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UV-Vervollstandigung des Standardmodells:
Von Baryogenese zu asymptotischer Sicherheit

In dieser Dissertation untersuchen wir Aspekte der UV-Vervollstandigung des Standard-
modells der Teilchenphysik. Wir konzentrieren uns auf zwei Beispiele, die unausweichlich
neue Freiheitsgrade benotigen: Baryonenasymmetrie und Quantengravitation.

Baryogenese kann am elektroschwachen Phaseniibergang stattfinden, falls neue Physik
den Phaseniibergang zu einem der ersten Ordnung macht. Wir betrachten allgemeine
Klassen von Physik jenseits des Standardmodells und zeigen, dass diese zu einer stark
erhohten Higgs-Selbstkopplung fiithren, wenn wir elektroschwache Baryogenese fordern.
Die Higgs-Selbstkopplung wird beim Lauf des LHC mit erh6hter Luminositéit genau genug
gemessen werden.

Die Quantengravitation wird mit dem asymptotisch sicheren Szenario untersucht, wel-
ches die Existenz eines UV Fixpunkts des Renormierungsgruppenflusses mutmaft. Dieser
wiirde eine nichtperturbative Renormierung der Quantengravitation erlauben. Wir ent-
wickeln den Zugang hin zu quantitativer Prézision durch die systematische Berechnung der
Fliisse der hoheren Korrelationsfunktionen. Wir beginnen von einem minimalen Setup, das
eine echte, dynamische Newton-Kopplung beinhaltet. Das ist das Setup mit der Graviton-
Zwei- und Dreipunktfunktion. In einer ersten Erweiterung nehmen wir die Graviton-
Vierpunktfunktion hinzu, was die Untersuchung von Konvergenzeigenschaften und von
der Wiederherstellung von Diffeomorphismussymmetrie im IR erlaubt. In einer zweiten
Erweiterung werten wir die Korrelationsfunktionen auf einem konstant gekriimmten Hin-
tergrund aus. Davon ausgehend stellen wir die Bewegungsgleichungen auf und finden eine
Losung bei negativer Hintergrundkriimmung. Insgesamt liefern diese Resultate weitere
signifikante Hinweise fiir die Existenz des UV Fixpunkts.

Diesem Setup der Quantengravitation fligen wir den Materieinhalt des Standardmo-
dells hinzu. Wir beginnen mit minimal gekoppelten Skalaren und Fermionen und koppeln
anschliefend auch Yang-Mills-Theorie zur Quantengravitation. Wir legen ein formales
Argument vor, das aussagt, dass solche Systeme mit asymptotischer Sicherheit vereinbar
sein miissen, unabhangig von der Anzahl der Eich- oder Materiefelder. Weiterhin zeigen
wir eine effektive Universalitdt zwischen verschiedenen Avataren der Newton-Kopplung,
was bedeutet, dass ihre Fliisse im Skalierungsbereich des UV Fixpunktes quantitativ
iibereinstimmen. Diese Ergebnisse sind die Grundlage fiir zukiinftige Untersuchungen
des Standardmodells vollstandig gekoppelt mit Quantengravitation.



Towards a UV-complete Standard Model:
From baryogenesis to asymptotic safety

In this dissertation we investigate aspects of the UV completion of the Standard Model of
particle physics. We focus on two examples that inevitably require new degrees of freedom:
baryon asymmetry and quantum gravity.

Baryogenesis can occur at the electroweak phase transition if new physics triggers the
phase transition to be of strong first order. We consider generic classes of beyond the
Standard Model physics and show that all of them give rise to a strongly enhanced Higgs
self-coupling if we demand electroweak baryogenesis. The Higgs self-coupling will be mea-
sured precisely enough in the high-luminosity run of the LHC.

Quantum gravity is investigated with the asymptotic safety approach, which conjectures
the existence of a UV fixed point of the renormalisation group flow. The latter allows for
a non-perturbative renormalisation of quantum gravity. We develop the approach towards
quantitative precision by systematically computing flows of higher-order correlation func-
tions. We start from a minimal setup that includes a genuine Newton’s coupling, which is
the setup with the graviton two- and three-point function. In a first extension we include
the graviton four-point function, which allows to investigate convergence properties and
the restoration of diffeomorphism symmetry in the IR. In a second extension we evaluate
the correlation functions on a constantly-curved background. From this we set up the
equations of motion and find a solution at negative background curvature. Overall, these
results add further significant evidence for the existence of the UV fixed point.

We include Standard Model matter content into the quantum gravity setup. We start
with minimally coupled scalars and fermions and subsequently also couple Yang-Mills
theory to quantum gravity. We provide a formal argument that such systems must be
compatible with asymptotic safety independent of the number of gauge or matter fields.
Furthermore we show an effective universality between different avatars of Newton’s cou-
pling, which means that their flows are in quantitative agreement in the scaling region of
the UV fixed point. These results are the basis for future investigations of the Standard
Model fully coupled to quantum gravity.
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1. Introduction

The Standard Model of particle physics is a great success story for physics. It is based
on Abelian and non-Abelian gauge theories [8, 9]. The underlying gauge group is U(1) ®
SU(2) ® SU(3) [10-13]. The last missing piece was found at the Large Hadron Collider
(LHC) [14] in 2012: the discovery of the predicted Higgs boson [15-18]. The Standard
Model successfully predicts cross sections that are measured at the LHC within the error
bars. This is for instance impressively seen at the precisely measured and with theory pre-
dictions agreeing Higgs production and decay rates [19]. This demonstrates the remarkable
understanding of fundamental physics at the TeV scale, but also leaves scientists with-
out hints for new physics. Importantly, new physics is not optional since there is a rich
phenomenology that is so far not explained by the Standard Model. This phenomenol-
ogy includes for instance dark matter, dark energy, the matter-antimatter asymmetry,
neutrino masses and even gravity. We further know that the Standard Model is not a
fundamental theory: it cannot be valid on all energy scales since some of its couplings
run into a Landau pole [20]. In this dissertation we work towards the ultraviolet (UV)
completion of the Standard Model and focus on the matter-antimatter asymmetry as well
as the inclusion of quantum gravity.

This dissertation can be seen as a journey from the energy scales of the LHC where
we probe electroweak baryogenesis up to energy scales beyond the Planck scale where we
combine the Standard Model with quantum gravity. For this introduction we let us guide
by the perturbative running of the marginal Standard Model couplings to higher energy
scales [21-23], also displayed in Fig. 1.1. This point of view allows to start from the well
known physics at the LHC and to go further into the realm of potential new physics.
We gain an upper bound on the energy scale where the Standard Model is certainly not
predictive anymore.

The first topic of this dissertation, the observed matter-antimatter asymmetry in the
universe [24], is investigated at the smallest energy scales considered in this disserta-
tion, at the electroweak phase transition. Already in 1963, three necessary conditions
for baryogenesis were formulated by Sakharov [25]. The first condition is the existence
of baryon number violating processes. In the Standard Model this can happen via non-
perturbative sphaleron processes associated to the degenerate minima of the electroweak
sector [26-29]. The second condition is charge (C) and charge-parity (CP) violation. The
Cabibbo-Kobayashi-Maskawa (CKM) matrix [30, 31] contains a small CP violation, which
however appears too small to account for the observed baryon asymmetry [32]. Higher
dimensional operators can induce another source of CP violation [33, 34]. The last con-
dition is the departure from thermal equilibrium. Consequently the electroweak phase
transition seemed predestined for baryogenesis: if the electroweak phase transition is of
strong first order then all conditions are fulfilled [35]. The sphaleron processes can gener-
ate the asymmetry in the bubble walls of the expanding regions with broken electroweak
symmetry [36, 37]. Lattice and perturbative computations showed that this scenario is
very sensitive to the value of the Higgs mass [38-42]. Only with a Higgs mass well below
the measured 125 GeV the electroweak phase transition is first order and thus this simple
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Figure 1.1.: Perturbative running of the marginal Standard Model couplings at two/three-
loop order. Displayed are the gauge couplings gi1, go and g3 corresponding to
the gauge groups U (1), SU(2) and SU(3), respectively, the top quark, bottom
quark and tau lepton Yukawa couplings, vy, ¥, and y,, as well as the absolute
value of the quartic Higgs coupling |A|. Certain three-loop contributions were
artificially removed from the beta functions in order to continue the running
beyond 104 GeV. The figure is taken from [23].

scenario was soon excluded. Consequently other alternatives were explored as for example
baryogenesis via leptogenesis [43-48]. This scenario introduces new degrees of freedom,
usually heavy neutrinos that are the seesaw partners of the light neutrinos. However, there
is no measurable impact at low energy scales in most leptogenesis scenarios.

In this dissertation electroweak baryogenesis is investigated with respect to measur-
able consequences. In the Standard Model electroweak baryogenesis is not possible, but
with the appropriate beyond Standard Model physics the phase transition becomes first
order [49-51]. This can cause measurable consequences for example in the Higgs self-
couplings [52-54]. It is of great interest to map out large classes of beyond the Standard
Model physics on their measurable impact at the LHC if electroweak baryogenesis is de-
manded. This is precisely where this dissertation contributes.

We now increase the energy scales and follow the Standard Model couplings in Fig. 1.1.
Interestingly the quartic Higgs couplings A turns negative at roughly 10° GeV. While
a naive point of view associates this with an instability in the Higgs potential, a more
elaborate Coleman-Weinberg resummation [55] shows that the electroweak minimum of
the Higgs potential is only metastable [56-60]. The true vacuum of the theory lies beyond
the Planck scale and the tunnelling time to this minimum is much larger than the age of the
universe [61]. These statements are very sensitive to the precise mass of the top quark [62].
The latter is extracted from the LHC data via Monte-Carlo event generators and the
relation of this Monte-Carlo mass to the pole mass causes a significant uncertainty [63—
65]. A precise measurement of the top pole mass would be provided by an electron-positron
collider at sufficiently large energies, such as the planed International Linear Collider [66].
In such colliders the relation between experimental observables and the mass schemes
is well understood [67-69]. Thus, the electroweak minimum might be stable within the
error bars of the top pole mass. But even assuming metastability, the metastable vacuum
seems to survive all tests: for instance after inflation the Higgs field appears to settle in
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the electroweak minimum [70-73]. Due to these findings, it is widely believed that the
Standard Model can be extended up to the Planck Scale. Indeed recent approaches added
new physics at the Planck scale and investigate observable effects in the infrared (IR) [74—
76]. In this dissertation we also pursue this attitude and continue with modifications at
the Planck scale.

The Planck scale is of great importance as it is the scale where quantum gravity ef-
fects set in. The fundamental force of gravity has so far not been incorporated into the
Standard Model. The reason is the seemingly different nature of gravity compared to
the other fundamental forces. Quantum gravity based on the Einstein-Hilbert action is
perturbatively non-renormalisable: the first hint is the negative canonical mass dimen-
sion of Newton’s coupling. Actual computations of the one-loop [77] and two-loop [78-80)]
divergences reveal that at the two-loop level the infamous Goroff-Sagnotti counter term
cannot be reabsorbed into terms of the Einstein-Hilbert action. This is interpreted as the
onset of an infinite number of counter terms that necessarily need to be introduced and
hence the theory is not predictive. On the other hand, quantum gravity based on higher-
derivative gravity is either perturbatively non-unitary and perturbatively renormalisable
or still perturbatively non-renormalisable [81-83]. There are further conceptual issues, for
example that quantum field theories usually are constructed on flat spacetime, while it is
not possible to define a unique ground state on generically curved backgrounds. But of
course a generically curved background is inherently necessary for a correct description of
gravity. All these problems have led in the past to many different approaches to quantum
gravity: string theory [84-89], loop quantum gravity and spin foams [90-97], asymptotic
safety [98-101], causal and euclidean dynamical triangulations [102-106], Horava-Lifshitz
gravity [107-110], causal sets [111-113], and many more. Some of them are continuum
approaches and others are lattice approaches. All of them are facing different conceptual
and technical issues, and even worse, a lack of quantum gravity measurements. The lat-
ter asks for clear guidelines for the construction of a theory of quantum gravity. Indeed
many different guidelines can be found in the above named approaches: starting from
Occham’s razor, over the resolution of black hole or cosmological singularities [114, 115]
or the black hole information paradox [116-118], to postdictions of the Standard Model
parameters [119, 120]. Even the requirement to fully reproduce all Standard Model mea-
surements is not as trivial as it might appear. For example graviton fluctuations could
induce chiral symmetry breaking and thus enforce that all fermions have a mass of the
order of the Planck mass [121, 122].

In this dissertation we work with asymptotically safe quantum gravity. Compared to
the other approaches above it is based on a rather small set of assumptions. It is based on
non-perturbative continuum quantum field theory methods. The metric carries the fun-
damental degrees of freedom and diffeomorphism invariance is the underlying symmetry.
Importantly, asymptotic safety conjectures the existence of a non-trivial UV fixed point
of the renormalisation group flow. The idea was brought up by Weinberg in 1976 [98]
and soon investigated afterwards in d < 4 spacetime dimensions [123-125]. The first work
in d = 4 spacetime dimensions was the pioneering work of Reuter [99]. The concept of
asymptotic safety can be viewed as a generalisation of asymptotic freedom [126-130]. The
investigation of this scenario requires non-perturbative continuum computations that are
provided by functional methods. These methods are based on the renormalisation group
idea [131-134] and implemented via Dyson-Schwinger equations [135-137], the Wegner-
Houghton equation [138], n-PI approaches [139], the Polchinski equation [140], or the

13
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Wetterich equation [141]. Due to its fundamental one-loop structure and many different
systematic approximation schemes the Wetterich equation in particular is predestined for
computations in asymptotically safe quantum gravity. In fact almost all computations up
today utilise this equation, also called the functional renormalisation group. Asymptoti-
cally safe quantum gravity must in the end account for non-perturbative renormalisability,
predictivity and unitarity. Non-perturbative renormalisability corresponds precisely to the
existence of the conjectured UV fixed point and predictivity to a finite number of relevant
directions at this fixed point. The question of non-perturbative unitarity has to be clarified
most likely on the level of the resulting spectral functions. This dissertation contributes to
this approach by providing further evidence for the existence of the non-trivial UV fixed
point and corroborating that there is only a finite number of relevant directions. A more
detailed introduction to asymptotically safe quantum gravity can be found in Chapter 3.

If we leave quantum gravity aside, we can still increase the energy scales and follow the
perturbative running of the marginal Standard Model couplings, as depicted in Fig.1.1. At
roughly 103° GeV the quartic Higgs coupling becomes positive again, which ensures that
the electroweak vacuum is metastable. At even higher energy scales we find the certain
end of predictivity of the Standard Model: at around 10*° GeV the U(1) hypercharge
coupling g; reaches its Landau pole [20]. In Fig. 1.1 the authors artificially removed the
bottom and tau Yukawa contributions to the three-loop coefficients in order to avoid an
explicit singularity. Nonetheless the running of the couplings is certainly untrustworthy
beyond 10%° GeV. In a subsystem of the Standard Model without the U(1) hypercharge
coupling also the quartic Higgs coupling reaches a Landau pole. The existence of these
Landau poles has also been confirmed with non-perturbative methods [142-144]. If one
insists to make these theories fundamental, the trivial theory is the only solution [145].
These Landau poles have to be resolved in order to make extensions of the Standard Model
a fundamental theory. This can be accomplished for example with asymptotically safe
extensions of the Standard Model. A large number of new degrees of freedom guarantee
a perturbative non-Gaussian UV fixed point. These theories are constructed such that
they could be valid on all energy scales and are thus UV complete [146-150]. Considering
the combined quantum gravity and Standard Model theory one has to check whether
gravity removes these Landau poles and renders the UV behaviour finite. First positive
indications in this direction have been gathered [151, 152]. This dissertation contributes
to this topic by setting up a quantum gravity system with Standard Model matter content
that is orientated towards quantitative precision by computing higher-order correlation
functions. This is the basis for future investigations of the fully coupled Standard-Model-
gravity system, which can clarify the existence or absence of Landau poles in the theory.

In summary, the Standard Model definitely has a maximum range of validity. Where the
validity ends can of course only be determined by measurements. From a theoretical view
point it is however a formidable task to determine the necessary and possible extensions
in order to make the Standard Model a fundamental theory, which is valid on all energy
scales. This is the overarching goal of this dissertation. With baryogenesis and gravity
we focus on two examples that inevitably require new degrees of freedom. In case of
quantum gravity the challenge is to get quantitative control over the Standard-Model-
gravity system and thus the quantum gravity projects in this dissertation work towards
higher-order computations of asymptotically safe quantum gravity. The individual projects
are motivated in the respective chapters.

14



1. INTRODUCTION 1.1. PUBLICATIONS

1.1.

Publications

The compilation of this dissertation was solely performed by the author. The presented
results were obtained with various collaborators, which is highly appreciated by the author.
Most of the results are already published. They are available as preprint and partly as
journal published version. The publications are:

1]

Local Quantum Gravity

Nicolai Christiansen, Benjamin Knorr, Jan Meibohm, Jan M. Pawlowski, Manuel
Reichert

Published in Phys.Rev. D92 (2015) no.12, 121501

E-Print: arXiv:1506.07016 [hep-th]

Comment: Parts of Chapter 3 are based on this publication.

Asymptotic safety of gravity-matter systems

Jan Meibohm, Jan M. Pawlowski, Manuel Reichert

Published in Phys.Rev. D93 (2016) no.8, 084035

E-Print: arXiv:1510.07018 [hep-th]

Comment: Chapter 6 and App. D are based on this publication.

Towards apparent convergence in asymptotically safe quantum gravity
Tobias Denz, Jan M. Pawlowski, Manuel Reichert

E-Print: arXiv:1612.07315 [hep-th]

Comment: Chapter 4, parts of Chapter 3 and App. B are based on this publication.

One force to rule them all: asymptotic safety of gravity with matter
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1. INTRODUCTION 1.2. OUTLINE

1.2. Outline

In this dissertation Chapter 2 concerns itself with electroweak baryogenesis, while Chap-
ter 3, 4 and 5 deal with pure quantum gravity, and finally in Chapter 6, 7 and 8 quantum
gravity is coupled to Standard Model matter content. Consequently Chapter 3 and Chap-
ter 6 contain longer introductions to asymptotically safe quantum gravity and quantum
gravity with matter, respectively. The introductions in Chapter 4, 5, 7 and 8 are kept
slightly shorter. In more details, this dissertation is structured in the following way:

Chapter 2 is dedicated to electroweak baryogenesis and its measurable consequences at
the LHC. We give a detailed introduction on the topics baryogenesis, electroweak phase
transition and the measurement of Higgs self-couplings. The beyond Standard Model
physics, which triggers the first-order phase transition, is parameterised via modifications
of the Higgs potential. The focus is put on polynomial and non-polynomial modifications,
where the latter cannot be Taylor expanded around a vanishing field value. We show
that all of these modifications can lead to a first-order phase transition and the scale
where these systems become strongly coupled is of the order of 10 TeV. Most importantly,
all modifications lead to strongly enhanced Higgs self-couplings measurable at the high-
luminosity run of the LHC. This chapter focuses on phenomenology and thus does not
contain many technical details, for instance the functional renormalisation group is used
but not introduced.

In Chapter 3 we introduce asymptotically safe quantum gravity. We present the func-
tional renormalisation group and the systematic vertex expansion scheme that we use
throughout the quantum gravity part of this dissertation. There will be a focus on the
arising non-trivial Nielsen identities as well as their relation to background independence
and diffeomorphism invariance. We set up the minimal quantum gravity truncation that
contains a genuine dynamical Newton’s coupling. It includes the graviton two- and three-
point function. We show that the Wilsonian RG is well defined in such a system as the
flows of all correlation functions are momentum local. As a main result we find a UV fixed
point with two relevant directions in this truncation. In the subsequent chapters we build
upon this minimal setup.

In Chapter 4 we extend the truncation to the graviton four-point function. This is not
only a significant, technical challenging improvement of the truncation, but also allows to
disentangle contributions from R? and wa tensor structures. It turns out that the wa
tensor structures are non-trivially suppressed while the R? tensor structures are dynami-
cally generated. We find a UV fixed point in this truncation with three relevant directions
due to the overlap with R2. We will present extensive studies of the apparent convergence
properties as well as results towards the restoration of diffeomorphism symmetry in the
IR. Indeed the UV fixed point and its critical exponents become less sensitive with respect
to closure of the flow equations compared to the previous truncation.

In Chapter 5 we investigate the background curvature dependence of quantum gravity.
To that end we construct an approximate momentum space on constantly curved back-
grounds that allows to use the previously developed techniques on a flat background. We
obtain fixed point functions that depend on the background curvature and this allows
for the first time to disentangle the quantum and background equation of motion. We
argue that the quantum equation of motion is the relevant one at the UV fixed point. and
we indeed find a solution with the presented fixed point functions at negative background
curvature. We check the stability of this solution with respect to changes of the truncation.
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1. INTRODUCTION 1.2. OUTLINE

In Chapter 6 we add Ny minimally coupled scalars and Ny minimally coupled fermions
to the setup of asymptotically safe quantum gravity. We further introduce a reliability
bound on generic classes of regulators commonly used in the literature. We analyse the
UV fixed point from Chapter 3 as a function of Ny and Ny. We find that fermions are
generically stabilising the system and all Ny are compatible with asymptotic safety. For
scalars we encounter the above mentioned reliability bound at N; & 21. This prevents us
to go to large numbers of Ny and draw final conclusions. Generally we find qualitative
differences to results in the background field approximation, which cast doubts on the use
of this approximation.

