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Introduzione

| progressi sperimentali degli ultimi anni hanno mostrabone la descrizione della fisica
del flavour e delle violazioni di’ P nel settore dei quark tramite il meccanismo di Cabibbo,
Kobayashi e Maskawa (CKM) sia un’ottima descrizione dedidta. Gli eventuali contributi

di nuova fisica alle osservabili legate al mescolamento deoflr e alle violazioni dC' P si
possono parametrizzare, adottando una descrizione h &fticace, come

Ci
ALnp = EOZ- 1)
dove O; sono degli operatori efficaci di dimensione ®,sono parametri adimensionali e
A € una scala di energia tipica della teoria di nuova fisica. oimgmdo che le deviazioni
dalle previsioni del Modello Standard date dalla lagrangiél) siano abbastanza piccole
da rimanere nascoste dalle attuali incertezze sperimendriche, si possono ottenere dei
limiti inferiori sulla scalaA che, per; ~ O(1), raggiungono in alcuni casil* TeV.

Un’altra indicazione di quale puo essere una scala di emeligiuova fisica emerge af-
frontando il problema della naturalezza. La massa del bosloidiggs riceve correzioni
guantistiche dell’ordine di grandezza delle scale di eadigiche della teoria; supponendo
che esista nuova fisica non inclusa nel Modello Standardefama gravita) queste cor-
rezioni dovrebbero essere parecchi ordini di grandezza@indi del valore recentemente
annunciato di circd25 GeV*. Affinché la massa rimanga piccola & quindi necessario che i
parametri della teoria siano tarati con estrema precisiQuesto “fine tuning” non é soddi-
sfacente dal punto di vista teorico, ma puo essere visto eoniredizio dell’esistenza di una
scala di energia al di sopra della quale le correzioni allasaai annullano naturalmente,
ad esempio a causa di una simmetria della fisica. Per elimihproblema questa scala di
energia dev’'essere al piu di qualche TeV.

Date queste due osservazioni, diventa importante la domd@dsa rende cosi efficace
la descrizione CKM?” Una possibile spiegazione & che essd da una opportuna sim-

metria di flavour valida per il Modello Standard e per la suantuale estensione, rotta in

I affermazione che la particella scalare di recente osgarstalle collaborazioni CMS e ATLAS [1, 2] sia
effettivamente il bosone di Higgs del Modello Standard éoaain fase di verifica.



qualche modo definito. In questo modo gli operatori efficaciubva fisica rilevanti per la
fisica del flavour potrebbero essere della forma

Alnp =) %Oi (2)

con i coefficientic; di ordineO(1), la scala\ di qualche TeV come suggerito dagli argomenti
di naturalezza e i coefficienfj determinati dalla rottura della simmetria di flavour.

In questo lavoro di tesi vogliamo considerare il caso in eusimmetria che regola la
fisica del flavour nel settore dei quark sia

U2)P=U(2), xU(2), x U(2)q (3)

sotto la quale i campi trasformano secondo le seguenti eapptazioni:

a
qr = 2 ~ (27171) (4)
qr,
uRz<“R ~ (1,2,1) (5)
CR
d
dRE< f ~ (17172) (6)
SR
q3L7tR7bR ~ (17171) (7)

Questa simmetria &€ approssimativamente valida nel Mo&#odard, a causa della piccola
massa delle prime due generazioni rispetto alla terza esaalla piccolezza degli angoli
di mescolamento nella matrice CKM.

La rottura della simmetria di flavour & parametrizzata daralpiccoli termini §purioni
tali che, supponendo delle regole di trasformazione fittper essi sott&’(2)?, la teoria sia
invariante. | primi due spurioni sono le matrick 2 AY, e AY, che permettono di costruire
i termini di massa dei quark delle prime due generazioni:

MqrLAY, ur AL (VuT’U/R) . (8)

Le regole di trasformazione sottd(2)? devono essere, affinché la simmetria sia rispettata,
AY, ~ (2,2,1) e AY; ~ (2,1,2). Per poter accoppiare i quark delle prime generazioni con
quelli dell’'ultima & necessario almeno un altro spurione tiasformi come un doppietto
V ~ (2,1,1), in modo da costruire i termini

M (qrLV)tr Ao (@LV) br. 9)



Nel caso generico si aggiungono a questi spurioni i due @i, ~ (1,2,1) e Vg ~
(1,1,2), che permettono di scrivere i termini

Mgz (Valur) e N (Va'dg) . (10)

Una volta specificata la simmetria di flavour e il suo modo dium@, per calcolarne
le conseguenze fisiche si procede come segue: anzituttoigrsz i termini di Yukawa
per i quark e tutti i possibili termini bilineari che consano o meno la chiralita in termini
degli spurioni; dopodiché si passa nella base fisica, osslegin cui i termini cinetici sono
in forma canonica e i termini di massa in forma diagonale;tngono in questo modo
la matrice CKM e le matrici nello spazio del flavour che regola termini di interazione
bilineari. Queste matrici sono importanti perché, comeaeet, le loro entrate determinano
i coefficienti dei vari operatori nella lagrangiana (2).

Arrivati a questo punto occorre calcolare le correziorg aiverse osservabili rilevanti
per la fisica del flavour di una generica teoria con simmé(iz)®, e fissare cosi dei vincoli
sui valori assunti dai vari parametri liberi, verificandestta consistenza di questa simme-
tria. Una volta effettuata questa verifica diventa inteaass studiare come si puo inserire
la simmetria di flavour all'interno di un modello di nuova &aiesplicito come puo essere
la Supersimmetria o le teorie con Higgs composto; questiolimportante argomento non
verra affrontato in questa tesi.

Il capitolo 1 di questa tesi & dedicato al Modello Standartleepincipali motivazioni
di ricerca di nuova fisica, in particolare nel settore deldlay i capitoli 2 e 3 contengono la
costruzione della teoria efficace con simmetfig2)* con un insieme minimale e generico
di spurioni; nel capitolo 4 vengono sommariamente destgitbsservabili rilevanti per la
violazione del flavour e dC P; infine i capitoli 5 e 6 contengono il confronto con i dati
sperimentali e i vincoli che si ottengono per i parametetildella teoria.

Tutti i dati sperimentali riportati, salvo dove diversarteespecificato, sono presi da [3].



Capitolo 1

Motivazioni

1.1 Il Modello Standard

La teoria che meglio descrive le interazioni forti, debaoliedettromagnetiche tra le particelle
elementari e il Modello Standard, introdotto negli anni @ Weinberg, Glashow e Salam
[4][5]. Esso e una teoria di gauge rinormalizzabile basata@gippoSU(3). x SU(2). x
U(1)y. Il gruppo di gauge specifica automaticamente i campi viettatella teoria e le loro
proprieta di trasformazione: 8 gluoni mediatori delle matgoni forti (uno per ciascun gene-
ratore diSU(3)..) e 4 altri vettori per le interazioni elettrodeboli del gpgpSU (2), x U(1)y.

| campi di materia, quark e leptoni, si possono descriveneecspinori di Weil sinistrorsi e
destrorsi. Per descrivere correttamente la violazionka gelrita nelle interazioni deboli, le
componenti sinistrorse e destrorse dei campi spinoriabde trasformare in maniera diver-
sa sotto il gruppo di gauge. Lelenco dei campi e delle lomppieta di trasformazione si
trova in tabella (1.1).

SU@3). | SU@). | Y
Q= ( " ) 3 2 | 1/6
L
Lo = ( VL ) 1 1| —1/2
er
us 3 1| —2/3
ds, 3 1 1/3
eq 1 1 1
v 1 1 0

Tabella 1.1: Campi di materia (spinoriali) e campi di gauge (vettoridk) Modello Standard



La lagrangiana gauge-invariante minimale € data da

1 a apy 1 v 1 a apv NT
Limin = _ZWMVW m— ZBWB“ — ZGWG A /A (1.1)
in cui D, ¢ il differenziale covariante:
; aya ; 7 a ;
D, =0, —igsT"G}, — zg?Wu —ig'B,Y 1.2)

doveT® sono i generatori dbU(3). (le matrici di Gell-Mann per i tripletti e O per i singo-
letti), 7* sono i generatori dbU (2),, (le matrici di Pauli per i doppietti e O per i singoletti)
e Y é l'ipercarica dei diversi campi¥ € un vettore che contiene tutti i campi spinoriali di
tabella (1.1) sommati sulle tre famiglie di flavour. E im@ote per il seguito notare che
guesta lagrangiana é simmetrica per lo scambio delle fardgflavour.

| termini di massa per i bosoni vettori e per i fermioni di maeon sono invarianti di
gauge. Per poterliinserire nella lagrangiana e quindissaro ricorrere a un meccanismo di
rottura della simmetria dettmeccanismo di Higgs\ella sua versione minimale, si aggiunge
ai campi del Modello Standard un campo scaldrehe, sotto il gruppo di gauge, trasforma
secondo la rappresentaziafiex 2), ». | termini di lagrangiana che coinvolgono il doppietto
di Higgs sono il termine cinetico, i termini di interazionievdikawa con i fermioni di materia
e un termine di potenzialg(H) con vuoto classico diverso da zero che rompe la simmetria
SU(2) x U(1)y al sottogruppd/(1)em generato d&) = 75 + Y

Lriggs = (D, H) (D*H) — HQAadp — HQMug — HL) e — V(H). (1.3)

dove\; sono matrici nello spazio delle tre famiglie di flavour. Ddpoottura

0
H(z) — < e ) (1.4)

rimane invariante sotto il gruppd(1)em. | campi fermionici prendono massa; ~ v
mentre i campi vettoriali dell& e deilV* My ~ gv.

1.1.1 Fisica del flavour nel Modello Standard

E opportuno studiare nel dettaglio la descrizione delladisiel sapore nel Modello Standard,
con particolare attenzione al settore dei quark. Con fisstaapore si intendono tutti quei
processi in cui i numeri quantici di flavour nello stato finaleno diversi da quelli nello
stato iniziale. La lagrangiana di gauge minimale (1.1), eaya notato, € simmetrica per
scambio delle famiglie di flavour: il gruppo di simmetriadgbhle) nel settore dei quark e
precisamenté/(3)3, dove una rotazione e relativa al doppietto dei quark simist, una al
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singoletto dei quark up destrorsi, una al singoletto deimldestrorsi. Questa simmetria &
rotta dall’aggiunta dei termini di Yukawa alla lagrangiada cui, sostituendo al campo di
Higgs il suo valore di aspettazione sul vuoto, si ottengaeomini di massa per i fermioni:

Ly = —vdp N dly — vup N uly — vep N e (1.5)

la simmetriaresidua&(1)zxU(1).xU(1),xU(1). che corrisponde alla conservazione del
numero barionico e dei tre numeri leptonici. Per passaia bake degli autostati di massa
occorre diagonalizzare le matrisieffettuando delle rotazioni sui diversi campi fermionici.
La base fisica si raggiunge quindi effettuando le trasforomaz

dy = Ufd?™,  dp = Updy™® (1.6)
up, = Uz‘upLhyS, Up = U}%u%hys 2.7)
er = UzepLhyS, er = Uﬁe%hys (1.8)

dove Ie(UzL"d’e)T/\ff;dﬁU}gd’e sono matrici diagonali con autovalori reali e positivi. Beanto
riguarda i quark, il punto cruciale & notare che per diagepate entrambe le matrigi“¢ &
necessario effettuare due rotazioni differenti sui camje d;, che appartengono al doppietto
(). La conseguenza di questo fatto & che i termini di interazmon il W nel differenziale
covariante non sono piu diagonali nel flavour. Nella basd detpstati di massa, la parte di

lagrangiana che contiene i quark diventa quindi

»Cquark = (Cjiwéiqu')NC

/\u Upr
+(U + h) (ﬂLaéLafL) )\c CRr + (U,C, t) A (d7 Sab)
At tRr
+%W;ugvg{mﬂd§ +he. (1.9)

dove NC indica il termine cinetico e le interazioni con cateeneutra con i gluoni, |&
e il fotone. La matricd/ckm € SU(3) € data dal prodotto delle rotazioni sui quark e
dr, Vexm = (UH)TUL, e prende il nome di matrice di Cabibbo-Kobayashi-Maskaki\)
[6[7].

Siccome nel settore leptonico non e stato incluso il campoelgrino destrorso, € pos-
sibile effettuare la stessa rotazione su tutto il doppiéttiasciando intatta la simmetria di
gauge; in questo modo l'interazione ddl rimane diagonale nel flavour. Lintroduzione

Includendo anche i doppietti dei leptoni sinistrorsi e iggitetti dei leptoni carichi destrorsi la simmetria
globale &U(3)® = SU(3) x U(1)°. Una combinazione di quedti(1) & nient'altro che I'ipercarica, quindiil
vero gruppo di simmetria globale della (1.1y&(3)° x U(1)*.

8



del vz in molti modelli di nuova fisica per spiegare la massa dei m@ua si che questo
non sia piu vero, introducendo cosi la possibilita di vialae del flavour anche nel settore
leptonico. Questo é richiesto per giustificare I'ossemagidell’oscillazione dei neutrini:
parte dei neutrini elettronici prodotti dalle fusioni neati nel sole vengono rivelati a terra
come neutrini muonici, e analogamente parte dei neutrimmailprodotti nella collisione di
raggi cosmici con I'atmosfera arrivano sulla terra cometmeiur. Come spiegato piu avan-
ti, questo mixing & possibile solo se nella lagrangianaaffica basse energie si ammette
I'esistenza termine di massa per i neutrini, probabilmentgo Majorana.

Una proprieta importante della matrice CKM é di essere tarfonte di violazione di
flavour eC' P nel Modello Standard. Infatti I'unica altra possibile ferdi violazione diC' P
e data dal parametiycp che si ottiene aggiungendo alla lagrangiana della cronamdiice
il termine invariante di gauge

Ly = %EWMGQ‘”GQC’. (1.10)

Dalle misure del momento di dipolo elettrico del neutronptsd ricavare il limite

focp < 10710 (1.11)

Il problema di capire il perché di un valore cosi piccolo glei nome distrongC' P problem
Escludendo questo, I'unico termine non invariante a vistéosC' P € proprio quello che
coinvolge la matrice CKM:

9 9

V2 V2
Si capisce quindi che una condizione necessaria per laziwole diC' P nel Modello Stan-
dard e che 1&/cxv contenga delle fasi complesse non nulle. Inoltre, affincleste abbiano
effetto sulla fisica, € necessario che siano non eliminatide che non si possano porre
a zero tramite semplici ridefinizioni dei campi dei quark. &ngli importante domandarsi
guante possano essere queste fasi. In generale una nidiife¢ é definita dan(n + 1)/2
parametri reali ex(n — 1)/2 fasi complesse. Ridefinendo la fase geiquark si possono
eliminare soltant@n — 1 di queste fasi, in quanto la moltiplicazione di tutti i quandr una
stessa fase globale non ha effetto sulla lagrangiana (c@mene del numero barionico).
Il numero di fasi residuo e quindi» — 1)(n — 2)/2, che nel caso di tre famiglie di flavour
fa 1. L'importanza di questo risultato deriva dal fatto che lalazione diC'P & possibile
solo se la matrice CKM contiene delle fasi complesse noniedibili. La conseguenza e che
per spiegare I'osservazione di una violazion€'dt sono necessarie almeno tre famiglie di
quark; in guesto caso c’é un’unica fase fisica.

Una tipica parametrizzazione della matrice CKM e quella difdhstein [8], che consiste

in un’espansione in potenze dell’angolo di Cabibbes |V,s| ~ 0.22, nella quale diventa

W:TLLVCKM’)/MdL + h.c. 2) W:ﬂLVgKM’deL + h.c. (112)

9



evidente la gerarchia esistente tra le diverse entrata deltrice:

1—A?/2 A AX3(p —in)
Vekm = - 1—A%/2 AN? +0 (A (1.13)
AN(1—p—in) —AN? 1

Unitarieta della matrice CKM

| test quantitativi sul settore del flavour nel modello stmidsi basano principalmente sul-
la verifica dell'unitarieta della matrice CKM. Dall'uniti@ta della matrice si ricavano le
relazioni

> WVl =1 (1.14)
i=d,s,b
e
> Vin(Vi)"=0  m#n=d,s,b (1.15)
i=u,c,t
dove si € usata la notazione
Vud Vus Vub
Vekm= | Vg Vs Vi (1.16)
Vie Vis Vi

Tra le relazioni del primo tipo, che non coinvolgono le fasmplesse, il test numericamente
piu importante si ha nel caso con= u:

Vaal* + Va* + [Via|* = 1. (1.17)

Le misure sui diversi coefficienti si ottengono dall’anadisdiversi decadimenti semilepto-
nici, che sono pero affette da notevoli incertezze sughnelati di matrice adronici tra gl
stati iniziali e finali dei decadimenti. Essendo il valorelf}j molto piccolo, il suo valore
sperimentale non é determinante per la verifica della @h&z{1.17). Cid nonostante, vale
la pena spendere due parole sulla sua misura. Il valojé,glisi puo ricavare dalle misure
della frazione di decadimento @i — =lv (misura esclusiva) oppure di quella complessiva
di B — X,lv dove X, € un qualunque adrone che contenga un quagknon contenga
(misurainclusiva). | valori che si ottengono da queste neisono incompatibili fra loro:

V., (3.12£0.26) x 107, [Viplipg = (4.27£0.38) x 1077, (1.18)

b‘excl -

Questo fatto potrebbe essere dovuto a un errore sperirmentalin errore nel calcolo non
perturbativo degli elementi di matrice adronici; in quakimo caso bisogna notare che il
caso esclusivo é piu complicato perché il dettaglio delatalsu reticolo influenza maggior-
mente il risultato. D’altra parte tale discrepanza poteebbsere un segnale dell’'esistenza

10



di nuova fisica dietro al meccanismo CKM: se fosse dovuta aimrocessi che entrano in
gioco nei decadimenti dei mesaBiessa potrebbe aiutare nella difficile operazione di distin-
guere ed escludere i vari modelli di nuova fisica, in paréio®in vista dei prossimi progressi
sperimentali in questo campo.

