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We explore the deflection angle in the framework of improved Schwarzschild Black hole utilizing
the most advance geometrical path adopted by Gibbon-Werner. To investigate deflection angle of
the photon ray by weak gravitational lensing for this black hole, we derive the optical curvature
and perform the application of Gauss-Bonnet theorem on the optical metric. Moreover, we study
the impacts of the plasma medium in context of the weak gravitational lensing in relate to this black
hole. Further, we also study the graphical analysis of the deflection angle in both the plasma and
non-plasma mediums. Also, we find the rigorous bound base upon the greybody factor for improved
Schwarzschild black hole. A while later, we contrast our conclusions about deflection angle with the
deflection angles of Schwarzschild black hole within plasma and non-plasma mediums.
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I. INTRODUCTION

Black holes (BHs) are such things in space that produce deep sinks of gravity, not even light can escape from the
powerful pull of a (BH) gravity beyond a certain area. Einstein was the first person who predicted the existence of a
BH. The astronomer John Michael was first to originate the idea of BH [1]. On the basis of hypothesis, astronomers
found three types of BHs, named as stellar BH, supermassive BH and intermediate BH, based on their sizes and
masses. The boundary around the BH is known as event horizon, in which photon ray can’t escape from it. A particle
can’t escape if it crosses the event horizon. The spacetime curvature almost infinite at the center of a BH and there
occur a gravitational singularity. The phenomenon in which the photon ray released by for away galaxies permits
by massive objects present in the entire universe, gravitational attraction from these objects cause the distortion
or bending of photon ray, this phenomenon is known as gravitational lensing (GL). GL was initially suggested by
solder in 1801, in the background of the theory of Newtonian [2]. Scientist analysis the effect of GL phenomenon
that tells about dark matter which is distributed within the distant galaxies. This technique provide us a probe to
visualizing both the expansion of the universe and development of the structure in the universe [3]. Photon traverse
in the universe and their trajectories are affected by the gravitational effects due to mass concentration. Einstein
theory of general relativity (GR) tested with the help of GL, at that point GL worked in different spacetime utilizing
alternate strategies [4]-[10]. In 2008, Gibbon and Werner (GW) formulate an arrangement to acquire deflection angle
of photon [11]. They consider both the observer and source are present in place of asymptotic Minkowski area. To
this procedure, GW used the application of Gauss-Bonnet theorem (GBT) to a spatially space, which is identified
with optical metric. In case of GBT, one can use space of DA, which one is restricted by photon ray similarly as that
of a circular boundary curve C that arranged at the center around the spot of convergence where the beam of the
photon ray meets the same source and spectator. It’s imagined that the coordinate distance A from the focal point
with respect to source and viewer. GBT is carried out in the optical metric, in weak field estimation, as follows;∫ ∫

DA

KdS +

∮
∂DA

κ dt+ Σpθp = 2πX (DA).

Here, K is the representative of the optical Gaussian curvature and dS is characterized an areal component. Eventu-
ally, the value of the Euler characteristic is taken as X (DA) = 1 and further suppose jump angle Σpθp = π, also the
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deflection angle obtained by using the following equation acting in uniformity by the straight line estimation:

η = −
∫ π

0

∫ ∞
b

r sinφ

KdS.

Therefore, scientists Werner prolonged this methodology for the stationary BHs [12]. Next, Ishihara et al. [13]
expressed that the deflection angle is determine for finite distances which means large impact parameter, so the GW
barely determine deflection angle with the help of optical fermat geometry technique of the BHs spacetime in the
presence of week field limits and also for the spectators having at asymptotically flat section. In recent times, the
scientists Crisnejo and the Gallo also reviewed the bending of the photon in the plasma medium [14]. In this way, the
weak gravitational lensing gradually taking interest through the technique of GBT for the different BHs and cosmic
string and wormholes [15]-[62]. Our main determination of the present article that is to analyze the impact of the
deflection angle at improved Schwarzschild BH to which we can apply the GBT and the bending of the light would
behave like a global impact. Therefore we merely concentrate at the nonsingular zone outer of the light rays.

