract a possible value of the universal parameter s, as
discussed later in the Chapter and extensively in [250].

Most relevant to our purposes is the achievements of light-front holographic QCD
in providing a theory-based expression for the light-front wave function (LFWF) for
the valence Fock-state component of mesons. This makes it possible to obtain direct
information about many hadronic observables, which can be expressed in terms of
overlaps of LFWFs.

Once the correspondence has been found, one can proceed in building the dic-
tionary of the LF Holography. Brodsky and de Teramond in [261], inspired by the
work of Polchinski and Strassler [265,266], matched the spinless string modes in
five-dimensional AdS space with the meson LEWFs. The original procedure carried
out by Brodsky and de Teramond is extensively explained in, e.g., [261] and will not
be repeated here. The matching involves the following quantities:

Jd*z [dz\/g AM (z,2) D} (2, 2) ?M@p (x,2) (5.15)
i)

(2m) 6W (P' = P —q) e, (P' + P)" F (Q?), (5.16)

where the top line (5.15) represents the expression for the transition matrix element
of the free electromagnetic current AM (x, z) propagating in the AdS space, evaluated
between five-dimensional AdS modes ®(z,z) that correspond to the incoming (P)
and outgoing (P’) meson states in a soft-wall model effective potential. The bottom
line (5.16) represents the same transition amplitude in the physical Minkowski space-
time, i.e. (P'| J*(0)|P) = (P + P")*F(Q?). The meson momentum changes from P
to P’ as the result of the interaction with a photon with space-like momentum ¢* and
polarization vector €”. As previously explained in this Section, one can conveniently
choose a frame where the photon momentum is only in the transverse direction. The
F(Q?) in (5.16) is then the form factor of the meson expressed in terms of the impact
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parameter coordinates b, Fourier transform of the transferred momentum q.., rather
than in momentum space as in (5.9). The matching provides the expression for the
LFWFs for the valence state ¢g of a meson h in the impact parameter space':

F(Q?) = Zeq/dm%T exp (igtz - (1 — 2)br) [Yaq/n (@ b2)[*. (5.17)

The identification is openly valid only for the first Fock state and the LFWF derived
has the form that we will write in eq. (5.18).

The procedure in [261] was based on the correspondence between a free current
propagating in AdS and the LFWF overlap representation of the form factor, and it
would be exact if one included all the infinite number of Fock states. Later in [267], the
mapping with a “dressed current” incorporating non valence Fock state was developed,
which led to the expression in eq. (5.22). This wave function is supposed to effectively
describe the hadron.

The two forms for the LEFWF obtained have been used as the starting point to
calculate collinear and transverse-momentum dependent parton distributions (PDF's
and TMDs, respectively), generalized parton distributions (GPDs) and other parton
densities both for mesons and nucleons (see for instance [167,268-284]).

In Section 5.3 we will review the characteristics of these two forms and we will
investigate the phenomenological implications on the simplest mesonic state: the pion.

5.3 The pion in AdS/QCD correspondence

In this Section, we present the results from [66], where we used the LFWFs from the
AdS/QCD correspondence to study the 3D internal structure and dynamics of the
pion in momentum space.

5.3.1 Pion LFWFs

As previously mentioned, studying the structure of the pion has attracted interest
since the pion was predicted and detected experimentally. It can be seen as the
simplest realization of a QCD bound state of quark and anti-quark as well as the
Nambu-Goldstone boson of the dynamically broken Chiral Symmetry in QCD.

The expressions of the LFWFs coming from the soft-wall model of the AdS/QCD
correspondence were originally derived in two different matching procedures [261,267].
Brodsky and de Teramond in [261], inspired by [265, 266], perform the matching

1The matching only provides the s-wave contribution to the LFWFs.
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procedure taking into account only the two-parton valence component. The explicit
expression for the pion LEFWF reads
1 1 k%

L (@, k) ~ e TR0 5.18
qq/‘n’( T) K (1 —.’I,')J? ( )

where the superscript V' indicates that we are considering the LEWF for the pure-
valence state of the pion. The quark masses in the pion LEWF are included following
the prescription suggested in [285], i.e. by completing the invariant mass of the system
as

2 2 2 2
ms + k2. m*+k
M? = P - z, 5.19
; X x(1—x) (5.19)
where m = m1 = mso and, from momentum conservation, k; = k;1 = —kro and

x=1x1 =1— x5. As a result, the expression (5.18) becomes

V(e k)= AT Ce) (5.20)
gq/m 0 BT ky/(l—z)x ’ .
where A is a normalization constant fixed by the condition
o0 d2k}
/ dx/ 167T3 Ggasm (@, kr) [P = 1. (5.21)

An alternative expression for the LFWF has been derived in [267], considering the
mapping of the matrix element of a confined electromagnetic current propagating in
a warped AdS space to the pion form factor. In this case, one obtains a LEFWF which
provides the expected pole structure for the form factor in the time-like region. Fur-
thermore it incorporates the effects due to non-valence higher-Fock states generated
by the “dressed” confined current and represents an effective two-parton state of the
pion. It reads

log (& log(1/x) k3
quE/ﬂ' (Z‘, kT) ~ K(lg_(;))e_wr‘mgv (522)
where the superscript E indicates that we are considering an “effective-valence” com-
ponent of the LEFWF. At variance with the pure-valence LFWF, the effective-valence
LFWF is not symmetric in the longitudinal variables « and 1 — = of the active and
spectator quark, respectively. Introducing the quark mass dependence as outlined
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above, the effective-valence LEFWF becomes

A log (%) _los(/z) kT+m
kr)=4nA——e -2 2
(z, kr) =4 w(— ) e , (5.23)

where the parameter A is once more fixed by demanding the validity of (5.21).

E
qq/m

5.3.2 PDF and Form Factor

Using the LEWF overlap representation of the PDF and form factor for the first Fock
state in the expansion, in the valence case (5.20), we obtain

T PPk, Cm? w2
S (@:Qo) :/ T6.3 [ag/x (@, k) [? = Aze( " ~2<1—m>), (5.24)
FY(Q%) =
+oo d2k v
167T3 d ¢qq/7‘r (Z‘, kT + (1 - x)qT) ¢qa/w (Z‘, kT)
1 P m? Q21— £>>
:/ dxA2 DNV (5.25)

where |g,|? = Q2. The condition (5.21) implies that fol dof) (v;Q0) = FY(Q? =
0) = 1. Throughout this analysis f{(z) = f{(z) is always consistently understood
and we discuss results for the 71 hadron, as the distributions for the 7% and 7~ can
be related by isospin and charge conjugation symmetry.

The corresponding expressions for the PDF and the form factor using (5.23) are
given by

g(l/db) 7n

fP (2;Qo) = A%e” =2
log(1/2)
2) = / doAze S (P ass) (5.26)
0
We fix the parameters of the LEFWF's (5.20) and (5.26) by fitting the available ex-

perimental data for the pion electromagnetic form factor [286-288]? and the parametriza-
tion of the pion PDF in [289]. For the fit of the PDF, we apply the DGLAP evolution

2We point out the difference with our publication [66], where the bibliographic indications for the
used data points was not given correctly.
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equations at next-to-leading-order (NLO) to evolve the PDF from the (low) scale of
the model @y to the scale @ = 5 GeV of the parametrization, using the HOPPET
code [290]. We leave in the initial scale Qo as an additional free parameter to be
fitted with the data. Starting from the functional form of the parametrization [289],
we select 61 equally-spaced points from z = 0.2 to z = 0.8 and for each of them we
construct error bars by propagation of the errors on the individual parameters. Sum-
ming the PDF points and the 58 form factor points (45 data points from [286], 5 data
points from [287], and 8 from [288], which includes the reanalized points of [291,292]),
we perform the fit using in total 119 points. In the case of the pure-valence LFWF
we consider two different fitting strategies: either we fix the quark mass to a constant
value (“current quark” mass m = 0.005 GeV and “constituent quark” mass m = 0.2
GeV) or, alternatively, we let the quark mass entering as an additional fit param-
eter. For the effective-valence LFWF, we fix the quark mass to the same values as
before, but we include also the limit of massless quarks (leaving the quark mass as
a free parameter in this case leads anyway to a vanishing mass). The results of the
fit are summarized in Tab. 5.1. In the following we discuss the results for two sets
of parameters in Tab. 5.1 corresponding with the lowest value of the total x3  ; for
non-vanishing quark mass.

In Fig. 1 we show the results for the form factor of the pure-valence (solid curve)
and effective-valence (dashed curve) LEFWF. The corresponding results for the PDF
are shown in the upper and lower panel, respectively. The solid lines show the results
at the hadronic scale, and the dashed lines are obtained after NLO evolution to Q = 5
GeV. The shaded band corresponds to the results from the parametrization at Q =5
GeV of Ref. [289].

The results from the pure-valence LFWF are in good agreement with the available
experimental and phenomenological information, while a worst comparison, especially
for the form factor, is obtained in the case of the effective-valence LEFWEF.

The mass parameter £ plays a very important role, as it is originally the only free
parameter of the theory and it is related to the strength of the confining harmonic
potential in the soft-wall model [252,262]. The value xk = 0.37 GeV obtained in the
pure-valence LFWF case is similar to what was obtained in Ref. [261], whereas in
the study of the effective-valence LFWF we obtain smaller values, Kk ~ 0.26 GeV,
compared to previous analyses [270,274].

A larger value of k, namely £ = 0.54 GeV, is needed in order to describe the
hadronic mass spectra and the Regge trajectories [293-295] and this value has been
quite extensively used (see [250,272] for a more complete overview). Recent works
[296—299] quote a larger value of approximately x = 0.5GeV to reproduce Regge
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Figure 5.1: Results for the pion electromagnetic form factor from the pure-valence LFWF (solid
curve) and the effective-valence LFWF (dashed curve) with the two sets of parameters in Tab. 5.1
corresponding with the lowest values of X(21A o.¢. for non-vanishing quark mass. The experimental data
are from Refs. [286—288].

slopes for mesons and baryons and to realize the transition from the non-perturbative
(described by light-front holography) and the perturbative regimes, which occurs at an
energy scale of about 1 GeV. However, as outlined in [250], the scale & is systematically
lower for form factors, as compared with the values required to account for the mass
spectrum. In fact, even though the effective model for the LFWF at zero quark masses
reproduces the pole structure of the form factor in the time-like region, the position
of the poles does not correspond to the one in the vector meson spectra. Thus, for a
meaningful comparison with experimental data, one needs to shift the poles to their
physical locations, meaning in fact an extension of the effective model. For the valence
Fock state of the pion this simply consists of a rescaling of the x towards lower values
which are compatible with our results. The inclusion of higher Fock states implies the
shift of a series of poles to their physical mass and a simple rescaling of the parameter
is no longer possible.

Our result for the initial scale is Qg ~ 0.5 GeV in the pure-valence case and
is consistent with the values obtained in different phenomenological quark models
[62,238], where the scale is fixed by requiring that the model results for the momentum
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xf;Y(x,Q)

xt;Ex,Q)

Figure 5.2: Results for the quark PDF of the pion as function of z from the pure-valence LFWF
(upper panel) and the effective-valence LFWF (lower panel), with the two sets of parameters in
Tab. 5.1 corresponding with the lowest values of X(Qi.o.f. for non-vanishing quark mass. Solid curves:
results at the initial scale of the model. Dashed curves: results after NLO evolution to Q = 5 GeV.
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Dashed band: parametrization at @ = 5 GeV from Ref. [289)].

carried by the valence quarks match the experimental value, after DGLAP evolution,
but it disagree with the LFH results. We will further comment on this result more
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LFWF m (GeV) k (GeV) Qo (GeV) X3 ot (%)
0.005 (fixed) 0.397 £0.003  0.500 £+ 0.003 3.15
(}/E/F 0.200 (fixed) 0.351 £0.003 0.491 £+ 0.003 11.76
0.0500 + 0.00004  0.371 £0.002  0.498 4 0.002 2.25
0.005 (fixed) 0.261 £0.002  0.498 £+ 0.003 5.44
fﬁ/ﬂ 0.200 (fixed) 0.322 +£0.002 0.630 £ 0.008 12.96
0. (fixed) 0.262 £0.002  0.498 £+ 0.003 5.38

Table 5.1: Results from the ﬁt of the pure- and effective-valence LFWFs in different quark mass
scenarios. In the last column Xd ¢ indicates the sum of the FF and PDF total values divided by
the total degrees of freedom (total number of points N minus the number of free parameters Npar).

extensively in Section 5.4.

We also notice that the fit of the quark mass provides a value that is quite close
to the average effective light-quark mass obtained in LF holographic QCD from the
meson spectrum [250]. In the case of the effective-valence LFWF, we expect that the
inclusion of the effects of higher-order Fock state components should correspond to
a higher hadronic scale. This is the case when comparing the results between the
effective-valence and pure-valence LEFWF with m = 200 MeV and similar values of «.
However, for the other quark-mass scenarios we find similar values of Qg in the two
models, which are compensated by much lower values for the parameter x in the case
of the effective-valence LFWF. Both the values of k and the initial scale Qo differ
with respect to [296-299].

5.3.3 Unpolarized TMD and effect of evolution

At leading twist, the pion transverse momentum dependent quark-quark correlator
consists of two functions, the unpolarized TMD function f;(x,k2) and the Boer-
Mulders TMD function hi (x,k2). We restrict ourselves to discuss the unpolarized
TMD, since the Boer-Mulders function would require to construct a spin-dependent
LFWF, which is not naturally present in the original AdS/QCD approach (see for
example the phenomenological pion LEFWF of [270] and [272]).

The unpolarized TMD f;(z, k2) can be obtained from the following LFWF over-
lap [62]

fil@, k3 Qo) = [Vgq/x (z. kr) |, (5.27)
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which reduces to the PDF in Eq. (5.24) after integration over k. Using the expressions
in Egs. (5.20) and (5.23), one finds that the TMD in both models is a Gaussian
distribution in kr, with an z-dependent mean square transverse momenta, i.e.

A2 _ k%+7n2
v 2. = k2z(1—x)
fl (x’kT7QO) 7TK,21'(1—.13)6 )
(k7 (2:Q0))" = w*2(1 — x), (5.28)

2 1 1 2 4m2
A?log (1) eflog(;)ﬁ’;fjﬁ7
mr2(1 — x)?

K2(1 —2)?

(kz.(2; Qo))" = Tog(1/z) (5.29)

fE (2, k3 Qo) =

where kr = |kr| and

[ PRk (K25 Qo)
[ &k f)F (2,82 Qo)

is the width of the distribution at Q. In Fig. 5.3 we show the results for the TMD in
the two models, as function of z and k2. As in the case of the PDF, the pure-valence

(k3 (23 Qo))"

(5.30)

model is symmetric under the exchange of x — 1 — z, while this symmetry is lost
when including effects beyond the valence sector in the effective-valence LEFWEF. The
fall-off in k2 is Gaussian in both models.

The width of the distribution (k2(z)) is shown as function of z in Fig. 5.4. It
is slightly larger in the pure-valence model, with a maximum at x = 0.5 and the
characteristic symmetric behaviour around the maximum. Integrating over x, one
obtains (k2)V = 0.023 GeV?. In the case of the effective-valence LFWF the maximum
is shifted at lower values of z, i.e. x = 0.28, and the result after x-integration is
(k2)F = 0.020 GeV?.

As explained before, the AdS/QCD LFWF and the resulting TMDs are obtained
at a scale of about 0.5 GeV. In order to be able to compare with data or extractions,
TMDs need to be evolved according to TMD evolution equations (see, e.g., Ref. [300]).
These equations describe the broadening of the initial TMD due to gluon radiation.

TMD evolution implementation

Even though TMD evolution equations are based on perturbative QCD calculations,
their implementation requires the introduction of some prescriptions to avoid extend-
ing the calculations outside their region of validity. In general, such prescriptions have
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R kDGev?) FxkAIGeV?]

0.04 K[GeV?

Figure 5.3: Results for the quark TMD of the pion as function of x and k2, from the pure-valence
LFWF (left) and the effective-valence LFWF (right) with the two sets of parameters in Tab. 5.1
corresponding with the lowest values of xg‘o_ ;. for non-vanishing quark mass.

the effect of inhibiting perturbative gluon radiation at low transverse momentum and
at low @, but must be complemented with an additional component of gluon radia-
tion, usually referred to as nonperturbative component of TMD evolution [301]. This
component cannot be predicted by perturbative QCD, but has to be extracted from
experimental measurements, taking advantage of the fact that it is highly universal
(i.e., it is independent of the quark’s flavor and spin, the parent hadron, the type of
process, and whether one considers TMD distribution and fragmentation functions).
A recent example of a computation of the behavior of the nonperturbative component
of TMD evolution can be found in [302].

Several prescriptions have been proposed in the literature (see, e.g. [14,106, 108,
301, 303-305]). In principle, if complemented with the appropriate nonperturbative
components, they should lead to compatible results for the evolved TMDs. However,
there is still considerable uncertainty on the nonperturbative components and sys-
tematic studies of these uncertainty are still lacking. We therefore choose a specific
implementation of TMD evolution equations, which has been successfully applied to
the description of data in the range 1.2 GeV < @ < 80 GeV. Details of this imple-
mentation are discussed in Ref. [108]. We summarize here the most important points.

TMD evolution is implemented in the space Fourier-conjugate to k. Therefore,
we first define the Fourier-transformed TMDs

]?l(mvlﬁ_;/u'):/ dki ki Jo(biky) fi(z, k75 p) (5.31)
0
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Figure 5.4: Results for the width (k2.(z)) as a function of x for the pure-valence LFWF (solid
curve) and the effective-valence LFWF (dashed curve), with the two sets of parameters in Tab. 5.1
corresponding with the lowest values of Xﬁ o.f. for non-vanishing quark mass.

and we use the following form for the evolved TMDs in b, space (see Refs. [15,306])

Fi(e, 035 ) =
S (Capi @ F7) (w5 ) e Criro i 9 CL M G Fa (i 12 5 Qp), (5.32)

1=q,4,9

where the label a indicates the parton type. We consider the above equation at Next-
to-Leading Logarithmic (NLL) approximation and at leading order in . In this case,
the convolution at the beginning of the evolved formula reduces simply to

> (Capi ® f1) (w5 3) = 1 (5 13), (5.33)

1=¢,q,9

and the expression for the Sudakov form factor 5(5*;%7“) can be found, e.g., in
Ref. [307,308]. We further use

Qe E 9
oo =—3—: g = —g2b7 /2, Qo = 0.5 GeV. (5.34)
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Figure 5.5: Left panel: results for the quark TMD of the pion, multiplied by kr, from the pure-
valence LEFWF for the m = 50 MeV scenario, as function of k, and at fixed x = 0.5. The solid line
shows the result at the scale of the model, Qo = 0.5 GeV, corresponding with the initial scale for the
TMD evolution. The shaded band gives the spread of the results after evolution of the TMD to 1
GeV with three different values of go: 0.09 GeV? (dashed curve), 0.11 GeV? (dotted curve) and 0.13
GeV? (dashed-dotted curve). Right panel: results for krarax as function of x, at the scale of the
model (solid curve) and after TMD evolution to Q = 1 GeV (lower band) and Q = 5 GeV (upper
band) with three different values of go: 0.09 GeV? (dashed curve), 0.11 GeV? (dotted curve) and
0.13 GeV? (dashed-dotted curve).

We introduced the following variable

1/4
— 1— e_bi/bfnax
b* = bmax m s (535)
with
bmax = 2¢7 7% /Qo = 2.246 GeV !, bmin = 2¢772/Q) . (5.36)

The above choice guarantee that at the initial scale Q@ = Qo any effect of TMD
evolution is absent. The model results are thus preserved and in particular the relation
between TMD and collinear PDF is maintained.