Per quanto riguarda le relazioni (1.15), se rappresenttgiano complesso esse stabi-
liscono che i tre numei;,(V;;)" disegnano un triangolo chiuso. L'unica sperimentalmente
rilevante al momento é quella can= d en = b, che da un triangolo con i lati di lunghezza
comparabile:

Vid(Vis)™ + Vea(Ver)™ + Via(Vi)™. (1.19)

Tale triangolo prende il nome tliangolo di unitarieta Secondo la notazione comune, i tre
angoli del triangolo sono definiti come

ViaVip VeaV VaaVo
a = arg [_ thvtz} B = arg [— Vt;chf] v = arg [—#] (1.20)
ud Vb tb ca’ch

La rappresentazione usuale di tale triangolo si ottiermalamdo la relazione (1.19)

Via(Van)” Via(Vip)"
Vea(Vip) Vea(Ven) ( )
e definendo ViulVin)*
_ . ud\ Vub
+ i = — 2w 1.22

Misurando diverse osservabili legate alle transizionialidur eC' P si ottengono dei vincoli
per il terzo vertice del triangolo nel piamo— 77, come mostrato in figura (1.1). Affinché la
condizione di unitarieta della matrice CKM sia rispettatti tquesti vincoli devono essere
compatibili fra loro: questo € uno dei test piu importanti siettore del flavour del Modello
Standard e, come si puo vedere dalla figura, lascia pococspdenomeni di nuova fisica.
Le uniche incongruenze che si osservano in questo settaceistatti piccole discrepan-
ze (a 2-30) che potrebbero essere dovute a fluttuazioni statistichecora a errori nella
determinazione degli elementi di matrice adronici.

In conclusione, la descrizione della fisica del flavour neldeglto Standard € in buon
accordo con i dati sperimentali e attualmente non ci sonamishe siano in disaccordo tale
con i risultati teorici da dare segnali certi dell’esistamiz fenomeni di nuova fisica. Al con-
trario, la precisione dello schema CKM nel descrivere i dath ostacolo per molti modelli
di nuova fisica associati alla rottura della simmetria edeltbole, che in genere predicono
effetti troppo grandi per essere consistenti con le attueure. D’altra parte, la descrizione
teorica che il Modello Standard da di questi fenomenti & tpraeno insoddisfacente, in
guanto introduce un numero molto elevato di parametriilbemza spiegarne in alcun modo
le relazioni reciproche. Trovare una spiegazione unitagiai valori di questi parametri &

11
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Figura 1.1: Vincoli sperimentali per il triangolo di unitarieta nel piep — 7

uno dei principali obiettivi di molti modelli di nuova fisic@er conseguire questo risultato
e probabile perd che sia necessario osservare delle daviazl semplice comportamento
descritto dal Modello Standard.

1.2 Motivazioni per nuova fisica oltre il Modello Standard

Come abbiamo detto, a tutt’oggi i dati sperimentali ottedagli esperimenti di fisica delle
particelle sono in buon accordo con le previsioni del Man@8tandard. Tuttavia ci sono
indizi molto forti che fanno supporre I'esistenza di nuowct a energie piu elevate di
guelle finora raggiunte; in questo paragrafo vogliamo elemdrevemente i principali di
questi motivi, senza addentrarsi nei dettagli.

e Problema della GerarchiaUna delle piu importanti domande aperte della fisica del
Modello Standard riguarda la massa del bosone di Higgs. Gwpmo di avere una
teoria che descriva correttamente la fisica fino a una scadaealgia molto alta (ad
esempio la scala della massa di Plank) e che permetta diaada massa del boso-
ne di Higgs, non e chiaro perché essa sia molto piccola tspde scale di energia
rilevanti per la teoria. Il problema sta nel fatto che le earoni quantistiche an,,
sono naturalmente dell’ordine delle scale di energia hipidella teoria; affinché di-
verse correzioni molto grandi si sommino a dare un risulp@toolo & necessario che
I parametri della teoria siano tarati in maniera molto paciQuesto puo essere un
indizio dell'esistenza di una scala di nuova fisica a enatgpoco superiore al TeV al
di sopra della quale le correzioni si cancellino in maniexturale a causa di una sim-
metria della teoria, in modo che la massa dell’Higgs rimgpigeola. Questa scala di
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nuova fisica puo essere la scala della rottura della supersina o, in modelli con un
Higgs composto, la scala a cui la particella composta siaigeme tale (in analogia
con guello che succede ai pioni in QCD). La speranza dei fisitie questo problema
possa essere risolto dai dati di LHC.

Dark Matter Numerose osservazioni cosmologiche evidenziano |'esistei grandi
guantita di materia non barionica di cui vediamo solamehtefigtti gravitazionali, e
prende per questo il nome di Materia Oscura. A livello cosgimlo le osservazioni sul
Fondo Cosmico a Microonde (CMB) suggeriscono che attuatelarMateria Oscura
costituisca il 20-2% dell’energia dell'universo. Un'’utile review puo esserevita in
[9]. Ci si aspetta che LHC possa mettere luce su questo pnable

Oscillazione dei neutrini Le prime osservazioni delle oscillazioni dei neutrini Hsa
gono agli anni '60, e sono dovute all'esperimento di Homestahe osservo una
deviazione del flusso di neutrini elettronici del sole rispalle previsioni basate sui
modelli solari. Sul finire degli anni ‘80 la collaborazionamiokande in Giappone
evidenzio un’analoga deviazione nel flusso di neutrini mciatherivanti dall’intera-
zione dei raggi cosmici con I'atmosfera terrestre. Oggranbe queste deviazioni,
assieme a un numero di osservazioni analoghe, vengondigatstsupponendo che i
neutrini abbiano una massa non nulla e una matrice di meseol® analoga &:km
che spiegherebbe le oscillazioni. La maggior parte di guestelli prevede per i
neutrini sinistrorsi una massa di tipo Majorana, suppoboeated meccanismi ignoti di
fisica ad altissime energie generino degli operatori effiadzasse energie di intera-
zione tra i neutrini e il doppietto di Higgs da cui deriverebtn dopo la rottura della
simmetria elettrodebole, i termini di massa e la matrice dsocolamento. Se questa
ipotesi fosse verificata perderebbe senso la distinziane & r; un chiaro segnale
della sua correttezza sarebbe I'osservazione del doppaxteentos senza neutrini,
con violazione del numero leptonico. Per una review dei mosi@spetti sperimentali
e teorici della fisica dei neutrini si veda [10].

Asimmetria materia/antimateria Se C' P fosse una simmetria della natura, a meno
di condizioni iniziali asimmetriche l'universo sarebbengoosto in egual numero di
particelle e antiparticelle. Questo e evidentemente irtrasto con la semplice osser-
vazione che il nostro mondo € composto da particelle di n@afprotoni, neutroni,
elettroni...) e non di antimateria. Lasimmetria attuagernateria e antimateria e trop-
po grande per poter essere generata tramite il meccanisrivh €ie come abbiamo
visto e 'unica fonte di violazione di' P nel Modello Standard. L'universo deve quindi
aver attraversato una fase in cui fenomeni di nuova fisicdtediane energie forniva-
no nuove sorgenti di violazione di P, che non sono previste dal Modello Standard.
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Questa condizione, benché necessaria, non € comunquéesuéiper giustificare I'a-
simmetria. Le condizioni sufficienti affinché cio avvengasmote come condizioni
di Sakharov.

e Strong CP problem Come abbiamo gia detto, questo problema consiste nel capire
perché il termine (1.10) che causerebbe la violaziorgminella QCD é cosi piccolo.
Sono state proposte varie alternative per risorlverlo, negg@ non c’é una risposta
definitiva.

e Gerarchia nelle masse dei fermioni e cariche sotto il gruppali gaugell problema
consiste nel capire qual e il meccanismo (se c’'e) che staaltdtgerarchia delle masse
dei fermioni e ai valori delle loro cariche sotto il gruppogfiuge, che nel Modello
Standard sono parametri esterni non dettati da qualchelitgiommetria.

e Gravita La Relativita Generale, teoria che descrive la forza gaaiinale come una
modificazione geometrica dello spazio-tempo, &€ appareasritarincompatibile con la
teoria quantistica dei campi. Il Modello Standard (o una ssi@nsione) dovrebbe
perdere la sua predittivita alla scala di energie della emds®lank,Mp; ~ Ggm ~
10'? GeV, quando I'attrazione gravitazionale diventa compiéeati’ effetto delle altre
forze.

Questi e altri problemi aperti fanno sospettare che il Miod&landard non sia l'ultima parola
sulla fisica delle alte energie, ma anzi la speranza e ché axagl a venire LHC ci regali
grosse sorprese.

1.3 Nuova fisica nel settore del flavour

Come abbiamo visto, il Modello Standard ammette a livellalzero solamente processi

di flavour changing charged currenissia processi che coinvolgono nel settore adronico sia
quark di tipo up che di tipo down e, nel settore leptonicolegioni carichi che neutrini. Un
esempio di questi processi e dato dal decadimento leptdtice- 1~ 7,, che a livello di
quark corrisponde s — 11~ 7,. | processi che coinvolgono solo quark di tipo up (o di tipo
down) e analogamente solo leptoni carichi (o0 solo neuttianno sotto il nome dilavour
changing neutral curren{fFCNC), e nel Modello Standard possono avvenire solamente a
un loop; questo fa si che essi siano soppressi, il che li randgtimo banco di prova per

la ricerca di nuova fisica. Infatti, se i processi FCNC derivaa nuova fisica non sono
soppressi dai loop, essi possono avere ampiezze parai@ngbelle standard anche se la
scala di energia in gioco e significativamente piu alta dilqueettrodebole. Un esempio di
questi processi ¢ il decadimentd — 7, che a livello di quark corrispondesad — v7.
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Per descrivere gli effetti di nuova fisica sulle osservaleifjate al flavour puo essere
utile usare un approccio di teoria efficace. Supponendo chmwvi gradi di liberta della
teoria siano molto piu pesanti dei campi del Modello Staddessi si possono integrare via
ottenendo degli operatori efficaci per i campi del Modellartstard in modo analogo a come
si ottiene la teoria di Fermi dalla lagrangiana elettrodebd.a lagrangiana del Modello
Standard viene cosi estesa a

Leﬁ_LSMJrZA(d 5 Y 4 h.c. (1.23)

doved indica la dimensione degli operatori\e> M, € la scala di energia della nuova fisica.
Questo sistema, sebbene nasconda i dettagli del pargeamladello di nuova fisica e renda
quindi impossibile predirne il comportamento ad alte e@grgende comunque possibile
trovare delle correlazioni tra i coefficientj nelle varie osservabili, e cio puo aiutare nel
distinguere le varie possibili estensioni del Modello St e possibilmente escluderne
alcune.

Utilizzando questo approccio, se si assumono i coefficierkell’ordine dil si possono
ottenere dei limiti inferiori per la scald imponendo che la previsione delle osservabili
rimanga compatibile con i dati sperimentali. In questo medottengono limiti inferiori
fino a10* TeV, molto piu alti di quanto indicato per risolvere il prebha della naturalezza.
Un’utile review di questi risultati si puo trovare in [11].

Dati questi limiti, diventa importante una domanda:“Supgado, sulla base di argo-
menti di naturalezza, che esista nuova fisica alla scal@aebole, perché i nuovi effetti sul
flavour sono cosi piccoli?”. Una possibilita € che la desgnig CKM derivi da una qualche
simmetria di flavour che la rende efficace anche a scale djengitl alte di quelle attuali. In
questa ipotesi, gli operatori efficaci di nuova fisica chetgbuniscono alle osservabili di fla-
vour sarebbero soppressi da piccoli coefficienti conttiadialla simmetria,; il loro contributo
alla lagrangiana efficace sarebbe quindi

&cz
AL = ZA(d 5 94 h.c. (1.24)

dovec; ~ O(1) e A ~ TeV come suggerito dalla naturalezza, mentre i coefficigreareb-
bero determinati sulla base della simmetria. In questo nso@ao sperare di trovare effetti
significativi che diano deviazioni misurabili dalle prawaisi del Modello Standard gettando
luce sulle possibili estensioni di questo nel settore debfia Scopo di questa tesi e conside-
rare il caso in cui tale simmetrial&(2)3, opportunamente rotta da piccoli termiap(irioni,

e analizzare i vincoli che ne vengono dalle misure speriaient
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Capitolo 2

Simmetria U(2)3: caso minimale

Come accennato nel precedente capitolo, i progressi spetaindegli ultimi dieci anni han-
no mostrato come il meccanismo CKM per il mixing dei flavouaeviolazione diC P sia
un’ottima descrizione della realta fino alle scale di ereergiggiunte. Per quanto riguarda
la ricerca di nuova fisica, questo fatto puo essere intexfwréth due modi. Una prima pos-
sibilita & che la fisica del flavour sia ben descritta dal meistao CKM, al punto che le
eventuali deviazioni dovute a fenomeni di nuova fisica aneldyero a energie molto piu alte
di quelle che pensiamo di poter raggiungere in un prossirwdu Questo scenario, pur
segnando un ulteriore successo del Modello Standard, erdddevarsi il piu pessimistico,
dal momento che non lascerebbe ovvio spazio a ulterionigpilin questo campo. Lalter-
nativa, come abbiamo visto, & che gli effetti di nuova fisieas mantenuti piccoli a causa
di qualche simmetria opportunamente rotta, ma possanaitdine significativi a una scala
vicina a quella di Fermi, lasciando cosi spazio a deviazioisurabili dalle previsioni del
Modello Standard.

Una possibilita molto studiata negli ultimi anni e I'ipotes Minimal Flavour Violation
(MFV), che nel settore dei quark corrisponde a una simmét(ig? identica a quella del
Modello Standard spegnendo le interazioni di Yukawa. Qugxsitesi pero non e realiz-
zata nemmeno approssimativamente nel Modello Standaraysaaell’accoppiamento di
Yukawa del quark top; ~ 1.

Un’interessante alternativa e quella di considerare largina

U2 =U(2), x U(2)u x U(2)4 (2.1)

che coinvolga solamente le prime due famiglie di flavour. €aqya evidenziato, questa
simmetria e approssimativamente valida nel Modello Stahdaquark delle prime due ge-
nerazioni sono leggeri rispetto a quelli della terza e ghaindi mescolamento sono piccoli.
Seguendo i lavori [12, 13, 14, 15] vogliamo analizzare lg® in cui questa simmetria sia
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valida anche per lafisica alla scala elettrodebole, stadismconseguenze di questo scenario
e i vincoli sperimentali che lo costringono.

2.1 Spurioni

Supponiamo che, includendo gli effetti di nuova fisica, Grémgiana che descrive il settore
del flavour nei quark a bassa energia sia invariante sotiaiastrial/ (2), eccetto per al-
cuni termini, proporzionali a dei piccoli parametri adirsemali che indicheremo col nome
di spurioni. Questi parametri dovranno essere gli stesdigpmatrici di Yukawa e per tutti
gli altri termini che rompono la simmetria di flavour. Suppamo inoltre che, associan-
do agli spurioni delle opportune leggi di trasformaziontizii¢ sottolU/(2)3, la lagrangiana
sia formalmente invariante; questo restringe il numeroadisibili operatori efficaci che vi
possono comparire. L'origine di questi termini efficaci robapecificata, e puo essere diffe-
rente a seconda del modello. Ad esempio in [12, 13] questaspuiene implementata in
Supersimmetria, mentre in [14] nel contesto delle teoridiggs composto.

Prima di scrivere esplicitamente gli spurioni, &€ bene d¢tgde notazioni che useremo.
Indichiamo cong,, il doppietto diU(2), dato dalle prime due famiglie di quark sinistrorsi,
conug edg i doppiettidiU (2),, e U(2), dati dai quark up e down destrorsi delle prime due
famiglie, congs;, tr € by i quark della terza famiglia. Le regole di trasformaziongaesti
campi sottd/(2)? sono quindi

(2.2)

I modo piu semplice per dar massa ai quark delle prime duergeioni &€ considerare due
spurioni (in questo caso matrizix 2) che trasformino come un bi-doppietto:

AY, ~ (2,2,1) AYy; ~ (2,1,2) (2.3)
e costruire cosi i termini di massa invariank,q; AY,ur ev,q;, AY,dgr. Per poter accop-
piare i quark delle prime due generazioni con l'ultima € 1sse€io almeno un altro spurione
che trasformi come un doppietto sotto uno deiff@). Volendo introdurre un solo spurione,
I'unica possibilita € considerare un vettdreche trasformi come un doppietto sott@2), e
sia singoletto sottd/(2), e U(2),:

V~(211) (2.4)
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Questo permette di scrivere i termifpj Vi e g, Vbr che collegano la terza generazione
con le prime due. Una scelta a prima vista ugualmente péss#riebbe quella di considerare
gli spurioniV,, ~ (1,2,1) 0 V4 ~ (1,1, 2) al posto diV'. In questo caso tuttavia, per avere
V., dello stesso ordine di grandezza del rappettgm,, o spurione dovrebbe essaf¥1),

in contrasto con l'ipotesi che la rottura della simmetrig2)? sia piccola. Gli spurionV,

e V; si possono eventualmente aggiungere volendo considéasoi piu generale. Questa
possibilita verra analizzata nel prossimo capitolo.