Among the most significant aspects of BHs is that they behave like a thermal systems. In particular, BHs sustain
entropy and it can release a radiation known as Hawking radiation (HR) [63]-[70]. Consequently, over the event hori-
zon, the spectrum of radiations emitted by BHs is identical to black-body spectrum. Because the spacetime nearby
the (BH) is curved type, the spectrum ejected by the BH has been significantly revised. In this manner, the curvature
of spacetime can behave like a potential barrier, allowing some radiation to transmit as well as reflect, as seen in a
similar scenario in quantum mechanics. In this sense, the greybody factor is determined to account for transmitting
amplitude from the BHs radiations. However, it can also be interpreted as that of the probability for wave going from
infinity being absorbed through the BH, which is also known as the probability rate of absorption. In this context,
the transmission probability is referred as, the greybody factor. The greybody factor can be calculated in a number
of different ways. As for instance, somebody can derive an approximate, greybody factor by utilizing the matching
approach. If the value of gravitational potential is sufficiently high, someone utilize the (WKB)approximation ap-
proach to obtain the greybody factor [71]-[74]. However apart from approximation, the rigorous bound can be used
to calculate the greybody factor [75]-[84]. A black hole′s can provide a qualitative depiction.

This new article is summarized it as follows. The Sec. 2, we are talking about optical metric of the spacetime and
in Sec. 3, we discuss in detail about GBT and find the value of deflection angle. In the Sec. 4, we discuss about
graphically analysis and in Sec. 5, we discuss about impact of plasma on optical metric and find the newly result of
deflection angle in presence of plasma after this in Sec. 6, we also draw graphs within plasma and then in the Sec.
7, we calculate the greybody factor and in the sec.8, we observe its graphical influences and then finally we acquire
our consequences.

II. WEAK GRAVITATIONAL LENSING AND IMPROVED SCHWARZSCHILD BLACK HOLE

In this scenario, the line element for static and the spherically symmetric optical spacetime is defined as,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2, (1)

where the radial coordinate is denoted by r, and

dΩ2
2 = dθ2 + sin2 θdφ2. (2)

Here, dΩ2
2 denoted the line-element of unit two dimensional sphere and the value of f(r) is defined as, [85, 86]

f(r) = 1− 2Mr2

r3 + ω̃ (r + ψM)
,

where the value of parameters ψ and ω̃ found in,
after simplifying f(r), we get;

f(r) = 1− ω̃2

r4
− 2ω̃2ψM

r5
− 2M

r
+

2Mω̃

r3
, (3)
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here the mass of (BH) is denoted by M , r is the radial coordinate, ψ is free parameter and ω̃ is fixed parameter.
Putting the value of f(r) in Eq. (1), as a result we obtain the following

ds2 = −
(

1− ω̃2

r4
− 2ω̃2ψM

r5
− 2M

r
+

2Mω̃

r3

)
dt2 +

(
1− ω̃2

r4
− 2ω̃2ψM

r5
− 2M

r

+
2Mω̃

r3

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2. (4)

By applying the basic procedure we let (θ = π
2 ) to the moving photon’s in the space equatorial plane and also for the

null geodesic, we let ds2=0, after this we obtain the resulting optical metric which given as follows,

dt2 =
dr2

(1− ω̃2

r4 −
2ω̃2ψM
r5 − 2M

r + 2Mω̃
r3 )2

+
r2dφ2

(1− ω̃2

r4 −
2ω̃2ψM
r5 − 2M

r + 2Mω̃
r3 )

. (5)

Now, we change the optical metric into new coordinate r̂, which written as

dt2 = g∗abdx
adxb = dr̂2 + f2(r̂)dφ2, (6)

where

r̂ =
dr

(1− ω̃2

r4 −
2ω̃2ψM
r5 − 2M

r + 2Mω̃
r3 )

,

f(r̂) =
r√

(1− ω̃2

r4 −
2ω̃2ψM
r5 − 2M

r + 2Mω̃
r3 )

. (7)

Now, we changed the expression (a, b) in the (r,Φ) and the value of the determinant is given as detg∗ab = r2

f(r̂)3 . To
using of Eq. (6), only the non-zero christofell values are written as;

Γr̂φφ =
r(rf ′(r̂)− 2f(r̂)

2
, Γφr̂φ =

−rf ′(r̂) + 2f(r̂)

