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1. Introduction

A standard result of quantum field theory is the existence of divergences when

computing observables. This requires the construction of techniques, called regu-

larization and renormalization schemes, to overcome these infinities and produce

well defined physical observables. A standard example is the computation of vac-

uum polarization effects in perturbative Quantum Electrodynamics (QED) which

results in the well-known Lamb Shift an the anomalous magnetic momentum of the

electron. As a byproduct of these methods, an arbitrary mass scale parameter µ

present in the calculations implies a dependence under this scale of the different

coupling constants of the theory.1 Instead of becoming an obstacle it offers a very

useful tool, the renormalization group equation,1,2 to understand the behaviour of

the theories at some particular ranges, without knowing the exact details of the

theory. The relevant magnitudes that encode the information of this equation are

the beta functions, βO = µdOR

dµ , where OR is any possible renormalized coupling

constant of the theory.

At the level of quantum field theory in curved spacetime, similar divergences

arise. These appear even when computing observables in the vacuum state since the

standard method of regularizing the vacuum divergences in Minkowski, known as

normal ordering, is not available anymore since it strictly depends on the definition

of the vacuum state, which is not unique in this context. Nevertheless, many regular-

ization methods, including Dimensional Regularization and Pauli-Villars have been

inherit from the Minkowski spacetime case, and have obtained finite renormalized

∗Talk given by A. Ferreiro at the Sixteenth Marcel Grossmann Meeting (2021).
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quantities, e.g. the Feynman propagator G(x, x′) and the expectation value of the

stress energy tensor Tab for scalar, Dirac or gauge fields in curved spacetime.3–5

Most methods rely on the convenient expression of the propagator in terms of

an integral in the DeWitt-Schwinger proper time

G(x, x′) =
∆1/2(x, x′)

(4π)2

∫ ∞

0

ds

(is)2
e−im2s+

σ(x,x′)
2is F (x, x′, is) . (1)

The advantage of expression (1) is that it admits an expansion

F (x, x′, is) =

∞∑
j=0

aj(x, x
′)(is)j . (2)

Note that the effective action and consequently the stress-energy tensor can be

derived from G(x, x′) in the limit x′ → x where this expression becomes divergent.

In the case of four dimensions d = 4, the divergences are encoded and isolated in

the first two terms of the expansion (the first three terms in case of the effective

action). There are several ways to regulate expression (1). For instance, it can be

analytically extended to higher dimension d > 4, via dimensional regularization

or it can be expanded in terms of point splitting parameter σ. The infinities are

recovered in the case of d → 4 and σ → 0 respectively. It can be shown3 that all

the divergent pieces of the one loop corrections of a free field can be consistently

reabsorbed in the original action

SG =

∫
d4x

√
−g

(
−Λ +

1

2κ
R+ α1C

2 + α2R
2 + α3E + α42R

)
, (3)

where κ = 8πG. It is in principle possible to use the DeWitt-Schwinger decomposi-

tion (1) to compute the exact one-loop contribution.3,5 In this case, as a byproduct

of the DeWitt-Schwinger decomposition we can construct a natural subtraction

scheme without invoking any artificial regulator

Gren(x, x) = lim
x′→x

G(x, x′)− 1

(4π)2

1∑
j=0

aj(x)

∫ ∞

0

ds

(is)(2−j)
e−im2s . (4)

We can also construct subtraction schemes from dimensional regularization or point

splitting. In any case the different regularization and subtraction schemes differ in

terms that can always be reabsorbed in the action (3).4

Note that the subtracted contribution of (4) needs to include an small imaginary

m2 − iϵ to avoid an infrared singularity. In the mass-less case this is an obstacle

since the infrared divergence is present in the limit s → 0.4 In order to overcome

this problem we can insert an artificial parameter µ2 as a mass-scale instead of m2

in (4) and then take the limit µ2 → 0. This has been done for instance to obtain

the conformal anomaly.3 However, another interesting approach is to maintain in

all the potential calculations µ2 different to zero and to modify consistently the

coefficients aj(x) of (4) in order to ensure that no extra divergences appear in the
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case of µ2 ̸= 0. In the most general case, without assuming m2 = 0, the extended

DeWitt-Schwinger subtraction scheme would be6

Ḡren(x, x) = lim
x′→x

G(x, x′)− 1

(4π)2

1∑
j=0

āj(x)

∫ ∞

0

ds

(is)(2−j)
e−i(m2+µ2)s . (5)

Here the the new coefficients are ā0 = 1, ā1 = a1 + µ2 and ā2 = a1µ
2 + 1

2µ
4 a. The

introduction of this extra parameter is required for the massless limit. However,

it also offers a possible running coupling interpretation analogue to the Minimal

subtraction scheme in dimensional regularization. We will analyze this in the next

section.

An important property of the regularization and renormalization program is that

it should not spoil the decoupling of heavy massive fields in the low energy limit.

