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Abstract

The aim of this thesis is to study the effects of fluctuation and dissipation

dynamics in Early Universe cosmology. The formal description of the Early

Universe relies on cosmological fields that, in general, are not completely isolated

from and, therefore, interact with their environment. These interactions might

lead to two non-negligible effects. Fluctuations, acting as stochastic forces,

tend to perturb the motion of the field. In addition, some fraction of the

energy is transferred from the field to other degrees of freedom, corresponding

to dissipation. We are interested in three situations where fluctuation and

dissipation dynamics plays a significant role for cosmology.

After a brief review of the prevailing model of cosmology, the Standard Big Bang

Model, we study the formation of embedded defects. This particular realization

of topological defects is not stable by construction. While considering one of

the simplest examples, the pion string, we show that the interactions with a

thermal and dense medium might, in some circumstances, provide a stabilization

mechanism.

We then turn our interest to the warm realization of inflation. Ideas borrowed

from the renormalization group are applied to warm inflation in order to

define universality classes among the different models of inflation. Beyond

the identification of universality, this approach is well-suited for an analytical

treatment of warm inflation and helps in the characterization of the possible

smooth transition to the radiation-dominated regime.

Finally, we extend the Kramers problem to quantum field theory. In the presence

of fluctuation and dissipation dynamics, there is a non-vanishing probability for

a field initially located at a minimum of its potential to escape from the well. We

define and derive the escape rate for a scalar field, due to thermal fluctuations,

and discuss the applications for cosmology.
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Lay Summary

Fluctuation and dissipation dynamics is a common phenomenon in physics. One

of the simplest illustrations appears in Brownian motion, which describes, for

example, the random motion of a particle suspended in a liquid or a gas. The

interactions between the particle and its surrounding, the fluid, generate two

competing effects. Fluctuations, acting as random forces, perturb the motion of

the particle. In addition, a damping leads to the dissipation of a fraction of the

particle energy. Such phenomena are ubiquitous in physics. Problems described

by Brownian motion, or related fluctuation and dissipation dynamics, appear in

subject areas ranging from condensed matter to astrophysics.

In the present work, we are interested in the consequences of fluctuation and

dissipation dynamics in Early Universe cosmology. The formal description of the

Early Universe is based on cosmological fields. In general, a field is not entirely

isolated from and, therefore, interacts with its environment, which can lead to

fluctuation and dissipation dynamics. Despite its prevalence in the subject of

cosmology, the influence of this dynamics has not been extensively studied so

far. We are particularly interested in three situations where fluctuation and

dissipation dynamics plays a significant role : phase transition and formation of

topological defects, warm inflation, and in the escape problem.
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Chapter 1

Introduction

Over the last decades, the observational developments brought cosmology to the

level of an experimentally testable science. The experimental results together with

the theoretical framework of the Standard Big Bang Model (SBBM), developed

since the formulation of general relativity (GR), gave birth to the current model

for our Universe, the ΛCDM. This parametrization corresponds to a flat universe

in which the energy is dominated by a cosmological constant Λ and where matter

is principally in the form of cold dark matter (CDM). The successes of this

relatively simple model, the main assumptions being isotropy and homogeneity

of space on large scales, are remarkable. The model predicts the abundance

of most of the light elements, such as hydrogen or helium, the formation of the

cosmic microwave background (CMB) and its blackbody spectrum, the large-scale

structure of the distribution of the galaxies and the current acceleration of the

expansion. Moreover, these predictions concern different stages in the Universe’s

history and, therefore, increase the confidence on the model. The inclusion of

an early phase of accelerated expansion, the period of inflation, allows explaining

further the anisotropies observed in the temperature of the photons in the CMB

and the origin of the flatness of the space. The theory of inflation also provides

a mechanism for the formation of structures. The ΛCDM including a period of

inflation is therefore a very strong cosmological model.

The Standard Big Bang Model is mostly based on two ingredients, on one side

general relativity and, on the other, the Standard Model (SM) of particle physics.

The SM describes the elementary particles and the fundamental interactions

between them. The theoretical formulation of the SM has been achieved by
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the mid-seventies and its experimental tests continue until today, in particular,

with the Large Hadron Collider (LHC). The list of the experimental successes

of the SM is long, to cite a few, the discovery of the quarks or the existence of

the neutral-current interaction. One prediction, today experimentally confirmed,

has a particular importance for cosmology, the existence of the Higgs boson. The

Higgs field has been introduced to generate the masses of the bosons using the

Higgs mechanism. The particle has been searched for by experimentalists for

years until finally observed at the LHC in 2012. It was the first evidence of

an elementary scalar field and, also, confirmed the existence of the electroweak

phase transition. It is well-known that scalar fields might play a significant role

in cosmology. For example, the most common realization of inflation is obtained

with one or several scalar fields. A dynamical realization of dark energy arises

in a similar process called quintessence. The presence of phase transitions in the

Universe’s history might drastically alter cosmology, in particular, if topological

defects are produced. Cosmic strings are the main candidate among them to play

a role in the Early Universe and are precisely obtained with a complex scalar field

in a phase transition.

Since the presence of scalar fields is needed in cosmology, but, at the same

time, they can lead to disastrous effects, it is crucial to have a clear theoretical

understanding of them. In this thesis, we are particularly interested in fluctuation

and dissipation dynamics. The context is the following. A scalar field is likely

not an isolated object and, therefore, interacts with other degrees of freedom,

for example gauge fields. The result of these interactions on the evolution of the

scalar field is taken into account by an effective action. There are, in general, two

competing effects appearing in the equation of motion and altering the dynamics.

On one hand, the interactions lead to a transfer of energy of the scalar field into

the other degrees of freedom. This process corresponds to dissipation and appears

as a damping term in the equation of motion. On the other hand, the motion of

the field is perturbed by fluctuations coming from the same interactions. These

forces usually have a stochastic origin. In general, these two effects give rise to the

theory of fluctuation-dissipation dynamics and lead to significant consequences

that cannot be simply ignored. Fluctuation and dissipation are two effects of the

interactions between the scalar field and other degrees of freedom. This common

origin implies that the two processes must be related. This is encoded in the

fluctuation-dissipation theorem and appears in different contexts in physics, from

condensed matter to cosmology.
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Fluctuation and dissipation dynamics originates from the Brownian motion of

particles. In the nineteenth century, R. Brown, a Scottish botanist studying

fertilization processes, observed microscopic particles inside a grain of pollen. He

was the first to describe precisely their irregular and random motion. Brownian

motion is commonly expected to appear for microscopic particles suspended in a

liquid or a gas. Its origin was at first an enigma for physicists. The observation

that the rapidity of the motion increases with the temperature was pointing

toward a thermal origin of the molecular motion. Such ideas led to the formulation

of the kinetic theory of gases by J. C. Maxwell, L. Boltzmann and R. Clausius,

where the temperature of a gas is related to the kinetic energy of the particles.

Shortly after the publication of the kinetic gas theory, the first main discovery

on fluctuation and dissipation dynamics was made by A. Einstein in his study of

the Brownian motion.

In 1905, Einstein published a quantitative analysis of the Brownian motion [3].

In this work, he reconciled thermodynamics, that takes into account a large

number of particles, with Newtonian mechanics, describing the motion of a single

particle. Using the kinetic theory of gases and statistical methods, Einstein

derived the mean square displacement of the individual molecules. He proved

that the fluctuation of the velocity of the Brownian motion is related to the

mobility, defined as the inverse of the damping coefficient. This is encoded in the

Einstein relation D = µkBT , where D is the diffusion coefficient, µ the mobility,

kB the Boltzmann constant and T the temperature. The Einstein relation is one

of the first examples of a relation between fluctuation and dissipation. This work

of Einstein was a milestone in the history of physics. Beyond considerations on

fluctuation-dissipation, this article provided a mathematical evidence to support

the existence of the atoms, a way to estimate the Avogadro’s number and

confidence on the validity of statistical physics.

The theoretical formulation of the Brownian motion has been achieved shortly

after by P. Langevin in 1909 [4]. He amended the equation of motion for the

particle, given by Newton’s second law, with the addition of a dissipation term

and a random force, to take into account the two effects arising from the collisions

with the particles in the fluid. The motion of the Brownian particle is described

by the Langevin equation

mq̈ + ηq̇ + V ′(q) = ξ(t) , (1.1)

where q(t) is the position of the particle as function of time, m the mass, η the
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damping coefficient or the inverse of the mobility, V (q) an external potential

and ξ(t) an external random force. In the simplest scenario, the random force is

expected to follow Gaussian statistics, the average values given by 〈ξ(t)〉 = 0 and

the autocorrelation function 〈ξ(t)ξ(t′)〉 = Ωδ(t − t′), with Ω being the strength

of the fluctuation. The validity of the Langevin equation is ensured if the mass

m is larger than the masses of the particles in the fluid and if the timescales

of interest are much longer than the typical time between two collisions. Due

to the presence of stochastic forces, the Langevin equation is not deterministic

and cannot be derived from a Lagrangian or a Hamiltonian. This stochastic

nature drastically limits the analytical power of the equation and, in practice, it

is useful to describe Brownian motion with quantities amenable to a deterministic

approach.

Considering N copies of the system described by the Langevin equation intro-

duced in the previous paragraph, the stochastic noise gives a random velocity

to the particle in each of the realizations. Moreover, the Gaussian form of the

noise must be imprinted on the distribution of the velocities. Instead of having N

copies of the system, it is equivalent to be interested in the probability to obtain

a certain velocity in a single system. This is the idea behind the Fokker-Planck

description of Brownian motion. The transition probability P (q, v, t | q0, v0, t0)

corresponds to the probability for a particle, initially at position q0 with velocity

v0 and subject to random forces, to be found later at position q with velocity

v. This probability is given by the Fokker-Planck equation [5, 6], which in our

simple scenario1 reads

∂

∂t
P = −

{
∂

∂q
v − 1

m

∂

∂v
[ηv + V ′(q)]− Ω

2m2

∂2

∂v2

}
P . (1.2)

The Fokker-Planck equation is a linear second-order differential equation and,

therefore, deterministic. The solutions of the equation give the distribution

functions for the quantities of interest. This formalism is also well-suited to study

the approach to equilibrium. In the long time limit, the probability distribution

does not depend either on the initial position and velocity or on time. Such

a time-independent distribution always formally exists. A comparison with the

canonical distribution gives the relation Ω = 2ηkBT which is another formulation

of the Einstein relation in terms of the strength of the noise and the damping.

1This special form of the Fokker-Planck equation is sometimes referred as the Klein-Kramers,
Kramers or Smoluchowski equation.
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At a classical level, the Brownian motion is well-described by the Langevin

and the Fokker-Planck equations. Troubles arise when considering quantum

dissipative systems. The origin of the difficulties lies on the impossibility to write

a Lagrangian or a Hamiltonian giving rise immediately to the Langevin equation.

This deadlock forbids, a priori, a quantization with standard methods. Several

solutions have been proposed, and they mainly go along two directions [7]. One

possibility is the definition of a new quantization scheme. However, this approach

is tedious since it requires some model-dependent hypotheses. The other direction

corresponds to the system-plus-reservoir models. A dissipative system is not

isolated and therefore the presence of interactions between the system that is

dissipating energy and other degrees of freedom is ensured. It is hard to identify

the microscopic origin of the damping, however, the statistical properties of the

stochastic forces are known. The main idea behind the system-plus-reservoir

models is to formulate precisely the system, the environment and the interaction

between them and, then, use standard methods to perform quantization. The

choice of the reservoir and the form of the interaction are constrained by the

condition that Brownian motion is recovered in the classical limit.

One of the simplest system-plus-reservoir models is named after A. O. Caldeira

and A. J. Leggett [8]. This system corresponds to a particle in a potential,

defined as the dissipative system, linearly coupled to its environment, a fluc-

tuating reservoir bath. The bath is parametrized as a set of non-interacting

harmonic oscillators. The individual Hamiltonians of the dissipative system,

the reservoir and the interaction can be written explicitly. The interaction

with the environment leads to an effective potential for the dissipative system.

The computation of the equation of motion gives a Langevin equation and, in

particular, the Gaussian Brownian noise is recovered with a linear dissipation.

This simple semi-empirical model correctly reproduces the Brownian motion in

the classical limit. Moreover, the knowledge of the Hamiltonian of the system

allows for a quantization using standard techniques. The Caldeira-Leggett model

provides, therefore, an acceptable analytical description of a quantum dissipative

system.

In general, quantum fields are not completely isolated and, therefore, interact

with their environment. The analytical description of such a scenario relies on a

similar reasoning as in the system-plus-reservoir models introduced for quantum

dissipative systems. However, there is an extra effect, specific to a field, that must

be taken into account. Beyond the interactions with other fields, self-interaction
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plays a significant role. In particular, short wavelengths might influence the

long ones and, in a sense, the field acts as its own thermal bath. A separation

between the system and the environment is not always possible and a perturbative

approach must be followed. The usual method requires to integrate out the extra

degrees of freedom in order to obtain an effective action for the background field.

The equation of motion that emerges is in the form of a Langevin equation,

where fluctuation and dissipation effects on the scalar field are clearly identified.

In general, the spectrum of the noise is colored, i.e. is a function of the field,

unless there is a linear coupling between the field and the bath. A comprehensive

review on the derivation of the Langevin equation for a field is performed in [9].

The formal description of the Early Universe has cosmological fields immersed in

a hot medium. Fluctuation and dissipation dynamics is expected to apply and

there are several situations where these effects might modify the cosmological

model. The most studied example is warm inflation [10, 11]. The dissipative

term leads to a continuous production of radiation during the phase of accelerated

expansion. The usual picture of inflation is drastically modified. The Universe

remains warm during the phase of inflation and the model allows for a smooth

transition to the radiation-dominated period, avoiding a phase of (p)reheating.

Fluctuation-dissipation dynamics is expected to play a major role in out-of-

equilibrium situations, for example, in a phase transition, when the Universe

is approaching equilibrium at the new vacuum. Beyond these two scenarios,

fluctuation and dissipation effects influence the dynamics of any cosmological

fields. Several situations have been identified and discussed in [12]. For these

reasons, we believe that a good understanding of fluctuation-dissipation dynamics

is pertinent for cosmology.

This is not the purpose of this thesis to explore the origins of the Langevin

equation in quantum field theory. This topic has been extensively studied

in [9] and in the references therein. The interest here is to investigate some

implications of these stochastic equations in the Early Universe. We consider

three situations where fluctuation-dissipation dynamics plays a role : phase

transitions, warm inflation and escape problems. As a preamble, Chapter 2

is an introduction to the current model of cosmology, the Standard Big Bang

Model. We review its theoretical construction based on assumptions stated in

the cosmological principle and on methods of general relativity. We study the

Friedmann universe, with the usual solutions corresponding to periods dominated

by radiation, matter and a cosmological constant. Using the theories of particle
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physics, in particular, the Standard Model, we present the thermal history of the

Universe. Some considerations on observational cosmology lead us to the current

parametrization of the cosmological model, the ΛCDM. The chapter is concluded

with a recapitulation of the main successes and limitations of the model.

Chapter 3 is addressing phase transitions and the formation of topological defects.

We are interested, in particular, in the definition of a mechanism to provide

stability for embedded defects. We begin the chapter with a review of the theory

leading to topological defects and present some of their applications in cosmology

and in particle physics. After that, we turn our interest to the special case of

embedded defects. We stress their relevance in concrete theories such as the

Standard Model and state the issues related with their stability. By considering

an explicit example, the pion string in the linear sigma model, we introduce

the framework necessary for a study of the mechanisms needed to stabilize this

kind of defect. We first study the mechanisms that are already present in the

literature and consider their limitations. We then propose an extension of these

mechanisms and show that, in some circumstances, interactions with a thermal

and dense medium allow for the formation of pion strings. This result is the first

example of a stable embedded defect in a realistic theory.

In Chapter 4, we focus on another situation where fluctuation and dissipation

dynamics plays a significant role, cosmic inflation. We introduce a formalism to

define classes of universality among the models of warm inflation. The general

theory of inflation is introduced at the beginning of the chapter. We review

the shortcomings of the Standard Big Bang Model and show how an accelerated

expansion provides an elegant solution for most of the issues. We then present

the simplest realization of inflation with a single scalar field. We introduce

and contrast the cold and warm scenarios. Some arguments to support the

identification of universal properties among the different models of inflation are

presented. We also describe a method to achieve it, the β-function formalism. We

then show how this formalism is extended to warm models of inflation. Beyond

the definition of classes of universality, we illustrate how this approach, which

is based on the Hamilton-Jacobi formalism, provides practical tools for a deeper

analytical study of the dynamics of warm inflation.

We consider in Chapter 5 more formal aspects of fluctuation and dissipation

dynamics, in order to formulate the Kramers problem in quantum field theory.

The derivation of an escape rate is a common problem in different areas of physics,

such as statistical or condensed matter systems. We begin the chapter with
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a pedagogical introduction to the escape rate by considering a classical one-

dimensional point particle in a potential. After a description of the problem

and the introduction of the theoretical tools to study it, given by the Langevin

and Fokker-Planck equations, we consider two equivalent approaches to compute

the rate, the flux-over-population and the mean-first-passage-time methods. We

also present an explicit proof of their equivalence. In the second part of the

chapter, we turn our interest to a scalar field. We propose a definition of the

escape problem in quantum field theory. The definition of an escape is not as

trivial as in the classical case due to the field theory character of the problem.

We propose an explicit computation of the rate of escape using a generalization

of the flux-over-population method. We conclude the chapter with a discussion

of situations, in cosmology and beyond, where this framework is applicable and

leads to relevant effects.

We present our concluding remarks in Chapter 6. Some appendices including

details on the theoretical background and on the computations performed along

the different chapters are provided at the end of the thesis.

8



Chapter 2

The Standard Big Bang Model

The aim of cosmology is the answer of a fundamental question of mankind,

understanding and describing the evolution and the large scale structure of

the Universe. Along the centuries, various theories, together with more and

more sophisticated instruments, have been developed to observe and explain the

Cosmos. This long quest toward a satisfactory model made a significant step

forward in the first half of the twentieth century. At this epoch, two scientific

revolutions completely changed the paradigm of the Universe and gave birth to

modern cosmology.

At the beginning of the last century, the known Universe was not larger than

our galaxy, the Milky Way, and was thought to be static. The prevailing theory

of gravity had been stated by I. Newton in the seventeenth century. This state-

of-the-art was about to change with the publication of the theory of general

relativity by A. Einstein in 1915 [13, 14]. Space and time are not eternal,

absolute and independent continua anymore, but unified in a dynamical four-

dimensional spacetime. The theory also predicts the geometry of the spacetime

to be dependent on its energy content. The second revolution came on the

observational side. The astronomer E. P. Hubble was the first to prove the

existence of extra galactic objects [15]. He computed the distance to classical

Cepheid variables belonging the Andromeda galaxy. With this observation the

Universe suddenly became much larger than the Milky Way. This is not the

only major contribution of Hubble to cosmology. By measuring the recession

velocities of galaxies, he noticed that the distant ones were moving faster [16].

This observation was indicating that the Universe might be non-static but rather
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expanding over time. These two revolutions of the first half of last century not

only completely changed the understanding of the Universe but also provided the

theoretical tools to address it. They constitute the two pillars on which modern

cosmology is built.

In this chapter, we first present the theoretical construction of the Standard Big

Bang Model. From the cosmological principle and using general relativity, we

obtain the Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe and discuss

its energetic contributions. With the help of the Standard Model of particle

physics, we introduce the thermal history of a FLRW universe. We conclude

with a brief review of observational cosmology and a discussion of the current

favored parametrization of the SBBM, the ΛCDM model, with its successes and

limitations. For completeness, we provide a compendium on GR in Appendix A.

This brief introduction on modern cosmology is based on the books [17–19]. For

the technicalities concerning GR we refer to [20, 21]. Finally, the section about

observational cosmology is based on the review [22].

2.1 FLRW Cosmologies

The Standard Big Bang Model is the current theoretical model of cosmology.

The construction of the SBBM relies on general relativity. Everyone with a little

experience of GR knows how cumbersome it is to obtain a solution of the Einstein

equations. However, on large scales1, the energy distribution of the Universe

takes a specific form that drastically simplifies the algebra. This is encoded in

the cosmological principle.

2.1.1 The Cosmological Principle and the FLRW Metric

The cosmological principle states that, on large scales, the Universe is spatially ho-

mogeneous and isotropic. Today, the principle is well-motivated by independent

observations, in particular, from the high degree of homogeneity observed in the

cosmic microwave background and from Large Scale Structure (LSS) surveys of

galaxies. Historically, however, the principle has been supported by philosophical

1By large scales, distances larger than 10h−1 Mpc are typically assumed. The dimensionless
Hubble parameter is defined as h ≡ H0/

(
100 km s−1Mpc−1

)
.
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arguments and can be seen as a modern formulation of the Copernican principle.

To oppose the geocentric theories of his epoch, N. Copernic stated that the Earth

was not occupying a specific location in the Universe. This is the same idea as

homogeneity, which implies that the Universe appears the same to any observers,

independently of their locations. The cosmological principle is, however, stronger

than the Copernican formulation since it also imposes isotropy.

Despite its apparent simplicity, the cosmological principle is an extremely

powerful tool in the construction of the metric describing the Universe. Indeed,

it imposes symmetries on the spacetime and, in particular, on its spatial part.

The homogeneity of space is related to the invariance of the metric over spatial

translations. Isotropy means that the Universe looks the same in each direction of

observation and corresponds to rotational symmetry. Translated in the language

of GR the cosmological principle implies that there are six Killing vectors, three of

them related to the translational invariance and the other three to the invariance

over rotations. For a space of three dimensions, the maximal number of Killing

vectors is six. The principle imposes that the spacetime can be foliated into

maximally symmetric spatial hypersurfaces. The metric of a spacetime with a

subspace that is maximally symmetric is known exactly and reads

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.1)

where the only two free parameters are the scale factor a(t) and the scalar

curvature k of space. The time t is the real time or clock time. This metric

is named after A. Friedmann, G. Lemâıtre, H. P. Robertson and A. G. Walker

and is often referred as the FLRW metric. Note that the metric is invariant under

the substitutions

k → k/|k| , r →
√
|k| · r , a→ a/

√
|k| , (2.2)

which allows considering only k/|k|. We are left with three relevant cases for the

curvature of the spacelike hypersurfaces. Those are k = −1, 0,+1 respectively

called open, flat and closed universe.

The cosmological principle and the assumption that GR is a valid description

of gravity are the only two ingredients to derive the FLRW metric. We observe

that the scale factor a(t) allows the Universe to expand over time. We also

note the presence of a singularity when the scale factor goes to zero. However,

going backward in time with the Universe contracting, a quantum theory of
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gravitation is required eventually and, therefore, the current description based

on a classical theory of gravity breaks down. The remaining task for cosmologists

is the determination of the scalar curvature of space and the evolution of scale

factor. A first step is done with GR and the Einstein equations.

2.1.2 Friedmann Equations

The dynamics of the scale factor depends on the energy content of the Universe

through the Einstein equations

Rµν −
1

2
Rgµν = 8πGTµν − Λgµν , (2.3)

where Rµν is the Ricci curvature tensor, R is the scalar curvature, gµν is the

metric tensor, G is Newton’s gravitational constant and Tµν is the stress-energy

tensor. We have also explicitly included the cosmological constant Λ.

On the right-hand side of the Einstein equations enters the matter or energy

distribution. The homogeneity imposed by the cosmological principle implies

the same condition on the distribution of matter. On large scales, the energy

distribution must correspond to a perfect fluid, namely a fluid that is isotropic

in its rest frame and is only characterized by its pressure p and energy density

ρ. Moreover, the homogeneity implies that the pressure and the energy density

depend on time but are constant over space. The stress-energy tensor of a perfect

fluid takes the simple form of

Tµν = (p+ ρ)uµuν + pgµν , (2.4)

where uµ is a timelike unit vector, the four velocity of the fluid.

The left-hand side of the Einstein equations is fixed by the geometry of spacetime.

For the FLRW metric, the Ricci tensor reads

R00 = −3ä/a , Rij =
(
aä+ 2ȧ2 + 2k

)
hij , (2.5)

where a2hij is the ij-component of the metric. The Ricci scalar

R =
6

a2

(
aä+ ȧ2 + k

)
, (2.6)

is also directly obtained by taking the trace of the Ricci tensor.
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We have all ingredients in hands to write the Einstein equations for a homo-

geneous and isotropic universe. These are called the Friedmann equations and

read

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− k

a2
, (2.7)

ä

a
=

Λ

3
− 4πG

3
(ρ+ 3p) , (2.8)

where we have defined the Hubble factor H. Note that the second equation is

also referred as the Raychaudhuri equation. The Friedmann equations fix the

behavior of the scale factor for any given ρ, p and k. Conservation of energy is a

direct consequence of the Friedmann equations

ρ̇ = −3H(ρ+ p) , (2.9)

and is also given by the divergence of the stress-energy tensor, as expected.

Before turning our interest to specific solutions of the Friedmann equations, let

us pause to introduce some of the relevant parameters used in cosmology. We

have already met the Hubble factor H = ȧ/a. The Hubble factor is the rate of

expansion of the Universe at a given time. It is related to the age and spatial scale

of the Universe. The value the Hubble factor today is called the Hubble constant

and is denoted by H0. In general, to indicate the current value of a parameter,

the subscript 0 is used. The deceleration parameter q ≡ äa/ȧ2 expresses the rate

of change of the expansion. The critical density is defined as ρcrit ≡ 3H2/8πG. In

absence of a cosmological constant, ρcrit is the energy required for a spatially flat

universe. The energy density parameter Ω is defined as Ω ≡ ρ/ρcrit. By definition,

the density parameter is dimensionless and Ω = 1 corresponds to a flat universe.

The precise determination of the current values for these parameters is the main

task of observational cosmology.

Another phenomenon that plays a significant role in cosmology is the redshift.

Due to the spatial expansion, all lengths are dilated over time. This is also true

for the wavelengths of the photons. In particular, a photon emitted at some time

temission will be observed later with a larger wavelength and, therefore, with a

shifting toward the red. This defines the redshift z as

z ≡ λtoday

λemission

− 1 =
a0

a(temission)
− 1 . (2.10)
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The higher the redshift is, the earlier the photon has been emitted. The redshift

is sometime used as a time coordinate. A redshift of zero corresponds to today

and it diverges at the singularity. For completeness, in addition to the redshift,

the mean temperature of the Universe can be used as a time coordinate. Indeed,

an expanding universe is cooling down and there is a one-to-one correspondence

between time, redshift and temperature.

2.1.3 Energy Contributions and Associated Solutions

The solutions of the Friedmann equations and, therefore, the evolution of the scale

factor a(t) are dictated by the dominant energetic contribution in the Universe.

In modern cosmology, the energy budget of the Universe is usually split between

three categories : matter, radiation and dark energy (DE). Before discussing

them individually, let us introduce the equation of state parameter ω defined as

ω ≡ p/ρ. From the conservation of energy in Eq. (2.9) the energy density becomes

ρ ∼ exp

{
−3

∫
(1 + ω)d ln a

}
∼ a−3(1+ω) , (2.11)

assuming a constant ω in the last step. The first Friedmann equation (2.7) can

be expressed as

(
H(t)

H0

)2

=
∑

i

Ωi,0

(
a(t)

a0

)−3(1+ωi)

− k

a2
0H

2
0

(
a(t)

a0

)−2

, (2.12)

where the sum runs over the different energetic contributions (radiation, matter

and the cosmological constant). The last term in (2.12), which depends on the

curvature of space, is not a contribution to the energy density. For this reason,

we have not defined a density parameter for the curvature, which is sometimes

called Ωk in the literature.

We now discuss the different contributions individually and the associated

expansion when they dominate the RHS of Eq. (2.12). We will show that a

FLRW universe where all energy components are present is likely to be initially

dominated by radiation, then by matter and finally by DE.

Non-relativistic Matter The matter contribution includes all non-relativistic

and collisionless form of matter, including cold dark matter. In this case, the
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pressure is negligible with respect to the energy density and, therefore, the

equation of state parameter is simply zero. Solving the Friedmann equations

gives

ρ ∼ a−3 , a(t) ∼ t2/3 , H =
2

3t
. (2.13)

The energy density decreases as a−3 since the expansion of a three-dimensional

space reduces the number density by a factor of a in each direction. When this

component dominates, we refer to a matter-dominated universe.

Radiation Gas of radiation and relativistic particles belong to this category.

The stress-energy tensor of radiation is known and reads

T µν =
1

4π

(
F µλF ν

λ −
1

4
gµνF λσFλσ

)
, (2.14)

with Fµν being the electromagnetic field-strength. The trace of the electromag-

netic stress-energy tensor vanishes. Comparing with the trace of Eq. (2.4) implies

that radiation has an equation of state parameter ω = 1/3. The solution of the

Friedmann equations for a radiation-dominated universe gives

ρ ∼ a−4 , a(t) ∼ t1/2 , H =
1

2t
. (2.15)

The inverse quartic dependence of the energy density on the scale factor is

explained by two effects. The first is the decrease of the number density of

the relativistic particles as a−3 due to the expansion of the Universe. This is the

same effect that gives ρ ∼ a−3 in a matter-dominated universe. The second is

the energy loss of individual particles which goes as the inverse of a and is due to

the redshift of the frequency. Note that, going backward in time, the radiation

contribution will eventually dominate over the matter due to the inverse quartic

dependence. This is also expected in a very hot and dense early universe, where

most of the particles are relativistic. In the SBBM, the Universe is expected to go

across a radiation-dominated phase followed by a period of matter-domination.

Dark Energy The cosmological constant, also referred as dark energy, is a

constant contribution to the stress-energy tensor

TΛ
µν = − Λ

8πG
gµν . (2.16)
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Equating with the energy-momentum tensor of the perfect fluid Eq. (2.4), we get

the following relation

ρ = −p =
Λ

8πG
, (2.17)

which implies that ω = −1. The Friedmann equation leads to a constant Hubble

factor and, therefore, an exponential expansion for the scale factor. Comparing

with the evolution of the energy densities for matter or radiation, we see that over

time and, even if extremely small, a non-zero cosmological constant will aways

dominate eventually.

The FLRW Universe is the successful application of GR to a homogeneous and

isotropic universe as assumed with the cosmological principle. It realizes the

desired feature of a universe expanding over time. The theoretical cosmological

setup being established we can proceed in two ways. From observational

cosmology, a concrete parametrization of the SBBM is obtained. This leads to

the current prevailing model of cosmology, the ΛCDM model. Before discussing it

in details, let us review the thermal history of the Universe. This is based on the

current theories of particle physics and the main characteristics are independent

on the exact parametrization of the SBBM.

2.2 Thermal History of the Hot Big Bang Model

The SBBM predicts an initially hot and dense universe that expands and,

therefore, cools down over time. At sufficiently high temperatures, all particles

are expected to be at thermal equilibrium. The elementary particles, as well

as the interactions necessary to keep them at equilibrium, are known from the

Standard Model of particle physics [23–27]. When the Universe cools down, the

interaction rate Γ, that depends on the temperature, decreases. In general, when

the interaction rate becomes smaller than the Hubble rate H, meaning that there

is less than one interaction per Hubble time, the equilibrium cannot be maintained

and the species decouples. Using the theories of particle physics, in particular,

the SM, the different epochs in the history of a FLRW universe are identified and

studied. This leads to the thermal history of the Hot Big Bang Model.

A precise understanding of the first two stages of the Universe’s history is

limited by the current status of theoretical physics. At the scale of the Planck
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temperature, TPl = 1.2 · 1019 GeV, quantum gravitational interactions are

relevant. Since a satisfactory quantum theory of gravity is not established yet,

an exact description of this epoch is not possible. Above temperatures of order

of 1 TeV, the description of the Universe is limited by the current model of

particle physics. The Standard Model is robust for energies up to the electroweak

transition. Above this scale, several theories have been proposed, for example

Super-Symmetry (SUSY) [28–30] and Grand Unified Theories (GUT) [31, 32].

Speculations about the existence of exotic particles, possibly explaining the origin

of dark matter (DM), and about the formation of topological defects, in a cascade

of phase transitions from a larger symmetry group to the SM, are possible.

However, a concrete and satisfactory model is still lacking.

On the cosmological side, at these energies, the Universe is assumed to undergo

a phase of inflation followed by baryogenesis. Inflation is an initial accelerated

expansion most likely due to a scalar field. This phase of inflation elegantly

solves some problems of the SBBM and, also, provides an explanation for the

formation of structures2. Baryogenesis is the early production of matter giving

rise to the matter/anti-matter asymmetry observed in the Universe. Inflation

and baryogenesis are still far from being concrete models and are among the

main focuses of modern cosmology.

At a temperature of order of 100 GeV the electroweak transition is taking

place. The elementary particles of the SM get their masses with the Higgs

mechanism [24, 25] and the SM begins to prevail. The Universe is filled with

a soup of free quarks, leptons and photons at thermal equilibrium. When the

temperature drops below 300 MeV, the QCD transition happens. The quarks are

not free particles anymore but get confined into hadrons. The Universe is a hot

plasma made of pions, nucleons, leptons and photons. Note that, at this stage,

the Universe is still opaque to light. The photons do not propagate freely but

keep interacting with all the other particles.

With the temperature that keeps decreasing, the weak interaction rate becomes

too small to maintain at thermal equilibrium the particles that interact only

weakly. These species are the first ones to decouple. This process might happen

for certain postulated form of DM species and most certainly for neutrinos. The

neutrinos decouple from thermal equilibrium at a temperature of 1 MeV and their

number density freezes out. When T becomes smaller than the electron mass,

2The basics of inflation are discussed in greater details in Chapter 4.
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electrons and positions cannot be produced anymore via pair-production. They

annihilate each other via the reverse process and their energy is transferred to

the photons. The neutrinos being already decoupled, they are not affected and

their temperature decreases simply as a−1 due the redshift. Therefore the SBBM

predicts a different temperature for the photons and the relic neutrinos3.

The synthesis of matter, called nucleosynthesis, starts at a temperature of about

100 keV. The energy is not high enough anymore to break the bonds between

the nucleons. Neutrons and protons combine to form nuclei. The mechanism is

very similar to a construction game. A proton interacts with a neutron to form

a deuterium nucleus, emitting a photon. The deuterium nucleus interacts with a

proton to produce helium-3 and a photon. Helium-3 and deuterium form helium-

4 nuclei and protons. The process could potentially continue, however, there

are no stable nuclei with exactly eight nucleons. This constitutes a bottleneck

and implies that most of the production channels finish with helium-4. There are

some less probable processes leading to the production of lithium-7 and also some

left-over of helium-3 and deuterium. Other elements such as carbon or oxygen,

with more massive nuclei, are produced later, presumably by nucleosyntheses in

the interior of stars. The density being larger, it is possible to go beyond the

bottleneck with an interaction of three helium-4 nuclei. The produced amount of

helium-4 depends on the expansion rate and is therefore precisely predicted by the

SBBM. There is a good agreement between the observed abundance of helium-

4 and the value predicted by the model [33]. This is another strong support

for the SBBM and the existence of an initial radiation-dominated phase. The

model, however, fails to predict the observed amount of lithium-7 [34–37]. This

is called the cosmological lithium problem [38] and is one of the open questions

of cosmology.

At a temperature of 0.75 eV the energy densities of matter and radiation are

equal. This is referred as the matter-radiation equality and the Universe enters

the matter-dominated epoch. When T is of order of 0.3 eV the phase of

recombination starts. The electrons combine with nuclei to form hydrogen atoms.

The large number of photons compared to the abundance of baryons explains

why recombination did not happen already at a temperature corresponding to

the binding energy of hydrogen. During recombination the number density of

free electrons drops significantly and the mean-free path of photons increases. At

the end of this process, the photons propagate freely and the Universe becomes

3A calculation involving the conservation of entropy leads to Tγ = (11/4)1/3Tν .
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transparent to light. The photons have decoupled from all other species and form

the cosmic microwave background. Before the Universe became transparent, all

wavelengths of electromagnetic radiation were instantaneously absorbed. The

Universe was, therefore, an almost perfect blackbody. The photons propagating

freely after the time of last-scattering, the blackbody spectrum is expected to be

imprinted in the CMB. The detection of the CMB in 1964 by A. A. Penzias and

R. W. Wilson [39], its strong homogeneity and its blackbody spectrum [40] are

another successes of the SBBM.

Finally, the Universe enters into the Dark Ages where the formation of galaxies

slowly takes place.

2.3 Observational Cosmology and the ΛCDM

Model

We have introduced and discussed general characteristics of FLRW cosmologies.

In particular, the evolution of an initially dense and hot universe that is expanding

and cooling down over time. The precise parametrization of the model is

obtained from observational cosmology. We briefly review the experimental

methods to measure the main parameters of the model. We then introduce the

current parametrization of the SBBM. The thermal history of a FLRW universe

is to a large extent fixed, however, its fate depends strongly on the actual

parametrization of the model, in particular, on the presence of a cosmological

constant.

2.3.1 Observing the Universe

The relevant parameters related to the global description of the Universe are

the ones entering the Friedmann equations : the density parameters of the

various energy species, the curvature of space and the Hubble constant. We

review the experimental methods to extract these parameters and state their

current measured values. Unless explicitly stated, experimental data is taken

from [22]. The parameters related to the departure from homogeneity and

structure formation are discussed in Chapter 4, dedicated to cosmic inflation.

Let us start with the total energy density parameter Ω, that is the sum of
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the individual energetic contribution (matter, radiation and DE). One method

to obtain the current value Ω0 is summing over the values of the different

contributions Ωm,0, Ωr,0 and ΩΛ,0. A precise discussion on the measurement

of these parameters is given below. Another way to obtain Ω0 relies on the

equivalence between a measurement of the total energy density parameter and

the spatial curvature of the Universe since Eq. (2.7) can be written as

Ω0 − 1 =
k

H2
0a

2
0

, (2.18)

where a0 is the current value of the scale factor, usually set to 1. Note that this

method requires that the Hubble factor is measured independently. The spatial

curvature of the Universe can be extracted from the properties of CMB. After the

matter-radiation equality, large scale structures begin to form. Matter is attracted

by gravity into regions of higher density. The increase of temperature in these

regions leads to an increase of the radiation pressure. The pressure tends to push

matter away, competing against gravity and creates acoustic oscillations. These

oscillations influence the shape of the angular power spectrum of the anisotropy

of the CMB. In particular, the locations of its peaks depend on the geometry of

the Universe. The Boomerang experiment [41] obtained 0.88 < Ω0 < 1.12 at 95%

confidence level (CL) favoring a spatially flat universe. This measurement was

then confirmed by several experiments such as the Planck satellite, measuring

Ω0 = 1.001± 0.002 at 68% CL [42].

Let us turn to the measurement of the individual contributions to the total energy.

Several contributions appear in the matter density : ordinary baryonic matter,

CDM and, possibly, massive neutrinos. There are different methods to obtain the

total matter contribution, which sums up to a value of Ωm = 0.3 ± 0.1 at 68%

CL. One possibility is to estimate the abundance of baryonic matter and evaluate

the ratio of dark versus ordinary matter. The baryon density Ωb corresponds to

the ordinary matter and includes dust, gas, stars and the planets. The spectrum

of the anisotropies of the CMB is a precious source of information when deriving

these parameters. For example, the relative heights of the peaks depend on the

density of baryons and their overall amplitudes depend on the ratio between dark

and ordinary matter. There are other methods to estimate Ωb based on direct

observation and on predictions of the abundance during Big Bang nucleosynthesis.

The baryon contribution is measured as Ωb = 0.048± 0.001 at 68% CL, implying

that most of the matter contribution, about 85% in the Universe, comes from

dark matter.
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Photons and massless neutrinos are the main contributions to radiation. From

the temperature of the CMB today, Tγ = 2.73 K, the energy density parameter

of the photons can be computed to give

Ωγ = 5.38(10) · 10−5 . (2.19)

The contribution from the neutrinos is derived from Ωγ. The difference in the

temperature between the relic neutrinos and the photons in the CMB is known to

differ by a factor of (4/11)1/3. Keeping into account that neutrinos are left-handed

fermions, such that there is only one spin state to consider, gives

Ων = 3 · (7/8) · (4/11)4/3 · Ωγ , (2.20)

where three species of massless neutrinos have been assumed. The radiation

density is currently a negligible contribution to the total energy budget of the

Universe. However, due to its dependence on the scale factor, radiation was the

dominating the energy budget in the past.

The last component to be determined is dark energy. For long, this contribution

was supposed to vanish giving a closed matter-dominated universe, with cold dark

matter as the main contribution in the energy budget. However, measurements

from Type Ia supernova [43] indicated that the Universe was accelerating, by

predicting a nonzero ΩΛ,0 from the constrain 4
5
Ωm,0 − 3

5
ΩΛ,0 = −0.2 ± 0.1. This

measurement led to an intense debate among cosmologists until the present

acceleration was confirmed by observations coming from the CMB. The observed

value of Ω0 is in agreement with one and, therefore, ΩΛ ' 1 − Ωm. Note that

the nature of DE is still an open question. One possibility is the presence of a

cosmological constant. The vacuum energy coming from quantum field theory

(QFT) is a natural candidate to explain its origin. However, the theoretical

expectation for the vacuum energy of QFT exceeds the observed value of

the cosmological constant by several orders of magnitude. This discrepancy

would imply an extreme fine-tuning and constitutes the cosmological-constant

problem [44]. A dynamical realization of DE is a possibility, for example with

a scalar field. The features are similar to inflation and the process is called

quintessence [45, 46]. In this case, the equation of state parameter might be

slightly different from −1.

