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1. Introduction

A standard result of quantum field theory is the existence of divergences when
computing observables. This requires the construction of techniques, called regu-
larization and renormalization schemes, to overcome these infinities and produce
well defined physical observables. A standard example is the computation of vac-
uum polarization effects in perturbative Quantum Electrodynamics (QED) which
results in the well-known Lamb Shift an the anomalous magnetic momentum of the
electron. As a byproduct of these methods, an arbitrary mass scale parameter pu
present in the calculations implies a dependence under this scale of the different
coupling constants of the theory.! Instead of becoming an obstacle it offers a very
useful tool, the renormalization group equation,? to understand the behaviour of
the theories at some particular ranges, without knowing the exact details of the
theory. The relevant magnitudes that encode the information of this equation are
the beta functions, o = uddolf, where Op is any possible renormalized coupling
constant of the theory.

At the level of quantum field theory in curved spacetime, similar divergences
arise. These appear even when computing observables in the vacuum state since the
standard method of regularizing the vacuum divergences in Minkowski, known as
normal ordering, is not available anymore since it strictly depends on the definition
of the vacuum state, which is not unique in this context. Nevertheless, many regular-
ization methods, including Dimensional Regularization and Pauli-Villars have been
inherit from the Minkowski spacetime case, and have obtained finite renormalized
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quantities, e.g. the Feynman propagator G(x,z’) and the expectation value of the
stress energy tensor T,; for scalar, Dirac or gauge fields in curved spacetime.?
Most methods rely on the convenient expression of the propagator in terms of

an integral in the DeWitt-Schwinger proper time

AV2(x 2! [° ds 2, o) .
G(J?,.’E/) = (47’()2 /0 (,L‘S)Ze D F(J?,J?/,ZS) . (1)

The advantage of expression (1) is that it admits an expansion

(x,2,is) Za] (2)
7=0

Note that the effective action and consequently the stress-energy tensor can be
derived from G(z,z’) in the limit ' — x where this expression becomes divergent.
In the case of four dimensions d = 4, the divergences are encoded and isolated in
the first two terms of the expansion (the first three terms in case of the effective
action). There are several ways to regulate expression (1). For instance, it can be
analytically extended to higher dimension d > 4, via dimensional regularization
or it can be expanded in terms of point splitting parameter o. The infinities are
recovered in the case of d — 4 and o — 0 respectively. It can be shown? that all
the divergent pieces of the one loop corrections of a free field can be consistently
reabsorbed in the original action

1
G = /d4x\/—g (—A + ﬂR + ;0% + ayR? + a3 E + a4DR> , (3)

where k = 87 (. It is in principle possible to use the DeWitt-Schwinger decomposi-
tion (1) to compute the exact one-loop contribution.?® In this case, as a byproduct
of the DeWitt-Schwinger decomposition we can construct a natural subtraction
scheme without invoking any artificial regulator

1

Gren(z,2) = lim G(z,2") — (471r)2 Zaj(sc) /OOO (is)ci‘;_j)eim% _ (4)

' —x .
Jj=0

We can also construct subtraction schemes from dimensional regularization or point
splitting. In any case the different regularization and subtraction schemes differ in
terms that can always be reabsorbed in the action (3).*

Note that the subtracted contribution of (4) needs to include an small imaginary
m? — ie to avoid an infrared singularity. In the mass-less case this is an obstacle
since the infrared divergence is present in the limit s — 0.* In order to overcome
this problem we can insert an artificial parameter y? as a mass-scale instead of m?
in (4) and then take the limit x> — 0. This has been done for instance to obtain
the conformal anomaly.? However, another interesting approach is to maintain in
all the potential calculations p? different to zero and to modify consistently the
coefficients a;(x) of (4) in order to ensure that no extra divergences appear in the
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case of p? # 0. In the most general case, without assuming m? = 0, the extended
DeWitt-Schwinger subtraction scheme would be®

1 o0
— - 2 2
Grenl,2) = lim Gz, ") — (47102 jzoaj(x) /O (is)‘ij_j)e—z(m s (5)
Here the the new coefficients are ag = 1, a1 = a1 + u2 and as = aluz + %;ﬁ a The
introduction of this extra parameter is required for the massless limit. However,
it also offers a possible running coupling interpretation analogue to the Minimal
subtraction scheme in dimensional regularization. We will analyze this in the next
section.

