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Abstract

In this paper we review some recent developments in the understanding of the
supersymmetric quantum mechanics for large-N values of the extended supersym-
metries. A list of the topics here covered includes the new available classification
of the finite linear irreducible representations, the construction of manifestly off-
shell invariant actions without introducing a superfield formalism, the notion of
the “fusion algebra” of the irreducible representations, the connection (for N = 8)
with the octonionic structure constants, etc. The results presented are based on
the work of the author and his collaborators.

1. Introduction

The supersymmetric quantum mechanics is a more than twentyfive years
old topic [1] with fascinating mathematical (Morse theory, index theorems)
and physical (nuclear physics, condensed matter [2, 3]) applications. In the
recent years several groups have investigated, see e.g. [4, 5, 6, 7, 8, 9, 10,
11, 12], with different methods and focusing on various interrelated aspects,
one-dimensional large-N supersymmetric quantum mechanical systems (N
denotes the number of the extended supersymmetries). The main moti-
vation behind this activity is traced on the problem of understanding the
supersymmetric unification of the interactions. Indeed, the 11-dimensional
maximal supergravity (the low-energy limit of the conjectured M -theory),
when dimensionally reduced to D = 1, produces an N = 32 supersym-
metric quantum mechanical system. It seems unlikely that any progress
towards the understanding of the M -theory could be made if we do not
comprehend the features of its one-dimensional setting. An example for
all: the construction of an off-shell invariant action (in comparison with
the on-shell action). In this paper we review the results obtained by the
author and his collaborators in a very recent series of works [13, 14, 15, 16].
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They deal with very fundamental properties of the algebra of the super-
symmetric quantum mechanics and its representation theory. The list of
the topics here discussed includes, in order, the introduction of the algebra
of the one-dimensional N -extended supersymmetric quantum mechanic as
a fundamental mathematical structure allowing to “interpolate” between
Clifford and Grassmann algebras. Next, the finite linear irreducible repre-
sentations will be classified, both in terms of the dimensionality of the fields
(bosonic and fermionic) entering the irreducible multiplets, as well as the
graphical properties of the supersymmetry transformations. The results
will be applied to construct manifestly supersymmetric off-shell invariant
actions without introducing the superfield formalism. The N = 4 cases and
a non-trivial N = 8 example where the octonionic structure constants enter
the action as coupling constants will be presented. The fusion algebra of
the irreducible representations of the supersymmetric quantum mechanics
will be introduced and explicitly computed for N = 2. It contains infor-
mation concerning the construction of off-shell invariant actions. For what
concerns various other important aspects of the present activity on super-
symmetric quantum mechanis (for instance, the investigations concerning
its non-linear realizations) which are not covered here, reviews are available
(see e.g. [17, 18]).

2. The D = 1 N-extended supersymmetry algebra

The algebra of the one-dimensional N -extended supersymmetry (from now
on the “N -susy algebra”) is a Z2-graded algebra presenting a total number
of N odd generators Qi (i = 1, . . . , N) and a single even generator, a central
extension z. The N -susy algebra is defined by the (anti-)commutation
relations

{Qi, Qj} = δijz, [Qi, z] = 0. (1)

The central extension z plays an important role. In physics it is usually
denoted with “H” and called the hamiltonian.
The mathematical importance of the above algebra (which is, technically,
not a simple super-Lie algebra due to the presence of the central exten-
sion) can be understood by the following reasoning. In formulating for the
hamiltonian H an eigenvalue problem, we are led with two possibilities.
Either the eigenvalue is zero, in the case of a vacuum solution, or it is a
positive real number. In the first case we are reduced with the Grassmann
algebra, which is the enveloping algebra generated by the N generators θi
(i = 1, . . . , N) satisfying the relations

θiθj + θjθi = 0 (2)

for any i, j pair.
In the second case, for a fixed z > 0, after a suitable rescaling of the odd
generators Qi’s, we are led to the fundamental relation among the gener-
ators γi (i = 1, . . . , N) of the N -dimensional Euclidean Clifford algebra,
namely

γiγj + γjγi = 2δij1. (3)
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In a loose sense we can say that the supersymmetric quantum mechanics
interpolates between the Grassmann algebra and the Clifford algebra. The
above remark makes transparent the deep connection between the super-
symmetric quantum mechanics and the irreducible representations of the
Clifford algebra. It is not surprising that the linear finite irreducible repre-
sentation of the N -susy algebra are classified with the help of the Clifford
irreps. On the other hand, the N -susy irreps contain more information.
The hamiltonian H acts as a time-derivative(H ≡ i ddt). The finite linear
irreps of (1) consist of an equal finite number n of bosonic and fermionic
fields (depending on a single coordinate t, the time) upon which the super-
symmetry operators act linearly.
The time-derivative can now be used to introduce a grading, correspond-
ing to the mass-dimension, to the fields entering the irreps. This is the
crucial difference between irreps of the N -susy algebra and the Clifford ir-
reps. In [13] it was proven that all (1) irreps fall into classes of equivalence
determined by the irreps of an associated Clifford algebra. As one of the
corollaries, a relation between n (the total number of bosonic, or fermionic,
fields entering the irrep) and the value N of the extended supersymmetry
was established.
A dimensionality di = d1+ i−1