Per arrivare a scrivere i possibili operatori a quattro fenn) bisogna innanzitutto scri-
vere tutti i possibili operatori a due fermioni con cui cogte i termini cinetici dei campi dei
quark e i termini di Yukawa; dopodiché occorrera passaria thelse fisica dei quark, in cui
la matrice del termine cinetico € l'identita e la matrice dissa € diagonale. Effettuate le
necessarie rotazioni per il passaggio alla base fisica sivegl@re come sono fatti i diversi
termini di interazione in questa base, e da questi qual eifierdi grandezza dei termini
efficaci a quattro fermioni.

| bilineari rilevanti che si possono costruire a partireldsgurioni (2.3, 2.4) sono

Chirality conserving

L-L (no spurioni) ¢3rv.q3.  qrY.9r
R-R (no spurioni) arv,ur drV.dr IlrY.tr brY.br TrV.br
L-L (1 spurione) (qrV)vuqsL
L-L (2 spurioni) (g, V)7, (V'qy)
R-R (2 spurioni) 7, VIAY,,ur bry,VIAY,ur
try, VIAY,dr by, VIAY,dr

(2.5)

Chirality breaking

L-R (no spurioni) ¢srtr  qzrbr
L-R (1 spurione) q;AY,ur q;AY,dr q.Vtr q.Vbg (2.6)
L-R (2 Spurioni) Q3LVTAYUUR (ngVTAY;ldR

dove ho trascurato i termini con due spuridqy” perché danno un contributo non significa-
tivo.

Utilizzando la simmetrid/(2)? e ridefinendo le fasi dei campi dei quark & possibile
ridurre gli spurioni a una forma semplice che sara utile pseguito. Senza perdita di
generalita lo spurion®” si puo scrivere nella forma

V:<0>. @)
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Fissata la forma dV/, i due bi-doppietti si possono parametrizzare come
AY, = LLAY, e  AY,;=d LAY, = ULAY, (2.8)

dovel,, L%, sono matrici ortogonali nello spazio delle prime due faigigh; € la matrice
diagonaleliag (eid’, 1) e AY, 4 sono matrici diagonali con autovalori reali e positivi:

u,d
AV, 4= ( T ) (2.9)

€2
La fasep non puo essere eliminata perché, per rispettare l'invasigihgauge, non é possibi-
le trasformare separatamente le due componené d;, del doppiettay; ; in questo modo Si
puo annullare una soltanto tra le fasiAdly,, e AY;. | dettagli di questa riparametrizzazione
si trovano in appendice A.

2.2 Termini bilineari

Vogliamo ora scrivere, nella forma pit generale che rigspetsimmetrial/(2)3, i termini
bilineari nei campi dei quark. In particolare vogliamo nrast che le matrici con cui sSi
contraggono gli indici di flavour hanno una forma molto seogl a meno di termini di
ordine superiore nei parametri degli spurioni esse si passorivere come combinazione di
matrici di rotazione e matrici unitarie.

| termini bilineari che rispettano la chiralita costruitrei campi dei quark sinistrorsi
sono i termine cinetico

QrPXinQr = aGsrDasr +bqrPqy + cgs P(Vigy) + ¢ (@ V) Daar, +
+al((_ILV)lb(VTC]L) (2.10)

e tutti i possibili termini di interazione

QryXeQr = a®Bryugsr +0°qu7.qn + By (Viar) + (@ V)vugss +
+da((_1LV)7u(VTQL)- (2-11)

Affinché la lagrangiana costruita con questi termini siatigana, i coefficienti(®), b | d()
devono essere reali. Facendo la stessa cosa per i campirdestiermini non diagonali nel
flavour sono soppressi perché di ordine piu alto negli spureodanno quindi un contributo
trascurabile.

Fra i termini che non rispettano la chiralita ci sono poi @i di massa (termini di
Yukawa) e quelli di dipolo, che indichiamo genericamente pﬁgd:

QLY ur =\ (C.73L75R +24(qLV)tr + @AY, ur + yt(jBLVTAYuuR) +h.c.
QrYadr = Ny (6.73L5R +23(qLV)br + qAYsdg + ybquVTAYddR) +h.c.
(2.12)

Yukawa: {
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r
QLO'LW/JEUR - )\t (ag(j?;LUuutR + b5<QLV)O';th + CEQLAYuUw/uR
+65§3LVTAYU'U,R) + h.c.

QLUuulung - )\b (a§q3Lo-uubR + bg(QLv)O_uubR + CSQLAYdU;u/dR
+e§q3LV*AYddR> +he.

dipolo: (2.13)

\

Sfruttando le fasi dig, br, g31, € q;, Si possono rendere realj, \,, c € ;. Ancora una volta
a causa della struttura di gauge non € possibile elimindes&adix;,.

Gli operatori trovati possono essere riscritti in forma megle. A meno di termini di
ordine superiore si ottiene per i termini di Yukawa

Yy, =\ [L;gm?u + RS?,I;),} (2.14)

dove [; = diag(0,0,1) e Ry, € una rotazione di angole,c nel settore 2-3. In maniera
analoga per i down si ottiene

Ya= N [UBAYs + U 1] (2.15)
doveU%, = &, L4, e Ud, € una matriceSU(2) e non una semplice matrice di rotazione
perchér, & in generale complesso, ed e della forma

L
Uy ~ ‘ 1 €|ay|eter (2.16)

—€| | e’ 1

dove ¢, € la fase dix,. Da ora in avanti indichiamo comffu, Affd le matrici estese a
delle3 x 3 aggiungendo uno in basso a destra; analogamente tutte le matrici di rotazion
nel settorel — 2 che abbiamo gia definito vengono estese a rotazioni nellmspelle tre
famiglie. Con analoga notazione per il termine cineticeval

Xiin = Al + BRy3I»3 R, (2.17)

dove

]23 = 0(62) ; (218)

| termini di interazione si scrivono come
Xy = A1 + B°UgyIosUsy (2.19)

Stavolta ho matriciSU(3) anziché matrici di rotazione perché i coefficienti sono in
generale complessi. Per le matrici dei termini di dipolavafine

ph =N [cA LAY, + al Ve W Wy (2.20)

20



e analogamente per i down
i = N [QULAYa + aJVE Wi Wiy | (2.21)

doveV;s’ e V¥ sono unitarie con elementi fuori diagonale di ordinenentrelv’ e W4’
hanno elementi fuori diagonale di ordiag e ec}.

Una volta calcolate le varie matrici nello spazio dei flayagcorre passare nella base
fisica dei campi dei quark. Per far cio, anzitutto € necesgasttere in forma canonica il
termine cinetico, dopodiché vanno diagonalizzati i tefirdinmassa tramite rotazioni nel-
lo spazio delle famiglie. Si vede facilmente che il primo ssgyio, fermandosi all’'ordine
O(e?), non modifica la forma delle matrici di Yukawa e degli altrirténi ma costituisce una
semplice ridefinizion€ (1) dei parametri.

Riguardo ai termini cinetici € bene soffermarci su un fatimseguenza diretta dell’in-
varianza di gauge della teoria. Esplicitando gli indici divilur essi sono scritti come

7,0 (VAN 70 . ara . aga . ij 17
P DXL = i) {@L — igsGyT" — igWi - — zg'BHY} 7 X (2.22)
e non, piu in generale, come
_. ii ) i ) " o Iy ) ii )
vy [@ij —igsGLT* X — ngngV{, — zg’BuYXBJ} bt (2.23)

perché in questo secondo modo l'invarianza di gauge nompettega. Il fatto che il termine
propriamente cinetico e quello di interazione coWjilabbiano la stessa matrice di flavour
importante perché significa che, una volta che la prima é anederma canonica, anche la
seconda lo &, e questo rende possibile calcolare la matkté @iagonalizzando il termine
di massa.

A meno di termini di ordine superiore@(¢?, eeﬁ‘:j), le matrici di Yukawa si diagonaliz-
zano facendo

u

€1

Yo — (Lip) (Ry) Y = A €y (2.24)
1
e

ef

Yo — (U) (Usy)Ya = N € : (2.25)
1

Per passare nella base fisica dei quark prendo quindi

WP = Ry, e ™= Uy (2.26)
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Dalle equazioni (2.24) e (2.25), i valori dei parameﬁf si ottengono come rapporti fra le
masse dei quark. In particolare

€f =T~ 1 X 1075; (2.27)
€ = e~ 0.7 % 1072 (2.28)
ed = 2—: ~1x1073 (2.29)
€d = e~ 2 X 1072 (2.30)

In questi passaggi stiamo completamente trascurandodeiooi che moltiplicano i ter-
mini di Yukawa da destra e che quindi costringerebbero dinide anche i campi dei quark
destrorsi. Il motivo € che, nel contesto minimale che stimowsiderando, queste rotazioni
hanno come unico effetto una ridefiniziod¥1) delle entrate delle matric;'zid; avranno
invece un ruolo importante nel caso generico, su cui ci soieemo nel capitolo 3.

2.2.1 Matrice CKM, termini di interazione e momenti di dipolo

Una volta passati nella base fisica, € facile calcolare@tptiente la matrice CKM e le altre
matrici rilevanti effettuando su di esse le rotazioni chieiaimo ottenuto.

La matrice CKM si ricava scrivendo nella base fisica dei queftkl terminew,y,d;, che
accoppia av=:

vl = )%, £L1f2)T( 53)T(U§3)Uflgdzhys (2.31)
V;;M
Vekm =~ (L11L2>T( gs)TUzdsUldz = (LzlLQ)TUfsUle (2.32)

E importante notare che essa dipende solamente da rotamiistrorse; come vedremo la
sua forma sara uguale nel caso generico. Da un calcolo s giiottiene

ety ey + s1yst, (033033 + 671'@1’5122’,53[?,)
Vorm = | @¥sthcly — sty (chchy + e sty 59,) (2.33)
—51 (5153033 - e‘i¢’bcg3sgg)
ei%qﬁs% - 5%20(112 (012‘30% + e‘i%sggsg?,) S1o (5%3033 - €+i¢bcg3sg3)
eslysty + clycly (Chachy + e rsys)  —cly (sh5chy — ey s53)
cfy (855¢55 — 70 cys3,) C33C35 + €0 sby 55,

dove, ricordiamosy,, sd, ~ O(e). Vexw PUO essere messa in forma pitl conveniente ferman-
dosi all’'ordine dominante. Tramite ridefinizioni delle ifa®i campi dei quark si ottiene la
forma

et cd, A sty 567"
—A ciycd, clys (2.34)

—s5d,5e'0%)  —cd s 1+ O(e?)
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dove(s¥,cl, —ei?clysty) = Ne® e (shcd,—e " clysd,) = se~i@, e la fasex si puo riassorbire
nelle fasi dei campi dei quark.

Usando questa parametrizzazione si puo fare un fit dei pariartikzzando quei processi
che nel modello standard avvengono gia a livello ad albexoi, guali I'eventuale contributo
di nuova fisica € presumibilmente trascurabile. | risullatjuesto fit danno [13]

st = 0.086 £ 0.003 sy = —0.22 4 0.01

(2.35)
s = 0.0411 % 0.0005 ¢ = (—97 £ 9)°.

Il valore ottenuto pek ci da una stima dell’'ordine di grandezza del parametré meno
di fattori O(1) abbiamo quindi ~ 1072, valore consistente con l'ipotesi che la rottura di
simmetria sia piccola.

Come la matrice CKM, anche i termini di interazione LL dipend solo dalle rotazioni
sui quark sinistrorsi, e nei loro termini appare solamertbe viene dallo spurion¥ . Ef-
fettuando due differenti cambiamenti di base sui quagke dy, la matriceX ¢, da origine a

int

due matrici distinte, una nel settore up e I'altra nel setttizwn, la cui forma esplicita &
Xing = A1+ B*(LY,) " Uss I (Us") L (2.36)
Xing = A1+ B*(Uy)"Ugg I (Ugs) Uty (2.37)

doveUs e USe sono matrici unitarie con entrate fuori diagonélé) nel settore 2-3.
Per quanto riguarda le matrigi, 4 Si ottiene invece

i = [ AV, + (L) U W WY | (2.38)

i = o | hAYa + (U U LW WY | (2.39)

2.3 Operatori efficaci rilevanti

Come spiegato alla fine del precedente capitolo (eq. (1.@43) volta specificata la simme-
tria di flavour e il suo modo di rottura si possono calcolamemo di un fattore di ording, i
coefficienti degli operatori efficaci a 4 campi fermionicecmediano i processi di violazione
del flavour. Questi coefficienti si ottengono dalle corrisgenti entrate delle matricy,; e
1? che abbiamo calcolato: ad esempio 'operatatey,d; ) sara modulato d&{ X i)

Un’importante conseguenza della simmetri@2)® e che i coefficienti dei vari operatori
sono proporzionali alle corrispondenti entrate della matCKM (2.34).

2.3.1 Quark down (mesoniK, Bq, By)
Indicando corg;; il prodotto (Vi) Vi, Si ottiene
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AF =2

e AB =2,i=s,d(mixing deiB,, By)

1 5 1

5 bigleQ( zL’YubL) : (240)

e AS =2 (mixing dei K)
1

1 2
§Cfo§sp(dL%SL) ; (2.41)

Notiamo subito che nel caso dei mesdhie B, il coefficientec?, & lo stesso, mentre
puo essere differente nel caso d@éi Inoltre nel caso deB € ammessa una nuova fase che
violaC'P. Questa e una diretta conseguenza della simniétti@ che stiamo considerando,
su cui torneremo nel capitolo 5.

AF =1
e AB = 1,i = s,d chiralitd opposted = v, G)

", 1 -
e Eymy— (diLa“”bR) O conOy, = eF™, g,G"; (2.42)

A2
e AB=1,i=s,d, stessa chiralitad = L, R, H)

CB€Z¢ gleQ (CZZ'L’}/“Z)L) Oﬁ COI’]OE = (ZL’Y,ulL) , (éR’yﬂeR) , (HTD“H) ; (243)
e AS =1, stessa chiralita

1 -
Chars (dir"s) Of  conO = (Iyle) . Ervuer) , (H'D,H) . (2.44)

Come prima, e importante sottolineare che per i primi dugaipg il coefficientec e lo
stesso per i quarke s, cosi che I'operatore € regolato solamente dalla corridpote entrata
della matrice CKM, esattamente come avviene per il Modetiém&ard.

AF =0
e momento di dipolo (cromo-)elettrico del down

&e%imy (dyodg) 02, con0%, = eF™, g, G"; (2.45)

2.3.2 Quark up

Indicando cort; il prodotto (V)" VL, si ottiene
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AF =2

o AC =2
1 1

_ 2
§cl£LC§cF(uL%CL) ;

AF =1

e AC = 1, chiralita opposta (decadimento de)

cpe's Cucmc% (uro™cr) 9sG s
e t — v, cZ, chiralita opposta
t igh L a o _ g }

ce ag‘ctth (cLo"tgr) O, conOy, = ek, aZW,

e t — cZ, stessa chiralita
Cicewéc%zgctmt% (cy*tr) O%Zm
AF =0
e momento di dipolo (cromo-)elettrico dell’'up
e im, (ugo™ug) 0%, con0, = eF™, g,G";

e momento di dipolo cromo-elettrico del top

. 1 _
cdmew“mmtp (tLo"tr) 9sG .

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

Nei capitoli 5 e 6 vedremo quali sono i limiti che si possont¢re sui coefficient; dai

dati sperimentali.
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Capitolo 3

Simmetria U(2)3: caso generico

3.1 Spurioni

Nel precedente capitolo abbiamo introdotto la simmétifa)® utilizzando I'insieme mini-
male di spurioni
Vv, AY,, AY, (3.1)

Vogliamo ora considerare il caso piu generale ammetteredistenza di altri due doppietti
corrispondenti &/(2),, e U(2), rispettivamente:

Vo~ (1,2,1) e Vi~ (1,1,2). (3.2)

Questo completa I'elenco dei possibili termini che romptasimmetrial/ (2)® che contri-
buiscono alla matrice di massa dei quark:

M@ V)tr NapAY,ur Mgz (Vilug) (3.3)
M (@LV)br MapAYidr MNGsr (Va'dr) (3.4)
di modo che le matrici di Yukawa, fermandosi al primo ordireglin spurioni, si scrivono
come
AY, Vv AY, Vv
Y, = A\ ot Y=\ d |y ) (3.5)
yVal| 1 wVa | 1

A questo punto e facile ripetere i passaggi gia spiegati agitalo precedente per otte-
nere gli operatori efficaci fisicamente rilevanti e la lorpressione in termini delle entrate
della matrice CKM. In questo capitolo vogliamo mettere idewnza le differenze tra i due
casi.

| termini bilineari invarianti sottd/(2)* considerando i nuovi spurioni sono:
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Chirality conserving

L-L O(1) : Gsypgse Qrndr
R-RO(1): uryur dryv.dr trYutr brvubr tr7V.br
L-L O(e) : (qLV) gar ) . (3.6)
R-RO(eq) : (wrVu)tr (wrVu)br (drVa)tr (drVa)br
L-L 0(62) (ar, )( CIL)
) (u

Vo) (Valup)  (doVa) (Va'de) (urVa) (Va'dy)
Chirality breaking

L-RO) . @Gryutr G3p7.br
L-RO(e,€ua) : (@LV)tr (@V)br G (Vu'ur) @i (Va'dg) (3.7)
L-R 0(612 ) . qLAYu'LLR QLAYddR

Notiamo che, a differenza del caso minimale, si possoneeseritermini che conservano
la chiralita con i quark destrorsi utilizzando un solo spog. Questo fa si che, nel caso
generico, gli effetti di nuova fisica possano diventare entdanche per gli operatori che
coinvolgono i quark destrorsi.

