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The conformal anomaly in curved spacetime generates a nontrivial anomalous vertex, given by the three-
point correlation function T T T of the energy-momentum tensor T μν . We show that a temperature 
inhomogeneity in a gas of charged massless particles generates, via the T T T vertex, a pressure anisotropy 
with respect to the axis of the temperature variation. This very particular signature may provide an 
experimental access to the elusive gravitational coefficient b which determines the anomaly contribution 
of the Weyl tensor to the trace of the energy-momentum tensor in curved spacetime. We present an 
estimate of the pressure anisotropy both for fermionic quasiparticles in the solid-state environment of 
Dirac semimetals as well as for a quark-gluon plasma in relativistic heavy-ion collisions. In both cases, 
the pressure anisotropy is small compared to the mean thermal pressure.
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1. Introduction

A physical system is defined to be scale invariant at the classi-
cal level when all the parameters of the system are dimensionless 
quantities. In all known physical theories, scale invariance is nat-
urally extended to conformal invariance, and no reasonable coun-
terexamples have been found where such an enhancement is ab-
sent [1].

In interacting theories, classical conformal invariance may break 
at quantum level, thus revealing the presence of a conformal 
anomaly [2,3]. A quantum anomaly, in general, regularly leads to 
the emergence of an associated anomalous transport law, which 
describes the appearance of a particular, usually unexpected in a 
classical theory, charge flow under the influence of specific exter-
nal conditions [4].

While the quantum anomalies were predominantly discussed 
in the past in the context of particle physics [5], nowadays anoma-
lies are addressed in solid-state systems as well. This may offer a 
reliable and systematic way for the experimental studies of their 
phenomenological implications [6–10]. Specifically, Dirac semimet-
als manifest several quantum anomalies which lead to various 
anomaly–related transport phenomena [11].
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Dirac semimetals are three dimensional crystals whose low–
energy excitations are solutions of the massless Dirac equation. 
Their S O (1, 3) Lorentz symmetry is naturally enhanced to a classi-
cal conformal S O (2, 4) symmetry, provided that the fermion inter-
action in the bulk of such materials is also translational invariant. 
The conformal anomaly (see [3] for an overview) in these materi-
als reveals itself via the appearance of a logarithmic dependence 
of the photon polarization function on the renormalization scale 
[12–16]. For such reasons topological semimetals have attracted 
wide research interests [17,18].

The anomalous charge and energy flows can be described 
in terms of the chiral/conformal/gravitational anomaly actions, 
depending on the case, which play a key role in high–energy 
phenomenology [19] and in heavy–ion collisions at high energy 
scales [4]. The axial anomaly [20–23] generates – via the chiral 
magnetic effect [24] – an electric current parallel to the axis of 
a background magnetic field [25] which can be measured in ap-
propriate experiments. For example, the mixed axial-gravitational 
anomaly [26] leads to a positive magneto-thermoelectric conduc-
tance for collinear temperature gradients and magnetic fields [27,
28]. Related axial-torsional anomalies can also be studied at exper-
imental level, for generating an alternating electric current driven 
by sound waves in Weyl semimetals [29].

It has been also suggested that the conformal anomaly may 
generate – via the scale magnetic effect [30] – an anomalous ther-
moelectric current in topological semimetals, whenever a temper-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ature gradient is present in the material [31,32]. The conformal 
anomaly produces an electric current and a current density at a 
boundary of a conformal system, if subjected to a background elec-
tromagnetic field [33–35]. It may provide an experimental access 
to the beta function associated with the running of the electric 
charge [36].

Certain quantum anomalies, such as conformal and mixed 
axial-gravitational anomalies, may reveal themselves in curved 
spacetimes because they involve the energy-momentum tensor 
and, consequently, the metric tensor. In condensed matter sys-
tems, these “gravitational” anomalies may be probed in an off-
equilibrium regime using the Luttinger theory of thermal transport 
coefficients [37,38], which was used, for example, in studies of the 
thermal imprints of the axial-gravitational anomaly [27,28].

The basic idea is that the effect of a temperature gradient ∇T
– that drives a system out of equilibrium – can be compensated, 
at linear order, by a non-uniform gravitational potential �

1

T
∇T = − 1

c2
∇�, (1)

where c is the speed of light. For a weak gravitational field (in the 
Newtonian limit), the gravitational potential �,

g00 = 1 + 2�

c2
, (2)

is related to the g00 component of the metric, while other com-
ponents of the metric tensor are unmodified. This observation is 
closely related to the Tolman–Ehrenfest effect [39,40], which states 
that in a stationary gravitational field, the local temperature of a 
system at thermal equilibrium is not constant in space. The tem-
perature depends on the spatial coordinates as

T (x) = T0/
√

g00(x), (3)

where T0 is a reference temperature at a selected point with 
g00 = 1.