2rf(r̂)
= Γφφr̂ , Γr̂r̂r̂ = −f

′(r̂)

f(r̂)

and Riemann tensor of just only the non-vanishing components for the optical curvature of the space is given as:
Rr̂φr̂φ=−kf2(r̂) where Rr̂φr̂φ=gr̂r̂Rr̂φr̂φ. We can calculate the value of Gaussian optical curvature (K) given it as
below;

K =
RicciScalar

2
. (8)

Using previous equation, we can rewrite the value of the Gaussian optical curvature (K) which is in the form of the
Schwarzschild radial coordinate ”r” written as [? ];

K =
−1

f(r̂)

[
dr

dr̂

d

dr
(
dr

dr̂
)
df

dr
+
d2f

dr2
(
dr

dr̂
)2

]
. (9)

At the end, we can attain the required value of the Gaussian optical curvature of the photon’s from the improved
Schwarzschild BH by applying Eq. (7) into Eq. (9), we derive such a formulation

K ≈ −2M

r3
+

12Mω̃

r5
+O(M2, ω̃2, ψ, r6)

(10)

III. THE DEFLECTION ANGLE OF IMPROVED SCHWARZSCHILD BLACK HOLE UNDER THE INFLUENCE OF
NON-PLASMA

Now we can calculate the value of deflection angle for the improved Schwarzschild (BH) with the using of Gauss-
Bonnet theorem through the existence of non-plasma medium. The GBT is applied in the region of YR̃, which is
written as [11]; ∫ ∫

YR
KdS +

∮
∂YR

ḱdt+
∑
j

εj = 2πX (YR), (11)
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here the term K denote the Gaussian optical curvature and ḱ denote the value of geodesic curvature, followed in a
manner as; ḱ = ǵ(∇γ̇ γ̇, γ̈) a way that of taking ǵ(γ̇, γ̇) = 1, where the value of γ̈ representative of (the unit acceleration
vector), εj is denote exterior angle to jth vertex. The jump angle become π/2 as R approaches to infinity and yield the
term (θO + θS → π) and the value of Euler characteristic (X (YR) = 1) as YR having non singular. Hence, we obtain
the following; ∫ ∫

YR
KdS +

∮
∂YR

ḱdt+ εj = 2πX (YR), (12)

where the value of the total jump angle is represented by, εj = π and γ̃g is geodesic. Since X is 1 is denote term of
the Euler characteristic number. As, R approaches to infinity the rest of the part yield that k(ZR) =| ∇ŻRŻR |. Since,
the value of the radial component of geodesic curvature,s given it as;

(∇ŻRŻR)r = ŻΦ
R∂ΦŻ

r
R + Γr

ˆ

ΦΦ(ŻΦ
R)2. (13)

Taking value of R is very large then, ZR := r(Φ) = R = const. As a result, the structure of the following equation
Eq. (13) changes to (ŻΦ

R)2 = 1
f2(r̂) . Remembering Γr̂φφ = r(rf ′(r̂)−2f(r̂)

2 , we obtain

(∇ŻrRŻ
r
R)r → 1

R
. (14)

As a result, the term geodesic curvature which is not affected by the relevant topological defects. So, k̂(ZR)→ R−1.
Using the relevant optical metric given by Eq. (6), which could be written as dt = Rd
Phi. So, we conclude that;

k̂(ZR)dt = dΦ. (15)

Taking all of the above results added together, we achieve [11]∫ ∫
ZR
Kds+

∮
∂ZR

ḱdt =R→∞
∫ ∫

T∞

KdS +

∫ π+ϕ̀

0

dϕ. (16)

At 0th order, the photon beam in the context of weak deflection limits is given it as r(t) = b/ sin Φ. Thus by utilize
Eq. (2.13) and the Eq. (17), the formula of deflection angle is written as [11];

ϕ̀ = −
∫ π

0

∫ ∞
b/ sinϕ

K
√
detg∗dr̂dΦ, (17)

where √
detg∗ = r + 3M +

3ω̃2

2r3
+

3ω̃2ψM

r4
− 3Mω̃

r2
. (18)

At the end, by using the main order values of the relevant Gaussian curvature of Eq. (2.13) in the Eq. (17), the
resulting value of the deflection angle is defined as:

ϕ̀ ≈
4M

b
− 16Mω̃

3b3
+O(M2, ω̃2, ψ, r6) (19)

IV. GRAPHICAL ANALYSIS FOR NON-PLASMA MEDIUM

This present section devoted to inspect resulted deflection angle by graphically. We also talk about the physically
significant of these graphs. Further, we observe the effect of fixed parameter ω̃ and also about impact parameter (b)
on the deflection angle.
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A. Correspondence between the deflection angle ϕ̀ and b (impact parameter)
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Picture 1: Coordination between ϕ̀ and (impact parameter).

