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We compute the transition rate of an Unruh-DeWitt detector coupled both to a ground state and to a 
KMS state of a massless, conformally coupled scalar field on a static BTZ black hole with Robin boundary 
conditions. We observe that, although the anti-Hawking effect is manifest for the ground state, this is not 
the case for the KMS state. In addition, we show that our analysis applies with minor modifications also 
to the anti-Unruh effect on Rindler-AdS3 spacetime.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Particle detectors are a valuable theoretical tool to probe the state of a quantum field. Particularly noteworthy is the one known as 
Unruh-DeWitt detector, which is modeled as an idealized atom with a two-level energy system interacting with a free real scalar field 
by means of a monopole coupling [1,2]. Thanks to its versatility, in the past years it has been used in several contexts, especially in 
connection to the analysis of the Unruh effect and of Hawking radiation, see e.g. [3–6]. As explained in detail in these references, the 
fundamental quantity of interest in this model is the probability of a transition between the energy eigenstates, which is computed at first 
order in perturbation theory.

Recently, it has been shown that Unruh-DeWitt detectors can measure apparently counter-intuitive effects dubbed “anti-Unruh effect” 
and “anti-Hawking effect” [7–9]. The standard reasoning is that a non-inertial observer perceives a vacuum state as a thermal bath with 
temperature proportional to its acceleration. One could expect that this implies that also the response of a detector interacting with this 
state is proportional to the detector proper acceleration. In general, this is not the case. When a detector “clicks less at positions of 
higher temperature”, we call it anti-Unruh or anti-Hawking effect, depending on the specific underlying scenario. The existence of these 
phenomena is deduced by analyzing the transition rate of the Unruh-DeWitt detector, which, in turn, depends critically on the two-point 
correlation function of the underlying matter field.

In this paper we study the emergence of the above-mentioned phenomena by considering an Unruh-DeWitt detector traveling on static 
trajectories on a BTZ black hole, and on its universal cover, Rindler-AdS3, interacting with both a ground state and a KMS state of a real, 
massless, conformally coupled scalar field. These correspond, respectively, to the Boulware and Hartle-Hawking-Israel states in the exterior 
region (r > rh). Yet, since the underlying spacetimes are asymptotically AdS, contrary to globally hyperbolic spacetimes, the construction of 
a ground as well as that of a KMS state at fixed temperature is not unique. One needs to specify boundary conditions for the underlying 
field which affect drastically the form of the two-point function. In particular, we are interested in considering boundary conditions of 
Robin type and we discuss them following a procedure which has been thoroughly investigated in [10–14]—see also [15,16], for related 
analyses.
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Fig. 1. Rindler-AdS3 spacetime and its static trajectories highlighted in the corresponding region on the conformal diagram of AdS3.

Our results expand previous works on BTZ spacetime by considering and comparing the two different states and by including more 
general boundary conditions [3,7]. Hence, on the one hand, we are able to extend the results of [7,8] to all boundary conditions of Robin 
type. On the other hand, we observe that neither the anti-Unruh nor the anti-Hawking effect is manifest for the KMS states.

First, in Section 2, we outline the geometry of the spacetimes considered. In Section 3, we describe how to obtain the two-point 
functions and write an explicit expression for the transition rate. The numerical analyses and main results are in Section 4.

2. Geometric data

In this work we consider two distinguished solutions of vacuum Einstein’s equations with a negative cosmological constant � nor-
malized to −1, namely a static BTZ black hole [17] and its universal cover, Rindler-AdS3 spacetime (or wedge) [18]. Their associated line 
element reads

ds2 = −(r2 − r2
h)dt2 + (r2 − r2

h)−1dr2 + r2dθ2, (1)

where t ∈ R while rh > 0 is a constant which, in the case of BTZ spacetime, encodes the information of the black hole mass M = r2
h . In 

addition, r ∈ (rh, ∞) and θ runs over the whole real line on the Rindler-AdS3 background, while θ ∈ [0, 2π) in the case of a BTZ black hole. 
Focusing on the Rindler-AdS3 wedge, notice that the surface r = rh is an observer dependent acceleration horizon seen by supercritically 
accelerated observers with proper acceleration a = r(r2 − r2

h)−1/2 > 1. Their trajectories correspond to complete integral lines of the Killing 
field ∂t , see Fig. 1.

The Killing vector ξ = ∂t generates a bifurcate Killing horizon at r = rh and accordingly, we define the local Hawking temperature as

T H := κh

2π
√|g00| , (2)

where κh = rh is the surface gravity computed at the horizon. The Hawking temperature as per Equation (2) is defined so to take into 
account time-dilations effects introduced by the r-dependence of g00. As a consequence, it diverges at the horizon and it vanishes at 
infinity. This is in sharp contrast with the counterpart in asymptotically flat black hole spacetimes which tends to a finite quantity 
at infinity. At the same time, it does coincide with the effective Unruh temperature obtained by the global embedding on a higher-
dimensional flat spacetime procedure, that is: T H = 1

2π

√
a2 − 1, with a defined as before [19,20].

