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1. Introduction 

Quantum field theory is a central topic in theoretical physics. It is valid for describing various
kinds of phenomena and also useful in the generation of some ma thema tical conjectures. In
spite of such effecti v eness, we still do not understand the complete ma thema tical formula tion
of quantum field theories. 

In the last 10 years, Kevin Costello and Owen Gwilliam have developed a new formulation
based on factorization algebras [ 1 , 2 ]. This formulation works well in perturbati v e field theories,
conformal field theories, and topological quantum field theories. These days, some people are
working on formulations of nonperturbati v e aspects of quantum field theories [ 3 , 4 ]. 

In such a conte xt, nonperturbati v e Noether theorem is also proposed in Ref. [ 5 ], motivated by
recent de v elopments of generalized symmetries [ 6 , 7 , 8 ]. The dogma of generalized symmetries
is 

Symmetry = Topological operator . (1) 

A topological operator with U (U ) some support U is invariant under homotopic transforma-
tions of U . 

A question arises: what does this invariance mean? We will show that U (U 1 ) and U (U 2 ) are in
the same equivalence class of Batalin–Vilkovisky cohomology when U 1 and U 2 are homotopic.
We will propose that this is the definition of the topological operators. 

In this paper, we focus only on the case of 1D free massless scalar theory (i.e. quantum me-
chanics without potential terms). This theory has a shift symmetry � �→ � + α where � is a
field and α is a real number. We gi v e a concrete construction of the topological operator rep-
resenting this shift R -symmetry. One virtue of the topological operator is that we can perform
gauging of the subsymmetry Z ⊂ R . By this Z -gauging, we can obtain a compact scalar theory.
This is an interesting theory because it has instanton effects. Work has been done on compact

 (1) p-form gauge theory [ 4 ] motiv ated b y S-duality. The case of p = 0 is essentially the same
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as this paper in terms of using Z -gauging. Howe v er, our construction is more concrete, and we
will also discuss the relation to generalized symmetry notions and the θ -vacuum. 

This paper is organized as follows. In Section 2 , we will re vie w the formulation by Costello
and Gwilliam. In Section 3 , we will propose a concrete construction of the topological operator.
In Section 4 , we will see the θ -degree and the formulation. Section 5 is devoted to the conclusion
and discussion. 

2. Review of factorization algebra of free real scalar theory 

2.1. Observable space 

In this section, we will define an observable O. Let M be a d-dimensional manifold and a real
scalar field � be in C 

∞ (M ) . O must have two properties: 

� O is a functional; i.e. O is a map from a field � to a number O(�) . 
� O has a concept of locality . In other words, O has support U ⊂ M. 

Here U is an open subset of M. If the shape of U is like a d-dimensional open ball B 

d , O is
a point operator with a UV cutoff. In the case of U being B 

d−1 × S 

1 , it is a loop operator. 
Motiv ated b y the abo ve tw o properties, we will find an e xample of observab les: a linear ob-

servable , 

O linear : � �→ 

∫ 

M 

f �, f ∈ C 

∞ 

c (U, C ) , (2) 

where f is a C -function with compact support in U . The integral 
∫ 

M 

f � refers to only the � on
 ; hence in this sense O linear has locality. We identify O linear with f , then define linear observable

space on U as 

Obs linear (U ) := C 

∞ 

c (U, C ) . (3) 

A more general observable can be regarded as a polynomial of functions with compact
supports: O = c + f + f 1 ∗ f 2 + · · · , where ∗ is a formal symmetric product, c ∈ C , and
f , f 1 , f 2 , · · · ∈ C 

∞ 

c (U, C ) . O acts � as 

O : � �→ c + 

∫ 

M 

f � + 

∫ 

M 

f 1 �
∫ 

M 

f 2 � + · · · . (4) 

Definition 1. Observable space Obs (U ) is defined as 

Obs (U ) := Sym 

(
C 

∞ 

c (U, C ) 
)

(5) 

and the elements are called observables on U . 

2.2. Classical derived observable space 

Roughly speaking, derived means that we will add a concept of degree to the observable space
Obs (U ) . This formulation was originally gi v en by Batalin and Vilkovisky [ 9 , 10 ]: 

C 

∞ 

c (U ) 0 := 

(
C 

∞ 

c (U, C ) , 0 

)
, (6) 

C 

∞ 

c (U ) −1 := 

(
C 

∞ 

c (U, C ) , −1 

)
. (7) 

The first one is a degree-0 linear observable , and the second one is a degree- (−1) linear ob-
ser vable , w hich corresponds to an antifield in the physics literature. For simplicity, we denote
( f , 0) ∈ C 

∞ 

c (U ) 0 and ( f , −1) ∈ C 

∞ 

c (U ) −1 as f and f � . The symmetric product ∗ is defined for
2/19 
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them as 

a ∗ b = (−1) | a || b| b ∗ a. (8) 

Definition 2. Classical deri v ed observab le space Obs cl (U ) is defined as 

Obs cl (U ) := 

(
Sym 

(
C 

∞ 

c (U ) −1 ⊕ C 

∞ 

c (U ) 0 
)
, �cl 

BV 

)
(9) 

where �cl 
BV 

is a classical Batalin–Vilkovisky operator defined in Definition 3. 

By Eq. ( 8 ), we can rewrite classical derived observable space Obs cl (U ) : 1 

Obs cl (U ) = 

( 

· · · ⊕
( 2 ∧ 

C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
))

⊕
(

C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
))

⊕Sym 

(
C 

∞ 

c (U ) 0 
)
, �cl 

BV 

) 

. (10) 

This is a decomposition about the degree. The first line is degree (−2) , second one is degree
(−1) , and third one is degree 0. Actually �cl 

BV 

is defined as a map from degree (−n ) to degree
(−n + 1) : 

�cl 
BV 

: 
n ∧ 

C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
) → 

n −1 ∧ 

C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
)
. (11) 

The concrete form of �cl 
BV 

depends on what theory we want. In this paper, we are interested in
free theory; thus we will define it as follows. 

Definition 3. The classical Batalin–Vilkovisky operator �cl 
BV 

is a map C 

∞ 

c (U ) −1 	 f � �→
−(−� + m 

2 ) f ∈ C 

∞ 

c (U ) 0 . Here � is a Laplacian of M. We define it with the Leibniz rule;
then we have 

�cl 
BV 

(
f � 1 ∗ · · · ∗ f � n ∗ P 

) = 

n ∑ 

i=1 

f � 1 ∗ · · · ∗ f � i−1 ∗ (−1) i−1 
(
�cl 

BV 

f � i 

)
∗ f � i+1 ∗ · · · ∗ f � n ∗ P 

= 

n ∑ 

i=1 

f � 1 ∗ · · · ∗ ̂ f � i ∗ · · · ∗ f � n ∗ (−1) i−1 
(
�cl 

BV 

f � i 

)
∗ P (12) 

where f � i ∈ C 

∞ 

c (U ) −1 , P ∈ Sym 

(
C 

∞ 

c (U ) 0 
)
. (−1) i−1 comes from the rule that �cl 

BV 

and f � i are
anticommutati v e, since �cl 

BV 

has degree +1 . 

