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Introduction

Jet production in the deep inelastic scattering (DIS) of an electron (positron)!
and a proton (ep — jets + X) probes the partonic structure of the proton and allows
the study of the dynamical properties of the strong interactions. The elementary par-
ticles that interact through the strong force, the quarks and the gluons, are believed
to be the constituents of all hadronic matter. Thus, Quantum Chromodynamics
(QCD), the theory that describes them, can be tested in lepton hadron colliders
such as HERA. This document presents two recent analyses of jet production in
neutral current (NC) DIS carried out in the context of the ZEUS Collaboration,
both of which represent stringent tests of perturbative QCD (pQCD).

The first of them consists of improved measurements of inclusive-jet cross sec-
tions, which, as will be discussed, are important by themselves, but moreover allow a
precise determination of the strong coupling (a;) at HERA. That analysis concludes
with a high-precision comparison of the measured scale dependence of oy with that
predicted by pQCD, in what constitutes a compelling test of this theory.

The second analysis is a study of the underlying gauge symmetry structure of
the strong interactions by means of angular correlations among the final-state jets
in three-jet events. It is shown in this analysis that angular-correlation variables
similar to those defined for e*e™ annihilation at LEP to extract the color factors
using four-jet events can also be devised for HERA physics. The measurements have
been compared to theoretical predictions based on different gauge symmetry groups
and good agreement is found with those corresponding to SU(3). This is the first
analysis at HERA that unveils the color factors.

In Chapter 1 the main aspects of pQCD are introduced with some supporting
experimental verification. We will show there that the non-Abelian character of
QCD is an essential feature of the theory since it leads to the self-coupling of the
gluons and ultimately to asymptotic freedom, the decrease of the strong coupling
at shorter distances. The role of HERA in understanding the proton and ground-
ing QCD experimentally is emphasized to provide the proper context in which to
introduce the two jet analyses.

All the measurements have been carried out using data from the ZEUS detector
at HERA. HERA is an electron proton synchrotron collider with a center-of-mass
energy of /s = 320GeV, giving way to momentum transfers between the electron
and the constituents of the proton well within the predictive capabilities of pQCD.
ZEUS is a multipurpose detector at one of the interaction points of HERA. It consists
of a number of different detectors layered around the collision vertex, whose aim is

'"From now on, whenever the word electron shows up, it will actually represent either an electron or a

positron



to record as much information as possible about the collisions. Thus, ZEUS is a
powerful tool for the study of QCD. A detailed description of the ZEUS detector is
provided in Chapter 2.

In Chapter 3 we will delve into the pQCD calculations made to be compared to
the measured jet observables. These observables are inclusive-jet cross sections and
angular-correlations in NC DIS. A detailed study of the uncertainties affecting the
theoretical calculations is also presented. Monte Carlo (MC) generators are used to
understand and correct the jet measurements for detector effects. These simulations
are also discussed in Chapter 3.

In Chapter 4 we will see how the data samples were selected through a carefully
designed trigger system and how these samples compare to the MC simulations. The
comparisons legitimize the use of the MC simulations for estimating the systematic
uncertainties in the measurements and obtaining the necessary corrections to the
jet cross sections presented in Chapter 5.

The final results for the inclusive-jet analysis, including the « determinations
and the scale dependence of the coupling, are presented in Chapter 6. The results
for the analysis of angular correlations in three-jet events and the sensitivity of the
measurements to the underlying symmetry of the strong interactions are presented
in Chapter 7. A brief summary and outlook of the two analyses are provided in the
last chapter.

The data used in the analyses presented here were collected during the running
period 1998-2000, when HERA operated with protons of energy £, = 920 GeV and
electrons or positrons of energy E, = 27.5 GeV, and correspond to an integrated
luminosity of 81.7 4+ 1.8 pb~!, of which 16.7 pb™! (65.0 pb™!) was for e™p (e*p)
collisions.

The results presented in this document are based on several analyses:

e Measurement of inclusive and dijet cross sections in neutral current deep in-
elastic scattering at high Q? [1];

e Measurement of the jet-radius dependence of inclusive jet cross sections in
neutral current deep inelastic scattering at high Q? and determination of «

[2];

e Measurement of angular correlations in three-jet production in neutral current
deep inelastic scattering at high Q? [3];

e Determination of a combined value of a; from HERA jet data [4];



e Measurement of inclusive-jet cross sections in neutral current deep inelastic
scattering at high @Q* with HERA II data (analysis in progress).

They have been presented by the author in the following conferences:

1 ‘Jet correlations at HERA’,
invited talk on behalf of the ZEUS Collaboration,
International Europhysics Conference on High Energy Physics (EPS 2005),
Lisbon, Portugal,
July 2005;

2 ‘Jet cross sections in NC DIS and determination of oy, at HERA’,
invited talk on behalf of the ZEUS Collaboration,
XIV International Workshop on Deep Inelastic Scattering and QCD (DIS
2006),
Tsukuba, Japan,
April 2006;

3 ‘Jets and ay measurements in DIS at HERA”,
invited talk on behalf of the H1 and ZEUS Collaborations,
International Conference on the Structure and Interactions of the Photon in-
cluding the 17th International Workshop on Photon-Photon Collisions (PHO-
TON 2007),
Paris, France,
July 2007;

4 ‘Jet measurements and determinations of a, at HERA’,
invited talk on behalf of the H1 and ZEUS Collaborations,
Rencontres de Moriond, QCD and High Energy Interactions,
La Thuile, Italy,

March 2008.

This work has been carried out in the frame of the ZEUS Collaboration through the
High Energy Physics Group of the Universidad Auténoma de Madrid. The author
was financially supported by the Spanish Ministry of Education and Science.



Introducciéon

La produccién de chorros hadrénicos (jets) en la dispersion profundamente ineléstica

(DIS) entre un electrén (positrén) y un protén (ep — jets + X) revela la estrutura
partonica interna del protén y permite el estudio de las propiedades dindamicas de
las ‘interacciones fuertes’. Es sabido que las particulas elementales que interactian
mediante la fuerza fuerte, los quarks y los gluones, son los constituyentes de toda
la materia hadrénica. Asi, la Cromodindmica Cuédntica (QCD), que es la teoria
que las describe, puede ser sometida a estudios en colisionadores de altas energias
hadron-lepton, como lo es HERA. Este documento presenta dos analisis recientes en
los que se han llevado a cabo tests exigentes de QCD perturbativa (pQCD) mediante
la produccién de jets mediada por corrientes neutras (NC) en DIS.

El primero de ellos consiste en medidas de gran precision de la constante de acoplo
fuerte (ay), el pardmetro fundamental de QCD a energias grandes. Estas medidas,
ademés de proveer una mejora en la capacidad predictiva de pQCD, también ponen
a prueba la prediccién tedrica de la dependencia de o con la escala de la energia. El
segundo analisis es un estudio de la estructura gauge subyacente en las interacciones
fuertes. Este estudio se ha realizado mediante el diseno y la medida de observables
de correlacion angular entre los jets del estado final en sucesos de tres jets. Los
observables disenados son sensibles al grupo gauge de simetria subyacente y por lo
tanto pueden discernir entre posibles teorias basadas en grupos gauge diferentes,
proporcionando asi un test directo de QCD.

En el primer capitulo se presentan los aspectos generales de pQCD respaldados
por su verificacion experimental. Ahi veremos que el cardcter no Abeliano de QCD
es una propiedad esencial de la teoria, ya que da lugar al auto-acoplo de los gluones
y a la libertad asintética, que es la disminucién de oy a distancias menores. El rol de
HERA en el entendimiento del proton y en la fundamentacién experimental de QCD
es enfatizado en este capitulo para proporcionar el contexto en el cual se presentan
los dos analisis de produccion de jets.

Todas las medidas han sido hechas en el contexto de la Colaboracién ZEUS con
el detector de ZEUS en HERA. HERA es un sincrotrén que colisiona electrones y
protones a una energfa de centro de masas de /s = 320 GeV, dando lugar a trans-
ferencias de momento entre el electrén y los constituyentes del proton dentro del
rango predictivo de pQCD. ZEUS es un detector multipropésito situado en uno de
los puntos de interaccién de HERA. Este detector consiste de un niimero de compo-
nentes situados alrededor del vértice de la colision, cuyo propédsito es obtener tanta
informacion como sea posible sobre las particulas resultantes. Es por lo tanto una
herramienta muy 1til para el estudio de QCD. El capitulo 2 contiene una descripcion
detallada del detector ZEUS.



Los célculos de pQCD hechos para obtener la prediccion tedrica para los observ-
ables de jets se presentan en el Capitulo 3. Las medidas con las cuales se comparan
los calculos son de secciones eficaces de jets que, como veremos, son observables par-
ticularmente adecuados para llevar a cabo tests de pQCD. En este capitulo también
se describen los generadores de Monte Carlo, que han sido usados para entender y
corregir las medidas por los efectos del detector.

En el Capitulo 4 se presenta la seleccion de las muestras de datos, que como se
explica ahi, se consigue a través de un sistema de ‘triggers’ especificamente disenado
para hacer medidas de jets en NC DIS. Este capitulo también contiene compara-
ciones de las muestras de datos con las simulaciones de Monte Carlo. Estas compara-
ciones legitimizaran el uso de las simulaciones de Monte Carlo para la estimacion de
las incertidumbres sistematicas que afectan a las medidas asi como la obtencién de
los factores de correccién necesarios para las secciones eficaces de jets.

Los resultados finales del analisis de produccion inclusiva de jets, incluyendo las
determinaciones de «ay v el test de su dependencia con la escala de la energia, se
muestran el Capitulo 6. Los resultados del andlisis de las correlaciones angulares
en sucesos de tres jets y la sensibilidad de las medidas a la simetria subyacente se
presentan en el Capitulo 7. El dltimo capitulo contiene un resumen y las perspectivas
futuras de los andlisis contenidos en este documento.

Las muestras de datos usados en los analisis presentados aqui fueron tomadas
durante el periodo 1998-2000, en el cual HERA proporcionaba protones de energia
E, =920 GeV y electrones o positrones de energia E. = 27.5 GeV, y que correspon-
den a una luminosidad integrada de 81.741.8 pb™!, de la cual 16.7 pb=! (65.0 pb™1)
era para colisiones e~ p (eTp).

Los resultados de este documento se basan en varios andlisis:

e Measurement of inclusive and dijet cross sections in neutral current deep in-
elastic scattering at high @Q* [1];

e Measurement of the jet-radius dependence of inclusive jet cross sections in
neutral current deep inelastic scattering at high Q? and determination of a

[2];

e Measurement of angular correlations in three-jet production in neutral current
deep inelastic scattering at high Q? [3];

e Determination of a combined value of a; from HERA jet data [4];

e Measurement of inclusive-jet cross sections in neutral current deep inelastic



scattering at high @ with HERA II data (analysis in progress).
Los resultados han sido presentados por el autor en las siguientes conferencias:

1 ‘Jet correlations at HERA’,
invited talk on behalf of the ZEUS Collaboration,
International Europhysics Conference on High Energy Physics (EPS 2005),
Lisbon, Portugal,
July 2005;

2 “Jet cross sections in NC DIS and determination of oy at HERA’,
invited talk on behalf of the ZEUS Collaboration,
XIV International Workshop on Deep Inelastic Scattering and QCD (DIS
2006),
Tsukuba, Japan,
April 2006;

3 ‘Jets and a, measurements in DIS at HERA”,
invited talk on behalf of the H1 and ZEUS Collaborations,
International Conference on the Structure and Interactions of the Photon in-
cluding the 17th International Workshop on Photon-Photon Collisions (PHO-
TON 2007),
Paris, France,
July 2007;

4 ‘Jet measurements and determinations of a, at HERA’,
invited talk on behalf of the H1 and ZEUS Collaborations,
Rencontres de Moriond, QCD and High Energy Interactions,
La Thuile, Italy,

March 2008.

Este trabajo ha sido desarrollado en la Colaboracion ZEUS a través del grupo de
Altas Energias de la Universidad Auténoma de Madrid. El autor ha sido financiado
por el Ministerio de Educacion y Ciencia.
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Chapter 1

Introduction

This chapter presents the theoretical background and motivation for the two jet
production analyses that are the object of this document. As mentioned in the
introduction, the first of these analyses consists of measurements of inclusive-jet
production in NC DIS. These measurements provide a direct connection with the
hard, fundamental physics responsible for the structure of the proton and are used
to test pQCD and to extend our knowledge of protonic structure. Moreover, they
also yield precision determinations of a and its energy-scale dependence .

The second analysis also uses measurements of jet production in NC DIS but with
the aim of obtaining a transparent method for studying the underlying gauge sym-
metry of the strong interactions. In this case, the emphasis is not placed on inclusive-
jet production, but rather on subtle angular correlations among the hadronic jets in
the final state of three-jet events that are sensitive to the internal symmetry of the
interactions.

The first analysis will be refered to the ‘a, analysis’ throughout this document,
whereas the second will be refered to as the ‘angular-correlations’ analysis. This
chapter provides a theoretical introduction to pQCD with an emphasis on its color
structure, the scale-dependence of o, and the proton parton distribution functions.
The theoretical introduction and experimental evidence provided is not meant to
be exhaustive, but rather to serve as a sufficient background and motivation for the
two jet analises which are introduced at the end.

1.1 Deep inelastic scattering and the parton model

An electron beam is a well known tool to probe the inner structure of a proton. The
idea is that the inner structure determines the scattering distributions of the elec-
trons and can thus be determined from it. In order for this recipe to work, however,



2 Introduction

the interactions between the probe and the partons must be understood and, to
second order, also those among the partons themselves. Phase-space regions where
the proton structure is well determined from previous experiments can be used to
test the theory, whereas regions where the theory is precise in its predictions can be
used to further determine the proton structure. In QED quarks and leptons inter-
act through the exchange of a virtual photon. For this reason the four-momentum
squared, Q?, of the mediator boson is often viewed as the squared energy scale of
the process. Since E ~ 1/, 1/ \/@ is also the distance scale at which the hadron
is being resolved.

At low values of Q? (large distances), a proton behaves like a charged, point-like
object. With increasing Q? it can be excited to resonant states. If Q? is sufficiently
large the proton breaks appart, revealing its inner structure. This regime is called
Deep Inelastic Scattering (DIS). Fig. 1.1 shows a pictorial view of a general DIS
process (ep — e + X) mediated by a neutral virtual boson (v, Z%) and it is termed
neutral current (NC) DIS. The momentum transfer betwen the incoming electron
and proton leads to a scattered electron plus a (possibly) complicated hadronic final
state. The hadronic final state consists of both the products of the hard interaction
of the boson with the struck parton and the ‘remnant’ of the proton. The figure

e(k) e(k)

v.2°(q)
X(P)
Proton(P)

Figure 1.1: Pictorial representation of a NC DIS event.

shows the available four-momenta in the interaction, which can be used to build
Lorentz-invariant observables with which to express cross sections:

—a? P. Q?
2 = (k—K)? = —9_% 1.1
@Pof=h-FP o= y-pe=

Any two of these three observables are sufficient to describe the kinematics of a DIS
event. If the proton was made up of only quarks, then the variable x would be
the fraction of the proton’s momentum carried by the struck quark. This model is
called the quark-parton model (QPM). The variable y is a measure of the inelasticity
of the event, it can be expressed in terms of s, the center-of-mass (CM) energy of
the collision. Finally @2, the four-momentum transfer, is the squared difference
between the four momenta of the incoming and outgoing leptons. Before expressing
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the (ep — e 4+ X) cross section in terms of these variables, let us write down its
general form [5]

do ~ L7, W, (1.2)
where L, represents the lepton tensor which we know from QED and W*” serves
to express our ignorance of the target structure. We can build the most general
form of W using the independent four-momenta, g*” and e***?. Then in the limit
g—; — 0 where the parton masses can be ignored, we can express the general NC
DIS cross section (ep — e + X) as:

d*o 4ra? 1
dzdQ? 20" [y Fi+ (1 —y)Fa +y(1 — 5?/)55]73] (1.3)

The functions F; are used to parametrize the proton’s structure. Fj is a parity vio-

lating contribution which becomes non-negligible only at high Q?, where Z mediated
events have a sizeable effect. Sometimes the combination

F, — Fy — 22F, (1.4)

called the longitudinal structure function is used and corresponds to the absorption
of a longitudinally polarized photon by a quark. In this case the cross section is a
function of Fy, Fr, and F3. In the QPM a massless quark cannot absorb a longitu-
dinally polarized photon and F, can be neglected, so that with this parametrization
only F, remains.

The DIS experiments of the late 60’s at SLAC provided the first evidence for the
point-like constituent structure of hadrons, consistent with the QPM [6]. Fig. 1.2
shows these early results, where the measured structure functions are observed to
loose their dependence on Q2. If ()% is interpreted as the resolution of the probe,
then the scaling of the structure functions simply reflects the fact that a point will
not look otherwise by an increase in resolution. It can be shown that in this case

the structure functions will depend only on the dimensionless quantity w = 255 :
Fy(x,Q%) — Fy(w) (1.5)

Thus, the SLAC experiment gave the first view into the proton structure, which to a

first approximation was the QPM. The basic idea of the QPM is that in the NC DIS
process (ep — e+ X)) the virtual boson interacts with one of the quark constituents
of the proton. A frame is chosen (the proton infinite-momentum frame) such that
relativistic time dilation slows down the rate at which quarks interact with each
other and the struck quark is essentially free during the interaction with the virtual
boson. The interaction can then be expressed as the incoherent sum of scattering
probabilities from single free quarks:

2 " d2o
s = [ R G (1.6
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Figure 1.2: The scale invariance of the proton form factor vWs as first discovered by the
SLAC DIS experiment.

The functions f;(§) are called the parton distribution functions (PDFs) and here
represent the probability of finding a quark of type ¢ with a fraction £ of the proton’s
momentum, and the cross section in the integrand is that of the elastic process
eq — eq. From this QPM equation the relationship between the structure functions
and the parton distribution functions follows (F}, vanishes)

20 F (z) = Fy(z) = Zefx fiz), (1.7)

and thus measurements of the structure functions allow the determination of the
quark PDFs. During the very early DIS experiments carried out in the 70’s, good
agreement was found between the data and the QPM; however, if one integrated
the measured momentum of the quark PDFs it was found that:

/foi(:c)dx ~05 (1.8)

Only about half of the momentum of the proton could be accounted for by the
quarks in the QPM. The electromagnetic probe could not detect possible neutral
partons within the proton. The full machinery of QCD, however, was able provide
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a satisfactory explanation of the missing momentum through the couplings of its
neutral gauge bosons, the gluons. In fact, QCD predicts a contribution not only from
gluons, but also to some degree from a whole sea of particles resulting from g — ¢g
processes that intrinsically accompany the three valence quarks. The equations
for the PDFs shown so far are only the first-order approximation to the structure
functions from the viewpoint of pQCD. The missing momentum problem can in
retrospect be seen as the first indirect evidence for the existence of the gluons and
the sea. But before looking at the PDF's in more detail lets delve into the formalism
of the theory.

1.2 The Quantum Field Theory of Color Dynamics

A Quantum Field Theory can be characterized by its Lagrangian density. The
Feynman rules required for any perturbative prediction can be derived from it. In
the quantum field theory of color dynamics, QCD, the Lagrangian density has the
form [7]:

LOP]qy, my] = Linvar + Lgauge + Lghost (1.9)

The gauge-fixing and ghost densities, Ljquge and Lgpost, are added to solve the
problem of quantizing L;,..- and will not be covered here. The Lagrangian is a
function of the quark and gluon fields, the bare coupling ag and the quark masses
my. At energies that are large compared to my the masses can be ignored and in
perturbative expansions in terms of Feynman diagrams the (renormalized) coupling
ay is left as the only undetermined parameter of the theory. Therefore oy plays a
central role from both the theoretical and experimental points of view. The classical
density Linvar 18, explicitly

_ 1 o
Einvar - Z Ga hﬂuD,u - mf]ab 4y — ZFo?ﬁFAﬁv (11())

flavours

where the sum runs over the different flavours of quarks. The fields ¢, (a = 1,2, 3)
form a basis of the triplet representation of SU(3). It is assumed that only color
singlet states of SU(3) can be detected with present-day detectors. Apart from
reproducing the observed hadronic spectrum, this assumption accounts for not hav-
ing observed the quark fields of QCD in isolation, despite their abundance as the
constituents of most of the matter around us.

The QCD Lagrangian is built with SU(3) local gauge invariance as the guiding
principle. Thus, eight gluon fields are needed to construct the covariant derivative
D,:

D, =6, +1igs1T.G, (1.11)
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Group | Cy Cr Tr
u() | 0 1 1
Uuy? | o 1 3
SUNN) | N | (N?2—1)/2N | 1/2
SU@3) | 3 4/3 1/2

Table 1.1: Casimir factors for some common gauge groups

Here the T, are the generators of SU(3) and the index ‘a’ runs over the dimensions
of the SU(3) Lie Algebra, (N7 — 1 = 8). The gluon fields G¢, are coupled to the
quark fields through the covariant derivative D, with strength g,. Gluon fields obey
their own Lagrangian. This is the final ——F 6FA piece, where the field strength
tensor F4 o5 1s given by:

Fly = 0.G5 — 03G4 — g, f*PGEGY | (1.12)

Here the indexes A, B, C run over the eight color degrees of freedom of the gluon
field. The fAB¢ are the gauge group structure constants which would vanish for
an Abelian theory. For a non-Abelian group such as SU(3), however, they do not
vanish, leading to a central property of QCD, the self-coupling of the gluon. Thus,
symbolically the QCD Lagrangian contains the following pieces:

L= qq+ G*+ g.,Gg¢G + 9,G* + gSG4 (1.13)

They correspond, pictorially, to the the Feynman diagrams in Fig. 1.3. Notice
the presence of the triple and quadruple gluon vertices. This is the distinguishing
characteristic of QCD.

Figure 1.3: Feynman diagrams of the terms in the QCD Lagrangian, from eq. 1.13

The gauge symmetry also determines the relative strengths of the different ver-
tices. Standard books [8] can be consulted for a derivation of the Feynman rules from
the Lagrangian density. Here it suffices to say that the eigenvalues of the Casimir
operators of the gauge group multiply the contributions to the scattering ampli-
tude from the different vertices, as pictured in Fig. 1.4. The color factors Cr,Cy,
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and T represent the fundamental strengths of the gluon radiation from quarks, the
triple-gluon vertex, and the gluon splitting into a quark-antiquark vertex. These
‘color factors’ are unique to a symmetry group and can be used to identify it. The

2 2 2

_{’ NQ:SCF; N(}:SCA; m< NaSTF

Figure 1.4: The relative squared amplitudes of the vertices of the theory are dictated by

the underlying symmetry group through the color factors.

dynamics of the theory is governed by the underlying symmetry group through its
color factors. For example, if the QCD Lagrangian was made invariant under a
group other than SU(3), say the Abelian U(1) ® U(1) ® U(1), then the strength of
the gluon self-coupling vertices would vanish by virtue of C'y = 0. Table 1.1 shows
the color factors for different symmetry groups. They can be obtained in terms of
the group generators 7, and its structure constants f"*' by the relations:

trothe = 0acCr, Jretfrst = 5t 0y, trotha = Ors1F (1.14)

One possible way to test QCD is to design observables that are sensitive to the color-
factor configuration. The color factors have been measured experimentally in eTe™
annihilation at LEP through angular correlations among the final-state jets. These
measurements are discussed in depth in the next section. Note that the ‘angular-
correlations’ analysis presented in this document opens the same venue of research
in ep scattering at HERA.

1.2.1 Experimental verification of the gauge structure of QCD in ete™
collisions

Investigations of the triple-gluon vertex have been carried out at LEP (see, for ex-
ample [9-19]), using angular correlations in four-jet events from Z° hadronic decays.
Consider the diagrams shown in Fig 1.5 for four-parton final states of Z decays. Glu-
ons can either be radiated off quarks directly or they can emerge from the splitting
of a virtual gluon. Since the characteristic diagrams contain the vertices of Fig 1.4,
the total four-jet cross section is sensitive to the color factors. Extracting the color

factors from the total four-jet cross section is however not direct since this ampli-

_ 9

=& An alternative method would be to measure the

tude is also sensitive to oy
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contributions directly by counting how many ¢ggg final states there are with respect
to ggq’'q’. This proves difficult in practice, since the final-state partons hadronize
into jets before they can be detected. Quarks and gluons result in final-state jets
of different morphology, but the efficiency in the identification of the jet with the
originating parton spoils the transparency of this method.

L
01

Figure 1.5: LEP 4-jet representative Feynman diagrams. Gluons can either be radiated off
quarks or they emerge from the splitting of a virtual gluon. The final states are angularly

correlated.

There is an altogether different venue which offers a direct way of studying the
gauge symmetry. The final-state jets are angularly correlated according to the type
of process which produced them. This is due to helicity conservation at the vertices.
Reconsider Fig. 1.5. The virtual gluons that are radiated from almost back-to-
back gg pairs in Z decays are predominantly polarised longitudinally along the gg
direction. They can therefore decay only into gluon pairs along this axis with total
spin 0, but not into secondary qq pairs, the spins of which add up to 1. However,
projected onto an axis perpendicular to the flight direction, the virtual gluon spin
is just 41, so that this state can decay into a qq pair along this direction but not

into a pair of transverse gluons.

Figure 1.6: The O g angle used at LEP to discern the color factors at work in the strong
interactions. Other angles based on the same principles were devised for this kind of

analysis.

With these extreme cases in mind, the variable © g is defined as the the polar
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angle between the axes spanned by the two primary quark-jets and the two gluons
(or the secondary quarks in the case of ¢gq’q’) as shown in Fig. 1.6. This angle should
be sensitive to the relative contribution of the different vertices. Experimentally the
axes are defined for jets ordered according to their energies, such that the two most
energetic jets are taken to be the primary quark jets. The angle © yp is thus defined
as the polar angle between the axes spanned by the two high-energy and the two
low-energy jets, a definition which matches the previous one. In more detail, it can
be shown [20] that the angular distributions in the rest frame of the virtual gluon
are linear in cos?©yp:

q3q'q ~ 1 — cos*(Ong)
4399 ~ cos*(Onr)
(1.15)

Quark final states are suppressed relative to gluon final states by a factor ~ Nic
because more color combinations can contribute for octet gluons than for triplet
quarks. Thus, a small number of quark jets and a vanishing number of gluon jets are
produced with large values of © . In contrast, many gluon jets are produced with

small polar angles and no quark jets. Therefore, the distribution in cos(© yg) is very

o 2 I
2 6 Q18
&= k=
= =
O 42 o 12
o o

8 8

4 [T = Abelian e *

[ T qaeq
1 1 1 L ] L A L 1 1 1 1 L 1 1 i 1
0 0 L
0 0.5 1 0 0.5 1
a) cos®' s b) cos@’ys

Figure 1.7: The distributions of cos g, (a) separately for the final states gggg and qqq'q’
in QCD and the Abelian model, and (b) for all subprocesses summed up.

sensitive to the relative contribution from the ggg coupling, since any deviation from
the canonical QCD color factor would strongly affect the prediction for this angular
distribution. Fig. 1.7 shows the prediction for the cos(Oyg) angular-correlation in
ete™ annihilation. The distribution predicted by pQCD is compared to an Abelian
model based on U(1l) ® U(1) ® U(1). As shown, the variable is well suited to



10 Introduction

discern between the two models. A precision measurement of this distribution would
reveal which model is correct. In fact, this variable has been used to obtain direct
extractions of the color factors [21], the results of which are shown in Fig. 1.8.
Note that the variable cos(Oxg) is only one of several angular-correlation variables

o e e T | ISR VT
P
r - SLICS)
| Combined result
ik * SU(3) QCD _ G
- l
sS4y z? OPAL N, |
__,-“ DELPHI FF
1.5 ki -
S OPAL e
Cg
/ — Evenlt Shope
b ALEPHAg |
m s ]
0.5 1Y .
R CL erior eilipass
SUqlLy 4
|:,.-.......I....I..-.r....l....
[ I Z 3 4 5 i
L

Figure 1.8: Combined result for the direct determination of the underlying symmetry of
the strong interactions in eTe™ annihilation at LEP using angular correlations among

four-jet final states.

defined at LEP for this type of analysis. The other variables are based on similar
principles and will not be covered here.

1.2.2 Loop corrections and the running of the strong coupling

The previous section shows how the gauge-symmetry assumption of QCD can be
grounded experimentally using angular-correlation variables. The color factors are
also involved in the scale dependence (running) of ag. In Quantum Field Theory
higher-order loop contributions, like the ones shown in Fig. 1.9, diverge logarith-
mically. The divergent loop contributions can be interpreted as corrections to the
bare coupling ag, the coupling that appears in the Lagrangian. This means the
effective coupling the experimentalist measures can be taken as «q times a series
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of loop corrections. The loop effects depend on Q? and therefore transform a nu-

Figure 1.9: Divergent loop corrections to the coupling in QCD. The self-gluon contribu-

tions are responsible for the sign of the 3 function, resulting in asymptotic freedom.

merical parameter, the ‘bare coupling’, into a function of Q?, an ‘effective coupling’
as(Q). Loop divergences are dealt with by re-parametrizing (renormalizing) the
theory with respect to a given, in principle arbitrary renormalization scale p. To
all orders the prediction is independent of the arbitrary choice of u, but at fixed
order one would want to choose p such that in the finite perturbative expansion the
effective coupling most closely resembles the one the experimentalist measures. In
terms of the renormalizability of the theory, the important point is that once the
theory is reparametrized in terms of a reference ag(p), the value of a(Q)) measured
by the experimentalist does not depend on the particular process. The experimen-
tal measurements of oy are by convention compared at a,(My), although they are
obtained from a wide range of energy scales. Thus, the comparisons are in reality a
test of the prediction for the running of a.

The propagator (vacuum) loops of the theory are related to the possible couplings
of the theory. The specific way in which the coupling depends on Q? is determined
by the gauge symmetry of the Lagrangian through the effect of the particular loop
contributions to the running. To see how this works, lets consider how the scale
dependence of the coupling is obtained. In a renormalizable Quantum Field Theory
such as QCD the coupling is the solution to the renormalization group equation
for the [-function, the function that characterizes the dependence of o, on the

renormalization scale p [7]:

5(as> _ o 60 2 ﬂl 3 . . 2 o 19
5[u - 25(0@) - _%O‘s - Has T e 60 =11 - gnf 61 =51 — ?nf,
(1.16)

where ny is the number of quarks with mass less than the energy scale p. In order
to solve this equation for a, a constant of integration must be introduced, which
is the value of a4 at a given scale. This value is obtained experimentally and as
we mentioned is conventionally taken at ag(Mz). In QED only fermionic loop
corrections analogous to the fermionic loops in Fig. 1.9, which have a ‘screening’
effect, contribute to the g-function. In Fig. 1.9 we see, however, that QCD because
of the gluon self-coupling also contains gluonic loops and these dominate over the
ny fermion ‘screening’ loops, causing an overall ‘anti-screening’ effect such that the
color charge leaks out into the cloud of virtual particles surrounding the color source.
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At leading-logarithmic order, the series in Fig. 1.9 can be summed to give

o _ O‘S(N) 7
O e o &) A

where Gy = 11 — %nf is the first term in the expansion of the [-function, and
gives an overall positive valued contribution to the denominator. The first piece
of By comes from the self-coupling gluon loops and dominates (in a world with
less than 16 flavours) over the %nf fermion loop contributions. Herein lies the
reason the self-coupling of the gluons leads, through the anti-screening gluon loops,
to asymptotic freedom, a crucial aspect of QCD. Moreover, at decreasing @ the
running increases, suggesting that the confinement of quarks and gluons within color-
singlet hadronic states is also contained in QCD. Confinement is only suggested
but not proven by pQCD since the perturbative approach relies heavily on the
(asymptotic) convergence of the perturbative series around «ag, compromised and
eventually lost at large distances. The scale at which pQCD breaks down is called
Agep and corresponds to the hadron scale (~ 220 MeV). Since it will be useful in
later discussions, the two-loop expression for as(Q) in terms of Agep is [22]:

A 26 In[In(%3)]
Q= sm@m! T E W) 15
Eq. 1.18 gives a precise theoretical prediction for the running of o, which depends
on the particular vacuum loops of the theory. Fig. 1.10 shows the scale dependence
of ay for different values of as(Myz). The central dashed line and the shaded area
in Fig. 1.10 represent curves of the dependence of o, on () which are theoretically
possible without regard to experimental data. Although pQCD predicts how the
running will be, a single curve like those in Fig. 1.10 is singled out experimentally
by measuring «, at a given scale. The validity of QCD is not tested by a single
as measurement, but rather by showing that determinations of a; from a variety of

processes proving different scales all lie on the same curve.

1.2.3 The scaling violations of the structure functions and the factor-
ization property of QCD

We have already shown how the non-Abelian character of QCD shows up in angular-
correlation variables and also determines the scale dependence of the coupling. Now
we return to the DIS regime of ep — e + X where we left off in the first section, to
see how the gauge structure of the theory also reveals itself through the structure
functions. In terms of pQCD, the QPM formula 1.7 is the zeroth-order term in the
expansion of Fy as a power series in a,. To include the O(ay) corrections, we also
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Figure 1.10: Perturbative QCD prediction for the scale dependence of o, for three different
values of a4(Mz):0.1179,0.1189 and 0.1199, corresponding to the current world average.

have to take into account subprocess diagrams such as that in Fig. 1.11, where there
is an initial-state emission of a gluon. This type of diagram has a singularity in the
collinear gluon limit. Let P, (z) be the probability of a quark emitting a gluon such
that it becomes a quark with a momentum reduced by a fraction z with respect to
the parent quark. For simplicity we develop the formalism for now only with this
contribution. The rest will be added at the end. Then the new expression for the
structure function after including the initial-state radiation diagram is [5]:

FQ {L' Q T Ol Q2
Z / ¢! o(1 — E) + 5P (5)10g MF)] (1.19)

Here ¢(&) is the quark distribution function. The scale pp is a lower limit on the

transverse momentum introduced as an artificial cut-off to regularize the divergent
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e

Figure 1.11: Initial-state emission of a gluon.

integral that results from the collinear (k7 — 0) gluon emission. We may now regard
Eq. 1.19 as the first two terms in a power series for F5 around ag. The log 9 factor
represents a logarithmic deviation of the scale-invariance of the QPM structure
function, eq. 1.7. The ‘logarithmic violation” which results from the presence of
gluon emission is a historically important prediction of pQCD.