• Picture 1 To express the activity of the deflection angle with the value of impact parameter by taking M fixed
and alternating the value of parameter ω.

1. In left fig (i), we discovered deflection angle steadily increasing first to keep the lower values of ω.
2. In right fig (ii), we watched the value of deflection angle is successively decline to keep the values of ω

large.

B. Deflection angle ϕ̀ with parameter ω
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Picture 2: Correspondence between ϕ̀ and ω.

• Picture 2: Here manifests the behavior of ϕ̀ regarding with ω to take M fixed and changing value of b.

1. In the fig(i), we sees that the deflection angle geometrically decrease first by carrying high values of (im-
pact parameter) b further deflection angle instantly increase when the values between 0.1 < b < 0.5.

V. WEAK LENSING BY IMPROVED SCHWARZSCHILD BLACK HOLE IN CASE OF PLASMA MEDIUM

To this section, we investigate weak gravitational lensing from improved Schwarzschild (BH) in plasma medium.
The value of the refractive index n [14] for improved Schwarzschild (BH) is written by,

n2 (r, ω(r)) = 1− ω2
e(r)

ω2
∞(r)

. (20)
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where ωe denote the frequency of electron plasma and ω∞ denote the frequency of photon which is measured by an
observer at∞. The value of the (refractive index) to this present situation is illustrated as,

˙n(r) =

√
1− ω2

e

ω2
∞

(
1− ω̃2

r4
− 2ω̃2ψM

r5
− 2M

r
+

2Mω̃

r3

)
. (21)

The value of corresponding metric function is illustrated as,

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

2 (22)

and

f(r) = 1− ω̃2

r4
− 2ω̃2ψM

r5
− 2M

r
+

2Mω̃

r3
.

By assuming that the source and the spectators both of them are on the equatorial plane, null photon direction
on an identical surface, so (θ̇ = π

2 ). In case of null geodesic, we assume that ds2=0 and as a result we obtain the
corresponding optical metric given as below [14],

dt2 = goptpq dx
pdxq = n2

[
dr2

f2(r)
+
r2dϑ2

f(r)

]
, (23)

with determinant goptpq ,√
gopt = r(1− ω2

e

ω2
∞

) +
ω̃2

2r3
(3− ω2

e

ω2
∞

) +
ω̃2Mψ

r4
(3− ω2

e

ω2
∞

) +M(3− ω2
e

ω2
∞

)− Mω̃

r2
(3− ω2

e

ω2
∞

).

Taking into count Eq. (23), the christofell symbols of non-zero values are demonstrated as,

Γ0
00 = (1 +

ω2
ef(r)

ω2
∞

)

[
−f(r)′f(r)−1(1− ω2

ef(r)

ω2
∞

)− f(r)′ω2
e

2ω2
∞

]
,

Γ1
10 = (1 +

ω2
ef(r)

ω2
∞

)

[
r−1(1− ω2

ef(r)

ω2
∞
− f(r)′f(r)−1

2
(1− ω2

ef(r)

ω2
∞

)− f(r)′ω2
e

2ω2
∞

]
and

Γ0
11 = (1 +

f(r)ω2
e

ω2
∞

)

[
−rf(r)(1− f(r)ω2

e

ω2
∞

) +
r2f(r)′

2
(1− f(r)ω2

e

ω2
∞

) +
r2f(r)

2

f(r)′ω2
e

ω2
∞

]
.