The Luttinger formula (1) may be derived from simple ther-
modynamic considerations (see, for example, Ref. [41]). Consider 
a closed system divided arbitrarily into two subsystems, 1 and 2. A 
thermal equilibrium happens when the total entropy, S = S1 + S2, 
takes its maximum, implying dS1 + dS2 = 0. If the quantity of 
heat dE leaves the first subsystem, dE1 = −dE , it always enters 
the second subsystem, dE2 = dE , because the system is closed. 
For any heat exchange between the subsystems, one gets there-
fore dS1/dE1 = dS2/dE2. Given the definition of temperature, T =
dS/dE , the last relation implies that in a thermal equilibrium, the 
temperatures of the two subsystems should be equal: T1 = T2.

In a static gravitational field �, the heat quantity dE possesses 
an inertial mass dm = dE/c2. In accordance with the equivalence 
between inertial and gravitational masses, the heat has a weight 
in a gravitational field. Therefore, the heat dE leaving system 1 
and entering system 2 changes its energy by performing the work 
against the change of the gravitational potential �� = �2 − �1
between the two subsystems: dE2 = dE + (�2 − �1)dm = dE2(1 +
��/c2). Therefore, T2 = T1(1 + ��/c2) and we immediately re-
cover the Luttinger relation (2) between the gradients of tempera-
ture and the gravitational potential for closely separated nonrela-
tivistic systems. Its relativistic generalization is shown in Eq. (3).

In order to ensure the appropriate definition of temperature, 
the mentioned derivation of the Luttinger formula (1) requires the 
sufficient proximity of the two subsystems and the weakness of 
the gravitation field so that ��/c2 � 1. The same condition is 
valid in the case of a slight departure from equilibrium: the varia-
tion of the gravitational field may mimic the temperature gradient.
A crucial role in the anomalous transport is played by the 
quantum anomalies associated with the presence of non-vanishing 
3-point functions involving the fermions which are present in such 
materials.

We recall that in a quantum field theory of chiral fermions, the 
nonconservation of the fermion’s axial charge is generated by the 
〈AV V 〉 vertex involving the vector current jV and the axial current 
j A . The divergence of the axial current j A is locally proportional 
to the product of electric and magnetic fields (represented by two 
“V ” of the same vertex).

The very same 〈AV V 〉 vertex is responsible for the chiral mag-
netic effect: the electric current (one vector current “V ”) is gener-
ated in the background of a magnetic field (another “V ”) and of a 
non-zero chiral chemical potential μ5 (the time-like component of 
the remaining axial current “A”). The chiral magnetic effect is re-
sponsible for the effect of negative magnetoresistivity, which has 
been experimentally observed in Weyl and Dirac semimetals.

Another example in the same theory is given by the 〈A A A〉 di-
agram, with three axial-vector currents (A), which is also responsi-
ble for the non-conservation of the axial charge in the background 
of an axial-vector gauge field. As is well known, axial-vector in-
teractions, obviously, act on left- and right-handed particles with 
different strengths. It is however surprising that the same interac-
tion emerges in a material.

Indeed, the 〈A A A〉 vertex is responsible for a variant of the 
chiral magnetic effect which generates the axial current in the 
background of the axial magnetic field at nonzero chiral chemical 
potential. Therefore, although such chiral effects are exotic prop-
erties of the fundamental interactions in the high energy physics 
domain, they may readily appear in effective theories of strained 
Weyl semimetals.

The 〈A A A〉 vertex is responsible, in particular, for the genera-
tion of a new unidirectional excitation, the chiral sound wave, for 
which has been recently proposed a possible experimental detec-
tion [42].

In this work we are going to discuss new anomalous trans-
port phenomena associated with the presence of another type of 
anomaly, the conformal/trace anomaly [3]. In short, the conformal 
anomaly implies sensitivity of certain physical phenomena on the 
energy scale of the interactions, in an originally scale-independent 
classical theory. The corresponding anomalous vertex is described 
by the 3-point function 〈T V V 〉, where “T ” stands for the energy-
momentum tensor Tμν .

As we are going to elaborate in more detail below, the trace 
of the energy-momentum tensor is a nonvanishing quantity in the 
classical electromagnetic background (represented by the two “V ” 
in the diagram). For a classically conformal invariant theory the 
trace of the energy-momentum tensor is zero and induces an or-
dinary Ward identity on the TVV vertex, which is proportional to 
2-point functions of vector currents (VV).

In the quantum case this relation gets modified by the inclusion 
of an extra contribution given by the trace anomaly. The origin of 
such extra term can be traced back to an effective massless inter-
action in the form of an anomaly pole [43,44], which in perturba-
tion theory can be shown to be directly related to renormalization 
[45]. This phenomenon unifies chiral and conformal anomalies, as 
exemplified in the context of the supersymmetric anomaly super-
multiplet in N = 1 Yang-Mills theories [46].