Sfruttando la simmetria di flavour per ridefinire i campi deadk si possono mettere gli
spurioni in una forma standard. Scegliamo, senza perdigemeralita, di parametrizzare i

doppietti come
V:<0> Vu:(0> Vd:<0>. @
€ €y €d

Per scrivere i tre doppietti in questa forma e necessar® tfar trasformazioni/(2)?; di
conseguenza rispetto al caso minimale c’@ meno liberteddfinire gli spurioniAY, che
scriveremo in forma standard come

AY, = L%, AY,®%R", = LY, AY, V4 (3.9)

AY, = O L, AV @ RYy = U AV, VS (3.10)
dove LY, LY, R}, RY%, sono matrici di rotazione nel settore 1-®; come prima & della
formadiag (¢, 1) e ®%¢ sono della formaliag <ei¢7f’d, ei¢3’d>. Abbiamo quindi quattro
nuovi parametri e@d Gu’d) e quattro fasiQ“ d) che si aggiungono ai cinque parametri reali

e una fase del caso minimale,( €, sz, ¢). Per fissare la notazione, deflnlamp

w,d u,d
sin@,’ esR =sinby".

27



u

Assumendo che, come si verifichera per consistenza a pmsténarametrieR’d siano
piccoli rispetto &, tutte le matrici relative ai quark sinistrorsi non camlmdorma nel caso
generale. In particolare i parametyj, eﬁ‘j, Hﬁ’d, ¢ del caso minimale restano determinati
dalle masse dei quark e dalla matrice CKM.

3.2 Termini bilineari

Una volta definiti gli spurioni si possono scrivere i termilineari nei campi dei quark. |
due nuovi doppiettV,, e V; fanno si che diventino fisicamente rilevanti anche i terroima
conservano la chiralita con i quark destrorsi che romporsintenetria di flavour.

| termini che conservano la chiralita sono i termini ciniegigli altri termini di interazio-
ne. | termini cinetici si scrivono come

QrdXinQr = aGardgsr +barday, + dird(Vigy) + d (V) dasr

+e(q V)d(Vigy) (3.11)

UrdXuiur = aurtrdtr + burtrdur + durtrd(Vi'ur) + dip(urV.)dtr
+€uR(ﬂRVu)a(VuTuR) (3.12)

dr@XiEdr = aspbrdbr + bardrddr + darbrd(Va'dr) + dir(drV 4)dbr
+ear(drVa))(Va'dr). (3.13)
| termini di interazione hanno forma analoga. Notiamo chee'rfﬁcientiag‘;)), bg)), egg sono

reali per I'hermitianita della lagrangiana.
| termini che non rispettano la chiralita sono i termini dikéuva e quelli di dipolo:

Yukawa: QrYuur = M (Gt + 2@ V)tr + @AY ur + 433 (Va'ugr)) + h.c.
QrYqdr =Ny ((j?:LbR + 2p(qV)br + qAYdR + Z/b%L(VdeR)) +he.
(3.14)
4 —
QLO_MV'ugUR - )\t (agqungtR + bg(QLV)UthR + ngLAYuO'MV’U,R
. +elas (Vlur) + f2(q,V)(Vi'ug)) + h.c.
dipolo: (3.15)

QLowtigDr = Ny <GSQ73LUWbR + WGV )ouwbr + G AYq0,,dR
\ e (Valdr) + [](@,V)(Va'dr)) + h.c.

Analogamente al caso minimale, gli operatori ottenuti passessere scritti in forma
matriciale come combinazione di matrici ortogonali e ntatrnitarie. Rispetto al caso pre-
cedente, stavolta le matrici di rotazione destre, quetie che moltiplicano da destra la ma-
trice diagonale, hanno entrate del primo ordine nei pamaragi, il che rende significative
per il passaggio alla base fisica anche le matrici che agissoiquark destrorsi.
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Le matrici di Yukawa si scrivono nella forma
Y, = \ [Usz}Nquf; n L5313Rg3] (3.16)
Yo = X |ULATaVE + U IR, (3.17)
dove le matriciL;; e R;; sono matrici ortogonali nel settofg, j) e la matricel/s; contie-
ne la fase complessa dj che, come prima, non puo in generale essere messa a zero con
trasformazioni/(2)3.
Per passare alla base fisica si procede mettendo in form@dasthih termine cinetico e
poi diagonalizzando le matrici di Yukawa. Come nel casogueate, il primo passaggio non

modifica la forma delle altre matrici. Con approssimaziam@icgente i termini di massa si
diagonalizzano facendo

Yu — (LYy)" (Las)"Yu(R3)" (Vi3)' (3.18)

Yy — (Uiiz)T(Ugs)Tm(Rg3)T(‘/1(iz)T§ (3.19)

il passaggio alla base fisica avviene quindi facendo

up = Ly Ll (3.20)
up = (Ri)"(Vig)tuft™ (3.21)
dp = UsUfhdi™ (3.22)
dr = (Riy)"T (V) ™. (3.23)

Una volta passati nella base fisica, € facile calcolare laicea€CKM e le altre matrici
rilevanti legate ai termini di interazione.
Come nel caso minimalé&cky dipende dalle sole rotazioni di sinistra, quindi vale aacor
'equazione (2.32):
Vekm = <L¥2)T(Lg3)TU§3U1d2- (3.24)
Come affermato in precedenza, la matrice CKM cosi trovatanptte di determinare i

parametri del caso minimale.
Le altre matrici rilevanti prendono la forma

Xi® = A3 1+ By (L) Uss Ing (Usg) T LY,y (3.25)
Xt = ASpl + By p(Vis) Vo I (V) TV (3.26)
Xi%tLa - ASLIL + BgL(U{iQ)TUg;—,QIé(Ug;)TU{iQ (3-27)
X = AGpl + Bip(ViS) Vo I5 (Vi) TV (3.28)
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i =\ [l U VGV + AT (3.29)
i = o | (U U IV Vs + AT (3.30)

Le matrici X% per i quark up e down hanno la stessa forma del caso mininmatgjanto
dipendono solamente da rotazioni sui quark sinistrorsimiagrici X%, irrilevanti nel caso
minimale, diventano significative in questo caso con eait¥k, ). Infine, le matriciuid

dei momenti di dipolo ricevono contribuf?(¢, ;) dalle rotazioni destrorse, assenti nel caso

minimale.

3.3 Operatori efficaci rilevanti

Nei capitoli 5 e 6 vedremo come, utilizzando i dati sperinaérsu alcune osservabili legate
ai mesonik, B e D neutri e quelli sul momento di dipolo elettrico del neutrpsigpossano
costringere i parametri liberi di un modello di nuova fisicasimmetria/(2)®. Elenchiamo
intanto gli operatori rilevanti, con i coefficienti che ste&igono nel caso generico, su cui
ritorneremo nel capitolo 6.

AS = 2: mixing dei K

e Bilineari scalari

st [ €l 2 A 1 - -
i <—R) 53362(%_(153))\5@(dLSR)(dRSL); (3.31)
ST \ €L
e bilineari vettoriali
d /. d\ 2
_ 1 - _
CﬁLRS_g (E_R) ﬁse’(¢‘f‘¢g)F(dL%sL)(desR); (3.32)
51, \ €L
AS = 1: decadimenti deiK
e Transizioni di dipolos — d
d —
%Ciei(%*d)g))\bfdse—l% (dLO'WTGSR) 9sGLY; (3.33)
€r
e ¢ (violazione diC P diretta)
1osh (b o it ud e
Fﬁ(f) 7.6’ %)0/5,760/5:6 (3.34)
con
Oy = ((JRMSR) (") e Oy = (d%VMS?%) (’ﬁv“gz) (3.35)

dovea e 5 sono indici di colore;
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AC = 1: decadimenti deiD

]_ g Z'(bg 7Z¢u 61;% ]. g Z'¢9 i¢u S’ljt% 61;% /
—che' P (,e 2 =0y e 5 Cpe D (el l—u—(’)g;

A2 €r, A s% €r,
dove
Os = my (4o, T%g) g:GE e Of =my (urowTcr) gsG;
AF = 0: momenti di dipolo elettrico

e quark up

. Sheh 1 -
—ip¥ °R “R a iPS (= pv o o pv uy.
thuue 1 S—ugpcue “w (ULO' UR) OP«” COHOW = el ,gsG )
L

e quark down

d .d
fidSRERlaio‘_ v «
mbgdde (bls—de—Pcded)d (dLO"u dR) OPW
L L
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Capitolo 4

Osservabili di flavour e CP

In questo capitolo vogliamo presentare sinteticamentenalaspetti della fenomenologia
dei mesoniK, B e D che saranno utili nel seguito. In particolare siamo intexgsalle
osservabili legate alla violazione del flavour oCdP che riprenderemo nei prossimi capitoli
per confrontare le previsioni dei modelli con simmetti&2)® e costringerne i parametri
liberi.

4.1 Considerazioni preliminari

Anzitutto € bene richiamare alcune proprieta di trasfolioreez dei campi sotto le trasforma-
zioni discreteP e C'. Le regole di trasformazione sono date da

P C
s=0 ¢ — 77P¢(—fa t) ﬁcéb*(fat)
s=1/2 ¥ —  nprv(=T,t)  neydi(Z, )
s=1 Au — T]PgMVAV(_:a t) 77014;(57 t)

(4.1)

doves & lo spin della particella considerata. Per quanto rigukr@arita, affinché”? = 1 la
fasenp deve valeret1. Se consideriamo solo particelle scalari e vettoriali, voita fissata la
fase di una particella di riferimento tutte le altre sonaauhticamente fissate imponendo che
i termini nella lagrangiana corrispondenti alle interaziche rispettano la parita (la forte e
I'elettromagnetica) siano invarianti. La fase dei campirf@nici invece non & univocamente
determinata: I'operazione di parita € definita a meno diziota di 27, ciascuna delle quali
cambia il segno della funzione d’onda di spin semintero.

Nel caso della coniugazione di cari€a ciascun campo viene mandato non in sé stesso
(a meno di una fase) ma nel suo complesso coniugato; questbépka coniugazione di
carica e definita come la trasformazione che manda una @laticella sua antiparticella.
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Gli unici autostati diC' sono quindi le particelle che coincidono con la loro antipatia:

e il caso, ad esempio, del fotone, del pione neutro e di sigiarticella-antiparticella. Per
queste particelle la fase pud essere solamentaffinchéC? = 1. Negli altri casi la fase
puo essere definita arbitrariamente in quanto puo essesorizta nella fase del vettore che
rappresenta lo stato, la quale non puo avere consegueteésoa. Per il sistema dei kaoni
neutri ad esempio prenderemo

CP|K) — e“K|K)
CP|K) — e "™f|K) (4.2)

dove la fasevx puo essere postalaidefinendo la fase degli stati), |K).

4.2 Mixing

Uno dei principali banchi di prova per la ricerca di nuovactisiel settore del flavour € dato
dai sistemi dei mesoni pseudoscalari neaifi— K°, By, — By, e D — D°. Ciascuno di
questi sistemi presenta delle peculiarita fenomenolagdifierenti, tuttavia il meccanismo
che ne regola il mixing e la violazione diP € lo stesso, e puo essere studiato in generale.

Le prime evidenze sperimentali della violazione(dP nelle interazioni deboli si sono
ottenute dal sistema dei mesakiineutri [16]. | K sono le particelle piu leggere con stra-
nezza non nullafx = +1, S = —1) e decadono quindi solo debolmente. Inoltre possono
venire mescolati da interazioni cahRS = 2: questo significa che le particelle fisiche con
massa e vita media definite sono una sovrapposizioh& @i £°.

Consideriamo in generale una coppia di mesgohi- P, le cui trasformazioni sott6' P
sono definite come

CP|P%) — €*r|P°)
CP|P%) — e r|PY) (4.3)

dove la fase*» segue dall'arbitrarieta nella definizione della coniugagidi caricaC'. Da
questa si ricava immediatamente che gli autostati offasono

1
V2
Se la simmetria di’' P fosse rispettata, gli stati fisici con massa e vita media daftoicide-
rebbero con gli autostati di' P dati dalla (4.4). L'esperimento di Cronin e Fitch [16] prova

che questa evenienza non é realizzata nel cas dBiefiniamo quindi gli autostati fisici con
massa e vita media definite conf;) e | P;), dove il suffisso sta per heavy (per quello piu

|Pro) = —= (|P°) £ e?|P%)  con autovaloret 1. (4.4)
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massiccio) e light (per quello piu leggero). Nel caso Hesi usa distinguerek’;) e |Kg),
dove L sta per long (vita media lunga) e S per short (vita mbokae); sperimentalmente il
K risulta essere il piu pesante.

Supponiamo di avere uno stato iniziale sovrapposiziongPtlj e |P°), e di volerne
seguire I'evoluzione temporale. Evolvendo questo premdieile componenti parallele a
ciascuno dei possibili stati finali di decadimentfy, fa, ...}

(1)) = a(t)|P%) + b(t)|P°) + ci(t)] fr) + ca(t)|fo) + - .. (4.5)

Volendo studiare il fenomeno del mixing tra gli stei’) e | P°) siamo interessati solamen-
te ai coefficientia(t) e b(t), il cui andamento si puo ottenere utilizzando un formalismo
semplificato. L'evoluzione temporale ristretta al sottmip | P°) — | P°) si ottiene tramite
un’hamiltoniana efficace che nella base degli autostatrdnszza prende la forma

H:M_1P2<Mn Mu)_g(rn F12> 46

2 My Mz 2\ Iy T

dove M el sono matric x 2 hermitiane e positive. La non unitarieta dell’lhamiltoraasn
dovuta al fatto che le particelle analizzate sono instaktiérmini diagonali della matricé/
sono dovuti principalmente alle interazioni forti, e detérerebbero la massa & e P° nel
caso in cui le interazioni deboli non ci fossero. Si puo ditrave che, a causa dell'invarianza

sottoC' PT,
M11 = MQQ =m (47)

' =T9=1. (4.8)

Gli autostati di massa e vita media sono gli autovettoff dche si possono scrivere nella
forma

1 0 PO
‘PL,H> = \/M (p‘P > + Q|P >) (4.9)
dove
P_ ,/w (4.10)
q M7y — 5T,
da cui
‘Q 2 [|Mgf* + T — Im (M) @.11)
q | Mas|* + §|T1af” + Im (MyoI'5,) '
Gli autovalori sono , ,
My g — %FLH —m - %7 +R (4.12)

con

1 i
R = —\/<M12 - §F12) (Mfz - 51“{2) (4.13)
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La differenza in massa e vita media ffa e Py € quindi
AM = My — M, =2ReR (4.14)
Al =Ty —T; =—-4ImR. (4.15)
La condizione affinché;, e Py siano autostati di’ P segue dalla definizione (4.4):

P _ giar (4.16)

ossia
— 1. (4.17)

Se tale condizione non e rispettata gli autostati dell’h@miana non sono autostati diP
che quindi non & una simmetria del sistema. Dalla (4.11)eseba la condizion&/q| = 1
é equivalente &m (M;21'5,) = 0. Affinché |p/q| # 1 deve quindi esistere una differenza di
fase traM, e I';5; tale fase non e eliminabile con semplici ridefinizioni detteri di base
|PY) e|PY).

Introduciamo infine alcune definizioni di uso comune. La raassa larghezza media
sono date da

My + M r r
M=EtMe o _latlr (4.18)
2 2
si definiscono inoltre le quantita adimensionali
AM AT
= — = —. 4.1
x T e vy 5T (4.19)

che prendono il nome di parametri di mixing, e governano tallagioni P° — P°: per le
probabilita di transizione vale infatti

P(P°— PYt) =
P (P"— P°t) =

e_F; (cosh(yI't) + cos(xI't)) (4.20)
e~ (cosh(yI't) — cos(2T't))

1
2

1lg

2|p
| valori dei parametri fisici per i mesoni neutii, D, B; e B, sono riportati in tabella

(4.1). Da essi appaiono evidenti alcune proprieta di quesiiemi. In particolare notiamo

che, nel sistema dé{, i due autostati hanno vite medie molto diverse: questo thai s

e K, possano essere studiati separatamente negli esperimenti.

Una questione molto importante € capire se le grandezze fidedinite sono effettiva-
mente calcolabili in una teoria come il Modello Standarghriino problema, che puo essere
affrontato attraverso il calcolo su reticolo, sorge datold degli elementi di matrice degli
operatori efficaci tra stati fisici adronici. Il secondo peha, piu difficile, sorge quando |l
calcolo degli elementi di matrice non € possibile con tdoaigerturbative nemmeno a livello

di quark.
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mi (497.614 =+ 0.024) MeV ~ 0.7560 x 10'2 ps*
Amp  (0.507 £ 0.004) ps!

Tk,  5.116+0.021 x 10785

TKg 0.89564 4 0.00033 x 10719 s

mg (5279.58 + 0.17) MeV ~ 8.021 x 10'2 ps™*

Amg  (0.507 £0.004) ps!

T 0.770 4 0.008 [17]
(§5), 0.017£0.018 +0.011 [18]

m (5366.77 + 0.24) MeV ~ 8.153 x 102 ps™*

Am,  (17.69 +0.08) ps*

T 26.74 £ 0.22 [17]
(§5). 0.144+0.021 [17]

mp (1864.86 & 0.13) MeV ~ 2.833 x 10'2 ps™!
(1.447088) x 102 ps!

