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Abstract

Final states in collider experiments are characterized by correlation functions, 〈E(~n1) · · · E(~nk)〉, of the
energy flow operator E(~ni). We show that the top quark imprints itself as a peak in the three-point
correlator at an angle ζ ∼ m2

t/p
2
T , with mt the top quark mass and pT its transverse momentum,

thereby providing access to one of the most important parameters of the Standard Model in one of the
simplest field theoretical observables. Our analysis represents the first step towards a novel precision
top mass determination that is, for the first time, highly insensitive to soft physics and underlying event
contamination whilst remaining directly calculable from the Standard Model Lagrangian.

1 Introduction

The top quark mass plays a central role both in determining the structure of the electroweak vacuum and

in the consistency of precision Standard Model fits. A field theoretic definition of mt, and its relation to

experimental measurements, though, is notoriously subtle 1, 2). At future e+e− colliders, high precision

mt measurements from the threshold lineshape will be possible. At present, the remarkably small quoted

uncertainties on mt from direct extractions at the LHC have been argued to be potentially affected by an

additional O(1 GeV) contribution stemming from the theoretical interpretation of the measured “Monte

Carlo (MC) top mass parameter” (for quantitative estimates, see e.g. refs. 4, 5, 6)). It is thus crucial

and timely to explore kinematic top-mass sensitive observables at the LHC where a direct comparison of

experimental data with accurate first principles theory predictions can be carried out.

Significant progress has been made in this regard from multiple directions. A unique feature of

the LHC is that large numbers of top quarks are produced with enough boosts to decay into single

collimated jets on which jet shapes can be measured. Using Soft Collinear Effective Theory and boosted
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Heavy Quark Effective Theory, factorization theorems have been derived for event shapes measured on

boosted top quarks, enabling these observables to be expressed in terms of mt in a field theoretically

well-defined mass scheme. In this framework, a paradigmatic example is given by the groomed jet mass.

While jet grooming significantly improves the robustness of the observable on which it is applied, the

complicated residual non-perturbative corrections 3) continue to be a limiting factor in achieving a

precision competitive with direct measurements. This motivates the exploration of further mt-sensitive

observables that do not rely on jet grooming.

In recent years, intriguing progress has been made within a program aiming to rethink 7) jet

substructure in terms of correlation functions, 〈E(~n1) · · · E(~nk)〉, of the energy flow E(~n) in a direction

~n 8, 9, 10), motivated also by the original work in QCD 11). These correlators have a number of unique

and remarkable properties. Most importantly for phenomenological applications, correlators are mostly

insensitive to soft radiation without the application of grooming. Additionally they can also be computed

on tracks 7, 12), using the formalism of track functions 13), allowing for higher angular resolution and

pile-up suppression. However, so far these applications have been restricted to massless quark or gluon

jets.

In 14) we have presented the first steps towards a new precision mt measurement based on the

simple idea of exploiting the mass dependence of the characteristic opening angle of the decay products

of the boosted top, ζ ∼ m2
t/p

2
T . The motivation for rephrasing the question in this manner is twofold.

First, this angle can be accessed via low-point correlators, which are field theoretically drastically more

simple than a groomed substructure observable sensitive to ζ. Second, while the jet mass is sensitive to

soft contamination and UE, the angle ζ is not, since it is primarily determined by the hard dynamics of

the top decay. In the following, we will illustrate a numerical proof-of-principles analysis showing that

the three-point correlator in the vicinity of ζ ∼ m2
t/p

2
T provides a simple, but highly sensitive probe of

mt, free of the typical challenges of jet-shape based approaches. Our goal is to provide the motivation to

perform future precision analyses and to find solutions to outstanding theoretical problems concerning

low-point correlators relevant to the top mass determination and novel jet substructure studies.

2 The Three-Point Energy Correlator

There has recently been significant progress in understanding the perturbative structure of correlation

functions of energy flow operators. This includes the landmark analytical calculation of the two-point

correlator at next-to-leading order (NLO) in QCD 15) as well as the first calculation of a three-point

correlator 16) at LO. The idea of using the three-point correlator to study the top quark is a natural one,

and was considered early on in the jet substructure literature 17). However, recent theoretical progress

enables us now to make concrete steps towards a comprehensive program of using energy correlators as

a precision tool for Standard Model measurements 7, 18).