The anomalous 3-point function 〈T V V 〉 diagram may also lead 
to anomalous transport effects. For example, the scale magnetic 
effect implies that in a gravitational potential (the “T ”), the back-
ground magnetic field (one of the V ’s) generates an electric cur-
rent (the remaining V ) which is normal both to the gravitational 
and to the magnetic field. It has been suggested that such scale 



M.N. Chernodub et al. / Physics Letters B 802 (2020) 135236 3
magnetic effect may generate Nernst thermoelectric phenomena in 
Dirac semimetals.

The 〈T V V 〉 diagram also generates the scale electric effect, 
which leads to the appearance of the Ohmic conductivity of the 
fermionic vacuum in the expanding (de Sitter) spacetime, and is 
indirectly related to the Schwinger effect. This phenomenon is dis-
cussed in the cosmological context in Refs. [47,48]. Interestingly, 
for theories with a positive beta function (such as QED, for exam-
ple), the anomalous Ohmic conductivity is a negative quantity.

In our paper we continue our investigations of the impact 
of the conformal anomaly on the transport and equation-of-state 
properties of a system of massless fermions. After a brief sum-
mary of the effects generated by the 〈T V V 〉 diagram, we proceed 
with the investigation of the anomalous effects associated with the 
3-point vertex 〈T T T 〉.

2. The conformal anomaly in QED

2.1. The flat-space case

We consider the case of Quantum Electrodynamics (QED) with 
a massless Dirac fermion ψ coupled to an electromagnetic field 
Aμ . This simplest theory exhibits a variety of anomalous effects 
which are encountered also in more complex theories, including 
those that describe topological, Dirac semimetals. A discussion of 
the 1PI (1–particle irreducible) conformal anomaly action in this 
model can be found in [43] while the connection between the 
structure of such action, the process of renormalization, and the 
generation of a massless nonlocal interaction (an anomaly pole) 
which is the key signature of the conformal anomaly, has been 
discussed in [49] and, more recently, in [45]. Below we will dis-
cuss the structure of such anomaly poles starting from the nonlocal 
Riegert action [50], which provides an equivalent description of 
such exchanges, as shown for the T V V and T T T correlators [51,
52]. The latter (TTT) will play a key role in our current analysis.

The Lagrangian of massless QED with a single fermion,

L = −1

4
F μν Fμν + ψ̄ i /Dψ , (4)

involves the field strength tensor Fμν = ∂μ Aν − ∂ν Aμ of the gauge 
field Aμ coupled to the Dirac four spinor ψ with Dμ = ∂μ + ie Aμ. 
We consider first the model in a flat Minkowski spacetime with 
the metric

ημν = diag(+1,−1,−1,−1), (5)

and then proceed to study the effects of a curved spacetime.
At the classical level, massless QED is characterized by a global 

U (1)L × U (1)R ≡ U (1)V × U (1)A chiral symmetry. It leads to con-
servation of the chiral currents,

jL/R = 1

2

∫
ψγ μ(1 ± γ5)ψ, ∂ · jL/R = 0, (6)

with the left Q L and right chiral charges Q R , respectively:

Q L =
∫

d3xj0
L(x, t) Q R =

∫
d3xj0

R(x, t). (7)

At a quantum level, the ordinary gauge invariance U (1)V is an 
unbroken symmetry. It leads to a zero divergency of the vector 
current and to the conservation of the vector (electric) charge:

jμV ≡ jμR + jμL = ψ̄γ μψ, ∂ · jV = 0, Q =
∫

d3xj0
V (x, t). (8)

The axial symmetry U A(1) is broken by quantum fluctuations 
signaling the existence of a quantum anomaly. The axial charge 
is not conserved at quantum level. In a flat spacetime, the axial 
current

jμA ≡ jμR − jμL = ψ̄γ μγ 5ψ, (9)

possesses a nonzero divergence in a classical electromagnetic back-
ground:

∂μ jμA = e2

8π2
F̃ μν Fμν ≡ e2

2π2
E · B, (10)

where E and B are electric and magnetic fields, respectively, and 
F̃ μν = (1/2)εμναβ Fαβ . A similar breaking is induced on the dilata-
tion current

jD(x) = xαT μ
α ∂ · jD = T μ

μ (11)

which at quantum level is promoted to the form

∂ · jD = 〈T μ
μ 〉 (12)

and is associated to the emergence of a nonzero β(e) function of 
the running coupling in the quantum theory. Since this symmetry 
plays a central role in our analysis, we will discuss it here in more 
details.