In Chapter 7 we couple a SU(N.)-Yang-Mills theory to gravity. We manifest results
from the literature that the gravity contribution to Yang-Mills preserves asymptotic free-
dom in the gauge sector. This allows us to make a formal argument for all gravitationally
coupled matter-gauge-gravity systems. By first integrating out the matter or gauge fields
and then subsequently the gravity system we find that the system must remain asymp-
totically safe independent on numbers of matter or gauge fields. This argument includes
the scalar-fermion-gravity system from Chapter 6 and these results are reassessed. We
support the formal argument with explicit computations. We indeed find that the sys-
tem is compatible with asymptotic safety for all N. and we provide explicit results for
N, — oco0. The underlying physics can manifest itself in different ways depending on the
choice of regulators and we show that although we find a strong scheme dependence that
the physics remains the same.

In Chapter 8 we introduce and investigate the concept of effective universality in a scalar-
gravity system. The concept is similar to two-loop universality in gauge theories. We show
that gravity couplings originating from different vertices, in our case the three-graviton-
and the graviton-scalar-vertex, agree on a semi-quantitative level, if they are evaluated in
the scaling region of the UV fixed point. This highly non-trivial result lays the basis for
future truncations that allow the identifications of different avatars of Newton’s coupling.
We further try to devise simple truncations that contain this effective universality and are
based on heat-kernel techniques. We upgrade background couplings to level-one couplings
with the use of Nielsen identities. These level-one couplings do however not fully imitate
the running of the fluctuation system, which highlights again that at least a level-two
computation is necessary.

Finally, in Chapter 9 we give a general summary and outlook. In the subsequent ap-
pendices many technical details as well as analytic flow equations are presented.
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2. Probing electroweak baryogenesis at the
LHC

2.1. Introduction

The existence of a scalar Higgs potential is the most fundamental insight from the LHC
to date. It is based on the observation of a likely fundamental Higgs scalar in combination
with measurements of the massive electroweak bosons, fixing the infrared theory and
its model parameters after electroweak symmetry breaking to high precision. The one
remaining parameter is the Higgs self-coupling and its relation to the Higgs mass, defining
a standard benchmark measurement for current and future colliders. This in itself very
interesting measurement may also be related to more fundamental physics questions. A
prime candidate for such a question is electroweak baryogenesis, specifically the nature of
the electroweak phase transition.

For the single Higgs boson of the renormalizable Standard Model we can test the elec-
troweak phase transition through the Higgs mass. Here, electroweak baryogenesis [25,
32, 35, 153-160] requires a Higgs mass well below the observed value of 125 GeV [33, 38—
42,161, 162]. Only then will the electroweak phase transition be strongly first-order. If we
consider the Standard Model an effective field theory (EFT), a sizeable dimension-6 contri-
bution to the Higgs potential, (qﬁTqﬁ)?’ /A2, is known to circumvent this bound [52, 54, 163
173]. In principle, this scenario can be tested through a measurement of the Higgs self-
coupling at colliders [52, 54, 165-175]. The problem with this link is that the new-physics
scale required by a first-order phase transition is typically not large, A 2 v = 246 GeV. If
LHC data should indeed point to a dimension-6 Lagrangian with a low new-physics scale,
we will see this in many other channels long before we will actually measure the Higgs
self-coupling [176]. As a matter of fact, a global analysis of the effective Higgs Lagrangian
including (¢'¢)3/A? might never probe the required values of the Higgs self-coupling once
we take into account all operators and all uncertainties, so it hardly serves as a motivation
to measure a Standard Model like Higgs self-coupling.

In this dissertation we take a slightly different approach. First, we assume that the
new physics responsible for the strong first-order electroweak phase transition only ap-
pears in the Higgs sector. In the EFT framework we would consider, for example, the
operator (¢f¢)3/A? [52, 54, 165-173]. While this approach systematically includes higher-
dimensional operators in a power-counting expansion, it is not at all guaranteed that such
an expansion is appropriate for the underlying new physics. Furthermore, a description
of first-order phase transitions requires to extract global information about the effective
potential. Again, a simple polynomial expansion around a vanishing Higgs field might not
be sufficient to resolve the fluctuation-driven competition between different minima of the
effective potential that induce a first-order phase transition.

A simple global approximation to the effective potential is provided by mean-field theory,
which works remarkably well for Standard Model parameters [75, 177-183] because of the
dominance of the top quark. Depending, however, on the strength of the bosonic and



2. ELECTROWEAK BARYOGENESIS 2.1. INTRODUCTION

order-parameter fluctuations in the new physics model, mean-field approaches may become
unreliable. We demonstrate this explicitly using a simple example case. This situation
calls for non-perturbative methods. Recently, lattice simulations have been used to study
the possibility of first-order phase transition in the presence of the operator (¢!¢)3/A2,
both in a Higgs-Yukawa model [184, 185] and in a gauged-Higgs system [186]. Here we use
the functional renormalization group (FRG) [141] as a non-perturbative tool, for reviews
see, e.g. [187-190]. It is able to provide global information about the Higgs potential,
bridge a wide range of scales, include fluctuations of bosonic and fermionic matter fields
as well as gauge bosons and deal with extended classes of Higgs potentials. The two
questions which will guide us are:

1. Do extended Higgs potentials help with electroweak baryogenesis?
2. Can they be systematically tested by measuring the Higgs self-coupling?

We study the influence of operators or functions of operators in the Higgs sector on the
electroweak phase transition using several representative examples. We determine the
consequences for the Higgs self-coupling for suitable extended Higgs potentials supporting
electroweak baryogenesis and being compatible with the standard-model mass spectrum.

The global properties of the Higgs potential are also intimately related to the questions
of vacuum stability and Higgs mass bounds [21, 58, 191]. In fact, higher-dimensional
operators can also increase the stability regime of the vacuum [74, 180-182, 184, 185, 192—
199]. The example Higgs potentials studied in this dissertation suggest new-physics scales
well below a possible instability scale of 10012 GeV of the Standard Model. While
vacuum instability is therefore not an issue for our study, extended potentials generally
do have the potential to both support electroweak baryogenesis and stabilize the Higgs
vacuum. A measurement of the Higgs self-coupling can therefore be indicative for both
aspects.

2.1.1. Electroweak phase transition

The asymmetry between the matter and anti-matter contents in the Universe is one of the
great mysteries in cosmology and particle physics. Experimentally, the effective absence
of anti-matter in the Universe has been proven in many different ways [24]. A quantitative
measurement is given by the baryon-to-photon ratio ng/n, ~ 6 - 10~ 1%, which is many
orders of magnitude larger than what we would expect from the thermal history in the
presence of anti-matter. It can be explained by a small initial asymmetry in the number
of baryons and anti-baryons that leads to a finite density of baryons after essentially all
anti-baryons have annihilated away.

Theoretically, the mechanisms behind the baryon asymmetry are well understood. Most
notably, it can be shown that the presence of an asymmetry is equivalent to the three
Sakharov conditions for our fundamental theory [25, 32, 35, 154]: baryon number viola-
tion, C as well as CP violation, and departure from thermal equilibrium. The first two
conditions can be probed by precision measurements of the Lagrangian of the Standard
Model and its extensions. The third condition can in principle be achieved at the time of
the electroweak phase transition, where it then requires a strong first-order phase tran-
sition. The nature of the electroweak phase transition can be read off from the scalar
potential in or beyond the Standard Model.

The strength of the phase transition that occurs at the critical temperature T, is mea-
sured by the ratio ¢./T., where ¢. = (¢)7. is the expectation value of the Higgs at the
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2. ELECTROWEAK BARYOGENESIS 2.1. INTRODUCTION

critical temperature. The critical temperature describes the transition where for small
temperatures T < T, the potential exhibits a single, non-trivial minimum for some value
of the scalar field ¢. The field value at the minimum is temperature dependent, approach-
ing v = 246 GeV for T — 0. With increasing temperature, a second minimum at zero
field value and with an unbroken electroweak symmetry appears in a first-order scenario.
At the critical temperature T, the two minima of the potential, i.e. the one at finite field
value and the one at vanishing field value are degenerate, and the system undergoes a
phase transition from the symmetry-broken regime with a finite Higgs expectation value
to the symmetric regime.

The field value at the minimum constitutes an order parameter. For ¢. # 0 the tran-
sition is of first order, i.e. the vacuum does not evolve continuously through the phase
transition. For electroweak baryogenesis, the transition has to be a strong first-order one,

de

— 21 2.1
T2l 21)

otherwise the baryon asymmetry is washed out [42].

2.1.2. Higgs self-coupling measurement

At energy scales relevant for the LHC, the self-interaction of the Higgs boson is described
by the infrared (IR) Higgs potential in the broken phase. In the renormalizable Standard
Model, and ignoring Goldstone modes, it reads at tree level

T 2 M 4
V:?( + H) +Z(U+H) , (2.2)

where H is the physical Higgs field. The two parameters describing the Standard Model
Higgs potential in the IR, g and A4, can be traded for the vacuum expectations value v
and the Higgs mass my (we use the conventions of [200])

2
v= ,/% = 246 GeV, my = /2Av = 125 GeV . (2.3)
4

The interaction between three and four physical Higgs bosons in the Standard Model is
then given by

3m? 3m?
)\H3,O - TH, )\H4,0 - TQI—I . (24)

In the limit of heavy top quarks, 2m; > my, an effective Higgs—gluon Lagrangian [201-203]

Qs H o 1 2
Log = 5= GGy log {1+ — | = == GGy — (H— o+ ... 2.5
g9H 127 uv 108 < + v > 1om o < 2 + , ( )
t
AL LAELLE G H g : H
Ho
t t A L .:\
g MR- H g t y

t

Figure 2.1.: Feynman diagrams contributing to Higgs pair production at the LHC. Figure
from Ref. [174, 175].
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2. ELECTROWEAK BARYOGENESIS 2.1. INTRODUCTION

with the gluon field strength tensor GG, and the strong coupling o, can be used to describe
many relevant LHC observables.

When we include new physics contributions in the Higgs potential, the relations in (2.3)
change. It is instructive to follow the simple example of the modified Higgs potential
(again, with exception of a different normalization of \¢ we use the conventions of [200])

,LLQ 2 Ay 4 A6 6
V=S +H) + v+ H)' + 50+ H) (2.6)

The modified relations between the observables become

PR
mg =120 (14+12— | ,

A A2
3m? 16 vt 16\gv?
)\HB = y (1 + m%{AZ = )\H3,0 1 + 7m%{A2 5
3m? 96 601\ 96 gv?
)\H4 = ’(}2 (1 + m%_IAQ > = )\H4,0 <1 + W) . (27)

Because my and v have to keep their measured values, we need to adjust A4 to compensate
for the effect of A\g on the Higgs mass. This shift has to be accounted for in the expressions
for the Higgs self-couplings as a function of my and v. The reference couplings Apn o keep
their Standard Model values in terms of the unchanged parameters my and v, but the
physical Higgs couplings Ag» change.

The standard channel to measure Ays at the LHC is Higgs pair production in gluon
fusion, as illustrated in Fig.2.1, [174, 175, 204-212]. Its production rate is known including
NLO [213-215] and NNLO [216-219]. One of the problems with such a measurement
is that the link between the total di-Higgs production rate and the Higgs self-coupling
requires us to know the top Yukawa coupling. An appropriate framework is the global
Higgs analysis [176, 220-225], which is expected to give at best a 10% measurement of
the top Yukawa coupling. A model-independent precision measurement of the top Yukawa
coupling at the per-cent level will only be possible at a 100 TeV collider [226, 227].

The experimental situation improves once we include kinematic information in the di-
Higgs production process. Two kinematic regimes are well known to carry information on
the Higgs self-coupling, both exploiting the (largely) destructive interference between the
two graphs shown in Fig.2.1. While the continuum contribution dominates over most of
the phase space, the two diagrams become comparable close to threshold [174, 175, 207—
209]. The low-energy theory of (2.5) gives us for the combined di-Higgs amplitude

A 1\ Ags=X 3m?
A x 1;‘;} <$ Ij;Q — v) H3—>H3’O 120;:1)2 <mf — 1) =0 for mpg — 2mpy
e

(2.8)

where mpp is the invariant di-Higgs mass. An exact cancellation occurs in the Stan-
dard Model. Whereas the heavy-top approximation is known for giving completely wrong
kinematic distributions for Higgs pair production [174, 175], it does correctly predict this
threshold behaviour. Note that the momenta of the outgoing particles in such processes
are typically small compared to the Higgs mass and the low-energy regime of the theory
is probed. In the analysis in Sec. 2.3, we thus read off the Higgs self-couplings from the
low-energy effective potential.
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The second relevant kinematic regime is boosted Higgs pair production [228, 229], be-
cause of top threshold contributions to the triangle diagram around mg = 2m;. In terms
of the transverse momentum this happens around p7 g ~ 100 GeV, where the combined
amplitude develops a minimum for large Higgs self-couplings.

At the LHC, we define di-Higgs signatures simply based on Higgs decay combinations.
The most promising channel is the bby~y final state [211, 230-234], where we can easily
reconstruct one of the two Higgs bosons and measure the continuum background in the
side bands. We can also use the bbrT final state [210, 228, 229], assuming very efficient
tau-tagging. The combination bbWW [235] requires an efficient suppression of the tf
background, while the 4b [210, 236-238] and 4W [174, 175, 239] signatures are unlikely to
work for Standard Model like Higgs bosons. Finally, the bbyuy is in many ways similar for
the bbyy channel [211], but with a much lower rate in the Standard Model.

To get an idea of what to expect, we quote the optimal reach of the high-luminosity
LHC run with 3 ab™!, based on the Neyman-Pearson theorem applied to the bbyy channel
for self-couplings relatively close to the Standard Model [230],

Ao

= 04..1.7  at 68% CL, (2.9)
AH3 0

so any value for Ays/Aps o outside the range given above will not be compatible with the
vanishing di-Higgs amplitude in (2.8). This reach will be improved when we combine sev-
eral Higgs decay channels, but will also suffer from systematic uncertainties. In addition,
it assumes a perfect knowledge of the top Yukawa coupling. This implies that models that
predict a change in the Higgs self-coupling by less than 50% will not be testable at the
LHC.

2.2. Modified Higgs potentials

Similar to the EFT approach we assume that beyond a ultraviolet (UV) scale or cutoff
scale A new physics exists and modifies the form of the Higgs potential. As the additional
degrees of freedom are heavy, their effects below A can be parametrized by additional
terms in the Higgs potential, without modifying the propagating degrees of freedom. The
details of the new physics are encoded in the initial condition for the RG flow of the
Standard Model at & = A. Exploring different higher-order terms thus provides access
to large classes of high-scale physics scenarios, for which we do not have to investigate
the detailed matching of the additional terms in the Higgs potential and the underlying
high-scale degrees of freedom at k = A.

Our system features three relevant energy scales. First, the RG scale k ranges between
k = 0, where all quantum fluctuations are taken into account, and & = A, where we
initialise the flow. Second, the temperature T defines the external physics scale with
which we probe our system. Third, the field value ¢ defines an additional, internal energy
scale of our system. As is usual in EFT analyses, it is important to clearly disentangle
these three scales, even though ¢ and T can in principle act similarly to the RG scale
k in that they suppress IR quantum fluctuations [74]. We employ a method that can
straightforwardly account for the RG flow in the presence of these different scales, namely
the functional renormalization group. In this setting, quantum fluctuations in the presence
of further internal and external scales are taken into account by a functional differential
equation that is structurally one-loop, without being restricted to a weak-coupling regime.
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This provides access to classes of non-perturbative microscopic models with a manageable
computational effort. Most importantly, the FRG approach enables us to keep track of
the separate dependence of the potential on the RG scale k, the temperature and the field
value even in cases with non-perturbative UV potentials, where for instance a mean-field
approach breaks down.

For our study, we concentrate on that part of the Standard Model that is relevant for the
RG flow of the Higgs potential using the framework developed in [74]. Here, we follow that
framework by implementing the effects of weak gauge bosons through a fiducial coupling,
and upgrade our treatment by including a thermal mass generated by the corresponding
fluctuations as their leading contribution instead of implementing a fully-fledged dynamical
treatment of that sector, see App. A.1 for details. Similarly, would-be Goldstone modes
do not need to be considered explicitly, such that it suffices to concentrate on a real
scalar field ¢, that can be described in terms of the physical Higgs field H as ¢ = H + v
after electroweak symmetry breaking. At the UV scale k = A, the Higgs-potential is
parametrized as

N2 9, A 4
Vk:A:?¢ +Z¢ + AV, (2.10)

where AV contains the contribution of some higher dimensional operator. In principle,
higher-order modifications of the Yukawa sector could also be included, cf. [198, 240-242].
We investigate three classes of modifications to the Standard Model Higgs potential:

1. additional ¢% or ¢® terms, which cover the leading-order terms in an effective-field
theory approach and have been extensively studied in the literature [52, 54, 163-173];

2. a logarithmic dependence on the Higgs-field, inspired by Coleman-Weinberg poten-
tials. It does not allow for a Taylor expansion around ¢ = 0. Logarithmic modifi-
cations are naturally generated by functional determinants, i.e. by integrating out
heavy scalars or fermions.

3. a simple example of non-perturbative contributions of the form exp(—1/¢?), i.e. an
exponential dependence on the inverse field, consequently not admitting a Taylor
expansion in the field around ¢ = 0. This is inspired by semiclassical contributions
to the path integral with ¢ reminiscent to a moduli parameter of an underlying
model.

We denote these modifications of the potential by

@0 ¢° 8
§Z§2A2 ¢2 ¢4 ¢)2
A =— —— In— A = — In—
Vin,Z )\ln,2 100 n A2’ ‘/ln,4 )\11174 10 n SA2
A 4 2A2 A (f>6 2./\2
V;exp,4 = Aexp,4¢ exp _? ) V;exp,ﬁ = )\exp76p exp _ﬁ . (211)

In all these potentials A describes a new physics scale, which absorbs the mass dimension
of the Higgs field. The case of $%/A? has been explored in the literature [52, 54, 165-173]
and serves as a test of our method, as discussed in App. A.2. Neither the logarithmic nor
the exponential potentials can be expanded around ¢ = 0, so they cannot be treated in
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Figure 2.2.: Mean-field results for ¢./T. as a function of the cutoff for different mod-
ifications of the Higgs potential. Second-order and weak first-order phase
transitions are excluded from the plot. The results of the ¢® modification are
reasonable, while the results for the ¢? In ¢? and the ¢* In $? modifications are
clearly unphysical, see explanation in the text. More elaborate methods than
mean-field are needed.

an EFT framework. Similar bare potentials have been suggested in [75] in the context of
Higgs mass bounds and vacuum stability. Instead, all potentials that can be expanded
around ¢ = 0 can be approximated by the power-ordered, first kind of potentials. As
expected by canonical power counting, terms of higher order in ¢ can only play a role for
very low values of A/v, unless their prefactors are non-perturbatively large. From a more
general viewpoint, the set of power law, logarithmic and exponential potential functions
does not only reflect the physics structures arising from local vertex expansions, one-loop
determinants or semiclassical approximations. It also includes the set of functions to be
expected on mathematical grounds if the effective potential permits a potentially resurgent
transseries expansion [243].

To investigate the different classes of modifications, a variety of tools appears to be at our
disposal, a priori ranging from mean-field techniques to non-perturbative lattice tools and
functional methods. It turns out that the former are only applicable to a restricted class of
potentials, not allowing us to adequately explore the full range of possible UV potentials
corresponding to diverse underlying microscopic models. This is displayed in Fig.2.2 where
the ¢%- modification of the Higgs potentials shows the expected physical behaviour as the
strength of the first-order phase transition is decreasing with an increasing cutoff. The
logarithmic modifications on the other hand show a rather unphysical behaviour as the
strength of the first-order phase transition remains constant or even increases with the
UV scale. This indicates that scalar order-parameter fluctuations are important, which
are ignored in simple mean-field theory. Therefore we make use of powerful functional
techniques, which treat bosonic and fermionic fluctuations on the same footing.

When allowing for modifications of the Higgs potential, we need to ensure that at
T = 0 the IR-values for i, A4, and the top-Yukawa-coupling y; are such that the measured
observables do not change. We adjust the corresponding masses to

v =246 GeV , mpy = 125GeV , my = 173 GeV . (2.12)

Within our numerical analysis, we require v and m; to be reproduced to an accuracy
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of £0.5 GeV. The Higgs mass is adjusted within a somewhat larger numerical band of
+1.5 GeV. Since it is related to the second derivative (curvature) of the potential at
the minimum, a higher precision is numerically more expensive, see App. A.2 for details.
Moreover, it is expected that the curvature mass used here shows small deviations from
the pole mass mpy of the Higgs, see [244], and the above band also contains an estimate
of this systematic error. In the symmetry broken regime, the potential given in (2.10) can
be expanded in powers of (¢? — v?). In the decoupling region in the deep IR, we use the
parametrization

ALIR A6,IR A8,IR
Vigo = 1 (¢* —v*)* + W(¢2 —v?) + 1601 (¢* —v*) 4 -

1
= Mrv?H? + (AR + X r) vH® + 1 (A4r + 6A6R + 4Asr) H' + -+ . (2.13)

Note that this is the full effective potential in the IR, differing from the tree-level potential
in (2.6). In particular, higher-order terms, encoded in Ag 1r are generated by quantum
fluctuations even if the tree-level potential is quartic. At tree level, the Higgs potential
is described by two parameters, i.e. AR = Agir = ... = 0. If we allow higher-order
terms, all measurable parameters are affected, in close analogy to (2.7). As described in
Sec.2.1.2 the vacuum expectation value v and the Higgs mass m?% /(2v?) = A4 are known
very precisely from collider measurements and thus we have to keep them fixed. The
physical Higgs self-couplings change from the values given in (2.4) to the more general
form

53
A3 = ﬁVk:O = 67}()\4711:{ + )\G,IR) )
4
At = 5 V=0 = 6(As1r + 626 R + 4A81R) - (2.14)

The first terms are precisely the couplings Aps g = 6vAyr and Aga g = 6Agr familiar
from the tree-level structure. With the present setup we can compute the Higgs self-
couplings in the pure Standard Model including higher-order terms generated by quantum
fluctuations by initialising the flow at some high cutoff scale without any modifications
of the Higgs potential. As long as the cutoff is not too close to the electroweak scale the
results will be largely independent of the cutoff choice. For our level of numerical precision,
a cutoff A = 2 TeV is sufficient. The Higgs self-couplings are given by

AP 0,09 : At
AH3 0 A4

~ 0.68 . (2.15)

These values are equivalent to computations of the Higgs potential with Coleman-Weinberg
corrections. We then go beyond the pure Standard Model by adjusting a combination of
the coeflicients \; and the new physics scale A in (2.11). These can now be used to adjust
¢c/T. such that we obtain a strong first-order phase transition.

