Quantum Computing

@IEEE Transactions on,
uantumEngineering

Received 6 June 2024; accepted 6 November 2024; date of publication 18 November 2024;

date of current version 17 December 2024.

Digital Object Identifier 10.1109/TQE.2024.3501683

Grover’'s Oracle for the Shortest Vector
Problem and Its Application in Hybrid

Classical-Quantum Solvers

MILOS PROKOP'-2©, PETROS WALLDEN3®, AND DAVID JOSEPH?

!'School of Informatics, University of Edinburgh, EH8 9AB Edinburgh, U.K.
2SandboxAQ, Palo Alto, CA 94301 USA
3School of Informatics, University of Edinburgh, EH8 9AB Edinburgh, U.K.

Corresponding author: Milo§ Prokop (e-mail: m.prokop@sms.ed.ac.uk).

The work of Petros Wallden was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) under Grant
EP/T001062/1, Grant EP/X026167/1, and Grant EP/T026715/1, in part by the Science and Technology Facilities Council under Grant
ST/W006537/1, and in part by Edinburgh-Rice Strategic Collaboration Awards. The work of Milo§ Prokop was supported by the

EPSRC through Doctoral Training Partnership Studentship under Grant EP/T517811/1.

ABSTRACT Finding the shortest vector in a lattice is a problem that is believed to be hard both for
classical and quantum computers. Many major postquantum secure cryptosystems base their security on
the hardness of the shortest vector problem (SVP) (Moody, 2023). Finding the best classical, quantum, or
hybrid classical-quantum algorithms for the SVP is necessary to select cryptosystem parameters that offer a
sufficient level of security. Grover’s search quantum algorithm provides a generic quadratic speedup, given
access to an oracle implementing some function, which describes when a solution is found. In this article,
we provide concrete implementation of such an oracle for the SVP. We define the circuit and evaluate costs
in terms of the number of qubits, the number of gates, depth, and T-quantum cost. We then analyze how
to combine Grover’s quantum search for small SVP instances with state-of-the-art classical solvers that
use well-known algorithms, such as the block Korkine Zolotorev (Schnorr and Euchner, 1994), where the
former is used as a subroutine. This could enable solving larger instances of SVP with higher probability than
classical state-of-the-art records, but still very far from posing any threat to cryptosystems being considered
for standardization. Depending on the technology available, there is a spectrum of tradeoffs in creating this
combination.

INDEX TERMS Grover’s search, postquantum cryptography (PQC), quantum algorithm, quantum circuit,

shortest vector problem (SVP).

I. INTRODUCTION
The most powerful known quantum algorithm, of Shor [3],
is renowned for its implications for public key cryptography.
The ability to factor integers efficiently fatally undermines
the security of cryptosystems, such as Rivest—Shamir—
Adleman [4], elliptic curve cryptography [5], and Diffie—
Hellman key exchange [6], which together form a basis for
authentication and secure key exchange over the Internet.
While Shor’s algorithm has been known for around 30
years, the recent surge of progress in quantum computing
hardware and engineering has motivated a number of works
analyzing the resource requirements of implementing such
algorithms. There are often different circuits and subroutines
that perform the same operation in different ways, variously
requiring more auxiliary qubits or higher depth, and the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 6, 2025

impact of using different subroutines must be analyzed. The
effect of error correction and noisy qubits is also considered.
The quantum computing hardware race is still wide open,
with seven distinct technological approaches, so it is impos-
sible to even know which platform (and hence with which
optimizations) the first crypto-cracking algorithms will be
run on.

In response to the quantum threat, the cryptography com-
munity has devised a new set of cryptographic primitives
known as postquantum cryptography (PQC), which we ex-
pect to remain resilient against quantum attacks. However,
it is generally acknowledged that going forward, parameter
sets for all cryptographic algorithms will have to take into ac-
count quantum attacks (usually variations of Grover search),
and thus, designs aiming for a set security level must work

3100115

For more information, see http://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-0823-5210
https://orcid.org/0000-0002-0255-6542
mailto:m.prokop@sms.ed.ac.uk

@IEEE Transactions on,
uantumEngineering

Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS

backward to understand the quantum circuit complexity that
an attacker would require to break the cryptosystem.

One of the key families of PQC is based on lattice prob-
lems (versus integer factorization, which is used presently).
Three of four algorithms recently announced to be standard-
ized by the National Institute for Standards and Technology
(NIST) are based on lattice constructions, and one of the hard
problems that must remain hard in order for lattice cryptog-
raphy to remain secure is called the shortest vector problem
(SVP). The security of SVP has been widely investigated
from a classical perspective, but quantum investigations are
less advanced. On the more theoretical end, quantum tree
search algorithms have been applied to enumeration tech-
niques, while less success has been achieved applying quan-
tum methods to sieving. On the other hand, “full-fat” quan-
tum SVP algorithms have been proposed based on encoding
SVP to the ground state of a Hamiltonian, and this has been
investigated in adiabatic settings [7], on quantum annealers
[8], and in the gate model [9], [10]. The drawback of some
of these quantum-native approaches is that time-complexity
results are far scarcer for this creed of quantum algorithms
and is difficult to quantify the concrete cost for instances far
from those that can realistically implemented or simulated
currently.

As stressed earlier, many quantum attacks use different
types of search subroutines that are all based on Grover’s
search algorithm. Since Grover’s algorithm, fully or as part
of larger hybrid algorithms, appears in all these cases, it is
important to analyze the exact cost of implementing Grover’s
algorithm for SVP, to quantify the concrete cost and enable
calculating the security level that postquantum cryptosys-
tems offer. Implementing Grover’s search for SVP efficiently
can form a module that could potentially be used in a variety
of existing and new attacks. Specifically, building on the
Hamiltonian approaches to SVP, one can reduce the concrete
resource cost.

A. OUR CONTRIBUTIONS

In this contribution, we aim to implement efficiently and
modularly the Grover’s oracle for SVP and then estimate
its costs and some direct implications it has within larger
algorithms.

1) We implement Grover’s oracle for the SVP, giving a
detailed analysis of the circuit design.

2) We estimate the resources required for the oracle, in-
cluding the space and time complexities, the number
of gates as well as the number of T-gates.

3) Given our oracle implementation, we estimate the
resources required for running the full Grover’s
algorithm in order to solve SVP for different lattice
dimensions.

4) We discuss the implications of our analysis for improv-
ing the performance of the classical, state-of-the-art,
block Korkine—Zolotorev (BKZ) algorithm for solving

3100115

SVP. Specifically, we use Grover’s search as subrou-
tine within BKZ and discuss the improvements one
could get in terms of accuracy or running time for
solving as large dimension as possible of the SVP and
comment on the relevance for existing postquantum
secure cryptosystems.

Here, it is important to note that in our calculations we
assume perfect (noise-less) qubits. In implementing those al-
gorithms in realistic noisy setting, overheads due to quantum
error correction would be needed. These overheads depend
on many things, including on the quantum error correcting
codes used, noise level and other characteristics of the hard-
ware, etc. Our results can easily be reinterpreted for all these
settings by considering the gates as “fault-tolerant” gates
(and their corresponding times) and similarly the number of
qubits as the number of “logical” qubits. To simplify such
uses of our results, we also provide the T-gate count, since
those gates would have different cost when implemented
fault-tolerantly.

B. RELATED WORK

Many quantum algorithms that include an oracle have been
proposed, e.g., Grover’s algorithm [11], Deutsch—Jozsa al-
gorithm [12]. Shor’s algorithm [3], or for the direct appli-
cation to solving the SVP, the Montanaro’s backtracking
algorithm [13]. This oracle is a function that can be easily
described by an analytical formula while a practical circuit
implementation is not being considered. This facilitates high-
level analysis of the algorithms omitting the essential prac-
tical implementation details. Several works have discussed
approaches to implement the quantum oracles. Zhao [14]
discusses small-scale implementation of the quantum ora-
cles for the first three aforementioned algorithms, Hender-
son et al. [15] propose an approach for automatic synthesis
of the quantum oracles for Grover’s and Shor’s algorithms,
Sanchez-Rivero et al. [16] propose a circuit for Grover’s
algorithm to find elements less than a certain value in an
unstructured database. Grassl et al. [17] implement Grover’s
oracles different key sizes of Advanced Encryption Standard
(AES). They decompose the circuits into Clifford+T set and
argue about qubit and depth requirements.

In the security arena, researchers have begun to inves-
tigate constructions for symmetric cryptography. To evalu-
ate the complexity of breaking the AES, resource estimates
were calculated for building an oracle to perform exhaustive
key search [17]. For hash functions, oracle constructions
revealed that due to the varying dependencies on addition
or multiplication, SHA2 may remain harder for quantum
computers to break than its successor, SHA3 [18]. For SVP
specifically, constructions have shown how to encode the
problem as a Hamiltonian and analyzed its performance in
algorithms ranging from adiabatic quantum computation [7]
to variational quantum eigensolvers [10], [19] and annealers
[8]. More recently, one independent work has found lower
bounds on circuit depth while searching for short vectors

VOLUME 6, 2025



IEEE Transactions on

Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS @uantum En gineering

via enumeration with extreme pruning [20]. Another gives
a concrete implementation of a circuit for enumeration us-
ing Montanaro’s quantum tree backtracking algorithm [21].
It would be expected that Montanaro’s speedup applied to
state-of-the-art enumeration techniques would be an optimal
approach; however, concrete resource requirements for cer-
tain lattice dimensions are not provided for comparison. Fur-
thermore, there is utility to understanding traditional Grover
mappings and speedups across problems as it provides a kind
of benchmarking, which is not possible with more bespoke
algorithms. Ultimately, the resource requirements for Grover
search for short vectors via this family of Hamiltonians is
high. These Hamiltonians have been studied in the case of an-
nealing, QAOA, and adiabatic evolution [7], [8], [19], and the
high resource costs indicate that these approaches may offer
a natural advantage in practice over gate-based architectures
which require fault tolerance and costly decompositions to
universal gate sets.

