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Introduzione

I progressi sperimentali degli ultimi anni hanno mostrato come la descrizione della fisica

del flavour e delle violazioni diCP nel settore dei quark tramite il meccanismo di Cabibbo,

Kobayashi e Maskawa (CKM) sia un’ottima descrizione della realtà. Gli eventuali contributi

di nuova fisica alle osservabili legate al mescolamento dei flavour e alle violazioni diCP si

possono parametrizzare, adottando una descrizione di teoria efficace, come

∆LNP =
∑

i

ci
Λ2

Oi (1)

doveOi sono degli operatori efficaci di dimensione 6,ci sono parametri adimensionali e

Λ è una scala di energia tipica della teoria di nuova fisica. Imponendo che le deviazioni

dalle previsioni del Modello Standard date dalla lagrangiana (1) siano abbastanza piccole

da rimanere nascoste dalle attuali incertezze sperimentali e teoriche, si possono ottenere dei

limiti inferiori sulla scalaΛ che, perci ∼ O(1), raggiungono in alcuni casi i104 TeV.

Un’altra indicazione di quale può essere una scala di energia di nuova fisica emerge af-

frontando il problema della naturalezza. La massa del bosone di Higgs riceve correzioni

quantistiche dell’ordine di grandezza delle scale di energia tipiche della teoria; supponendo

che esista nuova fisica non inclusa nel Modello Standard (almeno la gravità) queste cor-

rezioni dovrebbero essere parecchi ordini di grandezza piùgrandi del valore recentemente

annunciato di circa125 GeV1. Affinché la massa rimanga piccola è quindi necessario che i

parametri della teoria siano tarati con estrema precisione. Questo “fine tuning” non è soddi-

sfacente dal punto di vista teorico, ma può essere visto comeun indizio dell’esistenza di una

scala di energia al di sopra della quale le correzioni alla massa si annullano naturalmente,

ad esempio a causa di una simmetria della fisica. Per eliminare il problema questa scala di

energia dev’essere al più di qualche TeV.

Date queste due osservazioni, diventa importante la domanda: “Cosa rende così efficace

la descrizione CKM?” Una possibile spiegazione è che essa derivi da una opportuna sim-

metria di flavour valida per il Modello Standard e per la sua eventuale estensione, rotta in

1L’affermazione che la particella scalare di recente osservata dalle collaborazioni CMS e ATLAS [1, 2] sia

effettivamente il bosone di Higgs del Modello Standard è ancora in fase di verifica.
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qualche modo definito. In questo modo gli operatori efficaci di nuova fisica rilevanti per la

fisica del flavour potrebbero essere della forma

∆LNP =
∑

i

ξici
Λ2

Oi (2)

con i coefficientici di ordineO(1), la scalaΛ di qualche TeV come suggerito dagli argomenti

di naturalezza e i coefficientiξi determinati dalla rottura della simmetria di flavour.

In questo lavoro di tesi vogliamo considerare il caso in cui la simmetria che regola la

fisica del flavour nel settore dei quark sia

U(2)3 ≡ U(2)q × U(2)u × U(2)d (3)

sotto la quale i campi trasformano secondo le seguenti rappresentazioni:

q
L
≡
(
q1L
q2L

)
∼ (2, 1, 1) (4)

uR ≡
(
uR

cR

)
∼ (1, 2, 1) (5)

dR ≡
(
dR

sR

)
∼ (1, 1, 2) (6)

q3L, tR, bR ∼ (1, 1, 1). (7)

Questa simmetria è approssimativamente valida nel ModelloStandard, a causa della piccola

massa delle prime due generazioni rispetto alla terza e a causa della piccolezza degli angoli

di mescolamento nella matrice CKM.

La rottura della simmetria di flavour è parametrizzata da alcuni piccoli termini (spurioni)

tali che, supponendo delle regole di trasformazione fittizie per essi sottoU(2)3, la teoria sia

invariante. I primi due spurioni sono le matrici2×2 ∆Yu e∆Yd che permettono di costruire

i termini di massa dei quark delle prime due generazioni:

λtq̄L∆YuuR λtq̄3L
(
Vu

†uR

)
. (8)

Le regole di trasformazione sottoU(2)3 devono essere, affinché la simmetria sia rispettata,

∆Yu ∼ (2, 2̄, 1) e∆Yd ∼ (2, 1, 2̄). Per poter accoppiare i quark delle prime generazioni con

quelli dell’ultima è necessario almeno un altro spurione che trasformi come un doppietto

V ∼ (2, 1, 1), in modo da costruire i termini

λt (q̄L
V ) tR λb (q̄L

V ) bR. (9)
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Nel caso generico si aggiungono a questi spurioni i due doppietti Vu ∼ (1, 2, 1) e Vd ∼
(1, 1, 2), che permettono di scrivere i termini

λtq̄3L
(
Vu

†uR

)
e λbq̄3L

(
Vd

†dR

)
. (10)

Una volta specificata la simmetria di flavour e il suo modo di rottura, per calcolarne

le conseguenze fisiche si procede come segue: anzitutto si scrivono i termini di Yukawa

per i quark e tutti i possibili termini bilineari che conservano o meno la chiralità in termini

degli spurioni; dopodiché si passa nella base fisica, ossia quella in cui i termini cinetici sono

in forma canonica e i termini di massa in forma diagonale; si ottengono in questo modo

la matrice CKM e le matrici nello spazio del flavour che regolano i termini di interazione

bilineari. Queste matrici sono importanti perché, come vedremo, le loro entrate determinano

i coefficienti dei vari operatori nella lagrangiana (2).

Arrivati a questo punto occorre calcolare le correzioni alle diverse osservabili rilevanti

per la fisica del flavour di una generica teoria con simmetriaU(2)3, e fissare così dei vincoli

sui valori assunti dai vari parametri liberi, verificando così la consistenza di questa simme-

tria. Una volta effettuata questa verifica diventa interessante studiare come si può inserire

la simmetria di flavour all’interno di un modello di nuova fisica esplicito come può essere

la Supersimmetria o le teorie con Higgs composto; quest’ultimo importante argomento non

verrà affrontato in questa tesi.

Il capitolo 1 di questa tesi è dedicato al Modello Standard e alle principali motivazioni

di ricerca di nuova fisica, in particolare nel settore del flavour; i capitoli 2 e 3 contengono la

costruzione della teoria efficace con simmetriaU(2)3 con un insieme minimale e generico

di spurioni; nel capitolo 4 vengono sommariamente descritti le osservabili rilevanti per la

violazione del flavour e diCP ; infine i capitoli 5 e 6 contengono il confronto con i dati

sperimentali e i vincoli che si ottengono per i parametri liberi della teoria.

Tutti i dati sperimentali riportati, salvo dove diversamente specificato, sono presi da [3].
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Capitolo 1

Motivazioni

1.1 Il Modello Standard

La teoria che meglio descrive le interazioni forti, deboli ed elettromagnetiche tra le particelle

elementari è il Modello Standard, introdotto negli anni ’60da Weinberg, Glashow e Salam

[4][5]. Esso è una teoria di gauge rinormalizzabile basata sul gruppoSU(3)c × SU(2)L ×
U(1)Y . Il gruppo di gauge specifica automaticamente i campi vettoriali della teoria e le loro

proprietà di trasformazione: 8 gluoni mediatori delle interazioni forti (uno per ciascun gene-

ratore diSU(3)c) e 4 altri vettori per le interazioni elettrodeboli del gruppoSU(2)L×U(1)Y .

I campi di materia, quark e leptoni, si possono descrivere come spinori di Weil sinistrorsi e

destrorsi. Per descrivere correttamente la violazione della parità nelle interazioni deboli, le

componenti sinistrorse e destrorse dei campi spinoriali devono trasformare in maniera diver-

sa sotto il gruppo di gauge. L’elenco dei campi e delle loro proprietà di trasformazione si

trova in tabella (1.1).

SU(3)c SU(2)L Y

Qα =

(
uαL
dαL

)
3 2 1/6

Lα =

(
ναL
eαL

)
1 1 −1/2

uαR 3 1 −2/3

dαR 3 1 1/3

eαR 1 1 1

ναR 1 1 0

Tabella 1.1: Campi di materia (spinoriali) e campi di gauge (vettoriali)del Modello Standard
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La lagrangiana gauge-invariante minimale è data da

Lmin = −1

4
W a
µνW

aµν − 1

4
BµνB

µν − 1

4
Ga
µνG

aµν + iΨ̄ /DΨ (1.1)

in cuiDµ è il differenziale covariante:

Dµ = ∂µ − igST
aGa

µ − ig
τa

2
W a
µ − ig′BµY (1.2)

doveT a sono i generatori diSU(3)c (le matrici di Gell-Mann per i tripletti e 0 per i singo-

letti), τa sono i generatori diSU(2)L (le matrici di Pauli per i doppietti e 0 per i singoletti)

e Y è l’ipercarica dei diversi campi.Ψ è un vettore che contiene tutti i campi spinoriali di

tabella (1.1) sommati sulle tre famiglie di flavour. È importante per il seguito notare che

questa lagrangiana è simmetrica per lo scambio delle famiglie di flavour.

I termini di massa per i bosoni vettori e per i fermioni di materia non sono invarianti di

gauge. Per poterli inserire nella lagrangiana è quindi necessario ricorrere a un meccanismo di

rottura della simmetria dettomeccanismo di Higgs. Nella sua versione minimale, si aggiunge

ai campi del Modello Standard un campo scalareH che, sotto il gruppo di gauge, trasforma

secondo la rappresentazione(1⊗2)1/2. I termini di lagrangiana che coinvolgono il doppietto

di Higgs sono il termine cinetico, i termini di interazione di Yukawa con i fermioni di materia

e un termine di potenzialeV (H) con vuoto classico diverso da zero che rompe la simmetria

SU(2)L × U(1)Y al sottogruppoU(1)em generato daQ = T3 + Y :

LHiggs = (DµH)†(DµH)−HQ̄λddR − H̃Q̄λuuR −HL̄λeeR − V (H). (1.3)

doveλi sono matrici nello spazio delle tre famiglie di flavour. Dopola rottura

H(x) −→
(

0

v + h(x)√
2

)
(1.4)

rimane invariante sotto il gruppoU(1)em. I campi fermionici prendono massamf ∼ λfv

mentre i campi vettoriali dellaZ e deiW± MV ∼ gv.

1.1.1 Fisica del flavour nel Modello Standard

È opportuno studiare nel dettaglio la descrizione della fisica del sapore nel Modello Standard,

con particolare attenzione al settore dei quark. Con fisica del sapore si intendono tutti quei

processi in cui i numeri quantici di flavour nello stato finalesono diversi da quelli nello

stato iniziale. La lagrangiana di gauge minimale (1.1), come già notato, è simmetrica per

scambio delle famiglie di flavour: il gruppo di simmetria (globale) nel settore dei quark è

precisamenteU(3)3, dove una rotazione è relativa al doppietto dei quark sinistrorsi, una al
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singoletto dei quark up destrorsi, una al singoletto dei down destrorsi1. Questa simmetria è

rotta dall’aggiunta dei termini di Yukawa alla lagrangiana, da cui, sostituendo al campo di

Higgs il suo valore di aspettazione sul vuoto, si ottengono itermini di massa per i fermioni:

LYuk= −vd̄iLλijd d
j
R − vūiLλ

ij
u u

j
R − vēiLλ

ij
e e

j
R; (1.5)

la simmetria residua èU(1)B×U(1)e×U(1)µ×U(1)τ che corrisponde alla conservazione del

numero barionico e dei tre numeri leptonici. Per passare nella base degli autostati di massa

occorre diagonalizzare le matriciλ effettuando delle rotazioni sui diversi campi fermionici.

La base fisica si raggiunge quindi effettuando le trasformazioni

dL = Ud
Ld

phys
L , dR = Ud

Rd
phys
R (1.6)

uL = Uu
Lu

phys
L , uR = Uu

Ru
phys
R (1.7)

eL = Ue
Le

phys
L , eR = Ue

Re
phys
R (1.8)

dove le(Uu,d,e
L )†λiju,d,eU

u,d,e
R sono matrici diagonali con autovalori reali e positivi. Perquanto

riguarda i quark, il punto cruciale è notare che per diagonalizzare entrambe le matriciλu,d è

necessario effettuare due rotazioni differenti sui campiuL edL che appartengono al doppietto

Q. La conseguenza di questo fatto è che i termini di interazione con ilW nel differenziale

covariante non sono più diagonali nel flavour. Nella base degli autostati di massa, la parte di

lagrangiana che contiene i quark diventa quindi

Lquark =
(
q̄i /Dδijqj

)
NC

+(v + h) (ūL, c̄L, t̄L)




λu

λc

λt







uR

cR

tR


+ (u, c, t) ↔ (d, s, b)

+
g√
2
W+
µ ū

i
LV

ij
CKMγ

µdjL + h.c. (1.9)

dove NC indica il termine cinetico e le interazioni con corrente neutra con i gluoni, laZ

e il fotone. La matriceVCKM ∈ SU(3) è data dal prodotto delle rotazioni sui quarkuL e

dL, VCKM = (Uu
L)

†Ud
R, e prende il nome di matrice di Cabibbo-Kobayashi-Maskawa (CKM)

[6][7].

Siccome nel settore leptonico non è stato incluso il campo del neutrino destrorso, è pos-

sibile effettuare la stessa rotazione su tutto il doppiettoE lasciando intatta la simmetria di

gauge; in questo modo l’interazione colW rimane diagonale nel flavour. L’introduzione

1Includendo anche i doppietti dei leptoni sinistrorsi e i singoletti dei leptoni carichi destrorsi la simmetria

globale èU(3)5 = SU(3)5 × U(1)5. Una combinazione di questiU(1) è nient’altro che l’ipercarica, quindi il

vero gruppo di simmetria globale della (1.1) èSU(3)5 × U(1)4.
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del νR in molti modelli di nuova fisica per spiegare la massa dei neutrini fa sì che questo

non sia più vero, introducendo così la possibilità di violazione del flavour anche nel settore

leptonico. Questo è richiesto per giustificare l’osservazione dell’oscillazione dei neutrini:

parte dei neutrini elettronici prodotti dalle fusioni nucleari nel sole vengono rivelati a terra

come neutrini muonici, e analogamente parte dei neutrini muonici prodotti nella collisione di

raggi cosmici con l’atmosfera arrivano sulla terra come neutrini τ . Come spiegato più avan-

ti, questo mixing è possibile solo se nella lagrangiana efficace a basse energie si ammette

l’esistenza termine di massa per i neutrini, probabilmentedi tipo Majorana.

Una proprietà importante della matrice CKM è di essere l’unica fonte di violazione di

flavour eCP nel Modello Standard. Infatti l’unica altra possibile fonte di violazione diCP

è data dal parametroθQCD che si ottiene aggiungendo alla lagrangiana della cromodinamica

il termine invariante di gauge

Lθ =
θQCD

32π2
ǫµνρσG

µν
a G

ρσ
a . (1.10)

Dalle misure del momento di dipolo elettrico del neutrone sipuò ricavare il limite

θQCD . 10−10. (1.11)

Il problema di capire il perché di un valore così piccolo prende il nome distrongCP problem.

Escludendo questo, l’unico termine non invariante a vista sotto CP è proprio quello che

coinvolge la matrice CKM:

g√
2
W+
µ ūLVCKMγ

µdL + h.c.
CP−→ g√

2
W+
µ ūLV

∗
CKMγ

µdL + h.c.. (1.12)

Si capisce quindi che una condizione necessaria per la violazione diCP nel Modello Stan-

dard è che laVCKM contenga delle fasi complesse non nulle. Inoltre, affinché queste abbiano

effetto sulla fisica, è necessario che siano non eliminabili, cioè che non si possano porre

a zero tramite semplici ridefinizioni dei campi dei quark. È quindi importante domandarsi

quante possano essere queste fasi. In generale una matriceSU(n) è definita dan(n + 1)/2

parametri reali en(n − 1)/2 fasi complesse. Ridefinendo la fase dei2n quark si possono

eliminare soltanto2n− 1 di queste fasi, in quanto la moltiplicazione di tutti i quarkper una

stessa fase globale non ha effetto sulla lagrangiana (conservazione del numero barionico).

Il numero di fasi residuo è quindi(n − 1)(n − 2)/2, che nel caso di tre famiglie di flavour

fa 1. L’importanza di questo risultato deriva dal fatto che la violazione diCP è possibile

solo se la matrice CKM contiene delle fasi complesse non eliminabili. La conseguenza è che

per spiegare l’osservazione di una violazione diCP sono necessarie almeno tre famiglie di

quark; in questo caso c’è un’unica fase fisica.

Una tipica parametrizzazione della matrice CKM è quella di Wolfenstein [8], che consiste

in un’espansione in potenze dell’angolo di Cabibboλ ≡ |Vus| ≃ 0.22, nella quale diventa
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evidente la gerarchia esistente tra le diverse entrate della matrice:

VCKM =




1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O

(
λ4
)

(1.13)

Unitarietà della matrice CKM

I test quantitativi sul settore del flavour nel modello standard si basano principalmente sul-

la verifica dell’unitarietà della matrice CKM. Dall’unitarietà della matrice si ricavano le

relazioni ∑

i=d,s,b

|Vai|2 = 1 (1.14)

e ∑

i=u,c,t

Vim(Vin)
∗ = 0 m 6= n = d, s, b (1.15)

dove si è usata la notazione

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (1.16)

Tra le relazioni del primo tipo, che non coinvolgono le fasi complesse, il test numericamente

più importante si ha nel caso cona = u:

|Vud|2 + |Vus|2 + |Vub|2 = 1. (1.17)

Le misure sui diversi coefficienti si ottengono dall’analisi di diversi decadimenti semilepto-

nici, che sono però affette da notevoli incertezze sugli elementi di matrice adronici tra gli

stati iniziali e finali dei decadimenti. Essendo il valore diVub molto piccolo, il suo valore

sperimentale non è determinante per la verifica della relazione (1.17). Ciò nonostante, vale

la pena spendere due parole sulla sua misura. Il valore di|Vub| si può ricavare dalle misure

della frazione di decadimento diB → πlν (misura esclusiva) oppure di quella complessiva

di B → Xulν doveXu è un qualunque adrone che contenga un quarku e non contengac

(misura inclusiva). I valori che si ottengono da queste misure sono incompatibili fra loro:

|Vub|excl = (3.12± 0.26)× 10−3, |Vub|incl = (4.27± 0.38)× 10−3. (1.18)

Questo fatto potrebbe essere dovuto a un errore sperimentale o a un errore nel calcolo non

perturbativo degli elementi di matrice adronici; in quest’ultimo caso bisogna notare che il

caso esclusivo è più complicato perché il dettaglio del calcolo su reticolo influenza maggior-

mente il risultato. D’altra parte tale discrepanza potrebbe essere un segnale dell’esistenza
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di nuova fisica dietro al meccanismo CKM: se fosse dovuta a nuovi processi che entrano in

gioco nei decadimenti dei mesoniB essa potrebbe aiutare nella difficile operazione di distin-

guere ed escludere i vari modelli di nuova fisica, in particolare in vista dei prossimi progressi

sperimentali in questo campo.

Per quanto riguarda le relazioni (1.15), se rappresentate nel piano complesso esse stabi-

liscono che i tre numeriVia(Vib)
∗ disegnano un triangolo chiuso. L’unica sperimentalmente

rilevante al momento è quella conm = d en = b, che dà un triangolo con i lati di lunghezza

comparabile:

Vud(Vub)
∗ + Vcd(Vcb)

∗ + Vtd(Vtb)
∗. (1.19)

Tale triangolo prende il nome ditriangolo di unitarietà. Secondo la notazione comune, i tre

angoli del triangolo sono definiti come

α ≡ arg

[
− VtdV

∗
tb

VudV ∗
ub

]
β ≡ arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
γ ≡ arg

[
−VudV

∗
ub

VcdV ∗
cb

]
(1.20)

La rappresentazione usuale di tale triangolo si ottiene riscalando la relazione (1.19)

Vud(Vub)
∗

Vcd(Vcb)
∗ + 1 +

Vtd(Vtb)
∗

Vcd(Vcb)
∗ = 0 (1.21)

e definendo

ρ̄+ iη̄ = −Vud(Vub)
∗

Vcd(Vcb)
∗ . (1.22)

Misurando diverse osservabili legate alle transizioni di flavour eCP si ottengono dei vincoli

per il terzo vertice del triangolo nel pianōρ − η̄, come mostrato in figura (1.1). Affinché la

condizione di unitarietà della matrice CKM sia rispettata tutti questi vincoli devono essere

compatibili fra loro: questo è uno dei test più importanti del settore del flavour del Modello

Standard e, come si può vedere dalla figura, lascia poco spazio a fenomeni di nuova fisica.

