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Abstract

The aim of this thesis is to study the effects of fluctuation and dissipation
dynamics in Early Universe cosmology. The formal description of the Early
Universe relies on cosmological fields that, in general, are not completely isolated
from and, therefore, interact with their environment. These interactions might
lead to two non-negligible effects. Fluctuations, acting as stochastic forces,
tend to perturb the motion of the field. In addition, some fraction of the
energy is transferred from the field to other degrees of freedom, corresponding
to dissipation. We are interested in three situations where fluctuation and

dissipation dynamics plays a significant role for cosmology.

After a brief review of the prevailing model of cosmology, the Standard Big Bang
Model, we study the formation of embedded defects. This particular realization
of topological defects is not stable by construction. While considering one of
the simplest examples, the pion string, we show that the interactions with a
thermal and dense medium might, in some circumstances, provide a stabilization

mechanism.

We then turn our interest to the warm realization of inflation. Ideas borrowed
from the renormalization group are applied to warm inflation in order to
define universality classes among the different models of inflation. Beyond
the identification of universality, this approach is well-suited for an analytical
treatment of warm inflation and helps in the characterization of the possible

smooth transition to the radiation-dominated regime.

Finally, we extend the Kramers problem to quantum field theory. In the presence
of fluctuation and dissipation dynamics, there is a non-vanishing probability for
a field initially located at a minimum of its potential to escape from the well. We
define and derive the escape rate for a scalar field, due to thermal fluctuations,

and discuss the applications for cosmology.
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Lay Summary

Fluctuation and dissipation dynamics is a common phenomenon in physics. One
of the simplest illustrations appears in Brownian motion, which describes, for
example, the random motion of a particle suspended in a liquid or a gas. The
interactions between the particle and its surrounding, the fluid, generate two
competing effects. Fluctuations, acting as random forces, perturb the motion of
the particle. In addition, a damping leads to the dissipation of a fraction of the
particle energy. Such phenomena are ubiquitous in physics. Problems described
by Brownian motion, or related fluctuation and dissipation dynamics, appear in

subject areas ranging from condensed matter to astrophysics.

In the present work, we are interested in the consequences of fluctuation and
dissipation dynamics in Early Universe cosmology. The formal description of the
Early Universe is based on cosmological fields. In general, a field is not entirely
isolated from and, therefore, interacts with its environment, which can lead to
fluctuation and dissipation dynamics. Despite its prevalence in the subject of
cosmology, the influence of this dynamics has not been extensively studied so
far. We are particularly interested in three situations where fluctuation and
dissipation dynamics plays a significant role : phase transition and formation of

topological defects, warm inflation, and in the escape problem.
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Chapter 1

Introduction

Over the last decades, the observational developments brought cosmology to the
level of an experimentally testable science. The experimental results together with
the theoretical framework of the Standard Big Bang Model (SBBM), developed
since the formulation of general relativity (GR), gave birth to the current model
for our Universe, the ACDM. This parametrization corresponds to a flat universe
in which the energy is dominated by a cosmological constant A and where matter
is principally in the form of cold dark matter (CDM). The successes of this
relatively simple model, the main assumptions being isotropy and homogeneity
of space on large scales, are remarkable. The model predicts the abundance
of most of the light elements, such as hydrogen or helium, the formation of the
cosmic microwave background (CMB) and its blackbody spectrum, the large-scale
structure of the distribution of the galaxies and the current acceleration of the
expansion. Moreover, these predictions concern different stages in the Universe’s
history and, therefore, increase the confidence on the model. The inclusion of
an early phase of accelerated expansion, the period of inflation, allows explaining
further the anisotropies observed in the temperature of the photons in the CMB
and the origin of the flatness of the space. The theory of inflation also provides
a mechanism for the formation of structures. The ACDM including a period of

inflation is therefore a very strong cosmological model.

The Standard Big Bang Model is mostly based on two ingredients, on one side
general relativity and, on the other, the Standard Model (SM) of particle physics.
The SM describes the elementary particles and the fundamental interactions

between them. The theoretical formulation of the SM has been achieved by



the mid-seventies and its experimental tests continue until today, in particular,
with the Large Hadron Collider (LHC). The list of the experimental successes
of the SM is long, to cite a few, the discovery of the quarks or the existence of
the neutral-current interaction. One prediction, today experimentally confirmed,
has a particular importance for cosmology, the existence of the Higgs boson. The
Higgs field has been introduced to generate the masses of the bosons using the
Higgs mechanism. The particle has been searched for by experimentalists for
years until finally observed at the LHC in 2012. It was the first evidence of
an elementary scalar field and, also, confirmed the existence of the electroweak
phase transition. It is well-known that scalar fields might play a significant role
in cosmology. For example, the most common realization of inflation is obtained
with one or several scalar fields. A dynamical realization of dark energy arises
in a similar process called quintessence. The presence of phase transitions in the
Universe’s history might drastically alter cosmology, in particular, if topological
defects are produced. Cosmic strings are the main candidate among them to play
a role in the Early Universe and are precisely obtained with a complex scalar field

in a phase transition.

Since the presence of scalar fields is needed in cosmology, but, at the same
time, they can lead to disastrous effects, it is crucial to have a clear theoretical
understanding of them. In this thesis, we are particularly interested in fluctuation
and dissipation dynamics. The context is the following. A scalar field is likely
not an isolated object and, therefore, interacts with other degrees of freedom,
for example gauge fields. The result of these interactions on the evolution of the
scalar field is taken into account by an effective action. There are, in general, two
competing effects appearing in the equation of motion and altering the dynamics.
On one hand, the interactions lead to a transfer of energy of the scalar field into
the other degrees of freedom. This process corresponds to dissipation and appears
as a damping term in the equation of motion. On the other hand, the motion of
the field is perturbed by fluctuations coming from the same interactions. These
forces usually have a stochastic origin. In general, these two effects give rise to the
theory of fluctuation-dissipation dynamics and lead to significant consequences
that cannot be simply ignored. Fluctuation and dissipation are two effects of the
interactions between the scalar field and other degrees of freedom. This common
origin implies that the two processes must be related. This is encoded in the
fluctuation-dissipation theorem and appears in different contexts in physics, from

condensed matter to cosmology.



Fluctuation and dissipation dynamics originates from the Brownian motion of
particles. In the nineteenth century, R. Brown, a Scottish botanist studying
fertilization processes, observed microscopic particles inside a grain of pollen. He
was the first to describe precisely their irregular and random motion. Brownian
motion is commonly expected to appear for microscopic particles suspended in a
liquid or a gas. Its origin was at first an enigma for physicists. The observation
that the rapidity of the motion increases with the temperature was pointing
toward a thermal origin of the molecular motion. Such ideas led to the formulation
of the kinetic theory of gases by J. C. Maxwell, L. Boltzmann and R. Clausius,
where the temperature of a gas is related to the kinetic energy of the particles.
Shortly after the publication of the kinetic gas theory, the first main discovery
on fluctuation and dissipation dynamics was made by A. Einstein in his study of

the Brownian motion.

In 1905, Einstein published a quantitative analysis of the Brownian motion [3].
In this work, he reconciled thermodynamics, that takes into account a large
number of particles, with Newtonian mechanics, describing the motion of a single
particle. Using the kinetic theory of gases and statistical methods, Einstein
derived the mean square displacement of the individual molecules. He proved
that the fluctuation of the velocity of the Brownian motion is related to the
mobility, defined as the inverse of the damping coefficient. This is encoded in the
Einstein relation D = pukgT, where D is the diffusion coefficient, x4 the mobility,
kp the Boltzmann constant and 7' the temperature. The Einstein relation is one
of the first examples of a relation between fluctuation and dissipation. This work
of Einstein was a milestone in the history of physics. Beyond considerations on
fluctuation-dissipation, this article provided a mathematical evidence to support
the existence of the atoms, a way to estimate the Avogadro’s number and

confidence on the validity of statistical physics.

The theoretical formulation of the Brownian motion has been achieved shortly
after by P. Langevin in 1909 [4]. He amended the equation of motion for the
particle, given by Newton’s second law, with the addition of a dissipation term
and a random force, to take into account the two effects arising from the collisions
with the particles in the fluid. The motion of the Brownian particle is described

by the Langevin equation

mG +nq+V'(q) = £(t) (1.1)

where ¢(t) is the position of the particle as function of time, m the mass, n the



damping coefficient or the inverse of the mobility, V(¢) an external potential
and £(t) an external random force. In the simplest scenario, the random force is
expected to follow Gaussian statistics, the average values given by (£(¢)) = 0 and
the autocorrelation function (£(¢)&(t')) = Q(t — t'), with Q being the strength
of the fluctuation. The validity of the Langevin equation is ensured if the mass
m is larger than the masses of the particles in the fluid and if the timescales
of interest are much longer than the typical time between two collisions. Due
to the presence of stochastic forces, the Langevin equation is not deterministic
and cannot be derived from a Lagrangian or a Hamiltonian. This stochastic
nature drastically limits the analytical power of the equation and, in practice, it
is useful to describe Brownian motion with quantities amenable to a deterministic

approach.

Considering N copies of the system described by the Langevin equation intro-
duced in the previous paragraph, the stochastic noise gives a random velocity
to the particle in each of the realizations. Moreover, the Gaussian form of the
noise must be imprinted on the distribution of the velocities. Instead of having N
copies of the system, it is equivalent to be interested in the probability to obtain
a certain velocity in a single system. This is the idea behind the Fokker-Planck
description of Brownian motion. The transition probability P(q,v,t | qo,vo,to)
corresponds to the probability for a particle, initially at position gy with velocity
vg and subject to random forces, to be found later at position ¢ with velocity
v. This probability is given by the Fokker-Planck equation [5 [6], which in our

simple scenarid] reads

) o 10 , Q o

The Fokker-Planck equation is a linear second-order differential equation and,
therefore, deterministic. The solutions of the equation give the distribution
functions for the quantities of interest. This formalism is also well-suited to study
the approach to equilibrium. In the long time limit, the probability distribution
does not depend either on the initial position and velocity or on time. Such
a time-independent distribution always formally exists. A comparison with the
canonical distribution gives the relation 2 = 2nkgT" which is another formulation

of the Einstein relation in terms of the strength of the noise and the damping.

I This special form of the Fokker-Planck equation is sometimes referred as the Klein-Kramers,
Kramers or Smoluchowski equation.
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At a classical level, the Brownian motion is well-described by the Langevin
and the Fokker-Planck equations. Troubles arise when considering quantum
dissipative systems. The origin of the difficulties lies on the impossibility to write
a Lagrangian or a Hamiltonian giving rise immediately to the Langevin equation.
This deadlock forbids, a priori, a quantization with standard methods. Several
solutions have been proposed, and they mainly go along two directions [7]. One
possibility is the definition of a new quantization scheme. However, this approach
is tedious since it requires some model-dependent hypotheses. The other direction
corresponds to the system-plus-reservoir models. A dissipative system is not
isolated and therefore the presence of interactions between the system that is
dissipating energy and other degrees of freedom is ensured. It is hard to identify
the microscopic origin of the damping, however, the statistical properties of the
stochastic forces are known. The main idea behind the system-plus-reservoir
models is to formulate precisely the system, the environment and the interaction
between them and, then, use standard methods to perform quantization. The
choice of the reservoir and the form of the interaction are constrained by the

condition that Brownian motion is recovered in the classical limit.

One of the simplest system-plus-reservoir models is named after A. O. Caldeira
and A. J. Leggett [8]. This system corresponds to a particle in a potential,
defined as the dissipative system, linearly coupled to its environment, a fluc-
tuating reservoir bath. The bath is parametrized as a set of non-interacting
harmonic oscillators. The individual Hamiltonians of the dissipative system,
the reservoir and the interaction can be written explicitly. The interaction
with the environment leads to an effective potential for the dissipative system.
The computation of the equation of motion gives a Langevin equation and, in
particular, the Gaussian Brownian noise is recovered with a linear dissipation.
This simple semi-empirical model correctly reproduces the Brownian motion in
the classical limit. Moreover, the knowledge of the Hamiltonian of the system
allows for a quantization using standard techniques. The Caldeira-Leggett model
provides, therefore, an acceptable analytical description of a quantum dissipative

system.

In general, quantum fields are not completely isolated and, therefore, interact
with their environment. The analytical description of such a scenario relies on a
similar reasoning as in the system-plus-reservoir models introduced for quantum
dissipative systems. However, there is an extra effect, specific to a field, that must

be taken into account. Beyond the interactions with other fields, self-interaction



plays a significant role. In particular, short wavelengths might influence the
long ones and, in a sense, the field acts as its own thermal bath. A separation
between the system and the environment is not always possible and a perturbative
approach must be followed. The usual method requires to integrate out the extra
degrees of freedom in order to obtain an effective action for the background field.
The equation of motion that emerges is in the form of a Langevin equation,
where fluctuation and dissipation effects on the scalar field are clearly identified.
In general, the spectrum of the noise is colored, i.e. is a function of the field,
unless there is a linear coupling between the field and the bath. A comprehensive

review on the derivation of the Langevin equation for a field is performed in [9].

The formal description of the Early Universe has cosmological fields immersed in
a hot medium. Fluctuation and dissipation dynamics is expected to apply and
there are several situations where these effects might modify the cosmological
model. The most studied example is warm inflation [I0, 11I]. The dissipative
term leads to a continuous production of radiation during the phase of accelerated
expansion. The usual picture of inflation is drastically modified. The Universe
remains warm during the phase of inflation and the model allows for a smooth
transition to the radiation-dominated period, avoiding a phase of (p)reheating.
Fluctuation-dissipation dynamics is expected to play a major role in out-of-
equilibrium situations, for example, in a phase transition, when the Universe
is approaching equilibrium at the new vacuum. Beyond these two scenarios,
fluctuation and dissipation effects influence the dynamics of any cosmological
fields. Several situations have been identified and discussed in [12]. For these
reasons, we believe that a good understanding of fluctuation-dissipation dynamics

is pertinent for cosmology.

This is not the purpose of this thesis to explore the origins of the Langevin
equation in quantum field theory. This topic has been extensively studied
in [9] and in the references therein. The interest here is to investigate some
implications of these stochastic equations in the Early Universe. We consider
three situations where fluctuation-dissipation dynamics plays a role : phase
transitions, warm inflation and escape problems. As a preamble, Chapter
is an introduction to the current model of cosmology, the Standard Big Bang
Model. We review its theoretical construction based on assumptions stated in
the cosmological principle and on methods of general relativity. We study the
Friedmann universe, with the usual solutions corresponding to periods dominated

by radiation, matter and a cosmological constant. Using the theories of particle



physics, in particular, the Standard Model, we present the thermal history of the
Universe. Some considerations on observational cosmology lead us to the current
parametrization of the cosmological model, the ACDM. The chapter is concluded

with a recapitulation of the main successes and limitations of the model.

Chapter|3|is addressing phase transitions and the formation of topological defects.
We are interested, in particular, in the definition of a mechanism to provide
stability for embedded defects. We begin the chapter with a review of the theory
leading to topological defects and present some of their applications in cosmology
and in particle physics. After that, we turn our interest to the special case of
embedded defects. We stress their relevance in concrete theories such as the
Standard Model and state the issues related with their stability. By considering
an explicit example, the pion string in the linear sigma model, we introduce
the framework necessary for a study of the mechanisms needed to stabilize this
kind of defect. We first study the mechanisms that are already present in the
literature and consider their limitations. We then propose an extension of these
mechanisms and show that, in some circumstances, interactions with a thermal
and dense medium allow for the formation of pion strings. This result is the first

example of a stable embedded defect in a realistic theory.

In Chapter {4, we focus on another situation where fluctuation and dissipation
dynamics plays a significant role, cosmic inflation. We introduce a formalism to
define classes of universality among the models of warm inflation. The general
theory of inflation is introduced at the beginning of the chapter. We review
the shortcomings of the Standard Big Bang Model and show how an accelerated
expansion provides an elegant solution for most of the issues. We then present
the simplest realization of inflation with a single scalar field. We introduce
and contrast the cold and warm scenarios. Some arguments to support the
identification of universal properties among the different models of inflation are
presented. We also describe a method to achieve it, the S-function formalism. We
then show how this formalism is extended to warm models of inflation. Beyond
the definition of classes of universality, we illustrate how this approach, which
is based on the Hamilton-Jacobi formalism, provides practical tools for a deeper

analytical study of the dynamics of warm inflation.

We consider in Chapter [5| more formal aspects of fluctuation and dissipation
dynamics, in order to formulate the Kramers problem in quantum field theory.
The derivation of an escape rate is a common problem in different areas of physics,

such as statistical or condensed matter systems. We begin the chapter with



a pedagogical introduction to the escape rate by considering a classical one-
dimensional point particle in a potential. After a description of the problem
and the introduction of the theoretical tools to study it, given by the Langevin
and Fokker-Planck equations, we consider two equivalent approaches to compute
the rate, the flux-over-population and the mean-first-passage-time methods. We
also present an explicit proof of their equivalence. In the second part of the
chapter, we turn our interest to a scalar field. We propose a definition of the
escape problem in quantum field theory. The definition of an escape is not as
trivial as in the classical case due to the field theory character of the problem.
We propose an explicit computation of the rate of escape using a generalization
of the flux-over-population method. We conclude the chapter with a discussion
of situations, in cosmology and beyond, where this framework is applicable and

leads to relevant effects.

We present our concluding remarks in Chapter [f] Some appendices including
details on the theoretical background and on the computations performed along

the different chapters are provided at the end of the thesis.



Chapter 2

The Standard Big Bang Model

The aim of cosmology is the answer of a fundamental question of mankind,
understanding and describing the evolution and the large scale structure of
the Universe. Along the centuries, various theories, together with more and
more sophisticated instruments, have been developed to observe and explain the
Cosmos. This long quest toward a satisfactory model made a significant step
forward in the first half of the twentieth century. At this epoch, two scientific
revolutions completely changed the paradigm of the Universe and gave birth to

modern cosmology.

At the beginning of the last century, the known Universe was not larger than
our galaxy, the Milky Way, and was thought to be static. The prevailing theory
of gravity had been stated by I. Newton in the seventeenth century. This state-
of-the-art was about to change with the publication of the theory of general
relativity by A. Einstein in 1915 [I3, [14]. Space and time are not eternal,
absolute and independent continua anymore, but unified in a dynamical four-
dimensional spacetime. The theory also predicts the geometry of the spacetime
to be dependent on its energy content. The second revolution came on the
observational side. The astronomer E. P. Hubble was the first to prove the
existence of extra galactic objects [I5]. He computed the distance to classical
Cepheid variables belonging the Andromeda galaxy. With this observation the
Universe suddenly became much larger than the Milky Way. This is not the
only major contribution of Hubble to cosmology. By measuring the recession
velocities of galaxies, he noticed that the distant ones were moving faster [16].

This observation was indicating that the Universe might be non-static but rather



expanding over time. These two revolutions of the first half of last century not
only completely changed the understanding of the Universe but also provided the
theoretical tools to address it. They constitute the two pillars on which modern

cosmology is built.

In this chapter, we first present the theoretical construction of the Standard Big
Bang Model. From the cosmological principle and using general relativity, we
obtain the Friedmann-Lemaitre-Robertson-Walker (FLRW) universe and discuss
its energetic contributions. With the help of the Standard Model of particle
physics, we introduce the thermal history of a FLRW universe. We conclude
with a brief review of observational cosmology and a discussion of the current
favored parametrization of the SBBM, the ACDM model, with its successes and

limitations. For completeness, we provide a compendium on GR in Appendix [A]

This brief introduction on modern cosmology is based on the books [I7-19]. For
the technicalities concerning GR we refer to [20], 21]. Finally, the section about

observational cosmology is based on the review [22].

2.1 FLRW Cosmologies

The Standard Big Bang Model is the current theoretical model of cosmology.
The construction of the SBBM relies on general relativity. Everyone with a little
experience of GR knows how cumbersome it is to obtain a solution of the Einstein
equations. However, on large scaledl] the energy distribution of the Universe
takes a specific form that drastically simplifies the algebra. This is encoded in

the cosmological principle.

2.1.1 The Cosmological Principle and the FLRW Metric

The cosmological principle states that, on large scales, the Universe is spatially ho-
mogeneous and isotropic. Today, the principle is well-motivated by independent
observations, in particular, from the high degree of homogeneity observed in the
cosmic microwave background and from Large Scale Structure (LSS) surveys of

galaxies. Historically, however, the principle has been supported by philosophical

!By large scales, distances larger than 10h~! Mpc are typically assumed. The dimensionless
Hubble parameter is defined as h = Hy/ (100 km sflMpc_l).
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arguments and can be seen as a modern formulation of the Copernican principle.
To oppose the geocentric theories of his epoch, N. Copernic stated that the Earth
was not occupying a specific location in the Universe. This is the same idea as
homogeneity, which implies that the Universe appears the same to any observers,
independently of their locations. The cosmological principle is, however, stronger

than the Copernican formulation since it also imposes isotropy.

Despite its apparent simplicity, the cosmological principle is an extremely
powerful tool in the construction of the metric describing the Universe. Indeed,
it imposes symmetries on the spacetime and, in particular, on its spatial part.
The homogeneity of space is related to the invariance of the metric over spatial
translations. Isotropy means that the Universe looks the same in each direction of
observation and corresponds to rotational symmetry. Translated in the language
of GR the cosmological principle implies that there are six Killing vectors, three of
them related to the translational invariance and the other three to the invariance
over rotations. For a space of three dimensions, the maximal number of Killing
vectors is six. The principle imposes that the spacetime can be foliated into
maximally symmetric spatial hypersurfaces. The metric of a spacetime with a

subspace that is maximally symmetric is known exactly and reads

dr?

1—Ekr?

ds* = —dt* + a*(t) +72(d6? + sin®* 0d¢?) | | (2.1)
where the only two free parameters are the scale factor a(t) and the scalar
curvature k of space. The time ¢ is the real time or clock time. This metric
is named after A. Friedmann, G. Lemaitre, H. P. Robertson and A. G. Walker
and is often referred as the FLRW metric. Note that the metric is invariant under

the substitutions
k— k/|k|, r— |k, a— a/+\/|k|, (2.2)

which allows considering only k/|k|. We are left with three relevant cases for the
curvature of the spacelike hypersurfaces. Those are k = —1,0,+1 respectively

called open, flat and closed universe.

The cosmological principle and the assumption that GR is a valid description
of gravity are the only two ingredients to derive the FLRW metric. We observe
that the scale factor a(t) allows the Universe to expand over time. We also
note the presence of a singularity when the scale factor goes to zero. However,

going backward in time with the Universe contracting, a quantum theory of
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gravitation is required eventually and, therefore, the current description based
on a classical theory of gravity breaks down. The remaining task for cosmologists
is the determination of the scalar curvature of space and the evolution of scale

factor. A first step is done with GR and the Einstein equations.

2.1.2 Friedmann Equations

The dynamics of the scale factor depends on the energy content of the Universe

through the Einstein equations
1
R, — éRgW =8nGT,, — Aguw , (2.3)

where R, is the Ricci curvature tensor, R is the scalar curvature, g,, is the
metric tensor, G is Newton’s gravitational constant and 7}, is the stress-energy

tensor. We have also explicitly included the cosmological constant A.

On the right-hand side of the Einstein equations enters the matter or energy
distribution. The homogeneity imposed by the cosmological principle implies
the same condition on the distribution of matter. On large scales, the energy
distribution must correspond to a perfect fluid, namely a fluid that is isotropic
in its rest frame and is only characterized by its pressure p and energy density
p. Moreover, the homogeneity implies that the pressure and the energy density
depend on time but are constant over space. The stress-energy tensor of a perfect

fluid takes the simple form of

T/uz - (p + p)u,uuu + Pauv (24)

where u,, is a timelike unit vector, the four velocity of the fluid.

The left-hand side of the Einstein equations is fixed by the geometry of spacetime.
For the FLRW metric, the Ricci tensor reads

Ry = —3i/a, Ri; = (ad + 2a° + 2k) hy; (2.5)
where a?h;; is the ij-component of the metric. The Ricci scalar

6
RZE(ad+a2+k:) : (2.6)

is also directly obtained by taking the trace of the Ricci tensor.
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We have all ingredients in hands to write the Einstein equations for a homo-

geneous and isotropic universe. These are called the Friedmann equations and

read
N2
G A k
m=(4) ==, 25 9.
() - (2.7)
a AN 4An@G
- _ 77 3 2.8
T ), (2.9

where we have defined the Hubble factor H. Note that the second equation is
also referred as the Raychaudhuri equation. The Friedmann equations fix the
behavior of the scale factor for any given p, p and k. Conservation of energy is a

direct consequence of the Friedmann equations
p=-3H(p+p), (2.9)

and is also given by the divergence of the stress-energy tensor, as expected.

Before turning our interest to specific solutions of the Friedmann equations, let
us pause to introduce some of the relevant parameters used in cosmology. We
have already met the Hubble factor H = a/a. The Hubble factor is the rate of
expansion of the Universe at a given time. It is related to the age and spatial scale
of the Universe. The value the Hubble factor today is called the Hubble constant
and is denoted by Hy. In general, to indicate the current value of a parameter,
the subscript ¢ is used. The deceleration parameter ¢ = da/a? expresses the rate
of change of the expansion. The critical density is defined as pe;; = 3H?/87G. In
absence of a cosmological constant, p.;; is the energy required for a spatially flat
universe. The energy density parameter € is defined as Q = p/pei. By definition,
the density parameter is dimensionless and €2 = 1 corresponds to a flat universe.
The precise determination of the current values for these parameters is the main

task of observational cosmology.

Another phenomenon that plays a significant role in cosmology is the redshift.
Due to the spatial expansion, all lengths are dilated over time. This is also true
for the wavelengths of the photons. In particular, a photon emitted at some time
temission Will be observed later with a larger wavelength and, therefore, with a
shifting toward the red. This defines the redshift 2 as

gz Mo g G0 g (2.10)

/\emission a (temission )
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The higher the redshift is, the earlier the photon has been emitted. The redshift
is sometime used as a time coordinate. A redshift of zero corresponds to today
and it diverges at the singularity. For completeness, in addition to the redshift,
the mean temperature of the Universe can be used as a time coordinate. Indeed,
an expanding universe is cooling down and there is a one-to-one correspondence

between time, redshift and temperature.

2.1.3 Energy Contributions and Associated Solutions

The solutions of the Friedmann equations and, therefore, the evolution of the scale
factor a(t) are dictated by the dominant energetic contribution in the Universe.
In modern cosmology, the energy budget of the Universe is usually split between
three categories : matter, radiation and dark energy (DE). Before discussing
them individually, let us introduce the equation of state parameter w defined as

w = p/p. From the conservation of energy in Eq. (2.9)) the energy density becomes

p ~ exp {—3/(1 + w)dIn a} ~ g 30H) (2.11)

assuming a constant w in the last step. The first Friedmann equation (2.7 can

be expressed as

where the sum runs over the different energetic contributions (radiation, matter
and the cosmological constant). The last term in (2.12)), which depends on the

curvature of space, is not a contribution to the energy density. For this reason,

we have not defined a density parameter for the curvature, which is sometimes

called € in the literature.

We now discuss the different contributions individually and the associated
expansion when they dominate the RHS of Eq. (2.12). We will show that a
FLRW universe where all energy components are present is likely to be initially

dominated by radiation, then by matter and finally by DE.

Non-relativistic Matter The matter contribution includes all non-relativistic

and collisionless form of matter, including cold dark matter. In this case, the
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pressure is negligible with respect to the energy density and, therefore, the
equation of state parameter is simply zero. Solving the Friedmann equations

gives

2
pr~a?, a(t) ~ 23 H= vl (2.13)

3 since the expansion of a three-dimensional

The energy density decreases as a~
space reduces the number density by a factor of a in each direction. When this

component dominates, we refer to a matter-dominated universe.

Radiation Gas of radiation and relativistic particles belong to this category.

The stress-energy tensor of radiation is known and reads

1 1
T = — ( FIMFY\— =g FF), | , (2.14)

41 4
with F},, being the electromagnetic field-strength. The trace of the electromag-
netic stress-energy tensor vanishes. Comparing with the trace of Eq. (2.4) implies
that radiation has an equation of state parameter w = 1/3. The solution of the

Friedmann equations for a radiation-dominated universe gives

1
p~at, a(t) ~ Y2 H=_—. (2.15)

2t
The inverse quartic dependence of the energy density on the scale factor is
explained by two effects. The first is the decrease of the number density of
the relativistic particles as a=3 due to the expansion of the Universe. This is the

3 in a matter-dominated universe. The second is

same effect that gives p ~ a~
the energy loss of individual particles which goes as the inverse of a and is due to
the redshift of the frequency. Note that, going backward in time, the radiation
contribution will eventually dominate over the matter due to the inverse quartic
dependence. This is also expected in a very hot and dense early universe, where
most of the particles are relativistic. In the SBBM, the Universe is expected to go

across a radiation-dominated phase followed by a period of matter-domination.

Dark Energy The cosmological constant, also referred as dark energy, is a

constant contribution to the stress-energy tensor

Th = 2

———Guw - 2.1
uv 87TGg/W ( 6)
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Equating with the energy-momentum tensor of the perfect fluid Eq. (2.4), we get

the following relation

A

- —p=_ 2.17

which implies that w = —1. The Friedmann equation leads to a constant Hubble
factor and, therefore, an exponential expansion for the scale factor. Comparing
with the evolution of the energy densities for matter or radiation, we see that over
time and, even if extremely small, a non-zero cosmological constant will aways

dominate eventually.

The FLRW Universe is the successful application of GR to a homogeneous and
isotropic universe as assumed with the cosmological principle. It realizes the
desired feature of a universe expanding over time. The theoretical cosmological
setup being established we can proceed in two ways. From observational
cosmology, a concrete parametrization of the SBBM is obtained. This leads to
the current prevailing model of cosmology, the ACDM model. Before discussing it
in details, let us review the thermal history of the Universe. This is based on the
current theories of particle physics and the main characteristics are independent

on the exact parametrization of the SBBM.

2.2 Thermal History of the Hot Big Bang Model

The SBBM predicts an initially hot and dense universe that expands and,
therefore, cools down over time. At sufficiently high temperatures, all particles
are expected to be at thermal equilibrium. The elementary particles, as well
as the interactions necessary to keep them at equilibrium, are known from the
Standard Model of particle physics [23-27]. When the Universe cools down, the
interaction rate I', that depends on the temperature, decreases. In general, when
the interaction rate becomes smaller than the Hubble rate H, meaning that there
is less than one interaction per Hubble time, the equilibrium cannot be maintained
and the species decouples. Using the theories of particle physics, in particular,
the SM, the different epochs in the history of a FLRW universe are identified and
studied. This leads to the thermal history of the Hot Big Bang Model.

A precise understanding of the first two stages of the Universe’s history is

limited by the current status of theoretical physics. At the scale of the Planck
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temperature, Tp; = 1.2 - 10 GeV, quantum gravitational interactions are
relevant. Since a satisfactory quantum theory of gravity is not established yet,
an exact description of this epoch is not possible. Above temperatures of order
of 1 TeV, the description of the Universe is limited by the current model of
particle physics. The Standard Model is robust for energies up to the electroweak
transition. Above this scale, several theories have been proposed, for example
Super-Symmetry (SUSY) [28430] and Grand Unified Theories (GUT) [31), 32].
Speculations about the existence of exotic particles, possibly explaining the origin
of dark matter (DM), and about the formation of topological defects, in a cascade
of phase transitions from a larger symmetry group to the SM, are possible.

However, a concrete and satisfactory model is still lacking.

On the cosmological side, at these energies, the Universe is assumed to undergo
a phase of inflation followed by baryogenesis. Inflation is an initial accelerated
expansion most likely due to a scalar field. This phase of inflation elegantly
solves some problems of the SBBM and, also, provides an explanation for the
formation of structuref’] Baryogenesis is the early production of matter giving
rise to the matter/anti-matter asymmetry observed in the Universe. Inflation
and baryogenesis are still far from being concrete models and are among the

main focuses of modern cosmology.

At a temperature of order of 100 GeV the electroweak transition is taking
place. The elementary particles of the SM get their masses with the Higgs
mechanism [24], 25] and the SM begins to prevail. The Universe is filled with
a soup of free quarks, leptons and photons at thermal equilibrium. When the
temperature drops below 300 MeV, the QCD transition happens. The quarks are
not free particles anymore but get confined into hadrons. The Universe is a hot
plasma made of pions, nucleons, leptons and photons. Note that, at this stage,
the Universe is still opaque to light. The photons do not propagate freely but
keep interacting with all the other particles.

With the temperature that keeps decreasing, the weak interaction rate becomes
too small to maintain at thermal equilibrium the particles that interact only
weakly. These species are the first ones to decouple. This process might happen
for certain postulated form of DM species and most certainly for neutrinos. The
neutrinos decouple from thermal equilibrium at a temperature of 1 MeV and their

number density freezes out. When T becomes smaller than the electron mass,

2The basics of inflation are discussed in greater details in Chapter
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electrons and positions cannot be produced anymore via pair-production. They
annihilate each other via the reverse process and their energy is transferred to
the photons. The neutrinos being already decoupled, they are not affected and
their temperature decreases simply as a~! due the redshift. Therefore the SBBM

predicts a different temperature for the photons and the relic neutrinosﬂ

The synthesis of matter, called nucleosynthesis, starts at a temperature of about
100 keV. The energy is not high enough anymore to break the bonds between
the nucleons. Neutrons and protons combine to form nuclei. The mechanism is
very similar to a construction game. A proton interacts with a neutron to form
a deuterium nucleus, emitting a photon. The deuterium nucleus interacts with a
proton to produce helium-3 and a photon. Helium-3 and deuterium form helium-
4 nuclei and protons. The process could potentially continue, however, there
are no stable nuclei with exactly eight nucleons. This constitutes a bottleneck
and implies that most of the production channels finish with helium-4. There are
some less probable processes leading to the production of lithium-7 and also some
left-over of helium-3 and deuterium. Other elements such as carbon or oxygen,
with more massive nuclei, are produced later, presumably by nucleosyntheses in
the interior of stars. The density being larger, it is possible to go beyond the
bottleneck with an interaction of three helium-4 nuclei. The produced amount of
helium-4 depends on the expansion rate and is therefore precisely predicted by the
SBBM. There is a good agreement between the observed abundance of helium-
4 and the value predicted by the model [33]. This is another strong support
for the SBBM and the existence of an initial radiation-dominated phase. The
model, however, fails to predict the observed amount of lithium-7 [34H37]. This
is called the cosmological lithium problem [38] and is one of the open questions

of cosmology.

At a temperature of 0.75 eV the energy densities of matter and radiation are
equal. This is referred as the matter-radiation equality and the Universe enters
the matter-dominated epoch. When T is of order of 0.3 eV the phase of
recombination starts. The electrons combine with nuclei to form hydrogen atoms.
The large number of photons compared to the abundance of baryons explains
why recombination did not happen already at a temperature corresponding to
the binding energy of hydrogen. During recombination the number density of
free electrons drops significantly and the mean-free path of photons increases. At

the end of this process, the photons propagate freely and the Universe becomes

3A calculation involving the conservation of entropy leads to 7., = (11/4)/3T,.
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transparent to light. The photons have decoupled from all other species and form
the cosmic microwave background. Before the Universe became transparent, all
wavelengths of electromagnetic radiation were instantaneously absorbed. The
Universe was, therefore, an almost perfect blackbody. The photons propagating
freely after the time of last-scattering, the blackbody spectrum is expected to be
imprinted in the CMB. The detection of the CMB in 1964 by A. A. Penzias and
R. W. Wilson [39], its strong homogeneity and its blackbody spectrum [40] are
another successes of the SBBM.

Finally, the Universe enters into the Dark Ages where the formation of galaxies

slowly takes place.

2.3 Observational Cosmology and the ACDM
Model

We have introduced and discussed general characteristics of FLRW cosmologies.
In particular, the evolution of an initially dense and hot universe that is expanding
and cooling down over time. The precise parametrization of the model is
obtained from observational cosmology. We briefly review the experimental
methods to measure the main parameters of the model. We then introduce the
current parametrization of the SBBM. The thermal history of a FLRW universe
is to a large extent fixed, however, its fate depends strongly on the actual
parametrization of the model, in particular, on the presence of a cosmological

constant.