C. STRUCTURE OF THIS ARTICLE

The rest of this article is organized as follows. In Section II,
we give the necessary background, namely, we introduce the
SVP, Grover’s search algorithm, and the BKZ algorithm for
solving SVP. In Section III, we define the figures of merit
that we will use when evaluating the resources required for
(sub)algorithms. In Section IV, we give an implementation
of Grover’s oracle suited for the SVP. Section V analyzes
resource requirements of the single oracle circuit, and Sec-
tion V-C further discusses the overall resource requirements
for the full Grover’s search run for different lattice dimen-
sions up to 100. In Section VI, we analyze how using Grover
to solve SVP for relatively smaller dimensions can also be
important, by using it as a subroutine to improve the classical
BKZ algorithm [22], and give the potential improvements.
Finally, Section VII concludes this article.

II. PRELIMINARIES

A. LATTICES

A mathematical lattice is a repeating pattern of points in R”.
It can be described by a single basis vector b; in each dimen-
sion, hence n linearly independent vectors. The basis vectors
taken together are known as a basis B = (by, ..., b,). There
are infinitely many bases that can be used to describe a single
lattice, and each is related to each other by a unimodular
transformation B’ = UB. Some bases contain short vectors,
which are close to orthogonal, said to be good, and others
contain only very long vectors. Finding short bases can be
used as an intermediate step to find short vectors, and vice
versa. Of a particular importance for us will be Gaussian
heuristics, which is an estimate on the length of the shortest
nonzero vector of the full-rank lattice £

gh(L) = /n/2meVol(L)'/"

and Gaussian orthogonalization of lattices. Denote the
orthogonal projection 7; : R" — (b, bt Write

VOLUME 6, 2025

i(Byi.j) = (wi(by), ..., mi(b;j—1)) and let the correspond-
ing lattice be known by m;(Lj;. ;). Let B* = (b}, ..., b}) de-
note the Gram—Schmidt orthogonalization of the basis. Then,
Ni(bl') = bj

B. SHORTEST VECTOR PROBLEM

One of the fundamental hard problems in the study of math-
ematical lattices is how to find the shortest vector, known as
the SVP.

Definition 1: Given a basis B that describes a lattice
L(B), find the shortest vector v € £, which has length
VIl = 41(L).

A more relaxed variant of SVP is called y-approximate
SVP, or SVP,,. This requires the solver to find a vector v e £
such that ||v|| < y - A1 where y = poly(n). It is this more
relaxed version that seeks solutions in this work. We note
that, technically, the zero vector 0 is a vector in all lattices by
definition. However, this trivial solution is not a permissible
SVP solution. This is an important when constructing quan-
tum Hamiltonians describing SVP solutions in the following.

C. SVP ALGORITHMS

There are two approaches to solving SVP. The first is sieving,
where one samples many vectors from a somewhat short
distribution and iteratively combines them until probabilis-
tically reaching a short vector. The other is enumeration
where one effectively counts all the vectors inside a ball of a
determined size deterministically.

Classically, the cost of the enumeration subroutine is
20(nlogm1 o4 an p-dimensional lattice, which, for our BKZ
purposes, becomes f. Lattice sieving runs faster, taking
20-2928+0(F) time, though it requires exponential space. Typ-
ically, enumeration outperforms sieving for small problem
sizes until a crossover point around at around dimension 70
[23]. That is to say, despite better asymptotic performance,
enumeration is still a better choice for some practical choices
of n.

D. GROVER'S ALGORITHM

Grover’s algorithm [11] offers a quadratic advantage in time
complexity for search in an unstructured database of N ele-
ments. The solution space of size M is defined by the quan-
tum oracle Oy with action Oy|x > y = |x > g ® f(x), where
f(x): {0, 1}* — {0, 1} is equal to 1 if and only if x is in
the solution space. The time complexity of the algorithm
is then O(/N/M). As shown in Fig. 1, it consists of an
iterative application of a Grover step G (see Fig. 2), where
each Grover step consists of a single application of the Ora-
cle Oy followed by a Grover reflection H ®”(M0 =210 ><
0] — 1)H®". To construct a Grover’s oracle, one needs to find
a quantum circuit thatimplements the oracle O. Since itis to
be reused once for each of the Grover’s iterations, its action

Unless a base of a logarithm is specifically stated, in this article, we
consider log(-) to be a logarithm with base 2.

3100115



@IEEE Transactions on,
uantumEngineering

Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS

O(y/ N/M)

o+ = ]
o HH =
e I e I B e I o
0) — GG 7G

ny — +—  — _—

FIGURE 1. Grover's search algorithm.

on the input qubit register |x > must be uncomputed once a
conditional flip on the target qubit is performed.

E. BKZ ALGORITHM

One of the central disciplines in the study of lattices is basis
reduction. This consists of iteratively reducing the length of
basis vectors, with algorithms taking as input one basis and
returning another basis of lattice vectors according to some
kind of internal logic. The original basis reduction algorithm
is the Lenstra—Lenstra—Lovdsz (LLL) algorithm [24], but the
most commonly used in classical cryptanalysis is the BKZ
algorithm [22], [25], [26], in which blocks of basis vectors
(spanning a sublattice) are reduced with respect to one an-
other, and then, the reduction is repeated with a new block of
basis vectors.

Definition 2: Let B = (by,...,b,) define the lattice
L(B). Let u;; := (b, bj)/(b;‘., b;). Then, B is size reduced
if p;; < 1/2foralli > j, with i < n. Then, B is said to be
Hermite—Korkine—Zolotarev (HKZ) reduced if it is both size
reduced and satisfies ||b¥|| = A (7;(L(; n))). Furthermore, it
is said to be BKZ-8 reduced if it

1) is size-reduced;
2) satisfies [|b} || = A1 (7 (Liimin(i+-g—1,m1))

where f is the block size.

The BKZ algorithm can be thought of as an interpolation
between the LLL algorithm, where neighboring vectors in
the basis are reduced pairwise and then reordered, and HKZ
where the block size is n. BKZ [22] takes as an input block
size B and searches for shortest vectors in the projected lat-
tices of rank < f. It does this by first reducing the lattice
spanned by the first 8 vectors and then the window of vectors
moves along by one, until the window reaches the final vector
in the basis. Then, the window decreases in size until only the
final two vectors are reduced. This is known as one “tour,”
in which all vectors are updated, and n — 1 calls to the SVP

oracle are made. It was shown in [27] that within ®(Z_§ log n)

tours, the first basis vector is short, with Euclidean length less
than

2”71I +f(ﬁ—2]) 1
yﬁ(ﬁ— ) ' 2n(B— )VOI(,C) /n

3100115

where yg and vol(£) are the Hermite constants and the vol-
ume of the lattice, respectively.
Experiments have suggested two typical uses of BKZ.

1) B~ 20 for a small n (<~ 80) or 30 < 8 <40 for
medium dimension of n (& 100). Using these settings
BKZ terminates in a reasonable time and tends to im-
prove the quality of LLL-reduced basis.

2) For a high dimension #, it is chosen 8 > 40, and prac-
tically, the computation needs to be terminated early
as the runtime is too long. Hanrot et al. [26] argue
that reasonable early termination still outputs highly
reduced bases, which is only slightly worse than the
full BKZ run. The authors show that if the S-HKZ
reduction (or SVP subroutine) is run Q(;—Z(logn +
log log max; |b;|)) times, then BKZ returns a basis with

n—1 3
anorm < 21)/@4—7.

The block size B parameterizes this interpolation, and
larger B results in shorter vectors but at higher computation
cost. Currently, using improvements introduced in BKZ2.0,
block sizes of up to dimension 120 are solvable [22]. To
subvert lattice security, we would need to perform BKZ with
block sizes of around 400, with Kyber-512 requiring block
size 406, DiLithium requiring 423, and Falcon-512 need-
ing 411.

F. HAMILTONIAN APPROACHES TO SVP

Previous works [7], [8], [9], [10], [19] have investigated
quantum variational routines to solve SVP. Central to these
works is the definition of a Hamiltonian, which encodes the
length of lattice vectors into the eigenenergies of the Hamil-
tonian. Upon measurement of the final state, the configu-
ration that qubits assume corresponds to an eigenstate that
can be interpreted as a lattice vector, and the corresponding
eigenenergy of that vector is its length. Thus, methods that
find low energy eigenstates in this context find short length
vectors.

The reader wants to know the combination of basis vectors
that will give a short vector. So, we take the description of a
lattice vector v = xB, where x is the coefficient vector, which
is read off from the qubit configuration. The Euclidean length
of the vector is ~/vv7, but the square root does not affect the
ordering of vectors by length, so the authors ignore it. Thus,
the square of the Euclidean length of a general lattice vector
can be written as a combination of the input basis vectors as

Iv|*> = xB(xB)" = xBB"x". )

Next, the substitution BBT = G is used, where G is known
as the Gram matrix. The aim is to find an optimal x, so the
optimization occurs over the coordinates of (xy, ..., x).