The value of the go parameter should be extracted from experimental data, keeping
all other choices fixed. In a recent analysis, the parameter was found to be 0.13+0.01
GeV? in combination with a by, that was half of the value we assume here. Since byax
and g9 are in general anticorrelated, we choose for the present analysis the following
three values

g2 = 0.09, 0.11, 0.13 GeV>. (5.37)
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Figure 5.6: Left panel: results for the quark TMD of the pion, multiplied by k7, from the effective-
valence LFWF for the m = 50 MeV scenario as function of k| and at fixed z = 0.5. The solid line
shows the result at the scale of the model, Qo = 0.5 GeV, corresponding with the initial scale for the
TMD evolution. The shaded band gives the spread of the results after evolution of the TMD to 1
GeV with three different values of g2: 0.09 GeV?(dashed curve), 0.11 GeV? (dotted curve) and 0.13
GeV? (dashed-dotted curve). Right panel: results for krarax as function of x, at the scale of the
model (solid curve) and after TMD evolution to Q = 1 GeV (lower band) and Q = 5 GeV (upper
band) with three different values of go: 0.09 GeV? (dashed curve), 0.11 GeV? (dotted curve) and
0.13 GeV? (dashed-dotted curve).

Figures 5.5(a) and 5.6(a) show the effect of TMD evolution when going from the
model scale to 1 GeV and 5 GeV (at an illustrative value of = 0.5). The value of k.
corresponding to the position of the peak of the distributions k. f1(x, k2) can be used
as a measure of the width of the TMDs. The peak moves from about 0.1 to 0.3 GeV,
showing that there is a broadening of the width of the distributions. Even if this not
evident from the plot, the distributions are no longer Gaussian.

Figures 5.5(b) and 5.6(b) show the position of the peak for x between 0.1 and 0.8
and for three values of ). At the scale of the model, this is an analytic function which
reads:

kTMAx(SU) = @ (538)

After evolution to 1 GeV, as already observed, the width of the TMD increases to
about 0.3 GeV in both versions of the model. The x dependence of the TMD width
is rather flat. The symmetry about x = 0.5 of the pure-valence model is lost. The
two models become quite similar to each other: the position of the peak is the same
within a 5% error. At 5 GeV, the width of the TMD increases to about 0.7 GeV at
x = 0.5 and increases at low z, and is again very similar in the two versions of the

141



Chapter 5 - Quarks in unpolarized targets in AdS/QCD correspondence

model. We do not display the functions at 5 GeV in the left panels of Figures 5.5 and
5.6 for simplicity. The distributions k, flv / E(z =05;kr;Q = 5GeV) are very wide in
kr and they loose any Gaussian shape.

In summary, TMD evolution from the model scale (0.5 GeV) to a typical experi-
mental scale of 5 GeV increases the width of the TMD of almost one order of mag-
nitude and leads to an x dependence of the width that is different from the original
one, with no strong difference between the two versions of the model.

5.3.4 Summary of the results

We took into consideration two different versions of the pion LFWFs: pure-valence
and effective-valence. For each version, the model contains three free parameters: the
mass parameter x (expressing the strength of the confining harmonic potential that
breaks conformal invariance), the quark mass, and the scale of the model. We fix
the parameters by comparison to experimental information on pion form factors and
PDFs.

We obtain a value of x in agreement with previous estimate [261], for the pure-
valence version of the model. For the effective-valence version, we obtain a smaller
value [270,274]. These values are both different from the ones obtained from the mass
spectra.

In order to achieve a fair agreement with the pion PDF at 5 GeV, the model scale
has to be set to about 0.5 GeV. This turns out to be true both for the pure-valence and
the effective-valence LEWF. We further comment on this results in the next Section.

The sets of parameters obtained have then been used to study the unpolarized
TMD of the pion. At the model scale, the resulting TMD has a Gaussian shape with
a width (defined as the position of the peak of the distributions k. fi(x, k2)) of about
0.1 GeV at x = 0.5. The = dependence of this width is different in the two versions of
the model: in the pure-valence model the TMD attains its maximal width at x = 0.5;
in the effective model, this happens at x = 0.28. After the TMD is evolved to a
typical experimental scale of about 5 GeV, its width increases by almost one order of
magnitude. The x dependence is different from the one at the model scale: the width
grows monotonically as x decreases, and the differences between the two versions of
the model fade away.
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5.4 The QCD running coupling

A crucial ingredient of our calculation is to identify the energy scale where the model is
valid. In our work, we have assumed that the transition between the nonperturbative
regime (where the model is applicable) and the perturbative regime (where pQCD is
applicable) occurs at a precise scale, which we define as the model scale. We fix this
scale by fitting the pion PDF to available phenomenological parametrizations, after
applying DGLAP evolution equations [309,310]. The value for the initial scale Q) is set
uniquely from the DGLAP evolution to the low scale Qo = 0.5 GeV, a value which is
needed in order to reach the agreement with the parametrization. One should take this
outcome cautiously, as we are stretching the validity of the perturbative calculations
down to an energy scale where these methods do not in principle hold (the value of
as in the MS scheme is larger than 1 for this Q value).

In Table 5.2 we show the values of the best fit parameters when the initial scale is
instead fixed to some values @5, with Q > 0.5 GeV. The description of the PDF data
becomes substantially worse. One can see that the y%pr and the total x3 , ; increase
of almost one order of magnitude with respect to the best values we obtained from
the fitting strategy explained in the text (see Table 5.1 and the Table 1 in [66]). That
is, fixing a higher model scale by hand would lead to a very unsatisfactory description
of the data at the energy scale of the parametrization.

To solve this, one can interpret the result as an indication about the fact that the
model must be valid at a scale lower than Q2 ~ 0.75GeV?, assuming a “grey area”
where the transition from the perturbative to the nonperturbative physics described
by the AdS/QCD correspondence occurs.

Describing a smooth transition at a fixed calculable @)y value is also possible from

LFWF  m (GeV) k (GeV) Qo(fixed) (GeV) Xipr Xior
;%/W 0.00 + 0.6 0.397 + 0.004 0.86 3465 31.8
0.00 £0.6 0.404+0.2 1.00 4665 42.2

an/w 0.180 = 0.003 0.30 £+ 0.002 0.86 645 16.6
0.201 +0.003 0.310 4+ 0.002 1.00 1014.6  20.3

Table 5.2: Results from the fit of the pure- and effective-valence LFWF's with fixed values of the
initial scale. In the last column X?i.oL is defined as in Table 5.1. In the fifth column we now display
explicitly the x2 of the PDF fit.
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a theoretical viewpoint, and it has been recently presented in [298,299]. The value
of the mass parameter used is k = 0.51 + 0.04 GeV, derived from the linear Regge
slope of the p meson and the nucleon®. The expression of the coupling constant in
the LF holographic theory is given by the coupling of the AdS theory modified by the
soft-wall:

arrn(Q?) = apr(0)e” @/, (5.39)

3Deriving the parameter » from a Renormalization Scheme (RS) invariant quantity would be
preferable, but the values obtained with this methods do not manage to describe the PDF values.

4
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Figure 5.7: Figure from [298]. Strong coupling cs as defined in eq. (5.42) over all range of Q.
The procedure performs the matching between the pQCD coupling constant in the MS scheme at
N3LO and NNLO (continue black lines) and the LF Holography description (dashed black line).
The transition point, calculated as explained in [298], is Q(Q) = 0.75 GeV? for MS scheme and it is
indicated by a black arrow. A value of kK = 0.51 GeV is used. The green, blue, and red lines are
the similar results for different renormalization schemes. In particular the blue line represents the
effective Bjorken coupling ag, for which the matching procedure was originally devised [311,312].
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According to [298], the coupling (5.39) represents the nonperturbative extension of
the a, defined in a specific scheme, e.g. the MS scheme. In order for (5.39) to be the
smooth extension of the pQCD expression these conditions must hold:

{@LFH(QO) = oqgs(Qo) (5.40)

which fix the value of Qg, a(0). The § function is defined in terms of the coupling
constant o (pQCD and LFH) as:

Oarg

B(O‘s) = Q2 an .

(5.41)

For the MS scheme at three loop level the transition occur at the scale Q2 = 0.75
GeV [298]. The strong coupling constant can be then defined over all ranges of @ as:

(@) = {aLFH(Q) Q< Qo (5.42)

QW(Q) Q > Q07

This result is obtained at a fixed order in pQCD, regardless the possible variations
that different values of the initial conditions can produce at lower scales (e.g. input
values of a or Ayg). The transition has been studied for different definitions of the
coupling in [298], and this method was originally tailored for describing the effective
coupling vy, = g7 /47 defined from the Bjorken sum rule [313] (see also [263,299,311,
312] for more details on the topic). The situation is displayed in Figure 5.7, where
other schemes besides MS are included and compared.

Using our values of k and the scale @, that are most suitable for the description of
PDF and Form Factor (see Table 5.1), the smooth matching is a too rigid procedure

However, one can still attempt to describe the transition in the same way, by relax-
ing the condition (5.40), only imposing the continuity of the coupling at the matching
point arrr(Qo) = agrg(Qo). The situation obtained is displayed in Figure 5.8. We
vary the values of a, at the Z boson mass and eventually display the results for
as(Mz) = 0.118. The solid lines on the pQCD side (right side of the plot) correspond
to LO and NLO results and they are continuously joined to the LFH curves. We use
the two values of k that correspond to our best results for the fit procedures. The sta-
bility of the perturbative calculation is arguable at such lower scales, but, as already
stressed earlier, it is necessary to use such a low scale to provide a good agreement
with the collinear PDF.

145



Chapter 5 - Quarks in unpolarized targets in AdS/QCD correspondence

as(Q)

5
QLFH IMs
4l ,
— NLO
3 — Lo ]
k=0.26GeV . a(Mz)=0.118
2 o ~.0 -
1 k=0.37 GGV. ................ \;‘\ |
w\
0005 0.10 7050 1 5
Q[GeV]

Figure 5.8: Right part of the plot: the continue line represents the value of as in pQCD at LO
(black) and NLO (red) extracted by the HOPPET [290] routine with input value of 0.118 at the
Z-boson mass. Left part: matching LFH lines with the values of x from Section 5.3.2, and «(0) fixed
by the first of the conditions in (5.40). The dashed lines refer to k = 0.37 GeV and match the LO
(dashed black) and NLO (dashed red) calculations in pQCD. The dotted lines refer to k = 0.26 GeV
and match the LO (dotted black) and NLO (dotted red) calculations in pQCD.

5.5 Discussion and conclusions

In this Chapter we developed the study of the pion, a spin-zero hadron. An explicit
form for the LEWF's is a very powerful tool in order to study several hadronic ob-
servables simultaneously. The LEWFs, when all the Fock states are included, contain
in principle a complete information of the internal dynamics of the hadron in terms
of all quantum numbers of the partons and their intrinsic momentum and spatial
coordinates, .

We choose to analyze the phenomenological implications resulting from the LEWF's
provided by the AdS/QCD correspondence, in the context of the LF Holography for-
mulation. This approach has some advantages: the derivation and the idea underlying
the LFWF matching procedure is quite simple and attractive. It is based on a mod-
ified version of the gauge/gravity duality that was specifically tailored to the study
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of QCD in the nonperturbative region. There is only one free parameter, which is in
principle universal and it can be extracted from different observables.

Despite its attractive theoretical simplicity, the approach is however suitable to
only account for a few degrees of freedom. Phenomenology-based modifications are
possible and have been attempted in the literature. However, the choice of this work
was to use the original functional forms with as little modifications as possible. We
deliberately do not attempt to build a phenomenological LEFWF starting from the
original form and therefore we need to restrict ourselves to the study of unpolarized
quarks in an unpolarized meson.

On the phenomenological side, with small changes from the original version of
the LFWF and with some caveats, we obtained a qualitatively good description of
the pion form factors and PDF, and we predicted pion TMD. We also studied the
behavior of o in the nonperturbative regime and we found encouraging results.
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Chapter 6

Summary, conclusions, and
outlook

This thesis has been mainly devoted to the study of (single and double) parton dis-
tributions, with particular attention to the transverse momentum dependent parton
distribution functions (TMDs) and the collinear double parton distributions (DPDs).
They are of utmost importance for the present understanding of the hadron struc-
ture, as they contain rich information about the spin-spin and spin-orbit correlations
between the partons and the hadron, and they play an essential role in the phe-
nomenology of azimuthal and spin asymmetries. Moreover, DPDs are the ideal tool
to investigate the internal structure of hadrons from a different perspective: rather
than exploring the correlations between the parton and the parent hadron, they shed
light on the quantum and kinematic correlations between partons.

In the following we summarize the contributions of this thesis to each of the topic
mentioned above and we discuss some possible future directions.

Transverse-momentum dependent parton distributions for gluons in po-
larized hadrons

The full three-dimensional image of hadrons in momentum space is encoded in the
quark and gluon TMDs, which appear in the transverse-momentum dependent corre-
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Chapter 6 - Summary, conclusions, and outlook

lator. In the case of gluons, the latter is a nonlocal matrix element containing the gluon
field operators and Wilson lines (also called gauge links), bridging the nonlocality to
guarantee color gauge invariance. The gauge link structure of the correlators depends
on the specific process and can lead to a universality breaking of the TMDs [39,40,42].
In Chapter 3, we parametrized the gluon-gluon correlator in terms of gluon TMDs
and we considered targets that are unpolarized, vector polarized (relevant for spin-
1/2 and spin-1), and tensor polarized (relevant for hadrons and nuclei of spin-1).
We derived positivity bounds, i.e. model-independent inequalities, that help to relate
and estimate the magnitude of the gluon TMDs about which very little, or almost
nothing, is currently known. In fact, the gluon observables are typically much smaller
than the valence quark ones, as far as present experimental facilities are concerned.
However, at higher energies, the gluon distributions become the dominant ones and
they need to be studied in detail. As a generalization of the previous results in the
literature [47,131], we found that in the kinematical region of low parton momen-
tum z, the gluon correlator with a specific gauge link structure (called dipole-type)
reduces to the matrix element of a single closed Wilson loop operator, where explicit
gluon fields are absent [88]. The gluon TMDs are either suppressed or they become
proportional to the functions appearing in the parametrization of the Wilson loop
correlator. The gluonic contributions to the internal structure of hadrons, as well as
nuclei, could be studied at the experiments planned in the context of the 12GeV pro-
gram at Jefferson Lab, as well as at the Large Hadron Collider (LHC), and in the
future at AFTERQLHC [133] and Electron-Ion Collider (EIC) [126].

Opportunities for gluon TMDs

A novel physics program will become possible at the future EIC [126]. The use of
(un)polarized nuclear targets will shed light on the nuclear structure as well as fun-
damental QCD concepts. Outstanding questions concern, for instance, the spin-orbit
and azimuthal asymmetries in scattering with ions and nuclei, and the role of these
experiments in revealing non-nucleonic degrees of freedom, i.e., related to the partons
which are not confined within one single nucleon. In the kinematical region probed
by these future experiments, the gluon observables become accessible and this would
pave the way to study the gluonic content of nuclei and hadrons of spin higher than
1/2. Consequently, it is important to investigate further the gluon TMDs and PDF's
studied in [88,93] for spin-1 targets, and devote theoretical effort in implementing for
the first time model calculations on these functions, as it has been already partially
done for the quark case.

150



Double parton distributions and parton correlations at the LHC

The production of a pair of W bosons with the same charge at the LHC is one of the
clearest processes to look at while hunting for DPSs, as the equivalent single parton
contribution at the same order is forbidden in the Standard Model [191]. DPDs in-
volve correlations between two partons extracted simultaneously from a proton and
participating in two hard scatterings. They depend on the momentum fractions of the
two extracted quarks, their transverse separation, and the quark quantum numbers,
i.e. spin, flavor, and color [31]. In Chapter 4, we focused on the characterization of
quark-quark correlations at the parton level, exploring various different correlation
scenarios. We considered the production of a pair of W bosons at the LHC and per-
formed a final-state analysis of the partonic results, with the inclusion of the relevant
background processes. We referred to the asymmetry value as the key measurement
for identifying double parton correlations in DPS. This observable is extremely at-
tractive from the theoretical point of view: any value of the asymmetry different from
zero would unequivocally be a sign of parton correlations in double parton scattering.
The results were presented in a preliminary form, and a conclusive verdict on the
possibility of measuring correlations in DPS could not be stated but promising direc-
tions have been identified [213]. Although the current results of our analysis would
not allow us to observe a clear sign of parton correlations, it contributes in setting
the stage for a fruitful interplay of theory and experiments in the field of multiparton
interactions. At present, all DPDs are almost unknown. However, the experimental
effort to measure DPS is growing and the number of experimental analysis on DPS
processes is increasing. This will soon open up the possibility of boosting the field of
DPS phenomenology towards a more precise level.

Light-front wave functions in AdS/QCD correspondence

In 2006 a new way of looking at QCD had been proposed by Brodsky and de Ter-
amond [251,252]. The use of the AdS/QCD correspondence based on the light-front
formalism has provided a remarkable tool to access the hadron mass spectra and
several hadronic observables. Moreover, a particular form for the valence-state light-
front wave function (LFWF') of the mesons has been derived. This allows one to com-
pute nonperturbative observables, including form factors and parton distributions,
e.g., collinear parton distributions functions PDFs, generalized parton distributions
GPDs, TMDs and DPDs DPDs [250]. In Chapter 5, based on the work done in [66,282]
we used this meson LFWF and performed a phenomenological analysis on the pion.
The purpose was to treat the functional form provided by the Light-front holography
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approach as a non-perturbative starting point and then conduct an analysis on the
transition to the perturbative one, by studying the pion form factor (FF) and the
evolution of the pion PDF in the framework of collinear factorization and DGLAP
evolution equations. By fitting the free parameters to the available experimental in-
formation, we found the best value for the energy scale at which the transition from
the holographic description to the perturbative QCD occurs. In the analysis of the
pion TMD (for which experimental data are not available yet) we used such a value as
the lowest scale in the implementation of the TMD evolution equations. As expected,
the resulting effect is a considerable increase of the transverse-momentum width of
the distributions and a change in the shape of TMDs.

The many unanswered questions regarding TMDs and DPDs, and their impor-
tance in our understanding of the proton structure will benefit from the dedicated
experiments planned for the next future at the LHC and the upcoming EIC. It is
therefore essential to theoretically identify the processes where these distributions are
sizeable and to drive the experimental searches. Only with a synergic effort between
theory and experiments, physicists can aim at unravelling the numerous remaining
open questions in the field.

152



Appendix A

Notation, conventions, and
useful relations

Light-cone spinors in standard representation

The free light-front Dirac spinor urr (k,A) and antispinor vrr (k,A) are given by
(light-cone standard representation):

V2kT +m —k! 4 ik2
k' +ik? V2kt +m
ure (b4) = Zmr | okt o | ) = | g2 |
k' 4 ik? —V2kt +m
—kb +ik? V2kt —m
V2kt —m kY + ik?
ULF (kv +) - \/ﬁ El — k2 y ULF (ka _) = _«/23}2143* \/i +m
—V2ktT +m kY + ik?