The three-point correlator (EEEC) with generic energy weights is defined as

G(n)(ζ12, ζ23, ζ31) =

∫
dσ M̂(n)(ζ12, ζ23, ζ31) , (1)

with the measurement operator given by

M̂(n)(ζ12, ζ23, ζ31) =
∑

i,j,k

En
i E

n
j E

n
k

Q3n
δ
(
ζ12 − ζ̂ij

)
δ
(
ζ23 − ζ̂ik

)
δ
(
ζ31 − ζ̂jk

)
. (2)

Here ζ̂ij = (1 − cos(θij))/2, with θij the angle between particles i and j, the sum runs over all triplets
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Figure 1: Weighted cross sections from three-point energy correlators using Pythia8. Left panel: The
n = 1, 2 three-point correlators on boosted tops in e+e− annihilations showing a clear peak at ζ ∼
3m2

t/Q
2. All curves are normalized to peak height. Right panel: The n = 1, 2 three-point correlators

on decaying top quarks with a fixed hard pT in proton-proton collisions, with and without MPI. Here a
clear peak can be seen at ζ ≈ 3m2

t/p
2
T,t.

of particles in the jet, and Q denotes the hard scale in the measurement. It is worth stressing that the

EEEC is not an event-by-event observable, but rather is defined as an ensemble average.

We are interested in the limit ζ12, ζ23, ζ31 ≪ 1, such that all directions of energy flow lie within a

single jet. In the case of a conformal field theory (or massless QCD up to the running coupling), the

small-angle limit of the EEEC simplifies due to the rescaling symmetry along the light-like direction

defining the jet. In our case, mt explicitly breaks this rescaling symmetry and appears as a characteristic

scale imprinted in the three-point correlator. While the top quark has a three-body decay at leading

order, higher-order corrections give rise to additional radiation, which is primarily collinear to the decay

products leading to a growth in the distribution at angles ζ̂ij ≪ m2
t/p

2
T . To extract mt, we therefore

focus on the correlator in a specific energy flow configuration sensitive to the hard decay kinematics.

In 14) the simplest configuration is studied, that of an equilateral triangle ζ̂ij = ζ allowing for a small

asymmetry (δζ). Thus the key object of our analysis is the nth energy weighted cross section

dΣ(δζ)

dQdζ
=

∫
dζ12dζ23dζ31

∫
dσM̂

(n)
△ (ζ12, ζ23, ζ31, ζ, δζ) , (3)

where the measurement operator M̂
(n)
△ is

M̂
(n)
△ (ζ12, ζ23, ζ31, ζ, δζ) = M̂(n)(ζ12, ζ23, ζ31)δ(3ζ − ζ12 − ζ23 − ζ31)

∏

l,m,n∈{1,2,3}

Θ(δζ − |ζlm − ζmn|) . (4)

For δζ ≪ ζ,

dΣ

dζ
≈ 4(δζ)2 G(n)(ζ, ζ, ζ;mt) , (5)

where we have made the dependence on mt explicit. Three-body kinematics implies that the distribution

is peaked at ζpeak ≈ 3m2
t/Q

2, exhibiting quadratic sensitivity to mt. At the LHC the peak is resilient

to collinear radiation since ln ζpeak < 1/αs, making its properties computable in fixed-order perturbation

theory at the hard scale. In the region ζ < 2δζ the hard three-body kinematics is no longer identified,

leading to a bulge in the distribution, as shown in the Supplemental Material in ref. 14).
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3 Mass Sensitivity in e+e−

To illustrate the mass sensitivity of our observable, we begin with the simplest case of e+e− collisions.

We simulate the e+e− → t+X process at a center of mass energy of Q = 2000 GeV using the Pythia8

parton shower and reconstruct anti-kT jets with R = 1.2. Although jet clustering is not required in e+e−,

this analysis strategy is chosen to achieve maximal similarity with the case of hadron colliders.