To turn the expression (1) into a quantum Hamiltonian, the
coordinates x; are replaced by qudit operators O, where a
quditis a 2d-level quantum system such that when measured,
the output is an integer in the range [—d + 1, d]. Applying

VOLUME 6, 2025



IEEE Transactions on

Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS @uantum En gineering

__ | Oracle: |z)|y) = |2)|f(z) ® |y)) ||

Hom || My :=2[0)(0| -1 | | H®"

FIGURE 2. Single Grover iteration G.

this transformation, the Hamiltonian can then be written as

=Y 09006, @

ij

where Q) represents a qudit operator on qudit 7, the readout
of which is a value for x;. The eigenenergies of the Hamil-
tonian are the vector lengths squared for all 2V vectors v,
which are possible configurations of N qubits. The Hamil-
tonian can be degenerate, as multiple vectors can have the
same length. A notion of successive minima is often used to
order the lattice vectors by their length: 1;(L) is the length
of the ith shortest nonzero vector of £ while degeneracies
are being ignored (i.e., A, (L) is length of the second shortest
nonzero vector in £ no matter how many lattice vectors of
length X[ (L) there exist). The goal of the SVP is finding
a vector in £ of length 1;(£). In order to select the num-
ber of qubits required to implement the Hamiltonian of 2,
multiple quantities may be utilized. Gaussian heuristics give
an estimate on the length of A;(L), whereas Minkowski’s
bound [28] bounds this quantity. This information may be
used to find reasonable values of plausible ranges of the
coefficients {x;}|<;<,. We denote these bounds as |x;| < dj,
and the strategy to find their values is discussed with greater
detail in [9], where it has also been proved that, in average,
the scaling of d; = [log, n] is sufficient, and we therefore
use it in the experimental part of this work. Alternatively,
one may choose bounds d; to make use of as many qubits as
the underlying quantum architecture offers with a hope that
short enough vectors still get encoded in the search space.
There also exists a more in-depth approach that determines
bounds on |x;| based on the reduction of the corresponding
dual basis [9].

1il. FIGURES OF MERIT FOR RESOURCE ESTIMATION
In evaluating the implementations we give, we benchmark
them with respect to the following figures of merit.

1) Space complexity—the number of qubits that are
needed: This can be further divided into “input” qubits
and ancillary that are all initialized to |0).

2) Time complexity: The depth (delay) of the cir-
cuit/algorithm is the largest number of 1 x 1 and 2 x 2
quantum gates applied sequentially to a qubit.

3) Quantum cost—number of 1 x 1 and 2 x 2 reversible
gates required to implement a given circuit after a
decomposition from higher qubit gates (3 and more)
is performed: This is a standard metric and has been
used, e.g., in [29].

VOLUME 6, 2025

4) Number of T-gates: Such gates are more expensive
when implemented in a fault-tolerant way because the
most commonly used error-correcting codes do not
support transversal T-gates and instead rely on magic
state distillation.

IV. ORACLE CIRCUIT DESIGN

To construct a Grover’s oracle for the SVP, we will first recall
how to turn a search problem to a Grover’s oracle, and then,
we will outline the steps required for our special case, the
SVP. The first thing to do is to define a Boolean function
that returns 1 for inputs that are solutions to the search and
0 in all other cases. Then, the corresponding function is ex-
pressed as a Boolean circuit and then as a reversible circuit,
which in turn is made to a unitary circuit that acts as the
oracle Oy|x,y >= |x, y @ f(x) > that uses one extra output
register.

Coming back to the SVP, we can break the oracle construc-
tion in the following steps.

Step 1—Define the search space: Given a basis, one de-
fines the search space as all the lattice vectors that can be
produced as linear combinations of the basis vectors, where
each of the coefficients x; of the basis vectors are integers
whose absolute values are bounded by a constant d; (see
Section II-F). If this constant is chosen suitably, the shortest
vector of the full lattice is within the vectors spanned in the
resulting subspace with a high probability. Joseph et al. [8]
and Albrecht et al. [9] demonstrate that d; scales as O(logn)
for an n-dimensional basis. This step gives us the cardinality
of the search space (used in Grover’s algorithm), which we
denote by N.

A result from [9] states that if a lattice vector has length
less than A, so that |x;by + - - - + x;,b,|| < A, then, on aver-
age, it is sufficient to choose x; < A - |b;|l, where b; is the
ith basis vector of the dual basis B. This result translates
a bound on the length of the lattice vector into one on the
length of the coefficient x;. Bounding the coefficient vectors,
therefore, depends on the choice of A and the quality of the
dual basis. The authors describe a preprocessing algorithm,
which takes in a general lattice basis and reduces the dual
and primal bases. Assuming a search space parameterized
by the Gaussian heuristic, they show that an HKZ basis can
be found (thus solving the SVP) with

Q) < %n log(n) — 2.26n + O(logn) 3)

3100115



@IEEE Transactions on,
uantumEngineering

Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS

qubits. This means that the search space is N = 2¢*logn+o(n)
3

where ¢ = 5. We note that classical enumeration is done
in the same search space and, thus, would require the time
complexity of the order of that number.

Step 2—Define the solution space: We do not (a priori)
know the length of the shortest vector. However, it is essential
to define what a solution to the search problem is before the
run of a Grover’s algorithm. We define a solution space to
be a subset of vectors of the search space (from Step 1) that
are smaller than a certain threshold 7'. Finding a suitable
T is nontrivial as care needs to be given not to choose T’
overly small or overly large. In such cases, we would either
miss the solution to the SVP or we would converge toward
a subset spanned by a large number of lattice vectors, most
of which are too large to be considered a valid solution of
the SVP. We could use Minkowski’s bound [28] to obtain
an upper bound on the length of the shortest vector A1 (L) <
J/n- D", where D is the covolume of the lattice, equiva-
lent to the modulus of the determinant for any basis. How-
ever, being a crude overapproximation, a better approach is
to use the Gaussian heuristics. The Gaussian heuristic esti-
mates the number of lattice points inside a given ball B as
Vol(B)/Vol(L). It gives a good approximation to the length
of the shortest vector as A1 (L) ~ gh(L) = /n/2me - D'/
Choosing T = gh(£)) thus means that the ball of radius A
contains one lattice point for most lattices, which is the short-
est vector. Due to the definition of the Gaussian heuristic
as Vol(B)/Vol(L), the expected number of solutions is 1,
which is necessary to determine the number of iterations for
Grover’s algorithm. Alternatively, one might use a constant
multiple of gh(£) with constant slightly larger than 1 to
improve a probability of not missing out the shortest lattice
vector. The optimal setting is outside scope of this article and
is left as future work.

Step 3—Find the Boolean a function for this search prob-
lem: This step breaks into two parts. The first part is to eval-
uate the length of a given vector. Observe that the following
equation calculates a resulting squared length of a lattice
vector given a row-wise lattice basis matrix B (of dimension
n x m) and a coefficient vector x = (xq, ..., X,—1)

j=0 Li=0

2

As we vary the coefficients x; within the bounds determined
in Step 1, the output register takes on values of squared
lengths of all possible lattice vectors inside our predefined
search space. It is important to note that computing the length
is independent of the threshold length for which we consider
a vector to be a solution (i.e., on our choices in Step 2);
therefore, the resources required for a single oracle call do
not depend on the choices of multiplicative constant for the
Gaussian heuristic.

Second, we perform a projection into two outcomes, sep-
arating solutions (below the desired length) from the nonso-
lutions (larger vectors). Again, for this projection, the actual

3100115

length defining the solution does not change the oracle’s re-
source cost, which is not the case for the overall resource cost
as it influences Grover iteration count, as discussed further in
Section V-C.

Given ann x m basis matrix B, the desired quantum oracle
implements a function f : (xg, ..., x,—1) — {0, 1} defined
as

2

. m—1 n—1_ o . 2

SRR R v ) M B R S
0, otherwise

where (xq, ..., x,—1) € Z" are bounded coefficients over
which the enumeration is being performed (as determined in
Step 1) and T is ideally a tight upper bound on the length of
the shortest lattice vector (as determined in Step 2).

Step 4—Construction of a quantum circuit implementing
the oracle: Given that we know the analytical formula for
f(x) found in the previous step, we can now construct a
reversible unitary quantum circuit for Oy that acts on the
Hilbert space of the input qudits |x|, where each of x; € {xo,
..., Xy—1}1s a 2d;-qudit system, as explained in Section II-F,
and a single output qubit |y >, which gets flipped if and only
if |x > refers to a lattice vector belonging to a solution space.
See Section II-D for a more detailed explanation on the ac-
tion of the oracle and Section IV-A for a further discussion
about how to implement the qudits |x > in the given ranges.
One can either use standard results from literature about
techniques to implement basic arithmetic operations using
quantum circuits or one can use a quantum circuit compiler
translating an analytical formula into a gate-based quantum
circuit. The first option allows for a more flexible tradeoff
in between different kinds of quantum resources (number
of additional ancillary qubits, circuit depth, quantum cost,
and gate set), essentially tailoring the oracle precisely to a
specific underlying quantum architecture. In such a case, one
would break (4) into steps of elementary arithmetic opera-
tions (as shown in the Appendix) and consider the optimal
way for their implementation. We list some of the state-of-
the-art techniques to implement the arithmetic operations
needed to build the oracle included in a gate-based quantum
circuit model: for addition [30], [31], for multiplication [32],
[33], [34], and for subtraction [35]. The final comparison of
the squared length of the vector with a threshold 72 (de-
termined in Step 2) is performed as a subtraction followed
by a cNot gate controlled by a subtraction overflow qubit
(indicating that the subtraction result is below zero) and a
target qubit |y >, which is the output qubit, as explained in
Section II-D. Alternatively, one might use a quantum circuit
compiler that takes as input an analytical equation of the
function and outputs a quantum circuit that implements it.
Many such software tools exist, e.g., [36], [37], [38], [39].
Since the oracle will be reused multiple number of times
during the execution of Grover’s algorithm, it is essential that
it uncomputes its action on the input qudit register |x > so
that the same register can be used as input to the subsequent

VOLUME 6, 2025



IEEE Transactions on

Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS @uantum En gineering

runs of the oracle. This can be trivially achieved by applying
an inverse gate for each of the gates in a reverse order.