2 (d1 is an arbitrary constant) can be assigned
to the fields entering an irrep. The difference in dimensionality between a
given bosonic and a given fermionic field is a half-integer number. The
fields content of an irrep is the set of integers (n1, n2, . . . , nl) specifying
the number ni of fields of dimension di entering the irrep. Physically,
the nl fields of highest dimension are the auxiliary fields which transform
as a time-derivative under any supersymmetry generator. The maximal
value l (corresponding to the maximal dimensionality dl) is known as the
length of the irrep. Either n1, n3, . . . correspond to the bosonic fields (there-
fore n2, n4, . . . specify the fermionic fields) or viceversa. In both cases the
equality n1 + n3 + . . . = n2 + n4 + . . . = n is guaranteed. A multiplet
is bosonic (fermionic) if its n1 component fields of lower dimensions are
bosonic (fermionic). The representation theory does not discriminate the
overall bosonic or fermionic nature of the multiplet.

3. Irreducible representations: the classification based on
the fields-dimensions

There is a well-known relation between extended supersymmetries (for the
values N = 1, 2, 4, 8) and the division algebras of the real, complex, quater-
nionic and octonionic numbers.
For the one-dimensional supersymmetry this relation can be understood
in terms of the connection of the (1) N -susy algebra with the Clifford
algebras. Clifford algebras irreps are infact classified in terms of division
algebras [19, 20, 21] and, some of their specific properties, like the Bott’s 8
periodicity, are in consequence of the octonions. The finite linear irreps of
the (1) algebra are given by multiplets of fields discussed in the previous
section.
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A fundamental problem in the classification of the irreducible representa-
tions consists in determining, for any given N , the set of admissible ordered
integers

(n1, n2, n3, . . . , nl)

which correspond to irreducible multiplets with ni fields of dimension di.
An equivalence relation can be introduced s.t. all such multiplets specify
one and only one irrep in the given class [16].
This classification was presented in [14]. For N ≤ 10 the computations were
explicitly carried on. The admissible multiplets, for a given N , are recov-
ered from the “root multiplets” of type (n, n), which carry a representation
of the N -susy algebra expressed by the generators

Qi =
1√
2

(
0 σi

σ̃i ·H 0

)
, (4)

where the σi and σ̃i are matrices entering a Weyl type (i.e. block antidiag-
onal) irreducible representation of a D-dimensional (with D = N) Clifford
algebra relation

Γi =
(

0 σi
σ̃i 0

)
, {Γi,Γj} = 2δij . (5)

The Qi’s in (4) are supermatrices with vanishing bosonic and non-vanishing
fermionic blocks. The total number 2n of bosonic plus fermionic fields en-
tering a multiplet is given by the size of the corresponding gamma matrices.
The remaining multiplets, for l ≥ 3, are obtained through a “dressing pro-
cedure”, see [13], obtained by repeated applications of the transformations,

Qi �→ Q̂
(k)
i = S(k)QiS

(k)−1
(6)

realized by diagonal matrices S(k)’s (k = 1, . . . , 2n) with entries s(k)ij given
by

s(k)ij = δij(1− δjk + δjkH) . (7)

The “dressed” supersymmetric operators Q̂i have entries with integral pow-
ers of the hamiltonian H. On the other hand, only the regular dressed
operators, admitting no entries with poles 1

H , are genuine supersymmetry
operators, linearly acting on a finite multiplet of bosonic and fermionic
fields.
For irreps of the N -extended supersymmetry the total number of bosonic
(fermionic) fields is given by n, with N and n linked through

N = 8p+ q , n = 24pG(q) , (8)
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where p = 0, 1, 2, . . . and q = 1, 2, 3, 4, 5, 6, 7, 8. G(q) appearing in (8) is the
Radon-Hurwitz function [13]

q 1 2 3 4 5 6 7 8
G(q) 1 2 4 4 8 8 8 8 . (9)

Notice the appearance of the modulo 8 Bott’s periodicity.
We present now the [14] classification of the admissible multiplets. For any
N , all length-3 multiplets of the type (n−k, n, k) are an irrep of the N -susy.
On the other hand, length-4 irreps exist for N = 3, 5, 6, 7 and N ≥ 9, while
length-5 irreps are present starting from N ≥ 10.
Up to N = 8, the list of length-4 irreps is, e.g., given by the multiplets