3. The transition rate

In this section we consider an Unruh-DeWitt detector either on Rindler-AdS3 or on a static BTZ spacetime following static trajectories 
parametrized by their proper time τ and at fixed spatial coordinates x. Observe that, from Equation (1), one can infer dτ =

√
r2 − r2

hdt . 
The detector interacts with a real, massless, conformally coupled scalar field. Following the standard theory, see e.g. [3,5,21], in the infinite 
interaction time limit, the instantaneous transition rate can be evaluated as the Fourier transform of the pull-back along the detector 
trajectory of the two-point function ω2(τ , x, τ ′, x′) of the underlying field. In other words, recalling that the underlying spacetime is static 
and that the detector lies at fixed spatial coordinate, x = x′ , the transition rate reads:

Ḟ =
∫
R

dse−i
sω2(s), (3)

where s = τ − τ ′ while ω2(s) is the above-mentioned pull-back of the two-point function of the underlying field. In the following, we find 
an explicit form for ω2 both for a ground and for a KMS state. Although we are interested both in Rindler-AdS3 and BTZ spacetimes, we 
shall mainly focus on the latter. Since the procedure is almost identical in both scenarios, we focus on one highlighting only the necessary 
differences to translate our results to the other case.
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Let � : M →R be a real scalar field where M is either Rindler-AdS3 or a static BTZ spacetime. The dynamics is ruled by(
� − 3

4

)
� = 0, (4)

where � is the D’Alembert wave operator built out of Equation (1). We consider solutions to (4) that can be written as linear combinations 
of separable solutions:

�(t, r, θ) =
∫

σ (
1)

dμ(�)

∫
R

e−iωtei�θ Rω,�(r), (5)

where 
1 ≡ − ∂2

∂θ2 is the one-dimensional Laplacian whose eigenfunctions are ei�θ . If the underlying spacetime is Rindler-AdS3, � runs 
over the real line and 

∫
σ(
1)

dμ(�) = ∫
R d�, while on BTZ, � is integer valued and 

∫
σ(
1)

dμ(�) = ∑
�∈Z

. Inserting Equation (5) in Equation 

(4) it turns out that the remaining unknown is a solution of{
(r2 − r2

h)∂2
r +

(
3r − r2

h

r

)
∂r − �2

r2
+ ω2

(r2 − r2
h)

− 3

4

}
Rω,�(r) = 0. (6)

In order to solve Equation (6), it is convenient to introduce the coordinate z = r2−r2
h

r2 ∈ (0, 1) and, using Frobenius method to infer the 
behavior of Rω,�(r) close to the endpoints z = 0, 1, we set

Rω,�(z) = zα(1 − z)
3
4 vω,�(z), (7)

where α = i ω
2rh

. The function vω,�(z) is in turn a solution of the hypergeometric differential equation

z(1 − z)
d2 v

dz2
+ (c − (a + b − 1)z))

dv

dz
− abv = 0, (8)

where we have dropped, for simplicity of notation, the subscripts ω, � and where, setting ϒ�
.= i �

2rh
,

a = α + 3

4
+ ϒ�, (9a)

b = α + 3

4
− ϒ�, (9b)

c = 1 + 2α. (9c)

A reader who is comparing the above construction with the existing literature should keep in mind that we are adopting slightly different 
conventions in comparison with [22]. As discussed thoroughly in [22], a criterion to select a specific solution of Equation (8) consists of 
assigning a boundary condition of Robin type at z = 1, following the general theory of Sturm-Liouville ordinary differential equations, cf.
[23].
In other words, we consider

Rω,�,γ (z) = zα(1 − z)
3
4
(

cos(γ )v1(1)(z) + sin(γ )v2(1)(z)
)
, (10a)

where

v1(1) = F (a,b;a + b + 1 − c;1 − z), (10b)

v2(1) = (1 − z)c−a−b F (c − a, c − b; c − a − b + 1;1 − z). (10c)

In Equation (10a), γ is a parameter which codifies the Robin boundary condition assigned at the endpoint z = 1 and here, we allow 

γ ∈ [0, γc) where γc = arctan

(
− 1

2

∣∣∣�(1/4+ϒ�)
�(3/4+ϒ�)

∣∣∣2
)

∈ (
π
2 ,π

)
. Observe that one discards values of γ greater than γc since they entail the 

existence of bound state modes in the two-point function, a scenario whose physical relevance is still under investigation. In addition, 
notice that γ = 0 and γ = π