Step 5—Construction of the Grover’s search circuit: Once
Grover’s reflection H®"MoH®" is appended to the oracle
Oy, a circuit for a single Grover’s iteration G (see Fig. 2)
is constructed. As shown in Fig. 1, in order to implement
the full Grover’s search algorithm for the SVP, this Grover’s
iteration needs to be repeated a number of times. This number
depends on the ratio of the cardinality of the search space
N and the cardinality of the solution space M, and it has
been determined in [11] that exactly [Z14/N/M iterations are
needed. The resulting circuit (prepended by H®" as in Fig. 1)
implements Grover’s algorithm for the SVP. It can then by
compiled using various software techniques and decomposed
into an actual gate set supported by an underlying quantum
architecture.

A. FURTHER ON STEP 3: ENCODING THE BOUNDED
INTEGER ENUMERATION COEFFICIENTS IN TERMS OF
QUBITS

We encode each coefficient x; in a binary representation, as
shown in [8] and [9]. Recall that in Step 1, we chose a bound
|x;| < d; for each of the coefficients. Given n x n row-wise
lattice basis matrix B, the enumeration finds an optimal linear
combination of the rows of B to form the shortest lattice

vector. Given the enumeration coefficients (xg, ..., X,—1),
we express them in a binary expansion
[log2d; |
x; = —d; + Z C,‘j2/ 5)
Jj=0

where each ¢;; is a newly introduced binary variable. Note
that Albrecht et al. [9] propose different encodings of integer
coefficients as a technique to avoid the trivial solution of the
SVP (i.e., the zero vector solution) as

[log(a—1)d;|—1
Xi = —d;i + §id; + wi(di + 1) + Z cij2!
=0

where the enumeration coefficients are ¢;, w;, cjo, Cifs - - -
with the advantage that a penalty L[]; {;, where a penalty
value L >> 0 can be introduced more efficiently as if (5) is
used (in such a case, the penalty becomes L]_[i’ j Cijs which
is more costly to implement). This different encoding, how-
ever, requires more qubits. In the approach using variational
algorithms [7], [8], [9], [10], [19], one needs to ensure that
the trivial solution does not correspond to the minimal eigen-
value of the corresponding problem Hamiltonian operator,
since one performs a minimization and not excluding the
zero vector would result in the approach failing to identify
the shortest vector by returning the zero vector. In search
algorithms, before the final measurement, one obtains a vec-
tor that is (with high probability) in the solution subspace,
and specifically in an equal superposition of the different
classical solutions. In our approach to the SVP, one defines
the solution space as an intersection of the lattice points with

VOLUME 6, 2025

aball placed in the origin with aradius T (determined in Step
2). Therefore, if the ball radius 7 is optimal, the solution
space, even though still containing the trivial solution (and
hence increasing the cardinality of solution space by one),
also contains sufficiently short lattice vectors (within the ball
radius). Generating an equal superposition in a subspace that
contains solutions and the zero vector is not a problem, since
each solution and the zero vector have equal probability, and
by simply repeating the process, we can make the probability
of obtaining the zero vector negligible. For example, even
with a single nonzero solution in the solution space, to obtain
one solution (on average), it suffices to repeat twice.

Note that the alternative of avoiding the zero vector by
an explicit construction of the Grover’s oracle would require
significant extra resources and would thus be redundant. To
summarize, after a very few runs of the Grover’s algorithm,
we sample a nonzero short lattice vector within a bound T
with a very high probability.

V. RESOURCE ESTIMATION

In this section, we analyze both the circuit for the oracle
Oy and the circuit for the full Grover’s search algorithm.
Section V-A provides a theoretical analysis to prove scal-
ings for resources required to implement the single oracle
Oy and finds the polynomial scaling of space complexity
(quadratic) and the quantum cost (quintic) in dimensions of
the lattice basis. We also prove that time complexity scales
linearly. Section V-B then presents experimental results after
the circuit for the oracle Oy has been compiled by Quip-
per [37] and plots the experimentally determined scalings of
resource requirements. We find that the experimentally de-
termined asymptotes agree with the theoretical analysis, and
we provide exact numbers for the quantum resources if the
circuit is decomposed into the Clifford+T gate set. Finally, in
Section V-C, using the costs for the oracle, we obtain the cost
of a single Grover’s iteration and, subsequently, the overall
cost of Grover’s search algorithm by repeating the iteration
sufficient number of times.

A. ANALYTICAL ANALYSIS OF ORACLE RESOURCE
REQUIREMENTS

In this section, we present a high-level circuit design. Let B
be an n x m row-wise matrix of the lattice basis such that
the first column is nonnegative (this can be achieved by the
multiplication of some of the rows of B by —1 as needed).
This saves a few quantum operations as the sign of the result
of multiplication x;B;; depends solely on the sign of x; (see
the Appendix for a more detailed discussion). Recall that
formula [(4), which will denote y] to be implemented as
the quantum circuit is a function y := f : (xo, ..., X—1) —
{0, 1} defined as

2
L ﬁZﬁﬂzgﬂ%]fﬂ
0, otherwise.

(X0 -y Xp—1) =

We proceed to analyze the scalings of

3100115



@IEEE Transactions on

uantumeEn glneerln g Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS

1) S(y), a function that returns the space complexity of
implementing a quantum circuit corresponding to the
function y;

2) T(y), a function that returns the time complexity of a
quantum circuit implementing the function y;

3) C(y), a function that returns quantum cost of a
quantum circuit implementing the function y.

These three functions express the figures of merit that we
want to consider and are essentially functions/properties of
quantum circuits. We will, therefore, break these calculations
to the steps/subcircuits that give this function. For notational
simplicity, we give as arguments of these functions the func-
tion/operations that the corresponding circuit implements.

Suppose that we use the qudit encoding from (5), which is
a standard, and probably the optimal, choice, as discussed in
Section IV-A. We split the calculation of y into subsequent
steps, which are also depicted in Fig. 5. Note that, to the
best of our knowledge, all the existing proposals for quantum
arithmetic circuits acting on two operands assume that both
the operands are of the same size. Suppose, for example,
that we want to implement a sum of two integer quantities
K and L encoded in k and / number of qubits, respectively,
with k < [. Then, the first operand needs to be padded with
| — k extra qubits initialized to zero to make the encoding
of both integer quantities of equal length. Therefore, in this
case, S(K + L) = 2max(k, [).

1) Encoding the enumeration coefficients: By (5), x; =
Z,El:‘)g 2di] 2%¢x — d;, with each ¢ being a binary vari-
able (taking values 0 or 1). We implement each ¢ with
a single logical qubit. Since, in the calculation of x;, a
subtraction operation is needed, the number of qubits
needed to implement each enumeration coefficient is

S(x;) = 2max(|log2d;] + 1, [logd;] + 1) 4+ o(log d;)
=2|log2d;] + 1 4 o(logd;)
= O(logd;)

where o(logd;) accounts for an additional qubit rep-
resenting a sign of subtraction and additional ancil-
lary qubits depending on a specific subtraction im-
plementation. Because a quantum implementation of
subtraction has both linear time complexity and linear
quantum cost in the number of input qubits [35]

T(x;) = O(S(x;)) = O(logd;)
C(x;) = O(S(x;)) = O(logd,).

2) Multiplication of an enumeration coefficient with an
element of a basis vector: Once an enumeration coeffi-
cient x; is calculated inside the circuit, the next step is
to multiply it with an element of a basis vector. Even
though x; needs to be multiplied with each element B;;
forall 0 < j < n — 1, in this step, we consider a mul-
tiplication for a single value of j. An encoding of B;;
requires an additional qubit for j > 1 (as we assumed

3100115

Vi : By > 0). The space complexity is therefore
S(x;B;;) = 2max(Q(x;), (llogB;;| + 1) + Lif j=1)
= 2max(0(logd;), 8(logB;;))
= O(logmax(d;, B;j)).

There are many options to choose how to implement
the multiplication operation with different asymp-
totics. Nie et al. [34] provide a comparison between
state-of-the-art approaches. We continue our analysis
with a choice of Schonhage—Strassen algorithm [34] as
it has, in our opinion, the best ratio of space complex-
ity to quantum cost (being 0(log§ n) and O(n - logn -
loglog n), respectively), while the time complexity is
relatively small compared to most of other approaches
with polynomial time complexities

T(xiBy) = ©(log*(S(xiB;;)) + T(x;)
= ®(log2 log2 max(d;, B;;)) + ©(logd;)
= O(logd,)
C(x;B;j) = O(S(x;B;;) x log S(x;B;;)
x loglog S(x;B;;)) + C(x;)
= O(log max(d;, B;;)
x loglog max(d;, B;;)
x logloglog max(d;, B;;)) + ©(logd;)
= O(log max(d;, B;;)
x loglog max(d;, B;;)
x loglog log max(d;, B;;)).