2.3.1 Observing the Universe

The relevant parameters related to the global description of the Universe are
the ones entering the Friedmann equations : the density parameters of the
various energy species, the curvature of space and the Hubble constant. We
review the experimental methods to extract these parameters and state their
current measured values. Unless explicitly stated, experimental data is taken
from [22]. The parameters related to the departure from homogeneity and

structure formation are discussed in Chapter [, dedicated to cosmic inflation.

Let us start with the total energy density parameter 2, that is the sum of
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the individual energetic contribution (matter, radiation and DE). One method
to obtain the current value €y is summing over the values of the different
contributions €,,0, 2,0 and 9. A precise discussion on the measurement
of these parameters is given below. Another way to obtain {2y relies on the
equivalence between a measurement of the total energy density parameter and
the spatial curvature of the Universe since Eq. can be written as

k

Qp—1=—
" T g

(2.18)
where ag is the current value of the scale factor, usually set to 1. Note that this
method requires that the Hubble factor is measured independently. The spatial
curvature of the Universe can be extracted from the properties of CMB. After the
matter-radiation equality, large scale structures begin to form. Matter is attracted
by gravity into regions of higher density. The increase of temperature in these
regions leads to an increase of the radiation pressure. The pressure tends to push
matter away, competing against gravity and creates acoustic oscillations. These
oscillations influence the shape of the angular power spectrum of the anisotropy
of the CMB. In particular, the locations of its peaks depend on the geometry of
the Universe. The Boomerang experiment [41] obtained 0.88 < Qy < 1.12 at 95%
confidence level (CL) favoring a spatially flat universe. This measurement was

then confirmed by several experiments such as the Planck satellite, measuring

0 = 1.001 % 0.002 at 68% CL [42].

Let us turn to the measurement of the individual contributions to the total energy.
Several contributions appear in the matter density : ordinary baryonic matter,
CDM and, possibly, massive neutrinos. There are different methods to obtain the
total matter contribution, which sums up to a value of €,, = 0.3 & 0.1 at 68%
CL. One possibility is to estimate the abundance of baryonic matter and evaluate
the ratio of dark versus ordinary matter. The baryon density {2, corresponds to
the ordinary matter and includes dust, gas, stars and the planets. The spectrum
of the anisotropies of the CMB is a precious source of information when deriving
these parameters. For example, the relative heights of the peaks depend on the
density of baryons and their overall amplitudes depend on the ratio between dark
and ordinary matter. There are other methods to estimate €2, based on direct
observation and on predictions of the abundance during Big Bang nucleosynthesis.
The baryon contribution is measured as €2, = 0.048 +0.001 at 68% CL, implying
that most of the matter contribution, about 85% in the Universe, comes from

dark matter.
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Photons and massless neutrinos are the main contributions to radiation. From
the temperature of the CMB today, T, = 2.73 K, the energy density parameter

of the photons can be computed to give
Q, =5.38(10) - 107° . (2.19)

The contribution from the neutrinos is derived from 2. The difference in the
temperature between the relic neutrinos and the photons in the CMB is known to
differ by a factor of (4/11)/3. Keeping into account that neutrinos are left-handed

fermions, such that there is only one spin state to consider, gives
Q,=3-(7/8)- (4/11)"*.Q, (2.20)

where three species of massless neutrinos have been assumed. The radiation
density is currently a negligible contribution to the total energy budget of the
Universe. However, due to its dependence on the scale factor, radiation was the

dominating the energy budget in the past.

The last component to be determined is dark energy. For long, this contribution
was supposed to vanish giving a closed matter-dominated universe, with cold dark
matter as the main contribution in the energy budget. However, measurements
from Type la supernova [43] indicated that the Universe was accelerating, by
predicting a nonzero Q5o from the constrain 20,0 — 2049 = —0.2 £ 0.1. This
measurement led to an intense debate among cosmologists until the present
acceleration was confirmed by observations coming from the CMB. The observed
value of )y is in agreement with one and, therefore, 2y ~ 1 — €2,,. Note that
the nature of DE is still an open question. One possibility is the presence of a
cosmological constant. The vacuum energy coming from quantum field theory
(QFT) is a natural candidate to explain its origin. However, the theoretical
expectation for the vacuum energy of QFT exceeds the observed value of
the cosmological constant by several orders of magnitude. This discrepancy
would imply an extreme fine-tuning and constitutes the cosmological-constant
problem [44]. A dynamical realization of DE is a possibility, for example with
a scalar field. The features are similar to inflation and the process is called
quintessence [45], [46]. In this case, the equation of state parameter might be

slightly different from —1.

The last parameter related to global properties of the Universe to be discussed

is the Hubble constant H, which corresponds to the current rate of expansion.
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After this short review of observational cosmology, we should not be surprised
that different methods exist to measure Hy. The historical one, originally used
by Hubble, is based on astronomical measurements. Hj is extracted from the
recession velocities of distant galaxies. However, this estimation requires knowing
precisely the distance to the receding galaxy, which is based on a cosmological

ladder. The latest value for Hy from astronomical observation [47] is
Hy = 74.03+1.42 km s~ 'Mpc ™. (2.21)

Another method to extract the Hubble factor is from the anisotropic power

spectrum of the CMB [42] and gives a value of
Hy = 67.374+0.54 km s 'Mpc ™! . (2.22)

These two measurements of H, are obtained from completely different methods.
Despite the apparent tension between the two results, it is already promising that
the actual values are close to each other. A measurement using gravitational
waves (GW) will provide a third independent way to obtain H, and might

discriminate between the other two observations.

2.3.2 ACDM Model

The current parametrization of the SBBM is called the ACDM model. It
corresponds to a spatially flat universe dominated by dark energy and where
the matter energy density is mostly in the form of dark matter. Let us discuss

some properties of the model.

Cold Dark Matter In the ACDM model, about a quarter of the total energy
content is in the form of non-baryonic matter (or dark matter). The idea that
only a fraction of the total matter content in the Universe is made of ordinary
matter exists in cosmology for about a century and is supported by indirect
astrophysical and cosmological observations. One of the earliest and most known
examples is the work of F. Zwicky aiming at explaining the observed rotation

curves of galaxies [48].

Dark matter is expected to obey the following properties [22) 49]. From the

analysis of structure formation, DM should be non-relativistic (cold) at the
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epoch of the formation of the galaxies. In order to be dark, the interaction
with electromagnetic radiation is very weak. It is also expected to be stable over

the time scale of the Universe, otherwise, it would have decayed.

The physics of dark matter is an active topic and plays a crucial role in modern
cosmology. The current and most favoured candidates for DM are axions [50,
51], primordial black holes [52], 53], sterile neutrinos [54] and weakly interacting
massive particles (WIMPs) originally coming from supersymmetric extensions of
the SM [55]. A full discussion of these models goes beyond the scope of this
work. We send, therefore, the interested readers to the reviews [22, 49] and the

references therein.

Age of the Universe The age of the Universe is derived from the Friedmann

where H is defined as

equations

H2(2) = =5 = (1= Q) (1 +2)* + Qa0 + Qno(1+2)> + Qo1+ 2)*,  (2.24)

to give an age of 13.8 + 0.04 Gyr using value for the Hubble constant given by
CMB measurements. Note that a first validity check imposes that the predicted
age of the Universe is older than anything inside it. As we already mentioned, the
description based on GR breaks down before reaching the singularity. Therefore,
Eq. is not strictly the age of the Universe but rather the time elapsed since

the Universe could be described by a classical theory of gravity.

Fate of the Universe The ACDM parametrization fixes the fate of the Universe.
Since the matter and the radiation energy densities are decreasing over time,
the dark energy density will dominate eventually, its evolution being constant.
This is already happening as the DE-matter equality was after 9 Gyrs. The
Universe is currently dominated by the cosmological constant and is accelerating.
A characteristic feature of the ACDM is the prediction of a universe that expands
for ever and the expansion will be faster and faster. The expansion will be
eventually faster than the speed of light and distant galaxies will not be in causal

contact any more. The observable Universe will reduce to the local structure that
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is tight to our galaxy by the attraction of gravity.

Successes and Limitations of the Model To conclude this introduction on
the modern formulation of cosmology and its preferred model, let us summarize
its successes and discuss some open questions. The SBBM is based on GR and
describes a homogeneous and isotropic universe. It predicts a non-static universe,
initially hot and dense that expands and cools down over time. Including an
early phase of inflation, it also provides an explanation for the existence of
small anisotropies in the CMB leading to the formation of structures. The
SBBM underwent some significant experimental successes, in particular, the
observed homogeneity of the CMB, its almost perfect blackbody spectrum and

the abundance of light elements, such as helium-4.

The current cosmological model is, however, incomplete. The origin of the dark
energy and a well-defined particle physics model that includes DM are still missing
pieces. The main features of the early period of inflation are getting better
understood. However, a precise model is still lacking. Both the presence or the
absence of topological defects need to be justified. The theory is also not providing
a satisfactory explanation for the apparent asymmetry between particles and
anti-particles and the observed abundance of lithium-7. On the observational
side, the tension in the measurement of the Hubble constant from the CMB and

astronomical methods needs to be explained.
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Chapter 3

Stabilization of Embedded
Topological Defects

3.1 Introduction

From the Grand Unified Theory epoch, where the strong and the electroweak
forces are expected to have been unified in a single gauge group, to the later
stage of the Standard Model and going below the energy scale where hadrons
are formed, the Early Universe is presumed to have undergone a series of phase
transitions. During each spontaneous breaking of symmetry (SSB), it is possible
that topological defects (TD) are produced [56]. Monopoles and domain walls
usually lead to undesired effects for the cosmological model. Cosmic strings may,
however, explain several open questions in cosmology, such as primordial density
perturbations and structure formation [57, 58], generation of the primordial
magnetic fields [59, [60] and baryogenesis [61,62]. They also lead to the emission of
high-energy particles, such as cosmic and gamma rays and neutrinos [63] [64], and
relic gravitational waves [65]. Moreover, the non-observation of defects constrains
the possible inflationary models and the gauge group of the GUT. For these
reasons, the quest for topological defects has been an active field of research

among particle physicists and cosmologists for the last 30 years.

Embedded defects are a special class of topological defects [66]. They are
constructed by constraining a subset of fields in the given theory to vanish, while

others continue to have solutions of the unconstrained system. If the vacuum
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manifold of the remaining unconstrained part of the system results in having
a non-trivial homotopy group, the formation of a topological defect can occur.
This defect is, therefore, embedded in the larger theory. Embedded defects are
of particular interest since they are constructed in realistic systems in nature.
Two known examples are the chiral model with the pion string [67], which is the
focus of our analysis in this chapter, and the Glashow-Weinberg-Salam model
with the electroweak string [68] [69]. However, the stability of embedded defects
is not guaranteed as their existence is not strictly due to the topology of the full
theory. Usually, they are not stable in vacuum. An escape of the field into the
constrained directions is always possible and the configuration is continuously
deformed to the trivial vacuum. If the presence of these defects is desired, the

model requires the inclusion of a stabilization mechanism.

One of the simplest examples of embedded defects appears as a special non-trivial
solution in chiral models described by the linear sigma model (LSM) of quantum
chromodynamics (QCD). The pion string corresponds to a classical solution of
the LSM, where the charged pion fields are constrained to vanish. Chiral models
are effective models commonly used to understand many aspects of QCD and, in
particular, used in investigations related to heavy-ion collision experiments. One
may wonder if pion strings might indeed be produced during the quark-gluon
plasma to hadron phase transition. If it is the case, their presence would be

relevant in both nuclear and Early Universe physics.

The question of the stability of the pion string is of crucial importance and
has been the focus of some previous works. In [70], M. Nagasawa and R. H.
Brandenberger proposed a realistic mechanism to stabilize the pion string by
putting the system in a thermal bath of photons, whereby interactions of the
electromagnetic field with the charged plasma lead to a lifting of the effective
potential in the constrained fields direction. More recent works by J. Karouby
and Brandenberger [71], [72] confirm the stabilization effect of this mechanism.
Whether this effect is large enough to have a stable string in the region of
parameters that is experimentally accessible has been the subject of recent
discussions [73] [74].

In this chapter, we study an extension of this stabilization mechanism by placing
the system not only in a thermal environment but also in a dense medium, which
is accounted for by including a non-vanishing chemical potential. In addition
to the charged plasma, the interactions with fermions (quarks) will also be

included. Thus, the model we will work with is the linear sigma model with
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quarks (LSMq). These interactions will then generate further corrections to the
effective potential, making explicit the chiral phase transition that can occur in
the LSM(q for instance. These modifications will lead to a physically more realistic
model than has been studied up to now [73] [74]. The string solution will now
be altered, as it depends on the temperature and the chemical potential. The
analysis of the stability to follow will show that the production of stable strings
depends on the order of the chiral phase transition. The results presented in this

chapter have been published in [1].

The chapter is organized as follows. In Sec. 3.2 we review the theory of
topological defects, their construction, classification and the consequences for
cosmology. We also introduce the embedded defects and stress the differences
with the standard configuration. In Sec. [3.3] we briefly review the LSMq at finite
temperature and chemical potential. In the same section, we introduce the pion
string solution in vacuum and study its stability. We review the mechanisms
introduced to stabilize the string and discuss their limitations. Section is
dedicated to the stability analysis of the strings in the thermal and dense medium,
in the chiral limit. We also present a first examination of the physical case. We
conclude the chapter in Sec. with a discussion. Some technical details on the

computations are given in Appendix [B]

3.2 Review of Topological Defects in Cosmology

The theory of topological defects is based on the popular concept of spontaneous
breaking of symmetry in field theory and the associated phase transition. The
formation of defects in a phase transition is ensured by the Kibble mechanism and
the homotopy theory provides a condition on the existence and a classification
of the defects. If topological defects are produced in the Early Universe, they
lead to important consequences for cosmology. In this section, we also introduce
the special case of topological defects embedded in a larger theory. We stress
their interesting characteristics but, also, the issues related to their stability.
Topological defects have been introduced by T. W. B. Kibble in 1976 in [56]. For

more recent discussions on this topic, we refer to [17, 57, [75-79].
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Figure 3.1 On the left-hand side, there is an example of a first-order phase
transition. Below the critical temperature T,., the former global
minimum at the origin becomes a false vacuum. On the right-hand
side, an example of a second-order phase transition is shown. The
minimum of the potential moves away from the origin smoothly.

3.2.1 Spontaneous Symmetry Breaking and Phase
Transitions

In the Early Universe, when the temperature is sufficiently high, electromagnetic,
weak, and strong forces are possibly unified into a larger gauge symmetry group
G, described in the context of Grand Unified Theory [31, 32]. The cooling down

of the Universe leads to a hierarchy of spontaneous breakings of symmetry, from
G into successive subgroups

G—H;,—..— H — Hy, (3.1)

where Hy = SU(3)c x SU(2), x U(1)y and Hy = SU(3)¢ X U(1)em. The SSB
from G to H takes place when the Higgs-like field adopts a non-trivial ground

state that is invariant under transformations in H but not over G. This breaks
the original symmetry.

The nature of the phase transition, the critical temperature 7, and the phase
diagram are obtained from the temperature dependent effective potential Vs of
the theory. Depending on the potential, the phase transition can be of first- or
second-order. In a first-order transition, a global minimum of V. ;s develops when
T < T.. In a classical description, the field would be trapped in the fake trivial

ground state assuming the potential barrier between the old and new minimum
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is large enough. At quantum level, tunneling effects allow the nucleation of
bubbles of true vacuum. As discussed in Chapter [} thermal fluctuations might
also lead to bubble nucleation. There is a non-zero probability that a bubble
of true vacuum appears at a certain point of space. Once created and if the
bubble is energetically favorabld'] it expands in a sea of false vacuum. A first-
order transition is mediated by quantum tunneling and thermal nucleation. The
ground state (¢) is a discontinuous function of time. A second-order transition is
characterized by the smooth evolution of the ground state away from zero toward
a non-vanishing value, when the temperature drops below T,.. In this case, (¢)
evolves continuously in time and the transition is homogeneous. Examples of

first- and second-order phase transitions are shown on the left and right sides of
Fig. [3.1] respectively.

3.2.2 Kibble Mechanism

In 1976, T. W. B. Kibble [56] demonstrated that a spontaneous breaking of
symmetry might lead to the production of topological defectf?] The mechanism,
further discussed in [57, 81], is based on the formation of uncorrelated domains
in which the expectation value (¢) is coherent. In a second-order transition, the
evolution of the ground state is influenced by quantum and thermal effects and
there is no reason to expect (¢) to be uniform in space. When the transition
is first-order, the value the field takes in a newly created bubble is completely
independent of the existing ones. In both cases, there is the formation of
correlated domains, corresponding to regions of space with arbitrary orientation of
the Higgs-like field. These domains correspond to different minima of the effective
potential and, when they merge together, a non-trivial vacuum configuration is
obtained. The value of the potential being non-minimal between the domains,

some potential energy is trapped and creates a topological defect.

The Kibble mechanism ensures the existence of these domains. The argument is
based on the correlation length & of the field responsible for the SSB. It is fair to
assume that the size of a correlated domain is of order £&. One can show that the

correlation length is proportional to the inverse temperature-dependent mass of

!This depends in general on the energy gain from the inside of the bubble versus the energy
loss in the bubble’s wall.

2This mechanism has been later extended by W. H. Zurek in [80] and is sometimes called
the Kibble-Zurek Mechanism (KZM).
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the field m,,
E~my(T)H ~T71. (3.2)

When the mass vanishes, the correlation length diverges which is in obvious
contradiction with causality. Kibble pointed out that & should be bounded by

the particle horizon dj, defined as

dn(t) = a(t) /O % (3.3)

where a(t) is the scale factor of the Universe. Here, dj, is the maximal proper
distance a photon created at the Big Bang could have traveled until time ¢. It
corresponds to the radius of the region of spacetime in causal contact with the
field. For a(t) ~ t™ and n > 1, we have d;, = t/(n — 1). The age of the
Universe being finite in the Big Bang Model, the radii of the correlated domains
are bounded by a finite quantity d,. Their existence is, therefore, ensured and

one defect per particle horizon is expected to be produced.

3.2.3 Existence and Classification of Topological Defects

The existence and the type of defect created in a specific model relies on algebraic
topology, more specifically, on homotopy. Our aim in this subsection is to perform
a brief review, based on Ref. [57], of the concepts needed to describe the different

types of defects. For a complete and formal description, we suggest the reader to
refer to Ref. [82].

In a spontaneous breaking of symmetry from the group G to H, the associated
vacuum manifold is defined as the coset space M = G/H. It corresponds to the
set of degenerate vacuum states. The topology of the vacuum manifold determines
whether the formation of a defect is possible and the type of defect that might
arise. The formal description of the topology is given by the theory of homotopy.

Definition. Let ¢y and ¥y be two maps from 8™ to M. 1 and 1y are
homotopically equivalent if there exist a continuous one-parameter family of maps

P(t) : 8" — M such that ¥(0) = ¢y and (1) = 1.

The maps 7 and 1) are said to be homotopic, denoted by ¥ ~ 5. Conceptually

two maps are homotopic if they can be continuously deformed into each other.
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Definition. The n'*-homotopy group of M, m,(M) is the set of all homotopy
classes of maps 8" — M: m,(M) = {¢|p : S* — M}/ ~.

One can show that for n > 0, 7, (M) is a group. Despite these abstract definitions,
it is not difficult to interpret the role of the homotopy group. Let us consider for
example the fundamental group m;. If this group is trivial, all loops on M can be
deformed into a point. This is no longer true if there is a hole on the manifold,
since it is not possible to shrink a loop surrounding this hole into a point. It
also cannot be continuously deformed into a loop that has a different number of
windings around the hole. In this case, there are infinitely many classes of loops
on the manifold and m (M) = Z. Conceptually, the fundamental group simply
counts the number of holes on the manifold. Similar arguments can be made for

higher order homotopy groups, where instead of loops, n-spheres are considered.

The zeroth homotopy group is special and its definition need to be clarified :

Definition. Let x and y be points in M. We define an equivalence class on
M by x = y if there exist a continuous path ~ : [0,1] — M, such that
v(0) = z and v(1) = y. The zeroth homotopy group is defined as mo(M) =

vy [0,1] = M}/ =

Conceptually, this group corresponds to the set of path connected components of

M.

As already mentioned, the homotopy theory allows a classification of the
topological defects that can be produced in a phase transition. Let us briefly

present this classification :

o If my(M) # 1, the vacuum manifold is disconnected. Assume that M has
two components M; and My. There will be domains where ¢ € M; and
some others where ¢ € M,. At the interface of these domains, we will
have ¢ ¢ M. The potential is not minimized and some potential energy is

trapped. This scenario corresponds to domain walls.

o If m (M) # 1, there are non-contractible loops in the vacuum manifold. In
the interior of a loop, there is a singularity of M where obviously ¢ ¢ M.
There is therefore a tube of trapped energy, known as the cosmic string.
The string cannot have loose ends, since in this case the loop could be
contracted to a point. This implies that the strings are either infinite or

closed.
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e The other two examples of topological defects usually present in the
literature are the monopoles, arising when m(M) # 1 and the textures

when m3(M) # 1.

Before proceeding to the discussion of embedded defects, let us briefly review the

cosmological consequences of topological defects.

3.2.4 Consequences for Cosmology

Commonly present in the theory, topological defects are of a particular interest for
cosmologists and the quest for their detection has been an active field of research
over the last decades. As we will learn shortly, the existence of a defect could
affect the cosmological model [17, [75] [76]. They might lead to desired outcomes,
such as a mechanism for the formation of structures, and undesired effects, for
example overcoming the energy budget and modifying the expansion rate of the
Universe. On the other hand, the non-observation of topological defects provides
some further constraints on the model. This is particularly relevant for BSM
theories. A candidate for the GUT gauge group or a model of inflation might
predict the formation of defects. Examples of theories including inflation and
defects are Supergravity [83] or Brane-Inflation [84]. Topological defects provide a
top-down probe for the physics beyond the Standard Model and a non-observation

might potentially rule out certain inflationary and GUT models.

We have learned that different kinds of defects are produced, depending on the
homotopy group of the vacuum manifold. Among them, cosmic strings are the
most promising candidates to play a decisive role in cosmology. One can show
that the energy density of a non-relativistic domain-wall depends on the inverse
of the scale factor. Unless the model is too highly fine-tuned to be relevant,
the domain-walls will be the dominant component in the energy budget of the
Universe and drastically alter the model. The production of monopoles represents
also a problem in the SBBM. Computing their energy density today shows that
monopoles produced at the epoch of grand unification would completely dominate
the matter density, which is in obvious contradiction with their non-observation
at present time. This is known as the monopole problem and is one of the original
motivations for the theory of cosmic inflationf’] For the rest of this subsection,

we focus on the cosmic strings and their cosmological implications.

3The monopole problem and its solution is discussed with greater details in the next chapter.
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Cosmic Strings In the presence of a string, the spacetime adopts a conical
structure around the defect. It has been shown by A. Vilenkin in [85] that the
metric outside an infinite and straight cosmic string of mass per unit length g

reads
ds® = —dt* + dz* + dr* + (1 — 4Gp)*r*d6* | (3.4)

with the string being in the z direction. The metric is similar to Minkoswki but
with a defect angle of Af = 87Gpu leading to the conical shape of the spacd|

There are three main consequences from such a geometry.

The first is gravitational lensing. An observer will see two objects located on the
other side of the string and separated by an angle Af superimposed. The second
effect leads to anisotropies in the CMB. A moving string leads to a Doppler shift
in the frequency of a nearby light beam. The part of the beam located behind
the string is blueshifted and the part ahead, redshifted. This process can explain
the variations in the temperature of the CMB and predict fluctuations of order
0T /T ~ 8wGuv, where v is the velocity of the string [86], 87]. The observed
anisotropies of the CMB constrain the mass per unit length to be Gu < 107°. It
is fair to point out that the string are active and incoherent, therefore they do
not lead to baryonic acoustic oscillations and could only account for maximally
10% of the anisotropies in the CMB [88]. The last consequence of the conical
structure of space is the formation of a wake. The mechanism is the following. In
the rest frame of a string, moving with velocity v, matter moves with velocity —uv.
When passing near the string, the particles are deflected and get an inward or
wake velocity of 4rGuv. Matter converges in the region behind the string. The
overdensity in this region keeps attracting matter with gravitational interaction
and leads to the formation of structures [57, [58]. Cosmic strings present an
alternative to inflation and provide a first principle mechanism for the formation
of structures. However, it is now established that the dominant mechanism for

structure formation cannot come from topological defects [41].

Another relevant cosmological consequence of cosmic strings is the production
of relic gravitational waves [65]. Considering a network of cosmic strings, the
interactions between them lead to the creation of closed loops. The loops interact
with the strings and between themselves to create smaller and smaller loops. A

small closed loop oscillates relativistically due to the tension of the string and

4We observe that for dz = dt = 0 the surface is not a plane but a cone.
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emits GW. The power radiated is computed to give

Pow ~ vewGp? , (3.5)

where g is a constant of order 100. With cosmology entering a new era since
the observation of gravitational waves, new constraints on the presence of cosmic

string will emerge from their GW’s signatures [89-91].

Even if cosmic strings cannot be the main mechanism to explain the formation
of structures, they might still play a significant role in particle physics and
cosmology. We have already mentioned that they provide constraints on BSM
theories. Cosmic strings can be the origin of the primordial magnetic field [59, [60].
It has been shown in [59] that a network of superconducting strings carrying a
charged current might generate a magnetic field. The string motion and the
gravitational attraction in the primordial plasma generate a field by vorticity. In
addition, cosmic strings have been used to explain the baryon asymmetry in the
framework of the electroweak baryogenesis [61], [62] and, more recently, proposed

as the origin of high-redshift supermassive black holes [92].

3.2.5 Embedded Defects

Embedded defects are a special class of topological defects. They have been
originally introduced in [66] and investigated in more detail in [93H95]. The
basic idea is the following. If the vacuum manifold M of the full theory is
reduced to a lower dimensional manifold Mgy, by constraining some fields to
vanish, topological defects may arise from the homotopy groups of M, when
the subgroup Genp is spontaneously broken. If the theory constructed from Gepy,
allows the formation of a topological defect, i.e. there is a positive n such that
Tn(Memp) # 1, the solution can be extended to the full theory by constraining
the other fields direction. The defects are said to be embedded in a larger theory.

The main benefit of this method is to allow for the formation of defects in theories
where the homotopy groups associated with the vacuum manifold are trivial.
One example is the Standard Model of particle physics that does not predict any
topological defect. However, the SM contains two known examples of embedded
defects, the pion string [67] in the chiral model and the electroweak string [68, [69]
in the Glashow-Weinberg-Salam model. One naturally expects to have similar

realizations in BSM theories.
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By construction, the stability of embedded defects is not guaranteed. Their
existence is not strictly due to the topology of the full theory. Under infinitesimal
perturbations, the unconstrained fields escape in the constrained directions and
the configuration is continuously deformed to the trivial vacuum. One usually
need a case-by-case analysis and an extra mechanism has to be introduced to
ensure the stability. This is precisely the role of fluctuation-dissipation dynamics,
in particular, the interaction with a thermal bath, as we will learn shortly, tend
to stabilize the defects.

In the remainder of this chapter, we aim to study these mechanisms with an

explicit example, the pion string in the linear sigma model.

3.3 The Pion String in the Linear Sigma Model

The pion string is one of the simplest examples of embedded defects. It appears
in the chiral model of quantum chromodynamics (QCD) as a classical solution
of the linear sigma model where the charged pions are constrained to vanish.
This simple model is well-suited to perform an analysis of stability and study the
mechanisms to improve it. Beside these theoretical considerations, it has some
direct applications for heavy-ion collision experiments and in the quark-gluon

plasma to hadron phase transition in the Early Universe.

As expected, the pion string is not stable in vacuum. It has been shown in [71]
that interactions with a thermal bath tends to stabilize the string. However,
the mechanism is not sufficient to have stable strings for the set of parameters
that are experimentally allowed. In our analysis, we want to study the effect of
the more realistic scenario of the pion string in a dense and hot medium. The

theoretical framework is, therefore, the linear sigma model with quarks (LSMq).

In this section, we briefly introduce the LSMq [96-08] and the pion string solution.
We discuss the instability of the strings and review the known stabilization

mechanisms, in particular, the interactions with a thermal bath.

3.3.1 LSMq at Zero Temperature

It is well-known that QCD becomes non-perturbative at low energy due to color

confinement. However, the approximate chiral symmetry in the QCD Lagrangian
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and its spontaneous breaking allows for the definition of a low-energy effective
theory with hadrons replacing the quarks and gluons as degrees of freedom. Chiral
models have long been used in many applications aiming at understanding various
aspects of QCD, among them, the description of disoriented chiral condensates
in heavy-ion collisions or the chiral phase transition. The LMSq is, therefore, an
effective model to study the chiral transition and includes the additional fermionic

degrees of freedom (the quarks) that are present during the phase transition.

The aim of this chapter being the analysis of the stability of embedded defects, we
only include, for simplicity, the one-loop contributions. This is already sufficient
to illustrate the main characteristics of the stabilisation mechanism. Details about
higher-order contributions to chiral models, in particular, the resummation of the
perturbation theory (optimized perturbation theory), can be found in Refs. [99-
101].

The LSMq is a concrete realization of chiral effective theory and describes

interactions between nucleons, pions and sigma fields. We consider its simplest

realization, containing two massless quarks in a fermionic isodoublet ¥* = (u, d),

a triplet of pseudoscalar pions (7) and a scalar field sigma (0). The Lagrangian
density of the model reads

L=Ls+L,, (3.6)

1
Lo =Tr [(0,2)/(®)] — m?Tr [@@] — A (Tr [@1@])" + “nTr [0f + @] , (3.7)

Ly =i = pq + glo +i7 - 7)) (3.8)

is the meson matrix in Dirac space, T are the Pauli matrices

NI

where & = 0-%+@'7_r’-
with the normalization Tr[7,7,] = 204 and 1 is the identity matrix. Finally, p, is
the quark chemical potential. The term dependent on A in Eq. is an explicit
symmetry breaking term. This term mimics the breaking of the chiral symmetry

in the QCD Lagrangian due to the non-vanishing quark masses.

In the limit of vanishing A, the model has a chiral symmetry SU(2);, x SU(2)g.
The spinors Y r = %(1 + ~v5)1 belong to the fundamental representation of the

group, transforming as

¢L,R — exp(—i&)’L’R . ?)@Z)L,R . (39)

36



The scalar fields transform in the (%, %) representation,
® — exp(—idy, - 7) ' exp(—idg - 7) . (3.10)

It is easy to check that under such a transformation the Lagrangian density (3.6))

1s invariant.

The ®-dependent part of the Lagrangian density is often explicitly expressed in

terms of the pion (7 = (mg, 71, m2)) and sigma (o) fields,

1 1
Lo = §(a,p)2 + 5@7?)2 —Vo(o, ), (3.11)
Vo(o, ) = 2( 247 — ) —ho, (3.12)

2 . .
where v2 = = 1?2 corresponds to the pion decay constant in the vacuum.

The linear term in (3.7)) breaks the chiral symmetry explicitly by giving a non-
trivial vacuum expectation value to the o field. To construct the classical

fundamental state, the minimum of the potential is considered,

v

= Mo+ 7 —v5)o—h=0, (3.13)
dV
dﬂ(.) =N+ 7 —)m =0. (3.14)

The unique solution of the system is
T =0, Mog —vg)og =h, (3.15)

and the vacuum expectation value v of the o field to first-order in A reads

h

U:fﬂ-—Fng.

(3.16)

Assuming that ¢ = o’ 4+ v, where (¢)g = 0, we obtain the shifted Lagrangian

density
Lo :%(aua/f + %(aﬁ)Q - %(—mQ +302)0 — %(—m2 AR
— Mo'v(o”? + %) — 2(0'2 +7)? — o' (—=mPv + Av® — h) | (3.17)
Ly =t [id — 1 ug + gv+ glo’ +i7 - 7v5)] ¥ . (3.18)
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Note that the term linear in ¢’ vanishes due to (3.15)). In this shifted Lagrangian,
the quarks become massive and the masses of the mesons are non-degenerate,

with vacuum values,

Mgo = gu , m2,=—m’+3\°, m2, = —m’+ M. (3.19)
The parameters g, A and h (note that m? = A f?) are chosen to fit the observable
vacuum values, in particular, the pion mass, m,o = 139 MeV, the pion decay
constant, fr = 93 MeV, and also the constituent quark mass m, o and the mass

for the sigma, m, o, whose values will be explicitly set below.

Often, the chiral limit of the model is considered. In the absence of the linear
breaking term (h = 0), the chiral symmetry is spontaneously broken when the o
field develops a vacuum expectation value v = vy = f;. In the symmetry broken

phase, the pions become massless and correspond to the Goldstone bosons.

3.3.2 Chiral Phase Transition at Finite Temperature and

Chemical Potential

The LSMq at finite temperature and chemical potential undergoes a phase
transition in the (u,-7") plane. Following the arguments of Ref. [102], we
assume that the most important contributions to the free energy come from
the interactions with the quarksﬂ The quantum and thermal fluctuations of
the meson fields are neglected (note that this is also a valid assumption in the
large-N approximation for the model [I03]). The (renormalized) free energy or

effective potential at one-loop [97, 98|, 102] reads

Ve (T, ptg) = Vo + AV + AVp,, (3.20)

where
Vo = —%m2v2 + %'04 —hv | (3.21)
AV, = %mg (; +In %) : (3.22)

°The o and 7 fields are replaced by their expectation values. At high 7 and pug,
constituent quarks are light but mesonic excitations heavy, only the quarks and antiquarks
are, therefore, retained as quantum fields. Note that this approximation neglects the effects of
the hadronization process at lower T" and fi,.
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&k
(27)?

AVy,, = —2NCNfT/ (14 e P7) (105 | (3.23)
where wy = /k* + m2, N. = 3 is the number of colors, Ny = 2 is the number
of flavors and M is the regularization scale used in dimensional regularization in

the MS scheme. An explicit derivation of the effective potential is presented in
Appendix [B]

The expectation value of the field o in the medium (o) = v(7\ p,) corresponds

to the minimum of the effective potential and is determined by

dVe
p : =0. (3.24)
U lo=o(T 1q)
This leads to the gap equation,
N.N M?
2 2 AV 4.2
—m” + v —|—4—ﬂ_29 v {1+1HW1
N.N; o |2 B h
T3 92/0 i [ (wr) + np(wn)] = = (3.25)
where
1
np = (3.26)

eTFT 41
is the Fermi-Dirac distribution for particles and antiparticles.

Let us analyze the chiral limit A = 0 and the physical case h # 0 separately.

Chiral Limit

For large T and p,, the chiral symmetry is restored. Equation (3.24]) is trivially
satisfied with v(7T', it,) = 0, and the masses of the mesons are degenerate. The
fermions are massless. The chiral symmetry is spontaneously broken when the

effective potential develops a non-trivial minimum v(7', y1,) # 0.

The masses of the mesons ¢ and 7 are given by their tree-level contributions plus
the respective self-energies, which in our approximation are given by the one-loop

corrections due to the Yukawa interaction,
m2 = —m? + 3\? 4TI | (3.27)
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m2 = —m? + ? + Tt | (3.28)

where 15 and TI¥® are the renormalized one-loop self-energies for the sigma

and the pions, respectively, and given by (see, e.g., Ref. [97])

ren NcNf 4,2 M2
H¢(7 ): 471'2 {g’(} <1+3IHW

g [ an & g + ) (1- 25

A = dk k_2 [nf(wi) (1 = nh(wr)) + np(w)(1 — nF(wk))]} ;

T Jo wj,
(3.29)
and
ren NcNf 4,2 M2 2 * k2 + —
I1en) — ym {g v (1 +lnﬁ +4g i dkw—k [nf(wr) + np(we)] ¢ -
(3.30)
.. . (ren) (ren) . . . . E
The explicit computation of Il ’ and IIz " is given in Appendix (B
Using Eq. (3.30)) in the gap equation (3.25)) gives, for h = 0,
—m? + (T, pg) + T =0, (3.31)

which is simply the condition that the pions become massless in the broken phase,

in agreement with the Goldstone theorem.

We obtain the phase diagram of the model in the (7, p,) plane numerically. The
parameters are fixed by the following conditions. The vacuum expectation value
of the field is vg = fr = 93 MeV

Vo
dv

=0, (3.32)

v=1g

and we require that this minimum is preserved when quantum corrections are

included,

d
% ef‘f(T:Oa:uq :O)

=0. (3.33)

EN]

This equation requires the one-loop self energy of the pion at zero temperature and

zero external momentum to vanish [98], which in turn fixes the renormalization
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scale M? = mg /e. The mass of the sigma field in vacuum is in the broad resonance
interval, 400 MeV < m, < 800 MeV. For our analysis, we set it as

2 d2

ms = —
o du?