Tp (0.6370:29) x 102 [17]
(85), (1.607933) x 1072

KO

DO

Tabella 4.1: Parametri di mixing per i mesoni neutki, By, Bs; e D.

Consideriamo ad esempio il calcolo &lf;; nel caso dei mesorik’. A livello di quark,
nel Modello Standard questo dipende dal diagramma a un lidigguda (4.1). Questa e pero
un’approssimazione, in quanto non tiene conto delle canezli QCD: i campi dei quark
vanno vestiti considerando lo scambio di gluoni, con ungacts di accoppiamentg; che e
perturbativa solo se il tipico impulso del loop € grandeetspalle scale adroniche. Ponendo
gli impulsi esterni a zero, 'ampiezza relativa al diagraaainfigura (4.1) é data da
Z / 'k —guﬁk kv —Gpo + kpko

— M3 k*— M3,

i,j=u,c,t

X (ciwukfimvpsL) (dw %_f -y SL) (4.21)

dove¢, = V; V.. Trascurando la massa del quasksi puo sfruttare I'unitarieta della matrice
CKM per ridurre 'ampiezza in una somma di tre termini:

M = (ftQFtt + §02Fcc + QEt&Fct) (JL'VMSL) (JL'VMSL) (4.22)
dove , ,
Fo_ @ d*k 1 — 21{:2/M5V + (kQ/M‘?V) m? m; (4.23)
T2 ) (2m) k2(k? — M2)? K2 —m2 k2 —m?
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d
Figura 4.1: Diagramma box responsabile del mixiag — K°.

L'ampiezza cosi trovata puo essere interpretata come grerigiana efficace il cui elemento
di matrice fra gli stati fisici K°) e | K°) determina I'entratd/, della matrice di massa.

La differenza in massa, nel caso d€j e data daAmy ~ 2|M;,|. Dalla (4.22) si pud
vedere chélM,| € dominato dal termine proporzionaléa, per il quale gli impulsi rilevanti
nel loop vanno da alla massa del quakk in questo intervallo la costante di accoppiamento
gs non e perturbativa, rendendo quindiimpossibile il calad#tie correzioni di QCD. D’altra
parte, scegliendo le fasi dei campi dei quark in modolIchesia reale, la violazione di' P
nel mixing dipendera dalla parte immaginarialdi,, data dai termini proporzionali &, e
F;; gli impulsi rilevanti per il calcolo di questi integrali wao dam,. am;, intervallo in cui
un calcolo perturbativo é possibile.

4.3 Effetti di violazione di CP

Definiamo anzitutto le ampiezze di decadimenta™e P in uno stato finalef o nel suo
C P-coniugatof

Ap = (fISIP),  Ap=(fIS|P), A;=(fIS|P), Aj=(fIS|P). (4.24)

4.3.1 Convenzioni sulle fasi

Come gia detto, c’é un’arbitrarieta nella scelta delle th& deriva, per i mesori, B e D
dalla conservazione dei numeri quantici dei quarke c nelle interazioni forti. E possibile
ridefinire gli stati| P°), | P°) come

|PO) — [P) = e|PY) |PY) — |P%)' = e |P") (4.25)

senza alcun effetto sulla fisica. E importante quindi dedidielle osservabili che quantifi-
chino la violazione diC'P che siano indipendenti da ridefinizioni di fase non fisiche L
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quantita fin qui definite trasformano come

My = (P°|M|P°) — M|, = e %My,
Iy = (PYT|PY) — TV, =e 2T, (4.26)
P, -2l (4.27)
q q
Ay — Ay =€ A (4.28)
Ay — Ay =e A (4.29)

4.3.2 Classificazione degli effetti di violazione dCP

Vogliamo classificare i possibili effetti della violazionk C'P. Come vedremo, essa puo
manifestarsi in modi differenti, e non tutti questi sonoliezati nelle coppieP’ — P°. In
questa sezione seguiamo la discussione di [19] e [20].

Violazione di CP nel mixing Si dice che la simmetria di' P e violata nel mixing se gli
autostati di massa e vita media definita non sono autostatAdiRichiamando I'equazione
(4.17) questo avviene se

‘?‘ 1. (4.30)
q

Questa é l'unica fonte di violazione diP nel Modello Standard per i decadimenti semi-
leptonici con corrente carica dei mesoni nelitri? — [+ X, come il decadiment®’s ;, —
Ty,

Per misurare questa violazione si ricorre all’asimmetria

ngy = A oyelD) = UX] = T Pelt) > UXT 1= lpfal” ) 5
= _ - i .
%F[Ppohys(t) — Z+X] + %F[Pghys(t) — 1 X] 1+ \p/q|

avendo suppostpd;+ x| = |A;-x| e |A-x| = |A;+x| = 0, vero nel Modello Standard al
primo ordine inG pm%.

Violazione di CP nei decadimenti Se C'P e una simmetria della teoria la matrice di
scattering commuta con I'operazione(dpP; si ha quindi

Af = out<f|S|P>in
P20 o ( fI(CP) S (CP) Py = P~ Ag (4.32)

Aj = ellesten 4. (4.33)
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Si dice che la simmetria di' P € violata nel decadimento se
)_) 41 (4.34)

Violazione di CP nell'interferenza tra mixing e decadimento Consideriamo il caso di
un decadimento in un canale comune a entrambe le partidelle®® — f. Fissiamo per
comodita le fasi arbitrarie dell’equazione (4.3) ugualeaaz La quantita

A, = 225 (4.35)

e indipendente da ridefinizioni di fase, e per quanto vistm@iseC P € conservata vale 1.

Se); # £1 la simmetria diC' P € necessariamente violata. Questo puo essere causato sia da
una violazione nel mixing che nel decadimento: in entrandaisi si avrg\;| # 1. Esiste

poi la possibilita chép/q| = 1, |A;/As| = 1, quindi|A\;| = 1, ma tuttavia

Im A, #0; (4.36)

in questo caso la violazione deriva dall'interferenzaltdecadimento senza mixing’ — f
e il decadimento con mixing?® — P’ — f. Un’esauriente spiegazione di questo tipo di
violazione puo essere trovata nel paragrafo 7.2.1 di [22].

La violazione diC' P indotta dall'interferenza puo essere osservata utilidediasimme-
tria di decadimento dei mesoni neutri in un autostato' et

%F[ _p?hys(t) — fCP] - %F[Pp?hys(t) — fCP]

_ 4.37
ITE (1) 5 Jorl - AT [PYdt) 5 for #.37)

Afop (t) =

dove conPy, (t) e Py, {t) indichiamo I'evoluzione temporale degli stati iniziah®) e|P?)

rispettivamente. Nel caso dei mesa@h{ma non per IK) vale approssimativamentel’ = 0
e|p/q| = 1: in questo caso vale per 'asimmetrig., la semplice formula

as.p = Sysin(Amt) — Cy cos(Amt) (4.38)
con ,
2Im(A 1—|A
= Lfl Cp = %; (4.39)
1+ [Ay] L+ [As]
se poi si aggiunge l'ipotesi chel;., | = |A;.,| allora 'asimmetria diventa
af.p(t) = Im(Ay) sin(xl't) (4.40)

conSy = Im Ay.
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4.3.3 Approfondimento sulla violazione diCP nei decadimenti

E bene specificare sotto quali condizioni & possibile avietazione diC' P nel decadimento.
Prendiamo il caso di una particella che decade solo debolmente, come i mesoni fin qui
considerati. La matrice di scatterifypuo essere scomposta fermandosi al primo ordine
nelle interazioni deboli. Scriviamo cioe

S=S8+il (4.41)

doveS € il contributo delle interazioni forti]” e la parte delle interazioni deboli. La matrice
T non conserva la stranezza e gli altri numeri barionici irdliali. La matrice di transizione
S puo connetteréP) solo con lo stesso staf@) o con stati di particelle piu leggere in cui
|P) decade. SéP) decade solo debolmente vuol dire che questi stati avramaonesiza (o
un altro numero quantico conservato nelle interazioni)fdiversa da P). In questo caso
quindi (J|S|P) = 0p,.

Per studiare la violazione di'P nei decadimenti occorre studiare le asimmetrie nelle
ampiezze di decadimento tra particella e antiparticella:

Ay = |(J|T|P)[* = |(J|T|P)[. (4.42)

dove|J) & uno stato di particelle in ciP) puo decadere. Si puo dimostrare che, sommando
i valori di queste asimmetrie su tutti i possibili stati findil decadimento, vale

ST =Y [T PP (4.43)

ossia

> Ay =0 (4.44)
J

Questo € un risultato di fondamentale importanza, perclaécei che la vita media di una
particella € uguale a quella della sua antiparticella.

Quello che ci interessa e capire in quali canali I'asimnag#i42) puo essere non nulla.
Si puo dimostrare che se lo stath € un autostato delle interazioni forti allora I'asimmetria
e nulla. Questo & quanto accade, ad esempio, per i decadimeticanale semileptonico
K° — 7~I"v e nei canalik® — (2, I) in cui il sistema dei due pioni ha isospin definito
Al contrario I'asimmetria puo essere diversaidaei canalik® — 7+7~ e K — 77, in
cui lo stato finale € combinazione lineare di due diversi statddelle interazioni forti, cioe
gli stati a due pioni con isospin totaleo 2.

4.3.4 Violazione diretta e indiretta

Consideriamo I'ampiezzd ; del decadimentd — f e la sua coniugatéf. | termini della
lagrangiana che contribuiscono all'ampiez4a con un parametro complesso appariranno
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in /If come complesso coniugato, e quindi le fasi generate daiqessini avranno segno
opposto in4; eAf. Poiché nel Modello Standard queste fasi derivano dadffatione con i
bosonilV*, esse prendono il nome di fasi deboli. Mentre il valore dsittola fase debole
non é fisico, perché puo essere modificato tramite ridefiniziei campi, la differenza di fase
tra due termini che contribuiscono alla stessa ampiezzdipandente da tali ridefinizioni

ed ha un valore fisico misurabile. Questo & quello che acadl&sempio, per i canali
K — 7t7m~ e K — 7%2° quando si scompone lo stato finale in somma di stati a isospin
definito.

In aggiunta alle fasi deboli, vi possono essere delle aisg fieneralmente prodotte dalle
correzioni forti alle ampiezze di decadimento, che emeogarentrambi i processP — f
e P — f con lo stesso segno; queste fasi prendono il nome di fasi @otne le fasi deboli,
anch’esse sono convenzionali, ma la differenza tra le fasrichini che contribuiscono a una
stessa ampiezza ha un valore fisico.

Supponiamo ad esempio che lo stato fifglesi scomponga in due autostati di isospin;
corrispondentemente I'ampiezza sara data da due comtgut a, + a,. La stessa cosa
puo avvenire quando 'ampiezza e data da un grafico ad alhera eorrezione con un loop;
in questo caso dal calcolo del loop emerge una fase che nobiz@®gno se si considera
il processa’’ P-coniugato. Possiamo allora scomporre ciascun contrifadiiorizzandone la
fase debole e forte, ottenendo

Af _ |a1|€i(61+¢>1)+|a2|€i(62+¢>2) (4.45)
Af — |a1|€i(51—¢1)+|a2|€i(52—¢2) (4.46)

dove i moduli delle ampiezzg sono uguali nei due casi per la discussione fatta nellasezio
precedende.

A questo punto possiamo introdurre un’ulteriore classimae per le possibili realizza-
zioni della violazione dC'P:

e Si parla diviolazione diC P diretta quando gli effetti non possono essere giustificati
semplicemente ponendq, # 0, doveg,, € la fase relativa tra i termini non diagonali
della hamiltoniana efficacé/,, e '}, € tutte le altre fasi che violanGP a zero. La
violazione diC'P nel decadimento rientra in questa categoria.

e Si parla invece dviolazione indirettaquando gli effetti sono consistenti con il porre
on # 0 e tutte le altre fasi che violanO P a zero. La violazione di' P nel mixing
rientra in questo caso. Notiamo che, a differenza dellaaziohe diretta, la violazione
indiretta produce degli effetti universali, ossia indigenti dal particolare canale di
decadimento in cui vengono misurati.
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Per quanto riguarda la violazione @iP nell'interferenza tra mixing e decadimento, essa
non puo essere classificata univocamente come violaziosttadp indiretta; tuttavia, la
misura di un differente valore d; per due differenti stati finali € prova di una violazione
diretta, in quanto la violazione indiretta produce una féismixing indipendente dal canale
di decadimento.

4.4 MesoniK? — KO

Come accennato in precedenza, quello dei me&dni- K° & stato il primo sistema a mo-
strare un’evidenza della violazione diP, tramite I'analisi dei decadimen# — 77 e
K — 7wrr. In questi canali inoltre é stata possibile la prima misuraiolazione diC' P
diretta [21], anche se molti anni dopo.

4.4.1 Decadimenti nel canale semileptonico

Studiamo il decadimento dé{ neutri nel canale semileptonidds ;, — =7 Fv. 1l tasso di
decadimento in questo canalefdj e Kg e rispettivamente déB% e del0.07%. Si definisce
I’asimmetria di caricger il Kp:

(K, =7 lty) —T(K, =7l p)

oy = = (0.332 % 0.006)%. 4.47
PTTK, ) + DK — 7t D) ( )% (4.47)

L'osservaziones; # 0 & un segnale della violazione diP. E utile chiedersi se questa
asimmetria derivi da una violazione indiretta o diretta. ttasizioni leptoniche rispettano
la regolaAS = AQ), doveS é la stranezza A(Q la differenza di carica elettrica tra i due
adroni nello stato iniziale e finale. Questa regola nel Mlodgtandard deriva dal fatto che i
processi com\S = AQ sono mediati da un solo bosolé, mentre quelli com\S = —AQ
necessitano di due bosoHi e sono quindi soppressi di un fattofg-m2 ~ 1075. La
discussione del paragrafo 4.3.3 fa si che valga

JAKY = 77 1Tv)| = |A(K® — 7717 D). (4.48)

Sfruttando questo fatto si ricava

— 7+ 2 B +7— - 2 1 —
o [ L T 1 10
(m=v|SIK) |+ (a v SIK [

L'asimmetriad;, quindi € non nulla se e solo se e violata la (4.17), cioé desdla dalla
violazione diC'P nel mixing.
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4.4.2 Decadimenti in2r

Il canale di decadimento dominante péf ineutri & quello in due pioni. | possibili stati finali
sonor’7’ e 77—, Essendo ilK e i = particelle scalari, il momento angolare del sistema
dei due pioni deve essere nullo. Lo sté&a)° & autostato di”' P, e possiamo definire le fasi
in modo cheC'P(27) = +(2m).

E utile studiare i decadimenti in autostati dello spin igito. Siccome nell'ipotesi di
conservazione dell’isospin i due si possono considerare come particelle identiche, per
rispettare la statistica di Bose-Einstein dor- 0 lo stato finale puo avere solamente

I=0 AI=1/2

4.50
I=2 AI=3/2 (4.30)

doveAl] é la variazione di isospin tra lo stato iniziale e finale e sssuatoA/ < 3/2.

Il Ksdecade solamente i, il K;, € dominato dal canale B che puo avere autovalore
di CP —1; seK g, fossero autostati di'P (conCP|K) = —|K)) il decadimentdy —
27 sarebbe proibito. Si possono quindi definire due osseiwai®l sarebbero nulle sgP
fosse conservata:

A(Kp, — 7'n?)

= con (1,2) = 1(0,0); — 4.51
T2 A(KS—)W17T2) ( ) ) {( ) )7<+7 )} ( )
per cui si ottengono i valori sperimentali
Ino] = (2.220+£0.011) x 1073 (4.52)
| = (2.23240.011) x 107? (4.53)
;ﬂ = 0.9950 + 0.0007 (4.54)
+_

Due variabili importanti per lo studio dei decadimenti dé€ineutri sonce e ¢, che si
possono definire a partire da_ ey come

o = €—2¢ (4.55)
Ne_ = €e+¢€. (4.56)
| valori sperimentali di e ¢’ sono:

le] = (2.228+0.011) x 107* (4.57)
¢ = (43.52+0.05)° (4.58)

/
ReS = (1.66+0.23) x 10~° (4.59)

€

/
mS = (—0.002+0.005)°. (4.60)
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Si puo dimostrare che quantifica la violazione indiretta. Infatti, scomponendaainil-
toniana debole ifly, = HF°=? + Hi3°=! e supponendo che dei due termini solo quello
responsabile del mixing75°=2, violi CP, si ottiene per le variabil,

Moo = M- = €. (4.61)

La variabile¢’ invece quantifica la violazione diretta.

Per poter calcolare teoricamentee ¢/ conviene scrivere le ampiezze di decadimen-
to A2 = A(K® — ='7?) scomponendo gli stati'7? in autostati di isospin tramite i
coefficienti di Clebsh-Gordan; si ottiene in questo modo

1 ) 2 )

Aporo = \/g || 0o to0) \/; PRECES (4.62)
2 . 1 )

A+ - = \/;LAO‘ ¢ (6o+¢o) + \/;‘Aﬂ ei(02+¢2) (4_63)

(4.64)
dove abbiamo definito le ampiezze di decadimento in autaBtsbspin
A= AK* = 2r,1) e A= AK® — 27, 1). (4.65)
Utilizzando queste definizioni si possono ottenere le seguelazioni [19]:
- ei;; IE A]‘j; (4.66)
e .
¢ = % ’% €'%279%) 5in (¢hy — ) (4.67)

sfruttando le quali & facile calcolare ¢ utilizzando le lagrangiane efficaciy =2 e £57=1.