Le uniche incongruenze che si osservano in questo settore sono infatti piccole discrepan-

ze (a 2-3σ) che potrebbero essere dovute a fluttuazioni statistiche o ancora a errori nella

determinazione degli elementi di matrice adronici.

In conclusione, la descrizione della fisica del flavour nel Modello Standard è in buon

accordo con i dati sperimentali e attualmente non ci sono misure che siano in disaccordo tale

con i risultati teorici da dare segnali certi dell’esistenza di fenomeni di nuova fisica. Al con-

trario, la precisione dello schema CKM nel descrivere i datiè un ostacolo per molti modelli

di nuova fisica associati alla rottura della simmetria elettrodebole, che in genere predicono

effetti troppo grandi per essere consistenti con le attualimisure. D’altra parte, la descrizione

teorica che il Modello Standard dà di questi fenomenti è quantomeno insoddisfacente, in

quanto introduce un numero molto elevato di parametri liberi senza spiegarne in alcun modo

le relazioni reciproche. Trovare una spiegazione unitariaper i valori di questi parametri è
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Figura 1.1: Vincoli sperimentali per il triangolo di unitarietà nel piano ρ̄− η̄

uno dei principali obiettivi di molti modelli di nuova fisica; per conseguire questo risultato

è probabile però che sia necessario osservare delle deviazioni dal semplice comportamento

descritto dal Modello Standard.

1.2 Motivazioni per nuova fisica oltre il Modello Standard

Come abbiamo detto, a tutt’oggi i dati sperimentali ottenuti dagli esperimenti di fisica delle

particelle sono in buon accordo con le previsioni del Modello Standard. Tuttavia ci sono

indizi molto forti che fanno supporre l’esistenza di nuova fisica a energie più elevate di

quelle finora raggiunte; in questo paragrafo vogliamo elencare brevemente i principali di

questi motivi, senza addentrarsi nei dettagli.

• Problema della GerarchiaUna delle più importanti domande aperte della fisica del

Modello Standard riguarda la massa del bosone di Higgs. Supponendo di avere una

teoria che descriva correttamente la fisica fino a una scala dienergia molto alta (ad

esempio la scala della massa di Plank) e che permetta di calcolare la massa del boso-

ne di Higgs, non è chiaro perché essa sia molto piccola rispetto alle scale di energia

rilevanti per la teoria. Il problema sta nel fatto che le correzioni quantistiche amh

sono naturalmente dell’ordine delle scale di energia tipiche della teoria; affinché di-

verse correzioni molto grandi si sommino a dare un risultatopiccolo è necessario che

i parametri della teoria siano tarati in maniera molto precisa. Questo può essere un

indizio dell’esistenza di una scala di nuova fisica a energiadi poco superiore al TeV al

di sopra della quale le correzioni si cancellino in maniera naturale a causa di una sim-

metria della teoria, in modo che la massa dell’Higgs rimangapiccola. Questa scala di
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nuova fisica può essere la scala della rottura della supersimmetria o, in modelli con un

Higgs composto, la scala a cui la particella composta si rivela come tale (in analogia

con quello che succede ai pioni in QCD). La speranza dei fisiciè che questo problema

possa essere risolto dai dati di LHC.

• Dark Matter Numerose osservazioni cosmologiche evidenziano l’esistenza di grandi

quantità di materia non barionica di cui vediamo solamente gli effetti gravitazionali, e

prende per questo il nome di Materia Oscura. A livello cosmologico le osservazioni sul

Fondo Cosmico a Microonde (CMB) suggeriscono che attualmente la Materia Oscura

costituisca il 20-25% dell’energia dell’universo. Un’utile review può essere trovata in

[9]. Ci si aspetta che LHC possa mettere luce su questo problema.

• Oscillazione dei neutrini Le prime osservazioni delle oscillazioni dei neutrini risal-

gono agli anni ’60, e sono dovute all’esperimento di Homestake, che osservò una

deviazione del flusso di neutrini elettronici del sole rispetto alle previsioni basate sui

modelli solari. Sul finire degli anni ’80 la collaborazione Kamiokande in Giappone

evidenziò un’analoga deviazione nel flusso di neutrini muonici derivanti dall’intera-

zione dei raggi cosmici con l’atmosfera terrestre. Oggi entrambe queste deviazioni,

assieme a un numero di osservazioni analoghe, vengono giustificate supponendo che i

neutrini abbiano una massa non nulla e una matrice di mescolamento analoga aVCKM

che spiegherebbe le oscillazioni. La maggior parte di questi modelli prevede per i

neutrini sinistrorsi una massa di tipo Majorana, supponendo che meccanismi ignoti di

fisica ad altissime energie generino degli operatori efficaci a basse energie di intera-

zione tra i neutrini e il doppietto di Higgs da cui deriverebbero, dopo la rottura della

simmetria elettrodebole, i termini di massa e la matrice di mescolamento. Se questa

ipotesi fosse verificata perderebbe senso la distinzione tra ν e ν̄; un chiaro segnale

della sua correttezza sarebbe l’osservazione del doppio decadimentoβ senza neutrini,

con violazione del numero leptonico. Per una review dei numerosi aspetti sperimentali

e teorici della fisica dei neutrini si veda [10].

• Asimmetria materia/antimateria SeCP fosse una simmetria della natura, a meno

di condizioni iniziali asimmetriche l’universo sarebbe composto in egual numero di

particelle e antiparticelle. Questo è evidentemente in contrasto con la semplice osser-

vazione che il nostro mondo è composto da particelle di materia (protoni, neutroni,

elettroni...) e non di antimateria. L’asimmetria attuale tra materia e antimateria è trop-

po grande per poter essere generata tramite il meccanismo CKM, che come abbiamo

visto è l’unica fonte di violazione diCP nel Modello Standard. L’universo deve quindi

aver attraversato una fase in cui fenomeni di nuova fisica ad altissime energie forniva-

no nuove sorgenti di violazione diCP , che non sono previste dal Modello Standard.
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Questa condizione, benché necessaria, non è comunque sufficiente per giustificare l’a-

simmetria. Le condizioni sufficienti affinché ciò avvenga sono note come condizioni

di Sakharov.

• Strong CP problem Come abbiamo già detto, questo problema consiste nel capire

perché il termine (1.10) che causerebbe la violazione diCP nella QCD è così piccolo.

Sono state proposte varie alternative per risorlverlo, ma aoggi non c’è una risposta

definitiva.

• Gerarchia nelle masse dei fermioni e cariche sotto il gruppodi gaugeIl problema

consiste nel capire qual è il meccanismo (se c’è) che sta sotto alla gerarchia delle masse

dei fermioni e ai valori delle loro cariche sotto il gruppo digauge, che nel Modello

Standard sono parametri esterni non dettati da qualche tipodi simmetria.

• Gravità La Relatività Generale, teoria che descrive la forza gravitazionale come una

modificazione geometrica dello spazio-tempo, è apparentemente incompatibile con la

teoria quantistica dei campi. Il Modello Standard (o una suaestensione) dovrebbe

perdere la sua predittività alla scala di energie della massa di Plank,MPl ∼ G
−1/2
N ∼

1019 GeV, quando l’attrazione gravitazionale diventa comparabile all’effetto delle altre

forze.

Questi e altri problemi aperti fanno sospettare che il Modello Standard non sia l’ultima parola

sulla fisica delle alte energie, ma anzi la speranza è che negli anni a venire LHC ci regali

grosse sorprese.

1.3 Nuova fisica nel settore del flavour

Come abbiamo visto, il Modello Standard ammette a livello adalbero solamente processi

di flavour changing charged current, ossia processi che coinvolgono nel settore adronico sia

quark di tipo up che di tipo down e, nel settore leptonico, sialeptoni carichi che neutrini. Un

esempio di questi processi è dato dal decadimento leptonicoK− → µ−ν̄µ, che a livello di

quark corrisponde asū → µ−ν̄µ. I processi che coinvolgono solo quark di tipo up (o di tipo

down) e analogamente solo leptoni carichi (o solo neutrini)vanno sotto il nome diflavour

changing neutral current(FCNC), e nel Modello Standard possono avvenire solamente a

un loop; questo fa sì che essi siano soppressi, il che li rendeun ottimo banco di prova per

la ricerca di nuova fisica. Infatti, se i processi FCNC derivanti da nuova fisica non sono

soppressi dai loop, essi possono avere ampiezze paragonabili a quelle standard anche se la

scala di energia in gioco è significativamente più alta di quella elettrodebole. Un esempio di

questi processi è il decadimentoK → πνν̄, che a livello di quark corrisponde asd̄ → νν̄.
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Per descrivere gli effetti di nuova fisica sulle osservabililegate al flavour può essere

utile usare un approccio di teoria efficace. Supponendo che inuovi gradi di libertà della

teoria siano molto più pesanti dei campi del Modello Standard, essi si possono integrare via

ottenendo degli operatori efficaci per i campi del Modello Standard in modo analogo a come

si ottiene la teoria di Fermi dalla lagrangiana elettrodebole. La lagrangiana del Modello

Standard viene così estesa a

Leff = LSM +
∑ ci

Λ(d−4)
O

(d)
i + h.c. (1.23)

doved indica la dimensione degli operatori eΛ > MZ è la scala di energia della nuova fisica.

Questo sistema, sebbene nasconda i dettagli del particolare modello di nuova fisica e renda

quindi impossibile predirne il comportamento ad alte energie, rende comunque possibile

trovare delle correlazioni tra i coefficientici nelle varie osservabili, e ciò può aiutare nel

distinguere le varie possibili estensioni del Modello Standard e possibilmente escluderne

alcune.

Utilizzando questo approccio, se si assumono i coefficientici dell’ordine di1 si possono

ottenere dei limiti inferiori per la scalaΛ imponendo che la previsione delle osservabili

rimanga compatibile con i dati sperimentali. In questo modosi ottengono limiti inferiori

fino a104 TeV, molto più alti di quanto indicato per risolvere il problema della naturalezza.

Un’utile review di questi risultati si può trovare in [11].

Dati questi limiti, diventa importante una domanda:“Supponendo, sulla base di argo-

menti di naturalezza, che esista nuova fisica alla scala elettrodebole, perché i nuovi effetti sul

flavour sono così piccoli?”. Una possibilità è che la descrizione CKM derivi da una qualche

simmetria di flavour che la rende efficace anche a scale di energia più alte di quelle attuali. In

questa ipotesi, gli operatori efficaci di nuova fisica che contribuiscono alle osservabili di fla-

vour sarebbero soppressi da piccoli coefficienti controllati dalla simmetria; il loro contributo

alla lagrangiana efficace sarebbe quindi

∆L =
∑ ξici

Λ(d−4)
O

(d)
i + h.c. (1.24)

doveci ∼ O(1) eΛ ∼ TeV come suggerito dalla naturalezza, mentre i coefficientiξi sareb-

bero determinati sulla base della simmetria. In questo modosi può sperare di trovare effetti

significativi che diano deviazioni misurabili dalle previsioni del Modello Standard gettando

luce sulle possibili estensioni di questo nel settore del flavour. Scopo di questa tesi è conside-

rare il caso in cui tale simmetria èU(2)3, opportunamente rotta da piccoli termini (spurioni),

e analizzare i vincoli che ne vengono dalle misure sperimentali.
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Capitolo 2

Simmetria U(2)3: caso minimale

Come accennato nel precedente capitolo, i progressi sperimentali degli ultimi dieci anni han-

no mostrato come il meccanismo CKM per il mixing dei flavour e la violazione diCP sia

un’ottima descrizione della realtà fino alle scale di energia raggiunte. Per quanto riguarda

la ricerca di nuova fisica, questo fatto può essere interpretato in due modi. Una prima pos-

sibilità è che la fisica del flavour sia ben descritta dal meccanismo CKM, al punto che le

eventuali deviazioni dovute a fenomeni di nuova fisica avverrebbero a energie molto più alte

di quelle che pensiamo di poter raggiungere in un prossimo futuro. Questo scenario, pur

segnando un ulteriore successo del Modello Standard, è da considerarsi il più pessimistico,

dal momento che non lascerebbe ovvio spazio a ulteriori sviluppi in questo campo. L’alter-

nativa, come abbiamo visto, è che gli effetti di nuova fisica siano mantenuti piccoli a causa

di qualche simmetria opportunamente rotta, ma possano diventare significativi a una scala

vicina a quella di Fermi, lasciando così spazio a deviazionimisurabili dalle previsioni del

Modello Standard.

Una possibilità molto studiata negli ultimi anni è l’ipotesi di Minimal Flavour Violation

(MFV), che nel settore dei quark corrisponde a una simmetriaU(3)3 identica a quella del

Modello Standard spegnendo le interazioni di Yukawa. Questa ipotesi però non è realiz-

zata nemmeno approssimativamente nel Modello Standard, a causa dell’accoppiamento di

Yukawa del quark topλt ∼ 1.

Un’interessante alternativa è quella di considerare la simmetria

U(2)3 ≡ U(2)q × U(2)u × U(2)d (2.1)

che coinvolga solamente le prime due famiglie di flavour. Come già evidenziato, questa

simmetria è approssimativamente valida nel Modello Standard: i quark delle prime due ge-

nerazioni sono leggeri rispetto a quelli della terza e gli angoli di mescolamento sono piccoli.

Seguendo i lavori [12, 13, 14, 15] vogliamo analizzare l’ipotesi in cui questa simmetria sia
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valida anche per la fisica alla scala elettrodebole, studiando le conseguenze di questo scenario

e i vincoli sperimentali che lo costringono.

2.1 Spurioni

Supponiamo che, includendo gli effetti di nuova fisica, la lagrangiana che descrive il settore

del flavour nei quark a bassa energia sia invariante sotto la simmetriaU(2)3, eccetto per al-

cuni termini, proporzionali a dei piccoli parametri adimensionali che indicheremo col nome

di spurioni. Questi parametri dovranno essere gli stessi per le matrici di Yukawa e per tutti

gli altri termini che rompono la simmetria di flavour. Supponiamo inoltre che, associan-

do agli spurioni delle opportune leggi di trasformazione fittizie sottoU(2)3, la lagrangiana

sia formalmente invariante; questo restringe il numero di possibili operatori efficaci che vi

possono comparire. L’origine di questi termini efficaci nonè specificata, e può essere diffe-

rente a seconda del modello. Ad esempio in [12, 13] questa ipotesi viene implementata in

Supersimmetria, mentre in [14] nel contesto delle teorie diHiggs composto.

Prima di scrivere esplicitamente gli spurioni, è bene chiarire le notazioni che useremo.

Indichiamo conq
L

il doppietto diU(2)q dato dalle prime due famiglie di quark sinistrorsi,

conuR edR i doppietti diU(2)u eU(2)d dati dai quark up e down destrorsi delle prime due

famiglie, conq3L, tR e bR i quark della terza famiglia. Le regole di trasformazione diquesti

campi sottoU(2)3 sono quindi

q
L
∼ (2, 1, 1)

uR ∼ (1, 2, 1)

dR ∼ (1, 1, 2)

q3L, tR, bR ∼ (1, 1, 1).

(2.2)

Il modo più semplice per dar massa ai quark delle prime due generazioni è considerare due

spurioni (in questo caso matrici2× 2) che trasformino come un bi-doppietto:

∆Yu ∼ (2, 2̄, 1) ∆Yd ∼ (2, 1, 2̄) (2.3)

e costruire così i termini di massa invariantivλtq̄L
∆YuuR evλbq̄L

∆YddR. Per poter accop-

piare i quark delle prime due generazioni con l’ultima è necessario almeno un altro spurione

che trasformi come un doppietto sotto uno dei treU(2). Volendo introdurre un solo spurione,

l’unica possibilità è considerare un vettoreV che trasformi come un doppietto sottoU(2)q e

sia singoletto sottoU(2)u eU(2)d:

V ∼ (2, 1, 1) (2.4)
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Questo permette di scrivere i terminiq̄LV tR e q̄LV bR che collegano la terza generazione

con le prime due. Una scelta a prima vista ugualmente possibile sarebbe quella di considerare

gli spurioniVu ∼ (1, 2, 1) o Vd ∼ (1, 1, 2) al posto diV . In questo caso tuttavia, per avere

Vcb dello stesso ordine di grandezza del rapportoms/mb, lo spurione dovrebbe essereO(1),

in contrasto con l’ipotesi che la rottura della simmetriaU(2)3 sia piccola. Gli spurioniVu

eVd si possono eventualmente aggiungere volendo considerare il caso più generale. Questa

possibilità verrà analizzata nel prossimo capitolo.

Per arrivare a scrivere i possibili operatori a quattro fermioni, bisogna innanzitutto scri-

vere tutti i possibili operatori a due fermioni con cui costruire i termini cinetici dei campi dei

quark e i termini di Yukawa; dopodiché occorrerà passare nella base fisica dei quark, in cui

la matrice del termine cinetico è l’identità e la matrice di massa è diagonale. Effettuate le

necessarie rotazioni per il passaggio alla base fisica si va avedere come sono fatti i diversi

termini di interazione in questa base, e da questi qual è l’ordine di grandezza dei termini

efficaci a quattro fermioni.

I bilineari rilevanti che si possono costruire a partire dagli spurioni (2.3, 2.4) sono

Chirality conserving

L-L (no spurioni) q̄3Lγµq3L q̄
L
γµqL

R-R (no spurioni) ūRγµuR d̄RγµdR t̄RγµtR b̄RγµbR t̄RγµbR

L-L (1 spurione) (q̄LV ) γµq3L

L-L (2 spurioni) (q̄
L
V ) γµ

(
V †q

L

)

R-R (2 spurioni) t̄RγµV
†∆YuuR b̄RγµV

†∆YuuR

t̄RγµV
†∆YddR b̄RγµV

†∆YddR

(2.5)

Chirality breaking

L-R (no spurioni) q̄3LtR q̄3LbR

L-R (1 spurione) q̄
L
∆YuuR q̄

L
∆YddR q̄

L
V tR q̄

L
V bR

L-R (2 spurioni) q̄3LV
†∆YuuR q̄3LV

†∆YddR

(2.6)

dove ho trascurato i termini con due spurioni∆Y perché danno un contributo non significa-

tivo.

Utilizzando la simmetriaU(2)3 e ridefinendo le fasi dei campi dei quark è possibile

ridurre gli spurioni a una forma semplice che sarà utile per il seguito. Senza perdità di

generalità lo spurioneV si può scrivere nella forma

V =

(
0

ǫ

)
. (2.7)
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Fissata la forma diV , i due bi-doppietti si possono parametrizzare come

∆Yu = Lu12∆Ỹu e ∆Yd = ΦLL
d
12∆Ỹd ≡ Ud

12∆Ỹd (2.8)

doveLu12, L
d
12 sono matrici ortogonali nello spazio delle prime due famiglie,ΦL è la matrice

diagonalediag
(
eiφ, 1

)
e∆Ỹu,d sono matrici diagonali con autovalori reali e positivi:

∆Ỹu,d =

(
ǫu,d1

ǫu,d2

)
(2.9)

La faseφ non può essere eliminata perché, per rispettare l’invarianza di gauge, non è possibi-

le trasformare separatamente le due componentiuL edL del doppiettoq
L

; in questo modo si

può annullare una soltanto tra le fasi di∆Yu e∆Yd. I dettagli di questa riparametrizzazione

si trovano in appendice A.

2.2 Termini bilineari

Vogliamo ora scrivere, nella forma più generale che rispetti la simmetriaU(2)3, i termini

bilineari nei campi dei quark. In particolare vogliamo mostrare che le matrici con cui si

contraggono gli indici di flavour hanno una forma molto semplice: a meno di termini di

ordine superiore nei parametri degli spurioni esse si possono scrivere come combinazione di

matrici di rotazione e matrici unitarie.

I termini bilineari che rispettano la chiralità costruiti con i campi dei quark sinistrorsi

sono i termine cinetico

Q̄L /DXkinQL = aq̄3L /Dq3L + bq̄
L
/Dq

L
+ cq̄3L /D(V †q

L
) + c∗(q̄

L
V ) /Dq3L +

+d(q̄LV ) /D(V †qL) (2.10)

e tutti i possibili termini di interazione

Q̄LγµX
α
intQL = aαq̄3Lγµq3L + bαq̄LγµqL + cαq̄3Lγµ(V

†qL) + cα∗(q̄LV )γµq3L +

+dα(q̄LV )γµ(V
†qL). (2.11)

Affinchè la lagrangiana costruita con questi termini sia hermitiana, i coefficientia(α), b(α), d(α)

devono essere reali. Facendo la stessa cosa per i campi destrorsi i termini non diagonali nel

flavour sono soppressi perché di ordine più alto negli spurioni, e danno quindi un contributo

trascurabile.