Vear(T = 0, 1y = 0) = (600 MeV)?, (3.34)

v=1g

and, for the constituent quark mass, we choose
my = gul,_,, = 300 MeV . (3.35)

Although there is some freedom in the choice of m, within the broad resonance
interval, this barely influences the stability of the string. Thus, we find the

following set of parameters,

m? = \vj ~ (567.7 MeV)? | g~32,
1 [ N.N; m? ;
A=—(8—Lgt+—2) ~373 M? = —2 ~ (182.0 MeV)? . 3.36

An analysis of the effective potential shows that the order of the phase
transition depends on 7" and f, (which are related along the phase transition
curve). For low temperatures and large chemical potential, the shape of the
effective potential Vg is typical of a first-order phase transition, as can be seen in
Fig.[3.:2] In this case, at T' = T, there are degenerate minima with the origin and
the expectation value jumps discontinuously at the transition point. Then, there
is a critical point, which is around 7" = 50 MeV and p, = 306 MeV, above which
(as the temperature increases and the chemical potential decreases) the phase
transition becomes second-order. From Fig.[3.3] we observe that the minimum of
the potential moves smoothly away from zero. The phase diagram in the (p, —17)
plane is shown in Fig. [3.4]

Physical Case

When h # 0, the symmetry is never completely restored, with v(7 p,)
approaching zero for large values of 7' and p,. This behavior corresponds to

a crossover transition. The gap equation gives

h
—m? + (T, pg) = —TI0 4

. m . (3.37)
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Figure 3.2 The effective potential, in the chiral limit, for a fized value of
chemical potential p, = 322 MeV and for values of temperature
above, at and below the critical temperature T.. Here, T, = 11.5

MeV.
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Figure 3.3 The effective potential, in the chiral limit, for u, =0 MeV and for
values of temperature above, at and below the critical temperature
T.. Here, T. =176.0 MeV.

_h
U(T»qu) )
The parameters are fixed by the same requirements as in the chiral limit and the

The pions are pseudo-Nambu-Goldstone bosons with mass squared m?2 =

extra condition on the pion masses in vacuum being set to their physical value

mxo = 139 MeV. For this case, we find the following set of parameters,

h
m? = \vg — — = (541.6 MeV)? g~3.2,
0
1/ NNy, m2 h , m?
A==(8 —7 - — ) ~36.2 M? = — ~ (182.0 MeV)?
3 (S’ + 55 ) =902, o = (IS2OMEV),
h ~1.8-10°(MeV)>. (3.38)
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Figure 3.4 The phase diagram in the (jq-T') plane. The solid and dashed curves
are for the chiral limit (h = 0) and correspond to the second-order
and first-order transition lines, respectively, with the critical point
shown by a blue dot. The dotted curve is for the physical case (h # 0)
and represents a crossover transition. Temperature and chemical
potential are normalized by the critical values in the chiral limit:
T. =176 MeV and g = 323 MeV. For the crossover, we have the
pseudocritical values Ty = 172 MeV and figpc = 329 MeV.

In the physical case, the effective potential exhibits a crossover transition, as
shown in Fig. 3.5 Observe that the minimum of the potential moves smoothly
toward zero as the temperature increases. The derivation of the crossover
transition line on the (u, — 7") plane is performed numerically, with the result
depicted in Fig. together with the case for the chiral limit for comparison.
In our computation, where we have considered both vacuum and thermal
fluctuations for the fermions in the effective potential, we find only a crossover
line. There are though other approximations where the crossover line can end
and merge with a first-order phase transition line in a critical end point (see, e.g.,
Refs. [98], 102]).

43



T : ‘ —T=1MeV ‘
5.0x10 T=100 MeV
R — T=Tp=133.75 MeV

. 0N T=150 MeV g
- .

QO 8 s ‘
S -5.0x10°
= -1.0x10°
N

= N e
S -15x 107 N T e

-20x10°% el
150 -100  -50 0 50 100 150

Figure 3.5 The effective potential in the physical case for a fized value of
chemical potential g, = 220 MeV. It shows a crossover phase
transition as the temperature is changed. There is a pseudocritical
temperature at T, = 133.75 MeV determined by the position of the
inflection point of the o field expectation value.

3.3.3 Pion String Solution and its Stability in Vacuum

We show that the chiral limit of the LSM has an embedded defect, the pion
string, and review the mechanisms already present in the literature to improve
the stability.

Pion String Solution

In Ref. [67], X. Zhang, T. Huang and R. Brandenberger derived a stringlike
classical solution in the LSM, in the chiral limit and in the vacuum. Defining the

new fields ¢ and 7 as

o+ im° L whtan?
= , = —— 3.39
¢ NG m 7 (3.39)
the ®-dependent part of the Lagrangian density is rewritten as
02\ 2
Lo = (0,0)"(0"9) + (9,7 ") (0"77) — A (gb*(b +rnn — ?0) . (3.40)

Considering a static configuration, the energy functional, in the vacuum, reads

EO = /de
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2\ 2
Vo* Vo +Vrt -Vr + A <¢*¢—|— P — %J) ] , (3.41)




and the time-independent equations of motion are

V2p = 2\ <¢*¢ +atn — %3) b, (3.42)
Vi =2\ (qb*gb +7rnT — %g) r*. (3.43)

Since the vacuum manifold of this model is simply M = S3, the homotopy group
is trivial and does not predict any formation of topological defects [76]. However,
if one of the directions of the fields is constrained, in particular, those for the
charged fields 7%, there is an overall U(1) symmetry in the (o, 7%) directions.
When the chiral symmetry is broken, an embedded topological pion string can

form. These equations admit the following pion string solution

Yo ind +
= —p(r)e™ ™ =0, 3.44
6= olr) (3.44)
where r and 6 are the polar coordinates in the (z,y) plane and the integer n is the
winding number. The string has a linear extension in the 2z direction. The pion
string obviously minimizes the energy of the system and satisfies the equations

of motion.

The radial function p(r) is found by substituting Eq. (3.44]) into the equation of

motion and using the boundary conditions,

0, r—0,
p(?"):{ (3.45)
1, T — 00 .

An exact solution is obtained with numerical methods. However, it has been
shown in Ref. [67] that a variational approach can be adapted in this situation.
Adopting the ansatz p(r) ~ (1—e™#") obviously satisfies the boundary conditions.
The variational parameter p is the inverse width of the string and is chosen to

minimize the energy. One finds that the energy per unit length F, is

T, ) Ay 89
E, = qvt mogl(p, R) + = 288 (3.46)
where
R 2
(1, R) = / ar 20 (3.47)
0 r

and R is a cut-off parameter since the energy density of a string solution is

45



logarithmically divergent for a global symmetry. As described in Ref. [73], the size
of the horizon or the typical separation length between the strings are generally
taken for R and is of order of 1 fm. The R dependence vanishes when computing
the derivative of E, with respect to u. A straightforward computation gives

= %/\vg and, therefore, the energy per unit length becomes
2 3
E, ~ v} Yl log[uR]| (3.48)

where we have approximated the integral I(u, R) as log[uR].

Stabilization Mechanism by Thermal Effects

The string solution is non-topological. As it stands, once formed it will
decay away. The non-trivial field configuration can be continuously deformed to
a trivial vacuum by escaping in the constrained directions. In other words, under
an infinitesimal excitation of the fields 7, the induced variation of the energy is

negative, the string configuration unwinds and decays.

It is, however, possible to stabilize the string. If one of the directions of the fields
is lifted, in this case the 7%, then we are left with the overall U(1) symmetry.
This is the scenario studied by Nagasawa and Brandenberger in [70], where the
authors propose a mechanism to stabilize the pion string by putting the system in
a finite-temperature plasma. The interactions between charged pions and photons

increase the effective potential in the 7% directions.

In the minimal coupling prescription, the Lagrangian of the model becomes

UQ 2
L = (0,0)"(0"9) + (Dya*) (D" 77) — A (% +rtr - 30)
1

— R (3.49)

where D:[ = 0, +ieA, and D, = 9§, —1eA,. The effective potential for the 7t
fields acquires a thermal mass due to the coupling with the photons. It has been
shown in [104] that the thermal mass is e*T?7 7~ /2 and the effective potential

reads

w2\?  eT?
Veff:)\(gb*¢+7r+7r_——0) + 4 7T+’/T_. (350)
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The variation of energy, neglecting the (7*77)? term, reads

2772 2
OFE :/d3x [VWJFV?T_ + <€Z +2X(¢"p — 71_20>> 7r+7r_}

+O((r77)?) . (3.51)

Using the string solution and expanding 7% in Fourier modes

7t = voxm(r)eiime , (3.52)

we find 6 F in cylindrical coordinates

SE = 2m? / dz / - dr [X;%;(r) + %QX;@«) 4 (6252 AP — 1)) an(r)} |

(3.53)

We set m = 0 to consider the minimal contribution to the energy. Since p?(r)—1 =
e Hr(e~#" — 2), variation of the mass per unit length compared to the embedded

string, where xy = 0, is

e?T?

R
1

0B, — 0E,| o = 27rvg/0 dr r*(r) { — 2 \vge (1 — 56””) . (3.54)

The sign of equation (3.54) gives us a sufficient condition for the stability of

the string. In the integrand, 7x?(r) is always positive and will not influence the

overall sign. A positive variation of energy corresponds to

272 1
¢ — = 21— 5T > 0. (3.55)

The function e #(1 — e™#7) has its maximal value § at r = 0. We obtain the

following condition for stability

e?T?

4

— g > 0. (3.56)

Using the values given in Eq. (3.36) and that e? = 47/137, we find that a lower
bound for the temperature of the thermal bath associated with the stability of

the pion string core is

200V A

e

Tstab >

~ 2.8 TeV . (3.57)
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This is, however, a temperature that is much above the critical temperature for
chiral phase transition, T, ~ 176 MeV. Thus, even if the mechanism enhances
the stability of the strings, it is not sufficient enough for the production of stable
strings at temperatures corresponding to the chiral phase transition. Our aim for
the rest of the chapter is to try to improve the mechanism. We study the effect of
the inclusion of additional thermal and dense effects from the Yukawa interaction

and show that it can lead to stability, in certain situations.

3.4 Stabilization of the Pion String in a Thermal

and Dense Medium

As shown previously, the interactions between the charged pions and the photons
increase the effective potential in the 7% directions and act to stabilize the string.
We follow the same strategy but, in addition to the thermal bath, we also consider

the effects of a dense medium due to the interactions with the fermions.

3.4.1 Pion String Solution at Finite-Temperature

Using standard techniques [105], a non-zero chemical potential y, is set for the
fermions and the thermal bath is implemented by the electromagnetic couplings
between the charged particles of the model and the photon. We assume that
the fermions are in equilibrium with the thermal bath of photons, but, similar to
Ref. [71], the ¢ and 7 fields are in a non-equilibrium state. The reason is that
the masses of the scalar fields are heavy in comparison to the temperature. In

the minimal coupling prescription, the Lagrangian density becomes

1
L=Lo+Ly— 7 Fub™, (3.58)
2\ 2
Lo = @,0) @) + (DT D7) A (o krte —2) L (30
_ » 0 L
Ly=1 {m o —ie ( qo > A=A, + g(o +i7 - 775)} ¢, (3.60)
qd

where Di = 0, £ ieA, and ¢, = 2¢/3, qs = —e/3 are the electric charges of the

u quark and d quark, respectively.
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As we have seen before, the interactions with the thermal bath give a thermal
mass to the charged particles, modifying the effective potential in the charged
field directions,

e2T?

AVve’fflThermal Bath — TWJFT(? . (361)

Note also that the coupling to the photons gives a thermal mass [105] m?(T ) =
qJ%T2 /8 to the quarks as well. However, this term can be safely neglected with
respect to the gv term in the symmetry broken phase. In addition, at finite
temperature and chemical potential, according to the gap equation , the
expectation value of the ¢ field is no longer equal to vy = f,, but depends on T

and i, (o) =v =v(T, p,).

In the following, we will work in the chiral limit, h = 0. To discuss the pion
string in the thermal and dense medium, we use a mean-field approximation, by
integrating out both the fermions and the electromagnetic gauge field A,. The

Hamiltonian field equations for o and m;, ¢ = 0,1, 2 are found to be

Vie =\ (02 + 72— vg) o+ g(@zw)(ren) , (3.62)
Vimo = A (02 + 7 — vS) o + g(&i7570w>(ren) ) (3.63)
V@) = A (0% + 7 — ) mue) + 9T ) en) + € (A A T2) , (3.64)

where we have [104]
2

(Au) =0, (A, A"y = TZ : (3.65)

and by taking the trace of the momentum integral of the fermion propagator, the

scalar and pseudoscalar fermions densities are [102]

() = —2N.N;go / %i [1—nf(w) —np(w)] | (3.66)
(YiysT) = —2N0Nfg7?/ %%}c [1— njf(we) — np(w)] - (3.67)

Note that these densities depend explicitly on the o and 7 fields [106]. After
subtracting the ultraviolet divergent term in the vacuum-dependent terms of

the above momentum integrals, the finite (renormalized) scalar and pseudoscalar
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fermion densities are, respectively,

() reny = o 11T /g, (3.68)
<QZiry57?1/}>(ren) - 7?]-—[7(1—ren)/g 5 (369)

(ren)

where II; 7 is given by Eq. (3.30)).

Combining the above Eqgs. (3.62)-(3.64) and expressing them in terms of ¢ =
(o +im) /2, 7 = (m £ imy)/+/2 and, also, using Eq. (3.69) together with the
massless pion condition in the chiral limit, Eq. (3.31]), gives

V3 = 2\ {qﬁ*qﬁ + T — M} b, (3.70)
V21t = 2\ |:¢*¢ 4+t — U2<1;7 Nq) + €;§Z:| - (371)

The above equations generalize the pion string equations in the vacuum,

Egs. (3.42) and (3.43)). Hence, the pion string solution Eq. (3.44) for ¢ is modified
to

_ U(Y\}gbq)ﬁ(r)eina ’ (3.72)

where v(T, piy) is the solution of the gap equation (3.24), and p has the same

¢

functional form as p except that the inverse width is now given by v(T', it,). The
energy Fy (3.41) is modified to

B — / P {696+ Ir -

2
+A [¢*¢ +atrT — U<T’2Mq)2} + 62T27r+7r} : (3.73)

By comparing E.g with Ey we can study the effect of the thermal and dense
medium on the stability of the string.

3.4.2 Stability of the Pion String

To investigate the stability of the pion string, we first consider a variation of

the energy 0 F of the string in the presence of infinitesimal perturbations of the
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charged fields 7%,

§F =By — E s = / Pz {%*%*
22

4N

+A {e +20* ¢ — v (T, p1g) + 7T+7T_:| 7r+7r_} . (3.74)

We use the ansatz ([3.72)) and expand the perturbations in the direction of 7% as
7 = (T, py) Z X (1)eEm (3.75)
m=0

Using Eq. (3.75)), the variation of the energy in cylindrical coordinates becomes

2

m
§F = 2mv*(T, u,) /dz/r dr {Xﬁ(r) + r—2xfn(r)
62T2
g
To determine the stability of the string, it is sufficient to know the overall

sign of (3.76). A negative variation of energy would imply that the string

configuration is not favored under an infinitesimal perturbation and would likely

R NI O RRIER-A o] PG WU

decay. Considering the integrand of the above equation, the first two terms 2
and %2 X2, are exact squares, so necessarily positive (in the next subsection we will
explicitly analyze the effect of keeping these terms in the stability analysis). The
only quantity that may give an instability is the last term. A sufficient condition

of stability is therefore derived from the sign of

€2T2
4

+A*(T, 1) (% (r) — 1) + x(r) | - (3.77)

The radial function y,, is unknown. However, appearing as a square, it gives a
positive contribution and can be neglected in a minimal condition for stability.
Using p?(r) — 1 ~ e (e=" — 2) [f| the variation of the mass per unit length

compared to the embedded string is

2T2 ~ 1 ~
°L 2003 (T, pg)e (1 — 56_’”) >0, (3.78)

67 is defined as the string width u except that vy is replaced by v(T, pig)-
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or, using that e #"(1 — 2e7#) < 1 for all r, we find
2T2
‘ MWL) > 0. (3.79)
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Figure 3.6 Stability region of the pion string in a thermal and dense medium,
in the chiral limit. The parameters are those given by FEq. (3.36)).
The upper curve (blue) corresponds to the phase transition (second-
order). The dashed curve (red) corresponds to the lower limit of

stability of the string. The range between the lines is the region of
core stability.

We compute numerically the region of core stability using the parameters given
in Eq. . Our results are shown in Fig. |3.6, The top line corresponds to
the chiral phase transition, the string solution being non-trivial in the symmetry
broken phase where v(7, y4,) is non-zero. The dashed line corresponds to the limit
of stability e*7?/4 = \v*(T, u,). The model predicts a tiny ribbon for values of
temperature and chemical potential, in between the two lines shown Fig. [3.6] for

which stable strings are allowed.

The size of the stability region is small, but the following argument makes
plausible that such a region does indeed exist. We know from the results discussed
for the LSMq in Sec. that the phase transition is of second-order above the

critical point. For a second-order phase transition, the expectation value of the
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field is exactly zero on the transition line and then it moves away smoothly to
finite values. There is always a region below the phase transition line where
the expectation value v(7, p,) is small enough to satisfy the stability condition
. We, therefore, expect that the stability condition is always satisfied for a
second-order phase transition. This can be seen explicitly in the high-temperature

approximation.

In the high-temperature region and close to the critical curve, such that m, /T <

1, we use the approximation [105]

| an s o + (o] = [ ik [ (e) + i)

CUk; 0
2 22
Mg T
= — 4+ — 3.80
2 6 ) ( )

and from the gap equation (3.25)), we find (in the chiral limit A~ = 0 and neglecting

the vacuum contribution for simplicity)

N.N pe o w2
)\UQ(T,,uq)%)\vg—ngZ (7"+ i) (3.81)

which using Eq. (3.79)) leads to the approximate analytical stability condition,

272 N.N 2 272
64 — A2+ WQfgz(%ﬂe) )>0. (3.82)

Values for 7' < T, and 14 < p1. can always be found, i.e., temperature and chemical
potential below the values corresponding to those for the critical (second-order)

transition line, such as to satisfy Eq. (3.82)).

The situation changes drastically though when the transition is first-order. It
is well-known that defects can form during a first-order phase transition as well
(see, e.g. [81]). In our model however, the strings would decay immediately.
The stability condition relies on the smallness of the temperature and chemical
potential background value v(7T,p,). Around the first-order transition the
background value v(T', i) jumps (discontinuously) from zero in the symmetry
restored phase to a usually higher value in the broken phase and the condition
is never satisfied. Thus, we conclude that the existence of stable pion
strings depends strongly on the order of the phase transition. The stability
condition for the pion string is favored around the second-order transition line of

the phase diagram, but it is disfavored around the first-order transition region.
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The stability condition Eq. (3.82)) should be contrasted with the case where the
Yukawa interactions are absent Eq. (3.56)). The inclusion of additional thermal
and dense effects from the Yukawa interaction is thus fundamental for having a

stable pion string.

3.4.3 Stability in the Physical Case h # 0

In the physical case, h # 0, the effective potential leads to a crossover transition,
as seen in Fig. 3.5l Defect formation in a crossover region is, unfortunately,
very poorly understood at the moment, either from analytical studies or from
numerical (lattice) simulations. As far as we know, there is just some limited
discussion in the literature of defect formation for this case, such as for example
Ref. [107], where it discusses how defects can be formed by percolation of different

regions with different phases.

For the present case, when accounting only for the background fields, it would
appear that no string solution can be constructed for the physical case of h # 0.
As shown above, e.g. in Eq. , the pion string solution is constructed in the
plane of the fields (o, ), which is lifted with respect to the charged pions by the
thermal electromagnetic plasma effect. The potential in the plane of the fields
(0,m), in the chiral limit h = 0, is then of the form of a classical Mexican hat.
The string solution interpolates between the unstable vacuum at the top of the
potential to the infinitely degenerate minimum at the bottom of the potential.
The solution then winds around the minima at the bottom of the potential with no
cost of energy. This winding is possible due to the infinitely degenerate minimum

of the potential (the pions are exactly Goldstone bosons).

In the physical case, h # 0, the chiral symmetry is explicitly broken, the pions
acquire a mass and this winding freedom is no longer present (the potential now
becomes a tilted Mexican hat). Under these circumstances, the string ansatz
Eq. no longer applies and for the background fields alone no string solution

should be possible to construct.

The above situation, however, can change significantly when accounting for
fluctuations of the fields in the thermal medium. Field fluctuations and gradient
energies, which are negligible at zero temperature, can grow, particularly close
to the transition and at large temperatures, where large fluctuations then start

to become relevant. Under these conditions, it is then feasible that, as these
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fluctuations of the fields grow around the true vacuum of the system (the global
minimum of the potential), they can be sufficiently large to probe the false
vacuum state (the local minimum of the potential). When this happens, we
can effectively say that the winding around the potential is once again restored,
at least in localized regions of space. Much of the system will consist of regions
of space where the fluctuations are small and the state is that of an explicitly
chiral symmetry breaking as usual. However there will some regions with larger
fluctuations where the chiral symmetry effectively looks restored, and such regions
become increasingly more prevalent as the temperature increases. The pion
strings that we are interested in are local objects, so all we need is some suitably
large regions where conditions are appropriate for them to form. Thus, in regions
of large fluctuations, where the chiral symmetry is effectively restored, pion string

formation can become possible once again.

This picture is similar to the mechanism discussed in Ref. [107] for the formation
of defects. Typical fluctuations in the fields have the size of the correlation
length, with &' ~ m, and £' ~ m,. As the temperature grows, these
fluctuations start to become more and more frequent and eventually they start
coalescing. In between these regions, string formation is possible, similar to
the Kibble mechanism of formation of defects we have introduced previously.
Though the physics of the formation of these fluctuations in a thermal medium
and their consequences goes beyond the analysis allowed within the framework
of the effective potentia]m, we can still provide some reasonable estimates for the

importance of these fluctuations in the present problem.

Fluctuations in the fields around the true vacuum and that are large enough to
probe the false vacuum of the potential should have an energy density in gradient
form comparable to the difference in energy density between the false and true

vacua of the potential,
1 b4 = 1 d —
<§VU.VJ> + <§V7T.V7T> ~ hv (3.83)

where we have used that AV.g ~ hv for the energy density difference. Assuming

Gaussian-like (classical) correlation sized fluctuations for the fields in the thermal

"We recall that the computation of the effective potential is only able to include the effects of
small fluctuations and the proper treatment requires making use of the effective action instead.
See, e.g., Refs. [I08HIT0] for examples of works that try to account for the effect of fluctuations
in a phase transition. Note also that in Ref. [I11] a method has been proposed to study the
effect of fluctuations in the chiral phase transition in the LSMq, without the assumption of the
fluctuations to be small.
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Figure 3.7 (a) The stability condition for the pion string (red plain-line), the
gradient energy condition (blue dash-dotted line) and the transition
line (black dashed line), in the (uq,T) plane (normalized by the
corresponding critical values). (b) An amplified view around the
high-temperature, low chemical potential region. Strings are allowed
to form in the shaded region below the transition line and above the
stability condition.

medium, we can then write [112]

lo = T [™ kA m3T
1o, gy~ L P (3p_g) e 84
(2V0 Vo) P / k:kZ e (3w —8) 1307 (3.84)

and analogous for the gradient energy density for the pion field.

In Fig. (a), we show the condition given by Eq. alongside the transition
line and the pion string stability line in the (7', i,) plane in the physical case of
h # 0. In Fig.|3.7 (b), we zoom into a region similar to the one shown previously
for the chiral limit in Fig. We see from Fig. |3.7|(a) that the gradient energy
density is significantly closer to the transition line and remains slightly below it,
down to temperatures and chemical potential around 7" ~ 0.7 T, and 1y >~ 0.8 fig.c,
when it then goes above the transition line. In this region of large temperatures,
the variations in the fields are sufficiently large to overcome the difference in

potential energy density between the local and global minima of the potential.

The stability condition, similar to what we have seen in the chiral limit A = 0 (see,
e.g., Fig. , is also very close to the transition line and slightly below it, lying

in between the gradient energy condition and the transition line. In this small
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region of parameters, in between the stability condition (solid red line) and the
transition line (dashed black line) and lying above the gradient energy condition
(dash-dotted blue line), is where pion strings can form (we locally recover the
conditions for winding of the string) and be stable at the same time. Below the
line for the gradient energy condition, the fluctuations of the fields (in terms
of gradient energy) are not large enough to ensure the presence of strings, as

discussed above.

The above analysis is just a preliminary examination of the physical case of h #£ 0
and it shows that the formation of pion strings is plausible in this regime. More
important, this section has laid out a conceptual framework for how to address
this physical regime. An important general point that this analysis indicates is
the importance that large fluctuations close to the transition may have on the
formation, stability and presence of defects in general. A complete analysis would
require a much more detailed treatment of the large localized fluctuations that
emerge, such as through numerical simulations, which is beyond the scope of the
present work. Nevertheless, our analysis, though semiquantitative, indicates the
importance that gradient energy densities for the fields can have on the pion string
formation and subsequent stabilization when in a thermal and dense medium.
These gradient energy terms can also have important effects in the subsequent
evolution and decay of these strings when formed. Our analysis here also shows
that the role of fermions is an important ingredient to achieve stable pion strings
even in the h # 0 case due to the effect they have on the order of the phase
transition (recalling that in the absence of the fermion contributions, no stability
is possible for physically motivated QCD parameters in this model). Thus, the
main focus of this work on the role of fermions can be seen already to be important

also for any detailed study of the h # 0 case.

3.5 Discussion and Conclusions

In this chapter, we have studied a stabilization mechanism for embedded
topological defects, by considering one of the simplest realizations, the pion string.
We have investigated the effect of a thermal and dense medium on the stability of
the string. We have used the LSMq model to describe the chiral phase transition
using realistic physical parameters. We have constructed the corresponding pion
string solution for the model, which depends explicitly now on the temperature

and the chemical potential. Finally, using the mechanism similar to the one
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proposed in Ref. [70], we have analyzed the stability for pion strings and have

derived a condition for it to be satisfied.

Our results have shown that the existence of a stable string depends crucially on
the order of the phase transition. Pion strings are produced and can become
stable when the phase transition is second-order. This happens because the
expectation value of the field in the medium changes smoothly away from zero.
In this case, the stability condition is automatically satisfied in a region close to
the transition line. This argument fails when the transition is first-order since,
now, the minimum of the potential can jump discontinuously to a large value,
such that the stability condition no longer holds. In this respect, the presence
of fermions, which is a key direction this work has explored, is crucial. The
inclusion of the fermions indirectly provides stability, in the sense that fermions
do not change the stability condition Eq. but they change the order of
the phase transition and, therefore, bring stability. This result is the first to find
a stability region for the pion string. Although most of the analysis was done
mainly in the chiral limit, in Sec. we have performed a preliminary analysis
also for the physical case of h # 0, where we have pointed out how fluctuations
of the fields leading to large gradient energy densities, can play an important role

in the formation and stability of pion strings in this regime.

A stable pion string has similar characteristics as an ordinary topological string.
In particular, the string leads to a specific geometry of spacetime. The string can
be seen as a string core, where the potential energy is trapped and a non-trivial
winding of the scalar field around this core. The topology induced by the defect
can therefore be seen far away from the actual core radius. It has been argued
in [I] that this non-trivial geometry persists even after the decay of the string. The
argument is the following, when the temperature drops below Ty, the potential
energy confined in the string core is released into kinetic energy, leading to the
unwinding of the field. However, at large distance from the core, the non-trivial
winding of the neutral scalar field persists. This behavior is referred as a string

melting.

The existence of pion strings has direct consequences for cosmology and nuclear
physics. The region of the (u,—7") plane in Fig.|3.4|with a second-order transition
and stable strings has large temperatures and a low chemical potential. This
region of the plane applies for both the Early Universe and aspects of heavy-ion
collision. The applications of the pion string in the Early Universe are multiple.

One concrete example is the creation of primordial magnetic fields as discussed

o8



in Ref. [60]. Pion strings in heavy-ion collisions experiments have been discussed
recently in Refs. [73] [74]. The production of strings in this kind of experiments
may have an influence on the distribution of baryons and one could speculate

about their experimental signature.

A relevant feature of cosmic strings is the production of gravitational waves.
In particular, the observation of GW in the coming years will provide greater
constraints on the presence of cosmic strings in the Early Universe [91]. It would,
therefore, be interesting to study the GW signature of pion strings. However,
since those are expected to be produced at the epoch of the QCD transition,
their energy per unit length might not be sufficiently high to produce a signal

that can be detected in the near future experiments.

Another interesting area to investigate is the stabilization mechanism and
its potential improvements. In order to affect the effective potential in the
constrained directions, one needs to act on the charged pions only. One possibility
would be to place the system in an external magnetic field. This analysis has
applications beyond the LSMq of the strong interactions. Similar considerations
can be used to study the stability of the Z string [68], the embedded string solution
made up of the uncharged complex Higgs field with the charged complex scalar
set to zero. An initial study of the thermal stabilization of the Z string was given
in [I13]. A similar reasoning would apply to the Z string. The embedded defect

would never completely decays, but at most undergoes core melting.

Looking beyond the Standard Model of strong, weak and electromagnetic
interactions, and to higher temperatures, it would be interesting to study whether
there are embedded defects in BSM theories which could be stabilized not only
by a photon plasma, but by a plasma of the gauge fields which are massless
above the electroweak symmetry breaking scale, and above the confinement scale.
BSM theories with embedded domain wall solutions stabilized by a plasma in the
Early Universe could face severe cosmological problems since a single domain wall

crossing our Hubble patch would overclose the Universe.
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Chapter 4

Universality in Warm Inflation

4.1 Introduction

The SBBM has proven its validity as a cosmological model with several theoretical
predictions confirmed by observation. Despite these great successes, the original
formulation of the model faces some shortcomings. However, the simple addition
of an early phase of accelerated expansion, before the epoch associated with grand
unification, is sufficient to resolve most of the drawbacks of the model. Cosmic
inflation is not the only way to complete the SBBM, however, and this is one of the
main reasons for its success, the theory possesses a built-in mechanism to generate
the formation of structures and explain the presence of the tiny anisotropies
observed in the temperature of the CMB. Over the last few years, cosmic inflation
has become a main ingredient of modern cosmology. The theory is currently

favored by several experiments such as the Planck satellite [42] 114 [1T5].

The historical and most common realization of an early accelerated expansion
relies on a single scalar field in the slow-roll regime. At the end of the period
of inflation, the Universe is extremely cold and mostly empty, the temperature
and the energy densities of matter and radiation being proportional to negative
powers of the scale factor. It is then usually assumed that a reheating period [116]
directly follows inflation. The energy of the scalar field responsible for inflation
is transferred into particles of the Standard Model to repopulate and reheat
the Universe. A slightly different scenario is proposed by the warm realization

of inflation [I0, [TI]. The presence of dissipative effects leads to a continuous
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production of radiation and, possibly, a smooth transition to the radiation-
dominated era. The Universe, therefore, remains warm during the period of
inflation. A first principle model of warm inflation based on a few fields has been
proposed recently [117], and demonstrated that, as model building prospects,

warm inflation models are on an equal footing to cold inflation.

Observational cosmology, as demonstrated by the recent Planck results, has
reached an impressive level of precision that can set constraints on many
cosmological models, including inflation. However, despite the level of accuracy
achieved by Planck, the degeneracy problem of inflationary model building still
persists. Many inflationary models can produce predictions, like for the near
scale invariance and the power spectra, that are very similar and compatible
with the data. In Ref. [118], the idea of universality classes was suggested as
a means to classify a wide range of inflation models, and, thus, subsumes a
large number of them in terms of their salient properties relevant to observation.
This approach borrows ideas from the renormalization group (RG) methods of
quantum field theory (QFT), such as the concept of flow away from a fixed point,
here corresponding to the exact de Sitter (dS) geometry, and the use of an analog

to the renormalization group equation (RGE) for the S-function.

The [-function formalism was introduced in Ref. [I18] and further developed
and extended in Refs. [IT9HI124], to identify universality among the wide zoology
of inflationary models. This formalism is based on the application of the
Hamilton-Jacobi (HJ) approach to cosmology [125]. It relies on a formal analogy
between the equation describing the evolution of a scalar field in an expanding
background and a RGE of QFT. As will be explained below, this analogy is not
coincidental but has underpinnings with holography. In this framework, the near
scale invariance experienced by the Universe during inflation is interpreted as a
departure of the corresponding RGE from a fixed point, corresponding to an exact
dS spacetime. A single parametrization of the g-function, close to the dS fixed
point, thus, defines a universality class of models that can be grouped together,
sharing a single asymptotic behavior. As a consequence, arbitrary potentials can
be classified into a small set of classes according to the behavior of their associated

[S-function in the neighborhood of the fixed point.

This approach has some direct advantages. First of all, by grouping different
potentials into a small set of classes, it significantly reduces the number of relevant
cases to consider. Furthermore, as the formalism relies on intrinsic properties of

inflation, it is completely general and, in particular, it does not assume slow-
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roll. For example, it has been successfully applied to constant-roll inflation [123].
Finally, as mentioned already, this formalism has deep theoretical motivations
arising from the holographic description of the Early Universe (see, for example,
Refs. [1261128]). Within the (A)dS-CFT correspondence of Maldacena [129], the
flow away from the dS fixed point, which is realized during inflation, is dual to
a deformation of the associated conformal field theory (CFT) due to relevant or
marginal operators. By applying these methods to describe the Early Universe,
and, in particular, inflation, it is both possible to shed a new light on some
of its problematic aspects and to provide an alternative interpretation of the

observational constraints [I30HI37].

By applying the g-function formalism to warm inflation, we show that there are
two intervening characteristic functions regulating the dynamics. One of them
is the function already identified in Ref. [I18], which was defined in the cold
inflation case, and which controls the way the inflaton drives the departure from
the dS fixed point. In the warm inflation context, we show that another function
controlling the level of radiation production naturally emerges. By following
the evolution of these two functions, we are able not only to fully characterize
the dynamics, but also to determine when the end of warm inflation smoothly
connects with the radiation-dominated regime. Furthermore, these two functions
allow us to classify different forms of inflationary potentials in certain universality
classes. Since this description sets direct control on the dynamics, by using
parameters which are different from the usual slow-roll coefficients, it offers an
extremely powerful method to describe the inflationary evolution (and its end)

in an independent and novel way.

In this work, we make use of the generalized framework offered by the g-function
formalism to obtain an analytical understanding of warm inflation. We first
show that in some toy models a full analytical description of warm inflation can
be derived. We then focus on more realistic scenarios. In particular, we show
that it is possible to derive a relatively accurate description of both the weak
and strong dissipative regimes. Among the main results of the chapter, there
is the observation that, despite a second functional dependence is introduced,
a universal description of inflation, similar to the one of Ref. [I18], can still be
consistently formulated. This allows studying further the effect of the various
forms of the dissipation terms commonly considered in warm inflation on the
classes of universality and on their predictions for the scalar spectral index and

the tensor-to-scalar ratio. Remarkably, we show that, within the F-function
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formalism, it is easy to identify the degeneracy in the inflationary observables for
some models with different dissipation coefficient forms. The results presented in

this chapter have been published in [2].

This chapter is organized as follows. We start in Sec. 4.2 with a brief review of
the theory behind cosmic inflation. We present and contrast the cold and warm
realizations. In Sec. [£.3] we motivate the need for a universal treatment and
show how this is achieved with the S-function formalism. We then present how
the formalism is consistently extended to warm inflation. We provide details on
the method and present explicit examples in Sec. [4.4] The results are presented
and discussed in Sec. [£.5] Our concluding remarks and future perspectives are
given in Sec. [£.6] Greater details on the cosmological perturbation theory of

inflation are given in Appendix [C]

Note that we have chosen to work in this chapter in the units of the reduced
Planck mass, where Mp/v/8m =mp =k~ = 1.

4.2 Review of Cosmic Inflation

Cosmic inflation refers to an accelerated phase of expansion in the very early
Universe, before the period of grand unification. It has been originally proposed
to solve some of the shortcomings of the SBBM by A. H. Guth [I38] and A. A.
Starobinsky [139], and developed by A. D. Linde [140, [141] and A. Albrecht and
P. J. Steinhardt [142].