2.3. Phase transition

For the modified Higgs potentials defined in (2.11) we need to explore which values of
the UV scale A and the coefficients A; lead to a sufficiently strong first-order transition.
Simultaneously, we monitor whether this leads to a measurable modification of the Higgs
self-couplings in the IR.
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Figure 2.3.: Temperature evolution of the potentials of the type ¢?ln¢? (solid) and
¢t exp(—1/¢?) (dashed) for fixed ¢./T. =~ 1. We plot the temperatures 7' = 25
GeV (violet), T = 50 GeV (red), T = 75 GeV (blue), T = 100 GeV (green)
and T = T, (orange). Note that To™* = 116.4 GeV > T&%* = 110.5 GeV and
thus one curve overtakes the other. A magnification of the curves at T' = T,
is displayed in Fig. 2.4

2.3.1. First-order phase transition

In Fig. 2.3 we show the evolution of two example potentials from (2.11) from zero temper-
ature to 7., where the latter is defined as the temperature at which the two competing
minima become degenerate. The latter is not distinctly apparent in Fig. 2.3, but becomes
visible in the magnification in the right panel of Fig.2.4. We also require the second mini-
mum to be at ¢. = T, to guarantee a sufficiently strong first-order phase transition. This
way, the ¢ dependence of the two cases becomes comparable. A key feature already visible
in this figure is that the potential with the deeper minimum at small temperature turns
into the steeper potential at T,.. This is achieved by a larger value of T, for the potential
with the deeper minimum. Note that the potentials in Fig.2.3 and Fig. 2.4 are read off at
the RG scale ki, which is an infrared scale where the Higgs potential and all observables
are frozen out. Below this scale only convexity generating processes take place. The freeze
out occurs once fluctuations of fields decouple from the RG flow because the RG scale k
crosses their mass-threshold. This decoupling is built into the FRG setup. We choose kg
to be smaller than the masses of the model, such that the exact choice of kg does not
matter.

In Fig. 2.4 we illustrate the behaviour of all our modified Higgs potentials in the IR at
vanishing temperature (left panel) and at the critical temperature (right panel), respec-
tively. Note the different scales on the vertical axes. The UV scale A and the respective
coefficients A;(A) are chosen such that they result in a strong first-order phase transition,
¢c/T. = 1. The different potentials at zero temperature are similar to that of the Stan-
dard Model, as expected from the fact that we fix the Higgs vacuum expectation value
and mass to their observed values. In particular, the minima all appear at v = 246 GeV,
and the second derivatives have to reproduce the measured Higgs mass. Nevertheless, if
we fix Vi—p, (0) = 0, an imprint of modified UV physics remains visible.

In the left panel of Fig.2.4 we see that up to ¢ ~ 300 GeV, all modifications we consider
lead to a very similar form of the zero-temperature IR potential, if their coefficients are
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Figure 2.4.: Effective potentials at T'= 0 (left) and T' = T, (right). We show all modified
Higgs potentials from (2.11) with A = 2 TeV. The values of the coefficients
at the UV scale A are fixed by the requirement ¢. ~ T, leading to Ag = 1.2,
/\6 = 1 with )\8 = 1.4, )\ln,4 = 0.89, )\ln,2 = 0.27, )\exp,4 = 23.3, and )\exp’ﬁ =
27.5.

fixed such that ¢./T, is the same for all our potentials. At higher field values the different
UV modifications lead to distinct field-dependence of the potential. The sizeable impact of
the modified microscopic action on the IR potential is due to the finite UV scale A = 2 TeV.
This is not sufficiently far above the electroweak scale for the contributions AV to be
washed out by the RG flow.

At finite temperature, we see in the right panel of Fig. 2.4 that the potentials show
significant deviations and the six different modifications fall into three distinct forms of
the IR potential at T.. The Standard Model is not displayed, since it exhibits a second-
order phase transition with ¢. = 0. The other potentials show different sizes of the bump
that separates the minima at ¢ = 0 and ¢ = ¢.. The exponential modifications show the
smallest bump, while logarithmic modifications show the largest bump. The third class is
given by the polynomial UV potentials, which fall in between the two other classes.

It is worth noting that the resulting IR modifications almost coincide within each class of
UV potentials, i.e. the polynomial, logarithmic, and exponential class. Although there are
manifestly different UV modifications within each class, like for instance ¢*exp(—1/¢?)
vs @5 exp(—1/¢?), the resulting IR behaviour appears to be dominated by the exponential
dependence, and accordingly is nearly the same for the two cases — as stressed before, the
two exponential cases differ from the two logarithmic cases, which are within a separate
class of their own.

Comparing the two panels we observe that zero-temperature potentials with a steeper
increase at larger field values turn into more shallow potentials for finite temperature
near the broken vacuum. The latter corresponds to a lower barrier between the two
minima. The reason for this link is that the phase transition occurs once positive thermal
corrections to the mass parameter are large enough to change the extremum at ¢ = 0 from
a maximum to a minimum, which then becomes degenerate with the minimum at a finite
field value. For potentials with a lower zero-temperature depth — and correspondingly a
more substantial slope at large ¢ — the corresponding critical temperature T, is lower.
Therefore, the steepest increase towards large ¢ in the left panel in Fig. 2.4 corresponds to
the smallest bump in the right panel of Fig.2.4. Phrased differently: for potentials with
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Figure 2.5.: Coefficient \;(A) of the dimension-6 operator ¢%/A? (left), the modification
A2¢?In ¢?/A? (centre), and the modification ¢* In $?/A? (right) as a function

of the cutoff, requiring ¢./T. = 1 + 0.05.

a flatter inner region, scalar fluctuations are quantitatively more relevant. At the same
time, the phase transition turns first order as soon as the scalar fluctuations dominate over
the fermionic ones. This connection will become important when evaluating the prospects
of the different cases with regards to detectability at the LHC.

2.3.2. Scale of new physics

Given a particular microscopic model containing additional degrees of freedom, the UV
scale or cutoff A is typically identified with the mass scale of those additional fields, below
which their fluctuations are suppressed. From an EFT point of view, one correspondingly
associates A with the energy scale, above which new physics can appear as on-shell excita-
tions. In turn, below A the effect of new physics is only visible indirectly. Such an indirect
effect would be a deviation of the Higgs potential from its form in the renormalizable
Standard Model. A key aspect of this kind of approach is that an EFT description by
definition comes with a region of validity, above which we will be sensitive to the actual
UV completion. Hence, before we use our modified Higgs potential to link a strong first-
order phase transition to the Higgs self-coupling we need to study the validity range of
our description.

Following (2.11) we see that an indirect measurement using an EFT-like approach is
only sensitive to a combination of the scale A and the (Wilson) coefficients A;. In Fig.2.5
we show the correlation between A and the corresponding A; evaluated at the UV scale
A for a set of modified Higgs potentials, assuming a strong first-order phase transition
with ¢./T. = 1. We can interpret these results as lines of constant IR physics: the
running coefficient \;(A) then describes a family of effective models defined at different
scales A, all yielding the same IR observables. Without new physics effects, AV = 0,
this corresponds to fixing v, my and m; in the IR and simply evolving them toward the
UV with their known RG equations. In our extended setup, the additional coefficients
measure the strength of the new physics contribution, that we initialise at the UV scale
A. We then use a corresponding parameter \; to fix ¢./T. to a value of our choice. Doing
so for different UV scales A, the coefficient \; becomes a function of A.

Without running effects for the coefficients A; the correlation between the coefficient
and the UV scale would be simple. For instance, the dimension-6 Wilson coefficient would
follow a parabola, Ag o< A%. However, the condition on ¢./T, for the strong first-order
phase transition is defined at energies around the Higgs vacuum expectation value, while
the shown values of A\; are defined in the UV. The complete correlation is well-described
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Figure 2.6.: Modification of the self-coupling Agys/Ays as a function of ¢. (left) and
1/T, (right) for the UV potentials given in (2.11). The asterisk in both plots
represents the Standard Model expectation, including Coleman-Weinberg cor-
rections, cf. (2.15).

by a quadratic polynomial. In the case of g, this reflects the quadratic running due to
the canonical dimension. While the normalization of AV can be adjusted at will and the
absolute values of the coefficients A\; do not carry any physical significance, the growth of
these coeflicients towards the ultraviolet suggests the possible onset of a strongly coupled
regime.

To investigate the onset of this strongly coupled regime we fit the correlation between
Aj and A to a broken rational polynomial. A motivation for the particular choice of
fit function in Fig. 2.5 is given by an approach to a power-like Landau-pole singularity.
Indeed, this ansatz fits our numerical results well for the given range of UV scales. From
the broken polynomial we can estimate the critical scales, where the respective models
might become strongly coupled,

AT = 7.0 TeV, AfTS =10 TeV, A = 6.8TeV . (2.16)

These critical scales should be viewed as conservative estimates of the validity scale up
to which our field-theory description using purely Standard-Model degrees of freedom is
applicable. These estimates are of the same order of magnitude as maximum values of A
that lead to a first-order phase transition in studies based on mean-field arguments, see
e.g. [52].

2.3.3. Baryogenesis vs Higgs self-coupling

After showing how a modified Higgs potential can lead to a strong first-order phase tran-
sition in Sec.2.3.1 and confirming that our approach is consistent in Sec.2.3.2, we can now
explore the link between the strong first-order phase transition and the observable Higgs
self-coupling. As laid out in the Introduction, the crucial question is as to whether modifi-
cations of the Higgs potential that lead to a sufficiently strong first-order phase transition
for electroweak baryogenesis can be tested through the Higgs self-coupling measurement
at the LHC.

Following the above discussion, the remaining question is how a value ¢./T,. ~ 1 due to
the potentials given in (2.11) is reflected in shifted physical Higgs self-couplings Ays and
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Figure 2.7.: Modification of the self-couplings Ays /Ay o (left) and Aga/Apga o (right) as a
function of ¢./T, for the UV potentials given in (2.11). The asterisk in the
lower left of both plots represents the Standard Model expectation, including
Coleman-Weinberg corrections, cf. (2.15).

Aga. All new physics models are adjusted to reproduce the low-energy measurements in
(2.12). First, we can separate the two parameters 1/7, and ¢. and show their individual
effects on the physical Higgs self-couplings. In Fig.2.6 we first see that the two parameters
contribute roughly similar amounts to an increase in the Higgs self-couplings, if we push
the model towards a strong first-order phase transition. Second, we see that the individual
potentials in the general class of power-series, logarithmic, and exponential potentials give
essentially degenerate results. Finally, the effect on the self-couplings is the weakest for the
logarithmic potential, slightly stronger for the power-law modification, and the strongest
for the exponential modification.

As already observed in Sec. 2.3.1, a steeper zero-temperature potential at large field
values can be linked to a decrease in T.. On the other hand, a steeper increase at large
field values will be tied directly to larger values of the cubic and quartic Higgs self-coupling.
This dependence is confirmed by Fig. 2.6, where potentials with smaller T, feature larger
Ags. This feature holds both within each class of potentials where we can decrease T, by
enhancing AV, and between different classes of potentials. This trend should be generic
in that additions AV leading to a strong first-order transition at low T, will be easier to
detect at the LHC.

Given that we do not see any striking effects from the individual dependence on 1/7, and
¢, we study the dependence of the different Higgs potentials on the physically relevant
ratio ¢./Te. In Fig.2.7, we show the modifications of both Higgs self-couplings as a function
of ¢./T.. The free model parameter along the shown line is an appropriate combination
of new-physics scale A and the new-physics coefficient A;. For ¢./T, 2 1 we find a strong
first-order phase transition, suitable for electroweak baryogenesis. From the location of
the Standard Model point it is clear that there exists a range of modified self-couplings
where the electroweak phase transition remains second order. Only for

A > or Amtsy (2.17)
Amso Agag ™
we have a chance to generate a first-order phase transition. This number should be com-
pared to the LHC reach given in (2.9). We conclude that the prospects of a detectable

31



2. ELECTROWEAK BARYOGENESIS 2.4. SUMMARY

T T T
2F — ¢t exp(—1/¢%) / o
--- ¢fexp(—1/¢%) R
ZFasf
~ -
& ¢°
< R L e I
Ll seegting? || fer e
£ * SM || L }
| | | | | |

0 0.2 0.4

log(;)

Figure 2.8.: Modification of the self-coupling Agys/Ays o as a function of the coefficients
Aj from the different UV potentials given in (2.11). Blue lines represent first-

order phase transitions and red dotted lines second-order phase transitions.
The cutoff is A =2 TeV.

imprint appear to be good for all models that we have studied. A strong first-order
phase transition corresponding to ¢./T. > 1 can in all scenarios be achieved by further
increasing the new physics contributions and thereby increasing the Higgs self-couplings.
In particular, we observe that the non-perturbative modifications exp(—1/¢?) lead to a
significantly higher value of the Higgs self couplings at fixed ¢./T, and are thus easier to
detect. Given that for example exponential potentials feature a minimum value of Ags
significantly larger than the simple ¢° extension, the LHC measurement might even allow
first clues to the nature of new physics, even if the corresponding scale A remains out of
direct reach at the LHC.

Because the curves in Fig. 2.7 connect an IR observable with a UV property we can link
the two regimes and make two observations. First, we can start in the IR and fix Ays for
different UV potentials. Here, we find that an increase in ¢./T, or decrease in T, leads
to a decrease in Ags for constant Ags. Alternatively, we can fix ¢./T,. for different UV
potentials and find that a decrease in A\ys corresponds to a decrease also in Agys or an
increase in 1.

Finally, Fig. 2.8 explicitly shows the connection between the strength of the observable
effect at LHC scales, measured by Ags/Aps o and the size of the new physics contribution
AV at the microscopic scale A, measured by the value of the dimensionless coefficients ;.
The nature of the electroweak phase transition is encoded in the colouring of the lines.
The onset of the first-order phase transition is at values that can also be read off from
Fig.2.7: for logarithmic modifications we find the lowest value of Ays/Ays o ~ 1.4, for the
#% modification Ams/Aps o =~ 1.5, and for exponential modifications Ags/Aps o =~ 1.9. This
size of all modifications can be probed in the high-luminosity run at the LHC. Importantly,
the Higgs self-couplings grow continuously as a function of A\; while ¢./T. remains zero
till the onset of the first-order phase transition and only then starts to grow continuously.

2.4. Summary

Higgs pair production or the measurement of the Higgs self-coupling is an extraordinarily
interesting LHC analysis. We find that it is well motivated by modified Higgs potentials
that allow for a strong first-order electroweak phase transition and hence an explanation
of the observed matter-antimatter asymmetry. We have studied a wide range of such
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modifications to the Higgs potential, especially potentials that cannot be expanded as
an effective field theory. We used the functional renormalization group to describe the
dependence on the field value ¢ and on the temperature T'. For all classes of potentials
considered here, there exists an appropriate choice of model parameters, for which the
phase transition is of first order and sufficiently strong, ¢./T. = 1.

Our numerical analysis indicates that the requirement ¢./7. = 1 corresponds to a criti-
cal scale of the order of 10 TeV for all our potentials, where the potentials become strongly
coupled. Below this scale we can rely on our assumed potentials to describe LHC signals.
We then found that a strong first-order phase transition universally predicts an enhance-
ment of the Higgs self-couplings Agys 2 1.5Ags o and Aga 2 4Apgao. Extending earlier
studies, we systematically established this connection between a first-order transition and
a measurable deviation of the Higgs self couplings, employing a method that can describe
systems with multiple physical scales in a controlled manner. While it might be possible
that a new physics model features a strong first-order transition with all effects on Ajs/4
cancelling accidentally [173], none of our examples falls into this class. We conclude that
a measurement of the Higgs self-couplings at the LHC indeed serves as an indirect probe
of a first-order phase transition and thus of electroweak baryogenesis in generic setups.

On the other hand, we observed that it is possible to obtain large deviations in the Higgs
self-interactions for our class of non-perturbative potentials without the condition ¢./T, >
1 being fulfilled. For example with an exponential modification of the Higgs potential the
physical Higgs self-coupling reaches Ays ~ 1.9\ ys  already significantly below ¢./Te. = 1.
On the theoretical side, a quantitative upgrade of our analysis includes, but is not limited
to, a full treatment of the weak gauge sector as well as improvements in our treatment
of the Yukawa sector, which might result in quantitative changes of the order of 10 %,
cf. [242]. An as precise as possible measurement of the triple-Higgs interaction is clearly
desirable. For instance a 20% measurement of a relatively small modification of Ags/Ays o
could exclude such exponential potentials as sources of electroweak baryogenesis. Such an
actual measurement could therefore provide valuable hints guiding theoretical studies of
interesting extended Higgs models.
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3. Asymptotically safe quantum gravity —
Introduction and basic setup

3.1. Introduction

Modern theoretical physics is built upon two pillars, namely quantum field theory and
general relativity. Theories of quantum gravity aim at the unification of gravity with
quantum dynamics. A candidate for a quantum theory of gravity is the asymptotic safety
scenario, which goes back to Weinberg’s idea in 1976 [98]. Its construction is based on a
non-trivial UV fixed point in the renormalisation group flow. The fixed point of asymptotic
safety implies coupling constants that are finite at arbitrarily high energy scales, while they
depend only on a finite number of free parameters. Hence, an asymptotically safe quantum
field theory does not necessarily have a scale of maximal validity and thus can potentially
describe physical interactions at the most fundamental level.

The possibility of an interacting UV fixed point in quantum gravity attracted increasing
attention over the last two decades. Beginning with the pioneering work by Reuter [99],
good evidence for its existence was found. The work by Reuter and many that followed
are based on the Einstein-Hilbert truncation with the diffeomorphism invariant operators
V9 and /g R [100, 101, 245-266]. Different aspects were investigated including for in-
stance gauge and parameterisation dependence, ghost interactions or dependence on the
spacetime dimension.

In a perturbative regime the mass dimension of operators gives an ordering princi-
ple, which operators are relevant and have to be included in a truncation. At the non-
perturbative UV fixed point this ordering principle is weakened: Operators that are canon-
ically irrelevant can become relevant and vice versa. The relevance of an operator can only
be determined in truncations by explicit computations. Consequently a lot of effort has
been made to investigate higher derivative and f(R) quantum gravity [267-293]. Fortu-
nately the mass dimension of the operators seems still to be a good ordering principle
and operators with a high mass dimension seem to behave near-Gaussian [281, 282]. The
question, how many relevant operators there are in pure quantum gravity setting is not
fully settled yet. The currently favoured answer is three, which are the Einstein-Hilbert
and the canonically marginal /g R? operator. The canonically marginal N{ wa operator
becomes irrelevant at the UV fixed point in most truncations [293-295].

It is necessary that the amount of relevant directions at the UV fixed point is finite.
This ensures the predictivity of the theory. In the perturbative approach it is the Goroft-
Sagnotti two-loop counter term that proclaims the end of predictivity and thus the doom
of the theory [78-80]. This term was also investigated in asymptotic safety and found to
be asymptotically safe and irrelevant at the UV fixed point [296].

Higher derivative gravity is generally associated with non-unitarity because in the simple
perturbative case, negative norm states show up in the theory [81, 82]. This statement
is not strict: even in the perturbative setting one can construct higher-derivative theories
without negative norm states [297, 298]. Unitarity in asymptotic safe is an incredible
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challenging task, as in any non-perturbative quantum field theory. It requires a real-
time computation and access to the pole structure of the graviton propagator. A fully
conclusive analysis lies far in the future but first attempts towards real time computations
and unitarity were made [299-304].

The resulting theory of quantum gravity is only the starting point for phenomenology.
One can ask whether the black hole spacetime singularity is resolved by the theory or if
cosmic censorship takes place and shields all singularities with an event horizon [114, 305—
308]. Also applications to cosmology, for instance how quantum gravity influences the
evolution of the universe or whether it resolves the Big Bang singularity, are important
[309, 310]. Further applications include the gravitational Unruh effect [311], and the com-
putation of observables via composite operators [312]. For general reviews on asymptotic
safety see [313-318].