Recall that the logarithmic contribution to Eq. 1.19 is divergent. This divergence
can be treated in a manner analogous to the divergent contributions to the coupling
from loop corrections. As with the bare coupling o, we can regard gy(y) as an
unmeasurable, bare distribution. The collinear singularities can then be ‘factorized’
into the definition of the quark distribution at a factorization scale (up), the scale
at which we regularize the divergent integrals. The effective quark distribution thus
acquires a scale dependence with pr: qo(z) — q(z,u%). The collinear divergence
can be considered as a long-distance, non-perturbative effect to the calculation. By
‘absorbing’ it into the PDF's, it becomes part of a measurable quantity. This recipe
will only work if the ‘factorization’ of the PDFs can be done at all orders and the
resulting quark distributions are universal. It can be shown that this is indeed the
case [23], a characteristic known as the ‘factorization property’ of QCD.

The prediction for F5 should be independent of the factorization scale, therefore
the theoretical expression for the quark distribution must satisfy a renormalization
group equation. Applying the same machinery as for a4(Q), the dependence of
q(x, Q%) on Q* (up is typically set equal to Q?, the scale at which the proton is
being resolved) can be obtained and gives the integro-differential equation [5]:

d

dg
dlog qu(

16 @) Py e

,Q%) = ). (1.20)

§
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This is the famous DGLAP equation describing the scale-dependent evolution of
the PDFs. It is analogous to the g-function of oy which describes the evolution of
as(Q). Eq 1.20 is only the one loop expression. As with ay, the theory has provided
the functional dependence of the PDFs with ()2, resulting in an infinite family of
possible curves. A single PDF curve from these must be singled out by experiment.
Having determined the value of the PDFs experimentally at some scale, the theory
is then able to predict their values at all Q* > 1 GeV2. Note that the evolution of
the PDF's with the scale is again governed by the vertices of the theory and, thus,
by the color factors.

We have shown that DIS can provide direct evidence for the existence of the
gluon through measurements of the scaling violations of the structure functions.
The HERA ep collider is particularly suited for F, measurements since it gives
access to a wide range of phase-space in x and Q2. In particular, it extends to the
low = regime, where, as we will see, the gluon and sea quark PDF's are dominant.
Fig. 1.13 shows measurements of F, made by the ZEUS Collaboration at HERA [24].
The measurements of the structure function over a wide range of Q? for different x
values are compared in the figure to NLO QCD predictions based on the same data.
The measured structure functions clearly exhibit logarithmic violations of the scale
invariance, evidencing the presence of the characteristic vertices of pQCD. In the

e’ e’
> q
A
- q
p X,

Figure 1.12: The presence of the gluon field induces a sea quark distribution arising from

gluon splittings into ¢q pairs.
discussion so far we have glossed over a couple of points:

e A diagram similar to Fig. 1.11 gives a final-state collinear divergence, but it

cancels out with the one loop contributions.
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e There is also a divergence from a soft (EF — 0) gluon being emitted at very
small energies. This divergence cancels out with the one loop contributions.

The presence of the gluon field induces a sea quark distribution arising from
gluon splittings into qg, as shown in Fig. 1.12. This type of process will contribute
to Fh with a term F,, multiplied by the gluon distribution, where F,, represents the
probability of a gluon splitting into a qq pair. The complete evolution equation for
a quark density is:

dg;(z, Q%) s [dg

dlogQ®> ~ 2m ?(Qi(ngQ)qu(

T

E) +9(6Q >qu(§>> (1.21)

The DGLAP equations are a key ingredient in global QCD fits to extract the PDFs
of any hadron, which themselves are necessary for any pQCD calculation of an
observable in a reaction involving incoming hadrons. The next section elaborates

on this point.
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Figure 1.13: Summary of measurements of F». For better visibility, the results for different

values of x were multiplied with the given factors of 2i.
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1.3 Jet measurements in NC DIS and determinations of
as(My) at HERA

HERA physics covers a wide range of momentum transfers (Q?) and is therefore
useful for both constraining the proton PDFs and testing the perturbative regime
of QCD. The knowledge gained at HERA has a universal character due to the fac-
torization property of QCD. In general, the factorization property allows a NC DIS
cross section to be expressed as the convolution of the proton PDFs with calculable
pQCD matrix elements:

AP P =Y / 0 - f(6, 12) - 5(PoEPy (i), i i) (1.22)

The matrix elements represent the short-distance, hard part of the interaction. The
PDFs contain the long-range non-perturbative part of the interaction and must be
determined experimentally. Fig. 1.14 shows determinations of the PDF's made by the
ZEUS Collaboration at HERA [25]. In regions where the uncertainty of the PDF's is
large, improved cross-section measurements can help reduce this uncertainty when
included in the global QCD fits. By the same token, regions where the PDF's are
well constrained allow for measurements of cross sections with small uncertianties,
providing a powerfull tool to study QCD.

Asseen in Fig. 1.14, the ZEUS collaboration has performed a global QCD analysis
using ZEUS data alone to obtain the PDFs. Lets sketch how such an analysis

proceeds.

e A reference value Qg is chosen and the PDFs are parametrized at that value,

q(z,Qo);

e These distributions are then evolved numerically, using the DGLAP equations,
to obtain values of the Fj(z, @*) or any other pQCD observables in the kine-
matic regions where they are measured;

e A global numerical fit (ZEUS-JETS) is performed to determine the ‘best’ values
for the parameters, including Agep, in terms of how well the evolution matches
the measurements.

Such fits have also been done by other collaborations like MRST [26] or CTEQ [27],
where a wide set of structure-function data from a number of different experiments
is fitted. The MRST and CTEQ global fits find tensions among the different data
sets and threfore a rigorous statistical treatment to obtain the PDF uncertainties is
not possible.
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Figure 1.14: The PDFs as functions of z at Q> = 10 GeV? as determined in a global
QCD fit made by the ZEUS Collaboration (ZEUS-JETS, upper left plot). The fit includes
also jet data. For comparison, the PDFs extracted using ZEUS plus fixed-target data
(ZEUS-S, upper right plot) and those obtained by MRST (MRST2001, lower left plot), or
CTEQ (CTEQG6.1M, lower right plot) are also shown. The total experimental uncertainty

bands are shown for each PDF set.

The ZEUS-JETS fit has the advantage that the uncertainties from all the data
sets used in the fits are well understood and, in that sense, the statistical treatment
is more reliable, although at the expense of restricting the fit to ZEUS data alone.
Most of the information for the PDFs in global fits, restricted to ZEUS data or not,
is given by measurements of the total DIS cross sections as functions of x and Q2.
As we showed in eq. 1.3, the total cross section depends on F3y which can itself be
expressed in terms of the quark and gluon PDFs. Therefore the measurements of F,
shown in Fig. 1.13 are of particular importance in global fits. Nonetheless the gluon
PDF contribution enters only indirectly for these measurements and other means of
constraining it are necessary. With this in mind the ZEUS Collaboration studied the
impact of including jet cross-section measurements to constrain the gluon PDF and
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found they helped constrain its uncertainty substantially in the mid-to-high x region.
The PDFs from the ZEUS-JETS fit, shown in Fig. 1.14, are compared with those
extracted using ZEUS plus fixed-target data and found to be in agreement. The
ZEUS-JETS PDFs are also compatible with those obtained in the global analyses
by MRST or CTEQ. Note that the gluon and sea PDFs dominate in the low x region.
The fact that the evolution equations can simultaneously fit different processes over
a wide range in x and % is a compelling test of pQCD.

Figure 1.15: Diagrams that contribute to the production of jets in NC DIS at HERA

Let us now consider the other piece of eq. 1.22, the hard-scattering matrix ele-
ments. We will be mostly interested in the production of jets in NC DIS. At O(a)
in ep collisions, there are three characteristic diagrams which contribute to jet pro-
duction. They are shown in Fig. 1.15. The first diagram corresponds to the QPM,
sensitive to the quark PDFs. The second is gluon radiation by the struck quark
(QCD Compton) and contains a QCD vertex or sensitivity to as(Myz). This dia-
gram dominates the cross section at high %, where both the theoretical and PDF
uncertainties are small. Measurements of inclusive-jet cross sections in regions dom-
inated by the QCD Compton diagram render the most precise determinations of
as(Myz). The third diagram is called boson-gluon fusion (BGF) and is both directly
sensitive to a, and to the gluon PDF. The contribution from the BGF diagram is
responsible for precision jet production measurements being able to constrain the
gluon PDF in global QCD fits. The BGF contribution is greater at lower Q? because,
as we have seen, at lower x the gluon PDF plays a dominant role (Q? is correlated
to z in HERA physics). Although the gluon PDF is constrained in the low = region
by structure function data, the jet data provide a tighter constraint on the gluon
PDF in the mid- to high-x region. The gluon PDF is entangled with the value of
as(Mz), but this is not an issue since at high Q?, where QCDC dominates, jet data
allow a determination of a(My) independently of gluon density. Fig. 1.16 shows the
gluon PDF uncertainties resulting from the ZEUS global fit with and without the
inclusion of the jet cross-section data. The uncertainties are substantially reduced
as a result of including the jet data.
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Figure 1.16: Relative uncertainties in the gluon PDF resulting from a global QCD fit using
ZEUS data alone with and without the inclusion of the jet data. A substantial reduction
in the gluon PDF uncertainties is observed in the mid-to-high = region when the jet data

is included.

The full potential of jet measurements goes well beyond constraining the PDFs,
however. Historically, the definition of a resolvable jet of hadrons that can be applied
to both the theory and the data is what allowed access to the short-distance physics,
providing the connection between pQCD and the experiment. For example, the first
direct evidence of gluon radiation came from the observation of three-jet events
in 1979 by the JADE, Mark-J, TASSO and PLUTO experiments at the 30~35
GeV eTe™ collider PETRA, at DESY [28]. Another example is the four-jet rates
measured at LEP, used to extract the color factors.

The study of jet production in ep collisions at HERA has been well established
as a testing ground of perturbative QCD providing precise determinations of the
strong coupling constant, a,, and its scale dependence. The jet observables used
to test pQCD included dijet [29-31], inclusive-jet [30, 32, 33] and multijet [34, 35]
cross sections in neutral current NC DIS.

The purpose of this document is to cover two new examples with which jet rates
in NC DIS have been used to study pQCD with the ZEUS detector at the HERA
collider:

e Measurements of inclusive-jet cross sections in NC DIS are used to make pre-
cise determinations of a,(My) and measure its scale dependence. The jet
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reconstruction algorithm is also studied in this analysis.

e Three-jet measurements in NC DIS are used to investigate variables that show
sensitivity to the underlying symmetry of the strong interactions, in analogy
with the LEP analyses.

Before delving into these two studies, it is important to define what is meant by a
jet and to choose a reference frame that is optimal for these particular analyses.

1.3.1 The definition of a jet

The view into the small-distance hard interaction that jet measurements provides is
inevitably clouded by the subsequent long distance showering and eventual hadroniza-
tion of the primary quarks and gluons. The effect of the long distance processes on
the identification of the hadronic state with the partonic state can be minimized
with a suitable definition of a jet. The aim is to obtain a precise picture of the
short distance dynamics, well into the predictive regime of pQCD. The algorithm
used to reconstruct the jet must take into account the dynamics of the collision and
its possible backgrounds. For example, collisions where a hadron is involved in the
initial state, such as ep collisions differ in overall event structure from the purely
electromagnetic ones of e*e™ collisions in that neither all the partons in the initial
state nor all the hadrons in the final state participate in the hard scattering.
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Figure 1.17: The ‘jet radius’ parameter R is the maximum distance in the (7, ¢) plane at
which two particles get combined in the k7 clustering algorithm. It is conventional to set

R=1, although this might not be the optimal choice for all analyses.
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It is important for the jet algorithm to exploit the particular characteristics of
this type of collisions in order to distinguish the final state of the hard interaction
from the rest of the hadronic matter present. HERA ep collisions are characterized
by the presence of a ‘beam remnant’ composed of the initial state radiation of the
scattered parton together with the remnants of the spectator partons. The beam
remnant has low transverse energy with respect to the beam axis. In other types
of collisions the global aspect of the event can be different. For example, in pp
collisions the soft interactions among the spectator partons lead to an underlying
event resulting in an isotropic distribution of energy in the detector, whereas in
ete collisions all the hadronic matter in the final state originates from the hard
interaction.

Thus, the optimal algorithm used to reconstruct hadronic jets depends on the ex-
periment. There are, nevertheless, several requirements that a jet algorithm should
at a minimum satisfy. From both a theoretical and experimental point of view, a
jet-finding algorithm needs to be collinear and infrared safe. This means that in
the case when the Ep of an emitted parton is close to 0 or when a parton divides
into collinear partons the emitted particles are recombined into the same jet. The
jet algorithm should be as insensitive as possible to the hadronization of the orig-
inating partons. Finally, the jets should be reconstructed in a suitable reference
frame to help maximize the distinction between the hard scattering event and any
background hadronic activity, such as the presence of a beam remnant.

At HERA, the CM frame depends on the kinematics of an individual event, and
thus the jet algorithm should emphasize the use of longitudinally invariant observ-
ables. For this reason the natural variables to use in this case are the transverse
momentum (FEr), pseudorapidity (n), and azimutal angle (¢) of the jet, where:

Ep = Esind and n = —In[tan (6/2)] (1.23)

Consider an ep collision which has resulted in some distribution of particles in
the final state, each of which is identified by its 4-momentum p*. We assume the
scattered electron has been identified and omitted from the input list to the jet
reconstruction. The kr algorithm [36] proceeds according to the following steps:

e For every pair of particles i and j, the distance between the two particles is
defined as:

dij = min(Er;, Br;)* [(n: —n;)* + (6 — ¢;)°] (1.24)
e For every particle i, the quantity is also defined:

d; = B3, - R?, (1.25)
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where R is a parameter of the algorithm which plays the role of a jet radius in
the (1, ¢) plane, as pictured in Fig. 1.17 It is the maximum distance at which
two particles are combined in the algorithm.

e The smallest value of all (d;;,d;) is considered. If this is one of the d;;’s then
the two particles are merged into a new one following a given recombination
scheme. If the minimum is one of the d;’s, then that cluster is considered as a
protojet and no longer considered for clustering;

e The procedure is repeated until no remaining cluster is left and all the particles
have been assigned to protojets. At each iteration, one particle is removed, so
the number of iterations is always equal to the original number of final-state
particles;

e Finally, from the sample of protojets, the final jets are selected by imposing a
cut on Ep which sets the scale to distinguish the hard and the soft processes,
and a cut on 7, due to the detector geometrical acceptance.

The particles are treated as massless objects and so are the resulting reconstructed
jets. In the analyses presented here, the recombination scheme for the particles at
each step, known as the Snowmass convention [37], is

1 1
Ery=Eri+Er; nmx=——mEr; +n;Er;) ¢r=——(0:Er; +¢;Er;).
Er Er
(1.26)

The above definition provides a QCD-motivated implementation of the jet require-
ments. It allows the inclusion of the proton remnant in the beam jet while associ-
ating with jets the soft radiation accompanying the hard parton scattering. Since
the distance is weighted by the minimum FE7 it does not combine soft emissions into
fake jets. The collinear divergence is taken care of since a collinear emission will be
recombined with its parent parton, while experimentally the finite resolution of the
detector will not differentiate between a hadron and its collinear decay products.
From a theoretical point of view, the jet algorith should allow the jet cross sections
to be written in factorizable forms such that each structure function can be split into
its jet contributions. It has been shown that this is accomplished only by a class of
algorithms such as the kp cluster algorithm and only when the jets are reconstructed
in a particular family of reference frames. Studies have demonstrated that the kp
cluster algorithm in the longitudinally invariant inclusive mode [38] is at present the
method to reconstruct jets in ep collisions for which the smallest uncertainties are
achieved.

The Breit frame belongs to this class and is particularly suited to QCD studies,

as we now discuss.
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1.3.2 The Breit frame of reference

In ep collisions, at lowest order the interacting quark will hadronize into a jet, inde-
pendently of the value of a,. Thus, in wanting to extract a, from jet measurements,
one would like to select a sample of jet events such that the QPM contribution is
suppressed. Moreover, the jet recognition should also be insensitive to the beam
remnant. Thus, an ideal reference frame is one where one can trivially distinguish
hard interaction jets from the beam remnant as well as a,-sensitive jet production
from the QPM contribution. The Breit frame [39] is defined such that the struck
quark in the QPM bounces back along the beam direction with equal but opposite
momentum. It differs from the hadronic CM frame only by a longitudinal boost.
In such a frame, neither the jet initiated by the struck quark, nor the remnant jet
have any E7r, as depicted in Fig 1.18. The production of jets with E7 in the Breit
frame is sensitive to ay at lowest order and excludes both the beam remnant and
the QPM contribution in a natural way. Therefore the Breit frame is ideal for QCD
studies using jets. Formally, the Breit frame is defined as the frame where the virtual

i e -

Figure 1.18: Diagrams contributing to jet production as viewed in the Breit frame. The
Born process does not contribute with jets having Egﬁ% > (0. From left to right, the Born,
QCDC and BGF processes.

boson is completely space-like (i.e. its energy is zero) and has no Er in the beam
direction. The Lorentz transformation from the laboratory to the Breit frame can
be specified in terms of the virtual boson’s 4-momentum (¢*), and therefore depends
on the kinematics of a given event. The transformation matrix can be applied to
the four momenta of all the particles in the final state so that the jet reconstruction
using the kr clustering algorithm can be carried out in this frame. Since the Breit
frame aligns the struck quark with the virtual boson, the scattering angle of the
struck quark in the laboratory () characterizes the transformation. In the extreme
case where v — 180°, the transformation from the laboratory to the Breit frame is
just the unit matrix. In cases where ~ is small, the transformation will considerably
deviate from and distort the laboratory frame. The characteristics of the detector
in the Breit frame must be understood, since the distance in the 1 — ¢ plane used by
the kp clustering algorithm might become small in comparison to detector cell sizes
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in the Breit frame. We will delve deeper into this subject in chapter 4. Finally, the
Breit frame is particularly suited because it belongs to a class of reference frames
(of which the hadronic CM and the laboratory frames are not members) such that
resummed calculations for jet obervables are possible.

1.3.3 Extracting a4(Mz) from inclusive-jet measurements in NC DIS in
the Breit frame

A value of a; can be obtained from a jet cross-section measurements by the following
procedure. The dependence of the theoretical predictions on the assumed value for
as(Myz) is parametrized according to a simple polynomial:

(9% (M) = Cron(My) + Cron(My)? (1.27)
This parametrization is then fitted to theoretical predictions made at NLO in pQCD
using a range of different assumed values for a(My). Self-consistency requires that
the assumed value of a,(My) be made the same both in the parametrizations of
the PDF's used and in the matrix elements. Once the polynomial dependence of the
theoretical prediction on a,(My) is obtained, the polynomial is solved for the value
of as(My) that reproduces the measured cross section. The method is pictured in

Fig. 1.19.
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Figure 1.19: Method for extracting as(Myz) from the measured cross sections. The depen-
dence of the theoretical prediction on ag(My) is parametrized according to a polynomial.

Afterwards the polynomial is solved for the measured value of the cross section.

Experimental determinations of a;(Myz) have been motivated in this chapter as
one of the most comprehensive and stringent ways to test QCD. It has also been
emphasized that the precision of these measurements is correlated with the precision
with which pQCD is able to make predictions. Jet production has allowed a number
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of precise determinations of o, and its scale dependence at HERA. This stems from
the fact that jet production with high F7 in the Breit frame is sensitive to oy at
lowest order and that it relates the pQCD partonic predictions to the measured
hadronic final state in a way that is insensitive to the long-range hadronization
process. The jet measurements used in the past include dijet, inclusive-jet and
multijet cross sections in NC DIS, and dijet, inclusive-jet and multijet cross sections
0).
of a, made at HERA. They are consistent with each other as well as with the

in photoproduction (i.e Q* = Fig. 1.20 shows a number of determinations

world average. The jet observables that yield as(Mz) with the smallest overall
uncertainties are inclusive-jet cross sections in NC DIS. Thus, it makes sense to try
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Figure 1.20: A compilation of determinations of as(Mz) made at HERA.

to pursue this venue further. The ‘g analysis’ presented in the rest of the chapters

of this document encompasses the following studies:

e New measurements of inclusive-jet cross sections with increased statistics have

. et
been made as functions of Q?, EJ 5, ks,

iy o . .
2", and By for different regions of Q?;

e The dependence of the differential as well as the total inclusive-jet cross sections
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on the jet-radius R has been studied and a range of validity for this parameter
has been established;

e The inclusive-jet cross-section measurements with respect to Q% and EJTCtB have
been used to make new determinations of as(My). A region has been identified
which yields the value of (M) with the smallest uncertainties obtained thus
far by the ZEUS Collaboration;

e The extracted values of g, have been used to test its scale dependence over a
wide range of Egpeg, and Q2.

The jet cross-section measurements represent a compelling test of QCD when
compared to the NLO pQCD predictions in Q? and E]Tefg They are expected to
show sensitivity to the gluon PDF through the BGF process and should be included
in future global QCD fits. These measurements also provide a well understood
environment on which to study the kp cluster jet algorithm. The conventional
value for the jet radius (R=1) in the kr clustering algorithm might not be optimal
for certain analyses at the LHC where, for example, the identification of a heavy
particle decaying into jets that emerge close in phase space might require lower
values of R [40]. The objective of this study is to determine a region of validity for
the jet radius, R. By region of validity what is meant is that the systematic and
theoretical uncertainties involved for a given choice of R do not prevent the analysis,
and that quantities derived from the jet measurements such as the value of ag(My)
do not depend on R.

1.3.4 Three-jet cross sections in NC DIS in the Breit frame and angular-
correlation variables

The study of the underlying symmetry of the strong interactions through angular-
correlation variables carried at LEP has inspired a similar analysis for ep collisions
at HERA. The ‘angular-correlations’ analysis presented in this document is the first
of its kind at HERA and opens a new venue through which to test QCD. It turns
out that ep physics is from this analysis’ point of view substantially different to e™e™
physics. The adaptation to ep physics of this type of analysis is not straightforward,
since a number of complications arise which in some cases reduce the sensibility of
the angular variables to the underlying symmetry.

At HERA, the triple-gluon vertex appears already at LO for three-jet final-state
production. The theoretical expression for the three-jet cross section at LO can be
separated into four terms according to the color factors they contain:

Oepo3jets = 012: o4+ CpCy-op+CpTr-0c+TrCy-0p (128)
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Two issues absent in eTe~ that need to be confronted in ep interactions arise
immediately. First, the scale evolution of the available PDF fits is parametrized
assuming SU(3) as the underlying symmetry and could introduce a color dependence
in the calculations. Second, in the LEP analyses the characteristic energy scale is
My and is the same for all the events; as a result, there is no dependence on the
running of a,. In ep collisions at HERA, the production of jets of high E%e; in the
Breit frame has E%e; or () as the characteristic scale for the process, introducing
a sensitivity on the running of a and therefore to the symmetry group assumed in
the running. The aim of this analysis is to see the effect of the underlying gauge
symmetry exclusively on the angular correlations of the final-state jets. Thus, in
this analysis we would like to study observables which are as insensitive as possible
to the symmetry-dependent evolution of the PDFs and a,. For these reasons, the
cross sections are normalized to the total cross section, such that only the shape of
the distributions in the variables is of relevance. This choice of observable has the
benefit of ridding itself from most of the dependence on the evolution of the PDFs
and ag(Myz), as well as on the magnitude of ay itself. In order to suppress any
residual dependence on the scale evolution, the region of phase can be constrained
if necessary in such a way as to restrict the running of ay and the PDFs, while
retaining the sensitivity of the angular-correlation variables to the underlying gauge
symmetry. Three-jet cross sections in NC DIS in the Breit frame are measured in
NC DIS and their distributions in terms of these variables are shown and compared
to different theoretical models.

ke <k

Figure 1.21: Examples of tree-level Feynman diagrams for three-jet production in e®p
collisions at HERA contributing to 04 (Cp X Cr), o (Crp x Cy), o¢ (Cp x Tp) and op
(Tr x Cya), respectively.

The Feynman diagrams shown in Fig. 1.21 are characteristic of each of the four
subprocess cross sections that compose the right-hand side of eq.1.28. The first
diagram is the double-gluon Bremstrahlung from a quark line. This diagram is
analogous to the double-gluon Bremstrahlung diagrams from eTe~ except that the
quark is now in the initial state. This can be seen by simply rotating the diagram.
The second and third diagrams are analogous to the eTe™ diagrams in the same
way: they contain the triple-gluon vertex and the gluon splitting into a ¢q pair,
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respectively. The fourth diagram also contains a triple-gluon vertex associated to
an initial-state gluon from the proton. For three-jet production in ep collisions, an
angle Oy is defined in analogy with © g, as the angle between the plane formed by
the incoming proton beam (which corresponds to the initial-state quark direction)
and the primary jet (the one with the highest ng};) and the plane formed by the
lowest Egpe% jets [41]. This angle should be sensitive to the relative contributions
from the second and third types of diagrams, following the same arguments as in
the discussion of the LEP analysis.

The method relies heavily not only on how the correlations among the final-state
jets differ in shape, but also on the magnitude of each sub-process cross section.
Two requirements must be met in order to make an angular variable valid for this
sort of study:

e The angular correlation must have a distinctive distribution for each type of
sub-process;

e The relative magnitude of the subprocess cross section must be large enough
that its signature contribution to the shape of the cross section is visible.

The variables that have been devised to carry out this program at HERA are
(See Fig. 1.22):

e 0y, the angle between the plane determined by the highest transverse energy
jet and the beam and the plane determined by the two lowest transverse energy
jets [41];

® C0S (g, which is inspired by the variable ang for ete™ — 4jets, is defined as
the angle between the two lowest transverse energy jets. See Fig. 1.22;

e Orsw, which is inspired by the Korner-Schierholz-Willrodt angle gb?se‘jv for
ete™ — 4jets, is defined as

cos(Brsw) = cos | 5 (£1( x 73), (55 x p)] + £t % p), (3 X 35|

where p;, i = 1,...,3 is the momentum of jet ¢ and pp is a unit vector in the
direction of the beam; the jets are ordered according to decreasing transverse
energy;

e 1/¢ the maximum pseudorapidity of the three jets with highest transverse

max?

energy.

These angular-correlation variables are with the exception of 7,,,, analogous to the
ones used in LEP analyses. The jet correlations could be distorted by the boost
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to the laboratory frame and for this reason the jets are reconstructed in the Breit
frame of reference. The angular-correlation variables presented above are shown
to be sensitive to the underlying symmetry and can be used to distinguish among
theories with different gauge symmetries.

Figure 1.22: Three-jet angular-correlation variables O and «as
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Chapter 2

The HERA collider and the ZEUS

detector

2.1 The Hadron Electron Ring Accelerator

Figure 2.1: View of DESY.

The HERA (Hadron Elektron Ring Anlage) collider is located at DESY in Ham-
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Hall EAST (HERMES)

Hall WEST (HERA-B)

~=— Electrons/ Positrons
-a— Protons
= Synchrotron Radiation

Hall SOUTH (ZEUS)

Figure 2.2: The HERA accelerator complex. Four experiments are located in the ex-
perimental halls : South (ZEUS), West (HERA-B), North (H1), and East (HERMES).

burg, Germany. It offers unique opportunities to explore the structure of the proton
as it is the first ep collider in the world. Figure2.1 shows an aerial view of DESY and
the surrounding area including the location of the two largest accelerators HERA
and PETRA.

HERA was approved in 1984 and first collisions were observed in 1991. Opera-
tions for physics started in 1992 and ended in 2007. HERA consists of one storage
ring for protons and one for electrons. The design energy is 30 GeV for electrons
and 820 GeV for protons. Each storage ring consists of four 90° arcs connected
by 360m long straight sections and is located (10-25) m below ground. Super-
conducting magnets are used for the proton storage ring. Four experimental halls
(North, South, East, West) are situated in the middle of the straight sections. The
two collider experiments, H1 and ZEUS, are located in the northern and southern
experimental halls, respectively. In both interaction regions electrons and protons
collided head-on at zero crossing angle. Two fixed-target experiments, HERMES
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and HERA-B, have been installed in the eastern and western experimental halls,
respectively. They made use of only the HERA electron (HERMES) and proton
(HERA-B) beams, respectively. HERMES [42] is investigating the spin structure
of the nucleon and HERA-B [43] aimed to study the CP-violation in the B°B0-
system. Figure 2.2 shows the layout of the HERA collider, the four experimental
halls and the system of pre-accelerators used at DESY. In a first step, electrons
and protons were accelerated using linear accelerators. A small storage ring PIA
(Positron-Intensity-Accumulator) was used in between the linear accelerator and
DESY II to accumulate electrons until sufficient intensity was reached. In a next
step, the particles were injected into DESY II (electrons) and DESY III (protons).
After injection into PETRA and further acceleration, electrons and protons were
injected into HERA. From 1995 to 1997 positrons were used instead of electrons
because severe lifetime problems of the electron beam were observed. The reason
was most likely the capturing of positively-charged dust which originated from ion
getter pumps from the HERA electron vacuum system by the electron beam [44].
With the installation of new pumps in the winter shutdown 1997/1998 the problem
was significantly reduced and HERA switched back to electrons in 1998. Several
HERA parameters from the 1997 runing period and the corresponding design values
are given in Table 2.1. The data used in the analyses presented here were collected
during the running period 1998-2000, when HERA operated with protons of energy
E, =920 GeV and electrons or positrons of energy £, = 27.5 GeV, and correspond
to an integrated luminosity of 81.7 & 1.8 pb~!, of which 16.7 pb~! (65.0 pb~!) was
for e=p (eTp) collisions.

2.2 The ZEUS Detector

The ZEUS detector [45] is a general purpose magnetic detector designed to study
various aspects of electron-proton scattering. It has been in operation since 1992 un-
til 2007 and consists of various sub-components to measure the hadrons and leptons
in the final-state and, therefore, to characterize the final-state in terms of energy,
direction, and type of the produced particles.

The coordinate system of the ZEUS detector is a Cartesian right-handed coordi-
nate system. The origin ((X,Y, Z) = (0,0,0)) is located at the nominal interaction
point. The Z-axis points in the proton beam direction, the Y-axis upwards, and
the X-axis horizontally towards the center of HERA. The polar (azimuthal) angle 6
(¢) is determined relative to the positive Z-axis (X-axis). With this definition the
polar angle of the incoming electron beam is 180° and that of the incoming proton
beam is 0°. The +Z-direction is referred as the forward, and the —Z-direction as the
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HERA parameters Design Values Values of 1997
] » o | v
Circumference (m) 336
Energy (GeV) 30 | 820 276 | 8212
Center-of-mass energy (GeV) 314 301
Injection energy (GeV) 14 40 12 40
Energy loss per turn (MeV) 127 | 1.4-1071° 127 1.4-10710
Current (mA) 58 160 36 78
Magnetic field (T) 0.165 4.65 0.165 4.65
Number of bunches 210 210 174+15 17446
Bunch crossing time (ns) 96
Horizontal beam size (mm) 0.301 0.276 0.200 0.200
Vertical beam size (mm) 0.067 0.087 0.054 0.054
Longitudinal beam size (mm) 0.8 11 0.8 11
Specific luminosity (cm™2s~'mA~2) 3.6-10% 5.0 - 10%°
Instantaneous luminosity (cm~2s71) 1.6 - 103! 1.45- 103!
Integrated luminosity per year (pb~!/a) 35 36.5

Table 2.1: HERA parameters. In 1997 HERA operated with 174 colliding bunches, 15

positron-pilot bunches and 6 proton-pilot bunches.

backward direction.

The ZEUS detector consists of the main detector located around the nominal
interaction point and several small detectors positioned along the beam line in both
positive and negative Z-directions. The main detector is shown in Figs. 2.4 and 2.5
along and perpendicular to the beam direction, respectively. The design is asymmet-
ric with respect to the Z-axis because of the large forward-backward asymmetry of
the final-state system. The difference in the energy of the electron beam (27.5 GeV)
and proton beam (920 GeV) results in a center-of-mass system which is moving in
the direction of the proton beam relative to the laboratory frame.

The inner part of the main detector consists of the tracking system enclosed
by a superconducting solenoid which produces an axial magnetic field of 1.43T.
The CTD, a cylindrical drift chamber, surrounds the beam pipe at the interaction
point. In order to provide additional means of track reconstruction in the forward
(backward) direction, the CTD was supplemented by the FTD (RTD). The FTD
consists of three sets of planar drift chambers with transition radiation detectors
(TRD) in between. The RTD is one planar drift chamber with three layers. The
vertex detector VXD measures the event vertex and possibly secondary vertices and
improves the momentum and angular resolution of charged particles as determined
with the CTD alone. In 1994 high voltage problems and damage due to synchrotron
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Figure 2.3: Integrated luminosity delivered by HERA in the different running periods (left
plot) and the one taken with the ZEUS detector (right plot). The latter is used for physics

analysis.

radiation caused part of the VXD to be off and it was removed.

The high resolution uranium calorimeter (UCAL) encloses the tracking detectors.
It is subdivided into the forward (FCAL), barrel (BCAL), and rear (RCAL) parts.

The UCAL in turn is surrounded by an iron yoke made of 7.3 cm thick iron

plates. The yoke serves two purposes: it provides a return path for the solenoid

magnetic field flux and, in addition, is instrumented with proportional chambers.