From the Friedmann equations (22.7))-(2.8)), an accelerated expansion is realized if

2H
3H?2

:',Oer

2
< = 4.1
|2 (1)

This condition from the equation of state implies a nearly constant Hubble factor
during the period of inflation. For illustrating purpose, let us study the case of
an exactly constant Hubble factor, denoted H;. A simple computation gives the

scale factor as function of time
a(t) = apexp{H -t} , (4.2)
where the subscript 7;,” denotes the beginning of inflation. This solution of
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the Einstein equations is referred as a de Sitter space and has been originally
introduced by W. de Sitter [143, 144] and T. Levi-Civita [I45]. This spacetime
is realized if the Einstein tensor is constant, or, equivalently, with a constant
energy-momentum tensor. However, in an exact de Sitter space, the expansion is
eternal. It is therefore assumed that the phase of inflation takes place in a quasi-
de Sitter space, where |H;| < H? but not constant, allowing for a transition to

the reheating era.

The length of the period of inflation is usually characterized by the number of
e-folds N associated with the growth of the scale factor. Defined as dN = —dIna,

one can derive N(t)
N(t) = / dind =In % ~ HAt, (4.3)
a a

with the subscript 7;.” denoting the end of inflation. In this brief review of
cosmic inflation, we first introduce the shortcomings of the SBBM and the
corresponding solutions coming from a phase of inflation. We then present the
simplest realization of inflation, with a scalar field, and discuss the theory of
the perturbations. Finally, we introduce the warm realization of inflation and

highlight the differences with respect to the cold case.

4.2.1 Shortcomings of the SBBM

The confidence on the SBBM relies on many successes, on both theoretical
and experimental levels. Despite this apparent robustness, the SBBM, in its
original formulation, faces a few imperfections. Fortunately, these shortcomings

are resolved with the introduction of an early phase of inflation.

Horizon Problem The horizon problem is related to the observed causal
connection in the Universe. ~FLRW cosmologies are built on the simple
assumption of a large scale homogeneity and an isotropy of space. Galaxies
surveys and the temperature of the CMB are strong experimental supports for
the cosmological principle. However, homogeneity implies that some regions of
space are sharing some properties and, therefore, must be in causal contact. The
horizon problem is based on the observed homogeneity between two regions that

appear as causally disconnected in the SBBM.
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To be more specific, let us define the comoving particle horizon d,,

T bt t 31(1+j$) 143w
dpn(7) = / dr' = /t o) ~ (%> ~a(t) 2 to, (4.4)

assuming a constant w and using that a(t) ~ (¢/to)?/*(+) with ag set to 1. The

comoving particle horizon is the comoving distanceﬂ a photon emitted at time t;
travels until time t and is essential to study causality. The surface of the sphere
of radius dp, the comoving distance, delimits the region of the space that is in
causal contact at time ¢ with the spatial position where the photon has been

emitted.

A strong support for the large scale homogeneity of the Universe comes from the
temperature of the CMB. The scale factor at the time of formation of the CMB
is of order a(tcarp) ~ 1073ag. Assuming for simplicity a radiation-dominated
universe until ¢cpp, we find the comoving distance (or future horizon) at the
time of last-scattering of order of 1073t,. On the other hand, the scale of the
observed homogeneity is given by the comoving distance between t¢,,5 and today,
corresponding to a past horizon. Assuming for simplicity the Universe to be
dominated by matter after the time of last-scattering, one find d,;, ~ t5. The
observed area of homogeneity is 10° times larger than the areas in causal contact
at the time of formation of the CMB. This is the horizon problem.

An early phase of inflation provides a solution. If the Universe is expanding

exponentially during a time interval before toy/5, the comoving radius becomes

Ti0 Tie T 1
dpn(7) = (/ +/ +/ )dT’Z i, P AAH 4
T Ti0 Tie Qiell]

where the subscripts ;o and ;. denote the beginning and the end of inflation. The

first and last integrals have been safely neglected with respect to the second.
We have defined a;. as the scale factor at the end of inflation and H; as the
nearly constant Hubble factor during inflation. We observe that an exponential
expansion drastically enhances the comoving horizon. If the process is long

enough, it will overcome the scale of homogeneity. Assuming that inflation ends

!Since the Universe is expanding over time, the lengths are rescaled. One has to be careful
when comparing distances at different times. The comoving distance allows a definition of
lengths that takes into account the expansion.
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at a temperature of 10'> GeVf] leads to

a; Tt
e =20 107 (4.6)
a T

An estimate for H; is found by assuming a radiation-dominated universe after

inflation H; ~ (2t;.)~! ~ 105¢(2¢y)~!. To enforce a causal connection we require
exp {At - Hi} > aje - Hy -tg ~ 10 ~ €% | (4.7)

and, therefore, approximately 60 e-folds are necessary to solve the horizon

problem.

Flatness Problem The flatness problem is related to the initial conditions at the
Planck scale. In absence of constraints imposed from an underlying symmetry,
naturalness implies that any dimensionless parameter is of order unity. If such
a parameter takes an extremely large or small value, the model appears as
excessively fine-tuned. This is exactly what happens with the energy density

parameter {2 and is the origin of the flatness problem.

To be more specific, the first Friedmann equation ((2.7) allows expressing the

fractional deviation of €2 from unity as

3k
Q' —1=——. (4.8)

a?p
Assuming for simplicity that before the matter-radiation equality the Universe is
dominated by radiation (p ~ p, ~ a™*) and after by matter (p ~ p,, ~ a=3) and

using that the scale factor scales as the inverse of the temperature we find

— — — 2
Qljlj—lePli—lQ?{_lz (Teq> (TO) N10—60’ (49)
QO -1 ng _1QO -1 Tpl T.

€q

using Tp; ~ 10%? K and T,, ~ 10* K. The energy density parameter is 60 orders
of magnitude closer to unity at the Planck epoch compared to today. Since €2 is
measured today as 1.001 £ 0.004 at 95% CL [42], the energy density parameter

Qp; appears as extremely fine-tuned at the Planck scale.

An early phase of accelerated expansion solves this problem by bringing an extra

contribution to (4.9). Computing the deviation of the energy density parameter

2This is the historical choice and is related to the energy scale of GUT.
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between the beginning of inflation and today, one finds

O l-1 ol -10t -1 Nk ?
o1 o1l ()’ (T (B
Qp —1 Qtw -1Q, -1 a(tio) T; T

eq

assuming H;At > 60. Due to the exponential expansion, the Universe appears
as spatially flat at the end of inflation even if (2p; differs from unity. Note that
both the horizon and the flatness problems are solved by approximately the same

number of e-folds.

Monopole Problem The monopole problem is related to the formation of
topological defects in the Early Universe. We have learned in the previous chapter
that from the GUT epoch to the time when the Standard Model prevails, a
cascade of phase transitions is expected to happen, potentially allowing for the
creation of topological defects. We have also learned that the presence of defects
drastically affects cosmology. In particular, if magnetic monopoles are created
at the GUT epoch, they would dominate the energy budget today. The non-
observation of magnetic monopoles and other exotic relics defines the monopole

problem.

An early phase of accelerated expansion ending at the GUT epoch prevents
such defects to affect the later stages of the Universe. The number density,
which is proportional to a2, is suppressed by a factor of (e#4%)? ~ 107 during
inflation. More generally, since the relevant energy species and the temperature
scale as negative powers of the scale factor, at the end of inflation, the Universe
is extremely cold’] and empty. Therefore, a period of reheating must follow the
phase of inflation. When inflation is realized with a scalar field, the inflaton, the
potential energy stored in the scalar field is transferred to the other particles via
decays. However, we must stress that even if the phase of inflation empties the
Universe from any undesired relics, it does not prevent the creation of defects in

the later stages of the Universe’s history.

We have learned that an initial phase of accelerated expansion is sufficient to
solve the principal shortcomings of the SBBM. Let us now present how inflation

is achieved by considering the simplest realization with a slow-rolling scalar field.

3Unless there is a dissipative process during the period of accelerated expansion. This is
exactly the framework of warm inflation discussed in Sec.
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4.2.2 Realization of Inflation

The simplest realization of inflation is achieved with a single scalar field,
minimally coupled to gravity and with a canonical kinetic term. The dynamics

is obtained from by the Einstein-Hilbert action

R
S= /dtd?’:c Fl [— — —g‘“jau¢8,,¢ V(o) , (4.11)
where g = det(g,,), g, being the FLRW metric. From the stress-energy tensor,
given as

2 S

Ty = —
" gl ogm

the pressure and energy density associated with the scalar field are derived

(4.12)

po= T O Vo). pe= S WV, @

The evolution of the system is given by the Friedmann equations and the equation

of motion for the scalar field

V2¢> ov
+8¢

The symmetry of the metric, which is a direct consequence of the assumed

b+ 3Hp— 0. (4.14)

homogeneity and isotropy of space, implies that the field is homogeneous. In
general, one can consider ¢(t,Z) = ¢.(t) + dp(t, T), where the field is seen as a

sum of a classical homogeneous contribution and quantum fluctuations.

The condition for an accelerated expansion becomes

2H
3H?

.L <
2 +V(¢)

- ‘p”pd’ - (4.15)

P¢

[GVRI )

which is clearly satisfied in the slow-roll regime, where |¢?| < V(¢). This leads to
the simple picture of a scalar field slowly rolling down the potential and leading
to an accelerated expansion. At the end of inflation, the field falls into a potential
well and starts oscillating. The expansion stops accelerating and reheating takes
place. The scalar field decays into other relativistic particles, bringing the

Universe into the radiation-dominated era. This scenario is illustrated on the
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left panel of Fig. shown in Sec. [4.2.4]

A wide zoology of potentials leading to inflation is present in the literature. A
comprehensive list might be found in the review [146]. For completeness, we
must state that there are more sophisticated scenarios. Those are based on the
relaxation of one of the simplifying assumptions we have made so far. The most
popular examples involve a non-minimal coupling to gravity [139, [147], a non-
canonical kinetic term [148], several scalar fields [149], couplings with gauge fields

and the presence of anisotropies in the metric [150].

A part from solving the shortcomings of the SBBM, the theory of inflation
provides a really important missing piece in the cosmological model, a satisfactory

mechanism to explain the formation of structures.

4.2.3 Structure Formation from Inflation

Locally, the Universe is highly inhomogeneous. For example, the matter is
localized in specific regions of space such as clusters, galaxies or stars. One of the
main questions of cosmology is precisely the origin of the formation of structures.
A simple mechanism relies on cosmological perturbations. Tiny fluctuations of
the energy density grow with the constant addition of matter attracted by gravity.
This process is eventually leading to the structures we observe today. However,
in a universe that is homogeneous and isotropic on large scales, the origin of
these instabilities has to be explained. One possibility arises from the theory
of inﬂationlﬂ The scalar field responsible for the accelerated expansion being a
quantum field, the presence of quantum fluctuations might serve as seeds for the
density fluctuations. The predictions from the perturbation theory of inflation can
be linked with the anisotropies observed in the CMB, giving some experimental
tests of the model. We briefly review the main characteristics of this mechanism.

More details are given in Appendix [C]

Cosmological Perturbations during Inflation The theory of perturbations has
been developed by J. M. Bardeen [I51], Bardeen, P. J. Steinhardt and M. S.
Turner [152], V. F. Mukahnov, H. A. Feldman and R. H. Brandenberger [153]
and H. Kodama and M. Sasaki [I54]. In the case of inflation, the analysis relies

on the inhomogeneous fluctuations around the homogeneous expressions for the

4 Another mechanism is realized with topological defects, as discussed in the previous chapter.
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scalar field and the metric

9ur(t, %) = g™ (1) + 09 (6, 7). O(,7) = 6e(t) +09(¢, ), (4.16)

where g7/ is the FLRW metric and ¢.(t) is the classical contribution of the
scalar field responsible for the accelerated expansion. There are three kinds of
perturbations, namely scalar, vector and tensor. However, the gauge freedom in
the choice of coordinates allows for the restriction to two relevant contributions.
The perturbation of the scalar curvature on comoving hypersurfaces R is a linear
combination of the scalar perturbation of the field and the metric. The tensor
perturbation uy comes from the tensor perturbation of the metric and is related

to the propagation of GWs. A labels the polarizations of the waves.

The physical observables are obtained from the statistical properties of the
perturbations. In particular, the scalar and tensor power spectra are defined

from the two-point functions

o A2(E

OIR(re)R(r o) = [ e 20D, (4.17)
S NAY: E,T

(Olux(T, 1 )ur (T, 22)|0) = /d%elk(m“)% : (4.18)

The derivation of the power spectra requires a precise analysis of evolution of
the perturbations. The main characteristics are identified from the equation of
motion for the perturbations called the Mukahnov-Sasaki equation. For the scalar

perturbation, the equation for a mode vy reads

"
o+ (k2 - %) =0, (4.19)
where the prime denotes a derivative with respect to conformal time and z =
a¢’'/H, with H being the conformal Hubble parameter H = a'/a = aH. The
Mukahnov-Sasaki variable v is related to the comoving curvature perturbation
by v = —zR.

During inflation, the comoving Hubble radius, defined as (aH)™!, is decreasing
and, therefore, two regimes are identified. On sub-horizon scales, the modes
oscillate since k% dominates in the linear term. On super-horizon scales, the modes
are constant. Since the comoving Hubble radius is decreasing during inflation, the
modes are expected to oscillate until their wavelength becomes larger than the

horizon when they freeze. After the phase of inflation, with the Universe evolving
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in the radiation- and matter-dominated periods, the Hubble radius grows again
and the modes reenter the horizon when k£ = aH. One should therefore evaluate
the power spectra at horizon crossing. As highlighted in Appendix [C] for the

simplest realization of inflation, the scalar and tensor power spectra are given by

1 H*

H 2
Ai(k,T)‘k:aH = mg y A?(k’T)}k:aH =38 (g) y (420)

evaluated at horizon crossing.

One useful observable related to the power spectra is the spectral indices defined
as

 dIn A2 (k)  dInAX(k)
Y ’ " T Ik

k=aH

(4.21)

Nng —

k=aH

The perturbations being created during inflation in a nearly de Sitter space, these
are expected to have a nearly scale-invariant spectrum. The departure from an
exact scale invariance is precisely measured from ng and n;. One can also consider

the runnings of the spectral indices which are defined as

_ dInn,(k)

~dInn(k)
G Tk

) T Tk

k=aH

(4.22)

k=aH

Another observable that plays a significant role in constraining inflation is the

so-called tensor-to-scalar ratio

A?(k, 7)

r = —

A2k, 7) , (4.23)

k=aH

corresponding to the ratio of the amplitudes of the power spectra.

The predictions for the different observables are sometimes expressed in term of
the so-called Hubble flow functions (HFF) [I55] defined as

€1 = —H/H2 s €ir1 = 61/(H€Z) . (424)

For the simplest realization of inflation with a single slow-rolling scalar field, one
finds

ne—1=—2¢ — €y, gy = —2€1€9 — €963 , (4.25)

ng = —2€y , o = —2€1€9 . (4.26)
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The prediction for the tensor-to-scalar ratio is proportional to n, which gives the

consistency relation r = —8n;.

Constraints from the CMB The perturbations generated during the phase of
inflation are expected to be the origin of the anisotropies observed in the temper-
ature of the CMB. It is therefore possible to constrain the different parameters
using the statistical properties of a map of the temperature fluctuations AT. The
most recent experimental values are obtained from the Planck satellite [I14]. The

amplitude of the scalar spectrum is measured as
A2(k,) = (2.1£0.1)1077, (4.27)

where k, = 0.05 Mpc ™! is the pivot scale. This amplitude is sometimes referred
as the COBE normalization. The other two most important observables are the

scalar spectral index, measured as
ns(ks) — 1 =0.9649 + 0.0042 , (4.28)
and the tensor-to-scalar ratio, which is constrained by an upper bound
r(ks) < 0.1, (4.29)

at 95% confidence level. Note that the bound on r is measured for a pivot
k. = 0.002 Mpc™.

4.2.4 Warm Realization of Inflation

Warm inflation [10} [11] differs from the usual paradigm of cold inflation in the
fact that dissipative processes can lead to a sustainable radiation production
throughout the inflationary expansion. Warm inflation will happen for regimes of
parameters such that the inflaton interactions with other field degrees of freedom
are not negligible. They generate dissipation terms, allowing for a small fraction
of vacuum energy density to be converted to radiation. When the magnitude
of these dissipation terms is strong enough to compensate the redshift of the
radiation by the expansion, a steady state can be produced, with the inflationary
phase happening in a thermalized radiation bath. The mechanism is illustrated
on the right panel of Fig. and should be contrasted with the cold approach
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Figure 4.1 (a) The cold realization of inflation. The scalar field rolls down the
potential slowly, leading to the accelerated expansion until it falls
into the potential well, where it oscillates quickly and reheats the
Universe. (b) The warm realization of inflation. The scalar field is
rolling down the potential with a continuous emission of radiation
and evolves smoothly toward a radiation-dominated Universe.

(left panel). Let us briefly review the construction of warm inflation.

Construction of Warm Inflation

For illustrative purposes, we restrict to the case of a single inflaton field with
pressure and energy density respectively given by equation . The dynamics
of warm inflation at the background level is governed by the equation of motion
for the inflaton field

b+ BH+Y)p+Vs=0, (4.30)

where T is the dissipation coefficient, which in general can be a function of both
the temperature and the background inflaton field ¢, by the equation for the

evolution for the radiation energy density p,
pr +4Hp, = T¢? (4.31)
and by the Einstein equations
3H? = ps + pr (4.32)
—2H = py + ps + pr + pr = %pr +¢7. (4.33)
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Notice that one of these equations is redundant. Moreover, it would be

equivalently possible to use the continuity equation for the inflaton energy density

Po
Py +3HP = =T . (4.34)

It is common to work with the dissipation coefficient ratio (), defined as Q) =
Y/3H. Typically, the study of warm inflation assumes the radiation to be

thermalized, i.e.

2
TGy

T = 3p, , 4.35
20 p (4.35)

Pr =
where g, is the number of relativistic degrees of freedom for the radiation bath.
In general, the relevant microphysical timescales, corresponding to decay and
scattering rates, should be larger than the Hubble rate to ensure thermalization.
There could be other mechanisms beyond the radiation fields/inflaton interaction,
which can dramatically modify this setup. For example, if the radiation fields are
coupled to the Standard Model, the Schwinger process [I56] should provide an
extremely efficient mechanism to reach thermalization, see for example Refs. [I57-
159]. For the analysis performed in this chapter, we will always assume that some
process ensures that radiation thermalizes and Eq. holds. The study of
these mechanisms plays a significant part in a model building perspective. This
is, however, beyond the scope of this work. For a detailed quantification of the
thermalization process relevant for warm inflation and done in the context of
the Botzmann equation, see, e.g., Ref. [I60]. Note also that the specific form
for the dissipation coefficient Y in the above equations can only be determined
by the details of the microphysics during inflation. Different forms of dissipation
coefficients derived from QFT have been derived explicitly e.g. in Refs. [T61] [162].
It is also worth mentioning that warm inflation helps in easing the n-problem [163,
164] since in the strong dissipative regime ) > 1 the inflaton mass is larger than
H.

There have been many constructions based on particle physics models demon-
strating the viability of this special regime of inflation, see, for example,
Refs. [165] 166] and for a review, see also Ref. [167]. Recently a first principle
warm inflation model was constructed from QFT which involves just a few
fields [117], thus convincingly demonstrating that warm inflation models are on

an equal footing to cold inflation as model building prospects.
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The Scalar Spectrum of Perturbations in Warm Inflation

The dissipative effects and the presence of a non-vanishing radiation bath are able
to change both the inflationary dynamics at the background and at the fluctuation
levels [I68HI76], such that there can be distinctive differences between the two

paradigms which could be testable.

Given the complexity of the warm inflation dynamics, which involves a system of
coupled fluids associated with the inflaton and radiation, alongside perturbations,
that could also be coupled [I77, [I78], an analytical treatment for the spectrum
of perturbations is in general difficult. In what follows, we briefly present this
analysis. For a full discussion we send the reader to the Refs. [168] [179]. The
dimensionless scalar power spectrum A?(k, 7) at horizon crossing, meaning k7 = 1
where 7 is used to denote the conformal time, is a sum of thermal and vacuum
contributions

A?(kﬂ') = Ag,th(ka T) + AQ

s,vac

(k,7), (4.36)

where the vacuum contribution in the simplest realization of inflation is given
by Eq. . In general, the thermal contribution depends on the microphysics
of the model. Nevertheless, a semi-analytical expression for the full spectrum of
scalar perturbations can be derived [10] [163], 18] to give the spectrum at horizon

crossing as

2
Ai(k’T)L—:k*l = (%) \/EWQ T
T

* \/3—|—47TQE

1+ 2npp(Tss) G(Q)

)

T=k—1

(4.37)

where npp = [exp(H/Tss) — 1] is the Bose-Einstein distribution. G(Q) is a
function of ) that accounts for the fact that the radiation fluctuations are in
general coupled to the inflaton which is thus leading to a growing mode in the
inflaton fluctuations [I77, [I78] [I8T]. Moreover, the temperature Ty, inside ngg
corresponds to the temperature of the inflaton fluctuations and is not necessarily
the same as T, corresponding to the temperature of the thermal bath. For a
recent discussion based on solutions of the Boltzmann equation relevant during
the warm inflation dynamics, see, e.g., Ref. [182]. In the following we assume
thermal equilibrium and therefore T5, = T. Typically, G(Q) reduces to 1 for

@ = 0 and in most of the known models it is well-approximated by a fraction
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of polynomials in ¢ with numerically fitted coefficients [177, [178]. Notice that
for @ = 0, which also implies T" = T54 = 0, we recover the usual cold inflation
spectrum given in Eq. (4.20)) as expected for consistency.

The presence of radiation induces a series of modifications in the typical CMB

observables, namely n, and r. In particular, two competing effects are expected :

1. The decay of the inflaton into radiation is effectively playing the role of an
additional friction term for the inflaton beyond the usual Hubble friction.
As a consequence, we expect, similarly to [I83], a shift in the point of the
potential probed by CMB observations. In particular, this effect is expected

to produce a decrease of ng and an increase in r.

2. The radiation will play the role of a source term for scalar field fluctuations
which induces an amplification in the scalar power spectrum. Indeed, this
can be noticed by Eq. . However, in general, we do not expect a similar
coupling between radiation and tensor fluctuations. As a consequence this

effect induces an increase in ng and a decrease in 7.

If thermal effects are already important (or at least not completely negligible)
at CMB scales, the first of these two effects happens to be subdominant with
respect to the second, meaning that typically n is increasing and r is decreasing

with respect to the cold case.

For completeness, we should mention that an analysis of non-Gaussianities has
been performed for warm inflation for the weak and strong dissipation regimes,
see, e.g., Refs. [I71, [I72]. In both cases the predictions are generally in good

agreement with the Planck constraints in Ref. [I15].

4.3 Universality in Warm Inflation

Since the original proposals in the early eighties, many models to realize inflation
have been introduced and, in some cases, theoretical predictions are so close that
they are nearly indistinguishable. In order to constrain this waste zoology and
possibly rule out some of these models, it is useful to introduce a systematic
way to classify models of inflation. Several approaches have been introduced
over the last years [I84HI8G]. In this chapter, we work with the S-function

formalism. It relies on the Hamilton-Jacobi formalism of D. S. Salopek and
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J. R. Bond [125], and is based on the idea of describing inflation in terms of
a renormalization group equation. In this framework, models are grouped into
classes that share a minimal set of universal properties. Originally introduced
for the simplest realization of inflation [118], the formalism has been extended to
more sophisticated scenarios, such as non-standard kinetic terms [121], constant-
roll [123] and anisotropic inflation [124]. This method is not only suitable to
deal with concrete models, but it is also strongly connected to deeper theoretical
aspects. In particular, this formalism has an interesting interpretation under the
gauge/gravity duality of J. M. Maldacena [129]. Moreover, this approach sheds
a new light on the inflationary dynamics and provides strong analytical tools to
investigate the evolution of the physical quantities such as the Hubble factor and
the power spectrum during inflation. The goal of our analysis in this chapter is to
extend the formalism to warm models of inflation and identify universality. Let

us start with a review of the S-function formalism.

4.3.1 Identifying Universality with the S-Function Formalism

In the simplest realization of inflation, the evolution of the Universe during
inflation is completely specified by the equation of motion for the inflaton and
one of the two Friedmann equations —. The HJ formalism relies on the
reasonable assumptions that a solution of this system exists and that the time
evolution of ¢ as function of ¢ is piecewise monotonic. It is then possible to invert
to get t(¢) and use the field as a clock to describe the evolution of the system.
At this point, we introduce the so-called superpotential’|

W(¢) = —2H(9) (4.38)
and, using the Friedmann equations, we find
o6=Ws, (4.39)

implying that it is possible to express ¢ (and therefore all physical quantities) as

a function of ¢ only.

By following a formal analogy with the definition of the RGE describing the

evolution of the renormalized coupling constant, whose role here is played by

®The formal analogy between the parametrization of the scalar potential in SUSY (for a
review, see for example [I87]) and in the formalism [I1§], justifies the name.
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the inflaton, in terms of the renormalization scale, here the scale factor a, we

introduce the cosmological S-function as

(4.40)

From this definition and with a simple algebra, we are able to show that the
equation of state (4.1]) becomes

) 3 W2 3 '

and implies that a phase of accelerated expansion is realizedf| for |3(¢)| < 1.
In analogy with the RG approach, we identify the zeros of the p-function as
fixed points, which, in the cosmological case, correspond to exact dS solutions.
Depending on the sign of the S-function, inflationary periods are then represented
by the flow of field away (or toward) these fixed pointsﬂ. As a consequence, it is
possible to classify the various models of inflation according to the behavior of the
[-function in the neighborhood of the fixed point, rather than according to the
potential. The advantage of this approach is that the specification of 3(¢) actually
defines a class of universality that encompasses many models. These might have
in principle very different potentials but yield to a similar cosmological evolution
(and thus to similar predictions for cosmological observables such as the scalar
spectral index n, and the tensor-to-scalar ratio r). Moreover, it allows the study
of a large variety of models with a single class of function. Notice that, in order to
realize a phase of accelerated expansion, we only need |3(¢)| < 1 and in general
this does not require 5 — 0. In particular, inflation can be realized even if 3(¢)
approaches a small constant value. As discussed in [I18], this is the case of power
law inflation [18§].

Beyond a Simple ldentification of Universality In addition to the original
goal of identifying universality, the formalism has several interesting outcomes.
In particular, it provides strong analytical tools to study the dynamics of the

period of inflation. All relevant quantities are expressed as function of 5(¢) [I1§].

6More precisely, d/a > 0 requires |3(¢)| < v/2. For simplicity, in the following we assume
inflation to end at |3(¢)| ~ 1.

"When the flow is toward the fixed point there is no natural end to the period of accelerated
expansion. Clearly, this configuration is not suitable to describe inflation.
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For example, the number of e-foldings N becomes

] dgb'

N = —lIn(a/ag) = — B ,

(4.42)
where ¢y is the value of the field at the end of inflation. Similarly, we can compute

the Hubble factor which is equivalent to the superpotential

W () = Wiexp <_ / ’ %ﬁy)dﬁ) | (4.43)

f

and the inflationary potential

3 1 3 2
Vo = qwe - gwi = (1- 52 (4.44)
whose parametrization is similar to the one in the context of supersymmetric
quantum mechanics (for reference, see for example [I87]). It is important to
stress that, so far, all the computations are exact, i.e. we have not performed

any approximation and the analysis holds even if we are not assuming slow-roll.

Assuming now to be in a neighborhood of the fixed point, we have |5(¢)| < 1

and ng and r, at the lowest order in terms of  and its derivative, simply read
ne—1~— (62 + 25,(;3) , r=83%. (4.45)

In order to obtain the standard expressions of ny; and r in terms of NV, we first
determine the value of ¢ at the end of inflation (using the condition |3(¢¢)| ~ 1).
We then proceed by computing N(¢) (using Eq. (4.42)) and invert it into ¢(N)

to express n, and r in terms of the number of e-foldings.

This parametrization of inflation brings a new perspective on the theoretical side.
The analogy with the QFT S-function is not only at a formal level. Indeed, it is
possible to relate the cosmological g-function of Eq. with the g-function
describing the RG flow induced by some relevant operator in the dual QFT, in
the context of the AdS/CFT correspondence. The departure from the exact de
Sitter geometry is linked to a breaking of the dual CFT. However, in order to
properly set this correspondence, we have to specify a mapping between the bulk
inflaton and the coupling in the dual QFT. This typically requires the specification
of some renomalization condition which in principle may require a modification

of the simple expression of 8 in terms of W. While a detailed discussion of the
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holographic interpretation is beyond the scope of this work, an accurate discussion

of this procedure can be found in [189].

Finally, and for completeness, we must state that this formalism also applies to
quintessence [122]. In this scenario, the flow is not away from a fixed point but
toward. The full history of the Universe in the ACDM model with inflation can
then be described by a flow between two fixed points.

Examples of Universality Classes

Let us conclude this review of the S-formalism by briefly presenting some of the

classes introduced in Ref. [118], starting with the so-called monomial class, where

B() = ag? (4.46)

with a and ¢ being positive constants. This class describes small field models,

i.e., inflation taking place for ¢ < 1, with

«

W () = Wyexp TCES

(¢Q+1 _ gb}-i-l) 7 (4‘47)

implying that, at the lowest order, models of this class feature a hilltop potential.

We can also consider the so-called inverse class, where

«

p(e) = o (4.48)

with a and ¢ being positive constants. This class describes large field models,

i.e., inflation taking place for ¢ > 1, with

« 1 1
W((b) = erXp [2((] — 1) <¢?—1 - ¢q_1>] J (449>

implying that at the lowest order, models of this class feature an algebraically
flat plateau potential. The case with ¢ = 1 is special, the superpotential is of the
form W = W(¢/¢s)2 and corresponds to chaotic models of inflation.

Finally, is the so-called exponential class, where

B(¢) = —aexp(—9) , (4.50)
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with a and ~ being positive constants. This class describes large field models,
with
!
We) = Wyoxp { ~ 5% foxp (-90) - exp (00l . (451

implying that at the lowest order models of this class feature an exponentially

flat plateau potential.

4.3.2 [(-Function Formalism for Warm Inflation

For warm inflation, a model is not only specified by the inflationary potential,
but also by the dissipation coefficient ratio ¢, which in general is a function of
both ¢ and T'. Once these two functions are specified, the evolution is completely
determined by the set of equations —. By solving these equations,
we can express all the relevant quantities, i.e., H(t), ¢(t), Q(t), and T(t), as
functions of time. Once again, the problem can be studied in the framework of
the HJ formalism. Assuming the evolution of ¢(t) to be piecewise monotonic, it
is possible to compute, at least locally, t(¢) and express all the relevant quantities

as functions of the field only.

Setting the Formalism

In analogy with the treatment carried out in the cold case, we introduce a
superpotential W(¢) = —2H(¢). Assuming the radiation energy density to be
quasi—stableﬂ, meaning p, < 4Hp,, and using the Raychauduri equation (4.33))

we obtain
. W¢
= ——, 4.52
b=t (4.52)
By using this equation and Eq. (4.33)) we get from Eq. (4.35))
45
4 @ 2 (4.53)

T o (1 QP e

To find the temperature as a function of ¢ only, Eq. (4.53)) needs to be solved for 7.
Since, in general, () depends both on T and ¢, the solution of this equation might

exist only numerically. Then, once T'(¢) is known, the dissipation coefficient ratio

8More on this approximation is said below Eq. (4.58) where we re-express this condition in
terms of the typical quantities of the formalism.
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is expressed as a function of ¢ onlyP]as Q(T(¢), ¢) = Q(¢). A different notation,

Q, is used here to stress the difference in the functional dependence on ¢.

We proceed our discussion by introducing the cosmological S-function as defined
in Bq. (4.40), 8(¢) = d¢/dIna = ¢/H. Note that the analogy with a RGE still

holds. The equation of state reads

2H  (1+Q)¢*
BTV CR L

5(9)
5

(4.54)

Interestingly, Eq. shows that an exact dS geometry is again realized in
correspondence to the zeros of 8(¢) and the phase of accelerated expansion of the
Universe stops when (1+Q)3?%(¢) is of order one. This is a crucial difference with
respect to the cold case in Eq. . As (@) is always positive, the fixed point is
only attained by a vanishing [-function, but, in general, unless we have [ exactly
equal to zero, 3%(¢) < 1 is not sufficient to ensure that the Universe is inflating.
In particular, the Universe may stop to inflate because (1 + Q) > 37%(¢), while
B < 1. Another original and strictly warm realization of inflation is the case in
which, departing from the dS fixed point, 5(¢) reaches a constant value smaller
than one. In such a scenario, the last part of the inflationary phase is thus driven
and, in particular, is concluded by the evolution of ). As inflation can only be
realized for 5(¢) < 1, its parametrization can still be used to fix the flow in the
neighborhood of the fixed point. Once again, it is thus possible to use 3(¢) to

define a set of universality classes as in the cold inflation case.

To make the generalization from cold inflation more evident, let us define

en(9) = 22 = (1+ Q)BO) (4.55)

which has the exact same dependence on W as the beta function of the cold
inflation, Eq. (4.40). With this definition, the superpotential W can be readily

expressed as

¢
W(6) = Wyesp [—% / dcb’ﬁcz((b’)] , (4.56)

where the subscript ;is used to denote quantities evaluated at the end of inflation.
Moreover, using the definition given in Eq. (4.55)), it is easy to prove that the

9In principle, it could also be possible to start by directly fixing a parametrization for Q(¢).
More on this will be commented in Sec.
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equation of state can be expressed as

2H _ B2;(9)
C3H? 3(1C+ Q) (4.57)

Again, the fixed point is reached when S¢; goes to zero and we see that inflation
ends when 82%; ~ 1 + Q. According to Eq. , Bor is directly associated
with the superpotential and, thus, with the inflationary potential. This equation
makes clear that for () sufficiently large, the Universe is inflating for Sor > 1. In
this sense, the dissipation coefficient can be interpreted as a friction term that
slows down the evolution of the inflaton field and this is potentially allowing
for inflation in regions of the potentials that are steeper than the ones usually
considered in the cold case. As already mentioned in the previous section, this
could provide a mechanism to ease the n-problem. In order to generalize the
universality classes defined for cold inflation in Ref. [I18], we will use, in this
work, the S-functions associated with these classes as choices for Sor. We then
observe how the different dissipation coefficient ratios will affect the predictions

of any classes, this analysis is carried out in Sec. [4.4] and [4.5]

At this point, we can translate the quasi-stable assumption of the radiation energy

density in the language of the g-function formalism

| Bor Qs (1 - Q) Bere 1
‘4(1+Q){Q 1+@Q +2501 e

The validity of this condition has to be checked for each choice of Sor and Q.

However, it is possible to show that for all the cases discussed in this work, this

édlnpr
4 do

<1. (4.58)

assumption is satisfied.

Fixed-Point Interpretation

To grasp a better understanding of the competing influences of S¢; and () during

the phase of inflation, it is worth defining the complementary function £ as

T T

pr(9) = 7 =257 - (4.59)

Using Eq. (4.35]) we express

pr g T Ty,
H2 30 H2 30

[TBr())” (4.60)
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Figure 4.2 Some possible inflationary trajectories corresponding to the flow
from the dS fized point to the solid black line and showing the
departure from the usual cold inflation case (red dashed line). The
curves shown in this plot are illustrative examples which are not
corresponding to any concrete model.

which makes manifest the interpretation of $7. This function captures the amount

of radiation produced during warm inflation. In particular, by considering the

full equation of state,

20
3H?