3) Multiplication of an enumeration coefficient with a

Jjth column of B: We proceed to calculate resource
requirements for the inner sum of y, the expression

?=_ol x;B;;. To implement an addition operation
taking n operands, the least costly approach is to
stack ®(n) circuits implementing addition for two
operands in serial-parallel structure resembling a
tree with ®(logn) layers. Each layer reduces the
number of operands to be summed up by a half
(see Fig. 5 for a drawing). No other qubits need
to be introduced (except possibly some additional
ancillary qubits which scale at worst as the scalings
of the operands). Let k; := max(max;d;, max; B;;)
be the length of the largest input register out of
Ido), 1d1)s - - |dn—1), 1Boj)s IB1j)s -+ s [Bu—1,j)-
Because a quantum implementation of addition has
both linear time complexity and linear quantum cost
in the size of operands [35], it follow that

n—1
S <Z x,-Bl-j) = nmiax S(xiBij)

i=0

= O(nlog max(max d;, max B;;))
L 1

VOLUME 6, 2025



Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS

@IEEE Transactions on,
uantumEngineering

= O(nlogk;)

n—1
T (Z xiBij) = O(logm)O(S(xB;))) + T(xB;))

i=0
= O(ogn x logk;) + O(ogk;)
= O(ogn x logk;)

n—1
C <inBij) = Om)O(S(c¢;B;)))

i=0
+ O(n x C(x;B;;))
= O(n x logk;)
+ O(n x logk; x loglogk;
x logloglog k)
= 0O x logk; x loglogk;
x logloglog«;).

4) Taking square of a resulting vector elements: To calcu-
late a square of a register |1/), one can either initialize a
new quantum register with the same length or copy the
values of logical qubits from |b) (b being a bitstring),
essentially creating |b) |b). Note that the copy operation
does not conflict with the no-cloning theorem because
|Yr) is a register of qubits having values in the com-
putational basis (0 or 1). One can then use a circuit
for multiplication to calculate |b%). Alternatively, one
can use a circuit proposed in [40] that presents an in-
verted circuit for the square root operation based on
the nonrestoring digit recurrence method [41], which,
in practice, lowers time complexity and quantum cost,
although the asymptotes stay the same. We will ignore
the cost for the copy operation in the analysis: 1) it
would not change the asymptotic scalings and 2) if the
latter approach is followed, the copy operation is not
performed. So, we find that

n—1 72 n—1
|:Z x,'Bij =25 (Z xiBij>
i=0 . i=0
= O(nlogk;)
n—1 12 n—1
|:Z x,-Bl-j =0 (10g2 S inBij)
i=0 . i=0

n—1
+ T (Z xiB,'j>
i=0

=0 (10g2(n log /cj))
+ O(logn x logk;)
= O(log*(nlogk;))

VOLUME 6, 2025

2

n—1
x log S (Z xiB,-j)
i=0

n—1
x loglog S (Z x,-Bij>>
i=0

n—1
+O®)C (Z xB; ,)
i=0
= O((nlogk;) x log(nlogk;)
x loglog(nlogk;))
+ OO (n x logk;
x loglogk; x logloglog ;)
=0 <n2 x logk; x loglogk;

x logloglog /cj) .

5) Calculating a squared length of the resulting vector by
performing the outer sum: The last step to calculate
a squared length of the lattice vector corresponding
to the enumeration coefficients x, . . xn 1 1is to take
the outer sum, i.e., to unplementz > B
We follow the strategy, as outlmed m Step 3 to im-
plement an addition of m operands. Let £ := max; «;,
i.e., it is the length of the largest input register out of
|do), |d1), .., |dn—1), |Boo), - - -» |Boj—1)» |B1,0)» - - -
|B,—1,j—1)- The costs of required resources are then

m—1 - 2 n—1 2
S |:Zx, l]] —mmaxS |:Zx, lj:|
j=0
= mmax O(nlogk;)
J
= O(mnlogk)
m—1 - 2
T Z[Zx, ,,] = O(log m)
j=0
2

n—1
xO|S |:Z xiB,-ji|
i=0
n—1 2
i=0

= Ologm)®O (nlogk)

+ O(log*(nlogk))
= 0O (nlogm x logk)

3100115



@IEEE Transactions on,
uantumEngineering

Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS

= 0O@m)O (nlogk)
+®(mxn2xlogi?
x loglogik x logloglogk)
= O(m x n* x logk

X loglogk x logloglogk).

6) Deciding whether the resulting vector lies in a solu-
tion space: The last step is to implement the com-
parison ZJ 0 [Zl o XiBij]*> < T?. For this, we use a

subtractor to calculate Z [Zl o XiBij]I> — T?, and
we check if the result overﬂows through zero. Similarly
as in Step 1, we need to have the same number of qubit
inputs for both operands. Since it is expected that we
choose 7% to be lower than the largest vector from our

search space, we know that S(Z [Z" 1x, B;;] 2y >
S(T?) and hence
m—1 — 2
S Z |:le z]:| <T
j=0
2

S

= © (mnlogk).

We again use a circuit for subtraction as in Step 1, and
therefore, we have a linear scaling of time complexity
and quantum cost in the number of input qubits

= O(mnlogk)+ © (n x logm x logk)

=0O(m x m x logk)

3100115

TABLE 1. Calculated Asymptotical Quantum Resource Requirements for
a Single Instance of an Oracle O; Given a Full-Rank Lattice Basis of
Dimension n

Space Complexity O(n? x loglogn)

Time Complexity O(n? x loglogn)

O(n3 x loglogn x logloglogn

Quantum Cost x loglog log log n)

TABLE 2. Oracle Resource Requirements Found by Quipper With logn
Qubits Per Each Enumeration Coefficient

Lattice Dimension 2 5 10 20
Space Complexity 29 263 1154 5165
Time Complexity 344 3058 7248 17352
Quantum Cost 2006 70996 467774 2817236
Number of T-Gates 28 4718 80858 542674
T-depth 62 736 1220 2866
Lattice Dimension 30 40 50
Space Complexity 11345 23246 36056
Time Complexity 23360 38854 45440
Quantum Cost 6311554 15910146 24831782
Number of T-Gates 1258752 3232930 5097846
T-depth 3932 6336 7640
m—1[n—1 2
C |:Z )C,'B,j:| < T2
j=0 Li=0
m—1[n—1 2
=01S |:Z )C,'B,'jj|
j=0 Li=0
2

m—1[n—1
+C |:Z xiBiji|

j=0 Li=0
— O(mnlogk) + © (m x n? x logk
x loglogk x logloglogk)
:@(mxnleog/%
x loglogk x logloglogk).

Letting n = m (i.e., for the case of square lattices) and tak-
ing kK = ®(logn) (since it grows with the number of qubits
dedicated to each enumeration coefficient), we conclude that
using the choices for the circuits implementing the arith-
metic operations. The scalings listed in Table 1 would be the
resource scalings.

B. EXPERIMENTAL RESOURCE REQUIREMENT SCALINGS
DETERMINED BY CLASSICAL COMPILATION

We compiled the circuit for quantum oracle Oy (4) using
Quipper [37], including the uncomputation of any interme-
diate action performed on the input register. The resource
requirements are given in Table 2 and are plotted in Fig. 3.
We performed the best-fit of the experimental results to find
the following scalings:

Space complexity ~ 5.14n? loglog(n)

VOLUME 6, 2025



Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS

@IEEE Transactions on,
uantumEngineering

N
5}
S

-10°

L L I B r 2]
1.5
2.1 |~ —
2.0 1 2 O f |
1.25 |~ — = 18| !
s | 1 B sf .
g [ § E 12 -
0.75 |- / | o [ i
% b / R O o009l -
0.5 |- 4 - [5) - 8
2 " 1 1 £ osf .
& 025 B i B = o3| -
ol [+ | | oL | | il
0 20 40 60 80 100 0 20 40
Lattice basis dimension Lattice basis dimension
107 107
FTrT T 17 71 T L T T T
= 6 [ i 1.2 | —
8 51 i g 1 L 1
[ i =] [~ -
O 2 f 1
g 4 B O o8| .
=] [ B Q I 1
g °r 1 g osr ]
=3 2 -1 ('? 0.4 [~ —
& F 1 B 1
1 — 0.2 [~ —
0 L il I I 0 L il R B
0 20 40 60 80 100 0 20 40 60 80 100

Lattice basis dimension Lattice basis dimension

FIGURE 3. Experimental resource requirements for SVP oracle circuit as
found by Quipper. This plots extended dataset of the data found in
Table 2. The “sudden” jumps at dimensions being power of 2 (x-axis
being.., 32,64,..) are due to rounding in determining the number of qubits
per enumeration coefficient, which is [logn1.
+ 1101.12nloglog(n)
+ 3348.47loglog(n) — 2908.46n
+ 4682.92
Time complexity ~ 0.12n° loglog(n) — 749.05 log log(n)
+494.23n — 455.1
Quantum cost & 10.92n3l(n) + 181183.18nl(n)
— 6442137.891(n) — 246992.36n
—39111224.06
T-gate count ~ 2.34n°[(n) + 38801.38nl(n)
— 1380667.011(n) — 52831.25n
— 837651.82
where
I(n) : =loglog(n)logloglog
x (n)loglogloglog(n).
To find the scaling, curve_fit function from Python’s
library scipy has been used to fit a function of the form
f(n) = an® loglog(n) + bn® + cn log log(n)
+ dloglog(n) +en+ f
with coefficients a, b, . . ., f to the calculated space complex-

ity, time complexity, and T-depth requirements and a function
of the form

f'(n) = an®l(n) + bn*l(n) + cnl(n) + di(n) + en’
+f® +en+h

with coefficients a, b, ..., h to the calculated quantum cost
and T-gate count requirements. The data that have been fitted
have been calculated for all the lattice dimensions between 2
and 100. A subset of the data is presented in Table 2.