Urgent key questions concern background independence and the restoration of physical
diffeomorphism invariance. All approaches based on metric correlation functions need to
introduce a background metric. Consequently the full metric g, is split into background
g and fluctuation h,,,. The gauge fixing and the regularisation scheme introduce separate
dependencies of the effective action on background and fluctuation. These dependencies
are captured by so called Nielsen or split-Ward identities [319-322] as well as accompany-
ing Slavnov-Taylor identities [323, 324]. In the end observables must be independent of
the chosen background and gauge fixing. In order to accomplish this background indepen-
dence different ways have been pursued. The background and fluctuation field have been
disentangle via a vertex expansion [294, 325-329], or an bi-metric approach [330-333].
Also the Nielsen or split-Ward identities have been tried used directly in order to get back
to a single metric computation [334-343]. This topic is of uppermost importance to this
dissertation and consequently we elaborate on this in much more detail in the following
sections and chapters. This dissertation contributes to further progress on these issues
within the setup of the systematic vertex expansion.

Most studies on asymptotically safe quantum gravity are based on the functional renor-
malisation group (FRG) [141, 344, 345]. In its modern form as a flow equation for the
effective action of the theory it constitutes a powerful method for non-perturbative calcu-
lations in continuum quantum field theory. We use it in most chapters of this dissertation
in the context of the systematic vertex expansion scheme around a flat Euclidean back-
ground. Importantly such a setup disentangles contributions from the background and
the fluctuation field. Indeed it is the fluctuation propagator that drives the flow of the
effective action. The flow of the fluctuation propagator in turn depends on the fluctuation
four-point function, thus generating an infinite tower of coupled differential equations.
This infinite has to be truncated at some order and the parameters of the higher n-point
functions have either be set to zero or identified with lower n-point functions. Here we
use the latter.

In this chapter we present the minimal setup that includes a genuine dynamical New-
ton’s coupling. This setup includes the two-point functions and the graviton three-point
function. As a main result we find a UV fixed point with two relevant directions. This UV
fixed point will be the basis for extensions to other truncations in the subsequent chapters.
We further show that the Wilsonian RG is well defined in this system, meaning that the
flow of all correlation functions is momentum local. For perturbatively renormalisable this
statement can be shown by simple power counting arguments. In gravity this arises due
to highly non-trivial cancellations between different diagrams as we will show later.
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3.2. Diffeomorphism invariance and background independence

The quantum field theoretical formulation of quantum gravity in terms of metric corre-
lation functions necessitates the introduction of a background metric g, and quantum
fluctuations are taken to be fluctuations about this background metric. This begs the
question of whether diffeomorphism invariance and background independence of observ-
ables are guaranteed in such a framework. While this is an important question, its answer
is not directly relevant for the computations presented here. Hence, this section may be
skipped in a first reading.

In this dissertation we perform computations in the linear split, where the full metric
Guv is given by gu = gu + hyuw. More general splits, g, = Guv + f(Guv, huw) have been
considered for example within the geometrical or Vilkovisky-deWitt approach, e.g. [336,
346-348], or the exponential split, e.g. [259, 262, 349-351]. Observables, on the other hand,
are background independent. This property is encoded in the Nielsen (NI) or split-Ward
identities (SWI) that relate derivatives of the effective action I'[g, ¢] w.r.t. the background
metric g, to those w.r.t. the graviton fluctuations h,,. Here we have introduced the
fluctuation superfield

¢ = (hyw, cps Cu) - (3.1)

The (anti-) ghost fields, ¢ and ¢, stem from the Faddeev-Popov gauge fixing procedure,
see next section. The effective action generates all one-particle-irreducible correlation
functions and as such encodes the symmetries of the theory. Schematically, these identities
read [99, 188, 330, 331, 336-341, 347, 352]

dI'g, h]

oT(g, h] e O(g ] .
55 (@) _/yc[g,h]( ,y)éhw(y) + NH (g, h](z), (3.2)

where we have suppressed the ghost fields to improve readability. In the linear split we
have C[g, h|(z,y) ~ 0(z — y) and the second term N[g, h] carries the information about
the non-trivial behaviour under diffeomorphism transformations of the gauge fixing sector
and the regularisation. In turn, in the geometrical approach diffeomorphism invariance of
the effective action is achieved by a non-linear split with f(g, k) leading to the non-trivial
prefactor C[g, h] in (3.2). The term N[g,h] then carries the deformation of the Nielsen
identity in the presence of a regularisation but does not spoil diffeomorphism invariance.

In both cases the Nielsen identity is a combination of a quantum equation of motion,
the Dyson-Schwinger equation, and the Slavnov-Taylor identity (STI) or diffeomorphism
constraint. The setup also entails that correlations of the fluctuation fields are necessarily
background-dependent. This is easily seen by iterating (3.2). Moreover, in the linear
split, diffeomorphism invariance of the observables is encoded in non-trivial STIs for the
fluctuation correlation functions, while in the geometrical formulation, the non-trivial STIs
are encoded in expectation values of f(g,h) and its derivatives.

Due to (3.2) we have to deal with the peculiarity that background independence and
physical diffeomorphism invariance of observables necessitate background-dependence and
non-trivial STIs for the correlation functions of the fluctuation fields. This leads to seem-
ingly self-contradictory statements: in particular, for the quantum effective action I'[g, h]
it entails that physical diffeomorphism invariance of observables is not achieved by diffeo-
morphism invariance w.r.t. diffeomorphism transformations of the fluctuation fields. The
latter does not do justice to either diffeomorphism invariance or background independence.
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This peculiarity can easily be checked in a non-Abelian gauge theory within the back-
ground field formulation: in a fluctuation gauge invariant approximation to the effective
action, even two-loop universal observables such as the two-loop S-function cannot be
computed correctly. Indeed, in this case it is well-known that only the non-trivial STIs
for the fluctuation gauge field elevate the auxiliary background gauge invariance to the
physical one holding for observables, see e.g. [353, 354].

The above considerations underline the importance of a direct computation of correla-
tion functions of the fluctuation field h,,. Indeed, the corresponding set of flow equations
for T(™ = T(Om) ig closed in the sense that the flow diagrams only depend on T'™ with
n > 2. Here, I'"™) stands for the n-th background field derivative and m-th fluctuation
field derivative of the effective action,

§n+m[g,

(3.3)
In turn, the flows for pure background, I'™9 or mixed background-fluctuation functions,
(™) with m # 0, necessitate the fluctuation correlation functions as an input: the back-
ground correlation functions can be iteratively computed in powers of the background
metric. In other words, the dynamics of the system is solely determined by the pure
fluctuation correlation functions. Accordingly, the background field approximation vio-
lates the NIs, which leads to the seemingly contradictory situation that it is at odds with
background independence even though it only features one metric. In the past decade
quite some progress has been made in overcoming the background field approximation,
see [188, 294, 325-333, 336-342, 347, 352, 355-357].

3.2.1. Approaches to fluctuation and background correlation functions

All these works should be seen in the context of gaining background independence and
physical diffeomorphism invariance in asymptotically safe gravity. Here we briefly sum-
marise the state of the art within the different approaches.

(1) One approach utilises the fact that the NIs relate background metric correlations to
fluctuation ones. This leaves us with a system of one type of correlations and it is possible
to solve the system of flow equations for fluctuation correlation functions either directly
or implicitly. This strategy has been set up and pursued in [188, 336-342, 347, 352, 355~
360] for generic theories within the background field approach. At present, applications
in gravity still utilise the background field approximation beyond either the first order, or
the second order in the fluctuation field [336]. Such a closure of the flow equation with
the background field approximation is mandatory and all approaches aim at introducing
this approximation on a high order of the fluctuation field. Note in this context that it is
only the second and higher order n-point functions of the fluctuation field that drive the
flow.

(2a) A second approach utilises the fact that the dynamics of the system is carried by
the correlation functions of the fluctuation field. This is also reflected by the fact that the
system of flow equations for the fluctuation correlations is closed. Consequently one may
solve these flows for a specific background metric that facilitates the computation, e.g.
the flat background. Then, background correlations are computed within an expansion
or extension about the flat background in order to access the physical background that
solves the quantum EoM. This strategy has been set up and pursued in [122, 294, 325-329]

38



3. QUANTUM GRAVITY INTRODUCTION  3.3. FUNCTIONAL RENORMALISATION GROUP

for gravity, also guided by successful applications in non-Abelian gauge theories, see e.g.
[361-365].

(2b) A third approach avoids the latter step of extending the results to physical back-
grounds by computing instantly the flow equations for the fluctuation correlation func-
tions for general backgrounds. This has been investigated in [330-333]. As in the other
approaches, the background field approximation has been used for higher correlation func-
tions. At present, this holds for all correlation functions beyond the one-point function of
the fluctuation field.

In the most part of this dissertation we develop an approach in the class (2a). In
particular we will use an expansion about a flat Euclidean background. Only in Chapter 5
we use an approach in the class (2b).

3.3. Effective action & functional renormalisation group

The set of (covariant) correlation functions of the metric, (g(z1) - -- g(x,)), defines a given
theory of quantum gravity. All observables can be constructed from these basic building
blocks. The correlation functions are generated from the single metric effective action,
I'lg] = T'lg, h = 0], which is the free energy in a given metric background g,, = Guv + hu
at h,, = 0. Here we have restricted ourselves to a linear split. The underlying classical
action is the gauge-fixed Einstein-Hilbert action,

where R(g) is the Ricci curvature scalar, /g = v/det g, and Sy[g, k| and S,,[g, ¢] describe
the gauge-fixing and Faddeev-Popov ghost parts of the action, respectively. The gauge
fixing action reads

1
Sulg, h] = % / d*x /g g" F,F, . (3.5)
We employ a linear, de-Donder type gauge-fixing,
wiZ 1 + 5 — v
F,=V"h,, — Tvuh V- (3.6)

In particular we use through out the whole dissertation the harmonic gauge given by
B =1 and work in the Landau limit of a vanishing gauge parameter, & — 0. The choice
of  simplifies computations considerably due to the fact that the poles of all modes of
the classical graviton propagator coincide. Also the Landau-gauge is favourable since it
maximally disentangle physical and gauge fluctuation and it further guarantees that the
gauge does not change during the flow since a = 0 is a RG fixed point [366]. The ghost
part of the action reads

Sgh[gv (b] = /d41" \GE”MWCV7 (37)

where ¢ and ¢ denote the (anti-) ghost field and M is the Faddeev-Popov operator deduced
from (3.6). For § =1 it is given by
M =V* (9,0 V) + 9 Vyu) — VY. (3.8)

The gauge fixing and ghost term in (3.5) and (3.7) introduce the separate dependence on
Guv and hy,, leading to the non-trivial Nielsen identities in (3.2).
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3.3.1. Flow equation

An efficient way of computing non-perturbative correlation functions is the functional
renormalisation group. In its form for the effective action, see [141, 344, 345], it has been
applied to quantum gravity [99]. For reviews on the FRG approach to gauge theories and
gravity see e.g. [188, 189, 313-316]. The RG flow of the effective action for pure quantum
gravity is given by

1
Ok = 5 Tr [Grdh Ry, — Tr[Groe R, - (3.9)

Here, 9; = kO, denotes the scale derivative, where k is the IR cutoff scale. G} = (F;f) +
Ry)~! is the fluctuation field propagator, while Ry, is the regulator, which suppresses
momenta below k. The trace sums over internal indices and integrates over space-time.
The introduction of cutoff terms leads to regulator-dependent modifications of STIs and
NIs that vanish for Ry — 0. The respective symmetry identities have hence been named
modified Slavnov-Taylor identities (mSTIs) and modified Nielsen- or split Ward identities
(mNIs/mSWTIs). The modification entails the breaking of the physical or quantum diffeo-
morphism invariance in the presence of a background covariant momentum cutoff. Still,
background diffeomorphism invariance is maintained in the presence of the cutoff term.

3.3.2. Vertex expansion

The effective action I'y[g, #] depends on the background metric g,,, and the fluctuation
superfield ¢ = (huw,cy, ), see (3.1), separately. The functional flow equation (3.9) is
accompanied by the functional mSTIs & mNIs for the effective action that monitor the
breaking of quantum diffeomorphism invariance, see (3.2) in Sec. 3.2. In order to solve
(3.9), we employ a vertex expansion around a given background g, to wit

- 1 6y bin) [
Telggl =S > Wrﬁ” “n) 15,0161, - i (3.10)

n=01ng4|=n

Here we have introduced the short-hand notation

(Biq - -bin) 1= 0"y, [ga ¢]
r.mrmig, 0 = —————— , (3.11)
A v o
which specifies one entry of the general fluctuation n-point function F,(Cn) = F,(Co’n) , see also

(3.3). Also we have introduces the tuple ng = (np,ne,...) that contains the number of
graviton legs ny, ghost legs n. in the respective n-point function. In the later chapters this
tuple will also contain the number of matter legs. In (3.10) the super-indices i; occurring
twice imply a sum over discrete indices and an integral over continuous variables In this
chapter, we include the full flow of the vertex functions up to the graviton three-point
function, while in the next chapter we will also include the graviton four-point function.

As discussed in Sec. 3.2, the expansion coefficients F,(Cn) satisfy mSTIs as well as mNIs

with I‘,(Cn’m) being defined in (3.3). For the sake of simplicity we now restrict ourselves to
the gauge fixing used in this dissertation, (3.6) with o = 0. Then the fluctuation graviton
propagator is transverse: it is annihilated by the gauge fixing condition.
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An important feature of the functional RG equations is that for o = 0 the flow equations
for the transverse vertices F,(Cn% are closed: the external legs of the vertices in the flow are
transverse due to the transverse projection of the flow, the internal legs are transverse as

they are contracted with the transverse propagator. Schematically this reads
T\ = Flowy! [{T {2} (3.12)

In other words, the system of transverse fluctuation correlation functions is closed and
determines the dynamics of the system. On the other hand, the mSTIs are non-trivial re-
lations for the longitudinal parts of vertices in terms of transverse vertices and longitudinal
ones. This leads us to the schematic relation

Iy = mSTIVHTE, {07}, (3.13)
see [367] for non-Abelian gauge theories. In consequence, the mSTIs provide no direct
information about the transverse correlation functions without further constraint. In the
perturbative regime this additional constraint is given by the uniformity of the vertices,
for a detailed discussion in non-Abelian gauge theories see [368].

Accordingly, our task reduces to the evaluation of the coupled set of flow equations
for the transverse vertices F,(cn% Each transverse vertex can be parameterised by a set of
diffeomorphism-invariant expressions. Restricting ourselves to local invariants and second

order in the curvature we are left with
R, R*, R,. (3.14)

The square of the Weyl tensor C? is eliminated via the GauB-Bonnet term, which is a
topological invariant. Higher-derivative terms, such as

R™ fo00 (V)R with  f(0) =0, (3.15)

are also taken into account. Without the constraint f(0) = 0, equation (3.15) also in-
cludes R? and wa, more details on this basis can be found in Sec. 3.4. Note that also
non-diffeomorphism-invariant terms are generated by the flow. In the next chapter we
will discuss all invariants which are included in the parameterisation of our vertices, see
Sec. 4.2.2.

For the background vertices F,(Cn’o) we use the following: the NIs become trivial in the
IR as we approach classical gravity. Moreover, for one of the two IR fixed points this
implies that the derivative with respect to a background field is the same as a derivative
with respect to a fluctuation field. This allows us to impose the trivial NIs in the IR,
and all couplings are related. Then, the couplings at £ > 0 follow from the flow equation.
However, for the fluctuation couplings this amounts to solving a fine-tuning problem in
the UV. This will however only be discussed in the extended four-point truncation in the
next chapter, see Sec. 4.4.

3.4. Flows of correlation functions

In this section we discuss the technical details of the covariant expansion scheme used in
this dissertation, including the approximations used and their legitimisation.

41



3. QUANTUM GRAVITY INTRODUCTION 3.4. FLOWS OF CORRELATION FUNCTIONS

XK}
—12 +12 —24 1
7N

Figure 3.1.: Diagrammatic representation of the flow of the vertex functions up to the
graviton four-point function. The flow of any n-point function depends on the
(n+1)- and (n+2)-point functions. Double and dotted lines represent graviton
and ghost propagators, respectively. All vertices are dressed and denoted by
filled circles. Crossed circles stand for regulator insertions. Symmetrisation
with respect to interchange of external momenta p; is understood.

3.4.1. Covariant tensors and uniformity

The flows of the n-point correlation functions are generated from the FRG equation (3.9)
by taking n-th order fluctuation field derivatives in a background g. In Fig.3.1 we display
the all flow equations up the four-point function in a diagrammatic language. In order
to solve the flow equation, we employ a vertex ansatz [325, 369] including the flow of
all relevant vertices up to the graviton three-point function in this chapter and up to
the graviton four-point function in the next chapter. This vertex ansatz disentangles the
couplings of background and fluctuation fields by introducing individual couplings A,, and
G, for each n-point function. These individual couplings are introduced at the level of the
n-point correlators and replace the cosmological constant A and Newton’s coupling G of
the classical Einstein-Hilbert action after performing the respective field derivatives. In
summary, for the flat background g, = 0, our vertex ansatz reads

n 1 n_q
T (p) = (H Zaﬂp?)) Gi ()T ) (p; An) (3.16)
i=1
where
T (i A) = G St (pi A = M), (3.17)

denote the tensor structures extracted from the classical gauge-fixed Einstein-Hilbert ac-
tion (3.4). The only flowing parameter in these tensors 7(?1-%n) is A, while G, (p)
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carries the global scale- and momentum dependence of the vertex. In the above equations,
P = (Ps,,---,Pg,) denotes the momenta of the external fields ¢; of the vertex.

Apart from their flow equations, the n-point functions in (3.16) also satisfy standard RG-
equations, see e.g. [188]. These RG-equations entail the reparameterisation invariance of
the theory under a complete rescaling of all scales including k. With the parameterisation
given in (3.16), this RG-running is completely carried by the wave function renormalisa-
tions Zy, (pzz) of the fields ¢;, see e.g. [327, 369]. Consequently, the G,, and A,, are RG-
invariant, and hence are more directly related to observables such as S-matrix elements.
This parameterisation of the vertices also ensures that the wave function renormalisations
never appear directly in the flow equations, but only via the anomalous dimensions

Ne: (P7) = —0n Zy, (p?) . (3.18)

Gn(p) is the gravitational coupling of the n-point function, while A, denotes the
momentum-independent part of the correlation function. In particular, As is related to
the graviton mass parameter M? = —2A,. Finally, all the parameters Zg;» G, and A,
are scale-dependent, but we have dropped the subscript k in order to improve readability.

In principle, all tensor structures, including non-diffeomorphism-invariant ones, are gen-
erated by the flow, but for our vertex functions we choose to concentrate on the classical
Einstein-Hilbert tensor structures in the presence of a non-vanishing cosmological con-
stant. Despite the restriction to these tensor structures, the n-point functions have an
overlap with higher curvature invariants via the momentum dependence of the gravita-
tional couplings. For example, the complete set of invariants that span the graviton wave
function renormalisation is given by

R, RWf@)

wpe (V)R (3.19)

where the superscript of f indicates that it is a covariant tensor contributing to the two-
point correlation function. Note also that we now drop the restriction on f present in
(3.15). Then, this invariant naturally includes R? and wa as the lowest order local
terms. If we also allow for general momentum-dependencies, the corresponding covariant
functions f are given by given by

2 2 2 1 2
T2 po = Oudpa PR (%), (2 =5 b +8udup) PR (=97 (3.20)

2
v MY PO

2)

2 are given by PSQ) = 1 and PI(%2 = 1, respectively.
mz

>
Note that (3.20) also allows for non-local terms in the IR, i.e. anomaly-driven terms with

The lowest order local terms, R? and R

PI(%QQ) = 1/V?, see e.g. [370]. In turn, higher curvature invariants do not belong to the set
of the graviton wave function renormalisation since they are at least cubic in the graviton
fluctuation field.

We resort to a uniform graviton propagator in order to limit the already large computer-
algebraic effort involved. The uniform wave function renormalisation is then set to be that
of the combinatorially dominant tensor structure, the transverse-traceless graviton wave
function renormalisation, thereby estimating the wave function renormalisations of the
other modes by the transverse-traceless one. Such uniform approximations have been
very successfully used in thermal field theory. There, usually the tensor structures trans-

verse to the heat-bath are used as the uniform tensor structure, for a detailed discussion
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see e.g. [371] and references therein. This approximation is typically supported by com-
binatorial dominance of this tensor structure in the flow diagrams. Indeed, as already
indicated above, the transverse-traceless mode gives the combinatorially largest contribu-
tion to the flow of the vertices computed here. Note that such an approximation would get
further support if the R tensor structures dominate the flows, which indeed happens in the
present computation. Within this approximation the R? tensor structures drop out on the
left-hand side of the graviton flow, since R is already quadratic in the transverse-traceless
graviton fluctuation field: in other words, the tensors defined by f1(~222) in (3.20) have no
overlap with the transverse-traceless graviton.
The set of invariants that span the gravitational coupling G3(p) is given by

R, R (VR7,  RVRFD (VIR (3.21)
Again, the invariants R? and R can be excluded from this set due to their order in
transverse-traceless graviton fluctuation fields. As we will see in the next chapter, G4(p)
is first coupling in our expansion scheme that has overlap with R? contributions and
higher terms in fglz). Furthermore, in Sec. 4.2.2 we will show that the by far dominant
contribution to G3(p) in the momentum range 0 < p? < k? stems from the invariant
R. We leave however this discussion for the next chapter and for the moment just use
this information to justify the approximation of a momentum independent three-point
Newton’s coupling, G3(p) = G, that is used in the remainder of this chapter.