The last parameter related to global properties of the Universe to be discussed

is the Hubble constant H0 which corresponds to the current rate of expansion.
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After this short review of observational cosmology, we should not be surprised

that different methods exist to measure H0. The historical one, originally used

by Hubble, is based on astronomical measurements. H0 is extracted from the

recession velocities of distant galaxies. However, this estimation requires knowing

precisely the distance to the receding galaxy, which is based on a cosmological

ladder. The latest value for H0 from astronomical observation [47] is

H0 = 74.03± 1.42 km s−1Mpc−1 . (2.21)

Another method to extract the Hubble factor is from the anisotropic power

spectrum of the CMB [42] and gives a value of

H0 = 67.37± 0.54 km s−1Mpc−1 . (2.22)

These two measurements of H0 are obtained from completely different methods.

Despite the apparent tension between the two results, it is already promising that

the actual values are close to each other. A measurement using gravitational

waves (GW) will provide a third independent way to obtain H0 and might

discriminate between the other two observations.

2.3.2 ΛCDM Model

The current parametrization of the SBBM is called the ΛCDM model. It

corresponds to a spatially flat universe dominated by dark energy and where

the matter energy density is mostly in the form of dark matter. Let us discuss

some properties of the model.

Cold Dark Matter In the ΛCDM model, about a quarter of the total energy

content is in the form of non-baryonic matter (or dark matter). The idea that

only a fraction of the total matter content in the Universe is made of ordinary

matter exists in cosmology for about a century and is supported by indirect

astrophysical and cosmological observations. One of the earliest and most known

examples is the work of F. Zwicky aiming at explaining the observed rotation

curves of galaxies [48].

Dark matter is expected to obey the following properties [22, 49]. From the

analysis of structure formation, DM should be non-relativistic (cold) at the
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epoch of the formation of the galaxies. In order to be dark, the interaction

with electromagnetic radiation is very weak. It is also expected to be stable over

the time scale of the Universe, otherwise, it would have decayed.

The physics of dark matter is an active topic and plays a crucial role in modern

cosmology. The current and most favoured candidates for DM are axions [50,

51], primordial black holes [52, 53], sterile neutrinos [54] and weakly interacting

massive particles (WIMPs) originally coming from supersymmetric extensions of

the SM [55]. A full discussion of these models goes beyond the scope of this

work. We send, therefore, the interested readers to the reviews [22, 49] and the

references therein.

Age of the Universe The age of the Universe is derived from the Friedmann

equations

t0 =

∫ t0

0

dt =

∫ a0

0

da

aH
=

1

H0

∫ ∞

0

dz

(1 + z)H(z)
, (2.23)

where H is defined as

H2(z) ≡ H2

H2
0

= (1− Ω0)(1 + z)2 + ΩΛ,0 + Ωm,0(1 + z)3 + Ωr,0(1 + z)4 , (2.24)

to give an age of 13.8 ± 0.04 Gyr using value for the Hubble constant given by

CMB measurements. Note that a first validity check imposes that the predicted

age of the Universe is older than anything inside it. As we already mentioned, the

description based on GR breaks down before reaching the singularity. Therefore,

Eq. (2.23) is not strictly the age of the Universe but rather the time elapsed since

the Universe could be described by a classical theory of gravity.

Fate of the Universe The ΛCDM parametrization fixes the fate of the Universe.

Since the matter and the radiation energy densities are decreasing over time,

the dark energy density will dominate eventually, its evolution being constant.

This is already happening as the DE-matter equality was after 9 Gyrs. The

Universe is currently dominated by the cosmological constant and is accelerating.

A characteristic feature of the ΛCDM is the prediction of a universe that expands

for ever and the expansion will be faster and faster. The expansion will be

eventually faster than the speed of light and distant galaxies will not be in causal

contact any more. The observable Universe will reduce to the local structure that
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is tight to our galaxy by the attraction of gravity.

Successes and Limitations of the Model To conclude this introduction on

the modern formulation of cosmology and its preferred model, let us summarize

its successes and discuss some open questions. The SBBM is based on GR and

describes a homogeneous and isotropic universe. It predicts a non-static universe,

initially hot and dense that expands and cools down over time. Including an

early phase of inflation, it also provides an explanation for the existence of

small anisotropies in the CMB leading to the formation of structures. The

SBBM underwent some significant experimental successes, in particular, the

observed homogeneity of the CMB, its almost perfect blackbody spectrum and

the abundance of light elements, such as helium-4.

The current cosmological model is, however, incomplete. The origin of the dark

energy and a well-defined particle physics model that includes DM are still missing

pieces. The main features of the early period of inflation are getting better

understood. However, a precise model is still lacking. Both the presence or the

absence of topological defects need to be justified. The theory is also not providing

a satisfactory explanation for the apparent asymmetry between particles and

anti-particles and the observed abundance of lithium-7. On the observational

side, the tension in the measurement of the Hubble constant from the CMB and

astronomical methods needs to be explained.
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Chapter 3

Stabilization of Embedded

Topological Defects

3.1 Introduction

From the Grand Unified Theory epoch, where the strong and the electroweak

forces are expected to have been unified in a single gauge group, to the later

stage of the Standard Model and going below the energy scale where hadrons

are formed, the Early Universe is presumed to have undergone a series of phase

transitions. During each spontaneous breaking of symmetry (SSB), it is possible

that topological defects (TD) are produced [56]. Monopoles and domain walls

usually lead to undesired effects for the cosmological model. Cosmic strings may,

however, explain several open questions in cosmology, such as primordial density

perturbations and structure formation [57, 58], generation of the primordial

magnetic fields [59, 60] and baryogenesis [61, 62]. They also lead to the emission of

high-energy particles, such as cosmic and gamma rays and neutrinos [63, 64], and

relic gravitational waves [65]. Moreover, the non-observation of defects constrains

the possible inflationary models and the gauge group of the GUT. For these

reasons, the quest for topological defects has been an active field of research

among particle physicists and cosmologists for the last 30 years.

Embedded defects are a special class of topological defects [66]. They are

constructed by constraining a subset of fields in the given theory to vanish, while

others continue to have solutions of the unconstrained system. If the vacuum
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manifold of the remaining unconstrained part of the system results in having

a non-trivial homotopy group, the formation of a topological defect can occur.

This defect is, therefore, embedded in the larger theory. Embedded defects are

of particular interest since they are constructed in realistic systems in nature.

Two known examples are the chiral model with the pion string [67], which is the

focus of our analysis in this chapter, and the Glashow-Weinberg-Salam model

with the electroweak string [68, 69]. However, the stability of embedded defects

is not guaranteed as their existence is not strictly due to the topology of the full

theory. Usually, they are not stable in vacuum. An escape of the field into the

constrained directions is always possible and the configuration is continuously

deformed to the trivial vacuum. If the presence of these defects is desired, the

model requires the inclusion of a stabilization mechanism.

One of the simplest examples of embedded defects appears as a special non-trivial

solution in chiral models described by the linear sigma model (LSM) of quantum

chromodynamics (QCD). The pion string corresponds to a classical solution of

the LSM, where the charged pion fields are constrained to vanish. Chiral models

are effective models commonly used to understand many aspects of QCD and, in

particular, used in investigations related to heavy-ion collision experiments. One

may wonder if pion strings might indeed be produced during the quark-gluon

plasma to hadron phase transition. If it is the case, their presence would be

relevant in both nuclear and Early Universe physics.

The question of the stability of the pion string is of crucial importance and

has been the focus of some previous works. In [70], M. Nagasawa and R. H.

Brandenberger proposed a realistic mechanism to stabilize the pion string by

putting the system in a thermal bath of photons, whereby interactions of the

electromagnetic field with the charged plasma lead to a lifting of the effective

potential in the constrained fields direction. More recent works by J. Karouby

and Brandenberger [71, 72] confirm the stabilization effect of this mechanism.

Whether this effect is large enough to have a stable string in the region of

parameters that is experimentally accessible has been the subject of recent

discussions [73, 74].

In this chapter, we study an extension of this stabilization mechanism by placing

the system not only in a thermal environment but also in a dense medium, which

is accounted for by including a non-vanishing chemical potential. In addition

to the charged plasma, the interactions with fermions (quarks) will also be

included. Thus, the model we will work with is the linear sigma model with
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quarks (LSMq). These interactions will then generate further corrections to the

effective potential, making explicit the chiral phase transition that can occur in

the LSMq for instance. These modifications will lead to a physically more realistic

model than has been studied up to now [73, 74]. The string solution will now

be altered, as it depends on the temperature and the chemical potential. The

analysis of the stability to follow will show that the production of stable strings

depends on the order of the chiral phase transition. The results presented in this

chapter have been published in [1].

The chapter is organized as follows. In Sec. 3.2, we review the theory of

topological defects, their construction, classification and the consequences for

cosmology. We also introduce the embedded defects and stress the differences

with the standard configuration. In Sec. 3.3, we briefly review the LSMq at finite

temperature and chemical potential. In the same section, we introduce the pion

string solution in vacuum and study its stability. We review the mechanisms

introduced to stabilize the string and discuss their limitations. Section 3.4 is

dedicated to the stability analysis of the strings in the thermal and dense medium,

in the chiral limit. We also present a first examination of the physical case. We

conclude the chapter in Sec. 3.5 with a discussion. Some technical details on the

computations are given in Appendix B.

3.2 Review of Topological Defects in Cosmology

The theory of topological defects is based on the popular concept of spontaneous

breaking of symmetry in field theory and the associated phase transition. The

formation of defects in a phase transition is ensured by the Kibble mechanism and

the homotopy theory provides a condition on the existence and a classification

of the defects. If topological defects are produced in the Early Universe, they

lead to important consequences for cosmology. In this section, we also introduce

the special case of topological defects embedded in a larger theory. We stress

their interesting characteristics but, also, the issues related to their stability.

Topological defects have been introduced by T. W. B. Kibble in 1976 in [56]. For

more recent discussions on this topic, we refer to [17, 57, 75–79].
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Figure 3.1 On the left-hand side, there is an example of a first-order phase
transition. Below the critical temperature Tc, the former global
minimum at the origin becomes a false vacuum. On the right-hand
side, an example of a second-order phase transition is shown. The
minimum of the potential moves away from the origin smoothly.

3.2.1 Spontaneous Symmetry Breaking and Phase

Transitions

In the Early Universe, when the temperature is sufficiently high, electromagnetic,

weak, and strong forces are possibly unified into a larger gauge symmetry group

G, described in the context of Grand Unified Theory [31, 32]. The cooling down

of the Universe leads to a hierarchy of spontaneous breakings of symmetry, from

G into successive subgroups

G→ Hi → ...→ H1 → H0 , (3.1)

where H1 = SU(3)C × SU(2)L × U(1)Y and H0 = SU(3)C × U(1)em. The SSB

from G to H takes place when the Higgs-like field adopts a non-trivial ground

state that is invariant under transformations in H but not over G. This breaks

the original symmetry.

The nature of the phase transition, the critical temperature Tc and the phase

diagram are obtained from the temperature dependent effective potential Veff of

the theory. Depending on the potential, the phase transition can be of first- or

second-order. In a first-order transition, a global minimum of Veff develops when

T < Tc. In a classical description, the field would be trapped in the fake trivial

ground state assuming the potential barrier between the old and new minimum
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is large enough. At quantum level, tunneling effects allow the nucleation of

bubbles of true vacuum. As discussed in Chapter 5, thermal fluctuations might

also lead to bubble nucleation. There is a non-zero probability that a bubble

of true vacuum appears at a certain point of space. Once created and if the

bubble is energetically favorable1, it expands in a sea of false vacuum. A first-

order transition is mediated by quantum tunneling and thermal nucleation. The

ground state 〈φ〉 is a discontinuous function of time. A second-order transition is

characterized by the smooth evolution of the ground state away from zero toward

a non-vanishing value, when the temperature drops below Tc. In this case, 〈φ〉
evolves continuously in time and the transition is homogeneous. Examples of

first- and second-order phase transitions are shown on the left and right sides of

Fig. 3.1 respectively.

3.2.2 Kibble Mechanism

In 1976, T. W. B. Kibble [56] demonstrated that a spontaneous breaking of

symmetry might lead to the production of topological defects2. The mechanism,

further discussed in [57, 81], is based on the formation of uncorrelated domains

in which the expectation value 〈φ〉 is coherent. In a second-order transition, the

evolution of the ground state is influenced by quantum and thermal effects and

there is no reason to expect 〈φ〉 to be uniform in space. When the transition

is first-order, the value the field takes in a newly created bubble is completely

independent of the existing ones. In both cases, there is the formation of

correlated domains, corresponding to regions of space with arbitrary orientation of

the Higgs-like field. These domains correspond to different minima of the effective

potential and, when they merge together, a non-trivial vacuum configuration is

obtained. The value of the potential being non-minimal between the domains,

some potential energy is trapped and creates a topological defect.

The Kibble mechanism ensures the existence of these domains. The argument is

based on the correlation length ξ of the field responsible for the SSB. It is fair to

assume that the size of a correlated domain is of order ξ. One can show that the

correlation length is proportional to the inverse temperature-dependent mass of

1This depends in general on the energy gain from the inside of the bubble versus the energy
loss in the bubble’s wall.

2This mechanism has been later extended by W. H. Zurek in [80] and is sometimes called
the Kibble-Zurek Mechanism (KZM).
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the field mφ

ξ ∼ mφ(T )−1 ∼ T−1 . (3.2)

When the mass vanishes, the correlation length diverges which is in obvious

contradiction with causality. Kibble pointed out that ξ should be bounded by

the particle horizon dh defined as

dh(t) ≡ a(t)

∫ t

0

dt′

a(t′)
, (3.3)

where a(t) is the scale factor of the Universe. Here, dh is the maximal proper

distance a photon created at the Big Bang could have traveled until time t. It

corresponds to the radius of the region of spacetime in causal contact with the

field. For a(t) ∼ tn and n > 1, we have dh = t/(n − 1). The age of the

Universe being finite in the Big Bang Model, the radii of the correlated domains

are bounded by a finite quantity dh. Their existence is, therefore, ensured and

one defect per particle horizon is expected to be produced.

3.2.3 Existence and Classification of Topological Defects

The existence and the type of defect created in a specific model relies on algebraic

topology, more specifically, on homotopy. Our aim in this subsection is to perform

a brief review, based on Ref. [57], of the concepts needed to describe the different

types of defects. For a complete and formal description, we suggest the reader to

refer to Ref. [82].

In a spontaneous breaking of symmetry from the group G to H, the associated

vacuum manifold is defined as the coset space M = G/H. It corresponds to the

set of degenerate vacuum states. The topology of the vacuum manifold determines

whether the formation of a defect is possible and the type of defect that might

arise. The formal description of the topology is given by the theory of homotopy.

Definition. Let ψ1 and ψ2 be two maps from Sn to M. ψ1 and ψ2 are

homotopically equivalent if there exist a continuous one-parameter family of maps

ψ(t) : Sn →M such that ψ(0) = ψ1 and ψ(1) = ψ2.

The maps ψ1 and ψ2 are said to be homotopic, denoted by ψ1 ∼ ψ2. Conceptually

two maps are homotopic if they can be continuously deformed into each other.
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Definition. The nth-homotopy group of M, πn(M) is the set of all homotopy

classes of maps Sn →M: πn(M) = {ψ|ψ : Sn →M} / ∼.

One can show that for n > 0, πn(M) is a group. Despite these abstract definitions,

it is not difficult to interpret the role of the homotopy group. Let us consider for

example the fundamental group π1. If this group is trivial, all loops onM can be

deformed into a point. This is no longer true if there is a hole on the manifold,

since it is not possible to shrink a loop surrounding this hole into a point. It

also cannot be continuously deformed into a loop that has a different number of

windings around the hole. In this case, there are infinitely many classes of loops

on the manifold and π1(M) = Z. Conceptually, the fundamental group simply

counts the number of holes on the manifold. Similar arguments can be made for

higher order homotopy groups, where instead of loops, n-spheres are considered.

The zeroth homotopy group is special and its definition need to be clarified :

Definition. Let x and y be points in M. We define an equivalence class on

M by x ∼= y if there exist a continuous path γ : [0, 1] → M, such that

γ(0) = x and γ(1) = y. The zeroth homotopy group is defined as π0(M) =

{γ|γ : [0, 1]→M} / ∼=.

Conceptually, this group corresponds to the set of path connected components of

M.

As already mentioned, the homotopy theory allows a classification of the

topological defects that can be produced in a phase transition. Let us briefly

present this classification :

• If π0(M) 6= 1, the vacuum manifold is disconnected. Assume that M has

two components M1 and M2. There will be domains where φ ∈ M1 and

some others where φ ∈ M2. At the interface of these domains, we will

have φ /∈ M. The potential is not minimized and some potential energy is

trapped. This scenario corresponds to domain walls.

• If π1(M) 6= 1, there are non-contractible loops in the vacuum manifold. In

the interior of a loop, there is a singularity of M where obviously φ /∈ M.

There is therefore a tube of trapped energy, known as the cosmic string.

The string cannot have loose ends, since in this case the loop could be

contracted to a point. This implies that the strings are either infinite or

closed.
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• The other two examples of topological defects usually present in the

literature are the monopoles, arising when π2(M) 6= 1 and the textures

when π3(M) 6= 1.

Before proceeding to the discussion of embedded defects, let us briefly review the

cosmological consequences of topological defects.

3.2.4 Consequences for Cosmology

Commonly present in the theory, topological defects are of a particular interest for

cosmologists and the quest for their detection has been an active field of research

over the last decades. As we will learn shortly, the existence of a defect could

affect the cosmological model [17, 75, 76]. They might lead to desired outcomes,

such as a mechanism for the formation of structures, and undesired effects, for

example overcoming the energy budget and modifying the expansion rate of the

Universe. On the other hand, the non-observation of topological defects provides

some further constraints on the model. This is particularly relevant for BSM

theories. A candidate for the GUT gauge group or a model of inflation might

predict the formation of defects. Examples of theories including inflation and

defects are Supergravity [83] or Brane-Inflation [84]. Topological defects provide a

top-down probe for the physics beyond the Standard Model and a non-observation

might potentially rule out certain inflationary and GUT models.

We have learned that different kinds of defects are produced, depending on the

homotopy group of the vacuum manifold. Among them, cosmic strings are the

most promising candidates to play a decisive role in cosmology. One can show

that the energy density of a non-relativistic domain-wall depends on the inverse

of the scale factor. Unless the model is too highly fine-tuned to be relevant,

the domain-walls will be the dominant component in the energy budget of the

Universe and drastically alter the model. The production of monopoles represents

also a problem in the SBBM. Computing their energy density today shows that

monopoles produced at the epoch of grand unification would completely dominate

the matter density, which is in obvious contradiction with their non-observation

at present time. This is known as the monopole problem and is one of the original

motivations for the theory of cosmic inflation3. For the rest of this subsection,

we focus on the cosmic strings and their cosmological implications.

3The monopole problem and its solution is discussed with greater details in the next chapter.
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Cosmic Strings In the presence of a string, the spacetime adopts a conical

structure around the defect. It has been shown by A. Vilenkin in [85] that the

metric outside an infinite and straight cosmic string of mass per unit length µ

reads

ds2 = −dt2 + dz2 + dr2 + (1− 4Gµ)2r2dθ2 , (3.4)

with the string being in the z direction. The metric is similar to Minkoswki but

with a defect angle of ∆θ = 8πGµ leading to the conical shape of the space4.

There are three main consequences from such a geometry.

The first is gravitational lensing. An observer will see two objects located on the

other side of the string and separated by an angle ∆θ superimposed. The second

effect leads to anisotropies in the CMB. A moving string leads to a Doppler shift

in the frequency of a nearby light beam. The part of the beam located behind

the string is blueshifted and the part ahead, redshifted. This process can explain

the variations in the temperature of the CMB and predict fluctuations of order

δT/T ' 8πGµv, where v is the velocity of the string [86, 87]. The observed

anisotropies of the CMB constrain the mass per unit length to be Gµ ≤ 10−5. It

is fair to point out that the string are active and incoherent, therefore they do

not lead to baryonic acoustic oscillations and could only account for maximally

10% of the anisotropies in the CMB [88]. The last consequence of the conical

structure of space is the formation of a wake. The mechanism is the following. In

the rest frame of a string, moving with velocity v, matter moves with velocity −v.

When passing near the string, the particles are deflected and get an inward or

wake velocity of 4πGµv. Matter converges in the region behind the string. The

overdensity in this region keeps attracting matter with gravitational interaction

and leads to the formation of structures [57, 58]. Cosmic strings present an

alternative to inflation and provide a first principle mechanism for the formation

of structures. However, it is now established that the dominant mechanism for

structure formation cannot come from topological defects [41].

Another relevant cosmological consequence of cosmic strings is the production

of relic gravitational waves [65]. Considering a network of cosmic strings, the

interactions between them lead to the creation of closed loops. The loops interact

with the strings and between themselves to create smaller and smaller loops. A

small closed loop oscillates relativistically due to the tension of the string and

4We observe that for dz = dt = 0 the surface is not a plane but a cone.
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emits GW. The power radiated is computed to give

PGW ' γGWGµ
2 , (3.5)

where γGW is a constant of order 100. With cosmology entering a new era since

the observation of gravitational waves, new constraints on the presence of cosmic

string will emerge from their GW’s signatures [89–91].

Even if cosmic strings cannot be the main mechanism to explain the formation

of structures, they might still play a significant role in particle physics and

cosmology. We have already mentioned that they provide constraints on BSM

theories. Cosmic strings can be the origin of the primordial magnetic field [59, 60].

It has been shown in [59] that a network of superconducting strings carrying a

charged current might generate a magnetic field. The string motion and the

gravitational attraction in the primordial plasma generate a field by vorticity. In

addition, cosmic strings have been used to explain the baryon asymmetry in the

framework of the electroweak baryogenesis [61, 62] and, more recently, proposed

as the origin of high-redshift supermassive black holes [92].

3.2.5 Embedded Defects

Embedded defects are a special class of topological defects. They have been

originally introduced in [66] and investigated in more detail in [93–95]. The

basic idea is the following. If the vacuum manifold M of the full theory is

reduced to a lower dimensional manifold Memb, by constraining some fields to

vanish, topological defects may arise from the homotopy groups of Memb when

the subgroup Gemb is spontaneously broken. If the theory constructed from Gemb

allows the formation of a topological defect, i.e. there is a positive n such that

πn(Memb) 6= 1, the solution can be extended to the full theory by constraining

the other fields direction. The defects are said to be embedded in a larger theory.

The main benefit of this method is to allow for the formation of defects in theories

where the homotopy groups associated with the vacuum manifold are trivial.

One example is the Standard Model of particle physics that does not predict any

topological defect. However, the SM contains two known examples of embedded

defects, the pion string [67] in the chiral model and the electroweak string [68, 69]

in the Glashow-Weinberg-Salam model. One naturally expects to have similar

realizations in BSM theories.
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By construction, the stability of embedded defects is not guaranteed. Their

existence is not strictly due to the topology of the full theory. Under infinitesimal

perturbations, the unconstrained fields escape in the constrained directions and

the configuration is continuously deformed to the trivial vacuum. One usually

need a case-by-case analysis and an extra mechanism has to be introduced to

ensure the stability. This is precisely the role of fluctuation-dissipation dynamics,

in particular, the interaction with a thermal bath, as we will learn shortly, tend

to stabilize the defects.

In the remainder of this chapter, we aim to study these mechanisms with an

explicit example, the pion string in the linear sigma model.

3.3 The Pion String in the Linear Sigma Model

The pion string is one of the simplest examples of embedded defects. It appears

in the chiral model of quantum chromodynamics (QCD) as a classical solution

of the linear sigma model where the charged pions are constrained to vanish.

This simple model is well-suited to perform an analysis of stability and study the

mechanisms to improve it. Beside these theoretical considerations, it has some

direct applications for heavy-ion collision experiments and in the quark-gluon

plasma to hadron phase transition in the Early Universe.

As expected, the pion string is not stable in vacuum. It has been shown in [71]

that interactions with a thermal bath tends to stabilize the string. However,

the mechanism is not sufficient to have stable strings for the set of parameters

that are experimentally allowed. In our analysis, we want to study the effect of

the more realistic scenario of the pion string in a dense and hot medium. The

theoretical framework is, therefore, the linear sigma model with quarks (LSMq).

In this section, we briefly introduce the LSMq [96–98] and the pion string solution.

We discuss the instability of the strings and review the known stabilization

mechanisms, in particular, the interactions with a thermal bath.

3.3.1 LSMq at Zero Temperature

It is well-known that QCD becomes non-perturbative at low energy due to color

confinement. However, the approximate chiral symmetry in the QCD Lagrangian
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and its spontaneous breaking allows for the definition of a low-energy effective

theory with hadrons replacing the quarks and gluons as degrees of freedom. Chiral

models have long been used in many applications aiming at understanding various

aspects of QCD, among them, the description of disoriented chiral condensates

in heavy-ion collisions or the chiral phase transition. The LMSq is, therefore, an

effective model to study the chiral transition and includes the additional fermionic

degrees of freedom (the quarks) that are present during the phase transition.

The aim of this chapter being the analysis of the stability of embedded defects, we

only include, for simplicity, the one-loop contributions. This is already sufficient

to illustrate the main characteristics of the stabilisation mechanism. Details about

higher-order contributions to chiral models, in particular, the resummation of the

perturbation theory (optimized perturbation theory), can be found in Refs. [99–

101].

The LSMq is a concrete realization of chiral effective theory and describes

interactions between nucleons, pions and sigma fields. We consider its simplest

realization, containing two massless quarks in a fermionic isodoublet ψT = (u, d),

a triplet of pseudoscalar pions (~π) and a scalar field sigma (σ). The Lagrangian

density of the model reads

L = LΦ + Lq , (3.6)

LΦ = Tr
[
(∂µΦ)†(∂µΦ)

]
−m2Tr

[
Φ†Φ

]
− λ

(
Tr
[
Φ†Φ

])2
+

1

2
hTr

[
Φ† + Φ

]
, (3.7)

Lq = ψ̄(i/∂ − γ0µq + g(σ + i~π · ~τγ5))ψ , (3.8)

where Φ = σ · 1
2
+i~π · ~τ

2
is the meson matrix in Dirac space, ~τ are the Pauli matrices

with the normalization Tr[τaτb] = 2δab and 1 is the identity matrix. Finally, µq is

the quark chemical potential. The term dependent on h in Eq. (3.7) is an explicit

symmetry breaking term. This term mimics the breaking of the chiral symmetry

in the QCD Lagrangian due to the non-vanishing quark masses.

In the limit of vanishing h, the model has a chiral symmetry SU(2)L × SU(2)R.

The spinors ψL,R = 1
2
(1 ± γ5)ψ belong to the fundamental representation of the

group, transforming as

ψL,R → exp(−i~ωL,R · ~τ)ψL,R . (3.9)
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The scalar fields transform in the (1
2
, 1

2
) representation,

Φ→ exp(−i~ωL · ~τ)†Φ exp(−i~ωR · ~τ) . (3.10)

It is easy to check that under such a transformation the Lagrangian density (3.6)

is invariant.

The Φ-dependent part of the Lagrangian density is often explicitly expressed in

terms of the pion (~π ≡ (π0, π1, π2)) and sigma (σ) fields,

LΦ =
1

2
(∂µσ)2 +

1

2
(∂µ~π)2 − V0(σ, ~π) , (3.11)

V0(σ, ~π) =
λ

4
(σ2 + ~π2 − v2

0)2 − hσ , (3.12)

where v2
0 = m2

λ
≡ f 2

π corresponds to the pion decay constant in the vacuum.

The linear term in (3.7) breaks the chiral symmetry explicitly by giving a non-

trivial vacuum expectation value to the σ field. To construct the classical

fundamental state, the minimum of the potential is considered,

dV0

dσ
= λ(σ2 + ~π2 − v2

0)σ − h = 0 , (3.13)

dV0

dπi
= λ(σ2 + ~π2 − v2

0)πi = 0 . (3.14)

The unique solution of the system is

~π0 = 0 , λ(σ2
0 − v2

0)σ0 = h , (3.15)

and the vacuum expectation value v of the σ field to first-order in h reads

v = fπ +
h

2λf 2
π

. (3.16)

Assuming that σ = σ′ + v, where 〈σ′〉0 = 0, we obtain the shifted Lagrangian

density

LΦ =
1

2
(∂µσ

′)2 +
1

2
(∂µ~π)2 − 1

2
(−m2 + 3λv2)σ′2 − 1

2
(−m2 + λv2)~π2

− λσ′v(σ′2 + ~π2)− λ

4
(σ′2 + ~π2)2 − σ′(−m2v + λv3 − h) , (3.17)

Lq =ψ̄
[
i/∂ − γ0µq + gv + g(σ′ + i~π · ~τγ5)

]
ψ . (3.18)
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Note that the term linear in σ′ vanishes due to (3.15). In this shifted Lagrangian,

the quarks become massive and the masses of the mesons are non-degenerate,

with vacuum values,

mq,0 = gv , m2
σ,0 = −m2 + 3λv2 , m2

π,0 = −m2 + λv2 . (3.19)

The parameters g, λ and h (note that m2 = λf 2
π) are chosen to fit the observable

vacuum values, in particular, the pion mass, mπ,0 = 139 MeV, the pion decay

constant, fπ = 93 MeV, and also the constituent quark mass mq,0 and the mass

for the sigma, mσ,0, whose values will be explicitly set below.

Often, the chiral limit of the model is considered. In the absence of the linear

breaking term (h = 0), the chiral symmetry is spontaneously broken when the σ

field develops a vacuum expectation value v = v0 ≡ fπ. In the symmetry broken

phase, the pions become massless and correspond to the Goldstone bosons.

3.3.2 Chiral Phase Transition at Finite Temperature and

Chemical Potential

The LSMq at finite temperature and chemical potential undergoes a phase

transition in the (µq-T ) plane. Following the arguments of Ref. [102], we

assume that the most important contributions to the free energy come from

the interactions with the quarks5. The quantum and thermal fluctuations of

the meson fields are neglected (note that this is also a valid assumption in the

large-N approximation for the model [103]). The (renormalized) free energy or

effective potential at one-loop [97, 98, 102] reads

Veff(T, µq) = V0 + ∆V0 + ∆VT,µq , (3.20)

where

V0 = −1

2
m2v2 +

λ

4
v4 − hv , (3.21)

∆V0 =
NcNf

(4π)2
m4
q

(
3

2
+ ln

M2

m2
q

)
, (3.22)

5The σ and ~π fields are replaced by their expectation values. At high T and µq,
constituent quarks are light but mesonic excitations heavy, only the quarks and antiquarks
are, therefore, retained as quantum fields. Note that this approximation neglects the effects of
the hadronization process at lower T and µq.
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∆VT,µq = −2NcNfT

∫
d3k

(2π)3

[
ln
(

1 + e−
ωk
T
−µq
T

)
+ ln

(
1 + e−

ωk
T

+
µq
T

)]
, (3.23)

where ωk =
√
k2 +m2

q, Nc = 3 is the number of colors, Nf = 2 is the number

of flavors and M is the regularization scale used in dimensional regularization in

the MS scheme. An explicit derivation of the effective potential is presented in

Appendix B.

The expectation value of the field σ in the medium 〈σ〉 = v(T, µq) corresponds

to the minimum of the effective potential and is determined by

dVeff

dv

∣∣∣∣
v=v(T,µq)

= 0 . (3.24)

This leads to the gap equation,

−m2 + λv2 +
NcNf

4π2
g4v2

[
1 + ln

M2

g2v2

]

+
NcNf

π2
g2

∫ ∞

0

dk
k2

ωk

[
n+
F (ωk) + n−F (ωk)

]
=
h

v
, (3.25)

where

n±F =
1

e
ωk
T
∓µq
T + 1

, (3.26)

is the Fermi-Dirac distribution for particles and antiparticles.

Let us analyze the chiral limit h = 0 and the physical case h 6= 0 separately.

Chiral Limit

For large T and µq, the chiral symmetry is restored. Equation (3.24) is trivially

satisfied with v(T, µq) = 0, and the masses of the mesons are degenerate. The

fermions are massless. The chiral symmetry is spontaneously broken when the

effective potential develops a non-trivial minimum v(T, µq) 6= 0.

The masses of the mesons σ and π are given by their tree-level contributions plus

the respective self-energies, which in our approximation are given by the one-loop

corrections due to the Yukawa interaction,

m2
σ = −m2 + 3λv2 + Π(ren)

σ , (3.27)
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m2
π = −m2 + λv2 + Π(ren)

π , (3.28)

where Π
(ren)
σ and Π

(ren)
π are the renormalized one-loop self-energies for the sigma

and the pions, respectively, and given by (see, e.g., Ref. [97])

Π(ren)
σ =

NcNf

4π2

{
g4v2

(
1 + 3 ln

M2

g2v2

)

+ 4g2

∫ ∞

0

dk
k2

ωk

[
n+
F (ωk) + n−F (ωk)

](
1− g2v2

ω2
k

)

−4
g4v2

T

∫ ∞

0

dk
k2

ω2
k

[
n+
F (ωk)(1− n+

F (ωk)) + n−F (ωk)(1− n−F (ωk))
]}

,

(3.29)

and

Π(ren)
π =

NcNf

4π2

{
g4v2

(
1 + ln

M2

g2v2

)
+ 4g2

∫ ∞

0

dk
k2

ωk

[
n+
F (ωk) + n−F (ωk)

]}
.

(3.30)

The explicit computation of Π
(ren)
σ and Π

(ren)
π is given in Appendix B.

Using Eq. (3.30) in the gap equation (3.25) gives, for h = 0,

−m2 + λv2(T, µq) + Π(ren)
π = 0 , (3.31)

which is simply the condition that the pions become massless in the broken phase,

in agreement with the Goldstone theorem.

We obtain the phase diagram of the model in the (T, µq) plane numerically. The

parameters are fixed by the following conditions. The vacuum expectation value

of the field is v0 = fπ = 93 MeV

dV0

dv

∣∣∣∣
v=v0

= 0 , (3.32)

and we require that this minimum is preserved when quantum corrections are

included,

d

dv
Veff(T = 0, µq = 0)

∣∣∣∣
v=v0

= 0 . (3.33)

This equation requires the one-loop self energy of the pion at zero temperature and

zero external momentum to vanish [98], which in turn fixes the renormalization
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scale M2 = m2
q/e. The mass of the sigma field in vacuum is in the broad resonance

interval, 400 MeV ≤ mσ ≤ 800 MeV. For our analysis, we set it as

m2
σ =

d2

dv2
Veff(T = 0, µq = 0)

∣∣∣∣
v=v0

= (600 MeV)2, (3.34)

and, for the constituent quark mass, we choose

mq = gv|v=v0
= 300 MeV . (3.35)

Although there is some freedom in the choice of mσ within the broad resonance

interval, this barely influences the stability of the string. Thus, we find the

following set of parameters,

m2 = λv2
0 ' (567.7 MeV)2 , g ' 3.2 ,

λ =
1

2

(
8
NcNf

(4π)2
g4 +

m2
σ

v2
0

)
' 37.3 , M2 =

m2
q

e
' (182.0 MeV)2 . (3.36)

An analysis of the effective potential (3.20) shows that the order of the phase

transition depends on T and µq (which are related along the phase transition

curve). For low temperatures and large chemical potential, the shape of the

effective potential Veff is typical of a first-order phase transition, as can be seen in

Fig. 3.2. In this case, at T = Tc, there are degenerate minima with the origin and

the expectation value jumps discontinuously at the transition point. Then, there

is a critical point, which is around T = 50 MeV and µq = 306 MeV, above which

(as the temperature increases and the chemical potential decreases) the phase

transition becomes second-order. From Fig. 3.3, we observe that the minimum of

the potential moves smoothly away from zero. The phase diagram in the (µq−T )

plane is shown in Fig. 3.4.

Physical Case

When h 6= 0, the symmetry is never completely restored, with v(T, µq)

approaching zero for large values of T and µq. This behavior corresponds to

a crossover transition. The gap equation gives

−m2 + λv2(T, µq) = −Π(ren)
π +

h

v(T, µq)
. (3.37)
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Figure 3.2 The effective potential, in the chiral limit, for a fixed value of
chemical potential µq = 322 MeV and for values of temperature
above, at and below the critical temperature Tc. Here, Tc = 11.5
MeV.
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Figure 3.3 The effective potential, in the chiral limit, for µq = 0 MeV and for
values of temperature above, at and below the critical temperature
Tc. Here, Tc = 176.0 MeV.

The pions are pseudo-Nambu-Goldstone bosons with mass squared m2
π = h

v(T,µq)
.

The parameters are fixed by the same requirements as in the chiral limit and the

extra condition on the pion masses in vacuum being set to their physical value

mπ,0 = 139 MeV. For this case, we find the following set of parameters,

m2 = λv2
0 −

h

v0

' (541.6 MeV)2 , g ' 3.2 ,

λ =
1

2

(
8
NcNf

(4π)2
g4 +

m2
σ

v2
0

− h

v3
0

)
' 36.2 , M2 =

m2
q

e
' (182.0 MeV)2 ,

h ' 1.8 · 106(MeV)3. (3.38)
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Figure 3.4 The phase diagram in the (µq-T ) plane. The solid and dashed curves
are for the chiral limit (h = 0) and correspond to the second-order
and first-order transition lines, respectively, with the critical point
shown by a blue dot. The dotted curve is for the physical case (h 6= 0)
and represents a crossover transition. Temperature and chemical
potential are normalized by the critical values in the chiral limit:
Tc = 176 MeV and µq,c = 323 MeV. For the crossover, we have the
pseudocritical values Tpc = 172 MeV and µq,pc = 329 MeV.

In the physical case, the effective potential exhibits a crossover transition, as

shown in Fig. 3.5. Observe that the minimum of the potential moves smoothly

toward zero as the temperature increases. The derivation of the crossover

transition line on the (µq − T ) plane is performed numerically, with the result

depicted in Fig. 3.4 together with the case for the chiral limit for comparison.

In our computation, where we have considered both vacuum and thermal

fluctuations for the fermions in the effective potential, we find only a crossover

line. There are though other approximations where the crossover line can end

and merge with a first-order phase transition line in a critical end point (see, e.g.,

Refs. [98, 102]).
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Figure 3.5 The effective potential in the physical case for a fixed value of
chemical potential µq = 220 MeV. It shows a crossover phase
transition as the temperature is changed. There is a pseudocritical
temperature at Tpc = 133.75 MeV determined by the position of the
inflection point of the σ field expectation value.

3.3.3 Pion String Solution and its Stability in Vacuum

We show that the chiral limit of the LSM has an embedded defect, the pion

string, and review the mechanisms already present in the literature to improve

the stability.

Pion String Solution

In Ref. [67], X. Zhang, T. Huang and R. Brandenberger derived a stringlike

classical solution in the LSM, in the chiral limit and in the vacuum. Defining the

new fields φ and π± as

φ ≡ σ + iπ0

√
2

, π± ≡ π1 ± iπ2

√
2

, (3.39)

the Φ-dependent part of the Lagrangian density is rewritten as

LΦ = (∂µφ)∗(∂µφ) + (∂µπ
+)(∂µπ−)− λ

(
φ∗φ+ π+π− − v2

0

2

)2

. (3.40)

Considering a static configuration, the energy functional, in the vacuum, reads

E0 =

∫
d3x

[
~∇φ∗ · ~∇φ+ ~∇π+ · ~∇π− + λ

(
φ∗φ+ π+π− − v2

0

2

)2
]
, (3.41)
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and the time-independent equations of motion are

∇2φ = 2λ

(
φ∗φ+ π+π− − v2

0

2

)
φ , (3.42)

∇2π± = 2λ

(
φ∗φ+ π+π− − v2

0

2

)
π± . (3.43)

Since the vacuum manifold of this model is simplyM = S3, the homotopy group

is trivial and does not predict any formation of topological defects [76]. However,

if one of the directions of the fields is constrained, in particular, those for the

charged fields π±, there is an overall U(1) symmetry in the (σ, π0) directions.

When the chiral symmetry is broken, an embedded topological pion string can

form. These equations admit the following pion string solution

φ =
v0√

2
ρ(r)einθ , π± = 0 , (3.44)

where r and θ are the polar coordinates in the (x, y) plane and the integer n is the

winding number. The string has a linear extension in the z direction. The pion

string obviously minimizes the energy of the system and satisfies the equations

of motion.

The radial function ρ(r) is found by substituting Eq. (3.44) into the equation of

motion and using the boundary conditions,

ρ(r) =

{
0 , r → 0 ,

1 , r →∞ .
(3.45)

An exact solution is obtained with numerical methods. However, it has been

shown in Ref. [67] that a variational approach can be adapted in this situation.

Adopting the ansatz ρ(r) ' (1−e−µr) obviously satisfies the boundary conditions.