An important property of the regularization and renormalization program is that
it should not spoil the decoupling of heavy massive fields in the low energy limit.
For instance, we should not have to compute the vacuum polarization of the quark
top mass when performing a low energy (below the top mass) scattering process in
QED. The decoupling of heavy field in renormalizable theories has been well stated
by the Appelquist-Carazzone theorem.® In the case of QED, Minimal Subtraction
is not compatible with decoupling® and a different subtraction scheme has to be
taken in order to have a physical interpretation of the u parameter at low energy
regime. A possible scheme is known as Momentum subtraction scheme,® which not
only decouples the heavy fields, i.e., Bo — 0 when m? — oo but also recovers the
Minimal Subtraction beta functions in the limit of u? — co or m? — 0.

In the case of quantum fields in curved spacetime an analog to the Momentum
subtraction scheme has been elusive. A notable result of the subtraction scheme of
(5) is that it is consistent with the decoupling of heavy massive fields,® as we will
show in the next section.

2. Running of the couplings and decoupling of massive fields

In order to compute the running of the couplings with the parameter p it is useful
to use the extended DeWitt-Schwinger subtraction scheme for the effective action,
which can be constructed in a similar manner to (5).7 It is also useful for pedagogical
purposes to consider a complex scalar field interacting with an electromagnetic field
obeying the Klein-Gordon equation

(g“”Dﬁfo +m® +¢R) G(z,2') = —lg(x)| 7Y%z — ), (6)

where D, = V,, + iqA,. In this case, the extended DeWitt-Schwinger subtraction
scheme takes the form”

2

Wl =w - 2 [ S ) [ i) ()
ren 2(47‘(’)2 g J 0 :

P (is) =)

2Note here that in terms of adiabatic order, the u? in the exponential of (5) is of adiabatic
order zero while the p? of the coefficients are of adiabatic order two. This is equivalent to the
methodology taken in? for Parker-Fulling adiabatic regularization.
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where W) is the divergent one-loop effective action constructed from (1) and the
coefficients are

ao(z) =1, ai(z) = (é g) R+ p?

) 1 . 1 1/1
82(x) = g Raps B — 15 R Rag — (5 - 5) o

1 1\> , ¢ 1 1
— | &—= — —F,,F" - — 2yt
The subtraction terms of (7) can be absorbed into the original action
1 - = _ -
=S+ [ doyg (-1 ZaFu P 4 (D,0) D -+ o+ SRIOP) (0)

with Du =V, + z'qu‘mflu, where we have re-scaled the potential to introduce an
extra coupling constant Z4. The complete effective action would be

SO =W (m,&,qZ5?) + S°(m, €,q, Za, A, 5, ), (10)

ren

where we have made visible the explicit dependence of the bare couplings and fields.
The complete action in terms of the physical renormalized couplings Op is

S =Wl (mg, &r, QRZ}{/Q) + Sten(Zr, AR, KR, 4iR) (11)

where S¢,, is the original S°¢ upgrading the bare divergent coupling constants to
the corresponding renormalized finite ones.In the particular case of a free complex
scalar field, it is not difficult to see that expression (7) does not involve any divergent
piece that need to be reabsorbed neither in m?, nor & and the combination ¢Z/2
and therefore we can already write
E=¢rn m=mp qZy’ =arZin. (12)

This is of course not a general result and indeed this couplings constants could be
divergent in theories including other interactions.!® We will from now on drop the
subscript g from these terms.

In order to compute the beta functions So = p=7 % we will impose the invariance
of the renormalized action with respect to the arbltrary parameter p

dOR

ot s =0, (13

From (7), it is easy to check

1

d Wr(cln - /d4mrm (2,[1,2(12(25) — 2u4a1(x) — [L6) . (]_4)
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Using (12), (13) and (14), we finally obtain the following beta functions

2
Bol = —siimy—t > B _ (8 w2
al 96072 m2+pu2 a2 1672 m2+4p?
1 4 3 2
_ 1 1% _&-5 )2 _ _49Rr )2
BA T 1672 m2+pu? ﬂ571 T 4Am2 m24pu? 6‘1 T 4872 m2+pu2 (15)

It can be easily checked that the running of dimensionless coupling constants coin-
cides with the Minimal Subtraction beta functions,'! but with the advantage that
the structure m2“7j#2u similar to the cutoff Wilsonian scheme!? makes a vanishing
contribution when m? — oo thus making this renormalization scheme compatible
with decoupling of heavy massive fields. The remarkable result is that also the run-
ning of both the Newton constant and the cosmological constant also decouple in
this limit, thus enforcing the fact that higher massive fields do not contribute to
the low energy regime, even when the gravitational field is present.
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