The “good” components of the light-cone spinors and antispinors are given by
Piupp (k,A) = ug (k,\) and Pyropp (k,A) = vy (k, ). In standard representation

153



Chapter A - Notation, conventions, and useful relations

(Dirac), the projector operator Py is defined as:
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0 -1 0 1

IS
+
—
-
+
S~—
Il
e
3
O = O =

IS
+
—
-
|
SN—
Il
e
:’
O = O
—~
g
N
N—

-1
0 -1
/ -1 / 0
Uy (ka +) - le% 0 y U+ (k7 7) - QICI% -1 : (A3)
1 0

Good fields

At a given light-cone time, say 1 = 0, the independent dynamical components (good
field) of the free quark fields have Fourier expansion in momentum space:

¢(z)

dktdPhy Lo N e
= 7 e T y vy e A4
. /2k+(2ﬂ)39(k ) [b(E™F, k)i (K7 kr, Ae (A.4)

+d' (kT kg (k1 er, A)e™ 7] . (A5)

zt=0

where uy, v, are the good components of the spinors as earlier defined, and A\ =
+1/2 denotes the helicity of the quarks. The operators b and d' are respectively the
annihilation of the good components of the quark fields and the creation operator of
the good component of the antiquark fields. The anticommutation relations for the
quark (antiquark) creation and annihilation operators are:

{b(k™, ky), b1 (K" L)} = 26 (2m)25 (kT — K )6 (ke — KL)dav, (A.6)

and the same holds for d, d".
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The free gluon field reads:

Al(x)

dkd?k., .
= § aa (kT Ky )el (kT ky)e™ " A7
zt+=0 /2k+ 27T = ( ) ( )

+al (kT kr)elr (T, kr)e™ ] , (A8)

zt=0

where € is the transverse component of the gluon polarization vector, « = +1 denotes
the gluon polarization states. The creation and annihilation operators for the gluon
fields a, a' obey commutation relations:

ao(k),al, (k)| = 2k*(2n)25(kt — k)0 (ky — KL )0nar- (A.9)

Poicaré algebra in LF

The four-momentum P* and angular-momentum M*” = g+ PY —x” P* obey standard
commutation relations which define the Poincaré group:
(PP, MM] =i (gP*PY — gP" PH),
[PP, P*] =0, (A.10)
[Mpo Muu] _ Z( PY N[TH L gouMpu puMUV _ gJVMp”) )

with the basic commutator [z#, p”] = §¥*.

In the front-form the matrix M,,, takes the form:

0 K3 *%( 1—J2) %(KerJl)
Mo —K3 0 %(K1+Jg) %(Kzfjl)
e %(Kl—Jg) %(Klﬁ-Jg) 0 Js
Z5 (Ka+J1) =25 (Ka— 1) —J3 0
(A.11)
and defining:
B = - (Ki+ ) By = - (Ky— J1); (A.12)
1= \/5 1 2) 2 — \/§ 2 1) .
1 1
S1=—= (K1 — Jo); Sy = — (Ko + J A.13
| \/5( 11— J2) > \/5( 2+ J1) (A.13)
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My, M, My Mo 0 Ks —S —S
M_y M__ M_; M_, —-K3 0 —-B; —By
M, = - Al4
" My M- My Mo S1 B 0 J3 ( )
Moy Moo My My Sy By —J3 0

The seven generators P~, Pt , P!, P2, J3, By and By are mutually commutant and
satisfy different commutation relations, namely:

[P=P,] = [P, P*] = [Py, P*] =0
[J5,P7] = [J5,PT] = [By, PT] = 0; (A.15)
[J3, Pi] = i€ P, [J3, By] = iew By, [By, Pt] = —iP*, [By, P] = —i6PT.

where (B1, Bz) = By. The subgroup of the Poincare group generated by P*,Js; and
B in the light-front is isomorphous to the non-relativistic Galilean group.
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Appendix B

Definitions of gluon TMDs

In this appendix the definitions of the various TMDs are given in terms of the coef-
ficients A; and B; that have been introduced in the parametrizations at the level of
the unintegrated correlators.

B.1 The gluon-gluon correlator

As we are only interested in leading twist functions, we omit the terms containing n
(the situation is analogous to the quark case, see ref. [128]). We split the following
results in terms of target polarization, i.e. unpolarized, vector, and tensor polarized.

I‘[UvU/]MVWU(k;P) — M2A, €WQB€M@5 1+ A p[ugl/][ppff] + A k[ugl/][pka]
+ (Ay +i45) plegillegel 4 (Ag —iAs) ke gVlle pol
+ (Ag/M?) Plrgr plegel (B.1)

THV07 (k2 P,S) = — 2M A7 P k-8 + iM Ag <eWP oGl _ epoP [“S”])

+ ZMAQ (E;LVS[/)PO-] _ G/JUS[;LPV])

157



Chapter B - Definitions of gluon TMDs
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B.1 The gluon-gluon correlator

A
= kakg TP P Ploge], (B.3)

where A; = A;(k-n, k-P,k?). Terms with coefficients As, A7, A1g, A1, Az, Az,
Aoy, Aog, A3y, Assz, Asg, Ass, Asz are T-odd, and we note that the ones with coeffi-
cients Ag up to Ays are slightly different from those in ref. [86].

Let us now denote by I'(k) the gluon-gluon correlator for any type of polarization,
then the light-front correlator is defined as

M2
DNz, kr) = /dk PTI(k)= - /[dO’d’T] k), (B.4)
where we have introduced the shorthand notation
M2

2
[dodr] = dodT (T —z0 + 2% + k) (B.5)

with the dimensionless invariants ¢ and 7 given by

_ 2k-P k>
BYZAERE Ve

= (B.6)
spanning regions in remnant mass M2 = (P — k)? and in the partonic virtuality k2.
For both of these, the main contribution comes from small (hadronic) values (i.e. o
and 7 of order one).

The (leading twist) TMDs that occur in the parametrization of the gluon-gluon
correlator for the various types of polarization in egs. (3.29)-(3.34), are related to the
coefficients A; as follows:

2
mfl(gc, kg) = M? /[deT] (AQ + 2xA4 + 1‘2A3 + 21;\42 Ag) (B?)
zhi(z, k) = M? /[dadr] Ag, (B.8)
xgl(x, kij%) = 2M2 /[dadr] {Ag + Ag +x (Alo + All)

+ (E - JU) [A12 + @ (A1 + Ass) + 27 Ags)

2
boees [+ dn+ (5 o) au] b B9
ohiy (2, k2) = —2M? / [dodr] [Ass + Az + (5 o) Az, (B.10)
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J:ffT(x, k2) = M? /[dadT] [A16 — Agg + x (A18 — A29)], (B.11)
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B.2 The Wilson loop correlator

M2 2
:cflTT(x, ki) = — /[deT] Ay + 20 A4 + £E2A41 + Auy (B.Ql)
2 6M2
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whizr(z, k7)) = — 5 /[dUdT] Aga. (B.25)

B.2 The Wilson loop correlator

For the Wilson loop correlator, translation invariance in the &- P direction forces k-n =
x to be zero and the integration over z is actually naturally the first to be done, even
before the integration over k-P. The remaining dependence is on the invariant k2,
which for vanishing x is just k%2 = k2 = —k2. The parametrization of the Wilson loop
correlator for the various types of polarization in Eq. (3.47) depend on t = k? and
reads:

U,U6 By By B3 y
FEJ ! (ka P, S, T, ’I”L) :W + WG PES + 7k‘ukyTﬂ
Bs

+ Byn,n, TH + —k# n,THY. (B.26)

The TMDs in the parametrization are related to the coefficients B; as follows:

2

e(k2) = 57 [ dwdo By, (B.27)
M2
er(kl) = 5.7 | dwdo B, (B.28)
2 —97)2 k2
eLL(ki) = — 4 I dx do |:QB4 + (O’ — 2%)35 + ((0—2%) - Z\lTQ) 33:| , (B29)
M2
eLT(ki) = — 47TL /d.’t do [B5 + (0’ - 21’)33} (BSO)
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2

M
err(k2) = T | dxdoBs. (B.31)
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Appendix C

Summary

No problem is too small or too trivial if you can
really do something about it.
R. Feynman

The great challenge of modern physics is to discover the fundamental constituents
of the universe and explain how they behave and interact to eventually build the world
in the form we see it. Since the earliest days of the modern science history (which
dates back to the beginning of the 17th century when Galileo Galilei established the
scientific methods and started the scientific revolution), the interest for examining
deeper and deeper inside every object, in order to reach their building blocks, has
never stopped. The first tools constructed to zoom in an object were simple systems
of two curved lenses, but they soon were replaced by more sophisticated arrangements
of lenses that led to the first optical microscopes.

When people became able to almost “observe” the atoms, it was soon realized that
microscopes would have not allowed to diving into the subatomic matter, and some
other tools were needed to enter the scene. Scattering processes between molecules and
atoms were found to be perfect for accessing subatomic structures. The experiment of
Rutherford, in the first decade of the 20th century, is the first of this type and it led to
the discovery of the structure of the atom. Nowadays, a century after the Rutherford
experiments, the scattering of particles off a target and the collisions between particles
are still the best magnifiers ever devised by mankind and the most used tool to access
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subatomic and subnuclear structures.

In this dissertation, we want to contribute to the field of hadronic physics by
studying the internal structure of subatomic particles called hadrons. They are not el-
ementary particles but they are built from elementary (point-like) constituents: quarks
and gluons. Despite being extremely small (about a hundred of million times smaller
than a human blood cell, for instance), in the landscape of the subatomic particles
hadrons are “large” objects and their internal structure deserves to be studied. At
least, we want to study hadrons such as protons and neutrons because they constitute
the nuclei and the great majority of the visible matter.

What is special about hadrons is that their “macroscopic” properties are deter-
mined by the elementary constituents in a way that is not directly calculable. Inter-
estingly enough, the mass of the proton originates from a rather complex interplay of
different dynamical contributions and cannot be explained as a simple “sum” of the
masses of its substructures. Quarks and gluons are confined inside their hadronic box
and they have never been observed experimentally as free particles.

The difficulty in describing the proton and the other hadrons in high-energy
scattering processes is due to the unicity of the interaction that governs its con-
stituents. The theory that describes this interaction is called Quantum ChromoDy-
namics (QCD). Loosely speaking, QCD describes the interaction between quarks and
gluons inside the hadrons, collectively called partons, through their color charge. This
is conceptually similar to describing the interactions between electrons by means of
their electric charge. The peculiarity of QCD is that the strength of the interaction
varies considerably with the distances, being large at large distances and progres-
sively becoming smaller as the distance decreases. If we could directly look inside
the hadrons at very small distances, we would see an infinite number of almost free
partons, that are oblivious of each other because their interaction is very weak. This
regime of QCD is called asymptotic freedom. As soon as the distance gradually in-
creases, asymptotically free partons are replaced by strongly coupled constituents, and
because the intensity of the interaction is very strong, the partons remain confined
inside the hadrons and they cannot escape. This phenomenon is called confinement.

The concept according to which a “macroscopic” object can manifest itself differ-
ently depending on the length scale at which it is observed is something that scientists
have always been familiar with. For instance, if we zoom in molecules and atoms (the
main objects studied by chemistry and atomic physics) new pictures can be resolved
in terms of electrons and nuclei. These constituents can be observed and measured
and they become the main elements in terms of which we can describe atoms and
molecules. Proceeding towards smaller distances inside the nuclei, we eventually en-
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counter the protons and nucleons, solid containers of the color interaction. Differently
from the cases in which the substructures are free and can be observed through more
and more powerful magnifiers, in the case of QCD the partons live freely only in-
side the hadrons and cannot manifest themselves as free particles in the experiments.
When a scattering process occurs, the partons get kicked out from the parent hadron
very energetically, but as soon as they start interacting with each other they immedi-
ately recombine themselves into new hadrons. Reading out the information about the
hadronic structure from the results of the experiments is a bit of an art: one needs an
optimal interplay between the theoretical predictions and the experimental results,
and these two aspects feed each other continuously.

The fact that the information about the hadron internal structure is not easily
and readily accessible does not mean that we cannot do something about it. Building
a theoretical framework from first-principles and symmetry arguments allows the
physicists to characterize the hadrons and establish which portion of their internal
space is being probed in the high-energy process.

The quantities that contain the information about a specific portion of the hadron
space are multidimensional functions that depend on the kinematical variables of
the partons. For instance, the information about the momentum carried by each
parton along the direction of motion of the parent hadron is encoded in the par-
ton distribution functions (PDFs), while the complete information on the motion of
each parton in the three-dimensional momentum-space is contained in the transverse-
momentum-dependent parton distributions (TMDs). The above-mentioned functions
contain single parton information, and they neglect aspects deriving from looking at
multiple partons at the same time. The latter information is typical of the double
parton distributions (DPDs), which also take into account the distribution and cor-
relation between pairs of partons. DPDs are accessible in experiments in which two
partons from the same hadron are kicked out simultaneously to participate into two
distinct high-energetic scatterings.

Parton distributions also account for the fact that partons have quantum proper-
ties other than color charge. Most importantly for the purposes of this thesis, partons
carry spin, one of the most intriguing quantum mechanical properties of each parti-
cle. The spin of an elementary particle does not refer to any property in the physical
space (there is no actual rotation involved), but to the intrinsic nature of the particle.
However, with some caution one can visualize quarks and gluons inside the hadrons
as a bunch of “spinning” toys as in Fig. C.1. When they all spin randomly, no pre-
ferred rotational direction can be selected and the spin states are averaged out as if
none of the parton carried spin. On the other hand, when there is a neat majority of
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Figure C.1: A basket full of tops, like the partons that carry spin inside the proton. Their velocity
distributions in the three-dimensional basket space is described by the Transverse-momentum de-
pendent distribution functions (TMDs). The probability of being extracted pairwise from the basket
is described by the double parton distributions (DPDs)

partons whose spin states “point” towards a specific direction, i.e. they are polarized,
then their distributions and dynamics inside the parent hadron are actually modified.
The effect of spin can generate distortions and asymmetries that can be studied and
characterized.

In this thesis, we focused on the TMDs and DPDs to study the properties of the
polarized quarks and gluons inside the hadrons. Throughout the chapters we have
presented our original results and in the following we summarize the most relevant
ones.

e TMDs: we have studied the TMD functions that describe the gluons inside
the hadrons. The quantities that are related to gluons are difficult to study
thoroughly because the experimental information on them is currently very
limited. They become the dominant entities only when the energy increases.
At present, none of the existing facilities around the world is tailored to access
this regime of energies. For the first time, we have defined the TMD functions
that describe polarized gluons inside hadrons that have spin-1 (for example the
deuteron, which is a system of a proton and a neutron) and derived the relations
between these functions that will be useful for future experiments. We have also
predicted and shown that, when the energy drastically increases, only a few of
the numerous gluon functions survive and become relevant.
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e DPDs: we have studied the correlations between pairs of quarks inside the pro-
ton. Extending the description from a single to a double parton description is
a unique opportunity to grasp the structure of the hadrons with nonstandard
(multipartonic) eyes. Also in this case, the experimental information on the
double parton scattering processes is still very limited. We have focused on the
theoretical framework that describes inter-parton correlation and we have care-
fully analyzed the possibility of measuring for the first time quantities that will
be a clear sign of parton correlations at the Large Hadron Collider (LHC) in
the near future.

The result of the combination of different parton distributions is similar to a
mosaic: each piece comes from a different place and occupies a relevant position on
its own, but the final picture is complete only once all the tiles are combined.
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Appendix D

Riassunto

Nessun problema é troppo piccolo o troppo irrilevante
se possiamo fare qualcosa per risolverlo.
R. Feynman

La grande missione della fisica moderna e quella di individuare i costituenti fon-
damentali dell’universo, descrivere la loro natura e le loro mutue interazioni, al fine
di spiegare l'origine del mondo nella forma in cui lo percepiamo. Sin da quando la
scienza moderna ha mosso i primi passi (ovvero quando Galileo Galilei nel diciassettes-
imo secolo formuld il metodo scientifico e sanci I'inizio della rivoluzione scientifica) il
tentativo dell’'uomo di studiare sempre piu approfonditamente la composizione degli
oggetti per conoscerne la loro struttura interna non si ¢ mai fermato. Se inizialmente
i primi strumenti atti a questo scopo erano semplici lenti curve che riuscivano a in-
grandire gli oggetti della vita quotidiana, ben presto vennero realizzati sistemi di lenti
molto piu complessi, e i primi microscopi iniziarono ad essere utilizzati per osservare
oggetti non accessibili dall’occhio umano. Tuttavia, sebbene i microscopi ottici di-
vennero sempre pill potenti, si capi che per raggiungere la struttura dell’atomo e la
materia subatomica sarebbero stati necessari altri strumenti, e si senti la necessit di
fare nuovi esperimenti che consentissero di addentrarsi sempre piu a fondo nella mate-
ria. Il primo di questi esperimenti fu condotto da Rutherford agli inizi del 1900. Esso
ha portato alla scoperta della struttura dell’atomo mediante un processo di collisione
tra le particelle di una sorgente radioattiva e gli atomi di una lamina d’oro. Ancora
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oggi, a piu di cento anni dall’esperimento di Rutherford, i processi di collisione tra
particelle rappresentano le piu potenti lenti di ingrandimento mai realizzate dall’'uomo
per accedere allo studio delle strutture subatomiche e subnucleari.

L’obiettivo di questa tesi ¢ proprio quello di fornire un contributo alla fisica subnu-
cleare e precisamente al campo della fisica adronica, branca che studia delle particelle
chiamate adroni. Si tratta di particelle non elementari che hanno una estensione nello
spazio (anche se molto limitato) e contengono delle sottostrutture che sono invece
particelle elementari e puntiformi: i quark e i gluoni. Sebbene gli adroni siano la cosa
pitl piccola che ognuno di noi possa sforzarsi di immaginare (centinaia di milioni di
volte pitt piccoli di una cellula di sangue umano), se considerati nella rosa delle parti-
celle subnucleari, essi sono “grandi” e spaziosi e la loro struttura, ancora misteriosa,
merita di essere studiata attentamente. D’altra parte, studiare la struttura interna
degli adroni assume grande rilevanza se si considera che il protone e il neutrone,
che costituiscono la maggior parte della materia ordinaria e che formano tutti i nu-
clei atomici, sono essi stessi adroni. La peculiarita di dette particelle ¢ che le loro
caratteristiche macroscopiche non sono direttamente riconducibili ai loro costituenti
elementari. Ne un esempio la massa del protone che viene originata dai sui costituenti
interni grazie a dei complessi meccanismi che governano la dinamica del sistema e non
puo essere ricavata dalla semplice somma delle masse dei suoi costituenti.

Questa difficolta nello studio degli adroni € in primo luogo riconducibile al fatto
che quark e gluoni, collettivamente chiamati partoni, interagiscono in modo alquanto
singolare. La teoria che descrive questa interazione fondamentale ¢ chiamata CromoD-
inamica Quantistica (QCD). La QCD descrive essenzialmente la capacita dei partoni
di interagire tra loro grazie ad una proprieta chiamata colore. La situazione ¢ analoga
alla capacita delle particelle elettricamente cariche di interagire tra di loro perché
dotate di una proprieta detta carica elettrica. La particolarita della QCD risiede nel
fatto che 'intensita della interazione di colore dipende dalla distanza: in particolare le
particelle colorate interagiscono in modo molto forte quando sono lontane e in modo
debole quando si trovano a breve distanza. Se potessimo direttamente guardare tanto
in profondita da raggiungere distanze piccolissime all’interno degli adroni vedremmo
un numero enorme di partoni praticamente liberi e non interagenti tra loro. Infatti
a queste distanze 'intensita dell’interazione di colore ¢ talmente blanda da rendere i
partoni delle entita indipendenti e isolate, incuranti dei propri vicini. Questo regime
della QCD ¢ chiamato liberta asintotica. Tuttavia, non appena le distanze crescono
I'interazione si incrementa moltissimo e i partoni interagiscono intensamente tra loro,
tanto da non riuscire ad allontanarsi oltre una certa distanza all’interno dell’adrone
stesso, restandone intrappolati. Questo fenomeno per cui i quark e gluoni rimangono
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imprigionati dentro la loro scatola adronica & chiamato confinamento ed € responsabile
del fatto che nessuna di queste particelle possa raggiungere i rivelatori di particelle
ed essere direttamente misurata in laboratorio.