3.4.2. Projection onto n-point functions

The flow equations for the couplings A, and G,, are obtained by the following projection
onto the flow of the graviton n-point functions 8,5I’,(€n). We use the classical Einstein-
Hilbert tensor structures 7 (p;A,) (cf. (3.17)) as a basis for our projection operators.
Furthermore, we project onto the spin-two transverse-traceless part of the flow, which
is numerically dominant. Moreover, classical transverse-traceless graviton propagator is
gauge independent and carries the only propagating degrees of freedom. This transverse-
traceless projection operator is then applied to all external graviton legs. The flow of
the couplings A,, is then extracted with the help of the momentum-independent part
of said tensor structures, namely Il 6 = 7™ (0;A,,)/A,. For the couplings G, we use
Ilg, = 7 (p;0)/p%. Dividing by A, and p? ensures that the projection operators are
dimensionless and scale-independent.

In principle, the flow of any n-point function depends on all external momenta p;,i €

{1,...,n}, where e.g. p,, can be eliminated due to momentum conservation. For the two-
point function, the momentum configuration is trivial, and only one momentum squared,
2

p~, needs to be taken into account. In contrast, this dependence becomes increasingly
complex for the higher n-point functions: The three-point function depends on three pa-
rameters (two momenta squared and one angle), the four-point function already depends
on six parameters, and so on. To simplify the computations, we use a maximally symmet-
ric (n—1)-simplex configuration for all n-point-functions, thereby reducing the momentum
dependence to a single parameter. In the context of Yang-Mills theories, this approxima-
tion has been shown to be in good agreement with lattice computations on the level of the
flow of the propagator [368]. Notably, in the symmetric momentum configuration all ex-
ternal momenta have the same absolute value p, and the same angles between each other.
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The scalar product of any two momenta in this momentum configuration then reads

néij—l 2

S (3.22)

bi-DPj =

where §;; denotes the Kronecker delta. Note that such a symmetric momentum configu-

ration only exists up to the (d + 1)-point function, where d is the dimension of spacetime.

In the following, the expressions Flow™ stand for the dimensionless right-hand sides of

the flow equations divided by appropriate powers of the wave function renormalisations.
More explicitly, we define

i

Z3 (p?) k>

(n) ¢, 2

i (3.23)
where the index ¢ represents the projection on some tensor structure. We use the trans-
verse-traceless projection operator Ili, the projection operators 1lg, and II5, mentioned
earlier for the graviton m-point functions, as well as the transverse projection operator
IIt for the ghost propagator. Note that the objects Flowgn) do not contain any explicit
factors of the wave function renormalisations Zy. Instead, their running appears via the
anomalous dimensions 7.

Last but not least, we choose to model the regulator functions R® on the corresponding
two-point functions at vanishing mass, i.e.

R (sz) — 1(%idi) (p?)

ro, (0} /K) . (3.24)
me, =0
Here, ry, (p?/k?) denotes the regulator shape function. For all fields we choose the Litim-
type flat regulator [372-375], to wit

r(z) = (:13_1 -1)e(1-2). (3.25)

This choice allows for analytic flow equations for all couplings that are evaluated at van-
ishing external momenta. Furthermore, we introduce the dimensionless couplings

w= M?k2, A = Apk™2, gn = Gpk?. (3.26)

At the UV and IR fixed points, the flow of these dimensionless couplings vanishes.

3.4.3. Flow equations for the couplings

In this section we explain the derivation the flow equations for the couplings from the
projected n-point functions of the last section.

The flow equations for x and 1, (p?) are extracted from the transverse-traceless part of
the flow of the graviton two-point function. We evaluate this two-point function at p? = 0
for Oyp, and bilocally at —uk? and p? for n;,(p?). The algebraic equation for 7.(p?) can
be obtained directly from the transverse part of the flow of the ghost two-point function.
The equations for the graviton and ghost anomalous dimensions are Fredholm integral
equations, that can be solved for instance with an iteration [327]. For details see also
App. B.5.

In the case of the couplings A, and g,(p?), we project onto the flow of the graviton
n-point functions. The flow equations for the couplings )\, are always obtained at p? = 0,
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since A, describes the momentum-independent part of the graviton n-point functions. For
A3 this leads to

(3 093 N 3)

with a normalisation factor Ny ! := T (0;1)oII3 0T (0; 1), where o denotes the pairwise
contraction of indices. A general form for all A, is given in (B.10).

In the case of the couplings g, (p?) it is technically challenging to resolve the full momen-
tum dependence in the flow. Thus, we resort to a further approximation of the momentum-
dependence. We have checked that this approximation holds quantitatively. First we note
that typically FRG-flows are strongly peaked at g =~ k due to the factor ¢ from the loop
integration and the decay for momenta g > k due to 9; Ri(q?). This certainly holds for all
the flows considered here. From this we can infer that we extract the leading contribution
to the flow diagrams if we feed g, (k?) back into the diagrams. In consequence we compute
only the flow equations for g, (k?), as they form a closed system of equations within the
given approximation. Most conveniently this is done with a bilocal projection between
p =0 and p = k. For g3 this leads to

Drgs = (24 3mn(k)gs — = (mn(K2) — mn(0)) Aags

19
+ 2N, /g5 k (Flowg”)(kQ) — Flow!? (0)) , (3.28)

with N = TG (k;0) o I3, o T (k;0). Another possibility is the evaluation with a
p?-derivative at p = 0. This procedure is less accurate in approximating the momentum
dependence of the flow. On the other hand, it allows for an analytic flow equation for the
couplings g,. The difference between these momentum projections is discussed in Sec. B.4.

In this chapter we further evaluate the coupling of the one-point function A1/\/g1 =

l}lel/ 2 / 14_:3, which is at vanishing external momentum. The background couplings g =
G k? and A = A/k? are evaluated we heat-kernel methods and are only discussed in the
next chapters.

3.5. Results

We now focus on the results obtained from the truncation including all n-point function
up to the graviton three-point function.

3.5.1. Locality

The functional renormalisation group is based on the idea of a successive integration of
momentum shells, or, more generally, spectral shells of spectral values of the given kinetic
operator. Hence, it relies on the distinction of small and large momentum or spectral
modes. A functional RG step implements the physics of momentum/spectral modes at a
given scale k and is inherently related to local interactions.

Locality in momentum space implies in particular that the flows of vertices at a given
momentum scale k decay relative to the vertex itself if all momentum transfers (momentum
channels) ¢; are taken to infinity. For example, for the four-point vertex we have t1, 9, t3
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Figure 3.2.: Logarithmic plot of the flows \8,51“22) | and lﬁtfég)| (solid red and light green
curves) and the corresponding ratios |8tI‘§€2)\ / |Fl(€2)| and |8tF§€3)| / ]Fl(f)| (dashed
orange and dash-dotted dark green curves) as functions of p?/k?. The norm
refers to the tensor projection discussed below (3.23). All quantities are eval-
uated at (g, 1, A3) = (1,0.1,—0.7). The flows are multiplied with 50 for con-
venience. The ratios decay with 1/p? for large p since the associated flows
quickly approach constant values, satisfying (3.29).

being the well-known s, ¢, u-channels, with e.g. s = (p1 + p2)?. Hence, locality reads
schematically

(n)
lim W =0, with p=(p1,...,pn), (3.29)
ti/k= oo |1y (p))
where a projection on one of the tensor structure of the vertex is implied. For the limit
(3.29) each diagram in the flow of a given vertex has an infinite momentum transfer. Thus,
the diagrams are only sensitive to fluctuations far above the cutoff scale.

It is easily proven that (3.29) applies to standard renormalisable quantum field the-
ories in four dimensions including non-Abelian gauge theories that involve momentum-
dependent couplings. In these theories, the locality property follows from power-counting
arguments. However, for perturbatively non-renormalisable theories in four dimensions
power counting suggests non-local flows and (3.29) must be a consequence of non-trivial
cancellations. In gravity this has been shown for the graviton propagator [325, 327].
It is also reflected in the symmetry relation between graviton diagrams contributing to
the Yang-Mills propagator [376]. Moreover, it is easily verified that a ¢*-theory with a
momentum-dependent coupling such as fx $20%¢? does not satisfy the locality condition
(3.29), as no cancellation between tensor structures is possible. This entails that momen-
tum locality in quantum gravity is linked to diffeomorphism invariance, and we conjecture
that it is indeed rooted in the latter.

Note that (3.29) does not hold, even for quantum field theories that are perturbatively
renormalisable in four dimensions, if some of the channels ¢;/k? stay finite: the flow always
involves diagrams with a finite momentum transfer. However, those diagrams correspond
to IR processes such as Bremsstrahlung, which is why they do not reflect the UV behaviour
of the theory. In summary the above discussion suggests that the relation (3.29) is a
necessary requirement for local quantum field theories.

In this section, we show that (3.29) also applies to the graviton three-point function.
Together with the momentum locality of the two-point function shown in [325, 327] this
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Finite difference Derivative
19, (P%) ng; =0 19, (P%) 1y, =0
g* 0.66 0.96 0.58 0.57
w —0.59 —0.35 —0.44 —0.16
A3 0.11 —0.024 0.028 —0.16
o NN 039 | 019 | 022 | 011
Critical exponents 1.44+4.11 2.1+£241 1.6 £5.51 1.5+ 1.8i
—14 —5.8 —6.5 -1.6
777777777777777777 22 |3 | 25 3

Table 3.1.: Properties of the UV fixed point for different momentum parametrisations,
namely using a finite difference of the flow and a derivative at p = 0. The
values acquired with the latter correspond to the analytic equations given in
(3.31). Note, that A;/,/g1 is a non-dynamical background coupling originating
from the graviton one-point function.

provides strong indications for the momentum locality of RG-gravity. Fig. 3.2 depicts
the momentum dependence of the flows for the graviton two- and three-point functions,
lﬁtF,gQ)| and yatr,§3)|, respectively as well as the corresponding ratios according to (3.29).

Since \&Fg)\ and \@FS)\ quickly approach constants, the ratios decay with 1/p? for large
momenta.

In order to prove (3.29) for the three point function, an arbitrary kinematic configuration
is used and parameterised by |p1], |p2| and the angle ¥12. The large momentum limit is then
characterised by |p1| = |p2| = p — co. Simple power counting of the momentum structure

of the flow leads to the naive expectation that limy, /5, FIOW(GS) ~ p?. In this case the ratio
in (3.29) would tend to a constant. However, an analytic asymptotic expansion around
p = oo shows that the p?-contribution vanishes identically in the large-momentum limit
by non-trivial cancellations between all diagrams of the graviton three-point function, see
Fig.3.1. As a consequence, lim,,/;_,, Flowg') tends to a constant and the ratio in (3.29)
vanishes. This is valid for all values of the angle 919, i.e. for all kinematic configurations.
For an explicit example see Fig. 3.2 for the symmetric momentum configuration. Fig. 3.2
further displays that (3.29) is also satisfied by the graviton two-point function, see also
[325, 327]. We conclude that locality is always satisfied by the flows of two- and three-
point functions. We emphasise again that it is indispensable that all external momenta
are taken to infinity. Indeed, for configurations with mixed UV-IR limit equation (3.29)
does not hold.

3.5.2. UV fixed point

Fixed points are defined by vanishing flows of all dimensionless dynamical couplings, that
is g3, A3 and p in the present setup. Most importantly, we find a UV fixed point with one
irrelevant direction that is approximately directed along the \3-axis.

We identify A3 = Ay = A5 and g3 = g4 = g5 in order to close the flow equations, and
use the notation g := gs. The UV fixed point described below is obtained with the finite
difference procedure, leading to the flow equations (3.28) and (3.27), as well as the one
for p already presented in [327]. The anomalous dimensions are evaluated with their full
momentum dependence. The fixed point values read

(g, 1%, \5) = (0.66,—0.59,0.11) , (3.30a)
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Figure 3.3.: Phase diagram for the couplings g, A3 and p in two different views. The phase
diagram was calculated using the analytic equations (3.31). The system ex-
hibits a non-trivial UV fixed point, F;, with two attractive and one repulsive
direction. The Gaussian fixed point and a non-trivial IR fixed point are de-
noted as Fy and Fj, respectively. The set of trajectories that approach F
constitutes two-dimensional UV critical hypersurface represented in gradient
colours.

with the critical exponents 61, 2 and 03 given by
(01/2,03) = (1.4 £4.11,—14). (3.30b)

Details on the computation of critical exponents are given in App. B.1. As already men-
tioned above, the UV fixed point (3.30a) has the interesting property that it is not fully UV
attractive: it exhibits two relevant and one irrelevant direction. In (3.30b), this is reflected
by two critical exponents with negative real parts, 1 and 6, and one with positive real
part, 03. The irrelevant direction of the UV fixed point (3.30a) is approximately directed
along the A3 axis. The critical exponents corresponding to the UV relevant directions of
the fixed points are complex, which accounts for a spiral behaviour of RG-trajectories in
the vicinity of the UV fixed point. Note, that #3 in (3.30b) is one order of magnitude
larger than 6, and 2. This kind of instability of critical exponents was also found in [282]
within f(R)-gravity. There, a convergence of the critical exponents to smaller values was
observed after the inclusion of higher order operators, i.e. higher powers R". Similarly, we
expect A3 to become smaller, if dynamical couplings g4 and A4 are included and we will
check that explicitly in the next chapter.

3.5.3. Global phase diagram and analytic flow equations

The flow equation (3.28) does not have a closed analytic form. However, for a more
accessible presentation, analytic flow equations are favourable. An analytic expression for
0O:g is obtained by taking a derivative of FIOW(G3 ) with respect to p? at p = 0. We stress, that

this method is considerably less accurate in modelling the momentum dependence of the
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flow. Nonetheless, the resulting analytic flow equation for g shares the main features with
(3.28). This even holds for all anomalous dimensions set to zero, 14, = 0. Tab.3.1 displays
the properties of the non-trivial fixed point as obtained from the different methods.

The analytic flow equations for the presented vertex flow of gravity with n4, = 0 are
given by

8g% [ 584\3 — 9102 + 445)\3 — 292 47
Org = 29 + o9 3 3 . 3 4 _ 5
197 15(p+ 1) 8(u+1)
5 864A3 + 13373 — 11203 + B 6023 — 58X3 — 15
8 6(p+1)* 6(p+1)3 ’
OpA3 = — <1+atg> As+ 2 G-+ — AN - ds 13N 48
29 ™ (p+ 1) (p+1)3 (w+1)? 5)7
29 (1603 =83+ T 2X\3—1
Ot = —2p + — 4 -1,
T ( Bt 1P (ut 1)

O <>\1> = —3£ + Vo <1 + 4) . (3.31)
NG Vor o 2m \(p+1)2 3

Fig. 3.3 shows the phase diagram for the couplings (g, i, A\3) as calculated from (3.31).
The purple lines are trajectories along the flow that terminate at the non-trivial UV fixed
point Fj. The set of all trajectories constitutes the two-dimensional critical hypersurface
represented in gradient colours. In the IR, the trajectories flow towards F3 = (0, 0o, —00)
or, alternatively, towards (0o, 00, —00). The IR fixed point F3 was also observed in [327].
In the vicinity of Fj all couplings scale classically since for ;1 — oo the loop contributions to
the flow tend to zero. Neither the trivial Gaussian fixed point F5, nor the third, non-trivial
IR fixed point, which was first found in [327] and is located at (0, —1,00), are reached by
any UV-finite trajectory in the presented setup. For the latter, this is expected to change
if the vertices are expanded about a non-flat background [258].

3.6. Summary

In this chapter we have presented the first computation of a genuine dynamical Newton’s
coupling based on a vertex flow. The dynamical parameters are the graviton-mass pa-
rameter p, Newton’s coupling g derived from the graviton three-point function, and the
coupling Az of its momentum-independent part. The full momentum-dependence of the
propagators is encoded in anomalous dimension, 7, (p?) and 7.(p?). The flows of these
quantities constitute a minimally self-consistent truncation of the system of dynamical
couplings in quantum gravity. In the UV we found a fixed point with two relevant and one
irrelevant direction, the latter being approximately directed along the As-axis. This hints
at a finite dimensional critical UV-surface, and supports the asymptotic safety scenario.

We have introduced the property of momentum locality for vertex flows. It is suggestive
that this property is a necessary requirement for local quantum field theories. We have
shown that it is non-trivially realised for the graviton two- and three-point functions, being
linked to diffeomorphism invariance.
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4. Towards apparent convergence in
asymptotically safe quantum gravity

4.1. Introduction

In the last chapter the systematic vertex expansion in quantum gravity has been pushed
to the graviton three-point function, for the first time including a dynamical graviton-
scattering in the asymptotic safety analysis. In this chapter we extend the vertex expansion
to the graviton four-point function. Apart from the significant technical challenge such an
upgrade of the approximation has posed, we think that this constitutes a necessary and
significant progress towards asymptotically safe gravity:

e As such it is an important step towards apparent convergence of the vertex expan-
sion in quantum gravity: apparent convergence aims at the convergence of vertices
as well as observables in the order of a given systematic expansion scheme; here
we use the vertex expansion scheme. Together with the investigation of the regula-
tor (in-)dependence of observables this provides a systematic error estimate in the
present approach, and should be compared with apparent continuum scaling and
extrapolation on the lattice.

e The present approximation allows for the identification of diffeomorphism-invariant
structures in the vertex expansion, i.e. R? and wa tensor structures as well as
those of higher derivative invariants. This is not only important for getting access
to the number of relevant directions at the asymptotically safe UV fixed point in
quantum gravity, but can also provide non-trivial support and additional information
for computations within the standard background field approximation.

e [t is the first approximation in the asymptotic safety approach to gravity where
the flow of the pivotal building block, the two-point correlation function or (inverse)
propagator, is closed: The flows of all involved vertex functions are computed within
given approximations. As the propagator is the core object in the present approach,
we consider this an important milestone on the way towards asymptotically safe
quantum gravity.

As a main result of this chapter, we find further significant evidence for a non-trivial
UV fixed point in quantum gravity. This fixed point has three relevant directions and
two repulsive ones. The three relevant directions can be associated with the cosmological
constant (graviton mass parameter), Newton’s coupling and the R2-coupling, see Sec.4.3.
We also investigate the stability of this UV fixed point and observe that the system is
significantly less sensitive to the closure of the flow equations than previous truncations.
In addition, we observe that the critical exponents also become less sensitive to the details
of the approximations. These are two necessary signatures of apparent convergence. Fur-
thermore, we investigate the IR behaviour of the system and find trajectories connecting
the UV fixed point with classical general relativity in the IR.



4. TOWARDS APPARENT CONVERGENCE 4.2. FLOWS OF CORRELATION FUNCTIONS

4.2. Flows of correlation functions

In this section we recap some details from the previous chapter and specify the some of
the details to the present truncation of the graviton four point function

4.2.1. Recap

In the last chapter we have introduced the schematic vertex expansion for the functional
renormalisation group equation, see Sec. 3.3.2, We have detailed that the momentum
dependent coupling G3(p) has in principle overlap with

(V)R®,  R™Rf® (V)R (4.1)

R, RM f(3) ot

nvpo
where the invariants R? and R? can be excluded due to their order in transverse-traceless
graviton fluctuation fields, see also (3.21). Consequently we need to include the graviton
four-point function and thus the coupling G4(p) in order to have an overlap with R2. For
G4(p) we find that the set of invariants is spanned by

1% loa v lol 4 W v o w 4
R, R fﬁ(LZlL’)pU(v)Rp ) R™RP f/su),l)owg(v)R C’ RMRPPR Cf/(w),oaw(fﬂ(v)?gn’)
4.2

where again the invariants R? and R* can be excluded.

In the next section we will investigate the momentum dependence of the flow of the
graviton n-point functions. We will show that the by far dominant contribution to G3(p)
in the momentum range 0 < p? < k? stems from the invariant R. All higher momentum
dependencies of the graviton three-point function are covered by the momentum depen-
dence of the graviton wave function renormalisation. In terms of (3.20) it implies that the
dominant tensor structure for the transverse-traceless mode is given by f 1(%3) with PI(%S) =1.
The wa tensor structure vanishes approximately, see (4.4). This gives support to the ap-
proximation of a momentum independent coupling GG3 as used in the last chapter.

In contrast to the situation for the two- and three point function, the R? invariant over-
laps with our transverse-traceless projection for the graviton four-point function. Indeed,
its flow receives significant contributions from the invariant R?. It follows that for the
graviton four-point function R is not the only dominant invariant in the momentum range
0 < p? < k2, as we show in Sec. 4.2.2. In consequence we either have to disentangle
contributions from R and R? tensor structures in terms of an additional tensor structure
or we resolve the momentum dependence of G4(p). Here we follow the latter procedure,
see Sec. 4.2.4 for details.

4.2.2. Momentum dependence of the graviton n-point functions

We now investigate the momentum dependence of the flow of the graviton n-point functions
as defined in equation (3.23). We restrict ourselves to the momentum range 0 < p? < k?
as well as to the transverse-traceless part of the graviton n-point functions.

The first non-trivial result is that the flows of the graviton three- and four-point functions
projected on the tensor structure of the gravitational coupling and divided by (-5, (p?)—
n + 2) are well described by a polynomial in p?, provided that the couplings A, are small

Flow(GS) (p?) 9 Flowg ) (»*)
— = aqg+a1p’, —%b0+b1p2—|—b2p4, 4.3
—3nn(p?) — 1 —2n,(p?) — 2 (43)
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Figure 4.1.: Momentum dependence of the flow of the graviton three-point function
(left) and the graviton four-point function (right) divided by (—2%n,(p?) —
n + 2) as defined in (4.3). The flows are evaluated at (u, A3, A1, 93,94) =
(—0.4,0.1,-0.1,0.7,0.5) and A¢ = A5 = A3 as well as gg = g5 = g4. The flows
have such a simple polynomial structure as long as all couplings A, remain
small, i.e. |\,| < 1. Importantly, the inclusion of a p* term in the left panel of-
fers no significant improvement. Note that the constant parts of the functions
are irrelevant for the beta functions since they are extracted from a different
tensor projection. For p? > k? the momentum dependence of the flows is not
polynomial anymore.

with some constants a; and b; that depend on the evaluation point in theory space. This
momentum dependence is displayed in Fig.4.1. We emphasise that these equations only
hold in the momentum range 0 < p? < k2, if the flow is generated by Einstein-Hilbert
vertices, and if the constant parts of the vertices are small, i.e. [A\,| < 1. If the condition
of small )\, is violated, then the flow as in (4.3) is non-polynomial. We did not compute
the flow generated by an action including higher curvature terms, however, we suspect
that the flow will still be polynomial but possibly of a higher degree.