¢+ 4p,
3H?
B(9) | 27°g. [TBr(e))”
3 45 3
1 [601(@] t, 27 [TBr(9))”
3LQ+1 45 3 ’

(4.61)

it is clear that (as T' # 0) S parametrizes the flow from the dS fixed point induced

by radiation. Interestingly, using the definitions of B¢y and Sr, we can represent

the phase of inflation in a two-dimensional plot depicting the departure from the
usual cold inflation case. In Fig. [£.2] the phase of inflation is represented as a
trajectory starting from, or close to, the dS fixed point at the origin and reaching

the circle of unitary radius, where (1 + Q) 6]? = 1, which corresponds to the end
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of inflation. From the equation of state we note that the axes in Fig. 4.2
are proportional the square roots of the fractional kinetic and thermal energy
densities. The flow along the different inflationary trajectories can be directly
parametrized by the value of the inflaton field ¢, or equivalently by the number
of e-foldings N defined in Eq. . A motion in the horizontal direction is due
to Bcr, whereas a vertical motion is an effect of production of radiation. Since

we have that

Thr(0) = \/ e e ). (4.62)

we observe that the shape of the trajectory is mostly defined by the dissipation
coefficient ratio (). In these kind of plots, any model of cold inflation is represented
as a horizontal line with T8 = 0. Conversely, warm inflation models are expected
to be represented as curves departing from this line. As all the inflationary
trajectories are expected to end on the solid black line, large values of fy, i.e., for
values closer to Ty8r; = 0, imply a small radiation contribution to the equation
of state at the end of inflation. Conversely, small values for (¢ imply a non-

negligible radiation contribution to the equation of state at the end of inflation.

Apart from the de Sitter fixed point at the origin, there are two other special
points on Fig. M The first is (1,0), where cold inflation usually ends. When a
trajectory crosses this point, the Universe stops inflating and it must then enter
into the (p)reheating phase. The second point, which is not appearing on our
plots, should be (0,2). This corresponds to the Universe being in the radiation-
dominated era, i.e. p./(3H?) ~ 1. Notice that all trajectories describing viable
cosmological models, which consistently include the evolution of the Universe
after inflation, must cross this point. However, since in (0,2) we have p, = 4H p,.,
for sure the assumption of quasi-stable radiation must be violated, implying that

our treatment cannot be extended all the way up to this point.

A model which touches the solid black line for large (order 1) values of
\/WTBT, for example the vertical dotted curve in Fig. , implies that
the RG flow in the last part of inflation is mainly induced by the radiation. This
does not imply that the Universe is dominated by the radiation, but rather that
it is rapidly approaching the moment where the transition from inflation to a
radiation-dominated Universe takes place. Since in these models the radiation
energy density at the end of inflation is already sizable and the inflaton kinetic

energy is small, an explosive (p)reheating may not be required and the transition
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from inflation to radiation may be smooth. This has to be checked model by
model. Since in warm inflation it is possible to unify the treatment of inflation
and (p)reheating, a self-consistant computation of N¢y g, the value of N at which
CMB observables leave the horizon, could in principle be carried out. However,
in order to perform this analysis, we need to study the trajectory until the point
(0,2) is reached, which requires to violate the assumption of quasi-stable radiation.
As this goes beyond the scope of this work, we will adopt Noyp = 60 as a

representative value.

Analytical Expressions

One of the main outcomes of the S-function formalism is the possibility for a deep
analytical treatment of the inflationary dynamics. This is also true when applied
to warm inflation. To illustrate this aspect, let us express some of the relevant

quantities in terms of the S-functions.

The expression of the number of e-foldings N in this formalism reads

=_ ’ na = — ¢d_¢/__ ¢ 1+ Q(¢)
N(¢) = /afdl a = /¢f B(0) /¢f d¢—501(¢/) ) (4.63)

where ¢ is the field value at the end of inflation, fixed by 52,(¢;) = 1+ Q(¢y),
and the expression of the inflationary potential which is derived using Eq. (4.32]),

3

V(o) = W) [1- 3

(1+30Q/2)

T390 (460

As for the physically relevant cases, we expect both o and @ to be negligible
while the Universe is deep into the inflationary phase, i.e., for large values of N,
the parametrization of the inflationary potential is typically mainly determined
by the superpotential W (¢). It is worth mentioning that the formalism is not
only valid at the background level, it can also be used to describe cosmological

perturbations.

The Hubble slow-roll parameters defined in Eq. (4.24)) read

B 1 Bé B 1
= éﬁ = 5(1 +Q)5%(9) , (4.65)
o 20c1  BoiQy

T1+Q (1+Q)2°

€1

(4.66)
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“ 1+@Q 268cr,¢ _ BciQ.e ) (467)
1+Q (1+Q)?

€i+1:m do

In order to have a better connection with the literature on warm inflation, it is

also useful to define

1 Per _ 2Bcie _ BaQe
214+ Q" =170 = AT 0R (4.69)

€

such that ¢, = € and e = n + 0.

Regarding cosmological perturbations, using the definitions given in Sec. [£.3] we
translate the expressions of Sec. in terms of the typical quantities of the

SB-function formalism. We start by expressing the scalar spectrum in terms of

60[7 BT and Q7

2 [a+Qw 2 2 V127Q
As<k77—)‘7:k71:_ﬁ - [Tﬁm} (1 + eXp 1 1 + mﬁT) G(Q) .

(4.70)

This expression for the scalar spectrum is used to fix Wy, the value of the
superpotential at the end of inflation, in order for the model to agree with the
COBE normalization (4.27) [42], 114]. In particular, we first derive W (¢) and
then we impose Wy = W (é¢(Nemp)) with Neyp = 60. For completeness, let us

proceed by expressing the tensor power spectrum as

WQ

2 E—
At<k‘l)|7-:k—1:_ﬁ =57 (4.71)
which has exactly the same expression as in the cold case.
Finally, we provide the predictions for n, and r, with expressions given by
p 20, 2 G
ns —1= 011 2 Do — Ber — BCI’¢+—’¢
1+Q—3562; [Q@+1 Ber G
2 5= Bre | VI2rQ, Voo
4 B3 + \/3—1—75 (3+4r Q)3/2 (47TQ ¢6T) mﬁﬂfb
Vi2rQ ’
1+2n+ ﬁTm
(4.72)
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. 80(9) 1 _ (4.73)

1+ Q)2 (1 4 2n 4+ 2/51Q /3T) a(Q)

V3+47Q

It has been a basic feature of the fluctuation-dissipation dynamics, intrinsic to
warm inflation, that the tensor-to-scalar ratio in general is lower as compared to
cold inflation. For the ¢ model, it was predicted from warm inflation in [163} 181],
well before the CMB data, that this ratio would be lower. Here, we present a
compact expression for the tensor-to-scalar ratio simply written as the expression
that appears for cold inflation ror = 8% ;(¢) multiplied by a correction factor,
the denominator of Eq. (4.73). In agreement with the literature [163, [181] and,
as discussed in Section this correction term lowers the prediction for r with
respect to cold inflation when the dissipation coefficient ratio is of order of unity

or when fr is larger than one.

4.4 Applying the Formalism to Explicit Examples

In this section, we provide a general procedure for computing the predictions
in the p-function formulation of warm inflation. In particular, we start by
explaining our numerical methods for examining models, and then focus on
some special cases that admit an analytical treatment. As already explained
in Sec. the model is completely specified by fixing a S-function, either 5(¢)
or fer(¢), and by a dissipation coefficient ratio Q(T,¢). In order to generalize
the classes of universality for cold inflation [118], we choose to start by fixing
a parametrization for Scr(¢). The dissipation coefficient Y (T, ¢) is derived
explicitly by QFT methods, see, e.g., Refs. [I61], 162]. In this work, we focus
on a rather general parametrization for the dissipation ratio @ = Y/(3H) that
is motivated by the previous warm inflation models developed in the literature
[117, (161, (162, (165, [169), 190,

™  20T™
_ o e (4.74)

where C' is a constant. This example will also facilitate the illustration of the
methodology. When a complete specification of the model is required, i.e. an

explicit choice for Ber(¢), we will restrict our analysis, for simplicity, to the
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chaotic class

Q@
Ber(¢) = ——, (4.75)

¢
where « is a positive constant. The generalization to other classes of models can

be carried out analogously.

In general, it is unlikely to have a complete analytical description of the model
and, therefore, numerical methods are required. The procedure we have used to
derive numerical solutions is the following. Having Bcr(¢), Q(T), ¢) and an initial
guess value for the constant Wy, which fixes the normalization of the inflationary
potential, as inputs, the value of the scalar field at the end of inflation ¢; and the

corresponding temperature Ty are computed using

5(211,f =14+0Qr, (4.76)

45 Q

4 / 2

= < 4.77
7 82, 1+ Qy Fo ( )

where we recognize Eq. (4.53]) in the second of these equations. They can be

recasted as

1

45 Wy \T
Ty = , 4.78
f (47% 5ézﬂ?) e
i N -
B2 =14 —— = —Wy) i 4.79
CIf 87?29*5%1,f ¢f ( f) ( )

The solution of the above system of equations is obtained by first solving for ¢y
and then computing 7. The inflaton field then serves as a clock for the evolution
of the system. We evolve the field from ¢; to ¢y £ A¢ with A¢ < ¢ being an
infinitesimal step. The sign of the increment is fixed by the position of the fixed
point, i.e., whether the value of the field increases or decreases during inflation.
At this point the relevant quantities 7', () and N are evaluated at ¢;+ A¢ using
Eq. , the definition of () and Eq. , respectively. The procedure is then
repeated until the value ¢cjrp is reached. The latter is defined as the value of
¢ which gives N(¢cmp) = Noamp where in this work we assume Nejp = 60 as
the value of N at which CMB observables leave the horizon. As a consequence,
the evolution is solved for all the scales between the end of inflation and CMB
scales. Finally, by comparing the amplitude of the scalar power spectrum with
the COBE normalization [42] [114], it is possible to adjust the constant W} in

90



order to satisfy this constraint. The predictions for the scalar spectral index
and tensor-to-scalar ratio are then computed from Egs. (4.72)) and (4.73) for the
values of ¢ corresponding to Ngpsp. These quantities can finally be compared

with the observational constraints [42] [114].

4.4.1 Analytical Methods

In this subsection, we focus on some cases where a complete (or partial) analytical

treatment can be performed. In order to carry out this analysis, we have to

1. Compute ¢; and T}, the values of the inflaton field and of the temperature

at the end of inflation using Eqs. (4.76))-(4.77);

2. Derive the superpotential and its derivative using fo; and Eq. (4.56));

3. Compute T'(¢) by solving Eq. (4.53|) with the dissipation coefficient ratio
Q(T, ¢) written explicitly in terms of 7" and ¢. Having T as a function of
the field, we can also write Q(7T'(¢), ¢) as a function of ¢ only;

4. Finally, we express O as a function of ¢ using Eq. (4.62)).

Note that, in general, the third step cannot be carried out analytically for non-
trivial forms of the dissipation coefficient. Typically, it is also useful to derive all
the relevant quantities as functions of the number of e-folds. For this purpose,
we thus compute the number of e-foldings N(¢) from Eq. and invert it to
find ¢(N). Once again, we fix the constant W} in order to be consistent with
the COBE normalization . In particular, this is done by solving Eq.
for W(N) at N = Noayp. Let us now illustrate the method with some examples

where a partial (or complete) analytical treatment exists.

Constant Q - Full Analytical Treatment

We first restrict to the simplest possible case, a constant dissipation coefficient
ratio Q(T, ¢) = Q). We consider a generic S¢; and then study the specific example
of the chaotic class specified by Eq. . For a constant (), Eq. admits
the solution

(45 Q A
- 871'29* (1 + Q)2W2(¢)BC2](¢) ’ (480)

T(¢)
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where W (¢) is directly set by Eq. (4.56)). To check the consistency of the model,
we can compute p,, by substituting Eq. (4.80]) into Eq. (4.60)),
3 Q

Pr = 1_6(1 Q) W2(¢)5CZI(¢) . (4.81)

Interestingly, this can be compared with the result

2
IO¢:ZW2—pr:§W2 1 Q 5CI<¢)

4 C1+Q) 4 |7 (482)

to conclude that, independently on the value of ), when we approach the dS
fixed point, fer(¢) < 1, we always consistently get p, < pg.

To proceed further, we need to precise a parametrization for So; and therefore,
we restrict ourselves to the case of the chaotic class of Eq. (4.75). In this case,

the superpotential and the temperature, respectively, read

b 3

W = Wf< ) , (4.83)
O
i 0 atw? 1/4
T(¢) = Lpo2 4.84
) [wg* 1+ Q7 o s
For completeness, we also derive, using Eq. (4.64]), the potential
3 qﬁ)“[ a? 2+3Q1 3 2<¢)a

V= W 1— -We | — , 4.85
1(5) [-mweror = (5 5

where the approximation in the last step relies on ¢ > «, which is valid deep in

the inflationary phase. The value of the field at the end of inflation is

a2

= — 4.86
and the number of e-foldings N as a function of ¢ reads
1 + Q , ol )
N = 4.87
(¢ 1+@Q ( )

which implies

2aN + a?
6= /W . (4.88)
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At this point, we can also compute Sor(N), T(N) and Sr(N), whose expressions

are given, respectively, by

(1+ Q)

Ber(N) = =\ 35 o (4.89)
_ 45 Q 2—at/2 2)a/2-1 e
T(N) = [87?2g* T 0° W7 (2aN + o?) : (4.90)
(V) = | @ o (2aN +a?) ! " (4.91)
T 72,14 Q I/Vf2 ' '

Notice that for « = 2, the temperature is constant during inflation. Finally, we fix
Wy using the COBE normalization, and we compute the spectral tilt n, and the
tensor-to-scalar ratio r using Eqgs. and . As () is positive, we expect
a slightly increased value of ng and a slightly reduced value of r with respect to

the cold inflation case.

Weak and Strong Dissipative Limits

For the general choice of Q(T,¢), Eq. ([£.74), an analytical description does
not exist in all regimes. However, similarly to the treatment of Ref. [I91], an
analytical description of these models can be achieved both in the strong Q) > 1
and in the the weak ) < 1 dissipative limits. In particular, it is possible to derive

analytical expressions for Q and T as function of ¢ only, which we do next.

Weak Dissipative Regime Let us consider the parametrization of Q (7T, ¢) given

in Eq. (4.74). In the limit Q < 1 we can immediately use Eq. (4.53)) to compute
the temperature to obtain

_1

45C BE(=W)] =
T(p) = 4.92
(0) = | e , (1.92)
and then, by substituting this expression into Eq. (4.74]), we find
45C \ 7 2m=2)  _ap 2m
0(6) =2C () (W) ol (1.98)

93



To completely specify the model, we need to substitute an explicit parametriza-
tion for Bor. For the example of the chaotic class Eq. (4.75)), we find that

1

4500&2(—Wf¢;%) o a—4-2n
~ 2(4—m)
45C o2 T oy 2 a(m—2)—2m—dn
Q) ~2C ( Wg*) (Wigp®) = ¢ om (4.95)

It is worth noting that this regime can only be attained dynamically for a certain
set of values for o, C', n and m. Recall that W;is fixed by the COBE normalization
and, thus, it should not be considered as a free parameter. In particular, as the
chaotic class describes large field models, meaning that inflation takes place for
large values of ¢, this can only be attained if w < 0. It is interesting
that since in the chaotic class both the superpotential and the g-function have
the form of a power law, the temperature and Q(¢) must have a power law
dependence as well. This behavior can actually change for different Classeﬂ.

The dependence of T and Q on ¢ for some particular choices of m and n are
written in Tab. .11

Table 4.1 Power law behaviors of Q(¢) and T(¢p) for the chaotic class, in the
weak dissipative limit.

Dissipation Coefficient Ratio | Q(¢) ~ ¢# | T(¢) ~ ¢
Cubic (m =3, n = 2) a—14 (v —8)/2
Linear (m =1, n =0) —(a+2)/3 | (a«—4)/6
Inverse (m = —1, n =0) (=3a+2)/5 | (e« —4)/10

A graphic representation of these behaviors for particular sets of m and n can be
seen in Fig. [£.5] shown in Sec. [£.5] Assuming that the model stays in the weak
dissipative regime (this assumption has to be checked model by model) for the
whole period of inflation, we can proceed further with the computation of the

number of e-foldings,

N(¢) = % (¢* —a?) . (4.96)

10 For both the monomial and inverse classes (see Eq. (4.46) and Eq. (#.48)) Bcr(¢) is still a
power law, but W (¢) are respectively given by Eq. (4.47) and Eq. (4.49). As a consequence an
approximate power law behavior can only be attained in regions where W is nearly constant, i.e.,
where ¢ is very close to the fixed point (meaning deep in the inflationary phase). Conversely,
for the exponential class (see Eq. ) the S-function is not a power law and, thus, the power
law behavior is never approached.
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Using Eq. (4.77)), it is now possible to compute the value of the inflaton field
at the end of inflation as given by ¢y = a. At this point, in order to check the
consistency of the approximation, we should verify that Q(¢;) < 1 or

450 \ T 2(m—2)
2 — i—m @my m) 1. 4.
C (4 29*) (=Wy) a < (4.97)

Finally, by inverting Eq. (4.96), we obtain
&(N) =v2aN + a?. (4.98)

Having derived Q(¢), T(¢) and ¢(N), we can immediately compute the
predictions for n, and r using Eq. (4.72) and Eq. (4.73).

Strong Dissipative Regime Let us follow a procedure for the strong dissipative
limit analogous to the one carried out above for the weak dissipative limit. As a
first step, we compute the temperature and the dissipation coefficient as functions

of ¢ only, such that we have

_1

4 n 4+m
10) = gy Wy T (4.90)
45 T 2= =2) _ 4an_
Qo) = 2C (W) oy o (4.100)

Once again, restricting to the chaotic class gives

1

45a2 3a/2 44+m 3a+2n—4
| 2(4+m)
T(9) {167T2Q*C< ) <¢f ) . o
t5e2 \ T o2\ Hm | alm=2)-2m—tn
_ | aoan . (4+m)
Q(6) = 26 (167r2g*0) (~Were?) TSR (wa0)

Recall that this regime is only attained for a particular set of values for «, C', n
and m and, therefore, the consistency of the condition ) > 1 has to be checked
explicitly model by model. The dependence of T" and @) on ¢ for different choices
of m and n are presented in Tab. [1.2]

Table 4.2 Power law behaviors of Q(¢) and T(¢) for the chaotic class, in the
strong dissipative limit.
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Dissipation Coefficient Ratio | Q(¢) ~ ¢# | T(¢) ~ ¢*
Cubic (m =3, n =2) a7 —2 3a/14

Linear (m =1, n =0) —(a+2)/5 | (Bae—4)/10
Inverse (m = —1, n =0) (=3a+2)/3| (Baa—4)/6

Once again, a graphic representation of these behaviors can be seen in Fig. [4.5
shown in Sec. . Similar to the weak dissipative case (in particular, see
footnote , different scalings can be obtained by considering different classes
of models, in particular, choosing a different parametrization of [o;, which
implies different expressions for W (¢). In principle, by assuming that the strong
dissipative regime holds during the last 60 e-foldings, it could be possible to derive
equations similar to Eq. . However, in most of the cases, this would not be
physically relevant since we typically want ) < 1 at CMB scales.

4.5 Discussion of the Results

In this section, we present and discuss the results of the numerical analysis carried
out by following the procedure outlined in the previous section. While all the
results shown are obtained by considering S¢; of the chaotic class, Eq. ,
a similar analysis can be performed for any other Clasﬂ, such as the monomial
ones, Eq. , the inverse type of potential, Eq. , or the exponential
forms, Eq. . Although we restrict to a single choice for Sc;, we consider
the four different cases introduced in Sec. 4.4, namely, the constant @ = C, cubic
Q = CT3/(H¢?), linear Q = CT/H and inverse Q = C/(HT) forms of the
dissipation coefficient ratio (). The values of the constant C' are chosen such that
the value of the dissipation coefficient at the end of inflation is at most of order
ten. Note also that the dimension of C' varies depending on the choices of m and

n.

Let us start by discussing the evolution in the plane (B¢, T6r), shown in
Figs. [4.3H4.4 The motivation for this kind of plots was explained in Sec. [£.3]
As expected, different parametrizations of the dissipation coefficient ratio lead
to different inflationary trajectories. Consistently with our expectations, all the
curves start from the neighborhood of the dS fixed point (B¢, T6r) = (0,0)

and end onto the solid black curve, which represents the points in the plane

HTt is fair to stress that, according to the discussion of Sec. for different classes we
expect qualitatively different results for the results shown in Fig.
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2D plots to show the evolution of Bor and TPy for constant and
linear dissipation coefficients. The values of the constant C have
been chosen to have a dissipation coefficient mazximally of order ten

at the end of inflation.

Figure 4.3
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Figure 4.4 2D plots to show the evolution of Bcr and T By for cubic and inverse
dissipation coefficients. The wvalues of the constant C' have been

chosen to have a dissipation coefficient maximally of order ten at
the end of inflation.
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(Ber, TBr) where inflation ends. One notes that the straight trajectories of the
constant case, among which we have the standard cold case with T8y = 0, are
perfectly consistent with the theoretical expectations; indeed from Eq. we
see that (T'87)% o< QB%;/(14+Q)?. Interestingly, in many of these models inflation
ends with \/272¢, /45 TBr = 4p,/(9H?) =~ 1. This feature implies that, in these
scenarios, the amount of radiation present in the Universe at the end of inflation
is already sufficiently large to quickly take over the inflaton energy density. As
a consequence, already mentioned in Sec. these models are not expected to
require an explosive (p)reheating to trigger the transition from inflation to the

radiation-dominated phase.

Power Law behavior of 9Q(9) Power Law behavior of Q(¢)
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Figure 4.5 Loglog plots of the evolution of Q(¢) = Q(¢d,T(¢p)) (top plots) and
T(¢) (bottom plots) during the last 60 e-folds of inflation for o =
4, C = 105 (left plots) with a dissipation coefficient ratio cubic in
T and o = 4 and C = 2 x 1073 (right plots) with a dissipation
coefficient ratio linear in T compared with the analytical predictions
of Sec. in the strong (SDL) and weak (WDL) dissipative limits.
In these models ¢ decreases during inflation.

Figure [4.5]shows the evolution of T'(¢) and Q(¢) = Q(¢, T'(¢)) for two illustrative
cases, given by the values o = 2 and C = 10°, with a dissipation coefficient ratio
cubic in T and o = 4, C' = 2 x 102 with a dissipation coefficient ratio linear in

T'. During inflation the field monotonically evolves from large to small values and
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conversely the dissipation coefficient ratio (top panels of Fig. 4.5)) monotonically
evolves from small to large values. As a consequence, we expect the models to
switch from the weak dissipative regime () < 1 to the strong dissipative limit
@ > 1 discussed in Sec. . We expect the dissipation coefficient Q(¢) to be
monotonically growing with ¢ during the phase of inflation. On the contrary, the
radiation temperature T'(¢) tends to approach the temperature of the thermal
bath of the inflaton energy density. As the latter is expected to slightly decrease
during inflation, the expected behavior of radiation temperature T'(¢) is to be
decreasing toward the end of inflation after a possible initial phase of growth.
The top and bottom panels of Fig. clearly reproduce these behaviors for Q(¢)
and T'(¢).

In both the plots of Q and T, the curves are asymptotically approaching (both
for ) < 1 and for ) > 1) the power law behaviors predicted in Sec. . The
transition from the weak to the strong dissipative limit appears to be sharper in
the cubic case. This is a direct consequence of the different dependences of Q on
¢ in the asymptotic behaviors. Hence, the good agreement between theory and

numerical simulations confirms the robustness of the numerical methods.

For each model considered, a unique prediction for the scalar-spectral index and
the tensor-to-scalar ratio is obtained. Figures 4.6 shows the evolution of the
predictions for ng and r for the chaotic class with different types of dissipation
coefficient ratio. As expected, for very small values of @ at CMB scales, the
CMB observables are, as expected, matching the predictions of the usual cold
inflation case, which in the plots shown in Figs. |4.6H4.7, are represented by
a red star. For larger values of Q, the predictions are modified as typically
happens in warm inflation. It is worth pointing out that the modification of
the predictions, see, in particular, the linear and cubic cases with o = 4, are
qualitatively in agreement with the results of Ref. [I80]. The small difference,
at around the 1% level, in the predicted values of ng is mainly due to slightly
different values of 7" in the numerical evolution and the chosen value of Noyp
used in the present work. As expected, the value of ng increases and the value
of r decreases with @ and T and, thus, models which are in tension with (or
even excluded by) the Planck constraints in the cold case can be recovered in the
warm scenario. The sole exception to this behavior is the cubic case with a = 2
of Fig. .6l In this case the values of Q and T" are small at CMB scales implying
that the spectrum is not modified by thermal/dissipative effects. However, as

at smaller scales the production of radiation induces a friction that slows down

100



Figure 4.6
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Predictions for ns and r in linear (top plots) and semilogarithmic
(bottom plots) scale for a set of models of the chaotic class with
a = 2 and the different choices for the dissipation coefficient. For
some of the models shown in this plot, we report the value of Q at

CMB scales (denoted with Q).

the evolution of the inflaton field, we see, similarly to Ref. [I83], a decrease of

ns and an increase in r due to shifting of the point of the potential probed by

CMB observables. Interestingly, in the quartic case (v = 4) the prediction for

the inverse and the linear dissipation coefficient ratios are degenerate. This is

explained by considering the field dependence of Q in the weak dissipative limit.
From Tab.[d.T]we read that in this regime both Qiyerse a0d Qlinear are proportional

to ¢~2, hence, the similarity in the predictions.
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Figure 4.7
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CMB scales (denoted with Q).

We conclude this section by presenting in Fig. a comparison between the
inflationary potentials (calculated using Eq. (4.64])) for o = 4 corresponding to

form

102

some of the cases discussed in this work and some power law potentials of the

V(g) = Voo™ . (4.103)

Note that the amplitudes are always fixed in order to respect the COBE

normalization. For a = 2, the ¢ dependence is the same as in the well-known
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Figure 4.8  Comparison between the inflationary potentials set by Eq. (4.64))
(for o = 4) and power law potentials V (¢) = Voo?.

case of chaotic inflation [I41]. As expected, the two sets of curves are perfectly
matching for large values of ¢, meaning deep in the inflationary phase, where
Ber is much smaller than one and the potentials predicted by Eq. are
well-approximated by power laws. Conversely, for small values of ¢, higher order
corrections induce a deviation in V(¢) from the power law behavior observed at
large scales. This type of analysis might be of particular use in the problem of

reconstructing potentials in warm inflation [192].

4.6 Conclusions and Future Perspectives

In this chapter, we have considered a famous application of fluctuation-dissipation
dynamics, warm inflation. In particular, we have discussed the application
of the [-function formalism for inflation to the warm realization in order to
identify universality among its models. We have shown in Sec. that a
consistent treatment of warm inflation can be carried out in the language of
the S-function formalism. Interestingly, we have found that, despite the presence
of an additional functional freedom with respect to the cold case, a universal
description still exists. For example, we have demonstrated that models with
different functional forms for the dissipation coefficient ratios can give rise to very
similar cosmological observables. Moreover, we have shown that this formalism

naturally offers an interesting graphical representation of the inflationary phase in
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terms of bidimensional plots in a plane of the variables (5¢y, T'5r), depicting the
departure from the usual cold inflation case. A peculiar property of these results
is that they provide a clear insight on the Universe energy budget in the last part
of inflation, which in turns allows us to infer some of the necessary properties of

(p)reheating,.

We have also discussed in Sec. [£.4] the definition of both numerical and analytical
techniques used to perform a systematic study of warm inflation within this
framework. The results of the numerical analysis were then presented and
discussed in Sec. [£.5] All the plots show an extremely good agreement between
numerical results and theoretical predictions. In particular, we stress the
accuracy of the predictions for the power law behaviors of the dissipation ratio
@ and temperature T in both the small and large ) limits. These analytical
approximations could provide an extremely useful tool for further studies on the
topic. For example, by studying the consistency of the conditions () < 1 and
(Q > 1 with the analytical expressions, it is possible to understand at a fully
analytical level whether a given model could or could not access the cold or warm

regime respectively.

While in this analysis our interest was mainly focused on the chaotic class of
potential, the generalization of the analysis to different classes would be an
interesting subject for future works on this topic. It should follow similar steps
as the ones put forward in this work. In particular, as already explained in
Sec. , different scaling solutions (for small and large @)) are expected to
be obtained for different classes. These analyses would be extremely useful in
expanding and strengthening our understanding of warm inflation. Moreover,
the deepening of our comprehension on the effects of interactions between the
inflaton and radiation could result in a definite step toward the formulation of a
theory of inflation which is somehow connected with the rest of the fundamental

Interactions.

Finally, it is worth mentioning that, in order to keep a direct connection with
previous works on this topic (and also with theory), we always proceeded by
first specifying fo; and Q(¢,T) and then computing T(¢) (and thus Q(¢) =
Q(#,T(¢))) by numerically solving Eq. . However, it could be equivalently
possible to start by fixing Q(¢) and, then, identifying the parametrizations of
Q (¢, T) which correspond to this choice. While formally these two possibilities
are exactly equivalent, the latter presents some computational advantages and

has theoretical interests, namely
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e By starting with a fixed parametrization for Q(¢), it could be possible to
solve Eq. (4.53)) analytically. This implies that a full analytical treatment

of some models of warm inflation could be achieved;

e As a single parametrization of Q(¢) corresponds to several parametrizations
of Q(¢,T), by specifying Q(¢) we are not restricting our analysis to a single
model but rather to a class of models sharing the same properties. In this
sense such an analysis would be more general than the one obtained by
specifying Q(¢,T). Interestingly, the universality which is manifest at the
background level is not expected to be broken by quantum perturbations.
In particular, this can be directly seen from Eq. —, where it is
manifest that all the quantities appearing in the expressions of the spectra

can be directly computed once Sy and Q are specified.

Such an analysis would be an extremely interesting topic for future studies
on warm inflation. In particular, it would be relevant to understand how,

given a parametrization of fcy, it could be possible to reproduce the usual
parametrizations of @) given, e.g., by Eq. (4.74]), using Q(¢).
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Chapter 5

Formulating the Kramers Problem
in Field Theory

5.1 Introduction and Motivations

The problem of escaping a potential well has been an active field of research
over the last century and has applications in several scientific disciplines, such
as in physics and chemistry. Classically, a particle put at rest at the bottom
of a potential stays there if left undisturbed. However, in any realistic physical
system, we expect the presence of fluctuation and dissipation dynamics, which, for
example, naturally emerge through the interactions of the system with a thermal
bath. Under these conditions, an escape from the potential well might be allowed.
The derivation of the escape rate is called the Kramers problem [193] and is, to
a large extent, well-understood for the simplest systems such as a classical point
particle. However, to our knowledge, no explicit extension of this problem to a
relativistic field has been done so far. Since the physics of the Early Universe is
described by cosmological fields immersed in a hot medium, there is a need to
define and understand precisely the rate of escape due to thermal fluctuations

only.

Computing the probability for a classical particle to diffuse has been of great
interest among theoretical physicists, in particular, in the context of stochastic
dynamics. Several methods have been proposed over the years. H. A. Kramers, a

pioneer in the field, derived the so-called Kramers rate [I93] using the flux-over-
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population method based on ideas originally developed by L. Farkas in [194].
Another way to obtain the escape rate is achieved with the mean-first-passage-
time (MFPT) formalism using the adjoint Fokker-Planck (FP) operator [195] 196].
However, this approach is more delicate to handle due to complex boundary
conditions. A third method consists of finding the smallest positive, non-
vanishing, eigenvalue of the Fokker-Planck operator. It has been shown that this
eigenvalue is directly related to the escape rate [197]. A comprehensive review of
these methods can be found in [I98]. More recently, P. Reimann, G. J. Schmid

and P. Hanggi [199] showed a universal equivalence between these approaches.

When regarding a field instead of a particle, the situation changes significantly.
A lot of attention has been given to the study of quantum tunneling. The
decay rate of a field has been derived by C. G. Callan and S. R. Coleman
at zero-temperature [200, 201] and extended to finite-temperature by A. D.
Linde [202] (also known as the nucleation problem in finite temperature quantum
field theory [203]). The inclusion of gravitational effects has been studied by
Coleman and F. de Luccia in [204]. Even if the formalism describing a field
subject to random forces, stochastic field theory, is known [205] 206], a precise
and complete discussion of the escape problem has never been performed. One
of the main difficulties is the identification of the most suitable approach to be
generalized to a scalar field. J. Zinn-Justin in [206] briefly states the problem
and suggests deriving the smallest eigenvalue and the use of instantons. This is
indeed a possibility but, unfortunately, it faces some analytical limitations when
deriving the rate. The work of J. S. Langer [207, 208] in extending the flux-over-
population method to a 2N-dimensional system appears as the most promising

approach to be used with a field.

The field theory aspect of the problem renders the definition of an escape more
difficult and less intuitive than for a single point particle. In particular, the actual
shape of the potential beyond the potential well plays a role in the computation
of the rate for the field. However, as in the zero-dimensional case, the Kramers
problem can be defined for both an initial true or false vacuum. Using ideas
and the formalism of the flux-over-population method extended to a field, we
will propose a definition of the Kramers problem and explicitly evaluate the rate.
Along the way in this derivation, we will encounter some familiar situations,
such as the Hawking and Moss solution [209]. We will also compare our final
result for the escape rate with the known result of nucleation rate due to thermal

fluctuations [202, 203]. In particular, considering the well-known result of Linde
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for the quantum tunneling rate at finite temperature [202], we will show that, in
the limit where the temperature is sufficiently high for the thermal fluctuations
to dominate over the quantum fluctuations, the nucleation rate is proportional to
the escape rate. This is remarkable since the two results are based on completely
different approaches. This result shows that, when the system is initially in a

false vacuum, the nucleation rate is indeed a special case of the escape rate.

Apart from the formal interest of the computation of an escape rate for a scalar
field, the result has potentially many applications not only for cosmology but
also beyond. The process might help in a precise understanding of out-of-
equilibrium situations, for example during phase transitions. In particular, it
might influence the formation of topological defects and potentially alter the
stability of the embedded configurations. The formalism is not intended to be
used only in cosmology. The escape rate is well-suited for situations where
the field needs to probe several local minima. This scenario appears in string
theory, with the string landscape, and, also, in condensed matter physics, in the
context of the glass transition. Finally, the formalism is formally identical to the
stochastic quantization, especially used in lattice field theory, where the origin
of the stochastic forces is quantum instead of thermal. A precise knowledge of
a transition rate is therefore of great interest in this context. The results of this

chapter have been presented in [210)].

This chapter is organized as follows. We start in Sec. with a brief review of
the Kramers problem and the methods necessary to compute the escape rate in
the simplest case of a point particle. We focus on two approaches, the flux-over-
population method, since it is the best candidate to be generalized to a scalar
field, and the MFPT which provides a simple interpretation of the escape rate.
We also present the proof of the equivalence of the two methods. In Sec.[5.3] we
first state the difficulties in the formulation of an escape problem for a scalar field.
We then review some basics of stochastic field theory with the Langevin and the
associated Fokker-Planck equation. We then define and derive the escape rate
for a scalar field using the flux-over-population method. This is the main result
of this chapter. In Sec. [5.4] we discuss some potential applications for cosmology
and in other domains of physics. We provide our concluding remarks in the last

section. Explicit details about the computations are given in Appendix [D]
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5.2 Rate of Escape of a Classical Point Particle

To introduce the escape problem and the associated computations, we consider
the simple example of a classical point particle in a metastable potential.
We review the two formalisms, based on the Langevin and the Fokker-Planck
equations. The Fokker-Planck formalism is fully equivalent to the Langevin
approach and provides the tools needed for an analytical derivation of the escape
rate. We investigate two methods, the flux-over-population and the mean-
first-passage-time, to obtain the escape rate. Finally, the proof of the formal
equivalence between the two approaches is presented and allows for a clear

interpretation of the result.

5.2.1 Point Particle in a Metastable Potential

V(x)
A

AV

: » X
XA XB

Figure 5.1 Potential corresponding to the escape problem. The position x4 is
the local minimum, where the point particle sits initially, and xp
the local maximum of the potential. The barrier height is denoted by
AV.

We consider a classical point particle of mass m initially located at a local
minimum x4 of the potential V' (z). For simplicity, we assume only one direction
of escape, through the closest local maximum located at zp on the right of x 4.
On the left of the local minimum, the potential diverges. The situation is depicted
on Fig. 5.1} Beyond the local maximum at z g, the potential might have another
local or global minimum or be unbounded from below. The height of the barrier
is denoted by AV'.

110



In a classical description, the particle sitting at the local minimum stays there
forever and an escape from the potential well is not allowed. The dynamics is
governed by Newton’s second law

dx

Mmooy = —V'(x), (5.1)

where the prime denotes a derivative with respect to x. The position x4 at the
local minimum of the potential is stable. In other words, x4 is an attractor.

Under a small perturbation, the particle comes back to the original position.