The variational parameter µ is the inverse width of the string and is chosen to

minimize the energy. One finds that the energy per unit length Ez is

Ez =
π

4
v2

0 + πv2
0I(µ,R) +

λπv4
0

µ2

89

288
, (3.46)

where

I(µ,R) =

∫ R

0

dr
ρ2(r)

r
, (3.47)

and R is a cut-off parameter since the energy density of a string solution is
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logarithmically divergent for a global symmetry. As described in Ref. [73], the size

of the horizon or the typical separation length between the strings are generally

taken for R and is of order of 1 fm. The R dependence vanishes when computing

the derivative of Ez with respect to µ. A straightforward computation gives

µ2 = 89
144
λv2

0 and, therefore, the energy per unit length becomes

Ez ' πv2
0

[
3

4
+ log[µR]

]
, (3.48)

where we have approximated the integral I(µ,R) as log[µR].

Stabilization Mechanism by Thermal Effects

The string solution (3.44) is non-topological. As it stands, once formed it will

decay away. The non-trivial field configuration can be continuously deformed to

a trivial vacuum by escaping in the constrained directions. In other words, under

an infinitesimal excitation of the fields π±, the induced variation of the energy is

negative, the string configuration unwinds and decays.

It is, however, possible to stabilize the string. If one of the directions of the fields

is lifted, in this case the π±, then we are left with the overall U(1) symmetry.

This is the scenario studied by Nagasawa and Brandenberger in [70], where the

authors propose a mechanism to stabilize the pion string by putting the system in

a finite-temperature plasma. The interactions between charged pions and photons

increase the effective potential in the π± directions.

In the minimal coupling prescription, the Lagrangian of the model becomes

L = (∂µφ)∗(∂µφ) + (D+
µ π

+)(D−µπ−)− λ
(
φ∗φ+ π+π− − v2

0

2

)2

− 1

4
FµνF

µν , (3.49)

where D+
µ = ∂µ + ieAµ and D−µ = ∂µ − ieAµ. The effective potential for the π±

fields acquires a thermal mass due to the coupling with the photons. It has been

shown in [104] that the thermal mass is e2T 2π+π−/2 and the effective potential

reads

Veff = λ

(
φ∗φ+ π+π− − v2

0

2

)2

+
e2T 2

4
π+π− . (3.50)
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The variation of energy, neglecting the (π+π−)2 term, reads

δE =

∫
d3x

[
~∇π+~∇π− +

(
e2T 2

4
+ 2λ(φ∗φ− v2

0

2
)

)
π+π−

]

+O((π+π−)2) . (3.51)

Using the string solution and expanding π± in Fourier modes

π± = v0χm(r)e±imθ , (3.52)

we find δE in cylindrical coordinates

δE = 2πv2
0

∫
dz

∫
r dr

[
χ′2m(r) +

m2

r2
χ2
m(r) +

(
e2T 2

4
+ λ(ρ2(r)− 1)

)
χ2
m(r)

]
.

(3.53)

We setm = 0 to consider the minimal contribution to the energy. Since ρ2(r)−1 =

e−µr(e−µr − 2), variation of the mass per unit length compared to the embedded

string, where χ = 0, is

δEz − δEz|χ=0 = 2πv2
0

∫ R

0

dr rχ2(r)

[
e2T 2

4
− 2λv2

0e
−µr(1− 1

2
e−µr)

]
. (3.54)

The sign of equation (3.54) gives us a sufficient condition for the stability of

the string. In the integrand, rχ2(r) is always positive and will not influence the

overall sign. A positive variation of energy corresponds to

e2T 2

4
− 2λv2

0e
−µr(1− 1

2
e−µr) > 0 . (3.55)

The function e−µr(1 − 1
2
e−µr) has its maximal value 1

2
at r = 0. We obtain the

following condition for stability

e2T 2

4
− λv2

0 > 0 . (3.56)

Using the values given in Eq. (3.36) and that e2 = 4π/137, we find that a lower

bound for the temperature of the thermal bath associated with the stability of

the pion string core is

Tstab >
2v0

√
λ

e
' 2.8 TeV . (3.57)
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This is, however, a temperature that is much above the critical temperature for

chiral phase transition, Tc ∼ 176 MeV. Thus, even if the mechanism enhances

the stability of the strings, it is not sufficient enough for the production of stable

strings at temperatures corresponding to the chiral phase transition. Our aim for

the rest of the chapter is to try to improve the mechanism. We study the effect of

the inclusion of additional thermal and dense effects from the Yukawa interaction

and show that it can lead to stability, in certain situations.

3.4 Stabilization of the Pion String in a Thermal

and Dense Medium

As shown previously, the interactions between the charged pions and the photons

increase the effective potential in the π± directions and act to stabilize the string.

We follow the same strategy but, in addition to the thermal bath, we also consider

the effects of a dense medium due to the interactions with the fermions.

3.4.1 Pion String Solution at Finite-Temperature

Using standard techniques [105], a non-zero chemical potential µq is set for the

fermions and the thermal bath is implemented by the electromagnetic couplings

between the charged particles of the model and the photon. We assume that

the fermions are in equilibrium with the thermal bath of photons, but, similar to

Ref. [71], the σ and ~π fields are in a non-equilibrium state. The reason is that

the masses of the scalar fields are heavy in comparison to the temperature. In

the minimal coupling prescription, the Lagrangian density becomes

L = LΦ + Lq −
1

4
FµνF

µν , (3.58)

LΦ = (∂µφ)∗(∂µφ) + (D+
µ π

+)(D−µπ−)− λ
(
φ∗φ+ π+π− − v2

0

2

)2

, (3.59)

Lq = ψ̄

{
iγµ

[
∂µ − ie

(
qu 0

0 qd

)
Aµ

]
− γ0µq + g(σ + i~π · ~τγ5)

}
ψ , (3.60)

where D±µ = ∂µ ± ieAµ and qu = 2e/3, qd = −e/3 are the electric charges of the

u quark and d quark, respectively.
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As we have seen before, the interactions with the thermal bath give a thermal

mass to the charged particles, modifying the effective potential in the charged

field directions,

∆Veff |Thermal Bath =
e2T 2

4
π+π− . (3.61)

Note also that the coupling to the photons gives a thermal mass [105] m2
f (T ) =

q2
fT

2/8 to the quarks as well. However, this term can be safely neglected with

respect to the gv term in the symmetry broken phase. In addition, at finite

temperature and chemical potential, according to the gap equation (3.24), the

expectation value of the σ field is no longer equal to v0 = fπ, but depends on T

and µq, 〈σ〉 = v ≡ v(T, µq).

In the following, we will work in the chiral limit, h = 0. To discuss the pion

string in the thermal and dense medium, we use a mean-field approximation, by

integrating out both the fermions and the electromagnetic gauge field Aµ. The

Hamiltonian field equations for σ and πi, i = 0, 1, 2 are found to be

∇2σ = λ
(
σ2 + ~π2 − v2

0

)
σ + g〈ψ̄ψ〉(ren) , (3.62)

∇2π0 = λ
(
σ2 + ~π2 − v2

0

)
π0 + g〈ψ̄iγ5τ0ψ〉(ren) , (3.63)

∇2π1(2) = λ
(
σ2 + ~π2 − v2

0

)
π1(2) + g〈ψ̄iγ5τ1(2)ψ〉(ren) + e2〈AµAµ〉π1(2) , (3.64)

where we have [104]

〈Aµ〉 = 0 , 〈AµAµ〉 =
T 2

4
, (3.65)

and by taking the trace of the momentum integral of the fermion propagator, the

scalar and pseudoscalar fermions densities are [102]

〈ψ̄ψ〉 = −2NcNfgσ

∫
d3k

(2π)3

1

ωk

[
1− n+

F (ωk)− n−F (ωk)
]
, (3.66)

〈ψ̄iγ5~τψ〉 = −2NcNfg~π

∫
d3k

(2π)3

1

ωk

[
1− n+

F (ωk)− n−F (ωk)
]
. (3.67)

Note that these densities depend explicitly on the σ and ~π fields [106]. After

subtracting the ultraviolet divergent term in the vacuum-dependent terms of

the above momentum integrals, the finite (renormalized) scalar and pseudoscalar
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fermion densities are, respectively,

〈ψ̄ψ〉(ren) = σΠ(ren)
π /g , (3.68)

〈ψ̄iγ5~τψ〉(ren) = ~πΠ(ren)
π /g , (3.69)

where Π
(ren)
π is given by Eq. (3.30).

Combining the above Eqs. (3.62)-(3.64) and expressing them in terms of φ =

(σ + iπ0)/
√

2, π± = (π1 ± iπ2)/
√

2 and, also, using Eq. (3.69) together with the

massless pion condition in the chiral limit, Eq. (3.31), gives

∇2φ = 2λ

[
φ∗φ+ π+π− − v2(T, µq)

2

]
φ , (3.70)

∇2π± = 2λ

[
φ∗φ+ π+π− − v2(T, µq)

2
+
e2T 2

8λ

]
π± . (3.71)

The above equations generalize the pion string equations in the vacuum,

Eqs. (3.42) and (3.43). Hence, the pion string solution Eq. (3.44) for φ is modified

to

φ =
v(T, µq)√

2
ρ̃(r)einθ , (3.72)

where v(T, µq) is the solution of the gap equation (3.24), and ρ̃ has the same

functional form as ρ except that the inverse width is now given by v(T, µq). The

energy E0 (3.41) is modified to

Eeff =

∫
d3x

{
~∇φ∗~∇φ+ ~∇π+~∇π−

+λ

[
φ∗φ+ π+π− − v(T, µq)

2

2

]2

+
e2T 2

4
π+π−

}
. (3.73)

By comparing Eeff with E0 we can study the effect of the thermal and dense

medium on the stability of the string.

3.4.2 Stability of the Pion String

To investigate the stability of the pion string, we first consider a variation of

the energy δE of the string in the presence of infinitesimal perturbations of the
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charged fields π±,

δE = Eeff − Eπ±=0 =

∫
d3x

{
~∇π+~∇π−

+λ

[
e2T 2

4λ
+ 2φ∗φ− v2(T, µq) + π+π−

]
π+π−

}
. (3.74)

We use the ansatz (3.72) and expand the perturbations in the direction of π± as

π± = v(T, µq)
∞∑

m=0

χm(r)e±imθ . (3.75)

Using Eq. (3.75), the variation of the energy in cylindrical coordinates becomes

δE = 2πv2(T, µq)

∫
dz

∫
r dr

{
χ′2m(r) +

m2

r2
χ2
m(r)

+

[
e2T 2

4
+ λv2(T, µq)(ρ̃

2(r)− 1) + χ2
m(r)

]
χ2
m(r)

}
. (3.76)

To determine the stability of the string, it is sufficient to know the overall

sign of (3.76). A negative variation of energy would imply that the string

configuration is not favored under an infinitesimal perturbation and would likely

decay. Considering the integrand of the above equation, the first two terms χ′2m

and m2

r2
χ2
m are exact squares, so necessarily positive (in the next subsection we will

explicitly analyze the effect of keeping these terms in the stability analysis). The

only quantity that may give an instability is the last term. A sufficient condition

of stability is therefore derived from the sign of

[
e2T 2

4
+ λv2(T, µq)(ρ̃

2(r)− 1) + χ2
m(r)

]
. (3.77)

The radial function χm is unknown. However, appearing as a square, it gives a

positive contribution and can be neglected in a minimal condition for stability.

Using ρ̃2(r) − 1 ' e−µ̃r(e−µ̃r − 2) 6, the variation of the mass per unit length

compared to the embedded string is

e2T 2

4
− 2λv2(T, µq)e

−µ̃r(1− 1

2
e−µ̃r) > 0 , (3.78)

6µ̃ is defined as the string width µ except that v0 is replaced by v(T, µq).
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or, using that e−µ̃r(1− 1
2
e−µ̃r) ≤ 1

2
for all r, we find

e2T 2

4
− λv2(T, µq) > 0 . (3.79)
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Figure 3.6 Stability region of the pion string in a thermal and dense medium,
in the chiral limit. The parameters are those given by Eq. (3.36).
The upper curve (blue) corresponds to the phase transition (second-
order). The dashed curve (red) corresponds to the lower limit of
stability of the string. The range between the lines is the region of
core stability.

We compute numerically the region of core stability using the parameters given

in Eq. (3.36). Our results are shown in Fig. 3.6. The top line corresponds to

the chiral phase transition, the string solution being non-trivial in the symmetry

broken phase where v(T, µq) is non-zero. The dashed line corresponds to the limit

of stability e2T 2/4 = λv2(T, µq). The model predicts a tiny ribbon for values of

temperature and chemical potential, in between the two lines shown Fig. 3.6, for

which stable strings are allowed.

The size of the stability region is small, but the following argument makes

plausible that such a region does indeed exist. We know from the results discussed

for the LSMq in Sec. 3.3.2 that the phase transition is of second-order above the

critical point. For a second-order phase transition, the expectation value of the
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field is exactly zero on the transition line and then it moves away smoothly to

finite values. There is always a region below the phase transition line where

the expectation value v(T, µq) is small enough to satisfy the stability condition

(3.79). We, therefore, expect that the stability condition is always satisfied for a

second-order phase transition. This can be seen explicitly in the high-temperature

approximation.

In the high-temperature region and close to the critical curve, such that mq/T �
1, we use the approximation [105]

∫ ∞

0

dk
k2

ωk

[
n+
F (ωk) + n−F (ωk)

]
'
∫ ∞

0

dkk
[
n+
F (k) + n−F (k)

]

=
µ2
q

2
+
π2T 2

6
, (3.80)

and from the gap equation (3.25), we find (in the chiral limit h = 0 and neglecting

the vacuum contribution for simplicity)

λv2(T, µq) ≈ λv2
0 −

NcNf

π2
g2

(
µ2
q

2
+
π2T 2

6

)
, (3.81)

which using Eq. (3.79) leads to the approximate analytical stability condition,

e2T 2

4
− λv2

0 +
NcNf

π2
g2

(
µ2
q

2
+
π2T 2

6

)
> 0 . (3.82)

Values for T < Tc and µq < µc can always be found, i.e., temperature and chemical

potential below the values corresponding to those for the critical (second-order)

transition line, such as to satisfy Eq. (3.82).

The situation changes drastically though when the transition is first-order. It

is well-known that defects can form during a first-order phase transition as well

(see, e.g. [81]). In our model however, the strings would decay immediately.

The stability condition relies on the smallness of the temperature and chemical

potential background value v(T, µq). Around the first-order transition the

background value v(T, µq) jumps (discontinuously) from zero in the symmetry

restored phase to a usually higher value in the broken phase and the condition

(3.79) is never satisfied. Thus, we conclude that the existence of stable pion

strings depends strongly on the order of the phase transition. The stability

condition for the pion string is favored around the second-order transition line of

the phase diagram, but it is disfavored around the first-order transition region.
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The stability condition Eq. (3.82) should be contrasted with the case where the

Yukawa interactions are absent Eq. (3.56). The inclusion of additional thermal

and dense effects from the Yukawa interaction is thus fundamental for having a

stable pion string.

3.4.3 Stability in the Physical Case h 6= 0

In the physical case, h 6= 0, the effective potential leads to a crossover transition,

as seen in Fig. 3.5. Defect formation in a crossover region is, unfortunately,

very poorly understood at the moment, either from analytical studies or from

numerical (lattice) simulations. As far as we know, there is just some limited

discussion in the literature of defect formation for this case, such as for example

Ref. [107], where it discusses how defects can be formed by percolation of different

regions with different phases.

For the present case, when accounting only for the background fields, it would

appear that no string solution can be constructed for the physical case of h 6= 0.

As shown above, e.g. in Eq. (3.72), the pion string solution is constructed in the

plane of the fields (σ, π0), which is lifted with respect to the charged pions by the

thermal electromagnetic plasma effect. The potential in the plane of the fields

(σ, π0), in the chiral limit h = 0, is then of the form of a classical Mexican hat.

The string solution interpolates between the unstable vacuum at the top of the

potential to the infinitely degenerate minimum at the bottom of the potential.

The solution then winds around the minima at the bottom of the potential with no

cost of energy. This winding is possible due to the infinitely degenerate minimum

of the potential (the pions are exactly Goldstone bosons).

In the physical case, h 6= 0, the chiral symmetry is explicitly broken, the pions

acquire a mass and this winding freedom is no longer present (the potential now

becomes a tilted Mexican hat). Under these circumstances, the string ansatz

Eq. (3.72) no longer applies and for the background fields alone no string solution

should be possible to construct.

The above situation, however, can change significantly when accounting for

fluctuations of the fields in the thermal medium. Field fluctuations and gradient

energies, which are negligible at zero temperature, can grow, particularly close

to the transition and at large temperatures, where large fluctuations then start

to become relevant. Under these conditions, it is then feasible that, as these
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fluctuations of the fields grow around the true vacuum of the system (the global

minimum of the potential), they can be sufficiently large to probe the false

vacuum state (the local minimum of the potential). When this happens, we

can effectively say that the winding around the potential is once again restored,

at least in localized regions of space. Much of the system will consist of regions

of space where the fluctuations are small and the state is that of an explicitly

chiral symmetry breaking as usual. However there will some regions with larger

fluctuations where the chiral symmetry effectively looks restored, and such regions

become increasingly more prevalent as the temperature increases. The pion

strings that we are interested in are local objects, so all we need is some suitably

large regions where conditions are appropriate for them to form. Thus, in regions

of large fluctuations, where the chiral symmetry is effectively restored, pion string

formation can become possible once again.

This picture is similar to the mechanism discussed in Ref. [107] for the formation

of defects. Typical fluctuations in the fields have the size of the correlation

length, with ξ−1
σ ∼ mσ and ξ−1

π ∼ mπ. As the temperature grows, these

fluctuations start to become more and more frequent and eventually they start

coalescing. In between these regions, string formation is possible, similar to

the Kibble mechanism of formation of defects we have introduced previously.

Though the physics of the formation of these fluctuations in a thermal medium

and their consequences goes beyond the analysis allowed within the framework

of the effective potential7, we can still provide some reasonable estimates for the

importance of these fluctuations in the present problem.

Fluctuations in the fields around the true vacuum and that are large enough to

probe the false vacuum of the potential should have an energy density in gradient

form comparable to the difference in energy density between the false and true

vacua of the potential,

〈1
2
~∇σ.~∇σ〉+ 〈1

2
~∇π.~∇π〉 ≈ hv , (3.83)

where we have used that ∆Veff ' hv for the energy density difference. Assuming

Gaussian-like (classical) correlation sized fluctuations for the fields in the thermal

7We recall that the computation of the effective potential is only able to include the effects of
small fluctuations and the proper treatment requires making use of the effective action instead.
See, e.g., Refs. [108–110] for examples of works that try to account for the effect of fluctuations
in a phase transition. Note also that in Ref. [111] a method has been proposed to study the
effect of fluctuations in the chiral phase transition in the LSMq, without the assumption of the
fluctuations to be small.
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Figure 3.7 (a) The stability condition for the pion string (red plain-line), the
gradient energy condition (blue dash-dotted line) and the transition
line (black dashed line), in the (µq, T ) plane (normalized by the
corresponding critical values). (b) An amplified view around the
high-temperature, low chemical potential region. Strings are allowed
to form in the shaded region below the transition line and above the
stability condition.

medium, we can then write [112]

〈1
2
~∇σ.~∇σ〉 ' T

4π2

∫ mσ

0

dk
k4

k2 +m2
σ

= (3π − 8)
m3
σT

48π2
, (3.84)

and analogous for the gradient energy density for the pion field.

In Fig. 3.7 (a), we show the condition given by Eq. (3.83) alongside the transition

line and the pion string stability line in the (T, µq) plane in the physical case of

h 6= 0. In Fig. 3.7 (b), we zoom into a region similar to the one shown previously

for the chiral limit in Fig. 3.6. We see from Fig. 3.7(a) that the gradient energy

density is significantly closer to the transition line and remains slightly below it,

down to temperatures and chemical potential around T ' 0.7 Tc and µq ' 0.8 µq,c,

when it then goes above the transition line. In this region of large temperatures,

the variations in the fields are sufficiently large to overcome the difference in

potential energy density between the local and global minima of the potential.

The stability condition, similar to what we have seen in the chiral limit h = 0 (see,

e.g., Fig. 3.6), is also very close to the transition line and slightly below it, lying

in between the gradient energy condition and the transition line. In this small
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region of parameters, in between the stability condition (solid red line) and the

transition line (dashed black line) and lying above the gradient energy condition

(dash-dotted blue line), is where pion strings can form (we locally recover the

conditions for winding of the string) and be stable at the same time. Below the

line for the gradient energy condition, the fluctuations of the fields (in terms

of gradient energy) are not large enough to ensure the presence of strings, as

discussed above.

The above analysis is just a preliminary examination of the physical case of h 6= 0

and it shows that the formation of pion strings is plausible in this regime. More

important, this section has laid out a conceptual framework for how to address

this physical regime. An important general point that this analysis indicates is

the importance that large fluctuations close to the transition may have on the

formation, stability and presence of defects in general. A complete analysis would

require a much more detailed treatment of the large localized fluctuations that

emerge, such as through numerical simulations, which is beyond the scope of the

present work. Nevertheless, our analysis, though semiquantitative, indicates the

importance that gradient energy densities for the fields can have on the pion string

formation and subsequent stabilization when in a thermal and dense medium.

These gradient energy terms can also have important effects in the subsequent

evolution and decay of these strings when formed. Our analysis here also shows

that the role of fermions is an important ingredient to achieve stable pion strings

even in the h 6= 0 case due to the effect they have on the order of the phase

transition (recalling that in the absence of the fermion contributions, no stability

is possible for physically motivated QCD parameters in this model). Thus, the

main focus of this work on the role of fermions can be seen already to be important

also for any detailed study of the h 6= 0 case.

3.5 Discussion and Conclusions

In this chapter, we have studied a stabilization mechanism for embedded

topological defects, by considering one of the simplest realizations, the pion string.

We have investigated the effect of a thermal and dense medium on the stability of

the string. We have used the LSMq model to describe the chiral phase transition

using realistic physical parameters. We have constructed the corresponding pion

string solution for the model, which depends explicitly now on the temperature

and the chemical potential. Finally, using the mechanism similar to the one
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proposed in Ref. [70], we have analyzed the stability for pion strings and have

derived a condition for it to be satisfied.

Our results have shown that the existence of a stable string depends crucially on

the order of the phase transition. Pion strings are produced and can become

stable when the phase transition is second-order. This happens because the

expectation value of the field in the medium changes smoothly away from zero.

In this case, the stability condition is automatically satisfied in a region close to

the transition line. This argument fails when the transition is first-order since,

now, the minimum of the potential can jump discontinuously to a large value,

such that the stability condition no longer holds. In this respect, the presence

of fermions, which is a key direction this work has explored, is crucial. The

inclusion of the fermions indirectly provides stability, in the sense that fermions

do not change the stability condition Eq. (3.79) but they change the order of

the phase transition and, therefore, bring stability. This result is the first to find

a stability region for the pion string. Although most of the analysis was done

mainly in the chiral limit, in Sec. 3.4.3 we have performed a preliminary analysis

also for the physical case of h 6= 0, where we have pointed out how fluctuations

of the fields leading to large gradient energy densities, can play an important role

in the formation and stability of pion strings in this regime.

A stable pion string has similar characteristics as an ordinary topological string.

In particular, the string leads to a specific geometry of spacetime. The string can

be seen as a string core, where the potential energy is trapped and a non-trivial

winding of the scalar field around this core. The topology induced by the defect

can therefore be seen far away from the actual core radius. It has been argued

in [1] that this non-trivial geometry persists even after the decay of the string. The

argument is the following, when the temperature drops below Tstab the potential

energy confined in the string core is released into kinetic energy, leading to the

unwinding of the field. However, at large distance from the core, the non-trivial

winding of the neutral scalar field persists. This behavior is referred as a string

melting.

The existence of pion strings has direct consequences for cosmology and nuclear

physics. The region of the (µq−T ) plane in Fig. 3.4 with a second-order transition

and stable strings has large temperatures and a low chemical potential. This

region of the plane applies for both the Early Universe and aspects of heavy-ion

collision. The applications of the pion string in the Early Universe are multiple.

One concrete example is the creation of primordial magnetic fields as discussed
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in Ref. [60]. Pion strings in heavy-ion collisions experiments have been discussed

recently in Refs. [73, 74]. The production of strings in this kind of experiments

may have an influence on the distribution of baryons and one could speculate

about their experimental signature.

A relevant feature of cosmic strings is the production of gravitational waves.

In particular, the observation of GW in the coming years will provide greater

constraints on the presence of cosmic strings in the Early Universe [91]. It would,

therefore, be interesting to study the GW signature of pion strings. However,

since those are expected to be produced at the epoch of the QCD transition,

their energy per unit length might not be sufficiently high to produce a signal

that can be detected in the near future experiments.

Another interesting area to investigate is the stabilization mechanism and

its potential improvements. In order to affect the effective potential in the

constrained directions, one needs to act on the charged pions only. One possibility

would be to place the system in an external magnetic field. This analysis has

applications beyond the LSMq of the strong interactions. Similar considerations

can be used to study the stability of the Z string [68], the embedded string solution

made up of the uncharged complex Higgs field with the charged complex scalar

set to zero. An initial study of the thermal stabilization of the Z string was given

in [113]. A similar reasoning would apply to the Z string. The embedded defect

would never completely decays, but at most undergoes core melting.

Looking beyond the Standard Model of strong, weak and electromagnetic

interactions, and to higher temperatures, it would be interesting to study whether

there are embedded defects in BSM theories which could be stabilized not only

by a photon plasma, but by a plasma of the gauge fields which are massless

above the electroweak symmetry breaking scale, and above the confinement scale.

BSM theories with embedded domain wall solutions stabilized by a plasma in the

Early Universe could face severe cosmological problems since a single domain wall

crossing our Hubble patch would overclose the Universe.
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Chapter 4

Universality in Warm Inflation

4.1 Introduction

The SBBM has proven its validity as a cosmological model with several theoretical

predictions confirmed by observation. Despite these great successes, the original

formulation of the model faces some shortcomings. However, the simple addition

of an early phase of accelerated expansion, before the epoch associated with grand

unification, is sufficient to resolve most of the drawbacks of the model. Cosmic

inflation is not the only way to complete the SBBM, however, and this is one of the

main reasons for its success, the theory possesses a built-in mechanism to generate

the formation of structures and explain the presence of the tiny anisotropies

observed in the temperature of the CMB. Over the last few years, cosmic inflation

has become a main ingredient of modern cosmology. The theory is currently

favored by several experiments such as the Planck satellite [42, 114, 115].

The historical and most common realization of an early accelerated expansion

relies on a single scalar field in the slow-roll regime. At the end of the period

of inflation, the Universe is extremely cold and mostly empty, the temperature

and the energy densities of matter and radiation being proportional to negative

powers of the scale factor. It is then usually assumed that a reheating period [116]

directly follows inflation. The energy of the scalar field responsible for inflation

is transferred into particles of the Standard Model to repopulate and reheat

the Universe. A slightly different scenario is proposed by the warm realization

of inflation [10, 11]. The presence of dissipative effects leads to a continuous

61



production of radiation and, possibly, a smooth transition to the radiation-

dominated era. The Universe, therefore, remains warm during the period of

inflation. A first principle model of warm inflation based on a few fields has been

proposed recently [117], and demonstrated that, as model building prospects,

warm inflation models are on an equal footing to cold inflation.

Observational cosmology, as demonstrated by the recent Planck results, has

reached an impressive level of precision that can set constraints on many

cosmological models, including inflation. However, despite the level of accuracy

achieved by Planck, the degeneracy problem of inflationary model building still

persists. Many inflationary models can produce predictions, like for the near

scale invariance and the power spectra, that are very similar and compatible

with the data. In Ref. [118], the idea of universality classes was suggested as

a means to classify a wide range of inflation models, and, thus, subsumes a

large number of them in terms of their salient properties relevant to observation.

This approach borrows ideas from the renormalization group (RG) methods of

quantum field theory (QFT), such as the concept of flow away from a fixed point,

here corresponding to the exact de Sitter (dS) geometry, and the use of an analog

to the renormalization group equation (RGE) for the β-function.

The β-function formalism was introduced in Ref. [118] and further developed

and extended in Refs. [119–124], to identify universality among the wide zoology

of inflationary models. This formalism is based on the application of the

Hamilton-Jacobi (HJ) approach to cosmology [125]. It relies on a formal analogy

between the equation describing the evolution of a scalar field in an expanding

background and a RGE of QFT. As will be explained below, this analogy is not

coincidental but has underpinnings with holography. In this framework, the near

scale invariance experienced by the Universe during inflation is interpreted as a

departure of the corresponding RGE from a fixed point, corresponding to an exact

dS spacetime. A single parametrization of the β-function, close to the dS fixed

point, thus, defines a universality class of models that can be grouped together,

sharing a single asymptotic behavior. As a consequence, arbitrary potentials can

be classified into a small set of classes according to the behavior of their associated

β-function in the neighborhood of the fixed point.

This approach has some direct advantages. First of all, by grouping different

potentials into a small set of classes, it significantly reduces the number of relevant

cases to consider. Furthermore, as the formalism relies on intrinsic properties of

inflation, it is completely general and, in particular, it does not assume slow-
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roll. For example, it has been successfully applied to constant-roll inflation [123].

Finally, as mentioned already, this formalism has deep theoretical motivations

arising from the holographic description of the Early Universe (see, for example,

Refs. [126–128]). Within the (A)dS-CFT correspondence of Maldacena [129], the

flow away from the dS fixed point, which is realized during inflation, is dual to

a deformation of the associated conformal field theory (CFT) due to relevant or

marginal operators. By applying these methods to describe the Early Universe,

and, in particular, inflation, it is both possible to shed a new light on some

of its problematic aspects and to provide an alternative interpretation of the

observational constraints [130–137].

By applying the β-function formalism to warm inflation, we show that there are

two intervening characteristic functions regulating the dynamics. One of them

is the function already identified in Ref. [118], which was defined in the cold

inflation case, and which controls the way the inflaton drives the departure from

the dS fixed point. In the warm inflation context, we show that another function

controlling the level of radiation production naturally emerges. By following

the evolution of these two functions, we are able not only to fully characterize

the dynamics, but also to determine when the end of warm inflation smoothly

connects with the radiation-dominated regime. Furthermore, these two functions

allow us to classify different forms of inflationary potentials in certain universality

classes. Since this description sets direct control on the dynamics, by using

parameters which are different from the usual slow-roll coefficients, it offers an

extremely powerful method to describe the inflationary evolution (and its end)

in an independent and novel way.

In this work, we make use of the generalized framework offered by the β-function

formalism to obtain an analytical understanding of warm inflation. We first

show that in some toy models a full analytical description of warm inflation can

be derived. We then focus on more realistic scenarios. In particular, we show

that it is possible to derive a relatively accurate description of both the weak

and strong dissipative regimes. Among the main results of the chapter, there

is the observation that, despite a second functional dependence is introduced,

a universal description of inflation, similar to the one of Ref. [118], can still be

consistently formulated. This allows studying further the effect of the various

forms of the dissipation terms commonly considered in warm inflation on the

classes of universality and on their predictions for the scalar spectral index and

the tensor-to-scalar ratio. Remarkably, we show that, within the β-function
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formalism, it is easy to identify the degeneracy in the inflationary observables for

some models with different dissipation coefficient forms. The results presented in

this chapter have been published in [2].

This chapter is organized as follows. We start in Sec. 4.2 with a brief review of

the theory behind cosmic inflation. We present and contrast the cold and warm

realizations. In Sec. 4.3, we motivate the need for a universal treatment and

show how this is achieved with the β-function formalism. We then present how

the formalism is consistently extended to warm inflation. We provide details on

the method and present explicit examples in Sec. 4.4. The results are presented

and discussed in Sec. 4.5. Our concluding remarks and future perspectives are

given in Sec. 4.6. Greater details on the cosmological perturbation theory of

inflation are given in Appendix C.

Note that we have chosen to work in this chapter in the units of the reduced

Planck mass, where MP/
√

8π = mP = κ−1 = 1.

4.2 Review of Cosmic Inflation

Cosmic inflation refers to an accelerated phase of expansion in the very early

Universe, before the period of grand unification. It has been originally proposed

to solve some of the shortcomings of the SBBM by A. H. Guth [138] and A. A.

Starobinsky [139], and developed by A. D. Linde [140, 141] and A. Albrecht and

P. J. Steinhardt [142].

From the Friedmann equations (2.7)-(2.8), an accelerated expansion is realized if

∣∣∣∣∣−
2Ḣ

3H2

∣∣∣∣∣ =

∣∣∣∣
ρ+ p

ρ

∣∣∣∣ <
2

3
. (4.1)

This condition from the equation of state implies a nearly constant Hubble factor

during the period of inflation. For illustrating purpose, let us study the case of

an exactly constant Hubble factor, denoted HI . A simple computation gives the

scale factor as function of time

a(t) = ai0 exp {HI · t} , (4.2)

where the subscript ”i0” denotes the beginning of inflation. This solution of
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the Einstein equations is referred as a de Sitter space and has been originally

introduced by W. de Sitter [143, 144] and T. Levi-Civita [145]. This spacetime

is realized if the Einstein tensor is constant, or, equivalently, with a constant

energy-momentum tensor. However, in an exact de Sitter space, the expansion is

eternal. It is therefore assumed that the phase of inflation takes place in a quasi-

de Sitter space, where |ḢI | � H2
I but not constant, allowing for a transition to

the reheating era.

The length of the period of inflation is usually characterized by the number of

e-folds N associated with the growth of the scale factor. Defined as dN ≡ −d ln a,

one can derive N(t)

N(t) =

∫ aie

a

d ln a′ = ln
aie
a
' HI∆t , (4.3)

with the subscript ”ie” denoting the end of inflation. In this brief review of

cosmic inflation, we first introduce the shortcomings of the SBBM and the

corresponding solutions coming from a phase of inflation. We then present the

simplest realization of inflation, with a scalar field, and discuss the theory of

the perturbations. Finally, we introduce the warm realization of inflation and

highlight the differences with respect to the cold case.

4.2.1 Shortcomings of the SBBM

The confidence on the SBBM relies on many successes, on both theoretical

and experimental levels. Despite this apparent robustness, the SBBM, in its

original formulation, faces a few imperfections. Fortunately, these shortcomings

are resolved with the introduction of an early phase of inflation.

Horizon Problem The horizon problem is related to the observed causal

connection in the Universe. FLRW cosmologies are built on the simple

assumption of a large scale homogeneity and an isotropy of space. Galaxies

surveys and the temperature of the CMB are strong experimental supports for

the cosmological principle. However, homogeneity implies that some regions of

space are sharing some properties and, therefore, must be in causal contact. The

horizon problem is based on the observed homogeneity between two regions that

appear as causally disconnected in the SBBM.

65



To be more specific, let us define the comoving particle horizon dph

dph(τ) ≡
∫ τ

τi

dτ ′ =

∫ t

ti

dt′

a(t′)
'
(
t

t0

) 1+3ω
3(1+ω)

' a(t)
1+3ω

2 t0 , (4.4)

assuming a constant ω and using that a(t) ∼ (t/t0)2/3(1+ω) with a0 set to 1. The

comoving particle horizon is the comoving distance1 a photon emitted at time ti

travels until time t and is essential to study causality. The surface of the sphere

of radius dph, the comoving distance, delimits the region of the space that is in

causal contact at time t with the spatial position where the photon has been

emitted.

A strong support for the large scale homogeneity of the Universe comes from the

temperature of the CMB. The scale factor at the time of formation of the CMB

is of order a(tCMB) ∼ 10−3a0. Assuming for simplicity a radiation-dominated

universe until tCMB, we find the comoving distance (or future horizon) at the

time of last-scattering of order of 10−3t0. On the other hand, the scale of the

observed homogeneity is given by the comoving distance between tCMB and today,

corresponding to a past horizon. Assuming for simplicity the Universe to be

dominated by matter after the time of last-scattering, one find dph ∼ t0. The

observed area of homogeneity is 106 times larger than the areas in causal contact

at the time of formation of the CMB. This is the horizon problem.

An early phase of inflation provides a solution. If the Universe is expanding

exponentially during a time interval before tCMB, the comoving radius becomes

dph(τ) =

(∫ τi0

τi

+

∫ τie

τi0

+

∫ τ

τie

)
dτ ′ ' 1

aieHI

exp {∆tHI} , (4.5)

where the subscripts i0 and ie denote the beginning and the end of inflation. The

first and last integrals have been safely neglected with respect to the second.

We have defined aie as the scale factor at the end of inflation and HI as the

nearly constant Hubble factor during inflation. We observe that an exponential

expansion drastically enhances the comoving horizon. If the process is long

enough, it will overcome the scale of homogeneity. Assuming that inflation ends

1Since the Universe is expanding over time, the lengths are rescaled. One has to be careful
when comparing distances at different times. The comoving distance allows a definition of
lengths that takes into account the expansion.
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at a temperature of 1015 GeV2 leads to

aie
a0

=
T0

Tie
' 10−28 . (4.6)

An estimate for HI is found by assuming a radiation-dominated universe after

inflation HI ∼ (2tie)
−1 ∼ 1056(2t0)−1. To enforce a causal connection we require

exp {∆t ·HI} > aie ·HI · t0 ∼ 1028 ∼ e64 , (4.7)

and, therefore, approximately 60 e-folds are necessary to solve the horizon

problem.

Flatness Problem The flatness problem is related to the initial conditions at the

Planck scale. In absence of constraints imposed from an underlying symmetry,

naturalness implies that any dimensionless parameter is of order unity. If such

a parameter takes an extremely large or small value, the model appears as

excessively fine-tuned. This is exactly what happens with the energy density

parameter Ω and is the origin of the flatness problem.

To be more specific, the first Friedmann equation (2.7) allows expressing the

fractional deviation of Ω from unity as

Ω−1 − 1 = − 3k

a2ρ
. (4.8)

Assuming for simplicity that before the matter-radiation equality the Universe is

dominated by radiation (ρ ∼ ρr ∼ a−4) and after by matter (ρ ∼ ρm ∼ a−3) and

using that the scale factor scales as the inverse of the temperature we find

Ω−1
Pl − 1

Ω−1
0 − 1

=
Ω−1
Pl − 1

Ω−1
eq − 1

Ω−1
eq − 1

Ω−1
0 − 1

=

(
Teq
TPl

)2(
T0

Teq

)
∼ 10−60 , (4.9)

using TPl ∼ 1032 K and Teq ∼ 104 K. The energy density parameter is 60 orders

of magnitude closer to unity at the Planck epoch compared to today. Since Ω0 is

measured today as 1.001 ± 0.004 at 95% CL [42], the energy density parameter

ΩPl appears as extremely fine-tuned at the Planck scale.

An early phase of accelerated expansion solves this problem by bringing an extra

contribution to (4.9). Computing the deviation of the energy density parameter

2This is the historical choice and is related to the energy scale of GUT.
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between the beginning of inflation and today, one finds

Ω−1
ti0 − 1

Ω−1
0 − 1

=
Ω−1
ti0 − 1

Ω−1
tie − 1

Ω−1
tie − 1

Ω−1
0 − 1

=

[
a(tie)

a(ti0)

]2(
Teq
Tie

)2(
T0

Teq

)
∼ 1 , (4.10)

assuming HI∆t ≥ 60. Due to the exponential expansion, the Universe appears

as spatially flat at the end of inflation even if ΩPl differs from unity. Note that

both the horizon and the flatness problems are solved by approximately the same

number of e-folds.

Monopole Problem The monopole problem is related to the formation of

topological defects in the Early Universe. We have learned in the previous chapter

that from the GUT epoch to the time when the Standard Model prevails, a

cascade of phase transitions is expected to happen, potentially allowing for the

creation of topological defects. We have also learned that the presence of defects

drastically affects cosmology. In particular, if magnetic monopoles are created

at the GUT epoch, they would dominate the energy budget today. The non-

observation of magnetic monopoles and other exotic relics defines the monopole

problem.

An early phase of accelerated expansion ending at the GUT epoch prevents

such defects to affect the later stages of the Universe. The number density,

which is proportional to a−3, is suppressed by a factor of (eH∆t)3 ∼ 1078 during

inflation. More generally, since the relevant energy species and the temperature

scale as negative powers of the scale factor, at the end of inflation, the Universe

is extremely cold3 and empty. Therefore, a period of reheating must follow the

phase of inflation. When inflation is realized with a scalar field, the inflaton, the

potential energy stored in the scalar field is transferred to the other particles via

decays. However, we must stress that even if the phase of inflation empties the

Universe from any undesired relics, it does not prevent the creation of defects in

the later stages of the Universe’s history.

We have learned that an initial phase of accelerated expansion is sufficient to

solve the principal shortcomings of the SBBM. Let us now present how inflation

is achieved by considering the simplest realization with a slow-rolling scalar field.