L'espressione (4.66) per il parametrcé valida solo fissand@, = 0 e approssimando
anche¢, = 0. La faser/4 € approssimata e deriva dall’osservazione che, per i kaoni,
AM ~ —ATl'/2. Lequazione (4.67) invece é valida al prim’ordine|id,/.Ay| ~ 1/20.
Sperimentalmente si vede che anche la fagéwdile circar /4, quindi il rapportoe’ /e €, con
buona approssimazione, reale.

4.5 MesoniB), — B,

La violazione diC'P nel mixing per i mesoniBgvd e un effetto piccolo. Dalle misure
dell’asimmetria nei decadimenti semileptonici definitd4r81) si ottiene [17]

= 1.0017 £ 0.0017 = 1.0052 £ 0.0032. (4.68)

s

'g

Plg

'g
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Una quantita molto importante & I'asimmetfigy, nel decadiment®? — J/v¢ K, definita
come nell’equazione (4.39). A livello di quark, tale canatgrisponde a una transizione
b — ccs. Con un approssimazione migliore dell'1%, nel Modello Sl si ottengono le
relazioni

Syrs = sin2p e Cyks=0 (4.69)

dovep = arg [— (V.aVy;) / (VidV;)] € uno dei tre angoli del triangolo di unitarieta. Questo
risultato € molto preciso, in quando non dipende da elentiémtiatrice adronici. | valori
sperimentali che si ottengono sono

Syks = 0.679+£0.020 e  Cyxe = 0.005 = 0.020 (4.70)

compatibili con le previsioni del Modello Standard. In pewtare S,k € in buon accordo
con le previsioni pekin 23 che vengono dal fit del triangolo di unitarieta, a parte per le
tensioni di cui abbiamo accennato nel capitolo 1. Questdtat® costituisce una verifica
stringente del meccanismo CKM, che appare essere la serdentinante di violazione di
C'P nella fisica dei mesons.

L'analogo del decadimentB) — .J/1y K per le particelleB? e dato dal canal®? —
J/1¢, che a livello di quark dipende ancora da una transizioreccs. Per 'asimmetria di
C'P in questo decadimento, nel Modello Standard vale

: VisVip
Sy = sin 23, con f, = L 4.71
o = Sin2[3 Bs = arg l Vcsvjj ( )
Le attuali misure danno
B, = 0.08+003, (4.72)
consistente con la previsione del Modello Standard [17]:
23, = 0.03637995:8. (4.73)

4.6 MesoniD? — DO

Fra i quattro sistemi di mesoni neutri con numeri quanticilarour non nulli, quello dei
D é l'unico formato da quark di tipo up, oltre a essere quell@gusi hanno meno dati.
Le prime evidenze sperimentali del mixing nei mespi— D° risalgono appena al 2007
[23] [24], poiché a causa della piccola entita del fenomertie le misure precedenti erano
compatibili con zero. La misura dei parametri di mixinge y € difficoltosa a causa della
loro piccolezza e le attuali determinazioni rimangono atdoaza incerte, pur concordando
su valori dell'ordine delll%, come riportato in tabella (4.1).
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Dal punto di vista teorico, il Modello Standard puo esseragatibile con dei valori cosi
piccoli; tuttavia non & ancora possibile determinarne caitezza le previsioni a causa delle
correzioni di QCD agli operatori che, per valori degli imgiudlell'ordine della massa del
charm, danno correzioni non calcolabili in teoria perttikza

Per quanto riguarda la violazione @iP nei D, recentemente I'esperimento LHCb ha
ottenuto la prima evidenza di violazionedP nei mesoniD neutri [25], misurando

Aacp = ag+g- — Gpin- = —(0.8240.21 £0.11) x 1072 (4.74)

dovea; e I'asimmetria diC' P per il decadimento in un autostato@i:
(D’ — f)—T(D° = f)

(DY — f)+T(D° — f)
Misurando la medesima quantita la collaborazione CDF lematbAacp = (—0.62+0.21+
0.10) x 1072 [26]. Le precedenti misure dix+ k- € a+,- €rano compatibili con zero [27]
[28]. Come evidenziato in [29] tale asimmetria deve essatsata principalmente da una
violazione diretta; la violazione indiretta infatti prase effetti indipendenti dal canale di
decadimento, il cui contributo € quindi trascurabile quasidconsideri la differerenza tra le
asimmetrie con due diversi stati finali come in (4.74).

Come gia per il mixing, non é chiaro se il Modello Standardgaagiustificare una viola-
zione diC' P di questa entita. Mentre fino a qualche anno fa questo nonrsempossibile,
oggi 'argomento & molto dibattuto. E comunque possibinplere il valore dell’asimmetria
come limite superiore per gli effetti di nuova fisica, cosistinarne il contributo.

Da guesta breve discussione dovrebbe emergere I'urgenzglibrare nei prossimi anni
la misura delle osservabili legate alla violazion€'d? nei D e in generale per il quaxk oltre
a cio, ovviamente, sono di fondamentale importanza nuovesteorici per comprendere gli
effetti a lunga distanza che entrano negli elementi di roatadronici degli operatori che
contribuiscono a queste osservabili.

(4.75)

a,fE

4.7 Momenti di dipolo elettrico

Un momento di dipolo elettrico intrinseco per una parteellementare viol&'P. 1l motivo
e che, per essere elementare, non puo avere altri gradedidilmterni oltre a quello di spin;
dunque il vettorel dovrebbe essere proporzionale allo spin e quindi al mondirdigpolo
magnetico. Questo pero violerebbd, a causa delle proprieta di trasformazione so6tfo
dei campiE e B.

| principali limiti sui momenti di dipolo elettrico per i quia up e down vengono dagli
studi sul momento di dipolo elettrico del neutrone: valaitif31]

Ay = (140.5) [14(dg = 0.25d,) + L1e (4 + 054, )| (4.76)
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Il valore did,, nel Modello Standard & ~ 10-32¢ cm, mentre dagli attuali esperimenti si
ricava il limite superiore a%0% C.L.

d, < 2.9 x 107%¢ cm, (4.77)

In teoria dei campi, un momento di dipolo elettrico non néioerge da una fase com-
plessa in un termine di lagrangiana efficaligy = ep,e® (qrio,qr) F* + h.c.; calcolan-
do 'ampiezza di scattering da un campo elettromagnetiaticstin approssimazione non
relativistica con questa lagrangiana si ottiene

iApm = iejg"t (Cos 5% . B + sin 5% : E) 13 (4.78)

dove¢, ¢’ sono le funzioni d’onda di spin iniziale e finale, il che cepdnde all'interazione
con il campo elettricd di un dipolo elettrico

dp = eflgsind - S, (4.79)

dovesS & lo spin della particella.
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Capitolo 5

U(2)3 minimale e osservabili fisiche

In questo capitolo e nel successivo vogliamo studiare gquatoli le attuali misure di alcune
osservabili fisiche impongono per una teoria con simmét(ig. Cominciamo analizzando
in questo capitolo i limiti sui coefficienti degli operataificaci di dimension& nel caso
minimale, ottenuti nel capitolo 2; il caso generico verralazato nel prossimo capitolo.

5.1 Settore dei quark down

5.1.1 TransizioniAF = 2: mixing dei mesoniK e B

Analizziamo anzitutto il caso dei mesoRi e B, costituiti da quark di tipo down. Vogliamo
studiare i termini efficaci di nuova fisica che danno luogoamdizioniAF = 2, ossia
transizioni in cui qualche numero quantico di sapore candbidue unita. In particolare
siamo interessati al mixingf® — K° e B® — B°. Come discusso nel capitolo 2, tali termini
pPOSSONO essere parametrizzati come

AF=2  Cip,o Ll 5 2 et ol 4 2
Hett = Ffds§(dL7usL) +) A2 @z@( 1bL)” + h.c. (5.1)
i=d,s
dove i coefficientic)';” sono reali e in principio di ordin@(1), cosi come la fase, anche
se il loro valore esatto dipende dal modello considerato.

Per poter confrontare con i dati un generico modello con @ta simmetria di flavour
necessario anzitutto calcolare la correzione che i terchinuova fisica portano alle osser-
vabili. | termini efficaci ottenuti ipotizzando la simmetii/(2)? hanno la stessa dipendenza
dalle entrate della matrice CKM dei termini corrispondeti@ si ottengono dai diagrammi
a loop nel Modello Standard. Il contributo alle ampiezzelidegeratoriU(2)* dipendera
quindi dallo stesso elemento di matrice adronico e dallsssteombinazione delle entrate
di Vekwm; la dipendenza dalle funzioni di loop e dai parametri del Bl Standard sara
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invece sostituita dai coefficient} della (5.1). Le correzioni alle osservabili dipenderanno
dall'interferenza tra i termini di nuova fisica e quelli debilello Standard nel calcolo delle
ampiezze di transizione. Si ottiene [14]:

€Kk = G%M(tt) (1+hg)+ EiM(tCJrCC) (5.2)
Sprs = sin (Qﬁ + arg (1 + hBei‘bB)) (5.3)
Sps = sin (2|8, —arg (1+ hBewB)) (5.4)
AMy = AMM|1+4 hpe'®| (5.5)
AMy AMM
AM, — AMSM (5.6)
dove , , )
4s m 3 TeV
hicp = cpp——t W o 1.08c7 | S | 5.7
K,B = Crp, a2 So(z;) A2 Crr A (5.7)

e So(z; = m?/mi,) ~ 2.4 € una funzione che deriva, nel Modello Standard, dal caldelo
diagramma a un loop di topl&’.

Per ottenere i limiti sui coefficienti’;” e sulla faseyz occorre effettuare un fit di questi
e dei parametri di Wolfenstein della matrice CKM ), p e 77, che entrano nell’hamiltoniana
(5.1) tramite i prodottt,;. | valori delle osservabili e dei parametri teorici utiletznel fit
sono riportati in tabella (5.1).

Vad] 0.97425(22) fx  (155.8 £ 1.7) MeV

Vs 0.2254(13) Bk 0.7374+0.020

|V (40.6 +1.3) x 1073 Ke 0.94 4 0.02

\ (3.97+£0.45) x 1073 | fe. VB, (288+15) MeV

YeKm (74 +11)° 3 1.237 £ 0.032

lex| (22294 0.010) x 1073 | m  0.5765(65)

Sk 0.673 +0.023 Ne  0.496(47)

AM, (0.507 & 0.004) ps* Nec 1.38(53)
(AM,/AM,) 35.05+0.42

s —0.002 =+ 0.087

Tabella 5.1: Parametri input per il fit dei terminh ' = 2 [14].

| risultati dei fit sono riportati in figura (5.1). In alto a sstra € riportato il valore atteso
perck, assumende?;, = 0. In questo caso la fasgz non influenza il valore delle osser-
vabili e quindi non e riportata. In alto a destra é riportatpiedizione nel piane?;, — ¢
assumendeX; = 0. Notiamo che in entrambi i casi & preferito un valore divetad. Que-
sto deriva dalla tensione nel fit del triangolo di unitarieeéé x e Sy, nel modello standard.
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Tale tensione, come noto, potrebbe essere risolta da fenalineuova fisica che aumentino
il valore di ex o diminuiscano quello dby, oltre il valore standard: questi scenari cor-
rispondono, secondo le equazioni (5.3) e (5.4), rispettare ack, > 0 ecP, < 0. Nei
grafici in basso sono riportate le proiezioni nei piafii — cX, e c?, — ¢ del fit effettuati
con tutti tre i parametri liberi. In questo caso si ottengdeovincoli meno stringenti poi-
ché entrambi gli effetti contribuiscono a rilassare le tenisdi cui sopra, ma rimangono le
tendenze evidenziate dai primi due plot. La regione in griggl grafico in basso a sinistra &
sfavorita nel caso supersimmetrico in cui domina il contigbdei box con gluini. In questo
caso infatti i coefficienthx e h g sono correlati in quanto entrambi proporzionali a una stess
funzioneF, che dipende dalle masse del gluino e dello sqafd.2].

! ' ‘ 0.5 ‘ N
20 ¢ C€L=0 ] mj
04 . 1
151 e =0
« 03F ]
1.0} S
S 02} ]
0.5 0.1 :
0.0 bt ' N 0.0 : G
-05 00 0.5 1.0 ~04 -02 00 02 04
ek x(3 Tev/ A)? ch x(3 Tev/ A)?
1.0 ‘
[ e
L 08} e
< 06f
> , K
@ 04 =
= 02 e
X
<2 00]
Q UL \_/
-02¢ Fp>0.04 ]
-04 -02 00 02 04 ~04 -02 00 02 04
el x(3 TeV/ A)? el x(3 TeV/ A)?

Figura 5.1: Fit per i parametrid F' = 2 conc?; = 0 (in alto a sinistra)¢X, = 0 (in alto a destra) e con tutti
tre i parametriliberi (in basso) [14]. La regione in grigioiasso a sinistra é sfavorita nel caso supersimmetrico
in cui domina il contributo dei gluini.
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5.1.2 TransizioniAB = 1: decadimentib — s, b — d

L'analisi delle transizioniAF = 1 e piu complessa di quella del cagd? = 2 a causa
del maggior numero di operatori rilevanti e di osservabila principale previsione della
simmetrial/(2)® e l'universalita nelle trasizionh — s e b — d: come evidenziato nel
paragrafo 2.3.1, i coefficienti ~ O(1) davanti agli operatorAB = 2 e AB = 1 sono
uguali per i quarkd e s, e la differenza € data esclusivamente dalle entrate dellaica
CKM. | coefficienti degli operatori che contribuiscono alimg e al decadimento dei mesoni
K neutri sono invece liberi. Al momento i dati sui decadimeénth d non sono sufficienti a
verificare la correlazione cdn— s. Inoltre il decadimente — d si osserva ik — 7w,
ma non esistono ancora misure significative a causa dellpicapporto di decadimento, in
entrambi i canalik ™ — 7tvi e K° — 7%vw Ci si deve quindi limitare a mettere un limite
sui coefficienti basandosi sui decadiménth s.

Consideriamo I'hamiltoniana efficac®B = 1

Cgg€'?%0

i(b?'y . _.
Ha' = = Z Eip {077;2 my (do,,br) eF* + TP (d}0,,TbR) gsGH

i=d,s

id)L . _ id)R .
+% ( ZL’}/HZ)L) (ZL’}/”ZL) + % (dZL’}/HbL) (éR’y“eR)

YO 2

+%% (b %Z“ +he. (5.8)
| termini che la compongono sono calcolabili nel Modellortskard e danno un contributo
significativo e calcolabile a osservabili legate alle tiziosi b — sv, b — sitl~ e agli ac-
coppiamenti del boson&. Seguendo [30] si puo effettuare un fit dei parametyj c;, cg,
cy € delle corrispondenti fasi. Non si puo invece porre deitlisu cs,, che contribuisce a
b — sv solo in piccola misura. Il limite su;, deriva dalla misura della frazione di deca-
dimentoB — X,y e dalla asimmetria di'P Sk-, nel decadimentds; — K*v; il fit di
cr, o1, € cr, ¢ Si basa invece sul frazione di decadimeto—+ X, /"I~ e sul decadimento
B — K*uptu~. |risultati del fit sono riportati in figura (5.2). Notiamo e€hnei grafici di
sinistra, i vincoli che si ottengono sui coefficienti, e c;, sono molto meno forti quando le
fasi ¢7, e ¢;, sono vicine ar/2. Il motivo & che, quando la fase & massima, I'interferenza
tra il contributo di nuova fisica e quello del Modello Startlar annulla, e negli osservabili
conta il modulo quadro del termine di nuova fisica, che raqltindi soppresso. In questo
caso quindi i coefficientt; possono assumere valori piu grandi. Questo effetto € meano pr
nunciato per gli operatori dei grafici di destra, perché ialgaso gli operatori nel Modello
Standard sono soppressi.
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Figura 5.2: Fit per i parametrA F' = 1 [14].

5.1.3 TransizioniAS = 1: ¢'/e

La violazione diC'P diretta nel decadimento déi neutri, parametrizzata dg puo essere
utilizzata per trovare un limite superiore per alcuni pagtim In particolare, un contributo
al valore di¢’ viene dagli operatori

_ 1
ALPAT= = 36 (AO¢ + L0 + LO¢ + cLOy) +h.c. (5.9)
con
Of = (drvese) (Gry"qr) € Of = (J%wsﬁ) (cjﬁv*‘qi’é) (5.10)
dovea e 3 sono indici di colore &,, = V;, V.
Imponendo che il contributo derivante deC}’:> =" rispetti|e /e[ < [¢'/€|gy, ~ 1.7 x
1073 si ottiene
A AN
v < 0.4 e <013 - | . 5.11
5~ (3 TeV) %~ 3 TeV (®.11)
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5.2 Settore dei quark up

5.2.1 Momento di dipolo elettrico del neutrone

Come abbiamo osservato nel capitolo 4, un termine efficadgdio con una fase complessa
non nulla da origine a un momento di dipolo elettrico. Daghiiti sperimentali sul momento
di dipolo elettrico del neutrone si possono quindi ottergeelimiti sulle fasi dei termini
AF = 0 che non mantengono la chiralita. La lagrangiana efficaeceaiite &

. 1 1. .+ o _
AE@&@O = o [Cﬁe”’ﬁmu (@rowT ug) + cgezd’gmd (dLaWT“dR)} gsGH”
1 7 L~ _
+ e [EZe”ﬂmu (Urowur) + Ege”ﬂmd (dLUWdR)] eF* + h.c.(5.12)

Il contributo di questi termini al dipolo elettrico e crontetrico dei quark e dato da

myg._, . = 5 mg. ., . =
dq:2eA—§c;’sm¢g e dq:2A—§cgsm<Z>g (5.13)

che a loro volta portano un contributo al dipolo elettricorEutrone dato da [31]
1 ~ 1=
dy, = (1£0.5) (1.4(dd — Jdu) + 11e(dg + §du)) (5.14)

con i coefficienti definiti alla scala diGeV. Tenendo conto degli effetti del gruppo di rinor-
malizzazione su questi coefficienti e dell’attuale limijpesmentaldd,, | < 2.9 x 10725¢ cm
Si ottiene

Gsing] S1.9x1072(340)"  @sing] 2.4 x 1073 (52,)” (5.15)
53 sind;g SJ 7.1 x 1073(34\ev)2 528111@%2 5 1.8 x 1073(31{\ev)2' .