Fra i termini che non rispettano la chiralità ci sono poi i termini di massa (termini di

Yukawa) e quelli di dipolo, che indichiamo genericamente con µβu,d:

Yukawa:

{
Q̄LYuuR = λt

(
q̄3LtR + xt(q̄LV )tR + q̄L∆YuuR + ytq̄3LV

†∆YuuR

)
+ h.c.

Q̄LYddR = λb
(
q̄3LbR + xb(q̄L

V )bR + q̄
L
∆YddR + ybq̄3LV

†∆YddR

)
+ h.c.

(2.12)
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dipolo:






Q̄Lσµνµ
β
uuR = λt

(
aβuq̄3LσµνtR + bβu(q̄L

V )σµνtR + cβuq̄L
∆YuσµνuR

+eβuq̄3LV
†∆YuuR

)
+ h.c.

Q̄Lσµνµ
β
ddR = λb

(
aβd q̄3LσµνbR + bβd(q̄LV )σµνbR + cβd q̄L∆YdσµνdR

+eβd q̄3LV
†∆YddR

)
+ h.c.

(2.13)

Sfruttando le fasi ditR, bR, q3L eqL si possono rendere realiλt, λb, c ext. Ancora una volta

a causa della struttura di gauge non è possibile eliminare lafase dixb.

Gli operatori trovati possono essere riscritti in forma matriciale. A meno di termini di

ordine superiore si ottiene per i termini di Yukawa

Yu = λt

[
Lu12∆Ỹu +Ru

23I3

]
(2.14)

dove I3 = diag(0, 0, 1) e Ru
23 è una rotazione di angoloxtǫ nel settore 2-3. In maniera

analoga per i down si ottiene

Yd = λb

[
Ud
12∆Ỹd + Ud

23I3

]
(2.15)

doveUd
12 = ΦLL

d
12 e Ud

23 è una matriceSU(2) e non una semplice matrice di rotazione

perchéxb è in generale complesso, ed è della forma

Ud
23 ≃




1

1 ǫ|xb|eiϕb

−ǫ|xb|eiϕb 1


 (2.16)

doveϕb è la fase dixb. Da ora in avanti indichiamo con∆Ỹu,∆Ỹd le matrici estese a

delle3 × 3 aggiungendo uno0 in basso a destra; analogamente tutte le matrici di rotazione

nel settore1 − 2 che abbiamo già definito vengono estese a rotazioni nello spazio delle tre

famiglie. Con analoga notazione per il termine cinetico vale

Xkin = A1+BR23I23R
T
23 (2.17)

dove

I23 =




0

O(ǫ2)

1


 ; (2.18)

I termini di interazione si scrivono come

Xα
int = Aα1+BαUα

23I23U
α†
23 (2.19)

Stavolta ho matriciSU(3) anziché matrici di rotazione perché i coefficienticα sono in

generale complessi. Per le matrici dei termini di dipolo vale infine

µβu = λt

[
cβuL

u
12∆Ỹu + aβuV

uβ
23 I3W

uβ
23 W

uβ
13

]
(2.20)
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e analogamente per i down

µβd = λb

[
cβdU

d
12∆Ỹd + aβdV

dβ
23 I3W

dβ
23 W

dβ
13

]
(2.21)

doveV uβ
23 eV dβ

23 sono unitarie con elementi fuori diagonale di ordineǫ, mentreW uβ
13 eW uβ

23

hanno elementi fuori diagonale di ordineǫǫu1 e ǫǫu2 .

Una volta calcolate le varie matrici nello spazio dei flavour, occorre passare nella base

fisica dei campi dei quark. Per far ciò, anzitutto è necessario mettere in forma canonica il

termine cinetico, dopodiché vanno diagonalizzati i termini di massa tramite rotazioni nel-

lo spazio delle famiglie. Si vede facilmente che il primo passaggio, fermandosi all’ordine

O(ǫ2), non modifica la forma delle matrici di Yukawa e degli altri termini ma costituisce una

semplice ridefinizioneO(1) dei parametri.

Riguardo ai termini cinetici è bene soffermarci su un fatto,conseguenza diretta dell’in-

varianza di gauge della teoria. Esplicitando gli indici di flavour essi sono scritti come

ψ̄iL /DX
ij
kinψ

j
L = ψ̄iL

[
∂µ − igSG

a
µT

a − igW a
µ

σa

2
− ig′BµY

]
γµX ij

kinψ
j
L (2.22)

e non, più in generale, come

ψ̄iL

[
∂µX

ij
k − igSG

a
µT

aX ij
g − igW a

µ

σa

2
X ij
W − ig′BµY X

ij
B

]
γµψjL (2.23)

perché in questo secondo modo l’invarianza di gauge non è rispettata. Il fatto che il termine

propriamente cinetico e quello di interazione con ilW abbiano la stessa matrice di flavour è

importante perché significa che, una volta che la prima è messa in forma canonica, anche la

seconda lo è, e questo rende possibile calcolare la matrice CKM diagonalizzando il termine

di massa.

A meno di termini di ordine superiore aO(ǫ2, ǫǫu,d1,2), le matrici di Yukawa si diagonaliz-

zano facendo

Yu −→ (Lu12)
T (Ru

23)
TYu ≃ λt




ǫu1
ǫu2

1


 (2.24)

e

Yd −→ (Ud
12)

†(Ud
23)

†Yd ≃ λb




ǫd1
ǫd2

1


 . (2.25)

Per passare nella base fisica dei quark prendo quindi

uphys
L = Ru

LuL e dphys
L = Ud

LdL. (2.26)
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Dalle equazioni (2.24) e (2.25), i valori dei parametriǫu,d1,2 si ottengono come rapporti fra le

masse dei quark. In particolare

ǫu1 = mu

mt
∼ 1× 10−5; (2.27)

ǫu2 = mc

mt
∼ 0.7× 10−2; (2.28)

ǫd1 =
md

mb
∼ 1× 10−3; (2.29)

ǫd2 =
ms

mb
∼ 2× 10−2. (2.30)

In questi passaggi stiamo completamente trascurando le rotazioni che moltiplicano i ter-

mini di Yukawa da destra e che quindi costringerebbero a ridefinire anche i campi dei quark

destrorsi. Il motivo è che, nel contesto minimale che stiamoconsiderando, queste rotazioni

hanno come unico effetto una ridefinizioneO(1) delle entrate delle matriciµβu,d; avranno

invece un ruolo importante nel caso generico, su cui ci soffermeremo nel capitolo 3.

2.2.1 Matrice CKM, termini di interazione e momenti di dipolo

Una volta passati nella base fisica, è facile calcolare esplicitamente la matrice CKM e le altre

matrici rilevanti effettuando su di esse le rotazioni che abbiamo ottenuto.

La matrice CKM si ricava scrivendo nella base fisica dei quarkleft il termineūLγµdL che

accoppia aW±:

ūLγµdL = ūphys
L γµ (L

u
12)

T (Ru
23)

T (Ud
23)U

d
12︸ ︷︷ ︸

VCKM

dphys
L (2.31)

VCKM ≃ (Lu12)
T (Ru

23)
TUd

23U
d
12 ≡ (Lu12)

TU ǫ
23U

d
12 (2.32)

È importante notare che essa dipende solamente da rotazionisinistrorse; come vedremo la

sua forma sarà uguale nel caso generico. Da un calcolo esplicito si ottiene

VCKM ≃



eiφcu12c

d
12 + su12s

d
12

(
cu23c

d
23 + e−iϕbsu23s

d
23

)

eiφsu12c
d
12 − cu12s

d
12

(
cu23c

d
23 + e−iϕbsu23s

d
23

)

−sd12
(
su23c

d
23 − e−iϕbcu23s

d
23

) (2.33)

eiφcu12s
d
12 − su12c

d
12

(
cu23c

d
23 + e−iϕbsu23s

d
23

)
su12
(
su23c

d
23 − e+iϕbcu23s

d
23

)

eiφsu12s
d
12 + cu12c

d
12

(
cu23c

d
23 + e−iϕbsu23s

d
23

)
−cu12

(
su23c

d
23 − e+iϕbcu23s

d
23

)

cd12
(
su23c

d
23 − e−iϕbcu23s

d
23

)
cu23c

d
23 + eiϕbsu23s

d
23




dove, ricordiamo,su23, s
d
23 ∼ O(ǫ). VCKM può essere messa in forma più conveniente ferman-

dosi all’ordine dominante. Tramite ridefinizioni delle fasi dei campi dei quark si ottiene la

forma 


cu12c
d
12 λ su12se

−iδ

−λ cu12c
d
12 cu12s

−sd12sei(δ−φ) −cd12s 1 +O(ǫ2)


 (2.34)
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dove(su12c
d
12−eiφcu12sd12) ≡ λeiδ e(su23c

d
23−e−iϕbcu23s

d
23) ≡ se−iα, e la faseα si può riassorbire

nelle fasi dei campi dei quark.

Usando questa parametrizzazione si può fare un fit dei parametri utilizzando quei processi

che nel modello standard avvengono già a livello ad albero, per i quali l’eventuale contributo

di nuova fisica è presumibilmente trascurabile. I risultatidi questo fit danno [13]

su12 = 0.086± 0.003 sd12 = −0.22± 0.01

s = 0.0411± 0.0005 φ = (−97± 9)◦.
(2.35)

Il valore ottenuto pers ci dà una stima dell’ordine di grandezza del parametroǫ. A meno

di fattori O(1) abbiamo quindiǫ ∼ 10−2, valore consistente con l’ipotesi che la rottura di

simmetria sia piccola.

Come la matrice CKM, anche i termini di interazione LL dipendono solo dalle rotazioni

sui quark sinistrorsi, e nei loro termini appare solamenteǫ che viene dallo spurioneV . Ef-

fettuando due differenti cambiamenti di base sui quarkuL edL la matriceXα
int dà origine a

due matrici distinte, una nel settore up e l’altra nel settore down, la cui forma esplicita è

Xuα
int = Aα1+Bα(Lu12)

TUuα
23 I23(U

uα
23 )

†Lu12 (2.36)

Xdα
int = Aα1+Bα(Ud

12)
†Udα

23 I23(U
dα
23 )

†Ud
12 (2.37)

doveUuα
23 eUdα

23 sono matrici unitarie con entrate fuori diagonaleO(ǫ) nel settore 2-3.

Per quanto riguarda le matriciµu,d si ottiene invece

µβu = λt

[
cβu∆Ỹu + aβu(L

u
12)

TUuβ
µ23I3W

uβ
23 W

uβ
13

]
(2.38)

µβd = λb

[
cβd∆Ỹd + aβd(U

d
12)

†Udβ
µ23I3W

dβ
23 W

dβ
13

]
. (2.39)

2.3 Operatori efficaci rilevanti

Come spiegato alla fine del precedente capitolo (eq. (1.24)), una volta specificata la simme-

tria di flavour e il suo modo di rottura si possono calcolare, ameno di un fattore di ordine1, i

coefficienti degli operatori efficaci a 4 campi fermionici che mediano i processi di violazione

del flavour. Questi coefficienti si ottengono dalle corrispondenti entrate delle matriciXint e

µβ che abbiamo calcolato: ad esempio l’operatore(d̄iLγµd
j
L)

2 sarà modulato da({Xdα
int }ij)2.

Un’importante conseguenza della simmetriaU(2)3 è che i coefficienti dei vari operatori

sono proporzionali alle corrispondenti entrate della matrice CKM (2.34).

2.3.1 Quark down (mesoniK,Bd,Bs)

Indicando conξij il prodotto(V ti
CKM)

∗
V tj

CKM si ottiene
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∆F = 2

• ∆B = 2, i = s, d (mixing deiBs, Bd)

1

2
cBLLe

iφBξ2ib
1

Λ2

(
d̄iLγµbL

)2
; (2.40)

• ∆S = 2 (mixing deiK)
1

2
cKLLξ

2
ds

1

Λ2

(
d̄LγµsL

)2
; (2.41)

Notiamo subito che nel caso dei mesoniBs eBd il coefficientecBLL è lo stesso, mentre

può essere differente nel caso deiK. Inoltre nel caso deiB è ammessa una nuova fase che

violaCP . Questa è una diretta conseguenza della simmetriaU(2)3 che stiamo considerando,

su cui torneremo nel capitolo 5.

∆F = 1

• ∆B = 1, i = s, d chiralità opposte (α = γ,G)

cαeiφ
α

ξibmb
1

Λ2

(
d̄iLσ

µνbR
)
Oα
µν conOα

µν = eF µν , gsG
µν ; (2.42)

• ∆B = 1, i = s, d, stessa chiralità (β = L,R,H)

cβBe
iφβξib

1

Λ2

(
d̄iLγ

µbL
)
Oβ
µ conOβ

µ =
(
l̄LγµlL

)
, (ēRγµeR) ,

(
H†DµH

)
; (2.43)

• ∆S = 1, stessa chiralità

cβKξds
1

Λ2

(
d̄Lγ

µsL
)
Oβ
µ conOβ

µ =
(
l̄LγµlL

)
, (ēRγµeR) ,

(
H†DµH

)
. (2.44)

Come prima, è importante sottolineare che per i primi due operatori il coefficientec è lo

stesso per i quarkd es, così che l’operatore è regolato solamente dalla corrispondente entrata

della matrice CKM, esattamente come avviene per il Modello Standard.

∆F = 0

• momento di dipolo (cromo-)elettrico del down

c̃αde
iφ̃α

dmd

(
d̄Lσ

µνdR
)
Oα
µν conOα

µν = eF µν , gsG
µν ; (2.45)

2.3.2 Quark up

Indicando conζij il prodotto(V ib
CKM)

∗
V jb

CKM si ottiene
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∆F = 2

• ∆C = 2
1

2
cDLLζ

2
uc

1

Λ2
(ūLγµcL)

2; (2.46)

∆F = 1

• ∆C = 1, chiralità opposta (decadimento deiD)

cDg e
iφDg ζucmc

1

Λ2
(ūLσ

µνcR) gsGµν ; (2.47)

• t→ cγ, cZ, chiralità opposta

ctαe
iφtαζctmt

1

Λ2
(c̄Lσ

µνtR)O
α
µν conOα

µν = eFµν ,
g

cw
Zµν ; (2.48)

• t→ cZ, stessa chiralità

ctcce
iφtcc

v2

2
ζctmt

1

Λ2
(c̄Lγ

µtL)O
g

cw
Zµ; (2.49)

∆F = 0

• momento di dipolo (cromo-)elettrico dell’up

c̃αue
iφ̃αumu (ūLσ

µνuR)Oα
µν conOα

µν = eF µν , gsG
µν ; (2.50)

• momento di dipolo cromo-elettrico del top

cdme
iφdmmt

1

Λ2
(t̄Lσ

µνtR) gsGµν . (2.51)

Nei capitoli 5 e 6 vedremo quali sono i limiti che si possono ottenere sui coefficientici dai

dati sperimentali.
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Capitolo 3

Simmetria U(2)3: caso generico

3.1 Spurioni

Nel precedente capitolo abbiamo introdotto la simmetriaU(2)3 utilizzando l’insieme mini-

male di spurioni

V , ∆Yu, ∆Yd. (3.1)

Vogliamo ora considerare il caso più generale ammettendo l’esistenza di altri due doppietti

corrispondenti aU(2)u eU(2)d rispettivamente:

Vu ∼ (1, 2, 1) e Vd ∼ (1, 1, 2). (3.2)

Questo completa l’elenco dei possibili termini che romponola simmetriaU(2)3 che contri-

buiscono alla matrice di massa dei quark:

λt (q̄L
V ) tR λtq̄L

∆YuuR λtq̄3L
(
Vu

†uR

)
(3.3)

λb (q̄L
V ) bR λbq̄L

∆YddR λbq̄3L
(
Vd

†dR

)
(3.4)

di modo che le matrici di Yukawa, fermandosi al primo ordine negli spurioni, si scrivono

come

Yu = λt

(
∆Yu xtV

ytVu
† 1

)
Yd = λb

(
∆Yd xbV

ybVd
† 1

)
. (3.5)

A questo punto è facile ripetere i passaggi già spiegati nel capitolo precedente per otte-

nere gli operatori efficaci fisicamente rilevanti e la loro espressione in termini delle entrate

della matrice CKM. In questo capitolo vogliamo mettere in evidenza le differenze tra i due

casi.

I termini bilineari invarianti sottoU(2)3 considerando i nuovi spurioni sono:
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Chirality conserving

L-L O(1) : q̄3Lγµq3L q̄
L
γµqL

R-RO(1) : ūRγµuR d̄RγµdR t̄RγµtR b̄RγµbR t̄RγµbR

L-L O(ǫ) : (q̄
L
V ) q3L

R-RO(ǫu,d) : (ūRVu) tR (ūRVu) bR
(
d̄RVd

)
tR

(
d̄RVd

)
bR

L-L O(ǫ2) : (q̄LV )
(
V †qL

)

R-RO(ǫ2u,d) : (ūLVu)(Vu
†uL)

(
d̄LVd

) (
Vd

†dL

)
(ūLVu)

(
Vd

†dL

)

(3.6)

Chirality breaking

L-R O(1) : q̄3LγµtR q̄3LγµbR

L-R O(ǫ, ǫu,d) : (q̄LV ) tR (q̄LV ) bR q̄3L
(
Vu

†uR

)
q̄3L
(
Vd

†dR

)

L-R O(ǫu,d12 ) : q̄
L
∆YuuR q̄

L
∆YddR

(3.7)

Notiamo che, a differenza del caso minimale, si possono scrivere termini che conservano

la chiralità con i quark destrorsi utilizzando un solo spurione. Questo fa sì che, nel caso

generico, gli effetti di nuova fisica possano diventare evidenti anche per gli operatori che

coinvolgono i quark destrorsi.

Sfruttando la simmetria di flavour per ridefinire i campi dei quark si possono mettere gli

spurioni in una forma standard. Scegliamo, senza perdita digeneralità, di parametrizzare i

doppietti come

V =

(
0

ǫ

)
Vu =

(
0

ǫu

)
Vd =

(
0

ǫd

)
. (3.8)

Per scrivere i tre doppietti in questa forma è necessario fare tre trasformazioniU(2)3; di

conseguenza rispetto al caso minimale c’è meno libertà di ridefinire gli spurioni∆Y , che

scriveremo in forma standard come

∆Yu = Lu12∆ỸuΦ
u
RR

u
12 ≡ Lu12∆ỸuV

u
12 (3.9)

e

∆Yd = ΦLL
d
12∆ỸdΦ

d
RR

d
12 ≡ Ud

12∆ỸdV
d
12 (3.10)

doveLu12, L
d
12, R

u
12, R

d
12 sono matrici di rotazione nel settore 1-2,ΦL come prima è della

forma diag
(
eiφ, 1

)
e Φu,dR sono della formadiag

(
eiφ

u,d
1 , eiφ

u,d
2

)
. Abbiamo quindi quattro

nuovi parametri (ǫu,dR , θu,dR ) e quattro fasi (φu,d1,2 ) che si aggiungono ai cinque parametri reali

e una fase del caso minimale (ǫL, ǫu,d1,2 , θu,dL , φ). Per fissare la notazione, definiamosu,dL ≡
sin θu,dL esu,dR ≡ sin θu,dR .
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Assumendo che, come si verificherà per consistenza a posteriori, i parametriǫu,dR siano

piccoli rispetto aǫ, tutte le matrici relative ai quark sinistrorsi non cambiano forma nel caso

generale. In particolare i parametriǫL, ǫu,d1,2 , θu,dL , φ del caso minimale restano determinati

dalle masse dei quark e dalla matrice CKM.

3.2 Termini bilineari

Una volta definiti gli spurioni si possono scrivere i terminibilineari nei campi dei quark. I

due nuovi doppiettiVu eVd fanno sì che diventino fisicamente rilevanti anche i terminiche

conservano la chiralità con i quark destrorsi che rompono lasimmetria di flavour.