N = 3 (1, 3, 3, 1)
N = 5 (1, 5, 7, 3), (3, 7, 5, 1), (1, 6, 7, 2), (2, 7, 6, 1), (2, 6, 6, 2), (1, 7, 7, 1)
N = 6 (1, 6, 7, 2), (2, 7, 6, 1), (2, 6, 6, 2), (1, 7, 7, 1)
N = 7 (1, 7, 7, 1)

(10)

For N = 9 there are 28 length-4 irreducible multiplets given by the set of
numbers

(h, 16 − k, 16− h, k),

with h, k constrained to satisfy

h+ k ≤ 8.

For N = 10 the length-4 irreducible multiplets are given by the set of values

(h, 32 − k, 32− h, k),

where the integers h, k are constrained to satisfy

h+ k + r ≤ 24,

with r given by

r = min(h, k).

The classification of the N = 10 length-5 irreps and the length-4 irreps of
the N = 11, 12 extended supersymmetries are found in [14].
Some properties of the classification of the irreps are easily recognized. For
instance, a dual multiplet specified by the “reversed” numbers
(nk, nk−1, . . . , n1) is an irreducible multiplet iff (n1, n2, . . . , nk) is an irrep.
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4. Irreducible representation: the classification of the differ-
ent connectivities of the supersymmetry transformations

Quite recently it has been pointed out in [11, 12] that certain irreps ad-
mitting the same field content can be regarded as inequivalent. These
results were obtained by analyzing the “connectivity properties” of certain
graphs associated to the irreps. A notion of equivalence class among irreps
(spotting their difference in “connectivity”) was introduced. In [12], two
examples were explicitly presented. They involved a pair of N = 6 irreps
with (6, 8, 2) fields content and a pair of N = 5 irreps with (6, 8, 2) fields
content. In [12] the classification of the irreps which differ by connectivity
was left as an open problem.
Using the technology developed in [14], in [15] the connectivity properties of
the N ≤ 8 irreps were classified. For length-3 irreps the connectivities can
be expressed by the ψg symbol defined below. Any given field of dimension
d is mapped, under a supersymmetry transformation, either

a) to a field of dimension d+ 1
2 belonging to the multiplet (or to its oppo-

site, the sign of the transformation being irrelevant for our purposes)
or,

b) to the time-derivative of a field of dimension d− 1
2 .

If the given field belongs to an irrep of the N -extended (1) supersymmetry
algebra, therefore k ≤ N of its transformations are of type a), while the
N − k remaining ones are of type b). Let us now specialize our discussion
to a length-3 irrep. Its fields content is given by (n1, n, n − n1), while the
set of its fields is expressed by (xi;ψj ; gk), with i = 1, . . . , n1, j = 1, . . . , n,
k = 1, . . . , n−n1. The xi’s are 0-dimensional fields (the ψj are 1

2 -dimensional
and the gk 1-dimensional fields, respectively). The connectivity associated
to the given multiplet is defined in terms of the ψg symbol. It encodes the
following information. The n 1

2 -dimensional fields ψj are partitioned in the
subsets of mr fields admitting kr supersymmetry transformations of type
a). We have

∑
rmr = n. Please notice that kr can take the 0 value. The

ψg symbol is expressed as

ψg ≡ m1k1 +m2k2 + . . . (11)

As an example, the N = 7 (6, 8, 2) multiplet admits connectivity
ψg = 62 + 21. It means that there are two types of fields ψj. 6 of them are
mapped, under supersymmetry transformations, in the two auxiliary fields
gk. The two remaining fields ψj are only mapped into a single auxiliary
field.
Please notice that an analogous symbol, xψ, can be introduced. It describes
the supersymmetry transformations of the xi fields into the ψj fields. This
symbol is, however, always trivial. An N -irrep with (n1, n, n − n1) fields
content always produce xψ ≡ n1N .
We report here the results of [15]. It was proven that the only values
of N ≤ 8 allowing the existence of multiplets with the same field con-
tent but inequivalent connectivities are N = 5 and N = 6. Moreover,
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the connectivity can be defined for multiplets of any length, however only
length-3 multiplets admit inequivalent connectivities (each given multiplet
of length-2 and length-4, for N ≤ 8, is connected in only one possible way).
The following table presents the admissible ψg symbols (connectivities) for
the N = 5 and N = 6 length-3 multiplets. We have