Il principio secondo cui un oggetto si palesa in modo differente a seconda di quanto
vicino lo si guarda non e affatto nuovo ai fisici, che hanno sempre avuto a che fare
con strutture che contengono al loro interno delle sottostrutture. Basti pensare alle
molecole e gli atomi (studiati in chimica e fisica atomica): quando li si guarda da una
certa distanza essi appaio come oggetti compatti, ma appena ci si avvicina la loro
sottostruttura, composta di elettroni e nuclei, viene rivelata e la loro descrizione fisica
cambia. Se si fa un’ulteriore zoom sui nuclei atomici ci si imbatte immediatamente
nei protoni e i neutroni, ovvero i contenitori ermetici dell’interazione di colore. Al
contrario del caso precedente, in cui le sottostrutture sono accessibili e misurabili,
nel caso del protone e del neutrone i costituenti vivono unicamente dentro le scatole
adroniche e non possono essere osservati come particelle libere. Durante gli esperi-
menti di collisione con gli adroni, i partoni vengono sbalzati fuori energeticamente
ma non appena tentano di sfuggire e allontanarsi la loro interazione di colore diventa
talmente forte da fare in modo che essi si assemblino immediatamente sotto forma
di nuovi adroni. Interpretare e usare le informazioni che vengono da questi esperi-
menti ¢ un’operazione molto delicata, in quanto € necessario possedere una ottima
conoscenza teorica per fare predizioni dei risultati sperimentali e, allo stesso tempo,
bisogna estrarre continuamente informazioni dagli esperimenti per ottenere predizioni
piu affidabili. Ne consegue che una conoscenza teorica il pitt completa possibile ci per-
mette di capire quale porzione dello spazio interno degli adroni puo essere studiata in
un certo esperimento.

Le quantita che definiamo per descrivere le informazioni sulla struttura interna
delle particelle sono delle funzioni multidimensionali che dipendono dalle variabili
cinematiche dei partoni stessi. Per esempio, la distribuzione della velocita dei par-
toni lungo la direzione del moto del protone & descritta dalle funzioni di distribuzione
partoniche (PDF), mentre la stessa informazione estesa a uno spazio tridimension-
ale delle velocita ¢ contenuta nelle funzioni di distribuzioni partoniche dipendenti dal
momento transverso (TMD). Le PDF e TMD sono dunque quantita che descrivono
I'interno del protone in termini di un singolo partone alla volta e ignorano gli effetti
derivanti dall’analisi di due o piu partoni contemporaneamente. Quest’ultima infor-
mazione & tipica delle funzioni di distribuzioni a due partoni (DPD), che tengono in
considerazione proprio le coppie di partoni, aprendo di fatto la strada allo studio delle
correlazioni tra i partoni. Le DPD, inoltre, sono misurabili in esperimenti in cui due
partoni vengono sbalzati fuori dal protone contemporaneamente e partecipano a due
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Figure D.1: Un cesto di trottole, che simboleggiano i partoni con spin all’interno del protone. La
distribuzione delle velocita delle trottole nello spazio tridimensionale ¢ descritto dalle funzioni TMD.
La probabilita che una coppia di trottole con un certo spin venga estratta dal cesto & descritta dalle
funzioni DPD.

processi indipendenti di collisione ad alta energia.

Le funzioni di distribuzione partonica tengono anche conto delle proprieta quantis-
tiche dei partoni (e degli adroni). Oltre alla carica di colore, i partoni hanno anche lo
spin, una delle proprieta piu affascinanti della descrizione quantistica delle particelle.
A dispetto del nome (che suggerirebbe una rotazione), lo spin non ha in realta nulla a
che vedere con una rotazione fisica della particella, ma, al contrario, si riferisce a una
sua proprieta intrinseca. Con un po’ di cautela nell’interpretazione, possiamo tuttavia
immaginare le particelle con spin come fossero delle trottole come in Fig. D.1; del resto
la descrizione puramente matematica dello spin e in effetti analoga a quella dei mo-
menti angolari. Per capire il ruolo dello spin dei partoni nello studio della struttura
degli adroni basti considerare la seguente situazione. Quando i partoni ruotano in
maniera casuale non ¢’ nessuna direzione di rotazione preferenziale nella collettivita
dei partoni e una media sugli stati di spin equivale a dire che lo spin dei partoni non
ha globalmente alcun effetto nel loro moto interno. Al contrario, quando la rotazione
delle trottole predilige una direzione anziché un’altra, allora si ha una polarizzazione
netta dei partoni all’interno dell’adrone e questa proprieta modifica effettivamente la
distribuzione dei costituenti, generando ad esempio delle distorsioni e delle asimmetrie
che possono essere studiate e caratterizzate di volta in volta.

In questa tesi ci siamo concentrati proprio sullo studio dei partoni polarizzati
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tramite lo studio delle funzioni TMD e DPD. Nel corso dei capitoli abbiamo presentato
i risultati originali, di cui nel seguito riassumiamo i passi pi importanti:

e TMDs: abbiamo studiato le funzioni TMD che descrivono i gluoni all’interno
degli adroni. Le quantita relative ai gluoni sono complesse da studiare perché le
informazioni che ricaviamo dagli esperimenti sono molto limitate. Queste quan-
tita diventano rilevanti quando si va ad alte energie, ma a tutt’oggi nessuno
degli acceleratori esistenti ¢ in grado di dare accesso alle regioni dove i gluoni
sono piu “visibili”. Abbiamo per la prima volta definito le funzioni TMD che
descrivono i gluoni all’interno degli adroni con spin uguale a 1 (ad esempio il
deutone, che & un nucleo atomico formato da un protone e un neutrone). Abbi-
amo derivato delle relazioni tra le TMD dei gluoni che saranno utili per le future
estrazioni sperimentali di alcune di queste funzioni. Infine, abbiamo mostrato
che, ad energie molto elevate, non tutte le TMD dei gluoni sono importanti, ma
soltanto alcune tra queste.

e DPDs: abbiamo studiato le correlazioni di coppia tra partoni, cosa possibile
grazie al formalismo delle DPDs. Questa informazione a due partoni permette
di guardare al protone con uno sguardo meno standard rispetto che alle funzioni
di singolo partone. Anche in questo caso i dati sperimentali a disposizione sono
molto limitati. Abbiamo quindi studiato una strategia ottimale per osservare le
correlazioni a due partoni dovute allo spin in un prossimo futuro all’acceleratore
LHC di Ginevra.

Concludendo, il processo di raccolta di informazione sulla struttura interna degli
adroni tramite le funzioni di distribuzione partoniche ¢ paragonabile alla creazione
di un mosaico: ogni funzione arriva da un posto diverso ed occupa una posizione a
sé stante, ma l’opera finale sara completa solo quando tutti i tasselli verranno messi
insieme.

173






Acknowledgements

I would like to thank all the people that have been involved in the realization of this
thesis and those who have contributed in different ways to my growing as a scientist.

I want to thank my supervisor Piet Mulders, for his precious guidance and con-
tinuous encouragements. Thank you very much Piet, I am very grateful for the time
you devoted discussing and explaining things to me. I have been sincerely inspired by
your knowledge and expertise and I admire your great passion and enthusiasm.

Thanks to the members of the reading committee Dani€l Boer, Eric Laenen, Cédric
Lorcé, Tomas Kasemets, Barbara Pasquini, and Gerhard Raven for the time they spent
in reviewing my manuscript, for the valuable feedback and comments.

Thanks to all the people I had the pleasure to collaborate with during the past
years, especially Tomas Kasemets, Miroslav Myska, Alessandro Bacchetta, Barbara
Pasquini, Daniél Boer, Andrea Signori, Tom van Daal, Yajin Zhou, and for the fruitful
discussions with Cristian Pisano, Guy de Teramond, Cédric Lorcé, Elena Petreska,
Maarten Buffing, Marco Radici, Miguel G. Echevarria.

I am especially grateful to Alessandro Bacchetta and Barbara Pasquini for the
help and the support over the years and across the countries.

Thanks to all the members of the Theory Group at Nikhef for the warm atmosphere
and the recharging coffee breaks.

Finally, I want to thank my paranimphs, colleagues, friends and family for sharing
with me all the highs and lows of the past four years.

175






[1]

Bibliography

D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge
Theories, Phys. Rev. Lett. 30 (1973) 1343-1346.

D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories - I, Phys.
Rev. D8 (1973) 3633-3652.

Y. Ne’eman, Derivation of strong interactions from a gauge invariance, Nucl.
Phys. 26 (1961) 222-229.

M. Gell-Mann, A Schematic Model of Baryons and Mesons, Phys. Lett. 8
(1964) 214-215.

CMS collaboration, V. Khachatryan et al., Measurement of the inclusive 3-jet
production differential cross section in protonproton collisions at 7 TeV and
determination of the strong coupling constant in the TeV range, Eur. Phys. J.
C75 (2015) 186, [1412.1633].

S. J. Brodsky, H.-C. Pauli and S. S. Pinsky, Quantum chromodynamics and
other field theories on the light cone, Phys.Rept. 301 (1998) 299-486,
[hep-ph/9705477].

R. L. Jaffe and A. Manohar, The G(1) Problem: Fact and Fantasy on the Spin
of the Proton, Nucl. Phys. B337 (1990) 509-546.

177


http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://dx.doi.org/10.1103/PhysRevD.8.3633
http://dx.doi.org/10.1103/PhysRevD.8.3633
http://dx.doi.org/10.1016/0029-5582(61)90134-1
http://dx.doi.org/10.1016/0029-5582(61)90134-1
http://dx.doi.org/10.1016/S0031-9163(64)92001-3
http://dx.doi.org/10.1016/S0031-9163(64)92001-3
http://dx.doi.org/10.1140/epjc/s10052-015-3376-y
http://dx.doi.org/10.1140/epjc/s10052-015-3376-y
http://arxiv.org/abs/1412.1633
http://dx.doi.org/10.1016/S0370-1573(97)00089-6
http://arxiv.org/abs/hep-ph/9705477
http://dx.doi.org/10.1016/0550-3213(90)90506-9

8]

[9]

[10]

[11]

[12]

[13]

[16]

[17]

[18]

[19]

X.-D. Ji, Gauge-Invariant Decomposition of Nucleon Spin, Phys. Rev. Lett. T8
(1997) 610-613, [hep-ph/9603249].

R. P. Feynman, Very high-energy collisions of hadrons, Phys. Rev. Lett. 23
(1969) 1415-1417.

J. D. Bjorken and E. A. Paschos, Inelastic Electron Proton and gamma Proton
Scattering, and the Structure of the Nucleon, Phys. Rev. 185 (1969)
1975-1982.

H. D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B172
(1980) 349.

CTEQ collaboration, R. Brock et al., Handbook of perturbative QCD: Version
1.0, Rev. Mod. Phys. 67 (1995) 157-248.

J. C. Collins, D. E. Soper and G. Sterman, Factorization for one loop
corrections in the drell-yan process, Nucl. Phys. B223 (1983) 381.

J. C. Collins, D. E. Soper and G. F. Sterman, Transverse Momentum
Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys.
B250 (1985) 199.

J. Collins, Foundations of perturbative QCD. Cambridge University Press,
2011.

X.-d. Ji, J.-p. Ma and F. Yuan, Qcd factorization for semi-inclusive
deep-inelastic scattering at low transverse momentum, Phys. Rev. D71 (2005)
034005, [hep-ph/0404183].

J. Collins and J.-W. Qiu, kt factorization is violated in production of high-
transverse-momentum particles in hadron-hadron collisions, Phys. Rev. D75
(2007) 114014, [arXiv:0705.2141 [hep-phl].

D. Boer, S. J. Brodsky, P. J. Mulders and C. Pisano, Direct Probes of Linearly
Polarized Gluons inside Unpolarized Hadrons, Phys.Rev.Lett. 106 (2011)
132001, [1011.4225].

T. C. Rogers and P. J. Mulders, No Generalized TMD-Factorization in
Hadro-Production of High Transverse Momentum Hadrons, Phys. Rev. D81
(2010) 094006, [1001.2977].

178


http://dx.doi.org/10.1103/PhysRevLett.78.610
http://dx.doi.org/10.1103/PhysRevLett.78.610
http://arxiv.org/abs/hep-ph/9603249
http://dx.doi.org/10.1103/PhysRevLett.23.1415
http://dx.doi.org/10.1103/PhysRevLett.23.1415
http://dx.doi.org/10.1103/PhysRev.185.1975
http://dx.doi.org/10.1103/PhysRev.185.1975
http://dx.doi.org/10.1016/0550-3213(80)90172-8
http://dx.doi.org/10.1016/0550-3213(80)90172-8
http://dx.doi.org/10.1103/RevModPhys.67.157
http://dx.doi.org/10.1016/0550-3213(85)90479-1
http://dx.doi.org/10.1016/0550-3213(85)90479-1
http://arxiv.org/abs/hep-ph/0404183
http://arxiv.org/abs/arXiv:0705.2141 [hep-ph]
http://dx.doi.org/10.1103/PhysRevLett.106.132001
http://dx.doi.org/10.1103/PhysRevLett.106.132001
http://arxiv.org/abs/1011.4225
http://dx.doi.org/10.1103/PhysRevD.81.094006
http://dx.doi.org/10.1103/PhysRevD.81.094006
http://arxiv.org/abs/1001.2977

[20]

[21]

[22]

[24]

[25]

[26]

[27]

P. J. Mulders and T. C. Rogers, Gauge Links, TMD-Factorization, and
TMD-Factorization Breaking, 1102.4569.

T. C. Rogers, Eztra spin asymmetries from the breakdown of
transverse-momentum-dependent factorization in hadron-hadron collisions,
Phys. Rev. D88 (2013) 014002, [1304.4251].

M. Diehl, J. R. Gaunt, D. Ostermeier, P. PI68] and A. Schéfer, Cancellation of
Glauber gluon exchange in the double Drell-Yan process, JHEP 01 (2016) 076,
[1510.08696].

M. G. A. Buffing, M. Diehl and T. Kasemets, Transverse momentum in double
parton scattering: factorisation, evolution and matching, JHEP 01 (2018) 044,
[1708.03528].

J. C. Collins and A. Freund, Proof of factorization for deeply virtual Compton
scattering in QCD, Phys. Rev. D59 (1999) 074009, [hep-ph/9801262].

S. Drell and T.-M. Yan, Massive Lepton Pair Production in Hadron-Hadron
Collisions at High-Energies, Phys.Rev.Lett. 25 (1970) 316-320.

F. Pijlman, Single Spin Asymmetries and Gauge Invariance in Hard Scattering
Processes. PhD thesis, Ph.D. thesis at VU University (Amsterdam), 2006.

D. Boer and C. Pisano, Polarized gluon studies with charmonium and
bottomonium at LHCb and AFTER, Phys. Rev. D86 (2012) 094007,
[1208.3642].

W. J. den Dunnen, Polarization effects in proton-proton collisions within the
Standard model and beyond. PhD thesis, Vrije U., Amsterdam, 2013.

C. Pisano, D. Boer, S. J. Brodsky, M. G. Buffing and P. J. Mulders, Linear
polarization of gluons and photons in unpolarized collider experiments, JHEP
1310 (2013) 024, [1307.3417].

D. Boer, P. J. Mulders, C. Pisano and J. Zhou, Asymmetries in Heavy Quark
Pair and Dijet Production at an FIC, 1605.07934.

M. Diehl, D. Ostermeier and A. Schéafer, Elements of a theory for multiparton
interactions in QCD, JHEP 03 (2012) 089, [1111.0910].

T. Kasemets, Double parton scattering - a tale of two partons. PhD thesis,
Hamburg U., 2013.

179


http://arxiv.org/abs/1102.4569
http://dx.doi.org/10.1103/PhysRevD.88.014002
http://arxiv.org/abs/1304.4251
http://dx.doi.org/10.1007/JHEP01(2016)076
http://arxiv.org/abs/1510.08696
http://dx.doi.org/10.1007/JHEP01(2018)044
http://arxiv.org/abs/1708.03528
http://dx.doi.org/10.1103/PhysRevD.59.074009
http://arxiv.org/abs/hep-ph/9801262
http://dx.doi.org/10.1103/PhysRevLett.25.316
http://dx.doi.org/10.1103/PhysRevD.86.094007
http://arxiv.org/abs/1208.3642
http://dx.doi.org/10.1007/JHEP10(2013)024
http://dx.doi.org/10.1007/JHEP10(2013)024
http://arxiv.org/abs/1307.3417
http://arxiv.org/abs/1605.07934
http://dx.doi.org/10.1007/JHEP03(2012)089, 10.1007/JHEP03(2016)001
http://arxiv.org/abs/1111.0910

[33] M. Diehl and A. Schéfer, Theoretical considerations on multiparton
interactions in QCD, Phys. Lett. B698 (2011) 389-402, [1102.3081].

[34] K. G. Wilson, Confinement of Quarks, Phys. Rev. D10 (1974) 2445-2459.

[35] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the
quantum theory, Phys. Rev. 115 (1959) 485-491.

[36] M. Peskin and D. Schroeder, An introduction to Quantum Field Theory.
Westview Press, 1995.

[37] A. V. Efremov and A. V. Radyushkin, Field theoretic treatment of high
momentum transfer processes. 3. Gauge theories, Theor. Math. Phys. 44
(1981) 774.

[38] X.-d. Ji and F. Yuan, Parton distributions in light-cone gauge: Where are the
final-state interactions?, Phys. Lett. B543 (2002) 6672, [hep-ph/0206057].

[39] A. V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant
parton distributions, Nucl. Phys. B656 (2003) 165-198, [hep-ph/0208038].

[40] D. Boer, P. J. Mulders and F. Pijlman, Universality of T-odd effects in single
spin and azimuthal asymmetries, Nucl. Phys. B667 (2003) 201-241,
[hep-ph/0303034].

[41] C. J. Bombhof, P. J. Mulders and F. Pijlman, Gauge link structure in quark
quark correlators in hard processes, Phys. Lett. B596 (2004) 277-286,
[hep-ph/0406099).

[42] C. J. Bombhof, P. J. Mulders and F. Pijlman, The construction of gauge-links
in arbitrary hard processes, Eur. Phys. J. C47 (2006) 147-162,
[hep-ph/0601171].

[43] C. J. Bombhof and P. J. Mulders, Non-universality of transverse momentum
dependent parton distribution functions, Nucl. Phys. B795 (2008) 409-427,
[0709.1390].

[44] M. Buffing and P. Mulders, Gauge links for transverse momentum dependent
correlators at tree-level, JHEP 1107 (2011) 065, [1105.4804].

[45] M. Buffing, A. Mukherjee and P. Mulders, Generalized Universality of Higher
Transverse Moments of Quark TMD Correlators, Phys.Rev. D86 (2012)
074030, [1207.3221].

180


http://dx.doi.org/10.1016/j.physletb.2011.03.024
http://arxiv.org/abs/1102.3081
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1007/BF01029042
http://dx.doi.org/10.1007/BF01029042
http://arxiv.org/abs/hep-ph/0206057
http://arxiv.org/abs/hep-ph/0208038
http://arxiv.org/abs/hep-ph/0303034
http://arxiv.org/abs/hep-ph/0406099
http://arxiv.org/abs/hep-ph/0601171
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.024
http://arxiv.org/abs/0709.1390
http://dx.doi.org/10.1007/JHEP07(2011)065
http://arxiv.org/abs/1105.4804
http://dx.doi.org/10.1103/PhysRevD.86.074030
http://dx.doi.org/10.1103/PhysRevD.86.074030
http://arxiv.org/abs/1207.3221

[46] M. G. A. Buffing, P. J. Mulders and A. Mukherjee, Universality of Quark and
Gluon TMD Correlators, Int. J. Mod. Phys. Conf. Ser. 25 (2014) 1460003,
[1309.2472].

[47] F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, Universality of
Unintegrated Gluon Distributions at small x, Phys. Rev. D83 (2011) 105005,
[1101.0715].

[48] M. G. A. Buffing, A. Mukherjee and P. J. Mulders, Generalized Universality of
Definite Rank Gluon Transverse Momentum Dependent Correlators, Phys.
Rev. D88 (2013) 054027, [1306.5897].

[49] C. J. Bomhof, Azimuthal Spin Asymmetries in Hadronic Processes. PhD
thesis, Ph.D. thesis at VU University (Amsterdam), 2007.