For instance, we should not have to compute the vacuum polarization of the quark

top mass when performing a low energy (below the top mass) scattering process in

QED. The decoupling of heavy field in renormalizable theories has been well stated

by the Appelquist-Carazzone theorem.8 In the case of QED, Minimal Subtraction

is not compatible with decoupling9 and a different subtraction scheme has to be

taken in order to have a physical interpretation of the µ parameter at low energy

regime. A possible scheme is known as Momentum subtraction scheme,9 which not

only decouples the heavy fields, i.e., βO → 0 when m2 → ∞ but also recovers the

Minimal Subtraction beta functions in the limit of µ2 → ∞ or m2 → 0.

In the case of quantum fields in curved spacetime an analog to the Momentum

subtraction scheme has been elusive. A notable result of the subtraction scheme of

(5) is that it is consistent with the decoupling of heavy massive fields,6 as we will

show in the next section.

2. Running of the couplings and decoupling of massive fields

In order to compute the running of the couplings with the parameter µ it is useful

to use the extended DeWitt-Schwinger subtraction scheme for the effective action,

which can be constructed in a similar manner to (5).7 It is also useful for pedagogical

purposes to consider a complex scalar field interacting with an electromagnetic field

obeying the Klein-Gordon equation(
gµνDx

µD
x
ν +m2 + ξR

)
G(x, x′) = −|g(x)|−1/2δ(x′ − x), (6)

where Dµ = ∇µ + iqAµ. In this case, the extended DeWitt-Schwinger subtraction

scheme takes the form7

W (1)
ren = W (1) − 2i

2(4π)2

∫
d4x

√
−g

2∑
j=0

āj(x)

∫ ∞

0

ds

(is)(3−j)
e−i(m2+µ2)s (7)

aNote here that in terms of adiabatic order, the µ2 in the exponential of (5) is of adiabatic

order zero while the µ2 of the coefficients are of adiabatic order two. This is equivalent to the

methodology taken in7 for Parker-Fulling adiabatic regularization.
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where W (1) is the divergent one-loop effective action constructed from (1) and the

coefficients are

ā0(x) = 1 , ā1(x) =

(
1

6
− ξ

)
R+ µ2

ā2(x) =
1

180
RαβγδR

αβγδ − 1

180
RαβRαβ − 1

6

(
1

5
− ξ

)
2R

+
1

12

(
ξ − 1

6

)2

R2 − q2

12
FµνF

µν +

(
1

6
− ξ

)
Rµ2 +

1

2
µ4 . (8)

The subtraction terms of (7) can be absorbed into the original action

Sc = SG +

∫
d4x

√
−g

(
−1

4
ZAF̃µν F̃

µν + (D̃µϕ)
†D̃µϕ+m2|ϕ|2 + ξR|ϕ|2

)
(9)

with D̃µ = ∇µ + iqZ
1/2
A Ãµ, where we have re-scaled the potential to introduce an

extra coupling constant ZA. The complete effective action would be

S(1)
ren = W (1)(m, ξ, qZ

1/2
A ) + Sc(m, ξ, q, ZA,Λ, κ, αi), (10)

where we have made visible the explicit dependence of the bare couplings and fields.

The complete action in terms of the physical renormalized couplings OR is

S(1)
ren = W (1)

ren(mR, ξR, qRZ
1/2
R ) + Sc

ren(ZR,ΛR, κR, αiR) (11)

where Sc
ren is the original Sc upgrading the bare divergent coupling constants to

the corresponding renormalized finite ones.In the particular case of a free complex

scalar field, it is not difficult to see that expression (7) does not involve any divergent

piece that need to be reabsorbed neither in m2, nor ξ and the combination qZ1/2

and therefore we can already write

ξ = ξR m = mR qZ
1/2
A = qRZ

1/2
AR . (12)

This is of course not a general result and indeed this couplings constants could be

divergent in theories including other interactions.10 We will from now on drop the

subscript R from these terms.

In order to compute the beta functions βO = µdOR

dµ we will impose the invariance

of the renormalized action with respect to the arbitrary parameter µ

µ
d

dµ
S(1)
ren = 0. (13)

From (7), it is easy to check

µ
d

dµ
W (1)

ren =

∫
d4x

√
−g

1

16π2(m2 + µ2)

(
2µ2a2(x)− 2µ4a1(x)− µ6

)
. (14)
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Using (12), (13) and (14), we finally obtain the following beta functions

βα1 = − 1
960π2

µ2

m2+µ2 βα2 = − (ξ− 1
6 )

2

16π2
µ2

m2+µ2

βΛ = 1
16π2

µ6

m2+µ2 βκ−1 =
ξ− 1

6

4π2
µ4

m2+µ2 βq =
q3R

48π2
µ2

m2+µ2 . (15)

It can be easily checked that the running of dimensionless coupling constants coin-

cides with the Minimal Subtraction beta functions,11 but with the advantage that

the structure µ2

m2+µ2 , similar to the cutoff Wilsonian scheme12 makes a vanishing

contribution when m2 → ∞ thus making this renormalization scheme compatible

with decoupling of heavy massive fields. The remarkable result is that also the run-

ning of both the Newton constant and the cosmological constant also decouple in

this limit, thus enforcing the fact that higher massive fields do not contribute to

the low energy regime, even when the gravitational field is present.
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