2 correspond respectively to Dirichlet and Neumann boundary conditions.
As studied in detail in [13,22] for the case of a BTZ spacetime, considerations from spectral theory allow us to start from Equation 

(10a) to construct both the two-point function for the ground state and for a KMS state at inverse-temperature β = 2π/rh . The same 
procedure used in these papers applies slavishly to the case of Rindler-AdS3 spacetime changing accordingly the behavior of the angular 
component of the two-point function. Hence we can limit ourselves to report the final result, namely

ω2,0(x, x′) = lim
ε→0+

∫
σ (
1)

dμ�

2π

∫
R

dω�(ω)e−iω(t−t′−iε)N�Rω,�,γ (z)Rω,�,γ (z′)ei�(θ−θ ′), (11)

ω2,T H
(x, x′) = lim

ε→0+

∫
σ (
1)

dμ�

2π

∫
R

dω�(ω)

[
eω/T H e−iω(t−t′−iε) + e+iω(t−t′+iε)

eω/T H − 1

]
N�Rω,�,γ (z)Rω,�,γ (z′)ei�(θ−θ ′). (12)

Here � is the Heaviside function, while N� is a normalization constant:
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Fig. 2. � = 0 contribution to the transition rate for the ground state as a function of the Hawking temperature for rh = 1, 
 = −0.1 and different boundary conditions; from 
top to bottom, respectively, γ = (0.50, 0.47, 0.40, 0.25, 0)π .

N� = 1

iπ

(AB − AB)

|A sin(γ ) − B cos(γ )|2 , (13)

where the coefficients A and B are given by:

A = �(c)�(c − a − b)

�(c − a)�(c − b)
, (14a)

B = �(c)�(a + b − c)

�(a)�(b)
. (14b)

Starting from Equations (11) and (12), we obtain the transition rate as per Equation (3) for an Unruh-DeWitt detector with energy gap 

 and following a static trajectory x(τ ) = (τ , zD, θD) where the subscript D indicates that (zD , θD) are the fixed spatial coordinates of the 
detector. With reference to the ground state, we obtain, for 
 < 0:

Ḟ0 =
∫

σ (
1)

dμ�

2π
N�Rω,�,γ (zD)2

∣∣∣
ω=−√|g00|
, (15)

while, for the KMS state at inverse-temperature β = 2π/rh , we end up with

ḞT H = sign(
)

esign(
)ω/T H − 1

∣∣∣
ω=+√|g00||
|Ḟ0. (16)

4. Numerical analysis

In this section we state the main results of this paper based on the numerical analyses performed on the transition rate for both the 
ground state and the KMS state on both Rindler-AdS3 and BTZ spacetimes. First, we study the � = 0 contribution to the transition rate as 
a function of Hawking temperature, since zD(T H) = (1 + 4π2T 2

H)−1. Secondly, since the transition rate is given by an infinite sum in �, we 
analyze the behavior with respect to the truncation order, dubbed �max .

Notice that all plots are normalized with respect to its own maximum value. The numerical analysis summarized here is available at 
[24].

4.1. The detector response as a function of Hawking temperature

Since the only difference between Rindler-AdS3 and the static BTZ case at the level of two-point function lies in the angular coordinate, 
the � = 0 term of the detector response with respect to the Hawking temperature is the same in both cases. In other words, the outcomes 
presented in Figs. 2 and 3 are valid for both Rindler-AdS3 and for a static BTZ spacetime.

Approaching the AdS3 boundary, namely as

r → ∞ ≡ z → 1 ≡ T H → 0,

for both states, the transition rate goes to zero for all boundary conditions. The detector response when coupled to the KMS state is 
compatible with the behavior of the Hawking temperature. As one can infer by direct inspection, both are increasing towards the horizon 
and diverging there, as T H → ∞, which is not the case for the ground state.

Figs. 2 and 3 show an interesting unexpected behavior regarding the contrast between the response of the detector when coupled to 
the ground state and when coupled to the KMS state. The anti-Unruh effect or anti-Hawking effect occurs when the derivative of the 
transition rate with respect to T H assumes negative values. It is worth emphasizing that T H is not the temperature of the Boulware-like 
ground state, but rather the temperature of the KMS state at the corresponding locus. As it emerges from Fig. 2, we observe that, when 
coupled to the ground state, for the � = 0 mode, the anti-Unruh effect is manifest for all boundary conditions. On the other hand, when 
interacting with the KMS state, as in Fig. 3, for the � = 0 mode, the detector responds with a monotonically increasing transition rate 
towards the horizon.
4
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Fig. 3. � = 0 contribution to the transition rate for the KMS state as a function of the Hawking temperature for rh = 1, 
 = −0.1 and different boundary conditions; from top 
to bottom, respectively, γ = (0.50, 0.47, 0.40, 0.25, 0)π .