3Unless there is a dissipative process during the period of accelerated expansion. This is
exactly the framework of warm inflation discussed in Sec. 4.2.4
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4.2.2 Realization of Inflation

The simplest realization of inflation is achieved with a single scalar field,

minimally coupled to gravity and with a canonical kinetic term. The dynamics

is obtained from by the Einstein-Hilbert action

S =

∫
dtd3x

√
|g|
[
R

2
− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (4.11)

where g = det(gµν), gµν being the FLRW metric. From the stress-energy tensor,

given as

Tµν =
2√
|g|

δS
δgµν

, (4.12)

the pressure and energy density associated with the scalar field are derived

ρφ =
φ̇2

2
+
a−2

2
(∇φ)2 + V (φ) , pφ =

φ̇2

2
− a−2

6
(∇φ)2 − V (φ) . (4.13)

The evolution of the system is given by the Friedmann equations and the equation

of motion for the scalar field

φ̈+ 3Hφ̇− ∇
2φ

a2
+
∂V

∂φ
= 0 . (4.14)

The symmetry of the metric, which is a direct consequence of the assumed

homogeneity and isotropy of space, implies that the field is homogeneous. In

general, one can consider φ(t, ~x) = φc(t) + δφ(t, ~x), where the field is seen as a

sum of a classical homogeneous contribution and quantum fluctuations.

The condition for an accelerated expansion becomes

∣∣∣∣∣−
2Ḣ

3H2

∣∣∣∣∣ =

∣∣∣∣
ρφ + pφ
ρφ

∣∣∣∣ =

∣∣∣∣∣
φ̇2

φ̇2

2
+ V (φ)

∣∣∣∣∣ <
2

3
, (4.15)

which is clearly satisfied in the slow-roll regime, where |φ̇2| < V (φ). This leads to

the simple picture of a scalar field slowly rolling down the potential and leading

to an accelerated expansion. At the end of inflation, the field falls into a potential

well and starts oscillating. The expansion stops accelerating and reheating takes

place. The scalar field decays into other relativistic particles, bringing the

Universe into the radiation-dominated era. This scenario is illustrated on the
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left panel of Fig. 4.1, shown in Sec. 4.2.4.

A wide zoology of potentials leading to inflation is present in the literature. A

comprehensive list might be found in the review [146]. For completeness, we

must state that there are more sophisticated scenarios. Those are based on the

relaxation of one of the simplifying assumptions we have made so far. The most

popular examples involve a non-minimal coupling to gravity [139, 147], a non-

canonical kinetic term [148], several scalar fields [149], couplings with gauge fields

and the presence of anisotropies in the metric [150].

A part from solving the shortcomings of the SBBM, the theory of inflation

provides a really important missing piece in the cosmological model, a satisfactory

mechanism to explain the formation of structures.

4.2.3 Structure Formation from Inflation

Locally, the Universe is highly inhomogeneous. For example, the matter is

localized in specific regions of space such as clusters, galaxies or stars. One of the

main questions of cosmology is precisely the origin of the formation of structures.

A simple mechanism relies on cosmological perturbations. Tiny fluctuations of

the energy density grow with the constant addition of matter attracted by gravity.

This process is eventually leading to the structures we observe today. However,

in a universe that is homogeneous and isotropic on large scales, the origin of

these instabilities has to be explained. One possibility arises from the theory

of inflation4. The scalar field responsible for the accelerated expansion being a

quantum field, the presence of quantum fluctuations might serve as seeds for the

density fluctuations. The predictions from the perturbation theory of inflation can

be linked with the anisotropies observed in the CMB, giving some experimental

tests of the model. We briefly review the main characteristics of this mechanism.

More details are given in Appendix C.

Cosmological Perturbations during Inflation The theory of perturbations has

been developed by J. M. Bardeen [151], Bardeen, P. J. Steinhardt and M. S.

Turner [152], V. F. Mukahnov, H. A. Feldman and R. H. Brandenberger [153]

and H. Kodama and M. Sasaki [154]. In the case of inflation, the analysis relies

on the inhomogeneous fluctuations around the homogeneous expressions for the

4Another mechanism is realized with topological defects, as discussed in the previous chapter.
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scalar field and the metric

gµν(t, ~x) = gFLRWµν (t) + δgµν(t, ~x) , φ(t, ~x) = φc(t) + δφ(t, ~x) , (4.16)

where gFLRWµν is the FLRW metric and φc(t) is the classical contribution of the

scalar field responsible for the accelerated expansion. There are three kinds of

perturbations, namely scalar, vector and tensor. However, the gauge freedom in

the choice of coordinates allows for the restriction to two relevant contributions.

The perturbation of the scalar curvature on comoving hypersurfaces R is a linear

combination of the scalar perturbation of the field and the metric. The tensor

perturbation uλ comes from the tensor perturbation of the metric and is related

to the propagation of GWs. λ labels the polarizations of the waves.

The physical observables are obtained from the statistical properties of the

perturbations. In particular, the scalar and tensor power spectra are defined

from the two-point functions

〈0|R(τ, x1)R(τ, x2)|0〉 =

∫
d3kei

~k(~x1−~x2) ∆2
s(
~k, τ)

4πk3
, (4.17)

〈0|uλ(τ, x1)uλ(τ, x2)|0〉 =

∫
d3kei

~k(~x1−~x2) ∆2
t (
~k, τ)

4πk3
. (4.18)

The derivation of the power spectra requires a precise analysis of evolution of

the perturbations. The main characteristics are identified from the equation of

motion for the perturbations called the Mukahnov-Sasaki equation. For the scalar

perturbation, the equation for a mode vk reads

v′′k +

(
k2 − z′′

z

)
vk = 0 , (4.19)

where the prime denotes a derivative with respect to conformal time and z ≡
aφ′/H, with H being the conformal Hubble parameter H = a′/a = aH. The

Mukahnov-Sasaki variable v is related to the comoving curvature perturbation

by v = −zR.

During inflation, the comoving Hubble radius, defined as (aH)−1, is decreasing

and, therefore, two regimes are identified. On sub-horizon scales, the modes

oscillate since k2 dominates in the linear term. On super-horizon scales, the modes

are constant. Since the comoving Hubble radius is decreasing during inflation, the

modes are expected to oscillate until their wavelength becomes larger than the

horizon when they freeze. After the phase of inflation, with the Universe evolving
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in the radiation- and matter-dominated periods, the Hubble radius grows again

and the modes reenter the horizon when k = aH. One should therefore evaluate

the power spectra at horizon crossing. As highlighted in Appendix C, for the

simplest realization of inflation, the scalar and tensor power spectra are given by

∆2
s(k, τ)

∣∣
k=aH

=
1

4π2

H4

φ̇2
, ∆2

t (k, τ)
∣∣
k=aH

= 8

(
H

2π

)2

, (4.20)

evaluated at horizon crossing.

One useful observable related to the power spectra is the spectral indices defined

as

ns − 1 =
d ln ∆2

s(k)

d ln k

∣∣∣∣
k=aH

, nt =
d ln ∆2

t (k)

d ln k

∣∣∣∣
k=aH

. (4.21)

The perturbations being created during inflation in a nearly de Sitter space, these

are expected to have a nearly scale-invariant spectrum. The departure from an

exact scale invariance is precisely measured from ns and nt. One can also consider

the runnings of the spectral indices which are defined as

αs =
d lnns(k)

d ln k

∣∣∣∣
k=aH

, αt =
d lnnt(k)

d ln k

∣∣∣∣
k=aH

. (4.22)

Another observable that plays a significant role in constraining inflation is the

so-called tensor-to-scalar ratio

r =
∆2
t (k, τ)

∆2
s(k, τ)

∣∣∣∣
k=aH

, (4.23)

corresponding to the ratio of the amplitudes of the power spectra.

The predictions for the different observables are sometimes expressed in term of

the so-called Hubble flow functions (HFF) [155] defined as

ε1 ≡ −Ḣ/H2 , εi+1 ≡ ε̇i/(Hεi) . (4.24)

For the simplest realization of inflation with a single slow-rolling scalar field, one

finds

ns − 1 = −2ε1 − ε2 , αs = −2ε1ε2 − ε2ε3 , (4.25)

nt = −2ε2 , αt = −2ε1ε2 . (4.26)
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The prediction for the tensor-to-scalar ratio is proportional to nt which gives the

consistency relation r = −8nt.

Constraints from the CMB The perturbations generated during the phase of

inflation are expected to be the origin of the anisotropies observed in the temper-

ature of the CMB. It is therefore possible to constrain the different parameters

using the statistical properties of a map of the temperature fluctuations ∆T . The

most recent experimental values are obtained from the Planck satellite [114]. The

amplitude of the scalar spectrum is measured as

∆2
s(k∗) = (2.1± 0.1)10−9 , (4.27)

where k∗ = 0.05 Mpc−1 is the pivot scale. This amplitude is sometimes referred

as the COBE normalization. The other two most important observables are the

scalar spectral index, measured as

ns(k∗)− 1 = 0.9649± 0.0042 , (4.28)

and the tensor-to-scalar ratio, which is constrained by an upper bound

r(k∗) < 0.1 , (4.29)

at 95% confidence level. Note that the bound on r is measured for a pivot

k∗ = 0.002 Mpc−1.

4.2.4 Warm Realization of Inflation

Warm inflation [10, 11] differs from the usual paradigm of cold inflation in the

fact that dissipative processes can lead to a sustainable radiation production

throughout the inflationary expansion. Warm inflation will happen for regimes of

parameters such that the inflaton interactions with other field degrees of freedom

are not negligible. They generate dissipation terms, allowing for a small fraction

of vacuum energy density to be converted to radiation. When the magnitude

of these dissipation terms is strong enough to compensate the redshift of the

radiation by the expansion, a steady state can be produced, with the inflationary

phase happening in a thermalized radiation bath. The mechanism is illustrated

on the right panel of Fig. 4.1 and should be contrasted with the cold approach
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(a) (b)

Figure 4.1 (a) The cold realization of inflation. The scalar field rolls down the
potential slowly, leading to the accelerated expansion until it falls
into the potential well, where it oscillates quickly and reheats the
Universe. (b) The warm realization of inflation. The scalar field is
rolling down the potential with a continuous emission of radiation
and evolves smoothly toward a radiation-dominated Universe.

(left panel). Let us briefly review the construction of warm inflation.

Construction of Warm Inflation

For illustrative purposes, we restrict to the case of a single inflaton field with

pressure and energy density respectively given by equation (4.13). The dynamics

of warm inflation at the background level is governed by the equation of motion

for the inflaton field

φ̈+ (3H + Υ)φ̇+ V,φ = 0 , (4.30)

where Υ is the dissipation coefficient, which in general can be a function of both

the temperature and the background inflaton field φ, by the equation for the

evolution for the radiation energy density ρr

ρ̇r + 4Hρr = Υφ̇2 , (4.31)

and by the Einstein equations

3H2 = ρφ + ρr , (4.32)

−2Ḣ = pφ + ρφ + pr + ρr =
4

3
ρr + φ̇2 . (4.33)
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Notice that one of these equations is redundant. Moreover, it would be

equivalently possible to use the continuity equation for the inflaton energy density

ρφ

ρ̇φ + 3Hφ̇2 = −Υφ̇2 . (4.34)

It is common to work with the dissipation coefficient ratio Q, defined as Q ≡
Υ/3H. Typically, the study of warm inflation assumes the radiation to be

thermalized, i.e.

ρr =
π2g∗
30

T 4 = 3pr , (4.35)

where g∗ is the number of relativistic degrees of freedom for the radiation bath.

In general, the relevant microphysical timescales, corresponding to decay and

scattering rates, should be larger than the Hubble rate to ensure thermalization.

There could be other mechanisms beyond the radiation fields/inflaton interaction,

which can dramatically modify this setup. For example, if the radiation fields are

coupled to the Standard Model, the Schwinger process [156] should provide an

extremely efficient mechanism to reach thermalization, see for example Refs. [157–

159]. For the analysis performed in this chapter, we will always assume that some

process ensures that radiation thermalizes and Eq. (4.35) holds. The study of

these mechanisms plays a significant part in a model building perspective. This

is, however, beyond the scope of this work. For a detailed quantification of the

thermalization process relevant for warm inflation and done in the context of

the Botzmann equation, see, e.g., Ref. [160]. Note also that the specific form

for the dissipation coefficient Υ in the above equations can only be determined

by the details of the microphysics during inflation. Different forms of dissipation

coefficients derived from QFT have been derived explicitly e.g. in Refs. [161, 162].

It is also worth mentioning that warm inflation helps in easing the η-problem [163,

164] since in the strong dissipative regime Q� 1 the inflaton mass is larger than

H.

There have been many constructions based on particle physics models demon-

strating the viability of this special regime of inflation, see, for example,

Refs. [165, 166] and for a review, see also Ref. [167]. Recently a first principle

warm inflation model was constructed from QFT which involves just a few

fields [117], thus convincingly demonstrating that warm inflation models are on

an equal footing to cold inflation as model building prospects.
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The Scalar Spectrum of Perturbations in Warm Inflation

The dissipative effects and the presence of a non-vanishing radiation bath are able

to change both the inflationary dynamics at the background and at the fluctuation

levels [168–176], such that there can be distinctive differences between the two

paradigms which could be testable.

Given the complexity of the warm inflation dynamics, which involves a system of

coupled fluids associated with the inflaton and radiation, alongside perturbations,

that could also be coupled [177, 178], an analytical treatment for the spectrum

of perturbations is in general difficult. In what follows, we briefly present this

analysis. For a full discussion we send the reader to the Refs. [168, 179]. The

dimensionless scalar power spectrum ∆2
s(k, τ) at horizon crossing, meaning kτ = 1

where τ is used to denote the conformal time, is a sum of thermal and vacuum

contributions

∆2
s(k, τ) = ∆2

s,th(k, τ) + ∆2
s,vac(k, τ) , (4.36)

where the vacuum contribution in the simplest realization of inflation is given

by Eq. (4.20). In general, the thermal contribution depends on the microphysics

of the model. Nevertheless, a semi-analytical expression for the full spectrum of

scalar perturbations can be derived [10, 163, 180] to give the spectrum at horizon

crossing as

∆2
s(k, τ)

∣∣
τ=k−1 =

(
H2

2πφ̇

)2
[

1 + 2nBE(Tδφ) +

√
12πQ√

3 + 4πQ

T

H

]
G(Q)

∣∣∣∣∣
τ=k−1

,

(4.37)

where nBE = [exp(H/Tδφ)− 1]−1 is the Bose-Einstein distribution. G(Q) is a

function of Q that accounts for the fact that the radiation fluctuations are in

general coupled to the inflaton which is thus leading to a growing mode in the

inflaton fluctuations [177, 178, 181]. Moreover, the temperature Tδφ inside nBE

corresponds to the temperature of the inflaton fluctuations and is not necessarily

the same as T , corresponding to the temperature of the thermal bath. For a

recent discussion based on solutions of the Boltzmann equation relevant during

the warm inflation dynamics, see, e.g., Ref. [182]. In the following we assume

thermal equilibrium and therefore Tδφ = T . Typically, G(Q) reduces to 1 for

Q = 0 and in most of the known models it is well-approximated by a fraction
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of polynomials in Q with numerically fitted coefficients [177, 178]. Notice that

for Q = 0, which also implies T = Tδφ = 0, we recover the usual cold inflation

spectrum given in Eq. (4.20) as expected for consistency.

The presence of radiation induces a series of modifications in the typical CMB

observables, namely ns and r. In particular, two competing effects are expected :

1. The decay of the inflaton into radiation is effectively playing the role of an

additional friction term for the inflaton beyond the usual Hubble friction.

As a consequence, we expect, similarly to [183], a shift in the point of the

potential probed by CMB observations. In particular, this effect is expected

to produce a decrease of ns and an increase in r.

2. The radiation will play the role of a source term for scalar field fluctuations

which induces an amplification in the scalar power spectrum. Indeed, this

can be noticed by Eq. (4.37). However, in general, we do not expect a similar

coupling between radiation and tensor fluctuations. As a consequence this

effect induces an increase in ns and a decrease in r.

If thermal effects are already important (or at least not completely negligible)

at CMB scales, the first of these two effects happens to be subdominant with

respect to the second, meaning that typically ns is increasing and r is decreasing

with respect to the cold case.

For completeness, we should mention that an analysis of non-Gaussianities has

been performed for warm inflation for the weak and strong dissipation regimes,

see, e.g., Refs. [171, 172]. In both cases the predictions are generally in good

agreement with the Planck constraints in Ref. [115].

4.3 Universality in Warm Inflation

Since the original proposals in the early eighties, many models to realize inflation

have been introduced and, in some cases, theoretical predictions are so close that

they are nearly indistinguishable. In order to constrain this waste zoology and

possibly rule out some of these models, it is useful to introduce a systematic

way to classify models of inflation. Several approaches have been introduced

over the last years [184–186]. In this chapter, we work with the β-function

formalism. It relies on the Hamilton-Jacobi formalism of D. S. Salopek and
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J. R. Bond [125], and is based on the idea of describing inflation in terms of

a renormalization group equation. In this framework, models are grouped into

classes that share a minimal set of universal properties. Originally introduced

for the simplest realization of inflation [118], the formalism has been extended to

more sophisticated scenarios, such as non-standard kinetic terms [121], constant-

roll [123] and anisotropic inflation [124]. This method is not only suitable to

deal with concrete models, but it is also strongly connected to deeper theoretical

aspects. In particular, this formalism has an interesting interpretation under the

gauge/gravity duality of J. M. Maldacena [129]. Moreover, this approach sheds

a new light on the inflationary dynamics and provides strong analytical tools to

investigate the evolution of the physical quantities such as the Hubble factor and

the power spectrum during inflation. The goal of our analysis in this chapter is to

extend the formalism to warm models of inflation and identify universality. Let

us start with a review of the β-function formalism.

4.3.1 Identifying Universality with the β-Function Formalism

In the simplest realization of inflation, the evolution of the Universe during

inflation is completely specified by the equation of motion for the inflaton and

one of the two Friedmann equations (2.7)-(2.8). The HJ formalism relies on the

reasonable assumptions that a solution of this system exists and that the time

evolution of φ as function of t is piecewise monotonic. It is then possible to invert

to get t(φ) and use the field as a clock to describe the evolution of the system.

At this point, we introduce the so-called superpotential5

W (φ) ≡ −2H(φ) , (4.38)

and, using the Friedmann equations, we find

φ̇ = W,φ , (4.39)

implying that it is possible to express φ̇ (and therefore all physical quantities) as

a function of φ only.

By following a formal analogy with the definition of the RGE describing the

evolution of the renormalized coupling constant, whose role here is played by

5The formal analogy between the parametrization of the scalar potential in SUSY (for a
review, see for example [187]) and in the formalism [118], justifies the name.
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the inflaton, in terms of the renormalization scale, here the scale factor a, we

introduce the cosmological β-function as

β(φ) ≡ dφ

d ln a
. (4.40)

From this definition and with a simple algebra, we are able to show that the

equation of state (4.1) becomes

p+ ρ

ρ
=

4

3

W 2
,φ

W 2
=
β2(φ)

3
, (4.41)

and implies that a phase of accelerated expansion is realized6 for |β(φ)| � 1.

In analogy with the RG approach, we identify the zeros of the β-function as

fixed points, which, in the cosmological case, correspond to exact dS solutions.

Depending on the sign of the β-function, inflationary periods are then represented

by the flow of field away (or toward) these fixed points7. As a consequence, it is

possible to classify the various models of inflation according to the behavior of the

β-function in the neighborhood of the fixed point, rather than according to the

potential. The advantage of this approach is that the specification of β(φ) actually

defines a class of universality that encompasses many models. These might have

in principle very different potentials but yield to a similar cosmological evolution

(and thus to similar predictions for cosmological observables such as the scalar

spectral index ns and the tensor-to-scalar ratio r). Moreover, it allows the study

of a large variety of models with a single class of function. Notice that, in order to

realize a phase of accelerated expansion, we only need |β(φ)| � 1 and in general

this does not require β → 0. In particular, inflation can be realized even if β(φ)

approaches a small constant value. As discussed in [118], this is the case of power

law inflation [188].

Beyond a Simple Identification of Universality In addition to the original

goal of identifying universality, the formalism has several interesting outcomes.

In particular, it provides strong analytical tools to study the dynamics of the

period of inflation. All relevant quantities are expressed as function of β(φ) [118].

6More precisely, ä/a > 0 requires |β(φ)| <
√

2. For simplicity, in the following we assume
inflation to end at |β(φ)| ∼ 1.

7When the flow is toward the fixed point there is no natural end to the period of accelerated
expansion. Clearly, this configuration is not suitable to describe inflation.

79



For example, the number of e-foldings N becomes

N = − ln(a/af) = −
∫ φ

φf

dφ′

β(φ′)
, (4.42)

where φf is the value of the field at the end of inflation. Similarly, we can compute

the Hubble factor which is equivalent to the superpotential

W (φ) = Wf exp

(
−
∫ φ

φf

β(φ′)

2
dφ′
)
, (4.43)

and the inflationary potential

V (φ) =
3

4
W 2 − 1

2
W 2
,φ =

3

4
W 2

(
1− β2(φ)

6

)
, (4.44)

whose parametrization is similar to the one in the context of supersymmetric

quantum mechanics (for reference, see for example [187]). It is important to

stress that, so far, all the computations are exact, i.e. we have not performed

any approximation and the analysis holds even if we are not assuming slow-roll.

Assuming now to be in a neighborhood of the fixed point, we have |β(φ)| � 1

and ns and r, at the lowest order in terms of β and its derivative, simply read

ns − 1 ' −
(
β2 + 2β,φ

)
, r = 8β2 . (4.45)

In order to obtain the standard expressions of ns and r in terms of N , we first

determine the value of φ at the end of inflation (using the condition |β(φf)| ∼ 1).

We then proceed by computing N(φ) (using Eq. (4.42)) and invert it into φ(N)

to express ns and r in terms of the number of e-foldings.

This parametrization of inflation brings a new perspective on the theoretical side.

The analogy with the QFT β-function is not only at a formal level. Indeed, it is

possible to relate the cosmological β-function of Eq. (4.40) with the β-function

describing the RG flow induced by some relevant operator in the dual QFT, in

the context of the AdS/CFT correspondence. The departure from the exact de

Sitter geometry is linked to a breaking of the dual CFT. However, in order to

properly set this correspondence, we have to specify a mapping between the bulk

inflaton and the coupling in the dual QFT. This typically requires the specification

of some renomalization condition which in principle may require a modification

of the simple expression of β in terms of W . While a detailed discussion of the
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holographic interpretation is beyond the scope of this work, an accurate discussion

of this procedure can be found in [189].

Finally, and for completeness, we must state that this formalism also applies to

quintessence [122]. In this scenario, the flow is not away from a fixed point but

toward. The full history of the Universe in the ΛCDM model with inflation can

then be described by a flow between two fixed points.

Examples of Universality Classes

Let us conclude this review of the β-formalism by briefly presenting some of the

classes introduced in Ref. [118], starting with the so-called monomial class, where

β(φ) = αφq , (4.46)

with α and q being positive constants. This class describes small field models,

i.e., inflation taking place for φ� 1, with

W (φ) = Wf exp

[
− α

2(q + 1)

(
φq+1 − φq+1

f

)]
, (4.47)

implying that, at the lowest order, models of this class feature a hilltop potential.

We can also consider the so-called inverse class, where

β(φ) = − α
φq

, (4.48)

with α and q being positive constants. This class describes large field models,

i.e., inflation taking place for φ� 1, with

W (φ) = Wf exp

[
α

2(q − 1)

(
1

φq−1
f

− 1

φq−1

)]
, (4.49)

implying that at the lowest order, models of this class feature an algebraically

flat plateau potential. The case with q = 1 is special, the superpotential is of the

form W = Wf(φ/φf)
α
2 and corresponds to chaotic models of inflation.

Finally, is the so-called exponential class, where

β(φ) = −α exp(−γφ) , (4.50)
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with α and γ being positive constants. This class describes large field models,

with

W (φ) = Wf exp

{
− α

2γ
[exp (−γφ)− exp (−γφf)]

}
, (4.51)

implying that at the lowest order models of this class feature an exponentially

flat plateau potential.

4.3.2 β-Function Formalism for Warm Inflation

For warm inflation, a model is not only specified by the inflationary potential,

but also by the dissipation coefficient ratio Q, which in general is a function of

both φ and T . Once these two functions are specified, the evolution is completely

determined by the set of equations (4.30)-(4.33). By solving these equations,

we can express all the relevant quantities, i.e., H(t), φ(t), Q(t), and T (t), as

functions of time. Once again, the problem can be studied in the framework of

the HJ formalism. Assuming the evolution of φ(t) to be piecewise monotonic, it

is possible to compute, at least locally, t(φ) and express all the relevant quantities

as functions of the field only.

Setting the Formalism

In analogy with the treatment carried out in the cold case, we introduce a

superpotential W (φ) ≡ −2H(φ). Assuming the radiation energy density to be

quasi-stable8, meaning ρ̇r � 4Hρr, and using the Raychauduri equation (4.33)

we obtain

φ̇ =
W,φ

1 +Q
. (4.52)

By using this equation and Eq. (4.33) we get from Eq. (4.35)

T 4 =
45

2π2g∗

Q

(1 +Q)2
W 2
,φ . (4.53)

To find the temperature as a function of φ only, Eq. (4.53) needs to be solved for T .

Since, in general, Q depends both on T and φ, the solution of this equation might

exist only numerically. Then, once T (φ) is known, the dissipation coefficient ratio

8More on this approximation is said below Eq. (4.58) where we re-express this condition in
terms of the typical quantities of the formalism.
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is expressed as a function of φ only9 as Q(T (φ), φ) ≡ Q(φ). A different notation,

Q, is used here to stress the difference in the functional dependence on φ.

We proceed our discussion by introducing the cosmological β-function as defined

in Eq. (4.40), β(φ) ≡ dφ/d ln a = φ̇/H. Note that the analogy with a RGE still

holds. The equation of state reads

− 2Ḣ

3H2
=

(1 +Q)φ̇2

3H2
= (1 +Q)

β2(φ)

3
. (4.54)

Interestingly, Eq. (4.54) shows that an exact dS geometry is again realized in

correspondence to the zeros of β(φ) and the phase of accelerated expansion of the

Universe stops when (1+Q)β2(φ) is of order one. This is a crucial difference with

respect to the cold case in Eq. (4.41). As Q is always positive, the fixed point is

only attained by a vanishing β-function, but, in general, unless we have β exactly

equal to zero, β2(φ)� 1 is not sufficient to ensure that the Universe is inflating.

In particular, the Universe may stop to inflate because (1 + Q)� β−2(φ), while

β � 1. Another original and strictly warm realization of inflation is the case in

which, departing from the dS fixed point, β(φ) reaches a constant value smaller

than one. In such a scenario, the last part of the inflationary phase is thus driven

and, in particular, is concluded by the evolution of Q. As inflation can only be

realized for β(φ)� 1, its parametrization can still be used to fix the flow in the

neighborhood of the fixed point. Once again, it is thus possible to use β(φ) to

define a set of universality classes as in the cold inflation case.

To make the generalization from cold inflation more evident, let us define

βCI(φ) ≡ −2
W,φ

W
= (1 +Q)β(φ) , (4.55)

which has the exact same dependence on W as the beta function of the cold

inflation, Eq. (4.40). With this definition, the superpotential W can be readily

expressed as

W (φ) = Wf exp

[
−1

2

∫ φ

φf

dφ′βCI(φ
′)

]
, (4.56)

where the subscript f is used to denote quantities evaluated at the end of inflation.

Moreover, using the definition given in Eq. (4.55), it is easy to prove that the

9In principle, it could also be possible to start by directly fixing a parametrization for Q(φ).
More on this will be commented in Sec. 4.6.
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equation of state can be expressed as

− 2Ḣ

3H2
=

β2
CI(φ)

3(1 +Q)
. (4.57)

Again, the fixed point is reached when βCI goes to zero and we see that inflation

ends when β2
CI ∼ 1 + Q. According to Eq. (4.56), βCI is directly associated

with the superpotential and, thus, with the inflationary potential. This equation

makes clear that for Q sufficiently large, the Universe is inflating for βCI > 1. In

this sense, the dissipation coefficient can be interpreted as a friction term that

slows down the evolution of the inflaton field and this is potentially allowing

for inflation in regions of the potentials that are steeper than the ones usually

considered in the cold case. As already mentioned in the previous section, this

could provide a mechanism to ease the η-problem. In order to generalize the

universality classes defined for cold inflation in Ref. [118], we will use, in this

work, the β-functions associated with these classes as choices for βCI . We then

observe how the different dissipation coefficient ratios will affect the predictions

of any classes, this analysis is carried out in Sec. 4.4 and 4.5.

At this point, we can translate the quasi-stable assumption of the radiation energy

density in the language of the β-function formalism

∣∣∣∣
β

4

d ln ρr
dφ

∣∣∣∣ =

∣∣∣∣
βCI

4(1 +Q)

[
Q,φ

Q

(
1−Q
1 +Q

)
+ 2

βCI,φ
βCI

− βCI
]∣∣∣∣� 1 . (4.58)

The validity of this condition has to be checked for each choice of βCI and Q.

However, it is possible to show that for all the cases discussed in this work, this

assumption is satisfied.

Fixed-Point Interpretation

To grasp a better understanding of the competing influences of βCI and Q during

the phase of inflation, it is worth defining the complementary function βT as

βT (φ) ≡ T

H
= −2

T

W
. (4.59)

Using Eq. (4.35) we express

ρr
H2

=
π2g∗
30

T 4

H2
=
π2g∗
30

[TβT (φ)]2 , (4.60)
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Figure 4.2 Some possible inflationary trajectories corresponding to the flow
from the dS fixed point to the solid black line and showing the
departure from the usual cold inflation case (red dashed line). The
curves shown in this plot are illustrative examples which are not
corresponding to any concrete model.

which makes manifest the interpretation of βT . This function captures the amount

of radiation produced during warm inflation. In particular, by considering the

full equation of state,

− 2Ḣ

3H2
=

φ̇2 + 4
3
ρr

3H2

=
β2(φ)

3
+

2π2g∗
45

[TβT (φ)]2

3

=
1

3

[
βCI(φ)

Q+ 1

]2

+
2π2g∗

45

[TβT (φ)]2

3
, (4.61)

it is clear that (as T 6= 0) βT parametrizes the flow from the dS fixed point induced

by radiation. Interestingly, using the definitions of βCI and βT , we can represent

the phase of inflation in a two-dimensional plot depicting the departure from the

usual cold inflation case. In Fig. 4.2, the phase of inflation is represented as a

trajectory starting from, or close to, the dS fixed point at the origin and reaching

the circle of unitary radius, where (1 +Qf)β
2
f = 1, which corresponds to the end
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of inflation. From the equation of state (4.61) we note that the axes in Fig. 4.2

are proportional the square roots of the fractional kinetic and thermal energy

densities. The flow along the different inflationary trajectories can be directly

parametrized by the value of the inflaton field φ, or equivalently by the number

of e-foldings N defined in Eq. (4.63). A motion in the horizontal direction is due

to βCI , whereas a vertical motion is an effect of production of radiation. Since

we have that

TβT (φ) =

√
45

2π2g∗

Q

(Q+ 1)2
|βCI(φ)| , (4.62)

we observe that the shape of the trajectory is mostly defined by the dissipation

coefficient ratioQ. In these kind of plots, any model of cold inflation is represented

as a horizontal line with TβT = 0. Conversely, warm inflation models are expected

to be represented as curves departing from this line. As all the inflationary

trajectories are expected to end on the solid black line, large values of βf, i.e., for

values closer to TfβT f = 0, imply a small radiation contribution to the equation

of state at the end of inflation. Conversely, small values for β(φf) imply a non-

negligible radiation contribution to the equation of state at the end of inflation.

Apart from the de Sitter fixed point at the origin, there are two other special

points on Fig. 4.2. The first is (1,0), where cold inflation usually ends. When a

trajectory crosses this point, the Universe stops inflating and it must then enter

into the (p)reheating phase. The second point, which is not appearing on our

plots, should be (0,2). This corresponds to the Universe being in the radiation-

dominated era, i.e. ρr/(3H
2) ' 1. Notice that all trajectories describing viable

cosmological models, which consistently include the evolution of the Universe

after inflation, must cross this point. However, since in (0,2) we have ρ̇r = 4Hρr,

for sure the assumption of quasi-stable radiation must be violated, implying that

our treatment cannot be extended all the way up to this point.

A model which touches the solid black line for large (order 1) values of√
2π2g∗/45TβT , for example the vertical dotted curve in Fig. 4.2, implies that

the RG flow in the last part of inflation is mainly induced by the radiation. This

does not imply that the Universe is dominated by the radiation, but rather that

it is rapidly approaching the moment where the transition from inflation to a

radiation-dominated Universe takes place. Since in these models the radiation

energy density at the end of inflation is already sizable and the inflaton kinetic

energy is small, an explosive (p)reheating may not be required and the transition
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from inflation to radiation may be smooth. This has to be checked model by

model. Since in warm inflation it is possible to unify the treatment of inflation

and (p)reheating, a self-consistant computation of NCMB, the value of N at which

CMB observables leave the horizon, could in principle be carried out. However,

in order to perform this analysis, we need to study the trajectory until the point

(0,2) is reached, which requires to violate the assumption of quasi-stable radiation.

As this goes beyond the scope of this work, we will adopt NCMB = 60 as a

representative value.

Analytical Expressions

One of the main outcomes of the β-function formalism is the possibility for a deep

analytical treatment of the inflationary dynamics. This is also true when applied

to warm inflation. To illustrate this aspect, let us express some of the relevant

quantities in terms of the β-functions.

The expression of the number of e-foldings N in this formalism reads

N(φ) ≡ −
∫ a

af

d ln a′ = −
∫ φ

φf

dφ′

β(φ′)
= −

∫ φ

φf

dφ′
1 +Q(φ′)

βCI(φ′)
, (4.63)

where φf is the field value at the end of inflation, fixed by β2
CI(φf) = 1 + Q(φf),

and the expression of the inflationary potential which is derived using Eq. (4.32),

V (φ) =
3

4
W 2(φ)

[
1− 1

6

(1 + 3Q/2)

(Q+ 1)2
β2
CI(φ)

]
. (4.64)

As for the physically relevant cases, we expect both βCI and Q to be negligible

while the Universe is deep into the inflationary phase, i.e., for large values of N ,

the parametrization of the inflationary potential is typically mainly determined

by the superpotential W (φ). It is worth mentioning that the formalism is not

only valid at the background level, it can also be used to describe cosmological

perturbations.

The Hubble slow-roll parameters defined in Eq. (4.24) read

ε1 =
1

2

β2
CI

1 +Q
=

1

2
(1 +Q)β2(φ) , (4.65)

ε2 =
2βCI,φ
1 +Q

− βCIQ,φ

(1 +Q)2
, (4.66)
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ε3 =
βCI

1 +Q

2βCI,φφ
1+Q

− 3βCI,φQ,φ
(1+Q)2

− βCIQ,φφ
(1+Q)2

+
2βCIQ

2
,φ

(1+Q)3

2βCI,φ
1+Q

− βCIQ,φ
(1+Q)2

, (4.67)

εi+1 =
βCI

1 +Q

d ln εi
dφ

. (4.68)

In order to have a better connection with the literature on warm inflation, it is

also useful to define

ε ≡ 1

2

β2
CI

1 +Q
, η ≡ 2βCI,φ

1 +Q
, σ ≡ − βCIQ,φ

(1 +Q)2
, (4.69)

such that ε1 = ε and ε2 = η + σ.

Regarding cosmological perturbations, using the definitions given in Sec. 4.3, we

translate the expressions of Sec. 4.2.4 in terms of the typical quantities of the

β-function formalism. We start by expressing the scalar spectrum in terms of

βCI , βT and Q,

∆2
s(k, τ)

∣∣
τ=k−1=− 2

aW

=

[
(1 +Q)W

4πβCI

]2
(

1 +
2

exp 1
βT
− 1

+

√
12πQ√

3 + 4πQ
βT

)
G(Q) .

(4.70)

This expression for the scalar spectrum is used to fix Wf, the value of the

superpotential at the end of inflation, in order for the model to agree with the

COBE normalization (4.27) [42, 114]. In particular, we first derive W (φ) and

then we impose Wf = W (φ(NCMB)) with NCMB = 60. For completeness, let us

proceed by expressing the tensor power spectrum as

∆2
t (k)

∣∣
τ=k−1=− 2

aW

=
W 2

2π2
, (4.71)

which has exactly the same expression as in the cold case.

Finally, we provide the predictions for ns and r, with expressions given by

ns − 1 =
βCI

1 +Q− 1
2
β2
CI

[
2Q,φ

Q+ 1
− βCI −

2βCI,φ
βCI

+
G,φ

G

+
2n2e

1
βT

βT,φ
β2
T

+
√

12πQ,φ√
3+4πQβT −

√
3πQ

(3+4πQ)3/2
(4πQ,φβT ) +

√
12πQ√

3+4πQβT,φ

1 + 2n+ βT
√

12πQ√
3+4πQ


 ,

(4.72)
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r =
8β2

CI(φ)

(1 +Q)2

1(
1 + 2n+ 2

√
3πQ√

3+4πQβT

)
G(Q)

. (4.73)

It has been a basic feature of the fluctuation-dissipation dynamics, intrinsic to

warm inflation, that the tensor-to-scalar ratio in general is lower as compared to

cold inflation. For the φ4 model, it was predicted from warm inflation in [163, 181],

well before the CMB data, that this ratio would be lower. Here, we present a

compact expression for the tensor-to-scalar ratio simply written as the expression

that appears for cold inflation rCI = 8β2
CI(φ) multiplied by a correction factor,

the denominator of Eq. (4.73). In agreement with the literature [163, 181] and,

as discussed in Section 4.2.4, this correction term lowers the prediction for r with

respect to cold inflation when the dissipation coefficient ratio is of order of unity

or when βT is larger than one.

4.4 Applying the Formalism to Explicit Examples

In this section, we provide a general procedure for computing the predictions

in the β-function formulation of warm inflation. In particular, we start by

explaining our numerical methods for examining models, and then focus on

some special cases that admit an analytical treatment. As already explained

in Sec. 4.3, the model is completely specified by fixing a β-function, either β(φ)

or βCI(φ), and by a dissipation coefficient ratio Q(T, φ). In order to generalize

the classes of universality for cold inflation [118], we choose to start by fixing

a parametrization for βCI(φ). The dissipation coefficient Υ(T, φ) is derived

explicitly by QFT methods, see, e.g., Refs. [161, 162]. In this work, we focus

on a rather general parametrization for the dissipation ratio Q = Υ/(3H) that

is motivated by the previous warm inflation models developed in the literature

[117, 161, 162, 165, 169, 190],

Q =
CTm

Hφn
= −2CTm

Wφn
, (4.74)

where C is a constant. This example will also facilitate the illustration of the

methodology. When a complete specification of the model is required, i.e. an

explicit choice for βCI(φ), we will restrict our analysis, for simplicity, to the
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chaotic class

βCI(φ) = −α
φ
, (4.75)

where α is a positive constant. The generalization to other classes of models can

be carried out analogously.

In general, it is unlikely to have a complete analytical description of the model

and, therefore, numerical methods are required. The procedure we have used to

derive numerical solutions is the following. Having βCI(φ), Q(T, φ) and an initial

guess value for the constant Wf, which fixes the normalization of the inflationary

potential, as inputs, the value of the scalar field at the end of inflation φf and the

corresponding temperature Tf are computed using

β2
CI,f = 1 +Qf , (4.76)

T 4
f =

45

8π2g∗

Qf

1 +Qf

W 2
f , (4.77)

where we recognize Eq. (4.53) in the second of these equations. They can be

recasted as

Tf =

(
45C

4π2g∗

−Wf

β2
CI,fφ

n
f

) 1
4−m

, (4.78)

β2
CI,f = 1 +

(
45

8π2g∗β2
CI,f

) m
4−m

(
2C

φnf

) 4
4−m

(−Wf)
2m−4
4−m . (4.79)

The solution of the above system of equations is obtained by first solving for φf

and then computing Tf. The inflaton field then serves as a clock for the evolution

of the system. We evolve the field from φf to φf ± ∆φ with ∆φ � φf being an

infinitesimal step. The sign of the increment is fixed by the position of the fixed

point, i.e., whether the value of the field increases or decreases during inflation.

At this point the relevant quantities T , Q and N are evaluated at φf ±∆φ using

Eq. (4.53), the definition of Q and Eq. (4.63), respectively. The procedure is then

repeated until the value φCMB is reached. The latter is defined as the value of

φ which gives N(φCMB) = NCMB where in this work we assume NCMB = 60 as

the value of N at which CMB observables leave the horizon. As a consequence,

the evolution is solved for all the scales between the end of inflation and CMB

scales. Finally, by comparing the amplitude of the scalar power spectrum with

the COBE normalization [42, 114], it is possible to adjust the constant Wf in
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order to satisfy this constraint. The predictions for the scalar spectral index

and tensor-to-scalar ratio are then computed from Eqs. (4.72) and (4.73) for the

values of φ corresponding to NCMB. These quantities can finally be compared

with the observational constraints [42, 114].