[50] M. G. A. Buffing, Color and TMD Universality in Hadronic Interactions. PhD
thesis, NIKHEF, Amsterdam, 2015-09-02.

[51] D. Boer and P. J. Mulders, Time-reversal odd distribution functions in
leptoproduction, Phys. Rev. D57 (1998) 5780-5786, [hep-ph/9711485].

[52] M. Mekhfi and X. Artru, Sudakov Suppression of Color Correlations in
Multiparton Scattering, Phys. Rev. D37 (1988) 2618-2622.

[63] G. Martinelli and C. T. Sachrajda, A Lattice Study of Nucleon Structure,
Nucl. Phys. B316 (1989) 355-372.

[54] P. Hagler, Hadron structure from lattice quantum chromodynamics, Phys.
Rept. 490 (2010) 49-175, [0912.5483].

[55] B. U. Musch, P. Hagler, J. W. Negele and A. Schéfer, Exploring quark
transverse momentum distributions with lattice QCD, Phys. Rev. D83 (2011)
094507, [1011.1213].

[56] H.-W. Lin et al., Parton distributions and lattice QCD calculations: a
community white paper, Prog. Part. Nucl. Phys. 100 (2018) 107-160,
[1711.07916].

[57] B. Yoon, M. Engelhardt, R. Gupta, T. Bhattacharya, J. R. Green, B. U.
Musch et al., Nucleon Transverse Momentum-dependent Parton Distributions
in Lattice QCD: Renormalization Patterns and Discretization Effects, Phys.
Rev. D96 (2017) 094508, [1706.03406].

181


http://dx.doi.org/10.1142/S2010194514600039
http://arxiv.org/abs/1309.2472
http://dx.doi.org/10.1103/PhysRevD.83.105005
http://arxiv.org/abs/1101.0715
http://dx.doi.org/10.1103/PhysRevD.88.054027
http://dx.doi.org/10.1103/PhysRevD.88.054027
http://arxiv.org/abs/1306.5897
http://dx.doi.org/10.1103/PhysRevD.57.5780
http://arxiv.org/abs/hep-ph/9711485
http://dx.doi.org/10.1103/PhysRevD.37.2618
http://dx.doi.org/10.1016/0550-3213(89)90035-7
http://dx.doi.org/10.1016/j.physrep.2009.12.008
http://dx.doi.org/10.1016/j.physrep.2009.12.008
http://arxiv.org/abs/0912.5483
http://dx.doi.org/10.1103/PhysRevD.83.094507
http://dx.doi.org/10.1103/PhysRevD.83.094507
http://arxiv.org/abs/1011.1213
http://dx.doi.org/10.1016/j.ppnp.2018.01.007
http://arxiv.org/abs/1711.07916
http://dx.doi.org/10.1103/PhysRevD.96.094508
http://dx.doi.org/10.1103/PhysRevD.96.094508
http://arxiv.org/abs/1706.03406

[58]

[59]

[60]

[61]

[62]

[63]

[65]

[66]

A. Bacchetta, F. Conti and M. Radici, Transverse-momentum distributions in
a diquark spectator model, Phys. Rev. D78 (2008) 074010, [0807.0323].

B. Pasquini, S. Cazzaniga and S. Boffi, Transverse momentum dependent
parton distributions in a light-cone quark model, Phys. Rev. D78 (2008)
034025, [0806 .2298].

S. Boffi, A. V. Efremov, B. Pasquini and P. Schweitzer, Azimuthal spin
asymmetries in light-cone constituent quark models, Phys. Rev. D79 (2009)
094012, [0903. 1271].

C. Lorcé, B. Pasquini and M. Vanderhaeghen, Unified framework for
generalized and transverse-momentum dependent parton distributions within a
3Q light-cone picture of the nucleon, JHEP 05 (2011) 041, [1102.4704].

B. Pasquini and P. Schweitzer, Pion TMDs in light-front constituent approach,
and Boer-Mulders effect in the pion-induced Drell-Yan process, Phys. Rev. D90
(2014) 014050, [1406.2056].

A. V. Efremov, P. Schweitzer, O. V. Teryaev and P. Zavada, The relation
between TMDs and PDFs in the covariant parton model approach, Phys. Reuv.
D83 (2011) 054025, [1012.5296].

H. Avakian, A. V. Efremov, P. Schweitzer and F. Yuan, The transverse
momentum dependent distribution functions in the bag model, Phys. Rev. D81
(2010) 074035, [1001.5467].

Y. Ninomiya, W. Bentz and 1. C. Cloét, TMDs of Spin-one Targets:
Formalism and Covariant Calculations, 1707 .03787.

A. Bacchetta, S. Cotogno and B. Pasquini, The transverse structure of the
pion in momentum space inspired by the AdS/QCD correspondence, Phys.
Lett. B771 (2017) 546-552, [1703.07669].

R. Angeles-Martinez et al., Transverse Momentum Dependent (TMD) parton
distribution functions: status and prospects, Acta Phys. Polon. B46 (2015)
2501-2534, [1507.05267].

J. Collins, The non-triviality of the vacuum in light-front quantization: An
elementary treatment, 1801.03960.

P. A. Dirac, Forms of Relativistic Dynamics, Rev.Mod.Phys. 21 (1949)
392-399.

182


http://dx.doi.org/10.1103/PhysRevD.78.074010
http://arxiv.org/abs/0807.0323
http://dx.doi.org/10.1103/PhysRevD.78.034025
http://dx.doi.org/10.1103/PhysRevD.78.034025
http://arxiv.org/abs/0806.2298
http://dx.doi.org/10.1103/PhysRevD.79.094012
http://dx.doi.org/10.1103/PhysRevD.79.094012
http://arxiv.org/abs/0903.1271
http://dx.doi.org/10.1007/JHEP05(2011)041
http://arxiv.org/abs/1102.4704
http://arxiv.org/abs/1406.2056
http://dx.doi.org/10.1103/PhysRevD.83.054025
http://dx.doi.org/10.1103/PhysRevD.83.054025
http://arxiv.org/abs/1012.5296
http://dx.doi.org/10.1103/PhysRevD.81.074035
http://dx.doi.org/10.1103/PhysRevD.81.074035
http://arxiv.org/abs/1001.5467
http://arxiv.org/abs/1707.03787
http://dx.doi.org/10.1016/j.physletb.2017.05.072
http://dx.doi.org/10.1016/j.physletb.2017.05.072
http://arxiv.org/abs/1703.07669
http://dx.doi.org/10.5506/APhysPolB.46.2501
http://dx.doi.org/10.5506/APhysPolB.46.2501
http://arxiv.org/abs/1507.05267
http://arxiv.org/abs/1801.03960
http://dx.doi.org/10.1103/RevModPhys.21.392
http://dx.doi.org/10.1103/RevModPhys.21.392

[70]

[71]

[72]

[73]

[74]

[75]

[78]
[79]

[80]
[81]

[82]

[83]

S. Weinberg, Dynamics at infinite momentum, Phys.Rev. 150 (1966)
1313-1318.

L. Susskind, Model of selfinduced strong interactions, Phys.Rev. 165 (1968)
1535-1546.

S.-J. Chang and S.-K. Ma, Feynman rules and quantum electrodynamics at
infinite momentum, Phys.Rev. 180 (1969) 1506-1513.

K. Bardakci and M. Halpern, Theories at infinite momentum, Phys.Rev. 176
(1968) 1686—-1699.

J. B. Kogut and D. E. Soper, Quantum Electrodynamics in the Infinite
Momentum Frame, Phys. Rev. D1 (1970) 2901-2913.

S. Drell, D. J. Levy and T.-M. Yan, A Theory of Deep Inelastic
Lepton-Nucleon Scattering and Lepton Pair Annihilation Processes. 1.,
Phys.Rev. 187 (1969) 2159-2171.

S. Drell, D. J. Levy and T.-M. Yan, A Theory of Deep Inelastic Lepton
Nucleon Scattering and Lepton Pair Annihilation Processes. 2. Deep Inelastic
electron Scattering, Phys.Rev. D1 (1970) 1035-1068.

S. Drell, D. J. Levy and T.-M. Yan, A Theory of Deep Inelastic
Lepton-Nucleon Scattering and Lepton Pair Annihilation Processes. 8. Deep
Inelastic electron-Positron Annihilation, Phys.Rev. D1 (1970) 1617-1639.

J. C. Collins, Light cone variables, rapidity and all that, hep-ph/9705393.

D. D. Dietrich, P. Hoyer and M. Jarvinen, Boosting equal time bound states,
Phys.Rev. D85 (2012) 105016, [1202.0826].

D. Miiller and D. S. Hwang, The concept of phenomenological light-front wave
functions — Regge improved diquark model predictions, 1407 . 1655.

P. Hoyer, Bound states — from QED to QCD, 2014. 1402.5005.

M. Diehl, T. Feldmann, R. Jakob and P. Kroll, The Overlap representation of
skewed quark and gluon distributions, Nucl. Phys. B596 (2001) 33-65,
[hep-ph/0009255].

P. Mulders and R. Tangerman, The complete tree level result up to order 1/Q
for polarized deep inelastic leptoproduction, Nucl. Phys. B461 (1996) 197237,
[hep-ph/9510301].

183


http://dx.doi.org/10.1103/PhysRev.150.1313
http://dx.doi.org/10.1103/PhysRev.150.1313
http://dx.doi.org/10.1103/PhysRev.165.1535
http://dx.doi.org/10.1103/PhysRev.165.1535
http://dx.doi.org/10.1103/PhysRev.180.1506
http://dx.doi.org/10.1103/PhysRev.176.1686
http://dx.doi.org/10.1103/PhysRev.176.1686
http://dx.doi.org/10.1103/PhysRevD.1.2901
http://dx.doi.org/10.1103/PhysRev.187.2159
http://dx.doi.org/10.1103/PhysRevD.1.1035
http://dx.doi.org/10.1103/PhysRevD.1.1617
http://arxiv.org/abs/hep-ph/9705393
http://dx.doi.org/10.1103/PhysRevD.85.105016
http://arxiv.org/abs/1202.0826
http://arxiv.org/abs/1407.1655
http://arxiv.org/abs/1402.5005
http://dx.doi.org/10.1016/S0550-3213(00)00684-2
http://arxiv.org/abs/hep-ph/0009255
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://arxiv.org/abs/hep-ph/9510301

[84]

[85]

[86]

[93]

[94]

[95]

[96]

A. Bacchetta and P. J. Mulders, Deep inelastic leptoproduction of spin-one
hadrons, Phys. Rev. D62 (2000) 114004, [hep-ph/0007120].

A. Bacchetta, Probing the Transverse Spin of Quarks in Deep Inelastic
Scattering. PhD thesis, Ph.D. thesis at VU University (Amsterdam), 2002.

P. J. Mulders and J. Rodrigues, Transverse momentum dependence in gluon
distribution and fragmentation functions, Phys. Rev. D63 (2001) 094021,
[hep-ph/0009343].

S. Meifiner, A. Metz and K. Goeke, Relations between generalized and
transverse momentum dependent parton distributions, Phys. Rev. D76 (2007)
034002, [hep-ph/0703176].

D. Boer, S. Cotogno, T. van Daal, P. J. Mulders, A. Signori and Y.-J. Zhou,
Gluon and Wilson loop TMDs for hadrons of spin < 1, JHEP 10 (2016) 013,
[1607.01654].

W. Detmold and P. E. Shanahan, Gluonic Transversity from Lattice QCD,
Phys. Rev. D94 (2016) 014507, [1606.04505].

F. Winter, W. Detmold, A. S. Gambhir, K. Orginos, M. J. Savage, P. E.
Shanahan et al., First lattice QCD study of the gluonic structure of light
nuclei, Phys. Rev. D96 (2017) 094512, [1709.00395].

J. Maxwell et al., Search for Exotic Gluonic States in the Nucleus, A Letter of
Intent to Jefferson Lab PAC 44, 1803.11206.

S. Cotogno, Parametrization of the Transverse Momentum Dependent
Light-Front Correlator for Gluons, Few Body Syst. 58 (2017) 92.

S. Cotogno, T. van Daal and P. J. Mulders, Positivity bounds on gluon TMDs
for hadrons of spin < 1, JHEP 11 (2017) 185, [1709.07827].

E. Leader, Spin in particle physics, Camb. Monogr. Part. Phys. Nucl. Phys.
Cosmol. 15 (2011) pp.1-500.

A. Signori, Flavor and Evolution Effects in TMD Phenomenology. PhD thesis,
Vrije U., Amsterdam, 2016.

K. G. Wilson, Nonlagrangian models of current algebra, Phys. Rev. 179 (1969)
1499-1512.

184


http://dx.doi.org/10.1103/PhysRevD.62.114004
http://arxiv.org/abs/hep-ph/0007120
http://arxiv.org/abs/hep-ph/0009343
http://arxiv.org/abs/hep-ph/0703176
http://dx.doi.org/10.1007/JHEP10(2016)013
http://arxiv.org/abs/1607.01654
http://dx.doi.org/10.1103/PhysRevD.95.079902, 10.1103/PhysRevD.94.014507
http://arxiv.org/abs/1606.04505
http://dx.doi.org/10.1103/PhysRevD.96.094512
http://arxiv.org/abs/1709.00395
http://arxiv.org/abs/1803.11206
http://dx.doi.org/10.1007/s00601-017-1254-x
http://dx.doi.org/10.1007/JHEP11(2017)185
http://arxiv.org/abs/1709.07827
http://dx.doi.org/10.1103/PhysRev.179.1499
http://dx.doi.org/10.1103/PhysRev.179.1499

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105)

[106]

[107]

[108]

R. L. Jaffe, Spin, twist and hadron structure in deep inelastic processes,
hep-ph/9602236.

T. van Daal, Quark and gluon TMD correlators in momentum and coordinate
space, in 22nd International Symposium on Spin Physics (SPIN 2016) Urbana,
1L, USA, September 25-30, 2016, 2016. 1612.06585.

P. Hoodbhoy, R. L. Jaffe and A. Manohar, Nowvel Effects in Deep Inelastic
Scattering from Spin 1 Hadrons, Nucl. Phys. B312 (1989) 571-588.

M. Boglione and A. Prokudin, Phenomenology of transverse spin: past, present
and future, Eur. Phys. J. A52 (2016) 154, [1511.06924].

HERMES collaboration, A. Airapetian et al., Multiplicities of charged pions
and kaons from semi-inclusive deep-inelastic scattering by the proton and the
deuteron, Phys. Rev. D87 (2013) 074029, [1212.5407].

J. Ball et al., On the large COMPASS polarized deuteron target, Czech. J.
Phys. 56 (2006) F295-F305.

CDF collaboration, T. Aaltonen et al., Transverse momentum cross section of
ete™ pairs in the Z-boson region from pp collisions at /s = 1.96 TeV, Phys.
Rev. D86 (2012) 052010, [1207.7138].

A. Signori, A. Bacchetta, M. Radici and G. Schnell, Investigations into the
flavor dependence of partonic transverse momentum, JHEP 11 (2013) 194,
[1309.3507].

M. Anselmino, M. Boglione, J. O. Gonzalez Hernandez, S. Melis and

A. Prokudin, Unpolarised Transverse Momentum Dependent Distribution and
Fragmentation Functions from SIDIS Multiplicities, JHEP 04 (2014) 005,
[1312.6261].

U. D’Alesio, M. G. Echevarria, S. Melis and I. Scimemi, Non-perturbative
QCD effects in qr spectra of Drell-Yan and Z-boson production, JHEP 11
(2014) 098, [1407.3311].

M. G. Echevarria, A. Idilbi, Z.-B. Kang and 1. Vitev, QCD FEvolution of the
Sivers Asymmetry, Phys. Rev. D89 (2014) 074013, [1401.5078].

A. Bacchetta, F. Delcarro, C. Pisano, M. Radici and A. Signori, Eztraction of
partonic transverse momentum distributions from semi-inclusive deep-inelastic

185


http://arxiv.org/abs/hep-ph/9602236
http://arxiv.org/abs/1612.06585
http://dx.doi.org/10.1016/0550-3213(89)90572-5
http://dx.doi.org/10.1140/epja/i2016-16154-6
http://arxiv.org/abs/1511.06924
http://dx.doi.org/10.1103/PhysRevD.87.074029
http://arxiv.org/abs/1212.5407
http://dx.doi.org/10.1103/PhysRevD.86.052010
http://dx.doi.org/10.1103/PhysRevD.86.052010
http://arxiv.org/abs/1207.7138
http://dx.doi.org/10.1007/JHEP11(2013)194
http://arxiv.org/abs/1309.3507
http://dx.doi.org/10.1007/JHEP04(2014)005
http://arxiv.org/abs/1312.6261
http://dx.doi.org/10.1007/JHEP11(2014)098
http://dx.doi.org/10.1007/JHEP11(2014)098
http://arxiv.org/abs/1407.3311
http://dx.doi.org/10.1103/PhysRevD.89.074013
http://arxiv.org/abs/1401.5078

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

scattering, Drell-Yan and Z-boson production, JHEP 06 (2017) 081,
[1703.10157].

I. Scimemi and A. Vladimirov, Analysis of vector boson production within
TMD factorization, Eur. Phys. J. C78 (2018) 89, [1706.01473|.

D. W. Sivers, Hard scattering scaling laws for single spin production
asymmetries, Phys. Rev. D43 (1991) 261-263.

J. C. Collins, Fragmentation of transversely polarized quarks probed in
transverse momentum distributions, Nucl. Phys. B396 (1993) 161-182,
[hep-ph/9208213].

S. J. Brodsky, D. S. Hwang and I. Schmidt, Final-state interactions and
single-spin asymmetries in semi-inclusive deep inelastic scattering, Phys. Lett.
B530 (2002) 99-107, [hep-ph/0201296].

J. C. Collins, Leading-twist single-transverse-spin asymmetries: Drell-Yan and
deep-inelastic scattering, Phys. Lett. B536 (2002) 43-48, [hep-ph/0204004].

HERMES collaboration, A. Airapetian et al., Single-spin asymmetries in
semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen
target, Phys. Rev. Lett. 94 (2005) 012002, [hep-ex/0408013].

E.-C. Aschenauer et al., The RHIC SPIN Program: Achievements and Future
Opportunities, 1501.01220.

L. D. Isenhower et al., Polarized Drell-Yan measurements with the Fermilab
Main Injector, .

C. Brown et al., Letter of Intent for a Drell-Yan Ezxperiment with a Polarized
Proton Target, .

A. Bacchetta, A. Courtoy and M. Radici, First extraction of valence
transversities in a collinear framework, JHEP 03 (2013) 119, [1212.3568].

HERMES collaboration, A. Airapetian et al., First measurement of the tensor
structure function b(1) of the deuteron, Phys. Rev. Lett. 95 (2005) 242001,
[hep-ex/0506018].

S. Kumano, Tensor-polarized quark and antiquark distribution functions in a
spin-one hadron, Phys. Rev. D82 (2010) 017501, [1005.4524].

186


http://dx.doi.org/10.1007/JHEP06(2017)081
http://arxiv.org/abs/1703.10157
http://dx.doi.org/10.1140/epjc/s10052-018-5557-y
http://arxiv.org/abs/1706.01473
http://arxiv.org/abs/hep-ph/9208213
http://arxiv.org/abs/hep-ph/0201296
http://arxiv.org/abs/hep-ph/0204004
http://dx.doi.org/10.1103/PhysRevLett.94.012002
http://arxiv.org/abs/hep-ex/0408013
http://arxiv.org/abs/1501.01220
http://dx.doi.org/10.1007/JHEP03(2013)119
http://arxiv.org/abs/1212.3568
http://dx.doi.org/10.1103/PhysRevLett.95.242001
http://arxiv.org/abs/hep-ex/0506018
http://dx.doi.org/10.1103/PhysRevD.82.017501
http://arxiv.org/abs/1005.4524

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

H. Khan and P. Hoodbhoy, Convenient parametrization for deep inelastic
structure functions of the deuteron, Phys. Rev. C44 (1991) 1219-1222.