N = 6 N = 5
l = 3 ↙ ↘ ↙ ↘

N = 6A N = 6B N = 5A N = 5B

(7, 8, 1) 61 + 20 51 + 30

(6, 8, 2) 62 + 20 − 42 + 41 42 + 21 + 20 − 22 + 61

(5, 8, 3) 43 + 22 + 21 − 23 + 62 43 + 31 + 10 − 13 + 52 + 21

(4, 8, 4) 44 + 42 − 83 44 + 41 − 43 + 42

(3, 8, 5) 25 + 24 + 43 − 64 + 23 15 + 34 + 42 − 24 + 53 + 12

(2, 8, 6) 26 + 64 − 45 + 44 25 + 24 + 43 − 64 + 23

(1, 8, 7) 26 + 65 35 + 54

(12)

The (7, 8, 1) and (1, 8, 7) length-3 multiplets are connected in one possible
way only. In the remaining length-3 cases, the multiplets are connected in
two ways, specified by the ψg symbol. They are labeled with the subscript
A and B, respectively.
The above result provides the complete classification of the N ≤ 8 irreps
admitting inequivalent connectivities. The result is also interesting because
it produces a counterexample to the [12] claim that different connectivities
can be uniquely spotted by (for length-3 multiplets) two sets of three or-
dered numbers, S = [s1, s2, s3] and T = [t1, t2, t3], known as the “sources”
and “targets” respectively. The integer si gives the number of fields of di-
mension di = i−1

2 which do not result as an
a )-supersymmetry transformation of at least one field of dimension di− 1

2 .
The integer ti gives the number of fields of dimension di = i−1

2 which only
admit supersymmetry transformations of type b).
Sources and targets can be computed in terms of the ψg symbols of the
original (k, n, n − k) multiplet and its dually related (n − k, n, k) partner.
Sources and targets are given by the following tables. For N = 6 we have

N = 6 : connectivities sources targets
(6, 8, 2)A 62 + 20 S = [6, 0, 0] T = [0, 2, 2]
(6, 8, 2)B 42 + 41 S = [6, 0, 0] T = [0, 0, 2]
(5, 8, 3)A 43 + 22 + 21 S = [5, 0, 0] T = [0, 0, 3]
(5, 8, 3)B 23 + 62 S = [5, 0, 0] T = [0, 0, 3]
(4, 8, 4)A 44 + 42 S = [4, 0, 0] T = [0, 0, 4]
(4, 8, 4)B 83 S = [4, 0, 0] T = [0, 0, 4]
(3, 8, 5)A 25 + 24 + 43 S = [3, 0, 0] T = [0, 0, 5]
(3, 8, 5)B 64 + 23 S = [3, 0, 0] T = [0, 0, 5]
(2, 8, 6)A 26 + 64 S = [2, 2, 0] T = [0, 0, 6]
(2, 8, 6)B 45 + 44 S = [2, 0, 0] T = [0, 0, 6]

(13)
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For N = 5 we have

N = 5 : connectivities sources targets
(6, 8, 2)A 42 + 21 + 20 S = [6, 0, 0] T = [0, 2, 2]
(6, 8, 2)B 22 + 61 S = [6, 0, 0] T = [0, 0, 2]
(5, 8, 3)A 43 + 31 + 10 S = [5, 0, 0] T = [0, 1, 3]
(5, 8, 3)B 13 + 52 + 21 S = [5, 0, 0] T = [0, 0, 3]
(4, 8, 4)A 44 + 41 S = [4, 0, 0] T = [0, 0, 4]
(4, 8, 4)B 43 + 42 S = [4, 0, 0] T = [0, 0, 4]
(3, 8, 5)A 15 + 34 + 42 S = [3, 1, 0] T = [0, 0, 5]
(3, 8, 5)B 24 + 53 + 12 S = [3, 0, 0] T = [0, 0, 5]
(2, 8, 6)A 25 + 24 + 43 S = [2, 2, 0] T = [0, 0, 6]
(2, 8, 6)B 64 + 23 S = [2, 0, 0] T = [0, 0, 6]

(14)

The following irreps differ by connectivity, while admitting the same num-
ber of sources and targets:

N = 6 : (3, 8, 5)A ←→ (3, 8, 5)B
N = 6 : (4, 8, 4)A ←→ (4, 8, 4)B
N = 6 : (5, 8, 3)A ←→ (5, 8, 3)B
N = 5 : (4, 8, 4)A ←→ (4, 8, 4)B .