4.4.1 Analytical Methods

In this subsection, we focus on some cases where a complete (or partial) analytical

treatment can be performed. In order to carry out this analysis, we have to

1. Compute φf and Tf, the values of the inflaton field and of the temperature

at the end of inflation using Eqs. (4.76)-(4.77);

2. Derive the superpotential and its derivative using βCI and Eq. (4.56);

3. Compute T (φ) by solving Eq. (4.53) with the dissipation coefficient ratio

Q(T, φ) written explicitly in terms of T and φ. Having T as a function of

the field, we can also write Q(T (φ), φ) as a function of φ only;

4. Finally, we express βT as a function of φ using Eq. (4.62).

Note that, in general, the third step cannot be carried out analytically for non-

trivial forms of the dissipation coefficient. Typically, it is also useful to derive all

the relevant quantities as functions of the number of e-folds. For this purpose,

we thus compute the number of e-foldings N(φ) from Eq. (4.63) and invert it to

find φ(N). Once again, we fix the constant Wf in order to be consistent with

the COBE normalization (4.27). In particular, this is done by solving Eq. (4.70)

for W (N) at N = NCMB. Let us now illustrate the method with some examples

where a partial (or complete) analytical treatment exists.

Constant Q - Full Analytical Treatment

We first restrict to the simplest possible case, a constant dissipation coefficient

ratio Q(T, φ) = Q. We consider a generic βCI and then study the specific example

of the chaotic class specified by Eq. (4.75). For a constant Q, Eq. (4.53) admits

the solution

T (φ) =

[
45

8π2g∗

Q

(1 +Q)2
W 2(φ)β 2

CI(φ)

]1/4

, (4.80)
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where W (φ) is directly set by Eq. (4.56). To check the consistency of the model,

we can compute ρr, by substituting Eq. (4.80) into Eq. (4.60),

ρr =
3

16

Q

(1 +Q)
W 2(φ)β 2

CI(φ) . (4.81)

Interestingly, this can be compared with the result

ρφ =
3

4
W 2 − ρr =

3

4
W 2

[
1− Q

(1 +Q)

β 2
CI(φ)

4

]
, (4.82)

to conclude that, independently on the value of Q, when we approach the dS

fixed point, βCI(φ)� 1, we always consistently get ρr � ρφ.

To proceed further, we need to precise a parametrization for βCI and therefore,

we restrict ourselves to the case of the chaotic class of Eq. (4.75). In this case,

the superpotential and the temperature, respectively, read

W = Wf

(
φ

φf

)α
2

, (4.83)

T (φ) =

[
45

8π2g∗
Q

(1 +Q)2

α2W 2
f

φαf
φα−2

]1/4

. (4.84)

For completeness, we also derive, using Eq. (4.64), the potential

V =
3

4
W 2

f

(
φ

φf

)α [
1− α2

12φ2

2 + 3Q

(1 +Q)2

]
' 3

4
W 2

f

(
φ

φf

)α
, (4.85)

where the approximation in the last step relies on φ� α, which is valid deep in

the inflationary phase. The value of the field at the end of inflation is

φf =

√
α2

1 +Q
, (4.86)

and the number of e-foldings N as a function of φ reads

N =
1 +Q

2α

(
φ2 − α2

1 +Q

)
, (4.87)

which implies

φ =

√
2αN + α2

1 +Q
. (4.88)

92



At this point, we can also compute βCI(N), T (N) and βT (N), whose expressions

are given, respectively, by

βCI(N) = −
√

(1 +Q)α

2N + α
, (4.89)

T (N) =

[
45

8π2g∗
Q

1 +Q
α2−αW 2

f

(
2αN + α2

)α/2−1
]1/4

, (4.90)

βT (N) =

[
90

π2g∗

Q

1 +Q

α2+α

W 2
f

(
2αN + α2

)−α/2−1

]1/4

. (4.91)

Notice that for α = 2, the temperature is constant during inflation. Finally, we fix

Wf using the COBE normalization, and we compute the spectral tilt ns and the

tensor-to-scalar ratio r using Eqs. (4.72) and (4.73). As Q is positive, we expect

a slightly increased value of ns and a slightly reduced value of r with respect to

the cold inflation case.

Weak and Strong Dissipative Limits

For the general choice of Q(T, φ), Eq. (4.74), an analytical description does

not exist in all regimes. However, similarly to the treatment of Ref. [191], an

analytical description of these models can be achieved both in the strong Q� 1

and in the the weak Q� 1 dissipative limits. In particular, it is possible to derive

analytical expressions for Q and T as function of φ only, which we do next.

Weak Dissipative Regime Let us consider the parametrization of Q(T, φ) given

in Eq. (4.74). In the limit Q� 1 we can immediately use Eq. (4.53) to compute

the temperature to obtain

T (φ) =

[
45C

4π2g∗

β2
CI(−W )

φn

] 1
4−m

, (4.92)

and then, by substituting this expression into Eq. (4.74), we find

Q(φ) = 2C

(
45C

4π2g∗

) m
4−m

(−W )
2(m−2)
4−m φ

−4n
4−mβ

2m
4−m
CI . (4.93)
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To completely specify the model, we need to substitute an explicit parametriza-

tion for βCI . For the example of the chaotic class Eq. (4.75), we find that

T (φ) '
[

45Cα2(−Wfφ
−α

2
f )

4π2g∗

] 1
4−m

φ
α−4−2n
2(4−m) , (4.94)

Q(φ) ' 2C

(
45Cα2

4π2g∗

) m
4−m (

W 2
f φ
−α
f

) (m−2)
4−m φ

α(m−2)−2m−4n
4−m . (4.95)

It is worth noting that this regime can only be attained dynamically for a certain

set of values for α, C, n andm. Recall thatWf is fixed by the COBE normalization

and, thus, it should not be considered as a free parameter. In particular, as the

chaotic class describes large field models, meaning that inflation takes place for

large values of φ, this can only be attained if α(m−2)−2m−4n
4−m < 0. It is interesting

that since in the chaotic class both the superpotential and the β-function have

the form of a power law, the temperature and Q(φ) must have a power law

dependence as well. This behavior can actually change for different classes10.

The dependence of T and Q on φ for some particular choices of m and n are

written in Tab. 4.1.

Table 4.1 Power law behaviors of Q(φ) and T (φ) for the chaotic class, in the
weak dissipative limit.

Dissipation Coefficient Ratio Q(φ) ∼ φ# T (φ) ∼ φ#

Cubic (m = 3, n = 2) α− 14 (α− 8)/2

Linear (m = 1, n = 0) −(α + 2)/3 (α− 4)/6

Inverse (m = −1, n = 0) (−3α + 2)/5 (α− 4)/10

A graphic representation of these behaviors for particular sets of m and n can be

seen in Fig. 4.5, shown in Sec. 4.5. Assuming that the model stays in the weak

dissipative regime (this assumption has to be checked model by model) for the

whole period of inflation, we can proceed further with the computation of the

number of e-foldings,

N(φ) =
1

2α

(
φ2 − α2

)
. (4.96)

10 For both the monomial and inverse classes (see Eq. (4.46) and Eq. (4.48)) βCI(φ) is still a
power law, but W (φ) are respectively given by Eq. (4.47) and Eq. (4.49). As a consequence an
approximate power law behavior can only be attained in regions where W is nearly constant, i.e.,
where φ is very close to the fixed point (meaning deep in the inflationary phase). Conversely,
for the exponential class (see Eq. (4.50)) the β-function is not a power law and, thus, the power
law behavior is never approached.

94



Using Eq. (4.77), it is now possible to compute the value of the inflaton field

at the end of inflation as given by φf = α. At this point, in order to check the

consistency of the approximation, we should verify that Q(φf)� 1 or

2C

(
45C

4π2g∗

) m
4−m

(−Wf )
2(m−2)
4−m α

−4n
(4−m) � 1 . (4.97)

Finally, by inverting Eq. (4.96), we obtain

φ(N) =
√

2αN + α2 . (4.98)

Having derived Q(φ), T (φ) and φ(N), we can immediately compute the

predictions for ns and r using Eq. (4.72) and Eq. (4.73).

Strong Dissipative Regime Let us follow a procedure for the strong dissipative

limit analogous to the one carried out above for the weak dissipative limit. As a

first step, we compute the temperature and the dissipation coefficient as functions

of φ only, such that we have

T (φ) =

[
45

16π2g∗C
φnβ2

CI(−W )3

] 1
4+m

, (4.99)

Q(φ) = 2C

(
45

16π2g∗C

) m
4+m

β
2m
4+m

CI W
2(m−2)
4+m φ−

4n
4+m . (4.100)

Once again, restricting to the chaotic class gives

T (φ) =

[
45α2

16π2g∗C
(−Wf)

3
(
φ
−3α/2
f

)] 1
4+m

φ
3α+2n−4
2(4+m) , (4.101)

Q(φ) = 2C

(
45α2

16π2g∗C

) m
4+m (

−Wfφ
−α/2
f

) 2(m−2)
4+m

φ
α(m−2)−2m−4n

(4+m) . (4.102)

Recall that this regime is only attained for a particular set of values for α, C, n

and m and, therefore, the consistency of the condition Q� 1 has to be checked

explicitly model by model. The dependence of T and Q on φ for different choices

of m and n are presented in Tab. 4.2.

Table 4.2 Power law behaviors of Q(φ) and T (φ) for the chaotic class, in the
strong dissipative limit.
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Dissipation Coefficient Ratio Q(φ) ∼ φ# T (φ) ∼ φ#

Cubic (m = 3, n = 2) α/7− 2 3α/14

Linear (m = 1, n = 0) −(α + 2)/5 (3α− 4)/10

Inverse (m = −1, n = 0) (−3α + 2)/3 (3α− 4)/6

Once again, a graphic representation of these behaviors can be seen in Fig. 4.5

shown in Sec. 4.5. Similar to the weak dissipative case (in particular, see

footnote 10), different scalings can be obtained by considering different classes

of models, in particular, choosing a different parametrization of βCI , which

implies different expressions for W (φ). In principle, by assuming that the strong

dissipative regime holds during the last 60 e-foldings, it could be possible to derive

equations similar to Eq. (4.96). However, in most of the cases, this would not be

physically relevant since we typically want Q� 1 at CMB scales.

4.5 Discussion of the Results

In this section, we present and discuss the results of the numerical analysis carried

out by following the procedure outlined in the previous section. While all the

results shown are obtained by considering βCI of the chaotic class, Eq. (4.75),

a similar analysis can be performed for any other class11, such as the monomial

ones, Eq. (4.46), the inverse type of potential, Eq. (4.48), or the exponential

forms, Eq. (4.50). Although we restrict to a single choice for βCI , we consider

the four different cases introduced in Sec. 4.4, namely, the constant Q = C, cubic

Q = CT 3/(Hφ2), linear Q = CT/H and inverse Q = C/(HT ) forms of the

dissipation coefficient ratio Q. The values of the constant C are chosen such that

the value of the dissipation coefficient at the end of inflation is at most of order

ten. Note also that the dimension of C varies depending on the choices of m and

n.

Let us start by discussing the evolution in the plane (βCI , TβT ), shown in

Figs. 4.3-4.4. The motivation for this kind of plots was explained in Sec. 4.3.

As expected, different parametrizations of the dissipation coefficient ratio lead

to different inflationary trajectories. Consistently with our expectations, all the

curves start from the neighborhood of the dS fixed point (βCI , TβT ) = (0, 0)

and end onto the solid black curve, which represents the points in the plane

11It is fair to stress that, according to the discussion of Sec. 4.4.1, for different classes we
expect qualitatively different results for the results shown in Fig. 4.5.
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Figure 4.3 2D plots to show the evolution of βCI and TβT for constant and
linear dissipation coefficients. The values of the constant C have
been chosen to have a dissipation coefficient maximally of order ten
at the end of inflation.
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Figure 4.4 2D plots to show the evolution of βCI and TβT for cubic and inverse
dissipation coefficients. The values of the constant C have been
chosen to have a dissipation coefficient maximally of order ten at
the end of inflation.
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(βCI , TβT ) where inflation ends. One notes that the straight trajectories of the

constant case, among which we have the standard cold case with TβT = 0, are

perfectly consistent with the theoretical expectations; indeed from Eq. (4.62) we

see that (TβT )2 ∝ Qβ2
CI/(1+Q)2. Interestingly, in many of these models inflation

ends with
√

2π2g∗/45TβT = 4ρr/(9H
2) ' 1. This feature implies that, in these

scenarios, the amount of radiation present in the Universe at the end of inflation

is already sufficiently large to quickly take over the inflaton energy density. As

a consequence, already mentioned in Sec. 4.3, these models are not expected to

require an explosive (p)reheating to trigger the transition from inflation to the

radiation-dominated phase.
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Figure 4.5 Loglog plots of the evolution of Q(φ) ≡ Q(φ, T (φ)) (top plots) and
T (φ) (bottom plots) during the last 60 e-folds of inflation for α =
4, C = 106 (left plots) with a dissipation coefficient ratio cubic in
T and α = 4 and C = 2 × 10−3 (right plots) with a dissipation
coefficient ratio linear in T compared with the analytical predictions
of Sec. 4.4.1 in the strong (SDL) and weak (WDL) dissipative limits.
In these models φ decreases during inflation.

Figure 4.5 shows the evolution of T (φ) and Q(φ) ≡ Q(φ, T (φ)) for two illustrative

cases, given by the values α = 2 and C = 105, with a dissipation coefficient ratio

cubic in T and α = 4, C = 2× 10−3 with a dissipation coefficient ratio linear in

T . During inflation the field monotonically evolves from large to small values and
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conversely the dissipation coefficient ratio (top panels of Fig. 4.5) monotonically

evolves from small to large values. As a consequence, we expect the models to

switch from the weak dissipative regime Q � 1 to the strong dissipative limit

Q � 1 discussed in Sec. 4.4.1. We expect the dissipation coefficient Q(φ) to be

monotonically growing with φ during the phase of inflation. On the contrary, the

radiation temperature T (φ) tends to approach the temperature of the thermal

bath of the inflaton energy density. As the latter is expected to slightly decrease

during inflation, the expected behavior of radiation temperature T (φ) is to be

decreasing toward the end of inflation after a possible initial phase of growth.

The top and bottom panels of Fig. 4.5 clearly reproduce these behaviors for Q(φ)

and T (φ).

In both the plots of Q and T , the curves are asymptotically approaching (both

for Q� 1 and for Q� 1) the power law behaviors predicted in Sec. 4.4.1. The

transition from the weak to the strong dissipative limit appears to be sharper in

the cubic case. This is a direct consequence of the different dependences of Q on

φ in the asymptotic behaviors. Hence, the good agreement between theory and

numerical simulations confirms the robustness of the numerical methods.

For each model considered, a unique prediction for the scalar-spectral index and

the tensor-to-scalar ratio is obtained. Figures 4.6-4.7 shows the evolution of the

predictions for ns and r for the chaotic class with different types of dissipation

coefficient ratio. As expected, for very small values of Q at CMB scales, the

CMB observables are, as expected, matching the predictions of the usual cold

inflation case, which in the plots shown in Figs. 4.6-4.7, are represented by

a red star. For larger values of Q, the predictions are modified as typically

happens in warm inflation. It is worth pointing out that the modification of

the predictions, see, in particular, the linear and cubic cases with α = 4, are

qualitatively in agreement with the results of Ref. [180]. The small difference,

at around the 1% level, in the predicted values of ns is mainly due to slightly

different values of T in the numerical evolution and the chosen value of NCMB

used in the present work. As expected, the value of ns increases and the value

of r decreases with Q and T and, thus, models which are in tension with (or

even excluded by) the Planck constraints in the cold case can be recovered in the

warm scenario. The sole exception to this behavior is the cubic case with α = 2

of Fig. 4.6. In this case the values of Q and T are small at CMB scales implying

that the spectrum is not modified by thermal/dissipative effects. However, as

at smaller scales the production of radiation induces a friction that slows down
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Figure 4.6 Predictions for ns and r in linear (top plots) and semilogarithmic
(bottom plots) scale for a set of models of the chaotic class with
α = 2 and the different choices for the dissipation coefficient. For
some of the models shown in this plot, we report the value of Q at
CMB scales (denoted with Q∗).

the evolution of the inflaton field, we see, similarly to Ref. [183], a decrease of

ns and an increase in r due to shifting of the point of the potential probed by

CMB observables. Interestingly, in the quartic case (α = 4) the prediction for

the inverse and the linear dissipation coefficient ratios are degenerate. This is

explained by considering the field dependence of Q in the weak dissipative limit.

From Tab. 4.1 we read that in this regime bothQinverse andQlinear are proportional

to φ−2, hence, the similarity in the predictions.
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Figure 4.7 Predictions for ns and r in linear (top plots) and semilogarithmic
(bottom plots) scale for a set of models of the chaotic class with
α = 4 and the different choices for the dissipation coefficient. For
some of the models shown in this plot, we report the value of Q at
CMB scales (denoted with Q∗).

We conclude this section by presenting in Fig. 4.8 a comparison between the

inflationary potentials (calculated using Eq. (4.64)) for α = 4 corresponding to

some of the cases discussed in this work and some power law potentials of the

form

V (φ) = V0φ
α . (4.103)

Note that the amplitudes are always fixed in order to respect the COBE

normalization. For α = 2, the φ dependence is the same as in the well-known
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4.

case of chaotic inflation [141]. As expected, the two sets of curves are perfectly

matching for large values of φ, meaning deep in the inflationary phase, where

βCI is much smaller than one and the potentials predicted by Eq. (4.64) are

well-approximated by power laws. Conversely, for small values of φ, higher order

corrections induce a deviation in V (φ) from the power law behavior observed at

large scales. This type of analysis might be of particular use in the problem of

reconstructing potentials in warm inflation [192].

4.6 Conclusions and Future Perspectives

In this chapter, we have considered a famous application of fluctuation-dissipation

dynamics, warm inflation. In particular, we have discussed the application

of the β-function formalism for inflation to the warm realization in order to

identify universality among its models. We have shown in Sec. 4.3 that a

consistent treatment of warm inflation can be carried out in the language of

the β-function formalism. Interestingly, we have found that, despite the presence

of an additional functional freedom with respect to the cold case, a universal

description still exists. For example, we have demonstrated that models with

different functional forms for the dissipation coefficient ratios can give rise to very

similar cosmological observables. Moreover, we have shown that this formalism

naturally offers an interesting graphical representation of the inflationary phase in
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terms of bidimensional plots in a plane of the variables (βCI , TβT ), depicting the

departure from the usual cold inflation case. A peculiar property of these results

is that they provide a clear insight on the Universe energy budget in the last part

of inflation, which in turns allows us to infer some of the necessary properties of

(p)reheating.

We have also discussed in Sec. 4.4 the definition of both numerical and analytical

techniques used to perform a systematic study of warm inflation within this

framework. The results of the numerical analysis were then presented and

discussed in Sec. 4.5. All the plots show an extremely good agreement between

numerical results and theoretical predictions. In particular, we stress the

accuracy of the predictions for the power law behaviors of the dissipation ratio

Q and temperature T in both the small and large Q limits. These analytical

approximations could provide an extremely useful tool for further studies on the

topic. For example, by studying the consistency of the conditions Q � 1 and

Q � 1 with the analytical expressions, it is possible to understand at a fully

analytical level whether a given model could or could not access the cold or warm

regime respectively.

While in this analysis our interest was mainly focused on the chaotic class of

potential, the generalization of the analysis to different classes would be an

interesting subject for future works on this topic. It should follow similar steps

as the ones put forward in this work. In particular, as already explained in

Sec. 4.4, different scaling solutions (for small and large Q) are expected to

be obtained for different classes. These analyses would be extremely useful in

expanding and strengthening our understanding of warm inflation. Moreover,

the deepening of our comprehension on the effects of interactions between the

inflaton and radiation could result in a definite step toward the formulation of a

theory of inflation which is somehow connected with the rest of the fundamental

interactions.

Finally, it is worth mentioning that, in order to keep a direct connection with

previous works on this topic (and also with theory), we always proceeded by

first specifying βCI and Q(φ, T ) and then computing T (φ) (and thus Q(φ) ≡
Q(φ, T (φ))) by numerically solving Eq. (4.53). However, it could be equivalently

possible to start by fixing Q(φ) and, then, identifying the parametrizations of

Q(φ, T ) which correspond to this choice. While formally these two possibilities

are exactly equivalent, the latter presents some computational advantages and

has theoretical interests, namely
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• By starting with a fixed parametrization for Q(φ), it could be possible to

solve Eq. (4.53) analytically. This implies that a full analytical treatment

of some models of warm inflation could be achieved;

• As a single parametrization ofQ(φ) corresponds to several parametrizations

of Q(φ, T ), by specifying Q(φ) we are not restricting our analysis to a single

model but rather to a class of models sharing the same properties. In this

sense such an analysis would be more general than the one obtained by

specifying Q(φ, T ). Interestingly, the universality which is manifest at the

background level is not expected to be broken by quantum perturbations.

In particular, this can be directly seen from Eq. (4.70)-(4.71), where it is

manifest that all the quantities appearing in the expressions of the spectra

can be directly computed once βCI and Q are specified.

Such an analysis would be an extremely interesting topic for future studies

on warm inflation. In particular, it would be relevant to understand how,

given a parametrization of βCI , it could be possible to reproduce the usual

parametrizations of Q given, e.g., by Eq. (4.74), using Q(φ).
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Chapter 5

Formulating the Kramers Problem

in Field Theory

5.1 Introduction and Motivations

The problem of escaping a potential well has been an active field of research

over the last century and has applications in several scientific disciplines, such

as in physics and chemistry. Classically, a particle put at rest at the bottom

of a potential stays there if left undisturbed. However, in any realistic physical

system, we expect the presence of fluctuation and dissipation dynamics, which, for

example, naturally emerge through the interactions of the system with a thermal

bath. Under these conditions, an escape from the potential well might be allowed.

The derivation of the escape rate is called the Kramers problem [193] and is, to

a large extent, well-understood for the simplest systems such as a classical point

particle. However, to our knowledge, no explicit extension of this problem to a

relativistic field has been done so far. Since the physics of the Early Universe is

described by cosmological fields immersed in a hot medium, there is a need to

define and understand precisely the rate of escape due to thermal fluctuations

only.

Computing the probability for a classical particle to diffuse has been of great

interest among theoretical physicists, in particular, in the context of stochastic

dynamics. Several methods have been proposed over the years. H. A. Kramers, a

pioneer in the field, derived the so-called Kramers rate [193] using the flux-over-
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population method based on ideas originally developed by L. Farkas in [194].

Another way to obtain the escape rate is achieved with the mean-first-passage-

time (MFPT) formalism using the adjoint Fokker-Planck (FP) operator [195, 196].

However, this approach is more delicate to handle due to complex boundary

conditions. A third method consists of finding the smallest positive, non-

vanishing, eigenvalue of the Fokker-Planck operator. It has been shown that this

eigenvalue is directly related to the escape rate [197]. A comprehensive review of

these methods can be found in [198]. More recently, P. Reimann, G. J. Schmid

and P. Hänggi [199] showed a universal equivalence between these approaches.

When regarding a field instead of a particle, the situation changes significantly.

A lot of attention has been given to the study of quantum tunneling. The

decay rate of a field has been derived by C. G. Callan and S. R. Coleman

at zero-temperature [200, 201] and extended to finite-temperature by A. D.

Linde [202] (also known as the nucleation problem in finite temperature quantum

field theory [203]). The inclusion of gravitational effects has been studied by

Coleman and F. de Luccia in [204]. Even if the formalism describing a field

subject to random forces, stochastic field theory, is known [205, 206], a precise

and complete discussion of the escape problem has never been performed. One

of the main difficulties is the identification of the most suitable approach to be

generalized to a scalar field. J. Zinn-Justin in [206] briefly states the problem

and suggests deriving the smallest eigenvalue and the use of instantons. This is

indeed a possibility but, unfortunately, it faces some analytical limitations when

deriving the rate. The work of J. S. Langer [207, 208] in extending the flux-over-

population method to a 2N -dimensional system appears as the most promising

approach to be used with a field.

The field theory aspect of the problem renders the definition of an escape more

difficult and less intuitive than for a single point particle. In particular, the actual

shape of the potential beyond the potential well plays a role in the computation

of the rate for the field. However, as in the zero-dimensional case, the Kramers

problem can be defined for both an initial true or false vacuum. Using ideas

and the formalism of the flux-over-population method extended to a field, we

will propose a definition of the Kramers problem and explicitly evaluate the rate.

Along the way in this derivation, we will encounter some familiar situations,

such as the Hawking and Moss solution [209]. We will also compare our final

result for the escape rate with the known result of nucleation rate due to thermal

fluctuations [202, 203]. In particular, considering the well-known result of Linde
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for the quantum tunneling rate at finite temperature [202], we will show that, in

the limit where the temperature is sufficiently high for the thermal fluctuations

to dominate over the quantum fluctuations, the nucleation rate is proportional to

the escape rate. This is remarkable since the two results are based on completely

different approaches. This result shows that, when the system is initially in a

false vacuum, the nucleation rate is indeed a special case of the escape rate.

Apart from the formal interest of the computation of an escape rate for a scalar

field, the result has potentially many applications not only for cosmology but

also beyond. The process might help in a precise understanding of out-of-

equilibrium situations, for example during phase transitions. In particular, it

might influence the formation of topological defects and potentially alter the

stability of the embedded configurations. The formalism is not intended to be

used only in cosmology. The escape rate is well-suited for situations where

the field needs to probe several local minima. This scenario appears in string

theory, with the string landscape, and, also, in condensed matter physics, in the

context of the glass transition. Finally, the formalism is formally identical to the

stochastic quantization, especially used in lattice field theory, where the origin

of the stochastic forces is quantum instead of thermal. A precise knowledge of

a transition rate is therefore of great interest in this context. The results of this

chapter have been presented in [210].

This chapter is organized as follows. We start in Sec. 5.2 with a brief review of

the Kramers problem and the methods necessary to compute the escape rate in

the simplest case of a point particle. We focus on two approaches, the flux-over-

population method, since it is the best candidate to be generalized to a scalar

field, and the MFPT which provides a simple interpretation of the escape rate.

We also present the proof of the equivalence of the two methods. In Sec. 5.3, we

first state the difficulties in the formulation of an escape problem for a scalar field.

We then review some basics of stochastic field theory with the Langevin and the

associated Fokker-Planck equation. We then define and derive the escape rate

for a scalar field using the flux-over-population method. This is the main result

of this chapter. In Sec. 5.4, we discuss some potential applications for cosmology

and in other domains of physics. We provide our concluding remarks in the last

section. Explicit details about the computations are given in Appendix D.
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5.2 Rate of Escape of a Classical Point Particle

To introduce the escape problem and the associated computations, we consider

the simple example of a classical point particle in a metastable potential.

We review the two formalisms, based on the Langevin and the Fokker-Planck

equations. The Fokker-Planck formalism is fully equivalent to the Langevin

approach and provides the tools needed for an analytical derivation of the escape

rate. We investigate two methods, the flux-over-population and the mean-

first-passage-time, to obtain the escape rate. Finally, the proof of the formal

equivalence between the two approaches is presented and allows for a clear

interpretation of the result.

5.2.1 Point Particle in a Metastable Potential

�� ��
�

Δ�

�(�)

Figure 5.1 Potential corresponding to the escape problem. The position xA is
the local minimum, where the point particle sits initially, and xB
the local maximum of the potential. The barrier height is denoted by
∆V .

We consider a classical point particle of mass m initially located at a local

minimum xA of the potential V (x). For simplicity, we assume only one direction

of escape, through the closest local maximum located at xB on the right of xA.

On the left of the local minimum, the potential diverges. The situation is depicted

on Fig. 5.1. Beyond the local maximum at xB, the potential might have another

local or global minimum or be unbounded from below. The height of the barrier

is denoted by ∆V .
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In a classical description, the particle sitting at the local minimum stays there

forever and an escape from the potential well is not allowed. The dynamics is

governed by Newton’s second law

m
d2x

dt2
= −V ′(x) , (5.1)

where the prime denotes a derivative with respect to x. The position xA at the

local minimum of the potential is stable. In other words, xA is an attractor.

Under a small perturbation, the particle comes back to the original position.

In the presence of a thermal bath or a fluid, in which the particle is placed,

the situation is altered by the two competing effects intrinsic to fluctuation

and dissipation dynamics. The random forces, originating from the thermal

fluctuations, push the particle away from the initial position and allow for a

climb of the potential barrier. In addition, the damping tends to slow-down the

particle and prevents a come back once the particle is displaced from xA. Due

to the combined effect of fluctuation and dissipation, the system is not stable

anymore and there is a non-zero probability for the particle to escape from the

well. In particular, after a sufficiently long time, it is reasonable to expect that

the particle has passed over the barrier.

We are interested in the rate at which the particle escapes from the potential well.

The escape rate is closely related to the inverse of the average time needed to

pass, for the first time, the local maximum of the potential. This time is known

in the literature as the mean-first-passage-time [195, 196]. A naive inspection

indicates that the escape rate should only depend on the damping coefficient,

the strength of the noise, on the temperature and on the potential, in particular,

the height of the barrier and the curvature at the minimum and the maximum.

Since the escape is defined from the first-passage at the top of the barrier, the

characteristics of the potential beyond the maximum should not play any role.

One clarification on terminology is worth stating here. For a classical point

particle, the escape rate is different from and should not be confused with a

diffusion rate to the next minimum. The diffusion rate is typically smaller than

the escape rate since, once the particle has passed over the top, it must then go

down the potential on the other side and, eventually, reach the minimum. If the

next minimum is at lower energy, the diffusion rate is a decay rate. Let us now

formulate the escape problem.
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5.2.2 Langevin and Fokker-Planck Descriptions

The Langevin and the Fokker-Planck formalisms are the two equivalent ap-

proaches used to describe a particle subject to random forces. We introduce

both of them and present their strengths and limitations.

Langevin The Langevin equation is obtained by the inclusion of the random

force, parametrized with a stochastic noise ξ(t), and the damping term to

Newton’s second law

m
d2x

dt2
= −ηdx

dt
− V ′(x) + ξ(t) , (5.2)

where η is the damping coefficient. For simplicity, the noise will always be

assumed to be Gaussian throughout this work. The average over the noise of

an operator O is defined as

〈O(x)〉ξ ≡
∫
d[ξ]O(x) exp

{
− 1

2Ω

∫ tf

t0

dt′ξ2(t′)

}
, (5.3)

where t0 and tf are the initial and final times. The measure of integration is

chosen to satisfy 〈1〉ξ = 1 or

d[ξ] =
M∏

i=1

d[ξi] =
M∏

i=1

dξi

√
ε

2Ωπ
, (5.4)

where time has been discretized in M steps and ε ≡ (tf − t0)/M . A Gaussian

noise satisfies the following relations

〈ξ(t)〉ξ = 0 , 〈ξ(t)ξ(t′)〉ξ = Ωδ(t− t′) , (5.5)

where Ω parametrizes the strength of the noise. The damping coefficient η is

related to Ω by the Einstein relation Ω = 2ηkBT .

The Langevin equation is a stochastic differential equation for a random variable

and is therefore not deterministic. The stochastic nature of the equation

drastically limits the analytical treatment. The Langevin equation is, however,

useful for numerical simulations where the evolution for an infinitesimal time step
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is given by

mv(t+ dt) = mv(t)− ηv(t)dt− V ′(x)dt+

∫ t+dt

t

dτξ(τ) . (5.6)

Sometimes, the overdamped limit of the equation is considered. In the case of

large damping, the motion of the particle is slow and therefore the acceleration

term is safely neglected with respect to the damping term. In this limit, Eq. (5.2)

becomes

η
dx

dt
= −V ′(x) + ξ(t) , (5.7)

and is called the overdamped Langevin equation.

To proceed with an analytical treatment, we consider the deterministic formula-

tion of the problem, described by the Fokker-Planck equation.

Fokker-Planck The idea behind the Fokker-Planck description is to consider

the evolution of the probability distribution of the quantities of interest, in our

case, the position and the velocity of the particle. Due to the presence of random

forces, each realization is achieved with a certain probability. As we will learn

next, the evolution of the probability distribution turns out to be deterministic.

We are interested in the position and the velocity of the particle as function of

time. The Langevin equation gives a set of two first-order differential equations

for x(t) and v(t)

dx

dt
= v , (5.8)

m
dv

dt
= −ηv − V ′(x) + ξ(t) . (5.9)

The Fokker-Planck probability distribution is defined as

P (x, v, t | x0, v0, t0) ≡ 〈δ[x(t)− x]δ[v(t)− v]〉ξ , (5.10)

where the arguments x(t) and v(t) of the delta-functions on the right are the

solutions of the Langevin equation and x and v the arguments of the probability

distribution. P is the averaged probability to find the particle at position x with

velocity v at time t knowing the initial position x0 and velocity v0 at time t0.
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The probability distribution satisfies the Fokker-Planck equation1

∂

∂t
P (x, v, t | x0, v0, t0) = −LFPP (x, v, t | x0, v0, t0) , (5.11)

where LFP is the Fokker-Planck operator defined as

LFP ≡
∂

∂x
v − 1

m

∂

∂v
[ηv + V ′(x)]− Ω

2m2

∂2

∂v2
. (5.12)

The Fokker-Planck equation is an ordinary differential equation for the probabil-

ity distribution P and, therefore, analytical methods can be applied.

In the large time limit, the system is expected to reach equilibrium. The

equilibrium probability distribution P0 is a time-independent solution of the FP

equation given by

P0(x, v) =
1

Z exp

{
−β
(

1

2
mv2 + V (x)

)}
=

1

Z exp {−βE(x, v)} , (5.13)

where E is the energy of the non-dissipative system and the partition function

Z is the normalization. Note that the equilibrium distribution always formally

exists as a solution of the FP equation, however, it does not necessarily imply that

the system possesses an equilibrium state. The equilibrium distribution might be

non-normalizable, in particular, if the potential is unbounded from below.

Finally, in the overdamped limit, the FP probability distribution is defined as

P (x, t | x0, t0) ≡ 〈δ[x(t)− x]〉ξ , (5.14)

the FP equation reads

∂tP (x, t | x, t0) =

(
1

η

∂

∂x

∂V

∂x
+

Ω

2η2

∂2

∂x2

)
P (x, t | x0, t0) , (5.15)

and the equilibrium distribution is simply

P0(x, v) =
1

Z exp {−βV (x)} , (5.16)

which might be non-normalizable as in the general case.

1Explicit details on the derivation and a discussion about the properties of this equation can
be found in Refs. [197, 206]. Note also that the derivation of the Fokker-Planck equation for
the scalar field presented in Appendix D.1 is analogous.
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5.2.3 Computation of the Escape Rate

Over the last century, several methods have been proposed to estimate the escape

rate2. Since our final goal is to consider a cosmological scalar field, we focus on the

flux-over-population method that appears as the most promising candidate for

such a generalization. For a better interpretation of the escape problem, we also

introduce the framework of the mean-first-passage-time and present the solution

in the overdamped limit. By showing the formal equivalence between the two

methods, we prove that the escape rate is indeed the inverse of the MFPT.

Flux-over-Population Method

The flux-over-population method has been introduced by L. Farkas in [194] and

the explicit computation of the rate has been achieved by H. A. Kramers in [193].

V(x)
P0(x)
P(x,t0|x0,t0)

��� �� �� ��� ��
�

Figure 5.2 Example of a situation studied with the flux-over-population method.
The blue line is the potential V (x). The red dash-dotted line is the
initial and the green dotted line is the equilibrium Fokker-Planck
probability distribution for the position. The position xA is the
initial location of the particle, xB the local maximum, xC a second
local minimum, xSo and xSi the positions of the source and the sink
respectively.

Let us consider the situation depicted in Fig. 5.2. For illustrative purposes, we

have chosen an asymmetric double-well potential. Similar reasonings apply to

any kind of potential as long as it possesses a local minimum in the vicinity

2For a comprehensive review of these methods, we invite the reader to refer to [198].
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of a local maximum3. The particle is initially located at the minimum xA and

the Fokker-Planck probability distribution at time t0 is a product of two delta

functions

P (x, v, t0 | xA, 0, t0) = δ(x− xA)δ(v) . (5.17)

In the large time limit, the system has reached equilibrium and the probability

distribution is given by Eq. (5.13). The position-dependent parts of the initial

and equilibrium probability distributions are depicted in Fig. 5.2 with the red

dash-dotted line and the green dotted line respectively. During the evolution of

the probability distribution, given by the Fokker-Planck equation (5.11), there

is a flux of probability at the maximum of the well. The origin of this flux of

probability is precisely due to the fluctuation and dissipation dynamics discussed

previously.

The idea behind the flux-over-population method relies on the construction of

a stationary situation. The inclusion of sources and sinks maintains a constant

probability current across the well. The role of the sources, located on the left of

the minimum at xSo, is to supply to A-well with particles and keep a constant

number density inside the well. The particles thermalize and eventually leave the

well before being removed by the sinks, located on the right of the maximum at

xSi. Since the total probability flux j is equal to the rate of escape k times the

population of the A-well nA, the flux-over-population method predicts

k ≡ j

nA
, (5.18)

as a solution for the escape rate.

The population of the A-well is given by the integration over the probability

density

nA =

∫

A−well

dxdv P (x, v) , (5.19)

which corresponds to the probability to be in the well, with x ∈] −∞, xB] and

v ∈]−∞,+∞[. The flux at the barrier is

j =

∫ +∞

−∞
dv vP (xB, v) , (5.20)

3The shape of the potential influences the form of the equilibrium distribution, however, the
existence of a probability flux at the top of the potential is guaranteed.
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which is the probability to pass over the maximum with some velocity.

The derivation of the rate requires two steps. First, we obtain the probability

distribution and then compute the flux and the number-density. The probability

density P is a solution of the Fokker-Planck equation (5.11) with the particular

boundary conditions dictated by the specific steady-state situation in consider-

ation. The particles are at equilibrium inside the A-well and the probability

density is given by Eq. (5.13). Since the sinks remove the particles once they

have passed the maximum, we impose

P (x > xSi, v) ' 0 . (5.21)

Finally, at the top of barrier, there are no sources nor sinks and the potential

V (x) is approximated as

V (x) ' V (xB)− 1

2
|V ′′(xB)|(x− xB)2 +O[(x− xB)3] , (5.22)

and, therefore, the FP equation (5.11) becomes

{
− ∂

∂x
v +

1

m

∂

∂v
[ηv − |V ′′(xB)|(x− xB)] +

Ω

2m2

∂2

∂v2

}
P (x, v) = 0 , (5.23)

near the maximum.

The construction of P (x, v) relies on the Kramers ansatz [193]

P (x, v) = ζ(x, v)P0(x, v) , (5.24)

where P0 is the equilibrium distribution and ζ is chosen to satisfy the boundary

conditions

lim
x→xA

ζ(x, v) = 1 , ζ(x > xSi, v) = 0 . (5.25)

Applying the Fokker-Planck operator on the ansatz and using the equilibrium

distribution Eq. (5.13), we obtain the equation for ζ

{
−v ∂

∂x
− 1

m
[ηv + |V ′′(xB)|(x− xB)]

∂

∂v
+

Ω

2m2

∂2

∂v2

}
ζ(x, y) = 0 , (5.26)

where we identify the adjoint Fokker-Planck equation. In order to solve this

equation, Kramers made the further assumption that ζ depends only on u, a
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linear combination of x and v

u ≡ (x− xB) + av . (5.27)

The equation for ζ(u) becomes

−
[
(1 +

a

m
η)v +

a

m
|V ′′(xB)|(x− xB)

]
ζ ′ + a2 Ω

2m2
ζ ′′ = 0 , (5.28)

where the prime denotes a u-derivative. For consistency with the assumption

that ζ is a function of u only and, in order to obtain the correct behavior at the

boundary, the factor in front of ζ ′ must be a linear function of u. Imposing

λu ≡ −
[
(1 +

a

m
η)v +

a

m
|V ′′(xB)|(x− xB)

]
, (5.29)

the constants a and λ are found to be

λ± = − η

2m
±
√
|V ′′(xB)|

m
+
( η

2m

)2

, a = − m

V ′′(xB)
λ± , (5.30)

where the two solutions for λ have opposite signs.

Solving for ζ(u) by inserting (5.29) in the differential equation and integrating

twice gives

ζ(u) =

√
β[V ′′(xB)]2

2πηλ+

∫ ∞

u

dz exp

{
−β [V ′′(xB)]2

2ηλ+

z2

}
, (5.31)

where λ+ has been chosen to have an overall negative exponent and therefore ζ

to vanish for large positive x. The factor in front of ζ has been chosen to satisfy

the other condition, ζ going to unity inside the A-well.

Having all elements at disposal to compute the probability flux j, we obtain

j =

∫ ∞

−∞
dv vζ(xB, v)

1

Z exp

{
−β
[

1

2
mv2 + V (xB)

]}

=
1

Z

(
λ+

β

)
1√

m|V ′′(xB)|
exp {−βV (xB)} , (5.32)

where we have used integration by parts. The population nA of the A-well is

simply

nA =

∫

A−well

dxdvP (x, v)
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' 1

Z

√
2π

βm

√
2π

βV ′′(xA)
exp {−βV (xA)} , (5.33)

where the potential has been expanded around the local minimum in xA and the

limit of integration for x safely extended to infinity.

Taking the ratio of j and nA, the escape rate is found to be

k =

√
|V ′′(xB)|

m
+
(
η

2m

)2 − η
2m

2π

√
V ′′(xA)

|V ′′(xB)| exp {−β [V (xB)− V (xA)]} , (5.34)

which is the famous result of Kramers. As expected, the rate depends only

on the parameters η (or equivalently Ω), the temperature, the curvature of the

potential at the initial local minimum and the nearby maximum and the height

of the barrier. The shape of the potential on the other side of the well does not

influence the final result. The height of the barrier ∆V = V (xB)− V (xA) can be

seen as the activation energy. Finally, note that in the limit of small damping,

i.e. |V
′′(xB)|
m

�
(
η

2m

)2
, the escape rate recovers the result of I. Affleck in [211].