The QED Lagrangian (4) describes a conformally invariant field 
theory as its action S = ∫

d4x L is invariant under a simultaneous 
rescaling of all coordinates and fields according to their canonical 
dimensions:

x → λ−1x , Aμ → λAμ , ψ → λ3/2ψ , (13)

where λ is a real-valued parameter.
Scale invariance (13) is a natural outcome of the simple fact 

that the classical theory (4) does not possess any characteristic 
mass or length scale. As a consequence, the energy-momentum 
tensor of the model (4),

T μν = −F μα F ν
α + 1

4
ημν Fαβ F αβ (14)

+ i

2
ψ̄

(
γ μDν + γ ν Dμ

)
ψ − ημνψ̄ i /Dψ ,

is a traceless quantity on a classical level, (T μ
μ)cl ≡ 0.

However, at quantum level, scale invariance (13) is broken by 
the quantum corrections which induce a running of the electric 
charge e = e(μ) on the renormalization energy scale μ. In other 
words, the electric charge of a particle gets partially screened by 
quantum fluctuations. As the effectiveness of the screening de-
pends on the distance (energy) at which the charge is probed, the 
effective electric charge becomes a distance- (energy-)dependent 
quantity. Therefore, the theory looses its conformal invariance due 
to effects induced by quantum fluctuations and interactions.

The loss of scale invariance in the quantum theory (13) mani-
fests by a nonzero value of the beta-function associated with the 
running of the electric charge e

β(e) = de

d lnμ
. (15)

This dimensionless quantity parameterizes the breaking of confor-
mal invariance of the model.
Due to the conformal anomaly, the expectation value of the trace 
of the energy-momentum tensor (14) acquires a nonzero expecta-
tion value [5]〈
T α

α(x)
〉 = β(e)

F μν(x)Fμν(x) ≡ β(e) (
B2 − E2

)
, (16)
2e 2e
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where E and B are electric and magnetic fields of the classical 
electromagnetic background.

In QED with only one flavour of Dirac fermions (4), the one-
loop QED beta function takes the form

β
1loop
QED = e3

12π2
. (17)

2.2. The anomaly in a curved background in the QED case

2.2.1. Anomaly action
In a nontrivial spacetime background, the expectation value of 

the trace of the energy-momentum tensor acquires, in addition to 
the gauge contribution generated by the matter-related part (16)
(i.e. the fermion loop), two contributions coming from the gravity 
side〈
T μ

μ

〉 = bC2 + b′H + cM Fμν F μν. (18)

In general, the coefficients (b, b′, cM) are related to the number 
of massless scalars, fermions and spin-1 fields which may ap-
pear in the anomaly loops and are specific of a certain (classical) 
conformal field theory (CFT) in its Lagrangian realization. For non-
Lagrangian realizations, i.e. for general conformal field theories, 
they are classified as “conformal data”, which characterize a cer-
tain specific CFT.

The first term is given by the Weyl tensor squared

C2 = CμναβCμναβ ≡ Rμναβ Rμναβ − 2Rμν Rμν + R2/3, (19)

which is expressed via the Riemann tensor Rμναβ , the Ricci tensor 
Rμν = Rα

μαν , and the scalar curvature R = Rμ
μ . The second term 

in Eq. (18) is given by the linear combination H = E − 2�R/3, 
which involves the Euler (topological) density

E = ∗Rμναβ
∗Rμναβ ≡ Rμναβ Rμναβ − 4Rμν Rμν + R2, (20)

and the d’Alembertian differential operator � ≡ ∇μ∇μ of the 
scalar curvature R expressed via the covariant derivative ∇μ . Here 
∗Rμναβ = εμνμ′ν ′ Rμ′ν ′

αβ
/2 is a dual of the Riemann tensor.

In massless QED (4) the coefficients b, b′ and c in the trace 
expectation value (18) are, respectively, as follows

b = 1

320π2
, b′ = − 11

11520π2
, cM = − e2

24π2
. (21)

The “matter” parameter cM is proportional to the one-loop QED 
beta function (17): cM = −β

1loop
QED /(2e). The trace anomaly (18) re-

duces to Eq. (16) in a flat Minkowski spacetime (5).
The anomalous trace of the energy-momentum tensor (18) is 

known to be generated by the nonlocal action [43,50,53,54]

Sanom[g, A] = 1

8

∫
d4x

√−g(x)

∫
d4 y

√−g(y) (22)

·H(x)G(4)(x, y)
[

2bC2(y) + b′H(y) + 2cFμν(y)F μν(y)
]
,

where G(4)(x, y) is the Green function the fourth-order differential 
operator, often called the Paneitz operator [55]:

�4 = ∇μ

(
∇μ∇ν + 2Rμν − 2

3
Rgμν

)
∇ν . (23)

A variation of the action (22) with respect to metric,〈
T μ

μ

〉 ≡ − 2gμν√−g

δSanom

δg
, (24)
μν
provides us, indeed, with the correct expression for the one-loop 
trace anomaly in the curved spacetime (18). The anomaly ac-
tion (22) is a nonlocal function of the gauge field Aμ and the 
metric gμν . The nonlocality indicates that the scale anomaly is as-
sociated with a massless pole.