In the presence of a thermal bath or a fluid, in which the particle is placed,
the situation is altered by the two competing effects intrinsic to fluctuation
and dissipation dynamics. The random forces, originating from the thermal
fluctuations, push the particle away from the initial position and allow for a
climb of the potential barrier. In addition, the damping tends to slow-down the
particle and prevents a come back once the particle is displaced from z4. Due
to the combined effect of fluctuation and dissipation, the system is not stable
anymore and there is a non-zero probability for the particle to escape from the
well. In particular, after a sufficiently long time, it is reasonable to expect that

the particle has passed over the barrier.

We are interested in the rate at which the particle escapes from the potential well.
The escape rate is closely related to the inverse of the average time needed to
pass, for the first time, the local maximum of the potential. This time is known
in the literature as the mean-first-passage-time [195, [196]. A naive inspection
indicates that the escape rate should only depend on the damping coefficient,
the strength of the noise, on the temperature and on the potential, in particular,
the height of the barrier and the curvature at the minimum and the maximum.
Since the escape is defined from the first-passage at the top of the barrier, the

characteristics of the potential beyond the maximum should not play any role.

One clarification on terminology is worth stating here. For a classical point
particle, the escape rate is different from and should not be confused with a
diffusion rate to the next minimum. The diffusion rate is typically smaller than
the escape rate since, once the particle has passed over the top, it must then go
down the potential on the other side and, eventually, reach the minimum. If the
next minimum is at lower energy, the diffusion rate is a decay rate. Let us now

formulate the escape problem.
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5.2.2 Langevin and Fokker-Planck Descriptions

The Langevin and the Fokker-Planck formalisms are the two equivalent ap-
proaches used to describe a particle subject to random forces. We introduce

both of them and present their strengths and limitations.

Langevin The Langevin equation is obtained by the inclusion of the random
force, parametrized with a stochastic noise £(t), and the damping term to

Newton’s second law

d*x dx

mel = = = V(@) +E) (52)

where 7 is the damping coefficient. For simplicity, the noise will always be
assumed to be Gaussian throughout this work. The average over the noise of

an operator O is defined as
(O(x))e = /d[f]@(a:) eXp{_%/tofdtfgz(t/)} : (5.3)

where ¢y and ¢y are the initial and final times. The measure of integration is

chosen to satisfy (1)¢ =1 or
M M -
dlg) = [ [ dle) =[] déiy /5 (5.4)
i=1 i=1

where time has been discretized in M steps and € = (ty — to)/M. A Gaussian

noise satisfies the following relations

{€(t)e=0, (€(0)E(t))e = Qo(t — 1), (5.5)

where {2 parametrizes the strength of the noise. The damping coefficient 7 is
related to €2 by the Einstein relation 2 = 2nkgT.

The Langevin equation is a stochastic differential equation for a random variable
and is therefore not deterministic. The stochastic nature of the equation
drastically limits the analytical treatment. The Langevin equation is, however,

useful for numerical simulations where the evolution for an infinitesimal time step
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is given by
t+dt
nwﬁ+wﬁ):nw@)—nMﬂdﬁ—V%@dﬁ+/m dre(r) (5.6)

Sometimes, the overdamped limit of the equation is considered. In the case of
large damping, the motion of the particle is slow and therefore the acceleration
term is safely neglected with respect to the damping term. In this limit, Eq. (5.2)

becomes
n—=—=V'(z) +£(1) , (5.7)

and is called the overdamped Langevin equation.

To proceed with an analytical treatment, we consider the deterministic formula-

tion of the problem, described by the Fokker-Planck equation.

Fokker-Planck The idea behind the Fokker-Planck description is to consider
the evolution of the probability distribution of the quantities of interest, in our
case, the position and the velocity of the particle. Due to the presence of random
forces, each realization is achieved with a certain probability. As we will learn

next, the evolution of the probability distribution turns out to be deterministic.

We are interested in the position and the velocity of the particle as function of
time. The Langevin equation gives a set of two first-order differential equations
for z(t) and v(t)

%:v, (5.8)
m%:—m—wwnf@. (5.9)

The Fokker-Planck probability distribution is defined as

P(z,v,t | xg,v0,t0) = (0[x(t) — z]d[v(t) — v]) (5.10)

g Y
where the arguments x(t) and v(t) of the delta-functions on the right are the
solutions of the Langevin equation and x and v the arguments of the probability
distribution. P is the averaged probability to find the particle at position x with

velocity v at time ¢ knowing the initial position zy and velocity vy at time tg.
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The probability distribution satisfies the Fokker-Planck equationﬂ

0
EP(ZE,U,t | ZL’(),Uo,to) = —,CFPP(w,U,t | l’o,Uo,to) R (511)

where Lrp is the Fokker-Planck operator defined as

919 , O P

The Fokker-Planck equation is an ordinary differential equation for the probabil-
ity distribution P and, therefore, analytical methods can be applied.

In the large time limit, the system is expected to reach equilibrium. The
equilibrium probability distribution F, is a time-independent solution of the FP

equation given by

Pyl v) = %exp {—5 (%va + V(:):))} _ %exp{—ﬁE(x,v)} (5.13)

where E is the energy of the non-dissipative system and the partition function
Z is the normalization. Note that the equilibrium distribution always formally
exists as a solution of the FP equation, however, it does not necessarily imply that
the system possesses an equilibrium state. The equilibrium distribution might be

non-normalizable, in particular, if the potential is unbounded from below.
Finally, in the overdamped limit, the FP probability distribution is defined as
P(z,t | xo, to) = (0[z(t) — x) (5.14)

the FP equation reads

Loov Q 9?
8tP(x,t | I‘,to) = <58_:L‘% + 2—772@> P([E,t | l‘o,to) 5 (515)

and the equilibrium distribution is simply

Po(z, v) = %exp{—ﬁ‘/(a:)} , (5.16)

which might be non-normalizable as in the general case.

IExplicit details on the derivation and a discussion about the properties of this equation can
be found in Refs. [197, [206]. Note also that the derivation of the Fokker-Planck equation for
the scalar field presented in Appendix is analogous.
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5.2.3 Computation of the Escape Rate

Over the last century, several methods have been proposed to estimate the escape
ratd?l Since our final goal is to consider a cosmological scalar field, we focus on the
flux-over-population method that appears as the most promising candidate for
such a generalization. For a better interpretation of the escape problem, we also
introduce the framework of the mean-first-passage-time and present the solution
in the overdamped limit. By showing the formal equivalence between the two

methods, we prove that the escape rate is indeed the inverse of the MFPT.

Flux-over-Population Method

The flux-over-population method has been introduced by L. Farkas in [194] and
the explicit computation of the rate has been achieved by H. A. Kramers in [193].

— V(x)
Po(x)
_____ - P(x,to|x0,t0)

s P o > X
XSo XA XB Xsi Xc

Figure 5.2 FEzample of a situation studied with the fluz-over-population method.
The blue line is the potential V(x). The red dash-dotted line is the
wnitial and the green dotted line is the equilibrium Fokker-Planck
probability distribution for the position. The position x4 is the
wnatial location of the particle, xp the local marimum, xc a second
local minimum, xs, and xg; the positions of the source and the sink
respectively.

Let us consider the situation depicted in Fig. [5.2] For illustrative purposes, we
have chosen an asymmetric double-well potential. Similar reasonings apply to

any kind of potential as long as it possesses a local minimum in the vicinity

2For a comprehensive review of these methods, we invite the reader to refer to [198].
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of a local maximumﬂ The particle is initially located at the minimum x4 and
the Fokker-Planck probability distribution at time ¢, is a product of two delta

functions
P(z,v,ty | £a,0,t0) = d(z —xa)d(v) . (5.17)

In the large time limit, the system has reached equilibrium and the probability
distribution is given by Eq. . The position-dependent parts of the initial
and equilibrium probability distributions are depicted in Fig. with the red
dash-dotted line and the green dotted line respectively. During the evolution of
the probability distribution, given by the Fokker-Planck equation , there
is a flux of probability at the maximum of the well. The origin of this flux of
probability is precisely due to the fluctuation and dissipation dynamics discussed

previously.

The idea behind the flux-over-population method relies on the construction of
a stationary situation. The inclusion of sources and sinks maintains a constant
probability current across the well. The role of the sources, located on the left of
the minimum at zg,, is to supply to A-well with particles and keep a constant
number density inside the well. The particles thermalize and eventually leave the
well before being removed by the sinks, located on the right of the maximum at
xgi. Since the total probability flux j is equal to the rate of escape k times the

population of the A-well n4, the flux-over-population method predicts

k=L (5.18)

na

as a solution for the escape rate.

The population of the A-well is given by the integration over the probability
density

ng = / dxdv P(x,v) (5.19)
A—well

which corresponds to the probability to be in the well, with x €] — oo, zg] and

v €] — 00, +00[. The flux at the barrier is

+00
j= / dv vP(zp,v), (5.20)

o0

3The shape of the potential influences the form of the equilibrium distribution, however, the
existence of a probability flux at the top of the potential is guaranteed.

116



which is the probability to pass over the maximum with some velocity.

The derivation of the rate requires two steps. First, we obtain the probability
distribution and then compute the flux and the number-density. The probability
density P is a solution of the Fokker-Planck equation ({5.11)) with the particular
boundary conditions dictated by the specific steady-state situation in consider-
ation. The particles are at equilibrium inside the A-well and the probability
density is given by Eq. . Since the sinks remove the particles once they

have passed the maximum, we impose
P(z > xgi,v) ~0. (5.21)

Finally, at the top of barrier, there are no sources nor sinks and the potential

V(z) is approximated as
V() = V(rp) - %\V"(HZB)!(SC —2p)" + O(x — 25)"] . (5.22)

and, therefore, the FP equation ({5.11]) becomes

{8 10 Q 0

near the maximum.

The construction of P(z,v) relies on the Kramers ansatz [193]
P(z,v) = ((z,v)Py(z,v) , (5.24)

where P, is the equilibrium distribution and ( is chosen to satisfy the boundary

conditions

lim ((z,v) =1, ((x > xg,v) =0 (5.25)

T—T A

Applying the Fokker-Planck operator on the ansatz and using the equilibrium
distribution Eq. (5.13]), we obtain the equation for ¢

Q 02
2m?2 Jv?

0

{—v% — % v+ |V"(zp)|(x — z)] % + } C(z,y) =0, (5.26)

where we identify the adjoint Fokker-Planck equation. In order to solve this

equation, Kramers made the further assumption that ¢ depends only on u, a
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linear combination of x and v
u=(r—xp)+av. (5.27)
The equation for ((u) becomes

Qic” =0, (5.28)

—(1+ %n)v + %]V”(mB)\(aE - :1:3)] (' +a 53

where the prime denotes a u-derivative. For consistency with the assumption
that ¢ is a function of u only and, in order to obtain the correct behavior at the

boundary, the factor in front of ¢’ must be a linear function of u. Imposing
M= — [(1 + —n)v + 2 ]V'/(x3)|(x - xB)] , (5.29)
the constants a and \ are found to be

B ’V” 77 2 B m
Ae = 2m \/ 2m>’ “= V”(:L’B))\i’ (530)

where the two solutions for A have opposite signs.

Solving for ((u) by inserting ([5.29) in the differential equation and integrating

twice gives

dz exp

" 1/
BV (zp)P Pl (z5))" z2} , (5.31)
27T7/])\+ 277)\+

where A, has been chosen to have an overall negative exponent and therefore (
to vanish for large positive . The factor in front of { has been chosen to satisfy

the other condition, ¢ going to unity inside the A-well.

Having all elements at disposal to compute the probability flux j, we obtain

j— /oo dv UC(xB,v)% exp {_5 [%va + V(:I:B)} }

1_OO Ay 1
=3 (7> Wexp{—ﬁV(xB)} , (5.32)

where we have used integration by parts. The population n4 of the A-well is

simply

na :/ dxdvP(x,v)
A—well
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1 /2« 2m
= 2\/ ﬁ_m‘ / m exp{—pV(za)} , (5.33)

where the potential has been expanded around the local minimum in x4 and the

limit of integration for x safely extended to infinity.

Taking the ratio of j and ny4, the escape rate is found to be

V" (zp)| 2
Ve ) g [V
™

2 |V//(ZL'B)| eXp {_B [V(IB) - V(ZL'A)H ) (534)

which is the famous result of Kramers. As expected, the rate depends only
on the parameters n (or equivalently 2), the temperature, the curvature of the
potential at the initial local minimum and the nearby maximum and the height
of the barrier. The shape of the potential on the other side of the well does not
influence the final result. The height of the barrier AV = V(xp) — V(x4) can be
seen as the activation energy. Finally, note that in the limit of small damping,
VT wp)l s, (2—?;)2, the escape rate recovers the result of 1. Affleck in [211].

m

1.e.

Mean-First-Passage-Time over the Barrier

An alternative derivation of the escape rate is achieved with the method of the
mean-first-passage-time. The first-passage-time (FPT) is defined as the time the
particle takes to leave a domain D. In our case, it corresponds to the time needed
for the particle initially at x4, to pass over the maximum at xg. Since the forces
acting on the particle are random and the dynamics not deterministic, the FPT is
different for each realization. We can, however, define the MFPT as the average

of the FPT and estimate the escape rate as its inverse.

A formal definition of the problem relies on the introduction of the survival
probability S(t | xo,vo,%0). It corresponds to the probability to be still in D
after a time (¢ — ¢p) while being initially at position xy with velocity vy. In our
case, the domain is the A-well where = €] — 00, xg;], where the upper limit of the
domain, xg;, is a point chosen to be near, but beyond, the maximum, to ensure

the passing. The survival probability is defined as

S(t | xg,vo,to) = / dxdv P(z,v,t | xo, v, tg) = Prob [T(xqg,ve) > (t — to)]
D
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= / dt f(t ’ LL'Q,U()) s (535)
(t—to)

where T'(xg, vg) is the FPT starting at xo with initial velocity vg and f(¢ | xq, vo)

is the probability distribution for T'(xg,v9). The above relation is motivated by

the following reasoning, the probability to be in the domain at time ¢ is the same

as the probability of having a first-passage-time larger than (¢t — ty).

From equation ([5.35)), we deduce the following relation between S(t | zg,vo, to)
and f(t | zo,vo)

85(75 | Zo, Vo, to)

t = — 5.36
f(t ] xo,v0) BT (5.36)
The moments (T™) of the FPT are defined as
() = / dt (£ — to)" £ (¢ | 70, v0)
to
—n/ dt (t —to)" 1S(t | zo,v0,10) , (5.37)
to

and, in particular, the MFPT 7 reads

T =(T) :/ dt S(t | xo,vo, o) :/ dt/ dxdv P(x,v,t | xg,vo,t0) . (5.38)
to to D

We understand this expression for 7 in the following way. The averaged first-
passage-time is the sum of all the probabilities to be in the domain D at any
time ¢ larger than ¢y. If the particle is never in D, the integrand vanishes and
so does the MFPT. If, on the contrary, the particle is always in the domain,
the integral over the probability distribution is normalized to one and the time

integral diverges, leading to an infinite MFPT.

Using the adjoint Fokker-Planck equation, it is possible to find an explicit solution

for the MFPT
Lhor= / / dedv LY, P(x,v,t | o, v0, o)
to D
= —/ dxdv [P(x,v,00 | xg,v0,t0) — P(z,v,t0 | xo,v0,%0)] =1, (5.39)
D

where we assumed that the probability to be in the domain for ¢ going to infinity
vanishes, and used P(x,v,ty | xo, vo, tg) = 0(x — x20)d(v — vp). To find the mean-

first-passage-time, it is sufficient so solve E} pT = 1 with the boundary condition
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7 = 0 on JD. Despite the apparent simplicity of the equation describing the
MFPT, the computation turns out to be rather involved in practice. However,

an elegant solution exists in the overdamped limit.

Overdamped Solution In the overdamped limit, the equation for the MFPT

L7 =1 reads

Y R =1. (5.40)

B 10V Q 0 &
or

After a multiplication with the integrating factor e ?V(®) the equation for 7

becomes

0 (0T _su(s _8V(z
p (%e VI )) = —Bne V@ (5.41)

The integration over the spatial coordinate from —oo to x and assuming a

reflecting boundary at x — —o0, i.e. lim g—; =0, we get
T——00
or v
ap =~ Pnexp{AV(x)} | dzexpi-fV(2)} . (5.42)

Integrating again from the initial position xy to zy, which is situated on the

boundary of the domain D, xy € 0D (and so 7(zs) = 0), we obtain

(o) = / Y dyexp {8V (y)} / Ddzep (V). (543)

which is known as the Pontryagin et al. solution of the Kramers problem [212].

Metastable Potential The MFPT can be derived explicitly for a particle
initially located at zp = x4, the metastable minimum of the potential V(z)
of Fig. 5.1l The domain D is the range | — 00, zg;[. Considering the last integral
in Eq. , the integrand is maximal around the minimum of the potential and

therefore the following approximation is valid
1
V(2) = V(wa) + 5V"(@a)(z —2a)* + Ol(z = 2a)"] , (5.44)
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and the integral becomes
)

/y dzexp {—BV(2)} = eXp{—ﬁV(fﬂA)}/

—00 —00

dz exp {—éV”(m)(z - fEA)Q}

~ BV?,—};A)exp{—@vm} | (5.45)

where the upper limit of integration has been safely extended to infinity in the
last step. The remaining integral has its integrand maximal around the local

maximum of the potential and therefore V' (y) is approximated as

Viy) = Vi(zp) - %W”(Z'B)’(y —ap)’ + O[(y — z5)" , (5.46)
and the integral becomes
e (av ) = exp (v Gen)) [ dvesn {- SV emlly - an?}
(5.47)

By the same argument as above, the limits of integration are extended to infinity

allowing the computation of the integral

/xSi dyexp{BV(y)} ~exp{pV(zp)} /_Z dy exp {_§|V”($B)|(y _ $B)2}

= vag—?ﬁsﬂexp {8V (zp)} . (5.48)

The MFPT 7,, 4, is then given by

27
VV' @)V ()]

exp{B[V(xg) — V(xza)l} . (5.49)

T:EAH:ESZ' =

We observe that the MFPT in the overdamped limit is the inverse of the
rate (5.34]) derived with the flux-over-population method, in the same limit. This
is not a coincidence since, as we will see next, there is a formal equivalence

between the two approaches.
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Formal Equivalence Between the MFPT and the Flux-over-Population
Method

A formal relation between the flux-over-population and the MFPT methods has
been shown in Refs. [198] [199]. We have learned in the previous section that the
MFPT 7p(zg,vo) is defined by the equation

LYooz, v0) = 1, (20,10) €D | (5.50)

and the boundary condition 7p(xg,v9) = 0 for g € ID. The Green function

g(z,v, | y,v,) for the Fokker-Planck operator on D is defined as

Lpp(x,v.)9(x, v | y,vy) = kd(x — y)o(vy — vy) , (x,v,) €D, (5.51)
g9(z, v, | y,vy) =0, x € 0dD. (5.52)

The Green function might be interpreted as a stationary probability distribution,
since it is a time-independent solution of the FP equation at every point of the
phase space but (y,v,). This point might be seen as an additional point source
of strength k. Moreover, the boundary D acts as a sink. The conservation of
probability implies that the source strength is related to the probability to be

absorbed per unit time or

k= / dxdvx ﬁFP($7Ux)g(x7Uz ’ ya”y)
D

:/ ds; Ji(x, v, | y,vy) , (5.53)
oD

where J; is the probability current density defined from the Fokker-Planck

equation

9,0,

. .04
ox ov, ° (5-54)

ACFP(',I% Ux)g<x> (% ‘ Y, Uy) -

After a multiplication of the Green function with the MFPT and the integration

over the domain D, we obtain

/ dxdv, Tp(ze,)Lrp(T,v:)9(T, v | Yy, vy) = k/ dxdv, Tp(ze,)0(x — y)6(vy — vy) ,

D D

/ drdv, [Lhp (2, v.)7p (2, v:)]g(2, v, | Y, v,) = ETD(y,,) - (5.55)
D
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and, therefore, the MFPT becomes

B fD drdv, g(z, v, | y,vy)

B ; 5.56
faD dSl Ji(ﬂ:,'Ux ’ y,Uy) ( )

TD(:U, Uy)

which is precisely the inverse of the flux-over-population formula for the escape

rate with a source located at y inside the well.

This result shows the equivalence between the escape rate derived with the
flux-over-population method and the MFPT. The latter provides a simple
interpretation of the escape problem. The escape time, given by the inverse
of the escape rate, is similar to the average time needed for a particle to leave
a domain. However, the MFPT faces some practical difficulties when solving for
the rate, in particular, beyond the overdamped limit. The flux-over-population

method is better suited to obtain an analytical solution.

5.3 Escape Rate for a Scalar Field

The main objective of this analysis is the definition of the Kramers problem
in field theory. Using the knowledge gathered with the classical point particle
case, we first describe the escape problem for a scalar field and show that the
formulation of a meaningful definition is not straightforward. The dynamics of
a field under random fluctuations is described by stochastic field theory. We
introduce the two usual formulations, the first based on the Langevin equation,
which has a direct interpretation but is limited in its analytical treatment, and the
Fokker-Planck approach, which derivation is more involved but provides strong
analytical tools. We use ideas from the flux-over-population method to define the
Kramers problem, derive explicitly the escape rate for a scalar field and interpret

the result.

5.3.1 Defining the Escape Problem for a Field

We consider a scalar field in a potential as depicted on Fig. [5.3] We assume, for
simplicity, that the initial configuration is a homogeneous field sitting at a local
minimum ¢“. The interactions with extra degrees of freedom, for example a
thermal bath, lead to fluctuation and dissipation dynamics and potentially allow

for an escape from the potential well. Our goal is to compute the rate per unit
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Figure 5.3 Potentials corresponding to the escape problem. ¢* is the initial
local minimum. ¢B corresponds to the local mazimum of the
potential. On the right-hand side of the maximum, there are several
possibilities, a false vacuum at ¢¥'V (dashed line), a true vacuum at
#*V (dotted line) or an unbounded potential (dash-dotted line) with

V(9% =V(eh).

volume for the field to escape from the well, due to thermal fluctuations.

Involving a field renders the definition of an escape more difficult and less intuitive
than in the one-dimensional case discussed previously. At equilibrium, the field
populates both sides of the well (or have completely decayed if the potential is
unbounded from below beyond the well). Comparing with the initial situation,
where the field configuration is homogeneously located at ¢, it is reasonable
to assume the existence of a flow of the probability density across the potential
well. For this reason, the flux-over-population method should apply. The naive
generalization of the point particle case would be to estimate the average time
needed for the field to reach the top of the potential ¢? for the first time at
each point in space. As we will learn, this case can be related to the Hawking-
Moss solution [209] in the Early Universe. However, in our situation, a Minkowski
spacetime where the volume can be infinite, this solution might lead to a vanishing

rate. We should therefore seek for another definition of the escape configuration.

Before going into the details of our calculations, it is important to comment on the
difference between the escape problem treated in this work with two other closely
related problems, the quantum tunneling and the nucleation problem. Quantum
tunneling, as its name implies, is a consequence of the quantum fluctuations

of the field. Such fluctuations can connect two classically disconnected values
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of the field, through a forbidden region in potential energy, without giving
the field any energy. This is what happens in a quantum first-order phase
transition. Nucleation, on the other hand, is the mechanism that drives first-
order phase transitions with small degrees of metastability (for example, small
supercooling). It corresponds to the formation (or “nucleation”) of bubbles of
the stable phase inside the metastable phase. Such bubbles grow and complete
the phase conversion. Different from tunneling, the process of nucleation is
typically driven by thermal fluctuations (even though for many systems quantum
fluctuations may also play a role). In this sense, it can be said that, in nucleation,
the potential energy barrier is overcome with energy absorbed from the heat
reservoir, in contrast to tunneling. Lastly, the problem treated in this work,
the escape problem, does not necessarily require the presence of an initial false
vacuum. If it is the case, the escape problem can be seen as the first stage of
the nucleation problem, i.e., the generation of domains of field configurations
outside the initial minimum. In general, the Kramers problem for a scalar field,
defined in this work, should be understood as the derivation of the probability
for the field to pass over the potential barrier in a finite region of space. Due to
thermal fluctuations, a field starting at a low minimum of potential energy can
gain energy from the heat reservoir and then “climb” the potential well to reach

and surmount an energy barrier.

As stated in [206], it is sufficient that a finite part of space has passed the
barrier. At first sight, this statement would give some freedom in the precise
definition of the escape problem. In particular, once the field has reached the
top at a spatial location, it can fall on the other side and attract the neighboring
points without any addition of energy. This is a crucial difference with the one-
dimensional case of the previous section. Considering a field, the characteristics
of the potential beyond the maximum play a role in the definition of the escape
problem. It is then fair to expect that the two cases, where the initial minimum
is a true or a false vacuum, must be treated separately. As we will learn shortly,
these features naturally emerge along the computation in a generalized flux-over-
population method and this approach allows for a satisfactory definition of the
escape problem. In particular, a critical volume of space that experiences hopping
is precisely defined by the formalism. To perform this analysis, we should first

introduce some rudiments of stochastic field theory.
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5.3.2 Stochastic Field Theory

We review the basics of stochastic field theory [206] and introduce the objects

needed for the derivation of the escape rate.

Langevin and Fokker-Planck Equations The usual Klein-Gordon equation
describing the dynamics of the scalar field in a potential V(¢) is modified to

take the thermal fluctuations into account and becomes a Langevin equation

V(o)

(0f — V)o(Z,t) + o6

+00(7, 1) = (7.1) (5.57)
where 7 is the dissipation coefficient and ¢ is a Gaussian white noise satisfying
E@3D) =0,  (E@DEE ) = 0 F -t —t),  (5.59)

where () parametrizes the strength of the noise and satisfies the Einstein relation
Q = 2n/p = 2nk,T. Exploring the origins of the Langevin equation in quantum
field theory goes beyond the scope of this work. We invite the interested reader
to refer to [9] and the references therein. For the rest of this work, we simply

assume the existence of a Langevin equation of the form ([5.57)).

For convenience, in particular when dealing with integrals over the field-space,

we discretize the space by adopting the following conventions

NS
O, t) = o(wi, 1) = ¢i(t) , /d?’f —a*> (5.59)
i=1
0; N3 5
7 2 3= s o 3 ij
5(x—y)—>a—§, such that /dm5(m—y):1:a Z.Zla_g”
(5.60)

where the volume V = L3 = (N - a)?, with N being the number of discrete sites
in each direction and a the spacing between two adjacent points. For simplicity,
we have labelled the spatial points in the three directions with a single label ;
instead of ,,.. For the sake of clarity, we will denote the Laplacian as V?jqﬁj. The

actual definition in discrete space is given by

1
v2¢xyz - ? [gbw—l—l,y,z + gbx—l,y,z + ¢x,y+1,z + gbx,y—l,z + ¢$,y,z+1 + gbx,y,z—l - 6¢$,y,z] )
(5.61)
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where each direction of space has been explicitly labelled.

As usual when working with the Langevin equation, the analytical treatment is
limited by the stochastic character of the equation. There is therefore a need
to introduce the deterministic Fokker-Planck formalism for the scalar field. A
full derivation of the Fokker-Planck equation in presented in Appendix [D.I} and
we restrict here to the most important steps. The Langevin equation gives the

following set of equations for the field ¢ and the conjugate momentum m

3t¢z’(t) = Wi(t) )
Oymi(t) = —nmi(t) + Vi0,(t) — V(i) + &(t) (5.62)

where the prime denotes a derivative with respect to the field. The Fokker-Planck
probability density is defined as

P(¢,m,t | ¢o, o, t0) = <H5 — ] 8[ei(t) — ¢z]> ; (5.63)

3

where ¢;(t) and #;(t) are solutions of the Langevin equation (5.62) for a given
noise realization £ and ¢; and m; are the arguments of the probability distribution

P. The stochastic average of an operator O(q@, 7r) is defined as

<(’)(ng$,7%)>5 = /Hd[f(t)]iO(qg,fT exp{ Z/dtf } , (5.64)

where the integration measure is normalized to give (1)¢ = 1. The probability

density is a solution of the Fokker-Planck equation

0

&P(Cbﬂﬂt | ¢0, 0, t0) = —LrppP (@, .t | ¢o, 0, t0) (5.65)

where the Fokker-Planck operator is defined as

B , N3 a a 9 ) Q 82
Lrp=—a Z ey + o [ = V505 + V' (¢0)] + Taon |

(5.66)
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Probability Density Current Due to the conservation of probability, the Fokker-

Planck equation can be written in terms of a probability density current J

P (6,7, t) —a3z a3a¢ 32 a?’@w (5.67)

where the components J; and J; of the current are defined as

0
Ji =— {_ﬂ-i - kBTCL387T1‘ } P(¢77T7t | ¢077T07t) ) (568)
] , 9 Q0
i = { |:7]7TZ - v?jgb] + V (Qsz)} + k:BTGSGQbi + Ea?)aﬂ.i } P(¢,ﬂ,t | ¢077T07t> )

(5.60)

for i € [1,N3]. The validity of this equation might be shown explicitly by
substituting in Eq. (5.67).

Equilibrium Distribution The Fokker-Planck equation admits an equilibrium

solution Py given by

Py(¢,m) = 27 exp {~PE¢, 7]} , (5.70)

where Z is the normalization given by the partition function

N3
= /Hd@dmexp{—ﬁE[a;,w]} : (5.71)
and E|¢, ] is given by
= aSZ [ wz) + V()| , (5.72)

which corresponds to energy function of the system in the non-dissipative limit.

Vector-Matrix Notation Following the work of Langer [208], it is useful to
introduce a vector-matrix notation. The field and its conjugate momentum are

written in a 2/N3-dimensional vector

( f ) = ( ig; > , where i € [1, N?] . (5.73)
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The deterministic limit of the Langevin equation is expressed as

o[ ¢ -
O L

with M = (M;;) being the 2N? x 2N? block matrix defined as

1 {0 -1
M=— ) (5.75)
a 1 nl

where 1 is the N3-dimensional unit matrix and the multiplication - between two
2N3 x 2N? matrices is defined as

2N3

)ij = a ZAszkJ . (5.76)

A similar rule applies to the scalar product. The Fokker-Planck equation is given

P(aﬁ,mt):—(@) (i) , (5.77)
a3om

where (J J)T is the 2N3-dimensional vector corresponding to the probability

as

current

( J ) =—-M- ( %04 * kBTa38¢ ) P(¢7W’t | ¢077T01t) : (578>

j a387r + kBTa387r

Continuum Limit We have been working in discrete space to simplify the
analytical computations. However, the continuum limit can be taken at any
stage of the derivation. For completeness, let us state the main quantities we

have met in the continuum limit. The Fokker-Planck equation reads

0
ot
trr == [ @3 {-n(@) 0 b o ) - V0@ 4 V) +
(5.80)

(¢ T, t | ¢077T07t0) = _EFPP(Qb’TDt | QbO;WO,tO) 5 (579)
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and the equilibrium distribution is given by

Py(fom) = Z Vexp {—BEd, 7]} . Z = / D¢Drexp {—BEb.a]} . (581)

and
Blorl = [ Ew(f)? L Lwo@)+ v<¢>} , (5.82)

is the energy functional.

Overdamped Limit To conclude this section on stochastic field theory, let us

state the equations in the overdamped limit. The Langevin equation is given by
ngi(t) = V2i(t) = V'(¢i) + &(1) - (5.83)

The Fokker-Planck probability density is defined as

P(p,t | ¢o,to) = <H5 oi(t) — ¢ > : (5.84)
13

and the Fokker-Planck equation reads

P(¢,t| ¢o,to) = —LppP (0,1 | do,to) , (5.85)
Py O , Q &
Lrp =0 Z{a?’acm( i Vs = V(0] - Twaﬁa@(tv} '
(5.86)

The equilibrium distribution is given by

:_exp{ ME( (V6) +v<¢i>)}, (5.87)

where the partition function Z is the normalization.

The formalism describing a scalar field in a potential and in a presence of thermal

fluctuations being established, we now turn to the computation of the escape rate.
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5.3.3 Computation of the Rate

The computation of the escape rate for the scalar field is a generalization of
the one-dimensional flux-over-population method to stochastic field theory. The
original extension of the method to a 2 N-dimensional system has been performed
by J. S. Langer in [207, 208]. We present the most important steps of the
derivation, explicit details on the computation are given in Appendix

Setting-up the Problem The method relies on similar ideas as in the one-
dimensional case. The initial configuration is a homogeneous field located at the
local minimum of the potential,

di(to) = o, mi(to) =0, Vi . (5.88)
On one side, the potential is diverging and, on the other, there is a local maximum

located at ¢, as shown on Fig. . The probability density at time ¢, is a product
of delta-functions peaked at ¢ = ¢* and 7 = 0

N3
P(¢, 7. to | ¢o, mo,to) = [ [ 6lmi] - 6l — &™) . (5.89)
=1

After a sufficiently long time, the system is expected to be described by the
equilibrium distribution given in Eq. (5.70). The evolution of the system implies
an increasing probability to find the field on the other side of the potential and,
therefore, a flux of probability at the barrier.

The probability current is expected to go along the configuration with the minimal
energy on the barrier ridge. This defines the saddle-point configuration, which is
found by variating the energy function
NS
0E = a*»  mdm; + VoV + V' (6:)06;

i=1

N3
=ad®Y mom + [~V + V' (¢4)] 66 - (5.90)
i=1

We directly observe that the initial configuration is an extremum of the energy.

The next configuration that extremizes the energy is given by 77 = 0 and ¢?
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that satisfies the saddle-point equation
V2l =V'(¢7) (5.91)

and defines the saddle-point configuration. The exact form of the solution ¢° is

a priori not obvious.

As stated in Section [5.3.1] a simple solution is the homogeneous case where the
field is at the top of the potential ¢?, at each point of space. This trivial solution
of the saddle-point equation is relevant in a situation where the volume of space
in consideration is finite. An example is the Early Universe where this solution
corresponds to the Hawking-Moss instanton [209], and the volume is a sphere of
Hubble Radius. In our case, where the volume of space might be unbounded,
such a solution might lead to a vanishing rate. We therefore seek for another

solution of the saddle-point equation.

According to [206], it is sufficient that only a finite region of space has passed the
barrier. We might try to find a solution of where the field is homogeneously
sitting at the initial position ¢* everywhere but in some finite part where it
is climbing the potential well. Using the rotational symmetry and writing the

saddle-point equation in spherical coordinates, we obtain

82

o

65+ 2055 = vi(%) (5.92)

where for simplicity we are working in the continuum limit. The boundary
conditions are
lim ¢%(r) = ¢* | §¢S =0, (5.93)
r—00 or" .-,
where the second condition has been introduced to make sure the left-hand side
of the saddle-point equation is finite at the center of the coordinates. The
equation can be interpreted as the equation of motion of a fictitious point particle,
in an inverted potential —V" and with a damping term. The overshoot /undershoot
technique of S. Coleman [200] shows that a solution only exists if the original
minimum is a false vacuum. We should then consider separately the cases were

the initial minimum is a false (dotted and dash-dotted lines on Fig. or a true

vacuum (dashed line on the same figure).

In the case of a false vacuum at ¢*, the saddle-point solution satisfying (5.92)
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exists and is well-understood. Let us consider the two limiting cases. If the
potential is unbounded from below, by continuity, there must be a field value
#° > @Y% where the fictitious particle starts at » = 0 with zero velocity and
reaches ¢ at infinite radius. Moreover, it has been shown in [213] that ¢° is of
order of ¢U°. In the presence of a true vacuum at ¢’ , the existence of a solution
is ensured by the overshoot/undershoot argument. If V(¢(r = 0)) > V(¢1), the
fictitious particle does not have enough potential energy to climb the inverted
potential up to ¢*, this is an undershoot. On the other hand, if ¢(r = 0) is close
enough to ¢!V, the fictitious particle can stay near the true minimum until the
damping term becomes negligible, since it is suppressed by 7, and then it will
overshoot. By continuity, there is a field value to start at » = 0 that satisfies
V(p(r = 0)) < V(¢?) and ¢(r = 0) < ¢TV such that the fictitious particle
ends at ¢* at infinite radius. By these arguments, the saddle-point configuration
is uniquely defined. Moreover, it has been shown by Coleman in [214] that the
Hessian matrix of the energy evaluated for this configuration has only one negative

eigenvalue.