(15)

It is useful to explicitly present the supersymmetry transformations (de-
pending on the εi global fermionic parameters) in at least one case. We
write below the unique pair of N = 5 irreps (the (4, 8, 4)A and the (4, 8, 4)B
multiplets) differing by connectivity, while admitting the same number of
sources and the same number of targets.
The supersymmetry transformations are given by
i) The N = 5 (4, 8, 4)A transformations:

δx1 = ε2ψ3 + ε4ψ5 + ε3ψ6 + ε1ψ7 + ε5ψ8

δx2 = ε2ψ4 + ε3ψ5 − ε4ψ6 − ε5ψ7 + ε1ψ8

δx3 = −ε2ψ1 − ε1ψ5 − ε5ψ6 + ε4ψ7 + ε3ψ8

δx4 = −ε2ψ2 + ε5ψ5 − ε1ψ6 + ε3ψ7 − ε4ψ8

δψ1 = −iε2ẋ3 − ε4g1 − ε3g2 − ε1g3 − ε5g4
δψ2 = −iε2ẋ4 − ε3g1 + ε4g2 + ε5g3 − ε1g4
δψ3 = iε2ẋ1 + ε1g1 + ε5g2 − ε4g3 − ε3g4
δψ4 = iε2ẋ2 − ε5g1 + ε1g2 − ε3g3 + ε4g4 (16)
δψ5 = iε4ẋ1 + iε3ẋ2 − iε1ẋ3 + iε5ẋ4 + ε2g3
δψ6 = iε3ẋ1 − iε4ẋ2 − iε5ẋ3 − iε1ẋ4 + ε2g4
δψ7 = iε1ẋ1 − iε5ẋ2 + iε4ẋ3 + iε3ẋ4 − ε2g1
δψ8 = iε5ẋ1 + iε1ẋ2 + iε3ẋ3 − iε4ẋ4 − ε2g2
δg1 = −iε4ψ̇1 − iε3ψ̇2 + iε1ψ̇3 − iε5ψ̇4 − iε2ψ̇7

δg2 = −iε3ψ̇1 + iε4ψ̇2 + iε5ψ̇3 + iε1ψ̇4 − iε2ψ̇8



N-Extended Supersymmetric Quantum Mechanics 371

δg3 = −iε1ψ̇1 + iε5ψ̇2 − iε4ψ̇3 − iε3ψ̇4 + iε2ψ̇5

δg4 = −iε5ψ̇1 − iε1ψ̇2 − iε3ψ̇3 + iε4ψ̇4 + iε2ψ̇6

ii) The N = 5 (4, 8, 4)B transformations:

δx1 = ε5ψ2 + ε2ψ3 + ε4ψ5 + ε3ψ6 + ε1ψ7

δx2 = −ε5ψ1 + ε2ψ4 + ε3ψ5 − ε4ψ6 + ε1ψ8

δx3 = −ε2ψ1 − ε5ψ4 − ε1ψ5 + ε4ψ7 + ε3ψ8

δx4 = −ε2ψ2 + ε5ψ3 − ε1ψ6 + ε3ψ7 − ε4ψ8

δψ1 = −iε5ẋ2 − iε2ẋ3 − ε4g1 − ε3g2 − ε1g3
δψ2 = iε5ẋ1 − iε2ẋ4 − ε3g1 + ε4g2 − ε1g4
δψ3 = iε2ẋ1 + iε5ẋ4 + ε1g1 − ε4g3 − ε3g4
δψ4 = iε2ẋ2 − iε5ẋ3 + ε1g2 − ε3g3 + ε4g4
δψ5 = iε4ẋ1 + iε3ẋ2 − iε1ẋ3 − ε5g2 + ε2g3 (17)
δψ6 = iε3ẋ1 − iε4ẋ2 − iε1ẋ4 + ε5g1 + ε2g4
δψ7 = iε1ẋ1 + iε4ẋ3 + iε3ẋ4 − ε2g1 + ε5g4
δψ8 = iε1ẋ2 + iε3ẋ3 − iε4ẋ4 − ε2g2 − ε5g3
δg1 = −iε4ψ̇1 − iε3ψ̇2 + iε1ψ̇3 + iε5ψ̇6 − iε2ψ̇7

δg2 = −iε3ψ̇1 + iε4ψ̇2 + iε1ψ̇4 − iε5ψ̇5 − iε2ψ̇8

δg3 = −iε1ψ̇1 − iε4ψ̇3 − iε3ψ̇4 + iε2ψ̇5 − iε5ψ̇8

δg4 = −iε1ψ̇2 − iε3ψ̇3 + iε4ψ̇4 + iε2ψ̇6 + iε5ψ̇7 .