Hence, by using the non-zero christofell symbols values given above, then corresponding value of Gaussian optical
curvature in the context of curvature tensor is written as,

K =
Rrϑrϑ(gopt)

det(gopt)
, (24)

To utilize Eq.(24) following Gaussian curvature is determined as,

K ≈ −2M

r3
+

12Mω̃

r5
− 3Mω2

e

r3ω2
∞

+
21Mω̃ω2

e

r5ω2
∞

+O(M2, ω̃2, ψ, r6). (25)

We derive the corresponding deflection angle with help of the GBT which related to non-plasma. In this way, we can
also find the value of deflection angle in weak fields zone, such as photon rays obeys a straight line approximation
so we confined r = b

sinϕ to (0th) order.

ϕ́ = − lim
Ṙ→0

∫ π

0

∫ Ṙ

b
sinϑ

KdS (26)

Taking into count of Eq. (16), value of the photon,s deflection angle in framework of plasma is calculated as;

ϕ́ ≈
4M

b
− 16Mω̃

3b3
+

2Mω2
e

bω2
∞
− 4Mω̃ω2

e

b3ω2
∞

+O(M2, ω̃2, ψ).
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VI. GRAPHICAL REPRESENTATION FOR PLASMA MEDIUM

To this part, now we are going to check the deflection angle influences on graphically in context of plasma medium.
Also inspect the physical impression of these graphs to visualize the behavior of the plasma surroundings. So, choose
M=1 and the value of ωe

ω∞
=10−1 and alternate value of b (impact parameter), also fixed parameter to achieving such

graphics.

A. Correspondence of the deflection angle ϕ́ with (impact parameter) b
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Picture 5: Relationship between ϕ́ and (impact parameter).

• Picture 4 To demonstrate influence of the ϕ́ with regards to parameter b being fixed M and varying ω.

1. Picture (i), we viewed the deflection angle steadily increasing for letting smaller values ω and move to-
wards +ve side.

2. Picture (ii), we determined deflection angle decreasing gradually for large values of ω.

B. Deflection angle ϕ́ with resect to parameter ω

b=0.1

b=0.5

b=1

b=5

b=10

0 2 4 6 8 10 12 14

-80000

-60000

-40000

-20000

0
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(i)

Picture 6: Relationship between ϕ́ and ω.

• Picture 6 Presents influence of the deflection angle with comparison to parameter ω for being fixed value of M
and changing the input values of impact parameter.

1. Picture (i); we analyzed that the value of deflection angle firstly decrease keeping the small to large values
of b and then moves toward positive side.
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VII. GREYBODY FACTOR FOR IMPROVED SCHWARZSCHILD BLACK HOLE

The Schwarzschild metric in 4-dimension is given as [85];

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2), (27)

where,

f(r) = 1− ω̃2

r4
− 2ω̃2ψM

r5
− 2M

r
+

2Mω̃

r3
(28)

For event horizon, we take ψ = 0 and obtain the following;

rh = M ±
√
M2 − ω̃, ±

√
ω̃ (29)

The Schrodinger-like equation is illustrated as;

(
d2

dr2
∗

+ ω2 − V̌ (r)

)
φ(r) = 0 (30)

where, r2
∗ indicate the ”tortoise coordinate”.

dr2
∗ =

1

f(r)
dr (31)

and, potential V̌ (r) is given by

V̌ (r) =
f(r)f ′(r)

r
+ l(l + 1)

f(r)

r2
(32)

To compute the lower bound base upon transmission probability with h = ω is [77];

T ≥ 1

cosh2

(
1

2ω

∫ ∞
−∞

V̌ (r)dr2
∗

)
=

1

cosh2

[
1

2ω

∫ ∞
rh

(
f ′(r)

r
+
l(l + 1)

r2

)
dr

]
=

1

cosh2

[
1

2ω

(
M

r2
h

− 3Mω̃2

2r4
h

+
4ω̃2

5r5
h

+
l(l + 1)

rh

)]

substituting the rh value in above expression, we get the bound as;

T ≥ 1

cosh2

[
1

2ω

(
M

(M +
√
M2 − ω̃)2

− 3Mω̃

2(M +
√
M2 − ω̃)4

+
4ω̃2

5(M +
√
M2 − ω̃)4

+
l(l + 1)

(M +
√
M2 − ω̃)

)]
Hence, we have computed the lower bound for 4-dimensional improved Schwarzschild BH. If the BHs contain no
electric charge or magnetic charge and take ω̃ = 0, then given above bound is reduced into the form;

T ≥ 1

cosh2

[
2`(`+ 1)

8ωGM

]
(33)

which shows the exactly same bound value for 4D Schwarzschild (BH), emitting the spinless particles [77].
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VIII. GRAPHICAL INFLUENCES OF GREYBODY FACTOR

In this section, we inspect the graphical importance of greybody factor of lower bound for improved
Schwarzschild BH along with potential by assuming (G = M = 1) and alternating values of parameter ω̃ while
angular momentum (` = 0, 1, 2) respectively. For graph purpose we set ω̃ = α.
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Figure 7: The left plot demonstrates the potential for improved Schwarzschild (BH) and the right plot shows the
respective greybody factor of lower bound.