It is important to note that the graviton three- and four-point functions have a different
highest power in p?. This is a second non-trivial result for the following reasons: as

already mentioned before, the coupling g3(p?) has an overlap with R and wa, and higher

derivative terms in fg;) , but not with any R? tensor structures in fl(%gg), cf. (3.20). For
nv

example, the generation of wa with PI(;) = 1 would manifest itself in a p*-contribution

m
to the flow of the graviton three-point function. Eq.(4.3) and Fig. 4.1 show that such a
p*-contribution as well as higher ones are approximately vanishing. This demonstrates in
particular that the generation of wa is non-trivially suppressed. In other words,

f}%’u ~0, (4.4)

where the superscript indicates the three-graviton vertex.

On the other hand, the projection on g4(p?) overlaps with R, R?

v
and the related higher derivatives terms in fl(;g) and f 15242). It also overlaps with curvature
nv

R? tensor structures,

invariants to the third power with covariant tensors such as f }(%43) and similar ones. Note
nv

that it has no overlap with fl(é).
Similarly to possible p*-contributions for the three-graviton vertex, pS-contributions
and even higher powers in p? could be generated but are non-trivially suppressed. The
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p*-contribution to the flow, which is described in (4.3) and displayed in Fig.4.1, could stem
from either R? or wa tensor structures. Now we use (4.4). It entails that the graviton
three-point vertex does not generate the diffeomorphism invariant term Riy although
it has an overlap with it. This excludes wa as a relevant UV direction, which would
otherwise be generated in all vertices. This statement only holds if we exclude non-trivial
cancellations of which we have not seen any signature. Accordingly we set

T, =0, (4.5)

and conclude that this p*-contribution or at least its UV-relevant part stems solely from
R?. It may be used to determine f](é).

In summary, the above statements about the momentum-dependencies are highly non-
trivial and show that R2-contributions are generated while Riy and other higher derivative
terms are strongly suppressed. These non-trivial findings also allow us to determine the
most efficient way to project precisely onto the couplings of different invariants. This is
discussed in Sec.4.2.5.

We close this section with a brief discussion of the effect of higher derivative terms on
perturbative renormalisability and the potential generation of massive ghost states. As
already discussed in [82] in a perturbative setup, it is precisely the wa term that makes the
theory perturbatively renormalisable. However, in this setup it gives rise to negative norm
states. On the other hand, the R? term neither ensures perturbative renormalisability, nor
does it generate negative norm states. This is linked to the fact that the R? term does
not contribute to the transverse-traceless part of the graviton propagator. Consequently,
the non-trivial suppression of wa tensor structures might be interpreted as a hint that we
do not suffer from massive ghost states. However, a fully conclusive investigation requires
the access to the pole structure of the graviton propagator, and hence a Wick rotation.
Progress in the direction of real-time flows in general theories and gravity has been made
e.g. in [299-302, 377-381].

4.2.3. Higher-order vertices and the background effective action

The results in the last section immediately lead to the question about the importance of
the higher-order covariant tensor structures like e.g. frn that have no overlap with the
graviton n-point functions computed in this chapter. These are potentially relevant for
the flows of G5 and Gg. These tensors have been dropped here, thus closing our ver-
tex expansion. However, we may utilise previous results obtained within the background
field approximation for estimating their importance: first we note that R? gives rise to a
new relevant direction, as we will show in Sec. 4.3.1. This has also been observed for the
background field approximation [269, 271, 272, 274, 281]. There it has also been shown
that the critical dimensions of the R"-terms approximately follow their canonical count-
ing [281]. Furthermore, our results so far have sustained the qualitative reliability of the
background field approximation for all but the most relevant couplings. Indeed, it is the
background field-dependence of the regulator that dominates the deviation of the back-
ground approximation from the full analysis for the low order vertices, and in particular
the mass parameter u of the graviton. This field-dependence is less relevant for the higher
order terms. Thus, we may qualitatively trust the background field approximation for
higher curvature terms. This means that they are of sub-leading importance and can be
dropped accordingly.
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Finally, the above findings together with those from the literature suggest that an
Einstein-Hilbert action is generating a diffeomorphism-invariant R? term but not an Riy
term in the diffeomorphism-invariant background effective action I'y[g] = T'xlg,¢ = 0].
Moreover, no higher-derivative terms are generated if a non-trivial wave function renor-
malisation Zj(p?) and graviton mass parameter u = —2\y are taken into account. Note
that this only applies for an expansion with p? < k2. This is a very interesting finding as it
provides strong non-trivial support for the semi-quantitative reliability of the background
approximation in terms of an expansion in R for spectral values smaller than k? subject
to a resolution of the fluctuating graviton propagator: p and Z; have to be determined
from the flows of the fluctuation fields or in terms of the mNIs.

4.2.4. Flow equations for the couplings

We obtain the flow equations for the couplings the n-point function, that are contracted
with the projection operators as described in Sec. 3.4.2. The flow equations for the cou-
plings up to graviton three-point function remain unchanged compared to the last chapter
and the procedure how we obtain them is described in Sec. 3.4.3.

We have to emphasise again that the momentum dependence of the flow for g3(p?) is
trivial, see Fig.4.1. This allows for an easy extraction of the momentum dependence and
as in the last chapter we use a bilocal projection between p = 0 and p = k. From this
we obtain an equation for g3(k?). In contrast, the flow of the graviton four-point function
exhibits a p* contribution, implying a non-trivial g4(p?). This makes the extraction of the
momentum dependence more tricky. Still we obtain the flow equation for g4(k?) from a
bilocal momentum projection at p?> = 0 and p? = k2, but this uses a further approximation
that relies on the fact that the coupling A4 remains small. We refer to this equation as a
bilocal equation. It is explicitly displayed in App. B.5, see equation (B.11). Within our
setup this equation gives the best approximation of the vertex flows since it feeds back
the most important momentum information into the flow. This further entails that the
coupling g4(k?) includes information about the invariants R and R%. In the next section
we also show a trilocal momentum projection that disentangles the contribution from R
and R?, but consequently feeds less information about the vertex flow back.

The flow equation for A4 is obtained from the momentum independent part of the
graviton four-point function and is explicitly displayed in App. B.5

4.2.5. Disentangling R and R? tensor structures

In this section we present projection operators that disentangle contributions from R and
R? tensor structures to the flows of the couplings g,(p?). In the present setup this only
allows us to switch off the R? coupling and thus to check the importance of the R? coupling.

For the disentanglement, we have to pay attention to two things: First of all, a local
momentum projection at p? = 0 is very sensitive to small fluctuations and in consequence
not very precise with regard to the whole momentum range 0 < p? < k2. This is explicitly
shown in App. B.4. Hence, we have to rely on non-local momentum projections. Here
the highest polynomial power of p?, as indicated in (4.3), dictates the simplest way of
projecting on the p?-coefficient. The graviton three-point function is at most quadratic
in the external momentum, and consequently it is enough to use a bilocal projection at
p? = 0 and p? = k2. The resulting equation (B.12) can be found in App. B.5.
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The graviton four-point function, on the other hand, has p? as its highest momentum
power, i.e. it is of the form

f(p?) = bo + by p* + by p*, (4.6)

see also (4.3). Thus a bilocal momentum projection would not extract the p? coefficient
by alone. Instead, we use a trilocal momentum projection at p?> = 0, p?> = k2/2, and
p?> = k? in order to solve the above equation for b;. Consequently we solve a system of
linear equations and obtain

by = —3f(0) +4f(k*/2) — f(k?). (4.7)

The resulting flow equation (B.13) is again presented in App. B.5.

For even higher order momentum contributions we would have to use even more points of
evaluation. These momentum projections together with the observation of (4.3) guarantee
that we project precisely on the p? coefficient in the whole momentum range 0 < p? < k2.

A natural upgrade of the current approximations amounts to the introduction of a
second tensor structure that is orthogonal to the Einstein-Hilbert one in terms of these
projections. Within our uniformity assumption this is considered to be sub-leading, and
the momentum-dependence of g4(p?) takes care of the contribution of the R? tensor struc-

ture f ](;2). While the orthogonal projection on the respective flow is simple, its back-feeding
demands a two tensor structure approximation of the three- and four-graviton vertex in
the flow, the implementation of which is deferred to future work.

Here, we only perform a further check of the relevance of the R? tensor structure. This
sustains the fact that the inclusion of the four-graviton vertex with its contribution of the
R? tensor structure leads to an additional UV-relevant direction. To that end we generalise
our ansatz for the graviton four-point function such that we can extract a flow equation
for both the Einstein-Hilbert tensor structure as well as for the R? tensor structure. As
already mentioned above, we cannot feed the generated coupling back into the flows, since
they are given by vertices with Einstein-Hilbert tensor structures. Instead we compute
the fixed point value that arises only from the Einstein-Hilbert tensor structures.

As the ansatz for the transverse-traceless graviton four-point function we choose

%) = Z20A)Ga (CFina + CGip? + CGiu') | (4.8)

which is precisely the vertex that emerges from the sum of Einstein-Hilbert tensor structure
and R? tensor structure. The related generating diffeomorphism-invariant action for this
four-graviton vertex is

1 4 2
= Q 4.
S SEH+167FGN/d 2 /gQR?, (4.9)

where Sy is defined as in (3.4). The flow of €4 is then obtained by the trilocal momentum
projection described below (4.6). For by we obtain

by = 2f(0) — 4f(K%/2) + 2f(k?). (4.10)

The explicit form of the resulting flow equation (B.14) for the dimensionless coupling
wq = Quk? is given in App. B.5. Note that in the present approximation, the flows do not
depend on the coupling wy since it does not feed back into the vertices.
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4.2.6. Computational details

The computations of correlation functions described in this section involve contractions of
very large tensor structures. To give a rough estimate: the classical Einstein-Hilbert three-
point vertex alone consists of around 200 terms, and the classical graviton propagator of
7 terms. For the box diagram of the flow of the graviton four-point function, displayed in
Fig. 3.1, this results in a total number of approximately 200% - 74 ~ 4 - 10'2 terms, if no
intermediate simplifications are applied.

These contractions are computed with the help of the symbolic manipulation systems
FORM [382, 383] and Mathematica. For individual tasks, we employ specialised Mathe-
matica packages. In particular, we use zPert [384] for the generation of vertex functions,
DoFun [385] to obtain symbolic flow equations, and the FormTracer [386] to create opti-
mised FORM scripts to trace diagrams.

4.3. Asymptotic safety

In this section, we discuss the UV fixed point structure of our system. We first present our
best result, which includes the tensor structures as presented in Sec.3.4.1 and in particular
in (3.19) and (3.21). The underlying UV-relevant diffeomorphism invariants turn out to
be A, R, and R?. The R? coupling is included via the momentum dependence of the
gravitational coupling g4(p?), see Sec.4.2.2. As a main result we find an attractive UV
fixed point with three attractive directions. The third attractive direction is related to the
inclusion of the R? coupling.

We further analyse the stability of this UV fixed point with respect to the identification
of the higher couplings. We also analyse the previous truncation from Chapter 3 and
compare the stability of both truncations. Here we find that the improvement of the
truncation increases the stability of the system. In particular, we find a rather large
area in the theory space of higher couplings where the UV fixed point exists with three
attractive directions throughout.

Lastly, we discuss the importance of the R? coupling. In Sec.4.2.5 we have constructed
projection operators that disentangle the contributions from R and R? tensor structures.
This allows us to switch off the R? coupling and compare the stability of the reduced
system to that of the full system. We find that the reduced system is significantly less
stable, and that the area in the theory space of higher couplings where the fixed point
exists is rather small. This highlights the importance of the R? coupling.

4.3.1. UV fixed point

In this section we display the UV fixed point structure of our full system. This means that
we feed back the generated R? coupling via the momentum dependence of the gravitational
coupling g4(p?), as discussed in Sec. 4.2.2. Fixed points are by definition points where the
flows of the dimensionless couplings vanish. In consequence, we look for the roots of the
equations (B.7), (B.10), (B.12), and (B.11). We use the identification scheme g5 = g5 = g4
and A\g = A5 = A\3. We find a UV fixed point at the values

(1, N5, A%, gt gb) = (—0.45, 0.12, 0.028, 0.83, 0.57) . (4.11)

The fixed point values are similar to those of the previous truncation in the last chapter,
see (3.30a). The biggest change concerns the graviton mass parameter, which is now less
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negative and thus further away from its pole. Moreover, it is remarkable that the new
couplings A4 and g4 are close to their lower counterparts A3 and g3, but not at precisely
the same values. Since we use the difference between these couplings to parameterise the
breaking of diffeomorphism invariance, this is more or less what we expected. This issue
is further discussed in the next section.

We do not have access to the full stability matrix of the UV fixed point due to the
unknown flow equations of the higher couplings. For this reason, we discuss two dif-
ferent approximations of the stability matrix. The main difference between these two
approximations concerns the order of taking the derivatives and identifying the higher
couplings, which is explained in more detail in App. B.1. We argue that in a well con-
verged approximation scheme the most relevant critical exponents should not depend on
the approximation of the stability matrix. Thus, we can use the two different approx-
imations to judge the quality of the current level of truncation. We define the critical
exponents as minus the eigenvalues of the stability matrix. We call the critical exponents
of the first approximation 6;, and the ones of the second approximation 6;. The critical
exponents using the first approximation are given by

0; = (4.7, 2.0 £ 3.11, —2.9, —8.0), (4.12)

while the critical exponents using the second approximation are

f; = (5.0, 0.37 £2.4i, —5.6, —7.9). (4.13)

Hence this fixed point has three attractive directions in both approximations of the sta-
bility matrix. The third attractive direction compared to the system of the graviton
three-point function, cf. (3.30b), is related to the fact that the graviton four-point func-
tion has an overlap with R?, which we feed back via the momentum dependence of the
gravitational coupling g4(p?). The R? coupling has also been relevant in earlier compu-
tations with the background field approximation [269, 271, 272, 274, 281]. In addition,
note that the most attractive eigenvalue is almost identical in both approximations of the
stability matrix. This is a positive sign towards convergence since it is expected that the
lowest eigenvalue is the first that converges, cf. App. B.1.
Furthermore, the anomalous dimensions at the UV fixed point read

(107:.(0), i (E%), n5(0), ni(k*)) = (0.56, 0.079, —1.28, —1.53), (4.14)

where we have chosen to display the anomalous dimensions at the momenta that feed back
into the flow. All anomalous dimensions stay well below the reliability bound 7, (p?) < 2,
which we will introduce later in Chapter 6.

4.3.2. Stability

In the following we investigate the UV fixed point from the previous section by varying the
identification of the higher couplings. Again we look for the roots of the equations (B.7),
(B.10), (B.12), and (B.11). These equations however still depend on the higher couplings
gs, g6, A5, and Ag. We have to identify these couplings with the lower ones or set them to
constants in order to close the flow equations.

It is a natural choice to simply set these higher couplings equal to lower ones, e.g.
g = g5 = g3 and A\g = A5 = A3, as done in the previous section. The couplings would

o8



4. TOWARDS APPARENT CONVERGENCE 4.3. ASYMPTOTIC SAFETY

fulfil this relation exactly in a fully diffeomorphism invariant setup. However, such a
diffeomorphism invariant setup is not at hand. In fact, we can parameterise the breaking
of diffeomorphism invariance via these couplings, e.g. by writing g, = g3 + A,,. Here
we have designated g3 as a reference coupling since it is the lowest genuine gravitational
coupling. For this reason, it is also the most converged gravitational coupling within this
vertex expansion, thus justifying this choice. In general we expect Ay, to be small and
in consequence we vary the identification of the higher couplings only in this part of the
theory space of higher couplings. The quantity A,, is indeed small at the UV fixed point
presented in the last section, see (4.11). More precisely, it takes the value |Ay, /g3| = 0.3
at this UV fixed point.
In this analysis we choose to identify

g5 = 1 93, g6 = 2 g3, (4.15)

and A\g = A5 = A3 for simplicity, and investigate the existence of the UV fixed point as a
function of the parameters a; and aq. In Fig. 4.2 the area where an attractive UV fixed
point exists is displayed in blue. In the left panel, this is done for the previous truncation
(1, A3, g3), see Chapter 3, and in the right panel for the current truncation (u, A3, A4, g3, g4)-
At the border of the blue area the UV fixed point either vanishes into the complex plane
or loses its attractiveness. Remarkably, both areas are rather large, suggesting that the
existence of the UV fixed point is quite stable. Even more conveniently, the area increases
with the improved truncation, suggesting that the system is heading towards a converging
limit. Note that the number of attractive directions of the UV fixed point is constant
throughout the blue areas, namely two in the left panel and three in the right panel.

We further analyse the fixed point values that occur within the blue area in the right
panel of Fig. 4.2. Interestingly, the fixed point values are rather stable throughout the
whole area where the UV fixed point exists. More precisely, they stay within the following
intervals:

it € [=0.72, —0.19] , AL € [-0.018, 0.29] A e[-1.2,0.12],
g5 €[0.22,1.4], g €[0.11, 0.97]. (4.16)

Hence, in particular the fixed point value of A3 is already confined to a very small interval,
and also a very small number. The latter is important since some of our approximations
rely on the fact that the A, are small, see Sec. 4.2.2. The fact that \] is varying more
strongly than A3 is not surprising since we expect A3 to be better converged, being a
lower coupling. The fixed point values of g3 and g4 seem to try to compensate the change
induced by the identification. Thus, g5 and g; become larger towards the identification
gé = g5 = 0 and smaller towards gs = g5 = 2g3. The shape of the area in the left panel
in particular suggests the relation g; < g3, which is fulfilled by the improved truncation
almost throughout the whole area where the fixed point exists. This is indeed a non-trivial
prediction that has been fulfilled by our approximation scheme.

A further study of the dependence of the UV fixed point properties on the choice of
identification is given in App. B.3.

4.3.3. Importance of the R? tensor structure

In the previous subsection we have fed back the R? contributions to the flow via the
momentum-dependent gravitational coupling g4(p?). In order to check the quality of our
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Figure 4.2.: Plots of the existence of an attractive non-trivial UV fixed point (blue) de-
pendent on the higher couplings. Left: The system (u, A3, g3), see also Chap-
ter 3, dependent on the higher couplings g4 and gs. Right: The system
(1, A3, A4, g3, g4) dependent on the higher couplings g5 and g¢. The higher
couplings Ap>n,.. are always identified with A3. The blue area marks the
region where an attractive UV fixed point was found. At the border of this
area the fixed point either vanishes into the complex plane or loses its attrac-
tiveness. In both systems the area where the fixed point exists is rather large
and contains the identification ¢gp>n,,.. = g3. Conveniently, the area increases
for the better truncation, indicating that the system becomes more stable
with an improvement of the truncation. The number of attractive directions
is uniformly two in the left panel and three in the right panel.

approximation and to investigate the influence of the R? tensor structure on the fixed
point structure of the system, we switch off the R? contribution in this section. We do
the latter by projecting onto the p? part of the flow via a trilocal momentum projection
scheme, cf. Sec.4.2.2 and Sec. 4.2.5. This is both an examination of the influence of R?
on the results presented in the previous subsections, as well as a proof of concept for
disentangling the tensor structures of different invariants. Our analysis in this subsection
suggests that leaving out the contribution of R? leads to significantly less stable results.

In Fig.4.3 we display the result for the same analysis as in the previous section, but with
the trilocal equation (B.13) for g4 instead. We find two fixed points with rather similar
fixed point values. However, we are only interested in identifying the area in the theory
space of the higher couplings where at least one UV fixed point exits. Thus, we unify both
areas and obtain the blue area displayed in Fig.4.3. This area forms a rather narrow band
whose total area is significantly smaller than for the momentum dependent gravitational
coupling g4(p?), cf. Fig. 4.2. The identification g5 = g5 = g3 also does not lie within
these regions, but just outside of them. Since we switched off the R? contribution, a less
stable fixed point structure was to be expected, and consequently these results highlight
the importance of the R? coupling.
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Figure 4.3.: Plot of the existence of an attractive non-trivial UV fixed point (blue) de-
pendent on the higher couplings g5 and gg. Here, the trilocal equation for
the gravitational coupling g4 was used, which allows us to switch off the R?
coupling. We found two different fixed points with rather similar fixed point
values. Each fixed point has its own area of existence in the theory space
of the higher couplings. The blue area marks the unified area of both fixed
points. Nevertheless, the area is significantly smaller than the areas displayed
in Fig.4.2. This reflects the importance of the R? coupling.

4.4. IR behaviour

In this section, we discuss the IR behaviour of the present theory of quantum gravity. We
only consider trajectories that lie within the UV critical hypersurface, i.e. trajectories that
are UV finite, and which end at the UV fixed point presented in (4.11) for £ — oco. In this
section we use the analytic flow equations given in App. B.6 for simplicity, and set the
anomalous dimensions to zero, i.e. g = 0. This approximation gives qualitatively similar
results, as discussed in App. B.4.