G. A. Miller, Pionic and Hidden-Color, Six-Quark Contributions to the
Deuteron b1 Structure Function, Phys. Rev. C89 (2014) 045203, [1311.4561].

W. Cosyn, Y.-B. Dong, S. Kumano and M. Sargsian, Tensor-polarized
structure function by in standard convolution description of deuteron, Phys.
Rev. D95 (2017) 074036, [1702.05337].

K. Slifer, The Deuteron Polarized Tensor Structure Function by, J. Phys.
Conf. Ser. 543 (2014) 012003.

D. Boer et al., Gluons and the quark sea at high energies: Distributions,
polarization, tomography, 1108.1713.

A. Accardi et al., Electron Ion Collider: The Next QCD Frontier, Eur. Phys.
J. A52 (2016) 268, [1212.1701].

S. Abeyratne et al., MEIC Design Summary, 1504.07961.

K. Goeke, A. Metz, P. V. Pobylitsa and M. V. Polyakov, Lorentz invariance
relations among parton distributions revisited, Phys. Lett. B567 (2003) 27-30,
[hep-ph/0302028].

R. L. Jaffe and A. Manohar, Nuclear gluonometry, Phys. Lett. B223 (1989)
218.

X. Artru and M. Mekhfi, Transversely Polarized Parton Densities, their
Evolution and their Measurement, Z. Phys. C45 (1990) 669.

D. Boer, M. G. Echevarria, P. Mulders and J. Zhou, Single spin asymmetries
from a single Wilson loop, Phys. Rev. Lett. 116 (2016) 122001, [1511.03485].

D. Boer, T. Van Daal, P. J. Mulders and E. Petreska, Directed flow from
C-odd gluon correlations at small x, 1805.05219.

S. J. Brodsky, F. Fleuret, C. Hadjidakis and J. P. Lansberg, Physics
Opportunities of a Fized-Target Experiment using the LHC Beams, Phys.
Rept. 522 (2013) 239255, [1202.6585].

L. Massacrier et al., Physics perspectives with AFTER@QLHC (A Fized Target
EzpeRiment at LHC), EPJ Web Conf. 171 (2018) 10001, [1712.01740].

187


http://dx.doi.org/10.1103/PhysRevC.44.1219
http://dx.doi.org/10.1103/PhysRevC.89.045203
http://arxiv.org/abs/1311.4561
http://dx.doi.org/10.1103/PhysRevD.95.074036
http://dx.doi.org/10.1103/PhysRevD.95.074036
http://arxiv.org/abs/1702.05337
http://dx.doi.org/10.1088/1742-6596/543/1/012003
http://dx.doi.org/10.1088/1742-6596/543/1/012003
http://arxiv.org/abs/1108.1713
http://dx.doi.org/10.1140/epja/i2016-16268-9
http://dx.doi.org/10.1140/epja/i2016-16268-9
http://arxiv.org/abs/1212.1701
http://arxiv.org/abs/1504.07961
http://dx.doi.org/10.1016/S0370-2693(03)00870-0
http://arxiv.org/abs/hep-ph/0302028
http://dx.doi.org/10.1016/0370-2693(89)90242-6
http://dx.doi.org/10.1016/0370-2693(89)90242-6
http://dx.doi.org/10.1007/BF01556280
http://dx.doi.org/10.1103/PhysRevLett.116.122001
http://arxiv.org/abs/1511.03485
http://arxiv.org/abs/1805.05219
http://dx.doi.org/10.1016/j.physrep.2012.10.001
http://dx.doi.org/10.1016/j.physrep.2012.10.001
http://arxiv.org/abs/1202.6585
http://dx.doi.org/10.1051/epjconf/201817110001
http://arxiv.org/abs/1712.01740

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

D. Kikola, M. G. Echevarria, C. Hadjidakis, J.-P. Lansberg, C. Lorcé,
L. Massacrier et al., Feasibility Studies for Single Transverse-Spin Asymmetry
Measurements at a Fized-Target Experiment Using the LHC Proton and Lead
Beams (AFTERQLHC), Few Body Syst. 58 (2017) 139, [1702.01546].

D. Boer, W. J. den Dunnen, C. Pisano and M. Schlegel, Determining the
Higgs spin and parity in the diphoton decay channel, Phys. Rev. Lett. 111
(2013) 032002, [1304.2654].

M. G. Echevarria, T. Kasemets, P. J. Mulders and C. Pisano, QCD evolution
of (un)polarized gluon TMDPDFs and the Higgs qr-distribution, JHEP 07
(2015) 158, [1502.05354].

D. Boer, W. J. den Dunnen, C. Pisano, M. Schlegel and W. Vogelsang,
Linearly Polarized Gluons and the Higgs Transverse Momentum Distribution,
Phys. Rev. Lett. 108 (2012) 032002, [1109.1444].

J.-W. Qiu, M. Schlegel and W. Vogelsang, Probing Gluonic Spin-Orbit
Correlations in Photon Pair Production, Phys. Rev. Lett. 107 (2011) 062001,
[1103.3861].

W. J. den Dunnen, J. P. Lansberg, C. Pisano and M. Schlegel, Accessing the
Transverse Dynamics and Polarization of Gluons inside the Proton at the
LHC, Phys. Rev. Lett. 112 (2014) 212001, [1401.7611].

J.-P. Lansberg and H.-S. Shao, Double-quarkonium production at a fized-target
experiment at the LHC (AFTERQLHC), Nucl. Phys. B900 (2015) 273-294,
[1504.06531].

J.-P. Lansberg, C. Pisano and M. Schlegel, Associated production of a dilepton
and a Y(J/v) at the LHC as a probe of gluon transverse momentum,
dependent distributions, Nucl. Phys. B920 (2017) 192-210, [1702.00305].

D. Boer, C. Lorcé, C. Pisano and J. Zhou, The gluon Sivers distribution:
status and future prospects, Adv. High Energy Phys. 2015 (2015) 371396,
[1504.04332].

J.-W. Qiu and G. Sterman, Single transverse spin asymmetries, Phys. Rev.
Lett. 67 (1991) 2264-2267.

J.-W. Qiu and G. Sterman, Single transverse-spin asymmetries in hadronic
pion production, Phys. Rev. D59 (1999) 014004, [hep-ph/9806356].

188


http://dx.doi.org/10.1007/s00601-017-1299-x
http://arxiv.org/abs/1702.01546
http://dx.doi.org/10.1103/PhysRevLett.111.032002
http://dx.doi.org/10.1103/PhysRevLett.111.032002
http://arxiv.org/abs/1304.2654
http://dx.doi.org/10.1007/JHEP07(2015)158, 10.1007/JHEP05(2017)073
http://dx.doi.org/10.1007/JHEP07(2015)158, 10.1007/JHEP05(2017)073
http://arxiv.org/abs/1502.05354
http://dx.doi.org/10.1103/PhysRevLett.108.032002
http://arxiv.org/abs/1109.1444
http://dx.doi.org/10.1103/PhysRevLett.107.062001
http://arxiv.org/abs/1103.3861
http://dx.doi.org/10.1103/PhysRevLett.112.212001
http://arxiv.org/abs/1401.7611
http://dx.doi.org/10.1016/j.nuclphysb.2015.09.005
http://arxiv.org/abs/1504.06531
http://dx.doi.org/10.1016/j.nuclphysb.2017.04.011
http://arxiv.org/abs/1702.00305
http://dx.doi.org/10.1155/2015/371396
http://arxiv.org/abs/1504.04332
http://dx.doi.org/10.1103/PhysRevLett.67.2264
http://dx.doi.org/10.1103/PhysRevLett.67.2264
http://dx.doi.org/10.1103/PhysRevD.59.014004
http://arxiv.org/abs/hep-ph/9806356

[146] R. D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo and L. Rottoli,
Parton distributions with small-x resummation: evidence for BFKL dynamics
in HERA data, Eur. Phys. J. C78 (2018) 321, [1710.05935].

[147] Y. V. Kovchegov and E. Levin, Quantum chromodynamics at high energy,
vol. 33. Cambridge University Press, 2012.

[148] X. Artru, M. Elchikh, J.-M. Richard, J. Soffer and O. V. Teryaev, Spin
observables and spin structure functions: inequalities and dynamics, Phys.
Rept. 470 (2009) 1-92, [0802.0164].

[149] W. Detmold, R. Jaffe, J. Maxwell, R. Milner, D. Crabb, D. Day et al., Letter
of intent, Jefferson Lab LOI12-14-001 (2014) .

[150] A. Bacchetta, M. Boglione, A. Henneman and P. J. Mulders, Bounds on
transverse momentum dependent distribution and fragmentation functions,
Phys. Rev. Lett. 85 (2000) 712-715, [hep-ph/9912490].

[151] A. Bacchetta and P. J. Mulders, Positivity bounds on spin one distribution and
fragmentation functions, Phys. Lett. B518 (2001) 85-93, [hep-ph/0104176].

[152] D. Boer, M. G. A. Buffing and P. J. Mulders, Operator analysis of pr -widths
of TMDs, JHEP 08 (2015) 053, [1503.03760].

[153] J. Soffer, Positivity constraints for spin dependent parton distributions,
Phys.Rev.Lett. 74 (1995) 1292-1294, [hep-ph/9409254].

[154] W. Vogelsang, Next-to-leading order evolution of transversity distributions and
Soffer’s inequality, Phys. Rev. D57 (1998) 1886—1894, [hep-ph/9706511].

[155] C. Bourrely, J. Soffer and O. V. Teryaev, The Q**2 evolution of Soffer
inequality, Phys. Lett. B420 (1998) 375-381, [hep-ph/9710224].

[156] O. Martin, A. Schéfer, M. Stratmann and W. Vogelsang, Soffer’s inequality
and the transversely polarized Drell-Yan process at next-to-leading order, Phys.
Rev. D57 (1998) 3084-3090, [hep-ph/9710300].

[157] M. G. Echevarria, A. Idilbi and I. Scimemi, Unified treatment of the QCD
evolution of all (un-)polarized transverse momentum dependent functions:
Collins function as a study case, Phys. Rev. D90 (2014) 014003, [1402.0869].

[158] S. Abeyratne et al., Science Requirements and Conceptual Design for a
Polarized Medium Energy Electron-Ion Collider at Jefferson Lab, 1209.0757.

189


http://dx.doi.org/10.1140/epjc/s10052-018-5774-4
http://arxiv.org/abs/1710.05935
http://dx.doi.org/10.1016/j.physrep.2008.09.004
http://dx.doi.org/10.1016/j.physrep.2008.09.004
http://arxiv.org/abs/0802.0164
http://dx.doi.org/10.1103/PhysRevLett.85.712
http://arxiv.org/abs/hep-ph/9912490
http://dx.doi.org/10.1016/S0370-2693(01)01051-6
http://arxiv.org/abs/hep-ph/0104176
http://dx.doi.org/10.1007/JHEP08(2015)053
http://arxiv.org/abs/1503.03760
http://dx.doi.org/10.1103/PhysRevLett.74.1292
http://arxiv.org/abs/hep-ph/9409254
http://dx.doi.org/10.1103/PhysRevD.57.1886
http://arxiv.org/abs/hep-ph/9706511
http://dx.doi.org/10.1016/S0370-2693(97)01538-4
http://arxiv.org/abs/hep-ph/9710224
http://dx.doi.org/10.1103/PhysRevD.57.3084
http://dx.doi.org/10.1103/PhysRevD.57.3084
http://arxiv.org/abs/hep-ph/9710300
http://dx.doi.org/10.1103/PhysRevD.90.014003
http://arxiv.org/abs/1402.0869
http://arxiv.org/abs/1209.0757

[159] M. Diehl, J. R. Gaunt and K. Schonwald, Double hard scattering without
double counting, JHEP 06 (2017) 083, [1702.06486].

[160] M. Diehl and J. R. Gaunt, Double parton scattering theory overview,
1710.04408.

[161] J. R. Gaunt and W. J. Stirling, Double Parton Distributions Incorporating
Perturbative QCD FEvolution and Momentum and Quark Number Sum Rules,
JHEP 03 (2010) 005, [0910.4347].

[162] H.-M. Chang, A. V. Manohar and W. J. Waalewijn, Double Parton
Correlations in the Bag Model, Phys. Rev. D87 (2013) 034009, [1211.3132].

[163] M. Rinaldi, S. Scopetta and V. Vento, Double parton correlations in
constituent quark models, Phys. Rev. D87 (2013) 114021, [1302.6462].

[164] M. Rinaldi, S. Scopetta, M. Traini and V. Vento, Double parton correlations
and constituent quark models: a Light Front approach to the valence sector,
JHEP 12 (2014) 028, [1409.1500].

[165] M. Rinaldi, S. Scopetta, M. Traini and V. Vento, Double parton scattering: a
study of the effective cross section within a Light-Front quark model, Phys.
Lett. BT52 (2016) 40-45, [1506.05742).

[166] M. Diehl, T. Kasemets and S. Keane, Correlations in double parton
distributions: effects of evolution, JHEP 05 (2014) 118, [1401.1233].

[167] M. Traini, M. Rinaldi, S. Scopetta and V. Vento, The effective cross section
for double parton scattering within a holographic AdS/QCD approach, Phys.
Lett. B768 (2017) 270273, [1609.07242].

[168] AXIAL FIELD SPECTROMETER collaboration, T. Akesson et al., Double Parton
Scattering in pp Collisions at /s = 63-GeV, Z. Phys. C34 (1987) 163.

[169] UA2 collaboration, J. Alitti et al., A Study of multi - jet events at the CERN
anti-p p collider and a search for double parton scattering, Phys. Lett. B268
(1991) 145-154.

[170] CDF collaboration, F. Abe et al., Study of four jet events and evidence for
double parton interactions in pp collisions at \/s = 1.8 TeV, Phys. Rev. D47
(1993) 4857-4871.

190


http://dx.doi.org/10.1007/JHEP06(2017)083
http://arxiv.org/abs/1702.06486
http://arxiv.org/abs/1710.04408
http://dx.doi.org/10.1007/JHEP03(2010)005
http://arxiv.org/abs/0910.4347
http://dx.doi.org/10.1103/PhysRevD.87.034009
http://arxiv.org/abs/1211.3132
http://dx.doi.org/10.1103/PhysRevD.87.114021
http://arxiv.org/abs/1302.6462
http://dx.doi.org/10.1007/JHEP12(2014)028
http://arxiv.org/abs/1409.1500
http://dx.doi.org/10.1016/j.physletb.2015.11.031
http://dx.doi.org/10.1016/j.physletb.2015.11.031
http://arxiv.org/abs/1506.05742
http://dx.doi.org/10.1007/JHEP05(2014)118
http://arxiv.org/abs/1401.1233
http://dx.doi.org/10.1016/j.physletb.2017.02.061
http://dx.doi.org/10.1016/j.physletb.2017.02.061
http://arxiv.org/abs/1609.07242
http://dx.doi.org/10.1007/BF01566757
http://dx.doi.org/10.1016/0370-2693(91)90937-L
http://dx.doi.org/10.1016/0370-2693(91)90937-L
http://dx.doi.org/10.1103/PhysRevD.47.4857
http://dx.doi.org/10.1103/PhysRevD.47.4857

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

CMS collaboration, S. Chatrchyan et al., Measurement of four-jet production
in proton-proton collisions at \/s = 7TeV, Phys. Rev. D89 (2014) 092010,
[1312.6440).

T. A. collaboration, Study of hard double parton scattering in four-jet events
in pp collisions at \/s =7 TeV with the ATLAS experiment at the LHC, .

CDF collaboration, F. Abe et al., Measurement of double parton scattering in
Pp collisions at /s = 1.8 TeV, Phys. Rev. Lett. 79 (1997) 584-589.

CDF collaboration, F. Abe et al., Double parton scattering in pp collisions at
Vs = 1.8TeV, Phys. Rev. D56 (1997) 3811-3832.

DO collaboration, V. M. Abazov et al., Double Parton Interactions in v+ 3
Jet and v+ b/cjet + 2 Jet Events in pp Collisions at /s =1.96 TeV, Phys.
Rev. D89 (2014) 072006, [1402.1550].

DO collaboration, V. M. Abazov et al., Study of double parton interactions in
diphoton + dijet events in pp collisions at /s = 1.96 TeV, Phys. Rev. D93
(2016) 052008, [1512.05291].

M. Myska, Double Parton Scattering Contribution to the Same-Sign W Boson
Pair Production at ATLAS. PhD thesis, Prague, Tech. U., 2013-03-22.

ATLAS collaboration, G. Aad et al., Measurement of hard double-parton
interactions in W(— lv)+ 2 jet events at \/s=7 TeV with the ATLAS
detector, New J. Phys. 15 (2013) 033038, [1301.6872].

CMS collaboration, S. Chatrchyan et al., Study of double parton scattering
using W + 2-jet events in proton-proton collisions at \/s = 7 TeV, JHEP 03
(2014) 032, [1312.5729).

CMS collaboration, C. Collaboration, Measurement of double parton
scattering in same-sign WW production in p-p collisions at /s = 13 TeV with
the CMS experiment, .

ALICE collaboration, B. Abelev et al., J/¢ Production as a Function of
Charged Particle Multiplicity in pp Collisions at /s =7 TeV, Phys. Lett.
B712 (2012) 165175, [1202.2816].

LHCB collaboration, R. Aaij et al., Observation of double charm production
involving open charm in pp collisions at \/s = 7 TeV, JHEP 06 (2012) 141,
[1205.0975].

191


http://dx.doi.org/10.1103/PhysRevD.89.092010
http://arxiv.org/abs/1312.6440
http://dx.doi.org/10.1103/PhysRevLett.79.584
http://dx.doi.org/10.1103/PhysRevD.56.3811
http://dx.doi.org/10.1103/PhysRevD.89.072006
http://dx.doi.org/10.1103/PhysRevD.89.072006
http://arxiv.org/abs/1402.1550
http://dx.doi.org/10.1103/PhysRevD.93.052008
http://dx.doi.org/10.1103/PhysRevD.93.052008
http://arxiv.org/abs/1512.05291
http://dx.doi.org/10.1088/1367-2630/15/3/033038
http://arxiv.org/abs/1301.6872
http://dx.doi.org/10.1007/JHEP03(2014)032
http://dx.doi.org/10.1007/JHEP03(2014)032
http://arxiv.org/abs/1312.5729
http://dx.doi.org/10.1016/j.physletb.2012.04.052
http://dx.doi.org/10.1016/j.physletb.2012.04.052
http://arxiv.org/abs/1202.2816
http://dx.doi.org/10.1007/JHEP03(2014)108, 10.1007/JHEP06(2012)141
http://arxiv.org/abs/1205.0975

[183]

[184]

[185)

[186]

[187]

188

[189)]

[190]

[191]

[192]

193]

[194]

CMS collaboration, V. Khachatryan et al., Measurement of prompt J/v pair
production in pp collisions at \/s = 7 Tev, JHEP 09 (2014) 094, [1406.0484].

LHCB collaboration, R. Aaij et al., Measurement of the J/ip pair production
cross-section in pp collisions at /s =13 TeV, JHEP 06 (2017) 047,
[1612.07451].

Q.-H. Cao, Y. Liu, K.-P. Xie and B. Yan, Double parton scattering of weak
gauge boson productions at the 13 TeV and 100 TeV proton-proton colliders,
Phys. Rev. D97 (2018) 035013, [1710.06315].

ATLAS collaboration, M. Aaboud et al., Measurement of the prompt J/ ¢
pair production cross-section in pp collisions at \/s = 8 TeV with the ATLAS
detector, Eur. Phys. J. CT7 (2017) 76, [1612.02950].

CMS collaboration, C. Collaboration, Double Parton Scattering cross section
limit from same-sign W bosons pair production in di-muon final state at LHC, .

DO collaboration, V. M. Abazov et al., Observation and studies of double J /1
production at the Tevatron, Phys. Rev. D90 (2014) 111101, [1406.2380].