5. The N = 4 off-shell invariant actions

We show here how to use the knowledge of the irreducible representations of
the supersymmetry in order to produce manifestly off-shell invariant actions
without introducing the superfield formalism. We discuss the N = 4 case,
because in this case the lagrangians entering the off-shell invariant actions
have the correct d = 2 mass-dimension of a kinetic term. We remember that
N = 4 admits four irreps, given by the (4, 4), (3, 4, 1), (2, 4, 2) and (1, 4, 3)
multiplets. The lowest-dimensional fields are assumed to have 0 dimension.
They correspond, physically, to coordinates of a target manifold whose
dimension is given, respectively, by 4, 3, 2 and 1.
We construct the associated invariants using the fact that the supersymme-
try generators Qi’s act as graded Leibniz derivatives. Manifestly invariant
actions S of the N -extended supersymmetry can be obtained by expressing
them as

S =
∫
dt (Q1 · . . . ·QNf(x1, x2, . . . , xk)) (18)

with the supersymmetry transformations applied to an arbitrary function of
the 0-dimensional fields xi’s, i = 1, . . . , k entering an irreducible multiplet.
It is only for N = 4 that the manifestly supersymmetric lagrangian density
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has the correct dimension of a kinetic term (the supersymmetry generators,
the “square roots” of the hamiltonian, have mass-dimension d = 1

2).
The k variables xi’s can be regarded as a coordinates of a k-dimensional
manifold. The corresponding actions can therefore be seen as N = 4 su-
persymmetric one-dimensional sigma models evolving in a k-dimensional
target manifold. For each N = 4 irrep we get the following results. In all
cases below the arbitrary α(xi) function is given by α = ∇f(xi). We get
i) The N = 4 (4, 4) case:

Qi(x, xj ;ψ,ψj) = (−ψi, δijψ − εijkψk; ẋi,−δij ẋ+ εijkẋk)
Q4(x, xj ;ψ,ψj) = (ψ,ψj ; ẋ, ẋj) .

(19)

The most general invariant lagrangian L of dimension d = 2 is given by

L = α(
x)[ẋ2 + ẋ2
j − ψψ̇ − ψjψ̇j ] + ∂xα[ψψj ẋj − 1

2
εijkψiψj ẋk]

+ ∂lα[ψlψẋ+ ψlψj ẋj +
1
2
εljkψjψkẋ− εljkψj ẋkψ]

− ∇α1
6
εljkψψlψkψk . (20)

ii) The N = 4 (3, 4, 1) case:

Qi(xj ;ψ,ψj ; g) = (δijψ − εijkψk; ẋi;−δijg + εijkẋk;−ψ̇i)
Q4(xj ;ψ,ψj ; gj) = (ψj ; g, ẋj ; ψ̇) .

(21)

The most general invariant lagrangian L of dimension d = 2 is given by

L = α(
x)[ẋ2
j + g2 − ψψ̇ − ψjψ̇j ] + ∂iα[εijk(ψψj ẋk +

1
2
gψjψk)

− gψψi + ψiψj ẋj]− ∇α6 εijkψψiψjψk . (22)

iii) The N = 4 (2, 4, 2) case:

Q1(x, y;ψ0, ψ1, ψ2, ψ3; g, h) = (ψ0, ψ3; ẋ,−g, h,−ẏ;−ψ̇1, ψ̇2)

Q2(x, y;ψ0, ψ1, ψ2, ψ3; g, h) = (ψ3, ψ0; ẏ,−h,−g, ẋ;−ψ̇2,−ψ̇1)

Q3(x, y;ψ0, ψ1, ψ2, ψ3; g, h) = (−ψ2, ψ1;h, ẏ − ẋ,−g;−ψ̇3, ψ̇0)

Q4(x, y;ψ0, ψ1ψ2, ψ3; g, h) = (ψ1, ψ2; g, ẋ, ẏ, h; ψ̇0, ψ̇3) .

(23)

The most general invariant lagrangian L of dimension d = 2 is given by

L = α(x, y)[ẋ2 + ẏ2 + g2 + h2 − ψψ̇ − ψjψ̇j ]
+ ∂xα[ẏ(ψ1ψ2 − ψ0ψ3) + g(ψ2ψ3 − ψ0ψ1) + h(ψ1ψ3 + ψ0ψ2)]
+ ∂yα[−ẋ(ψ1ψ2 − ψ0ψ3)− g(ψ1ψ3 + ψ0ψ2) + h(ψ2ψ3 − ψ0ψ1)]
− ∇αψ0ψ1ψ2ψ3 . (24)
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iv) The N = 4 (1, 4, 3) case:

Qi(x;ψ,ψj , gj) = (−ψi; gi,−δij ẋ+ εijkgk; δijψ̇ − εijkψ̇k),
Q4(x;ψ,ψj ; gj) = (ψ; ẋ, gj ; ψ̇j) .

(25)

The most general invariant lagrangian L of dimension d = 2 is given by

L = α(x)[ẋ2 − ψψ̇ − ψiψ̇i + gi
2] (26)

+ α′(x)[ψgiψi − 1
2
εijkgiψjψk]− α′′(x)

6
[εijkψψiψjψk] .