2.2.2. Scale electromagnetic effects
The anomaly action (22) is induced by quantum fluctuations in 

the background of the classical electromagnetic field Fμν and in 
the presence of a background curved metric associated with an 
external gravitational field. It describes the response of the matter 
system under such off-shell external fields.

Anomaly actions are not unique. For instance, it is possible 
to write down local actions containing extra degrees of freedom, 
which describe the breaking of the conformal symmetry with 
the inclusion of a Goldstone mode (a dilaton) in the low energy 
spectrum. Such local variants, usually derived using the Noether 
method [56,57] are expected to provide two complementary de-
scriptions of the dynamical breaking of the conformal symmetry 
at two ends (UV/IR) of a renormalization group flow (see the dis-
cussion in [19] and in [45]).

Since the action contains the explicit dependence on the field 
strength Fμν , the anomalous quantum fluctuations may carry a lo-
cal electric current. The electric current, induced by the quantum 
fluctuations, can straightforwardly be computed using a variation 
of the anomaly action (22) with respect to the electromagnetic 
field Aμ

Jμ(x) = − 1√−g(x)

δSanom

δAμ(x)

= − cM√−g(x)

∂

∂xν

[√−g(x) F μν(x) (25)

·
∫

d4 y
√−g(y)G(4)(x, y)

(
E(y) − 2

3
�R(y)

)]
,

where the Euler topological density E = E(x) is explicitly given in 
Eq. (20). The parameter c is proportional to the QED beta function 
given in Eq. (21) for a single flavour.

Equation (25) provides us with the one–loop expression for the 
anomalous electric current induced by the conformal anomaly in 
an arbitrary classical gravitational background. Similarly to the ac-
tion, the electric current (25) is a non-local function of the metric 
and of the electromagnetic field (22).

Working in a linear-response approach, we consider the case of 
a weak gravitational background. To this end it is convenient to 
rewrite the electromagnetic part of the anomaly action (22),

S(1)
anom = − cM

6

∫
d4x

√−g(x)

∫
d4 y

√−g(y)

·R(1)(x)�−1
x,y Fαβ(y)F αβ(y) , (26)

in terms a small perturbation (|hμν | � 1) around the flat metric,

gμν = ημν + hμν . (27)

The same expression of the anomaly action can be obtained by a 
perturbative analysis in QED [43,44].

In Eq. (26) the expression �−1
x,y denotes a Green function of the 

flat-space d’Alembertian � ≡ ∂μ∂μ and R(1) is the leading (linear 
in metric) double-derivative term of the Ricci scalar:

R(1) = ∂μ∂νhμν − ημν�0hμν . (28)

The indices are raised/lowered with the background metric tensor, 
hμν = ημαηνβhαβ . In linearized gravity the inverse metric tensor 
is gμν = ημν − hμν , so that gμα gαν = δ

μ
ν + O (h2).
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The conformal anomaly (16) leads to anomalous transport ef-
fects which most straightforwardly reveal themselves in a confor-
mally flat spacetime metric

gμν(x) = e2τ (x)ημν , (29)

where τ (x) is a scalar conformal factor which vanishes at spatial 
infinity and ημν is the Minkowski metric tensor (5). For a weak 
perturbation, |τ | � 1, one has hμν = 2τημν so that R(1) = 6 �τ

and the leading contribution to the anomaly action (26) reduces to 
the local expression:

S(1),conf
anom = e2

24π2

∫
d4xτ (x) Fαβ(x)F αβ(x) . (30)

Hereafter we use the parameter cM for one-flavor QED (21).
A variation of the action (30) with respect to the electromag-

netic field Aμ ,

Jμ(x) = − 1√−g(x)

δS(1)
anom

δAμ(x)
, (31)

generates the anomalous electric current via the scale magnetic 
effect (SME) [30]

J = 2β(e)

e
∇τ (x) × B(x) . (32)

In the presence of the electric field background E the conformal 
anomaly leads to the scale electric effect (SEE) which takes the 
form Ohm’s law with the metric-dependent anomalous electric 
conductivity σ

J = σ(x)E(x) , σ (t, x) = −2β(e)

e

∂τ (t, x)

∂t
. (33)

The 〈T V V 〉 vertex could also lead to the Nernst effect, which 
generates an electric current normal to the temperature gradient 
and to the axis of the background magnetic field [58]. The deriva-
tion follows the same steps shown above with just a few extra 
subtleties. Instead of the conformal factor (29) one uses the grav-
itational potential associated with the temperature gradient (1)
and (2). The Nernst coefficient, originating from the conformal 
anomaly, is proportional to the QED beta function (17), as ex-
pected.