Mean-First-Passage-Time over the Barrier

An alternative derivation of the escape rate is achieved with the method of the

mean-first-passage-time. The first-passage-time (FPT) is defined as the time the

particle takes to leave a domain D. In our case, it corresponds to the time needed

for the particle initially at xA, to pass over the maximum at xB. Since the forces

acting on the particle are random and the dynamics not deterministic, the FPT is

different for each realization. We can, however, define the MFPT as the average

of the FPT and estimate the escape rate as its inverse.

A formal definition of the problem relies on the introduction of the survival

probability S(t | x0, v0, t0). It corresponds to the probability to be still in D
after a time (t − t0) while being initially at position x0 with velocity v0. In our

case, the domain is the A-well where x ∈]−∞, xSi], where the upper limit of the

domain, xSi, is a point chosen to be near, but beyond, the maximum, to ensure

the passing. The survival probability is defined as

S(t | x0, v0, t0) =

∫

D
dxdv P (x, v, t | x0, v0, t0) = Prob [T (x0, v0) > (t− t0)]
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=

∫ ∞

(t−t0)

dt f(t | x0, v0) , (5.35)

where T (x0, v0) is the FPT starting at x0 with initial velocity v0 and f(t | x0, v0)

is the probability distribution for T (x0, v0). The above relation is motivated by

the following reasoning, the probability to be in the domain at time t is the same

as the probability of having a first-passage-time larger than (t− t0).

From equation (5.35), we deduce the following relation between S(t | x0, v0, t0)

and f(t | x0, v0)

f(t | x0, v0) = −∂S(t | x0, v0, t0)

∂t
. (5.36)

The moments 〈T n〉 of the FPT are defined as

〈T n〉 ≡
∫ ∞

t0

dt (t− t0)nf(t | x0, v0)

= n

∫ ∞

t0

dt (t− t0)n−1S(t | x0, v0, t0) , (5.37)

and, in particular, the MFPT τ reads

τ ≡ 〈T 〉 =

∫ ∞

t0

dt S(t | x0, v0, t0) =

∫ ∞

t0

dt

∫

D
dxdv P (x, v, t | x0, v0, t0) . (5.38)

We understand this expression for τ in the following way. The averaged first-

passage-time is the sum of all the probabilities to be in the domain D at any

time t larger than t0. If the particle is never in D, the integrand vanishes and

so does the MFPT. If, on the contrary, the particle is always in the domain,

the integral over the probability distribution is normalized to one and the time

integral diverges, leading to an infinite MFPT.

Using the adjoint Fokker-Planck equation, it is possible to find an explicit solution

for the MFPT

L†FP τ =

∫ ∞

t0

∫

D
dxdv L†FPP (x, v, t | x0, v0, t0)

= −
∫

D
dxdv [P (x, v,∞ | x0, v0, t0)− P (x, v, t0 | x0, v0, t0)] = 1 , (5.39)

where we assumed that the probability to be in the domain for t going to infinity

vanishes, and used P (x, v, t0 | x0, v0, t0) = δ(x− x0)δ(v − v0). To find the mean-

first-passage-time, it is sufficient so solve L†FP τ = 1 with the boundary condition
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τ = 0 on ∂D. Despite the apparent simplicity of the equation describing the

MFPT, the computation turns out to be rather involved in practice. However,

an elegant solution exists in the overdamped limit.

Overdamped Solution In the overdamped limit, the equation for the MFPT

L†FP τ = 1 reads

−
(
−1

η

∂V

∂x
+

Ω

2η2

∂

∂x

)
∂τ

∂x
= 1 . (5.40)

After a multiplication with the integrating factor e−βV (x), the equation for τ

becomes

∂

∂x

(
∂τ

∂x
e−βV (x)

)
= −βηe−βV (x) . (5.41)

The integration over the spatial coordinate from −∞ to x and assuming a

reflecting boundary at x→ −∞, i.e. lim
x→−∞

δτ
δx

= 0, we get

∂τ

∂x
= −βη exp {βV (x)}

∫ x

−∞
dz exp {−βV (z)} . (5.42)

Integrating again from the initial position x0 to xf , which is situated on the

boundary of the domain D, xf ∈ ∂D (and so τ(xf ) = 0), we obtain

τ(x0) = ηβ

∫ xf

x0

dy exp {βV (y)}
∫ y

−∞
dz exp {−βV (z)} , (5.43)

which is known as the Pontryagin et al. solution of the Kramers problem [212].

Metastable Potential The MFPT can be derived explicitly for a particle

initially located at x0 = xA, the metastable minimum of the potential V (x)

of Fig. 5.1. The domain D is the range ]−∞, xSi[. Considering the last integral

in Eq. (5.43), the integrand is maximal around the minimum of the potential and

therefore the following approximation is valid

V (z) ' V (xA) +
1

2
V ′′(xA)(z − xA)2 +O[(z − xA)3] , (5.44)
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and the integral becomes

∫ y

−∞
dz exp {−βV (z)} = exp {−βV (xA)}

∫ y

−∞
dz exp

{
−β

2
V ′′(xA)(z − xA)2

}

'
√

2π

βV ′′(xA)
exp {−βV (xA)} , (5.45)

where the upper limit of integration has been safely extended to infinity in the

last step. The remaining integral has its integrand maximal around the local

maximum of the potential and therefore V (y) is approximated as

V (y) ' V (xB)− 1

2
|V ′′(xB)|(y − xB)2 +O[(y − xB)3] , (5.46)

and the integral becomes

∫ xSi

xA

dy exp {βV (y)} = exp {βV (xB)}
∫ xSi

xA

dy exp

{
−β

2
|V ′′(xB)|(y − xB)2

}
.

(5.47)

By the same argument as above, the limits of integration are extended to infinity

allowing the computation of the integral

∫ xSi

xA

dy exp {βV (y)} ' exp {βV (xB)}
∫ ∞

−∞
dy exp

{
−β

2
|V ′′(xB)|(y − xB)2

}

=

√
2π

β|V ′′(xB)| exp {βV (xB)} . (5.48)

The MFPT τxA→xSi is then given by

τxA→xSi =
2πη√

V ′′(xA)|V ′′(xB)|
exp {β[V (xB)− V (xA)]} . (5.49)

We observe that the MFPT in the overdamped limit is the inverse of the

rate (5.34) derived with the flux-over-population method, in the same limit. This

is not a coincidence since, as we will see next, there is a formal equivalence

between the two approaches.
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Formal Equivalence Between the MFPT and the Flux-over-Population

Method

A formal relation between the flux-over-population and the MFPT methods has

been shown in Refs. [198, 199]. We have learned in the previous section that the

MFPT τD(x0, v0) is defined by the equation

L†FP τD(x0, v0) = 1 , (x0, v0) ∈ D , (5.50)

and the boundary condition τD(x0, v0) = 0 for x0 ∈ ∂D. The Green function

g(x, vx | y, vy) for the Fokker-Planck operator on D is defined as

LFP (x, vx)g(x, vx | y, vy) = kδ(x− y)δ(vx − vy) , (x, vx) ∈ D , (5.51)

g(x, vx | y, vy) = 0 , x ∈ ∂D . (5.52)

The Green function might be interpreted as a stationary probability distribution,

since it is a time-independent solution of the FP equation at every point of the

phase space but (y, vy). This point might be seen as an additional point source

of strength k. Moreover, the boundary D acts as a sink. The conservation of

probability implies that the source strength is related to the probability to be

absorbed per unit time or

k =

∫

D
dxdvx LFP (x, vx)g(x, vx | y, vy)

=

∫

∂D
dSi Ji(x, vx | y, vy) , (5.53)

where Ji is the probability current density defined from the Fokker-Planck

equation

LFP (x, vx)g(x, vx | y, vy) =
∂

∂x
Jx +

∂

∂vx
Jvx . (5.54)

After a multiplication of the Green function with the MFPT and the integration

over the domain D, we obtain

∫

D
dxdvx τD(x,vx)LFP (x, vx)g(x, vx | y, vy) = k

∫

D
dxdvx τD(x,vx)δ(x− y)δ(vx − vy) ,

∫

D
dxdvx [L†FP (x, vx)τD(x, vx)]g(x, vx | y, vy) = kτD(y,vy) , (5.55)
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and, therefore, the MFPT becomes

τD(y, vy) =

∫
D dxdvx g(x, vx | y, vy)∫
∂D dSi Ji(x, vx | y, vy)

, (5.56)

which is precisely the inverse of the flux-over-population formula for the escape

rate with a source located at y inside the well.

This result shows the equivalence between the escape rate derived with the

flux-over-population method and the MFPT. The latter provides a simple

interpretation of the escape problem. The escape time, given by the inverse

of the escape rate, is similar to the average time needed for a particle to leave

a domain. However, the MFPT faces some practical difficulties when solving for

the rate, in particular, beyond the overdamped limit. The flux-over-population

method is better suited to obtain an analytical solution.

5.3 Escape Rate for a Scalar Field

The main objective of this analysis is the definition of the Kramers problem

in field theory. Using the knowledge gathered with the classical point particle

case, we first describe the escape problem for a scalar field and show that the

formulation of a meaningful definition is not straightforward. The dynamics of

a field under random fluctuations is described by stochastic field theory. We

introduce the two usual formulations, the first based on the Langevin equation,

which has a direct interpretation but is limited in its analytical treatment, and the

Fokker-Planck approach, which derivation is more involved but provides strong

analytical tools. We use ideas from the flux-over-population method to define the

Kramers problem, derive explicitly the escape rate for a scalar field and interpret

the result.

5.3.1 Defining the Escape Problem for a Field

We consider a scalar field in a potential as depicted on Fig. 5.3. We assume, for

simplicity, that the initial configuration is a homogeneous field sitting at a local

minimum φA. The interactions with extra degrees of freedom, for example a

thermal bath, lead to fluctuation and dissipation dynamics and potentially allow

for an escape from the potential well. Our goal is to compute the rate per unit
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Figure 5.3 Potentials corresponding to the escape problem. φA is the initial
local minimum. φB corresponds to the local maximum of the
potential. On the right-hand side of the maximum, there are several
possibilities, a false vacuum at φFV (dashed line), a true vacuum at
φTV (dotted line) or an unbounded potential (dash-dotted line) with
V (φU0) = V (φA).

volume for the field to escape from the well, due to thermal fluctuations.

Involving a field renders the definition of an escape more difficult and less intuitive

than in the one-dimensional case discussed previously. At equilibrium, the field

populates both sides of the well (or have completely decayed if the potential is

unbounded from below beyond the well). Comparing with the initial situation,

where the field configuration is homogeneously located at φA, it is reasonable

to assume the existence of a flow of the probability density across the potential

well. For this reason, the flux-over-population method should apply. The naive

generalization of the point particle case would be to estimate the average time

needed for the field to reach the top of the potential φB for the first time at

each point in space. As we will learn, this case can be related to the Hawking-

Moss solution [209] in the Early Universe. However, in our situation, a Minkowski

spacetime where the volume can be infinite, this solution might lead to a vanishing

rate. We should therefore seek for another definition of the escape configuration.

Before going into the details of our calculations, it is important to comment on the

difference between the escape problem treated in this work with two other closely

related problems, the quantum tunneling and the nucleation problem. Quantum

tunneling, as its name implies, is a consequence of the quantum fluctuations

of the field. Such fluctuations can connect two classically disconnected values
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of the field, through a forbidden region in potential energy, without giving

the field any energy. This is what happens in a quantum first-order phase

transition. Nucleation, on the other hand, is the mechanism that drives first-

order phase transitions with small degrees of metastability (for example, small

supercooling). It corresponds to the formation (or “nucleation”) of bubbles of

the stable phase inside the metastable phase. Such bubbles grow and complete

the phase conversion. Different from tunneling, the process of nucleation is

typically driven by thermal fluctuations (even though for many systems quantum

fluctuations may also play a role). In this sense, it can be said that, in nucleation,

the potential energy barrier is overcome with energy absorbed from the heat

reservoir, in contrast to tunneling. Lastly, the problem treated in this work,

the escape problem, does not necessarily require the presence of an initial false

vacuum. If it is the case, the escape problem can be seen as the first stage of

the nucleation problem, i.e., the generation of domains of field configurations

outside the initial minimum. In general, the Kramers problem for a scalar field,

defined in this work, should be understood as the derivation of the probability

for the field to pass over the potential barrier in a finite region of space. Due to

thermal fluctuations, a field starting at a low minimum of potential energy can

gain energy from the heat reservoir and then “climb” the potential well to reach

and surmount an energy barrier.

As stated in [206], it is sufficient that a finite part of space has passed the

barrier. At first sight, this statement would give some freedom in the precise

definition of the escape problem. In particular, once the field has reached the

top at a spatial location, it can fall on the other side and attract the neighboring

points without any addition of energy. This is a crucial difference with the one-

dimensional case of the previous section. Considering a field, the characteristics

of the potential beyond the maximum play a role in the definition of the escape

problem. It is then fair to expect that the two cases, where the initial minimum

is a true or a false vacuum, must be treated separately. As we will learn shortly,

these features naturally emerge along the computation in a generalized flux-over-

population method and this approach allows for a satisfactory definition of the

escape problem. In particular, a critical volume of space that experiences hopping

is precisely defined by the formalism. To perform this analysis, we should first

introduce some rudiments of stochastic field theory.
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5.3.2 Stochastic Field Theory

We review the basics of stochastic field theory [206] and introduce the objects

needed for the derivation of the escape rate.

Langevin and Fokker-Planck Equations The usual Klein-Gordon equation

describing the dynamics of the scalar field in a potential V (φ) is modified to

take the thermal fluctuations into account and becomes a Langevin equation

(∂2
t −∇2)φ(~x, t) +

∂V (φ)

∂φ
+ ηφ̇(~x, t) = ξ(~x, t) , (5.57)

where η is the dissipation coefficient and ξ is a Gaussian white noise satisfying

〈ξ(~x, t)〉 = 0 , 〈ξ(~x, t)ξ(~x′, t′)〉 = Ωδ3(~x− ~x′)δ(t− t′) , (5.58)

where Ω parametrizes the strength of the noise and satisfies the Einstein relation

Ω = 2η/β = 2ηkbT . Exploring the origins of the Langevin equation in quantum

field theory goes beyond the scope of this work. We invite the interested reader

to refer to [9] and the references therein. For the rest of this work, we simply

assume the existence of a Langevin equation of the form (5.57).

For convenience, in particular when dealing with integrals over the field-space,

we discretize the space by adopting the following conventions

φ(~x, t)→ φ(xi, t) = φi(t) ,

∫
d3~x→ a3

N3∑

i=1

, (5.59)

δ(~x− ~y)→ δij
a3

, such that

∫
d3~x δ(~x− ~y) = 1 = a3

N3∑

i=1

δij
a3

,

(5.60)

where the volume V = L3 = (N · a)3, with N being the number of discrete sites

in each direction and a the spacing between two adjacent points. For simplicity,

we have labelled the spatial points in the three directions with a single label i

instead of xyz. For the sake of clarity, we will denote the Laplacian as ∇2
ijφj. The

actual definition in discrete space is given by

∇2φxyz =
1

a2
[φx+1,y,z + φx−1,y,z + φx,y+1,z + φx,y−1,z + φx,y,z+1 + φx,y,z−1 − 6φx,y,z] ,

(5.61)
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where each direction of space has been explicitly labelled.

As usual when working with the Langevin equation, the analytical treatment is

limited by the stochastic character of the equation. There is therefore a need

to introduce the deterministic Fokker-Planck formalism for the scalar field. A

full derivation of the Fokker-Planck equation in presented in Appendix D.1, and

we restrict here to the most important steps. The Langevin equation gives the

following set of equations for the field φ and the conjugate momentum π

∂tφi(t) = πi(t) ,

∂tπi(t) = −ηπi(t) +∇2
ijφj(t)− V ′(φi) + ξi(t) , (5.62)

where the prime denotes a derivative with respect to the field. The Fokker-Planck

probability density is defined as

P (φ, π, t | φ0, π0, t0) ≡
〈

N3∏

i=1

δ[π̂i(t)− πi] · δ[φ̂i(t)− φi]
〉

ξ

, (5.63)

where φ̂i(t) and π̂i(t) are solutions of the Langevin equation (5.62) for a given

noise realization ξ and φi and πi are the arguments of the probability distribution

P . The stochastic average of an operator O(φ̂, π̂) is defined as

〈
O(φ̂, π̂)

〉
ξ
≡
∫ N3∏

i=1

d[ξ(t)]iO(φ̂, π̂) exp

{
− a

3

2Ω

N3∑

j=1

∫
dt′ξ2

j (t
′)

}
, (5.64)

where the integration measure is normalized to give 〈1〉ξ = 1. The probability

density is a solution of the Fokker-Planck equation

∂

∂t
P (φ, π, t | φ0, π0, t0) = −LFPP (φ, π, t | φ0, π0, t0) , (5.65)

where the Fokker-Planck operator is defined as

LFP ≡ −a3

N3∑

i=1

{
−πi

∂

a3∂φi
+

∂

a3∂πi

[
ηπi −∇2

ijφj + V ′(φi)
]

+
Ω

2

∂2

a6∂π2
i

}
.

(5.66)
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Probability Density Current Due to the conservation of probability, the Fokker-

Planck equation can be written in terms of a probability density current J

∂tP (φ, π, t) = −a3

N3∑

i=1

∂

a3∂φi
Ji − a3

N3∑

i=1

∂

a3∂πi
J̄i , (5.67)

where the components Ji and J̄i of the current are defined as

Ji ≡ −
{
−πi − kBT

∂

a3∂πi

}
P (φ, π, t | φ0, π0, t) , (5.68)

J̄i ≡ −
{[
ηπi −∇2

ijφj + V ′(φi)
]

+ kBT
∂

a3∂φi
+

Ω

2

∂

a3∂πi

}
P (φ, π, t | φ0, π0, t) ,

(5.69)

for i ∈ [1, N3]. The validity of this equation might be shown explicitly by

substituting in Eq. (5.67).

Equilibrium Distribution The Fokker-Planck equation admits an equilibrium

solution P0 given by

P0(φ, π) = Z−1 exp {−βE[φ, π]} , (5.70)

where Z is the normalization given by the partition function

Z =

∫ N3∏

i=1

dφidπi exp {−βE[φ, π]} , (5.71)

and E[φ, π] is given by

E[φ, π] = a3

N3∑

i=1

[
1

2
π2
i +

1

2
(∇φi)2 + V (φi)

]
, (5.72)

which corresponds to energy function of the system in the non-dissipative limit.

Vector-Matrix Notation Following the work of Langer [208], it is useful to

introduce a vector-matrix notation. The field and its conjugate momentum are

written in a 2N3-dimensional vector

(
φ

π

)
=

(
φi(t)

πi(t)

)
, where i ∈ [1, N3] . (5.73)
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The deterministic limit of the Langevin equation is expressed as

∂

∂t

(
φ

π

)
= −M ·

(
∂

a3∂φ
∂

a3∂π

)
E[φ, π] , (5.74)

with M = (Mij) being the 2N3 × 2N3 block matrix defined as

M =
1

a3

(
0 −1

1 η1

)
, (5.75)

where 1 is the N3-dimensional unit matrix and the multiplication · between two

2N3 × 2N3 matrices is defined as

(A ·B)ij ≡ a3

2N3∑

k=1

AikBkj . (5.76)

A similar rule applies to the scalar product. The Fokker-Planck equation is given

as

∂tP (φ, π, t) = −
(

∂
a3∂φ
∂

a3∂π

)T

·
(
J

J̄

)
, (5.77)

where (J J̄)T is the 2N3-dimensional vector corresponding to the probability

current

(
J

J̄

)
= −M ·

(
∂E
a3∂φ

+ kBT
∂

a3∂φ
∂E
a3∂π

+ kBT
∂

a3∂π

)
P (φ, π, t | φ0, π0, t) . (5.78)

Continuum Limit We have been working in discrete space to simplify the

analytical computations. However, the continuum limit can be taken at any

stage of the derivation. For completeness, let us state the main quantities we

have met in the continuum limit. The Fokker-Planck equation reads

∂

∂t
P (φ, π, t | φ0, π0, t0) = −LFPP (φ, π, t | φ0, π0, t0) , (5.79)

LFP ≡ −
∫
d3~x

{
−π(~x)

δ

δφ(~x)
+

δ

δπ(~x)

[
ηπ(~x)−∇2φ(~x) + V ′(φ)

]
+

Ω

2

δ2

δπ(~x)2

}
,

(5.80)
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and the equilibrium distribution is given by

P0(φ, π) = Z−1 exp {−βE[φ, π]} , Z =

∫
DφDπ exp {−βE[φ, π]} , (5.81)

and

E[φ, π] =

∫
d3~x

[
1

2
π(~x)2 +

1

2
(∇φ(~x))2 + V (φ)

]
, (5.82)

is the energy functional.

Overdamped Limit To conclude this section on stochastic field theory, let us

state the equations in the overdamped limit. The Langevin equation is given by

ηφ̇i(t) = ∇2φi(t)− V ′(φi) + ξi(t) . (5.83)

The Fokker-Planck probability density is defined as

P (φ, t | φ0, t0) =

〈
N3∏

i=1

δ[φ̂i(t)− φi]
〉

ξ

, (5.84)

and the Fokker-Planck equation reads

∂tP (φ, t | φ0, t0) = −LFPP (φ, t | φ0, t0) , (5.85)

LFP ≡ a3

N3∑

i=1

{
∂

a3∂φi(t)

1

η

[
∇2
ijφj(t)− V ′(φi)

]
− Ω

2η2

∂2

a6∂φi(t)2

}
.

(5.86)

The equilibrium distribution is given by

P0 =
1

Z exp

{
−βa3

N3∑

i=1

(
1

2
(∇φi)2 + V (φi)

)}
, (5.87)

where the partition function Z is the normalization.

The formalism describing a scalar field in a potential and in a presence of thermal

fluctuations being established, we now turn to the computation of the escape rate.
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5.3.3 Computation of the Rate

The computation of the escape rate for the scalar field is a generalization of

the one-dimensional flux-over-population method to stochastic field theory. The

original extension of the method to a 2N -dimensional system has been performed

by J. S. Langer in [207, 208]. We present the most important steps of the

derivation, explicit details on the computation are given in Appendix D.2.

Setting-up the Problem The method relies on similar ideas as in the one-

dimensional case. The initial configuration is a homogeneous field located at the

local minimum of the potential,

φi(t0) = φAi , πi(t0) = 0 , ∀i . (5.88)

On one side, the potential is diverging and, on the other, there is a local maximum

located at φB, as shown on Fig. 5.3. The probability density at time t0 is a product

of delta-functions peaked at φ = φA and π = 0

P (φ, π, t0 | φ0, π0, t0) =
N3∏

i=1

δ[πi] · δ[φi − φA] . (5.89)

After a sufficiently long time, the system is expected to be described by the

equilibrium distribution given in Eq. (5.70). The evolution of the system implies

an increasing probability to find the field on the other side of the potential and,

therefore, a flux of probability at the barrier.

The probability current is expected to go along the configuration with the minimal

energy on the barrier ridge. This defines the saddle-point configuration, which is

found by variating the energy function

δE = a3

N3∑

i=1

πiδπi +∇φiδ∇φi + V ′(φi)δφi

= a3

N3∑

i=1

πiδπi +
[
−∇2φi + V ′(φi)

]
δφi . (5.90)

We directly observe that the initial configuration is an extremum of the energy.

The next configuration that extremizes the energy is given by πSi = 0 and φSi
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that satisfies the saddle-point equation

∇2φSi = V ′(φSi ) , (5.91)

and defines the saddle-point configuration. The exact form of the solution φS is

a priori not obvious.

As stated in Section 5.3.1, a simple solution is the homogeneous case where the

field is at the top of the potential φB, at each point of space. This trivial solution

of the saddle-point equation is relevant in a situation where the volume of space

in consideration is finite. An example is the Early Universe where this solution

corresponds to the Hawking-Moss instanton [209], and the volume is a sphere of

Hubble Radius. In our case, where the volume of space might be unbounded,

such a solution might lead to a vanishing rate. We therefore seek for another

solution of the saddle-point equation.

According to [206], it is sufficient that only a finite region of space has passed the

barrier. We might try to find a solution of (5.91) where the field is homogeneously

sitting at the initial position φA everywhere but in some finite part where it

is climbing the potential well. Using the rotational symmetry and writing the

saddle-point equation in spherical coordinates, we obtain

∂2

∂r2
φS +

2

r

∂

∂r
φS = V ′(φS) , (5.92)

where for simplicity we are working in the continuum limit. The boundary

conditions are

lim
r→∞

φS(r) = φA ,
∂

∂r
φS
∣∣∣∣
r=0

= 0 , (5.93)

where the second condition has been introduced to make sure the left-hand side

of the saddle-point equation (5.92) is finite at the center of the coordinates. The

equation can be interpreted as the equation of motion of a fictitious point particle,

in an inverted potential−V and with a damping term. The overshoot/undershoot

technique of S. Coleman [200] shows that a solution only exists if the original

minimum is a false vacuum. We should then consider separately the cases were

the initial minimum is a false (dotted and dash-dotted lines on Fig. 5.3) or a true

vacuum (dashed line on the same figure).

In the case of a false vacuum at φA, the saddle-point solution satisfying (5.92)
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exists and is well-understood. Let us consider the two limiting cases. If the

potential is unbounded from below, by continuity, there must be a field value

φ0 > φU0, where the fictitious particle starts at r = 0 with zero velocity and

reaches φA at infinite radius. Moreover, it has been shown in [213] that φ0 is of

order of φU0. In the presence of a true vacuum at φTV , the existence of a solution

is ensured by the overshoot/undershoot argument. If V (φ(r = 0)) > V (φA), the

fictitious particle does not have enough potential energy to climb the inverted

potential up to φA, this is an undershoot. On the other hand, if φ(r = 0) is close

enough to φTV , the fictitious particle can stay near the true minimum until the

damping term becomes negligible, since it is suppressed by r, and then it will

overshoot. By continuity, there is a field value to start at r = 0 that satisfies

V (φ(r = 0)) < V (φA) and φ(r = 0) < φTV such that the fictitious particle

ends at φA at infinite radius. By these arguments, the saddle-point configuration

is uniquely defined. Moreover, it has been shown by Coleman in [214] that the

Hessian matrix of the energy evaluated for this configuration has only one negative

eigenvalue.

One of the main difference with nucleation is that the escape problem can be

defined for an initial true vacuum at φA. However, a proper definition of the

escape rate in this case requires additional care. On the one hand, by comparing

the initial and the equilibrium distributions, it is fair to assume that there is

a probability flow at the potential barrier and, therefore, it should be possible

to define an escape. On the other hand, the undershoot argument forbids the

existence of a solution of the saddle-point equation. We will come back to this

issue at the end of this section and make some propositions for a well-defined

escape problem. For the moment, we simply assume that the initial position φA

is a false vacuum and proceed with the computation of the escape rate.

The flux-over-population method relies on the following assumptions :

• There are no sources nor sinks in the neighborhood of the saddle-point

configuration. This allows writing the Fokker-Planck equation (5.65) near

the saddle point as

a3

N3∑

i=1

{
−πi

∂

a3∂φi
+

∂

a3∂πi

[
ηπi + a3

N3∑

k=1

[
−∇

2
ik

a3
+
V ′′(φSk )δik

a3

]
(φk − φSk )

]

+
Ω

2

∂2

a6∂π2
i

}
P (φ, π) = 0 , (5.94)
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using the expansion of the energy near the saddle-point

E[φ, π] = E[φS, πS] +
1

2
a6

N3∑

i,j=1

(φi − φSi )

[
−∇

2
ij

a3
+
V ′′(φSi )δij

a3

]
(φj − φSj )

+
1

2
a6

N3∑

ij=1

(πi − πSi )
δij
a3

(πj − πSj ) + . . . . (5.95)

In the spirit of the vector-matrix notation defined above, we introduce the

matrix (eSij)

(eSij) = − 1

a3

(
−∇2

ij + V ′′(φSk )δij 0

0 1

)
, (5.96)

which corresponds to the negative of the Hessian matrix of the energy

evaluated at the saddle-point configuration4.

• Inside the well, near the minimum where the field is located initially, the

system is thermalized

P (φ ' φA, π ' πA) ' P0(φ, π) , (5.97)

where P0 is the equilibrium distribution.

• Beyond the saddle point, the probability density is strongly suppressed due

to the presence of the sinks.

Derivation of the Probability Density The computation of the flow of the

probability current and the number density relies on the solution P (φ, π) of the

Fokker-Planck equation with the boundary conditions given above. This solution

is derived using the Kramers ansatz

P (φ, π) = ζ(φ, π)P0(φ, π) , (5.98)

where ζ(φ, π) must be fixed to satisfy the boundary conditions

ζ(φ ' φA, π ' πA) = 1 , ζ(φ > φS, π)→ 0 . (5.99)

4Note that in the context of field theory, this is usually referred as a fluctuation operator.

135



The equation for ζ(φ, π) is found by insertion in the Fokker-Planck equation. In

particular, near the saddle-point, one finds

a3

N3∑

i=1

{
−πi

∂

a3∂φi
+

[
−ηπi + a3

N3∑

k=1

[
−∇

2
ik

a3
+
V ′′(φSk )δik

a3

]
(φk − φSk )

]
∂

a3∂πi

+
Ω

2

∂2

a6∂π2
i

}
ζ(φ, π) = 0 . (5.100)

With the same arguments as in the one-dimensional case and following the

Kramers original proposal, it is assumed that ζ(φ, π) depends on a linear

combination u of the φi and πi

ζ(φ, π) = ζ(u) , where u = a3

N3∑

i=1

[
Ui(φi − φSi ) + Ūi(πi − πSi )

]
, (5.101)

where Ui and Ūi are the coefficients associated to φi and πi respectively. The

following ansatz for ζ(u)

ζ(u) =
1√

2πkBT

∫ ∞

u

dz exp

{
− z2

2kBT

}
, (5.102)

satisfies the boundary conditions. To compute the coefficients Ui and Ūi, we

substitute ζ(u) in Eq. (5.100) and obtain

a3

N3∑

i=1

{
(
Ui + ηŪi

)
πi − Ūia3

N3∑

k=1

[
−∇

2
ik

a3
+
V ′′(φSk )δik

a3

]
(φk − φSk )

+ηŪ2
i a

3

N3∑

k=1

Uk(φk − φSk ) + ηŪ2
i a

3

N3∑

k=1

Ūk(πk − πSk )

}
= 0 . (5.103)

At first sight this equation seems unpromising. Fortunately, it can be written

in a simple form using the vector-matrix notation. Defining the (2N3) vectors

(U Ū)T and (φ− φS π − πS)T such that

u = (U Ū) ·
(
φ− φS
π − πS

)
= a3

N3∑

i=1

[
Ui(φi − φSi ) + Ūi(πi − πSi )

]
, (5.104)
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with the scalar product being defined as in Eq. (5.76), the equation for the

parameters Ui and Ūi becomes

(U Ū) ·MT · (eSij) ·
(
φ− φS
π − πS

)
= λ(U Ū) ·

(
φ− φS
π − πS

)
, (5.105)

where the scalar λ is defined as

λ ≡ (U Ū) ·M ·
(
U

Ū

)
= a3

N3∑

i=1

ηŪiŪi . (5.106)

The matrix equation (5.105) leads to the eigenvalue equation for (U Ū)

(U Ū) ·MT · (eSij) = λ(U Ū) , (5.107)

in other terms (U Ū)T is a left eigenvector of the matrix MT ·(eSij) with eigenvalue

λ. Combining the definition of λ and the eigenvalue equation, we find the

normalization condition

1 = (U Ū) · (eSij)−1 ·
(
U

Ū

)
. (5.108)

The eigenvalue λ is positive by definition. The positivity is in fact a direct

consequence of the overall negativity of the exponent of ζ(u). This negative

exponent has been chosen in order to satisfy the boundary condition imposed

by the method, namely the suppression of the probability distribution beyond

the saddle-point and λ is the only positive eigenvalue of the matrix MT · (eSij).
Recall that (eSij) is defined as the negative of the Hessian of the energy precisely

evaluated at the saddle-point.

Probability Density Current and Flux Once we have obtained the probability

density P = ζP0 we are ready to compute the associated probability density

current defined in Eqs. (5.68) and (5.69). After some algebra, we find

JζP0 =

√
kBT

2π
M ·

(
U

Ū

)
exp

{
− u2

2kBT

}
P0 , (5.109)
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and the probability flux j

j = a3

2N3∑

i=1

∫

u=0

dSi Ji(φ, π)

=
λ

2πZ

√
kBT

2π
exp

{
−βE[φS, πS]

}∫
DφDπ

∫
dk exp

{
ik(U Ū) ·

(
φ− φS
π − πS

)}

· exp




β

2

(
φ− φS
π − πS

)T

· (eSij) ·
(
φ− φS
π − πS

)
 . (5.110)

Introducing the rotation S = (Sij) in field space to diagonalize the matrix (eSij)

we obtain

(
φ− φS
π − πS

)
= S · ξ , iku = ik(U Ū) · S† · S ·

(
φ− φS
π − πS

)
= ikŨ · ξ , (5.111)

where we have defined the vector Ũ as S ·
(
U Ū

)T
and

(
φ− φS
π − πS

)T

· (eSij) ·
(
φ− φS
π − πS

)
= a3µ1ξ

2
1 − a3

2N3∑

l=2

µlξ
2
l , (5.112)

where all the scalars µl are defined as positive5. The only positive eigenvalue of

(eSij) is µ1, all the other eigenvalues are −µl. We finally obtain for the flux

j =
λ

2πZ

√
kBT

2π
exp

{
−βE[φS, πS]

}

·
∫ 2N3∏

l=1

dξl

∫
dk exp

{
ika3

2N3∑

l=1

Ũlξl +
β

2
a3µ1ξ

2
1 −

β

2
a3

2N3∑

l=2

µlξ
2
l

}

=
λ

2πZ exp
{
−βE[φS, πS]

}
| det(2π/β)−1E(S)|− 1

2 , (5.113)

where the matrix E(S) = −(eSij) is the Hessian of the energy at the saddle-point

which has only one negative eigenvalue. Since this negative eigenvalue appears

with a negative sign, it is the magnitude of the determinant that enters the

formula. The successive integrations have been performed in the following order,

first over all the modes l larger than 1, then over k and finally over ξ1.

5For the moment, we ignore the possibility of vanishing eigenvalues, we shall come back to
them shortly.
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Zero-modes Due to the translation invariance of the saddle-point solution,

there are three eigenvalues in the associated determinant that are exactly zero

and, therefore, must be treated separately upon the Gaussian integration. For

simplicity and in order to agree with the literature, we perform the analysis in

the continuum space. First of all, let us show that ∂~xφ
S, ∂~yφ

S and ∂~zφ
S are

zero-modes. Considering ∂~xφ
S we have

[−∇2 + V ′′(φS)]∂~xφ
S = −∂~x∇2φS + V ′′(φS)∂~xφ

S = −∂~xV ′(φS) + V ′′(φS)∂~xφ
S

= −V ′′(φS)∂~xφ
S + V ′′(φS)∂~xφ

S = 0 . (5.114)

To remove the zero-modes, we follow the procedure described by Langer in [208]

and by Callan and Coleman in [201]. First of all, the determinant has its zero-

eigenvalues removed and becomes

| det(2π/β)−1[−∇2 + V ′′(φSi )]| → |det′(2π/β)−1[−∇2 + V ′′(φSi )]| , (5.115)

with the prime denoting the removal of the vanishing eigenvalues. Then, the

integration over the zero-modes ∂~xφ
S, ∂~yφ

S and ∂~zφ
S becomes an integration

over d~x, d~y and d~z giving an overall volume factor V . Finally each change of

variable from the zero-modes to ∂~xφ
S, ∂~yφ

S and ∂~zφ
S to d~x, d~y and d~z leads to

a Jacobian. For example, for the mode ∂~xφ
S we have

[∫
d3~x

(
∂φS

∂x

)2
]1/2

. (5.116)

The Jacobian is identical for each zero-mode since

∫
d3~x

(
∂φS

∂x

)2

=

∫
d3~x

(
∂φS

∂y

)2

=

∫
d3~x

(
∂φS

∂z

)2

, (5.117)

where we used the rotation-symmetry of the saddle-point solution. We then have

∫
d3~x

(
∂φS

∂x

)2

=
1

3

∫
d3~x

(
∇φS

)2
. (5.118)

So, there is an overall factor multiplying the rate

[
1

3

∫
d3~x

(
∇φS

)2
]3/2

, (5.119)
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coming from the Jacobian. A quick dimensional check tells us that removing the

three eigenvalues from the determinant increases the dimension by 3/2. The

overall volume factor has a dimension of −3 and the Jacobian 3/2, exactly

compensating the removal of the zero-eigenvalues.

Population Inside the Well The last missing piece is the population inside the

well. This is obtained using the condition that the system is thermalized near

the minimum of the potential and by expanding the energy function around the

configuration (φA, πA)

E[φ, π] = E[φA, πA] +
1

2
a6

N3∑

i,j=1

(φi − φAi )

[
−∇

2
ij

a3
+
V ′′(φSi )δij

a3

]
(φj − φAj )

+
1

2
a6

N3∑

ij=1

(πi − πAi )
δij
a3

(πj − πAj ) + . . . . (5.120)

The population inside the well is

nA =

∫
DφDπP0

=
1

Z

∫
DφDπ exp



−βE[φA, πA] +

β

2

(
φ− φA
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)T

· (eAij) ·
(
φ− φA
π − πA

)


=
1

Z exp
{
−βE[φA, πA]

}
[det(2π/β)−1E(A)]−

1
2 , (5.121)

where the matrix E(A) is the Hessian of the energy of the initial configuration at

φA, all eigenvalues are positive.

Escape Rate The ratio of the flux j over the number density nA, taking into

account the zero-modes, gives the escape rate for a scalar field per unit volume

k

V =
λ

2π

[
1

3
a3

N3∑

i=1

(
∇φSi

)2

]3/2 [
det[(2π/β)−1E(A)]

| det′[(2π/β)−1E(S)]|

]1/2

· exp
{
−β
[
E(φS, πS)− E(φA, πA)

]}
. (5.122)
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Let us consider the different contributions to the rate. In the exponent, we have

E(φS, πS)− E(φA, πA) = a3

N3∑

i=1

1

2
(∇φSi )2 + V (φSi )− V (φAi ) , (5.123)

which corresponds to the activation energy, the difference between the energy

of saddle-point configuration with respect to the initial configuration. Since the

initial configuration is homogeneous and only a difference of potential enters

the rate formula, we can safely shift the potential to have V (φAi ) = 0. The

determinants can be written as

det[(2π/β)−1E(A)] = det[(2π/β)−1(−∇2 + V ′′A)] , (5.124)

where V ′′A is the second derivative of the potential at the initial minimum and

|det′[(2π/β)−1E(S)]| = |det′(2π/β)−1[−∇2 + V ′′(φS)]| , (5.125)

where the field configuration entering the operator is the saddle-point solution.

The escape rate per unit volume in the continuum limit is given by

k

V =
λ

2π

[
β

6π

∫
d3~x

(
∇φS

)2
] 3

2
[

det[−∇2 + V ′′A ]

|det′[−∇2 + V ′′(φS)]|

] 1
2

· exp

{
−β
∫
d3~x

1

2
(∇φS)2 + V (φS)

}
, (5.126)

which is the main result of this chapter. The constant λ is sometime referred

as the dynamical prefactor and the ratio of determinants as the statistical

prefactor [198, 203, 208, 215]. The explicit expressions of these factors depend on

the saddle-point configuration φS. We choose to present here the most general

form of the escape rate, and, therefore, we postpone the discussion of the methods

to estimate the prefactors and the exponent to the next section.

Initial Stable Minimum The last situation left to consider is when φA is a true

vacuum. As described above, the saddle-point equation (5.92) does not have any

solution. However, in the presence of fluctuation and dissipation dynamics, it is

fair to assume that the field starts to climb the potential and probes the other

side of the well, even if it will likely come back to the original side. Moreover, as

noted already, the comparison between the initial probability distribution, a delta

function peaked at φA at each point of space, and the equilibrium distribution,
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that probes both sides of the well, implies a flow of probability at the maximum

the potential. These two arguments suggest that the escape problem for an initial

true vacuum might still be defined. The rate will simply indicate how likely it is

to have a region of space that passes the barrier.

Let us formulate some propositions for a meaningful definition. The first

possibility is to consider a finite volume V of space and use the saddle-point

solution φS = φB at each point in the volume. The activation energy will be

given by E = V∆V . This is the simplest generalization of the one-dimensional

case but is dependent on the volume in consideration. Moreover, it can lead to

an underestimate of the rate since, instead of waiting at the top of the potential,

the field can fall on the other side and attract the neighboring points without any

addition of energy.