6. An example of an N = 8 off-shell invariant action

The N = 4 invariant actions for the (4, 4), (3, 4, 1), (1, 4, 3) multiplets
presented in the previous section are expressed in terms of the δij and εijk
quaternionic tensors. This is of course a consequence of the relation between
N = 4 supersymmetry and quaternions. This information allows us to
construct N = 8 off-shell invariant actions by exploiting the connection
with the octonions. Indeed, according to [14], the N = 8 supersymmetry is
produced from the lifting of the Cl(0, 7) Clifford algebra to Cl(9, 0). On the
other hand, it is well-known [22], that the seven 8×8 antisymmetric gamma
matrices of Cl(0, 7) can be recovered by the left-action of the imaginary
octonions on the octonionic space. As a result, the entries of the seven
antisymmetric gamma-matrices of Cl(0, 7) (and, as a consequence, of the
N = 8 supersymmetry transformations) can be expressed in terms of the
totally antisymmetric octonionic structure constants Cijk’s which generalize
the quaternionic εijk antisymmetric tensors. The non-vanishing Cijk’s are
given by

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1. (27)

and are associated with the seven lines of the Fano’s projective plane, the
smallest example of a finite projective geometry, see [23]. A strategy can
be adopted to construct N = 8 off-shell invariant actions. We illustrate
it in the simplest example, the N = 8 (1, 8, 7) multiplet, admitting seven
auxiliary fields. This multiplet preserves the octonionic structure since the
seven auxiliary fields are related to the seven imaginary octonions. The
supersymmetry transformations are given by

Qi(x;ψ,ψj , gj) = (−ψi; gi,−δij ẋ+ Cijkgk; δijψ̇ − Cijkψ̇k),
Q8(x;ψ,ψj ; gj) = (ψ; ẋ, gj ; ψ̇j)

(28)

for i, j, k = 1, . . . , 7. We construct the most generalN = 8 off-shell invariant
action with the dimension of a kinetic term for the (1, 8, 7) multiplet by
requiring an octonionic covariantization principle. When restricted to an
N = 4 subalgebra, the invariant action should have the form of the N = 4
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(1, 4, 3) action (26). This restriction can be done in seven inequivalent
ways (the seven lines of the Fano’s plane). The general N = 8 action
should be expressed in terms of the octonionic structure constants. With
respect to (26), an extra-term could in principle be present. It is given by∫
dtβ(x)Cijklψiψjψkψl, where Cijkl is the octonionic tensor of rank 4

Cijkl =
1
6
εijklmnpCmnp (29)

(εijklmnp is the seven-indices totally antisymmetric tensor). Please notice
that the rank-4 tensor is obviously vanishing when restricting to the quater-
nionic subspace. The term

∫
dtβ(x)Cijklψiψjψkψl breaks the N = 8 super-

symmetries and cannot enter the invariant action. For what concerns the
other terms, starting from the general action (with i, j, k = 1, . . . , 7)

S =
∫
dt{α(x)[ẋ2 − ψψ̇ − ψiψ̇i + gi

2]

+ α′(x)[ψgiψi − 1
2
Cijkgiψjψk]− α′′(x)

6
[Cijkψψiψjψk]} (30)

it is easily proven that the invariance under the Qi generator (i = 1, . . . 7)
is broken by terms which, after integration by parts, contain at least a
second derivative α′′. The full N = 8 invariance (the invariance under Q8

is automatically guaranteed) requires imposing the constraint α′′(x) = 0.
Therefore α is a linear function in x (we recall that α is unconstrained for
the corresponding N = 4 case). The most general N = 8 off-shell invariant
action of the (1, 8, 7) multiplet is given by

S=
∫
dt{(ax + b)[ẋ2 − ψψ̇ − ψiψ̇i + gi

2] + a[ψgiψi − 1
2
Cijkgiψjψk]} . (31)

It is quite remarkable that the octonionic structure constants enter the
N = 8 invariant actions as coupling constants. It is worth pointing out
that the non-associativity of the octonions plays no role here. The su-
persymmetry transformations are ordinary (associative) transformations,
the octonionic structure constants expressing the non-vanishing entries of
ordinary matrices.

7. The fusion algebra of the irreps

The notion of fusion algebra of the supersymmetric vacua of theN -extended
one dimensional supersymmetry was introduced in [14]. The fusion algebra
encodes information concerning the decomposition into irreps of the tensor
products of irreps. This information can be relevant in constructing mul-
tilinear invariants; we recall in fact that in any given multiplet the field(s)
with highest dimension is mapped, under the supersymmetry transforma-
tions, into the time-derivative of a lower-dimensional field. Its integral can
furnish an invariant term of the action.
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The fusion algebras can also be nicely presented in terms of their associated
graphs, see [18]. The tensoring of two zero-energy vacuum-state irreps (ir-
reps associated with the zero energy eigenvalue of the hamiltonian operator
H) can be symbolically written as

[i]× [j] = Nij
k[k] , (32)

where Nij
k are non-negative integers specifying the decomposition of the

tensored-products irreps into its irreducible constituents. The Nij
k integers

satisfy a fusion algebra with the following properties :
1) Constraint on the total number of component fields,

∀ i, j
∑
k

Nij
k = 2n , (33)

where n is the number of bosonic (fermionic) fields in the given irreps.
2) The symmetry property

Nij
k = Nji

k . (34)

3) The associativity condition,

[i]× ([j] × [k]) = ([i]× [j]) × [k] (35)

which implies the commutativity of the (Ni)kj ≡ Nk
ij fusion matrices.