I termini che conservano la chiralità sono i termini cinetici e gli altri termini di interazio-

ne. I termini cinetici si scrivono come

Q̄L/∂XkinQL = aq̄3L /∂q3L + bq̄L
/∂qL + dq̄3L/∂(V

†qL) + d∗(q̄LV )/∂q3L

+e(q̄
L
V )/∂(V †q

L
) (3.11)

ūR/∂X
uR
kin uR = auRt̄R /∂tR + buRūR

/∂uR + duRt̄R /∂(Vu
†uR) + d∗uR(uRV u)/∂tR

+euR(ūRVu)/∂(Vu
†uR) (3.12)

d̄R/∂X
dR
kin dR = adRb̄R /∂bR + bdRd̄R

/∂dR + ddRb̄R /∂(Vd
†dR) + d∗dR(dRV d)/∂bR

+edR(d̄RVd)/∂(Vd
†dR). (3.13)

I termini di interazione hanno forma analoga. Notiamo che i coefficientia(α)(R), b
(α)
(R), e

(α)
(R) sono

reali per l’hermitianità della lagrangiana.

I termini che non rispettano la chiralità sono i termini di Yukawa e quelli di dipolo:

Yukawa:

{
Q̄LYuuR = λt

(
q̄3LtR + xt(q̄L

V )tR + q̄
L
∆YuuR + ytq̄3L(Vu

†uR)
)
+ h.c.

Q̄LYddR = λb
(
q̄3LbR + xb(q̄LV )bR + q̄L∆YddR + ybq̄3L(Vd

†dR)
)
+ h.c.

(3.14)

dipolo:





Q̄Lσµνµ
β
uUR = λt

(
aβu q̄3LσµνtR + bβu(q̄L

V )σµνtR + cβuq̄L
∆YuσµνuR

+eβuq̄3L(Vu
†uR) + fβu (q̄LV )(Vu

†uR)
)
+ h.c.

Q̄Lσµνµ
β
dDR = λb

(
aβd q̄3LσµνbR + bβd (q̄L

V )σµνbR + cβd q̄L
∆YdσµνdR

+eβd q̄3L(Vd
†dR) + fβd (q̄LV )(Vd

†dR)
)
+ h.c.

(3.15)

Analogamente al caso minimale, gli operatori ottenuti possono essere scritti in forma

matriciale come combinazione di matrici ortogonali e matrici unitarie. Rispetto al caso pre-

cedente, stavolta le matrici di rotazione destre, quelle cioè che moltiplicano da destra la ma-

trice diagonale, hanno entrate del primo ordine nei parametri ǫu,d, il che rende significative

per il passaggio alla base fisica anche le matrici che agiscono sui quark destrorsi.
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Le matrici di Yukawa si scrivono nella forma

Yu = λt

[
Lu12∆ỸuV

u
12 + Lu23I3R

u
23

]
(3.16)

Yd = λb

[
Ud
12∆ỸdV

d
12 + Ud

23I3R
d
23

]
(3.17)

dove le matriciLij eRij sono matrici ortogonali nel settore(i, j) e la matriceUd
23 contie-

ne la fase complessa dixb che, come prima, non può in generale essere messa a zero con

trasformazioniU(2)3.

Per passare alla base fisica si procede mettendo in forma standard il termine cinetico e

poi diagonalizzando le matrici di Yukawa. Come nel caso precedente, il primo passaggio non

modifica la forma delle altre matrici. Con approssimazione sufficiente i termini di massa si

diagonalizzano facendo

Yu −→ (Lu12)
T (Lu23)

TYu(R
u
23)

T (V u
12)

† (3.18)

e

Yd −→ (Ud
12)

†(Ud
23)

†Yd(R
d
23)

T (V d
12)

†; (3.19)

il passaggio alla base fisica avviene quindi facendo

uL = Lu23L
u
12u

phys
L (3.20)

uR = (Ru
23)

T (V u
12)

†uphys
R (3.21)

dL = Ud
23U

d
12d

phys
L (3.22)

dR = (Rd
23)

T (V d
12)

†dphys
R . (3.23)

Una volta passati nella base fisica, è facile calcolare la matrice CKM e le altre matrici

rilevanti legate ai termini di interazione.

Come nel caso minimale,VCKM dipende dalle sole rotazioni di sinistra, quindi vale ancora

l’equazione (2.32):

VCKM = (Lu12)
T (Lu23)

TUd
23U

d
12. (3.24)

Come affermato in precedenza, la matrice CKM così trovata permette di determinare i

parametri del caso minimale.

Le altre matrici rilevanti prendono la forma

XuLα
int = AαuL1 +Bα

uL(L
u
12)

TUuα
23 I

L
23(U

uα
23 )

†Lu12 (3.25)

XuRα
int = AαuR1+Bα

uR(V
u
12)

†V uα
23 I

uR
23 (V uα

23 )†V u
12 (3.26)

XdLα
int = AαdL1+Bα

dL(U
d
12)

TUdα
23 I

L
23(U

dα
23 )

†Ud
12 (3.27)

XdRα
int = AαdR1 +Bα

dR(V
d
12)

†V dα
23 I

dR
23 (V

dα
23 )†V d

12 (3.28)
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µβu = λt

[
aβu(L

u
12)

TUuβ
µ23I3V

uβ
µ23V

u
12 + cβu∆Ỹu

]
(3.29)

µβd = λb

[
aβd(U

d
12)

†Udβ
µ23I3V

dβ
µ23V

d
12 + cβd∆Ỹd

]
. (3.30)

Le matriciXLα
int per i quark up e down hanno la stessa forma del caso minimale, in quanto

dipendono solamente da rotazioni sui quark sinistrorsi. LematriciXRα
int , irrilevanti nel caso

minimale, diventano significative in questo caso con entrateO(ǫu,d). Infine, le matriciµβu,d
dei momenti di dipolo ricevono contributiO(ǫu,d) dalle rotazioni destrorse, assenti nel caso

minimale.

3.3 Operatori efficaci rilevanti

Nei capitoli 5 e 6 vedremo come, utilizzando i dati sperimentali su alcune osservabili legate

ai mesoniK, B eD neutri e quelli sul momento di dipolo elettrico del neutrone, si possano

costringere i parametri liberi di un modello di nuova fisica con simmetriaU(2)3. Elenchiamo

intanto gli operatori rilevanti, con i coefficienti che si ottengono nel caso generico, su cui

ritorneremo nel capitolo 6.

∆S = 2: mixing dei K

• Bilineari scalari

cS,LRK

sdR
sdL

(
ǫdR
ǫL

)2

ξ2dse
i(φd1−φd2)λ2b

1

Λ2
(d̄LsR)(d̄RsL); (3.31)

• bilineari vettoriali

cV,LRK

sdR
sdL

(
ǫdR
ǫL

)2

ξ2dse
i(φd

1
−φd

2
) 1

Λ2
(d̄LγµsL)(d̄Rγ

µsR); (3.32)

∆S = 1: decadimenti deiK

• Transizioni di dipolos→ d

mt

Λ
cgKe

i(φg
K
−φd2)λbξds

ǫdR
ǫL

(
d̄LσµνT

asR
)
gsG

µν
a ; (3.33)

• ǫ′ (violazione diCP diretta)

1

Λ2

sdR
sdL

(
ǫdR
ǫL

)2

ξ2dse
i(φd

1
−φd

2
)c′

u,d
5,6O′u,d

5,6 (3.34)

con

O′
5
q
=
(
d̄RγµsR

)
(q̄Lγ

µqL) e O′
6
q
=
(
d̄αRγµs

β
R

)(
q̄βLγ

µqαL

)
(3.35)

doveα eβ sono indici di colore;
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∆C = 1: decadimenti deiD

1

Λ2
cgDe

iφg
Dζuce

−iφu2 ǫ
u
R

ǫL
O8 e

1

Λ2
cgDe

iφg
Dζuce

iφu1
suR
suL

ǫuR
ǫL

O′
8; (3.36)

dove

O8 = mt (ūLσµνT
acR) gsG

µν
a e O′

8 = mt (ūRσµνT
acL) gsG

µν
a ; (3.37)

∆F = 0: momenti di dipolo elettrico

• quark up

mtζuue
−iφu

1
suR
suL

ǫuR
ǫL

1

Λ2
cαue

iφαu (ūLσ
µνuR)Oα

µν conOα
µν = eF µν , gsG

µν ; (3.38)

• quark down

mbξdde
−iφd

1
sdR
sdL

ǫdR
ǫL

1

Λ2
cαd e

iφα
d

(
d̄Lσ

µνdR
)
Oα
µν (3.39)
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Capitolo 4

Osservabili di flavour eCP

In questo capitolo vogliamo presentare sinteticamente alcuni aspetti della fenomenologia

dei mesoniK, B e D che saranno utili nel seguito. In particolare siamo interessati alle

osservabili legate alla violazione del flavour o diCP che riprenderemo nei prossimi capitoli

per confrontare le previsioni dei modelli con simmetriaU(2)3 e costringerne i parametri

liberi.

4.1 Considerazioni preliminari

Anzitutto è bene richiamare alcune proprietà di trasformazione dei campi sotto le trasforma-

zioni discreteP eC. Le regole di trasformazione sono date da

P C

s = 0 φ −→ ηPφ(−~x, t) ηCφ
∗(~x, t)

s = 1/2 ψ −→ ηPγ0ψ(−~x, t) ηCγ0ψ
†(~x, t)

s = 1 Aµ −→ ηPg
µνAν(−~x, t) ηCA

∗
µ(~x, t)

(4.1)

doves è lo spin della particella considerata. Per quanto riguardala parità, affinchéP 2 = 1 la

faseηP deve valere±1. Se consideriamo solo particelle scalari e vettoriali, unavolta fissata la

fase di una particella di riferimento tutte le altre sono automaticamente fissate imponendo che

i termini nella lagrangiana corrispondenti alle interazioni che rispettano la parità (la forte e

l’elettromagnetica) siano invarianti. La fase dei campi fermionici invece non è univocamente

determinata: l’operazione di parità è definita a meno di rotazioni di 2π, ciascuna delle quali

cambia il segno della funzione d’onda di spin semintero.

Nel caso della coniugazione di caricaC, ciascun campo viene mandato non in sé stesso

(a meno di una fase) ma nel suo complesso coniugato; questo perché la coniugazione di

carica è definita come la trasformazione che manda una particella nella sua antiparticella.
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Gli unici autostati diC sono quindi le particelle che coincidono con la loro antiparticella:

è il caso, ad esempio, del fotone, del pione neutro e di sistemi particella-antiparticella. Per

queste particelle la fase può essere solamente±1 affinchéC2 = 1. Negli altri casi la fase

può essere definita arbitrariamente in quanto può essere riassorbita nella fase del vettore che

rappresenta lo stato, la quale non può avere conseguenze sulla fisica. Per il sistema dei kaoni

neutri ad esempio prenderemo

CP |K〉 → eiαK |K̄〉
CP |K̄〉 → e−iαK |K〉 (4.2)

dove la faseαK può essere posta a0 ridefinendo la fase degli stati|K〉, |K̄〉.

4.2 Mixing

Uno dei principali banchi di prova per la ricerca di nuova fisica nel settore del flavour è dato

dai sistemi dei mesoni pseudoscalari neutriK0 − K̄0, B0
d,s − B̄0

d,s eD0 − D̄0. Ciascuno di

questi sistemi presenta delle peculiarità fenomenologiche differenti, tuttavia il meccanismo

che ne regola il mixing e la violazione diCP è lo stesso, e può essere studiato in generale.

Le prime evidenze sperimentali della violazione diCP nelle interazioni deboli si sono

ottenute dal sistema dei mesoniK neutri [16]. IK sono le particelle più leggere con stra-

nezza non nulla (SK = +1, SK̄ = −1) e decadono quindi solo debolmente. Inoltre possono

venire mescolati da interazioni con∆S = 2: questo significa che le particelle fisiche con

massa e vita media definite sono una sovrapposizione diK0 e K̄0.

Consideriamo in generale una coppia di mesoniP 0− P̄ 0, le cui trasformazioni sottoCP

sono definite come

CP |P 0〉 → eiαP |P̄ 0〉
CP |P̄ 0〉〉 → e−iαP |P 0〉 (4.3)

dove la faseeiαP segue dall’arbitrarietà nella definizione della coniugazione di caricaC. Da

questa si ricava immediatamente che gli autostati sottoCP sono

|P1,2〉 =
1√
2

(
|P 0〉 ± eiαP |P̄ 0〉

)
con autovalore± 1. (4.4)

Se la simmetria diCP fosse rispettata, gli stati fisici con massa e vita media definita coicide-

rebbero con gli autostati diCP dati dalla (4.4). L’esperimento di Cronin e Fitch [16] prova

che questa evenienza non è realizzata nel caso deiK. Definiamo quindi gli autostati fisici con

massa e vita media definite come|PH〉 e |PL〉, dove il suffisso sta per heavy (per quello più
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massiccio) e light (per quello più leggero). Nel caso deiK si usa distinguere|KL〉 e |KS〉,
dove L sta per long (vita media lunga) e S per short (vita mediabreve); sperimentalmente il

KL risulta essere il più pesante.

Supponiamo di avere uno stato iniziale sovrapposizione di|P 0〉 e |P̄ 0〉, e di volerne

seguire l’evoluzione temporale. Evolvendo questo prenderà delle componenti parallele a

ciascuno dei possibili stati finali di decadimento{f1, f2, . . .}

|ψ(t)〉 = a(t)|P 0〉+ b(t)|P̄ 0〉+ c1(t)|f1〉+ c2(t)|f2〉+ . . . . (4.5)

Volendo studiare il fenomeno del mixing tra gli stati|P 0〉 e |P̄ 0〉 siamo interessati solamen-

te ai coefficientia(t) e b(t), il cui andamento si può ottenere utilizzando un formalismo

semplificato. L’evoluzione temporale ristretta al sottospazio |P 0〉 − |P̄ 0〉 si ottiene tramite

un’hamiltoniana efficace che nella base degli autostati di stranezza prende la forma

H =M − i

2
Γ =

(
M11 M12

M∗
12 M22

)
− i

2

(
Γ11 Γ12

Γ∗
12 Γ22

)
(4.6)

doveM eΓ sono matrici2 × 2 hermitiane e positive. La non unitarietà dell’hamiltoniana è

dovuta al fatto che le particelle analizzate sono instabili. I termini diagonali della matriceM

sono dovuti principalmente alle interazioni forti, e determinerebbero la massa diP 0 e P̄ 0 nel

caso in cui le interazioni deboli non ci fossero. Si può dimostrare che, a causa dell’invarianza

sottoCPT ,

M11 =M22 ≡ m (4.7)

Γ11 = Γ22 ≡ γ. (4.8)

Gli autostati di massa e vita media sono gli autovettori diH, che si possono scrivere nella

forma

|PL,H〉 =
1√

|p|2 + |q|2
(
p|P 0〉 ± q|P̄ 0〉

)
(4.9)

dove
p

q
=

√
M12 − i

2
Γ12

M∗
12 − i

2
Γ∗
12

(4.10)

da cui ∣∣∣∣
p

q

∣∣∣∣
2

=

√
|M12|2 + 1

4
|Γ12|2 − Im (M12Γ∗

12)

|M12|2 + 1
4
|Γ12|2 + Im (M12Γ

∗
12)
. (4.11)

Gli autovalori sono

ML,H − i

2
ΓL,H = m− i

2
γ ± R (4.12)

con

R = −
√(

M12 −
i

2
Γ12

)(
M∗

12 −
i

2
Γ∗
12

)
(4.13)
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La differenza in massa e vita media traPL ePH è quindi

∆M ≡MH −ML = 2ReR (4.14)

∆Γ ≡ ΓH − ΓL = −4 ImR. (4.15)

La condizione affinchéPL ePH siano autostati diCP segue dalla definizione (4.4):

p

q
= eiαP (4.16)

ossia ∣∣∣∣
p

q

∣∣∣∣ = 1. (4.17)

Se tale condizione non è rispettata gli autostati dell’hamiltoniana non sono autostati diCP

che quindi non è una simmetria del sistema. Dalla (4.11) segue che la condizione|p/q| = 1

è equivalente aIm (M12Γ
∗
12) = 0. Affinché |p/q| 6= 1 deve quindi esistere una differenza di

fase traM12 e Γ12; tale fase non è eliminabile con semplici ridefinizioni dei vettori di base

|P 0〉 e |P̄ 0〉.
Introduciamo infine alcune definizioni di uso comune. La massa e la larghezza media

sono date da

M ≡ MH +ML

2
Γ ≡ ΓH + ΓL

2
; (4.18)

si definiscono inoltre le quantità adimensionali

x ≡ ∆M

Γ
e y ≡ ∆Γ

2Γ
. (4.19)

che prendono il nome di parametri di mixing, e governano le oscillazioni P 0 − P̄ 0: per le

probabilità di transizione vale infatti

P (P 0 → P 0, t) = 1
2
e−Γt (cosh(yΓt) + cos(xΓt))

P
(
P 0 → P̄ 0, t

)
= 1

2

∣∣∣ qp
∣∣∣
2

e−Γt (cosh(yΓt)− cos(xΓt))
(4.20)

I valori dei parametri fisici per i mesoni neutriK, D, Bd eBs sono riportati in tabella

(4.1). Da essi appaiono evidenti alcune proprietà di questisistemi. In particolare notiamo

che, nel sistema deiK, i due autostati hanno vite medie molto diverse: questo fa sìcheKS

eKL possano essere studiati separatamente negli esperimenti.

Una questione molto importante è capire se le grandezze fin qui definite sono effettiva-

mente calcolabili in una teoria come il Modello Standard. Ilprimo problema, che può essere

affrontato attraverso il calcolo su reticolo, sorge dal calcolo degli elementi di matrice degli

operatori efficaci tra stati fisici adronici. Il secondo problema, più difficile, sorge quando il

calcolo degli elementi di matrice non è possibile con tecniche perturbative nemmeno a livello

di quark.
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K0

mK (497.614± 0.024) MeV ≃ 0.7560× 1012 ps−1

∆mK (0.507± 0.004) ps−1

τKL
5.116± 0.021× 10−8 s

τKS
0.89564± 0.00033× 10−10 s

B0
d

md (5279.58± 0.17) MeV ≃ 8.021× 1012 ps−1

∆md (0.507± 0.004) ps−1

xd 0.770± 0.008 [17](
∆Γ
Γ

)
d

0.017± 0.018± 0.011 [18]

B0
s

ms (5366.77± 0.24) MeV ≃ 8.153× 1012 ps−1

∆ms (17.69± 0.08) ps−1

xs 26.74± 0.22 [17](
∆Γ
Γ

)
s

0.144± 0.021 [17]

D0

mD (1864.86± 0.13) MeV ≃ 2.833× 1012 ps−1

∆mD (1.44+0.48
−0.50)× 10−2 ps−1

xD (0.63+0.19
−0.20)× 10−2 [17](

∆Γ
Γ

)
D

(1.60+0.25
−0.26)× 10−2

Tabella 4.1: Parametri di mixing per i mesoni neutriK, Bd, Bs eD.

Consideriamo ad esempio il calcolo diM12 nel caso dei mesoniK. A livello di quark,

nel Modello Standard questo dipende dal diagramma a un loop di figura (4.1). Questa è però

un’approssimazione, in quanto non tiene conto delle correzioni di QCD: i campi dei quark

vanno vestiti considerando lo scambio di gluoni, con una costante di accoppiamentogS che è

perturbativa solo se il tipico impulso del loop è grande rispetto alle scale adroniche. Ponendo

gli impulsi esterni a zero, l’ampiezza relativa al diagramma di figura (4.1) è data da

M =
ig4

2

∑

i,j=u,c,t

∫
d4k

(2π)4
−gµν + kµkν
k2 −M2

W

−gρσ + kρkσ
k2 −M2

W

×

×
(
d̄Lγ

µ ξi
/k −mi

γρsL

)(
d̄Lγ

ν ξj
/k −mj

γσsL

)
(4.21)

doveξi = VisV
∗
id. Trascurando la massa del quarku, si può sfruttare l’unitarietà della matrice

CKM per ridurre l’ampiezza in una somma di tre termini:

M =
(
ξ2tFtt + ξ2cFcc + 2ξtξcFct

) (
d̄LγµsL

) (
d̄Lγ

µsL
)

(4.22)

dove

Fij =
ig4

2

∫
d4k

(2π)4
1− 2k2/M2

W + (k2/M2
W )

2

k2(k2 −M2
W )2

m2
i

k2 −m2
i

m2
j

k2 −m2
j

. (4.23)
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d

s̄

s

d̄
ū, c̄, t̄

u, c, t

Figura 4.1: Diagramma box responsabile del mixingK0 − K̄0.