By some calculations, we have 

� Leibniz rule : �cl 
BV 

(A ∗ B) = �cl 
BV 

(A ) ∗ B + (−1) | A | A ∗ �cl 
BV 

(B) , 
� Nilpotency : 

(
�cl 

BV 

)2 = 0 . 
1 To be precise, we need to take a completion in order to make Obs cl (U ) a topological vector space. 
Howe v er, we omit the discussion. The interested reader can see Ref. [ 1 ] for details. 

3/19 
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Nilpotency means that 

Obs cl (U ) = 

(
· · · �cl 

BV −−→ 

2 ∧ 

C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
)

�cl 
BV −−→ C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
)

�cl 
BV −−→ Sym 

(
C 

∞ 

c (U ) 0 
))

(13) 

is a chain complex. This is called the classical Batalin–Vilkovisky complex . The cohomology of 
the classical Batalin–Vilkovisky complex is called classical Batalin–Vilkovisky cohomology : 

H 

∗
(

Obs cl (U ) 
)

. (14) 

The Leibniz rule means that H 

∗
(

Obs cl (U ) 
)

has a product ∗, because the product of A +
�cl 

BV 

( · · · ) and B + �cl 
BV 

( · · · ) can be rewritten as A ∗ B + �cl 
BV 

( · · · ) . 2 

Remark 1. On the other hand, the quantum Batalin–Vilkovisky operator �q 
BV 

does NOT have
a Leibniz rule, as we discuss later, so quantum cohomology H 

∗ (
Obs q (U ) 

)
does NOT have the

product ∗. 

Let us consider the physical meanings of the cohomology H 

0 
(

Obs cl (U ) 
)

. We take 0-degree

observables O 1 , O 2 and assume that these are the same in the cohomology, i.e. ∃ X s . t . : 

O 2 − O 1 = �cl 
BV 

X . (16) 

Let �cl be a solution of the equation of motion (−� + m 

2 )� = 0 . 3 We have 

O 2 (�cl ) − O 1 (�cl ) = �cl 
BV 

X (�cl ) 

= 0 . (17) 

Hence we can see H 

0 
(

Obs cl (U ) 
)

as the on-shell evaluation of observab les. Howe v er, [ O 1 ](=
[ O 2 ]) is not a number. Then we define a map called a state 〈−〉 . 
Definition 4. A state 〈−〉 is a smooth map: 

〈−〉 : H 

0 
(

Obs cl (M ) 
)

→ C . (18) 

2.3. Concrete calculations of classical Batalin–Vilkovisky cohomology 

In some situations, we can calculate H 

∗
(

Obs cl (M ) 
)

explicitly. 
2 To check this, let us think about (A + �cl 
BV 

˜ A ) ∗ (B + �cl 
BV 

˜ B ) where A, B satisfy �cl 
BV 

A = 0 , �cl 
BV 

B = 0 : (
A + �cl 

BV 

˜ A 

)
∗

(
B + �cl 

BV 

˜ B 

)
= A ∗ B + 

(
�cl 

BV 

˜ A 

)
∗ B + A ∗

(
�cl 

BV 

˜ B 

)
+ 

(
�cl 

BV 

˜ A 

)
∗

(
�cl 

BV 

˜ B 

)
= A ∗ B + 

(
�cl 

BV 

˜ A 

)
∗ B + ( −1 ) | ̃  A | ˜ A ∗

(
�cl 

BV 

B 

)
+ A ∗

(
�cl 

BV 

˜ B 

)
+ ( −1 ) | A | 

(
�cl 

BV 

A 

)
∗ ˜ B + 

(
�cl 

BV 

˜ A 

)
∗

(
�cl 

BV 

˜ B 

)
+ ( −1 ) | ̃  A | ˜ A ∗

(
�cl 

BV 

)2 
˜ B 

= A ∗ B + �cl 
BV 

(
˜ A ∗ B 

) + ( −1 ) | A | �cl 
BV 

(
A ∗ ˜ B 

) + �cl 
BV 

(
˜ A ∗

(
�cl 

BV 

˜ B 

))
= A ∗ B + �cl 

BV 

( · · · ) . (15) 

3 To obtain a theory with some interactions, we need to add some terms to �cl 
BV 

. 

4/19 
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Theorem 1. If M is compact and m 

2 > 0 , then 

H 

n 
(

Obs cl (M ) 
)

= 

{ 

C (n = 0) 
0 ( otherwise ) 

. (19) 

Pr oof . 

A := 

(
C 

∞ 

c (M ) −1 �cl 
BV −−→ C 

∞ 

c (M ) 0 
)

. (20) 

This is an isomorphism. Thus H 

∗(A ) = 0 , then H 

0 ( Sym (A )) = C and H 

n ≤−1 ( Sym (A )) = 0 . �

Theorem 2. If M = R and I ⊂ M is an interval, 

H 

n 
(

Obs cl (I ) 
)

= 

{ 

C [ q, p] (n = 0) 
0 ( otherwise ) 

. (21) 

Here q, p has degree 0. 

Pr oof . We show a quasi-isomorphism: 

A ∼ B (22) 

where 

A = 

(
C 

∞ 

c (I ) −1 �cl 
BV −−→ C 

∞ 

c (I ) 0 
)

, B = (0 → C 

2 ) . (23) 

C 

2 sits in degree 0 and we denote the basis of C 

2 as q, p. The cohomology of Sym (A ) and
Sym (B) are H 

∗( Obs cl (I )) and C [ q, p] respecti v ely. 
First of all, we will see the following commutati v e diagram: 

24

where π2 is defined as 

π2 (g) := q 

∫ 

I 
dx g( x ) φq ( x ) + p 

∫ 

I 
dx g( x ) φp ( x ) (25) 

for g ∈ C 

∞ 

c (I ) 0 . The definition of φq , φp ∈ C 

∞ ( R ) is as follows. In the case that m > 0 , we define
φq , φp ∈ C 

∞ ( R ) as 

φq ( x ) = 

1 

2 

( e mx + e −mx ) , φp ( x ) = 

1 

2 m 

( e mx − e −mx ) . (26) 

They form the kernel of −� + m 

2 . If m = 0 , we define 

φq (x ) = 1 , φp (x ) = x. (27) 

We note that φ′ 
p (x ) = φq (x ) . We can easily check that π2 (g) = 0 holds if g = �cl 

BV 

f � . 
Next, we will see H 

0 (A ) = H 

0 (B) . By definition, 

H 

0 ( A ) = 

C 

∞ 

c ( I ) 0 

im 

(
�cl 

BV 

) . (28) 