VOLUME 6, 2025

-10%

~
T T T T T T T 7T > T T T T ] T T T
o, 15| £ 100 i
£ i 103 - :
g 1.25 |- B B 80l B
| 1l N g L 1
g o B O 6o -
3 o — s s .
o B J ) g 40 —
8 o5 V4 - =) [ i
g °r 4 1 g
5 / 20 (- -
& 0.25 [ . . E]
L ) i o0 - B
ol | 1 | 1 | | ) 0 TN Y T S Y T
0 20 40 60 80 100 0 20 40 60 80 100
Lattice basis dimension Lattice basis dimension
—_ FT T T 17 T T T T 7 FT T T 17 T T T T 7
%’ 100 [ — g 100 [ —
O [ b 3 [ 1
80 |- — 8 80 |- —
E | 1S f
= 60 |- — = 60 |- —
& 40 — =~ 40 |- —
= L 1 = L 1
2 20l - 0 20 |- -
) 20
e} ¥ 3 2 5 1
— 0 TN T Y N A 0 I I T Y Y ) B
0 20 40 60 80 100 0 20 40 60 80 100

Lattice basis dimension Lattice basis dimension

FIGURE 4. Experimental resource requirements for Grover’s search SVP
routine as found by Quipper. This plots extended dataset of the data
found in Table 4. Similarly as in Fig. 3, the “sudden” jumps are caused by
rounding a function of the number of qubits to the nearest higher
integer. Note that the space complexity remains the same for a single
oracle and Grover's search algorithm: once an oracle is constructed, no
additional logical qubits are needed to run the full Grover's search. The
graph is plotted again due to reference only.

C. SOLVING SVP USING GROVER'’S ALGORITHM AND ITS
RESOURCES

Given the oracle implementation of the previous section, we
can use Section II and compute the resources required to find
solutions of the SVP for different dimensions. This is done
by combining the oracle with other gates to form the Grover
iteration and then repeating it a sufficient number of times, as
described in Section II-D. In Fig. 4, we give the breakdown
of the resources costs for those. Table 4 extracts some of the
data from Fig. 4 and provides the exact calculated results
for several chosen lattice dimensions. When run as part of
Grover, both uncomputation (which doubles the depth) and
repeated execution [%] x /N/M times are required, with N
being the size of the search space as determined in Step 1 of
Section IV and scales as 221027+0) and pf being the size
of the solution space as determined in Step 2 of Section I'V.
Given the integer bounds on the enumeration coefficients
|x;| < d;, let |bin(d;)| be a minimal number of qubits needed
to encode the coefficient in the given range [—d;, d;]. Then,
N = Zi |bin(d;)|, and this quantity scales as O(nlogn) as
0 <i < n, and on average, it is enough to assign log n qubits
per coefficient [9]. If the bound T in Step 2 of Section IV
was chosen optimally, the search space would contain a zero
vector, which is always a trivial solution, at least two shortest
lattice vectors (as each ball of radius 7 contains a vectors
in pairs which are multiple of —1 with each other) and few
extra lattice vectors. Hence, if T is chosen optimally, the size
of the solution space M >~ 3 will not be much larger than
3. We, therefore, use M = 3 in the calculation of resource
estimates, while we are aware that this quantity is dependent
on the lattice, and accordingly, the calculated estimates might
differ, because we note that the difference will be minor

3100115



@IEEE Transactions on,
uantumEngineering

Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS

TABLE 3. Estimates on Quantum Resources Required to Solve 186-D and
400-D Lattices

Lattice Dimension ‘ 186 400
Space Complexity 5.89 x 10° 2.78 x 106
Time Complexity 1.25 x 1033 5.46 x 106%
Quantum Cost 2.33 x 1036 7.19 x 1099
T-Gate Count 8.36 x 1035 1.31 x 1099

and thus will not invalidate our estimates. To illustrate this
point, consider that given a choice of the threshold 7', the
size of the solution space is M’ that is bigger than 3 (the
value assumed in our calculation of the quantum resource
estimates). Consequently, the size of the solution space in-
creases, the size of the (effective) search space decreases,
and the time complexity is improved by a factor O(1/+/M’).
On the other hand, the increase of the size of the solution
space means that it consists of more vectors that are not the
actual solution to the SVP. To overcome this, O(M’) more
runs of Grover’s algorithm are required to sample the actual
SVP solution. Combining these two factors, increasing M’ by
a nonoptimal choice of T increases the time complexity by a
factor O(1/~/M)O(M') = O(v'M). Note, however, that M’
is expected to be a small constant (as the Gaussian heuristic
in average provides accurate estimates), and therefore, it has
a little effect on our estimates of time complexity, quantum
cost, and number of T-gates.

1) EXTRAPOLATION TO “INTERESTING"” LATTICE INSTANCES
Classically, the current record of the highest lattice dimen-
sion solved as marked by SVP Challenge? is 186. As dis-
cussed in Section II-E, to pose a threat to postquantum lat-
tice security, one would need to solve SVPs in lattices of
dimensions around 400. Using our extrapolated results from
Section V-B, we estimate the required quantum resources for
186-D and 400-D lattices (see Table 3).

VI. GROVER'S IMPROVEMENT OVER BKZ ALGORITHM

We come back to the BKZ algorithm now (see Section II-E
for an overview). Recall that it takes as an input a block size 8
and reduces a lattice basis by performing an iterative search
for shortest vectors in the projected lattices of rank < . As
mentioned in the preliminaries, there are two main choices
for B depending on what the lattice dimension is. If it is of
a smaller or medium size, one can set 8 < 40 and terminate
in a reasonable time. Otherwise, if the lattice dimension is
large, B > 40 is usually chosen and the execution of the
algorithm is prematurely terminated as it would not be ex-
pected to finish in a reasonable time. Further developments,
described in BKZ2.0 which incorporate recent algorithmic
improvements, achieve block sizes up to 120 [22]. For high
values of B, the runtime of BKZ is dominated by the runtime
of the SVP oracle. In a single tour, n — 1 calls to the SVP
oracle are made, and many tours may be required, although
sometimes the process is halted early as this often produces

Zhttps://www.latticechallenge.org/svp-challenge
3100115

TABLE 4. Grover Resource Requirements as Found by Quipper With logn
Qubits Per Each Enumeration Coefficient Calculated by Including
Resource Requirements for Grover's Reflection to Construct a Grover's
Iteration (See Fig. 2, Section 11-D) and Multiplying It By the Number of
Calculated Iterations [ /N/M]

Lattice dimension 2 5 10
Number of iterations 1 83 4.75 x 10°
Space complexity 29 2.63 x 102 1.15 x 103
Time complexity 1.72 x 102 1.26 x 10° 1.72 x 10°
Quantum Cost 1.00 x 103 2.94 x 106 1.11 x 10
Number of T-Gates 2.1 x 102 6.22 x 10° 2.36 x 1010
Lattice dimension 20 30 50
Number of iterations 5.10 x 1014 1.71 x 10?2 2.56 x 1073
Space complexity 5.16 x 103 1.13 x 10* 3.6 x 10*
Time complexity 4.42 x 108 2.00 x 1026 6.15 x 1074
Quantum Cost 7.19 x 1020 5.40 x 1028 8.40 x 1080
Number of T-Gates 1.53 x 1020 1.15 x 1028 1.71 x 10°t
Lattice dimension 70 90 100
Number of iterations | 3.02 x 1094 1.03 x 1010% 6.02 x 103°
Space complexity 8.00 x 10% 1.31 x 10° 1.62 x 10°
Time complexity 8.47 x 1095 2.26 x 10108 1.17 x 1040
Quantum Cost 1.63 x 10192 6.95 x 10112 4.79 x 10%2
Number of T-Gates 1.79 x 1089 3.50 x 10101 1.48 x 10112

a good enough length vector, as shown in [26]. We suggest
two possible approaches to integrating our quantum Grover
enumeration algorithm with BKZ, given a lattice basis of
dimension n.

1) Block size B remains the same as in the classical
[22] scenario; however, each projected block of size
B would be solved with Grover’s algorithm for the
SVP, described here. Since Grover’s algorithm offers
quadratic time improvement for the enumeration, the
SVP routine would terminate in a shorter time than
the classical state of the art. This approach may be
necessary in the earliest stages, when the very first
large fault-tolerant quantum computers are available.
But this technique is suboptimal, as the large constants
due to Grover imply that the advantages over classical
solvers do not appear until a certain “crossover point,”
which in the medium term is conjectured to be com-
putations, which take weeks or months on classical
hardware [42]. Thus, seeking quadratic speedup on
problem sizes already accessible to us classically is
unlikely to be the most fruitful approach.