L’ampiezza così trovata può essere interpretata come una lagrangiana efficace il cui elemento

di matrice fra gli stati fisici|K0〉 e |K̄0〉 determina l’entrataM12 della matrice di massa.

La differenza in massa, nel caso deiK, è data da∆mK ≃ 2|M12|. Dalla (4.22) si può

vedere che|M12| è dominato dal termine proporzionale aFcc, per il quale gli impulsi rilevanti

nel loop vanno da0 alla massa del quarkc; in questo intervallo la costante di accoppiamento

gS non è perturbativa, rendendo quindi impossibile il calcolodelle correzioni di QCD. D’altra

parte, scegliendo le fasi dei campi dei quark in modo cheΓ12 sia reale, la violazione diCP

nel mixing dipenderà dalla parte immaginaria diM12, data dai termini proporzionali aFct e

Ftt; gli impulsi rilevanti per il calcolo di questi integrali vanno damc amt, intervallo in cui

un calcolo perturbativo è possibile.

4.3 Effetti di violazione di CP

Definiamo anzitutto le ampiezze di decadimento diP e P̄ in uno stato finalef o nel suo

CP -coniugatof̄

Af = 〈f |S|P 〉, Āf = 〈f |S|P̄ 〉, Af̄ = 〈f̄ |S|P 〉, Āf̄ = 〈f̄ |S|P̄ 〉. (4.24)

4.3.1 Convenzioni sulle fasi

Come già detto, c’è un’arbitrarietà nella scelta delle fasiche deriva, per i mesoniK, B eD

dalla conservazione dei numeri quantici dei quarks, b e c nelle interazioni forti. È possibile

ridefinire gli stati|P 0〉, |P̄ 0〉 come

|P 0〉 −→ |P 0〉′ = eiσ|P 0〉 |P̄ 0〉 −→ |P̄ 0〉′ = e−iσ|P̄ 0〉 (4.25)

senza alcun effetto sulla fisica. È importante quindi definire delle osservabili che quantifi-

chino la violazione diCP che siano indipendenti da ridefinizioni di fase non fisiche. Le
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quantità fin qui definite trasformano come

M12 = 〈P 0|M |P̄ 0〉 −→ M ′
12 = e−2iσM12

Γ12 = 〈P 0|Γ|P̄ 0〉 −→ Γ′
12 = e−2iσΓ12 (4.26)

p

q
−→ e−2iσ p

q
(4.27)

Af −→ A′
f = eiσAf (4.28)

Āf −→ Ā′
f = e−iσĀf (4.29)

4.3.2 Classificazione degli effetti di violazione diCP

Vogliamo classificare i possibili effetti della violazionedi CP . Come vedremo, essa può

manifestarsi in modi differenti, e non tutti questi sono realizzati nelle coppieP 0 − P̄ 0. In

questa sezione seguiamo la discussione di [19] e [20].

Violazione di CP nel mixing Si dice che la simmetria diCP è violata nel mixing se gli

autostati di massa e vita media definita non sono autostati diCP . Richiamando l’equazione

(4.17) questo avviene se ∣∣∣∣
p

q

∣∣∣∣ 6= 1. (4.30)

Questa è l’unica fonte di violazione diCP nel Modello Standard per i decadimenti semi-

leptonici con corrente carica dei mesoni neutriP, P̄ → l±X, come il decadimentoKS,L →
π±l∓ν.

Per misurare questa violazione si ricorre all’asimmetria

aSL ≡
d
dt
Γ[P̄ 0

phys(t) → l+X ]− d
dt
Γ[P 0

phys(t) → l−X ]
d
dt
Γ[P̄ 0

phys(t) → l+X ] + d
dt
Γ[P 0

phys(t) → l−X ]
=

1− |p/q|4

1 + |p/q|4
(4.31)

avendo supposto|Al+X | = |Āl−X | e |Al−X | = |Āl+X | = 0, vero nel Modello Standard al

primo ordine inGFm
2
P .

Violazione di CP nei decadimenti SeCP è una simmetria della teoria la matrice di

scattering commuta con l’operazione diCP ; si ha quindi

Af = out〈f |S|P 〉in

= ei(αP−αf )
out〈f̄ |(CP )S (CP )−1|P̄ 〉in = ei(αP−αf )Āf̄ (4.32)

e

Af̄ = ei(αK+αf )Āf . (4.33)
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Si dice che la simmetria diCP è violata nel decadimento se
∣∣∣∣
Āf̄

Af

∣∣∣∣ 6= 1 (4.34)

Violazione di CP nell’interferenza tra mixing e decadimento Consideriamo il caso di

un decadimento in un canale comune a entrambe le particelle:P 0, P̄ 0 → f . Fissiamo per

comodità le fasi arbitrarie dell’equazione (4.3) uguali a zero. La quantità

λf ≡
q

p

Āf

Af

(4.35)

è indipendente da ridefinizioni di fase, e per quanto visto prima seCP è conservata vale±1.

Seλf 6= ±1 la simmetria diCP è necessariamente violata. Questo può essere causato sia da

una violazione nel mixing che nel decadimento: in entrambi icasi si avrà|λf | 6= 1. Esiste

poi la possibilità che|p/q| = 1, |Āf/Af | = 1, quindi |λf | = 1, ma tuttavia

Imλf 6= 0; (4.36)

in questo caso la violazione deriva dall’interferenza tra il decadimento senza mixingP 0 → f

e il decadimento con mixingP 0 → P̄ 0 → f . Un’esauriente spiegazione di questo tipo di

violazione può essere trovata nel paragrafo 7.2.1 di [22].

La violazione diCP indotta dall’interferenza può essere osservata utilizzando l’asimme-

tria di decadimento dei mesoni neutri in un autostato diCP :

afCP
(t) ≡

d
dt
Γ[P̄ 0

phys(t) → fCP ]− d
dt
Γ[P 0

phys(t) → fCP ]
d
dt
Γ[P̄ 0

phys(t) → fCP ] +
d
dt
Γ[P 0

phys(t) → fCP ]
(4.37)

dove conP 0
phys(t) e P̄ 0

phys(t) indichiamo l’evoluzione temporale degli stati iniziali|P 0〉 e |P̄ 0〉
rispettivamente. Nel caso dei mesoniB (ma non per iK) vale approssimativamente∆Γ = 0

e |p/q| = 1: in questo caso vale per l’asimmetriaafCP
la semplice formula

afCP
= Sf sin(∆mt)− Cf cos(∆mt) (4.38)

con

Sf ≡
2 Im(λf)

1 + |λf |2
Cf ≡

1− |λf |2

1 + |λf |2
; (4.39)

se poi si aggiunge l’ipotesi che|ĀfCP
| = |AfCP

| allora l’asimmetria diventa

afCP
(t) = Im(λf ) sin(xΓt) (4.40)

conSf = Imλf .
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4.3.3 Approfondimento sulla violazione diCP nei decadimenti

È bene specificare sotto quali condizioni è possibile avere violazione diCP nel decadimento.

Prendiamo il caso di una particellaP che decade solo debolmente, come i mesoni fin qui

considerati. La matrice di scatteringS può essere scomposta fermandosi al primo ordine

nelle interazioni deboli. Scriviamo cioè

S = S + iT (4.41)

doveS è il contributo delle interazioni forti,T è la parte delle interazioni deboli. La matrice

T non conserva la stranezza e gli altri numeri barionici individuali. La matrice di transizione

S può connettere|P 〉 solo con lo stesso stato|P 〉 o con stati di particelle più leggere in cui

|P 〉 decade. Se|P 〉 decade solo debolmente vuol dire che questi stati avranno stranezza (o

un altro numero quantico conservato nelle interazioni forti) diversa da|P 〉. In questo caso

quindi 〈J |S|P 〉 = δPJ .

Per studiare la violazione diCP nei decadimenti occorre studiare le asimmetrie nelle

ampiezze di decadimento tra particella e antiparticella:

∆J =
∣∣〈J̄ |T |P̄ 〉

∣∣2 − |〈J |T |P 〉|2. (4.42)

dove|J〉 è uno stato di particelle in cui|P 〉 può decadere. Si può dimostrare che, sommando

i valori di queste asimmetrie su tutti i possibili stati finali di decadimento, vale
∑

J

∣∣〈J̄ |T |P̄ 〉
∣∣2 =

∑

J

|〈J |T |P 〉|2 (4.43)

ossia ∑

J

∆J = 0. (4.44)

Questo è un risultato di fondamentale importanza, perché cidice che la vita media di una

particella è uguale a quella della sua antiparticella.

Quello che ci interessa è capire in quali canali l’asimmetria (4.42) può essere non nulla.

Si può dimostrare che se lo stato|J〉 è un autostato delle interazioni forti allora l’asimmetria

è nulla. Questo è quanto accade, ad esempio, per i decadimenti nel canale semileptonico

K0 → π−l+ν e nei canaliK0 → (2π, I) in cui il sistema dei due pioni ha isospin definitoI.

Al contrario l’asimmetria può essere diversa da0 nei canaliK0 → π+π− eK0 → π0π0, in

cui lo stato finale è combinazione lineare di due diversi autostati delle interazioni forti, cioè

gli stati a due pioni con isospin totale0 o 2.

4.3.4 Violazione diretta e indiretta

Consideriamo l’ampiezzaAf del decadimentoP → f e la sua coniugatāAf̄ . I termini della

lagrangiana che contribuiscono all’ampiezzaAf con un parametro complesso appariranno
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in Āf̄ come complesso coniugato, e quindi le fasi generate da questi termini avranno segno

opposto inAf eĀf̄ . Poiché nel Modello Standard queste fasi derivano dall’interazione con i

bosoniW±, esse prendono il nome di fasi deboli. Mentre il valore dellasingola fase debole

non è fisico, perché può essere modificato tramite ridefinizioni dei campi, la differenza di fase

tra due termini che contribuiscono alla stessa ampiezza è indipendente da tali ridefinizioni

ed ha un valore fisico misurabile. Questo è quello che accade,ad esempio, per i canali

K0 → π+π− eK0 → π0π0 quando si scompone lo stato finale in somma di stati a isospin

definito.

In aggiunta alle fasi deboli, vi possono essere delle altre fasi, generalmente prodotte dalle

correzioni forti alle ampiezze di decadimento, che emergono in entrambi i processiP → f

e P̄ → f̄ con lo stesso segno; queste fasi prendono il nome di fasi forti. Come le fasi deboli,

anch’esse sono convenzionali, ma la differenza tra le fasi di termini che contribuiscono a una

stessa ampiezza ha un valore fisico.

Supponiamo ad esempio che lo stato finale|f〉 si scomponga in due autostati di isospin;

corrispondentemente l’ampiezza sarà data da due contributi Af = a1 + a2. La stessa cosa

può avvenire quando l’ampiezza è data da un grafico ad albero euna correzione con un loop;

in questo caso dal calcolo del loop emerge una fase che non cambia segno se si considera

il processoCP -coniugato. Possiamo allora scomporre ciascun contributofattorizzandone la

fase debole e forte, ottenendo

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2) (4.45)

Āf̄ = |a1|ei(δ1−φ1) + |a2|ei(δ2−φ2) (4.46)

dove i moduli delle ampiezzeai sono uguali nei due casi per la discussione fatta nella sezione

precedende.

A questo punto possiamo introdurre un’ulteriore classificazione per le possibili realizza-

zioni della violazione diCP :

• Si parla diviolazione diCP diretta quando gli effetti non possono essere giustificati

semplicemente ponendoφM 6= 0, doveφM è la fase relativa tra i termini non diagonali

della hamiltoniana efficaceM12 eΓ12, e tutte le altre fasi che violanoCP a zero. La

violazione diCP nel decadimento rientra in questa categoria.

• Si parla invece diviolazione indirettaquando gli effetti sono consistenti con il porre

φM 6= 0 e tutte le altre fasi che violanoCP a zero. La violazione diCP nel mixing

rientra in questo caso. Notiamo che, a differenza della violazione diretta, la violazione

indiretta produce degli effetti universali, ossia indipendenti dal particolare canale di

decadimento in cui vengono misurati.
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Per quanto riguarda la violazione diCP nell’interferenza tra mixing e decadimento, essa

non può essere classificata univocamente come violazione diretta o indiretta; tuttavia, la

misura di un differente valore diλf per due differenti stati finali è prova di una violazione

diretta, in quanto la violazione indiretta produce una fasedi mixing indipendente dal canale

di decadimento.

4.4 MesoniK0 − K̄0

Come accennato in precedenza, quello dei mesoniK0 − K̄0 è stato il primo sistema a mo-

strare un’evidenza della violazione diCP , tramite l’analisi dei decadimentiK → ππ e

K → πππ. In questi canali inoltre è stata possibile la prima misura di violazione diCP

diretta [21], anche se molti anni dopo.

4.4.1 Decadimenti nel canale semileptonico

Studiamo il decadimento deiK neutri nel canale semileptonicoKS,L → l±π∓ν. Il tasso di

decadimento in questo canale diKL eKS è rispettivamente del68% e del0.07%. Si definisce

l’ asimmetria di caricaper ilKL:

δL =
Γ(KL → π−l+ν)− Γ(KL → π+l−ν̄)

Γ(KL → π−l+ν) + Γ(KL → π+l−ν̄)
= (0.332± 0.006)%. (4.47)

L’osservazioneδL 6= 0 è un segnale della violazione diCP . È utile chiedersi se questa

asimmetria derivi da una violazione indiretta o diretta. Letransizioni leptoniche rispettano

la regola∆S = ∆Q, doveS è la stranezza e∆Q la differenza di carica elettrica tra i due

adroni nello stato iniziale e finale. Questa regola nel Modello Standard deriva dal fatto che i

processi con∆S = ∆Q sono mediati da un solo bosoneW , mentre quelli con∆S = −∆Q

necessitano di due bosoniW e sono quindi soppressi di un fattoreGFm
2
K ∼ 10−6. La

discussione del paragrafo 4.3.3 fa sì che valga

|A(K0 → π−l+ν)| = |A(K̄0 → π+l−ν̄)|. (4.48)

Sfruttando questo fatto si ricava

δL =
|〈π−l+ν|S|KL〉|2 − |〈π+l−ν̄|S|KL〉|2

|〈π−l+ν|S|KL〉|2 + |〈π+l−ν̄|S|KL〉|2
=

1−
∣∣∣ qp
∣∣∣
2

1 +
∣∣∣ qp
∣∣∣
2 . (4.49)

L’asimmetriaδL quindi è non nulla se e solo se è violata la (4.17), cioè derivasolo dalla

violazione diCP nel mixing.
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4.4.2 Decadimenti in2π

Il canale di decadimento dominante per iK neutri è quello in due pioni. I possibili stati finali

sonoπ0π0 e π+π−. Essendo ilK e i π particelle scalari, il momento angolare del sistema

dei due pioni deve essere nullo. Lo stato(2π)0 è autostato diCP , e possiamo definire le fasi

in modo cheCP (2π) = +(2π).

È utile studiare i decadimenti in autostati dello spin isotopico. Siccome nell’ipotesi di

conservazione dell’isospin i dueπ si possono considerare come particelle identiche, per

rispettare la statistica di Bose-Einstein conL = 0 lo stato finale può avere solamente

I = 0 ∆I = 1/2

I = 2 ∆I = 3/2
(4.50)

dove∆I è la variazione di isospin tra lo stato iniziale e finale e si è assunto∆I ≤ 3/2.

Il KS decade solamente in2π, il KL è dominato dal canale in3π che può avere autovalore

di CP −1; seKS,L fossero autostati diCP (conCP |KL〉 = −|KL〉) il decadimentoKL →
2π sarebbe proibito. Si possono quindi definire due osservabili che sarebbero nulle seCP

fosse conservata:

η12 ≡
A(KL → π1π2)

A(KS → π1π2)
con (1, 2) = {(0, 0); (+,−)} (4.51)

per cui si ottengono i valori sperimentali

|η00| = (2.220± 0.011)× 10−3 (4.52)

|η+−| = (2.232± 0.011)× 10−3 (4.53)∣∣∣∣
η00
η+−

∣∣∣∣ = 0.9950± 0.0007 (4.54)

Due variabili importanti per lo studio dei decadimenti deiK neutri sonoǫ e ǫ′, che si

possono definire a partire daη+− eη00 come

η00 = ǫ− 2ǫ′ (4.55)

η+− = ǫ+ ǫ′. (4.56)

I valori sperimentali diǫ e ǫ′ sono:

|ǫ| = (2.228± 0.011)× 10−3 (4.57)

φǫ = (43.52± 0.05)◦ (4.58)

Re
ǫ′

ǫ
= (1.66± 0.23)× 10−3 (4.59)

Im
ǫ′

ǫ
= (−0.002± 0.005)◦. (4.60)
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Si può dimostrare cheǫ quantifica la violazione indiretta. Infatti, scomponendo l’hamil-

toniana debole inHW = H∆S=2
W + H∆S=1

W e supponendo che dei due termini solo quello

responsabile del mixing,H∆S=2
W , violi CP , si ottiene per le variabiliη12

η00 = η+− = ǫ. (4.61)

La variabileǫ′ invece quantifica la violazione diretta.

Per poter calcolare teoricamenteǫ e ǫ′ conviene scrivere le ampiezze di decadimen-

to A12 ≡ A(K0 → π1π2) scomponendo gli statiπ1π2 in autostati di isospin tramite i

coefficienti di Clebsh-Gordan; si ottiene in questo modo

Aπ0π0 =

√
1

3
|A0| ei(δ0+φ0) −

√
2

3
|A2| ei(δ2+φ2) (4.62)

Aπ+π− =

√
2

3
|A0| ei(δ0+φ0) +

√
1

3
|A2| ei(δ2+φ2) (4.63)

(4.64)

dove abbiamo definito le ampiezze di decadimento in autostati di isospin

AI ≡ A(K0 → 2π, I) e ĀI ≡ A(K0 → 2π, I). (4.65)

Utilizzando queste definizioni si possono ottenere le seguenti relazioni [19]:

ǫ ≃ eiπ/4√
2

ImM12

∆MK

(4.66)

e

ǫ′ =
i√
2

∣∣∣∣
A2

A0

∣∣∣∣ e
i(δ2−δ0) sin (φ2 − φ0) (4.67)

sfruttando le quali è facile calcolareǫ eǫ′ utilizzando le lagrangiane efficaciL∆S=2
eff eL∆S=1

eff .

L’espressione (4.66) per il parametroǫ è valida solo fissandoφ2 = 0 e approssimando

ancheφ0 = 0. La faseπ/4 è approssimata e deriva dall’osservazione che, per i kaoni,

∆M ≃ −∆Γ/2. L’equazione (4.67) invece è valida al prim’ordine in|A2/A0| ≃ 1/20.

Sperimentalmente si vede che anche la fase diǫ′ vale circaπ/4, quindi il rapportoǫ′/ǫ è, con

buona approssimazione, reale.

4.5 MesoniB0
s,d − B̄0

s,d

La violazione diCP nel mixing per i mesoniB0
s,d è un effetto piccolo. Dalle misure

dell’asimmetria nei decadimenti semileptonici definita in(4.31) si ottiene [17]
∣∣∣∣
q

p

∣∣∣∣
d

= 1.0017± 0.0017

∣∣∣∣
q

p

∣∣∣∣
s

= 1.0052± 0.0032. (4.68)
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Una quantità molto importante è l’asimmetriaSψKS
nel decadimentoB0

d → J/ψKS, definita

come nell’equazione (4.39). A livello di quark, tale canalecorrisponde a una transizione

b → cc̄s. Con un approssimazione migliore dell’1%, nel Modello Standard si ottengono le

relazioni

SψKS
= sin 2β e CψKS

= 0 (4.69)

doveβ ≡ arg [− (VcdV
∗
cb) / (VtdV

∗
tb)] è uno dei tre angoli del triangolo di unitarietà. Questo

risultato è molto preciso, in quando non dipende da elementidi matrice adronici. I valori

sperimentali che si ottengono sono

SψKS
= 0.679± 0.020 e CψKS

= 0.005± 0.020 (4.70)

compatibili con le previsioni del Modello Standard. In particolareSψKS
è in buon accordo

con le previsioni persin 2β che vengono dal fit del triangolo di unitarietà, a parte per le

tensioni di cui abbiamo accennato nel capitolo 1. Questo risultato costituisce una verifica

stringente del meccanismo CKM, che appare essere la sorgente dominante di violazione di

CP nella fisica dei mesoniB.