The method of reactive flux, described, for example, in the review [198], might

be helpful in the derivation of the escape rate for an initially true minimum. At

equilibrium, the ratio of particles densities in the wells is equal to the ratio of the

rates between the two minima. Since the equilibrium distribution and the rate

from a false to a true vacuum are known, the transition rate from an initial true

vacuum can be extracted. It is reasonable to assume that, at equilibrium, the

activation rate derived with the method of reactive flux will be smaller than the

true escape rate. However, this method also allows studying further the approach

to equilibrium by defining a relaxation rate, from an initial out-of-equilibrium

distribution.

Alternatively, we can consider an approximated situation, where the false

minimum on the right-hand side is replaced by a true minimum, due to a

modification of the potential beyond the maximum. For example, a minimal

situation could be a new true minimum, almost degenerated with V (φA). A

saddle-point configuration is well-defined and the rate given by (5.126). Moreover,

the saddle-point configuration will naturally define the typical size of the region

of space that experiences hopping. As in the previous case, the escape rate might

be underestimated. However, it is fair to expect that the main contribution to

the escape time is given by the climbing of the potential well, which corresponds

to the part of the potential that is not modified.

A last possibility is the construction of a saddle-point configuration using an

analytic continuation. It was not possible to obtain a solution of Eq. (5.92),

where the field is at φFV at r = 0 and respecting the boundary condition (5.93).
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One can imagine giving an initial imaginary velocity to the field which would

then allow for the climb. This kind of solutions have been studied in the context

of tunneling [216–220]. However, this goes beyond the scope of this work, and we

leave it for a future analysis.

5.3.4 Discussion of the Result

We present a comparison between the escape rate (5.126) and the related problem

of quantum tunneling at a sufficiently high-temperature, where thermal effects

dominate. The similarities between the two results provide some insights about

the methods needed for an explicit evaluation of the escape rate, once a potential

has been specified.

Comparison with Quantum Tunneling at Finite-Temperature

Quantum tunneling of a scalar field is a well-studied problem and plays a

significant role in the study of first-order phase transitions and in the stability

of false vacua. The problem has been solved for quantum field theory by C. G.

Callan and S. Coleman at zero-temperature [200, 201] and later extended to finite-

temperatures by A. D. Linde [202]. The result of Linde is particularly interesting

for the current analysis since, for sufficiently high temperatures, the thermal

fluctuations are dominating over the quantum fluctuations. In this regime, it is

fair to expect some similarities between the tunneling and the escape rates.

The tunneling rate per unit volume, at finite-temperature and when thermal

fluctuations are dominating, is given by

Γ(T )

V = T

(S3(φS, T )

2πT

) 3
2
[

det[−∇2 + V ′′A ]

|det′[−∇2 + V ′′(φS)]|

] 1
2

exp
{
−S3(φS, T )/T

}
,

(5.127)

where the action S3 is defined as

S3(φ, T ) ≡
∫
d3~x

1

2
(∇φ)2 + V (φ, T ) , (5.128)
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and φS is a solution of

∂2

∂r2
φS +

2

r

∂

∂r
φS = V ′(φS, T ) , (5.129)

where V (φ, T ) is the temperature-dependent effective potential.

Comparing with the escape problem, and assuming identical potentials6, we

immediately notice that the field configurations entering the two rates are given

by the same equation, (5.92) and (5.129). This similarity implies that the ratio of

determinants and the exponential term are identical in the escape (5.126) and in

the tunneling (5.127) rates. Using the argument of Coleman [200, 221], that the

action S3 is invariant under an infinitesimal scale transformation of the solution

φS, we obtain

S3(φ, T ) =
1

3

∫
d3~x (∇φ)2 , (5.130)

which is precisely the term given by the Jacobian in the escape rate.

The only difference between the escape and the quantum tunneling rates lies in

the prefactors. In particular, the escape rate predicts a factor of λ/2π replacing

the temperature. We interpret this difference as follows. First of all, the escape

problem, even if closely related, is not defined exactly as the transition rate

due to tunneling effects. A comparable, but not identical, rate should emerge.

Moreover, to derive the escape rate, we used the framework of stochastic field

theory where the strength of the noise and the damping appear explicitly. One

naturally expects the damping to play a role in the final result, in particular within

λ. It is, however, remarkable that the two rates, computed with different methods,

stochastic field theory for the escape problem and path integral formalism of QFT

for tunneling, have so much in common. The escape rate takes only into account

the thermal fluctuations and is valid for arbitrarily small temperatures. It is

a strong support for our result that the tunneling rate, in the limit where the

thermal fluctuations dominate, mostly recovers the escape rate.

6To be more precise, we assume that the potential of the escape rate V (φ) is equal to the
effective potential V (φ, T ) at a fixed value of T .
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Toward an Explicit Evaluation of the Escape Rate

In general, once a potential has been specified, a complete derivation of the

escape rate (5.126) requires numerical methods, for example, as in the work of G.

D. Moore and K. Rummukainen [222]. However, exploiting the similarities with

the quantum tunneling rate, we can use the techniques developed for the latter

to provide some guidance on the explicit derivation of the escape rate. Let us

consider the exponent, the dynamical and statistical prefactors separately. Recall

that, in general, it is sufficient to know the order of magnitude of the prefactors,

the rate being mainly dictated by the exponential.

Exponent The evaluation of the exponent requires the solution of the saddle-

point equation (5.92), which, in general, is obtained numerically. However, two

cases have been identified where an analytical treatment is possible [202, 213].

In the thin-wall approximation, the potential has two minima that are almost

degenerated. The saddle-point configuration has the form of a bubble of true

vacuum. Going along the radial direction, φS(r) is initially almost constant and

close to φTV . This corresponds to the interior of the bubble. The field solution

then bounces to φA, which defines the bubble’s wall. The critical radius of the

bubble is found by minimizing the energy. One can show that the exponent

becomes

∫
d3~x

1

2
(∇φS)2 + V (φS) =

16π

3ε2

(∫ φA

φTV
dφ
√

2V (φ)

)3

, (5.131)

where ε is the difference between the false and true vacuum and the integral on

the right-hand side is evaluated in the limit where ε vanishes. The other situation

where an analytical treatment applies is when the potential difference between

the false and true vacuum is much larger than the barrier height. The potential

can be approximated by a cubic or a quartic function leading to exact solutions.

Statistical Prefactor The exact evaluation of ratios of determinants in field

theory is, in general, an involved task. Recent discussions on some analytical

approaches to this problem can be found in [223–225]. For the evaluation of

the escape rate and as stated in [202, 213], it is sufficient to have only a rough

estimate of this prefactor. Dimensional analysis shows that the square root of

the ratio of determinants has dimension m3 corresponding to the removal of the
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three eigenvalues in the denominator. Therefore, we can write

[
det[−∇2 + V ′′A ]

|det′[−∇2 + V ′′(φS)]|

] 1
2

∼ O
(
φ3, (V ′′)3/2, r−3, T 3

)
, (5.132)

where the quantities on the right-hand side (the temperature apart) should be

understood as mean values. In general, φ3, (V ′′)3/2, and r−3 are of the same order

of magnitude and should be compared with the temperature to find the dominant

contribution. This is a difference with quantum tunneling at finite temperature,

where the temperature is expected to dominate in the statistical prefactor.

Dynamical Prefactor The dynamical prefactor λ has been defined in Eq. (5.107)

as the unique positive eigenvalue of the matrix MT ·(eSij). The eigenvalue equation

for λ can be written as

[
∂2

∂r2
+

2

r

∂

∂r
− V ′′(φS)

]
v(r) = λ(λ+ η)v(r) . (5.133)

We observe that λ has a dependence on the dissipation coefficient η. As usual,

an analytical solution of the eigenvalue equation is not possible, in particular,

since it requires the knowledge of the saddle-point configuration. There exists,

however, certain situations where an approximated result might be obtained, for

example in the thin-wall approximation discussed above. Useful discussions on

this problem can be found in the references [203, 215].

5.4 Applications for Cosmology and Beyond

We identify situations, in cosmology and other areas of physics, where the

escape problem defined in this chapter plays a relevant role. We are particularly

interested in scenarios where the escape rate provides an alternative mechanism

to quantum tunneling. Since the aim of the current analysis is a formal definition

and a solution of the Kramers problem, we restrict to a general description of

these applications. A deeper analysis is left for future works.

Phase Transitions and Topological Defects A concrete situation where the

escape rate becomes significant is in the study of out-of-equilibrium systems,

in particular, during a first-order phase transition. Our analysis is well-suited
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to investigate the approach to equilibrium. We can imagine, for example, the

situation of an initially quadratic effective potential that is developing another

local minimum. The second minimum is, at first, a false vacuum before becoming

the true vacuum of the potential. The escape rate provides the necessary tools

to study the evolution of the Fokker-Planck probability distribution between the

old and the new equilibrium distributions.

As already discussed in Chapter 3, phase transitions are often associated with

the formation of topological defects. Fluctuation and dissipation dynamics might

influence their creation, in particular, in a second-order phase transition, where

the height of the potential barrier is suppressed at the beginning of the transition.

These effects might also play an important role in cross-over transitions. In the

special case of embedded defects, the possibility for the field to escape would

have some consequences on the stability of the object. The escape rate should

therefore be related to the destruction probability of such a defect.

We have mentioned in Chapter 3 that gravitational waves might be emitted during

phase transitions [89–91]. The escape mechanism, since it generalizes nucleation,

could play an interesting role in this context and it would be worth studying the

signature associated with this process.

Landscape of Metastable Minima One of the most interesting features of the

escape problem is the hopping of the field over the potential barrier. Naively,

considering a potential with two minima that are almost degenerate, the escape

rate between the false and the true vacua should not be sensibly different from

the rate between the true and the false vacua. For these reasons, the escape

rate could be relevant in theories that contain several non-degenerate minima, in

particular, in order to compute the probability for a finite part of space to evolve

from one minimum to the next. One can imagine, for example, a situation with

two possible directions to diffuse. In one of them, there is a large potential barrier

but a minimum at a lower energy beyond the well. In the other direction, the

potential barrier is smaller but the next minimum is at a higher energy. Quantum

tunnelling could only be applied to the first case but the escape mechanism is

applicable in both cases.

Such a situation arises in string theories, which contain many metastable

vacua [226]. This framework is called the string landscape [227]. The question

of how a vacuum is selected is of particular interest. Our mechanism precisely
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allows for the hopping from one vacuum to the next one. Moreover, the Hagedorn

temperature [228, 229], sometimes associated with string theories, could be the

origin of the fluctuation and dissipation dynamics. Such an analysis might require

a generalization of our work to take into account gravitational effects.

An active field of research in condensed matter physics concerns the glass

transition [230], corresponding to a phase transition between a liquid and a

glassy state. The phenomenology of glassy systems can be described by a N -

body system in a potential with several metastable minima, called the potential

energy landscape [231, 232]. The escape rate provides a mechanism to probe the

different minima. A generalization to a non-relativistic field might be needed in

this case.

Stochastic Inflation The stochastic formulation of inflation was introduced by

Starobinsky [233, 234] as a framework to study the dynamics of a quantum

scalar field during inflation. The field is split into two parts, the long-

wavelength part (coarse grained) and short-wavelength quantum fluctuations.

The back-reaction of the quantum fluctuations on the coarse grained part is

parametrized as stochastic noise. The equation of motion of the inflaton becomes

a Langevin equation. The framework is particularly relevant in the computation

of correlation functions of the inflaton field [235].

In general, the noise is assumed to be homogeneous and the problem reduces to

the one-dimensional situation decribed in Section 5.2. This approach considers

only the fluctuations that can lift an entire Hubble sphere. If, on the contrary,

we imagine that the back-reaction coming from the quantum fluctuations is

inhomogeneous, the formalism developed for the escape rate is particularly useful.

One can also think about different regions of space that evolve along different

directions in the inflationary potential.

Stochastic Quantization The stochastic approach of quantum mechanics has

been first proposed by E. Nelson in [236] and then extended to fields by G. Parisi

and Y. Wu in [237]. The main idea relies on the fact that the generating functional

of Euclidean field theories is related to the equilibrium limit of a statistical system

coupled to a heat reservoir. The temperature of the heat bath is chosen to

match the Planck constant. The evolution of the system plus reservoir is in a

fictitious time and the equilibrium is reached when this extra time direction goes
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to infinity. This method for modelling quantum field theory is particularly useful

for numerical simulations, such as in lattice field theory [238].

The stochastic field theory introduced for the derivation of the escape rate is

formally equivalent to the formalism describing the stochastic quantization. The

only difference is the dimension of space. The formalism described in Sec. 5.3.2

can be seen as a three-dimensional Euclidean field theory coupled to a heat bath,

whereas the stochastic quantization considers a four-dimensional Euclidean field

theory and an extra time dimension. In the language of stochastic quantization,

in particular, using the identification ~ = kBT , we can directly write the escape

rate as

k

V =
λ

2π

[ S4

2π~

]2 [
det[−� + V ′′A ]

|det′[−� + V ′′(φS)]|

] 1
2

exp
{
−S4(φS)/~

}
, (5.134)

where

S4(φ) ≡
∫
d4~x

1

2
(∇φ)2 + V (φ) , (5.135)

and φS is the saddle-point configuration. A similar discussion as in Sec. 5.3.4

should be performed to compare this result with the quantum tunneling rate at

zero-temperature, computed in [200, 201].

5.5 Conclusion

In this chapter, we have proposed a definition and a solution of the Kramer

problem in quantum field theory. Using the framework of stochastic field theory,

we have studied the probability for a scalar field to escape a potential well due to

thermal fluctuations. The field theory character of the problem complicated the

definition of the escape configuration. Unlike the one-dimensional case, we have

learned that the shape of the potential, beyond the local maximum, influences

the rate. We have identified two situations that need to be treated separately,

when the initial minimum corresponds to a true or a false vacuum. Using a

generalization of the flux-over-population method to a field, we have derived a

full solution of the escape problem from a metastable vacuum and stated some

directions to address the case of an initial true vacuum.

The main result of our analysis is the expression of the escape rate (5.126). A
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comparison with the quantum tunneling rate, in the limit where the thermal

fluctuations dominate, shows that the two rates have much in common. These

similarities provide a strong support for our result, in particular, since both rates

are computed with different approaches. The rates are, however, not identical.

This is not surprising since the two problems, even if related, are not exactly

the same. In particular, the escape rate takes explicitly into account damping

effects. Nevertheless, the well-studied framework of quantum tunneling provides

some precious techniques for an explicit evaluation of the escape rate, once a

potential is fixed. It is remarkable that the derivation presented in this chapter

also encompasses the Hawking-Moss instanton. This solution naturally emerges

along the flux-over-population method and can be studied within the framework

presented here.

Beyond the formal interest of the Kramers problem in field theory, we have

identified several concrete situations, in cosmology, particle physics and condensed

matter physics, where the escape rate is relevant. Out-of-equilibrium scenarios,

for example during a transition between two non-degenerate vacua are natural

candidates. In cosmology, phase transitions and the formation of topological

defects, as well as stochastic inflation are various applications. The string

landscape and the glass transition present a favorable environment for an escape

mechanism. On a more formal level, the analogy with the stochastic quantization

might shed a new light on both the interpretation of the escape problem and on

the meaning of the stochastic approach of quantum mechanics. A deeper analysis

of these directions will be the subject of future works.
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Chapter 6

Conclusion

In this thesis, we have studied the influence of fluctuation and dissipation

dynamics on Early Universe cosmology. Fluctuation and dissipation are common

effects arising when the interactions between a system and its surrounding are

taken into account. Random forces tend to perturb the motion of the system and

a damping leads to the dissipation of a fraction of the energy. This scenario

happens for the cosmological fields used in the description of the physics of

the Early Universe. Being commonly predicted by the theory, fluctuation and

dissipation lead to important consequences for cosmology, which cannot be simply

ignored. We have been interested in three different situations, phase transitions

and formation of topological defects, warm inflation, and the Kramers problem,

where these effects may play a significant role.

The theory of topological defects has been playing a major role in cosmology

over the last few decades. In Chapter 3, we were particularly interested in the

embedded configurations. This special kind of topological defects is interesting

since it might appear in realistic theories, such as the Standard Model. However,

embedded defects are not stable by construction and, without any stabilization

mechanism, they would likely decay. By studying the pion string, we have shown

that, in some circumstances, the interactions with a thermal and dense medium

allow for the formation of stable strings in the range of parameters that are

experimentally allowed. This result is the first example of a stable embedded

defect in a realistic theory. It would be of great interest to verify if a similar

mechanism would apply for other examples of embedded defects, for example the

electroweak string. One might also wonder if a given BSM theory includes any
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stable embedded defect. With cosmology entering a new era since the observation

of gravitational waves, the mechanism studied in this chapter might lead to new

constraints on the theories aiming at completing the SM.

In Chapter 4, we have considered another cornerstone of modern cosmology,

cosmic inflation. One of the most famous cosmological applications of fluctuation

and dissipation dynamics is the warm realization of inflation. In this scenario, the

continuous transfer of energy from the inflaton into radiation allows the Universe

to remain warm during inflation. As in the cold realization, there is a great

diversity of inflationary potentials introduced in the recent years and, therefore,

a need for a systematic way to classify the models. The β-function formalism is

based on ideas from the renormalization group, to characterized the inflationary

epoch in terms of flows away from the de Sitter regime. In this approach,

different models of inflation naturally fall into classes of universality. We have

shown that the universality classes defined for cold inflation can be consistently

extended to the warm realization. The description of warm inflation has a second

functional dependence due to dissipation, which helps in the characterization of

the possible smooth transition between the era of inflation and the radiation-

dominated regime. Beyond the identification of universality, we have illustrated

how this approach is well-suited for an analytical treatment of warm inflation.

A further analysis of the analytical potential of the formalism might lead to

interesting features. For example, a study of warm inflation using a well-

motivated ansatz for the dissipation coefficient, as function of the field only, would

present some computational and theoretical interests, in particular, to evaluate

the cosmological perturbations.

The Kramers problem is intrinsically related to fluctuation and dissipation

dynamics and has applications in several domains of physics, such as statistical

or condensed matter systems. The presence of these effects in the Early Universe

was the main motivation to investigate and define the Kramers problem in this

context. In Chapter 5, we proposed a formulation and a derivation of the escape

rate for a scalar field. We showed that, unlike the one-dimensional case, the

shape of the potential, beyond the barrier, influences the rate. Remarkably, along

the derivation, based on stochastic field theory, we came across some known

situations, such as the Hawking-Moss instanton and the quantum tunneling

rate at finite temperature. The similarities between the latter, when thermal

fluctuations dominate, and the escape rate offered some precious techniques for

an explicit derivation of the rate, once a potential is given. Even if the chapter was
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mainly dedicated to formal aspects of the Kramers problem, we have stated some

situations where the escape rate would play a significant role. In cosmology, the

framework is well-suited for a study of out-of-equilibrium situations, for example

during a phase transition. The possibility for the field to escape might influence

the formation of topological defects and alter the stability of the embedded

configurations. Beyond cosmology, the framework is relevant in situations where

a potential with many metastable minima is predicted, for example in the string

landscape and in the glass transition. Finally, the analogy between the formalism

used in this chapter with the stochastic quantization presents some theoretical

interests, especially for the interpretation of the stochastic approach of quantum

mechanics.
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Appendix A

Review of General Relativity

General relativity is the prevailing theory describing gravitational interactions.

The theory has been formulated by A. Einstein and published in 1915 [13, 14].

The main feature of GR is the relationship between the geometry of the spacetime

and its energy content. This is encoded in the Einstein equations. In this

appendix, we present a short review of GR and introduce the essential quantities

needed to perform calculations. Since in general GR leads to a curved spacetime,

the mathematical framework of differential geometry is required. For a review of

this topic, we invite the reader to refer to [239].

A.1 Basics of General Relativity

In general relativity, the spacetime is a four-dimensional Lorentzian manifold

(M, g) with a Levi-Civita connection. The symmetric and non-degenerate rank

(0, 2) tensor g is called the metric and captures the geometry of the spacetime.

In curved spacetimes, the notion of derivative is non-trivial since it requires

comparing objects at different points. The covariant derivative ∇T of a tensor T

of rank (r, s) is the (r, s+ 1) tensor which components are

∇λT
µ1...µr

ν1...νs = ∂λT
µ1...µr

ν1...νs + Γµ1σλT
σ...µr

ν1...νs + · · ·+ ΓµrσλT
µ1...σ

ν1...νs

− Γσν1λT
µ1...µr

σ...νs − · · · − ΓσνrλT
µ1...µr

ν1...σ , (A.1)
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where ∂ is the usual derivative. The Γ’s are the components of the Levi-Civita

connection. They can be computed from the metric

Γλµν =
1

2
gλσ (∂µgσν + ∂νgµσ − ∂σgνµ) , (A.2)

and are called the Christoffel symbols.

The curvature of spacetime is encoded in a (1,3) tensor called the Riemann

curvature tensor Rσ
µρν . It can be expressed in terms of the Christoffel symbols

Rσ
µρν = ∂ρΓ

σ
µν − ∂µΓσρν + ΓσαρΓ

α
µν − ΓσαµΓαρν . (A.3)

Conceptually, the Riemann tensor expresses the change of a vector that is parallel

transported around a small quadrilateral. For the Levi-Civita connection, the

(0, 4) tensor Rλµρν ≡ gλσR
σ
µρν can be expressed in terms of the components of

the metric

Rλµρν =
1

2
(∂ρ∂µgλν + ∂λ∂νgρµ − ∂ρ∂λgνµ − ∂ν∂µgρλ) . (A.4)

The Ricci tensor is defined as the contraction of the Riemann tensor

Rµν = Rσ
µσν . (A.5)

For this particular connection, the Riemann tensor is symmetric. The Ricci scalar

is the trace of the Ricci tensor

R = gµνRµν , (A.6)

and is also called the scalar curvature. Finally, the Einstein tensor is a type (0, 2)

tensor defined as

Gµν ≡ Rµν −
1

2
Rgµν , (A.7)

and satisfies ∇µGµν = 0. These are the important definitions related to the

geometry of the space.

In general relativity, free particles move along null or timelike geodesics. A

geodesic is a curve whose tangent vector field tµ satisfies

tσ∇σt
µ = 0 , (A.8)
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which is called the geodesic equation and means that the tangent vector is parallel

transported along itself.

General relativity relates the distribution of energy with the geometry of

spacetime. The distribution of energy or matter is described by a symmetric

(0, 2) tensor field Tµν obeying ∇µTµν = 0. Tµν is the energy-momentum tensor

and is usually defined as

Tµν =
2√
|g|

δSm
δgµν

, (A.9)

where the action Sm describing matter and g ≡ det gµν . The Einstein equations

relate the curvature of spacetime to the energy-momentum tensor of the matter

and are given by

Gµν = Rµν −
1

2
Rgµν = 8πGTµν − Λgµν , (A.10)

where G is Newton’s gravitational constant.

Finally, note that Einstein’s equations can be obtained from a variational principle

with the following action

S =
1

16πG

∫
d4x
√
|g| (R− 2Λ) +

∫
d4x
√
|g|Lm , (A.11)

where the first integral is the Einstein-Hilbert action with a cosmological constant

and the second is the action Sm written in terms of the matter Lagrangian Lm.
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Appendix B

Details on the Computations of

Chapter 3

In this appendix, we provide some explicit computations of the renormalized ef-

fective potential (3.20) and self-energies of the pions (3.30) and sigma fields (3.29)

due to fermionic interactions at finite temperature and density.

B.1 Effective Potential

We derive the (renormalized) effective potential (3.20) at one-loop due to the

interactions with the quarks at finite temperature and density. The effective

potential is given by

Veff (T, µq) = − 1

βV
lnZ[β, µq] , (B.1)

where Z is the partition function. In this case, we are only interested in the

contribution coming from the interactions with the fermions. Since the interaction

between the quarks and the hadrons will give a higher order contribution, we are

free to consider the non-interacting part of the partition function. We have

Zq,0[β, µq] =

∫

ψ(β)=−ψ(0)

Dψ̄Dψ

exp

{
−
∫ β

0

dτ

∫
d3x ψ̄

(
γ0∂τ − iγi∂i − γ0µq + gv

)
ψ

}
. (B.2)
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Performing the fermionic Gaussian integral and using the ln det = Tr ln identity

gives

Zq,0[β, µq] = N det
[
γ0∂τ − iγi∂i − γ0µq + gv

]

= N exp

{
V

+∞∑

n=−∞

∫
d3k

(2π)3
tr ln

[
iγ0(ωn + iµq)− γiki + gv

]
}
, (B.3)

where ωn = (2n + 1)π/β are the fermionic Matsubara frequencies and the

remaining trace in the exponential is in Dirac space. Dirac Algebra tells us

that

tr ln [/a+ b] =
1

2
tr [ln (/a+ b) + ln (−/a+ b)] =

1

2
tr [ln (/a+ b) (−/a+ b)]

=
1

2
ln
(
a2 + b2

)
tr 14×4 = 2 ln

(
a2 + b2

)
. (B.4)

And, therefore, we obtain

Veff (T, µq) = − 2

β

+∞∑

n=−∞

∫
d3k

(2π)3
ln
[
(ωn + iµq)

2 + ω2
]
, (B.5)

where ω2 = ~k2 + (gv)2. Note that

+∞∑

n=−∞

ln
[
(ωn + iµq)

2 + ω2
]

=

=
1

2

+∞∑

n=−∞

(
ln
[
(ωn + iµq)

2 + ω2
]

+ ln
[
(−ωn + iµq)

2 + ω2
])

=
1

2

+∞∑

n=−∞

(
ln
[
ω2
n + (ω + µq)

2]+ ln
[
ω2
n + (ω − µq)2]) , (B.6)

using that the sum runs over all frequencies in the first step. A direct calculation

shows the validity of the last equality.

Matsubara Sum We want to evaluate the fermionic sum

+∞∑

n=−∞

1

ω2
n + ω̃2

, (B.7)

where ω̃ is a constant. The method consists in finding a function with poles

for each of the ωn to convert the sum into a complex integral. The function
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tanh(βz/2) has precisely the desired characteristic, its poles being at z = iωn.

The residues are

Res

[
tanh

(
βz

2

)
, z0 = iωn

]
=

sinh
(
βz
2

)

cosh′
(
βz
2

)
∣∣∣∣∣
z=z0

=
2

β
, (B.8)

and, therefore, the sum becomes

+∞∑

n=−∞

1

ω2
n + ω̃2

= − β

2πi

∮

C

dz
1

z2 − ω̃2

1

2
tanh

(
βz

2

)
, (B.9)

where the contour is composed of small loops inclosing all singularities of

tanh(βz/2). The singularities at z = ±ω̃ of the fraction in the integrand lie

outside the region enclosed by C. Deforming the contour gives

β

2πi

∮

C

dz
1

z2 − ω̃2

1

2
tanh

(
βz

2

)
=

=
β

2πi

(∫ i∞+0+

−i∞+0+
dz +

∫ −i∞−0+

i∞−0+
dz

)
1

z2 − ω̃2

1

2
tanh

(
βz

2

)

=
β

2πi

∫ i∞+0+

−i∞+0+
dz

1

z2 − ω̃2
tanh

(
βz

2

)

= − β

2ω̃
tanh

(
βω̃

2

)
, (B.10)

where we made the change of variable z into −z between the first and second

line. We used Cauchy’s residue theorem in the last step, closing the contour in

the positive half plane. We find for the sum

+∞∑

n=−∞

1

ω2
n + ω̃2

=
β

2ω̃
tanh

(
βω̃

2

)
=

β

2ω̃
[1− 2nF (ω̃)] . (B.11)

Using this result, we compute the sums in (B.6). Note that

∂

∂ω̃

+∞∑

n=−∞

ln
[
ω2
n + ω̃2

]
= 2ω̃

∞∑

n=−∞

1

ω2
n + ω̃2

= β [1− 2nF (ω̃)] , (B.12)

and, therefore,

+∞∑

n=−∞

ln
(
ω2
n + ω̃2

)
= β

[
ω̃ +

2

β
ln
(
1 + e−βω̃

)]
. (B.13)
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Putting everything together, the effective potential reads

Veff (T, µq) = −2

∫
d3k

(2π)3

[
ω +

1

β
ln
(
1 + e−βω−βµq

)
+

1

β
ln
(
1 + e−βω̃+βµq

)]
,

(B.14)

where ω = ~k2+(gv)2. The zero-temperature contribution of the effective potential

is divergent and requires a renormalization.

Renormalization of the Effective Potential First of all, we show that the

temperature-independent part of the effective potential can be written as

Veff (T = 0, µq) = −2

∫
d3k

(2π)3
ω = −2

∫
d4kE
(2π)4

ln
[
k2
E + (gv)2

]
, (B.15)

where k2
E = k2

E,0 +~k2. It directly follows from the identity coming from Cauchy’s

residue theorem

1

2
=

∫
dk0

2πi

ω

−k2
0 + ω2

. (B.16)

Integrating the last equation over ω and performing the Euclidean rotation k0 =

ikE,0 gives precisely (B.15). We now evaluate the T = 0 contribution of the

effective potential using dimensional regularization in the MS-scheme. Going

into arbitrary d-dimension, we have

∫
d4kE
(2π)4

ln
[
k2
E + (gv)2

]
→

(
µ2
)2− d

2

∫
ddkE
(2π)d

ln
[
k2
E + (gv)2

]
, (B.17)

where µ is an arbitrary scale with dimension of mass that balances the change of

dimension of the integral. To evaluate the integral, we first take the derivative

with respect to m2
q = (gv)2 and get

(
µ2
)2− d

2

∫
ddkE
(2π)d

1

k2
E + (gv)2

=
(
µ2
)2− d

2
πd/2

(2π)d
[(gv)2]

d
2
−1Γ

(
1− d

2

)
, (B.18)

using known results for Euclidean integrals in d-dimensions [240]. The zero-

temperature part of the effective potential becomes

Veff (T = 0, µq) = −2
(
µ2
)2− d

2
πd/2

(2π)d
[(gv)2]

d
2

d
2

Γ

(
1− d

2

)
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= −2
(gv)4

(4π)2

(
(gv)2

4πµ2

) d
2
−2 Γ

(
2− d

2

)
d
2

(
1− d

2

) . (B.19)

Setting ε = 2− d
2

and taking the limit ε going to zero gives

Veff (T = 0, µq) =− 2
(gv)4

(4π)2

(
(gv)2

4πµ2

)−ε
Γ (ε)

(2− ε)(ε− 1)

= 2
(gv)4

(4π)2

(
1− ε(gv)2

4πµ2
+O(ε2)

)(
1

ε
− γE +O(ε2)

)

(
1 + ε+O(ε2)

) 1

2

(
1 +

ε

2
+O(ε2)

)

=
(gv)4

16π2

[
1

ε
+ γE + ln 4π − ln

(gv)2

µ2
+

3

2
+O(ε)

]
, (B.20)

where γE is the Euler-Mascheroni constant. In the MS-scheme, the first three

terms in the square bracket are absorbed by counterterms of the Lagrangian and

the renormalized zero-temperature part of the effective potential is

V
(ren)
eff (T = 0, µq) =

(gv)4

16π2

[
ln

µ2

(gv)2
+

3

2

]
. (B.21)

We finally write the one-loop renormalized effective potential due to fermionic

interactions

V
(ren)
eff (T, µq) =

m4
q

16π2
NcNf

[
ln
µ2

m2
q

+
3

2

]

− 2
NcNf

β

∫
d3k

(2π)3

[
ln
(
1 + e−βω−βµq

)
+ ln

(
1 + e−βω̃+βµq

)]
,

(B.22)

where Nc and Nf are the number of colors and flavors respectively.

B.2 Renormalized One-loop Self-Energies

We derive the renormalized one-loop self-energies of the σ and π fields at finite

temperature and density. As usual, we only consider the interactions with the

fermions fields. Those are given by

gψ̄σψ , igψ̄γ5πiψ , (B.23)
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the Yukawa interactions of the LSMq.

B.2.1 Self-Energy of the Sigma Field

The self-energy of the sigma field at one-loop is given by the following diagram

Σσ = = ΣT=0
σ + ΣT 6=0

σ . (B.24)

The Feynman rules for the Yukawa vertex allow writing the self-energy as

Σσ (iω, ~p) = g2T
+∞∑

n=−∞

∫
d3k

(2π)3
tr
[
Sψ

(
iωn + µq, ~k

)
Sψ

(
iωn − iω + µq, ~k − ~p

)]
,

(B.25)

where the fermion-anti-fermion propagator in Euclidean space is

Sψ

(
iωn + µq, ~k

)
=

mq − /k
(ωn − iµq)2 + E2

k

, (B.26)

with Ek = (~k2 +m2
q)

1/2, /k = −γ4ωn+~γ.~k and ωn = (2n+1)π/β are the fermionic

Matsubara frequencies. The Feynman propagator can be expressed as

Sψ

(
iωn + µq, ~k

)
= −

∫ +∞

−∞

dk0

2π

ρF (k0, ~k)

iωn + µq − k0

, (B.27)

where ρF is the fermionic spectral function defined as

ρF (k0, ~k) = 2π
(/p+mq)

2ωk
[δ(k0 − ωk)− δ(k0 + ωk)] . (B.28)

The self-energy reads

Σσ (iω, ~p) = g2T
+∞∑

n=−∞

∫
d3k

(2π)3

∫ +∞

−∞

dp0

2π

∫ +∞

−∞

dk0

2π

·
tr
[
ρF (k0, ~k)ρF (p0, ~k − ~p)

]

(iωn + µq − k0)(i(ω − ωn)− µq − p0)
. (B.29)

Let us compute the zero and finite-temperature contributions separately.
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Zero-temperature Contribution For the T = 0 contribution of the self-energy

ΣT=0
σ , we use standard quantum field theories in Euclidean space in d = 4 − 2ε

dimensions to extract the divergence. We have

ΣT=0
σ = g2

∫
ddkE
(2π)d

tr

[
mq − /k
k2 +m2

q

mq − (/k − /p)
(k − p)2 +m2

q

]

= 4g2

∫
ddkE
(2π)d

m2
q − k(k − p)

[k2 +m2
q][(k − p)2 +m2

q]
, (B.30)

with the trace computed using Dirac algebra

/k(/k − /p) = γµkµγ
ν(k − p)ν =

1

2
{γµ, γν}kµ(k − p)ν = −k(p− k) , (B.31)

tr[(mq − /k)(mq − (/k − /p))] = 4(m2
q − k(k − p)) . (B.32)

Using the known result for Euclidean integral in d-dimension space [240] and after

some algebra, we find for the real-part

Re
[
ΣT=0
σ

]
=

3g2

4π2

[
m2
q −

1

6
p2

]
1

ε
+

g2

4π2

[
5m2

q − p2 − 3(m2
q −

1

6
p2) ln

m2
q

M2

]

+
g2

4π2

{
1
2
p2C3 log

(
1+C
1−C

)
for p2 > 4m2

q and p2 < 0

−p2C3arctan 1
C

for 0 < p2 < 4m2
q

, (B.33)

where C =
√∣∣1− 4m2

q/p
2
∣∣ and M is the regularization scale. In the limit p0 → 0

and the rest frame of the particle ~p→ 0 we find

Re
[
ΣT=0
σ

]
=
NcNf

4π2
g4v2

(
1 + 3 ln

M2

g2v2

)
, (B.34)

for the renormalized contribution.

Finite-temperature Contribution To derive the real-part of the finite-temperature

contribution, we need to evaluate the Matsubara sum. We use the known

result [105]

T

+∞∑

n=−∞

1

iωn + µq − k0

1

i(ω − ωn)− µq − p0

= −1− n+
F (k0)− n−F (p0)

iω − k0 − p0

, (B.35)

where n±F (ωk) = 1
eβ(ωk∓µq)+1

. Performing the integrals over k0 and p0 using the

different combinations of δ-functions allows extracting the real-part of the finite-
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temperature contribution of the self-energy

Re
[
ΣT 6=0
σ

]
=4g2

∫
d3k

(2π)3

1

4ωkωp−k
{

[
−ωkωp−k + ~k · (~p− ~k) +m2

q

] n+
F (ωk) + n−F (ωp−k)

p0 − ωk − ωp−k

+
[
ωkωp−k + ~k · (~p− ~k) +m2

q

] −n+
F (ωk) + n+

F (ωp−k)

p0 − ωk + ωp−k

+
[
ωkωp−k + ~k · (~p− ~k) +m2

q

] −n−F (ωp−k) + n−F (ωk)

p0 + ωk − ωp−k

−
[
−ωkωp−k + ~k · (~p− ~k) +m2

q

] n−F (ωk) + n+
F (ωp−k)

p0 + ωk + ωp−k

}
, (B.36)

where we have used the Cauchy principal value to extract the real-part of the

function. We are interested in the self-energy in the rest frame of the particle

and in the limit p0 → 0. Due to the non-analyticity of the self-energy, the order

in which we take the limits matter. According to the Ref. [241], the correct

prescription is to take the limit p0 → 0 first, which leads to

Re
[
ΣT 6=0
σ

]
=
g2

π2

∫ ∞

0

dk
k2

ωk

[
n+
F (ωk) + n−F (ωk)

](
1− g2v2

ω2
k

)

− g4v2

π2T

∫ ∞

0

dk
k2

ω2
k

{
n+
F (ωk)

[
1− n+

F (ωk)
]

+ n−F (ωk)
[
1− n−F (ωk)

]}
.

(B.37)

The presence of the last term in the previous equation depends on the order of

the two limits. However, it turns out that this term does not affect our result on

the stability.

B.2.2 Self-Energy of the Pion Fields

We compute the self-energy of the pion fields

Σπ = = ΣT=0
π + ΣT 6=0

π
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= g2T

+∞∑

n=−∞

∫
d3k

(2π)3
tr
[
γ5Sψ

(
iωn + µq, ~k

)
γ5Sψ

(
iωn − iω + µq, ~k − ~p

)]
.

(B.38)

The zero-temperature part ΣT=0
π reads

ΣT=0
π = −g2

∫
ddkE
(2π)d

Tr

[
γ5 mq − /k
k2 +m2

q

γ5
mq − (/k − /p)
(k − p)2 +m2

q

]

= −4g2

∫
ddkE
(2π)d

m2
q + k(k − p)

[k2 +m2
q][(k − p)2 +m2

q]

= ΣT=0
σ − 8g2m2

q

∫
ddkE
(2π)d

1

[k2 +m2
q][(k − p)2 +m2

q]
= ΣT=0

σ − Σ
′T=0
π .

(B.39)

We can use the above result of ΣT=0
σ . The only contribution left to compute is

Σ
′T=0
π . We find

Re
[
Σ
′T=0
π

]
=

g2

2π2

[
m2
q

1

ε
−m2

q log
m2
q

M2
+ 2m2

q

]

+
g2

2π2

{
2m2

qC log
(

1+C
1−C

)
for p2 > 4m2

q and p2 < 0

−2m2
qCarctan 1

C
for 0 < p2 < 4m2

q

. (B.40)

Therefore, the real-part of self-energy of the pion at zero temperature reads

Re
[
ΣT=0
π

]
= Re

[
ΣT=0
σ

]
− Re

[
Σ
′T=0
π

]

=
g2

4π2

[(
m2
q −

1

2
p2

)
1

ε
+m2

q − p2 − (m2
q −

1

2
p2) log

m2
q

M2

]

+
g2

4π2

{
(1

2
p2 − 6m2)C log

(
1+C
1−C

)
for p2 > 4m2

q and p2 < 0

p2C arctan 1
C

for 0 < p2 < 4m2
q

.

(B.41)

The real-part of the finite-temperature contribution reads

Re
[
ΣT 6=0
π

]
= −4g2

∫
d3k

(2π)3

1

4ωkωp−k
{

[
ωkωp−k − ~k · (~p− ~k) +m2

q

] n+
F (ωk) + n−F (ωp−k)

p0 − ωk − ωp−k

+
[
−ωkωp−k − ~k · (~p− ~k) +m2

q

] −n+
F (ωk) + n+

F (ωp−k)

p0 − ωk + ωp−k
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+
[
−ωkωp−k − ~k · (~p− ~k) +m2

q

] −n−F (ωk) + n−F (ωp−k)

p0 + ωk − ωp−k

−
[
ωkωp−k − ~k · (~p− ~k) +m2

q

] n−F (ωk) + n+
F (ωp−k)

p0 + ωk + ωp−k

}

= Re
[
ΣT 6=0
σ

]
− 8g2m2

q

∫
d3k

(2π)3

1

4ωkωp−k
{

n+
F (ωk) + n−F (ωp−k)

p0 − ωk − ωp−k
+
−n+

F (ωk) + n+
F (ωp−k)

p0 − ωk + ωp−k

+
−n−F (ωp−k) + n−F (ωk)

p0 + ωk − ωp−k
− n−F (ωk) + n+

F (ωp−k)

p0 + ωk + ωp−k

}

= Re
[
ΣT 6=0
σ

]
− 8g2m2

q

∫
d3k

(2π)3

1

4ωkωp−k

{
n+
F (ωk) + n−F (ωk)

p0 − ωk − ωp−k

−n
+
F (ωk) + n−F (ωk)

p0 − ωk + ωp−k
+
n−F (ωk) + n−F (ωk)

p0 + ωk − ωp−k
− n+

F (ωk) + n−F (ωk)

p0 + ωk + ωp−k

}
.