One of the main difference with nucleation is that the escape problem can be
defined for an initial true vacuum at ¢*. However, a proper definition of the
escape rate in this case requires additional care. On the one hand, by comparing
the initial and the equilibrium distributions, it is fair to assume that there is
a probability flow at the potential barrier and, therefore, it should be possible
to define an escape. On the other hand, the undershoot argument forbids the
existence of a solution of the saddle-point equation. We will come back to this
issue at the end of this section and make some propositions for a well-defined
escape problem. For the moment, we simply assume that the initial position ¢*

is a false vacuum and proceed with the computation of the escape rate.

The flux-over-population method relies on the following assumptions :

e There are no sources nor sinks in the neighborhood of the saddle-point
configuration. This allows writing the Fokker-Planck equation ([5.65)) near
the saddle point as

0
pE
Z{ i 38¢ a387ri

Q 0?
+§W}P(¢7W):O7 (594)

a3
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using the expansion of the energy near the saddle-point

Al 2 (S
E[¢, 7] = E[¢°, 7°] + %aﬁ Z(gbi — ¢ [_V_ V(7)o

ij=1

N3
1 O;i
—|—§CL6 E (WZ—Wf)a—g(Wj—ﬂs)+ . (595)

J
ij=1

In the spirit of the vector-matrix notation defined above, we introduce the

matrix (e))

(5.96)

sy_ 1 —V5+V"(67)6; 0
0 1)’

which corresponds to the negative of the Hessian matrix of the energy

evaluated at the saddle-point conﬁgurationﬁ

e Inside the well, near the minimum where the field is located initially, the

system is thermalized
P(¢p =~ ¢™ 1~ 1) = Ry(¢,7) (5.97)

where P, is the equilibrium distribution.

e Beyond the saddle point, the probability density is strongly suppressed due

to the presence of the sinks.

Derivation of the Probability Density The computation of the flow of the
probability current and the number density relies on the solution P(¢, ) of the
Fokker-Planck equation with the boundary conditions given above. This solution

is derived using the Kramers ansatz

P(¢, ) = C(¢, ) Po(6,7) (5.98)

where ((¢, ) must be fixed to satisfy the boundary conditions

((p~ ot m~at)=1, C(p>¢% ) —=0. (5.99)

4Note that in the context of field theory, this is usually referred as a fluctuation operator.
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The equation for ((¢, ) is found by insertion in the Fokker-Planck equation. In

particular, near the saddle-point, one finds

32{ T 38¢

Q 9
2 a%9r?

a3 a?om;

N3 2 1"( 1S\ S,
}C(cbﬂr) =0. (5.100)

With the same arguments as in the one-dimensional case and following the
Kramers original proposal, it is assumed that ((¢,7) depends on a linear

combination u of the ¢; and m;

((d,7m) =C(u), where u= agz — )+ Ui(m — )], (5.101)

where U; and U; are the coeflicients associated to ¢; and m; respectively. The

following ansatz for {(u)

2

dz exp{— - } , (5.102)

((u) = ST

1
vV 27Tl€BT /u

satisfies the boundary conditions. To compute the coefficients U; and U;, we
substitute ((u) in Eq. (5.100) and obtain

N3 N3 "
a32{ Ui +nU;) Ua3Z[ Vie , V (fg)(sik} (6 — 07)
i=1

N3 N3
+nU7a* > " Un(dr — 63) +nU2a® Y " U wk—wk)} 0. (5.103)
k=1 k=1

At first sight this equation seems unpromising. Fortunately, it can be written
in a simple form using the vector-matrix notation. Defining the (2N?3) vectors
(U U)T and (¢ — ¢° © — 7°)T such that

w=(U D). <¢ ‘Z) 3 (Ui — 69 + Ul — )] . (5.104)

T i=1
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with the scalar product being defined as in Eq. (5.76]), the equation for the

parameters U; and U; becomes

(UU)-MT-(efj).(¢_¢z>_A(UU)-<¢_¢§> | (5.105)

m™—T ™=

where the scalar A is defined as
U Al
A=UU)- M- _ | =d U,U; . 5.106
worar (7)) =03 (5100
The matrix equation (5.105]) leads to the eigenvalue equation for (U U)

U U)-M" () =AU U), (5.107)

in other terms (U U)” is a left eigenvector of the matrix M - (e}) with eigenvalue
A.  Combining the definition of A and the eigenvalue equation, we find the

normalization condition

1=UU)- ()" < g ) : (5.108)
The eigenvalue A is positive by definition. The positivity is in fact a direct
consequence of the overall negativity of the exponent of ((u). This negative
exponent has been chosen in order to satisfy the boundary condition imposed
by the method, namely the suppression of the probability distribution beyond
the saddle-point and A is the only positive eigenvalue of the matrix M7 - (eZSJ)
Recall that (efj) is defined as the negative of the Hessian of the energy precisely
evaluated at the saddle-point.

Probability Density Current and Flux Once we have obtained the probability
density P = (F, we are ready to compute the associated probability density

current defined in Egs. ((5.68) and (5.69)). After some algebra, we find

kT U 2
JCPy = LM.(U>exp{— Y }Po, (5.109)

27 QkBT
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and the probability flux j

2N3

j=a 32/ dS; Ji(¢, )
A ]{ZBT ¢_¢S
=5 gexp{—ﬁE[ /D¢D7r/dkexp{ k(U U) - (w—ws )}

6(o—05\ o —¢°
- exp §<7r—7r5> '(efj)(ﬁ_ﬁ) : (5.110)

Introducing the rotation S = (S;;) in field space to diagonalize the matrix (ef;)

we obtain
¢ —¢° ‘ - ¢ — ¢S -
(W_WS):S.g, Zku:lk(UU)'ST'S'<7T_7Ts>:ZkU'g’ (5.111)

where we have defined the vector U as S - (U U )T and

— &S r _ 48 2N3
( i d)s ) (ef) - ( i ¢S > =d* &l —a® Y g (5.112)
=2

™—=T m™—T

where all the scalars j; are defined as positiveﬂ The only positive eigenvalue of

(e ZJ) is 1, all the other eigenvalues are —p;. We finally obtain for the flux

A kgT

J = 27r_Z o X xp {—BE[¢°, 7]}
} /8 /8 2N3
: / H g / dk exp {zkag > U+ 5a°met = 5a’ ) mff}
1=1 1=1 1=2
A !
=53 —— exp {—BE[¢°, 7]} |det(2r/B) B[z (5.113)
where the matrix £ = —(ew) is the Hessian of the energy at the saddle-point

which has only one negative eigenvalue. Since this negative eigenvalue appears
with a negative sign, it is the magnitude of the determinant that enters the
formula. The successive integrations have been performed in the following order,

first over all the modes [ larger than 1, then over k£ and finally over &;.

5For the moment, we ignore the possibility of vanishing eigenvalues, we shall come back to
them shortly.
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Zero-modes Due to the translation invariance of the saddle-point solution,
there are three eigenvalues in the associated determinant that are exactly zero
and, therefore, must be treated separately upon the Gaussian integration. For
simplicity and in order to agree with the literature, we perform the analysis in
the continuum space. First of all, let us show that 0z¢%, 9;¢0° and 9:¢° are

zero-modes. Considering 0z¢° we have

[—VQ + V//(QSS)]afng — —afVQCbS + V//(qu)afng — _afvl(¢8) + V//(ng)afqu
= —V"(¢%)0z¢0° + V" (¢%)0z¢0° = 0. (5.114)

To remove the zero-modes, we follow the procedure described by Langer in [208]
and by Callan and Coleman in [201]. First of all, the determinant has its zero-

eigenvalues removed and becomes
| det(27/8) 7 =V + V"(¢7)]] = |det'(2r/B8) ' [=V* + V"(¢])]] . (5.115)

with the prime denoting the removal of the vanishing eigenvalues. Then, the
integration over the zero-modes 0z¢°, 9;¢° and 9z¢° becomes an integration
over dZ, dy and dZ giving an overall volume factor V. Finally each change of
variable from the zero-modes to 9z¢°, 9;¢° and 9:¢° to dZ, dj and dZ leads to

a Jacobian. For example, for the mode 93¢ we have

1/2
96°\”
&Pz | = : 11

[ J ( 8x> (5.116)

The Jacobian is identical for each zero-mode since

965\ 965\ 965\
&Pz ) = | &7 :/d?” — 5.117
/ z((%) / :E(f‘?y "\ ) (5:117)
where we used the rotation-symmetry of the saddle-point solution. We then have
965\ 1 5

Pz (=) =< | &7 (Vo) . 5.118
/w((%) 3/ﬂc(w) (5.118)

So, there is an overall factor multiplying the rate

B / d37 (wﬁ)z] " : (5.119)
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coming from the Jacobian. A quick dimensional check tells us that removing the
three eigenvalues from the determinant increases the dimension by 3/2. The
overall volume factor has a dimension of —3 and the Jacobian 3/2, exactly

compensating the removal of the zero-eigenvalues.

Population Inside the Well The last missing piece is the population inside the
well. This is obtained using the condition that the system is thermalized near
the minimum of the potential and by expanding the energy function around the

configuration (¢4, 74)

N3 V? e 51
Blovr] = Blo*, w4 300 Y- (0 o) | -2 + T8 (o, — o)

1,7=1

N3
1 0ij
- 5@6 > (i - w;“)a—;(wj —m) . (5.120)

ij=1

The population inside the well is

nA:/D¢D7rP0
1 aoa Bl o=\ L [ 6—9
:E/DaﬁDweXp —BE[¢,W]+§ o SCHE 4
::é%exp{-ﬁfq A7) [det(2m/8) EW) S (5.121)

where the matrix £ is the Hessian of the energy of the initial configuration at

#“, all eigenvalues are positive.

Escape Rate The ratio of the flux j over the number density ng4, taking into

account the zero-modes, gives the escape rate for a scalar field per unit volume

3/2

Eoa 1,8 2 det[(27/8) " EW] 1V*
cexp {—B [E(¢°, %) — E(¢*, )]} . (5.122)
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Let us consider the different contributions to the rate. In the exponent, we have

B(¢°,7%) ~ B(6"7h) = a* Y SV V) - V() (5123)

which corresponds to the activation energy, the difference between the energy
of saddle-point configuration with respect to the initial configuration. Since the
initial configuration is homogeneous and only a difference of potential enters
the rate formula, we can safely shift the potential to have V(¢:) = 0. The

determinants can be written as
det[(2n /)P EW] = det[(2n/8) " H(=V2 + V)], (5.124)
where V' is the second derivative of the potential at the initial minimum and
[det’[(2m/8) ™ EW]| = |det’(2r/8) " [-V* + V" (6")]] , (5.125)

where the field configuration entering the operator is the saddle-point solution.

The escape rate per unit volume in the continuum limit is given by

A8 [ 4. [ det V2V 7
= [67/61% (Vo®) } Ldet’[_v? +V”éz55)]|}

- exp {—B/d?’f: %(ws)? + V(¢S)} : (5.126)

which is the main result of this chapter. The constant A is sometime referred
as the dynamical prefactor and the ratio of determinants as the statistical
prefactor [198, 203, 208, 215]. The explicit expressions of these factors depend on
the saddle-point configuration ¢°. We choose to present here the most general
form of the escape rate, and, therefore, we postpone the discussion of the methods

to estimate the prefactors and the exponent to the next section.

Initial Stable Minimum The last situation left to consider is when ¢ is a true
vacuum. As described above, the saddle-point equation does not have any
solution. However, in the presence of fluctuation and dissipation dynamics, it is
fair to assume that the field starts to climb the potential and probes the other
side of the well, even if it will likely come back to the original side. Moreover, as
noted already, the comparison between the initial probability distribution, a delta

function peaked at ¢# at each point of space, and the equilibrium distribution,
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that probes both sides of the well, implies a flow of probability at the maximum
the potential. These two arguments suggest that the escape problem for an initial
true vacuum might still be defined. The rate will simply indicate how likely it is

to have a region of space that passes the barrier.

Let us formulate some propositions for a meaningful definition. The first
possibility is to consider a finite volume V of space and use the saddle-point
solution ¢° = ¢P at each point in the volume. The activation energy will be
given by £ = VAV. This is the simplest generalization of the one-dimensional
case but is dependent on the volume in consideration. Moreover, it can lead to
an underestimate of the rate since, instead of waiting at the top of the potential,
the field can fall on the other side and attract the neighboring points without any

addition of energy.

The method of reactive flux, described, for example, in the review [198], might
be helpful in the derivation of the escape rate for an initially true minimum. At
equilibrium, the ratio of particles densities in the wells is equal to the ratio of the
rates between the two minima. Since the equilibrium distribution and the rate
from a false to a true vacuum are known, the transition rate from an initial true
vacuum can be extracted. It is reasonable to assume that, at equilibrium, the
activation rate derived with the method of reactive flux will be smaller than the
true escape rate. However, this method also allows studying further the approach
to equilibrium by defining a relaxation rate, from an initial out-of-equilibrium

distribution.

Alternatively, we can consider an approximated situation, where the false
minimum on the right-hand side is replaced by a true minimum, due to a
modification of the potential beyond the maximum. For example, a minimal
situation could be a new true minimum, almost degenerated with V(¢4). A
saddle-point configuration is well-defined and the rate given by (5.126). Moreover,
the saddle-point configuration will naturally define the typical size of the region
of space that experiences hopping. As in the previous case, the escape rate might
be underestimated. However, it is fair to expect that the main contribution to
the escape time is given by the climbing of the potential well, which corresponds

to the part of the potential that is not modified.

A last possibility is the construction of a saddle-point configuration using an
analytic continuation. It was not possible to obtain a solution of Eq. (5.92)),
where the field is at ¢V at r = 0 and respecting the boundary condition ([5.93)).
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One can imagine giving an initial imaginary velocity to the field which would
then allow for the climb. This kind of solutions have been studied in the context
of tunneling [216-H220]. However, this goes beyond the scope of this work, and we

leave it for a future analysis.

5.3.4 Discussion of the Result

We present a comparison between the escape rate (5.126]) and the related problem
of quantum tunneling at a sufficiently high-temperature, where thermal effects
dominate. The similarities between the two results provide some insights about
the methods needed for an explicit evaluation of the escape rate, once a potential

has been specified.

Comparison with Quantum Tunneling at Finite-Temperature

Quantum tunneling of a scalar field is a well-studied problem and plays a
significant role in the study of first-order phase transitions and in the stability
of false vacua. The problem has been solved for quantum field theory by C. G.
Callan and S. Coleman at zero-temperature [200, 201] and later extended to finite-
temperatures by A. D. Linde [202]. The result of Linde is particularly interesting
for the current analysis since, for sufficiently high temperatures, the thermal
fluctuations are dominating over the quantum fluctuations. In this regime, it is

fair to expect some similarities between the tunneling and the escape rates.

The tunneling rate per unit volume, at finite-temperature and when thermal

fluctuations are dominating, is given by

@_T<53(¢S,T))3[ det[=V2 + V] }%exp{—«Sg(ch,T)/T} |

% 21T |det'[—V?2 + V"(¢9)]]
(5.127)
where the action Sz is defined as
1
Si(6.7)= [ @5 5(Ver+V(.1). (5.128)
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and ¢° is a solution of

82

s 22 S _ (S
550"+ 50" = V(6" 1), (5.129)

where V (¢, T) is the temperature-dependent effective potential.

Comparing with the escape problem, and assuming identical potentialsﬂ we
immediately notice that the field configurations entering the two rates are given
by the same equation, and . This similarity implies that the ratio of
determinants and the exponential term are identical in the escape and in
the tunneling rates. Using the argument of Coleman [200, 221], that the
action Sz is invariant under an infinitesimal scale transformation of the solution

#°, we obtain

S3(6,T) = % / &7 (Vo) , (5.130)

which is precisely the term given by the Jacobian in the escape rate.

The only difference between the escape and the quantum tunneling rates lies in
the prefactors. In particular, the escape rate predicts a factor of A/27 replacing
the temperature. We interpret this difference as follows. First of all, the escape
problem, even if closely related, is not defined exactly as the transition rate
due to tunneling effects. A comparable, but not identical, rate should emerge.
Moreover, to derive the escape rate, we used the framework of stochastic field
theory where the strength of the noise and the damping appear explicitly. One
naturally expects the damping to play a role in the final result, in particular within
A. It is, however, remarkable that the two rates, computed with different methods,
stochastic field theory for the escape problem and path integral formalism of QFT
for tunneling, have so much in common. The escape rate takes only into account
the thermal fluctuations and is valid for arbitrarily small temperatures. It is
a strong support for our result that the tunneling rate, in the limit where the

thermal fluctuations dominate, mostly recovers the escape rate.

6To be more precise, we assume that the potential of the escape rate V(¢) is equal to the
effective potential V (¢, T) at a fixed value of T.
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Toward an Explicit Evaluation of the Escape Rate

In general, once a potential has been specified, a complete derivation of the
escape rate requires numerical methods, for example, as in the work of G.
D. Moore and K. Rummukainen [222]. However, exploiting the similarities with
the quantum tunneling rate, we can use the techniques developed for the latter
to provide some guidance on the explicit derivation of the escape rate. Let us
consider the exponent, the dynamical and statistical prefactors separately. Recall
that, in general, it is sufficient to know the order of magnitude of the prefactors,

the rate being mainly dictated by the exponential.

Exponent The evaluation of the exponent requires the solution of the saddle-
point equation , which, in general, is obtained numerically. However, two
cases have been identified where an analytical treatment is possible [202], 213].
In the thin-wall approximation, the potential has two minima that are almost
degenerated. The saddle-point configuration has the form of a bubble of true
vacuum. Going along the radial direction, ¢°(r) is initially almost constant and
close to V. This corresponds to the interior of the bubble. The field solution
then bounces to ¢*, which defines the bubble’s wall. The critical radius of the
bubble is found by minimizing the energy. Omne can show that the exponent

becomes
o4 3
[ #7596 Ve = 35 ( / d¢\/2V(¢)> , (5.131)
2 362 #TV

where € is the difference between the false and true vacuum and the integral on
the right-hand side is evaluated in the limit where € vanishes. The other situation
where an analytical treatment applies is when the potential difference between
the false and true vacuum is much larger than the barrier height. The potential

can be approximated by a cubic or a quartic function leading to exact solutions.

Statistical Prefactor The exact evaluation of ratios of determinants in field
theory is, in general, an involved task. Recent discussions on some analytical
approaches to this problem can be found in [223-225]. For the evaluation of
the escape rate and as stated in [202] 213], it is sufficient to have only a rough
estimate of this prefactor. Dimensional analysis shows that the square root of

3

the ratio of determinants has dimension m° corresponding to the removal of the
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three eigenvalues in the denominator. Therefore, we can write

det[-V2+ V7] 12
|det'[-V2 + V" (¢)]|

~ O (¢, (V"2 73 T3 (5.132)

where the quantities on the right-hand side (the temperature apart) should be
understood as mean values. In general, ¢®, (V)32 and 73 are of the same order
of magnitude and should be compared with the temperature to find the dominant
contribution. This is a difference with quantum tunneling at finite temperature,

where the temperature is expected to dominate in the statistical prefactor.

Dynamical Prefactor The dynamical prefactor A has been defined in Eq. ([5.107))
as the unique positive eigenvalue of the matrix M7 - (efj) The eigenvalue equation
for A can be written as

0? 290

S o V(%) | 0(r) = A () (5.133)

We observe that A has a dependence on the dissipation coefficient 7. As usual,
an analytical solution of the eigenvalue equation is not possible, in particular,
since it requires the knowledge of the saddle-point configuration. There exists,
however, certain situations where an approximated result might be obtained, for
example in the thin-wall approximation discussed above. Useful discussions on

this problem can be found in the references [203] 215].

5.4 Applications for Cosmology and Beyond

We identify situations, in cosmology and other areas of physics, where the
escape problem defined in this chapter plays a relevant role. We are particularly
interested in scenarios where the escape rate provides an alternative mechanism
to quantum tunneling. Since the aim of the current analysis is a formal definition
and a solution of the Kramers problem, we restrict to a general description of

these applications. A deeper analysis is left for future works.

Phase Transitions and Topological Defects A concrete situation where the
escape rate becomes significant is in the study of out-of-equilibrium systems,

in particular, during a first-order phase transition. Our analysis is well-suited
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to investigate the approach to equilibrium. We can imagine, for example, the
situation of an initially quadratic effective potential that is developing another
local minimum. The second minimum is, at first, a false vacuum before becoming
the true vacuum of the potential. The escape rate provides the necessary tools
to study the evolution of the Fokker-Planck probability distribution between the

old and the new equilibrium distributions.

As already discussed in Chapter [3] phase transitions are often associated with
the formation of topological defects. Fluctuation and dissipation dynamics might
influence their creation, in particular, in a second-order phase transition, where
the height of the potential barrier is suppressed at the beginning of the transition.
These effects might also play an important role in cross-over transitions. In the
special case of embedded defects, the possibility for the field to escape would
have some consequences on the stability of the object. The escape rate should

therefore be related to the destruction probability of such a defect.

We have mentioned in Chapter [ that gravitational waves might be emitted during
phase transitions [89H91]. The escape mechanism, since it generalizes nucleation,
could play an interesting role in this context and it would be worth studying the

signature associated with this process.

Landscape of Metastable Minima One of the most interesting features of the
escape problem is the hopping of the field over the potential barrier. Naively,
considering a potential with two minima that are almost degenerate, the escape
rate between the false and the true vacua should not be sensibly different from
the rate between the true and the false vacua. For these reasons, the escape
rate could be relevant in theories that contain several non-degenerate minima, in
particular, in order to compute the probability for a finite part of space to evolve
from one minimum to the next. One can imagine, for example, a situation with
two possible directions to diffuse. In one of them, there is a large potential barrier
but a minimum at a lower energy beyond the well. In the other direction, the
potential barrier is smaller but the next minimum is at a higher energy. Quantum
tunnelling could only be applied to the first case but the escape mechanism is

applicable in both cases.

Such a situation arises in string theories, which contain many metastable
vacua [220]. This framework is called the string landscape [227]. The question

of how a vacuum is selected is of particular interest. Our mechanism precisely
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allows for the hopping from one vacuum to the next one. Moreover, the Hagedorn
temperature [228, 229], sometimes associated with string theories, could be the
origin of the fluctuation and dissipation dynamics. Such an analysis might require

a generalization of our work to take into account gravitational effects.

An active field of research in condensed matter physics concerns the glass
transition [230], corresponding to a phase transition between a liquid and a
glassy state. The phenomenology of glassy systems can be described by a N-
body system in a potential with several metastable minima, called the potential
energy landscape [231], 232]. The escape rate provides a mechanism to probe the
different minima. A generalization to a non-relativistic field might be needed in

this case.

Stochastic Inflation The stochastic formulation of inflation was introduced by
Starobinsky [233] 234] as a framework to study the dynamics of a quantum
scalar field during inflation. The field is split into two parts, the long-
wavelength part (coarse grained) and short-wavelength quantum fluctuations.
The back-reaction of the quantum fluctuations on the coarse grained part is
parametrized as stochastic noise. The equation of motion of the inflaton becomes
a Langevin equation. The framework is particularly relevant in the computation

of correlation functions of the inflaton field [235].

In general, the noise is assumed to be homogeneous and the problem reduces to
the one-dimensional situation decribed in Section This approach considers
only the fluctuations that can lift an entire Hubble sphere. If, on the contrary,
we imagine that the back-reaction coming from the quantum fluctuations is
inhomogeneous, the formalism developed for the escape rate is particularly useful.
One can also think about different regions of space that evolve along different

directions in the inflationary potential.

Stochastic Quantization The stochastic approach of quantum mechanics has
been first proposed by E. Nelson in [236] and then extended to fields by G. Parisi
and Y. Wu in [237]. The main idea relies on the fact that the generating functional
of Euclidean field theories is related to the equilibrium limit of a statistical system
coupled to a heat reservoir. The temperature of the heat bath is chosen to
match the Planck constant. The evolution of the system plus reservoir is in a

fictitious time and the equilibrium is reached when this extra time direction goes
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to infinity. This method for modelling quantum field theory is particularly useful

for numerical simulations, such as in lattice field theory [238].

The stochastic field theory introduced for the derivation of the escape rate is
formally equivalent to the formalism describing the stochastic quantization. The
only difference is the dimension of space. The formalism described in Sec. [5.3.2]
can be seen as a three-dimensional Fuclidean field theory coupled to a heat bath,
whereas the stochastic quantization considers a four-dimensional Euclidean field
theory and an extra time dimension. In the language of stochastic quantization,

in particular, using the identification h = kgT', we can directly write the escape

rate as
EooA[S [ det[-O+VY] 12
Voo2r {%ﬁ} Ldet’[—m + V”(gbs)ﬂ} exp {—8u(6°)/N} (5.134)
where
Si0)= [ a7 (V07 + V(). (5.135)

and ¢% is the saddle-point configuration. A similar discussion as in Sec. [5.3.4]
should be performed to compare this result with the quantum tunneling rate at

zero-temperature, computed in [200} 201].

5.5 Conclusion

In this chapter, we have proposed a definition and a solution of the Kramer
problem in quantum field theory. Using the framework of stochastic field theory,
we have studied the probability for a scalar field to escape a potential well due to
thermal fluctuations. The field theory character of the problem complicated the
definition of the escape configuration. Unlike the one-dimensional case, we have
learned that the shape of the potential, beyond the local maximum, influences
the rate. We have identified two situations that need to be treated separately,
when the initial minimum corresponds to a true or a false vacuum. Using a
generalization of the flux-over-population method to a field, we have derived a
full solution of the escape problem from a metastable vacuum and stated some

directions to address the case of an initial true vacuum.

The main result of our analysis is the expression of the escape rate (5.126). A
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comparison with the quantum tunneling rate, in the limit where the thermal
fluctuations dominate, shows that the two rates have much in common. These
similarities provide a strong support for our result, in particular, since both rates
are computed with different approaches. The rates are, however, not identical.
This is not surprising since the two problems, even if related, are not exactly
the same. In particular, the escape rate takes explicitly into account damping
effects. Nevertheless, the well-studied framework of quantum tunneling provides
some precious techniques for an explicit evaluation of the escape rate, once a
potential is fixed. It is remarkable that the derivation presented in this chapter
also encompasses the Hawking-Moss instanton. This solution naturally emerges
along the flux-over-population method and can be studied within the framework

presented here.

Beyond the formal interest of the Kramers problem in field theory, we have
identified several concrete situations, in cosmology, particle physics and condensed
matter physics, where the escape rate is relevant. Out-of-equilibrium scenarios,
for example during a transition between two non-degenerate vacua are natural
candidates. In cosmology, phase transitions and the formation of topological
defects, as well as stochastic inflation are various applications. The string
landscape and the glass transition present a favorable environment for an escape
mechanism. On a more formal level, the analogy with the stochastic quantization
might shed a new light on both the interpretation of the escape problem and on
the meaning of the stochastic approach of quantum mechanics. A deeper analysis

of these directions will be the subject of future works.
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Chapter 6

Conclusion

In this thesis, we have studied the influence of fluctuation and dissipation
dynamics on Early Universe cosmology. Fluctuation and dissipation are common
effects arising when the interactions between a system and its surrounding are
taken into account. Random forces tend to perturb the motion of the system and
a damping leads to the dissipation of a fraction of the energy. This scenario
happens for the cosmological fields used in the description of the physics of
the Early Universe. Being commonly predicted by the theory, fluctuation and
dissipation lead to important consequences for cosmology, which cannot be simply
ignored. We have been interested in three different situations, phase transitions
and formation of topological defects, warm inflation, and the Kramers problem,

where these effects may play a significant role.

The theory of topological defects has been playing a major role in cosmology
over the last few decades. In Chapter [3| we were particularly interested in the
embedded configurations. This special kind of topological defects is interesting
since it might appear in realistic theories, such as the Standard Model. However,
embedded defects are not stable by construction and, without any stabilization
mechanism, they would likely decay. By studying the pion string, we have shown
that, in some circumstances, the interactions with a thermal and dense medium
allow for the formation of stable strings in the range of parameters that are
experimentally allowed. This result is the first example of a stable embedded
defect in a realistic theory. It would be of great interest to verify if a similar
mechanism would apply for other examples of embedded defects, for example the

electroweak string. One might also wonder if a given BSM theory includes any
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stable embedded defect. With cosmology entering a new era since the observation
of gravitational waves, the mechanism studied in this chapter might lead to new

constraints on the theories aiming at completing the SM.

In Chapter 4] we have considered another cornerstone of modern cosmology,
cosmic inflation. One of the most famous cosmological applications of fluctuation
and dissipation dynamics is the warm realization of inflation. In this scenario, the
continuous transfer of energy from the inflaton into radiation allows the Universe
to remain warm during inflation. As in the cold realization, there is a great
diversity of inflationary potentials introduced in the recent years and, therefore,
a need for a systematic way to classify the models. The S-function formalism is
based on ideas from the renormalization group, to characterized the inflationary
epoch in terms of flows away from the de Sitter regime. In this approach,
different models of inflation naturally fall into classes of universality. We have
shown that the universality classes defined for cold inflation can be consistently
extended to the warm realization. The description of warm inflation has a second
functional dependence due to dissipation, which helps in the characterization of
the possible smooth transition between the era of inflation and the radiation-
dominated regime. Beyond the identification of universality, we have illustrated
how this approach is well-suited for an analytical treatment of warm inflation.
A further analysis of the analytical potential of the formalism might lead to
interesting features. For example, a study of warm inflation using a well-
motivated ansatz for the dissipation coefficient, as function of the field only, would
present some computational and theoretical interests, in particular, to evaluate

the cosmological perturbations.

The Kramers problem is intrinsically related to fluctuation and dissipation
dynamics and has applications in several domains of physics, such as statistical
or condensed matter systems. The presence of these effects in the Early Universe
was the main motivation to investigate and define the Kramers problem in this
context. In Chapter 5] we proposed a formulation and a derivation of the escape
rate for a scalar field. We showed that, unlike the one-dimensional case, the
shape of the potential, beyond the barrier, influences the rate. Remarkably, along
the derivation, based on stochastic field theory, we came across some known
situations, such as the Hawking-Moss instanton and the quantum tunneling
rate at finite temperature. The similarities between the latter, when thermal
fluctuations dominate, and the escape rate offered some precious techniques for

an explicit derivation of the rate, once a potential is given. Even if the chapter was
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mainly dedicated to formal aspects of the Kramers problem, we have stated some
situations where the escape rate would play a significant role. In cosmology, the
framework is well-suited for a study of out-of-equilibrium situations, for example
during a phase transition. The possibility for the field to escape might influence
the formation of topological defects and alter the stability of the embedded
configurations. Beyond cosmology, the framework is relevant in situations where
a potential with many metastable minima is predicted, for example in the string
landscape and in the glass transition. Finally, the analogy between the formalism
used in this chapter with the stochastic quantization presents some theoretical
interests, especially for the interpretation of the stochastic approach of quantum

mechanics.
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Appendix A

Review of General Relativity

General relativity is the prevailing theory describing gravitational interactions.
The theory has been formulated by A. Einstein and published in 1915 [13, [14].
The main feature of GR is the relationship between the geometry of the spacetime
and its energy content. This is encoded in the Einstein equations. In this
appendix, we present a short review of GR and introduce the essential quantities
needed to perform calculations. Since in general GR leads to a curved spacetime,
the mathematical framework of differential geometry is required. For a review of

this topic, we invite the reader to refer to [239).

A.1 Basics of General Relativity

In general relativity, the spacetime is a four-dimensional Lorentzian manifold
(M, g) with a Levi-Civita connection. The symmetric and non-degenerate rank
(0,2) tensor g is called the metric and captures the geometry of the spacetime.
In curved spacetimes, the notion of derivative is non-trivial since it requires
comparing objects at different points. The covariant derivative V1 of a tensor T’

of rank (r, s) is the (r,s + 1) tensor which components are

s _ 4] - Ao M1 O... [y M ...0
V)\T/“ Hr Vi..Vs a)\Tl ! lrul...us + r )\T Hr V1...Vs + -+ FO&TI“ V1...Us

— le)\TulmurU...u — FZT-)\TMIMNTVL--G ) (Al)

s
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where 0 is the usual derivative. The I'’s are the components of the Levi-Civita

connection. They can be computed from the metric

1
F)\;w = 59)\0 (%gau + 81/9;10 - aaguu) > (A2>

and are called the Christoffel symbols.

The curvature of spacetime is encoded in a (1,3) tensor called the Riemann

curvature tensor R°,,,,. It can be expressed in terms of the Christoffel symbols
Rgupv = GPFUW o aurgpv + Fgaprauv o Fgauram/ : (A'B)

Conceptually, the Riemann tensor expresses the change of a vector that is parallel
transported around a small quadrilateral. For the Levi-Civita connection, the
(0,4) tensor Ry = gaoR7, can be expressed in terms of the components of

the metric
Ryppw = % (9p0u9rw + 0200 Gpp — 007Gy — 0u0ugpy) - (A4)
The Ricci tensor is defined as the contraction of the Riemann tensor
Ry =R you - (A.5)

For this particular connection, the Riemann tensor is symmetric. The Ricci scalar

is the trace of the Ricci tensor
R=g¢"R,, , (A.6)

and is also called the scalar curvature. Finally, the Einstein tensor is a type (0, 2)

tensor defined as
1
G/_w = R;w - §Rgp,l/ 9 (A7)

and satisfies V#G,, = 0. These are the important definitions related to the

geometry of the space.

In general relativity, free particles move along null or timelike geodesics. A

geodesic is a curve whose tangent vector field t# satisfies

AV (A.8)
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which is called the geodesic equation and means that the tangent vector is parallel

transported along itself.

General relativity relates the distribution of energy with the geometry of
spacetime. The distribution of energy or matter is described by a symmetric
(0,2) tensor field T}, obeying V#T,,, = 0. T, is the energy-momentum tensor

and is usually defined as

2 05,

TI/:—_7
Vgl

where the action §,, describing matter and g = det g,,,. The Einstein equations

(A.9)

relate the curvature of spacetime to the energy-momentum tensor of the matter

and are given by
1
G =Ry — §ng, =8rGT,, — Ag,. , (A.10)

where GG is Newton’s gravitational constant.

Finally, note that Einstein’s equations can be obtained from a variational principle

with the following action

_ ]' 4 . 4
5_—167TG/M ol (R 2A)+/dm/]g]£m, (A1)

where the first integral is the Einstein-Hilbert action with a cosmological constant

and the second is the action §,, written in terms of the matter Lagrangian L,,.
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Appendix B

Details on the Computations of
Chapter

In this appendix, we provide some explicit computations of the renormalized ef-

fective potential (3.20)) and self-energies of the pions (3.30]) and sigma fields ((3.29))

due to fermionic interactions at finite temperature and density.

B.1 Effective Potential

We derive the (renormalized) effective potential (3.20]) at one-loop due to the
interactions with the quarks at finite temperature and density. The effective

potential is given by

Vers (T pg) = —Bivln Z[B, 1q] (B.1)

where Z is the partition function. In this case, we are only interested in the
contribution coming from the interactions with the fermions. Since the interaction
between the quarks and the hadrons will give a higher order contribution, we are

free to consider the non-interacting part of the partition function. We have
Zf]@[ﬁa :U’q] = / D@Dd}
Y(B)=—v(0)

B
exp {—/ dT/d33: 0 (7087 — iy 0; — 7 g + gv) ¢} . (B.2)
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Performing the fermionic Gaussian integral and using the Indet = Trln identity

gives
Z,0[B, 1g) = N det [1°0; — iv'0; — 7%y + gv]

—Nexp{V Z /

n=—oo

Str In [iv%(wy, + iptg) — 7'ki + gv] } , (B.3)

where w, = (2n 4+ 1)7/f are the fermionic Matsubara frequencies and the
remaining trace in the exponential is in Dirac space. Dirac Algebra tells us
that

trin (¢ +b] = %tr In(¢d+0)+In(—¢+b)] = %tr In(d+0)(—¢+0b)]

= %m (a® +b%) tr Lyxq = 2In (a® + V%) . (B.4)

And, therefore, we obtain

d3k:
Vers (T pg) B Z / Wn"'zluq) "‘Wﬂ ) (B.5)
where w? = k2 + (gv)2. Note that

Z In [(w, + iftg)” + w?] =

= % S (0 [(wn +ipg)” + %] + I [(—wn + iptg)” + w?])

= % ST (w4 @ )]+ wd + (w - 1)) (B.6)

n=—oo

using that the sum runs over all frequencies in the first step. A direct calculation

shows the validity of the last equality.

Matsubara Sum We want to evaluate the fermionic sum
+oo 1

—_— B.
Z w2 + o2’ (B.7)

n=—oo

where @ is a constant. The method consists in finding a function with poles

for each of the w, to convert the sum into a complex integral. The function
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tanh(5z/2) has precisely the desired characteristic, its poles being at z = iw,.