In the IR, it is particularly interesting to examine the background couplings g and A. In
the limit £ — 0 the regulator vanishes by construction and the diffeomorphism invariance
of the background couplings is restored. Hence they become observables of the theory.
The flow equations for the background couplings are displayed in App. B.2.

In general we look for trajectories that correspond to classical general relativity in the
IR. This implies that the quantum contributions to the background couplings vanish and
in consequence that they scale classically according to their mass dimension. The classical
scaling is described by

g, 93, g4 ~ k2a 5‘7 22 )\37 )\4 ~ k_Q . (417)

We use the classical scaling in the flow from the UV fixed point to the IR in order to set
the scale k in units of the Planck mass Mp,. We need to find a large enough regime where
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Figure 4.4.: Examples of UV finite trajectories from the UV fixed point (4.11) towards
the IR. In the left panel all couplings scale classically below the Planck scale
and reach their UV fixed point values shortly above the Planck scale. In
the right panel some couplings show non-classical behaviour even below the
Planck scale, which is triggered by the graviton mass parameter p flowing
towards the pole of the graviton propagator at u© = —1. However, in this case
the numerics break down at k =~ 0.02Mp, due to competing orders of the factor
(1 4+ ) close to the singularity at 4 = —1. The trajectories in both panels
correspond to theories that behave like classical general relativity in the IR.
Note that some couplings are plotted shifted or with a minus sign in order to
keep them positive over the whole range.

G ~ k72, This entails that Newton’s coupling is a constant in this regime and sets the
scale k via Gy = Mp,2 = gk~ 2.

In Fig.4.4, two exemplary trajectories are displayed. In the left panel all couplings scale
classically below the Planck scale and reach their UV fixed point values shortly above the
Planck scale. All quantum contributions are suppressed simply by the fact that p — oo.
In the right panel on the other hand some couplings exhibit a non-classical behaviour
even below the Planck scale, which is triggered by the graviton mass parameter u flowing
towards the pole of the graviton propagator at u = —1. This entails that the dimensionful
graviton mass parameter M? = pk? is vanishing in the IR. This IR behaviour is analogous
to the one observed in [327], and recently also [301]. Remarkably, not only p is behaving
non-classically but also A3, even though it is not restricted by any pole. However, in this
scenario the numerics break down at k = 0.02Mp, due to competing orders of the factor
(1 + ) close to the singularity at u = —1.

In the left panel we have tuned the background couplings g and X so that they are equal
to the lowest corresponding fluctuation coupling in the IR, i.e. § = g3 and A = Ao = —p1/2
for k < Mp,. This is equivalent to solving a trivial version of the Nielsen identities (NIs).
Since all quantum contributions are suppressed by the graviton mass parameter going to
infinity in the IR, p — oo, the NI in (3.2) reduces to

0C[g,h] _ oT'[g, ]
00w Ohuw

for w—>o00 & k—0. (4.18)

In consequence, we should see that all couplings coincide in this limit, § = g,, and A = \,,.
This is not the case in the left panel of Fig.4.4 since we have only fine tuned the background
couplings, and thus we have two further degrees of freedom that could be used for fine-
tuning, stemming from the three dimensional UV critical hypersurface.
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System I A3 ANl 95 0 Di
0;
[ty g3, A3 —0.57 0.095 0.62 1.3+4.11 —12
73 —35 —74
L, g3, A3, Ga —0.53 0.086 0.74 0.67 2.1+38i -36 -—11
0.75+151 —7.8+3.5i
L g3, Az, M —0.58 0.17 0.032 0.48 41  035+26i —8.3
62 1.8 —34 -88
1, g3, A3, G4, Aa —0.45 0.12 0.028 0.83 0.57 47 204311 -29 -80

5.0 0.37x24i -5.6 —7.9

Table 4.1.: Properties of the non-trivial UV fixed point for different orders of the vertex
expansion scheme, computed for momentum dependent anomalous dimensions
ns; (p?) and bilocally projected Newton’s couplings g, (k?). The critical expo-
nents 6; and 6; stem from two different approximation of the stability matrix as
discussed in App. B.1. The fixed points are computed with the identifications
g6 = g5 = gmax and Ag = A5 = A3. We observe that the fixed point values
are only varying mildly between the different orders of the vertex expansion.
Notably, if we compare the critical exponents of the two approximations of
the stability matrix, we observe that the difference becomes smaller with an
increasing order of the vertex expansion. This is precisely what one would
expect of a systematic approximation scheme that is approaching a converging
limit.

In summary, we find different types of trajectories that correspond to classical general
relativity in the IR. The main difference lies in the behaviour of the graviton mass pa-
rameter p, which flows to infinity in one case and to minus one in the other case. Both
scenarios are equivalent to general relativity in the end, in particular since only the back-
ground couplings become observables in the limit & — 0.

4.5. Towards apparent convergence

In this section we discuss and summarise the findings of this chapter concerning apparent
convergence. On the one hand, the order of our vertex expansion is not yet high enough
to fully judge whether the system approaches a converging limit. Nevertheless, we have
collected several promising first hints that we want to present in the following.

We have introduced two different approximations to the stability matrix, as presented
in App. B.1. We have argued that in a well converged approximation scheme the most
relevant critical exponents should not depend on the approximation of the stability ma-
trix. In Tab. 4.1 we display the UV fixed point properties for different orders of the vertex
expansion. The first system is without the graviton four-point function and exactly the
same as in Chapter 3. Then we look at systems where we add either only an equation
for g4(k?) (cf. (B.11)), or only an equation for A4 (cf. (B.10)). Lastly, we display our best
truncation including all couplings up to the graviton four-point function, see Sec. 4.3.1.
We observe that the fixed point values of the couplings vary only mildly with an improving
truncation, although there is no clear pattern to those variations. The most important
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piece of information is the difference between the critical exponents from the two different
approximations of the stability matrix. While the difference is rather large in the trunca-
tion of the graviton three-point function, it is becoming smaller with each improvement
of the truncation. At the level of the graviton four-point function, the critical exponents
show only a small difference. This is precisely what we expect, and thus we interpret this
as a sign that the system is approaching a converging limit.

Another important piece of information comes from the stability of the UV fixed point
under different closures of the flow equation. In a well converged expansion scheme, the
properties of the UV fixed point should be completely insensitive to the details of the
closure of the flow equation. We have performed this analysis in Sec.4.3.2. We observed
that the area in which the UV fixed point exists in the theory space of higher couplings is
indeed increasing with the improvement of the truncation. Furthermore, we saw that the
UV fixed point values are confined to small intervals. We again interpret this as a sign
that the system is approaching a converging limit.

In summary, we have already seen several signatures of apparent convergence although
we are only at the level of the graviton four-point function within the present systematic
expansion scheme. This suggests that we are on a promising path and that the present
setup will eventually lead to a converging limit.

4.6. Summary

We have investigated quantum gravity with a vertex expansion and included propagator
and vertex flows up to the graviton four-point function. The setup properly disentangles
background and fluctuation fields and, for the first time, allows to compare two genuine
Newton’s couplings stemming from different vertex flows. Moreover, with the current
truncation we have closed the flow of the graviton propagator: all vertices and propagators
involved are computed from their own flows.

As a first non-trivial result we have observed that the vertex flows of the graviton three-
point and four-point functions, in the sense of (4.3), are well described by a polynomial
in p? within the whole momentum range 0 < p?> < k2. The projection used for the flows
takes into account the R, R? and wa tensor structures as well as higher order invariants
with covariant momentum dependencies. Importantly, it is orthogonal to the R? tensor
structure for the graviton three-point function, but includes it for the graviton four-point
function. We have shown that the highest momentum power contributing to the graviton
three-point function is p?. Therefore, RZV and higher derivative terms do not contribute
to the graviton three-point function. Thus, in particular RZV is excluded as a UV-relevant
direction. On the other hand, the flow of the graviton four-point function shows p* as
its highest momentum power. Together with the three-point function result we infer that
R? is UV-relevant and contributes to the graviton four-point function. This is a very
interesting and highly non-trivial result.

At the moment, we cannot make final statements about higher R™ terms directly from
our analysis. Nonetheless, predictions can be made with a combination of the results
presented here and previous ones obtained within the background field approximation as
well as the vertex expansion: Firstly, this chapter sustains the qualitative reliability of
background field or mixed approximations for all but the most relevant couplings. We
have seen that the range of allowed Newton’s couplings stemming from n-graviton vertices
is growing with the level of the approximation. Moreover, in [2, 387] it has been shown
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that already the substitution of the most relevant operator, the mass parameter p, in
a mixed computation with that in the full vertex expansion stabilises the results in a
particular gravity-matter system. Hence, this gives us some trust in the qualitative results
for higher R™ terms in the background field approximation. In [281] the f(R)- potential
has been computed polynomially up to R3*, and the relevance of these operators follows
the perturbative counting closely. Accordingly it is quite probable that the higher R™ will
turn out to be irrelevant in the full vertex expansion as well.

Based on the above observations we have also constructed projection operators that
properly disentangle the contributions of different diffeomorphism-invariant tensor struc-
tures. This allowed us to switch off the R? coupling in order to analyse its importance for
the system. In this case, we are led to an unstable system, which highlights the importance
of the R? coupling for the asymptotic safety scenario. In this chapter we include the R?
contributions via the momentum dependence of the gravitational coupling g4(p?), leading
to a very stable system in the UV.

In the full system with R? contributions we found an attractive UV fixed point with
three attractive directions and two repulsive directions. The third attractive direction can
be explained due to the overlap with R?, and is in agreement with previous R? studies in
the background field approximation [269, 271, 272, 274, 281]. We investigated the stability
of this UV fixed point with respect to changes of the identification of the higher couplings
and compared it to the stability of the previous truncation without the graviton four-
point function. We characterised the stability via the area of existence in the theory space
of higher couplings, and remarkably this area increased with the improved truncation.
We interpret this as a sign that the systematic approximation scheme is approaching a
converging limit.

Furthermore, we investigated the IR behaviour and found trajectories that connect the
UV fixed point with classical general relativity. In particular, we found two different
types of such trajectories. In the first category all couplings, including background and
fluctuation couplings, scale classically according to their mass dimension below the Planck
scale. In consequence the Nielsen identities become trivial in this regime and we can solve
them in the IR. In the second category, the graviton mass parameter and the coupling
A3 scale non-classically below the Planck scale, which is triggered by the graviton mass
parameter flowing towards the pole of the graviton propagator y — —1. In summary, the
IR behaviour was found to be very similar to [327], and recently also [301].

Lastly, we discussed signs of apparent convergence in the present system by comparing
the results to previous truncations. As mentioned before, we observed that the present
system is more stable and less sensitive to the closure of the flow equation, which is
expected from a converging system. We furthermore used two different approximations of
the stability matrix and argued that the critical exponents belonging to the most attractive
directions should not differ in a well converged expansion. Indeed we found that the
difference of the critical exponents is decreasing with an improvement of the truncation.
We interpret this as a sign towards apparent convergence.
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5. Background curvature dependence in
asymptotically safe quantum gravity

5.1. Introduction

In the last two chapters we have used the systematic vertex expansion to compute graviton
correlation function on a flat Euclidean background up to the graviton four-point function.
In these computations the flat background was a technically favourable choice since it
allowed us to use standard Fourier representations for the correlation functions. This
property is lost on generically curved backgrounds, as the covariant derivative and the
Laplacian do not have a common eigenbasis anymore. Nonetheless, a computation about
a curved background is highly desirable in particular if this background is a solution to
the equation of motion. In the latter case convergence properties of the expansion scheme
can be significantly enhanced.

In this chapter we take the setup from Chapter 3 and extend it to curved backgrounds.
We restrict ourselves to spherical backgrounds. For this purpose we construct an ap-
proximate momentum space that allows to use the previously developed techniques of
correlation functions in momentum space. The key component for the construction is an
approximation to angle between two spectral values of the covariant derivative. In this
setup, all the dynamical couplings from the previous sections turn into functions of the
background curvature. The algebraic fixed point equations turn into differential equations
and they are solved with the input of the flat background solution. With the resulting
curvature-dependent dynamical couplings we find viable UV fixed point functions for all
curvatures of the spherical background considered. Interestingly these fixed point func-
tions of the effective couplings are almost curvature independent: the couplings try to
counterbalance the explicit curvature dependence and thus try to keep the fixed point
curvature independent. The fixed point functions provide further evidence in favour of
the asymptotic safety scenario. Since we feed back the full fixed point functions we obtain
in the background a full fixed point potential f(R).

Importantly, our setup allows for the computation and the distinction of the background
and quantum equation of motion (EoM). We argue that these equations have a common
solution at a vanishing infrared FRG cutoff scale k = 0 due to background independence.
In turn, the solutions to the background and quantum EoM do not agree at a finite cutoff
scale k # 0, which signals the loss of background independence in the presence of the
FRG-regulator. This is also seen in our explicit computations at the UV fixed point. We
further argue that the quantum EoM, and not the background EoM, should be used to
determine the self-consistent background at finite k.

Solutions to the background EoM appear as minimum in the background potential
f(R)/R?, which we compute for the first time from the dynamical background-dependent
fluctuation couplings without a background field approximation. In the present work
we compute the UV fixed point background potential f*(R). Interestingly, in the pure
quantum gravity setting we do not find a solution to the background EoM, while a solution
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appears at small positive curvature for Standard Model matter content. The quantum
EoM on the other hand has a solution also in the pure quantum gravity setting.

5.2. General framework

In this chapter we do a qualitative step towards background independence and diffeo-
morphism invariance in asymptotically safe gravity by computing fluctuation correlation
functions up to the three-point function as well as the full f(R)-potential of the background
field. Within the categorisation of Sec. 3.2.1 we develop an approach in the class (2b). As
already mentioned in the introduction, we compute the fixed point potential f*(R) for
k — oo but the present approach also allows for its computation in the physical limit
k — 0. This potential certainly has interesting applications in cosmology. The interplay
of asymptotically safe gravity and cosmology is investigated in e.g. [288, 318, 388-409].

5.2.1. Quantum and background equation of motion

An important issue in quantum gravity is the background independence of physical observ-
ables. They are expectation values of diffeomorphism invariant operators, and hence do
not depend on the gauge fixing. Examples for such observables are correlations of the cur-
vature scalar. Another relevant example is the free energy of the theory, —log Z[g, J = 0],
with 6Z[g, J = 0]/dg, = 0. These observables cannot depend on the choice of the back-
ground metric, which only enters via the gauge fixing. The latter fact is encoded in the
NT for the effective action: The difference between background derivatives and fluctuation
derivatives is proportional to derivatives of the gauge fixing sector,

NI 5r_5r_<5 5

G Ohy

" 0Gu  Ohyu

] (Ser + Sgh)> =0, (5.1)

where S, is the gauge fixing term and S, is the corresponding ghost term, and h,, =
(hu), see also Sec. 3.2. Note that (5.1) is nothing but the Dyson-Schwinger equation for
the difference of derivatives w.r.t. g,, and h,,. For the fully diffeomorphism-invariant
Vilkovisky-deWitt or geometrical effective action the relation (5.1) is even more concise:
the split is not linear and we have g, = Guw + fuu (g, h), where fu, (g, h) = hu + O(h?)
depends on the Vilkovisky connection. The NI then reads

0T oo
0Gpuw

0l o

NIgeo = - C(§7 h’) =0 ) (52)

where C(g, h) is the expectation value of the (covariant) derivative of h(g, g), for a discus-
sion in the present FRG setting see [188, 336, 338, 347].

The NIs, (5.1) and (5.2), entail that in both cases the effective action is not a function
of gy = Guv + hyw O gy = Guv + fur (g, h) respectively. This property holds for general
splits, and prevents the simple expansion of the effective action in terms of diffeomorphism
invariants. Apart from this disappointing consequence of the Nls, it also entails good news:
the effective action only depends on one field as background and fluctuation derivatives
are connected.

68



5. CURVATURE DEPENDENCE 5.2. GENERAL FRAMEWORK

An important property that follows from background independence is the fact that a
solution of the background equation of motion (EoM)

o1, A] 0 (5.3)
0G| g=gor.h=0
is also one of the quantum EoM,
OT'lg.h] _o. (5.4)
5h’“’ g=GgroMm,h=0

see e.g. [365] for a discussion of this in Yang-Mills theories. In (5.3) and (5.4) we have
already taken the standard choice h,,, = 0 but the statement hold for general combinations
Jeom(h) that solves either of the equations. The concise form (5.2) for the geometrical
effective action makes it apparent that a solution of either EoM, (5.3) or (5.4), also entails
a solution of the other one. Note that at h,, =0 we have C(g,0) = 1.

Even though less apparent, the same holds true for the effective action in the linear
split: to that end we solve the quantum EoM (5.4) as an equation for gg.u(h). As the
current J in the generating functional simply is J = 6I'/dh,,,, the quantum EoM implies
the vanishing of J and the effective action is given by I'[gr.m(0), 0] = —log Z[g, J = 0], the
free energy. However, we have already discussed that log Z[g, 0] is background-independent
and it follows that (5.3) holds.

The above properties and relations are a cornerstone of the background formalism as
they encode background independence of observables. The Nls also link background diffeo-
morphism invariance to the Slavnov-Taylor identities (STIs) that hold for diffeomorphism
transformations of the fluctuation field: the quantum deformation of classical diffeomor-
phism symmetry is either encoded in the expectation value of the gauge fixing sector or
in the expectation value C(g, h).

At finite k, the regulator term introduces a genuine dependence on the background
field. Then log Zx[g, 0] is not background independent. Consequently the STIs turns into
modified STIs (mSTIs) and the NIs turn into modified NIs (mNIs). For the linear split,
the mNTI reads

mNI = NI — 1Tr [15\/§RkMGk] =0, (5.5)
2 NI

see [355, 356] for details and Chapter 8 for an application to gravity-matter systems.
Importantly the right-hand side of (5.5) signals the loss of background independence. It
is proportional to the regulator and vanishes for k — 0 where background independence is
restored. A similar violation of background independence linear in the regulator is present
in the geometrical approach, see [188, 336, 338, 347].

In summary this leaves us with non-equivalent solutions to the EoMs in the presence
of the regulator: a solution of the quantum EoM (5.4) does not solve the background
EoM (5.3). However, typically the asymptotically safe UV regime of quantum gravity is
accessed in the limit £ — oo as this already encodes the important scaling information in
this regime. In this dissertation we also follow this strategy and hence we have to deal with
different solutions of background and quantum EoMs, if they exist at all. Note that the
right-hand side of the mNI is simply the expectation value of the background derivative
of the regulator term. Accordingly it is the background EoM that is deformed directly by
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the presence of the regulator while the quantum EoM feels its influence only indirectly.
Therefore it is suggestive to estimate the physical UV-limit of the EoM in the limit £k — 0
by the quantum EoM in the limit & — oo.

Studies in asymptotically safe quantum gravity have focused so far on finding solutions
to (5.3). For instance in [288] they didn’t find a solution to (5.3) in a polynomial expan-
sion with the background field approximation. Other approaches with the background
field approximation found a solution with the exponential parameterisation [286, 287] and
within the geometrical approach [284, 291]. In this chapter we are for the first time able
to disentangle (5.3) and (5.4) in a quantum gravity setting and look for separate solutions
to the EoMs.

5.2.2. Background independence in non-perturbative expansion schemes

It is important to discuss the relations of the approaches described in Sec.3.2.1 in particular
for future developments and the full resolution of physical background independence. This
chapter extends a similar discussion from last chapter in the context of modified STIs for
diffeomorphism transformations to NIs. Despite its importance one may skip this chapter
for a first reading as its results are not necessary for the derivations and computations
presented in this work.

We have technically very different options to access physical background independence
of quantum gravity. Seemingly they have different advantages and disadvantages. For
example, approach (1) via the NIs has the charm of directly implementing background
independence. In turn, the results of (2b) may apparently not satisfy the NIs.

For resolving this issue it is instructive to discuss approach (2a). There the fluctua-
tion correlation functions are computed for a specific background. Results for general
backgrounds have then to be obtained with an expansion/extension of the results for the
specific background. This could be done via the NIs in which case background indepen-
dence is guaranteed. This procedure for guaranteeing STIs and NIs has been discussed
in detail in [367] in the context of non-Abelian gauge theories, and in [3] for gravity. We
briefly repeat and extend the structural argument presented there: First we notice that
the functional equations for all correlation functions can be cast in the form

T (g, h] = FRGy [{T0S"22575m42)[5 R} g (5.6)

Eq. (5.6) follows from integrating the functional renormalisation group equations for
(™) which have precisely the same structure for all theories: the flows of T(™™) are
given by one-loop diagrams with full propagators and full vertices. The latter are given in
terms of the correlation functions {T(=":2<J<m+2)1 see e.g. [188, 367]. This also entails
that the lowest fluctuation correlation function that contributes to the diagrams is the
two-point function, i.e. the propagator.

In gravity (5.6) follows straightforwardly from (3.9) by integrating the flow equation
and taking g- and h-derivatives. As a side remark we note that the order of derivatives
on the right-hand side is different within other functional approaches. For example, for
Dyson-Schwinger equations (DSE) the right-hand side DSE,, ,,, for the (™) depends on
{r@=njsm+r=2)1 and contain up to r — 2-loop diagrams. Here r is the highest order of the
field in the classical action, see e.g. [188]. In typical examples of renormalisable theories
we have r = 3,4, but in gravity we have r = oco. This singles out the flow equation for
gravity as the only functional approach that only connects a finite order of correlation
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functions in each equation. The coupling of the whole tower of equations then comes from
the highest order correlation functions on the right-hand side. In turn, each DSE already
contains all orders on the right-hand side of (5.6), that is 2 < j without upper bound.
Similar statements as for the DSE hold for 2PI or nPI hierarchies.