L’analogo del decadimentoB0
d → J/ψKS per le particelleB0

s è dato dal canaleB0
s →

J/ψφ, che a livello di quark dipende ancora da una transizioneb→ cc̄s. Per l’asimmetria di

CP in questo decadimento, nel Modello Standard vale

Sψφ = sin 2βs con βs ≡ arg

[
−VtsV

∗
tb

VcsV
∗
cb

]
. (4.71)

Le attuali misure danno

βs = 0.08+0.05
−0.07, (4.72)

consistente con la previsione del Modello Standard [17]:

2βs = 0.0363+0.0016
−0.0015. (4.73)

4.6 MesoniD0 − D̄0

Fra i quattro sistemi di mesoni neutri con numeri quantici diflavour non nulli, quello dei

D è l’unico formato da quark di tipo up, oltre a essere quello sucui si hanno meno dati.

Le prime evidenze sperimentali del mixing nei mesoniD0 − D̄0 risalgono appena al 2007

[23] [24], poiché a causa della piccola entità del fenomeno tutte le misure precedenti erano

compatibili con zero. La misura dei parametri di mixingx e y è difficoltosa a causa della

loro piccolezza e le attuali determinazioni rimangono abbastanza incerte, pur concordando

su valori dell’ordine dell’1%, come riportato in tabella (4.1).
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Dal punto di vista teorico, il Modello Standard può essere compatibile con dei valori così

piccoli; tuttavia non è ancora possibile determinarne con esattezza le previsioni a causa delle

correzioni di QCD agli operatori che, per valori degli impulsi dell’ordine della massa del

charm, danno correzioni non calcolabili in teoria perturbativa.

Per quanto riguarda la violazione diCP neiD, recentemente l’esperimento LHCb ha

ottenuto la prima evidenza di violazione diCP nei mesoniD neutri [25], misurando

∆aCP ≡ aK+K− − aπ+π− = −(0.82± 0.21± 0.11)× 10−2 (4.74)

doveaf è l’asimmetria diCP per il decadimento in un autostato diCP :

af ≡ Γ(D0 → f)− Γ(D̄0 → f)

Γ(D0 → f) + Γ(D̄0 → f)
. (4.75)

Misurando la medesima quantità la collaborazione CDF ha ottenuto∆aCP = (−0.62±0.21±
0.10)× 10−2 [26]. Le precedenti misure diaK+K− eaπ+π− erano compatibili con zero [27]

[28]. Come evidenziato in [29] tale asimmetria deve essere causata principalmente da una

violazione diretta; la violazione indiretta infatti provoca effetti indipendenti dal canale di

decadimento, il cui contributo è quindi trascurabile quando si consideri la differerenza tra le

asimmetrie con due diversi stati finali come in (4.74).

Come già per il mixing, non è chiaro se il Modello Standard possa giustificare una viola-

zione diCP di questa entità. Mentre fino a qualche anno fa questo non sembrava possibile,

oggi l’argomento è molto dibattuto. È comunque possibile prendere il valore dell’asimmetria

come limite superiore per gli effetti di nuova fisica, così dastimarne il contributo.

Da questa breve discussione dovrebbe emergere l’urgenza dimigliorare nei prossimi anni

la misura delle osservabili legate alla violazione diCP neiD e in generale per il quarkc; oltre

a ciò, ovviamente, sono di fondamentale importanza nuovi sforzi teorici per comprendere gli

effetti a lunga distanza che entrano negli elementi di matrice adronici degli operatori che

contribuiscono a queste osservabili.

4.7 Momenti di dipolo elettrico

Un momento di dipolo elettrico intrinseco per una particella elementare violaCP . Il motivo

è che, per essere elementare, non può avere altri gradi di libertà interni oltre a quello di spin;

dunque il vettore~dE dovrebbe essere proporzionale allo spin e quindi al momentodi dipolo

magnetico. Questo però violerebbeCP , a causa delle proprietà di trasformazione sottoCP

dei campi~E e ~B.

I principali limiti sui momenti di dipolo elettrico per i quark up e down vengono dagli

studi sul momento di dipolo elettrico del neutrone: vale infatti [31]

dn = (1± 0.5)
[
1.4 (dd − 0.25du) + 1.1e

(
d̃d + 0.5d̃u

)]
. (4.76)
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Il valore didn nel Modello Standard èdSM
n ∼ 10−32e cm, mentre dagli attuali esperimenti si

ricava il limite superiore al90% C.L.

dn < 2.9× 10−26e cm. (4.77)

In teoria dei campi, un momento di dipolo elettrico non nulloemerge da una fase com-

plessa in un termine di lagrangiana efficaceLDM = eµqe
iδ (q̄LiσµνqR)F

µν + h.c.; calcolan-

do l’ampiezza di scattering da un campo elettromagnetico statico in approssimazione non

relativistica con questa lagrangiana si ottiene

iADM = ieµqξ
′†
(
cos δ

~σ

2
· ~B + sin δ

~σ

2
· ~E
)
ξ (4.78)

doveξ, ξ′ sono le funzioni d’onda di spin iniziale e finale, il che corrisponde all’interazione

con il campo elettrico~E di un dipolo elettrico

~dE = eµq sin δ · ~S, (4.79)

dove~S è lo spin della particella.
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Capitolo 5

U(2)3 minimale e osservabili fisiche

In questo capitolo e nel successivo vogliamo studiare qualivincoli le attuali misure di alcune

osservabili fisiche impongono per una teoria con simmetriaU(2)3. Cominciamo analizzando

in questo capitolo i limiti sui coefficienti degli operatoriefficaci di dimensione6 nel caso

minimale, ottenuti nel capitolo 2; il caso generico verrà analizzato nel prossimo capitolo.

5.1 Settore dei quark down

5.1.1 Transizioni∆F = 2: mixing dei mesoniK eB

Analizziamo anzitutto il caso dei mesoniK eB, costituiti da quark di tipo down. Vogliamo

studiare i termini efficaci di nuova fisica che danno luogo a transizioni∆F = 2, ossia

transizioni in cui qualche numero quantico di sapore cambiadi due unità. In particolare

siamo interessati al mixingK0 − K̄0 eB0 − B̄0. Come discusso nel capitolo 2, tali termini

possono essere parametrizzati come

H∆F=2
eff =

cKLL
Λ2

ξ2ds
1

2

(
d̄LγµsL

)2
+
∑

i=d,s

cBLLe
iφB

Λ2
ξ2ib

1

2

(
d̄iLγµbL

)2
+ h.c. (5.1)

dove i coefficienticK,BLL sono reali e in principio di ordineO(1), così come la faseφB, anche

se il loro valore esatto dipende dal modello considerato.

Per poter confrontare con i dati un generico modello con una data simmetria di flavour è

necessario anzitutto calcolare la correzione che i terminidi nuova fisica portano alle osser-

vabili. I termini efficaci ottenuti ipotizzando la simmetriaU(2)3 hanno la stessa dipendenza

dalle entrate della matrice CKM dei termini corrispondentiche si ottengono dai diagrammi

a loop nel Modello Standard. Il contributo alle ampiezze degli operatoriU(2)3 dipenderà

quindi dallo stesso elemento di matrice adronico e dalla stessa combinazione delle entrate

di VCKM; la dipendenza dalle funzioni di loop e dai parametri del Modello Standard sarà
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invece sostituita dai coefficientici della (5.1). Le correzioni alle osservabili dipenderanno

dall’interferenza tra i termini di nuova fisica e quelli del Modello Standard nel calcolo delle

ampiezze di transizione. Si ottiene [14]:

ǫK = ǫSM(tt)
K (1 + hK) + ǫSM(tc+cc)

K (5.2)

SψKS
= sin

(
2β + arg

(
1 + hBe

iφB
))

(5.3)

Sψφ = sin
(
2|βs| − arg

(
1 + hBe

iφB
))

(5.4)

∆Md = ∆MSM
d

∣∣1 + hBe
iφB
∣∣ (5.5)

∆Md

∆Ms
=

∆MSM
d

∆MSM
s

(5.6)

dove

hK,B = cK,BLL

4s4w
α2

emS0(xt)

m2
W

Λ2
≃ 1.08cK,BLL

[
3 TeV
Λ

]2
. (5.7)

eS0(xt ≡ m2
t/m

2
W ) ≃ 2.4 è una funzione che deriva, nel Modello Standard, dal calcolodel

diagramma a un loop di top eW .

Per ottenere i limiti sui coefficienticK,BLL e sulla faseφB occorre effettuare un fit di questi

e dei parametri di Wolfenstein della matrice CKMA, λ, ρ̄ e η̄, che entrano nell’hamiltoniana

(5.1) tramite i prodottiξij. I valori delle osservabili e dei parametri teorici utilizzati nel fit

sono riportati in tabella (5.1).

|Vud| 0.97425(22) fK (155.8± 1.7) MeV

|Vus| 0.2254(13) B̂K 0.737± 0.020

|Vcb| (40.6± 1.3)× 10−3 κǫ 0.94± 0.02

|Vub| (3.97± 0.45)× 10−3 fBs

√
B̂s (288± 15) MeV

γCKM (74± 11)◦ ξ 1.237± 0.032

|ǫK | (2.229± 0.010)× 10−3 ηtt 0.5765(65)

SψKS
0.673± 0.023 ηct 0.496(47)

∆Md (0.507± 0.004) ps−1 ηcc 1.38(53)

(∆Ms/∆Md) 35.05± 0.42

φs −0.002± 0.087

Tabella 5.1: Parametri input per il fit dei termini∆F = 2 [14].

I risultati dei fit sono riportati in figura (5.1). In alto a sinistra è riportato il valore atteso

per cKLL assumendocBLL = 0. In questo caso la faseφB non influenza il valore delle osser-

vabili e quindi non è riportata. In alto a destra è riportata la predizione nel pianocBLL − φB

assumendocKLL = 0. Notiamo che in entrambi i casi è preferito un valore diversoda0. Que-

sto deriva dalla tensione nel fit del triangolo di unitarietàtraǫK eSψKS
nel modello standard.
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Tale tensione, come noto, potrebbe essere risolta da fenomeni di nuova fisica che aumentino

il valore di ǫK o diminuiscano quello diSψKS
oltre il valore standard: questi scenari cor-

rispondono, secondo le equazioni (5.3) e (5.4), rispettivamente acKLL > 0 e cBLL < 0. Nei

grafici in basso sono riportate le proiezioni nei pianicBLL − cKLL e cBLL − φB del fit effettuati

con tutti tre i parametri liberi. In questo caso si ottengonodei vincoli meno stringenti poi-

ché entrambi gli effetti contribuiscono a rilassare le tensioni di cui sopra, ma rimangono le

tendenze evidenziate dai primi due plot. La regione in grigio nel grafico in basso a sinistra è

sfavorita nel caso supersimmetrico in cui domina il contributo dei box con gluini. In questo

caso infatti i coefficientihK ehB sono correlati in quanto entrambi proporzionali a una stessa

funzioneF0 che dipende dalle masse del gluino e dello squarkb̃L [12].

Figura 5.1: Fit per i parametri∆F = 2 concB
LL

= 0 (in alto a sinistra),cK
LL

= 0 (in alto a destra) e con tutti

tre i parametri liberi (in basso) [14]. La regione in grigio in basso a sinistra è sfavorita nel caso supersimmetrico

in cui domina il contributo dei gluini.
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5.1.2 Transizioni∆B = 1: decadimentib → s,b → d

L’analisi delle transizioni∆F = 1 è più complessa di quella del caso∆F = 2 a causa

del maggior numero di operatori rilevanti e di osservabili.La principale previsione della

simmetriaU(2)3 è l’universalità nelle trasizionib → s e b → d: come evidenziato nel

paragrafo 2.3.1, i coefficientic ∼ O(1) davanti agli operatori∆B = 2 e ∆B = 1 sono

uguali per i quarkd e s, e la differenza è data esclusivamente dalle entrate della matrice

CKM. I coefficienti degli operatori che contribuiscono al mixing e al decadimento dei mesoni

K neutri sono invece liberi. Al momento i dati sui decadimentib→ d non sono sufficienti a

verificare la correlazione conb → s. Inoltre il decadimentos → d si osserva inK → πνν̄,

ma non esistono ancora misure significative a causa del piccolo rapporto di decadimento, in

entrambi i canaliK+ → π+νν̄ eK0 → π0νν̄ Ci si deve quindi limitare a mettere un limite

sui coefficienti basandosi sui decadimentib→ s.

Consideriamo l’hamiltoniana efficace∆B = 1

H∆B=1
eff =

∑

i=d,s

ξi,b

[
c7γe

iφ7γ

Λ2
mb

(
d̄iLσµνbR

)
eF µν +

c8ge
iφ8g

Λ2
mb

(
d̄iLσµνT

abR
)
gsG

µν
a

+
cLe

iφL

Λ2

(
d̄iLγµbL

) (
l̄Lγ

µlL
)
+
cRe

iφR

Λ2

(
d̄iLγµbL

)
(ēRγ

µeR)

+
cHe

iφH

Λ2

v2

2

(
d̄iLγµbL

) g
cw
Zµ

]
+ h.c. (5.8)

I termini che la compongono sono calcolabili nel Modello Standard e danno un contributo

significativo e calcolabile a osservabili legate alle transizioni b → sγ, b → sl+l− e agli ac-

coppiamenti del bosoneZ. Seguendo [30] si può effettuare un fit dei parametric7γ, cL, cR,

cH e delle corrispondenti fasi. Non si può invece porre dei limiti su c8g, che contribuisce a

b → sγ solo in piccola misura. Il limite suc7γ deriva dalla misura della frazione di deca-

dimentoB → Xsγ e dalla asimmetria diCP SK∗γ nel decadimentoBd → K∗γ; il fit di

cL, φL e cR, φR si basa invece sul frazione di decadimentoB → Xsl
+l− e sul decadimento

B → K∗µ+µ−. I risultati del fit sono riportati in figura (5.2). Notiamo che, nei grafici di

sinistra, i vincoli che si ottengono sui coefficientic7γ e cL sono molto meno forti quando le

fasi φ7γ e φL sono vicine aπ/2. Il motivo è che, quando la fase è massima, l’interferenza

tra il contributo di nuova fisica e quello del Modello Standard si annulla, e negli osservabili

conta il modulo quadro del termine di nuova fisica, che risulta quindi soppresso. In questo

caso quindi i coefficientici possono assumere valori più grandi. Questo effetto è meno pro-

nunciato per gli operatori dei grafici di destra, perché in quel caso gli operatori nel Modello

Standard sono soppressi.
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Figura 5.2: Fit per i parametri∆F = 1 [14].

5.1.3 Transizioni∆S = 1: ǫ′/ǫ

La violazione diCP diretta nel decadimento deiK neutri, parametrizzata daǫ′, può essere

utilizzata per trovare un limite superiore per alcuni parametri. In particolare, un contributo

al valore diǫ′ viene dagli operatori

∆L4f,∆S=1
LR =

1

Λ2
ξds
(
cd5Od

5 + cu5Ou
5 + cd6Od

6 + cu6Ou
6

)
+ h.c. (5.9)

con

Oq
5 =

(
d̄LγµsL

)
(q̄Rγ

µqR) e Oq
6 =

(
d̄αLγµs

β
L

)(
q̄βRγ

µqαR

)
(5.10)

doveα eβ sono indici di colore eξds = VtdV
∗
ts.

Imponendo che il contributo derivante da∆L4f,∆S=1
LR rispetti |ǫ′/ǫ| < |ǫ′/ǫ|exp ≃ 1.7 ×

10−3 si ottiene

cu,d5 . 0.4

(
Λ

3 TeV

)2

e cu,d6 . 0.13

(
Λ

3 TeV

)2

. (5.11)
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5.2 Settore dei quark up

5.2.1 Momento di dipolo elettrico del neutrone

Come abbiamo osservato nel capitolo 4, un termine efficace didipolo con una fase complessa

non nulla dà origine a un momento di dipolo elettrico. Dagli limiti sperimentali sul momento

di dipolo elettrico del neutrone si possono quindi otteneredei limiti sulle fasi dei termini

∆F = 0 che non mantengono la chiralità. La lagrangiana efficace rilevante è

∆L∆F=0
dipole =

1

Λ2

[
c̃gue

iφ̃gumu (ūLσµνT
auR) + c̃gde

iφ̃g
dmd

(
d̄LσµνT

adR
)]
gsG

µν
a

+
1

Λ2

[
c̃γue

iφ̃γumu (ūLσµνuR) + c̃γde
iφ̃γ

dmd

(
d̄LσµνdR

)]
eF µν + h.c.(5.12)

Il contributo di questi termini al dipolo elettrico e cromoelettrico dei quark è dato da

dq = 2e
mq

Λ2
c̃γq sin φ̃

γ
q e d̃q = 2

mq

Λ2
c̃gq sin φ̃

g
q (5.13)

che a loro volta portano un contributo al dipolo elettrico del neutrone dato da [31]

dn = (1± 0.5)

(
1.4(dd −

1

4
du) + 1.1e(d̃d +

1

2
d̃u)

)
(5.14)

con i coefficienti definiti alla scala di1 GeV. Tenendo conto degli effetti del gruppo di rinor-

malizzazione su questi coefficienti e dell’attuale limite sperimentale|dn| < 2.9× 10−26e cm

si ottiene

c̃γu sin φ̃
γ
u . 1.9× 10−2

(
Λ

3 TeV

)2
c̃γd sin φ̃

γ
d . 2.4× 10−3

(
Λ

3 TeV

)2

c̃gu sin φ̃
g
u . 7.1× 10−3

(
Λ

3 TeV

)2
c̃gd sin φ̃

g
d . 1.8× 10−3

(
Λ

3 TeV

)2
.

(5.15)

Può essere utile osservare che questi limiti sono automaticamente rispettati se si suppone che

non vi siano fasi complesse al di fuori di quelle contenute negli spurioni.

5.2.2 Mixing e decadimenti dei mesoniD

Per quanto riguarda i mesoniD, nel Modello Standard il contributo a lunga distanza al

mixing è paragonabile a quello a corta distanza, il che rendemolto difficile il calcolo teorico

della differenza in massa e larghezza degli autostati di massa; in particolare non è chiaro se

il solo Modello Standard può giustificare i valori sperimentali riportati in tabella (4.1):

x ≡ ∆m

Γ
= (0.63+0.19

−0.20)× 10−2 e
∆Γ

Γ
= (1.60+0.25

−0.26)× 10−2 (5.16)

doveΓ = (Γ1 + Γ2)/2 è la media delle due larghezze di decadimento.
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Questi dati possono ad ogni modo essere usati come limite superiore per gli eventuali

contributi di nuova fisica. In particolare queste misure sono importanti per quanto riguarda

l’operatore

HD
LL =

cDLL
Λ2

ξ2uc
1

2
(ūLγµcL)

2 : (5.17)

per poter saturare i valorix ∼ y ∼ 1% occorrerebbe

cDLL
2
(
3 TeV
Λ

)2

≃ 90. (5.18)

Questo valore è troppo alto per essere facilmente giustificato da un modello di nuova fisica

con simmetriaU(2)3, il che fa supporre che la sua origine debba essere un’altra.

Date le recenti misure della differenza tra le asimmetrie diCP nei decadimentiD →
K+K− eD → π+π−, definita nell’equazione (4.74), è interessante chiedersise il valore

sperimentale di∆aCP possa essere giustificato in un modello con simmetriaU(2)3 minimale.

Imponendo che il contributo di nuova fisica sia minore del valore riportato in [32]∆aCP =

aKK − aππ = −0.645± 0.180, seguendo [29] si può ottenere un limite sull’operatore

HD
cb =

cDg e
iφDg

Λ2
mcξuc(ūLσµνT

acR)gsG
µν
a , (5.19)

il cui contributo all’asimmetria è proporzionale al relativo coefficiente. Per riprodurre il

valore sperimentale di∆aCP occorrerebbe

cDg sin
(
arg ξuc + φDg

)(3 TeV
Λ

)2

≃ 40 (5.20)

valore troppo alto per essere facilmente incluso in un modello con simmetriaU(2)3 mini-

male. Come vedremo nel prossimo capitolo, il valore di∆aCP può essere giustificato nel

modello generico.

5.2.3 FCNC e momenti di dipolo del top: transizionit → qZ, t → qγ

Negli ultimi anni hanno suscitato molta attenzione sia teorica che da parte degli sperimentali i

processi di Flavour Changing Neutral Current per il quark top. Il motivo di questa attenzione

è semplice: essendo estremamente soppressi nel Modello Standard, una loro osservazione

sperimentale sarebbe un segnale certo di nuova fisica.