Fig. 4. Transition rate for the ground state summed over the natural numbers up to �max at several temperatures for rh = 1, 
 = −0.1 and Dirichlet boundary condition, from 
top to bottom in the zoom plot T H = (1, 5, 10, 20, 50, 100). It indicates that the transition rate converges to a monotonically increasing function of temperature.

Fig. 5. Transition rate for the ground state summed over the natural numbers up to �max at several temperatures for rh = 1, 
 = −0.1 and Neumann boundary condition, 
from top to bottom T H = (1, 5, 10, 20, 50, 100). The curves are manifestly separated, and curves of smaller temperatures remain higher than curves of higher temperatures.

In Fig. 2, we notice that the effect is distinctly manifest for Neumann boundary condition, while it is almost imperceptible for Dirichlet 
boundary condition. For this reason, in the next section we include the analysis of the �-sum focusing on these two cases. However, 
the behavior with respect to the �-sum does not affect much the behavior of the transition rate for the KMS states, in the sense that it 
continues to be a monotonically increasing function with respect to T H .

We can draw the following conclusion. While, for the ground state, the results, already known in the literature, do extend to Robin 
boundary conditions, neither the anti-Unruh effect on Rindler-AdS3 nor the anti-Hawking effect on a static BTZ black hole is observed by 
a detector interacting with the KMS state. Since KMS states are natural candidates to be used when describing thermal effects, this result 
encourages future investigations regarding the relation between the effects and KMS states.

4.2. With respect to the �-sum

The scenario rh = 1 Our analysis strongly suggests that both the anti-Unruh effect and the anti-Hawking effect are still manifest after 
performing the �-sum for an horizon lying at rh = 1 and Neumann boundary condition. For Dirichlet boundary condition, on the contrary, 
we observe that the effects could be cancelled by performing the �-sum. To illustrate this, we have included Figs. 4 and 5 showing the 
transition rate seen as a function of the number of �-terms which are summed (�max).
5
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Fig. 6. Transition rate for the ground state summed over the natural numbers up to �max at several temperatures for rh = 0.1, 
 = −0.1 and Dirichlet boundary condition, 
from top to bottom T H = (1, 5, 10, 20, 50, 100).

Fig. 7. Logarithmic plot of the � = 1 term of the transition rate as a function of the BTZ mass for the ground state with 
 = −0.1, γ = 0, zD = 0.5, normalized with respect 
to the � = 0 term.

Note that the figures above show only the discrete sum over the natural numbers. However, including the negative integers �-terms 
for the BTZ case or numerically integrating the transition rate over real numbers for the Rindler-AdS3 case, does not alter the conclusion.

The scenario rh = 0.1 For sufficiently small rh , such as rh = 0.1, the � = 0 term becomes by far the dominant one. The numerical analysis 
firmly indicates that for all boundary conditions the anti-Hawking effect is still manifest on a static BTZ black hole. We obtain plots 
analogous to Fig. 5 for both boundary conditions, such as Fig. 6, which also shows a fast convergence with respect to the �-sum.

Fig. 7 shows the logarithmic behavior of the transition rate for the � = 1 term normalized with respect to the � = 0 term for some 
values of rh . Since its normalized, the plot holds for both the ground state and the KMS state. The aim is to illustrate that, on a BTZ 
spacetime, for smaller values of rh , the term � = 0 dominates.

5. Conclusions

Our main results are the following. We confirm and we extend to all boundary conditions of Robin type the results existing in literature 
concerning the anti-Unruh and the anti-Hawking effect for the ground state of a real, massless, conformally coupled scalar field either on 
Rindler-AdS3 or on a BTZ spacetime. In addition, we show that neither the anti-Unruh nor the anti-Hawking effects are manifest for the 
KMS states considered.

The results we obtained concerning the ground state on Rindler-AdS3 and on a static BTZ black hole are compatible with the results of 
[7], where it was shown that for the ground state of the massless conformally coupled scalar field on the three-dimensional AdS spacetime, 
an Unruh-DeWitt detector following Rindler trajectories, seeing a horizon at rh = 1, would experience the anti-Unruh effect for Neumann 
boundary condition, but not for Dirichlet or transparent boundary conditions. On a static BTZ spacetime, with a sufficiently small black 
hole mass, the anti-Hawking effect would be manifest for all three of these boundary conditions. Nevertheless, the framework invoked 
here considers more general boundary conditions and it allows to extend the analysis also to the case of massive arbitrarily coupled real 
scalar fields.
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