We will show that im (�cl 
BV 

) = ker (π2 ) . If it holds, H 

0 (A ) = H 

0 (B) . Obviously, 

im 

(
�cl 

BV 

)
⊂ ker (π2 ) . (29) 
5/19 
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Then we will check im (�cl 
BV 

) ⊃ ker (π2 ) . Take f ∈ ker (π2 ) . f satisfies ∫ 

I 
dx f (x ) e mx = 0 and 

∫ 

I 
dx f ( x ) e −mx = 0 ( for the massi v e case ) , ∫ 

I 
dx f (x ) x = 0 and 

∫ 

I 
dx f (x ) = 0 ( for the massless case ) , (30) 

because 
∫ 

I dx f ( x ) φp ( x ) = 0 and 

∫ 
I dx f ( x ) φq ( x ) = 0 . Let G ∈ C 

0 ( R ) be the Green’s function: 

G( x ) = 

1 

2 m 

e −m | x | ( for the massi v e case ) , 

G(x ) = −1 

2 

| x | ( for the massless case ) . (31) 

Then the convolution of f and G is 

( G · f )( x ) := 

∫ 

I 
dy G( x − y ) f ( y ) . (32) 

This is in C 

∞ 

c (I ) 0 because of Eq. ( 30 ). For (G · f ) � ∈ C 

∞ 

c (I ) −1 , 

f = �cl 
BV 

(G · f ) � . (33) 

Thus f ∈ im (�cl 
BV 

) , and im (�cl 
BV 

) ⊃ ker (π2 ) . 
Finally, we will see H 

−1 (A ) = H 

−1 (B) . Clearly H 

−1 (B) = 0 . Then let us think of 

H 

−1 (A ) = ker 
(
�cl 

BV 

)
. (34) 

This is trivial since there are no nontrivial solutions of 

(−� + m 

2 ) f = 0 (35) 

for f ∈ C 

∞ 

c (I ) . Then H 

−1 (A ) = H 

−1 (B) = 0 . �

Theorem 3. If M = R , then for any value of m 

H 

n 
(

Obs cl ( R ) 
)

= 

{ 

C [ q, p] (n = 0) 
0 ( otherwise ) 

. (36) 

Here q, p has degree 0. 

Pr oof . The proof of this is essentially the same as Theorem 2. �

Theorem 1 tells us that the state 〈−〉 can be gi v en as an isomorphism; i.e. the state 〈−〉 is
canonically determined. On the other hand, for the cases of Theorems 2 and 3, there is room to
choose the state 〈−〉 . Why is there such a difference? In the massi v e case, we have a reasonable
interpretation for this difference. 

In the case of the noncompact manifold M non , the boundary condition is necessary to com-
pute the path integral. If not, the scalar field � might di v erge on ∂ M non . Then the path integral
calculation fails. In order to compute the value of the path integral, we must choose a boundary
condition. Reflecting this, we must choose a map 〈−〉 : H 

0 
(

Obs cl (M non ) 
)

→ C . 

On the other hand, in the case of the compact manifold M com 

, the scalar field � ne v er di v erges
on ∂M com 

. Thus we can decide the value of the path integr al. Similar ly, we find the state 〈−〉
canonically. 

The above discussion is valid for the massi v e case. Howe v er, in the massless case, e v en for a
compact manifold, H 

0 
(

Obs cl (M com 

) 
)

is not isomorphic to C . In other words, we cannot decide

the expectation value naturally, though there is no � di v ergence on the boundary ∂M com 

. In
6/19 
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order to understand this, we have to see another factor to interrupt the path integral computa-
tion: IR diver g ence . We will propose a treatment of IR di v ergence in a forthcoming paper (M.
Kawahira, manuscript in preparation). 

2.4. Definition of position observable Q and momentum observable P 

We define a position observable Q as a function in C 

∞ 

c (I ) satisying ∫ 

I 
Q ( x ) φq ( x ) dx = 1 and Q (−x ) = Q (x ) . (37) 

By the second condition, we obtain 

∫ 
I Q ( x ) φp ( x ) dx = 0 . We define a momentum observable

as 

P := −Q 

′ ∈ C 

∞ 

c (I ) 0 . (38) 

Now we see why we call Q and P the position and momentum. If Q, P act on field � ∈ C 

∞ ( R ) ,
we get 

Q (�) = 

∫ 

I t 
Q (x )�(x ) dx, P (�) = 

∫ 

I t 
Q (x )�′ (x ) dx. (39) 

Especially in the massless case, Q (·) is a “smeared δ-function” because we have ∫ 

I 
Q (x ) dx = 1 and Q (−x ) = Q (x ) (40) 

by using φq = 1 . Hence, if we narrow the width of the interval, Q gets close to the δ-function,
and Q (�) and P (�) approach �(t) and �′ (t) . 

In the massi v e case, Q is also a kind of smeared δ-function. To see this, we remind ourselves
that 

φq ( x ) = 

1 

2 

( e mx + e −mx ) . (41) 

Then we have ∫ 

I 
δ( x ) φq ( x ) = 1 and δ(−x ) = δ(x ) . (42) 

Ther efor e, we also expect Q to get close to the δ-function in the massive case. 
Q and P have the following important property. 

Theorem 4. [ Q ] and [ P ] are the generators of H 

0 ( Obs cl ( R )) . 

Pr oof . We have already seen H 

0 ( Obs cl ( R )) = C [ q, p] in Theorem 3. Take 

Q + �cl 
BV 

X , P + �cl 
BV 

Y , (43) 

where X , Y ∈ Sym ( C 

∞ 

c ( R )) ∗ C 

∞ 

c ( R )) −1 . By π2 action, 

π2 

(
Q + �cl 

BV 

X 

)
= π2 (Q ) = q, (44) 

π2 

(
P + �cl 

BV 

Y 

)
= π2 (P ) = p. (45) 

We have used φ′ 
p (x ) = φq (x ) . �

2.5. Quantum derived observable space 

Definition 5. Quantum deri v ed observab le space Obs q (U ) is defined as 

Obs q (U ) := 

(
Sym 

(
C 

∞ 

c (U ) −1 ⊕ C 

∞ 

c (U ) 0 ⊕ C � 

)
, �

q 
BV 

= �cl 
BV 

+ � δ
)

(46) 
7/19 
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where �q 
BV 

= �cl 
BV 

+ � δ is a quantum Batalin–Vilkovisky operator and δ is defined in Defini-
tion 6. 

Note that C 

∞ 

c (U ) ∗ C = C 

∞ 

c (U ) ; we can rewrite this as a formal series of � : 

Obs q (U ) = 

( 

· · · ⊕
( 

2 ∧ 

C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
)

[ � ] 

) 

⊕
( 

C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
)

[ � ] 

) 

⊕Sym 

(
C 

∞ 

c (U ) 0 
)

[ � ] , �q 
BV 

) 

. (47) 

δ is a quantum correction and will be defined as a map from −n degree to −n + 1 degree: 

δ : 
n ∧ 

C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
) → 

n −1 ∧ 

C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
)
. (48) 

The definition of δ is slightly complicated. We thus take three steps. 