3. The T T T vertex

The anomalous contribution to the T T T vertex, shown in Fig. 1, 
emerges naturally from the anomaly action (22) by functional dif-
ferentiation. Contrary to the T V V vertex, the diagram responsi-
ble for the T T T vertex does not depend on the running electric 
charge e.

As we will show below, the vertex carries information about the 
purely gravitational coupling b, which depends only on the number 
of fermion flavours. The value of b for massless QED with a single 
Dirac fermion is given in Eq. (21).

The T T T vertex in momentum space can be derived in CFT by 
solving the conformal Ward identities using a specific procedure, 
starting from the transverse traceless sector of such correlator, 
which can be simplified by mapping the general solution [59–61]
to free field theory [51,62].

Building on our previous experience with the chiral magnetic 
and scale electromagnetic effects, we take one of the T μν ten-
sors entering the T T T vertex as an external probe, while the other 
two T ’s are to be considered as external perturbations present in 
the environment. Specifically, we assume that the system is in a 
Fig. 1. The 1PI diagram for the TTT vertex (39).

slightly off-equilibrium state with a constant temperature gradient 
in one of the directions. We will use the Luttinger identification (1)
to relate the variation of the g00 component of the metric (2) with 
the temperature gradient ∇T .

The T T T vertex appears naturally at second order in the pertur-
bative expansion of the effective action with respect to the metric’s 
variations hμν

〈T μ1ν1(x1)〉T T T = 1

8

∫
dx2 dx3 〈T μ1ν1(x1)T μ2ν2(x2)T μ3ν3(x3)〉

hμ2ν2(x2)hμ3ν3(x3). (34)

The anomalous part of the three-point diagram 〈T T T 〉 in 
Eq. (34) can be found in a straightforward way from the anomaly 
action (22). To this end we vary the action three times respect 
to the metric and then take the flat spacetime limit. Ignoring the 
local terms, the anomaly action up to third order in the metric 
variation hμν is given by

S(3)
anom[g] = −1

6

∫
d4xd4x′ R(1)

x

(
1

�0

)
xx′

B(2)

x′

+ b′

9

∫
d4xd4x′ d4x′′ (

∂μR(1)
)

x

(
1

�0

)
xx′

(35)

· H (1),μν
x′

(
1

�0

)
x′x′′

(
∂ν R(1)

)
x′′ ,

where we denoted, for brevity

H (1),μν
x =

(
R(1)μν − 1

3
ημν R(1)

)
x
, B(2)

x = b (C2
x )(2) + b′ E(2)

x .

The latter combination contains terms bilinear in hμν for, respec-
tively, the Weyl tensor squared (19) and the Euler density (20). 
The linear perturbations of the Riemann and Ricci tensors, as well 
as the scalar curvature, are taken as

R(1)
αμβν = 1

2

(
∂μ∂βhαν − ∂α∂βhμν − ∂μ∂ν hαβ + ∂ν∂α hμβ

)
, (36)

R(1)
μν = 1

2

(
∂μ∂αhαν − �0hμν − ηαβ∂μ∂ν hαβ + ∂ν∂α hμα

)
, (37)

R(1) = (
∂μ∂ν − ημν�0

)
hμν. (38)

Notice that Eq. (35) may be used to calculate the three-point 
correlator T T T provided all points are distinct from each other, 
xi �= x j, ∀ i �= j. Then all the contact terms vanish, giving

i2 〈T {T μ1ν1(x1)T μ2ν2(x2)T μ3ν3(x3)}〉 (39)

= 8√
g(x1)

√
g(x2)

√
g(x3)

δ3 S[g]
δgμ ν (x1)δgμ ν (x2)δgμ ν (x3)

,

1 1 2 2 3 3
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where T is the time-ordered product of energy-momentum ten-
sors in the background gμν .

With several rearrangements, the action (35) becomes

S(3)
anom[g] = −1

6

∫
d4xd4x′ (

∂μ∂νhμν

)
x

(
1

�0

)
xx′

B(2)

x′

+
∫

d4x

[
1

6
h(x)B(2)

x + b′

9

(
∂μh

)
x H (1),μν

x (∂νh)x

]
− 2b′

9

∫
d4xd4x′ (

∂α∂β∂μhαβ

)
x

(
1

�0

)
xx′

H (1),μν
x′ (∂νh)x′

+ b′

9

∫
d4xd4x′ d4x′′ (

∂α∂β∂μhαβ

)
x

(
1

�0

)
xx′

H (1),μν
x′

·
(

1

�0

)
x′x′′

(
∂ρ∂σ ∂νhρσ

)
x′′ .