The latter design feature makes it possible to measure energy leakage out of the
UCAL. The yoke is therefore referred to as the backing calorimeter (BAC). As
the yoke is magnetized to 1.6 T by copper coils, it is used to deflect muons. In

order to detect and measure the momentum of muons, limited streamer tubes are
mounted surrounding the iron yoke in the barrel (BMUI, BMUQO) and the rear
(RMUI, RMUO) regions. As the particle density and the muon momentum in the
forward direction is higher than in the barrel and rear directions due to the energy

difference of the electron and proton beams, the muon chambers in the forward

direction are designed differently. Limited streamer tubes mounted on the inside

of the iron yoke (FMUI) and drift chambers and limited streamer tubes mounted

outside the iron yoke (FMUOQ) are used for this purpose. Two iron toroids provide

a toroidal magnetic field of 1.7 T. In the backward direction at Z = —7.3m, a veto



38 The HERA collider and the ZEUS detector

Overview of the ZEUS Detector
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Figure 2.4: View of the ZEUS detector along the beam direction.

wall outside the detector composed of iron and scintillation counters is used to reject

background events dominated by proton-beam-gas reactions.

2.2.1 The Central Tracking Detector

The tracking system of the ZEUS detector consists of the forward, central and rear
tracking devices, which operate under a high magnetic field of 1.43 T to achieve
a high resolution for high momentum tracks. All the tracking quantities used in
this analysis are provided by the Central-Tracking Detector (CTD) [46]. The CTD
is a cylindrical drift chamber which provides a high-precision measurement of the
direction and transverse momentum of charged particles and of the event vertex.
The position resolution in r — ¢ is about 230 um and the transverse momentum

resolution is

0.0014
7P _ 00058 - pi(GeV) @ 0.0065 & , (2.1)

Dt Pt

where the first term corresponds to the resolution of the hit positions, the second
term to smearing from multiple scattering within the CTD and the last term to
multiple scattering before the CTD. The position of the interaction point in X and
Y is measured with a resolution of 0.1 cm and in Z with a resolution of 0.4 cm.
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Figure 2.5: View of the ZEUS detector perpendicular to the beam direction. See text for

a description of the components.

The CTD is filled with a mixture of argon, CO5 and ethane. Particle identifica-
tion is possible by measurements of the mean energy loss dE/dx of charged particles
within the tracking detector. The CTD covers a polar angle of 15° < 8 < 164° and
the full range of the azimuthal angle ¢. Its active volume has a length of 205 cm, an
inner radius of 18.2 cm, and an outer radius of 79.4 cm.

The CTD is designed as a multi-cell superlayer chamber and subdivided into eight
sections and nine superlayers. One octant is shown in Fig. 2.6. The CTD consists
of 576 cells with each cell being equipped with eight sense wires. The number of
cells increases from 32 in the innermost superlayer to 96 cells for the outermost
superlayer. Every other superlayer has its sense wires rotated by a certain angle
with respect to the beam axis. The angles for each superlayer are given in Fig. 2.6.
With this configuration, the Z position of a track can be reconstructed with an

accuracy of aproximately 2 mm.
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Figure 2.6: Layout of a CTD octant. Each octant has nine superlayers with the even

numbered ones declined with respect to the beam axis (‘Stereo angle’).

2.2.2 The Uranium-Scintillator Calorimeter (UCAL)

Calorimeters in particle physics measure the energy of particles by their absorption
in a medium that becomes ionized or excited through shower processes. The ZEUS
calorimeter (UCAL) has been designed as a sampling calorimeter, where absorber
layers alternate with scintillator layers, which are the optical readout. The calorime-
ter is required to be hermetic with a nearly full solid-angle coverage and to have a
good hadronic energy resolution by achieving an equal response to electromagnetic
and hadronic particles.

The UCAL is divided into three parts, which cover different polar angles [47-49].
All parts of the calorimeter, FCAL (2.2° < 6 < 39.9°), BCAL (36.7° < 0 < 128.1°),
and RCAL (128.1° < # < 176.5°) are built of alternating layers of 3.3 mm thick
depleted uranium and 2.6 mm thick plastic scintillator plates (SCSN38). The natural
radioactivity of 28U is used as a reference signal to calibrate the readout channels
to a precision of < 0.2%.

Uranium is an advantageous absorber for hadron calorimetry, since it provides a
high yield of spallation neutrons which impart the energy to the hydrogen nuclei of
the scintillator. Together with an additional contribution of photons from neutron
capture of the uranium, this helps to compensate the signal loss of hadrons arising
from the loss of binding energy, nuclear fission fragments and from undetected decay
products. Electrons and photons do not suffer such losses as they interact predom-
inantly with the atomic electrons and not with the nuclei. The ratio between the
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Figure 2.7: Layout of a FCAL module. The UCAL modules are subdivided into one elec-
tromagnetic (EMC) and two hadronic (HAC1,HAC2) sections, which in turn are divided

into cells. A cell is read out on two opposite sides by one wavelength shifter each.

pulse heights of electrons and hadrons, e/h, which has been achieved is

e/h = 1.00 +0.03 (2.2)

The three calorimeter parts are subdivided into modules. The modules are
transversally separated into towers, and the towers in turn longitudinally into elec-
tromagnetic (EMC) and hadronic sections (HAC). The design of an FCAL module is
shown in Fig. 2.7. The FCAL and RCAL modules are planar and perpendicular with
respect to the beam axis (see Fig. 2.4), while the BCAL modules are wedge-shaped
and projective in the polar angle. The calorimeter modules are further segmented
into cells. The cell dimensions are 20cmx20cm for hadronic cells and 5cmx20cm
(10cmx20cm) for electromagnetic cells in the FCAL and BCAL (RCAL). The design
of the three calorimeter parts takes into account the different particle densities and
energies due to the asymmetric electron and proton beam energies. Each EMC sec-
tion is segmented transversally into four cells (two in RCAL), while a HAC tower is
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Figure 2.8: Location of ZEUS detectors in negative Z-direction. Shown are the gamma
(LUMIG) and electron detectors (LUMIE) used for the luminosity measurement.

not divided transversally. They are instead longitudinally subdivided into two (one
in RCAL) hadronic cells (HAC1, HAC2). Each cell is read out on two opposite sides.
This is done on each side by a wavelength shifter coupled to one photomultiplier
tube. The information of both photomultiplier tubes is used to provide a limited
reconstruction of the position of the measured particle and to check the uniformity
of the readout.

The single particle energy resolution for electrons and hadrons was determined
in test-beam experiments to be  og/E = 0.18/v/E and op/E = 0.35/VE
respectively, where E is mesured in GeV.

2.3 The luminosity measurement

The luminosity, £L = N/o, relates the number of events N with the cross section . A
precise determination of the luminosity is essential for any cross section measurement
in a high-energy physics experiment. The luminosity of ep-collisions at HERA is
measured by observing the rate of hard bremsstrahlung photons from the Bethe-
Heitler process ep — eyp [50]. As the theoretical cross section is known to an
accuracy of 0.5% from QED calculations, a precise measurement of the photon rate
permits a precise determination of the ep-luminosity at HERA.

Figure 2.8 shows the layout of the HERA magnet system and the ZEUS lumi-
nosity detectors in the backward (~Z)-direction. In the case of ZEUS, this is done
by two lead/scintillator electromagnetic calorimeters at Z = —34m (LUMIE) and
Z = —107m (LUMIG). Photons with 6, < 0.5mrad originating from the Bethe-
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Heitler process ep — eyp are detected by the LUMIG detector [51, 52]. The energy
resolution of the LUMIG detector was measured under test-beam conditions to be
18%/VE. Tt was also determined that the carbon/lead filter placed in front of the de-
tector to shield it against synchrotron radiation degrades the resolution to 23%/ VE.
The impact position of incoming photons can be determined with a resolution of
0.2cm in X and Y, because at a depth of 7X,y 1cm wide scintillator strips are in-
stalled within the LUMIG detector. The LUMIG detector is also used to determine
the electron-beam tilt and to measure photons from initial-state radiation.

The LUMIE calorimeter [51, 52] at Z = —35 m detects electrons in the limited
energy range from 7 to 20 GeV which are produced under polar angles of less than
5 mrad with respect to the electron-beam direction. These electrons are deflected by
the HERA magnet system and leave the beam pipe at Z = —27m through an exit
window similar to the one in front of the LUMIG detector. The LUMIE detector
has an energy resolution of 18%/ VE under test-beam conditions. It was initially
designed to measure the electrons of the Bethe-Heitler process ep — evyp at the same
time as the photons of this process are measured in the LUMIG detector. It was
found that this was not necessary to have a precise measurement of the luminosity.

2.4 The ZEUS trigger and data acquisition systems

The short bunch crossing time at HERA of 96 ns, equivalent to a rate of about 10”
crossings per second, is a technical challenge and puts stringent requirements on
the ZEUS trigger and data acquisition systems. The total interaction rate, which
is dominated by background from upstream interactions of the proton beam with
residual gas in the beampipe, is of the order 10 - 100 kilo-events per second (10 -
100 kHz) while the rate of ep physics events in the ZEUS detector is of the order of
a few Hz [53, 54]. Other background sources are electron-beam gas collisions, beam
halo and cosmic events.

ZEUS employs a sophisticated three-level trigger system in order to select ep
physics events efficiently while reducing the rate to a few Hz. A schematic diagram
of the ZEUS trigger system is shown in Fig. 2.9.

The First Level trigger (FLT) is a hardware trigger, designed to reduce the
input rate below 1 kHz. Each detector component has its own FLT, which stores
the data in a pipeline, and makes a trigger decision within 2 us after the bunch
crossing. The decision from the local FLTs are passed to the Global First Level
Trigger (GFLT), which decides whether to accept or reject the event, and returns this
decision readout within 4.4 ps. The typical information available at FLT are CAL
activity (total transverse energy, missing transverse momentum,...), CTD tracks
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(number of tracks,...), hits in the muon chambers, etc.

If the event is accepted, the data is fully digitalized and transferred to the Second
Level Trigger (SLT). The trigger signals at the SLT have a better resolution than
those at the FLT. Moreover, some information is first available at the SLT like CAL
timings, which are useful in rejecting non-ep background events. The SLT is designed
to reduce the rates to the order of 50-100Hz. Each detector component has its own
SLT, which passes a trigger decision to the Global Second trigger (GSLT) [55].

If the event is accepted by the GSLT, all detector components send their data
to the Event Builder (EVB), which combines all the data of an event into a single
record of ADAMO [56] database tables. This is the data structure on which the
Third Level Trigger (TLT) code runs. The TLT is software based and runs part of
the offline reconstruction code. It is designed to reduce the rate to a few Hz.

2.5 Event reconstruction and analysis

The scheme of the ZEUS offline and Monte Carlo (MC) simulation programs is shown
in Fig. 2.10. Events from the real detector or simulated events are reconstructed by
the program ZEPHYR, where the signals of the different components are calibrated
and highly complex tasks, like tracking reconstruction, are performed. After pro-
cessing the raw data, the user has access to the raw and reconstructed quantities
via the program EAZE. In the framework of EAZE, the user writes his own analysis
program in either Fortran or C. It is used to reconstruct relevant quantities and
perform selection cuts. Subsets of the data or MC simulated events can be saved
for further analysis. The program LAZE is an event-display program which allows
graphical viewing of various aspects of an event including the tracks of charged
particles in the CTD, energy depositions in the CAL, and other component-related
quantities. To allow fast access to specific types of events during reconstruction, it
is checked whether each event meets one of the conditions designed by the ZEUS
analysis groups. If a specific condition is met, a flag called a DSTBIT is set. Before
analyzing detailed component information in the user’s EAZE program, the events
can be preselected by requiring certain DSTBITS. This allows a faster loop over the
whole data sets since only those events are processed further.

Simulated MC events are generated using the program AMADEUS (named ZDIS
in previous versions) which contains a shell environment to steer a number of MC
generator programs. The output data is stored in the same (ADAMO) format as the
data from the real detector and passed to the ZEUS detector simulation program
MOZART, based on the CERN GEANT program [57]. A simulation of the ZEUS
trigger chain is done by the program ZGANA. Interfaces between the programs
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used for MC generation and the programs EAZE and LAZE provide specific MC
information such as generated kinematic quantities, vertices and particles to the

user. An overview of the physics analysis environment of the ZEUS experiment can
be found in [58].

2.6 Event and detector simulation

In order to correct the data for trigger and detector effects, a full Monte Carlo
simulation is required. This can be split in two pieces. First, an event generator,
which calculates the scattering processes at hadron level from given matrix elements.
Using hadronisation models, the final-state particles are obtained as a list of 4-
vectors. This is what we mean by generator-level. In the second step, these particles
are passed to a full simulation of the trigger and detector, yielding output in the
form of ADAMO tables, which can be treated in the same way as the data. This is
called detector-level.

Events from the event generator are processed by the MOZART package. This is
a GEANT-based program which simulates the response of each detector component,
based on the current knowledge of the ZEUS detector from both physics studies and
test-beam results. Each particle interaction with dead material and detector compo-
nent is simulated, including effects of digitization of the signals and known sources
of noise. The ZGANA package simulates the trigger response to the event, based on
the component signals, and them ZEus PHYsics Reconstruction (ZEPHYR) package
performs the full offline reconstruction using all calibration constants. The Monte
Carlo events simulated are then written in an identical format as the data taken
with the ZEUS detector.
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Chapter 3

Theoretical calculations and event

generators

3.1 Introduction

Complete perturbative calculations for jet cross-sections in ep scattering are available
in most cases only to next-to-leading (NLO). The amount of work associated to
making these calculations increases factorially with each order. The calculations
available are coded into computer programs that allow users to obtain theoretical
predictions in a straightforward way. DISENT [59] is one of such programs and has
been used extensively to calculate inclusive and three-jet cross-sections at O(a?) for
the analyses presented here. Certain parameters, such as the renormalization and
factorization scales (g and pg) or the proton PDF's are not given by the theory. The
influence of these choices on the theoretical predictions is related to the theoretical
uncertainties as discussed in this chapter. Recently calculations at O(a?) for three-
jet production have become available through the program NLOJET++ [60]. This
program has been used to study the O(a?) contribution to the three-jet angular-
correlation predictions. At O(a?) it has been used to cross-check DISENT.

We saw in Chapter 1 that a suitable definition of a jet connects the hadronic en-
ergy distributions measured in detectors with the partons that are the final states of
perturbative QCD calculations. Despite the validity of this approach it is important
to study the effect of the hadronization process on the jet production predictions in
order to obtain a more accurate comparison between the theory and the data. This
is accomplished by first complementing the fixed-order calculations with enhanced
regions from higher-orders, leading to a ‘parton cascade’ picture. As we will discuss
later, there are two available parton cascade models, the Color Dipole Model [61]
and the Parton Shower Model [62]. The parton shower is calculated up to a soft
scale. After the parton shower is completed the hadronization of the partons must
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be simulated. The hadronization does not change the overall properties of the event
such as the jet energy or angular distributions, since it is a process that happens
at a soft energy scale of ~ 300 MeV. The Lund String Model [63] and the Cluster
Model [64] are two available hadronization models. The programs that simulate the
fixed-order calculations along with the parton shower and the subsequent hadronisa-
tion are called ‘Monte Carlo event generators’ and play an important role in particle
physics and in particular in the analyses presented here.

It is also necessary to understand the detector with which the measurements
were made in order to know their precision and to determine any bias introduced
by the detecting device. A simulation of the detector has been developed for this
purpose and is interfaced with the event generators. The output of the simulation
can be submitted to the data triggering chain and reconstructed in the same way
as the data. This tool allows the experimentalist to study the reconstruction of any
observable by feeding a known generated distribution to the detector simulation and
studying its outcome.

3.2 Theoretical predictions in pQCD

As outlined in Chapter 1, the basic equation to be solved is eq. 1.22, the convolution
of the matrix elements at some fixed order with the experimentally determined
proton PDF's. The integrals in eq. 1.22 are not solved exactly by computer programs,
but approximated by the normalized sum of N randomly generated ‘events’ in the
phase space:
|
o~ DL DL Fil&nr =Q)) (5, QF aslur = Q). pr = QF, nr = Q)

event j parton i

(3.1)
In the limit where N — oo, the sum approximates the exact solution. In practice, the
number of events generated (N), is determined by how well the particular computer
program converges to the final answer. In the program DISENT, for example, 10%
events were enough to make the statistical fluctuations negligible. In NLOJET++,
on the other hand, it was necessary to generate ~ 10 events to get a comparable
statistical uncertainty:.

The kr clustering algorithm can be applied to any set of four-momenta. In
particular, it has been applied to the partonic final states of each ‘event’ during
an ‘inclusive cross-section’ calculation in order to simultaneously obtain differen-
tial three or inclusive-jet cross-section predictions in terms of the kinematic or jet
variables.

In perturbative QQCD there are several elements of the calculations which are
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not set by the theory and must be provided by the user. The proton PDFs, or
the value of (M) are examples of experimentally determined ingredients to the
calculations. The renormalization and factorization scales are also not set by the
theory and must be chosen by the user to make the calculations possible. Here is a
list of choices made for the theoretical calculations:

e The calculations are performed in the MS renormalization and factorization
schemes using a generalized version [59] of the subtraction method [65];

e The number of flavours is set equal to five;
e The choice of factorization scale was chosen to be ur = Q;

e For the choice of renormalization scale calculations with different choices were
made; For the oy analysis the default was pug = E%f’fg, but cross checks were
made with ur = @, the default choice for the angular-correlations analysis;

e The ZEUS-S [24] parametrizations of the proton PDFs were used as default;

e The strong-coupling constant, calculated at two loops, was set always equal
to that of the proton PDFs; In the default case it was the same one used for
the ZEUS-S parametrizations, AM—S = 226 MeV, corresponding to ag(Myz) =
0.118.

The jet observables

The observables calculated for the oy analysis were inclusive-jet cross sections in
terms of E%'ftB and Q? with the jet radius choices of R=0.5, 0.7 and 1. For the angular-

correlations analysis, the observables calculated were three-jet cross sections in terms
jet
max?

The cross-sections were in both analyses calculated for the Q? > 125 GeV? region,

of O, cosass, cos frsw, and n normalized to the total three-jet cross section.

with all jets having an —2 < 75" < 1.5 and all events being in the | cosv,| < 0.65
region. Only jets with EﬂﬁtB > 8 GeV were considered for the inclusive-jet cross
sections. For the angular-correlations analysis only those events having at least
three jets with at least one of the jets having EJTCtB > 8 GeV and the other two

E%ﬁ% > 5 GeV were considered for the cross section calculations.
3.3 Sources of theoretical uncertainty in the cross-section
predictions

The previous section outlined the different inputs that the user must provide in
order to obtain pQCD predictions. The scales ur and pp are ‘arbitrary’ paramaters
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that are not given by the theory and need to be especified in a calculation. The
dependence of an observable on pug and prp can be used to estimate the uncer-
tainty in its prediction incurred by truncating the perturbative series at fixed order.
Naturally, the experimentally determined value of a,(My) and the proton PDFs
introduce an experimental uncertainty which propagates and also constitutes part
of the uncertainty in the theoretical predictions.

Theoretical uncertainty from that due to higher-order contributions

As mentioned, the theoretical calculations are not carried out to all orders in per-
turbative QCD. If ugr is chosen as the characteristic scale for the process, then
one expects that by constraining the calculations to higher scales the convergence
of the perturbative expansion will be improved. Recall the renormalization group
equation:

Z Qg MR . a'N(':Ev Q2> MR)] =0 (32)
dMR d,uR

Since the scale-dependence of o, converges to a given curve at higher orders, the
factors that multiply oY must compensate for a,(uz) in order to make eq. 3.2 true.
This cancellation does not happen term by term, but rather the dependence of the
N* term on pp is partially compensated by the i z-dependence of the (N + 1) term.
At fixed order, however, the ug-dependence of the predicted cross-section is used to
gauge the error margin incurred by having truncated the series. It is conventional
to vary ug by a factor of two up and down for this purpose. The resulting variation
in the prediction is taken as the uncertainty resulting from the lack of knowledge of
higher-order contributions. It should be noted that this is merely a convention, and
cannot be taken full-heartedly as the true error incurred by having truncated the
series at fixed order.

This uncertainty is minimized by restricting the calculations to high energy
scales, where the relatively weaker strength of a improves the convergence of the
perturbative series. This is one of the main reasons we found do/ dE%ffB and do /dQ?
at high Ejet and high Q? to be good jet observables for tests of pQCD. Figs. 3.1 and
3.2 show an estimate of the relative theoretical uncertainty for the predictions of
do/dQ?* and do/dE) ), coming from varying pg from pr = Eji/2 to pg = 2B,
The pg related uncertainty is below £7% at low Q2 and aslo at low EJj; and
decreases to less than £5% for Q% > 250 GeV? for R = 1. For smaller radii, the es-
timated uncertainty is smaller(higher) at low(high) Q* than for R = 1. For R = 1.2,
Fig. 3.1 shows how this uncertainty increases up £10% for Q? ~ 500 GeV?2.

Fig. 3.3 shows the relative pg-scale uncertainty for the inclusive-jet differential
cross sections with respect to EJ;}; for different regions of Q2. It is below +7% at
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low Q? and low EJ°}; and decreases to about £5% in the highest Q? region.

For the three-jet angular correlations analysis we are interested only in the shapes
of the distributions, therefore the normalized cross sections are used. Normalized
cross sections have the advantage that the correlated uncertainties in the numerator
and denominator partially cancel out. Fig. 3.4 shows the relative pg-scale uncer-
tainty for the normalized cross sections with respect to O, cos ass, oS Brsw, and

jet
max*

uncertainty is large, signaling that there could be large contributions from higher

The uncertainties are typically below 5%. In the lower cos sz region, the
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Figure 3.1: Estimate of the relative theoretical uncertainty in do/d@? from terms beyond
O(a?). The uncertainty is shown for different choices of the jet-radius. The uncertainty

gets large for R > 1.



54 Theoretical calculations and event generators

3] T T T T T
c L
-] Hg rel. unc. 1L g rel. unc.
< 01 | 1 F -
o
>
S
o O
01 F 1F -
R=1.0 1t R=0.7
1 " " 1 1k " 1 " " " L1
20 40
B (Gev)
&) I 4 I T.B
c
-] g rel. unc
T 01 [ =
o
R
S
o O
-01 =
R=0.5
" 1 " " a1 1
20 4
E ' (Gev
TB ( )

Figure 3.2: Estimate of the relative theoretical uncertainty in do/ dE%efB from terms beyond
O(a3).



3.3. Sources of theoretical uncertainty in the cross-section predictions 55

inclusive jets
b [ UL T \\‘ T “‘L,‘ UL ‘ UL L \L
= c T ]
8 o1 I .
g E T J ]
S of T / i
g o
Z -0. - . —
- 125 < Q< 250 Gev? 1 250 < Q? <500 Gev? :
-0.2;}1111}11H}HHME}HH}HH}HHME
01+ + .
o LTI TS
LU %LMM/ 7 B
01 ; T ]
F 500 < Q” < 1000 GeV? 1 1000<Q*<2000Gev® 1
-0.2 HHHHHH
0 i | | T PDF (CTEQE)
0 %7//7/” ///////////?M/ T
o1l S ]
F 2000<Q*<5000Gev®  F Q*>5000Gev? ]
-02 Clowva b b by Tl by by by

10 20 30 40 10 20 30 40
ETs (Gev)

Figure 3.3: Estimate of the relative theoretical uncertainty in da/dEgFftB for different
regions of @? from terms beyond O(a?). The ug-scale uncertainty is compared to the
uncertainty coming from that in the proton PDFs. In some regions the uncertainty from
the proton PDFs dominates the overall uncertainty. This signals that these measurements
can help constrain the PDFs when included in global QCD fits. These calculations are for
R=1.



56

Theoretical calculations and event generators

S
[
-]
5 02
@
&5
S
°© o
-0.2
0
-0.2

0.2

1 1
[ Q%>125Gev? i 7 ]
[ — — gusuasnd NI
I ) 7 T TS
-_ O(a2) rel. unc. dueto py _ .
" " " " 1 " " " " 1 " " " "
0 50 @H (deg)-l 0 COS(C(23) 1
1 1 ' 1 '
EmmmmmenmEREREE: '7777777:
WL W T
M M M 1 M M M M M M M 1 M M M 1 M
-1 0 cos(B,,) 1 0.25 njr:ax 15

Figure 3.4: Estimate of the relative theoretical uncertainty in the three-jet normalized

differential cross sections with respect to Op, cos 23, €08 Brsw, and Mg from terms

beyond O(a?). Note that in the low cos aas region the uncertainty is relatively large.



3.3. Sources of theoretical uncertainty in the cross-section predictions 57

Theoretical uncertainty from that of a,(My)

The value of as(My) is not given by the theory and has to be determined experimen-
tally. The world average for this value is currently determined with an uncertainty
of ~ 1% [66]. In order to estimate the uncertainty in the predictions due to that
in the value of a(Myz), the calculations were repeated for different ag(My) values.
The proton PDF parametrizations made with the corresponding a4(My) variants
were used.

For the default ZEUS-S case as(Mz) = 0.119 and the calculations were repeated
using ZEUS-STT with as(Mz) = 0.121 and ZEUS-S|| with ays(Mz) = 0.117. The
relative difference between the ‘up’ and ‘down’ calculations was taken as the uncer-
tainty from that in a,. The relative difference was then scaled to reflect the current
uncertainty in the world average of as(Mz) (£0.0010). Fig 3.5 and Fig. 3.6 show
the relative uncertainties for do/dQ?* and do/ dEgpf%, which in all cases were below
2%. Fig 3.7 shows the relative uncertainties for the angular-correlation variables.
In this case they are almost an order of magnitude smaller than for the inclusive-jet
analysis, since the correlated uncertainties partially cancel out in the normalized

cross section.
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Theoretical uncertainty from that in the proton PDF's

The uncertainty in the prediction of any observable due to those in the proton PDFs
can be obtained in a systematic way using the Hessian method [67, 68]. In order to
allow users to apply this method a ‘set of PDF sets’ which characterizes the variance
from each of the parameters used in the global QCD fit has to be provided. This
set is obtained by the collaborations that make the QCD global fits in the following
way:

e In the Hessian method the x? used to determine the best fit of the PDFs is
expanded quadratically about its global minimum;

e The Hessian matrix, the matrix of second derivatives of the x? involved in
the expansion, is diagonalized to obtain a set of orthonormal eigenvectors that
span the parameter-space;

e With this basis the relevant neighborhood around the global minimum, used
to estimate the uncertainty in parameters of the fit, corresponds to the interior
of a hypersphere of radius T, where T is a ‘tolerance’ parameter;

e The variations of each parameter along the eigenvector direction about the
global minimum of the x? are used to define an ‘eigen set’ of PDF sets which
serves as a general ‘PDF sets’ basis; This basis can be used to estimate uncer-
tainties of observables coming from those in the parametrization in the proton
PDFs;

e To find the uncertainty all that is needed is to calculate the observable 2 x N
times, where N is the number of parameters in the PDF parameter space, and
then apply the following general formula:

n

1
2 _ + —\12
(OV)" =7 ;[V(ai ) = Via; )] (3.3)
e Eq. 3.3 is the sum of the squared differences between an observable, such as a

cross section, calculated using the PDF eigenset corresponding to the positive
+

variation of a parameter (a;

7), and the same observable calculated using the

PDF eigenset corresponding to the negative variation (a; ).

Eq. 3.3 takes into account the uncertainty in theoretical calculations of an observable
due to that in each of the parameters of the parametrization of the PDF sets.
The statistical restrictions on the tolerance T, the radius around the minimum
about which the y? is allowed to vary, must be relaxed in order to account for
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Relative Uncentainty on O(asz) Predictions due to PDFs
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Figure 3.8: The relative uncertainty in the inclusive-jet cross sections due to those in the

PDF parametrizations.

inconsistencies in the data sets that are being fitted. At the end, the general eq. 3.3
will yield an error for an observable that is o< T.

Fig. 3.8 shows the uncertainties in the inclusive-jet cross-section predictions due
to those in the proton PDFs. These uncertainties where obtained by carrying out the
calculations for every set of the ‘eigen PDF sets’ and then applying eq. 3.3. For the
CTEQ PDFs the tolerance parameter was set to 7' = /100 [69], and the resulting
uncertainties are larger than those of the MRST Collaboration, who used T = V50
[67]. In comparison to these, the ZEUS-S global fit has the advantage of using
input data sets for the fits whose uncertainties are under control, making a rigorous
statistical treatment possible. We found that the uncertainties in the MRST sets
were comparable to that of the ZEUS-S sets. For this reason, the ZEUS-S sets were
the ones used for the published results.
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Figure 3.9: The relative contribution of gluon-induced events (BGF) to the inclusive-jet
cross section. The hatched area represents the uncertainty in the calculations due to that
in the proton PDFs (CTEQG6). The gluon fraction increases and becomes dominant at
lower Q2.

Returning to Fig. 3.3, we found that the uncertainties due to the PDF's are the
dominant uncertainties in some regions of the phase space, including the low ?
regions, where the contribution from gluon-induced events becomes large. This is
interpreted as a signature that measurements of inclusive-jet cross sections, which
also have a small overall experimental uncertainty, can help constrain the gluon PDF
when included in a global QCD fit. Furthermore, Fig. 3.9 shows that the fraction of
the events that correspond to gluon-induced events (BGF) is important, especially

in the lower Q% region, evidencing the sensitivity of this type of measurements to
the gluon PDF.

Fig. 3.10 shows the relative uncertainties in the angular correlation normalized
cross sections due to the PDFs. Due to the normalization they are in general much
smaller than for the do/ dErﬁB or do/dQ?* predictions and in most cases negligible.
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Figure 3.10: Estimate of the relative theoretical uncertainty in the three-jet normalized
differential cross sections with respect to O, cos aog, cos Bisw, and nﬁffm from that in the
proton PDFs.

Theoretical uncertainty from the choice of factorization scale up

The dependence of the cross sections on pp is smaller than in the other parameters
considered so far because in the DGLAP equations 1.21 the PDFs do not evolve
as steeply with Q? as «, does in the phase-space region of interest. As we will
show in the next chapter (see Fig. 4.19), the x region covered by our data samples
is 0.004 < = < 0.3, which we know from Fig. 1.13 corresponds to a region where
the variation of F, with ? is small. In these analyses pr has been varied from
urp = Q/2 to prp = 2 X @ to estimate the uncertainty in the predictions due to the
choice of the factorization scale. Since the dependence of F, with Q% is rather flat
for our phase-space region this uncertainty was found to be negligible in comparison
to the other theoretical uncertainties and is not shown for that reason.
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3.4 Sensitivity of the angular-correlation variables to the

underlying symmetry

We showed in eq. 1.28 that the three-jet cross-section in NC DIS can be expressed
as a sum of the color factors times sub-process matrix elements

Oep—3jets = CFCF oA+ CFCA -op + CFTF 00+ TFCA - 0p, (34)

where both op and op contain contributions from the triple-gluon vertex (TGV)
characteristic of QCD. The aim of this analysis is to study how the underlying
symmetry of the theory is reflected in angular correlations among the jets in three-
jet events. In particular, we would like to find sensitivity independently of other
sources of ‘color sensitivity’, such as as(ug) or the PDF evolution. One way to gain
independence from these other sources is to use the normalized cross sections:

i Ca . i Tr | i Tp Ca . i
Ca Tk o, Oate, 0t 0ct ey 9D
UN,i(C ?C ): - N Cax Tg (35)
r bpo 0T > 0i(cd &E) - Ay

where o; represents the differential cross-section integrated over bin i, the Ax; is the
bin-width of bin ¢ and o7 is the differential cross-section integrated over the whole
phase-space. Normalizing the cross sections has several advantages:

e The dependence on the absolute value of the cross-section is lost, leaving only
the shapes of the angular correlations, which is the object of interest;

e Apart from that in «y, other correlated dependencies between the numerator
and denominator cancel out to a large extent, such as those from the PDF's;

e The correlated theoretical and experimental uncertainties also cancel out to
a large extent. We have already shown that the theoretical uncertainties are
greatly reduced in some regions;

e From eq. 3.4 we see that the color dependence has been reduced to that on the

Ca

two color-factor ratios o

and g—?

The sensitivity of the angular-correlation variables is reflected in how distinct
the individual sub-process normalized cross-sections are with respect to each other.
A very distinct shape for og or op is desirable since these sub-process cross sections
contain the TGV. The sensitivity to a particular vertex will depend on both the
characteristics of the individual sub-process shapes as well as on their overall con-
tribution to the cross section, i.e a small contribution is still difficult to spot even if
it has a distinct shape.
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Figure 3.11: The different sub-process normalized cross-sections are shown for the variables
O, cos g3, COS Prgy, and nﬁfﬁx In the O, cos g, cosfrs, cases the shape is very
distinct for the o which contains the TGV. For the variable nﬁ,féx the most distinguishable
shape is that of op, which also contains the TGV. The calculations where done at O(a?)
using the program NLOJET++.

Fig. 3.11 shows the theoretical predictions at O(a?) obtained using the program
NLOJET++. The figure shows that the shape of g, which contains the TGV, is
very distinct from the rest in the variables ©g, cos aas, cos frsw. The shape of op,

jet

which is also sensitive to the presence of the TGV, is distinguishable in the 7/

variable. The four angular-correlation variables shown here are the most sensitive
found after an exhaustive scan of these types of variables for three-jet configurations
in ep NC scattering.

In order to make these predictions possible, in DISENT the color components
in the calculations were identified and disentangled, so as to compute the different
contributions. In NLOJET++ this approach proved impossible, since some of the
color factors are wired into the calculations in an irretrieveable way. Nevertheless it
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is possible to carry out NLOJET++ calculations with different SU(N) groups. This
was done, as discussed in more detail in Chapter 7, with enough choices of SU(N)
to solve eq. 3.5, with the sub-process cross sections left as unknowns. In this way
the cross-section predictions were obtained at O(a?) using NLOJET++. At O(a?)
eq. 3.5 must be modified as more color configurations come into play, making the
identification of the color factors a more challenging task which has not yet been
carried out.