Un esempio importante è costituito dalle transizionit → qZ e t → qγ. Ci si aspetta che

LHC a 14 TeV con100 fb−1 di dati sia sensibile a una frazione di decadimento dell’ordine

di BR(t→ cZ, cγ, uZ, uγ) ∼ 10−5, molto più alta del valore atteso per il Modello Standard,

stimabile come BRSM(t→ cZ, cγ) ≃ (m2
b/m

2
W )2|Vcb|2α2/s2w ∼ 10−12. Diventa interessante

allora stimare tale valore nel contesto della simmetriaU(2)3, per capire se un’eventuale
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osservazione di questi decadimenti può essere o meno compatibile col nostro modello. Il

contributo dominante è dato dagli operatori

Ht,Z
cb =

ctZe
iφt

Z

Λ2 mtξct (c̄LσµνtR)
g
cw
Zµν

Ht
cc =

ctcce
iφtcc

Λ2

v2

2
ξct (c̄LγµtL)

g
cw
Zµ




 per i decadimentit→ cZ, (5.21)

Ht,γ
cb =

ctγe
iφtγ

Λ2
mtξct (c̄LσµνtR) eF

µν per i decadimentit→ cγ. (5.22)

Si ottengono i seguenti limiti [14]:

BR(t→ cZ) ≃ 8.5× 10−8

(
3 TeV
Λ

)4 (
0.61ctZ

2
+ 0.39ctcc

2
+ 0.83ctZc

t
γ cos(φ

t
cc − φtZ)

)
,

(5.23)

BR(t→ cγ) ≃ 1.7× 10−8

(
3 TeV
Λ

)4

ctγ
2 (5.24)

il che ci dice che un’osservazione di questi processi a LHC non potrebbe essere spiegata nel

contesto della simmetriaU(2)3.

Un altro vincolo interessante si può ottenere seguendo l’analisi di [33], in cui gli autori

ricavano un nuovo limite sul momento di dipolo cromoelettrico del topd̃t basandosi sui limiti

al momento di dipolo elettrico del neutrone, supponendo chei momenti di dipolo elettrico

e cromoelettrico dei quarku e d siano trascurabili. Data la forma delle matriciµβu,d (si veda

l’appendice A), questo implica due assunzioni:

• esistenza di fasi complesse oltre a quelle derivanti dagli spurioni;

• presenza di un ulteriore meccanismo che sopprimadu,d e d̃u,d ma non riguardid̃t:

questo accade ad esempio in supersimmetria con le prime due famiglie più pesanti.

L’hamiltoniana efficace che regolãdt è

Ht
dm = cdme

iφdmmt
1

Λ2
(t̄Lσ

µνtR) gsGµν . (5.25)

In questo caso si può ricavare

cdm |sinφdm|
(
3 TeV
Λ

)2

< 0.6. (5.26)

Un limite così stringente significa che, in vista di futuri progressi nella determinazione del

momento di dipolo del neutrone, lo scenarioU(2)3 con fasi al di fuori degli spurioni possa

essere già messo alla prova.
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Capitolo 6

U(2)3 generico e osservabili fisiche

In questo capitolo vogliamo studiare come le osservazioni sperimentali vincolano il modello

U(2)3 generico così come sviluppato nel capitolo 3, e capire qualidifferenze porta a livello di

osservabili l’aggiunta degli spurioniVu, Vd rispetto al caso minimale. Come abbiamo visto,

nel caso generico diventano rilevanti anche le rotazioni sui quark destrorsi, il che introduce

nuovi effetti di violazione di flavour eCP . Facendo l’ipotesi, giustificata a posteriori, che

i parametriǫu,d siano piccoli, la forma delle matrici di rotazione che abbiamo ottenuto nel

capitolo 2 rimane invariata, e i vincoli sui parametri ottenuti nel capitolo 5 continuano a

valere. Le variazioni più significative sono date da terminiefficaci della forma di momenti

di dipolo e termini a quattro fermioni che violano il flavour sia nel settore sinistrorsi che in

quello dei quark destrorsi. I nuovi effetti si possono evidenziare nelle transizioni∆S = 2,

∆S = 1 e∆C = 1, oltre che nei termini di dipolo (cromo-)elettrico dei quark u ed.

6.1 ∆S = 2: mixing dei K

Nel passaggio al caso generico alcuni termini di lagrangiana contenuti in∆L4f
LR ricevo-

no contributi significativi. In particolare questo accade per gli operatori∆S = 2 che

contribuiscono aǫK . Gli operatori rilevanti in questo contesto sono

∆L∆S=2
LR =

1

Λ2

sdR
sdL

(
ǫdR
ǫL

)2

ξ2dse
i(φd

1
−φd

2
)
[
cS,LRK λ2b(d̄LsR)(d̄RsL) + cV,LRK (d̄LγµsL)(d̄Rγ

µsR)
]
.

(6.1)

Utilizzando i limiti di [11] si può ricavare per il coefficiente della parte vettoriale

cV,LRK

sin
(
2β + φd1 − φd2

)

sin 2β

sdR
sdL

(
ǫdR
ǫL

)2

. 6× 10−3

(
Λ

3 TeV

)2

. (6.2)
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6.2 ∆S = 1: decadimenti deiK

Si possono ottenere nuovi vincoli dall’analisi degli operatori che contribuiscono aǫ′. In

particolare per l’operatore

∆L∆S=1
mag =

mt

Λ
cgKe

i(φg
K
−φd

2
)λbξds

ǫdR
ǫL

(
d̄LσµνT

asR
)
gsG

µν
a (6.3)

si ottiene

cgK
sin
(
β + φgK − φd2

)

sin β

ǫdR
ǫL

. 0.7

(
Λ

3 TeV

)2

. (6.4)

Un contributo aǫ′ si ottiene nel caso generico anche dagli operatoriLR a quattro fermioni

∆L4f,∆S=1
LR =

1

Λ2

sdR
sdL

(
ǫdR
ǫL

)2

ξ2dse
i(φd

1
−φd

2
)
(
c′5
dO′

5
d
+ c′5

uO′
5
u
+ c′6

dO′
6
d
+ c′6

uO′
6
u
)
+ h.c.

(6.5)

con

O′
5
q
=
(
d̄RγµsR

)
(q̄Lγ

µqL) e O′
6
q
=
(
d̄αRγµs

β
R

)(
q̄βLγ

µqαL

)
(6.6)

doveα eβ sono indici di colore. Per questi operatori si ottiene

c′5
u,d sin

(
2β + φd1 − φd2

)

sin 2β

sdR
sdL

(
ǫdR
ǫL

)2

. 0.4

(
Λ

3 TeV

)2

(6.7)

e

c′6
u,d sin

(
2β + φd1 − φd2

)

sin 2β

sdR
sdL

(
ǫdR
ǫL

)2

. 0.13

(
Λ

3 TeV

)2

(6.8)

che come limite su(sdR/s
d
L)(ǫ

d
R/ǫL)

2 non è molto significativo, essendo molto più debole di

quello che si ricava daǫK .

6.3 ∆C = 1: decadimenti deiD

Nel caso di simmetriaU(2)3 generica i termini∆c = 1 ricevono un ulteriore contributo

L∆C=1
mag =

1

Λ2
cgDe

iφg
Dζuc

[
e−iφ

u
2
ǫuR
ǫL

O8 + eiφ
u
1
suR
suL

ǫuR
ǫL

O′
8

]
+ h.c. (6.9)

dove

O8 = mt (ūLσµνT
acR) gsG

µν
a e O′

8 = mt (ūRσµνT
acL) gsG

µν
a . (6.10)

Come abbiamo visto nel paragrafo 5.2.2, il contributo a questi operatori nel caso mini-

male non è sufficiente a giustificare il valore sperimentale dell’asimmetria∆aCP. Nel caso

generico questo è invece possibile: richiedendo che il contributo di nuova fisica a∆aCP sia
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inferiore al valore centrale tra le misure di LHCb [25] e CDF [26]∆aCP = (−0.67±0.16)%

si ottengono i limiti

cgD
ǫuR
ǫL

sin (δ − φu2 + φgD)

sin δ
. 0.35

(
Λ

3 TeV

)2

(6.11)

e

cgD
suR
suL

ǫuR
ǫL

sin (δ + φu1 − φgD)

sin δ
. 0.35

(
Λ

3 TeV

)2

(6.12)

che possono essere saturati senza violare i vincoli che si ottengono da altre misure.

6.4 ∆F = 0: dipolo elettrico del neutrone

Come già nel caso minimale, occorre confrontare le previsioni del modello con i forti limiti

sul momento di dipolo elettrico del neutrone. Come già vistonell’equazione (5.14), esso

dipende dai momenti di dipolo dei quark up e down, che ricevono nuovi contributi dagli

operatori

∆L∆F=0
dipole =

mt

Λ2
ζuue

−iφu1
suR
suL

ǫuR
ǫL

[
cgue

iφgu (ūLσµνT
auR) gsG

µν
a + cγue

iφγu (ūLσµνuR) eF
µν
]

+
mb

Λ2
ξdde

−iφd1 s
d
R

sdL

ǫdR
ǫL

[
cgde

iφg
d

(
d̄LσµνT

adR
)
gsG

µν
a + cγde

iφγ
d

(
d̄LσµνdR

)
eF µν

]
+ h.c.

(6.13)

dove le fasi fattorizzateφu,d1 derivano dagli spurioni, e sono quindi non nulle anche nel caso

in cui non si ammettono fasi al di fuori di essi. Questi termini danno un nuovo contributo ai

momenti di dipolo elettrico e cromoelettrico del quark up:

du = 2e
mt

Λ2
ζuu

suR
suL

ǫuR
ǫL
cγu sin(φ

γ
u − φu1) e d̃u = 2

mt

Λ2
ζuu

suR
suL

ǫuR
ǫL
cgu sin(φ

g
u − φu1); (6.14)

da queste, richiamando l’equazione (5.14)

dn = (1± 0.5)

(
1.4(dd −

1

4
du) + 1.1e(d̃d +

1

2
d̃u)

)
(6.15)

e imponendo i limiti sul momento di dipolo elettrico del neutrone si ottiene

cγu |sin (φγu − φu1)|
suR
suL
ǫuRǫL . 1.2× 10−2

(
Λ

3 TeV

)2

, (6.16)

cγd
∣∣sin

(
φγd − φd1

)∣∣ s
d
R

sdL
ǫdRǫL . 3.2× 10−2

(
Λ

3 TeV

)2

, (6.17)

cgu |sin (φgu − φu1)|
suR
suL
ǫuRǫL . 4.4× 10−3

(
Λ

3 TeV

)2

, (6.18)

cgd
∣∣sin

(
φgd − φd1

)∣∣ s
d
R

sdL
ǫdRǫL . 2.5× 10−2

(
Λ

3 TeV

)2

. (6.19)
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6.5 Mixing dei D, B e FCNC del top

• Per quanto riguarda i mesoniD eB non ci sono nuovi termini rilevanti contenuti in

∆L4f
LR e ∆L4f

R , a differenza di quanto abbiamo visto per iK. I termini nuovi sono

soppressi rispetto al caso minimale da qualche potenza diǫu,dR /ǫL.

• Stessa cosa vale per gli operatori che contengono dei bilineari che violano la chiralità

con un quark della terza generazione (b o t) importanti per la fisica deiB e per i

processi FCNC del quark top.

• Per quanto riguarda il mixingD0 − D̄0 può essere rilevante un operatore della forma

(ūLcR)(ūRcL), ma a causa della soppressione suǫu,dR /ǫL ha effetti paragonabili a quelli

del caso minimale e lontani dall’attuale sensibilità sperimentale.

• Per quanto riguarda iB, a livello fenomenologico non ci sono differenze tra il caso

minimale e quello generico. L’unica differenza è che nel secondo caso ci possono

essere fasi che violanoCP anche se non si ammettono fasi complesse al di fuori degli

spurioni; in questo caso però i termini interessati sono soppressi da qualche potenza di

ǫu,dR /ǫL.

• Gli effetti sui processi FCNC del top e sulla violazione di CPneiD in questo contesto

sono ben al di sotto della sensibilità raggiungibile a LHC nel prossimo futuro. Men-

tre un osservazione dei decadimentit → cZ, zγ potrebbe invalidare l’ipotesiU(2)3,

un’osservazione di violazione diCP nel mixingD0− D̄0 necessiterebbe di un’analisi

molto attenta dei contributi a grande distanza.

6.6 Limiti sui parametri di U(2)3

Le equazioni (6.2, 6.4, 6.12, 6.19), assegnato un valore ai coefficienticαi , costringono i pa-

rametriǫu,dR che codificano la rottura della simmetriaU(2)3 nel caso generico. Assumendo

che tutti i coefficienti abbiano valore1 e che le fasi siano tali da massimizzare i limiti suǫL e

ǫu,dR , si ottiene il grafico di figura (6.1). I valori riportati possono variare per qualche fattore

O(1) una volta assegnati i valori dei coefficienticαi a seconda dello specifico modello scelto.

La piccolezza disu,dR /su,dL e diǫu,d/ǫL induce a pensare che gli spurioni minimali possano

essere sufficienti. Tuttavia piccole deviazioni da0 degli spurioni non minimali possono

spiegare, se necessario, l’asimmetria∆aCP, non giustificabile nel caso minimale. Per far ciò,

si può notare dal grafico di sinistra che è necessario assumere che l’angolosuR sia oltre un

ordine di grandezza più piccolo del suo corrispettivosuL.
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Figura 6.1: Limiti sui parametri di rottura della simmetriaU(2)3 nel caso generico [15]. La linea nera continua

in entrambi i grafici indica il limite dato dal momento di dipolo elettrico del neutrone (la regione in grigio è

sfavorita al 90% C.L.). Nel grafico di sinistra le linee verditratteggiate corrispondono al caso in cui i contributi

di nuova fisica costituiscono il 50% e il 100% del valore sperimentale di∆aCP. La regione più scura è sfavorita,

quella chiara in mezzo rimane accettabile. Nel grafico a destra la linea rossa tratteggiata corrisponde al limite

dato daǫK , quella blu a punti corrisponde al limite dato daǫ′.
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Capitolo 7

Conclusioni

In questo lavoro di tesi abbiamo mostrato come fenomeni di nuova fisica alla scala elet-

trodebole possano essere compatibili con l’ottimo successo della descrizione di Cabibbo,

Kobayashi e Maskawa supponendo una simmetria di flavourU(2)3 opportunamente rotta.

Abbiamo definito un caso minimale e uno generico, a seconda sesi considerano solo un in-

sieme minimale di spurioni che rompono la simmetria o se invece si considerano tutti quel-

li possibili. Usando un approccio di teoria efficace, abbiamo mostrato come gli operatori

efficaci di nuova fisica significativi si possano scrivere nella forma

∆L =
∑

i

ciξi
Λ2

Oi + h.c. (7.1)

dove i coefficientici sono di ordine 1 e leξi sono opportune combinazioni delle entrate della

matrice CKM.

Nel caso minimale i parametri della matrice CKM sono in corrispondenza con i para-

metri di rottura della simmetria di flavour, il cui valore è perciò determinato e risulta essere

dell’ordine di 10−2, compatibilmente con l’ipotesi che la simmetria sia rotta da parametri

piccoli. È inoltre possibile effettuare un fit per i coefficienti ci nel settore dei quark down

usando i limiti provenienti dal mixing e dai decadimenti deimesoni neutriK eB. Usando

la libertà nella ridefinizione delle fasi e fissandoΛ = 3 TeV ≃ 4πv si ottengono valori dei

moduli dei coefficienti intorno a 1.

Nel caso generico, i nuovi parametri che vengono introdottinon entrano nella matrice

CKM, e per questo motivo il loro valore non può essere direttamente determinato. Tuttavia

è possibile porre dei limiti su questi parametri usando le informazioni provenienti dall’a-

simmetria diCP nei mesoniK e D e dal momento di dipolo elettrico del neutrone. In

generale il valore dei parametri di rottura della simmetriapropri del caso generico devono

essere almeno un ordine di grandezza più piccoli di quelli del caso minimale; questo fa sì che

61



i vincoli ottenuti nel caso minimale rimangano validi anchein questo caso senza modifiche

significative.

A differenza del caso minimale, nel caso generico è possibile giustificare la recente misu-

ra dell’asimmetria diCP nei decadimentiD → KK, ππ in maniera consistente con gli altri

limiti, qualora si concludesse che tale asimmetria non è spiegabile nel Modello Standard.

È da ritenere che un progresso teorico nella fisica del saporepossa ottenersi solo os-

servando qualche deviazione dalla descrizione CKM. A sua volta, la miglior giustificazio-

ne affinché questo accada è che la fisica responsabile di tale deviazione sia connessa con

la fisica della rottura della simmetria elettrodebole, caratterizzata da una scala di energia

Λ ∼ 4πv ∼ 3 TeV. I risultati descritti in questa tesi mostrano che tale connessione è possibi-

le ammettendo l’esistenza di una simmetria di saporeU(2)3 debolmente rotta in modo oppor-

tuno e osservata nello spettro. Se questo è vero, gli esperimenti in corso (LHCb, b-factories,

misure diK → πνν̄) dovrebbero avere la sensibilità necessaria a rivelare l’incompletezza

della descrizione di Cabibbo, Kobayashi e Maskawa.
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Appendice A

Matrici di flavour nel caso minimale

A.1 Forma canonica per gli spurioni

I due bi-doppietti si possono parametrizzare come

∆Yu = U †
Qu

∆ỸuUu e ∆Yd = U †
Qd

∆ỸdUd (A.1)

mentre il doppiettoV si può scrivere come

V = UV

(
0

ǫ

)
(A.2)

con ∆Ỹu,d diagonali con autovalori reali positivi e tutte le matriciU ∈ SU(2). Facendo una

trasformazioneU(2)3 si possono mettere nella forma




V →
(

0

ǫ

)

∆Yu → U †
Qu

∆Ỹu

∆Yd → U †
Qd

∆Ỹd

(A.3)

Le matriciU †
Qf

si possono scrivere in generale come

U †
Qf

=

(
eiφf

1

)(
cos θf sin θf

− sin θf cos θf

)(
eiα

eiβ

)
(A.4)

posso assorbire la matrice di destra in∆Ỹf e poi rendere questa reale cambiando le fasi a ciascuna

componente diuR edR separatamente; resta quindi

U †
Qf

=

(
eiφf

1

)(
cf sf

−sf cf

)
. (A.5)

Cambiando la fase della prima componente diqL posso mettere a0 la faseφu e si ottiene

U †
Qu

=

(
cu su

−su cu

)
≡ Lu12 (A.6)
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e

U †
Qd

=

(
eiφ

1

)(
cd sd

−sd cd

)
≡ ΦLL

d
12. (A.7)

In definitiva quindi ho

∆Yu = Lu12∆Ỹu ∆Yd = ΦLL
d
12∆Ỹd ≡ Ud

12∆Ỹd V =

(
0

ǫ

)
(A.8)

e gli autovalori di∆Ỹu,d sono reali e positivi:

∆Ỹu,d = diag
(
ǫu,d1 , ǫu,d2

)
. (A.9)

A.2 Forma matriciale per i termini bilineari

I termini bilineari delle equazioni (2.10-2.13) si possonoscrivere in forma matriciale combinando

matrici di rotazione e matrici unitarie.

Termine cinetico left Avendo postoc reale

Q̄L /DXkinQL = aq̄3L /Dq3L + bq̄L /DqL + c
[
q̄3L /D(V †qL) + (q̄LV ) /Dq3L

]
+ d(q̄LV ) /D(V †qL)

(A.10)

che in forma matriciale diventa

Xkin =

(
b+ dV V † cV

cV † a

)

= b1+




0 0 0

0 dǫ2 cǫ

0 cǫ a− b


 (A.11)

che, a patto di ridefinire i coefficienti davanti alle matricie fermandosi all’ordineǫ2, si può riscrivere

come

Xkin = A1+BR23I23R
T
23 (A.12)

con

I23 =




0

O(ǫ2)

1


 (A.13)

eR23 una rotazione infinitesima nel settore2− 3

R23 =




1

c23 s23

−s23 c23


 ≃




1

1 O(ǫ)

−O(ǫ) 1


 . (A.14)
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Termini di interazione Facendo gli stessi conti i termini di interazione fanno

Xα
int = Aα1+BαUα

23I23U
α†
23 (A.15)

con

Uα
23 ∼




1

c seiφ

−se−iφ c


 ∼




1

1 O(ǫ)eiφ

−O(ǫ)e−iφ 1


 . (A.16)

Stavolta ho matriciSU(2) anziché matrici di rotazione perché i coefficienticα non sono reali.