(40)

At leading order, the anomalous contribution to the expectation 
value of the energy-momentum tensor (34) can be read off from 
the functional (40). However, even with these simplifications, the 
explicit expression of the vertex (34) is still very lengthy. Fortu-
nately, for our purposes, we need only certain components of the 
〈T T T 〉 diagram.

We consider the system in a slightly off-equilibrium regime 
with a small temperature variation along a certain (third, in our 
case) direction. We use the Luttinger identification (1) to relate 
the time-independent temperature gradient to the gradient of the 
gravitational potential �. Then, the perturbation of the metric 
tensor is nonzero only for the h00 ≡ 2� component, which, in 
addition, depends only on one spatial variable, h00(x) ≡ h00(x3). 
We find from Eqs. (40) and (34) that the anomalous part of the 
T T T vertex contributes to the expectation value for the energy-
momentum tensor as

〈T 00〉T T T = 4b

9

[
3
(
∂2

3 �
)2 + 4

(
∂3�

)(
∂3

3 �
)

+ 2�∂4
3 �

]
, (41)

〈T 11〉T T T = 〈T 22〉T T T = 4b

9

[
2
(
∂3�

)(
∂3

3 �
)

+ �∂4
3 �

]
. (42)

Other components, including the energy flow T 0i and the momen-
tum flow T ij , with i, j = 1, 2, 3, are all equal to zero. Notice that 
the contribution to the pressure along the gravitational gradient is 
also vanishing, P 3 ≡ T 33 = 0.

There are some remarkable properties of Eqs. (41)–(42) which 
we need to comment upon. First, these expressions are local func-
tions of the gravitational potential � ≡ h00/2, despite the fact that 
they have been derived from the non-local anomaly action.

Second, one can readily observe that the expectation value of 
the energy-momentum tensor appears to involve only the anoma-
lous coefficient b. This coefficient, given explicitly in Eq. (21) for 
the case of one-species QED, is related to the truly anomalous part 
of the energy-momentum tensor. Consequently, there is no topo-
logical contribution coming from the Euler density (20) to the trace 
of the energy-momentum tensor (18).

Third, each of the nonvanishing components (41)–(42) con-
tains a term that depends explicitly on the gravitational potential 
� ≡ h00/2 itself, and not on its spatial gradient. From a condensed 
matter theory perspective, this property is quite surprising in view 
of the fact that the identification between the thermal and grav-
itational inhomogeneities is given in terms of their gradients (1), 
and not in terms of the local temperature or the gravitational po-
tential themselves. Notice that the T T T anomalous contribution to 
the trace of the energy-momentum tensor,
〈
T μ

μ

〉
T T T ≡

〈
T 00

〉
T T T

−
3∑

i=1

〈
T ii

〉
T T T

= 16b

3

(
∂2

3 �
)2

, (43)

depends only on the (second) derivative of the gravitational poten-
tial.

The Tolman–Ehrenfest formula (3), along with Eqs. (2) and (27), 
allows us to derive the gravitational potential �(x) mimicking the 
effect of spatially inhomogeneous temperature T (x)

�(x) ≡ h00(x)

2
= −1

2

(
T 2(x)

T 2
0

− 1

)
. (44)

Applying a spatial gradient to both sides of Eq. (44) we recover, as 
expected, the Luttinger relation (1) at leading order in the termal 
inhomogeneity. The “reference” temperature T0 = T (x0) serves as 
a normalization factor: it fixes a spatial point x0 where the gravi-
tational potential vanishes, �(x0) = 0.

Let’s consider a fermion gas in an off-equilibrium state with a 
spatially varying temperature. We assume, for simplicity, that at a 
point x the spatial temperature gradient takes a nonzero constant 
value, ∇T �= 0, so that all the higher gradients of the temperature 
are vanishing, ∇n T ≡ 0 for n � 2 (hereafter we promote the spatial 
derivative to the gradient ∂3 → ∇ but we always assume that the 
temperature varies along one fixed direction).

We notice that for a linearly varying temperature, the contri-
bution of the T T T anomaly to the pressure (42) vanishes, δP i ≡〈
T ii

〉
T T T = 0 in all directions i = 1, 2, 3. The leading-order contri-

bution of the T T T vertex to the energy density (41) is, however, 
nonzero. It is proportional to the fourth power of the temperature 
gradient,

δE ≡
〈
T 00

〉
T T T

= 4bh̄c

3

(∇T

T

)4

≡ h̄c

240π2

(∇T

T

)4

, (45)

where the last equation is given for one fermion flavour (21). We 
have also restored missing powers of the Planck constant h̄ and 
the velocity c of the massless relativistic particle.