In the left panel of Fig. 1 we show the distribution of the three-point correlator in the peak region,

both with and without the effects of hadronization. Agreement of the peak position with the leading-

order expectation is found, showing that the observed behavior is dictated by the hard decay of the top.

In Fig. 1, linear (n = 1) and quadratic (n = 2) energy weightings are used, see Eq. (2). The latter is

not collinear safe, but the collinear IR-divergences can be absorbed into moments of the fragmentation

functions or track functions.

Crucially, non-perturbative effects in energy correlators are governed by an additive underlying

power law 19, 9) , which over the width of the peak has a minimal effect on the normalized distribution.

This is confirmed by the small differences in peak position between parton and hadron level distributions

in Fig. 1. Taking mt = 170, 172 GeV with n = 2 as representative distributions, we find that the shift due

to hadronization corresponds to a ∆mHad.
t ∼ 250 MeV shift in mt. This is in contrast with the groomed

jet mass case where hadronization causes peak shifts equivalent to ∆mHad.
t ∼ 1 GeV 20).

4 Hadron Colliders

We now extend our discussion to the more challenging case of proton-proton collisions. This study illus-

trates the difference between energy correlators and standard jet shape observables, and also emphasizes

the irreducible difficulties of jet substructure at hadron colliders.

At variance with the case of e+e− annihilations, the hadronic final states in proton-proton collisions

on which the energy correlators are computed are necessarily defined through a measurement, e.g. by

selecting anti-kT jets with a specific pT,jet. Due to the insensitivity of the energy correlators to soft

radiation, it is in fact the non-perturbative effects on the jet pT selection that are the only source of

complications in a hadron collider environment 14). This represents a significant advantage of our

approach, since it shifts the standard problem of characterizing non-perturbative corrections to infrared

jet shape observables, to characterizing non-perturbative effects on a hard scale. This enables us to

propose a methodology for the precise extraction of mt in hadron collisions by independently measuring

the universal non-perturbative effects on the pT,jet spectrum. We now illustrate the key features of this

approach.

The three-point correlator in hadron collisions is defined as

M̂
(n)
(pp)(ζ12, ζ23, ζ31) =

∑

i,j,k∈ jet

(pT,i)
n(pT,j)

n(pT,k)
n

(pT,jet)3n
δ
(
ζ12 − ζ̂

(pp)
ij

)
δ
(
ζ23 − ζ̂

(pp)
ik

)
δ
(
ζ31 − ζ̂

(pp)
jk

)
, (6)

where ζ̂
(pp)
ij = ∆R2

ij =
√

∆η2ij +∆φ2
ij , with η, φ the standard rapidity, azimuth coordinates.

The peak of the EEEC distribution is determined by the hard kinematics and is found at ζ
(pp)
peak ≈

3m2
t/p

2
T,t, where pT,t is the hard top pT , not pT,jet.

To clearly illustrate the distinction between the infrared measurement of the EEEC and the hard

measurement of the pT,jet spectrum, we present a two-step analysis using data generated in Pythia8 14).

First, we generated hard top quark states with definite momentum (like in e+e−), but in the more

complicated LHC environment including the underlying event (UE). This is shown in the right panel of
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Fig. 1, where we see a clear peak that is completely independent of the presence of MPI (the Pythia8

model for UE), which illustrates that the correlators themselves, on a perfectly characterized top quark

state, are insensitive to soft radiation without grooming.

In ref. 14) a proof-of-principles analysis was performed to illustrate that a characterization of non-

perturbative corrections to the pT,jet spectrum allows us to extract mt, with small uncertainties from

non-perturbative physics. To extract a value of mt, we write the peak position as

ζ
(pp)
peak =

3Fpert(mt, pT,jet, αs, R)

(pT,jet +∆NP(R) + ∆MPI(R))
2 , (7)

where Fpert incorporates the effects of perturbative radiation. At leading order, Fpert = m2
t . Corrections

from hadronization and MPI are encoded through the shifts ∆NP(R) and ∆MPI(R). Crucially, in the

factorization limit that we consider, these are not a property of the EEEC observable, but can instead

be extracted directly from the non-perturbative corrections to the jet pT spectrum 21). This is a unique

feature of our approach.