A. Kulesza and W. J. Stirling, Like sign W boson production at the LHC as a
probe of double parton scattering, Phys. Lett. B475 (2000) 168-175,
[hep-ph/9912232].

E. Maina, Multiple Parton Interactions in Z+4j, W+- W+- + 0/2f and W+
W- + 2j production at the LHC, JHEP 09 (2009) 081, [0909.1586].

J. R. Gaunt, C.-H. Kom, A. Kulesza and W. J. Stirling, Same-sign W pair
production as a probe of double parton scattering at the LHC, Eur. Phys. J.
C69 (2010) 53-65, [1003.3953].

F. A. Ceccopieri, M. Rinaldi and S. Scopetta, Parton correlations in same-sign
W pair production via double parton scattering at the LHC, Phys. Rev. D95
(2017) 114030, [1702.05363].

T. Kasemets and S. Scopetta, Parton correlations in double parton scattering,
1712.02884.

T. Kasemets and P. J. Mulders, Constraining double parton correlations and
interferences, Phys. Rev. D91 (2015) 014015, [1411.0726].

192


http://dx.doi.org/10.1007/JHEP09(2014)094
http://arxiv.org/abs/1406.0484
http://dx.doi.org/10.1007/JHEP06(2017)047, 10.1007/JHEP10(2017)068
http://arxiv.org/abs/1612.07451
http://dx.doi.org/10.1103/PhysRevD.97.035013
http://arxiv.org/abs/1710.06315
http://dx.doi.org/10.1140/epjc/s10052-017-4644-9
http://arxiv.org/abs/1612.02950
http://dx.doi.org/10.1103/PhysRevD.90.111101
http://arxiv.org/abs/1406.2380
http://dx.doi.org/10.1016/S0370-2693(99)01512-9
http://arxiv.org/abs/hep-ph/9912232
http://dx.doi.org/10.1088/1126-6708/2009/09/081
http://arxiv.org/abs/0909.1586
http://dx.doi.org/10.1140/epjc/s10052-010-1362-y
http://dx.doi.org/10.1140/epjc/s10052-010-1362-y
http://arxiv.org/abs/1003.3953
http://dx.doi.org/10.1103/PhysRevD.95.114030
http://dx.doi.org/10.1103/PhysRevD.95.114030
http://arxiv.org/abs/1702.05363
http://arxiv.org/abs/1712.02884
http://dx.doi.org/10.1103/PhysRevD.91.014015
http://arxiv.org/abs/1411.0726

[195]

[196]

[197]

[198]

[199]

200]

[201]

[202]

203]

204]

[205]

206]

207]

R. D. Tangerman and P. J. Mulders, Intrinsic transverse momentum and the
polarized Drell-Yan process, Phys. Rev. D51 (1995) 3357-3372,
[hep-ph/9403227].

M. Diehl and P. Kroll, Nucleon form factors, generalized parton distributions
and quark angular momentum, Eur.Phys.J. CT73 (2013) 2397, [1302.4604].

M. Diehl, Generalized parton distributions with helicity flip, Fur.Phys.J. C19
(2001) 485-492, [hep-ph/0101335].

M. Mekhfi, Correlations in Color and Spin in Multiparton Processes, Phys.
Rev. D32 (1985) 2380.

A. V. Manohar and W. J. Waalewijn, A QCD Analysis of Double Parton
Scattering: Color Correlations, Interference Effects and Evolution, Phys. Rev.
D85 (2012) 114009, [1202.3794].

T. Kasemets and M. Diehl, Angular correlations in the double Drell-Yan
process, JHEP 01 (2013) 121, [1210.5434].

M. G. Echevarria, T. Kasemets, P. J. Mulders and C. Pisano, Polarization
effects in double open-charm production at LHCb, JHEP 04 (2015) 034,
[1501.07291].

R. Kirschner, Generalized Lipatov-Altarelli-Parisi Equations and Jet Calculus
Rules, Phys. Lett. 84B (1979) 266-270.

V. P. Shelest, A. M. Snigirev and G. M. Zinovev, The Multiparton Distribution
Equations in QCD, Phys. Lett. 113B (1982) 325.

A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the
LHC, Eur.Phys.J. C63 (2009) 189-285, [0901.0002].

M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Generalized parton
distributions from nucleon form-factor data, Fur. Phys. J. C39 (2005) 1-39,
[hep-ph/0408173].

C. Goebel, F. Halzen and D. M. Scott, Double Drell-Yan Annihilations in
Hadron Collisions: Nowvel Tests of the Constituent Picture, Phys. Rev. D22
(1980) 2789.

M. Mekhfi, Multiparton processes: an application to double Drell-Yan, Phys.
Rev. D32 (1985) 2371.

193


http://dx.doi.org/10.1103/PhysRevD.51.3357
http://arxiv.org/abs/hep-ph/9403227
http://dx.doi.org/10.1140/epjc/s10052-013-2397-7
http://arxiv.org/abs/1302.4604
http://dx.doi.org/10.1007/s100520100635
http://dx.doi.org/10.1007/s100520100635
http://arxiv.org/abs/hep-ph/0101335
http://dx.doi.org/10.1103/PhysRevD.32.2380
http://dx.doi.org/10.1103/PhysRevD.32.2380
http://dx.doi.org/10.1103/PhysRevD.85.114009
http://dx.doi.org/10.1103/PhysRevD.85.114009
http://arxiv.org/abs/1202.3794
http://dx.doi.org/10.1007/JHEP01(2013)121
http://arxiv.org/abs/1210.5434
http://dx.doi.org/10.1007/JHEP04(2015)034
http://arxiv.org/abs/1501.07291
http://dx.doi.org/10.1016/0370-2693(79)90300-9
http://dx.doi.org/10.1016/0370-2693(82)90049-1
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/0901.0002
http://dx.doi.org/10.1140/epjc/s2004-02063-4
http://arxiv.org/abs/hep-ph/0408173
http://dx.doi.org/10.1103/PhysRevD.22.2789
http://dx.doi.org/10.1103/PhysRevD.22.2789
http://dx.doi.org/10.1103/PhysRevD.32.2371
http://dx.doi.org/10.1103/PhysRevD.32.2371

208]

209]

[210]

[211]

212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

PARTICLE DATA GROUP collaboration, C. Patrignani et al., Review of Particle
Physics, Chin. Phys. C40 (2016) 100001.

M. Diehl and T. Kasemets, Positivity bounds on double parton distributions,
JHEP 05 (2013) 150, [1303.0842].

T. Hahn, CUBA: A Library for multidimensional numerical integration,
Comput. Phys. Commun. 168 (2005) 78-95, [hep-ph/0404043].

J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C76
(2016) 196, [1512.01178].

T. Sjostrand:, S. Mrenna and P. Z. Skands, A Brief Introduction to PYTHIA
8.1, Comput. Phys. Commun. 178 (2008) 852-867, [0710.3820].

S. Cotogno, T. Kasemets and M. Myska, Parton correlations in same sign W
boson pair production at the LHC, in preparation (2018) .

J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al.,
The automated computation of tree-level and next-to-leading order differential
cross sections, and their matching to parton shower simulations, JHEP 07
(2014) 079, [1405.0301].

ATLAS collaboration, Measuring the b-tag efficiency in a top-pair sample
with 4.7 fb~' of data from the ATLAS detector, .

CMS collaboration, C. Collaboration, Identification of b quark jets at the
CMS Ezperiment in the LHC' Run 2, .

CMS collaboration, S. Chatrchyan et al., Performance of CMS muon
reconstruction in pp collision events at /s =7 TeV, JINST 7 (2012) P10002,
[1206.4071].

H. Yukawa, On the Interaction of Elementary Particles I, Proc. Phys. Math.
Soc. Jap. 17 (1935) 48-57.

G. P. S. Occhialini and C. F. Powell, Nuclear disintegration produced by slow
charged particles of small mass, .

C. D. Roberts, Perspective on the origin of hadron masses, Few Body Syst. 58
(2017) 5, [1606.03909).

T. Horn and C. D. Roberts, The pion: an enigma within the Standard Model,
J. Phys. G43 (2016) 073001, [1602.04016].

194


http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1007/JHEP05(2013)150
http://arxiv.org/abs/1303.0842
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://arxiv.org/abs/hep-ph/0404043
http://dx.doi.org/10.1140/epjc/s10052-016-4018-8
http://dx.doi.org/10.1140/epjc/s10052-016-4018-8
http://arxiv.org/abs/1512.01178
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
http://dx.doi.org/10.1007/JHEP07(2014)079
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://dx.doi.org/10.1088/1748-0221/7/10/P10002
http://arxiv.org/abs/1206.4071
http://dx.doi.org/10.1143/PTPS.1.1
http://dx.doi.org/10.1143/PTPS.1.1
http://dx.doi.org/10.1007/s00601-016-1168-z
http://dx.doi.org/10.1007/s00601-016-1168-z
http://arxiv.org/abs/1606.03909
http://dx.doi.org/10.1088/0954-3899/43/7/073001
http://arxiv.org/abs/1602.04016

[222] J. P. B. C. de Melo, T. Frederico, E. Pace and G. Salme, Electromagnetic
form-factor of the pion in the space and time - like regions within the front
form dynamics, Phys. Lett. B581 (2004) 75-81, [hep-ph/0311369].

[223] J. P. B. C. de Melo, T. Frederico, E. Pace and G. Salme, Space-like and
time-like pion electromagnetic form-factor and Fock state components within
the light-front dynamics, Phys. Rev. D73 (2006) 074013, [hep-ph/0508001].

[224] L. Chang, I. C. Cloét, C. D. Roberts, S. M. Schmidt and P. C. Tandy, Pion
electromagnetic form factor at spacelike momenta, Phys. Rev. Lett. 111 (2013)
141802, [1307.0026].

[225] E. Ruiz Arriola and W. Broniowski, Pion transition form factor in the Regge
approach and incomplete vector-meson dominance, Phys. Rev. D81 (2010)
094021, [1004.0837].

[226] A. E. Dorokhov and E. A. Kuraev, Pion transition form factor in the
constituent quark model, Phys. Rev. D88 (2013) 014038, [1305.0888].

[227] A. V. Radyushkin, Shape of Pion Distribution Amplitude, Phys. Rev. D80
(2009) 094009, [0906.0323).

[228] D. G. Dumm, S. Noguera, N. N. Scoccola and S. Scopetta, Pion distribution
amplitude and the pion-photon transition form factor in a nonlocal chiral
quark model, Phys. Rev. D89 (2014) 054031, [1311.3595].

[229] L. Chang, C. Mezrag, H. Moutarde, C. D. Roberts, J. Rodrguez-Quintero and
P. C. Tandy, Basic features of the pion valence-quark distribution function,
Phys. Lett. BT37 (2014) 23-29, [1406.5450].

[230] N. Chouika, C. Mezrag, H. Moutarde and J. Rodrguez-Quintero, An algebraic
model for the pion’s valence-quark GPD, Few Body Syst. 58 (2017) 144,
[1612.01176].

[231] C. Chen, L. Chang, C. D. Roberts, S. Wan and H.-S. Zong, Valence-quark
distribution functions in the kaon and pion, Phys. Rev. D93 (2016) 074021,
[1602.01502].

[232] P. C. Barry, N. Sato, W. Melnitchouk and C.-R. Ji, First Monte Carlo global
QCD analysis of pion parton distributions, 1804 .01965.

195


http://dx.doi.org/10.1016/j.physletb.2003.11.072
http://arxiv.org/abs/hep-ph/0311369
http://dx.doi.org/10.1103/PhysRevD.73.074013
http://arxiv.org/abs/hep-ph/0508001
http://dx.doi.org/10.1103/PhysRevLett.111.141802
http://dx.doi.org/10.1103/PhysRevLett.111.141802
http://arxiv.org/abs/1307.0026
http://dx.doi.org/10.1103/PhysRevD.81.094021
http://dx.doi.org/10.1103/PhysRevD.81.094021
http://arxiv.org/abs/1004.0837
http://dx.doi.org/10.1103/PhysRevD.88.014038
http://arxiv.org/abs/1305.0888
http://dx.doi.org/10.1103/PhysRevD.80.094009
http://dx.doi.org/10.1103/PhysRevD.80.094009
http://arxiv.org/abs/0906.0323
http://dx.doi.org/10.1103/PhysRevD.89.054031
http://arxiv.org/abs/1311.3595
http://dx.doi.org/10.1016/j.physletb.2014.08.009
http://arxiv.org/abs/1406.5450
http://dx.doi.org/10.1007/s00601-017-1304-4
http://arxiv.org/abs/1612.01176
http://dx.doi.org/10.1103/PhysRevD.93.074021
http://arxiv.org/abs/1602.01502
http://arxiv.org/abs/1804.01965

[233]

[234]

[235]

236

237]

[238]

239]

[240]

[241]

[242]

[243]

A. Mukherjee, I. V. Musatov, H. C. Pauli and A. V. Radyushkin, Power law
wave functions and generalized parton distributions for pion, Phys. Rev. D67
(2003) 073014, [hep-ph/0205315].

B. C. Tiburzi and G. A. Miller, Generalized parton distributions and double
distributions for q anti-q pions, Phys. Rev. D67 (2003) 113004,
[hep-ph/0212238].

C.-R. Ji, Y. Mishchenko and A. Radyushkin, Higher Fock state contributions
to the generalized parton distribution of pion, Phys. Rev. D73 (2006) 114013,
[hep-ph/0603198].

T. Frederico, E. Pace, B. Pasquini and G. Salme, Pion Generalized Parton
Distributions with covariant and Light-front constituent quark models,
Phys.Rev. D80 (2009) 054021, [0907 .5566].

A. E. Dorokhov, W. Broniowski and E. Ruiz Arriola, Generalized Quark
Transversity Distribution of the Pion in Chiral Quark Models, Phys. Rev. D84
(2011) 074015, [1107.5631].

C. Fanelli, E. Pace, G. Romanelli, G. Salme and M. Salmistraro, Pion
Generalized Parton Distributions within a fully covariant constituent quark
model, Eur. Phys. J. C76 (2016) 253, [1603.04598].

C. Mezrag, L. Chang, H. Moutarde, C. D. Roberts, J. Rodriguez-Quintero,
F. Sabatié et al., Sketching the pion’s valence-quark generalised parton
distribution, Phys. Lett. B741 (2015) 190-196, [1411.6634].

C. Lorcé, B. Pasquini and P. Schweitzer, Transverse pion structure beyond
leading twist in constituent models, Fur. Phys. J. C76 (2016) 415,
[1605.00815].

S. Noguera and S. Scopetta, Pion transverse momentum dependent parton
distributions in the Nambu and Jona-Lasinio model, JHEP 11 (2015) 102,
[1508.01061].

A. Bacchetta, R. Kundu, A. Metz and P. J. Mulders, Estimate of the Collins
fragmentation function in a chiral invariant approach, Phys. Rev. D65 (2002)
094021, [hep-ph/0201091].

A. Bacchetta, L. P. Gamberg, G. R. Goldstein and A. Mukherjee, Collins
fragmentation function for pions and kaons in a spectator model, Phys. Lett.

B659 (2008) 234-243, [0707.3372].

196


http://dx.doi.org/10.1103/PhysRevD.67.073014
http://dx.doi.org/10.1103/PhysRevD.67.073014
http://arxiv.org/abs/hep-ph/0205315
http://dx.doi.org/10.1103/PhysRevD.67.113004
http://arxiv.org/abs/hep-ph/0212238
http://dx.doi.org/10.1103/PhysRevD.73.114013
http://arxiv.org/abs/hep-ph/0603198
http://dx.doi.org/10.1103/PhysRevD.80.054021
http://arxiv.org/abs/0907.5566
http://dx.doi.org/10.1103/PhysRevD.84.074015
http://dx.doi.org/10.1103/PhysRevD.84.074015
http://arxiv.org/abs/1107.5631
http://dx.doi.org/10.1140/epjc/s10052-016-4101-1
http://arxiv.org/abs/1603.04598
http://dx.doi.org/10.1016/j.physletb.2014.12.027
http://arxiv.org/abs/1411.6634
http://dx.doi.org/10.1140/epjc/s10052-016-4257-8
http://arxiv.org/abs/1605.00815
http://dx.doi.org/10.1007/JHEP11(2015)102
http://arxiv.org/abs/1508.01061
http://dx.doi.org/10.1103/PhysRevD.65.094021
http://dx.doi.org/10.1103/PhysRevD.65.094021
http://arxiv.org/abs/hep-ph/0201091
http://dx.doi.org/10.1016/j.physletb.2007.09.076
http://dx.doi.org/10.1016/j.physletb.2007.09.076
http://arxiv.org/abs/0707.3372

[244] H. H. Matevosyan, W. Bentz, I. C. Cloét and A. W. Thomas, Transverse
Momentum Dependent Fragmentation and Quark Distribution Functions from
the NJL-jet Model, Phys. Rev. D85 (2012) 014021, [1111.1740].

[245] S.-i. Nam and C.-W. Kao, Fragmentation functions and parton distribution
functions for the pion with the nonlocal interactions, Phys. Rev. D85 (2012)
034023, [1111.4444).

[246] J. Dudek et al., Physics Opportunities with the 12 GeV Upgrade at Jefferson
Lab, Eur. Phys. J. A48 (2012) 187, [1208.1244].

[247] R. J. Holt and P. E. Reimer, Structure of the Goldstone bosons, AIP Conf.
Proc. 588 (2001) 234-239, [nucl-ex/0010004].

[248] COMPASS collaboration, F. Gautheron et al., COMPASS-II Proposal, .

[249] P. Maris, C. D. Roberts and P. C. Tandy, Pion mass and decay constant,
Phys. Lett. B420 (1998) 267-273, [nucl-th/9707003].

[250] S. J. Brodsky, G. F. de Téramond, H. G. Dosch and J. Erlich, Light-Front
Holographic QCD and Emerging Confinement, Phys. Rept. 584 (2015) 1-105,
[1407.8131].

[251] S. J. Brodsky and G. F. de Téramond, Hadronic spectra and light-front
wavefunctions in holographic QCD, Phys. Rev. Lett. 96 (2006) 201601,
[hep-ph/0602252].

[252] G. F. de Téramond and S. J. Brodsky, Light-Front Holography: A First
Approzimation to QCD, Phys.Rev.Lett. 102 (2009) 081601, [0809.4899].

[253] B. Pasquini, M. Pincetti and S. Boffi, Drell-Yan processes, transversity and
light-cone wavefunctions, Phys. Rev. D76 (2007) 034020, [hep-ph/0612094].

[254] S. Boffi and B. Pasquini, Generalized parton distributions and the structure of
the nucleon, Riv.Nuovo Cim. 30 (2007) 387, [0711.2625].

[255] B. Pasquini and F. Yuan, Sivers and Boer-Mulders functions in Light-Cone
Quark Models, Phys. Rev. D81 (2010) 114013, [1001.5398].

[256] C. Lorcé, B. Pasquini, X. Xiong and F. Yuan, The quark orbital angular
momentum from Wigner distributions and light-cone wave functions, Phys.

Rev. D85 (2012) 114006, [1111.4827].