Definition 6. (1) For f � ∗ g ∈ C 

∞ 

c (U ) −1 ∗ C 

∞ 

c (U ) 0 , the quantum correction δ is defined as 

C 

∞ 

c (U ) −1 ∗ C 

∞ 

c (U ) 0 
δ−→ R ⊂ Sym ( C 

∞ 

c ( U ) 0 ) 

∈ ∈ 
f � ∗ g � −→ 

∫ 
U 

f ( x ) g( x ) dx 

(49) 

and thus δ has degree +1 . 
(2) For f � ∗ P ∈ C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
)
, it is sufficient to consider the n th term g 1 ∗ · · · ∗

g n of P : 

C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
) δ−→ Sym 

(
C 

∞ 

c (U ) 0 
)

∈ ∈ 

f � ∗ g 1 ∗ · · · ∗ g n � −→ 

∑ n 
i=1 g 1 ∗ · · · ∗ ̂ g i ∗ · · · ∗ g n ∗ δ( f � ∗ g i ) . 

(50) 

(3) For f � 1 ∗ · · · ∗ f � m 

∗ P ∈ 

∧ m C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
)
, ∧ m C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
) δ−→ 

∧ m −1 C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
)

∈ ∈ 

f � 1 ∗ · · · ∗ f � m 

∗ P � −→ 

∑ m 

i=1 f 
� 
1 ∗ · · · ∗ ̂ f � i ∗ · · · ∗ f � m 

∗ (−1) i−1 δ
(

f � i ∗ P 

)
. 

(51) 

δ is nilpotent 4 and anticommutes with �cl 
BV 

: 5 δ2 = 0 , �cl 
BV 

δ = −δ�cl 
BV 

. Then we have (
�

q 
BV 

)2 = 

(
�cl 

BV 

+ � δ
)(

δcl 
BV 

+ � δ
)

= 0 . (52) 
4 To check this, we use δ( f � ∗ δ( ˜ f � ∗ P )) = δ( ˜ f � ∗ δ( f � ∗ P )) . 
5 We can understand that this is because �cl 

BV 

and δ have degrees +1 . 
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This means that the following one is a chain complex. This is called the quantum Batalin–
V ilk ovisk y comple x : 

Obs q (U ) = 

( 

· · · �
q 
BV −−→ 

2 ∧ 

C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
)

[ � ] 

�
q 
BV −−→ C 

∞ 

c (U ) −1 ∗ Sym 

(
C 

∞ 

c (U ) 0 
)

[ � ] 

�
q 
BV −−→ Sym 

(
C 

∞ 

c (U ) 0 
)

[ � ] 

) 

. (53) 

Obs q (U ) does not have a Leibniz rule. Instead, we have the following theorem. 

Theorem 5. For A, B ∈ Obs q (U ) with some degree | A | , | B| , 
�

q 
BV 

(A ∗ B) = 

(
�

q 
BV 

A 

) ∗ B + (−1) | A | A ∗ (
�

q 
BV 

B 

) + (−1) | A | 
� { A, B} . (54) 

Here {−, −} is the antibracket, which is defined below. 6 By this theorem, H 

∗ (
Obs q (U ) 

)
does

NOT have a product ∗ in contrast to H 

∗
(

Obs cl (U ) 
)

. 

Definition 7. For f � ∈ C 

∞ 

c (U ) −1 , g ∈ C 

∞ 

c (U ) 0 , we define an antibracket: 

{ f � , g} := 

∫ 

U 

f ( x ) g( x ) dx ∈ R ⊂ Sym 

(
C 

∞ 

c (U ) 0 
)
. (55) 

For any A, B ∈ Obs cl , q (U ) with some definite degrees, we define an antibracket with the follow-
ing properties: 

� { A, B} = 0 if A, B ∈ C 

∞ 

c (U ) 0 or A, B ∈ C 

∞ 

c (U ) −1 

� { A, B} = −(−1) (| A | +1)(| B| +1) { B, A } 
� { A, B ∗ C} = { A, B} ∗ C + (−1) (| A | +1) | B| B ∗ { A, C} . 

Howe v er, in special situations we can define a product ∗ for quantum cohomology! Let A and
B have compact support in U 1 and U 2 respecti v ely and assume that U 1 and U 2 are disjoint open
subsets of U . Then 

{ A, B} U 

= 0 . (56) 

The subscript U denotes that this is computed in U . This is because the computation of { A, B} U 

reduces to the integrals ∫ 

U 

(U 1 -supported function ) × (U 2 -supported function ) = 0 . (57) 

Equation ( 56 ) means that we have a Leibniz rule for such A, B; thus we can define a product ∗

for them. 

6 This definition is motivated by the usual antibracket in the physics literature: 

{ a, b} := 

N ∑ 

i=1 

[ ( 

a 

← −
∂ 

∂x 

i 

) ( −→ 

∂ 

∂ x 

� i 
b 

) 

−
( 

a 

← −
∂ 

∂ x 

� i 

) ( −→ 

∂ 

∂x 

i 
b 

) ] 

where x 

i is bosonic and x 

� i is fermionic. 
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Theorem 6. Let U 1 and U 2 be disjoint open subsets of U . The quantum Batalin–V ilk ovisky coho-
mology has a product: 

H 

∗ (
Obs q (U 1 ) 

) × H 

∗ (
Obs q (U 2 ) 

) −→ H 

∗ (
Obs q (U ) 

)

∈ ∈ 

([ A ] U 1 , [ B] U 2 ) � −→ [ A ] U 1 ∗ [ B] U 2 = [ A ∗ B] U 

. 

(58) 

Here the [ · ] − subscript denotes that it is in H 

∗ (
Obs q (−) 

)
. This product is the same as the “op-

er ator pr oduct” in the physics liter atur e. 

The cohomology is a formal series of � ; hence the definition of a state changes slightly. 

Definition 8. A state 〈−〉 is a smooth map: 

〈−〉 : H 

0 (Obs q (M ) 
) → C [ � ] . (59) 

2.6. Weyl alg ebr a in a 1D system 

In the case of M = R , the quantum cohomology forms a Weyl algebra (the canonical commu-
ta tion rela tion). 

Theorem 7. If M = R , then for any value of m 

H 

n (Obs q ( R ) 
) = 

{ 

Weyl algebra (n = 0) 
0 ( otherwise ) 

. (60) 

The aim of this section is to explain what the gener ators of Weyl algebr a are. Roughly speak-
ing, the generators of Weyl algebra are � , [ Q ] , [ P ] . 7 Howe v er, this seems strange, because Q, P 

have the same support I = (−1 / 2 , 1 / 2) ; thus we cannot define the products of them. 
In order to take the products, we will define the modified position observable Q t and modified

momentum observable P t . 