2) We increase the block size 8 that is possible via clas-
sical enumeration. While sieving has superior time
complexity classically (20-2928+0(8) versus 20Flogp)
for enumeration), it requires exponential space. In-
creasing the block size accessible via enumeration
while avoiding the exponential space requirements
will make quantum enumeration more appealing, al-
though, asymptotically, classical sieving scales better
than quantum enumeration. As mentioned in the pre-
vious point, the greatest quantum advantages will hail
from attacking the largest problem sizes possible in one

VOLUME 6, 2025


https://www.latticechallenge.org/svp-challenge

IEEE Transactions on

Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS @uantum En gineering

do =1
04 B EEER + :l!l _& I I X
co —1
X -
Boo ] - H2e 4
do =1
o e + o ] 5
co —1
BOI | | é g ¥ S found/not found
Boisign
di /=1
o] = Ssaazh —] I 5
cp =1
! 4 X Q 1}
Bio ] - 22 = =
dy /=
===~ >
c1 =] ]
X Q:@
B |
Byysign

FIGURE 5. High-level design of the SVP oracle.

chunk; thus, maximizing block size will be the optimal
approach in the long term. For example, if we consider
the asymptotic Grover improvement (the factor 1/2 in
front of Blog B at the exponent) and ignoring for the
moment the extra overhead due to the implementation,
quantumly, we could solve blocks of size g &~ 70 at
the same time that classically one would solve blocks
of size 40.

For Level I NIST candidates that are being standardized
at the time of writing, block sizes of over 400 will be nec-
essary to break the underlying hardness assumptions. De-
spite introducing Grover speedup to the problem, the time

cnlogn

complexity of 272 720 that we prove is still asymptoti-
cally worse than classical sieving, whose main bottleneck is
space requirements. We have demonstrated the impact of this
Groverized enumeration circuit when integrated into BKZ,

the primary approach used to attack lattice cryptosystems and

VOLUME 6, 2025

hence to derive appropriate security parameters. Along with
works such as [20] and [21], we also conclude that quadratic
speedup quantum algorithms will not pose a significant threat
to lattice-based cryptography. In order to properly compare
the quantum time complexity we present here with classical
algorithms, it is necessary to estimate the speed of imple-
mentation of (fault-tolerant) quantum gates, which is highly
variable depending on the platform in use. Furthermore, the
maturity of the technology will set limits upon the block size
achievable with quantum algorithms such as ours and thus
the overall attack complexity.

VIl. CONCLUSION

Grover’s search algorithm is one of the most important algo-
rithms because of the generality of the speedup it offers. On
the other hand, the generality arises from assuming access to
an oracle that identifies the solutions, and any real use of the
algorithm would require to implement such oracle without

3100115



@IEEE Transactions on,
uantumEngineering

Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS

the a priori knowledge of the solution. In the case of the SVP,
we overcame this difficulty by building on classical enumer-
ation methods and prior Hamiltonian approaches to the SVP.
We gave a detailed stepwise description of the oracle con-
struction and then estimated the resources required to imple-
ment such an oracle in a quantum device. Incorporating these
results to the overall quantum search algorithm of Grover led
us to our main results that quantify the resources required to
solve the SVP in dimension n, and we observed that the time
complexity scaled as @ (n? log? n) x pinlogn+on) anq space
complexity of @ (n* log ). Our implementation and resource
estimation, while interesting in its own right as an example
of a quantum algorithm, does not directly have implications
for cryptography—the main reason to focus on the SVP. The
reason is that the scaling is still exponential, and classical
state-of-the-art methods do not attempt to directly “brute-
force” and search the full space. To stretch the capabilities
and explore the impact that Grover’s search algorithm can
have for the SVP, we considered using it as a subroutine
to a larger, hybrid now, algorithm. Specifically, (quantum)
enumeration is the basis of the BKZ algorithm [2], where
one “brute-forces” lattices of smaller dimensions and uses
them to reduce the basis of a larger dimension lattice. We
first demonstrated how using larger block size, possible due
to better time-complexity, can improve the record for solving
the SVP via the enumeration methods. At the same time,
we also highlighted that for dimensions cryptographically
relevant (n ~ 400 see NIST), our methods are nowhere close
to posing a threat. Finally, to perform a fair comparison with
classical methods, one needs to take into account the over-
heads (and delays) of quantum error correction. When speak-
ing about concrete values, and not asymptotics, these (large)
factors are crucial, but depend on many uncontrollable fac-
tors> and go beyond the scope of this article to compute them.

APPENDIX

GROVER’S SVP ORACLE HIGH-LEVEL CIRCUIT DESIGN
Fig. 5 shows a high-level design of a quantum circuit im-
plementing the oracle O for a full-rank 2-D lattice. B;; are
elements of the 2 x 2 lattice basis matrix, d; are bounds on
the enumeration coefficients, and all ¢; compose an input
register to Oracle Oy. The blocks represent arithmetic oper-
ations performed, as explained step by step in Section IV.
The purple lines represent additional qubits, which carry
Information about sign of the binary numbers.

ACKNOWLEDGMENT

The authors thank Jodo Doriguello for noticing an er-
ror on the time complexity evaluated in an earlier ver-
sion of this article. The Haskell/Quipper code used in
the experiments and the testing routines are available at
https://github.com/Milos9304/svpGroversOracle.git.

3Error rates, speed of gates (both varying between different hardware),
connectivity of qubits, quantum error correcting code, and way to perform
fault-tolerant quantum operations, decoder.

3100115

REFERENCES

[11 D. Moody, The NIST PQC Standards: Light at the End
of the Tunnel, Gaithersburg, MD, USA: Nat. Instit. Stan-
dards, 2023. Accessed: Dec. 10, 2024. [Online]. Available:
https://csre.nist.gov/events/2023/pqc-standardization-conference

[2] C.-P. Schnorr and M. Euchner, “Lattice basis reduction: Improved practi-
cal algorithms and solving subset sum problems,” Math. Program., vol. 66,
pp. 181-199, 1994, doi: 10.1007/BF01581144.

[3] P. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
pp. 124-134, doi: 10.1109/SFCS.1994.365700.

[4] R.L.Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120-126, 1978, doi: 10.1145/359340.359342.

[5] 1. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptog-
raphy, vol. 265. Cambridge, U.K.: Cambridge Univ. Press, 1999,
doi: 10.1017/CB0O9781107360211.

[6] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Trans. Inform. Theory, vol. IT-22, no. 6, pp. 644-654, Nov. 1976,
doi: 10.1109/TIT.1976.1055638.

[7] D. Joseph, A. Ghionis, C. Ling, and F. Mintert, “Not-so-
adiabatic quantum computation for the shortest vector prob-
lem,” Phys. Rev. Res., vol. 2, no. 1, 2020, Art. no. 013361,
doi: 10.1103/PhysRevResearch.2.013361.

[8] D. Joseph, A. Callison, C. Ling, and F. Mintert, “Two quantum ising
algorithms for the shortest-vector problem,” Phys. Rev. A, vol. 103, 2021,
Art. no. 032433, doi: 10.1103/PhysRevA.103.032433.

[9] M. Albrecht, M. Prokop, Y. Shen, and P. Wallden, “Variational quantum
solutions to the shortest vector problem,” Quantum, vol. 7, Mar. 2023,
Art. no. 933, doi: 10.22331/q-2023-03-02-933.

[10] Y. R. Zhu, D. Joseph, C. Ling, and F. Mintert, “Iterative quantum op-
timization with an adaptive problem Hamiltonian for the shortest vec-
tor problem,” Phys. Rev. A, vol. 106, no. 2, 2022, Art. no. 022435,
doi: 10.1103/PhysRevA.106.022435.

[11] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Proc. 28th Annu. ACM Symp. Theory Comput., 1996, pp. 212-219.
doi: 10.1145/237814.237866.

[12] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum com-
putation,” in Proc. Roy. Soc. London. Ser. A: Math. Phys. Sci., vol. 439,
no. 1907, pp. 553-558, 1992, doi: 10.1098/rspa.1992.0167.

[13] A.Montanaro, “Quantum walk speedup of backtracking algorithms,” The-
ory Comput., vol. 14, pp. 1-24, 2018, doi: 10.4086/toc.2018.v014a015.

[14] J. Zhao, “Possible implementations of oracles in quantum algorithms,”
J. Phys.: Conf. Ser, vol. 2386, no. 1, 2022, Art. no. 012010,
doi: 10.1088/1742-6596/2386/1/012010.

[15] J. M. Henderson, E. R. Henderson, A. Sinha, M. A. Thornton, and
D. M. Miller, “Automated quantum oracle synthesis with a minimal
number of qubits,” Proc. SPIE, vol. 12517, 2023, Art. no. 1251706,
doi: 10.1117/12.2663240.

[16] J. Sanchez-Rivero, D. Talavan, J. Garcia-Alonso, A. Ruiz-Cortes,
and J. Murillo, “Automatic generation of an efficient less-than
oracle for quantum amplitude amplification,” in Proc. IEEE/ACM
4th Int. Workshop Quantum Softw. Eng., 2023, pp. 26-33, doi:
10.1109/Q-SE59154.2023.00011.

[17] M. Grassl, B. Langenberg, M. Roetteler, and R. Stein-
wandt, “Applying Grover’s algorithm to AES: Quantum re-
source estimates,” in  Post-Quantum  Cryptography, T. Tak-
agi, Ed. Cham, Switzerland: Springer, 2016, pp. 29-43,
doi: 10.1007/978-3-319-29360-8_3.