Here, we can observe how the influence of T relates to the potential shape. This may achieve by alternating the free
parameter ψ values and the angular momentum ` parameter as well. By assuming M and G equal to 1, the potential
reaches at the higher peaks when ψ changes which is shown in the left plot of Fig.7. The greybody factor gets the
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lower position for the provided value of ω although the wave face difficulty to transmit across the higher potential
which shown in the right plot of Fig.7.

IX. SUMMARY

In the recent doings, we briefly inspected the deflection angle for the improved Schwarzschild BH . In order to do
so, we consider about the most valuable tools Gauss-Bonnet theorem designed by GW, we merely investigated the
term deflection angle for the improved Schwarzschild BH. Taking the help of GBT, we find out the result for deflec-
tion angle of photon,s with the comprising of a domain region outward of b (impact parameter), which represents
the gravitational lensing having a worldwide effect and has a strong equipment which probe on the prime of the
singularities of BH. As a result of our examination, we determine the value of deflection angle of the photons for
thee improved Schwarzschild BH in weak fields limits by applying the procedure of Gauss-Bonnet theorem. As a
result, the required value of deflection angle is described as

ϕ̀ ≈
4M

b
− 16Mω̃

3b3
+O(M2, ω̃2, ψ, r6) (34)

By letting ω̃ = 0 given of the above equation then our calculated value of deflection angle turned in the basic
Schwarzschild deflection angle up to first order. Also examined the graphically significance of the deflection angle
to improved Schwarzschild BH . Similarly, we derived deflection angle of photon,s ray for improved Schwarzschild
BH in the availability of plasma medium. The expression for the value of deflection angle of photon,s ray to the
influence of plasma is written as;

ϕ́ ≈
4M

b
− 16Mω̃

3b3
+

2Mω2
e

bω2
∞
− 4Mω̃ω2

e

b3ω2
∞

+O(M2, ω̃2, ψ).

In order to remove the factor of plasma impact ( ωeω∞
→ 0), this equation is changed into above equation.

Further, we discuss about different graphs of the values of deflection angle to the background of plasma and then
compare these graphs with vacuum’s graphs. Also, we examined the greybody factor of improved Schwarzschild
(BH) by utilizing the rigorous bound. In this way, we properly study the improved Schwarzschild BH. Initially, we
derive the horizon value and afterwards the Schrödinger-like equation is calculated for the radial part of the solution.
Consequently, this permit us to examine the behavior of potential for determining the greybody factor. We obtained
that the potential height down when lower the parameter α values. Moreover, the rigorous bound which is based
upon the greybody factor have computed. So, we examine qualitatively, greybody factor lower bound by taking into
account of the following potential frame; At the higher value of potential, the wave has faced the difficulty in order
to transmit which produce the lower greybody factor bound.
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[16] K. de Leon and I. Vega, Phys. Rev. D 99, no.12, 124007 (2019).
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[21] A. Övgün, G. Gyulchev and K. Jusufi, Ann. Phys. 406, 152-172 (2019).
[22] K. Jusufi, I. Sakalli, and A.Ovgun, Phys. Rev.D 96 (2), 024040 (2017).
[23] H. Arakida, Gen. Relativ. Gravit.50(5), 48 (2018).
[24] T. Ono, A. Ishihara, and H. Asada, Phys. Rev. D 98(4), 044047 (2018).
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[57] W. Javed, M. B. Khadim, A. Övgün and J. Abbas, Eur. Phys. J. Plus 135, no.3, 314 (2020).
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[59] W. Javed, A. Hamza and A. Övgün, Mod. Phys. Lett. A 35, 2050322 (2020).
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