Definition 9. The modified position and momentum observables Q t and P t are in C 

∞ 

c (I t ) , I t =
(−1 / 2 + t, 1 / 2 + t) . The definition of them is 

Q t (x ) := φp ( t) P t ( x ) − ˙ φp ( t) Q t ( x ) , 

P t (x ) := φq ( t) P t ( x ) − ˙ φq ( t) Q t ( x ) (61) 

where φq and φp are defined in Eq. (26) and Eq. (27), and Q t and P t are defined as 

Q t (x ) := Q (x − t) , P t (x ) := P (x − t) . (62) 

Modified observables have the following special property: 

Theorem 8. 
∂ 

∂t 
Q t (·) = �

q 
BV 

(
φp ( t) Q 

� 
t ( ·) 

)
, (63) 

∂ 

∂t 
P t (·) = �

q 
BV 

(
φq ( t) Q 

� 
t ( ·) 

)
. (64) 

We remind ourselves that Q = Q t=0 and P = P t=0 , then for any t

[ Q ] = [ Q t ] , [ P ] = [ P t ] . (65) 
7 The definition of Q and P is gi v en in Section 2.4 . 
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Pr oof . We compute ∂ 
∂t Q t (x ) . 

∂ 

∂t 
Q t (x ) = 

˙ φp ( t) P t ( x ) + φp ( t) 
∂ 

∂t 
P t ( x ) − φ̈p ( t) Q t ( x ) − ˙ φp ( t) 

∂ 

∂t 
Q t ( x ) 

= − ˙ φp ( t) 
∂ 

∂x 

Q ( x − t) − φp ( t) 
∂ 

∂t 
∂ 

∂x 

Q ( x − t) − φ̈p ( t) Q ( x − t) − ˙ φp ( t) 
∂ 

∂t 
Q ( x − t) 

= −φp ( t) 
∂ 

∂t 
∂ 

∂x 

Q ( x − t) − φ̈p ( t) Q ( x − t) 

= −φp ( t) 
∂ 

∂t 
∂ 

∂x 

Q ( x − t) − m 

2 φp ( t) Q ( x − t) 

= φp ( t) 
(

∂ 

∂x 

)2 

Q ( x − t) − m 

2 φp ( t) Q ( x − t) 

= 

[ (
∂ 

∂x 

)2 

− m 

2 

] 

φp ( t) Q ( x − t) 

= �
q 
BV 

(
φp ( t) Q 

� 
t ( x ) 

)
. (66) 

By similar calculations, we also obtain 

∂ 

∂t 
P t (x ) = �

q 
BV 

(
φq (t) Q 

� 
t (x ) 

)
. (67) 

�

The support of Q t and P t is I t = (−1 / 2 + t, 1 / 2 + t) . Ther efor e we can define the products
of them like 

[ Q t ] I t ∗ [ P s ] I s or [ Q t ∗ P s ] (| t − s | > 1) (68) 

where I t and I s denote being in H 

∗( Obs q (I t )) and H 

∗( Obs q (I s )) . Note that this product is inde-
pendent for the choice t and s because of Theorem 8. 

Theorem 9. We have the canonical commutation relation 

[ P t ∗ Q s ] − [ Q t ∗ P s ] = � [1] (s − t > 1) . (69) 

[ Q •] and [ P •] are the generators. Then H 

0 ( Obs q ( R )) is a Weyl algebra. 

Pr oof . It is enough to show that for some t > 1 

[ Q 0 ∗ (P −t − P t )] = � [1] . (70) 

Reminding ourselves that 
∂ 

∂t 
P t (x ) = �

q 
BV 

(
φq (t) Q 

� 
t (x ) 

)
(71) 

and integrating over [ t 1 , t 2 ] , we have 

P t 2 − P t 1 = �
q 
BV 

h 

� 
t 1 ,t 2 , (72) 

h 

� 
t 1 ,t 2 (x ) := 

∫ t 2 

t 1 
dt φq ( t) Q 

� 
t ( x ) ∈ C 

∞ 

c ( R ) −1 . (73) 

We have defined h t 1 ,t 2 (x ) := 

∫ t 2 
t 1 

dt φq (t) Q t (x ) ∈ C 

∞ 

c ( R ) 0 . 
Let us think of 

S t := Q 0 ∗ h 

� 
−t,t ∈ C 

∞ 

c ( R ) 0 ∗ C 

∞ 

c ( R ) −1 . (74) 
11/19 
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�
q 
BV 

act on it: 

�
q 
BV 

S t = Q 0 ∗
(
�

q 
BV 

h 

� 
−t,t 

) + � 

∫ 

R 

dx Q 0 ( x ) h −t,t ( x ) 

= Q 0 ∗ (P t − P −t ) + � 

∫ 

R 

d x 

∫ t 

−t 
d u Q 0 (x ) φq (u ) Q u (x ) 

= Q 0 ∗ (P t − P −t ) + � 

∫ 

R 

d x 

∫ t 

−t 
d u Q (x ) φq (u ) Q (x − u ) . (75) 

Ther efor e we will show that 

� 

∫ 

R 

d x 

∫ t 

−t 
d u Q ( x ) φq ( u ) Q ( x − u ) = � (76) 

for some t > 1 . 
Now we take a limit t → ∞ : 8 

�
q 
BV 

S ∞ 

= Q 0 ∗ (P ∞ 

− P −∞ 

) + � 

∫ 

R 

dx 

∫ 

R 

du Q ( x ) φq ( u ) Q ( x − u ) (77) 

Since Q is an e v en function, 

�
q 
BV 

S ∞ 

= Q 0 ∗ (P ∞ 

− P −∞ 

) + � 

∫ 

R 

dx 

∫ 

R 

du Q ( x ) φq ( u ) Q ( u − x ) . (78) 

By a change of variable, u → u + x , 

�
q 
BV 

S ∞ 

= Q 0 ∗ (P ∞ 

− P −∞ 

) + � 

∫ 

R 

dx 

∫ 

R 

du Q ( x ) φq ( u + x ) Q (u ) . (79) 

By the assumption, for m � = 0 , ∫ 

R 

dx Q ( x ) φq ( x ) = 

1 

2 

∫ 

R 

dx Q ( x )( e mx + e −mx ) = 1 (80) 

and Q is e v en; hence ∫ 

R 

d x Q (x ) e mx = 

∫ 

R 

d x Q (x ) e −mx = 1 . (81) 

The second term on the right-hand side of Eq. ( 79 ) is 

� 

∫ 

R 

dx 

∫ 

R 

du Q ( x ) φq ( u + x ) Q (u ) = 

� 

2 

∫ 

R 

d x 

∫ 

R 

d u Q ( x )( e m (x + u ) + e −m (x + u ) ) Q ( u ) 

= � . (82) 

We have used Eq. ( 81 ) for the last line. 
In the case of m = 0 , since φq = 1 , we can easily check that the second term on the right-hand

side of Eq. ( 79 ) is � . �

3. Construction of the topological operator 
3.1. Shift symmetry 

In the case of m = 0 , we have a shift symmetry 

� �→ � + α (α ∈ R ) (83) 

for the equation of motion �� = 0 . Reflecting this, P t must be conserved. This is true because
P t is conserved and in the massless case 

P t (x ) = φq (t) P t (x ) − ˙ φq (t) Q t (x ) = P t (x ) . (84) 

In other words, P t is the Noether charge. 
8 When u is sufficiently large, Q ( x ) Q ( x − u ) = 0 , then the integrand goes to zero. Ther efor e we can take 
the limit t → ∞ . 