[18] R.H. Preston, “Applying Grover’s algorithm to hash functions: A software
perspective,” IEEE Trans. Quantum Eng., vol. 3, 2022, Art. no. 2500710,
doi: 10.1109/TQE.2022.3233526.

[19] D.Joseph, A.J. Martinez, C. Ling, and F. Mintert, “Quantum mean-value
approximator for hard integer-value problems,” Phys. Rev. A, vol. 105,
no. 5, 2022, Art. no. 52419, doi: 10.1103/PhysRevA.105.052419.

[20] N. Bindel, X. Bonnetain, M. Tiepelt, and F. Virdia, “Quantum lat-
tice enumeration in limited depth,” Cryptol. ePrint Arch., 2023, doi:
10.1007/978-3-031-68391-6_3.

[21] S. Bai, M.-I. van Hoof, F. B. Johnson, T. Lange, and T. Ngo,
“Concrete analysis of quantum lattice enumeration,” in Proc. Int.
Conf. Theory Appl. Cryptol. Inf. Secur, 2023, pp.131-166, doi:
10.1007/978-981-99-8727-6_5.

VOLUME 6, 2025


https://github.com/Milos9304/svpGroversOracle.git
https://csrc.nist.gov/events/2023/pqc-standardization-conference
https://dx.doi.org/10.1007/BF01581144
https://dx.doi.org/10.1109/SFCS.1994.365700
https://dx.doi.org/10.1145/359340.359342
https://dx.doi.org/10.1017/CBO9781107360211
https://dx.doi.org/10.1109/TIT.1976.1055638
https://dx.doi.org/10.1103/PhysRevResearch.2.013361
https://dx.doi.org/10.1103/PhysRevA.103.032433
https://dx.doi.org/10.22331/q-2023-03-02-933
https://dx.doi.org/10.1103/PhysRevA.106.022435
https://dx.doi.org/10.1145/237814.237866
https://dx.doi.org/10.1098/rspa.1992.0167
https://dx.doi.org/10.4086/toc.2018.v014a015
https://dx.doi.org/10.1088/1742-6596/2386/1/012010
https://dx.doi.org/10.1117/12.2663240
https://dx.doi.org/10.1109/Q-SE59154.2023.00011
https://dx.doi.org/10.1007/978-3-319-29360-8_3
https://dx.doi.org/10.1109/TQE.2022.3233526
https://dx.doi.org/10.1103/PhysRevA.105.052419
https://dx.doi.org/10.1007/978-3-031-68391-6_3
https://dx.doi.org/10.1007/978-981-99-8727-6_5

IEEE Transactions on

Prokop et al.: GROVER'S ORACLE FOR THE SVP AND ITS APPLICATION IN HYBRID CLASSICAL-QUANTUM SOLVERS @uantum En gineering

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better lattice security estimates,”
in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2011, pp. 1-20,
doi: 10.1007/978-3-642-25385-0_1.

M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite,
and M. Stevens, “The general sieve kernel and new records in lattice
reduction,” in Proc. Annu. Int. Conf. Theory Appl. Cryptographic Techn.,
2019, pp. 717-746, doi: 10.1007/978-3-030-17656-3_25.

A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring polynomi-
als with rational coefficients,” Math. Ann., vol. 261, pp. 515-534, 1982,
doi: 10.1007/BF01457454.

C.-P. Schnorr, “A hierarchy of polynomial time lattice basis reduction
algorithms,” Theor. Comput. Sci., vol. 53, no. 2/3, pp. 201-224, 1987,
doi: 10.1016/0304-3975(87)90064-8.

G. Hanrot, X. Pujol, and D. Stehlé, “Analyzing blockwise lattice algo-
rithms using dynamical systems,” in Proc. Int. Conf. Theory Appl. Cryptol.
Inf. Secur., 2011, pp. 447-464, doi: 10.1007/978-3-642-22792-9_25.

J. Li and P. Q. Nguyen, “A complete analysis of the BKZ lattice re-
duction algorithm,” Cryptol. ePrint Arch., 2020. [Online]. Available:
https://ia.cr/2020/1237

J. Kelner, “An algorithmist’s toolkit, lecture 19,” Massachusetts
Institute of Technology (MIT), Nov. 2009. [Online]. Available:
https://ocw.mit.edu/courses/mathematics/18-409-algorithmists-toolkit
-fall-2009/lecture-notes/

M. S. A. Mamun and D. Menville, “Quantum cost optimization for
reversible sequential circuit,” 2014, arXiv:1407.7098, doi: 10.48550
/arXiv.1407.7098.

H. Thapliyal and N. Ranganathan, “Design of efficient reversible logic-
based binary and BCD adder circuits,” ACM J. Emerg. Technol. Comput.
Syst., vol. 9, no. 3, pp. 1-31, 2013, doi: 10.1145/2491682.

H.-S.Li, P. Fan, H. Xia, H. Peng, and G.-L. Long, “Efficient quantum arith-
metic operation circuits for quantum image processing,” Sci. China Phys.,
Mech. Astron., vol. 63, pp. 1-13, 2020, doi: 10.1007/s11433-020-1582-8.
H.-S. Li, P. Fan, H. Xia, and G.-L. Long, “The circuit design and
optimization of quantum multiplier and divider,” Sci. China Phys.
Mech. Astron., vol. 65, no. 6, Jun. 2022, Art. no. 260311, doi:
10.1007/s11433-021-1874-2.

VOLUME 6, 2025

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

E. Muiioz-Coreas and H. Thapliyal,
of quantum integer multiplication,”
doi: 10.48550/arXiv.1706.05113.

J. Nie, Q. Zhu, M. Li, and X. Sun, “Quantum circuit design for inte-
ger multiplication based on Schonhage—Strassen algorithm,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 42, no. 12, pp. 4791-4802,
Dec. 2023, doi: 10.1109/TCAD.2023.3279300.

H. Thapliyal, “Mapping of subtractor and adder-subtractor circuits
on reversible quantum gates,” in Transactions on Computational Sci-
ence XXVII, M. Gavrilova and C. Tan, Eds. Lecture Notes in Com-
puter Science, vol 9570. Berlin, Germany: 2016, pp. 10-34, doi:
10.1007/978-3-662-50412-3_2.

Qiskit contributors, “Qiskit: An open-source framework for quantum
computing,” IBM Quantum Development Team, 2023. Accessed: Oct.
12, 2024. doi: 10.5281/zenodo0.2573505

A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B.
Valiron, “Quipper: A scalable quantum programming language,”
ACM SIGPLAN Notices, vol. 48, no. 6, pp.333-342, 2013, doi:
10.1145/2499370.2462177.

P. Fu, K. Kishida, N. J. Ross, and P. Selinger, “Proto-quipper with dy-
namic lifting,” Proc. ACM Program. Lang., vol. 7, pp. 309-334, 2023,
doi: 10.1145/3571204.

A. JavadiAbhari et al., “ScaffCC: A framework for compilation and anal-
ysis of quantum computing programs,” in Proc. 11th ACM Conf. Comput.
Front., 2014, pp. 1-10, doi: 10.1145/2597917.2597939.

S. Wang et al., “Quantum circuits design for evaluating transcendental
functions based on a function-value binary expansion method,”
Quantum Inf. Process., vol. 19, no. 10, pp. 1-31, 2020, doi:
10.1007/s11128-020-02855-7.

S. Wang, Z. Wang, W. Li, L. Fan, Z. Wei, and Y. Gu, “Quantum
fast Poisson solver: The algorithm and complete and modular cir-
cuit design,” Quantum Inf. Process., vol. 19, no. 6, pp. 1-25, 2020,
doi: 10.1007/s11128-020-02669-7.

T. Hoefler, T. Héner, and M. Troyer, “Disentangling hype from practi-
cality: On realistically achieving quantum advantage,” Commun. ACM,
vol. 66, no. 5, pp. 82-87, 2023, doi: 10.1145/3571725.

“T-count optimized design
2017, arXiv:1706.05113,

3100115


https://dx.doi.org/10.1007/978-3-642-25385-0_1
https://dx.doi.org/10.1007/978-3-030-17656-3_25
https://dx.doi.org/10.1007/BF01457454
https://dx.doi.org/10.1016/0304-3975(87)90064-8
https://dx.doi.org/10.1007/978-3-642-22792-9_25
https://ia.cr/2020/1237
https://ocw.mit.edu/courses/mathematics/18-409-algorithmists-toolkitpenalty -@M -fall-2009/lecture-notes/
https://ocw.mit.edu/courses/mathematics/18-409-algorithmists-toolkitpenalty -@M -fall-2009/lecture-notes/
https://dx.doi.org/10.48550/arXiv.1407.7098
https://dx.doi.org/10.48550/arXiv.1407.7098
https://dx.doi.org/10.1145/2491682
https://dx.doi.org/10.1007/s11433-020-1582-8
https://dx.doi.org/10.1007/s11433-021-1874-2
https://dx.doi.org/10.48550/arXiv.1706.05113
https://dx.doi.org/10.1109/TCAD.2023.3279300
https://dx.doi.org/10.1007/978-3-662-50412-3_2
https://dx.doi.org/10.5281/zenodo.2573505
https://dx.doi.org/10.1145/2499370.2462177
https://dx.doi.org/10.1145/3571204
https://dx.doi.org/10.1145/2597917.2597939
https://dx.doi.org/10.1007/s11128-020-02855-7
https://dx.doi.org/10.1007/s11128-020-02669-7
https://dx.doi.org/10.1145/3571725


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