Termine cinetico right Per gli up

Xu
kin =

(
bu cu∆Y †

uV

c∗uV
†∆Yu au

)
=

(
bu cu∆Ỹ †

u (Lu12)
TV

c∗uV
†Lu12∆Ỹu au

)

= bu1+




0 0 cuǫǫ
u
1s
u
12

0 0 cuǫǫ
u
2c
u
12

c∗uǫǫ
u
1s
u
12 c∗uǫǫ

u
2c
u
12 au − bu




= Au1+BuT
u
23T

u
13I3(T

u
13)

†(T u23)
† (A.17)

dove

I3 =




0

0

1


 (A.18)

e T u13, T u23 sono matrici di rotazione di angolo rispettivamenteO(ǫǫu1) eO(ǫǫu2), con una fase com-

plessa. Analogamente per i down

Xd
kin =

(
bd cd∆Y †

d V

c∗dV
†∆Yd ad

)
=

(
bd cd∆Ỹ †

d (L
d
12)

TV

c∗dV
†Ud

12∆Ỹd ad

)

= bd1+




0 0 cdǫǫ
d
1s
d
12e

iϕb

0 0 cdǫǫ
d
2c
d
12

c∗dǫǫ
d
1s
d
12e

iϕb c∗dǫǫ
d
2c
d
12 ad − bd




= Ad1+BdT
d
23T

d
13I3(T

d
13)

†(T d23)
† (A.19)
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Yukawa Per gli up

Yu = λt

(
∆Yu xtV

ytV
†∆Yu 1

)
(A.20)

= λt




Lu12∆Ỹu
0

xtǫ

ytǫǫ
u
1s
u
12 ytǫǫ

u
1s
u
12 1


 (A.21)

= λt


Lu12∆Ỹu +




0 0 0

0 0 xtǫ

ytǫǫ
u
1s
u
12 ytǫǫ

u
1s
u
12 1





 (A.22)

= λt

[
Lu12∆Ỹu +Ru

23I3W
u
23W

u
13

]
(A.23)

doveI3 = diag(0, 0, 1) eRu
23 è una rotazione di angoloxtǫ nel settore 2-3,W u

13, W
u
23 sono matrici

di rotazione di angolo rispettivamenteO(ǫǫu1) eO(ǫǫu2) nei settori 1-3 e 2-3, con una fase complessa.

Da ora in avanti indichiamo con∆Ỹu la matrice estesa a una3 × 3 aggiungendo uno0 in basso a

destra; analogamente tutte le matrici di rotazione nel settore1− 2 che abbiamo già definito vengono

estese allo spazio delle tre famiglie.

In maniera analoga per i down si ottiene

Yd = λb

[
Ud
12∆Ỹd + Ud

23I3W
d
23W

d
13

]
(A.24)

doveUd
12 = ΦLL

d
12 eUd

23 è una matriceSU(2) e non una semplice matrice di rotazione perchéxb è

in generale complesso, ed è della forma

Ud
23 ≃




1

1 ǫ|xb|eiϕb

−ǫ|xb|eiϕb 1


 (A.25)

doveϕb è la fase dixb.

Fermandosi all’ordine dominante le espressioni si semplificano:

Yu = λt

[
Lu12∆Ỹu +Ru

23I3

]
(A.26)

Yd = λb

[
Ud
12∆Ỹd + Ud

23I3

]
. (A.27)

Momenti di dipolo Per gli up

µβu = λt

(
cβu∆Yu bβuV

eβuV
†∆Yu aβu

)
(A.28)

= λt


cβuLu12∆Ỹu +




0 0 0

0 0 bβuǫ

eβuǫǫu1s
u
12 eβuǫǫu1s

u
12 aβu





 (A.29)

= λt

[
cβuL

u
12∆Ỹu + aβuV

uβ
23 I3W

uβ
23 W

uβ
13

]
(A.30)
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e analogamente per i down

µβd = λb

[
cβdU

d
12∆Ỹd + aβdV

dβ
23 I3W

dβ
23 W

dβ
13

]
(A.31)

doveV uβ
23 eV dβ

23 sono unitarie con elementi fuori diagonale di ordineǫ e sono della forma




1

1 O(ǫ)eiφ

−O(ǫ)eiφ 1


 (A.32)

mentreW uβ
13 eW uβ

23 hanno elementi fuori diagonale di ordineǫǫu1 e ǫǫu2 .

A.3 Passaggio alla base fisica

La base fisica è quella in cui i termini cinetici sono diagonali e normalizzati a 1, ossiaXkin = Xu
kin =

Xd
kin = 1, e i termini di massa sono diagonali.

A.3.1 Forma canonica dei termini cinetici e diagonalizzazione della ma-

trice di massa

Termine cinetico left Come abbiamo visto, questo termine si scrive come

Q̄L /DXkinQL = Q̄L

[
A1+BR23I23R

T
23

]
QL. (A.33)

Per metterlo in forma canonica occorrono due trasformazioni:

1. trasformare i campi left conQ′
L ≡ RT

23QL

=⇒ Xkin =




A

A+O(ǫ2)

A+B


 (A.34)

2. normalizzare i campi per avereXkin = 1

Q′′
L ≡




√
A √

A+O(ǫ2) √
A+B


Q′

L. (A.35)

Per passare nella base fisica quindi sostituisco

QL = R23




1/
√
A

1/
√

A+O(ǫ2)

1/
√
A+B


Q′′

L ≡ R23Ã
−1Q′′

L (A.36)
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Termini cinetici right I termini cinetici right sono della forma

ūR /DXu
kinuR = ūR

[
Au1+BuT

u
23T

u
13I3(T

u
13)

†(T u23)
†
]
uR (A.37)

d̄R /DXd
kindR = d̄R

[
Ad1+BdT

d
23T

d
13I3(T

d
13)

†(T d23)
†
]
dR. (A.38)

Seguendo un procedimento analogo a prima, per metterli in forma canonica occorre sostituire

uR = T u23T
u
13




1/
√
Au

1/
√
Au

1/
√
Au +Bu


u′′R ≡ T u23T

u
13Ã

−1
u u′′R (A.39)

e

dR = T d23T
d
13




1/
√
Ad

1/
√
Ad

1/
√
Ad +Bd


 d′′R ≡ T d23T

d
13Ã

−1
d d′′R (A.40)

Termine di massa È ora necessario diagonalizzare i termini di Yukawa che danno le masse ai

quark. Si può mostrare che le trasformazioniQL → Q′′
L, uR → u′′R e dR → d′′R, fatte per mettere in

forma canonica il termine cinetico, non modificano la forma delle matrici di Yukawa né dei termini

di interazione e di dipolo, ma ne ridefiniscono solamente i parametri mantenendone gli ordini di

grandezza. Le uniche trasformazioni interessanti per il passaggio alla base fisica sono quindi quelle

che diagonalizzano le matrici di Yukawa. A meno di termini diordine superiore aO(ǫ2, ǫǫu,d1,2 ), queste

si diagonalizzano facendo

Yu −→ (Lu12)
T (Ru

23)
TYu(W

u
13)

†(W u
23)

†

= (Lu12)
T (Ru

23)
Tλt

[
Lu12∆Ỹu +Ru

23I3W
u
23W

u
13

]
(W u

13)
†(W u

23)
†

≃ λt

[
∆Ỹu + I3

]
= λt




ǫu1
ǫu2

1


 (A.41)

e

Yd −→ (Ud
12)

†(Ud
23)

†Yd(W
d
13)

†(W d
23)

†

≃ λb

[
∆Ỹd + I3

]
= λb




ǫd1
ǫd2

1


 ; (A.42)

per passare nella base fisica dei quark prendo quindi

ū′′LYuuR = ūphys
L (Lu12)

T (Ru
23)

TYu(W
u
13)

†(W u
23)

†uphys
R (A.43)

cioè {
uL = Ru

23L
u
12u

phys
L

u
phys
L = (Lu12)

T (Ru
23)

TuL

{
uR = (W u

13)
†(W u

23)
†uphys
R

u
phys
R = W u

23W
u
13uR

(A.44)
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e analogamente
{

dL = Ud
23U

d
12d

phys
L

dphys
L = (Ud

12)
T (Ud

23)
T dL

{
dR = (W d

13)
†(W d

23)
†dphys
R

dphys
R = W d

23W
d
13dR

(A.45)

A.3.2 Matrice CKM, termini di interazione e momenti di dipol o

Una volta passati nella base fisica, è facile calcolare esplicitamente la matrice CKM e le altre matrici

rilevanti effettuando su di esse le rotazioni che abbiamo ottenuto.

Matrice CKM La matrice CKM si ricava scrivendo nella base fisica dei quarksinistrorsi il termine

ūLγµdL che accoppia aW±:

VCKM = (Lu12)
T (Ru

23)
TUd

23U
d
12

=




cu12 −su12
su12 cu12

1







1

cu23 −su23
su23 cu23


×

×




1

cd23 sd23e
iϕb

−sd23e
−iϕb cd23







eiφ

1

1







cd12 sd12
−sd12 cd12

1




. . .

≃




eiφcu12c
d
12 + su12s

d
12

(
cu23c

d
23 + e−iϕbsu23s

d
23

)

eiφsu12c
d
12 − cu12s

d
12

(
cu23c

d
23 + e−iϕbsu23s

d
23

)

−sd12
(
su23c

d
23 − e−iϕbcu23s

d
23

)
(A.46)

eiφcu12s
d
12 − su12c

d
12

(
cu23c

d
23 + e−iϕbsu23s

d
23

)
su12
(
su23c

d
23 − e+iϕbcu23s

d
23

)

eiφsu12s
d
12 + cu12c

d
12

(
cu23c

d
23 + e−iϕbsu23s

d
23

)
−cu12

(
su23c

d
23 − e+iϕbcu23s

d
23

)

cd12
(
su23c

d
23 − e−iϕbcu23s

d
23

)
cu23c

d
23 + eiϕbsu23s

d
23




VCKM può essere messa in forma più conveniente fermandosi all’ordine dominante:




eiφcu12c
d
12 eiφcu12s

d
12 − su12c

d
12 su12

(
su23c

d
23 − eiϕbcu23s

d
23

)

eiφsu12c
d
12 − cu12s

d
12 cu12c

d
12 −cu12

(
su23c

d
23 − eiϕbcu23s

d
23

)

−sd12
(
su23c

d
23 − e−iϕbcu23s

d
23

)
cd12
(
su23c

d
23 − e−iϕbcu23s

d
23

)
1




(A.47)

Se si definiscono(su12c
d
12 − eiφcu12s

d
12) ≡ λeiδ e (su23c

d
23 − eiϕbcu23s

d
23) ≡ seiα questa diventa




eiφcu12c
d
12 −λeiδ su12se

iα

eiφλe−iδ cu12c
d
12 −cu12se

iα

−sd12se
−iα cd12se

−iα 1


 (A.48)
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Per metterla in forma standard faccio

(ūLc̄Lt̄L)




eiφcu12c
d
12 −λeiδ su12s

eiφλe−iδ cu12c
d
12 −cu12s

−sd12s cd12s 1







dL

sL

bL




= (ūLc̄Lt̄L)




eiδ

−1

eiα







e−iδ

−1

e−iα







eiφcu12c
d
12 −λeiδ su12s

eiφλe−iδ cu12c
d
12 −cu12s

−sd12s cd12s 1


×

×




ei(δ−φ)

−1

eiα







e−i(δ−φ)

−1

e−iα







dL

sL

bL




= (ū′Lc̄
′
Lt̄

′
L)




cu12c
d
12 λ su12se

−iδ

−λ cu12c
d
12 cu12s

sd12se
i(δ−φ) −cd12s 1







d′L
s′L
b′L




(A.49)

Termini di interazione

ūLγµX
α
intuL = ū

phys
L γµ(R

u
L)
TXα

intR
u
LuL (A.50)

quindi

Xα
int −→ (Ru

L)
TXα

intR
u
L

= (Lu12)
T (Ru

23)
T
[
Aα1+BαUα

23I23U
α†
23

]
Ru

23L
u
12

= Aα1+Bα(Lu12)
T (Ru

23)
TUα

23I23U
α†
23 R

u
23L

u
12 (A.51)

Chiamo(Ru
23)

TUα
23 ≡ Uuα

23 ∈ SU(2)

=⇒ Xuα
int = Aα1+Bα(Lu12)

TUuα
23 I23(U

uα
23 )

†Lu12. (A.52)

Analogamente

Xdα
int = Aα1+Bα(Ud

12)
†Udα

23 I23(U
dα
23 )

†Ud
12 (A.53)

conUdα
23 ≡ (Ud

23)
†Uα

23.

È importante notare che la matrice CKM e quelle di interazione Xu,dα
int dipendono solamente da

rotazioni sui quark sinistrorsi, e nei loro termini appare solamenteǫ che viene dallo spurioneV .

Momenti di dipolo

ūLσµνµ
β
uuR = ūphys

L σµν(R
u
L)
Tµβu(W

u
13)

†(W u
23)

†uphys
R (A.54)

quindi

µβu −→ (Lu12)
T (Ru

23)
Tλt

[
cβuL

u
12∆Ỹu + aβuV

uβ
23 I3W

uβ
23 W uβ

13

]
(W u

13)
†(W u

23)
† (A.55)
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Le rotazioni a destra sul primo termine danno contributi di ordineO(ǫ2ǫu1,2) che sono trascurabili,

mentre sul secondo termine sono una semplice ridefinizione delle matriciW uβ
23 W

uβ
13 , quindi

µβu ≃ (Lu12)
T (Ru

23)
Tλt

[
cβuL

u
12∆Ỹu + aβuV

uβ
23 I3W

uβ
23 W

uβ
13

]
(A.56)

Le rotazioni a sinistra sul primo termine danno

(Lu12)
T (Ru

23)
TLu12∆Ỹu ≃ ∆Ỹu + (termini della forma del secondo addendo) (A.57)

Quindi a meno di ridefinire le matrici del secondo termine e chiamando(Ru
23)

TV uβ
23 ≡ Uuβ

µ23 si ottiene

µβu = λt

[
cβu∆Ỹu + aβu(L

u
12)

TUuβ
µ23I3W

uβ
23 W

uβ
13

]
. (A.58)

Analogamente

µβd = λb

[
cβd∆Ỹd + aβd (U

d
12)

†Udβ
µ23I3W

dβ
23 W

dβ
13

]
. (A.59)

A.4 Forma esplicita delle matrici

Le entrate delle matriciXα
int, µ

β
int in funzione delle entrate della matrice CKM possono essere scritte

come:

XuL
12 = cDζuc (A.60)

XuL
13 = cte

iφtζut (A.61)

XuL
23 = cte

iφtζct (A.62)

XdL
12 = cKξds (A.63)

XdL
13 = cBe

iφBξdb (A.64)

XdL
23 = cBe

iφBξsb (A.65)

µuβ11 =
mu

mt
c̃βue

iφ̃βu (A.66)

µuβ22 =
mc

mt
c̃βue

iφ̃βu (A.67)

µuβ33 = ate
iαt (A.68)

µuβ12 = cDβ e
iφD

β
mc

mt
ζuc (A.69)

µuβ13 = cβt e
iαtζut (A.70)

µuβ23 = cβt e
iαtζct (A.71)

µuβ21 = c21uβe
iφ21

uβ
mc

mt
ζ∗uc (A.72)

µuβ31 = c31uβe
i(φ21

uβ
−αt)mu

mt
ζ∗ut (A.73)

µuβ32 = c13uβe
i(φ31

uβ
−αt)mc

mt
ζ∗ct (A.74)
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µdβ11 = λb
md

mb
c̃βde

iφ̃β
d (A.75)

µdβ22 = λb
ms

mb
c̃βde

iφ̃β
d (A.76)

µdβ33 = λbabe
iαb (A.77)

µdβ12 = c12dβe
iφ12

dβ
ms

mb
ξsb (A.78)

µdβ13 = λbc
β
Be

iαBξdb (A.79)

µdβ23 = λbc
β
Be

iαBξsb (A.80)

µdβ21 = c21dβe
iφ21

dβ
md

mb
ξ∗ds (A.81)

µdβ31 = c31dβe
i(φ21

dβ
−αB)md

mb
ξ∗db (A.82)

µdβ32 = c13dβe
i(φ12

dβ
−αB)ms

mb
ξ∗sb (A.83)
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Appendice B

Matrici di flavour nel caso generico

In questa appendice elenchiamo i risultati per le matriciXα
int, µ

β nel caso generico.

Termini chirality conserving Xα
int :

XuLα
int = AαuL1+Bα

uL(L
u
12)

TUuα
23 I

L
23(U

uα
23 )

†Lu12 (B.1)

XdLα
int = AαdL1+Bα

dL(U
d
12)

TUdα
23 I

L
23(U

dα
23 )

†Ud
12 (B.2)

XuRα
int = AαuR1+Bα

uR(V
u
12)

†V uα
23 IuR23 (V uα

23 )†V u
12 (B.3)

XdRα
int = AαdR1+Bα

dR(V
d
12)

†V dα
23 IdR23 (V dα

23 )†V d
12 (B.4)

Termini chirality breaking µβ:

µβu = λt

[
aβu(L

u
12)

TUuβ
µ23I3V

uβ
µ23V

u
12 + cβu∆Ỹu

]
(B.5)

µβd = λb

[
aβd (U

d
12)

†Udβ
µ23I3V

dβ
µ23V

d
12 + cβd∆Ỹd

]
(B.6)

B.1 Forma esplicita delle matrici

Le entrate delle matriciXα
int, µ

β
int in funzione delle entrate della matrice CKM possono essere scritte

come:

XuL
12 = cDζuc (B.7)

XuL
13 = cte

iφtζut (B.8)

XuL
23 = cte

iφtζct (B.9)

XuR
12 = c̃De

i(φu1−φu2 )ζuc
suR
su

ǫ2u
ǫ2

(B.10)

XuR
13 = c̃te

i(φ̃t+φu1 )ζut
suR
su

ǫu
ǫ

(B.11)

XuR
23 = c̃te

i(φ̃t+φu2 )ζct
ǫu
ǫ

(B.12)
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XdL
12 = cKξds (B.13)

XdL
13 = cBe

iφBξdb (B.14)

XdL
23 = cBe

iφBξsb (B.15)

XdR
12 = c̃Kei(φ

d
1
−φd

2
)ξds

sdR
sd

ǫ2d
ǫ2

(B.16)

XdR
13 = c̃Be

i(φ̃B+φd
1
)ξdb

sdR
sd

ǫd
ǫ

(B.17)

XdR
23 = c̃Be

i(φ̃B+φd
2
)ξsb

ǫd
ǫ

(B.18)

µuβ11 = cβDe
i(φβ

D
−φu

1
)ζuu

suR
su

ǫu
ǫ

(B.19)

µuβ22 = cβDe
i(φβ

D
−φu

2
)ζcc

ǫu
ǫ

(B.20)

µuβ33 = ate
iαt (B.21)

µuβ12 = cβDe
i(φβ

D
−φu2 )ζuc

ǫu
ǫ

(B.22)

µuβ13 = cβt e
iαtζut (B.23)

µuβ23 = cβt e
iαtζct (B.24)

µuβ21 = cβDe
i(φβ

D
−φu

1
)ζ∗uc

suR
su

ǫu
ǫ

(B.25)

µuβ31 = c̃βt e
i(φ̃βt −φu1 )ζ∗ut

suR
su

ǫu
ǫ

(B.26)

µuβ32 = c̃βt e
i(φ̃βt −φu2 )ζ∗ct

ǫu
ǫ

(B.27)

µdβ11 = λbc
β
Ke

i(φβ
K
−φd

1
)ξdd

sdR
sd

ǫd
ǫ

(B.28)

µdβ22 = λbc
β
Ke

i(φβ
K
−φd

2
)ξss

ǫd
ǫ

(B.29)

µdβ33 = λbatb
iαb (B.30)

µdβ12 = λbc
β
Ke

i(φβ
K
−φd2)ξds

ǫd
ǫ

(B.31)

µdβ13 = λbc
β
Be

iαBξdb (B.32)

µdβ23 = λbc
β
Be

iαBξsb (B.33)

µdβ21 = λbc
β
Ke

i(φβ
K
−φd

1
)ξ∗ds

sdR
sd

ǫd
ǫ

(B.34)

µdβ31 = λbc̃
β
Be

i(φ̃β
B
−φd

1
)ξ∗db

sdR
sd

ǫd
ǫ

(B.35)

µdβ32 = λbc̃
β
Be

i(φ̃β
B
−φd

2
)ξ∗sb

ǫd
ǫ

(B.36)
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