12/19 



PTEP 2024 , 123B01 M. Kawahira 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/12/123B01/7875252 by guest on 07 M

arch 2025
3.2. Construction of the topological operator 
First of all, we will re vie w the usual construction of the topological operators. Let ˆ q and ˆ p be the
generators of Weyl algebra; i.e. they satisfy [ ̂  q , ˆ p ] = � . In the physics literature, the topological
operator of the shift symmetry is 9 

ˆ V α := exp (α ˆ p ) = 

∞ ∑ 

n =0 

1 

n ! 
(α ˆ p ) n . (85) 

Obviously we have 

ˆ q ̂

 V α = 

ˆ V α( ̂  q + α� ) ∵ ˆ q ̂  p 

n = ˆ p 

n ˆ q + n � ̂  p 

n −1 . (86) 

Then the nai v e construction of the topological operator in the Batalin–Vilkovisky formalism
is 

[ V α,t ] := 

∞ ∑ 

n =0 

1 

n ! 
αn [ P s 0 + t ∗ P s 1 + t ∗ · · · ∗ P s n + t ] , 

(s 1 − s 0 > 1 , s 2 − s 1 > 1 , · · · , s n − s n −1 > 1) . (87) 

The supports of I s 0 + t , I s 0 + t , · · · are disjoint. Hence each term of [ V α,t ] works well in terms of 
“topologicalness” and “action for Q 0 ”. 

� Topologicalness 
By using Theorem 8 and P t = P t , 

d 

dt 
[ P s 0 + t ∗ P s 1 + t ∗ · · · ∗ P s n + t ] = 0 . (88) 

� Action for Q 0 

Similar to Eq. ( 86 ), we have [
Q 0 ∗ P s 0 + t + ∗ P s 1 + t + ∗ · · · ∗ P s n + t + 

] = 

[
P s 0 + t − ∗ P s 1 + t − ∗ · · · ∗ P s n + t − ∗ Q 0 

]
+ n � 

[
P s 0 + t − ∗ P s 1 + t − ∗ · · · ∗ P s n −1 + t −

]
(89) 

where t + 

is sufficiently large and t − is sufficiently small. 

Howe v er, there is a problem. The support of V α is infinitely wide. This is not good for the
topological operator because we cannot define the action. 

Ther efor e we define the topological operator in another way. 10 

Definition 10. 

[ U α,t ] := 

∞ ∑ 

n =0 

1 

n ! 
αn [ P t ∗ P t ∗ · · · ∗ P t ︸ ︷︷ ︸ 

n 

] = 

∞ ∑ 

n =0 

1 

n ! 
αn [P 

∗n 
t 

]
. (90) 

U α,t obviously has the finite support I t . 

Instead of the finite support, we lost the clarity of the following properties: 

� Topologicalness [
d 

dt 
U α,t 

]
I t 

= 0 (91) 
9 We have no i in front of α ˆ p because the Weyl algebra is [ ̂  q , ˆ p ] = � . 
10 Obs q (U ) is made of Sym (C 

∞ 

c (U )) . If we take “Sym ” literally, Obs q (U ) has only polynomials. Hence 
U α,t is technically outside of the definition of Obs q (U ) . Howe v er, we take a completion implicitly as in 

footnote 1. It might make U α,t being in Obs q (U ) . 
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� Action for Q 0 

[ Q 0 ∗ U α,t ] = [ U α,s ∗ ( Q 0 + α� )] , ( t > 1 , −1 > s ) . (92) 

In the following sections, we will prove these properties. 

3.3. Proof of topologicalness 

Theorem 10. We have a topological operator U α,t . Thus [
d 

dt 
U α,t 

]
I t 

= 0 . (93) 

Pr oof . It is enough to show that 
d 

dt 

[
P 

∗n 
t 

]
I t 

= 0 . (94) 

We have 
d 

dt 
P 

∗n 
t = nP 

∗(n −1) 
t ∗ d 

dt 
P t , (95) 

d 

dt 
P t = �

q 
BV 

(
φq (t) Q 

� 
t 

) = �
q 
BV 

Q 

� 
t (96) 

since φq = 1 for the case of m = 0 . Then we obtain 

d 

dt 
P 

∗n 
t = nP 

∗(n −1) 
t ∗ �

q 
BV 

Q 

� 
t . (97) 

It is enough to show that 

�
q 
BV 

(
P 

∗(n −1) 
t ∗ Q 

� 
t 

)
= P 

∗(n −1) 
t ∗ �

q 
BV 

Q 

� 
t . (98) 

Howe v er, in fact, P 

∗(n −1) 
t ∈ Sym ( C 

∞ 

c ( I t ) 0 ) , Q 

� 
t ∈ C 

∞ 

c ( I t ) −1 , and then 

�
q 
BV 

(
P 

∗(n −1) 
t ∗ Q 

� 
t 

)
= P 

∗(n −1) 
t ∗ �

q 
BV 

Q 

� 
t + � δ

(
P 

∗(n −1) 
t ∗ Q 

� 
t 

)
. (99) 

Hence we need to see that δ(P 

∗(n −1) 
t ∗ Q 

� 
t ) vanishes: 

δ
(

P 

∗(n −1) 
t ∗ Q 

� 
t 

)
= (n − 1) P 

∗(n −2) 
t 

∫ 

R 

P t (x ) Q t (x ) dx. (100) 

We will see that 
∫ 
R 

P t (x ) Q t (x ) dx vanishes: ∫ 

R 

P t (x ) Q t (x ) dx = −
∫ 

R 

Q 

′ (x − t) Q (x − t) dx 

= −
∫ 

R 

Q 

′ ( x ) Q ( x ) dx 

= −1 

2 

∫ 

R 

∂ 

∂x 

( Q ( x ) Q ( x )) dx. (101) 

Q (x ) has compact support in I , so 

∫ 
R 

P t (x ) Q t (x ) dx = 0 . �

3.4. Proof of action for operators 

Theorem 11. Q 0 is a char g ed oper ator against U α,t : 

[ Q 0 ∗ U α,t ] = [ U α,s ∗ ( Q 0 + α� )] , ( t > 1 , −1 > s ) . (102) 

Pr oof . It is enough to show that [
Q 0 ∗

(
P 

∗n 
t − P 

∗n 
−t 

)] = n � 

[ 

P 

∗(n −1) 
0 

] 

(103) 
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for some t > 1 . We have obtained 

d 

dt 
P 

∗n 
t = n �

q 
BV 

(
P 

∗(n −1) 
t ∗ Q 

� 
t 

)
(104) 

in the proof of Theorem 10. Hence we have 

P 

∗n 
t 2 − P 

∗n 
t 1 = �

q 
BV 

H t 1 ,t 2 (n ) , 

H t 1 ,t 2 (n ) := n 

∫ t 2 

t 1 
du P 

∗(n −1) 
u ∗ Q 

� 
u . (105) 

By multiplication of Q 0 , 

Q 0 ∗
(
P 

∗n 
t − P 

∗n 
−t 

) = Q 0 ∗ �
q 
BV 

H −t,t (n ) . (106) 

We will show that the right-hand side is n � P 

∗(n −1) 
0 up to the cohomology. 