In eq. 3.5 we saw how the cross-section prediction can be resolved into its dif-
ferent color components. The information about the underlying symmetry group is
contained in the color factors. The sub-process normalized cross sections are inde-
pendent of the symmetry group and are general for a range of gauge theories with
other invariances. There is, however, a residual dependence on the color factors
through the running of o, and the PDF evolution, as we will discuss later.

From eq. 3.5 it is clear how to obtain the predictions for other group invariances-
simply replace the color factors of SU(3) with those of any other group. The
symmetry groups considered for this analysis are: SU(3), SO(3), SUN— o0),
U(1)®@U(1)®@U(1), and Cp = 0. The choice of Cr = 0 does not actually corre-
spond to any group and is used as an extreme choice.

Fig. 3.12 shows the normalized cross-section predictions using NLOJET++ at
O(a2) for the variables O, cos aas, €08 Fgsw, and 7ct, for different underlying sym-
metry group assumptions. The bottom plots show the relative difference between an
alternate group prediction and the QCD prediction. As can be seen in the plots, the
angular-correlation variables are sensitive to the color factors. For all the variables
the choice C'r = 0 deviates dramatically from SU(3). The variable /¢ can be used
to distinguish SU(N— o00), while U(1)®@U(1)®U(1) gives a different prediction to
jet

SU(3) most noticeably in the variables ©y, cos [isw, and 7

The question arises as to why the variables do not show the same dramatic dis-
cernability between non-Abelian QCD and the Abelian choice of U(1)@U(1)®@U(1)
as for the LEP analyses in ee™ data. The reason lies on the particular characteris-
tics of HERA physics. Take the © g variable as an example. This variable, as is the
case in ete™, is designed to distinguish between different contributions from the op
and o¢ types of diagrams, which contain ¢ — gg and g — ¢q vertices, respectively.
The predicted relative sub-process contributions at HERA are o4 : 23%, op : 13%,
oc : 39%, op : 25%. Thus, although the op contribution has a distinct shape, the
sensitivity to this vertex is suppressed by the small relative contribution of og. The
other sub-process cross-section with a TGV is op : 25%, but the TGV appears in
the initial state as a result of the gluon content of the proton, and the correlation is

somewhat smeared.
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Figure 3.12: The normalized cross-section predictions using NLOJET++ at O(a?) are
shown for the variables ©p, cos aog, cos Bisw, and nﬁfféz for different underlying symmetry
group assumptions. The bottom plots show the relative difference between the al alternate
group prediction and the QCD prediction. The angular-correlation variables are sensitive

to the color factors.

3.4.1 Additional sources of color dependence in the theoretical predic-
tions

We have shown that the theoretical predictions involve both the evolution of the
coupling and of the proton PDF's with the energy scale. The equations that govern
these evolutions are determined by the color factors of SU(3) and can introduce a
‘color bias’ in the predictions. If all the bin regions for a given angular-correlation
variable have the same distribution of )2, then there is complete cancellation of the
Q? dependence. If the bins have different Q2 distributions, then the Q* dependence
is not totally correlated in the numerator and denominator and will does not cancel
completely. In this case a dependence on the evolution of as(ug) or the proton
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PDFs would still be observed. Since the PDF evolution is rather flat with Q? for
our phase-space region, this dependence is expected to be suppressed relative to that
in as(pg).

The distributions in Q? for every bin of Oy, cosass, oS Brew, and ni¢

s Were

calculated using the MEPS MC event generator discussed in Section 3.5. They are
shown in Figs. 3.13 through 3.16. These figures revealed that the variable /¢ has
a bin-dependent Q? distribution. Therefore, the dependence of the cross-section on
the energy scale ugr or pup does not cancel neatly in the normalized cross-sections

for /¢ despite the normalization.
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Figure 3.13: The distribution in Q2 for each bin in O as predicted by the LEPTO MC.

The dependence of the cross-section predictions on the evolution of a(ug) and
the PDF's was studied by fixing their scale dependence in the calculations. For exam-
ple, fixing pp fixes a(pug) to a single value. The dependence of the normalized cross-
sections on the running is then estimated by comparing the ‘fixed pug’ calculation to
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Figure 3.14: The distribution in Q2 for each bin in cos aps as predicted by the LEPTO
MC.

the default one. For the case of the PDFs, up was fixed. The constant value chosen
for p% and p% was the average Q? in the data < Q? >. Fig. 3.17 shows the relative

difference between the O(a?) predictions for O, cos gz, €os Brew, and 77 done

with pug = \/<6272> = /982 GeV and the default ones where up = Q. The same
figure shows a similar comparison for the calculations done with pup = \/<6272> :
A couple of things become clear from these figures. The angular variables are much
more sensitive to the running of a, than to the PDF evolution. In fact, this test
shows that any residual dependence on the color factors used for the PDF evolution
can be safely neglected for the normalized cross sections. As expected from the

distributions in @2, the variable /¢ shows the biggest sensitivity to the running

jet

Jet  region, the relative difference increases to ~ 40%.

of a,. In the lower n

Lets look at Fig. 3.18, which is very similar to Fig. 3.17 except that now the
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Figure 3.15: The distribution in Q? for each bin in cos B, as predicted by the LEPTO
MC.

calculations are done to O(a?) instead of LO. The dependence of the predictions
on the PDF evolution is still small, while the dependence with the running of «y is
substantially reduced. This can be understood by considering that the running of
a, at N order is partially compensated by the matrix elements at (N + 1) order.
At O(a?) we have:

o(x,Q% nr) = o (ur) - 02(, Q%) + o(pr) - 3(2, Q°, i) (3.6)

where the dependence of the first term on ug is partially compensated by the second
term.

In summary, we found that the PDF evolution does not introduce a bias, while
the evolution of «a; introduces an additional sensitivity to the color factors in some
phase-space regions for those angular variables where the cancellation is not com-
plete. We also found that going to a higher-order calculation rids the angular vari-
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Figure 3.16: The distribution in Q)? for each bin in njnfém as predicted by the LEPTO MC.

The different njnfém bins populate different regions of @2, leading to a more noticeable effect

of as(pur) and PDF evolution on the normalized cross sections.

ables of this residual sensitivity on the color factors from «s(ug). Moreover, one

could simply exclude some regions in the angular variables in order to supress such

a dependence in a fit to the color factors.
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3.4.2 A restricted phase-space region for the study of the angular-correlation
variables

Another way to rid the predictions from the ‘color bias’ introduced by the running
of az or the PDF evolution is simply to restrict the phase-space such that o, and the
PDF's have no leaway to evolve. This approach is complementary to going to higher
orders and has also been carried out in this analysis. The phase-space region to
which the cross-sections are constrained is not arbitrary. If we consider that the n/¢
distribution in ? has the most dramatic impact in terms of making this variable
sensitive to the running of ay, then it makes sense to use this distribution, shown in
Fig. 3.16, to determine the new restricted phase-space. From Fig. 3.16 we see that
if the Q% region is constrained to 500 < Q? < 5000 GeV? then the loss in statistics
is minimized while the distributions in Q? are fairly similar within this restricted
region. Fig. 3.19 shows the resulting dependence on the running of a,; and the PDF
evolution at LO. As expected, the dependence is substantially reduced by restricting
the phase-space to this region. Fig. 3.20 shows the dependencies for the restricted
region in Q? at NLO. As we can see, going to O(a?) and simultaneously restricting
the phase-space region minimizes any residual dependence of the distributions on
the running of as.

Finally, it was verified that the angular-correlation variables still showed sensi-
tivity to the underlying symmetry in the new phase-space region. This was done as
before, by looking at the distributions of the sub-process normalized cross-sections
in a symmetry group independent way. The results are shown in Fig. 3.22, where it
can be seen that the variables have not lost sensitivity to the underlying symmetry.
Figs. 3.23 through 3.25 show the theoretical uncertainties due to those in higher or-
ders (ug), as(Mz) and the PDFs, respectively, at O(a?) using NLOJET++. They
are similar to those for the wider phase-space region Q% > 125 GeV?2.
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to 500 < @2 < 5000 GeV?2. The dependence of the predictions on the running of a (i)

is substantially reduced.
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difference with pup = \/<6272> is also shown. The phase-space region has been restricted
to 500 < @2 < 5000 GeV 2. The dependence of the predictions on ay(ug) is substantially

reduced.
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Figure 3.21: The different sub-process normalized cross-sections are shown for the variables
O, cos aog, €OS Og, and nﬁ,féx for the restricted region 500 < Q% < 5000 GeV?2. In the O,
cos aog and cos [, cases the shape is very distinct for the op, which contains the TGV.
For the variable nﬁ,féx the most distinguishable shape is that of op, which also contains
the TGV. The calculations where done at O(a?) using the program NLOJET++.
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Figure 3.22: The normalized cross-section predictions using NLOJET++ at O(a?) are
shown for the variables O, cos aas, cos (ks and nﬁ,féx for different underlying symmetry
group assumptions for the restricted region 500 < Q2 < 5000 GeV?2. The bottom plots
show the relative difference between an alternate group prediction and the QCD prediction.

The angular-correlation variables are sensitive to the color factors.
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3.4.3 O(a?) vs O(a?) theoretical predictions for the three-jet angular-

correlations analysis

The effect of including an additional order for the calculations in the angular-
correlations analysis has been studied. We will see in subsequent chapters how
the O(a?) and O(a?) calculations compare to the data. Here a simple compari-
son between the O(a?) and the O(a?) is shown, along with the total theoretical
uncertainty for the calculations shown as a band. Note that the total theoretical
uncertainty also includes that due to the modelling of the parton cascade, discussed
later in this chapter. Fig. 3.26 (Fig. 3.27) show the normalized cross-section predic-
tions using NLOJET++ at O(a?) and O(a?) for the variables O, cos aa3, oS Brsw,
and 77 in the region Q% > 125 GeV? (500 < @Q* < 5000 GeV?). The bottom plots
show the relative difference between the O(a?) and O(a?) predictions with the band
being the total uncertainty in the O(a?) predictions. As we can see, the theoretical
uncertainties, which have a large contribution from the pg-related uncertainty, are
large where the O(a?) and O(a?) differ most, as one would expect.
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Figure 3.26: The normalized cross-section predictions using NLOJET++ at O(a?) and
O(ag’) are shown for the variables ©p, cosasg, cos fBrs, and nﬁ,féx in the region Q% >

125 GeVZ2. The bottom plots show the relative difference between the O(a?) and O(a?)
predictions with the band being the total uncertainty in the O(a?) predictions.
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Figure 3.27: The normalized cross-section predictions using NLOJET++ at O(a?) and
O(a?) are shown for the variables O, cos a3, cos ey and n%féa; in the region 500 <

Q? < 5000 GeV? GeV2. The bottom plots show the relative difference between the O(a?)
and O(a?) predictions with the band being the total uncertainty in the O(a?) predictions.
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3.5 Monte Carlo event generators

The definition of a jet observable allows one to compare the hard scattering predic-
tions with the hadronic distributions measured in detectors. It is however necessary
to model the hadronization of outgoing partons in order to improve this comparison.
The modelling of the hadronization has another advantage. It can be interfaced with
a simulation of the detector, giving an essential tool to understand the data better.
In fact, modelling the physics and the experimental setup has a deeper significance,
since on the one hand encapsulates our present knowledge of the physics, and on
the other it allows us to learn from the experiment by comparisons to the data. The
uses of event generators in the context of jet analyses are:

e To study the reconstruction of the jet observables as shown in Chapter 4. There
we will see studies of the resolution and possible bias of the detector on the
observables;

e To understand other reconstruction issues related to the geometry of the detec-
tor as seen in different reference frames; in particular, a study of the appropriate
cos vy region to be used for jet analyses in the Breit frame is shown in Chapter
4;

e To study the purity and efficiency of the sample selection, as shown in Chapter
5;

e To obtain correction factors, such as hadronization or electroweak effects, to
be applied to the pQCD calculations in order to improve the comparison with
the data, as shown in Chapter 5;

e To estimate the sources of systematic uncertainties in the measurements, as
shown in Chapter 5.

The usefulness of this tool relies on how well the simulation is able to describe
the data distributions. In the next chapter comparisons of the distributions of the
MC simulation to those of the data sample are amply shown. The remainder of this
chapter is devoted to laying out the basic components of event generators in DIS.

The ideal would be to be able to reproduce the distributions in the data di-
rectly from first QFT principles and interface this with the detector simulation.
The hadronization process, however, takes place at an energy scale where perturba-
tive QCD is no longer applicable and one must resort to phenomenological models
to simulate soft processes. The Lund String Model [63] is one such example. It
can be supplemented directly to the pQCD fixed-order calculations, but in this case
the resulting jets would be narrower than those observed in data. The situation is
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substantially improved when fixed-order pQCD is supplemented with higher-order
resummed contributions. This approach can be pictured as a parton cascade pro-
duced by the interacting partons. They give a more realistic partonic state with
which the subsequent hadronization can produce more realistic jets. The basic ele-
ments of a MC event generator are outlined below, using Fig. 3.28 as a reference:
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g —
.:\

D W, B —

Figure 3.28: Schematic representation of a Monte Carlo event generator. The matrix
elements are supplemented by an initial and final-state parton shower before hadronization.

The final hadrons can then be interfaced with a detector simulation.

e Complete pQCD calculations : The starting point of the MC simulation
is the generation of the partonic distributions for the variables and processes
of interest. They are generated using complete pQCD calculations at a given
order in perturbation theory. For the MC event generators currently available
at HERA, these calculations are only done at O(ay).

e QED and QCD radiation (Parton cascade) : With the partonic distri-
butions in hand, it is still possible to evolve the system further through pQCD.
In the Parton Shower Model the scattered colored partons emit (branch into)
more partons, who can again branch. Thus, these radiative contributions can
be pictured as a parton cascade. The branchings follow DGLAP evolution. In
the Color-Dipole Model the radiation is viewed as coming from the two col-
ored antennae formed by the the struck parton and the proton remnant. QED
radiation is also simulated and can have interesting effects in the final-state,
but it does not participate in the hadronization process. The snapshot of the
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MC-generated final-state partons after the parton cascade is defined as the
‘MC parton level’.

e Hadronization : The MC parton level provides a well-suited input for the
hadronization. A hadronization model is then applied and the partonic level
is evolved by a soft process into colorless hadrons, the ‘MC hadron level’. It
is important to note that the hadronization model does not alter the global
properties of the jets, which have already been determined by more energetic
processes in the hard scattering and parton cascade.

e Remnant A DIS event contains a characterisctic ‘proton remnant’ in the
forward region composed of the ‘spectator partons’ that have not taken part
in the hard interaction. If the scattered parton is colored, so will the remnant
system. The color connection with the remnant also has to be simulated and
can have a detectable effect on the hadronization process.

e Detector simulation : Once the hadronization level is obtained, the event
simulation is complete and can be submitted to a detector and trigger simu-
lation programs, which output the events in the same format as the data and
can be directly compared to it.

3.5.1 The parton cascade

The pure matrix element approach to the parton cascade has some problems, not
the least of which is that the amount of work associated increases factorially with
each order. The available MC programs for jet production in NC DIS only contain
complete pQCD calculations to O(«s). Moreover, there are certain enhanced higher-
order contributions which cannot be ignored if one wants to obtain reasonable jets
from an O(as)-based calculation. One solution is to supplement the fixed-order
calculations with the enhanced part of higher-order contributions summed to all
orders, leading to the parton cascade picture already mentioned. The two models
available for its implementation are described below.

The matrix element plus parton shower (MEPS) approach

The Parton Shower Model (PS) [62] supplements the fixed-order calculations with
multiple branchings. This can be pictured as in Fig. 3.29, where the parton cascade
is taken into account for both the initial and final-state hard-interacting partons. In
the final state the evolving partons are time-like, and the shower moves to smaller
scales with each branching, until a cut-off scale is reached beyond which pQCD is
no longer applicable and the shower is stopped (~ 1GeV). In the initial state an
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Figure 3.29: Schematic representation of the Parton Shower Model, in which initial and

final-state small-angle radiation is resummed to all orders.

incoming quark from the proton, initially with a virtual mass-squared —mg and
carrying a fraction xg of the proton’s momentum, evolves to more virtual masses
and lower momentum fractions with successive small-angle emissions. Eventually
it participates in a hard-scattering process at a scale @Q?. In order to make the
computation more efficient for the initial-state parton cascade, the PS is evolved
backwards in time starting from the scale Q%. This avoids evolving forward to

unuseful virtualities.

The color-dipole model (CDM)

Figure 3.30: Schematic representation of the Color-Dipole Model, in which the parton
cascade stems from the radiation of a dipole system. In DIS, the dipole is formed between

the struck parton and the proton remnant.

In the color-dipole model [61] the cascade is not separated into initial and final-
state emissions. Rather, the outgoing quark is viewed as forming part of a dipole
system with the proton renmant. The emission of a gluon can be treated as radiation
from this color dipole, and to a good approximation the emission of a second, softer
gluon can be treated as radiation from two independent dipoles, one between the
q and g and one between the g and ¢. In the CDM, this is generalized so that the
emission of a third, still softer, gluon is given by three independent dipoles, and so
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on (see Fig.3.30). This model was originally implemented for e™e~ where the picture
was two radiating color anteannae formed by the outgoing quarks. The model has
to be modified for DIS since the proton remnant has a transverse size. Moreover,
this model only takes into account the possibility of QCD Compton-like events.
The contribution of BGF-like processes is taken into account by implementing a
procedure to correct for the first emission of the cascade.

3.5.2 Hadronization models

So far we have discussed the calculation of the matrix elements and the higher-
order parton-cascade approach. Both of these processes can be calculated using
perturbative QCD down to a soft scale beyond which it is no longer applicable. Since
perturbative calculations are not possible, we are forced to rely on phenomenological
models to complete the hadronization of the outgoing partons. This is necessary in
the context of understanding and correcting the data for possible biases introduced
by the experimental setup. Moreover, modelling the hadronization is important in
terms of improving the comparison between the predictions and the data. There are
two models available to implement the hadronization, the Lund String Model and
the Cluster Fragmentation Model. They are briefly discussed here.

The Lund String Model

In this model the color field between the partons at the end of the parton shower
is represented as a one-dimensional massless relativistic string. The string has a ¢
or q at each end, as shown in Fig. 3.31. It acts as a confining potential roughly
linear with its length. Gluons are represented as momentum-carrying ‘kinks’ in the
string. As quarks move apart the string gains length and energy which leads to
fragmentation of the string through the appearance of new ¢g pairs. The string is
fragmented iteratively according to the recipe:

2

£() ~ 1 = 2)eap(—b"L) (37

where z is the fraction of the quantity E + p of the parent string piece taken by
its daughter, mp = \/]m, ‘transverse’ and ‘longitudinal’ refer to the string
axis, and a and b are parameters. Momentum transverse to the string axis, pr,
is introduced in an ad hoc fashion using a Gaussian probability distribution. A
large number of additional parameters is used to fine-tune the relative production
of particles such as strange, pseudoscalar, and vector mesons.

For the jet analysis, the important part of the hadronization process is that its
effect is mostly to ‘smear’ the energy already configured into a jet by the parton
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Figure 3.31: Schematic representation of the Lund String Model, in which quarks separate
forming strings whose tension is roughly linear with its length until ¢¢ pairs from the

vacuum break them into new sets of strings.

cascade. The jet radius discussed in Chapter 1 plays an important role here, since
the more this paramater is reduced (as we will see), the more that jet production
becomes sensitive to the ‘smearing’ effect of the hadronization.

The Cluster Fragmentation Model

The Cluster Fragmentation Model has been used in previous similar jet analyses in
order to cross-check the corrections obtained with the Lund String Model approach.
This model is implemented in the HERWIG [64] MC event generator. The analysis
presented here relied on this previous check with HERWIG. In HERWIG, at the end
of the parton cascade pairs of partons are associated into colorless clusters as shown
in Fig. 3.32. These clusters then undergo phase-space decay to produce stable pions,
kaons, and baryons. Clusters with mass larger than a parameter M, are split into
two before the phase-space decay. Additional parameters control the properties of
heavy hadron decay.
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Figure 3.32: Schematic representation of the Cluster Fragmentation Model.

3.6 Detector Simulation

The final-state particles of each MC-generated event are processed through a ZEUS-
detector simulation program which is based on GEANT 3.13 [70]. The GEANT
program includes the response of the detector components and the interaction of
particles in dead material. The generated events are passed through the detector
simulation, subjected to the same trigger requirements as the data, and processed
by the same reconstruction and offline programs. The output of the MC generators,
after the detector simulation, is referred to as the ‘detector level’. It is in the same
format as the actual ZEUS data.

3.6.1 The LEPTO Monte Carlo generator

Since the angular correlations three-jet in NC DIS in the Breit frame sample is a
sub-sample of the one used for the o, analysis, the MC samples generated for these
analyses were the same ones. From these, particular sub-samples were then selected
for each analysis.

There are several event generators available for jet production in NC DIS at
HERA. The LEPTO program [62] is the one used for the jet analyses presented
here. The hard-scattering calculations are based on the leading-order electroweak
cross section for the underlying parton level scattering and include QCD corrections
using exact matrix elements. The PDFs are provided using the standard library
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PDFLIB, which contains the information for most parametrizations of the proton
densities.

LEPTO does not provide electroweak corrections. The HERACLES [71] pro-
gram calculates first-order electroweak corrections and is interfaced to LEPTO via
a program called DJANGOH [72].

After the hard scattering process has been calculated, there are two options for
the parton shower, corresponding to the two models discussed previously. In LEPTO
one can select to do the calculations using the ‘Matrix Elements Plus Parton Shower’
(MEPS) option or the Color-Dipole Model (ARIADNE-CDM) option [61]. Although
in both cases the calculations are done by LEPTO, the sample generated by using the
MEPS option is referred to sometimes as a ‘LEPTO MC sample’, while the sample
generated using the CDM option is referred to as an ‘ARIADNE MC sample’. Once
the parton radiation is completed, the hadronization is performed with the Lund
Model as implemented in JETSET [73-75]. After the fragmentation process, the
final-state hadrons are provided and the simulated event can be used or fed into the
detector simulation for further studies.

3.6.2 Technical details of the samples generated for the angular corre-
lations and «; analyses

Several MC samples were generated to determine the response of the detector to
jets of hadrons and the correction factors necessary to correct the cross-sections
for purity and efficiency. These samples were generated with at least five times
the luminosity in the data to avoid statistical uncertainties. The generated events
were passed through the GEANT 3.13-based ZEUS detector and trigger-simulation
programs. They were reconstructed and analysed by the same program chain as for
the data.

Neutral current DIS events including radiative effects were simulated using HER-
ACLES 4.6.1 program with the DJANGOH 1.1 interface to the hadronization pro-
grams. HERACLES includes corrections for initial and final-state radiation, vertex
and propagator terms, and two-boson exchange. The QCD cascade is simulated us-
ing the color-dipole model (CDM) including the leading-order (LO) QCD diagrams
as implemented in ARTADNE 4.08. The CTEQ5D proton PDFs were used for these
simulations. Fragmentation into hadrons is performed using the Lund string model
as implemented in JETSET. The jet search was performed on the MC events using
the energy measured in the CAL cells in the same way as for the data.
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3.7 Comparisons of the MC parton level with DISENT and
NLOJET++

One of the things for which MC simulations are used is to study the effects of
the hadronization on the final-state partons of pQCD. This translates to obtaining
‘hadronization correction’ factors to be applied to the theoretical calculations in
order to improve the comparison with the data.

It can be argued that the legitimacy of this procedure is compromised if the
parton level of the MC, which includes the parton cascade, does not compare well
to the calculations which it aims to correct for hadronization. Moreover, a focus of
concern in the ay analysis could be the following. If a MC is used that contains an
assumed value of ayz(My) in order to obtain correction factors, then a bias could
be introduced on the O(a?) prediction used to parametrize the dependence of the
theory on the assumed value of a,(My) in order to extract as(My). This bias will
be very small since, as shown in Chapter 5, the hadronization correction factor is a
fraction of two quantities that depend on the value as(Myz), and thus the dependence
cancels out to a large extent.

Fig. 3.33 shows a comparison of do/dEj; and do/dQ* at O(a?) using the pro-
gram DISENT, with the MC parton level obtained using the MEPS and CDM parton
cascades. Both the MEPS and CDM options of LEPTO provide a fair description of
the higher-order contribution for these observables. For this reason the hadroniza-
tion corrections have been implemented to the O(a?) predictions using the average
of the values obtained with MEPS and CDM.

Fig. 3.34 shows a comparison of do'/dE4}; for different bins of Q? at O(a?) using
DISENT with the MC parton level using CDM. Although only the CDM option is
shown, both the MEPS and CDM options of LEPTO provide a reasonable descrip-
tion of the higher-order contribution for these observables. Again the hadronization
corrections have been implemented to the O(a?) predictions using the average of
the values obtained with MEPS and CDM.

It is interesting to test how well the angular-correlations are reproduced by the
parton cascade, where the O(ag) matrix elements in the MC models contain only
BGF and QCD Compton, and thus no events with three jets in the Breit frame.
The third jet in three-jet events in the MC is a result solely of the cascade. Since
the branchings are those of pQCD there should be a fair simulation of the angular
correlation distributions, except for the case in wich the third jet is emitted at large
angles.

Fig. 3.35 shows a comparison of the O(a?) and O(a?) predictions using NLO-
JET++ and the MC predictions at parton level with different underlying parton
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Figure 3.33: Comparison of the O(a?) predictions using DISENT and the MC predictions
at parton level with the CDM and MEPS parton cascade models.

cascade models. The distributions are shown for O, cos aws, cos Bisw, and /¢ for
the region of Q? > 125 GeV?2. The MC model with the MEPS parton cascade gener-
ally reproduces better the NLOJET++4 predictions. The hadronization corrections
were obtained using MEPS alone. The MC model with the CDM cascade was used
as a systematic cross-check. Fig. 3.36 shows the same comparison for the restricted
region of 500 < Q2 < 5000 GeV? with similar conclusions.
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Figure 3.34: Comparison of the O(a?) predictions using DISENT and the MC predictions
at parton level with the CDM parton cascade model.
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3.7.1 Theoretical uncertainties due to the parton cascade and hadroniza-
tion models

The modelling of the parton cascade and the hadronization introduces a model de-
pendence in the predictions. The theoretical uncertainty on the hadronization model
has been estimated in previous analyses by comparing the predictions obtained us-
ing CDM with those of HERWIG and have been found to be small. This is expected
since the hadronization does not have a large effect on the global properties of the
jet. The parton cascade takes place at a larger energy scale and is expected to have
a larger impact on the jet variables.

Fig. 3.37 and Fig. 3.38 show the estimated uncertainty due to this model depen-
dence in the inclusive-jet cross sections. To correct the O(a?) cross sections in this
case, the average of MEPS and CDM was used and the uncertainty was calculated
as half the difference between the predictions. As can be seen in the plots, these
uncertainties are always below 5% for this analysis. For the angular-correlations
analysis, the corrections obtained using MEPS were used. Figs. 3.39 and 3.40 show
the relative theoretical uncertainties on the modelling of the parton cascade for the
angular-correlation normalized cross sections. While in general we find that these

jet

uncertainties are small, in some regions they are dominant, such as the lower 1<

region. In a rigorous fit, it would be desirable to exclude the lower n/¢  region for

this reason.
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Chapter 4

Event selection and variable

reconstruction

4.1 Introduction

This chapter contains a description of the NC DIS data samples used for the jet
analyses. The events included in each jet-data sample are selected using a trig-
ger system which was designed for this type of analyses. The three characteristic
properties an event must have in order to be included in the sample are:

e Balanced transverse momentum,;
e The presence of a scattered electron;

e The presence of at least one high E{Fe% jet.

The main detector component used for the selection is the UCAL. UCAL cell energy
deposits are taken as the ‘particle’ four-momenta fed into the jet reconstruction and
electron finder algorithms. The CTD also plays an important role in terms of track
and vertex reconstruction.

There are several known backgrounds to the selection of a NC DIS sample: photo-
production events (PHP), charged-current (CC) DIS events, beam-gas related events
and cosmic rays. In order to remove these backgrounds carefully designed ‘cleaning
cuts’ are applied in the selection. The same cuts are applied to the MC simulation.

Jet analyses naturally require that especial attention be paid to the proper re-
construction of jets, for which:

e The detector resolution of the jet variables E%f’%, nist and @' has to be known
and any alteration to these variables introduced by the detector needs to be
corrected for;



104 Event selection and variable reconstruction

e The energy scale of the jets has to be known and needs to be well simulated
by the MC;

e The regions of the UCAL where the reconstruction of the jets is not sufficiently
good have to be identified and excluded in the selection (both in the laboratory
and in the Breit frame).

These three points necessitate the use of a MC simulation, as discussed in the
previous chapter. The legitimacy of using the MC simulations rests on their ability
to properly reproduce the distributions in the data for all the observables used in
the analyses. The MC samples are generated with minimal bias restrictions and
then submitted to exactly the same selection criteria as the data. Comparison plots
between the distributions in the data and in the MC samples are usually the starting
point of any analysis. The ‘control plots’ for the distributions in the data and MC
samples are presented at the end of this chapter.

4.2 Data samples

Three data samples were selected for the jet analyses presented in this document:

e A data sample consisting of NC DIS events at high % with at least one high
Er jet in the Breit frame based on 81.7 & 1.8 pb~! of integrated luminosity
collected with the ZEUS detector during the 1998-2000 (HERA I) running
period. This data sample was used for:

— Making inclusive-jet cross-section measurements of do / dE%ffB and do /dQ?;

— Making measurements of inclusive-jet cross sections in do/ dE%ffB for dif-
ferent regions of Q% to be used as input to global PDF fits.

— Studying the dependence on the jet-radius parameter in the kr clustering
algorithm;

— Extracting as(Mz) and measuring its scale dependence. This data sample
was also used in combination with H1 in order to produce a first combined

HERA a4(Mz) determination;

— There are 19,908 events in this sample after the selection discussed in this
chapter for R=1. For R=0.7 there are 16,231 events and for R=0.5 there
are 12,934 events.

e A data sample consisting of events at high Q? with at least three jets with
high E7 in the Breit frame based on 81.7 £ 1.8 pb™! collected with the ZEUS
detector during the 1998-2000 (HERA I) running period. This data sample
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was used for measuring angular-correlations of the three jets and testing the
underlying symmetry group; There are 1095 events in this sample.

e A data sample collected with the ZEUS detector during the 2004-2007 (HERA
IT) running period. During those years HERA operated with polarized elec-
trons or positrons. This sample corresponds to an integrated luminosity of 370
pb~!. This is an analysis in progress whose aim is to improve upon the results
of the other two analyses by using HERA II data.

— To obtain even more stringent tests of pQCD;
— To obtain the ‘ultimate’ determination of as(Myz) and PDFs from HERA;

— To obtain enough data statistics to make an extraction of the color factors
possible in the three-jet analysis;

— There are 91,555 events in this sample.

4.3 Event selection

Two inclusive-jet NC DIS samples were selected using the HERA I and HERA 1I
running periods, respectively. From the HERA I running period sample, a sub-
sample with more restrictive jet criteria, namely the presence of at least three jets
of high E7r in the Breit frame, was selected. This was the sample used for the three-
jet angular-correlations analysis. As already outlined in the introduction, the main
properties of a NC DIS event are: balanced transverse momentum, the presence of a
scattered electron, and the presence of jets in the final state. The following sections
contain an outline of the specific trigger chain and the selection cuts used. These
are divided into:

e Online selection: triggers implemented during the online data-taking. These
are more inclusive cuts in order to avoid the loss of valuable physics data and
to minimize CPU time during data taking;

e Offline selection: The selection includes full jet and scattered electron re-
construction. It also includes all the ‘cleaning cuts’ employed to reject back-
grounds.

4.3.1 Online selection

The trigger selection chain is implemented online. It was designed to select NC DIS
events with the highest possible efficiency. Thus, the cuts imposed at the different
trigger levels are not overly exclusive and involve only the short calculations allowed
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by CPU constrains. The computations involved in the selection become more refined

as the CPU time available increases going up the trigger chain.

First Level Trigger

At the FLT level, minimum overall UCAL energy deposits were required. The

conditions imposed:

EEML. > 10 GeV or
EFLT > 15 GeV or
EELL. > 3.4 GeV or
EEET . > 2.0 GeV or

EFLT > 11.6 GeV

Additionally, it was demanded that the event has at least one good track found by
the CTD FLT.

Second Level Trigger

At the SLT, the following conditions were imposed:

A reconstructed vertex with —60cm < z,, < 60cm. This cut removed events
which occured far from the interaction region, since the detector response could
be very different for such events. This cut also removed beam-gas related

events;

E—p. > 8.0 GeV,where E and p, are the energy and the longitudinal momen-
tum of the event, determined from energy deposits in the UCAL. For a NC
interaction of massless particles, £ —p, = E.+E,+ D, —Dsp = 2E, = 2x27.5
GeV, so that events with F — p, << 55 GeV are associated with PHP or CC

interactions;

Efre > 8.0 GeV, where Ef™¢ is the sum of transverse energy in all UCAL
cells outside a cone of 10° around the FCAL beampipe;

E—p, > 12 GeV or p,/E < 0.95 to further reduce the contamination from
beam-gas interactions.
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Third Level Trigger

The following conditions were imposed at the TLT:

e The number of ‘bad tracks’ had to be smaller than 6. A ‘bad track’ was defined
as a track which is long enough for a good reconstruction (i.e. it has more than
5 hits in axial superlayers and more than 5 hits in stereo superlayers, and more
than 20 hits in total) and points to a very backward vertex (z,, < —75cm).
The cut on the number of ‘bad tracks’ suppressed proton beam-gas background
events, which usually contain forward-going tracks coming from the backward
region;

An event was required to fulfill at least one of the following conditions at the TLT:
o Efme > 25 GeV,

e The time available at the TLT level permitted the application of a jet-finding
algorithm. Events with at least one jet of Er . > 10 GeV and 1, < 2.5
were retained. The jet algorithm was applied over all the cells in the UCAL,
including those that would be associated with the electron candidate, so that
the electron candidate was usually identified as a jet at this point;

e p./E < 1.0 and two or more jets with Ep e, > 6 GeV and 7, < 2.5.