The T T T vertex of the conformal anomaly action leads to a 
qualitatively new effect, as it makes the pressure anisotropic with 
respect to the axis of the temperature variation. For this purpose it 
is convenient to introduce the pressure asymmetry, which charac-
terizes the difference between the pressures along the axis of the 
temperature gradient and the normal respect to the same axis

δP = P‖ − P⊥, P‖ =
〈
T 33

〉
, P⊥ =

〈
T 11

〉 + 〈
T 22

〉
2

. (46)

According to Eq. (42), the temperature inhomogeneities may give 
a nonzero anomalous contribution to the pressure asymmetry (46)
of the interacting gas, provided the temperature inhomogeneities 
are beyond the linear regime. Assuming that that the second-order 
derivatives of temperature are non-zero, ∇2T �= 0, we get, at lead-
ing order in the thermal gradient

δP = 16b

3
h̄c

(∇T

T

)2
(

∇2T

T

)
≡ h̄c

60π2

(∇T

T

)2
(

∇2T

T

)
, (47)

where the last result is given for one fermion flavour (21).
In order to estimate the magnitude of the contribution of the 

T T T anomaly in the energy density (45) and the pressure asym-
metry (45) of the interacting fermion gas, it is worth comparing 
these quantities respectively, to the thermal energy density and to 
the pressure, Eth = 3P th = 7π2T 4/60

δE

Eth
= 1

28

(
h̄c∇T

π T 2

)4

,
δP

P th
= 3

7

( ∇T

π T 2

)2
(

∇2T

π2T 3

)
. (48)
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Fig. 2. Illustration of the anomaly-induced asymmetry (47) between the pressure 
components in the transverse plane (P⊥) and in the longitudinal directions (P‖) 
along the temperature inhomogeneities T = T (x‖) (the dimensions illustrate the 
strength of the components of the pressure and not the geometry of the system).

In a solid-state environment, the conformal anomaly may be 
studied in the context of the Dirac semimetals, where the massless 
particles could be realized, for example, as fermionic quasipar-
ticles at low energies. These excitations propagate with a Fermi 
velocity which is much smaller than the speed of light, v F ≈
c/300 (for semimetals, one should therefore replace c → v F in all 
the appropriate places). To estimate the effectiveness of the T T T
anomaly (48), one may take the pressure gradient of one Kelvin 
per millimeter, ∇T = 1. K/mm, of a Dirac semimetal kept at the 
ambient temperature T = 10 K. Then we get from Eq. (48) an un-
observable tiny energy contribution: δE/Eth ∼ 10−19. While this 
number may be higher for larger temperature gradients (even tak-
ing a 1 K temperature difference at the ends of a short 1. μm-long 
rod), the contribution of the conformal anomaly is still a rather 
small quantity: δE/Eth ∼ 10−7. We expect the same order of mag-
nitude, at best, for the relative pressure anisotropy (48).

In the particle-physics context, the effect may take place in an 
expanding fireball of quark-gluon plasma which is created in a 
heavy-ion collision, in experiments at the LHC at CERN or at RHIC 
at BNL [63]. A typical initial temperature of the fireball is a few 
critical temperatures Tc � 150 MeV. Taking T = 2Tc � 300 MeV
and assuming a moderate temperature gradient, ∇T = 0.1T /fm �
30 MeV/fm � 6 × 103 MeV2, one gets from Eq. (48) very small val-
ues for the energy variation and the pressure anisotropy: δE/Eth ∼
δP/P th ∼ 10−8.

The pressure asymmetry (47) depends on the spatial concav-
ity/convexity of the local temperature. The pressure along the axis 
of the temperature variation is larger (smaller) than the pressure in 
the transverse directions provided ∇2T >0 (∇2T <0), as illustrated 
in Fig. 2 Despite the absence of a particularly small pre-factor in 
Eq. (48), the relative pressure asymmetry is expected to be a small 
number due to the high power of the relative temperature gradi-
ents due to inhomogeneities.

One may also consider the possibility that the effect may be-
come more relevant in the astrophysical domain, in the early Uni-
verse, where the expanding gas of hot relativistic particles may 
experience large temperature gradients due to inhomogeneities.

4. Conclusions

In this work we have shown that the conformal anomaly leads 
to a qualitatively new effect. Specifically, the temperature inho-
mogeneity in a gas of interacting massless particles produces a 
pressure anisotropy with respect to the axis of the temperature 
variation. The effect originates from a purely gravitational part of 
the anomalous vertex given by the three-point correlator T T T of 
the energy-momentum tensor. This phenomenon may appear in 
several and rather different physical scenarios: 1) in the solid-state 
environment of Dirac semimetals, 2) in the expanding fireballs of 
the quark-gluon plasma and, perhaps, 3) in the astrophysical rel-
ativistic plasmas generated in the early Universe. Although the 
relative pressure asymmetry is parametrically very small in the en-
vironments which have been studied so far at experimental level, 
the effect, nevertheless, may be used to probe the elusive gravita-
tional coefficient b which determines the anomalous contribution 
of the Weyl tensor to the trace of the energy-momentum tensor.
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