We know δ(P 

∗(n −1) 
u ∗ Q 

� 
u ) = 0 from the proof of Theorem 11; then we have 

�
q 
BV 

( Q 0 ∗ H −t,t ( n )) = Q 0 ∗ �
q 
BV 

( H −t,t ( n )) + � δ( Q 0 ∗ H −t,t ( n )) ; (107) 

thus it is enough to show that � δ(Q 0 ∗ H −t,t ) is equivalent to n � P 

∗(n −1) 
0 up to the cohomology. 

We compute � δ( Q 0 ∗ H −t,t ( n )) : 

� δ( Q 0 ∗ H −t,t ( n )) = n � 

∫ t 

−t 
du δ

(
Q 0 ∗ P 

∗(n −1) 
u ∗ Q 

� 
u 

)
= n � 

∫ t 

−t 
du 

(
δ
(
Q 0 ∗ Q 

� 
u 

)
P 

∗(n −1) 
u + Q 0 ∗ δ

(
P 

∗(n −1) 
u ∗ Q 

� 
u 

))
= n � 

∫ t 

−t 
du δ

(
Q 0 ∗ Q 

� 
u 

)
P 

∗(n −1) 
u 

= n � 

∫ t 

−t 
d u P 

∗(n −1) 
u 

∫ 

R 

d xQ 0 (x ) Q u (x ) 

= n � 

∫ t 

−t 
d u P 

∗(n −1) 
u 

∫ 

R 

d xQ ( x ) Q ( x − u ) . (108) 

Here we have used δ(P 

∗(n −1) 
u ∗ Q 

� 
u ) = 0 . Substituting P 

∗(n −1) 
u − P 

∗(n −1) 
c = �

q 
BV 

˜ H c,u (n − 1) , 

� δ( Q 0 ∗ H −t,t ( n )) = n � P 

∗(n −1) 
c 

∫ t 

−t 
d u 

∫ 

R 

d xQ ( x ) Q ( x − u ) 

+ n � 

∫ t 

−t 
du �

q 
BV 

˜ H c,u (n − 1) 
∫ 

R 

dxQ ( x ) Q ( x − u ) . (109) 

In the second term on the right-hand side, Q ( x ) Q ( x − u ) is just a number; 11 thus this term is
trivial in cohomology. It remains to be shown that ∫ t 

−t 
d u 

∫ 

R 

d xQ ( x ) Q ( x − u ) = 1 (110) 

for some t > 1 . When u is sufficiently large, Q ( x ) Q ( x − u ) → 0 . Ther efor e we can take a limit
t → ∞ : ∫ 

R 

d u 

∫ 

R 

d xQ ( x ) Q ( x − u ) = 

∫ 

R 

d u 

∫ 

R 

d xQ ( x ) Q ( u − x ) = 

∫ 

R 

d u 

∫ 

R 

d xQ ( x ) Q ( u ) = 1 . 

(111) 

�

11 These trivially act for the scalar field � ∈ C 

∞ ( R ) . 
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Theorem 12. P 0 has no char g e against U α,t : 

[ P 0 ∗ U α,t ] = [ U α,s ∗ P 0 ] , (t > 1 , −1 > s ) . (112) 

Pr oof . It is enough to show that [
P 0 ∗

(
P 

∗n 
t − P 

∗n 
−t 

)] = 0 (113) 

for some t > 1 . We already have 

P 

∗n 
t 2 − P 

∗n 
t 1 = �

q 
BV 

H t 1 ,t 2 , (114) 

H t 1 ,t 2 := n 

∫ t 2 

t 1 
du P 

∗(n −1) 
u ∗ Q 

� 
u . (115) 

By multiplication of P 0 , 

P 0 ∗
(
P 

∗n 
t 2 − P 

∗n 
t 1 

) = P 0 ∗ �
q 
BV 

H t 1 ,t 2 . (116) 

We will show that the right-hand side is zero up to the cohomology. 
Since 

�
q 
BV 

(P 0 ∗ H t 1 ,t 2 ) = P 0 ∗ �
q 
BV 

(H t 1 ,t 2 ) + � δ(P 0 ∗ H t 1 ,t 2 ) , (117) 

it is enough to show that � δ(P 0 ∗ H t 1 ,t 2 ) = 0 up to the cohomology. 
We compute � δ(P 0 ∗ H t 1 ,t 2 ) : 

� δ(P 0 ∗ H t 1 ,t 2 ) = � 

∫ t 

−t 
du δ

(
P 0 ∗ P 

∗(n −1) 
u ∗ Q 

� 
u 

)
= � 

∫ t 

−t 
du 

(
δ
(
P 0 ∗ Q 

� 
u 

)
P 

∗(n −1) 
u + P 0 ∗ δ

(
P 

∗(n −1) 
u ∗ Q 

� 
u 

))
= � 

∫ t 

−t 
du δ

(
P 0 ∗ Q 

� 
u 

)
P 

∗(n −1) 
u 

= � 

∫ t 

−t 
d u P 

∗(n −1) 
u 

∫ 

R 

d x P 0 (x ) Q u (x ) 

= � 

∫ t 

−t 
d u P 

∗(n −1) 
u 

∫ 

R 

d x Q 

′ ( x ) Q ( x − u ) . (118) 

Here we have used δ(P 

∗(n −1) 
u ∗ Q 

� 
u ) = 0 . Substituting P 

∗(n −1) 
u − P 

∗(n −1) 
c = �

q 
BV 

H c,u , 

� δ(P 0 ∗ H t 1 ,t 2 ) = P 

∗(n −1) 
c � 

∫ t 

−t 
d u 

∫ 

R 

d x Q 

′ ( x ) Q ( x − u ) 

+ � 

∫ t 

−t 
d u 

(
�

q 
BV 

H c,u 
) ∫ 

R 

d x Q 

′ ( x ) Q ( x − u ) . (119) 

In the second term on the right-hand side, Q 

′ ( x ) Q ( x − u ) is just a number; thus this term is
trivial in cohomology. It remains to be shown that ∫ t 

−t 
d u 

∫ 

R 

d xQ 

′ ( x ) Q ( x − u ) = 0 (120) 
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for some t > 1 . When u is sufficiently large, Q 

′ ( x ) Q ( x − u ) → 0 . Hence we can take a limit
t → ∞ : ∫ 

R 

d u 

∫ 

R 

d xQ 

′ ( x ) Q ( x − u ) = 

∫ 

R 

d u 

∫ 

R 

d xQ 

′ ( x ) Q ( u − x ) = 

∫ 

R 

d u 

∫ 

R 

d xQ 

′ ( x ) Q ( u ) = 0 . 