In a graphical presentation of the fusion algebra the irreps correspond to
points. Nk

ij oriented lines (with arrows) connect the [j] and the [k] irrep
if the decomposition [i] × [j] = Nij

k[k] holds. The arrows are dropped
from the lines if the [j] and [k] irreps can be interchanged. The [i] irrep
should correspond to a generator of the fusion algebra. This means that
the whole set of Nl = Nlj

k fusion matrices is produced as sum of powers of
the Ni = Nij

k fusion matrix.
It is particularly instructive to present explicitly the N = 2 case. It admits
four irreps (if we discriminate their statistics, bosonic or fermionic), given
by

[1] ≡ (2, 2)Bos; [2] ≡ (1, 2, 1)Bos ; [3] ≡ (2, 2)Fer ; [4] ≡ (1, 2, 1)Fer (36)

The corresponding N = 2 fusion algebra is realized in terms of four 4× 4,
mutually commuting, matrices given by

N1 =

⎛
⎜⎝

1 2 1 0
0 2 0 2
1 0 1 2
0 2 0 2

⎞
⎟⎠ ≡ X ; N2 = N4 =

⎛
⎜⎝

0 2 0 2
0 2 0 2
0 2 0 2
0 2 0 2

⎞
⎟⎠ ≡ Y ;

N3 =

⎛
⎜⎝

1 0 1 2
0 2 0 2
1 2 1 0
0 2 0 2

⎞
⎟⎠ ≡ Z.

(37)
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The fusion algebra admits three distinct elements, X,Y,Z and one gener-
ator (we can choose either X or Z), due to the relations

Y =
1
8

(X3 − 2X) , Z = −1
4

(X3 − 6X2 + 4X). (38)

The vector space spanned by X,Y,Z is closed under multiplication

X2 = Z2 = ZX = X + 2Y + Z,

XY = Y 2 = Y Z = 4Y. (39)

This fusion algebra corresponds to the “smiling face” graph of [18].

8. Conclusions

The supersymmetric quantum mechanics is a fascinating subject with sev-
eral open problems. The potentially most interesting one concerns perhaps
the construction of off-shell invariant actions whose lagrangians have the
correct dimensions of a kinetic term, for large values of N (let’s say N > 8).
These types of actions could provide some hints towards an off-shell formu-
lation of higher-dimensional supergravity and M -theory. We recall that, up
to now, no one-dimensional sigma model with non-trivial action (namely,
possessing a non-constant background metric) was found for N > 8. Even
for N ≤ 8 the program of classifying the whole set of off-shell invariant
actions for each given irreducible multiplet has not been completed yet. A
large class of N = 8 off-shell actions was produced in [6]. However, the
action of the N = 8 (1, 8, 7) model here discussed was not contained in
that list.
To complete this program could be particularly valuable in the light of the
recent results (discussed in Section 4) concerning the different connectivi-
ties of some N = 5 and N = 6 irreducible multiplets. Indeed, multiplets
presenting fields with different mass-dimensions have an obvious physical
meaning. The number of 0-dimensional bosonic fields corresponds to the
dimensionality of the target manifold of the one-dimensional sigma models.
It would be interesting to understand the possible physical implications of
the multiplets with same content of fields of given dimension which, never-
theless, differ in connectivity. The N = 5 and N = 6 cases which present
these features have not been studied in the literature yet. The manifestly
supersymmetric “linear approach” of constructing off-shell invariants, that
we outlined in Section 6, looks promising in addressing this problem.
It should be mentioned that the classification of the irreducible multiplets of
the one-dimensional N -extended supersymmetry finds application not only
in the construction of the off-shell invariant actions of the one-dimensional
supersymmetric quantum mechanics, but also in the two-dimensional su-
persymmetric quantum mechanical models (because we can decompose the
problem in terms of the light-cone coordinates).
We conclude by pointing out that the supersymmetric quantum mechanics
presents several interesting open questions which have still to be clarified.
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One of the most puzzling concerns the similarities shared by both linear
and non-linear representations of the N -extended one-dimensional super-
symmetry algebra.
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