As described in the experimental setup, during the offline reconstruction of the
events some additional requirements were imposed and stored in a bit structure
(DST bits). However, no further requirements were applied at this level for the jet

analyses.

4.3.2 Offline selection

At this stage a NC DIS sub-sample was selected from the available ZEUS data sample
on tape through the particular trigger selection just described. This sub-sample was
stored in a format called ‘ntuple’;, which basically consists of arrays containing all
the relevant information for the specific analysis for each event. After the trigger
online selection a sample was obtained containing a very ‘inclusive’ NC DIS selection
of jets, whose purity and efficiency can be further improved, and whose phase-space
region has yet to be restricted to the given analysis. Further requirements were
imposed to select the final sample as follows.

Identification of the scattered electron- the SINISTRA electron finder

A neural network approach was developed based on the showering properties of the
electron in the segmented UCAL. The aim is to best identify the electromagnetic
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particles using only the information from the UCAL and to separate them from the
single hadrons or jets of particles for which the pattern of energy deposits in the
UCAL can look quite similar, especially at low energies.

It was found that electrons and background populate different regions in a multi-
dimensional configuration space parametrized by the variables characterizing the
shower. These variables relate, for example, to the width and depth of the shower.
The particular values for this variable for the case of an electron shower were de-
termined using a neural network approach, trained using Monte Carlo samples for
both electrons and hadrons. A high efficiency was found for electron identification.

The algorithm used in these analyses for the electron identification based on
this neural network approach is called SINISTRA [76]. The algorithm proceeds
by merging together groups of cells according to pre-defined criteria. Each cell is
merged with the adjacent cell of highest energy; This clustering procedure associates
cells which most likely come from a single particle shower. A cluster is defined to be
composed of no more than 3 x 3 cells. A candidate cluster for an electron is called an
island. The input variables are the energies registered in the corresponding island
and the neural network projects the information into one output variable P, which is
interpreted as the probability that the island originates from the scattered electron
(P ~ 1) or is of hadronic origin (P ~ 0).

It is possible to define the electron four-momentum using the constituent cells
and weighting their respective positions with their energies. Using the energy and
position, the four-momentum of the island is reconstructed. Each island was associ-
ated a probability. The one with the largest probability was taken as the scattered
electron.

Efficiency and purity studies of the electron candidates have shown that an op-
timal selection required an associated probability of at least P > 0.9 and that the
probability given by SINISTRA was reliable if the island had an energy larger than
10 GeV. These were the requirements imposed on the identified scattered electron
for the events in the NC DIS samples.

To improve the purity and efficiency of the electron candidate, three additional

cuts were imposed:

o y. < 0.95 where y. = 1— E/(1—cosb,.)/(2E.) and E! (0.) is the energy (polar
angle) of the electron candidate. This condition removed events in which fake
electron candidates were found in the FCAL;

e the total energy not associated with the electron candidate within a cone of
radius 0.7 units in the pseudorapidity-azimuth (7 — ¢) plane around the elec-
tron direction should be less than 10% of the electron energy. This condition
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removed photoproduction and DIS events in which part of a jet was falsely
identified as the scattered electron;

e for 20° < 6, < 140°, the fraction of the electron energy within a cone of radius
0.3 units in the n — ¢ plane around the electron direction should be larger than
0.9; for 6, < 20°, the cut was raised to 0.98. This condition removed events in
which a jet was falsely identified as the scattered electron;

Note that although some algorithms make use of tracking information, in SINISTRA
it is not necessary.

Signal selection

Even after the electron identification, there can still be substantial backgrounds in
the sample; sometimes photons, jets, or other isolated particles are mis-identified as
the scattered electron. One such background is photoproduction, defined at HERA
as an event with a Q2<1 GeV2. Another background is ‘beam-gas events’. Molecules
can leak into an imperfect vacuum and cause collisions near the interaction point
that may ‘look’ like nominal interactions. These types of collisions can be identified
by a large number of ‘bad tracks’ in the CTD not stemming from the primary vertex.
Finally, Charged-Current (CC) mediated events in DIS give a neutrino in the final
state and can be characterized by missing transverse momentum in the detector and
the absence of a scattered electron.

Here is a list of the ‘cleaning cuts’ applied to suppress the contribution from
specific backgrounds:

o pr/vVEr < 2.5 GeVY2 where pr is the missing transverse momentum as mea-
sured with the UCAL (pr = \/p% + p3-) and Er is the total transverse energy
in the UCAL. This cut removed charged-current DIS events, cosmic rays and
beam-related background;

e Using the definition of a bad track already given, the number of bad tracks is
required to be less than 5. The presence of many bad tracks in the detector is
typical of an event produced by a beam-gas interaction;

e 38 < (F —pz) < 65 GeV, where E is the total energy as measured in the
UCAL, E = ), E; and p, is the z-component of the vector p'= ). E;7;. In
both cases the sum runs over all UCAL cells, F; is the energy of the UCAL in
cell 7 and 7; is a unit vector along the line joining the reconstructed vertex and
the geometric centre of the cell . This cut removed events with large initial-
state radiation and further reduced the background from photoproduction;
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e A cut in —34em < zye < 34cem. This cut removed events whose vertex is
far from the nominal interaction region. These events were removed because
the detector response to events far from the nominal interaction region can be
different;

e There can be background from elastic Compton processes (ep — epy), since
the v or the electron could be falsely identified as a jet. In these events there
are two electromagnetic clusters in the UCAL, thus two SINISTRA electron
candidates can be found. Cuts on energy and isolation are applied as for the
first candidate. If there was a second candidate that passes these cuts and the
energy on the whole UCAL excluding that belonging to the two candidates
was found to be less than 4 GeV, the event was rejected.

Phase-space region and jet selection

The phase-space of the analyses was defined in terms of Q? and cos v;,, where cos;,

is defined by 1 o 5
—Yy)x p_y e

(1 - y)pr + yEe

The variable cos v, is the cosine of the scattered parton polar angle in QPM events.

COS Yy = (4.1)

The variable cos~y, is reconstructed via

(thmh)z + (thyh)Q — (= p)n)?
(O pan)? + Oy pyn)? + Qo4 (B — p)n)?

where the sums run over all the UCAL cells not associated to the electron candidate.

(4.2)

cosyp, =

At the detector level, Q? was reconstructed using the double-angle method,

sin 7y, (1 + cos6,)
siny, +sinf, — sin (6, + )’

Q2DA:4'E52

(4.3)

where 6, is the angle of the scattered electron. The double-angle method does not
involve final-state electron or jet energies and was shown to exhibit better reconstruc-
tion properties since it does not involve the energy information or its uncertainty
from the UCAL.

A cut of Q% , > 125 GeV? was used to select a region that is well into the DIS
regime. For the angular correlations analysis, a second sub-sample was also selected
using 500<Q?%, , <5000 GeV2. The ‘hadronic’ v, was restricted to —0.65< cos v, <0.65.
The lower limit of this cut avoided a region with limited acceptance due to the re-
quirement on the energy of the scattered electron, while the upper limit was chosen
to ensure good reconstruction of the jets in the Breit frame.

Additional selection cuts designed to improve on the reconstruction of the jets
were applied:
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e jets with low transverse energy in the laboratory frame (E]TetL < 2.5 GeV) have
not been included in the final sample; this cut removed a small number of jets
for which the uncertainty on the energy corrections was large;

e events were removed from the sample if any of the jets was in the backward
region of the detector (11 < —2). This requirement removed events in which
a radiated photon from the electron was misidentified as a hadronic jet in the
Breit frame;

e The distance in 17 — ¢ plane from the electron of any jet was required to be less
than one;

° E%e’tB > 8 GeV;

o 2 <kt < 15.

For the o, analysis, every event was required to have at least one jet with E]Tefg >
8 GeV. For the three-jet analysis, every event was required to have at least three
jets, of which at least one must have E?Fe}; > 8 GeV and the other two ng; > 5
GeV. The final jet selection was implemented after the jet energy scale and ngg
loss caused by the detector were corrected for as explained in the next sections.

4.4 Jet reconstruction using the UCAL

The UCAL is the main detector component used to carry out the identification of
jets. Jets are reconstructed using the k7 clustering algorithm in the Breit frame with
the UCAL cell four-momenta as the initial ‘input set of partcles’. A four-momentum,
p* was associated to each cell, where p° corresponds to the energy deposit in the cell
and p was determined by treating the cell as a massless particle and its position to
be at its center. In order to reconstruct jets in the Breit frame, the four-momenta
of the cells in the UCAL not associated to the electron candidate were transformed
into the Breit frame, where the kr cluster algorithm is applied.

It is important to quantify the resolution of the detector to the jet variables and
any bias the dead material in front of the UCAL may introduce to their measure-
ment. It is also necessary that the energy scale of the jets be the same in the data
and MC samples. To ensure that this is the case, studies of the energy-scale in the
UCAL for the data and MC simulations were carried out through for each of the
analyses. This section describes both of these studies.
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77JI:3 t region | Energy-scale corrections
[-2.0,0.0] 0.993
[ 0.0,1.0] 0.995
[ 1.0,1.5] 0.988
[ 1.5,2.0] 1.013
[ 2.0,3.0] 1.019

Table 4.1: Energy-scale correction factors applied to the E%EtL of the jets in the data for
the HERA T analyses.

4.4.1 Jet energy scale corrections

The energy scale uncertainty of the UCAL coupled with differences in the hadronic
final state between the data and MC simulations has traditionally been the dominant
systematic uncertainty in jet measurements. Energy-scale uncertainties of £(3—5)%
lead to uncertainties of ~ £(10 —20)% in the cross-section measurements. Neutral
current deep inelastic scattering events with high Q? provide a means to calibrate
the UCAL energy scale. QPM-type of events, in which the final state consists of
the scattered electron back-to-back with one jet were used to calibrate the UCAL.
Since the total Er = 0 the electron’s Ep (= prpa) must compensate the jet’s
Er. Notice that the quantity prpa is obtained using the ‘double angle’ method
which relies solely on the angular position and not on the UCAL energies. The

jet

idea is that the ratio R = pTTl’; should be the same in the MC and in the data, a

necessary condition to validate the usage of the MC simulation in terms of obtaining

acceptance correction factors.

. DATA .
Thus, the double ratio R’ = RRW was used as an energy-scale correction factor

to level the data jet energy scale with that of the MC simulation. In order to take
into account the fact that the offset between data and MC may depend on the region
of the detector, these factors were obtained as a function of niet. Table 4.1 shows
the % factors applied to correct the ngtL of the jets in the data. The values shown
are for the HERA T jet analyses (the corresponding correction factors for the HERA
IT analyses were also obtained).

4.4.2 Detector bias and resolution

In order to know the precision with which jet measurements can be made and
to see any biases introduced by the detector, comparisons of the hadronic system
before and after the simulation of the detector were made. The quantities Eﬂﬁ%, s
and njBet were obtained for each jet at hadron and detector levels in order to study
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the correlation and relative differences. This procedure required a ‘jet matching’
algorithm to identify the jets at the hadron level with the corresponding ones at
detector level for a given simulated event.

The correlation between the hadron and detector level of the MC simulation is a
measure of the resolution and the bias on the jet variables introduced by the detector.
The better the correlation, the better the resolution. Any bias introduced by the
detector was identified as a deviation from a perfect correlation. The spread of the
correlation reflects the detector resolution. Figs. 4.1 through 4.6 show the correlation
between the hadron and detector levels for the jet variables in the ag analysis for
different jet radii. As expected, the detector does not alter the position of the jets,
but they however loose E%etL as they go through dead material in front of the UCAL.
Moreover, there is no particular dependence on the jet radius. Figs. 4.7 through 4.10
show the correlation between the hadron and detector levels for angular-correlation
variables in the three-jet analysis. While there is no bias, the reconstruction of
these variables is not as good as for the Eﬂ;,'itB, ft and njBet variables, although still
reasonable. The energy loss was corrected for by using the method described below.

The jet-energy loss and resolution of the jet variables can be quantified by means
of a gaussian fit to the relative difference between the hadronic level and the detector
level EJTCtB The procedure to obtain a set of correction factors to correct for the loss
of E%;’tB in the detector is the following:

e Standard cuts were applied at the hadron level to select the jets in the MC
sample. At the detector level, the cuts were relaxed in order to allow for a

wider phase-space;

e For each event, the jets at hadron and detector levels were matched. The
matching procedure involves calculating, for each event, the distance between
each of the jets at hadron level and all the jets at detector level in the n — ¢
plane,

Alhd] = \/ (" (CAL) — i (HAD))? + (67 (CAL) — ¢ (HAD))%.  (4.4)

The smallest distance found matched the two jets, if this distance is smaller
than 1. The procedure was repeated until all the jets were matched or no pair
of jets is left for which the distance is less than 1;

e The mean value < ngtL(CAL) > as a function of E?petL(H AD) was parametrized
by a straight line, or set of straight lines if necessary. The fitted function has
the form

Ef(CAL) =m - Ej (HAD) +b (4.5)
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For a given jet at detector level the corrected energy is then obtained by in-
verting this function:
Ef(CAL) —b

B (COR) = L0 (4.6)

e The energy loss is not the same for different pseudorapidity regions. Thus, the
parametrizations were done separately for each region in niOt. Fig. 4.11 shows
the correlation before any correction for the fourteen 7" regions.

e The Efjpet correction was transferred from the laboratory frame to the Breit
frame according to the formula:

EX* (CORR) = EX'.(CAL) - M. (4.7)
’ ’ EJ(CAL)

This correction procedure was repeated for each jet analysis. In the «ay analysis,
it was done separately for each jet radius. Fig. 4.12 shows the profile plots for
the detector E%etL in terms of the hadron E%etL for each of the fourteen regions of
njLet. After the corrections were applied the bias was removed as shown in Fig. 4.13.
Although Figs. 4.12 and 4.13 refer to the angular-correlations analysis, very similar

results were obtained for the o analysis for all the choices of the jet radius.

4.4.3 The Breit frame and the cut on cos~y,

The transformation of the UCAL geometry from the laboratory to the Breit frame
can result in UCAL cells that are too large in the n — ¢ plane to allow a good jet
reconstruction. A single cell of the UCAL in the Breit frame may extend over a
large n — ¢ region such that an entire jet can be reconstructed from it.

A useful parameter to study the range of transformations into the Breit frame
is the angle with which the struck quark in the QPM is ejected with respect to the
incoming proton axis, termed ;. The transformation to the Breit is the identity
when cosy, = —1 and the Breit frame coincides with the laboratory frame in this
limit. On the other hand, as cos~;, approaches 1 the cells close to the beampipe
expand while the ones in the barrel region contract. A study was made to determine
which interval of cos~;, allows a good jet reconstruction and the corresponding cut
in cosy, was considered as part of the sample selection.

The appropiate cut on cos~y, could be determined analytically, but it is simpler
and equally valid to obtain it from a comparison between the distribution of cos v, at
the hadron and detector levels of the Monte Carlo sample. In Fig. 4.14, it is observed
that the hadron and detector (reconstructed) distributions in cos-y, increasingly
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differ as cosy, — 1, which is where the cells of the UCAL are maximally distorted.
This figure shows the region of cos~y; for which the jet reconstruction becomes
inadequate. As cos~y, — —1, the distributions also increasingly disagree, but this
is a reflection of the cut imposed on the electron candidate’s energy E! > 10 GeV.
Thus, the appropriate range for cos~y, was obtained from Fig. 4.14 and applied
as part of the selection criteria of the NC DIS sample for both analyses, in order
to ensure a good reconstruction of jets in the Breit frame. This range was found
to be —0.65< cos7,<0.65 and is part of the phase-space region selection we have
mentioned earlier in this Chapter.

It is desirable to perform all the kinematic cuts in the Breit frame since a cut ap-
plied on variables in the laboratory frame would affect the selection in a kinematical-
dependent way. The reconstruction of jets with nie * > 2 in the laboratory frame is
not adequate due to the proximity of the jet to the beam pipe. In this region part
of the jet might go undetected. Thus, events containing jets with nict > 2 need to
be discarded. The correlation between 77{6 " and njBet after the cut on cos~y, was used
to determine which cut on njBCt corresponds to a cut of 77{0 ' > 2. Fig. 4.15 shows that
a cut of nict > 2.5 in the laboratory frame corresponds to a cut of njBOt > 1.5 in the
Breit frame. This cut is also part of the selection criteria mentioned earlier in the

Chapter.
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Figure 4.1: Correlations between detector and hadron levels for the jet variables Eﬂ;,?tB,

Q%e " and 77J]§t for the inclusive-jet sample based on CDM using jet radius R=1.0.
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qﬁg " and ngt for the inclusive-jet sample based on CDM using jet radius R=0.7
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Figure 4.3: Correlations between detector and hadron levels for the jet variables E%?tB,

qﬁg " and ngt for the inclusive-jet sample based on CDM using jet radius R=0.5
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4.5 Data and Monte Carlo distributions

The validity of the correction factors and reconstruction studies shown so far relies
on the fact that the MC simulation is able to properly describe the distributions in
the data sample for all the variables used. This section includes all the comparisons
of the data distributions to those of the MC simulation for the different analyses. In
the plots shown here the distributions in the MC sample were normalized to those
in the data. Both for the data and the MC simulations the distributions are those
obtained after the entire selection described earlier in this chapter is applied.

4.5.1 Comparisons of data and MC for the o, analysis using HERA 1
data

For the «a; analysis using HERA T data the comparisons included in this section
show that both MC simulations (CDM and MEPS) are able to reproduce the dis-
tributions in the data. For example, Fig. 4.16 shows a comparison of the total Er,
Yjb, the missing pr and the energy in the FCAL distributions. The variable y;;, was
reconstructed using the Jacquet-Blondel method:

_ Zh (E —p)n

2F,

where the sum runs over all the UCAL cells not associated to the electron candidate.
Note that the simulation of the energy distribution in the FCAL is somewhat shifted
to higher energies with respect to the data. This known discrepancy does not,

yjb (48)

however, affect our jet analyses since at the end, as we will show, the jet variables
are well described and this energy distribution is not actually being used.

Fig. 4.17 shows the energy in the RCAL, in the BCAL and the EJI?tB and njBOt dis-
tributions (with a finer binning than that used for the cross section measurements).
The RCAL energy distribution has a sharp peak corresponding to the scattered
electron’s energy contribution. The njBOt and EJI?tB particularly show the jets being
mostly in the forward region and their EJI?tB decreasing as a power function of Er.
Fig. 4.18 displays the Pr(HAD) of the hadronic system, the number of bad and
good tracks, and the \/PTT—T distributions.

The electron candidate’s energy, its polar angle, zp4 and Q% , distributions of
the events in the sample are shown in Fig. 4.19. The variable z was reconstructed
using the double-angle method according to the formula:

o E. sin~y, +sind, + sin (0, + ;)
ba = E, sinyy, + sinf, — sin (6. + y5)

(4.9)

There we show that the electron’s energy sharply peaks at a value ~ 27 GeV, which
means the selection cut on £, > 10 GeV does not have a big impact on the efficiency
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of the selection. In terms of the polar angle, the electron tends to be found, as would
be expected, at large angles with respect to the proton direction, which corresponds
to the RCAL or backward region. The zp4 and Q% , distributions are shown with
a finer binning than that used for cross-section measurements. The distribution in
xpa for this sample peaks at x ~ 1072

The description of the Q% , distribution in the data can be further improved for
both the MEPS and CDM simulations. For this purpose a re-weighting function in
terms of Q2 ,.cq Was obtained. All the MC distributions shown in this chapter
have been re-weighted with such a function. While the description of the Q% ,
distribution improves, the rest of the distributions are still well described.

Fig. 4.20 shows the distributions for yps and the z-vertex. The variable y was
reconstructed using the double-angle method according to the formula:

B sin 0. (1 — cos )
 sinwy, +sinf, — sin (6, + ;)

Ypa (4.10)

Fig. 4.21 shows the distributions for Q% ,, EﬂﬁtB and 77jBet with the binning that
corresponds to the cross-section measurements. As can be seen, the jet distributions
in Q% 4, E%ﬁ% and njBOt are well described by both CDM and MEPS; for this reason the
average of both simulations was used to obtain the correction factors to be applied
to the data as discussed in the next chapter.
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Figure 4.16: Comparison of the MC simulations based on CDM (dashed) and MEPS (solid)

to the distributions in the data (dots) for the total Er of the event in the laboratory frame,

the y;;, variable, the missing pr and the energy in the FCAL.
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DATA vsMEPS and CDM Jet radius= 1
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Distributions in jet variables for jet-radii # = 0.7 and R = 0.5

The distributions shown for the inclusive-jet sample with R=1 were also obtained
for R = 0.7 and R = 0.5. The results are very similar in the sense that all the
distributions are well described by both the CDM and MEPS simulations. For this
reason, they are not all shown again except for the Q% 4, E%?tB, and njBet distributions,
which are shown in Figs. 4.22 and 4.23. These correspond to the same jet variables
as in Fig. 4.21. As expected, the total number of events that pass the selection cuts
decreases roughly linearly as one decreases the jet radius. This is because decreasing
the jet radius tends to break the jets apart into more jets of lower E%%, making it
less probable for the event to pass the high E%ﬁ% cuts and be included in the sample.
We see, however, that the jet variables for R = 0.7 and R = 0.5 are nevertheless
well described by the CDM and MEPS simulations.
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Figure 4.22: Comparison of the MC simulations based on the CDM (dashed) and MEPS
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the same binning as the cross-section measurements with jet-radius R=0.7
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DATA vsMEPS and CDM Jet radius= 0.5
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Figure 4.23: Comparison of the MC simulations based on the CDM (dashed) and MEPS
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4.5.2 Comparisons between data and MC for three-jet angular-correlation

distributions

Comparisons of data and MC simulations for three-jet NC DIS are shown in this
section. Only the distributions of the angular-correlation variables are shown. The
comparisons for the other distributions are very similar to those already shown.
Both MC samples describe the data reasonably well, although it is found that the
simulation using the MEPS model provides a better description of the data, as can
be seen in Figs. 4.24 and 4.25. The figures show that this is generally the case for
both the phase-space region of Q% > 125 GeV? and that of 500 < Q? < 5000 GeV?2.
The MEPS simulation was used to obtain the correction factors to be applied to the

data, as shown in the next chapter.
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Figure 4.24: Comparison of the MC simulations using MEPS (solid) and CDM (dashed)
with the distributions in the data (dots) for the angular-correlation variables © g, cos aas,

€08 Prsw and nﬁ,f(tm for the region of Q2 > 125 GeVZ2.
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4.5.3 Comparisons of data and MC for the o, analysis using HERA II
data

The HERA II running period (2004-2007) offers increased statistics and it is there-
fore desirable to perform the jet analysis including HERA II data. Presently only a
reduced number of studies have been made using HERA II data and the MC sim-
ulations are not yet properly understood to the level achieved for HERA 1. The ay
analysis published using HERA T data was repeated using HERA II in order to gain
an initial view into this new running period. For this purpose, new MC samples with
increased statistics were generated and similar criteria were used to select a NC DIS
inclusive-jet sample both in the data and in the MC. One of the goals of this effort
is to reproduce the ay analysis with both HERA running periods combined.

For brevity, only the most relevant problems initially encountered in the HERA
IT data analysis are shown here. Fig. 4.26 shows that the distribution in the number
of tracks has significantly changed from HERA I to HERA II. More importantly
the available MC simulations are not yet able to reproduce this change properly.
Fig. 4.27 shows that the shape of the distribution in x4 has not changed and is well
reproduced by the MC simulations. Figs. 4.28 through 4.30 show the distributions
of the jet variables. The comparison of HERA II with HERA I shows that these
distributions have not significantly changed. Nevertheless, there is a problem in
the HERA II MC simulation regarding the EjftB and njBet distributions. In njBet the
simulation predicts more forward jets than the data, a discrepancy which is not
yet understood. A full analysis of inclusive-jet measurements and determinations of
as(Mz) demands better simulations to improve upon the precision achieved so far
with HERA T data. For this reason the rest of the results obtained from the HERA
IT running period, such as cross sections and extractions of ag are not shown in this
document, although they have been found to be consistent with those of HERA 1.
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Figure 4.26: Comparison of the MC simulations based on MEPS (solid) and CDM (dashed)
with the distributions of the number of good tracks in the HERA 1I data (dots): (a) 2004
etp, (b) 2005-2006 ¢~ p and (c) 2006-2007 e p. The lower right plot shows the distribution
in the data for the HERA I runnning period (histogram) vs that for the entire HERA II

runnning period (dots).
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Figure 4.27: Comparison of the MC simulations based on MEPS (solid) and CDM (dashed)
with the distributions of log(zp4) in the HERA II data (dots): (a) 2004 e*p, (b) 2005-
2006 e p and (c) 2006-2007 e*p. The lower right plot shows the distribution in the data
for the HERA I runnning period (histogram) vs that for the entire HERA II runnning
period (dots).
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Figure 4.28: Comparison of the MC simulations based on MEPS (solid) and CDM (dashed)
with the distributions of Q% , in the HERA II data (dots): (a) 2004 ep, (b) 2005-2006
e~ p and (c) 2006-2007 e*p. The lower right plot shows the distribution in the data for
the HERA I runnning period (histogram) vs that for the entire HERA II runnning period

(dots).
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Figure 4.29: Comparison of the MC simulations based on MEPS (solid) and CDM (dashed)
with the distributions of EﬁﬁtB in the HERAII data (dots): (a) 2004 e*p, (b) 2005-2006
e~ p and (c) 2006-2007 eTp. The lower right plot shows the distribution in the data for
the HERA I runnning period (histogram) vs that for the entire HERA II runnning period
(dots).
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Figure 4.30: Comparison of the MC simulations based on MEPS (solid) and CDM (dashed)
with the distributions of 77J].30t in the HERA data (dots): (a) 2004 e*p, (b) 2005-2006 ¢~ p
and (c) 2006-2007 eTp. The lower right plot shows the distribution in the data for the
HERA I runnning period (histogram) vs that for the entire HERA II runnning period
(dots).
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Jet profiles using HERA II

In order to determine whether a MC simulation for a jet analysis is valid it is also
important to check, apart from the Q?, E%ﬁ% and njBOt distributions of the jets, that
the core and the energy flow within the jets are also well simulated. This check
was done in the past using HERA I data and is presented here for the HERA II
samples. This check consists of making what are called ‘jet profiles’. The jet profiles

are defined as follows:

e Divide the jets in the sample according to their nie ' into three regions:—1 <
Mt <0,0<y" <land 1< <2;

e For each region, the mean transverse energy in the UCAL (excluding that
associated to the electron) is evaluated as a function of the distance in 7 from
the jet axis, taking care that every cell whose distance in ¢ is larger than 7/2
is excluded;

e For each region, the mean transverse energy in the UCAL (excluding that
associated to the electron) is evaluated as a function of the distance in ¢ from
the jet axis, taking care that every cell whose distance in 7 is larger than 1 is
excluded;

Figs. 4.31 and 4.32 show the jet profiles as functions of the distances dn = 7! — njLO *
and 0¢ = ¢l — quft from the jet axis. A logarithmic scale was chosen in order to
make differences between the data and the simulation more evident. An isotropically
noisy UCAL, for example, would manifest itself in these plots as a pedestal. From the
jet profiles we can see that the core of the jets is well described by the MC simulation.
The asymmetric bump is expected since more hadronic activity takes place in the
forward region. Note that there is a small ~ 300 MeV discrepancy between the
CDM simulation and the data. A similar discrepancy is observed for the MEPS
simulation. This discrepancy is currently under study as part of understanding the
HERA II data sample and the MC models.
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Figure 4.31: Transverse energy profiles as functions of the distance 7 from the jet axis
integrated over |d¢| < m/2 in HERA II data (dots) and the MC simulations based on

CDM (histogram).
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Figure 4.32: Transverse energy profiles as functions of the distance d¢ from the jet axis
integrated over |0n| < 1 in HERA II data (dots) and the MC simulations based on CDM

(histogram).
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Chapter 5

Correction factors and systematic

uncertainties

5.1 Correction factors

The cross-section measurements made for the a, and the angular-correlations anal-
yses were corrected for detector effects that took into account the efficiency of the
trigger, the selection criteria and the purity and efficiency of the jet reconstruc-
tion. The correction factors were applied using the bin-by-bin method which relies
on a good description of the data by the MC simulation. These correction factors
are obtained from the simulations after EJI?tB corrections are applied to the jets as
explained in Chapter 4.

The fixed-order calculations discussed in Chapter 2 only have partons as their
final state. An accurate comparison with the measured cross sections necessitates
that the fixed-order pQCD calculations be supplemented with hadronization correc-
tion factors. Moreover, since the calculations also did not take into account the NC
contribution from Z%exchange nor QED effects due to the running of agpp and
intial and final-state QED radiation, either the predictions or the data had to be
corrected for these effects to render a comparison possible.

The legitimacy of using the MC simulations for obtaining correction factors to
the data or the theory rests on how well the MC is able to describe the distributions
it aims to correct. In Chapter 4 we showed comparisons of the distributions of
the data with the MC simulations at the detector level. The MEPS simulation
was able to reproduce the distributions in the data, while CDM although agreeing
with MEPS for the Q?, njBOt and E%efg predictions, gave a poorer description of the
angular-correlation variables.

In Chapter 3 we showed comparisons of the MC simulations using both the MEPS
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and CDM parton-cascade models to the O(a?) and O(a?) pQCD calculations. There
we saw that the MEPS simulation was able to reproduce the O(a?) and O(a?) pQCD
calculations, while CDM although agreeing with MEPS for the inclusive-jet cross
section predictions, gave a poorer description for the angular-correlation variables.

Identifying and quantifying possible sources of systematic uncertainty is a nec-
essary component of any measurement. The conventional approach is to vary the
assumptions by reasonable amounts (such as their known uncertainty) and estimate
the impact of such variations on the final results. Ideally the analysis should be
insensitive to small variations in quantities whose exact values are assumed or oth-
erwise not fully known by the experimentalist, such as background subtraction cuts,
the choice for the parton-cascade model or the energy scale of the jets. The analysis
is carried through with independent variations and the corresponding changes in the
final results are added in quadrature and are taken as the overall systematic uncer-
tainty. These systematic checks often result in a simple variation of the acceptance
correction factor applied to the data, and are presented in the second part of this
chapter.

5.1.1 Acceptance correction factors

The ngfg, Q% and angular-correlation distributions in the data were corrected for
detector effects using bin-by-bin correction factors determined with the MC samples.
For the E%efg and Q? distributions in the «, analysis, it is shown in Chapter 4
(Figs. 4.21 through 4.23) that both the MEPS and CDM MC simulations provide a
good description of the data. For this reason the average between the acceptance-
correction values obtained with CDM and MEPS was used to correct the data to
the hadron level. The deviations in the results obtained by using either CDM or
MEPS to correct the data from their average were taken to represent systematic
uncertainties on the modelling of the parton cascade in the corrections, as discussed
later. As shown in Figs. 5.1 through 5.3, the acceptance-correction factors differed
from unity by typically less than 10% for all choices of the jet radius. The same
applies to Fig. 5.4, which shows the acceptance correction factors used to correct

the E%?tB distributions in different regions of Q.

purity
ef ficiency’

efficiency (purity) is the fraction of generated (reconstructed) events for a given bin

The acceptance correction factors (Cycc) are defined as Caco = where

that are reconstructed (generated) in that same bin:

Caer — Nuap P (Neen()Nrec)/Nrec  Nopn
ACC = w7 = 7 = = (5.1)
Nper E (Negen(\Nrec)/Neen  Nrec

Since the Cycc factor corrects for purity and efficiency in the selection of the data

sample, here ‘generated’ stands for the MC hadronic level, whereas ‘reconstructed’
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refers to the MC detector level. In other words, distributions of the variables in the
data sample are ‘corrected’ to the hadron level by multiplying them by Cscc:

DATA  \TMC
RECi GEN,i

(Az)L  NMZ.

(5.2)

g; =

where o; is the cross section for a given variable range (i.e. histogram bin), Az is the
bin width and L is the luminosity. The closer the distribution in the MC simulation
is to the data, the more reliable this procedure is.

Figs. 5.8 and 5.9 show the acceptance correction factors applied to the angular-
correlation distributions for the region Q? > 125 GeV?2. Figs. 5.10 and 5.11 show
the acceptance correction factors applied to the angular-correlation distributions
for the region 500 < @* < 5000 GeV?. 1In Chapter 4 (see Figs. 4.24 and 4.25)
we showed that in this case MEPS provides a better description of the angular-
correlation distributions in the data. For this reason only MEPS was used to obtain
the acceptance correction factors in this case, and the CDM simulation was used to
estimate the systematic uncertainty on the modelling of the parton cascade in the
corrections, as discussed later in this chapter.

5.1.2 QED correction factors

The fixed-order pQCD calculations carried out with DISENT or NLOJET++ do
not include the effect of the runnning of avgrp nor the radiative corrections needed
to describe processes such as the radiation of photons by the initial- or final-state
electron. Thus, the calculations needed to be supplemented with QED correction
factors (Coep). It is inconsequent whether the correction factors are applied to the
data or the predictions, provided the inverse of one is applied to the other. These
correction factors were applied to the data and were obtained by generating a MC
sample with the same settings as the MEPS sample used to obtain the detector
corrections but without QED radiative processes. The factor obtained in each bin
had the form

NS BE, s

Coep,i = NMC—DET *
QED,i

where Cggp,; is the QED correction factor to be applied to the differential cross
section in bin ¢ obtained by means of eq. 5.2. Figs. 5.1 through 5.11 show the QED

correction factors applied to the data. As can be seen, they show a reasonably flat
distribution that is close to unity.
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5.1.3 ZYexchange corrections

The fixed-order pQCD calculations carried out with DISENT or NLOJET++ do
not include the contribution from Z%mediated NC DIS processes. Thus, it was
necessary to supplement the pQCD calculations with Z°-exchange correction factors.
A sample as the one used for the acceptance correction factors was generated but
without Z° exchange. The correction factors obtained were applied to the theoretical
predictions and had the following form:

NH AD

704
02071' - ]VI{T (54)

NO—2Z0

Figs. 5.1 through 5.3 and 5.6 show the QED correction factors applied to the data
for the o, analysis. The correction factors are very close to unity. The Z° correction
factors for the angular-correlation distributions were combined with those for the
hadronization, as discussed next, and are shown in Figs. 5.8 through 5.11.