Puo essere utile osservare che questi limiti sono autoama#inte rispettati se si suppone che
non vi siano fasi complesse al di fuori di quelle contenutgirspurioni.

5.2.2 Mixing e decadimenti dei mesonD

Per quanto riguarda i mesoi, nel Modello Standard il contributo a lunga distanza al
mixing e paragonabile a quello a corta distanza, il che remaléo difficile il calcolo teorico
della differenza in massa e larghezza degli autostati dsejas particolare non € chiaro se
il solo Modello Standard puo giustificare i valori sperimadntiportati in tabella (4.1):

A AT
Tm = (063*43) x 1072 & — = (L60*)%) x 107 (5.16)

X

dovel' = (I'; +I'y)/2 é la media delle due larghezze di decadimento.
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Questi dati possono ad ogni modo essere usati come limierisup per gli eventuali
contributi di nuova fisica. In particolare queste misurecssmnportanti per quanto riguarda
I'operatore

D Chn o L, 2
Hip = A2 Suey (Uryucr)” : (5.17)
per poter saturare i valofi ~ y ~ 1% occorrerebbe
3TeV\>
c?LZ <—A ) =~ 90. (5.18)

Questo valore € troppo alto per essere facilmente giugtfita un modello di nuova fisica
con simmetrid/(2)3, il che fa supporre che la sua origine debba essere un’altra.

Date le recenti misure della differenza tra le asimmetri€'éh nei decadimentD —
K*K~ eD — w"xn, definita nell’equazione (4.74), é interessante chiedarsl valore
sperimentale di\acp possa essere giustificato in un modello con simmét(ig® minimale.
Imponendo che il contributo di nuova fisica sia minore debxakiportato in [32]Aacp =
axx — arr = —0.645 + 0.180, seguendo [29] si puo ottenere un limite sull’operatore

cfeid’?
A2

il cui contributo alllasimmetria & proporzionale al relaticoefficiente. Per riprodurre il

valore sperimentale d\acp Occorrerebbe

HE = Mebuelp0,,, TR )gsGM (5.19)

3TeV\?
C? sin (arg Eue + ¢§7) ( Ae ) ~ 40 (5.20)

valore troppo alto per essere facilmente incluso in un nioaein simmetrial/(2)® mini-
male. Come vedremo nel prossimo capitolo, il valore\dicp pud essere giustificato nel
modello generico.

5.2.3 FCNC e momenti di dipolo del top: transizionit — qZ, t — qv

Negli ultimi anni hanno suscitato molta attenzione siaitaoche da parte degli sperimentali i
processi di Flavour Changing Neutral Current per il quagk tbmotivo di questa attenzione
e semplice: essendo estremamente soppressi nel Modetida®ti una loro osservazione
sperimentale sarebbe un segnale certo di nuova fisica.

Un esempio importante e costituito dalle transiziort ¢Z et — ¢v. Ci si aspetta che
LHC a 14 TeV con100 fb~! di dati sia sensibile a una frazione di decadimento delifad
di BR(t — ¢Z, cy,uZ,uy) ~ 1075, molto piu alta del valore atteso per il Modello Standard,
stimabile come BBy(t — ¢Z, ¢y) ~ (m}/m?,)*|Va|?a?/s2 ~ 107!, Diventa interessante
allora stimare tale valore nel contesto della simmetfi@)®, per capire se un’eventuale
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osservazione di questi decadimenti puo essere 0 meno cbitgabdl nostro modello. |l
contributo dominante é dato dagli operatori

t.7Z theM)tZ - g v
= L Vt _ZH H H H
Hep iy Z”tgct (Crowtn) 2, per i decadimentit — cZ, (5.21)
Hio = “Sa— %o (CLyute) £ 2¢
ey
HY = VAQ_mtéct (cLowtr)eF"  peridecadimentit — cy. (5.22)

Si ottengono i seguenti limiti [14]:

3Tev\*
BR(t — ¢Z) ~ 8.5 x 10_8< A ) (0.610’}2 + 0.390&2 + 0.83c ¢}, cos(¢g. — ngtZ)> :
(5.23)
3Tev\*
BR(t — ¢y) ~ 1.7 x 108< A ) cgz (5.24)

il che ci dice che un’osservazione di questi processi a LHCpuairebbe essere spiegata nel
contesto della simmetrid(2)3.

Un altro vincolo interessante si puo ottenere seguendaligirdi [33], in cui gli autori
ricavano un nuovo limite sul momento di dipolo cromoeletirilel topd, basandosi sui limiti
al momento di dipolo elettrico del neutrone, supponendoi chementi di dipolo elettrico
e cromoelettrico dei quark e d siano trascurabili. Data la forma delle matr;ixﬁd (siveda
I'appendice A), questo implica due assunzioni:

e esistenza di fasi complesse oltre a quelle derivanti dagliisni;

e presenza di un ulteriore meccanismo che soppumae de ma non riguardid;:
guesto accade ad esempio in supersimmetria con le primechiglie piu pesanti.

L’hamiltoniana efficace che regolfa &
‘ 1
Hi = cdme“ﬁdmmtF (tLo™tR) §sG - (5.25)

In questo caso si puo ricavare

3 TeV)?
cdm|sin<bdm\< 1 ) < 0.6. (5.26)

Un limite cosi stringente significa che, in vista di futurogressi nella determinazione del
momento di dipolo del neutrone, lo scenaki¢2)® con fasi al di fuori degli spurioni possa
essere gia messo alla prova.
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Capitolo 6

U(2)3 generico e osservabili fisiche

In questo capitolo vogliamo studiare come le osservazipsigientali vincolano il modello
U(2)3 generico cosi come sviluppato nel capitolo 3, e capire giiffdirenze porta a livello di
osservabili 'aggiunta degli spurioiM,,, V rispetto al caso minimale. Come abbiamo visto,
nel caso generico diventano rilevanti anche le rotaziongsark destrorsi, il che introduce
nuovi effetti di violazione di flavour €' P. Facendo l'ipotesi, giustificata a posteriori, che
| parametrie,, ; siano piccoli, la forma delle matrici di rotazione che albdaottenuto nel
capitolo 2 rimane invariata, e i vincoli sui parametri ottémel capitolo 5 continuano a
valere. Le variazioni piu significative sono date da termaifficaci della forma di momenti
di dipolo e termini a quattro fermioni che violano il flavoua el settore sinistrorsi che in
quello dei quark destrorsi. | nuovi effetti si possono enlare nelle transizionAS = 2,
AS =1eAC =1, oltre che nei termini di dipolo (cromo-)elettrico dei gkare d.

6.1 AS = 2: mixing dei K

Nel passaggio al caso generico alcuni termini di lagrarieontenuti mALLR ricevo-
no contributi significativi. In particolare questo accader gli operatoriAS = 2 che
contribuiscono & . Gli operatori rilevanti in questo contesto sono

1 s 7 7 1 1
ALAST? = R<€ ) &' 0170) [%LRAg(dLSRXdRSL)+C}/(7LR(dL7u5L)(dR’YHSR) :

A2 d
(6.1)
Utilizzando i limiti di [11] si puo ricavare per il coefficiea della parte vettoriale
2 2
VLRSln (28 + ¢1 — ¢9) sk (( €k <6x107° A . (6.2)
sin 23 s¢ \er 3 TeV
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6.2 AS = 1: decadimenti deiK

Si possono ottenere nuovi vincoli dall’analisi degli ogerache contribuiscono &. In
particolare per I'operatore

d
ALpsg ' = %Cﬂei(d’g{*d’g))\bfdse—}% (dLowTsr) gsGh” (6.3)
€L

si ottiene

9 sin(5+¢€<—¢g)%<ol7< A )2. (6.4)

K sin 8 er 3 TeV
Un contributo &’ si ottiene nel caso generico anche dagli operdidtia quattro fermioni

_ 1 s% [ 2 )
AL = ps—dR(—R) 2 60199 (cgdogd+cg“og“+cgdogd+cg“og“) + hec.
L

€r
(6.5)
con
qu = (JR%LSR) (qLqr) e Oéq - (J%7u5%> (qﬁv“gg) (6.6)
dovea e 5 sono indici di colore. Per questi operatori si ottiene
. 2 2
Cg%dsm (Qﬁ‘-i- ) % (%) < 0.4( A ) 6.7)
sin 23 s¢ \ €L 3 TeV
€ d d 2 2
A (20 + 01— 04) s (<& <32 (6.8)
sin 23 s¢ \er 3 TeV

che come limite suis%/s¢)(¢% /e;)? non & molto significativo, essendo molto piti debole di
guello che siricava dey .

6.3 AC = 1: decadimenti deiD

Nel caso di simmetri&/(2)? generica i terminiAc = 1 ricevono un ulteriore contributo

AC=1 _ g i —igy "R 1y 2R ZR iy
Lmag ' = 336D " Cue [¢77 . Os +e i Og| +h.c. (6.9)
dove
Os = my (upo,, T cr) g,GL” e O = my (arowTr) gsGh” . (6.10)

Come abbiamo visto nel paragrafo 5.2.2, il contributo a tjugeeratori nel caso mini-
male non é sufficiente a giustificare il valore sperimental€asimmetriaAacp. Nel caso
generico questo € invece possibile: richiedendo che ilrtribd di nuova fisica d\acp Sia
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inferiore al valore centrale tra le misure di LHCb [25] e CIX6] Aacp = (—0.67£0.16)%
si ottengono i limiti

. 2
g§51n(5—¢12‘+¢%)< A 11
D, sind 035\ 37ev (6.11)

U LU u _ A9
& S_R€_RSln (5 + d)l d)D) 5 035( (612)

2
D _u .
st er sin 6 3 TeV)
che possono essere saturati senza violare i vincoli chéesigino da altre misure.

6.4 AF = 0: dipolo elettrico del neutrone

Come gia nel caso minimale, occorre confrontare le premisiel modello con i forti limiti
sul momento di dipolo elettrico del neutrone. Come gia vistfequazione (5.14), esso
dipende dai momenti di dipolo dei quark up e down, che ricevonovi contributi dagli
operatori

m L S’ €Y g Ly
AF=0 __ t —ip¥ °R~R | g idy (= a % Y iDd (- uv
ALgpoe = 1z Cunt 1_3“ . [cue (wrowTug) gsGL” + cle'® (upoug) el

L

d d
—l—%fdde%ﬁz—gi—}% [Cgewz (dLUWTadR) gsGLY + Cgeidﬁ (dLUuudR) eF“"] +h.e.
I CL

(6.13)

dove le fasi fattorizzateﬁ"d derivano dagli spurioni, e sono quindi non nulle anche nebca
in cui non si ammettono fasi al di fuori di essi. Questi terdianno un nuovo contributo ai
momenti di dipolo elettrico e cromoelettrico del quark up:

d, —2e—<w - c’ysm(dﬂ o) e d,=27 uffj chsm(¢>g o0);  (6.14)

da queste, rlchlamando I'equazione (5.14)

1 ~ 1=
d, = (1£0.5) (1.4(dd — ) + L1e(da+ édu)) (6.15)
e imponendo i limiti sul momento di dipolo elettrico del neurte si ottiene
. AN
CZ |Sln (dDZ (bl)‘ —ER€L < 1.2 x 10~ <m) s (616)
. o Sk A
cy |sin (¢ — ¢ )‘ EREL <32x10” (STGV) , (6.17)
A 2
9 |ai g uy| L <
cd |sin (¢? — ¢ )| eReL 4.4 x10” (3 TeV) : (6.18)
A 2
. d R -2
g ’sm (¢ — ¢ )} —d L S2.5x%x10 <3 TeV) . (6.19)
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6.5 Mixing dei D, B e FCNC del top

e Per quanto riguarda i mesohi e B non ci sono nuovi termini rilevanti contenuti in
ALY, e ALY, a differenza di quanto abbiamo visto peki | termini nuovi sono
soppressi rispetto al caso minimale da qualche potene'égd;ziﬁ.

e Stessa cosa vale per gli operatori che contengono dei &ilinke violano la chiralita
con un quark della terza generazioreo(t) importanti per la fisica deB e per i
processi FCNC del quark top.

e Per quanto riguarda il mixingp® — D° pud essere rilevante un operatore della forma
(incr)(@ger), maa causa della soppressione'sly e, ha effetti paragonabili a quelli
del caso minimale e lontani dall’attuale sensibilita spemtale.

e Per quanto riguarda®, a livello fenomenologico non ci sono differenze tra il caso
minimale e quello generico. L'unica differenza € che neloseo caso ci possono
essere fasi che violan@P anche se non si ammettono fasi complesse al di fuori degli
spurioni; in questo caso pero i termini interessati son@eegsi da qualche potenza di

s /e

o Gli effetti sui processi FCNC del top e sulla violazione di @ D in questo contesto
sono ben al di sotto della sensibilita raggiungibile a LHCpressimo futuro. Men-
tre un osservazione dei decadimenti+ ¢, zy potrebbe invalidare I'ipotedi(2)?,
un’osservazione di violazione diP nel mixing D° — D° necessiterebbe di un’analisi
molto attenta dei contributi a grande distanza.

6.6 Limiti sui parametridi U(2)?

Le equazioni (6.2, 6.4, 6.12, 6.19), assegnato un valoreedficientic{’, costringono i pa-
rametries? che codificano la rottura della simmetfig2)® nel caso generico. Assumendo
che tutti i coefficienti abbiano valoree che le fasi siano tali da massimizzare i limitiegue
e;gd, si ottiene il grafico di figura (6.1). | valori riportati passo variare per qualche fattore
O(1) una volta assegnati i valori dei coefficientia seconda dello specifico modello scelto.
Lapiccolezza dkg’d/s%d edie, q/¢r, induce a pensare che gli spurioni minimali possano
essere sufficienti. Tuttavia piccole deviazioni @alegli spurioni non minimali possono
spiegare, se necessario, I'asimmetXiap, non giustificabile nel caso minimale. Per far cio,
si puo notare dal grafico di sinistra che & necessario assutherl’angolosy, sia oltre un
ordine di grandezza piu piccolo del suo corrispettiyyo
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Figura 6.1: Limiti sui parametri di rottura della simmetria(2)? nel caso generico [15]. La linea nera continua
in entrambi i grafici indica il limite dato dal momento di dipcelettrico del neutrone (la regione in grigio &
sfavorita al 90% C.L.). Nel grafico di sinistra le linee vetrditteggiate corrispondono al caso in cui i contributi
di nuova fisica costituiscono il 50% e il 100% del valore spemtale didacp. La regione piu scura e sfavorita,
quella chiara in mezzo rimane accettabile. Nel grafico ardéstiinea rossa tratteggiata corrisponde al limite
dato da g, quella blu a punti corrisponde al limite dato da
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Capitolo 7

Conclusioni

In questo lavoro di tesi abbiamo mostrato come fenomeni dvadisica alla scala elet-
trodebole possano essere compatibili con I'ottimo suecesdia descrizione di Cabibbo,
Kobayashi e Maskawa supponendo una simmetria di flat@)® opportunamente rotta.
Abbiamo definito un caso minimale e uno generico, a secondacamsiderano solo un in-
sieme minimale di spurioni che rompono la simmetria 0 sedes considerano tutti quel-
li possibili. Usando un approccio di teoria efficace, ablmamostrato come gli operatori
efficaci di nuova fisica significativi si possano scriverdan@rma

CiGi
AL = Z Ai O; + h.c. (7.1)

dove i coefficientic; sono di ordine 1 e I€; sono opportune combinazioni delle entrate della
matrice CKM.

Nel caso minimale i parametri della matrice CKM sono in gpandenza con i para-
metri di rottura della simmetria di flavour, il cui valore erp@ determinato e risulta essere
dell’'ordine di 102, compatibilmente con l'ipotesi che la simmetria sia rotsapérametri
piccoli. E inoltre possibile effettuare un fit per i coeffistec; nel settore dei quark down
usando i limiti provenienti dal mixing e dai decadimenti de@soni neutri’ e B. Usando
la liberta nella ridefinizione delle fasi e fissando= 3 TeV ~ 4rv si ottengono valori dei
moduli dei coefficienti intorno a 1.

Nel caso generico, i nuovi parametri che vengono introdatti entrano nella matrice
CKM, e per questo motivo il loro valore non puo essere dinetiate determinato. Tuttavia
e possibile porre dei limiti su questi parametri usando fermazioni provenienti dall’a-
simmetria diC'P nei mesoniK e D e dal momento di dipolo elettrico del neutrone. In
generale il valore dei parametri di rottura della simmepri@pri del caso generico devono
essere almeno un ordine di grandezza piu piccoli di qudltaso minimale; questo fa si che
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i vincoli ottenuti nel caso minimale rimangano validi anche&uesto caso senza modifiche
significative.