197


http://dx.doi.org/10.1103/PhysRevD.85.014021
http://arxiv.org/abs/1111.1740
http://dx.doi.org/10.1103/PhysRevD.85.034023
http://dx.doi.org/10.1103/PhysRevD.85.034023
http://arxiv.org/abs/1111.4444
http://dx.doi.org/10.1140/epja/i2012-12187-1
http://arxiv.org/abs/1208.1244
http://dx.doi.org/10.1063/1.1413160
http://dx.doi.org/10.1063/1.1413160
http://arxiv.org/abs/nucl-ex/0010004
http://dx.doi.org/10.1016/S0370-2693(97)01535-9
http://arxiv.org/abs/nucl-th/9707003
http://dx.doi.org/10.1016/j.physrep.2015.05.001
http://arxiv.org/abs/1407.8131
http://dx.doi.org/10.1103/PhysRevLett.96.201601
http://arxiv.org/abs/hep-ph/0602252
http://dx.doi.org/10.1103/PhysRevLett.102.081601
http://arxiv.org/abs/0809.4899
http://dx.doi.org/10.1103/PhysRevD.76.034020
http://arxiv.org/abs/hep-ph/0612094
http://dx.doi.org/10.1393/ncr/i2007-10025-7
http://arxiv.org/abs/0711.2625
http://dx.doi.org/10.1103/PhysRevD.81.114013
http://arxiv.org/abs/1001.5398
http://dx.doi.org/10.1103/PhysRevD.85.114006
http://dx.doi.org/10.1103/PhysRevD.85.114006
http://arxiv.org/abs/1111.4827

[257]

258

259]

260]

[261]

262]

263]

[264]

265

266

267]

268]

M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Linking parton distributions to
form-factors and Compton scattering, Fur. Phys. J. C8 (1999) 409-434,
[hep-ph/9811253].

J. M. Maldacena, The Large N limit of superconformal field theories and
supergravity, Int.J. Theor.Phys. 38 (1999) 1113-1133, [hep-th/9711200].

E. Witten, Anti-de Sitter space and holography, Adv. Theor.Math.Phys. 2
(1998) 253-291, [hep-th/9802150].

A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Linear confinement and
AdS/QCD, Phys. Rev. D74 (2006) 015005, [hep-ph/0602229].

S. J. Brodsky and G. F. de Téramond, Light-Front Dynamics and AdS/QCD
Correspondence: The Pion Form Factor in the Space- and Time-Like Regions,
Phys.Rev. D77 (2008) 056007, [0707 .3859].

A. P. Trawinski, S. D. Glazek, S. J. Brodsky, G. F. de Téramond and H. G.
Dosch, Effective confining potentials for QCD, Phys. Rev. D90 (2014) 074017,
[1403.5651].

J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, QCD and a holographic
model of hadrons, Phys. Rev. Lett. 95 (2005) 261602, [hep-ph/0501128].

L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional
spaces, Nucl. Phys. B721 (2005) 79-97, [hep-ph/0501218].

J. Polchinski and M. J. Strassler, Hard scattering and gauge / string duality,
Phys. Rev. Lett. 88 (2002) 031601, [hep-th/0109174].

J. Polchinski and M. J. Strassler, Deep inelastic scattering and gauge / string
duality, JHEP 05 (2003) 012, [hep-th/0209211].

S. J. Brodsky, F.-G. Cao and G. F. de Téramond, Meson Transition Form
Factors in Light-Front Holographic QCD, Phys.Rev. D84 (2011) 075012,
[1105.3999].

J. R. Forshaw and R. Sandapen, An AdS/QCD holographic wavefunction for
the rho meson and diffractive rho meson electroproduction, Phys. Rev. Lett.
109 (2012) 081601, [1203.6088].

198


http://dx.doi.org/10.1007/s100529901100
http://arxiv.org/abs/hep-ph/9811253
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1103/PhysRevD.74.015005
http://arxiv.org/abs/hep-ph/0602229
http://dx.doi.org/10.1103/PhysRevD.77.056007
http://arxiv.org/abs/0707.3859
http://dx.doi.org/10.1103/PhysRevD.90.074017
http://arxiv.org/abs/1403.5651
http://dx.doi.org/10.1103/PhysRevLett.95.261602
http://arxiv.org/abs/hep-ph/0501128
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.009
http://arxiv.org/abs/hep-ph/0501218
http://dx.doi.org/10.1103/PhysRevLett.88.031601
http://arxiv.org/abs/hep-th/0109174
http://dx.doi.org/10.1088/1126-6708/2003/05/012
http://arxiv.org/abs/hep-th/0209211
http://dx.doi.org/10.1103/PhysRevD.84.075012
http://arxiv.org/abs/1105.3999
http://dx.doi.org/10.1103/PhysRevLett.109.081601
http://dx.doi.org/10.1103/PhysRevLett.109.081601
http://arxiv.org/abs/1203.6088

[269] A. Vega, I. Schmidt, T. Branz, T. Gutsche and V. E. Lyubovitskij, Meson
wave function from holographic models, Phys. Rev. D80 (2009) 055014,
[0906.. 1220].

[270] T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Pion light-front wave
function, parton distribution and the electromagnetic form factor, J. Phys.
G42 (2015) 095005, [1410.6424].

[271] R. Swarnkar and D. Chakrabarti, Meson structure in light-front holographic
QCD, Phys. Rev. D92 (2015) 074023, [1507.01568].

[272] M. Ahmady, F. Chishtie and R. Sandapen, Spin effects in the pion holographic
light-front wavefunction, Phys. Rev. D95 (2017) 074008, [1609.07024].

[273] D. Chakrabarti and C. Mondal, Generalized Parton Distributions for the
Proton in AdS/QCD, Phys. Rev. D88 (2013) 073006, [1307.5128].

[274] T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Light-front quark
model consistent with Drell-Yan-West duality and quark counting rules, Phys.

Rev. D89 (2014) 054033, [1306.0366].

[275] C. Mondal and D. Chakrabarti, Generalized parton distributions and
transverse densities in a light-front quarkdiquark model for the nucleons, Eur.
Phys. J. CT5 (2015) 261, [1501.05489)].

[276] D. Chakrabarti and C. Mondal, Chiral-odd generalized parton distributions for
proton in a light-front quark-diquark model, Phys. Rev. D92 (2015) 074012,
[1509.00598].

[277] T. Liu and B.-Q. Ma, Baryon properties from light-front holographic QCD,
Phys. Rev. D92 (2015) 096003, [1510.07783].

[278] M. Aghasyan, H. Avakian, E. De Sanctis, L. Gamberg, M. Mirazita, B. Musch
et al., Studies of Transverse Momentum Dependent Parton Distributions and
Bessel Weighting, JHEP 03 (2015) 039, [1409.0487].

[279] T. Maji, C. Mondal, D. Chakrabarti and O. V. Teryaev, Relating transverse
structure of various parton distributions, JHEP 01 (2016) 165, [1506.04560].

[280] T. Maji and D. Chakrabarti, Light front quark-diquark model for the nucleons,
Phys. Rev. D94 (2016) 094020, [1608.07776].

199


http://dx.doi.org/10.1103/PhysRevD.80.055014
http://arxiv.org/abs/0906.1220
http://dx.doi.org/10.1088/0954-3899/42/9/095005
http://dx.doi.org/10.1088/0954-3899/42/9/095005
http://arxiv.org/abs/1410.6424
http://dx.doi.org/10.1103/PhysRevD.92.074023
http://arxiv.org/abs/1507.01568
http://dx.doi.org/10.1103/PhysRevD.95.074008
http://arxiv.org/abs/1609.07024
http://dx.doi.org/10.1103/PhysRevD.88.073006
http://arxiv.org/abs/1307.5128
http://dx.doi.org/10.1103/PhysRevD.92.019902, 10.1103/PhysRevD.89.054033
http://dx.doi.org/10.1103/PhysRevD.92.019902, 10.1103/PhysRevD.89.054033
http://arxiv.org/abs/1306.0366
http://dx.doi.org/10.1140/epjc/s10052-015-3486-6
http://dx.doi.org/10.1140/epjc/s10052-015-3486-6
http://arxiv.org/abs/1501.05489
http://dx.doi.org/10.1103/PhysRevD.92.074012
http://arxiv.org/abs/1509.00598
http://dx.doi.org/10.1103/PhysRevD.92.096003
http://arxiv.org/abs/1510.07783
http://dx.doi.org/10.1007/JHEP03(2015)039
http://arxiv.org/abs/1409.0487
http://dx.doi.org/10.1007/JHEP01(2016)165
http://arxiv.org/abs/1506.04560
http://dx.doi.org/10.1103/PhysRevD.94.094020
http://arxiv.org/abs/1608.07776

[281]

[282]

[283)]

[284]

[285)]

[286]

[287]

288

[289)]

290]

[201]

292]

D. Chakrabarti, T. Maji, C. Mondal and A. Mukherjee, Wigner distributions
and orbital angular momentum of a proton, Eur. Phys. J. C76 (2016) 409,
[1601.03217].

A. Bacchetta, S. Cotogno and B. Pasquini, Internal Structure of the Pion
Inspired by the AdS/QCD Correspondence, Few Body Syst. 57 (2016) 443-447.

M. C. Traini, Generalized Parton Distributions: confining potential effects
within AdS/QCD, Eur. Phys. J. C77 (2017) 246, [1608.08410].

M. Rinaldi, GPDs at non-zero skewness in ADS/QCD model, Phys. Lett.
B771 (2017) 563-567, [1703.00348].

S. J. Brodsky and G. F. de Téramond, AdS/CFT and Light-Front QCD,
Subnucl. Ser. 45 (2009) 139-183, [0802.0514].

NAT collaboration, S. R. Amendolia et al., A Measurement of the Space - Like
Pion Electromagnetic Form-Factor, Nucl. Phys. B277 (1986) 168.

C. J. Bebek et al., Electroproduction of single pions at low epsilon and a
measurement of the pion form-factor up to ¢> = 10-GeV?, Phys. Rev. D17
(1978) 1693.

JEFFERSON LAB collaboration, G. M. Huber et al., Charged pion form-factor
between Q**2 = 0.60-GeV**2 and 2.45-GeV**2. II. Determination of, and
results for, the pion form-factor, Phys. Rev. C78 (2008) 045203, [0809.3052].

K. Wijesooriya, P. E. Reimer and R. J. Holt, The pion parton distribution
function in the valence region, Phys. Rev. C72 (2005) 065203,
[nucl-ex/0509012].

G. P. Salam and J. Rojo, A Higher Order Perturbative Parton Evolution
Toolkit (HOPPET), Comput. Phys. Commun. 180 (2009) 120-156,
[0804.3755].

H. Ackermann, T. Azemoon, W. Gabriel, H. D. Mertiens, H. D. Reich,
G. Specht et al., Determination of the Longitudinal and the Transverse Part in
pi+ Electroproduction, Nucl. Phys. B137 (1978) 294-300.

P. Brauel, T. Canzler, D. Cords, R. Felst, G. Grindhammer, M. Helm et al.,
Electroproduction of 7tn, 7~ p and KA, K*X° Final States Above the
Resonance Region, Z. Phys. C3 (1979) 101.

200


http://dx.doi.org/10.1140/epjc/s10052-016-4258-7
http://arxiv.org/abs/1601.03217
http://dx.doi.org/10.1007/s00601-016-1090-4
http://dx.doi.org/10.1140/epjc/s10052-017-4775-z
http://arxiv.org/abs/1608.08410
http://dx.doi.org/10.1016/j.physletb.2017.06.010
http://dx.doi.org/10.1016/j.physletb.2017.06.010
http://arxiv.org/abs/1703.00348
http://dx.doi.org/10.1142/9789814293242_0008
http://arxiv.org/abs/0802.0514
http://dx.doi.org/10.1016/0550-3213(86)90437-2
http://dx.doi.org/10.1103/PhysRevD.17.1693
http://dx.doi.org/10.1103/PhysRevD.17.1693
http://dx.doi.org/10.1103/PhysRevC.78.045203
http://arxiv.org/abs/0809.3052
http://dx.doi.org/10.1103/PhysRevC.72.065203
http://arxiv.org/abs/nucl-ex/0509012
http://dx.doi.org/10.1016/j.cpc.2008.08.010
http://arxiv.org/abs/0804.3755
http://dx.doi.org/10.1016/0550-3213(78)90523-0
http://dx.doi.org/10.1007/BF01443698

[203]

[294]

[295]

296]

297]

298]

[299]

300]

301]

302]

303

T. Branz, T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Light and
heavy mesons in a soft-wall holographic approach, Phys. Rev. D82 (2010)
074022, [1008.0268].

P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri, Light scalar
mesons in the soft-wall model of AdS/QCD, Phys. Rev. D78 (2008) 055009,
(0807 . 1054].

H. Forkel, M. Beyer and T. Frederico, Linear square-mass trajectories of
radially and orbitally excited hadrons in holographic QCD, JHEP 07 (2007)
077, [0705.1857].

S. J. Brodsky, G. F. de Téramond, H. G. Dosch and C. Lorcé,
Meson/Baryon/ Tetraquark Supersymmetry from Superconformal Algebra and
Light-Front Holography, Int. J. Mod. Phys. A31 (2016) 1630029,
[1606.04638].

A. Deur, S. J. Brodsky and G. F. de Téramond, Determination of A,z at five
loops from holographic QCD, J. Phys. G44 (2017) 105005, [1608.04933].

A. Deur, S. J. Brodsky and G. F. de Téramond, On the Interface between
Perturbative and Nonperturbative QCD, Phys. Lett. BT57 (2016) 275-281,
[1601.06568].

A. Deur, S. J. Brodsky and G. F. de Téramond, The QCD Running Coupling,
Prog. Part. Nucl. Phys. 90 (2016) 1-74, [1604.08082].

T. C. Rogers, An overview of transverse-momentumdependent factorization
and evolution, Eur. Phys. J. A52 (2016) 153, [1509.04766].

J. Collins and T. Rogers, Understanding the large-distance behavior of
transverse-momentum-dependent parton densities and the Collins-Soper
evolution kernel, Phys. Rev. D91 (2015) 074020, [1412.3820].

I. Scimemi and A. Vladimirov, Power corrections and renormalons in
Transverse Momentum Distributions, JHEP 03 (2017) 002, [1609.06047].

E. Laenen, G. F. Sterman and W. Vogelsang, Higher order QCD corrections in
prompt photon production, Phys. Rev. Lett. 84 (2000) 4296-4299,
[hep-ph/0002078].

201


http://dx.doi.org/10.1103/PhysRevD.82.074022
http://dx.doi.org/10.1103/PhysRevD.82.074022
http://arxiv.org/abs/1008.0268
http://dx.doi.org/10.1103/PhysRevD.78.055009
http://arxiv.org/abs/0807.1054
http://dx.doi.org/10.1088/1126-6708/2007/07/077
http://dx.doi.org/10.1088/1126-6708/2007/07/077
http://arxiv.org/abs/0705.1857
http://dx.doi.org/10.1142/S0217751X16300295
http://arxiv.org/abs/1606.04638
http://dx.doi.org/10.1088/1361-6471/aa888a
http://arxiv.org/abs/1608.04933
http://dx.doi.org/10.1016/j.physletb.2016.03.077
http://arxiv.org/abs/1601.06568
http://dx.doi.org/10.1016/j.ppnp.2016.04.003
http://arxiv.org/abs/1604.08082
http://dx.doi.org/10.1140/epja/i2016-16153-7
http://arxiv.org/abs/1509.04766
http://dx.doi.org/10.1103/PhysRevD.91.074020
http://arxiv.org/abs/1412.3820
http://dx.doi.org/10.1007/JHEP03(2017)002
http://arxiv.org/abs/1609.06047
http://dx.doi.org/10.1103/PhysRevLett.84.4296
http://arxiv.org/abs/hep-ph/0002078

304]

305)

306]

307]

308

309]

A. Bacchetta, M. G. Echevarria, P. J. G. Mulders, M. Radici and A. Signori,

+

Effects of TMD evolution and partonic flavor on €™ e annihilation into

hadrons, JHEP 11 (2015) 076, [1508.00402)].

1. Scimemi and A. Vladimirov, Systematic analysis of double-scale evolution,
1803.11089.

S. Aybat and T. C. Rogers, TMD Parton Distribution and Fragmentation
Functions with QCD Ewolution, Phys.Rev. D83 (2011) 114042, [1101.5057].

S. Frixione, P. Nason and G. Ridolfi, Problems in the resummation of soft
gluon effects in the transverse momentum distributions of massive vector
bosons in hadronic collisions, Nucl. Phys. B542 (1999) 311-328,
[hep-ph/9809367].

M. G. Echevarria, A. Idilbi, A. Schfer and I. Scimemi, Model-Independent
Evolution of Transverse Momentum Dependent Distribution Functions
(TMDs) at NNLL, Fur. Phys. J. C73 (2013) 2636, [1208.1281].

G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl.
Phys. B126 (1977) 298-318.

[310] Y. L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic

[311]

312]

313]

Scattering and e+ e- Annihilation by Perturbation Theory in Quantum
Chromodynamics., Sov. Phys. JETP 46 (1977) 641-653.

S. J. Brodsky, G. F. de Teramond and A. Deur, Nonperturbative QCD
Coupling and its B-function from Light-Front Holography, Phys. Rev. D81
(2010) 096010, [1002.3948].

A. Deur, S. J. Brodsky and G. F. de Téramond, Connecting the Hadron Mass
Scale to the Fundamental Mass Scale of Quantum Chromodynamics, Phys.
Lett. B750 (2015) 528-532, [1409.5488].

A. Deur, V. Burkert, J.-P. Chen and W. Korsch, Experimental determination
of the effective strong coupling constant, Phys. Lett. B650 (2007) 244248,
[hep-ph/0509113].

202


http://dx.doi.org/10.1007/JHEP11(2015)076
http://arxiv.org/abs/1508.00402
http://arxiv.org/abs/1803.11089
http://dx.doi.org/10.1103/PhysRevD.83.114042
http://arxiv.org/abs/1101.5057
http://dx.doi.org/10.1016/S0550-3213(98)00853-0
http://arxiv.org/abs/hep-ph/9809367
http://dx.doi.org/10.1140/epjc/s10052-013-2636-y
http://arxiv.org/abs/1208.1281
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1103/PhysRevD.81.096010
http://dx.doi.org/10.1103/PhysRevD.81.096010
http://arxiv.org/abs/1002.3948
http://dx.doi.org/10.1016/j.physletb.2015.09.063
http://dx.doi.org/10.1016/j.physletb.2015.09.063
http://arxiv.org/abs/1409.5488
http://dx.doi.org/10.1016/j.physletb.2007.05.015
http://arxiv.org/abs/hep-ph/0509113

	Scientific publications
	Introduction
	Inside hadrons
	Multidimensional imaging of hadrons
	This thesis

	QCD and hadronic interactions
	Introduction
	Hadronic collisions
	TMD correlator from Drell-Yan process
	Double parton correlator
	Double Drell-Yan cross section
	Single versus double parton scattering

	General properties of correlation functions
	QCD on the light-front
	Quantum field theories on the light-cone
	Light-Front Wave Functions (LFWFs)

	Summary

	Partons in polarized hadrons of spin  1
	Introduction
	TMD correlators for polarized hadrons
	Parametrization for quarks
	Quark TMDs phenomenology

	Gluons in polarized hadrons and nuclei 
	Gluon correlation function
	The gluon correlator at small-x
	Wilson loop correlator 
	The correspondence at small-x
	Gluon TMDs phenomenology

	Positivity bounds
	Positivity bounds on gluon distributions
	Positivity bounds on the Wilson loop correlator
	The quark case

	Comments on the bounds
	Discussion and conclusions

	Pairs of polarized partons inside the proton
	Introduction
	Double parton distributions
	Effective cross section eff and beyond

	Experimental status of double parton scattering measurements
	Parton correlations in double parton scattering
	Spin correlations
	Other quantum correlations
	Kinematic correlations 

	Polarization in same-sign W boson pair productions
	Parton level result: cross section
	Spin and kinematic correlations
	Final-state analysis

	Discussion and conclusions

	Quarks in unpolarized targets in AdS/QCD correspondence
	Introduction
	Meson LFWF from AdS/QCD
	The AdS/QCD correspondence

	The pion in AdS/QCD correspondence
	Pion LFWFs 
	PDF and Form Factor
	Unpolarized TMD and effect of evolution
	Summary of the results

	The QCD running coupling
	Discussion and conclusions

	Summary, conclusions, and outlook
	Notation, conventions, and useful relations
	Definitions of gluon TMDs
	The gluon-gluon correlator
	The Wilson loop correlator

	Summary
	Riassunto