(121) 

�

4. Gauging and the compact scalar 
In this section, we will gi v e an application of the topological operator. Some discussion is not
established rigorously, but is physically natural. 

4.1. Z -gauging 

Topological operators have the advantage over Noether charge; thus we can define discrete
gauging . 12 This is because topological operators describe finite group transformations, while
Noether charges only describe infinitesimal transformations. Hence now we have a group action
like 

R � H 

∗( Obs q ( R )) . (122) 

The subgroup Z ⊂ R also acts as 

Z � H 

∗( Obs q ( R )) . (123) 

Hence we can define 13 

H 

∗( Obs q ( R )) 
Z 

. (124) 

The generators are 

� , [ Exp (±iQ ) ] , [ P ] (125) 

where Exp (•) := 

∑ 

n 
1 
n ! •∗n . They satisfy 

[ Exp (±iQ ) ∗ P −t ] − [ Exp (±iQ ) ∗ P t ] = [ Exp ( ±iQ )] ( t > 1) . (126) 

This is the same as [ ̂  p , e ±i ̂ q ] = � e ±i ̂ q in the usual notation. 

Definition 11. We saw the algebra generated by 

ˆ p , e i ̂ q , e −i ̂ q , � 1 (127) 

and satisfying 

[ ̂  p , e ±i ̂ q ] = � e ±i ̂ q . (128) 

We call this a periodic Weyl algebra. 

We can say 

H 

0 ( Obs q ( R )) 
Z 

∼= 

periodic Weyl algebra (129) 

similarly to Theorem 7. 
12 Mor e pr ecisely, we need to show the fusion rule, U αU β = U α+ β , to make the discussion of this sec- 
tion complete. 

13 In (pre)factorization algebra, it is better to consider a finite interval: I � H 

∗( Obs q (I )) / Z . 
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4.2. Compact scalar and θ-vacuum 

After Z -gauging, massless scalar theory becomes compact scalar theory, as explained in Refs.
[ 11 , 12 ]. In compact scalar theory, we have θ -degree. We can express θ as a θ -term or θ -vacuum.
Howe v er, implementation of the θ -term is difficult in this formalism, because it is based on an
equation of motion and the equation of motion does not have a θ -term. On the other hand,
implementing a θ -vacuum is relati v ely easy since a vacuum is just a map from the cohomology
to C [ � ] : 

H 

∗( Obs q ( R )) 
Z 

→ C [ � ] . (130) 

One way to gi v e a state is to think of a r epr esentation of H 

∗( Obs q ( R )) / Z . For simplicity, we
use e ±i ̂ q and ˆ p rather than [ Exp (±iQ )] and [ P ] . Take the eigenvector v p : 

ˆ p v p = pv p . (131) 

Then we find that p must be quantized. To see this, consider a vector e i ̂ q v p . This satisfies 

ˆ p (e i ̂ q v p ) = (p + � )(e i ̂ q v p ) . (132) 

Ther efor e e ±i ̂ q are ladder operators. The spectrum of ˆ p is 

λr ( ̂  p ) = { � (n + r ) | n ∈ Z , r ∈ R } , (133) 

which depends on r . Obviously the r + 1 -spectrum is equivalent to the r -spectrum. Physicists
denote r as θ/ 2 π . At θ = 0 and θ = π , we can see the Z 2 -symmetry of the spectrum: p �→ −p.
Hence the map ( 130 ) is gi v en by a trace: 

〈−〉 r = 

θ
2 π

: X �→ 

∑ 

p∈ λr ( ̂  p ) 

(v p , X v p ) . (134) 

We can see the θ -dependence in the state. 

5. Conclusion and discussion 

We have seen the construction of a topological operator U α,t . The point of the construction is
the order: first taking products ∗, then taking a cohomology [ ·] (we call this order A). If we take
re v ersed or der (we call this or der B), we hav e 

[ V α] := 

∞ ∑ 

n =0 

1 

n ! 
(iα) n [ P ] I s 0 ∗ [ P ] I s 1 ∗ · · · ∗ [ P ] I s n , 

(s 1 − s 0 > 1 , s 2 − s 1 > 1 , · · · , s n − s n −1 > 1) , (135) 

and it has infinitely wide support. Order A versus order B is similar to path integral formalism
versus operator formalism. In path integral formalism, we can formally think of multiplications
of operators like O 1 (�) O 2 (�) · · ·O n (�) because these are just c-numbers. On the other hand,
in operator formalism, in order to gi v e multiplica tions of opera tors, we need to get rid of UV
di v ergences like : O 1 O 2 · · ·O n : since they are q-numbers. In order A, observables O are just
c-numbers; thus we can freely take the products O 1 ∗ O 2 ∗ · · · ∗ O n . This is the same as path
integral formalism. Howe v er, in or der B, products of [ O] cannot be taken fr eely; ther efor e this
corresponds to operator formalism. In order to take products, the support of [ O 1 ] ∗ [ O 2 ] ∗ · · · ∗
[ O n ] need to be wider than the original support. This is a kind of UV di v ergence. 

In addition, we have seen the θ -dependence of the state 〈−〉 by r epr esentation theory. It is
interesting to construct the map in another way. For example, the state of the massi v e scalar
18/19 
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theory on M = R can be gi v en by the embedding 

f : C 

∞ 

c ( R ) ↪→ S( R ) (136) 

where S( R ) is a set of Schwartz functions on R . By considering Obs S := Sym ( S( R ) −1 →
S( R ) 0 ) , we obtain H 

0 ( Obs q S ( R ))) ∼= 

C [ � ] . Then f induces the state 

H 

0 ( Obs q ( R )) → H 

0 (Obs q S ( R ) 
) ∼= 

C [ � ] . (137) 

It is attracti v e to gi v e a state in a similar way in the case of the compact scalar. Howe v er, in or der
to achie v e this, we need a technique to remove the IR di v ergence because the compact scalar is
massless. Such a technique is discussed in our forthcoming paper (M. Kawahira, manuscript in
preparation). 

There is another way to consider the compact scalar theory. It is to focus on factorization
homology. The factorization algebra of the compact scalar is essentially a functor that assigns
a periodic Weyl algebra to each open subset. Hence, if we consider this system in S 

1 , the fac-
torization homology is the same as the Hochschild homology of the periodic Weyl algebra. To
extract the θ -information from the Hochschild homology is fascinating work. 
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