A differenza del caso minimale, nel caso generico é posdijiilstificare la recente misu-
ra dell’'asimmetria dC' P nei decadimentD — K K, x in maniera consistente con gli altri
limiti, qualora si concludesse che tale asimmetria non eéggiile nel Modello Standard.

E da ritenere che un progresso teorico nella fisica del sgpassa ottenersi solo 0s-
servando qualche deviazione dalla descrizione CKM. A sutavia miglior giustificazio-
ne affinché questo accada € che la fisica responsabile didalaztbne sia connessa con
la fisica della rottura della simmetria elettrodebole, ttarezzata da una scala di energia
A ~ 4mv ~ 3 TeV. | risultati descritti in questa tesi mostrano che taereessione e possibi-
le ammettendo I'esistenza di una simmetria di sap&®® debolmente rotta in modo oppor-
tuno e osservata nello spettro. Se questo e vero, gli espetiim corso (LHCb, b-factories,
misure diK — wvv) dovrebbero avere la sensibilita necessaria a rivelaredinpletezza
della descrizione di Cabibbo, Kobayashi e Maskawa.
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Appendice A

Matrici di flavour nel caso minimale

A.1 Forma canonica per gli spurioni

| due bi-doppietti si possono parametrizzare come
AY, =U}L AV U, e AY;=U} AY;U, (A.1)

mentre il doppiettd/ si puo scrivere come

V:Uv<0> (A.2)

con Af/u,d diagonali con autovalori reali positivi e tutte le matridci € SU(2). Facendo una
trasformaziond/(2)? si possono mettere nella forma

0
V - ( )

€
AY, — Ughm?u
AYd — chdAi}d

(A.3)

Le matriciUCEf Si possono scrivere in generale come

etor cos 0 sin 6 el
U, = >os f ’ (A.4)
I 1 —sinfy cosfy e’

posso assorbire la matrice di destraﬁl’?f e poi rendere questa reale cambiando le fasi a ciascuna
componente disg € dgr Sseparatamente; resta quindi

eis c S
Uh, = ( ) ( Foss ) (A.5)
: 1 —Sf Cf

Cambiando la fase della prima componentg gliposso mettere @la faseg,, e si ottiene

Cu  Su u
U, = ( ) =LY (A.6)

—Su Cu
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€Z¢ C S
Ul = ( , ) ( _Zd CZ ) =&, LY,. (A7)

~ ~ ~ 0
AY, = LY%,AY,  AY;=d, LAY, =ULAY, V= ( . ) (A.8)

In definitiva quindi ho

e gli autovalori diAY,, 4 sono reali e positivi:

Affmd = diag <€11L’d, eg’d) . (A.9)

A.2 Forma matriciale per i termini bilineari

| termini bilineari delle equazioni (2.10-2.13) si possawivere in forma matriciale combinando
matrici di rotazione e matrici unitarie.

Termine cinetico left Avendo posta: reale

QLD XkinQr = agsrPqsr + barPqy, + ¢ [%LlD(VTQL) + (QLV)lDQ3L] +d(qLV)DP(Vigy)

(A.10)
che in forma matriciale diventa
b+dVV!|ev
Xkin = 7
cV ‘ a
0O O 0
= bl + 0 de? ce (A.11)

0 ce a-—0»>

che, a patto di ridefinire i coefficienti davanti alle matediermandosi all’'ordine?, si puo riscrivere
come
Xin = Al + BRo3Io3R1; (A.12)

con

Is = O(e?) (A.13)

e Ry3 una rotazione infinitesima nel settde- 3

L L
Ro3 = co3  S23 | 1 Oe) |- (A.14)
—S893 (93 — O (6) 1
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Termini di interazione Facendo gli stessi conti i termini di interazione fanno

o= AL + BUgyIosUsy (A.15)
con
L L
Uz ~ c se® | ~ 1 O(e)e® | . (A.16)
—se”® ¢ —O(e)e @ 1

Stavolta ho matricbU (2) anziché matrici di rotazione perché i coefficiesftinon sono reali.

Termine cinetico right Per gli up

o b |eAViV ) by | cAVI(LY)"V
kin aViAY,| a. G VILLAY, | au
0 0 cueel sty
= b1+ 0 0 Cu€€HCTy
cheelsly creescty  ay — by
= Ayl + BT T I5(T5)  (T35)" (A.17)
dove
0
I3 = 0 (A.18)
1

e T4, Ts5 sono matrici di rotazione di angolo rispettivameéce}’) e O(eey), con una fase com-
plessa. Analogamente per i down

Xd- _ bd ‘ CdAYdJrV _ bd ‘ CdA?dJr(LcllQ)TV
kin GVIAY | ag VIULAY, | ag
0 0 cqeeisdyetr
= bgl + 0 0 cqeedcd,
cheedsdyet?r  cheedc, aq — by
= Al + BaTg T3 Is(Tis)' (T)" (A.19)
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Yukawa Per gli up

AY, 1%
Y, = X\ ALY (A.20)
- 0
LY AY,
— e (A.21)
meelsly yeetsty, | 1
[ 0 0 0
_ weesty wieckst, 1
= A [LBAY, + Ry Wi Wi (A.23)

dovel; = diag(0,0,1) e RY; & una rotazione di angole.e nel settore 2-3}%, W34 sono matrici
di rotazione di angolo rispettivament®(ee}’) e O(eey) nei settori 1-3 e 2-3, con una fase complessa.
Da ora in avanti indichiamo conY,, la matrice estesa a urax 3 aggiungendo un@ in basso a
destra; analogamente tutte le matrici di rotazione nebseit— 2 che abbiamo gia definito vengono
estese allo spazio delle tre famiglie.

In maniera analoga per i down si ottiene

Yo=MN [U&A?d + Uy s W Wi (A.24)

doveUf, = &, L{, e Ug, & una matriceSU (2) e non una semplice matrice di rotazione perché
in generale complesso, ed e della forma
L

Udy ~ ‘ 1 €|ay|eter (A.25)

—€|ap|etr 1

dovey, ¢ la fase dixy,.
Fermandosi all’'ordine dominante le espressioni si serngafif:

Yo = A [LﬁLQAffquRggIg} (A.26)

Y, = [UfQA?dJrUggIg]. (A.27)

Momenti di dipolo  Per gli up

SAY, \bﬁv
8 _ Cy u n
Hu = At(%v*mﬂ a? (A-28)

0 0 0
= N |LLLAY, + 0 0 bie (A.29)

65661{81{2 egeezfslfg ag

= N\ [CQ%AT@ + aﬁvggﬁlgwgfwgﬁ] (A.30)
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e analogamente per i down
ul = [cg ULAY, + oV wddw s (A.31)

doveVQ%B eVQCff sono unitarie con elementi fuori diagonale di ordiresono della forma

‘ 1 O(e)e™® (A.32)
mentrve‘f ewgf hanno elementi fuori diagonale di ordip€’ e ec.

A.3 Passaggio alla base fisica

La base fisica & quella in cui i termini cinetici sono diagoealormalizzati a 1, ossiyin = X, =
Xg. =1, eitermini di massa sono diagonali.

A.3.1 Forma canonica dei termini cinetici e diagonalizzazne della ma-
trice di massa

Termine cinetico left Come abbiamo visto, questo termine si scrive come
QLD XinQr = Qr [Al + BRos I3 R13] Q1. (A.33)
Per metterlo in forma canonica occorrono due trasformazion

1. trasformare i campi left co®y;, = R1,Q,

A
= Xkin = A+ O(€?) (A.34)
A+ B
2. normalizzare i campi per aver€yi, = 1
VA
Q7 = A+ O(€?) - (A.35)
A+ B
Per passare nella base fisica quindi sostituisco
1/VA
QL = Ras 1/y/A+ O(e?) ! = RysA™'QY (A.36)

1/VAT B
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Termini cinetici right | termini cinetici right sono della forma

wp D Xiur = i | Ayl + BT T I(TH) (T35) wn (A.37)
&MX%@:JRpﬂ+Bﬂ$ﬁ&G%WE@q@. (A.38)
Seguendo un procedimento analogo a prima, per metterlring@anonica occorre sostituire
1/V/ Ay
up = T T, 1/vVA, uly = T T At ulh (A.39)
1/v Ay + By
e
1/v/Aq N
dp = T3 Ty 1/v/Aq 7 =TT A dy, (A.40)
1/\/Ad + By

Termine di massa E ora necessario diagonalizzare i termini di Yukawa che ddermasse ai
quark. Si pud mostrare che le trasformaziohi — Q7 , ur — u’, edr — df, fatte per mettere in
forma canonica il termine cinetico, non modificano la fornedledmatrici di Yukawa né dei termini
di interazione e di dipolo, ma ne ridefiniscono solamenteraipatri mantenendone gli ordini di
grandezza. Le uniche trasformazioni interessanti perss@ggio alla base fisica sono quindi quelle
che diagonalizzano le matrici di Yukawa. A meno di terminodiine superiore & (€2, ee| 2) queste

si diagonalizzano facendo

Yo — (L)' (R Ya(Wi) (W35)"
= (L) (BTN LAY, + Ry LWawis| (W) (was)!
¢

~ N AV E] = €l (A.41)

Yy — (Uh) N (US) Ya(Wis) T (Wih)T

d
€1
~ )\ [Affd + Ig} =X\ eg ; (A.42)
1
per passare nella base fisica dei quark prendo quindi

#IY wUR = UphyS(Lu ) ( 5‘3)TYU(W13) (W23)T P (A.43)

cioe A A

u U S m u S
uLh— Ry Lisu iy uRh— (W13)T(W23)Tu?%y (A.44)
E = = (Lip)" (353)TUL p "= = WysWisur

68



e analogamente

h h
dLh: U5l3Ui12d% v dRh: (W1d3)1-(W2d3)er% v (A45)
d% o= (Uflz)T(Ugs)TdL d% = Wflswfl:st

A.3.2 Matrice CKM, termini di interazione e momenti di dipol o

Una volta passati nella base fisica, € facile calcolare @ptiente la matrice CKM e le altre matrici
rilevanti effettuando su di esse le rotazioni che abbiantenoto.

Matrice CKM  Lamatrice CKM si ricava scrivendo nella base fisica dei qsanistrorsi il termine
urv,dr, che accoppia & *:

Vokm = (Liy)" (Rss) U U,
Cla —Si2 1
STy Cly Ch3 —Sy3 | X
‘ 1 853 Cy3
1 ‘ ei? Cilz 3?2
X 33 §3€"% 1 —sfy o
—sdie ol 1 ‘ 1

i u d u od u .d —ipp U od
e0ctycfy + stysly (chycds + e sty ss)
id u .d u d u .d —3 u od
sttty — ctysly (cHacs + e sY593) (A.46)
d u .d —1 u od
—s{y (s5¢95 — e "Prclys9s)
id u d u .d u .d —13 u od u u .d +1i u d
e %12312 — S512C712 (023023 +e %323323) S12 (323023 —€ %023323)
10 u od u .d u .d —1 u od u u .d +1 u od
e"stysly + clycly (chachs + e Prslysds)  —cly (shycs — €T clysdy)

d u .d —1 u od u .d 7 u od
cfy (s43¢95 — e Pbclssds) Cy3Chg + €70 853893

Vekm puo essere messa in forma piu conveniente fermandosidai®dominante:

ectycty e'Octysty — styety 512 (5153Cg3 - ei%cg?,sg?,)
esiyety — clasty ctacts —Cy (Sgscgs - €i¢bcg35§l3)
—sty (s33¢05 — e 7heh3s93)  cf (s53c9; — e Prclysts) 1

(A.47)

Se si definiscon@stycf, — €9y sty) = e e (sl — e clasds) = se'® questa diventa

ey cd, — e 5%, 5t
e Ne™ 10 ety —clyset® (A.48)
—slyse™ e 1

69



Per metterla in forma standard faccio

elclyct, —Xe®  slys dr,
(arertr) | e®xe ™ chyel, —clys ST,
—sdys ys 1 br,
etd e ewczfzc‘fz —\ed 5798
= (arcrtr) -1 -1 e ety —clys | X
el et —s5ly8 clys 1
i(0—9) —i(0—¢) dr,
X -1 —1 ST,
eia et bL
ctacty A sfhse ™ dy,
= (u}Cpty) —A cycty Cias ST,
s%y5e0=0) s 1 v,
(A.49)
Termini di interazione
_ _ph
aryeXinur = ap Yu(RE) X Riuz (A.50)
quindi
X — (RY)TXRY
= (L))" ()" [Aa]1+BaU§3]23U;3T Rys LYy
= A1+ B*(Lty)" (RY;)" Uss InsUsy Ry Ly (A.51)
Chiamo(RY,)TUS, = U € SU(2)
= Xitt = A%1 + B(LY,)" Us§' Ins (U35") T L. (A.52)
Analogamente
Xt = A1+ B*(Uth)'Uss Ls (Uss) U, (A.53)

conUse = (UL)TUS,.
E importante notare che la matrice CKM e quelle di interazimﬁ‘];do‘ dipendono solamente da
rotazioni sui quark sinistrorsi, e nei loro termini appasamente: che viene dallo spurion¥ .

Momenti di dipolo

U u u h
ULUW,UQUR = UpLyUuu(R ) MS(WB)T(WQZ’,)TU% 7 (A.54)
quindi
pl — (LY5)T (RN |l LAY, + al Ve sWay Wiy | (W) (W) (A.55)
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Le rotazioni a destra sul primo termine danno contributi wiie O (¢} ;) che sono trascurabili,
mentre sul secondo termine sono una semplice ridefinizietie matriciwg‘fwf‘f, quindi

ph = (L) (Rys) "M\ | ] LAY, + a5V21§BI3W2u3BW11?] (A-56)

Le rotazioni a sinistra sul primo termine danno
(L¥)T (RY)T LY, AY, ~ AY, + (termini della forma del secondo addendo (A.57)
Quindi a meno di ridefinire le matrici del secondo termineiawctando( Ry, )7V, = U;‘QB?, si ottiene
W= [chffu +abB %Q)TUﬁfglgwggﬁWﬁ,,ﬁ] . (A.58)

Analogamente
i = N [V + (U U W W] (A59)

A.4 Forma esplicita delle matrici

Le entrate delle matricK%

. p{fn in funzione delle entrate della matrice CKM possono essartes

come:
X1 = cpluc (A.60)
X = ey (A.61)
XUl = e, A.62
23
Xiy = créas (A.63)
dL  _ ibn
= cRpe db .
Xi3 3 (A.64)
XL = cpet®Bey, (A.65)
23
uh = Z_z:ggew?ﬁ (A.66)
u = eEe (A.67)
,ugg = et (A.68)
ply = cBes ﬁicuc (A.69)
pis = e Gy (A.70)
s = ey (A.71)
pyy = Ci}gew’ilﬂ%éic (A.72)
Mgf = cilgeiwi}f%)%qt (A.73)
iy = ci%ei(%*“t’%(; (A.74)
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Appendice B

Matrici di flavour nel caso generico

In questa appendice elenchiamo i risultati per le mafxigj, . nel caso generico.

Termini chirality conserving Xt

Xint® = ASp 1+ Boy (L) USS I3 (Uss) T LY,
Xint® = AG 1 + By, (Ufh) U [23( Uty
Xipf = A1 + Bop(Vis) Vo 1358 (Vo) TV
Xt = Agp1 + Bip(Vi5) V3! ( Vi

Termini chirality breaking ”:
My =N {a (LY )TULLQ%IBV sVig +c AY]

B.1 Forma esplicita delle matrici

Le entrate delle matricK¢
come:

ul
X12 = Cp Cuc
I )
X %3 = Ctezd)t Cut
7 )
X 33 = Ctewbt Cct

I:w

R - . u__ U R
Xt = apelel ¢2)C —
U
uR 5 i (Petot) o SuR €u
X13 — cte 1 (ut s ?
u

N

- ilh L €
XiR = G,

73

(B.1)
(B.2)
(B.3)
(B.4)

(B.5)

(B.6)

o Mﬁu in funzione delle entrate della matrice CKM possono essartes

(B.7)
(B.8)
(B.9)

(B.10)

(B.11)

(B.12)



XiF o= ¢
e (B.13)

X{§ = cpee
dL - (B.14)
Xog = cpe'BEy
(B.15)
XIB = Grei@i—ed)g, SdR €5
) " sq € (B.16)
XU = gpei@stod)e, SR
i 5d € (B.17)
X2d?£% = 6Bei(¢3+¢g)£sb€_d
€ (B.18)
uB o B . [—;7 w s
wy = eil@n—et) SuR €u
, D (uu Sy € (B.lg)
uB B (e —ey) . €
psd = P eilon=—hc,
u | e (B.20)
p3z = ape'™ 62
_ 21
P = B eileh—ot)c, )
ufs : € (B.22)
M3 = ey
ub  _ Bia (B.23)
Moz = ¢ e (e 2
] uc Su € (825)
8 = P i@l et x SuR Eu
) ul g, € (B.26)
W = PB-en ey
€ (B.27)
p¥ = aelei@h oD, SdR A
a8 54 € (B.28)
pd = ayclei@k—tlg, K
W Nagb® € (B.29)
33 = Apagh™? 830
d , .
W = Nk, )
dp , € (B.31)
M3 = )\bcﬁ 61035
an 5 s “ (B.32)
o3 = pchelos ¢
dp S (B.33)
p = alei@k—ohgx FAR
d ) ®sq € (B.34)
uB = 6B ei@h—ohgx SdR
d . 8q € (B.35)
M3g - Abégel(¢g_¢g)§*b€_d
Ve (B.36)
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