5.1.4 Parton-to-hadron corrections

In order to improve on the comparison of the hadronic jet cross sections with the
fixed-order pQCD calculations, hadronization correction factors (Cyap) were ob-
tained and applied to the DISENT and NLOJET-++ predictions. The parton-to-
hadron corrections were obtained using the Monte Carlo samples without the Z°-
exchange. It is inconsequent whether the correction factors are applied to the data
or the predictions, provided the inverse of one is applied to the other. In this case
the correction factors were applied to the predictions and had the following form:

MC
N HAD,i

CHAD; (5.5)
Nplin,

CHap,i =
As can be seen from Figs. 5.1, 5.2, and 5.3, the deviation of C'y4p from unity
increases as the jet radius decreases. This is expected since the hadronization tends
to ‘smear’ the energy of the jet. One of the objectives of the a, analysis was to
determine a region of validity for the jet radius. The hadronization correction factor
imposes a lower constraint on the jet radius, since large values of C'yap spoil the
connection between the measured hadronic final state and the hard interaction for
jet analyses. Fig. 5.12 shows the hadronization correction factors as a function ?
for R values in the range 0.3 < R < 1.2. It becomes evident that for values lower
than R=0.5, the correction factors decrease below 0.5 and make the less analysis less
precise. For the angular-correlation variables, C'zo and C'yg4p were combined into a
single correction factor as shown in Figs. 5.8 through 5.11. These correction factors
may appear to deviate from unity substantially for some regions, but the situation
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jet
max)’

improves when the cross sections are normalized. The lower region of 7 as we
showed in Chapter 3 (Figs. 3.39 and 3.40), has a relatively large uncertainty on the
modelling of the parton cascade. Moreover, we see that the hadronization correction

is large, a reason for which this region might be excluded in a future fit to the color

factors.
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Figure 5.1: Cacc, Corp, Czo and Cyap factors applied to the data (ACC and QED)
and to the fixed-order pQCD calculations (Z% and HAD) for the Egpe; (left) and Q? (right)
distributions in the ay analysis with jet-radius R=1.0. In all cases the factors deviate less

than 10% from unity.
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Figure 5.2: Cacc, Corp, Czo and Cyap factors applied to the data (ACC and QED)
and to the fixed-order pQCD calculations (Z° and HAD) for the E%e; (left) and Q? (right)

distributions in the ay analysis with jet-radius R=0.7. In all cases the factors deviate less

than 10% from unity.
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Figure 5.3: Cacc, Corp, Czo and Cyap factors applied to the data (ACC and QED)
and to the fixed-order pQCD calculations (Z° and HAD) for the E%e; (left) and Q? (right)

distributions in the ay analysis with jet-radius R=0.5. In all cases the factors deviate less

than 10% from unity.
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Figure 5.4: C'acc factors applied to the data for the E]TC% distributions in different regions
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Figure 5.5: Cggp factors applied

regions of Q2.
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Figure 5.6: C'»o0 factors applied to the fixed-order caculations for the E]chtg distribution in

different regions of Q2.
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HAD-PAR Correction Factors
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Figure 5.7: Cyap factors applied to the fixed-order calculations for the E]TC% distribution

in different regions of Q2.
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Correction factors for do/dO, Correction factors for do/dcos(a,;)
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Figure 5.8: Cacc, Corp and Cyo-Chap factors applied to the data (ACC and QED) and
to the fixed-order pQCD calculations (Z° and HAD) for the © 5 and cos ags distributions
in the region of Q? > 125 GeV?. The factors shown here were applied to the cross-sections

before calculating the normalized cross section.
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Correction factors for do/dcos(Bus) Correction factors for do/dn,
1.5 1.5
[ ACCEPTANCE @ > 125 GeV? [ ACCEPTANCE @ > 125 GeV*
L i — P — — La L P ———
— — °
0.5 L. Ll Ll Ll 0.5 L. P | |
-1 -0.5 0 0.5 1 -2 -1 0 1
cos(Busw) e
1.5 1.5
L QED [ QED
r r . °
1 Frgr o o] 1 e o & ®]
0.5 L. Ll Ll Ll 0.5 L. [ | |
-1 -0.5 0 0.5 1 -2 -1 0 1 .
cos(Busw) e
1.5 1.5
L HADPAR#Z° HADPAR#Z°
L T 1 o o
i ¢ ° ° i o o ¢
0.5 L. Ll Ll Ll 0.5 L. ‘q . | |
-1 -0.5 0 0.5 1 -2 -1 0 1
c0s(Bysw) nia

Figure 5.9: Cacc, Corp and Cyo-Chap factors applied to the data (ACC and QED) and
to the fixed-order pQCD calculations (Z° and HAD) for the © 5 and cos ags distributions
in the region of Q? > 125 GeV?. The factors shown here were applied to the cross-sections

before calculating the normalized cross section.
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Correction factors for do/dO, Correction factors for do/dcos(a,;)
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Figure 5.10: Cucc, Corp and Cyo-Ch ap factors applied to the data (ACC and QED) and
to the fixed-order pQCD calculations (Z° and HAD) for the © 5 and cos ags distributions
for the region of 500 < Q2 < 5000 GeV?. The factors shown here were applied to the

cross-sections before calculating the normalized cross section.
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Figure 5.11: Cucc, Corp and Cyo-Ch ap factors applied to the data (ACC and QED) and
to the fixed-order pQCD calculations (Z° and HAD) for the © 5 and cos ags distributions
for the region of 500 < Q2 < 5000 GeV?. The factors shown here were applied to the

cross-sections before calculating the normalized cross section.



168 Correction factors and systematic uncertainties

lre—o—o—2 [

0.8
0.6
0.4
0.2 ] IR IR

hadronisation
[ ]
[ ]

[ ]
L]
[ ]
RN B AU B ] S

0.8
0.6
0.4 R=05

0.2 ] ‘ ““”“3‘ ““”“4
1 o Qz(eé%
0.8
0.6
04

02 Lol Lol
3 4
10 10

Q (GeV?)

[

[

L]
TR R BN . ¥

\\\‘\\\‘\\\‘Q\\

®  R=03

\\\‘\\\‘\’\‘\\\

Figure 5.12: Cap as a function of Q2 for the jet radius R in the range 0.3 < R < 1.2.



5.2. Experimental uncertainties 169

5.2 Experimental uncertainties

There are two types of experimental uncertainty associated to the measurements-
systematic and statistical. For the statistical uncertainty, the number of events
is assumed to have an underlying Poisson probability distribution. For this type
of distribution the mean number of events is equal to the variance, and therefore
o = /N is the 1o spread assummed in the data. Especial care needs to be taken
in the case of jet measurements. In this case, the Poisson distribution still applies
to the number of events and not to that of the jets. A single event can contribute
with more than one jet in a bin or with jets in different bins in the case of, say,
an E%[?% distribution. Thus, in some cases there is a statistical correlation among
different bins. This effect was taken into account for the analyses presented here
and the statistical uncertainties shown are the correct ones for the jet analyses.
Figs. 5.13 through 5.15 show the statistical uncertainties in the measurements of the
jet cross sections. As expected from the steep fall-off of the distributions of the jets
with increasing Q% and E%?fB, the statistical uncertainties increase for higher energy
scales. Figs. 5.16 through 5.19 show the statistical uncertainties for the angular-
correlation normalized cross sections for the region Q% > 125 GeV2. Figs. 5.20
through 5.23 show the statistical uncertainties for the angular-correlation normalized
cross sections for the region 500 < Q? < 500 GeV?. Note that ~ 1/2 of the events
are lost by restricting the phase-space region in )%, which is the price paid in order
to minimize the dependence on a;(ug).

The following sources of systematic uncertainty were considered for the measured

inclusive-jet cross sections:

e the uncertainty in the absolute energy scale of the electron candidate was

estimated to be +1%. The resulting uncertainty in the cross sections was
below +1%;

e the differences in the results obtained by using either ARIADNE-CDM or
LEPTO-MEPS to correct the data for detector effects were taken to represent
systematic uncertainties. The resulting uncertainty was typically below £3%;

e the E?FetL 45 cut was raised to 4 GeV. The resulting uncertainty was smaller
than +£1%;

e the cut in 77, used to suppress the contamination due to photons falsely
identified as jets in the Breit frame was set to -3 and to -1.5. The resulting
uncertainty was below +1%;

e the F — P, cut was raised and lowered by 3%. The resulting uncertainty was
smaller than +1%;
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e the uncertainty in the boost to the Breit frame was estimated by reconstructing
the momentum of the exchanged boson using CTD information instead of that
provided by the UCAL. The resulting uncertainty was less than 1%;

e the uncertainty in the absolute energy scale of the jets was estimated to be
+1% for E?ftL ap > 10 GeV and £3% for lower E?ftL 4 values. The resulting
uncertainty was ~ +5%;

e the uncertainty in the cross sections due to that in the simulation of the trigger
was below 0.5%.

In addition, there was an overall normalization uncertainty of 2.2% from the
luminosity determination.

Figs. 5.13 through 5.15 show the uncertainties listed above for the inclusive-jet
cross sections. An important point to note from these plots is that the experimental
uncertainties do not increase significantly anywhere in the jet-radius range of 0.5 <
R < 1.0. The uncertainties for the differential cross-section measurements with
respect to EJTCtB for different regions of (? where similar in magnitude to those listed
above.

The same sources of experimental uncertainty were considered for the angular-
correlations analysis. Figs. 5.16 through 5.23 show the systematic uncertainties for
the angular-correlation cross sections. Notably the largest contribution to the total
systematic uncertainty in this case arises from that on the modelling of the parton-
cascade. The angular correlations in the simulations rely on the parton cascade since
the MC simulations available for these processes only contain pQCD calculations to
O(ay) and, therefore, it is not surprising that there is a relativey strong dependence
of the acceptance correction factors (and thus of the cross section) on the parton-
cascade model. As we showed in Chapter 4 (Figs. 4.24 and 4.25), the CDM model
provides a somewhat poorer description of the distributions in the data than MEPS.
For this reason the default used to correct the cross sections was MEPS and CDM
was used to estimate this uncertainty.
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Exp. unc. for inclusive-jet cross sectionswith R=1.0
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Figure 5.13: Relative systematic uncertainties with largest contributions to the overall
experimental uncertainty of the inclusive-jet cross-section measurements of do / dEJTefB (left)
and do/dQ? (right) with jet radius R=1.0.
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Exp. unc. for inclusive-jet cross sections with R=0.7
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Figure 5.14: Relative systematic uncertainties with largest contributions to the overall
experimental uncertainty of the inclusive-jet cross-section measurements of do / dEJTefB (left)
and do/dQ? (right) with jet radius R=0.7.
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Exp. unc. for inclusive-jet cross sectionswith R=0.5
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Figure 5.15: Relative systematic uncertainties with largest contributions to the overall

experimental uncertainty of the inclusive-jet cross-section measurements of do / dE%eg (left)

and do/dQ? (right) with jet radius R=0.5.
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Systematic uncertaintiesfor ©, (deg)
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Figure 5.16: Relative systematic uncertainties with largest contributions to the over-

all experimental uncertainty of the normalized three-jet cross-section measurement of

(L)do/dO .
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Systematic uncertainties for cos(a.,)
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Figure 5.17:

cos(a,,)

Relative systematic uncertainties with largest contributions to the over-

all experimental uncertainty of the normalized three-jet cross-section measurement of
(1)do /d cos as.
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Systematic uncertainties for cos(, )
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Figure 5.18: Relative systematic uncertainties with largest contributions to the over-

all experimental uncertainty of the normalized three-jet cross-section measurement of

(%)do/dcos Brsw-
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Systematic uncertainties for n'®
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Figure 5.19: Relative systematic uncertainties with largest contributions to the over-

all experimental uncertainty of the normalized three-jet cross-section measurement of
jet
(%)do/d?ﬁﬁaw.
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Systematic uncertaintiesfor ©, (deg)
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Figure 5.20: Systematic uncertainties with largest contributions to the overall experimen-

tal uncertainty of the normalized three-jet cross-section measurement of (%)da /dOp.
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Systematic uncertainties for cos(a.,)
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Figure 5.21: Systematic uncertainties with largest contributions to the overall experimen-

tal uncertainty of the normalized three-jet cross-section measurement of (%)da /d cos aa3.
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Systematic uncertaintiesfor cos(f3, )
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Figure 5.22: Systematic uncertainties with largest contributions to the overall experimen-

tal uncertainty of the normalized three-jet cross-section measurement of (%)da /d cos Brsw-
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Systematic uncertaintiesfor n'®
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Chapter 6

Results: Jet radius dependence of

inclusive-jet cross sections in DIS
at HERA

6.1

Introduction

In preceding chapters we have shown how the inclusive-jet data sample has been

selected and corrected with the aid of MC simulations. We have also made a detailed

estimation of the theoretical and experimental uncertainties associated with these

measurements. This chapter presents the final results of the a, analysis, which are:

Measurements of differential cross sections as functions of Q? and E%,?tB and
do/ dEgﬁffB for different Q? regions in NC DIS for Q% > 125 GeV? using an
integrated luminosity of 81.7pb~!;

Study of the dependence of the cross sections on the jet-radius parameter in
the kp cluster algorithm;

Measurement of the dependence on R of the inclusive-jet cross section for
Q? > 125 and 500 GeV?;

Extraction of as(My) from different do/ dE%itB and do/dQ? regions, among
which is the most precise to date using ZEUS data alone: a4(Mz) = 0.1207
+0.0014(stat.) 5053 (exp-) 5025 (th.);

Comparison of the measured inclusive-jet differential cross sections and of the
running of ozs(EjTC’tB) and a,(Q) with those predicted by QCD.

As discussed along this chapter, these measurements tested the characteristic

aspects of pQCD and are expected to improve the determination of the proton PDFs
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when included in future global QCD fits. Moreover, when combined with similar
H1 measurements they yielded a determination of oy with an overall experimental
plus theoretical uncertainty of ~ 2.7%, the most precise determination of ag(My)
obtained at HERA thus far.

6.2 Differential inclusive-jet cross sections in NC DIS

The measured cross sections

The inclusive-jet cross sections were measured in the kinematic region Q? > 125
GeV? and | cosvy| < 0.65. These cross sections include every jet of hadrons in the
event with E%[?% > 8 GeV and —2 < 7" < 1.5 and were corrected for detector and
QED radiative effects and the running of a.,,. The measurements of the inclusive-
jet differential cross sections as functions of EjftB and Q? are presented in Fig. 6.1.
Each data point is plotted at the abscissa at which the NLO QCD differential cross
section was equal to its bin-averaged value. The figures show a steep fall-off over
three (five) orders of magnitude for the do/ dE%ffB (do /dQ?) over the measured range.
The measurements are shown for different choices of the jet radius R=0.5, 0.7 and
1, and compared to O(a?) calculations (solid line) using the ZEUS-S proton PDF
set with purp = EJI?tB The values obtained with each jet radius choice have been
scaled by the factor indicated in brackets to aid visibility. The inner error bars in
the data (dots) represent the statistical uncertainty, while the outer error bars are
the total experimental uncertainty excluding that due to the energy scale, which is
represented as a band. The explicit values of the results shown in Fig. 6.1 are shown
in Tables 6.1 and 6.2.

Fig. 6.2 shows the inclusive-jet differential cross sections with respect to E%ﬁ% in
different regions of Q? for R=1. The steep fall-off in the cross section with increasing
E%;’tB flattens out at higher Q? regions, a phenomenon well reproduced by pQCD, as
shown in the figure. The explicit values of the results shown in Fig. 6.2 are shown
in Table 6.3

The dependence of the total inclusive-jet cross sections with the jet radius param-
eter was also measured and is shown in Fig. 6.3. The measurements were made for
E%;’tB > 8 GeV and —2 < 77jBet < 1.5 in the kinematic range given by |cos~,| < 0.65
integrated above Q2. = 125 and 500 GeV? for different jet radii. The measured
cross section, oje, increases linearly with R in the range between 0.5 and 1. The
increase of 0jes as R increases can be understood as the result of more transverse
energy being gathered in a jet so that a larger number of jets has E%;’tB exceeding the
threshold of 8 GeV. The explicit values of the results shown in Fig. 6.3 are shown

in Table 6.4
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The comparison with fixed-order QCD calculations

The inclusive-jet measurements were compared in detail to the O(a?) QCD cal-
culations obtained using the program DISENT as described in Chapter 3. The
default calculations used the ZEUS-S parametrization of the proton PDFs (except
in Fig. 6.2 in which CTEQ6 was used) with pur = EﬂﬁtB and pp = Q. The fractional
differences between the measured do/ dEfjpf}; and the QCD prediction are shown for
the three choices of the jet radius in Fig. 6.4. There the hatched bands display the
total theoretical uncertainty and the error bars in the data are as for Fig. 6.1. The
figure shows O(a?) QCD calculations provide a good description of the data within
the small theoretical and experimental uncertainties. Similar comparisons with the
pQCD predictions obtained using the MRST2001 and CTEQG6 parametrizations of
the proton PDFs are shown in Fig. 6.5. The differences among the predictions due
to the choice of proton PDF's used are contained within the uncertainties due to that
of the PDFs themselves shown in Fig. 3.8, showing that there is no tension among
the different sets for these observables. The figures also show that the overall theo-
retical and experimental uncertainties increase with increasing EﬂﬁtB Although the
uncertainty from higher orders decreases with the increasing scale Eﬂ;,'itB, the PDF re-
lated uncertainties of Fig. 3.8 increase, resulting in an overall increasing theoretical
uncertainty. The experimental uncertainties increase due to the smaller statistics
available with increasing E%ﬁtB Notice, however, that the uncertainties are similar
and so is the agreement between theory and data for all the choices of the jet radius
considered here. Thus, it is concluded that O(a?) QCD provides predictions with
comparable precision in the range R=0.5-1.

Figs. 6.6 and 6.7 show similar comparisons between the measured do/dQ?* and
the O(a?) QCD calculations. In this case the overall theoretical uncertainty decrases
with increasing %, as expected from a decreasing pp dependence and a decreasing
PDF uncertainty at higher scales (refer to Fig. 3.8). Fig. 6.8 shows the comparison
with the default prediction for the measured differential cross section as a function
of E%ﬁtB in different regions of Q* for R=1. For the do/dQ? case, pQCD provides
a good description of the data despite the steep fall-off of the measurement and
the small uncertainty involved in the comparison. In the case of Fig. 6.8, pQCD is
able to reproduce well the flattening of the fall-off of do/ dE%ffB with increasing Q*
observed in the data.

Fig. 6.9 is similar to Figs. 6.4 and 6.6, but here the theoretical predictions have
been obtained using pur = @ instead of ur = E%FCtB As can be seen, the difference
between the predictions obtained with different choices of ug is in general within
the theoretical uncertainties and is under ~ 5%, except for the very high Q? region.

For the total cross section as a function of R the comparison with O(a?) calcula-
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tions is shown in Fig. 6.3. The figures demonstrate that the O(a?) calculations are
able to reproduce the linear dependence of the inclusive-jet cross section on the jet
radius. The sub-plots contained in the figures show the LO and NLO predictions for
this dependence. At LO (O(ay)), there are only two back-to-back partons with high
E%ﬁ% in Breit frame. Reducing the jet radius in this case will not have an effect on
the final state in terms of jets and the total cross section shows no dependence on
the jet radius parameter. At NLO the transverse energy is shared among the three
partons. Decreasing the jet radius will tend to break the event into more jets with
reduced transverse momentum for each jet, making it less probable for a single jet
to pass the E%;’tB > 8 GeV cut. Thus, the cross section is reduced with decreasing
jet radius as shown both by the predictions and the measurements.

Conclusions regarding the measured jet cross sections

Here is an outline of the conclusions regarding the inclusive-jet cross section mea-

surements:

e They probe an extended kinematic regime with respect to previous analyses
due to the increase in the proton beam energy;

e The improved experimental uncertainties and the precision of the predictions
in this regime provide a compelling test of pQCD;

e [t is concluded that NLO QCD provides predictions with comparable precision
in the range R = 0.5 — 1. For larger values of R, e.g. R = 1.2, it was estimated
that the uncertainty on the NLO QCD calculations due to terms beyond NLO
increases up to about 10% for high Q? values (see Fig. 3.1). On the other hand,
the hadronisation correction estimated for the cross sections with smaller radii,
e.g. R = 0.3, increases up to about 40% (see Fig. 5.12). It has been shown
that the quality of the description of the data by pQCD does not depend on
the jet radius for the range of R considered, meaning that 0.5 < R < 1is a
valid range for the k7 clustering algorithm.

e The improvement in the experimental uncertainties obtained will facilitate a
more precise determination of the gluon density in the proton at high x. This
is evidenced by Fig. 3.9, where it is shown that the gluon fraction becomes
substantial in the lower Q? region for these measurements, and Fig. 3.3, which
shows that the uncertainties in the prediction coming from that in the PDFs

is large and in fact dominant in some regions.

e The small uncertainties in the measurements yield small uncertainties in the
determinations of «g. This topic and the next are the subject of the next
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section;

e The wide range in EJI?tB and Q? allows for a test of the pQCD scale dependence

of a.



Results: Jet radius dependence of inclusive-jet cross sections in DIS at
188 HERA

ZEUS

~—~ 3 TT 71T TTTT TTTT TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ L ‘ L ‘ TTTT

§ 10°- . ZEUS82pb™ E
& : NLO O haer_etZO ]
‘%J'; 10 2 e Mg = EJT,B E
. §
10 ¢ 3
1 B R=10(x10) |
4f 1
10 - R=07(x1) —
-2 E [ jet energy scale uncertainty E
10 f Qz > 125 Gev?2 R=0.5 (x o.1)§
3l |cosy, | <0.65 ]
10 - -2<ng<1s -
:\ L1l ‘ ] ‘ ] ‘ L1l ‘ [ ‘ [ ‘ ] ‘ L1l ‘ L1l ‘ L1l \:

5 10 15 20 25 30 35 40 45 50 55

B (Gev)
B

ZEU

Nﬁ E\ ‘ T T T T 1T ‘ T T T T L ‘ E
3 " R=10(x 10) e ZEUS82pb™ J
210 NLO O hadi) 22
~ B - EJ E
g - R=07(x 1) Hr=ETe -
g 1¢ E
At ]

10 = R=0.5(x 0.1) =
o ]

10 3 =
al E

10 = E

-4 i 1 jet energy scale uncertainty i

10 ¢ ES>8Gev E
50 |cosy, | <0.65 B
- 2<n¥<15
6 ]

10 ;‘ L L I ‘ L L | ‘ ?

10° 10° 10"

Q? (Gev?)

Figure 6.1: The measured do’/dngfB and do/dQ? (dots) for different jet radii. The O(a?)
QCD calculations with pup = EJj?tB (solid lines) obtained using the ZEUS-S parametri-
sations of the proton PDFs are also shown. The inner error bars show the statistical
uncertainty. The outer error bars show the statistical and systematic uncertainties, not
associated with the uncertainty in the absolute energy scale of the jets (shaded bands),

added in quadrature.
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6.3 Determinations of o, (My)

6.3.1 The extraction of a4(M;) from the inclusive-jet cross section mea-
surements

The measured differential cross sections presented in the previous section were used
to determine values of as(My) using the method described in Chapter 1. The idea
is to parametrize the dependence of the prediction on the assumed value of ag(My)
(both in the matrix elements and in the PDF sets) and then use this parametrization
to obtain the value of ag(Myz) that reproduces the measured cross section. Here is
an outline of the method used:

e As shown in Fig. 1.19, the calculations are repeated using an NLO program
such as DISENT, assuming different values of ay(Myz) both in the matrix
elements and in the proton PDF set. Note that this procedure limits the
amount of calculations that can be made since there are only a limited amount
of PDF parametrizations available with different assumed values of as(My).

e For the case of the ZEUS-S PDF sets, five ! predictions were obtained for each
inclusive-jet cross section with a,(My) = 0.115, 0.117, 0.119, 0.121, and 0.123.

e These predictions lie in a curve like Fig. 1.19 which symbolizes the dependence
of the cross section on the value of oy (M) assumed.

e These five predictions were then fitted with a simple polinomial

do . .
5] @) = ctanorz) + ctaon), (6.1
which represents the dependence of the theorical prediction on a(My). Here
the Cf and C} are the parameters that are determined from a x? fit to the five
points (corrected for hadronization and Z%-exchange effects).

e Once the dependence of the prediction on ay4(My) is obtained, the value of
as(Mz) obtained from a measurement of a cross section is simply that which
reproduces that measurement.

Several cross-section measurements can also be combined to obtain a single
value of ag3(Myz). This yielded more precise determinations since the same value
of as(Myz) must simultaneously describe several measurements. In this case first the
parametrization of the dependence of each cross section prediction on ag(My) was

'Note that for other PDF parametrizations there are more (or less) sets available with alternate values
of as(Mz) assumed in the fits. For example for the CTEQ6AB (MRST2001) there are 10(3) different

available sets.



Results: Jet radius dependence of inclusive-jet cross sections in DIS at
198 HERA

obtained, and then the value of as(My) was extracted from the data by a simulta-
neous x? fit to the measured do/ dE%ffB(da /dQ?) for several regions of the variable
E%ﬁtB(Qz) using the parametrizations.

Using this method a value of as(My) was obtained from the various differential
cross sections and jet radii. It was found that the combined region of Q% > 500
GeV? with R=1 yielded the smallest theoretical and experimental uncertainties for
the value of a(Myz):

as(Myz) = 0.1207 + 0.0014(stat.) 73093 (exp.) T3:9922(th.) (6.2)

This value is consistent with previous values obtained at HERA and with the world
average (aVerldaverage — () 11894-0.0010) [66]. It has an overall uncertainty of ~ 3.7%,
making it one of the most precise extractions for this value to date. It should be
noted that the there are regions of phase-space where the experimental (theoretical)
uncertainties for this extraction can be reduced at the expense of increased theo-
retical (experimental) uncertainties. The experimental and theoretical uncertainties
associated to the extractions of ag(My) are discussed in detail in the next sections.

Fig. 6.10 shows the values of as(My) obtained using the method outlined above
from each of the measured do/dQ? data points and for the combined region of
Q? > 500 GeV2. The values shown in the figure correspond to the three choices
of the jet radius. The abscissas are the mean Q2 of the events in each bin of the
inclusive-jet cross section from which the values of ay(My) where extracted. The
inner error bars denote the statistical uncertainties, while the outer error bars are
the statistical and systematic uncertainties added in quadrature. The theoretical
uncertainties are shown as a solid vertical line next to each value of as(Myz). The
horizontal line represents the world average with its uncertainty.

Figs. 6.11 and 6.12 show the values of a5(My) obtained having used the MRST2001
and CTEQG6AB sets to obtain the dependence of the predictions on the value of
as(My), respectively. The values obtained are consistent with those of Fig. 6.10.
The values in Fig. 6.10 were used as the default values. This choice is explained
in the next section, regarding the theoretical uncertainty in the extracted value of
as(My) due to that on the proton PDFs.

Since the values of a4(My) were obtained at different energy scales, the fact
that they agree when evolved down to the My implies that the measured energy
scale dependence agrees with that of pQCD. The values of a,(My) extracted from
the do/ alEgﬁffB measurements are plotted in Fig. 6.13 at the average EJTCtB values
corresponding to the EﬂﬁtB bins from which they were obtained, a(< E%;’tB >). These
plots make the test of the scale dependence of ay as predicted by pQCD visually
evident. The error bars are as those for the previous figures. The plots show that

the measured scale dependence of ay is in agreement with that predicted by pQCD



6.3. Determinations of as(My) 199

and illustrate the asymptotic freedom property of QCD. Since the particular scale
dependence of a, for a gauge theory is determined by the color factors, this also
constitutes a test of the underlying symmetry group assumption of pQCD. The
explicit values of the results shown in Fig. 6.13 are shown in Table 6.5 Overall these
plots represent a compelling and precise test of the validity of pQCD as the theory
for the strong interactions.

Conclusions regarding the determinations of as(My)
Here is an outline of the conclusions regarding the determinations of a(Myz):

e Extractions of a; have been obtained from improved measurements of inclusive-
jet cross sections with respect to E%?tB and Q%. All the values are consistent
among themselves as well as with the world average;

e The agreement of the ay(My) values obtained from different energy scales
represents a compelling test of the energy-scale dependence of a, predicted
by pQCD. Since the shape of as(ug) is governed by the color factors as dis-
cussed in Chapter 1, these values test directly the underlying symmetry group
assumption of pQCD:;

e Moreover, the agreement of the values of as(Myz) obtained using different jet-
radius assumptions shows that a consistent analysis can be made varying the
value of R within the range 0.5 < R < 1;

e A single value obtained from the combined region Q? > 500 GeV? yielded
the highest precision to date in the determination of a, using ZEUS data
alone. This value will help constrain the uncertainty in the world average
when included;

e The precision of these extractions signals the best venue to follow for a HERA
combined value of ags(Myz). As will be discussed at the end of this section, such
a value has been obtained by combining the ZEUS do /dQ?* measurements with
similar measurements from the H1 Collaboration.
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Figure 6.10: The values of as(My) determined from the measured do/dQ? using the
ZEUS-S PDF set for R=1, 0.7 and 0.5. The value of as(Myz) obtained from the combined
region of @? > 500 GeV? is also shown. The inner error bars denote the statistical
uncertainty, while the outer error bars are the statistical and systematic uncertainties
added in quadrature. The theoretical uncertainties are shown as a solid vertical line
next to each value of as(Myz). The horizontal line represents the world average with its

uncertainty.
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Figure 6.11: The values of as(Myz) determined from do/dQ? using the MRST2001 PDFs
and R=1, 0.7 and 0.5. The value of as(Mz) obtained from the combined region of Q% > 500
GeV? is also shown. The inner error bars denote the statistical uncertainty, while the
outer error bars are the statistical and systematic uncertainties added in quadrature. The
theoretical uncertainties are shown as a solid vertical line next to each value of ag(Myz).

The horizontal line represents the world average with its uncertainty.



Results: Jet radius dependence of inclusive-jet cross sections in DIS at
202 HERA

ZEUS

;N 016~ © ZEUS98-00 1 oo
5 HEREEE world average | ©ev)
0.14 % ]
r 5
0.12;-§..j-..flfr-{..-.ﬁ..J--_i__l____i_J __________ T
01r ]
i cteq6 R=1.0 ]
0.08 L L L L I ) ‘ L L L ] - ‘7
10° 10*
Q?(Gev?d)
ZEUS
S 016 © ZEUS98-00 | s
5 HEREEE world average | Gev)
014 ]
r i
o2 bl
01F ]
- cteg6 R=0.7 ]
008 L | | | | Ll
103 104
Q% (Gev?)
ZEUS
S 016 © ZEUS98-00 | s
5 HEREEE world average | Gev)
014 ]
: /
0'12"'%'4"'§'1"'g'1'“ﬁ"l""'i'l-"-"%--- ----- o
0.1F ]
i cteg6 R=05 ]
008 L | | | | Ll
103 104
Q* (Gev?)

Figure 6.12: The values of as(Mz) determined from do/dQ? using the CTEQ6 PDFs and
R=1, 0.7 and 0.5. The value of as(Mz) obtained from the combined region of Q2 > 500
GeV? is also shown. The inner error bars denote the statistical uncertainty, while the
outer error bars are the statistical and systematic uncertainties added in quadrature. The
theoretical uncertainties are shown as a solid vertical line next to each value of ag(Mz).

The horizontal line represents the world average with its uncertainty.
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Experimental uncertainties in the extracted values of a,(My)

The uncertainties on the extracted values of as (M) due to the experimental system-
atic uncertainties were evaluated by repeating the analysis for each systematic check
of the inclusive-jet cross section measurements. Fig. 6.14 shows the most significant
sources of systematic uncertainty considered for the determination of as(My). The
overall normalization uncertantinty from the luminosity determination was also con-
sidered. The largest contribution to the experimental uncertainty comes from the
jet energy scale and amounts to 2% on ay4(Myz). Due to the larger data sample
available, the statistical uncertainties were reduced substantially with regards to
previous measurements. Figs. 6.15 and 6.16 show the experimental uncertainties for
the jet-radius choices R=0.7 and 0.5. The experimetantal uncertainties do not show
a dependency on the choice of the jet radius for 0.5 < R < 1.

Theoretical uncertainties in the extracted values of a,(Myz)

The theoretical uncertainties considered are listed in this section. The uncertainty
due to terms beyond O(a?) was estimated by using the method proposed by Jones
et al. 7?7, and amounted to £1.5%. This method has the advantage of minimiz-
ing the influence of the statistics in the data on the estimation of the theoretical
uncertainties. It basically consists of three steps:

e Obtaining the dependence of the prediction on ay(My) as described above;

e Obtaining the theoretical prediction for the inclusive-jet cross sections with
the conventional variation on g between E%?‘;B /2 and 2 - E%pefg;

e The minimum variation of a4(My) such that the predictions with pur = E%FOtB
reach those with urp = 2E§;ﬁ33 or g = E%ﬁ% /2 is taken as the uncertainty in

Oés(Mz).

The uncertainty due to that in the proton PDFs was £0.7%. This uncertainty
was estimated in the same way as described for the inclusive-jet cross section theo-
retical predictions in Chapter 3. Essentially, the extraction of az(My) was repeated
for each possible variation of the parameters in the PDF parametrizations and then
eq. 3.3 was used to obtain the total error from that in the PDFs. Note that the
ZEUS-S PDF sets were chosen as the default sets. This is because, as already men-
tioned in Chapter 3, tensions among the data sets from different experiments spoil
a rigorous statistical treatment of the uncertainties in the MRST2001 and CTEQ6
parametrizations. For the ZEUS-S PDF set, all the data included in the QCD fit is
well understood and a rigorous statistical treatment is possible. Note that the jet
data were not used in the determination of the ZEUS-S PDF set. Fig. 6.17 shows a
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comparison of the uncertainties on the extracted values of o (My) stemming from
those in the PDF's. The use of CTEQG6 results in an uncertainty which is about dou-
ble that resulting from using the MRST2001 or ZEUS-S PDF sets. This is expected,
since the tolerance parameter used in their statistical treatment is larger than that
for the other two sets.