The residues are

52) . } sinh () 2
Res |tanh ( — | , 20 = tw,, | = ———=+% =—, B.8
{ ( 2 0 cosh’ (£) p (B8)
z2=z0

and, therefore, the sum becomes

“+oo

1 I6] 1 1 Bz
=——09d —tanh | — B.9
nzzoowngw? omi J 22—z (2> ’ (B9)

where the contour is composed of small loops inclosing all singularities of
tanh(fz/2). The singularities at z = £ of the fraction in the integrand lie

outside the region enclosed by C'. Deforming the contour gives

i dz L 1tamh (&) =
2 2

omi Jo 22 — @2

ﬂ /ioo-l-OJr /—ioo—OJr 1 1 52
= d d ~tanh [ 22
270\ J icoto+ o ico—0F : 27 —w?2 " 2

ico+07T
1
e —w

21 J oo+ 2
s pw
= ——tanh [ — 1
o tan 5 ) (B.10)

where we made the change of variable z into —z between the first and second
line. We used Cauchy’s residue theorem in the last step, closing the contour in

the positive half plane. We find for the sum

+o0

Z = _1'_@2 = %tanh (%D) = i 1 —2np(@)] . (B.11)

200
n=-—00

Using this result, we compute the sums in . Note that

o 400 ) . 00 1 )
and, therefore,
400 9
Y In(wi+a%) =8 [a} 3 In(1+e )| . (B.13)

161



Putting everything together, the effective potential reads

d*k {

1 B 1 e
Veff(Tan):—Q/W w+—1n(1+e p 5“‘1)+Bln(1+e B +Buq) 7

B
(B.14)

where w = 122—1-( gv)?. The zero-temperature contribution of the effective potential

is divergent and requires a renormalization.

Renormalization of the Effective Potential First of all, we show that the

temperature-independent part of the effective potential can be written as

Vsl =0m) = =2 [ o= =2 [ GREW i+ @] . (B9

where k% = k:%,() + K2 Tt directly follows from the identity coming from Cauchy’s

residue theorem

1 /%L. (B.16)

2 2mi —kZ + w?

Integrating the last equation over w and performing the Euclidean rotation ky =
ikpo gives precisely (B.15). We now evaluate the 7" = 0 contribution of the
effective potential using dimensional regularization in the MS-scheme. Going

into arbitrary d-dimension, we have

d4k‘E 5 9 9 o_d ddk‘E 2 2
/W In [/{:E + (gv) } — (u ) 2 / @) In [k:E + (gv) ] . (B.17)
where 1 is an arbitrary scale with dimension of mass that balances the change of
dimension of the integral. To evaluate the integral, we first take the derivative

with respect to m? = (gv)* and get

2)2-% ddkE 2\2- & w2 274 _q d
o / (2m)? k2, +1(gv)2 = ()" (QW)d[(QU) ]27°T <1 - 5) ,  (B.18)

using known results for Euclidean integrals in d-dimensions [240]. The zero-

temperature part of the effective potential becomes

o d 2 0)2 d
Vers(T =0, pg) = —2 (#2) ’ (2m)d [(g; ] r (1 B g)
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(90)' ((g2\* T (2-9)
2(477)2 <47m2) T(1—dy- (B.19)

Setting € = 2 — %l and taking the limit € going to zero gives

Vers(T'= 0, 1g) = = 287?32 (gﬁj) . (2 —FE)((EE)— 1)
2 (1=l +0) (2000

(1+e+0(€)) % (1 + % + 0(62)>
(gv)* [1

(gv)* 3
:W{E—F’)/E—Flnélﬂ—lnT—i-i—FO(E) , (B.20)

where g is the Euler-Mascheroni constant. In the MS-scheme, the first three

terms in the square bracket are absorbed by counterterms of the Lagrangian and

the renormalized zero-temperature part of the effective potential is

1672 *

(ren) ;. o (gv)4 ,U2 3
Vipr (T=0,p,) = {ln OAEIE

(B.21)

We finally write the one-loop renormalized effective potential due to fermionic
interactions

4

ren m ILL2 3
V) =Ny 2 18]
q

N.N; [ d e e
~ 2Rl [ M (1) b (1 )]

2

(B.22)

where N, and Ny are the number of colors and flavors respectively.

B.2 Renormalized One-loop Self-Energies

We derive the renormalized one-loop self-energies of the ¢ and 7 fields at finite

temperature and density. As usual, we only consider the interactions with the
fermions fields. Those are given by

go gy (B.23)
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the Yukawa interactions of the LSMq.

B.2.1 Self-Energy of the Sigma Field

The self-energy of the sigma field at one-loop is given by the following diagram

k

o= P ‘Qf p =xI=0 4 70 (B.24)

k—p

The Feynman rules for the Yukawa vertex allow writing the self-energy as

Yy (iw, p) = ¢*T Z / d3k Sw zwn+,uq,k:>5¢ <iwn—iw+,uq,lg—ﬁ>] :

(B.25)
where the fermion-anti-fermion propagator in Euclidean space is
S (z’w y l%'): mq — K (B.26)
v " v (wn —ip1g)* + E;f ’ '

with By = (EQ +m§)1/2, F = —yaw, +7.k and w, = (2n+1)7 /B are the fermionic

Matsubara frequencies. The Feynman propagator can be expressed as

. - > dky  pr(ko, k)
Sq/) (uun + ,qu,]{?> = —/ ﬁm s (B27)

—0o0

where pr is the fermionic spectral function defined as

(}7) + mq)

ko, k
(0’) 2wk

[0(ko — wi) — d(ko + wi)] - (B.28)

The self-energy reads

3k tod dk
(iw, P) _g2T Z / / po/ ako

n=—oo

tr [pF(/fo, E)PF(P(L k— ﬁ)}
. (iwn + g — ko) (i(w — wn) — g — Po) '

(B.29)

Let us compute the zero and finite-temperature contributions separately.
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Zero-temperature Contribution For the 7" = 0 contribution of the self-energy

¥I=0" we use standard quantum field theories in Euclidean space in d = 4 — 2¢

dimensions to extract the divergence. We have

T=0 __ 2 A’k mq—k mq—(}é—p)
=7 [ G B g
o dkg mg — k(k —p)
~ 10 | G (B0

with the trace computed using Dirac algebra

KE = p) =7k (k= )y = 5 (0" A" hulk =) = —k(p—K) . (B31)

tr[(mg — §)(mg — (F = ))] = 4(mg — k(k —p)) . (B.32)

Using the known result for Euclidean integral in d-dimension space [240] and after

some algebra, we find for the real-part
2 2

g 2 .2 SRR N
L e W‘p —3my —gp ) g

3q> 1 1
— i |:7fn,2 —p2:| - +
2 { 5p°Clog (1£G)  for p* > 4mg and p* < 0

(B.33)

Y

—p*CParctang  for 0 < p* < 4m?

where C' = 4/ |1 —4m2/ p2| and M is the regularization scale. In the limit py — 0

and the rest frame of the particle p— 0 we find

_ N.N M?
Re [2’570} = 47T2fg41)2 (]. + 31n W) ) (B34)

for the renormalized contribution.

Finite-temperature Contribution To derive the real-part of the finite-temperature

contribution, we need to evaluate the Matsubara sum. We use the known

result [105]
+oo _
1 1 1 —nh(ky) —
Ty - , _ Lok =nplpe) g g5
W+ g — ko i(w — wy) = pg — Po iw — ko — po
£ L Performing the integrals over ky and py using the

where ny(wy) = S
different combinations of d-functions allows extracting the real-part of the finite-
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temperature contribution of the self-energy

Re [E]77] =44° /

Wk + k- (p— E) + mg]

d®k 1
(27‘()3 4wkwp_k

np(wi) + np(Wpi)
Po — Wk — Wp—k
—np(wr) + np(wpr)
Po — Wi + Wp—k
)+ mg] _nF(wP*k)j— np(wr)
Po+ Wi — Wp—k
Po + Wk + Wp—k

+ |wrwp—k + k-(F—k)+ mg]

!

+ wkwp_k +E- (ﬁ—

— | —wrwp k- (F—F)+m

where we have used the Cauchy principal value to extract the real-part of the
function. We are interested in the self-energy in the rest frame of the particle
and in the limit py — 0. Due to the non-analyticity of the self-energy, the order
in which we take the limits matter. According to the Ref. [241], the correct
prescription is to take the limit py — 0 first, which leads to

Re (53] = & [ & fuon) + npten] (1- £4)

_ % 0 dk k—2 {nf(we) [1 = ng(wi)] + np(wr) [1—np(w)]}

Wi
(B.37)

The presence of the last term in the previous equation depends on the order of
the two limits. However, it turns out that this term does not affect our result on
the stability.

B.2.2 Self-Energy of the Pion Fields

We compute the self-energy of the pion fields

k

Sp=r—{ F—r =8I0+ 570

k—p
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T Z / dgk 5S¢ (an+ﬂq, )7551# (iwn_iw"i_,uqulg_ﬁ)] :

(B.38)

The zero-temperature part X1=0 reads
»T=0 = —92/ oy [yp o =& s 7o = B2 P)
N (2m)d k24+m2 " (k—p)?+m?
g / P mi k(=)
(2m)? [k* + mg][(k — p)* + mg]

e kE 1 o e
— 8¢> =) -y .
g-m / YTk +m[(k—p)2+m2 ™

(B.39)

We can use the above result of 32=°. The only contribution left to compute is
¥7=0" We find

, 2 1 m;
Re |:E T:O] — g_ |:ng — mglog— —|—2m :|

T 272 M?2
9> | 2m2Clog (3£5) for p* > 4m?2 and p* < 0 (B.40)
2m% | —2m2Carctang; for 0 < p* < 4m? '

Therefore, the real-part of self-energy of the pion at zero temperature reads

Re [Z1~] = Re [217"] — Re |2~

2 2

- L[ (- gp) 2t = g
9_2 (%102 — 6m?)C'log (%) for p? > 4mq and p? <0

472 | p?C arctank for 0 < p? < 4m?

¢ q

(B.41)

The real-part of the finite-temperature contribution reads

d*k 1
T#07 _ —4 2
Re [ZW } g / (271’)3 4wkwp_k

Lo T ng(wr) + np(w,—
[wkw” p ke (P = k) + mﬂ ijo i>wk —FLE) pkk)
p—
—nj(wg) + nf(wp—r)

Po — Wk + Wp—k

—

+ [—wkwp_k —k-(F—Fk) + mg]
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—np(wi) + nplwp-r)

Do + Wi — Wp—k
np(Wr) + g (wp—i) }
Po + Wi + Wp—k

— [wkwp_k — k- (p— E) + mg]

3
*Re[ZTﬂ} 89m/dk !

27)3 dwpwp—,

"F(wzc) + np(wp—t) 4 _n;(wk) + nlt(wp—k)
Do — Wi — Wp—k Po — Wk + Wp—k
—np(wp—k) + np(wr) _ e (wr) + np(wps) }
Do + Wk — Wp—k Po + Wi + Wp—k

3 + -
— Re [ZTyéO} 8¢%m / d’k 1 np(wi) + np(wk)
27)3 dwpwp—k | Po — Wi — Wp—k

g (wr) + g (ws) I C R C np(wr) + n;(wk)}
Po — Wk + Wp—k Do + Wi — Wp—k Do + Wi + Wp—k '
(B.42)

Putting everything together, the renormalized self-energy of the pion field in the
limit pg — 0 and the rest frame of the particle p — 0 is

NCN M? & k? _
TIien) — —47r2f {g (1 +1In g—) + 44 /0 dkw_ [nh (wr) + ”F(Wk)]} )

(B.43)

where the limit over p, was taken first.
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Appendix C

Perturbation Theory from Inflation

In this appendix, we provide more details on the theory of perturbations in the

simplest realization of inflation. Our aim is to illustrate the most important steps

leading to the derivation of the scalar and tensor power spectra. For a complete

treatment, we invite the reader to consider the references [151H154] 242]. We are

working in conformal time where the conformal Hubble parameter is defined as
1

H= % = aH and, in a de Sitter geometry, the scale factor becomes a(7) = — 4.

The first step is the expansion of the metric and the scalar field around the

background solutions. The perturbation in the scalar field is defined from

gb(Tv f) = gbc(T) + 6¢(T7 f) ) (Cl)

where ¢. is the classical and homogeneous contribution responsible for the
accelerated expansion during inflation. The expansion of the metric around the

FLRW solution can be written in the most general form as

ds* = a*(1) {— [1 + 2A(7, &) dT°+
2 [8lB<T, f) + BZ(T, f)] del’Z + [(5” + hij(T, f)] dxld:cj} s (CQ)

where B; is a transverse vector. The perturbation of the spatial part of the metric

can be decomposed as
hi]’(T, f) = —2C<7', f)&] + 23i8jE(T, ff) + 26(1EJ) (T, f) + Eij(T, f) y (CB)

where Ej; is a transverse vector and £;; is a transverse and traceless tensor.
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The perturbation of the scalar curvature on comoving hypersurfaces reads

R=—C+ ;&p , (C.4)

where the derivative with respect to the conformal time is denoted with a prime.

Scalar Perturbations Using the gauge freedom in the choice of the coordinates
and the equation of motion for the scalar field, it has been shown in [I53] that a

single variable is sufficient to describe the scalar perturbation

/
=al|dp—=C| . C5
v=a ( [0) 7 ) (C.5)
This variable v is usually referred as the Mukhanov-Sasaki variable and is a linear

combination of the scalar perturbations of the scalar field and the metric.

In order to study the evolution of the scalar perturbation, we need the equation

of motion of v. Starting with the action during the period of inflation

2
So= [Vl (SR - 50 000,60 - V(o)) (C.6)

and with the two anséatze for the scalar field and the metric, we obtain the action

for the Mukhanov-Sasaki variable

S, = %/de?’f |:U/2 — (0)* + Z—UQ} , (C.7)

z

where z = a%. We observe that v has an action corresponding to a scalar field
with a time-dependent mass in a spacetime with a Minkowski metric. Using the

definitions of z and v, one can show that
v=—-2R, (C.8)

which implies that the comoving curvature perturbation is simply proportional

to the Mukhanov-Sasaki variable.

We are considering quantum perturbations and therefore, before solving the

equation of motion, we need to quantize the scalar field v

1
(27)3/2

(1, @) =

/dglg [d,gvk(T)eiE'f + d%vZ(T)e_iE'f : (C.9)
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where ¥ denotes that v is now a quantum field. The annihilation and creation

operators az and dj; are defined by their commutation relations
lag. 4] = |akal] =0, g0l = 0O (F - ). (C.10)

Working with the canonical quantization, the following commutation relations

are valid
[0(7, &), 0(7, 2)] = [7t,(7, T), 7o (1, 2)] = 0, (C.11)
[6(, %), 7ty (1, 7)] = 16 (7 — &) | (C.12)
where 7, is defined as m, = %, the conjugate momentum of v. In our case 7, is

simply equal to ¢’. Inserting equation (C.9)) in the commutation relation (C.12)

gives
VRV — vpu =1, (C.13)

which corresponds to the Wronskian normalization condition for the solutions vy.

After a Fourier transformation, we find the classical equation of motion for the

amplitude of the modes vy (7)

Z”
vy + (k2 - ?) v =0. (C.14)

Recall that the field is expected to be in the slow-roll regime. The evolution of
H and ¢’ can safely be neglected with respect to the evolution of the scale factor

and the ratio %” becomes “7” With this simplification, we write a solution for the

modes
1 i 1 . ( i )
(1) = ——=e"" 1 - — |+ —=e"" 14+ — ], C.15
LR ( m) Vak kT (19
where the Wronskian normalization and the relation “7” = 7_% have been used.

Going sufficiently early in time, any mode k£ would have its wavelength deep inside

the Hubble radius, and, therefore, much smaller than the horizon
Mook > 1 (C.16)
— ~ kT ) .
aH

The equation of motion for the modes (C.14)) can be approximated in this limit
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as
vy + kP, =0, (C.17)

where the modes behave as in a Minkoswki spacetime since the effect of the
curvature can be safely neglected. In order to pick a physical solution, we assume
that it reproduces the Minkowski vacuum v;, ~ €*7 in the limit k|7| > 1 and,
therefore,

1 1

p(7) = ——e*T (1 - — ) . (C.18)
Vok kT

In quantum field theories in curved spacetime, this is usually referred as the

Bunch-Davies vacuum.

The statistical properties of the fluctuations are encoded in the n-point correlation
functions of the modes. In particular, from the two-point function, one defines

the power spectrum

A €
(0|9(7, 21)D(T, 22)|0) = / dgke’k(xl_“)ﬁ (C.19)
k3
Using the equation (C.9)), we find for the spectrum
kS
A2(1, k) = — (7)) . (C.20)
272
Using that v = —2R, we obtain the power spectrum A? corresponding to the
comoving curvature perturbation
k> |on(T)[?
2 —
As(Ta k) — 2_71_2 52 (021)

Recall that we evaluate the spectrum at the horizon crossing. In the super-horizon

limit, k < (aH), we can solve the equation of motion for the mode to find

1 1 1aH
~ o~ . C.22
W)= = e S e (€22
This allows writing
1 HY
A7, k) = g (C.23)

which is the spectrum of scalar cosmological perturbations generated from
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vacuum fHuctuations in the slow-roll realization of inflation.

Tensor Perturbations The method to obtain the tensor perturbation goes along

similar lines. We start with the action for tensor linear perturbations

5= m%’ / drd'T a(r) (B2 — (0E,)?] . (C.24)

where the reduced Planck mass has been written explicitly. Then, we use the
fact that the tensor perturbation corresponds to GW and can be decomposed in

their different polarizations

2

APk
E;j :/ pTE Z¢M e (K, \)e* T (C.25)

with eij(l;, A) being the polarization tensors. Inserting in the action gives

2 "
S=- Z/d7d3ka 7) W%AF — (k2 - %) |¢m|2} (C.26)

3,

2 2 "
m = a
T / ard’F [|u;a)\|2 - (k2 - ;) |u,h|2} , (C.27)
A=1

where uj; , has been defined as “5Fa(7)¢; ,. Following similar steps as the scalar

case, the power spectrum for ug , is found to be

k3
AL (k) = o5 lug\ (7 (C.28)

~ _taH

solving for the modes in the super-horizon limit, & < (aH), we find uj , ~ el

and, therefore,

A (T k) = <%) y (C.29)

Summing over the polarizations and using the relation ux(7) = "2 E\(7), we

obtain

2T

Nk =S (H) , (©.30)

which is the spectrum of tensor cosmological perturbations generated from

vacuum fuctuations in the slow-roll realization of inflation.
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Appendix D

Details on the Computations of
Chapter @

In this appendix, we provide greater details on the computations performed in
the derivation of the escape rate. We start with the explicit derivation of the

Fokker-Planck equation for the scalar field.

D.1 Derivation of the Fokker-Planck Equation

We generalize the method presented in [206] to derive the Fokker-Planck equation
for a field. We consider a scalar field ¢;(¢) in a potential V' (¢). The Langevin

equation for the field and its conjugate momentum m;(t) read

315(151'(15) = Wi(t) )
Oimi(t) = —nmi(t) + Vi,(t) — V() + &(t) (D.1)

where we wrote the Laplacian as ij to indicate that it is a non-diagonal matrix

actually given by

1
v2¢xyz - ? [gbx—l—l,y,z + gbx—l,y,z + ¢x,y+1,z + gbx,y—l,z + gbx,y,z—i—l + be,y,z—l - 6¢x,y,z] )
(D.2)

where each direction of space has been explicitly labelled.
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The white noise, being Gaussian distributed, leads to a probability distribution
P(¢,7,t | ¢o,m0,t0) corresponding to the probability to find the field configura-
tions ¢ and 7 at time ¢ knowing the initial configurations at ¢y,. Formally, P is
defined as

P(¢,m,t | ¢o,m0,t0) = <H5 —mi] - 6[oi(t) — ¢1]> ; (D.3)

3

where ¢;(t) and #;(t) are solutions of the Langevin equation (D.1]) and ¢; and 7,
are the arguments of the probability distribution P. The stochastic average of

an operator (9((5, 7r) is defined as

:/Hd[g(t)]iO exp{ Z/dtf } : (D.4)

The integration measure is normalized to give (1) =1

NS
<1>§:/Hd[§< exp{ Z/dt€2 }
i=1
N3 M N3 M
27TQ
~TTIT [ ddece {5560 | =TT TIN5 =1, ©3)
i=1 k=1 =1 k=1
where we have discretized time t; — ¢y = eM. We find for the measure of

integration

[Tl = TTTT \/ aeylehs- (D.6)

In discrete space, the Gaussian white noise satisfies

(1) =0, (G = Q55(1 1) (D7)

which is easy to show using (D.4)).

Using a bracket notation, we have

(@, | do,m0) = H5 — ¢i0)0(m — i) , (D.8)
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and, therefore,

P(¢77Tvt ‘ ¢077T07t0) - <¢77T | P(tvt()) ‘ ¢077T0>
= (¢, | e UL | 9o mp) (D.9)

where ﬁFp is the Fokker-Planck operator. Note that we used the Markov
property and invariance under time translation. The Fokker-Planck equation

follows immediately
P = —LppP, (D.10)

and we are left with the computation of the Fokker-Planck operator. This is
achieved by taking the Fourier transform of P with respect to ¢ and 7 at fixed

time ¢

N3

D1~ —ia3 N (it did
P(Qb,ﬂ',t | ¢077T0at0> E/Hdﬁszdﬂ-ze 321:1( ¢ 2+¢1¢1)P(¢,71',15 | ¢0,7T0,t0)
=1

N3

N / H dgidme™™™ S (Femitdion)

. <H O (t) — m] 5[@%(75) - ¢z]>
i=1 3
= <exp {—ia3 Z [ﬁiﬁi(t) + éléz(t)} }> . (D.11)
i=1 13

Recall that ¢(t) and #(¢) are solutions of the Langevin equation. For an

infinitesimal time interval e =t — ¢y, we have

Gi(t +€) = bio(t) + emio(t) (D.12)
mi(t +€) =mo(t) +e [—77771-’0(75) + V?j(bj’o(t) — V/((bi,o)] + /t 6 dr &(7) .
(D.13)

Inserting in (D.11)) gives
p(é/ﬁat—i_e ‘ ¢077T07t) =

N3
exp {—ia3 Z [7@- (7@-,0 + e(—nmio + V?j(bjy() — V’(@,o))) + & (¢io + em,g)} }

i=1
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. <eXp {—ia3 Z T lt+€ dr 62(7’)}> , (D.14)
=1 13

where we have factorized out the terms that do not depend on & We then

compute the stochastic average

<exp {—ia?"NZ3 i /tt+€ dr &(7)}>

i=1 i 3
— /d[ﬁ] exp {a?’g {—%/_:o dr'e; (t') — i /;Hre dr fi(T)}}
= [agen {NZ o awew - [ e }

0, &
— exp {—§a362 ﬁf} : (D.15)

using that for ¢’ €|t,t + €[, the integral is normalized to unity. So, we find for the

Fourier transform P of the probability distribution

N3
P(¢, 7, t 4 €| ¢po, o, 1) = exp {—a3 Z i [mio + € (—nmig + Vidi0 — V(dio))]
=1
0 s
+%7~Tz‘2 + 104 (¢i,0 + em,o)] } . (D-16>

On the other hand, from , we have

P<¢77T7t + € | ¢077T07t0> = <¢77T | 6_€£FP | ¢077T0>
= (625 | 1—eLpp + O(€) | o, m0)

= H5 — $i0)0(m; — mio) — €Lpp(p, 7 | Po,m0) + O(e?) . (D.17)

Taking the Fourier transform, we obtain

- o~ . 3 /. - X ~
P(¢p, 7, t + €| ¢o,mo,t) = e~ia® T (Fimio+diduo) _ eLrp(o, 7 | ¢o, m0) + O(€%) .
(D.18)

Comparing with (D.16)), we find the Fourier transform of the Fokker-Planck
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operator

2FP<$77~T | <Z50,7T0) =

N3

9 ~
1a3 Z i—=1 (ﬂ'zﬂ'z 0+¢z¢z 0 3 Z {Zﬂ-z TIﬂ-Z 0 —|— V’LJ ¢] 0 — V/(¢7, 0):| §ﬁ3 + Z¢Z7TZ,0} :

=1

(D.19)

We take the inverse Fourier transform to find the Fokker-Planck operator

d Zdﬂ'z ms N P
EFP(¢,W | ¢0,7T0 /H ¢ ( ! l+¢l¢l)LFP(¢77T ’ ¢077T0)

2 27r

/H d¢z dﬂ-z m32 (7’ri(ﬂi—ﬂi,0)+q~5i(¢i_¢i,0))
o 21

2

Q
a’ Z {Wz —NTio + V?j¢i,0 —V'(¢io)] + =77 + iimig

|

8 , Q 82
=a’ Z {a3aﬂ_l [—777Tz',0 + V?jﬁbi,o -V (gbw)] - =

2 a%9r?

/Hdgbz dﬂ-z zaSZN (ﬂl(ﬂl 7T10)+¢1(¢1 ¢10))
2 27r

Q 0?

2 .
a38¢i 50

a /
_ Z {a (=i + Vioio = V'(6:0)] = 5 o2

H5 ¢zo - 7Ti,0)

Q 02

+ -2
a38¢i ﬂ-Z’O

0
_ .3 2 /
=a ; {m [—nmio + Vi — V(dio)] — 2 460

(@, 7 | o, m0)

= (¢, 7 | G3Z{ RRES |:_777%i+vzzqui_vl(qgi)]

Q 02 n 0
245077 4309,

7%1} ‘ ¢0,7T0> .
Now, since ﬁpp(¢, T | ¢o, o) is defined as

‘CAFP(QZSJT | ¢0’7T0) = <¢’7T | ﬁFP | ¢0’7TO> y

2 .
a38¢i 50

(D.20)

(D.21)
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we obtain

ﬁFP(Qf)aW | g0, o) =

3NZ3 0 - '+V2¢~—V'(¢-)}—Q o + o . (D.22)
¢ — | a®0m; i W ! 2 a%0m? a3a¢i7” ’ '

and the Fokker-Planck equation reads

0
ap(qb?ﬂ-at | ¢077T07t0) = _'CFPP(gbuﬂ-)t | ¢077T0at0> ) (D23)

which completes the derivation.

Probability Density Current Conservation of probability implies that the

Fokker-Planck equation can be written in term of a probability density current

N3 P N3 ) -
OP(¢,7,t) = —a* > a%.Ji —a® ) i (D.24)
i=1 ' i=1 g

where and J; and J; are defined as

Ji=— {—m — kBTa3(97TZ- } P(¢,m,t | ¢o, mo,t) , (D.25)
7 2 / 0 Q 0
i = { [nmi = Vi + V' (63)] + kT a5 T 3 o } P(¢,7,t | ¢o, 70, 1)
(D.26)

for 7 € [1, N3]. Computing explicitly the RHS of (D.24)), we obtain

X9 Sl al ) o 9
“ ZZI a30o; Ji—a ZZI a?om; Ji=a ZZI{ i al0o; kBTaP’agzﬁi a3(‘37ri+

0 0 Q 92
_\72 . 1o ' T Q b
+CL367Ti [ v ¢Z v (¢%) " 7771-1} k5 a38¢i a387ri + 2 a3(97r7;2} (gb’ ™ t)
N3 P 3 0 82
_ .3 L R - Q
=qa ;{ W2a3a¢i + a307ri [77771 \Y ¢Z+V(¢’L):| + 2—(1387_(12}P(¢,7T’t> ,

(D.27)
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which is precisely the RHS of the Fokker-Planck equation. In the vector-matrix

notation, the probability current is expressed as

< '{ ) - M. ( a39¢ + kBTa38¢ ) P(¢,7T,t ’ ¢0,’/T0,t) , (D28)

a387'r + kBTa367r

which can be shown explicitly

TN _ 10 =1\ 55 kT Plé.7.0)
J a*\ 1 nl 98+ kpT -2 o
—mi — kpT =9~
Somi 5 >P(¢,7r,t).

N ( [—V2¢z’ + V'(¢:)] + kBTa38¢i TN %a38m
(D.29)

D.2 Flux-over-Population Method for a Scalar
Field

In this section, we provide some explicit computations to complete the derivation
of the escape rate for the scalar field presented in Sec.

We first derive Eq. (5.100)), the equation for ((¢, 7). Inserting the ansatz P = (P,
in the Fokker-Planck equation, we have

aE} Q 02

0
32{ a33¢ a387r,~ [n7i+m EW}C(¢7W)PO(¢7W)=O-

(D.30)

Computing each contribution explicitly gives

o {mﬁ%} CPy = fa( Py +11C (550],7,)
Z%T?CPO e {%Po — BCmPy
v o P
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Q o 42, )

: v () C .
2 a30m; " 2> ad0m;

—f

The and the green terms cancel each other and the blue combine to give

the equation for ¢

a> ‘ OF i 0 52 B
Z{ i 3@¢ { nmi + a3a¢i:| 3o, +§a6aﬂg}§(¢,ﬂ) =0, (D.31)

where we recognize the adjoint Fokker-Planck equation. Near the saddle-point,
we expand the energy to obtain Eq. (5.100)

N3 2 v// S 5i o
32{ Ti—m 3(% 777r1+a3z[ (92;}@) k} (d)k—d)f)]m
Q o2

+§W7¢2} (p,m)=0. (D.32)

We now derive the equation (5.103) for the parameters U; and U;. Recall that

((¢, ) depends on a linear combination of the ¢; and ;

C(p,m) =C(u), where u= a3z — ¢F) + Uy(m; S)} . (D.33)

and takes the following form

1 o 22
C(u) = W/u dz exp{—2kBT} : (D.34)

which satisfies the boundary conditions. We have

o¢ _ 9¢ Ou U (D.35)
a30p;  Oudddd;  2mkuT P 2kpT '
¢ ¢ Ou U u?
> [ — D.
a’om;  Oua3om; V2rkgT =P { QkBT} ’ (D-36)
82C UzUZ { u? }
s = U exp{ —
abor: kT 2rkgT 2kpT
= L exp {_u_2} a’ NZS [Us (e — o) + Ur(mp — WS)}
kpT\27hpT 2kpT |~ = ¢ e
(D.37)

where the minus sign in the first two equations comes from the fundamental
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theorem of calculus. Inserting in the equation (D.32) for ¢ we get

= Vi , V(63
32{ Nl —[ nm+a32{ : . Lo ’“} <¢k—¢£>]'

7. w2 2 w2
U; Q Nk }:O

2k BT 4+ —— Y g 2%pT

V2T 2 ken T 2rkpT
N3 me1S\S.
32{ (Ui +nU;) w Uiasz {—vik + Y ((ﬁk)élk} (ér — o)+

a’d a3
k=1

N3 N3
+nUZa* > " Un(de — 63) +nU2a> Y Up(my — w,f)} =0. (D.38)
k=1 k=1

This equation can be written in the more elegant matrix notation

(UU).MT_<€%),<¢:¢2>:<UU),M_(¢:¢Z><UU).<¢:¢2> |

(D.39)

Let us show this equality explicitly. The LHS gives

(U T)-MT - (c5) - <¢_¢s>

=T

_ _i(U 0) - ( 0 1 ) . ( (=VZ) +V"(¢%)d; 0 > _ ( ¢ —¢° )
af -1 701 0 1 T —7d
_ i 7y 0 1 . ¢_¢S
o as(U v ( —(=V3) = V"(¢%)di; 0l ) < -7 )
(AU e vien)s,] 6o
— (U + T]U) 7 —md
= iff (Vi) +V(6%)35] - (¢ = 6°) = (U +90) - (7 = 7°)
_ 32 ZU< V)""VH;S)(SU)(@_ %)

N3

—a® Z (Ui + 77(7,) (m; — 7). (D.40)

=1

For the RHS, we have
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:Ulﬁwa+%7ﬁ:f§E%KL (D.41)
P
and therefore
ay@ww(fiii)wﬁy(fiii)
_&§)w“22m¢k¢w+mm—@ﬂ. (D.42)

k=1

Which show the validity of the matrix equation. Let us also derive the

normalization . Multiplying the eigenvalue equation ((5.107) on the right
by the inverse of ( ) times (U U)T we get

U T)- M7 () <e?j>—1-<U>—A<UU> (e5) (U)

U U
_ U U
vo)y- MT-| _ |=NUU LS R I D.43
v 0) <U> U 0)- () (U) (D.43)
recognizing A on the RHS we obtain the normalization ({5.108|)
U
— (U 0)- () ( ) (D.44)
U
The ansatz for ((u) can be justified by solving Eq. (D.32) explicitly. Using
8C aC u / 8C Sl GQC 72 1
= — = i s = U’L y —_— = UZ 5 D45
asdp;  Ou addo; Uic' () a3om; ¢w) aborm? SO )

we obtain

N3 2 "( S\s.
32{ (U 0, m+Ua3Z[ Ty U <¢k—¢£>}<’<u>

QX
+§a3 Z UZ¢" (u) = 0
i1

W06 ( o ) 52w =0,
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Aug(u) + BAC" (u) = 0

Solving for ( gives precisely the ansatz

2

dz eXp{_Ql:BT} : (D.46)

) = o |

which has the correct asymptotic behavior, the negative exponent being a direct

consequence of the positivity of the eigenvalue.

Probability Density Current We compute the probability density current
corresponding to P = (F

T = kBTa3g7r CPO
[ v2¢z + V/(sz)] + kBT a3d¢; + N + 2 (JL387rZ

_ —/be—asaac,r F 0
kBTa38¢ po + 2 a387r PO

1 e
g ——M . a 3 PU

ﬁ a3a<9c7r,'

kBT U U2
=\ —M - _ — B . D.47

o <U>8Xp{ ZkBT} 0 (D.47)

Once we have the probability current, we can compute the probability flux j at
the saddle-point

JCPy = —

j= a3§L:0 dS;Ji(¢, )
— /D¢D7r S(u) (UU)-J
— /DqﬁDw §(u) (UT)-M - ( g ) \/gexp{—QiT}Po
=B [ popr [ exp Gy L esn 1510, 7)

A kgT
=5z —exp{ BE|[p }/D(bDﬂ'/dk

exp{zka3z — ¢9) + Ui(mi S)]}
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v2 1SS
exp{——a Z ¢S [—l-l-v (425;)51]} <¢j_ ]S)

i,7=1

N3
a3 wf%w - wf)}

ij=1

A kT _ &S
=53 QB exp{ BE[¢ }/DqﬁDﬂ/dkexp{k‘(UU) (j:_:q)}

g(o-0") 60
- exp §<7r—7rs> .(€§>'<7T—7TS> : (D.48)

where we have adopted the vector notation in the last step. Introducing the

rotation S = (Sj;) in field space to diagonalize (e];) we obtain

(‘b_(i):sf, zku:zk(UU)-ST-S(d)_(bS)zz‘kU-f, (D.49)

=T 7T—7TS

where we have defined the vector U as S - (U U )T. Moreover, we have
T
6=\ sy [0
T —7° Y T —7°
o5\ 6~
= 5 .ST.S.(QZ).ST.S. 5
T—T T—T

=& d1ag<&,—ﬂ—§,...,—m—§) <€
a a
2N3
= d* &t —a® Y g (D.50)
1=2

where all the p; are positive. The only positive eigenvalue of (e Zj) is p1, all the
other eigenvalues are —p;. Recall that (e; ) is the negative of the Hessian matrix
of the energy at the saddle-point, there is only one direction that decreases the

energy at that point, hence only one negative eigenvalue in the Hessian. We have

A kT

i = o 5 e Lo }/Hd&/dk
2N3 B 5 5
- exp {ika3 lzl Ui& + §a3,u1§% - Eag ZZQ /ﬁlﬁ}

Integrate over the modes [ > 1
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3
A [kgT N3
_ —BE[¢ d dk
2rZ\ 27w exp{ p ( ﬁa?’/u 51

- exp —%lf + ika®U & + éa 3,2

Integrate over k

A kgT
= — E[¢
2nz\ 2n P LS
15} a3U?
- exp —§CL3 7]\71302 - M1 g%
a3, ;Tll

Integrate over &;

= 2Az exp {—BE[¢°, 7%} |det(2n/8) 1 ES)| 3 (D.51)

where we have used the normalization (5.108|)

Uf 2N3 (712 B P U
L _ — | = (U U) - (e . _ =1. D.52
i Dl I CLIR G (D.52)
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