The next step would be to calculate Fpert at NLO in perturbative QCD within a well-defined short-

distance top mass scheme (such as the MSR 22)) and use the result to extract mt according to the

procedure described below. However, since the computation of Fpert has not been performed yet, in

order to illustrate the feasibility of our approach, we have used Pythia8 (including hadronization and

MPI) to extract ζ
(pp)
peak as a function of pT,jet, over an energy range within the expected reach of the high

luminosity LHC. As a proxy for the perturbative calculation, we used parton-level simulations to extract

Fpert. To the accuracy we are working, Fpert is independent of the jet pT , and can just be viewed as

an effective top mass
√

Fpert(mt). We also extract ∆NP(R) + ∆MPI(R) independently from the pT,jet

spectrum.

Using Eq. (7) we fit ζ
(pp)
peak as a function of pT,jet for an effective value of Fpert(mt). With a perfect

characterization of the non-perturbative corrections to the EEEC observable, the value of Fpert(mt)

extracted when hadronization and MPI are included should exactly match its extraction at parton level.

This would lead to complete control over mt. In Table 1 we show the extracted value of Fpert(mt) from

our parton level fit, and from our hadron+MPI level fit for two values of the Pythia8 mt. The errors

quoted are the statistical errors on the parton shower analysis. The Hadron+MPI fit is quoted with

two errors: the first originates from the statistical error on the EEEC measurement, the second stems

from the statistical error on the determination of ∆NP(R) + ∆MPI(R) from the pT,jet spectrum. A more

detailed discussion of this procedure can be found in the Supplemental Material in 14). Thus we find

promising evidence that theoretical control of mt, with conservative errors ≲ 1GeV, is possible with an

EEEC-based measurement. We stress that systematically improvable calculations of Fpert(mt) within

our approach are made feasible by a factorization formula for the weighted cross section discussed in

ref. 14). Theory errors are contingent upon currently unavailable NLO computations, see the discussion

in 14). However, we expect observable-dependent NLO theory errors on mt to be better than those in

other inclusive measurements wherein in the dominant theory errors are from PDFs+αs
23, 24) and

which mostly affect the normalization of the observable. By contrast the EEEC is also inclusive but the

extracted mt is only sensitive to the observable’s shape.

Our promising results motivate developing a deeper theoretical understanding of the three-point

correlator of boosted tops in the hadron collider environment. Nevertheless, there remain many areas in

which our methodology could be improved to achieve greater statistical power and bring it closer to exper-

imental reality. These include the optimization of δζ, the binning of pT,jet and ζ(pp), and including other

shapes on the EEEC correlator. Regardless, our analysis does demonstrate the observable’s potential for
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Pythia8 mt Parton
√

Fpert Hadron + MPI
√
Fpert

172 GeV 172.6± 0.3 GeV 172.3± 0.2± 0.4 GeV
173 GeV 173.5± 0.3 GeV 173.6± 0.2± 0.4 GeV
175 GeV 175.5± 0.4 GeV 175.1± 0.3± 0.4 GeV
173− 172 0.9± 0.4 GeV 1.3± 0.6 GeV
175− 172 2.9± 0.5 GeV 2.8± 0.6 GeV

Table 1: The effective parameter Fpert(mt) extracted at parton level, and hadron+MPI level. The consis-
tency of the two simulations provides a measure of our uncertainty due to uncontrolled non-perturbative
corrections. Statistical errors are shown.

a precision mt extraction when measured on a sufficiently large sample of boosted tops. We are optimistic

that such a sample will be accessible at the HL-LHC where it is forecast that ∼ 107 boosted top events

with pT > 500GeV will be measured 25). Our results support the possibility of achieving complete

theoretical control over an observable with top mass sensitivity competitive with direct measurements

whilst avoiding the ambiguities associated with the usage of MC event generators.
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