Finally, the uncertainty arising from the modelling of the parton cascade in the
MC simulation was calculated by using either LEPTO or ARIADNE for the correc-
tion of the theoretical calculation and amounted to +£0.8%. Figs. 6.18 through 6.20
show the theoretical uncertainties associated to the extraction of (M) separately,
as well as the total theoretical uncertainty. The uncertainties on the modelling of the
parton cascade increase as the jet radius decreases. As we showed in Chapter 5, the
hadronization corrections deviate increasingly from 1 as the jet radius is decreased.
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Figure 6.14: Relative systematic uncertainties on the determinations of as(Myz) from the
measured do’/dngefB (left) and do/dQ? (right) using the jet algorithm with R=1.0 and the
ZEUS-S PDFs.
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Figure 6.15: Relative systematic uncertainties on the determinations of as(My) from the
measured do’/dngefB (left) and do/dQ? (right) using the jet algorithm with R=0.7 and the
ZEUS-S PDFs.
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Figure 6.16: Relative systematic uncertainties on the determinations of as(My) from the
measured do’/dngefB (left) and do/dQ? (right) using the jet algorithm with R=0.5 and the
ZEUS-S PDFs.
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Figure 6.17: Relative uncertainty on the values of as(My) extracted from the measured
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Figure 6.18: Relative theoretical uncertainties on the extracted values of as(Myz) from
the measured differential cross section do/ dng% (left) and do/dQ? (right) with R=1 and
using the ZEUS-S PDFs.



6.3. Determinations of as(My) 211

Relative theoretical unc. on a_ using ZEUS-Sfor R=0.7

02 02
= -  Cascade c
D 0.1 ; 0.1 ;
= M =
m 0 = = 0 E 7777777711123
X o = 01—
o2 ool b b e b 02 ol Lol Lol
10 20 30 40 10 103 104
02 02
= - PDFs c
A % = 01 =
m 0 i W e AR 0 i i i =7
X .o = 01
o2 bl b b b 02 Rl Lol Lol
10 20 30 40 10 103 104
w— 02 [ 02
y— F =
A ot Hr 01 -
N 0 F W 0 E WMWW
X .o s 01
02 EL Lo v by v b g By 02 Al Lol Lol
10 20 30 40 10 103 104
02 02
E E Total =
a = 01
T E mm o T I T T
X - - IR
-01 E -0.1 —
02 HL Lo v by v b g By 02 Al Lol Lol
10 20 30 40 10 103 104
jet 2 2
E'® (Gev) Q° (GeV?)
T,B

Figure 6.19: Relative theoretical uncertainties on the extracted values of as(Mz) from the
measured differential cross section do/ dng% (left) and do/dQ? (right) with R=0.7 and
using the ZEUS-S PDFs.
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Figure 6.20: Relative theoretical uncertainties on the extracted values of as(Mz) from the
measured differential cross section do/ dng% (left) and do/dQ? (right) with R=0.5 and
using the ZEUS-S PDFs.
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A combined HERA determination of «a4(My)

The inclusive-jet cross section measurements were also used to obtain the first com-
bined HERA extraction of as(Mz). The six data points of the inclusive-jet differen-
tial cross section with respect to Q? for R=1 shown in Fig. 6.1 were used together
with the twenty-four data points of inclusive-jet differential cross sections with re-
spect to EJTCtB for different regions of Q? from the H1 Collaboration. A simultaneous
fit was done on all 30 data points in the same way as described above. The calcu-
lations were done at O(a?) using the program DISENT. In this case the PDF set
used was that of MRST2001. From Fig. 6.17 we have shown that the uncertainties
in the extraction of as(My) for this choice are similar to those using the ZEUS-S
PDFs. The rest of the parameters in the theoretical calculations were as those for

the extractions mentioned earlier.

Measurements and theory predictions are used to calculate a y?(ay(Myz)) func-
tion with the Hessian method, where parameters representing systematic shifts of
detector related observables are left free in the fit. The sources of systematic uncer-
tainty were treated as correlated for measurements within one experiment, but as
uncorrelated between the two experiments. It was checked that the model depen-
dence, which in principle could be correlated between experiments, had a negligible
effect whether it was treated as correlated or uncorrelated.

The x? function was defined as

=V MV 4> e (6.3)
k

where the covariance matrix M is composed of contributions from the statistical
and uncorrelated systematical errors, M = M5%#" + M"* " An element M;; of each
of the matrices denotes the covariance between bins ¢ and j. It is noted that M"™"
is diagonal, while for the present analysis M®%' is not. The latter is due to the
fact the H1 data were measured differentially in E7, which introduces a statistical
correlation between different Er bins in the same Q2 bin due to multijet events.

The vector V is defined as
Vi =07 — g1 =) bper), (6.4)
k

exp
7

(1)

with o the measured (predicted) cross section of bin ¢, which depends on
the free parameter ags(My) of the fit. d; denotes the correlated systematic error
for bin ¢ associated to source k. The systematic uncertainties are symmetric by
definition. The ¢, are Gaussian random variables and may be interpreted as pulls,
i.e. shifts caused by the systematics normalised to their uncertainty estimates. They
are determined in the y? fit but are not counted in the list of free parameters because

they are determined according to the Gaussian law hypothesis.
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The experimental uncertainty of the free parameter in the fit, i.e. ay(My), is
defined by that change in a,(Mz) which gives an increase in x? of one unit with
respect to the minimal value. The x? minimisation using MINUIT for the combined
fit yields

as(Mz) = 0.1198 + 0.0019 (exp), (6.5)

with x?/ndf = 27.4/29.

Several checks were performed to ascertain the stability of the fit due to the use
of the Hessian method to estimate the experimental uncertainty. The contribution
to the x? in the simultaneous fit of each of the 30 data points and of each systematic
source was determined. Most of the points were found to cluster around one unit of
x?2, so there is no strong tension in the simultaneous fit to both data sets from the
different experiments. Another check performed quantified the constraint provided
by one data set on the other regarding the correlated systematic uncertainties. It
was found that there is no significant change in the mean value of a given correlated
source and only a small constraint is observed to be given by the data set of the
other experiment when performing the simultaneous fit.

The sources of theoretical uncertainty considered include terms beyond NLO,
the factorisation scale and the uncertainties coming from the PDFs and the hadro-
nisation models. The uncertainty on as(Mz) coming from each source amounts
to:

e the uncertainty coming from terms beyond NLO was estimated by varying the
renormalisation scale by factors 0.5 and 2 in the calculations and using the
method of Jones et al. The uncertainty on the value of as(My) is 0.0021.

e the effect of the uncertainty due to the value of the factorisation scale was
estimated by varying puz by factors 0.5 and 2 in the calculations and repeating
the fit to the data; it gave a contribution of 0.0010 to the uncertainty on
as(Mz);

e the uncertainty due to those of the PDF's was estimated by repeating the calcu-
lations using 30 additional sets from the MRST2001 analysis, which takes into
account the statistical and correlated systematic experimental uncertainties of
each data set used in the extraction of the PDFs. The resulting uncertainty
on as(Myz) was 0.0010;

e the uncertainty due to that on the hadronisation correction was estimated by
using different models of the parton cascade to correct the NLO calculations
for hadronisation effects. The resulting uncertainty on o (M) was 0.0004.
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The combined value of o (My) was:
as(My) = 0.1198 = 0.0019(exp.) % 0.0026(theo.) (6.6)

The combined experimental and theoretical uncertainty for this extraction is ~ 2.7%,
which is the smallest achieved at HERA thus far. Fig. 6.21 shows the best values
obtained by the ZEUS and the H1 Collaborations alone, compared with the HERA
average, the HERA combined value and the world average. All the HERA values
are consistent with each other and will help reduce the uncertainty in the world

average.
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Figure 6.21: Combined HERA value of as(Myz) compared to the ZEUS and H1 values,
the HERA average 2004 and the world average.
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EYY bin | do/dERS,
(GeV) | (pb/GeV)  dgtat Osyst OES CqED || Chad
R=1
8-10 63.98 0.68  *139 1385 || 0.95 || 0.91
10-14 29.29 0.34 9 12 |l 0.96 || 0.95
14-18 11.07 020 P35 9% || 0.96 || 0.96
18-25 3.234 0.080 59 Toias || 0.94 | 0.97
25-35 0.773 0.033 018 03 || 0.95 | 0.95
35-100 0.0312  0.0027 *J:9005  +0.0015 11 1.06 || 0.95
R=0.7
8-10 50.09 0.60 95 38| 095 || 0.77
10-14 23.38 0.30 932 fios || 0.96 || 0.83
14-18 8.97 018 55 AT || 0.96 || 0.88
18-25 2.659 0.071  f5o5 452 || 0.95 | 0.91
25-35 0.631 0.020 5032 0% || 0.96 | 0.92
35-100 0.0237  0.0022 P00 Toooie || 1.03 || 0.93
R=05

8-10 38.25 052 08 80 |l 0.95 || 0.64
10-14 17.78 026 T3 105 | 0.96 || 0.70
14-18 7.09 015 933 1933 || 0.95 || 0.77
18-25 2.257 0.063 503 To%s || 0.96 | 0.83
25-35 0.514 0.025 0030 to0ss || 0.97 || 0.86
35-100 0.0208  0.0019 *FPo0e  TO00il || 1.04 || 0.90

Table 6.1: Inclusive jet cross-sections da/alE,f.FO‘i3 for jets of hadrons in the

Breit frame

selected with the longitudinally invariant kp cluster algorithm for different values of R

(Fig. 6.1). The statistical, uncorrelated systematic and jet-energy-scale (ES) uncertainties

are shown separately. The multiplicative corrections applied to the data to correct for

QED radiative effects, Cqrp, and the corrections for hadronisation effects to be applied

to the parton-level NLO QCD calculations, Cy,q, are shown in the last two columns.
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Q? bin do /dQ?
(GeV?) (pb/GeV?) Ostat Jsyst OES CqQED || Chad
R=1
125-250 1.106 0.012 o o0 0.97 || 0.92
250-500 0.3671 0.0053 000 Tooid || 0.95 || 0.94
500-1000 0.1037 0.0020 9003 000 || 0.95 || 0.95
1000-2000 0.02439  0.00072  *000%  FO000es || 0.94 || 0.96
2000-5000 0.00396 0.00017  FP001L  Tho000s || 0.94 | 0.95
5000-100000 | 0.000036  0.000003 F3-50000%  +O-09000L || 0.98 || 0.96
R=0.7
125-250 0.855 0.010 0 o0 0.97 || 0.79
250-500 0.2913 0.0046  *000%  Tohis || 0.95 || 0.83
500-1000 0.0840 0.0018 000 000 || 0.95 || 0.86
1000-2000 0.02079  0.00066 90001 Toooods || 0.94 | 0.88
2000-5000 0.00332  0.00016 90008 Tooo00s || 0.93 | 0.88
5000-100000 | 0.000031  0.000003  +5-500002  +0.000001 || 0.97 || 0.90
R=05
125-250 0.6344 0.0088 0000  To0ses || 0.97 || 0.64
250-500 0.2246 0.0040  Fo0%s 0T |l 0.95 || 0.70
500-1000 0.0672 0.0016  *5007  Tooos || 0.94 | 0.75
1000-2000 0.01709  0.00060  *900057 o o00as || 0.94 || 0.79
2000-5000 0.00296  0.00015  *-0008  FOO0006 || 0.95 || 0.81
5000-100000 | 0.000028  0.000003 F3-500002 0090095 || 0.98 || 0.83

Table 6.2: Inclusive jet cross-sections do/dQ? for jets of hadrons in the Breit frame selected
with the longitudinally invariant k7 cluster algorithm for different values of R (Fig. 6.1).
Other details as in the caption to Table 6.1.
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EfYy bin | do/dEYYy
(GeV) (pb/GeV) 5stat 5syst 5ES CQED Chad
125 < Q% < 250 GeV?

8-10 32.97 049  *131 *185 || 0.96 || 0.90
10-14 13.00 022 919 0T | 0.98 || 0.94
14-18 3.71 011 B 02 || 0.97 || 0.94
18-25 0.835 0.037 905 00 || 0.94 || 0.93

25-100 0.0160  0.0014 P05 Tooeil || 0.97 || 0.86
250 < Q2 < 500 GeV?

8-10 18.40 0.38  *0TL  f0Es || 0.94 || 0.92
10-14 8.74 019 9% 1932 |l 0.96 || 0.95
14-18 3.30 011 g At || 096 || 0.97
18-25 0.889 0.042 904 %2 0l 0.92 || 0.97

25-100 0.0242  0.0020 FP00s  Foo0iT || 0.95 || 0.91
500 < Q2 < 1000 CGeV?

8-10 8.79 026 93 1030 |l 0.96 || 0.91
10-14 4.69 0.14  *01 I || 0.94 | 0.95
14-18 2.239 0.093  fg1ar 0% || 0.93 || 0.98
18-25 0.701 0.039 o0 o0 || 0.96 || 0.99

25-100 0.0335  0.0027 Fgo0is Toooie || 0.96 || 0.97
1000 < Q2 < 2000 GeV?

8-10 3.30 016 51 009 1 0.93 || 0.93
10-14 1.985 0.091 59T HO0T 1 0.91 || 0.95
14-18 1.115 0.069 0% To0os || 0.98 | 0.99
18-25 0.492 0.034 %% Toote || 0.93 | 0.99

25-100 0.0263  0.0026 0001 To00ie || 1.00 || 1.00
2000 < Q% < 5000 GeV?

8-10 1.292 0.095 9130 00s || 0.92 || 0.90
10-14 0.858 0.060 5031 o006 || 0.90 | 0.93
14-18 0.612 0.052  *0m0 o0 |l 1.02 || 1.00
18-25 0.242 0.024  *003% o0 || 0.96 || 1.00

25-100 0.0185  0.0021  *5:00%3 o002 || 0.91 || 0.99
5000 < Q% < 100000 GeV?

8-10 0.225 0.037  goor  o00s || 099 || 0.93
10-14 0.267 0.037 5033 0% || 0.96 | 0.93
14-18 0.122 0.024 007 F000s || 0.97 || 0.98
18-25 0.070 0.013 591 o000 || 0.98 | 0.99

25-100 0.0114  0.0022 90053 o000t || 0.99 || 1.00

Table 6.3: Inclusive jet cross-sections aicr/dE’,ﬁ3 for jets of hadrons in the Breit frame
selected with the longitudinally invariant kp cluster algorithm in different regions of Q2
(see Fig. 6.2). Other details as in the caption to Table 6.1.
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R Ojets
(b)) bstat Osyst  OmS || CqeD || Chad
Q?>125 1
05| 197.8 1.9 *33  #33\ 0.96 || 0.70
0.7 255.6 2.1 3% 100 096 || 0.82
1.0 | 3215 24 5 T4 096 || 0.94
Q?* > 500 ~1
05| 623 1.1 5 FT 095 || 0.77
07| 758 1.3 3t 0.95 || 0.87
1.0 91.6 1.4 *p5 0 200095 | 0.95

Table 6.4: Inclusive jet cross-sections ojets for jets of hadrons in the Breit frame se-
lected with the longitudinally invariant kp cluster algorithm for Q2 > 125 and 500 GeV?
(Fig. 6.3). Other details as in the caption to Table 6.1.

(Bfg) | o

(GGV) Ostat 55}’513 dtheor
S0 om0 Thom womer o
17 |oams HEE onm s
17 |0 g e o
07 [o1st0 R o o
386 01512 U B e
w2 i Qg RN o

Table 6.5: The o values determined from a QCD fit of the measured do/ dE%ejB with R =1

as a function of Egﬁ% (Fig. 6.13). The statistical, systematic and theoretical uncertainties

are shown separately.



Chapter 7

Results: Angular correlations in
three-jet production in NC DIS at
HERA

7.1 Introduction

Three-jet angular-correlation variables devised to study the underlying symmetry
of the strong interactions in a transparent way in ep scattering were introduced in
Chapter 1 and studied in detail in subsequent chapters. By ‘transparent’ what is
meant is that the angular correlations show a sensitivity to the gauge symmetry of
the interaction that is independent of the value of ay(My), the running of a; or
PDF evolution.

As shown in chapter 3 this independence is attained by normalizing the cross
sections. Further conditions, such as a restricted ? region can be imposed to rid the
angular correlations of any residual dependence on the running of a;. In the case of
the n/°! variable this dependence is still significant at O(a?) even after normalizing
the cross sections and therefore an analysis for the restricted 500 < Q% < 5000 GeV?
region has also been fully carried out. In Chapter 3 we also showed how obtaining
the predictions at a higher perturbative order, O(a?), lessens the dependence of the
correlation variables on the running of a.

The theoretical and experimental uncertainties involved in the analysis are dis-
cussed in detail in Chapters 3 and 4, as well as the correction factors obtained using
MC simulations that are applied to correct the data and the predictions for various
effects. The current chapter presents the final results for this analysis, which are
listed below:

e Measurements of normalized differential three-jet cross sections as functions of
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the angular-correlation variables O, cos s, €08 Bysw, and 77 for the region
Q? > 125 GeV? and 500 < Q? < 5000 GeV?, respectively;

e Measurement of the total three-jet cross section in NC DIS for Q* > 125 GeV?
and 500 < Q? < 5000 GeV?, respectively.

e Evaluation of the CDM and MEPS models with regards to reproducing the
angular correlation distributions in the data;

e Comparison of the measured angular correlations to O(a?) and O(a?) QCD
predictions;

e Comparison of the measured angular correlations to the O(a?) predictions us-
ing various symmetry groups. The groups considered are SU(3), U(1)3, SU(N)
for large N, and the extreme choice Cr = 0. A discussion of the potential that
the angular correlations have towards an extraction of the color factors is also
provided.

The comparison of the data with different models testifies that these observables
have the potential to provide a direct extraction of the color factors. By itself,
the comparison represents a transparent test of the essential assumption of pQCD,
namely that the underlying symmetry of the strong interactions is SU(3).

7.2 Comparison to the MC simulations: CDM and MEPS

As discussed in Chapter 3, two different MC simulations were used in this analysis.
They are both based on O(ay) pQCD calculations and for this reason the presence of
a third jet is entirely a consequence of the parton cascade. Thus, it is important to
compare how well the CDM and the MEPS models describe the angular correlation
distributions of the data. This comparison was already shown in Chapter 4, where
the aim was to show that it is legitimate to use the MC simulation based on MEPS to
obtain the necessary correction factors to be applied to the data or to the predictions.
In this section the figures are shown again under a different light. Here the aim is to
describe the performance of each of the parton-cascade models in reproducing the
angular correlations in the data.

Fig. 7.1 shows the number of events in the data sample found in each bin of each
of the four angular correlation variables for the the kinematic region Q? > 125 GeV?2.
The distribution of events in the data is compared to each of the MC simulations
at the detector level. Here the MC distributions are normalized to the number of
events in the data. Both models provide a description of the data which is fairly
good. The MEPS model, however, appears to give a slightly better description. This
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difference between the models is most significant for the O distribution, where the
CDM distribution is tilted with respect to the data. For the case of cos (s, CDM
again offers a less adequate description of the data, since it overshoots it in the
lowest bin, where again MEPS gives a better description. For the cos ags and nZ¢

distributions, both models are able to describe the data well in general.

Fig. 7.2 shows the same comparison but for the restricted kinematic region of
500 < Q2 < 5000 GeV?2. The statistical uncertainties are larger for this data sample
since the number of events available is about half as for the Q? > 125 GeV? sample.
The conclusions are the same, however, with MEPS providing a more adequate
description of the data in this region.

In conclusion the MEPS model is able to provide a better description than CDM
of the angular correlations for three-jet final states in the kinematic regions under
study.
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Figure 7.1: Comparison of the MC simulations using the MEPS (solid lines) and CDM
(dashed lines) models with the distribution in the data for the angular-correlation variables
O, cosasg, oS frg, and nﬁrf(tm for the region of Q% > 125 GeV?2. It is found that the

MEPS model provides a better general description of the data for these variables.
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Figure 7.2: Comparison of the MC simulations using the MEPS (solid lines) and CDM
(dashed lines) models with the distribution in the data for the angular-correlation variables
O, cos aog, oS (g, and nﬁfﬁx for the region of 500 < Q% < 5000 GeV?. It is found that
the MEPS model provides a better general description of the data for these variables.



Results: Angular correlations in three-jet production in NC DIS at
226 HERA

7.3 Comparison to pQCD at O(a?) and O(a?)

Both the program DISENT and NLOJET++ have been used to obtain the O(a?)
predictions independently. As discussed in Chapter 3, the program DISENT can
perform only up to O(a?) calculations for inclusive three-jet production in the Breit
frame and it does not have by default the option to change the color factors. In order
to obtain the predictions with different models the color factors had to be identified
and disentangled from the calculations to obtain an explicit expression of the form
of eq. 1.28. With this expression at hand, the predictions for different groups are
straightforward since they involve only a simple change of the color factors. DISENT
was originally used for all the calculations in the analysis.

Recently NLOJET++ has become a viable option for three-jet calculations at
O(a?). However, obtaining an expression such as eq. 1.28 at O(a?) using NLO-
JET++ is more involved. The color factors are embedded in the calculations such
that it is not possible to disentangle them in the same way as in the DISENT pro-
gram. It is however possible to carry out calculations with different SU(N) groups.
Thus, in order to obtain an equation such as eq. 1.28, enough predictions with differ-
ent SU(N) assumptions need to be calculated to obtain a set of equations that can
solved for the sub-process cross sections. This recipe has been carried out success-
fully at O(a?) and cross-checked with DISENT. Figs. 7.3 and 7.4 show the O(a?)
calculations for SU(2), SU(3), SU(5) and SU(10) from which such a set of equations
was solved to get the explicit terms at O(a?) in eq. 1.28. The bottom plots in these
figures show the relative differences of the predictions with respect to SU(3). In
section 7.5 we will show that the relative differences among the SU(N) predictions
are larger at O(a?).

As mentioned, carrying out an analysis at O(a?) has the additional complication
that an equation such as eq. 1.28 at O(a?) contains more color-factor combinations
than at O(a?), which implies a larger set of equations to be solved using NLO-
JET++. Moreover, the statistics needed for a good convergence with the NLO-
JET++ program are significantly larger than with DISENT and are therefore more
demanding in terms of CPU time. For these reasons obtaining the predictions for
other models such as an Abelian model at O(a?) is still a work in progress. For
the time being NLOJET++ has been used at O(a?) to study the impact of the
contribution from the higher-order terms to the O(a?) predictions.

For the remainder of this section all the calculations shown are for SU(3). Fig. 7.5
shows the measured normalized differential cross sections for three-jet production in
NC DIS (dots) integrated over EﬂﬁtB > 8 GeV, EJ;;?3 > 5 GeVand —2 < 75" < 1.5
in the kinematic region given by Q? > 125 GeV? and |cos~,| < 0.65 as functions
of O, cosass, cos Brsw and 1€ . The data points are plotted at the bin centers.

mazx*
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The measurements are compared to the O(a?) and O(a?) pQCD calculations made
using NLOJET++. The lower part of the figures displays the relative difference to
the O(a?) calculations, and the hatched band shows its relative total uncertainty.

The O(a?) predictions are able to provide a consistent description of the data
within its uncertainties. However, the O(a?) calculations give a more precise and
accurate description everywhere. In the lower cos apg region the O(a?) prediction dif-
fers significantly from the data point (although still within the O(a?) uncertainties).
Note that the O(a?) contribution improves the agreement with the data significantly
for this region. The description of n7¢ also improves considerably with the O(a?)
predictions. In Fig. 7.6 similar results are shown for the restricted 500 < Q? < 5000
GeV? region.

In conclusion, both the O(a?) and O(a?) predictions are found to be consistent
with the data within their respective theoretical uncertainties. The distributions
in the O(a?) predictions, however, have reduced theoretical uncertainties and are
found to resemble more closely the data distributions. The impact of the O(a?)
contributions to the predictions are found to be significant in some regions.
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Figure 7.3: Measured normalized differential cross sections compared to the O(a?) predic-
tions for SU(N) with N=2, 3, 5 and 10 made using NLOJET++ for the kinematic region
defined by Q? > 125 GeV2. The lower part of the figures displays the relative difference
to the O(a?) calculations based on SU(3). The ZEUS-S PDFs have been used in the

calculations.
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Figure 7.4: Measured normalized differential cross sections compared to the O(a?) predic-
tions for SU(N) with N=2, 3, 5 and 10 made using NLOJET++ for the kinematic region
defined by 500 < Q? < 5000 GeV?2. The lower part of the figures displays the relative
difference to the O(a?) calculations based on SU(3). The ZEUS-S PDFs have been used

in the calculations.
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Figure 7.5: Measured normalized differential cross sections compared to the O(a?) and
O(a?) pQCD calculations made using NLOJET++ for the kinematic region defined by
Q? > 125 GeV?2. The lower part of the figures displays the relative difference to the O(a?)
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been used in the calculations.
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Figure 7.6: Measured normalized differential cross sections compared to the O(a?) and
O(a?) pQCD calculations made using NLOJET++ for the kinematic region defined by
500 < Q2 < 5000 GeV?2. The lower part of the figures displays the relative difference to
the O(a?) calculations and the hatched band shows their total uncertainty. The ZEUS-S

PDFs have been used in the calculations.
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7.4 Comparison to O(a?) predictions based on different sym-

metry groups

The measured normalized cross sections for the angular variables have been com-
pared to the O(a?) predictions based on SU(3) in Fig. 7.5. The symmetry groups
to which the measured correlations are compared in this section are (see Fig. 7.7):

an Abelian model based on U(1)3, SU(N) for large N, SO(3) and the extreme choice
Cr = 0. The angular-correlation distributions are discussed separately below:

e Op: The measured angular correlation (dots) is reasonably well described by
the O(a?) pQCD prediction (solid line). This variable was designed to be
sensitive to the relative contribution of TGV in op. The figure shows that the
difference between the U(1)? prediction and the SU(3) prediction is only up to
~ 10%. This is due to the fact that op has a small contribution to the overall
cross-section of ~ 13%, substantially smaller than in e*e™ annihilation. Thus,
the sensitivity of the angular correlations to the TGV is relatively suppressed
for ep scattering. For the choice Cr = 0, however, the relative difference with
pQCD goes up to ~ 20% and is clearly disfavoured by the data;

® oS (p3: The measured angular correlation (dots) is reasonably well described
by the O(a?) pQCD prediction (solid line). In the first bin the discrepancy
is large, but as we showed in Fig. 3.4, so is the theoretical uncertainty. From
the figures in the previous section we know that the O(a?) contribution is
significant in this region. The Abelian prediction deviates from SU(3) by up
to ~ 10%, for the same reason mentioned above;

® C0S Jksw: The measured angular correlation (dots) is reasonably well described
by the O(a?) QCD prediction (solid line). The sensitivy of this angular cor-
relation is similar to the others. Again the Abelian prediction deviates from
SU(3) by up to ~ 10% in some regions, whereas the choice Cr = 0 is again
clearly disfavoured by the data.

e 7Jt . The measured angular correlation (dots) is reasonably well described by
the O(a?) QCD prediction (solid line). For this angular-correlation variable,
the sensitivity to the TGV is increased with respect to the rest. The relative
difference with the Abelian model goes up to ~ 30% in some regions, whereas

both SU(N) for large N and Cr = 0 are clearly disfavoured by the data.
jet

/e Where the

The statistical uncertainties, however, increase in the region of n
sensitivity to the TGV is largest.

In general the relative difference between SU(3) and the Abelian model is ~ 10%,
except for nJ¢  where it goes up to ~ 30%. The ability of the angular correlations

mazx?
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to discern among different symmetry groups is suppressed by the relatively small
contribution from og and by the relatively large statistical uncertainties in the region
where the sensitivity to the TGV is largest. Nevertheless, the angular correlations
show sufficient sensitivity to distinguish between pQCD and the predictions based
on SU(N) for large N and Cr = 0, especially using the 7/¢! ~angular-correlation

variable.

Fig. 7.8 shows the same type of comparisons for the restricted phase-space region
of 500 < Q% < 5000 GeV?2. Although the sensitivity of the angular correlations to
the color factors has not decreased, the statistical uncertainties for this region are
larger, since the data sample is cut almost by half by restricting the Q? range to
this region. All the comments for Fig. 7.7 also apply to this figure. Tables 7.1
through 7.4 contain the actual numbers of the measured normalized cross sections
as well as the experimental uncertainties and the correction factors applied to the
data and the predictions.

The integrated three-jet cross section in NC DIS for Q* > 125 GeV? and 500 <
Q? < 5000 GeV? have also been measured and have been found to be:

Tepzjers = 11.48 4 0.35(stat.) {99 (syst.)pb

and
Oepsjets = D.73 3 0.26(stat.) ") o0 (syst.)pb

respectively. The total cross sections reflect the fact that the restricted phase-space
has the disadvantage of reducing the statistics by ~ 1/2.
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Figure 7.7: Measured normalized differential cross sections for three-jet production in NC
DIS (dots) integrated over EﬁﬁtB > 8 GeV, Egpeg?’ > 5 GeV and -2 < ngt < 1.5 in the
kinematic region given by Q2 > 125 GeV? and | cos ;| < 0.65 as functions of O, cos ass,
€08 Prsyy and nﬁ,féx The data points are plotted at the bin centers. The error bars are the
same as in the caption to Fig. 6.1. For comparison, the O(a?) calculations are shown for
different symmetry groups. The lower part of the figures displays the relative difference

to the calculations based on SU(3).
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Figure 7.8: Measured normalized differential cross sections for three-jet production in NC
DIS (dots) integrated over EﬁﬁtB > 8 GeV, Egpeg?’ > 5 GeV and -2 < ngt < 1.5 in the
kinematic region given by 500 < Q2 < 5000 GeV? and | cosyy| < 0.65 as functions of Oy,
COS (v93, COS Fgy and n%f,tm The data points are plotted at the bin centers. The error bars
are the same as in the caption to Fig. 6.1. For comparison, the O(a?) calculations are
shown for different symmetry groups. The lower part of the figures displays the relative

difference to the calculations based on SU(3).
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7.5 Discussion of an extraction of the color factors and con-

clusions

One of the aims of studying angular correlations in three-jet production in ep scat-
tering is to make a direct extraction of the color factors from the data. As mentioned
in Chapter 1, this has been carried out successfully in the past in e™e~ annihilation
at LEP. The beauty of this approach lies in the fact the underlying gauge sym-
metry can be observed in a transparent way through the angular correlations. We
have seen that this is also possible in ep collisions since it has been shown that the
angular correlations show sensitivity to the underlying symmetry, albeit relatively
suppressed, in ep scattering.

The extraction procedure is straightforward once a formula of the form of eq. 3.5
is obtained, since then one needs only leave the color factors as free parameters in a
fit of the theory to the data. In practice the fit procedure is somewhat complicated
by the correlation matrices which enter into the fit of the normalized cross sections.
A direct extraction of the color factors using eq. 3.5 at O(a?) has been attempted
despite the relatively large statistical uncertainties in the data sample and it has
been found that the convergence of the fit is not sufficiently good with the present
statistics.

In light of this, several alternate venues have been followed:

e Combinations of the angular-correlation variables have been fitted simultane-
ously. It was found that the fit is not sufficiently good;

e Double differential cross sections with respect to a pair of angular-correlation
variables have been measured and calculated at O(a?) for the different sym-
metry groups. These two-dimensional surfaces have been scanned for partic-
ular regions where the ability to discern among the different groups might be
enhanced. No such a region was found such that the enhancement could com-
pensate for the increased statistical uncertainty of restricting the phase-space
to such an enhanced region;

e The region of Q? < 125 GeV? was scanned for a region where the ability
of the correlations to discern among the different symmetry groups might be
enhanced. No such a region were found such that the enhancement could
compensate for the increased statistical uncertainty of restricting the phase-
space to such an enhanced region;

e The analysis has been carried out with jet-radii R=0.7 and R=0.5. It was
found that the discernability among the different symmtry groups does not
increase with these alternate choices of the jet-radius.
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In order to gain sensitivity in the predictions to the underlying gauge group,
predictions with different SU(N) choices have been obtained at O(a?). As already
discussed, in order to carry out the full analysis at O(a?) it is necessary to obtain
the O(a?) version of eq. 1.28, which require enough predictions with different SU(N)
assumed groups to solve for the sub-process cross sections. The CPU time required
in this case is more demanding, and for this reason this is still a work in progress;
however, some predictions at O(a?) have already been obtained. Figs. 7.9 and 7.10
show the O(a?) calculations for SU(2), SU(3), SU(5) and SU(10). The bottom plots
in these figures show the relative differences of the predictions with respect to SU(3).
Here we observe that the relative differences among the SU(N) predictions are larger
at O(a?) than at O(a?).

To summarize, it was found that the present statistical uncertainties in the mea-
surements prevent a direct extraction of the color factors. The logical venue to
follow is discussed next. We showed in Chapter 3 that the dependence with the
running of o, decreases significantly by performing the calculations at O(a?). Thus,
with this reduced dependence the range of Q? can be increased and the statistical
uncertainties reduced. This seems necessary anyway since the overall description
of the data improves by the contribution from O(a?) effects, as shown in Fig. 7.5.
Moreover, once the HERA II data is analized the entire data sample for HERA
will become available providing a more than 5-fold increase in the luminosity with
respect to that used for this analysis. Carrying out the analysis at O(a?) while
measuring the angular correlations with the combined HERA I and HERA II data
sample is a promising venue to extract the color factors.