(B.42)

Putting everything together, the renormalized self-energy of the pion field in the

limit p0 → 0 and the rest frame of the particle ~p→ 0 is

Π(ren)
π =

NcNf

4π2

{
g4v2

(
1 + ln

M2

g2v2

)
+ 4g2

∫ ∞

0

dk
k2

ωk

[
n+
F (ωk) + n−F (ωk)

]}
,

(B.43)

where the limit over p0 was taken first.
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Appendix C

Perturbation Theory from Inflation

In this appendix, we provide more details on the theory of perturbations in the

simplest realization of inflation. Our aim is to illustrate the most important steps

leading to the derivation of the scalar and tensor power spectra. For a complete

treatment, we invite the reader to consider the references [151–154, 242]. We are

working in conformal time where the conformal Hubble parameter is defined as

H ≡ a′

a
= aH and, in a de Sitter geometry, the scale factor becomes a(τ) = − 1

Hτ
.

The first step is the expansion of the metric and the scalar field around the

background solutions. The perturbation in the scalar field is defined from

φ(τ, ~x) = φc(τ) + δφ(τ, ~x) , (C.1)

where φc is the classical and homogeneous contribution responsible for the

accelerated expansion during inflation. The expansion of the metric around the

FLRW solution can be written in the most general form as

ds2 = a2(τ)
{
− [1 + 2A(τ, ~x)] dτ 2+

2 [∂iB(τ, ~x) +Bi(τ, ~x)] dτdxi + [δij + hij(τ, ~x)] dxidxj
}
, (C.2)

where Bi is a transverse vector. The perturbation of the spatial part of the metric

can be decomposed as

hij(τ, ~x) = −2C(τ, ~x)δij + 2∂i∂jE(τ, ~x) + 2∂(iEj)(τ, ~x) + Eij(τ, ~x) , (C.3)

where Ei is a transverse vector and Eij is a transverse and traceless tensor.
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The perturbation of the scalar curvature on comoving hypersurfaces reads

R = −C +
H
φ′
δφ , (C.4)

where the derivative with respect to the conformal time is denoted with a prime.

Scalar Perturbations Using the gauge freedom in the choice of the coordinates

and the equation of motion for the scalar field, it has been shown in [153] that a

single variable is sufficient to describe the scalar perturbation

v = a

(
δφ− φ′

HC
)
. (C.5)

This variable v is usually referred as the Mukhanov-Sasaki variable and is a linear

combination of the scalar perturbations of the scalar field and the metric.

In order to study the evolution of the scalar perturbation, we need the equation

of motion of v. Starting with the action during the period of inflation

Sφ =

∫
d4x
√
|g|
(
m2
P

2
R− 1

2
gµν∂µφ∂µφ− V (φ)

)
, (C.6)

and with the two ansätze for the scalar field and the metric, we obtain the action

for the Mukhanov-Sasaki variable

Sv =
1

2

∫
dτd3~x

[
v′2 − (∂iv)2 +

z′′

z
v2

]
, (C.7)

where z ≡ aφ
′

H . We observe that v has an action corresponding to a scalar field

with a time-dependent mass in a spacetime with a Minkowski metric. Using the

definitions of z and v, one can show that

v = −zR , (C.8)

which implies that the comoving curvature perturbation is simply proportional

to the Mukhanov-Sasaki variable.

We are considering quantum perturbations and therefore, before solving the

equation of motion, we need to quantize the scalar field v

v̂(τ, ~x) =
1

(2π)3/2

∫
d3~k

[
â~kvk(τ)ei

~k·~x + â†~kv
∗
k(τ)e−i

~k·~x
]
, (C.9)
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where v̂ denotes that v is now a quantum field. The annihilation and creation

operators â~k and â†~k are defined by their commutation relations

[
â~k, â~k′

]
=
[
â†~k, â

†
~k′

]
= 0 ,

[
â~k, â

†
~k′

]
= δ(3)(~k − ~k′) . (C.10)

Working with the canonical quantization, the following commutation relations

are valid

[v̂(τ, ~x), v̂(τ, ~x′)] = [π̂v(τ, ~x), π̂v(τ, ~x
′)] = 0 , (C.11)

[v̂(τ, ~x), π̂v(τ, ~x
′)] = iδ(3)(~x− ~x′) , (C.12)

where πv is defined as πv ≡ δS
δv′

, the conjugate momentum of v. In our case πv is

simply equal to v′. Inserting equation (C.9) in the commutation relation (C.12)

gives

vkv
′∗
k − v∗kv′k = i , (C.13)

which corresponds to the Wronskian normalization condition for the solutions vk.

After a Fourier transformation, we find the classical equation of motion for the

amplitude of the modes vk(τ)

v′′k +

(
k2 − z′′

z

)
vk = 0 . (C.14)

Recall that the field is expected to be in the slow-roll regime. The evolution of

H and φ′ can safely be neglected with respect to the evolution of the scale factor

and the ratio z′′

z
becomes a′′

a
. With this simplification, we write a solution for the

modes

vk(τ) =
1√
2k
e−ikτ

(
1− i

kτ

)
+

1√
2k
eikτ

(
1 +

i

kτ

)
, (C.15)

where the Wronskian normalization and the relation a′′

a
= 2

τ2
have been used.

Going sufficiently early in time, any mode k would have its wavelength deep inside

the Hubble radius, and, therefore, much smaller than the horizon

k

aH
∼ |kτ | � 1 . (C.16)

The equation of motion for the modes (C.14) can be approximated in this limit
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as

v′′k + k2vk = 0 , (C.17)

where the modes behave as in a Minkoswki spacetime since the effect of the

curvature can be safely neglected. In order to pick a physical solution, we assume

that it reproduces the Minkowski vacuum vk ∼ eikτ in the limit k|τ | � 1 and,

therefore,

vk(τ) =
1√
2k
eikτ

(
1− i

kτ

)
. (C.18)

In quantum field theories in curved spacetime, this is usually referred as the

Bunch-Davies vacuum.

The statistical properties of the fluctuations are encoded in the n-point correlation

functions of the modes. In particular, from the two-point function, one defines

the power spectrum

〈0|v̂(τ, x1)v̂(τ, x2)|0〉 =

∫
d3kei

~k(~x1−~x2) ∆2
v(τ, k)

4πk3
. (C.19)

Using the equation (C.9), we find for the spectrum

∆2
v(τ, k) =

k3

2π2
|vk(τ)|2 . (C.20)

Using that v = −zR, we obtain the power spectrum ∆2
s corresponding to the

comoving curvature perturbation

∆2
s(τ, k) =

k3

2π2

|vk(τ)|2
z2

. (C.21)

Recall that we evaluate the spectrum at the horizon crossing. In the super-horizon

limit, k � (aH), we can solve the equation of motion for the mode to find

vk(τ) ' − 1√
2k

i

kτ
' iaH√

2k3
. (C.22)

This allows writing

∆2
s(τ, k) =

1

4π2

H4

φ̇2
, (C.23)

which is the spectrum of scalar cosmological perturbations generated from
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vacuum fluctuations in the slow-roll realization of inflation.

Tensor Perturbations The method to obtain the tensor perturbation goes along

similar lines. We start with the action for tensor linear perturbations

S =
m2
P

8

∫
dτd3~x a2(τ)

[
(E2

ij − (∂lEij)
2
]
, (C.24)

where the reduced Planck mass has been written explicitly. Then, we use the

fact that the tensor perturbation corresponds to GW and can be decomposed in

their different polarizations

Eij =

∫
d3~k

(2π)3/2

2∑

λ=1

ψ~k,λ(τ)eij(~k, λ)ei
~k·~x , (C.25)

with eij(~k, λ) being the polarization tensors. Inserting in the action gives

S =
m2
p

8

2∑

λ=1

∫
dτd3~ka2(τ)

[
|ψ′~k,λ|

2 −
(
k2 − a′′

a

)
|ψ~k,λ|2

]
(C.26)

=
m2
p

2

2∑

λ=1

∫
dτd3~k

[
|u′~k,λ|

2 −
(
k2 − a′′

a

)
|u~k,λ|2

]
, (C.27)

where u~k,λ has been defined as mP
2
a(τ)ψ~k,λ. Following similar steps as the scalar

case, the power spectrum for u~k,λ is found to be

∆2
u~k,λ

(τ, k) =
k3

2π2
|u~k,λ(τ)|2 , (C.28)

solving for the modes in the super-horizon limit, k � (aH), we find u~k,λ ' iaH√
2k3

and, therefore,

∆2
u~k,λ

(τ, k) =

(
H

2π

)2

. (C.29)

Summing over the polarizations and using the relation uλ(τ) = mP
2
Eλ(τ), we

obtain

∆2
t (τ, k) =

8

m2
P

(
H

2π

)2

, (C.30)

which is the spectrum of tensor cosmological perturbations generated from

vacuum fluctuations in the slow-roll realization of inflation.
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Appendix D

Details on the Computations of

Chapter 5

In this appendix, we provide greater details on the computations performed in

the derivation of the escape rate. We start with the explicit derivation of the

Fokker-Planck equation for the scalar field.

D.1 Derivation of the Fokker-Planck Equation

We generalize the method presented in [206] to derive the Fokker-Planck equation

for a field. We consider a scalar field φi(t) in a potential V (φ). The Langevin

equation for the field and its conjugate momentum πi(t) read

∂tφi(t) = πi(t) ,

∂tπi(t) = −ηπi(t) +∇2
ijφj(t)− V ′(φi) + ξi(t) , (D.1)

where we wrote the Laplacian as ∇2
ij to indicate that it is a non-diagonal matrix

actually given by

∇2φxyz =
1

a2
[φx+1,y,z + φx−1,y,z + φx,y+1,z + φx,y−1,z + φx,y,z+1 + φx,y,z−1 − 6φx,y,z] ,

(D.2)

where each direction of space has been explicitly labelled.
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The white noise, being Gaussian distributed, leads to a probability distribution

P (φ, π, t | φ0, π0, t0) corresponding to the probability to find the field configura-

tions φ and π at time t knowing the initial configurations at t0. Formally, P is

defined as

P (φ, π, t | φ0, π0, t0) =

〈
N3∏

i=1

δ[π̂i(t)− πi] · δ[φ̂i(t)− φi]
〉

ξ

, (D.3)

where φ̂i(t) and π̂i(t) are solutions of the Langevin equation (D.1) and φi and πi

are the arguments of the probability distribution P . The stochastic average of

an operator O(φ̂, π̂) is defined as

〈
O(φ̂, π̂)

〉
ξ

=

∫ N3∏

i=1

d[ξ(t)]iO(φ̂, π̂) exp

{
− a

3

2Ω

N3∑

j=1

∫
dt′ξ2

j (t
′)

}
. (D.4)

The integration measure is normalized to give 〈1〉ξ = 1

〈1〉ξ =

∫ N3∏

i=1

d[ξ(t)]i exp

{
− a

3

2Ω

N3∑

j=1

∫
dt′ξ2

j (t
′)

}

=
N3∏

i=1

M∏

k=1

∫
d[ξ]i,k exp

{
−a

3ε

2Ω
ξ2
i,k

}
=

N3∏

i=1

M∏

k=1

Ni,k

√
2πΩ

a3ε
= 1 , (D.5)

where we have discretized time tf − t0 = εM . We find for the measure of

integration

N3∏

i=1

d[ξ(t)]i =
N3∏

i=1

M∏

k=1

√
a3ε

2πΩ
d[ξ]i,k . (D.6)

In discrete space, the Gaussian white noise satisfies

〈ξi(t)〉 = 0 , 〈ξi(t)ξj(t′)〉 = Ω
δij
a3
δ(t− t′) , (D.7)

which is easy to show using (D.4).

Using a bracket notation, we have

〈φ, π | φ0, π0〉 =
N3∏

i=1

δ(φi − φi,0)δ(πi − πi,0) , (D.8)
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and, therefore,

P (φ, π, t | φ0, π0, t0) = 〈φ, π | P̂ (t, t0) | φ0, π0〉
= 〈φ, π | e−(t−t0)L̂FP | φ0, π0〉 , (D.9)

where L̂FP is the Fokker-Planck operator. Note that we used the Markov

property and invariance under time translation. The Fokker-Planck equation

follows immediately

∂tP̂ = −L̂FP P̂ , (D.10)

and we are left with the computation of the Fokker-Planck operator. This is

achieved by taking the Fourier transform of P with respect to φ and π at fixed

time t

P̃ (φ̃, π̃, t | φ0, π0, t0) ≡
∫ N3∏

i=1

dφidπie
−ia3

∑N3

i=1(π̃iπi+φ̃iφi)P (φ, π, t | φ0, π0, t0)

=

∫ N3∏

i=1

dφidπie
−ia3

∑N3

i=1(π̃iπi+φ̃iφi)

·
〈

N3∏

i=1

δ[π̂i(t)− πi] · δ[φ̂i(t)− φi]
〉

ξ

=

〈
exp

{
−ia3

N3∑

i=1

[
π̃iπ̂i(t) + φ̃iφ̂i(t)

]}〉

ξ

. (D.11)

Recall that φ̂(t) and π̂(t) are solutions of the Langevin equation. For an

infinitesimal time interval ε = t− t0, we have

φ̂i(t+ ε) = φi,0(t) + επi,0(t) , (D.12)

π̂i(t+ ε) = πi,0(t) + ε
[
−ηπi,0(t) +∇2

ijφj,0(t)− V ′(φi,0)
]

+

∫ t+ε

t

dτ ξi(τ) .

(D.13)

Inserting in (D.11) gives

P̃ (φ̃, π̃, t+ ε | φ0, π0, t) =

exp

{
−ia3

N3∑

i=1

[
π̃i
(
πi,0 + ε(−ηπi,0 +∇2

ijφj,0 − V ′(φi,0))
)

+ φ̃i (φi,0 + επi,0)
]}
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·
〈

exp

{
−ia3

N3∑

i=1

π̃i

∫ t+ε

t

dτ ξi(τ)

}〉

ξ

, (D.14)

where we have factorized out the terms that do not depend on ξ. We then

compute the stochastic average

〈
exp

{
−ia3

N3∑

i=1

π̃i

∫ t+ε

t

dτ ξi(τ)

}〉

ξ

=

∫
d[ξ] exp

{
a3

N3∑

i=1

[
− 1

2Ω

∫ +∞

−∞
dt′ξ2

i (t
′)− iπ̃i

∫ t+ε

t

dτ ξi(τ)

]}

=

∫
d[ξ] exp

{
a3

N3∑

i=1

[
− 1

2Ω

∫ t+ε

t

dt′ξ2
i (t
′)− iπ̃i

∫ t+ε

t

dτ ξi(τ)

]}

= exp

{
−Ω

2
a3ε

N3∑

i=1

π̃2
i

}
, (D.15)

using that for t′ /∈]t, t+ ε[, the integral is normalized to unity. So, we find for the

Fourier transform P̃ of the probability distribution

P̃ (φ̃, π̃, t+ ε | φ0, π0, t) = exp

{
−a3

N3∑

i=1

[
iπ̃i
[
πi,0 + ε

(
−ηπi,0 +∇2

ijφj,0 − V ′(φi,0)
)]

+
εΩ

2
π̃2
i + iφ̃i (φi,0 + επi,0)

]}
. (D.16)

On the other hand, from (D.9), we have

P (φ, π, t+ ε | φ0, π0, t0) = 〈φ, π | e−εL̂FP | φ0, π0〉
= 〈φ, π | 1− εL̂FP +O(ε2) | φ0, π0〉

=
N3∏

i=1

δ(φi − φi,0)δ(πi − πi,0)− εL̂FP (φ, π | φ0, π0) +O(ε2) . (D.17)

Taking the Fourier transform, we obtain

P̃ (φ̃, π̃, t+ ε | φ0, π0, t) = e−ia
3
∑N3

i=1(π̃iπi,0+φ̃iφi,0) − ε ˜̂LFP (φ̃, π̃ | φ0, π0) +O(ε2) .

(D.18)

Comparing with (D.16), we find the Fourier transform of the Fokker-Planck
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operator

˜̂LFP (φ̃, π̃ | φ0, π0) =

e−ia
3
∑N3

i=1(π̃iπi,0+φ̃iφi,0)a3

N3∑

i=1

{
iπ̃i
[
−ηπi,0 +∇2

ijφj,0 − V ′(φi,0)
]

+
Ω

2
π̃2
i + iφ̃iπi,0

}
.

(D.19)

We take the inverse Fourier transform to find the Fokker-Planck operator

L̂FP (φ, π | φ0, π0) =

∫ N3∏

i=1

dφi
2π

dπi
2π

eia
3
∑N3

i=1(π̃iπi+φ̃iφi) ˜̂
LFP (φ̃, π̃ | φ0, π0)

=

∫ N3∏

i=1

dφi
2π

dπi
2π

eia
3
∑N3

i=1(π̃i(πi−πi,0)+φ̃i(φi−φi,0))

· a3

N3∑

i=1

{
iπ̃i
[
−ηπi,0 +∇2

ijφi,0 − V ′(φi,0)
]

+
Ω

2
π̃2
i + iφ̃iπi,0

}

= a3

N3∑

i=1

{
∂

a3∂πi

[
−ηπi,0 +∇2

ijφi,0 − V ′(φi,0)
]
− Ω

2

∂2

a6∂π2
i

+
∂

a3∂φi
πi,0

}

·
∫ N3∏

i=1

dφi
2π

dπi
2π

eia
3
∑N3

i=1(π̃i(πi−πi,0)+φ̃i(φi−φi,0))

= a3

N3∑

i=1

{
∂

a3∂πi

[
−ηπi,0 +∇2

ijφi,0 − V ′(φi,0)
]
− Ω

2

∂2

a6∂π2
i

+
∂

a3∂φi
πi,0

}

·
N3∏

i=1

δ(φi − φi,0)δ(πi − πi,0)

= a3

N3∑

i=1

{
∂

a3∂πi

[
−ηπi,0 +∇2

ijφi,0 − V ′(φi,0)
]
− Ω

2

∂2

a6∂π2
i

+
∂

a3∂φi
πi,0

}

· 〈φ, π | φ0, π0〉

= 〈φ, π | a3

N3∑

i=1

{
∂

a3∂π̂i

[
−ηπ̂i +∇2

ijφ̂i − V ′(φ̂i)
]

−Ω

2

∂2

a6∂π̂2
i

+
∂

a3∂φ̂i
π̂i

}
| φ0, π0〉 . (D.20)

Now, since L̂FP (φ, π | φ0, π0) is defined as

L̂FP (φ, π | φ0, π0) = 〈φ, π | L̂FP | φ0, π0〉 , (D.21)
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we obtain

L̂FP (φ, π | φ0, π0) =

a3

N3∑

i=1

{
∂

a3∂πi

[
−ηπi +∇2

ijφi − V ′(φi)
]
− Ω

2

∂2

a6∂π2
i

+
∂

a3∂φi
πi

}
, (D.22)

and the Fokker-Planck equation reads

∂

∂t
P (φ, π, t | φ0, π0, t0) = −LFPP (φ, π, t | φ0, π0, t0) , (D.23)

which completes the derivation.

Probability Density Current Conservation of probability implies that the

Fokker-Planck equation can be written in term of a probability density current

∂tP (φ, π, t) = −a3

N3∑

i=1

∂

a3∂φi
Ji − a3

N3∑

i=1

∂

a3∂πi
J̄i , (D.24)

where and Ji and J̄i are defined as

Ji = −
{
−πi − kBT

∂

a3∂πi

}
P (φ, π, t | φ0, π0, t) , (D.25)

J̄i = −
{[
ηπi −∇2

ijφj + V ′(φi)
]

+ kBT
∂

a3∂φi
+

Ω

2

∂

a3∂πi

}
P (φ, π, t | φ0, π0, t) ,

(D.26)

for i ∈ [1, N3]. Computing explicitly the RHS of (D.24), we obtain

−a3

N3∑

i=1

∂

a3∂φi
Ji − a3

N3∑

i=1

∂

a3∂πi
J̄i = a3

N3∑

i=1

{
−πi

∂

a3∂φi
− kBT

∂

a3∂φi

∂

a3∂πi
+

+
∂

a3∂πi

[
−∇2φi + V ′(φi) + ηπi

]
+ kBT

∂

a3∂φi

∂

a3∂πi
+

Ω

2

∂2

a3∂π2
i

}
P (φ, π, t)

= a3

N3∑

i=1

{
−πi

∂

a3∂φi
+

∂

a3∂πi

[
ηπi −∇2φi + V ′(φi)

]
+

Ω

2

∂2

a3∂π2
i

}
P (φ, π, t) ,

(D.27)
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which is precisely the RHS of the Fokker-Planck equation. In the vector-matrix

notation, the probability current is expressed as

(
J

J̄

)
= −M ·

(
∂E
a3∂φ

+ kBT
∂

a3∂φ
∂E
a3∂π

+ kBT
∂

a3∂π

)
P (φ, π, t | φ0, π0, t) , (D.28)

which can be shown explicitly

(
J

J̄

)
= − 1

a3

(
0 −1

1 η1

)
·
(

∂E
a3∂φ

+ kBT
∂

a3∂φ
∂E
a3∂π

+ kBT
∂

a3∂π

)
P (φ, π, t)

= −
(

−πi − kBT ∂
a3∂πi

[−∇2φi + V ′(φi)] + kBT
∂

a3∂φi
+ ηπi + Ω

2
∂

a3∂πi

)
P (φ, π, t) .

(D.29)

D.2 Flux-over-Population Method for a Scalar

Field

In this section, we provide some explicit computations to complete the derivation

of the escape rate for the scalar field presented in Sec. 5.3.3.

We first derive Eq. (5.100), the equation for ζ(φ, π). Inserting the ansatz P = ζP0

in the Fokker-Planck equation, we have

a3

N3∑

i=1

{
−πi

∂

a3∂φi
+

∂

a3∂πi

[
ηπi +

∂E

a3∂φi

]
+

Ω

2

∂2

a6∂π2
i

}
ζ(φ, π)P0(φ, π) = 0 .

(D.30)

Computing each contribution explicitly gives

−πi
∂

a3∂φi
ζP0 = − πi

∂ζ

a3∂φi
P0 + πiβζ

∂E

a3∂φi
P0 ,

∂

a3∂πi

[
ηπi +

∂E

a3∂φi

]
ζP0 = ηπi

∂ζ

a3∂πi
P0 + ηζ

∂(πiP0)

a3∂πi

+
∂E

a3∂φi

∂ζ

a3∂πi
P0 − β

∂E

a3∂φi
ζπiP0 ,

Ω

2

∂2

a6∂π2
i

ζP0 =
Ω

2

∂

a3∂πi

[
∂ζ

a3∂πi
P0 − βζπiP0

]

=
Ω

2

∂2ζ

a6∂π2
i

P0 − β
Ω

2

∂ζ

a3∂πi
πiP0
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− βΩ

2

∂ζ

a3∂πi
πiP0 − β

Ω

2
ζ
∂(πP0)

a3∂πi
.

The orange and the green terms cancel each other and the blue combine to give

the equation for ζ

a3

N3∑

i=1

{
−πi

∂

a3∂φi
+

[
−ηπi +

∂E

a3∂φi

]
∂

a3∂πi
+

Ω

2

∂2

a6∂π2
i

}
ζ(φ, π) = 0 , (D.31)

where we recognize the adjoint Fokker-Planck equation. Near the saddle-point,

we expand the energy to obtain Eq. (5.100)

a3

N3∑

i=1

{
−πi

∂

a3∂φi
+

[
−ηπi + a3

N3∑

k=1

[
−∇

2
ik

a3
+
V ′′(φSk )δik

a3

]
(φk − φSk )

]
∂

a3∂πi

+
Ω

2

∂2

a6∂π2
i

}
ζ(φ, π) = 0 . (D.32)

We now derive the equation (5.103) for the parameters Ui and Ūi. Recall that

ζ(φ, π) depends on a linear combination of the φi and πi

ζ(φ, π) = ζ(u) , where u = a3

N3∑

i=1

[
Ui(φi − φSi ) + Ūi(πi − πSi )

]
, (D.33)

and takes the following form

ζ(u) =
1√

2πkBT

∫ ∞

u

dz exp

{
− z2

2kBT

}
, (D.34)

which satisfies the boundary conditions. We have

∂ζ

a3∂φi
=
∂ζ

∂u

∂u

a3∂φi
= − Ui√

2πkBT
exp

{
− u2

2kBT

}
, (D.35)

∂ζ

a3∂πi
=
∂ζ

∂u

∂u

a3∂πi
= − Ūi√

2πkBT
exp

{
− u2

2kBT

}
, (D.36)

∂2ζ

a6∂π2
i

= u
ŪiŪi

kBT
√

2πkBT
exp

{
− u2

2kBT

}

=
Ū2
i

kBT
√

2πkBT
exp

{
− u2

2kBT

}
a3

N3∑

k=1

[
Uk(φk − φSk ) + Ūk(πk − πSk )

]
,

(D.37)

where the minus sign in the first two equations comes from the fundamental
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theorem of calculus. Inserting in the equation (D.32) for ζ we get

a3

N3∑

i=1

{
πiUi√
2πkBT

e
− u2

2kBT −
[
−ηπi + a3

N3∑

k=1

[
−∇

2
ik

a3
+
V ′′(φSk )δik

a3

]
(φk − φSk )

]
·

Ūi√
2πkBT

e
− u2

2kBT +
Ω

2

uŪ2
i

kBT
√

2πkBT
e
− u2

2kBT

}
= 0 ,

a3

N3∑

i=1

{
(
Ui + ηŪi

)
πi − Ūia3

N3∑

k=1

[
−∇

2
ik

a3
+
V ′′(φSk )δik

a3

]
(φk − φSk )+

+ηŪ2
i a

3

N3∑

k=1

Uk(φk − φSk ) + ηŪ2
i a

3

N3∑

k=1

Ūk(πk − πSk )

}
= 0 . (D.38)

This equation can be written in the more elegant matrix notation

(U Ū) ·MT · (eSij) ·
(
φ− φS
π − πS

)
= (U Ū) ·M ·

(
φ− φS
π − πS

)
(U Ū) ·

(
φ− φS
π − πS

)
.

(D.39)

Let us show this equality explicitly. The LHS gives

(U Ū)·MT · (eSij) ·
(
φ− φS
π − πS

)

= − 1

a6
(U Ū) ·

(
0 1

−1 η1

)
·
(

(−∇2
ij) + V ′′(φS)δij 0

0 1

)
·
(
φ− φS
π − πS

)

= − 1

a3
(U Ū) ·

(
0 1

−(−∇2
ij)− V ′′(φS)δij η1

)
·
(
φ− φS
π − πS

)

=

(
1
a3
Ū ·
[
(−∇2

ij) + V ′′(φS)δij
]

−
(
U + ηŪ

)
)T

·
(
φ− φS
π − πS

)

=
1

a3
Ū ·
[
(−∇2

ij) + V ′′(φS)δij
]
· (φ− φS)−

(
U + ηŪ

)
· (π − πS)

= a3

N3∑

i=1

a3

N3∑

j=1

Ūi

(
−(∇2

ij)

a3
+
V ′′(φS)

a3
δij

)
(φj − φSj )

− a3

N3∑

i=1

(
Ui + ηŪi

)
(πi − πSi ) . (D.40)

For the RHS, we have

(U Ū) ·M ·
(
U

Ū

)
=

1

a3
(U Ū) ·

(
0 −1

1 η1

)
·
(
U

Ū

)
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=

(
Ū

−U + ηŪ

)T

·
(
U

Ū

)

= Ū · U − U · Ū + ηŪ · Ū = a3

N3∑

i=1

ηŪiŪi , (D.41)

and therefore

(U Ū)·M ·
(
φ− φS
π − πS

)
(U Ū) ·

(
φ− φS
π − πS

)

= a3

N3∑

i=1

ηŪ2
i a

3

N3∑

k=1

[
Uk(φk − φSk ) + Ūk(πk − πSk )

]
. (D.42)

Which show the validity of the matrix equation. Let us also derive the

normalization (5.108). Multiplying the eigenvalue equation (5.107) on the right

by the inverse of (eSij) times (U Ū)T we get

(U Ū) ·MT · (eSij) · (eSij)−1 ·
(
U

Ū

)
= λ(U Ū) · (eSij)−1 ·

(
U

Ū

)

(U Ū) ·MT ·
(
U

Ū

)
= λ(U Ū) · (eSij)−1 ·

(
U

Ū

)
, (D.43)

recognizing λ on the RHS we obtain the normalization (5.108)

1 = (U Ū) · (eSij)−1 ·
(
U

Ū

)
. (D.44)

The ansatz for ζ(u) can be justified by solving Eq. (D.32) explicitly. Using

∂ζ

a3∂φi
=
∂ζ

∂u

∂u

a3∂φi
= Uiζ

′(u) ,
∂ζ

a3∂πi
= Ūiζ

′(u) ,
∂2ζ

a6∂π2
i

= Ū2
i ζ
′′(u) , (D.45)

we obtain

a3

N3∑

i=1

{
−
(
Ui + ηŪi

)
πi + Ūia

3

N3∑

k=1

[
−∇

2
ik

a3
+
V ′′(φSk )δik

a3

]
(φk − φSk )

}
ζ ′(u)

+
Ω

2
a3

N3∑

i=1

Ū2
i ζ
′′(u) = 0 ,

(U Ū) ·MT · (eSij) ·
(
φ− φS
π − πS

)
ζ ′(u) +

Ω

2

λ

η
ζ ′′(u) = 0 ,
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λuζ ′(u) + βλζ ′′(u) = 0 .

Solving for ζ gives precisely the ansatz

ζ(u) =
1√

2πkBT

∫ ∞

u

dz exp

{
− z2

2kBT

}
, (D.46)

which has the correct asymptotic behavior, the negative exponent being a direct

consequence of the positivity of the eigenvalue.

Probability Density Current We compute the probability density current

corresponding to P = ζP0

JζP0 = −
(

−πi − kBT ∂
a3∂πi

[−∇2φi + V ′(φi)] + kBT
∂

a3∂φi
+ ηπi + Ω

2
∂

a3∂πi

)
ζP0

= −
(

−kbT ∂ζ
a3∂πi

P0

kBT
∂ζ

a3∂φi
P0 + Ω

2
∂ζ

a3∂πi
P0

)

= − 1

β
M ·

(
∂ζ

a3∂φi
∂ζ

a3∂πi

)
P0

=

√
kBT

2π
M ·

(
U

Ū

)
exp

{
− u2

2kBT

}
P0 . (D.47)

Once we have the probability current, we can compute the probability flux j at

the saddle-point

j = a3

N3∑

i=1

∫

u=0

dSiJi(φ, π)

=

∫
DφDπ δ(u) (U Ū) · J

=

∫
DφDπ δ(u) (U Ū) ·M ·

(
U

Ū

)√
kBT

2π
exp

{
− u2

2kBT

}
P0

= λ

√
kBT

2π

∫
DφDπ

∫
dk

2π
exp {iku} 1

Z exp {−βE[φ, π]}

=
λ

2πZ

√
kBT

2π
exp

{
−βE[φS, πS]

}∫
DφDπ

∫
dk

· exp

{
ika3

N3∑

i=1

[
Ui(φi − φSi ) + Ūi(πi − πSi )

]
}
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· exp

{
−β

2
a6

N3∑

i,j=1

(φi − φSi )

[
−∇

2
ij

a3
+
V ′′(φSi )δij

a3

]
(φj − φSj )

+
β

2
a6

N3∑

ij=1

(πi − πSi )
δij
a3

(πj − πSj )

}

=
λ

2πZ

√
kBT

2π
exp

{
−βE[φS, πS]

}∫
DφDπ

∫
dk exp

{
ik(U Ū) ·

(
φ− φS
π − πS

)}

· exp




β

2

(
φ− φS
π − πS

)T

· (eSij) ·
(
φ− φS
π − πS

)
 , (D.48)

where we have adopted the vector notation in the last step. Introducing the

rotation S = (Sij) in field space to diagonalize (eSij) we obtain

(
φ− φS
π − πS

)
= S · ξ , iku = ik(U Ū) · S† · S ·

(
φ− φS
π − πS

)
= ikŨ · ξ , (D.49)

where we have defined the vector Ũ as S ·
(
U Ū

)T
. Moreover, we have

(
φ− φS
π − πS

)T

· (eSij) ·
(
φ− φS
π − πS

)

=

(
φ− φS
π − πS

)T

· S† · S · (eSij) · S† · S ·
(
φ− φS
π − πS

)

= ξ · diag
(µ1

a3
,−µ2

a3
, . . . ,−µ2N

a3

)
· ξ

= a3µ1ξ
2
1 − a3

2N3∑

l=2

µlξ
2
l , (D.50)

where all the µl are positive. The only positive eigenvalue of (eSij) is µ1, all the

other eigenvalues are −µl. Recall that (eSij) is the negative of the Hessian matrix

of the energy at the saddle-point, there is only one direction that decreases the

energy at that point, hence only one negative eigenvalue in the Hessian. We have

j =
λ

2πZ

√
kBT

2π
exp

{
−βE[φS, πS]

}∫ 2N3∏

l=1

dξl

∫
dk

· exp

{
ika3

2N3∑

l=1

Ũlξl +
β

2
a3µ1ξ

2
1 −

β

2
a3

2N3∑

l=2

µlξ
2
l

}

Integrate over the modes l > 1
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where we have used the normalization (5.108)

[
Ũ2

1

µ1

−
2N3∑

l=2

Ũ2
l

µl

]
= (U Ū) · (eSij)−1 ·

(
U

Ū

)
= 1 . (D.52)
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Reale Accademia Dei Lincei,, 26:519–531, 1917.

197



[146] J. Martin, C. Ringeval, and V. Vennin. Encyclopædia Inflationaris. Phys.
Dark Univ., 5-6:75–235, 2014.

[147] F. L. Bezrukov and M. Shaposhnikov. The Standard Model Higgs boson as
the inflaton. Phys. Lett., B659:703–706, 2008.

[148] C. Armendariz-Picon, T. Damour, and V. F. Mukhanov. k - inflation. Phys.
Lett., B458:209–218, 1999.

[149] A. D. Linde. Hybrid inflation. Phys. Rev., D49:748–754, 1994.

[150] M.-A. Watanabe, S. Kanno, and J. Soda. Inflationary Universe with
Anisotropic Hair. Phys. Rev. Lett., 102:191302, 2009.

[151] J. M. Bardeen. Gauge-invariant cosmological perturbations. Phys. Rev.,
D22:1882–1905, Oct 1980.

[152] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner. Spontaneous creation
of almost scale-free density perturbations in an inflationary universe. Phys.
Rev., D28:679–693, Aug 1983.

[153] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger. Theory
of cosmological perturbations. Part 1. Classical perturbations. Part 2.
Quantum theory of perturbations. Part 3. Extensions. Phys. Rept., 215:203–
333, 1992.

[154] H. Kodama and M. Sasaki. Cosmological Perturbation Theory. Progress of
Theoretical Physics Supplement, 78:1–166, Jan 1984.

[155] D. J. Schwarz, C. A. Terrero-Escalante, and A. A. Garcia. Higher order
corrections to primordial spectra from cosmological inflation. Phys. Lett.,
B517:243–249, 2001.

[156] J. S. Schwinger. On gauge invariance and vacuum polarization. Phys. Rev.,
82:664–679, 1951.

[157] T. Hayashinaka, T. Fujita, and J. Yokoyama. Fermionic Schwinger effect
and induced current in de Sitter space. JCAP, 1607(07):010, 2016.

[158] W. Tangarife, K. Tobioka, L. Ubaldi, and T. Volansky. Dynamics of Relaxed
Inflation. JHEP, 02:084, 2018.

[159] R. Z. Ferreira and A. Notari. Thermalized Axion Inflation. JCAP,
1709(09):007, 2017.

[160] I. G. Moss and C. M. Graham. Particle production and reheating in the
inflationary universe. Phys. Rev., D78:123526, 2008.

[161] M. Bastero-Gil, A. Berera, and R. O. Ramos. Dissipation coefficients from
scalar and fermion quantum field interactions. JCAP, 1109:033, 2011.

198



[162] M. Bastero-Gil, A. Berera, R. O. Ramos, and J. G. Rosa. General
dissipation coefficient in low-temperature warm inflation. JCAP, 1301:016,
2013.

[163] A. Berera. Warm inflation at arbitrary adiabaticity: A Model, an existence
proof for inflationary dynamics in quantum field theory. Nucl. Phys.,
B585:666–714, 2000.

[164] A. Berera. Warm inflation solution to the eta problem. AHEP2003/069,
2004.

[165] A. Berera, M. Gleiser, and R. O. Ramos. A First principles warm inflation
model that solves the cosmological horizon / flatness problems. Phys. Rev.
Lett., 83:264–267, 1999.

[166] A. Berera and R. O. Ramos. Construction of a robust warm inflation
mechanism. Phys. Lett., B567:294–304, 2003.

[167] A. Berera, I. G. Moss, and R. O. Ramos. Warm Inflation and its
Microphysical Basis. Rept. Prog. Phys., 72:026901, 2009.

[168] R. O. Ramos and L. A. da Silva. Power spectrum for inflation models with
quantum and thermal noises. JCAP, 1303:032, 2013.

[169] S. Bartrum, M. Bastero-Gil, A. Berera, R. Cerezo, R. O. Ramos, and
J. G. Rosa. The importance of being warm (during inflation). Phys. Lett.,
B732:116–121, 2014.

[170] M. Bastero-Gil, A. Berera, I. G. Moss, and R. O. Ramos. Cosmological
fluctuations of a random field and radiation fluid. JCAP, 1405:004, 2014.

[171] M. Bastero-Gil, A. Berera, I. G. Moss, and R. O. Ramos. Theory of non-
Gaussianity in warm inflation. JCAP, 1412(12):008, 2014.

[172] I. G. Moss and C. Xiong. Non-Gaussianity in fluctuations from warm
inflation. JCAP, 0704:007, 2007.

[173] G. S. Vicente, L. A. da Silva, and R. O. Ramos. Eternal inflation in a
dissipative and radiation environment: Heated demise of eternity. Phys.
Rev., D93(6):063509, 2016.

[174] R. Arya, A. Dasgupta, G. Goswami, J. Prasad, and R. Rangarajan.
Revisiting CMB constraints on warm inflation. JCAP, 1802(02):043, 2018.

[175] M. Bastero-Gil, S. Bhattacharya, K. Dutta, and M. R. Gangopadhyay.
Constraining Warm Inflation with CMB data. JCAP, 1802(02):054, 2018.

[176] R. Rangarajan. Current Status of Warm Inflation. In 18th Lomonosov
Conference on Elementary Particle Physics Moscow, Russia, August 24-
30, 2017, 2018.

199



[177] C. Graham and I. G. Moss. Density fluctuations from warm inflation.
JCAP, 2009(07):013–013, Jul 2009.

[178] M. Bastero-Gil, A. Berera, and R. O. Ramos. Shear viscous effects on the
primordial power spectrum from warm inflation. JCAP, 1107:030, 2011.

[179] A. N. Taylor and A. Berera. Perturbation spectra in the warm inflationary
scenario. Phys. Rev., D62:083517, 2000.

[180] M. Benetti and R. O. Ramos. Warm inflation dissipative effects: predictions
and constraints from the Planck data. Phys. Rev., D95(2):023517, 2017.

[181] M. Bastero-Gil and A. Berera. Warm inflation model building. Int. J. Mod.
Phys., A24:2207–2240, 2009.

[182] M. Bastero-Gil, A. Berera, R. O. Ramos, and J. G. Rosa. Adiabatic out-of-
equilibrium solutions to the Boltzmann equation in warm inflation. JHEP,
02:063, 2018.

[183] V. Domcke, M. Pieroni, and P. Binétruy. Primordial gravitational waves
for universality classes of pseudoscalar inflation. JCAP, 1606:031, 2016.

[184] V. F. Mukhanov. Quantum Cosmological Perturbations: Predictions and
Observations. Eur. Phys. J., C73:2486, 2013.

[185] D. Roest. Universality classes of inflation. JCAP, 1401:007, 2014.

[186] J. Garcia-Bellido and D. Roest. Large-N running of the spectral index of
inflation. Phys. Rev., D89(10):103527, 2014.

[187] P. Binetruy. Supersymmetry: Theory, experiment and cosmology. Oxford
University Press, 2006.

[188] F. Lucchin and S. Matarrese. Power-law inflation. Phys. Rev., D32:1316–
1322, Sep 1985.

[189] P. McFadden. On the power spectrum of inflationary cosmologies dual to
a deformed CFT. JHEP, 10:071, 2013.

[190] Y. Zhang. Warm Inflation With A General Form Of The Dissipative
Coefficient. JCAP, 0903:023, 2009.

[191] K. Sayar, A. Mohammadi, L. Akhtari, and Kh. Saaidi. Hamilton-Jacobi
formalism to warm inflationary scenario. Phys. Rev., D95(2):023501, 2017.

[192] R. Herrera. Reconstructing warm inflation. Eur. Phys. J., C78(3):245,
2018.

[193] H. A. Kramers. Brownian motion in a field of force and the diffusion model
of chemical reactions. Physica, 7(4):284–304, 1940.

200



[194] L. Farkas. Keimbildungsgeschwindigkeit in übersättigten dämpfen.
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