The conclusions of the angular-correlations analysis are:

e Angular-correlation observables that show sensitivity to the underlying sym-
metry structure in a way independent from PDF evolution and the running of
a in ep scattering have been devised;

e Measurements of these angular-correlation variables have been obtained and
compared to MC simulations based on the CDM and MEPS models, respec-
tively. It has been found that while both models can generally describe the
data well, the MEPS model provides a slightly better description.

e The measurements of the angular correlations have been compared to O(a?)
predictions using different symmetry groups. It has been found that the pQCD
predictions are always consistent with the data within the uncertainties. The
data clearly disfavours some models such as those based on Cr = 0 or SU(N)
for large N; however, but the ability of the data to distinguish between SU(3)
and an Abelian model remains elusive due to the relatively large statistical
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uncertainties in the data sample.

e The predictions to O(a?) have been obtained and contrasted with those made
at O(a?) in pQCD. Tt has been found that while the pQCD predictions at
O(a?) are always consistent with the data within the uncertainties, the O(a?)
predictions do generally better, especially in the lower cos a3 region and in
the variable n/¢t

mazx’

0.03 —
s ] 2
% oo 0(0)SU()  * ZEUSDIS82pb™ % | Q®>125Gev?
© | — 0@ suE) | _§
&) S ot i
.02 - - o}
5 0.02 I O(uz) SuU(5) ] 8
[ - 0@ Su(10) =
=
~ L
001 |- R 05 7
@02;11:}111}111}111}1; @02;1111}1:11}1111}11:1;
o Tk 1 o Tk 1
2 o2F E 2 o2F i I E
% 0 L e - I, . ,VE.»V,:.::»; ] % 0 E L% JPPRNLLL i """ i = 'i 1
T E e EE R ° E RS GRuEie ]
02 { 1 B 02F i B
'0'4}”‘\”‘\”‘\”‘\‘{ '0'4}‘H‘\HH\HH\HH{
0 20 60 80 1 0.5 0 1
O, (deg) cos(0l,)
3
’% 15 [ 11_5‘ g
X =
x| S
Yg L (s}
S L O isp .
L i o
5 a2 I
3 1| ]
05 . i
[ 05 -
o OF } - 1 g 0
5 04F E 5
2 02EFE 3 e 05F - 3
£ I I 1 £ £ - ]
5 S S S | | E 5 E I S ST
T 0L e e s OF ! =
T ooE i E - S
“E ] 05 B
04E Ll aE | Ll |
1 -05 0.5 1 -2 1 0 1 n]e‘
co BKS\N) max

Figure 7.9: Measured normalized differential cross sections compared to the O(a?3) predic-
tions for SU(N) with N=2, 3, 5 and 10 made using NLOJET++ for the kinematic region
defined by Q2 > 125 GeV2. The lower part of the figures displays the relative difference
to the O(a?) calculations based on SU(3). The ZEUS-S PDFs have been used in the

calculations.
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Figure 7.10: Measured normalized differential cross sections compared to the O(a?3) pre-
dictions for SU(N) with N=2, 3, 5 and 10 made using NLOJET++ for the kinematic
region defined by 500 < Q? < 5000 GeVZ2. The lower part of the figures displays the
relative difference to the O(a?) calculations based on SU(3). The ZEUS-S PDFs have

been used in the calculations.
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©p bin | (1)do/dOy

(deg) 5stat 5syst 5ES C(QED C(had
Q? > 125 GeV?
0-18 0.00372  0.00051 +0-00019 +0.00014 110 96 [ 1.01

18-36 0.00770  0.00067 FJ0000s 000050 || 0.91 | 0.99
36-54 0.01201  0.00085 0 000a  to000se || 0.99 | 1.02
54-72 0.01438  0.00085 *0000ss  Tooooi1 || 1.04 | 1.01
72-90 0.01686  0.00091 *g00ize  *o000a || 1.03 || 0.98
500 < Q2 < 5000 GeV?
0.- 18. 0.00481  0.00091 *FJ090%  *o.00010 || 0.92 | 0.96
18.- 36. 0.0099 0.0011  *5:00%3 o001 || 0.99 || 1.01
36.- 54. 0.0141 0.0014  *5:0005  fo0o0s || 0.97 || 1.01
54.- 72. 0.0134 0.0012 0008 fo0oor || 1.07 || 1.02
72.- 90. 0.0133 0.0012  *o00%s  Fo-0008 Il 1.01 || 0.98

Table 7.1: Measured normalized differential cross section (%)da /dOp for three-jet produc-
tion in NC DIS integrated over Egﬁ% > 8 GeV, Eiyreg?’ > 5 GeV and —2 < njgt < 1.5 in the
kinematic region given by Q2 > 125 GeV? (top) and 500 < Q? < 5000 GeV? (bottom) and
| cosyn| < 0.65. The statistical, systematic and jet-energy scale uncertainties are showed
separately. The multiplicative correction applied to correct for QED radiative effects and

for hadronization effects are shown in the last two colums.

cosagy | (L)do/dcos as;

Ostat  Osyst  OES || CQED || Chad
Q% > 125 GeV?
-1--06 0.117 0.017 503 00 || 1.01 || 0.93
-0.6 - -0.2 0.338 0.032 10052 000 || 1.05 || 0.91
-0.2-0.2 0.568 0.042 0015 000 1l 0.94 || 0.92
0.2 - 0.6 0.993 0.061 *9015 00T || 0.99 || 1.02
0.6 - 1. 0.484 0.039 0013 ooor || 1.07 || 1.17
500 < Q2 < 5000 GeV?

-1.--0.6 0.199 0.033  *001% oo || 1.09 || 0.88
-0.6 - -0.2 0.381 0.051  *50s2 000 || 1.02 || 0.98
-0.2-0.2 0.589 0.065 0875 Totoe || 0.97 || 0.92
0.2-0.6 1.018 0.092 9080 000 || 0.99 || 1.02
0.6 - 1. 0.313 0.044 9% To00s || 1.02 || 1.22

Table 7.2: Measured normalized differential cross section (%)da/d cos a3 for three-jet
production in NC DIS integrated over Egﬁ% > 8 GeV, Eiyreg?’ > 5 GeVand —2 < njgt <15
in the kinematic region given by Q% > 125 GeV? (top) and 500 < Q*> < 5000 GeV?
(bottom) and |cos~y| < 0.65. Other details as in the caption to Table 7.1.
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c0S Brsw | (2)do/dcos Brsw

Ostat  Osyst  OES || CQED || Chad
Q% > 125 GeV?
-1--0.6 0.585 0.043  *50%0 008 || 0.95 || 1.06
0.6 -0.2 0.691 0.048 009 Toois || 1.03 || 1.04
-0.2-0.2 0.720 0.049 *501% 000 || 1.05 || 1.00
0.2-0.6 0.332 0.031  *505t 005 || 0.95 || 0.89
0.6-1 0.171 0.022 15050 Too0e || 0.96 || 0.88
500 < Q2 < 5000 GeV?

-1.--0.6 0.770 0.077 0% 00T |l 0.98 || 1.02
-0.6 -0.2 0.536 0.061 0110 oo |l 0.97 || 1.03
-0.2-0.2 0.497 0.059 *00s1 005 || 1.05 || 1.07
0.2-0.6 0.430 0.054 15028 Tooos || 1.06 || 0.98
0.6-1 0.267 0.043 15025 0015 || 0.93 || 0.85

Table 7.3: Measured normalized differential cross section (%)da/d coS Bsyw for three-jet
production in NC DIS integrated over Egﬁ% > 8 GeV, Eiyreg?’ > 5 GeVand —2 < njgt <15
in the kinematic region given by Q% > 125 GeV? (top) and 500 < Q? < 5000 GeV?
(bottom) and |cos~yp| < 0.65. Other details as in the caption to Table 7.1.

Mhae | (2)do/difhras
Ostat Osyst OES CqED || Chad
Q? > 125 GeV?
2--0.1 0.0042 0.0013  *5:0002 o000 || 1.12 || 0.87
-0.1-0.3 0.092 0.014  +9:009 40003 |\ 192 || 0.95
0.3 -0.7 0.267 0.028 90 To00s || 1.00 || 0.97
0.7-1.1 0.751 0.050 03 Fo%ei || 0.97 || 0.99
1.1-1.5 1.370 0.075 1901 000 || 1.00 || 1.02
500 < Q2 < 5000 GeV?

-2.--0.1 0.0059 0.0020  *5003 oo || 1.20 || 0.70
-0.1-0.3 0.111 0.024 g0 oot || 1.00 || 0.85
0.3-0.7 0.378 0.050 0% To00% || 1.00 || 0.97
0.7-1.1 0.918 0.085 90 oo || 0.97 || 1.05
1.1-1.5 1.066 0.096 19032 o030 || 1.02 || 1.03

Table 7.4:

and |cos | < 0.65. Other details as in the caption to Table 7.1.

jet

Measured normalized differential cross section (%)da/ AMmaz
duction in NC DIS integrated over EﬂﬁtB > 8 GeV, E%eg’?’ > 5 GeV and -2 < njgt < 1.5in
the kinematic region given by Q% > 125 GeV? (top) and 500 < Q2 < 5000 GeV? (bottom)

for three-jet pro-
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Chapter 8
Summary and Conclusions

This chapter contains a brief summary of the results presented throughout this
document.

8.1 Inclusive-jet cross sections in NC DIS and determina-
tions of ay(My)

A precise determination of the parton densities of the proton (PDFSs) is of essential
experimental importance, especially for future hadron collider experiments such as
the LHC. The precision of Standard Model predictions relies on the precision with
which the PDF's have been determined. In particular, the gluon density in the proton
is one of the essential ingredients for predictions of Higgs production in pp collisions.
We have discussed in Chapter 1 how the PDF's are obtained through global QCD fits,
where inclusive observables such as the measurements of F5 shown in Fig 1.13 have
provided most of the information on the PDF's, including that for the gluon PDF in
the mid- to high-z region. In this region the slope of F3 is however relatively flat and
therefore the resulting uncertainty in the gluon density is larger. In Fig. 1.14 we have
shown a global QCD fit carried out by the ZEUS Collaboration using ZEUS data
alone, where jet cross-section measurements were included in the fit for the first time
to help further constrain the gluon density in the mid- to high-x region. As has been
shown in Fig 1.16 the reduction in the uncertainty of the gluon PDF in this region
was subtantial. This was one of the motivations for improving the measurements of
inclusive-jet cross sections, accomplished by making new measurements with a more
than two-fold increase in the statistics with respect to the previous ones.

There are several sources of theoretical uncertainties in pQCD predictions for jet
observables, of which the dominant one has typically been that associated to higher-
order contributions. This source of uncertainty is reduced by restricting the phase
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space to high values of Q? where the perturbative approach is most reliable. In
Chapter 3 (see Figs 3.2 and 3.3) we have shown that inclusive-jet cross sections are
affected by a theoretical uncertainty associated to higher-order contributions that
is below 5% for Q% > 250 GeV?2. Thus, inclusive-jet cross-section measurements
have the advantage that they allow a precision comparison with fixed-order pQCD

predictions, serving as another motivation for these measurements.

A data sample was obtained consisting of NC DIS events at high Q? with at least
one high Er jet in the Breit frame. The sample was based on 81.7 & 1.8 pb~! of in-
tegrated luminosity collected with the ZEUS detector during the 1998-2000 (HERA
) running period. The features of the sample where reproduced through the use
of MC simulations (see Figs. 4.16 through 4.23), which as we showed in Chapter 4,
were used for the study of the reconstruction of the observables with the detector.
The MC simulations in combination with espcially selected data samples were used
to reduce the dominant experimental uncertainty for this type of measurements,
namely that associated with the jet energy scale, to within £1%. We have pro-
vided a quantitative estimation of all the sources of systematic uncertainty in the
measurements in Chapter 5.

The kr clustering algorithm is particularly suited for a comparison of the mea-
sured hadronic final state with the partonic final state predicted by pQCD. As we
showed in Chapter 5 the accuracy of the comparison has been further improved by
supplementing the predictions with ‘hadronization correction’ factors obtained using
the MC simulations (see Figs. 5.1 and 5.7).

Chapter 6 contained the final results for this analysis, which are measurements
of differential cross sections for inclusive-jet production in ep NC DIS. The cross
sections refer to jets of hadrons identified in the Breit frame with the kr cluster
algorithm in the longitudinally invariant inclusive mode. They are given in the
kinematic region of Q% > 125 GeV? and | cosvy| < 0.65.

In addition, inclusive-jet measurements were made in different regions of Q?
as functions of Eﬂﬁg, as shown in Fig. 6.2. The measurements are well described
by the NLO QCD predictions. The cross sections in different regions of Q2 are
sensitive to the gluon density in the proton. The precise measurements obtained
here are therefore of particular relevance for improving the determination of the
gluon density in future QCD fits.

NC DIS at HERA provides a well understood environment on which to study
the role of the jet-radius parameter of the kr cluster algorithm. A study of the jet-
radius paramater was done by carrying out the inclusive-jet analysis using different
values for R. The dependence of the inclusive-jet cross sections on the jet-radius has
been presented in Fig. 6.3. There we showed that NLO QCD provides predictions
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with comparable precision in the range R=0.5 — 1. Measurements of inclusive-jet
differential cross sections for these choices of the jet-radii have been presented (see
Fig. 6.1). The NLO QCD calculations provide a good description of the measured
inclusive-jet differential cross sections do/ dE%ffB and do/d@Q?* for R= 0.5,0.7 and

1. It is observed that the measured inclusive-jet cross section integrated above
2

2. =125 and 500 GeV? increases linearly with R in the jet-radius range studied.

A third important motivation for these cross-section measurements was that they
have been found to yield the most precise extractions of a(My) obtained at HERA
in the past. Thus, it made sense to pursue an improvement of the determination of
through the improved measurements of the cross sections. The values of oz obtained
in this analysis have been shown in Figs. 6.10 through 6.12, as obtained from the
do/dQ? measurements. The agreement among the extracted values constitutes a
precise and compelling test of pQCD, since it implies that the scale dependence
predicted by pQCD is in accordance with that found in the data. Fig. 6.13 shows
the extractions from the da/dE%f’fB measurements displayed at the mean EﬂﬁtB of
the events in each bin from which they were obtained. This facilitates the visual

comparison with the scale-dependence predicted by pQCD.

A QCD fit of the cross-section do/dQ?* with R = 1 for Q% > 500 GeV? yielded
the determination with smallest uncertainty obtained to date by the ZEUS Collab-

oration,
ag(My) = 0.1207 # 0.0014(stat.) +3:99%% (exp.) T9-9922 (theo.)

This value is in good agreement with the world and HERA averages. All the ex-

tracted values of a, at different Q% and EﬂﬁtB are in good agreement with the pre-

dicted running of the strong coupling constant over a large range in Q? and E%ﬁ%
The measured inclusive-jet differential cross sections have been used together

with similar H1 measurements to extract for the first time a combined HERA value
of ag(Myz). The combined HERA value of ags(My) is

as(Mz) =0.1198 + 0.0019(exp.) £ 0.0026(theo.), (8.1)

with an experimental uncertainty of 1.6% and a theoretical uncertainty of 2.2%. It
is consistent with previous determinations of ay(Myz) made by the H1 and ZEUS
Collaborations, and with the world average. By using the new method of combi-
nation presented here, no assumption on the correlations had to be made and a
significant reduction of the theoretical and experimental uncertainties was achieved
by combining observables for which these uncertainties are well under control. A
comparison to the most recent value of as(My) from LEP [77], as(Mz) = 0.1211 +
0,0010(exp.) £ 0.0018(theo.), shows that the uncertainty of the HERA combined
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2007 value is competitive with LEP, which includes an average of many precise
determinations, such as that coming from 7 decays.

8.2 Angular correlations in three-jet events in NC DIS

In Chapter 1 it was shown that the underlying symmetry structure of a gauge
theory determines many of its properties, such as the relative strengths of its vertices
and the evolution of the coupling with the energy scale. In QCD the non-Abelian
character of SU(3) leads to asymptotic freedom, a fundamental property the theory
needs in order to be able to reproduce the measurements we showed in Fig. 6.13. A
symmetry group can be uniquely characterized by its color factors, which in QFT
dictate the relative strengths of the different vertices of the theory. The color factors
provide a way of studying the underlying symmetry of the strong interactions, since
they determine the shapes of the distributions of angular correlations in multijet
events. The color factors were measured using four-jet events in e~ et annihilation
at LEP.

We have shown here that angular correlations that show sensitivity to the under-
lying symmetry group can also be designed for ep scattering using three-jet events
in NC DIS (see Fig. 3.11). Moreover, in Chapter 3 we showed that the dependence
of the angular correlations on the running of a or the PDF evolution can be par-
tially circumvented by normalizing the cross sections and restricting the phase-space
region (see Fig. 3.19). This restriction does not affect the sensitivity of the angular-
correlations to the underlying group symmetry. Carrying out the analysis at O(a?)
also diminishes the dependence on the running of oy, a fact we demonstrated in
Fig. 3.20.

The predictions at O(a?) and O(a?) were compared to the MC simulations based
on the MEPS and CDM parton cascade models. Figs. 3.35 and 3.36 showed that
O(as)-pQCD-based MC calculations are able to simulate the angular correlations
when supplemented by the models.

In this case the data sample used was as subset of that of the inclusive-jet anal-
ysis. Measurements of angular correlations in three-jet NC DIS were made using
an integrated luminosity of 81 pb~! collected with the ZEUS detector during the
HERA T running period. The cross sections refer to jets identified with the kp
cluster algorithm in the longitudinally invariant mode and selected with Egpeg > 8
GeV, E%‘ff,??’ > 5 GeV and —2 < 75" < 1.5. The measurements were made in the
kinematic regions defined by Q? > 125 GeV? GeV 2 (500 < Q* < 5000 GeV?) and
| cos y,| < 0.65.

The MC simulations based on MEPS and CDM were also compared to the data
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sample as shown in Chapter 4 (see Figs. 4.24 and 4.25) and were found to provide
a fair description of the data. The necessary studies of the reconstruction of the
observables and the estimation of the systematic uncertainties were carried out using
the MC simulations in a similar way as for the inclusive-jet analysis, as has been
presented in Chapters 4 and 5. The normalization of the cross sections resulted in a
substantial reduction of the theoretical and experimental uncertainties, as we have
shown in Chapters 3 and 5.

The final results of this analysis have been presented in Chapter 7. Normal-
ized differential three-jet cross sections were measured as functions of Oy, cos ass,
08 Bsw and 02t~ and are shown in Figs. 7.7 and 7.8. Fixed-order calculations sepa-
rated according to the color configurations were used to study the sensitivity of the
angular correlations to the underlying gauge structure (see Figs. 3.11 and 3.21). The
predicted distributions of Oy, cos ass and cos (i, distinguish well the contribution
from the triple-gluon coupling in quark-induced processes and 7/¢  distinguishes

the TGV contribution coming from gluon induced processes. The variable cos ass
provides additional separation for the other contributions.

The measurements are found to be consistent with the admixture of color con-
figurations as predicted by SU(3). The data clearly disfavour a theory in which
Tp/Cp ~ 0, as predicted by SU(N) in the limit of large N, or the extreme choice
Cr=0.

The data were also compared to the O(a?) pQCD predictions (see Figs. 7.5
and 7.6). It was found that the O(a?) predictions provide a more precise and
accurate description of the data than the O(a?) predictions. In some regions, such
as the lower cos a3 region, the improvement is substantial.

In conclusion it was found that the relatively large contribution proportional to
TrC4 in SU(3) provides a potential to extract the color factors from these data.
However, it was found that the large statistical uncertainties relative to the sensitiv-
ity of the angular-correlation variables to the underlying group prevented a fit of the
color factors. Thus, the logical venue suggested by this analysis is: to enlarge the
data sample both by including the HERA II data, which will constitute a more than
five-fold increase in the luminosity; and to carry out the theoretical calculations at
O(a?), which will reduce the residual dependence on the running of a;, and allow a
less restricted phase space.
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Chapter 9
Resumen y Conclusiones

Este capitulo contiene un resumen del documento con énfasis en los resultados fi-
nales.

9.1 Secciones eficaces inclusivas de jets en NC DIS y deter-

minaciones de o,(My)

Obtener una determinacién precisa de las densidades parténicas del proton (PDFs)
es de importancia fundamental para experimentos futuros de colisiones hadrénicas
como el LHC. La precision de las predicciones teodricas del Modelo Estandar en
procesos que involucran hadrones en el estado inicial depende de la precisién a la
que han sido determinadas las PDFs. En concreto, la densidad gluénica del proton
es uno de los ingredientes esenciales en las predicciones de produccion de Higgs en
colisiones pp.

En el Capitulo 1 hemos visto como se obtienen las PDFs experimentalmente a
través de ajustes globales de QCD, en los cuales las medidas de observables inclusivos
como las de F5, mostradas en la Figura 1.13 aportan la mayor parte de la informacion
sobre las PDFs, incluyendo la de la PDF gludnica en la regiéon de medio y alto x.
En esta region, sin embargo, la pendiente de F5 es mas pequena, dando lugar a una
incertidumbre mayor en la determinacion de la densidad gludnica del protén. La
Figura 1.14 muestra un ajuste global de QCD llevado a cabo por la Colaboracién
ZEUS y haciendo uso sélo de datos obtenidos en el marco de dicha colaboracion.
En este ajuste fueron incluidas también medidas de secciones eficaces de jets que
ayudan a delimitar mas ain la densidad gluénica del protén en la region de medio a
alto x. En la Figura 1.16 hemos mostrado que la reduccién de la incertidumbre de
la PDF del gluén en esta region debida a las medidas de jets es substancial. Este
resultado motivé el llevar a cabo nuevas medidas de secciones eficaces inclusivas
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de jets, mejoradas gracias a que se dispone de una muestra con mas del doble de
luminosidad integrada con respecto a medidas anteriores de este tipo.

Las medidas de secciones eficaces de jets inclusivas tienen ademas la ventaja
de que permiten hacer comparaciones con las predicciones a orden fijo de QCD
perturbativo (pQCD) a un nivel alto de precision. La incertidumbre en la prediccién
tedrica para observables de jets esta tipicamente dominada por aquélla asociada a las
contribuciones de érdenes mas altos. Esta fuente de incertidumbre se ve reducida
restringiendo el espacio de fase a un rango de valores grandes de @2, donde el
tratamiento perturbativo de QCD es més fiable. En el Capitulo 3 (ver las Figuras 3.2
y 3.3) hemos demostrado que este tipo de observables tienen una incertidumbre
tedrica debida a érdenes més altos por debajo del 5% para valores de Q? > 250
GeV2. Por lo tanto, otra motivacién de las medidas de secciones eficaces de jets
presentadas en este documento es que estan particularmente dotadas para poner a
prueba pQCD.

Para llevar a cabo estas medidas se obtuvo una muestra de eventos de NC DIS
con valores grandes de Q? y que ademds contuviesen al menos un jet de alto Er
en el sistema de referencia de Breit. La muestra fue basada en 81.7 £ 1.8 pb~! de
luminosidad integrada proveniente de la toma de datos de 1998-2000 (HERA I) con
el detector ZEUS. También se obtuvieron simulaciones de MC de las muestras (ver
Figuras. 4.16 a 4.23), que como hemos presentado en el Capitulo 4, fueron utilizadas
para estudiar la calidad de la reconstruccion de los observables mediante el detector.
Ademas, las simulaciones de MC también fueron utilizadas para reducir la mayor
fuente de incertidumbre experimental para este tipo de medidas, aquélla asociada
a la escala de la energia de los jets, que fue reducida por debajo del 1%. En el
Capitulo 5 hemos mostrado una estimacion detallada de las fuentes de incertidumbre
sistematica que afectan a las medidas.

El algoritmo de kp de reconstruccion de los jets esta particularmente dotado
para permitir comparar el estado hadronico que se mide en el detector con el estado
partonico calculable en pQCD. La precision de esta comparacion entre las medidas y
las predicciones tedricas se ha podido mejorar atin mas mediante la implementacion
de factores de ‘correccién por la hadronizacion’, obtenidos a partir de las simula-
ciones de MC (ver Figuras 5.1 y 5.7).

En el Capitulo 6 hemos presentado los resultados finales de este analisis, que
consisten en medidas de secciones eficaces diferenciales de produccién de jets inclu-
siva en colisiones ep en el régimen de NC DIS. Las secciones eficaces se refieren a
jets de hadrones identificados en el sistema de referencia de Breit con el algoritmo
de reconstruccion de los jets de kr. Las medidas se refieren a la regién cinematica
de Q% > 125 GeV? y | cosv,| < 0.65.
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También han sido hechas medidas de produccién inclusiva de jets en términos
de secciones eficaces como funcién de EﬂﬁtB para diferentes regiones de Q%. Estas
medidas se muestran en la Figura 6.2. Las predicciones tedricas a O(a?) de pQCD
son capaces de proporcionar una descripcién adecuada de los datos en todo el rango
de E%ﬁ% y Q? sobre el cual se han llevado a cabo las medidas. Ademas, las secciones
eficaces en regiones diferentes de Q? son sensibles a la densidad gluénica del protén.
Por lo tanto, las medidas son de especial relevancia en términos de proporcionar una
determinacion mas precisa de la densidad del gluén en ajustes globales de QCD en

el futuro.

NC DIS en HERA proporciona un entorno adecuado en el cual hacer estudios del
parametro del radio del jet en el algoritmo de k7. Este estudio ha sido llevado a cabo
mediante la repeticién del analisis usando diferentes valores del radio del jet (R). La
dependencia de la seccion eficaz inclusiva con el radio del jet R ha sido estudiada
de esta manera, como se ha mostrado en la Figura 6.3. Mediante este estudio se ha
determinado que QCD a O(a?) proporciona predicciones de precisién comparable
en el rango de R=0.5 — 1. Las medidas de secciones eficaces diferenciales de jets
inclusivas para este rango del radio del jet han sido presentadas en el Capitulo 6.
Los célculos de QCD a O(a?) estan en buen acuerdo con las medidas inclusivas de
secciones eficaces differenciales do/ dE%':’fB y do/dQ?* para valores del radio del jet
R= 0.5,0.7 y 1. Se ha observado que la seccién eficaz inclusiva de jets integrada
sobre Q2. =125y 500 GeV? aumenta linealmente con R en el rango estudiado.

Otro motivo importante por el cual se han hecho las medidas de secciones eficaces
de jets ha sido que en el pasado éstas han permitido las determinaciones de ag(My)
de mayor precisiéon en HERA. En las Figuras 6.10 a 6.12 se han presentado los
valores de ag(My) obtenidos a partir de las medidas de secciones eficaces de jets
en funcién de Q2. El acuerdo entre las extracciones obtenidas a partir de un rango
grande en Q% constituye en si una prueba contundente de la validez de pQCD como
la teoria de las interacciones fuertes. La Figura 6.13 muestra un buen acuerdo entre
las determinaciones de a; a partir de medidas de do/ dE%ffB y la dependencia con la

escala de la energia predicha por pQCD.

Un ajuste de la seccién eficaz do/dQ? con R = 1 para la regién Q? > 500 GeV?

ha permitido la determinacién mas precisa de a, obtenida hasta el momento por la
Colaboracién ZEUS,

as(My) = 0.1207 £ 0.0014(stat.) ) Soaa (exp.) Too0a3 (theo.)

Este valor estd en buen acuerdo con el promedio mundial y con el promedio de
HERA. Todos los valores extraidos de ay a partir de las medidas de do/dQ? y
do/ alEgﬁffB estan en buen acuerdo entre si asi como con la predicciéon de la dependencia
con la escala de la energia predicha por pQCD.
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Las medidas de secciones eficaces inclusivas de jets también han sido utilizadas
junto con medidas de H1 para extraer por vez primera un valor de as(Mz) combinado
de HERA

as(Myz) = 0.1198 £ 0.0019(exp.) £ 0.0026(theo.), (9.1)

con una incertidumbre experimental del 1.6% y una incertidumbre teérica del 2.2%.
Este valor es consistente con determinaciones previas de as(Myz) hechas indepen-
dientemente por las Colaboraciones de H1 y ZEUS, asi como con el promedio
mundial. Con el nuevo método de combinacién presentado aqui, no ha sido nece-
saria ninguna suposiciéon sobre las correlaciones y se ha logrado una reduccion
significativa de las incertidumbres tedricas y experimentales gracias a la combi-
nacion de estos observables cuyas incertidumbres estan bajo control. La precision
de esta extracciéon es comparable, por ejemplo, con la més reciente de LEP [77],
as(Mz) = 0.1211 £ 0,0010(exp.) & 0.0018(theo.), la cual es un promedio hecho so-
bre muchas determinaciones de gran precision, como lo son las provenientes de la

desintegracién del 7.

9.2 Correlaciones angulares en sucesos con tres jets en NC
DIS

En el Capitulo 1 se ha descrito la manera en la que la simetria subyacente de una
teoria gauge determina muchas de sus caracteristicas, como por ejemplo la fuerza
relativa de cada vértice o la dependencia del acoplo con la escala de la energia. En
el caso de QCD el caracter no Abeliano de SU(3) implica la libertad asimptotica,
una propiedad de la teoria necesaria para describir las medidas que se ha mostrado
en la Figura 6.13. Como hemos visto en el primer capitulo, el grupo gauge puede ser
caracterizado univocamente por los factores de color, que son las fuerzas relativas de
los diferentes vértices presentes en la teoria. Los factores de color proporcionan una
manera independiente de estudiar la simetria subyacente de las interacciones fuertes,
ya que determinan las formas de las distribuciones en las variables de correlacion
angular en sucesos con muchos jets. En eventos de cuatro jets en las aniquilaciones
e~ e’ en LEP se han podido extraer los factores de color a partir de medidas de estas

correlaciones angulares.

En este documento hemos demostrado que también se pueden obtener variables
de correlacion angular en la dispersion de ep que muestran una sensibilidad al grupo
gauge subyacente (ver Figura 3.11). La dependencia de las correlaciones angulares
con la evoluciéon de a, o de las PDFs se puede minimizar parcialmente mediante
la normalizaciéon de las secciones eficaces y lograr que sea despreciable mediante
una restricciéon adecuada del espacio de fase (ver Figura 3.19). También hemos
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demostrado (Figura 3.20) que hacer el anélisis al siguiente orden en el desarrollo
perturbativa (O(a?)) reduce todavia mds esta dependencia.

Las predicciones a O(a?) y O(a?) han sido comparadas con simulaciones de MC
basadas en los modelos de MEPS y CDM para la cascada partonica. En las Fig-
uras 3.35 y 3.36 hemos mostrado como los calculos de MC basados en pQCD a
O(as) complementados con modelos de la cascada parténica son capaces de repro-
ducir adecuadamente las correlaciones angulares.

La muestra de datos seleccionada para este andlisis es un subconjunto de la selec-
cionada para el analisis de produccion inclusiva de jets. Las medidas de correlaciones
angulares fueron hechas en el régimen de NC DIS a partir de una luminosidad in-
tegrada de 81 pb~!, tomada con el detector ZEUS durante el periodo de HERA
L.

Las secciones eficaces se refieren a jets identificados con el algoritmo de kr y
seleccionados con Egpeg > 8 GeV, E%eg2 > 5 GeVy —2 < 75" < 1.5. Las medidas
fueron hechas en la regién cinemdtica definida por Q* > 125 GeV? (500 > Q? > 5000

GeV?) y | cosvp| < 0.65.

Las simulaciones de MC basadas en MEPS y CDM también fueron comparadas
con la muestra de los datos y proporcionan una buena descripcion de los mismos
(ver Figuras 4.24 y 4.25).

Los estudios de la reconstruccién de los observables y la estimacién de las incer-
tidumbres sistematicas han sido presentados en los Capitulos 4 y 5. Una ventaja de
la normalizacion de las secciones eficaces es la cancelacion parcial de las incertidum-
bres tedricas y experimentales, como se ha puesto de manifiesto en los Capitulos 3
y .

Los resultados finales de este analisis han sido presentados en el Capitulo 7. Se
trata de medidas de secciones eficaces normalizadas de produccion de tres jets en
funciéon de O, cos a3, €os g and 77¢ . Las medidas se han presentado en las
Figuras 7.7 y 7.8. Las predicciones a orden fijo fueron separadas en términos de
las configuraciones de color usadas para estudiar la sensibilidad de las correlaciones
angulares a la estructura gauge subyacente (ver Figuras 3.11 y 3.21). La predic-
ciones de las distribuciones de O, cosass v oS (s permiten distinguir bien la
contribucion del auto-acoplo del gluén en sucesos inducidos por un quark, mientras

jet

/e . €s un buen discriminador de dicha contribucién proveniente de

que la variable n
procesos inducidos por un gluén. La variable cosass proporciona una separaciéon

adicional de las otras contribuciones.

Se ha encontrado que las medidas son consistentes con la combinacién de con-
figuraciones de color predicha por SU(3). Los datos desfavorecen claramente una
teorfa en la que Tr/Cp ~ 0, como es el caso de SU(N) en el limite de N grande, o
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la eleccion Cr = 0. La contribucion relativamente grande proporcional a TrC4 en
el caso de SU(3) abre la posibilidad de extraer directamente los factores de color de
los datos.

Los datos también han sido comparados con las predicciones a O(a?) de pQCD
(ver Figuras. 7.5y 7.6). Se ha mostrado que las predicciones a O(a?) proporcionan
una descripcién més precisa de los datos que las predicciones a O(a?). En algunas
regiones, como en la de valores pequenos de cos awsg, la mejora en la descripciéon de
los datos es sustancial. Con respecto a una extraccion directa de los factores de
color de los datos, hemos hallado que las incertidumbres estadisticas de los datos,
en relacion a la sensibilidad que muestran las correlaciones angulares a la simetria
subyacente, no permiten un ajuste de los factores de color en el momento presente.
Por lo tanto, se sugiere como via légica aumentar la muestra de datos tanto usando
la muestra entera de HERA II (que de por si constituiria un incremento de més de
cinco veces la muestra utilizada aqui) asi como hacer los célculos tedricos a O(a?)
(esto reduciria la dependencia con la evolucién de a; y por lo tanto permitiria utilizar
un espacio de fase menos restringido).
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