Importantly, for all functional approaches the right-hand side of (5.6) goes only up to
the same order of background metric derivatives, ¢ < n. This allows us to view (5.6)
as functional relations for the highest order background metric correlation functions that
have as an input {I'»~1™)}. Moreover, the NI relates a derivative w.r.t. § to one w.r.t.
h. For emphasising the similarities to the functional relations (5.6) we rewrite the NI. For
simplicity we use the linear split NI, (5.1) and (5.5),

Dm)g, h] = DO=Lm D (g h) 4+ N, [G,{DES 13m0 ]G p]Y ], (5.7)

where N stands for the expectation value in (5.1), and additionally for the regulator
loop in (5.5), and we have singled out the propagator G for elucidating the orders of the
correlation functions on both sides. Importantly, (5.7) makes the fact apparent that for
the NI, (5.1) and (5.5), the order of background derivatives is at most n—1. Note also that
(5.7) is nothing but the difference of the Dyson-Schwinger equation for h and g derivatives.
In this difference the terms with the higher vertices with j > m + 2 drop out.

In summary this leaves us with two towers of functional relations. While the first one,
(5.6) describes the full set of correlation functions, the second one, (5.7) can be used to
iteratively solve the tower of mixed fluctuation-background correlations on the basis of
the fluctuating correlation functions {T'®™}. In both cases we can solve the system for
the higher-order correlations of the background on the basis of the lower order correla-
tions. If we use (5.7) with an iteration starting with the results from the flow equation
for {T'©™) g, h]} for a specific background g, this closure of the system automatically
satisfies the NI. Accordingly, any set of fluctuation correlation functions {T'®™)[g. . h]}
can be iteratively extended to a full set of fluctuation-background correlation functions in
an iterative procedure. Note that this procedure can be also applied to the case (2b).

While this seems to indicate that satisfying the symmetry identities is not relevant (it
can be done for all inputs), it points at a more intricate structure already known from
non-Abelian gauge theories. To that end let us assume we have derived a global unique
solution of all correlation functions within this iterative procedure starting from the fluc-
tuations correlation functions. If no approximation is involved, this solution automatically
would satisfy the full set of functional relations for {T'»™)} that can be derived from the
flow equation. However, in the presence of approximations these additional functional
relations represent infinite many additional constraints on the iterative solution. These
constraints are bound to fail in generic non-perturbative approximation schemes as any
functional relation triggers specific resummations in given approximations. It is a priori
not clear which of the functional relations are more important. Note also that typically the
iterative solutions of the symmetry identities are bound to violate the locality constraints
of local quantum field theories that are tightly connected to the unitarity of the theory.
In conclusion it is fair to say that only a combination of all approaches is likely to provide
a final resolution of physical background independence and diffeomorphism invariance in
combination with unitarity.
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5.3. Vertices in curved backgrounds

In this section we introduce a construction that allows for vertex flow on curved back-
grounds. The curved backgrounds significantly enhance the difficulty of the computation
and we discuss how we obtain an approximate momentum space that allows the use of the
previously developed techniques in momentum space. With this technique we in particular
upgrade the results from Chapter 3 to constantly curved spherical backgrounds.

5.3.1. Spectral decomposition

We extend our previous expansion schemes about the flat Euclidean background to one
that allows for arbitrary constant curvatures. To that end we first discuss the procedure
at the example of the propagators: propagators for non-trivial metrics g with constant
curvature can be written in terms of the scalar Laplacian A; = —V? and curvature terms
proportional to the background scalar curvature R,

G=G(AgR). (5.8)

For the flat metric (5.8) reduces to G(p?,0), where p? are the continuous spectral values
of the flat scalar Laplacian. In a spectral basis the propagator is diagonal and reads for
general curvatures

(exGlea) yope = GO, R) (5.9)

and A = p? are the discrete or continuous eigenvalues for the given metric, and {|¢y—,2)}
is the orthonormal complete basis of eigenfunctions of the scalar Laplacian

Agler) = Alea=p2) (5.10)

see App. C.1 for explicit expression for the propagator. The tricky part in this representa-
tion are the vertices, which are operators that map n vectors onto the real numbers. For
example the three-point function can be written in a spectral representation in terms of
an expansion in the tensor basis with eigenfunctions of Ag,

r® = Z: T (A1, A2, Az, R) (o, | ® (02,] @ (024 (5.11)
A1,A2,A3

where the spectral values in general also depend on the curvature and ¥ runs over discrete
or continuous spectral values. Also, ¥ may also include a non-trivial spectral measure
weight p(A). The representation of the higher n-point functions follows straightforwardly
from (5.11). Inserting this into the flow equation of the inverse propagator, we arrive at

_ 1 . _
o, R) = 3 Y IO N AL B GRG0 F)
A1

+ IF(?’)(A,)\g,Ag,R)G()\Q,R)(GRkG)(Ag,R)F(3)(>\3,)\2,A,R), (5.12)
A2,A3

where we denoted Ry, = 9, Ry,. The vertex functions '™ are complicated functions of \;.
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On a flat background, the eigenfunctions of the Laplace operator are also eigenfunctions
of the partial derivatives and the representation of the vertex functions follows trivially.
On a curved background, however, the covariant derivatives do not commute with the
Laplace operator and the representation of uncontracted covariant derivatives on the set
of functions {|py_,2)} is complicated. One could tackle this problem with e.g. off-diagonal
heat-kernel methods, but then a derivative expansion in momenta and curvature is neces-
sary [328].

In this chapter we construct an approximate momentum space on a curved background,
which facilitates computations considerably and allows for full momentum and curvature
dependences. In order to derive the vertex functions, we first take functional derivatives
with respect to the Einstein-Hilbert action on an arbitrary background. The result is a
function depending on the Laplacian, products of covariant derivatives with respect to
coinciding or different spacetime points and explicit curvature terms. In the expression
for the vertex functions we symmetrise all covariant derivatives, which produces further
R-terms

o 1 - _
VHVY = §{V“,V”} + R—terms. (5.13)

In the curved momentum space approximation here, the product of symmetrised covariant
derivatives acts on the set {|p)_,2)} according to

Vi-Va=ps-q=vVP*V¢*z, with = cosbgas, (5.14)

with an integration measure [ v/1 — cos?6dcosf. The integration measure is chosen such
that in the limit R — 0 precisely the flat results are obtained. As a consequence, in this
approximation ¥ factorises into an angular integration and a sum/integration over the
spectral values of Az. According to (5.14), external spectral values are described by the
angle to the internal one and their absolute values, which appear as parameters that can
be treated as real numbers. We emphasise that this curved momentum space approxi-
mation has the correct flat background limit by construction and is correct for all terms
that contain only Laplace operators. A comparison of the approximation as a function
of the background curvature is detailed in App. C.3. With the above approximation as-
sociated with covariant derivatives, we arrive at a relatively simple flat-background-type
representation of the flow equation in terms of angular integrals and spectral values p? =\

ar(\ R) = —% i / AQTW (A Ay, 2, R)(GRAG) (M, R) (5.15)
A1

+ I /dQ TG (A, A, 2, RGO + A + VA, B)(GELG) (O, BTG (A, Ay, 2, R) |
A1

The total R-dependence of the flow equation enters via the explicit R-terms in the vertex
functions, the symmetrised covariant derivatives and the spectral values. The generalisa-
tion to flows of higher-order vertex functions is straightforward.

5.3.2. Vertex construction

The basic ingredients in the flow equations in Fig. 3.1 are the vertex functions I'™. We
build on the parameterisation for vertex functions introduced in Chapter 3 but in contrast

73



5. CURVATURE DEPENDENCE 5.3. VERTICES IN CURVED BACKGROUNDS

to there, all quantities exhibit explicit R-dependence. Hence, our ansatz is given by
_ n 1 — n_q _ _ .
(@10 (p, R) = (H Z;Ap?,R)) G2 (R) S5 (pi Gu(R), An(R),R),  (5.16)
i=1

where p = (p1,...,pn) is the collection of spectral values of the external legs. Sgy is the
gauge-fixed Einstein-Hilbert action, cf. (3.4), and we choose to work with the gauge fixing
parameters a = 3 = 0.

The propagator is a pure function of Az and R, while the vertices with n > 2 are
functions of Ag, ?u, R, RW and Ru,,pg. Restricting ourselves to a background sphere, the
dependence on the Ricci- and the Riemann-tensor reduces to a dependence on the constant
background curvature R. With the approximation constructed in the last section, we
deal with the covariant derivatives ?u in the vertices. We set the anomalous dimensions
ne; (P?, R) throughout this chapter equal to zero. In the last chapters this approximation
led to qualitatively reliable results. The graviton three-point function is evaluated at the
point of symmetric spectral values,

p = |p1| = |p2/, Ot = 27/3. (5.17)

In this chapter we close the flow equations by setting the higher-order couplings to G,,>4 =
Gz =: G and Ay = A3z as well as A,,;>5 = 0. We also introduce the dimensionless variables

r:=Rk™?, g: =Gk, p:=-2Mk"%,  X3:=Aszk>. (5.18)

From the graviton two-point function we extract the mass-parameter u(r), while from the
graviton three-point function we extract the gravitational coupling g(r) and the coupling
of its momentum independent part As(r). In App. C.2 we give a derivation and display
the flow equations.

5.3.3. Flow equations and trace evaluation

With the construction presented in the last sections, we are left with an explicit expression
for the flow of the two- and the three-point function. The flow of the two-point is of the
form (5.15) and the three-point function has a similar form according to the diagrammatic
representation in Fig. 3.1. After projection the resulting flow equations take the form
(C.13) and (C.14). In this chapter we are interested in the fixed point equations, which
are differential equations with respect to r due to the dependence on the background
curvature. According to the factorisation property of the approximate curved momentum
space construction, we evaluate the angular integration in a straightforward manner in
complete analogy to a flat background computation. We are then left with the evaluation

of traces of the form
I fAr), (5.19)
A

for functions of the curvature r and the spectral value A as well as the couplings. In
order to include the effects of the background curvature we perform a spectral sum over a
four-sphere. On a four-sphere the spectrum and corresponding multiplicities of the scalar
Laplacian are given by

U3+20) (204 3)(L+2)!

w(l) = g m = ol , (5.20)
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with ¢ taking integer values £ > 0. Since we are left with only scalar spectral values we
replace

Lmax
A= w(f), Z:A SV m(), (5.21)
(=2

where the exact sum is achieved for £,,,x = oo and we divide by the volume of a four
sphere V = 353;722. Note, that we exclude the zero modes and start the spectral sum at

= 2. This does not affect the result for small curvature r. Performing the spectral sums
one then obtains the traces. However, in most cases a closed form for the sums cannot
be obtained and we have to resort to cutting the spectral sums off at a finite value £y, .
Nonetheless since each trace involves a regulator function that cuts modes off at order
w(f) ~ k? for non-zero r the spectral sum is only sensitive to the modes w(¥) < k2, which
are finite in number. However, in the limit of vanishing curvature the spectral sum needs
to be extended to infinite order, as all modes are only regulator suppressed for large r
according to exp(—\,r), but become important once r ~ 1/\,. In fact, we need the limit
r — 0 in order to set the boundary conditions of the fixed-point differential equations.
It is obvious that there is only one physical initial conditions that fixes the solution of
the fixed point differential equation uniquely, and that is the initial condition obtained
from the flat background limit. In fact, a proper initial condition is also necessary from a
mathematical point of view if one requires a finite derivative, ¢’(r) < co. One infers from
(C.13) and (C.14), that the derivative of g(r) diverges in the limit » — 0 if the initial
conditions are not chosen appropriately. However, as argued above, this limit cannot be
calculated in practice with spectral sums as all modes contribute. In the small-curvature
region the trace is evaluated by the early-time heat-kernel expansion where the leading
order gives the flat-background momentum integrals. In this case we write the Laplace
transform

1 [ =
I fr) = / ds Tr[e=*%9] f(s,7), (5.22)
A Vi Jo
and one expands the trace of the heat kernel in the scalar curvature r and the explicit

dependence on r coming from f (s,r). For small curvature the early-time heat-kernel
expansion is given by

1 [ A F 1 r
5 [ A T ) = s (@alfl+ QUG + ). (523)
where for n > 0
Qulf] = F(ln)/d)\)\”lf()\,r). (5.24)

Using this heat-kernel expansion we translate the physical initial condition to finite r where
we connect to the spectral sum. In particular we determine the curvature-dependent
couplings as polynomials in the curvature r. The heat kernel provides the asymptotic
limit » — 0 which can be reproduced by the spectral sum in the limit ¢,,,x — co. Thus,
while the spectral sum with finite ¢, captures the large r behaviour of the trace, the
heat kernel expanded to a finite order in r captures the small r behaviour. Both connect
smoothly for finite but small r, for details see App. C.4.
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5.4. Results

In this section we present the results of the given setup. First, we discuss the fixed
point solutions of the beta functions related to the fluctuation field couplings. In our
approach with curvature-dependent couplings, these solutions are fixed point functions.
Subsequently, we analyse the background effective potential, which is calculated on the
solution of the fluctuation field fixed point solution, with and without Standard Model
matter content. Last we look for solution of the quantum EoM and compare to solutions
of the background EoM.

5.4.1. Fixed point solutions

The beta functions for a coupling g;(r) in the present framework are partial differential
equations. Schematically, the equation a coupling g; takes the form

0igi(r) = gi(r) A(gj, mn) + 2r gi(r) + Flowg, (g, ), (5.25)

with a coefficient A that depends on the other scale-depend parameters g;. For explicit
expressions we refer to App. C.2. The fixed point equations are then obtained by setting
0rgi(r) = 0 and we are left with a system of ordinary differential equations. The initial
condition is imposed at r = 0 and is chosen such that it matches the computation in a
flat background from Chapter 3. For details see Sec. 5.3.3. The UV fixed point values for
a flat background, g;(r) = g; 0, are given by

(905 X305 1) = (0.60, —0.12, —0.38) . (5.26)
with the critical exponents @, which are the negative eigenvalues of the stability matrix,
(0;0) = (2.0£2.11, =3.7). (5.27)

These values differ slightly from, (3.30a) and (3.30b), since we use the gauge parameter
B = 0 and the exponential regulator, see (C.5). Taking these differences into account, the
agreement is remarkable and highlights the insensitivity of our results with respect to the
gauge and the regulator.

In order to display our results, it is convenient and meaningful to introduce effective cou-
plings that include the explicit » dependence in the respective graviton n-point functions.
According to (C.6) and (C.14), these are given by

2 1
ge(r) = g(r) pen(r) = u(r) + 5 Naenlr) = Xa(r) + 2. (5.28)
The interpretation and relevance of these effective couplings can be inferred for instance
from the graviton two-point function. In terms of pg(r), the transverse-traceless part of
the graviton two-point function reads

02 — (A + peg(r)) (5.29)

i.e. it comprises the non-kinetic part of the correlator. As an aside, we mention that one
could define A3 g alternatively via (C.13). The difference between the effective coupling
for A3 in (C.14) and (C.13) arises from the different tensor projections. We choose to
define A3 o via (C.14) since the flow equation for g is more important in this system.
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Figure 5.1.: Fixed point function solution for the system (g*(r), pig(r), A3 .q(r)) with the
boundary condition from the first-order heat kernel. The solutions are stable
in the whole investigated region. Note, that the effective couplings according
to (5.28) are displayed.

The full, r-dependent fixed point solutions (g*(r), pig(r), A3 (7)) are displayed in
Fig. 5.1. We find a fixed point solution with all desired properties. First of all, the
fixed point solution is characterised by a positive gravitational coupling g(r) > 0, which
decreases towards larger background curvatures. In order to get a feeling for the physical
meaning of this behaviour, we consider the quantity G(R)R = g(r)r, i.e. the dimensionful
Newton’s coupling times the curvature. As this product is dimensionless, it can in princi-
ple be used to define an observable. In particular, we expect that this quantity is finite at
the fixed point, which implies g*(r) ~ 1/r. One might interpret our fixed solution g*(r)
as an onset of such a behaviour. The solutions for the mass-parameter jig(r) and g of(7)
are almost curvature independent, which implies that the implicit curvature dependence
cancels with the explicit one. Consequently, the behaviour is not so different from the one
of the computation on a flat background.

The full solution shown in Fig. 5.1 can be expanded in powers of the dimensionless
curvature, g;(r) = gig + gi1 7 + O(r?). The zeroth order is displayed in (5.26) and to
linear order in r we find

(91, A31, 1) = (=0.47, —0.10, —0.74) . (5.30)
with the critical exponents 6 given by
(0i1) = (—0.10 £ 2.61, —2.6). (5.31)

Interestingly, we find that all new direction are UV repulsive. Further attractive directions
of the UV fixed point that are linear in the background curvature were found in [328].

5.4.2. Background potential

In the previous section we have presented the fixed point solution for the fluctuation field
couplings. All background quantities depend on these dynamical couplings and have to be
evaluated on the above solution. Along these lines we calculate a background field potential
at the fixed point. The flow of the background potential is completely determined by the
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Figure 5.2.: Displayed are background potentials f*(r)/r? obtained from the fixed point
solution p*(r) (left and right panel) and from the approximations p’g(r) = g
and p*(r) = pg (right panel). All curves are obtained with the condition
f*(r = 1.4) = 0. Other conditions just shift the potential f*(r)/r? by a
constant. The full solution does not contain a minimum, it becomes asymp-
totically flat. The approximation plg(r) = ug is qualitatively very good, see
also Fig. 5.1. The approximation p*(r) = p corresponds to a pure Einstein-
Hilbert computation. Here we find a minimum at ry = 0.97.

dynamical couplings of the two-point function, see (3.9). On a sphere, the background
effective action is given by

2
rig.0l = [aleVgR R/ = S50 10). (532)

Denoting the right-hand side of (3.9) at vanishing fluctuation field by F(r, u(r)) we obtain
a flow equation for the function f(r) given by

38472

r2

Ouf +4f(r) —2rf'(r)) = F(r, u(r)) .- (5.33)
If we then look at the fixed point for f*(r) we find

2 , i
B (4 () =207 () = Flr (). (5.3

One then notes that the left-hand side is just the background EoM for f(r)-gravity on a
constant curvature background. Thus when the function F(r, x*(r)) vanishes we have a
solution to the background EoM at the fixed point given by

F(ro, 1" (ro)) = 0. (5.35)

Equivalently we can look for a minimum of the function f(r)/r%. In Fig.5.2 we plot the
background potential f(r)/r? for our full solution (left panel) as well as in comparison
with other approximations (right panel). There we use pls(r) = pg and p*(r) = pg as
given in (5.26). The first is seen to be a good approximation from Fig. 5.1 while the
latter reduces our computation to an Einstein-Hilbert approximation. We observe that
in the full solution and in the plg(r) = pf approximation there are no solutions to the
background EoM within the investigated curvature regime. This absence of a constant
curvature solution is in agreement with studies of f(R) gravity in the background field
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Figure 5.3.: Fixed point background potential for different constant input values of 1% (7).
The minimum that corresponds to the solution of the background equation of
motion is at r > 0 for plg(r) < 0.77, while for plg(r) 2 0.77 it is at r < 0
(left panel). For p’g(r) < 0.25 the minimum vanishes completely, while for
pig(r) = 0.26 the minimum is located at ro = 1.1 (right panel).

approximation [288], although solutions have been found in calculations exploiting the ex-
ponential parameterisation [286, 287] and within the geometrical approach [284, 291]. For
the approximation p*(r) = g, which corresponds to a pure Einstein-Hilbert computation,
we find a minimum at rg = 0.97. This is again in agreement with computations in the
background field approximation [410, 411].

In a polynomial expansion around r» = 0 the background potential of the full solution
would take the form

f(r) = 0.0065 — 0.0065 r + O(r?), (5.36)

and consequently we obtain fixed point values of the background Newton’s coupling and
the background cosmological constant according to

g =30, A" =0.50. (5.37)
Note that A = % is not a pole in our computation: the pole is only present in the graviton
mass parameter p(r). Surprisingly the fixed point value of g* is rather large. We compare
these values with the pure Einstein-Hilbert approximation, see blue dashed line in Fig.5.2.

We find

fen(r) = 0.0065 — 0.021 7 + O(r?), (5.38)

and consequently

Gry =094, A, =0.15. (5.39)
These values are comparable to standard Einstein-Hilbert computations in the background
field approximation as well as in fluctuation computations. Thus the large values in (5.37)
are indeed triggered by the non-trivial r dependence of the couplings.

We investigate the stability of the present results by treating p*(r) as a free parameter
without curvature dependence. In this case, uig(r) = g is a good approximation for our
best solution as discussed above. By varying this parameter we see for which values a

solution to the background EoM exists. With reference to Fig. 5.3 we find that solutions
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Figure 5.4.: Depicted is the fixed point background potential if Standard Model matter
content is included. In the full solution as well as in the Einstein-Hilbert
solution we find a minimum at small background curvature, ro = 0.11 and
ro,sn = 0.05, respectively, which corresponds to the solution of the background
equation of motion.

exist for positive curvature when 0.255 < pig < 0.77 and for negative curvature for
pag 2 0.77. For ple < 0.255 there are no solutions. The transition of the minimum
from positive to negative curvature is depicted in the left panel of Fig. 5.3 while the full
disappearance of the minimum is depicted in the right panel. The computed value of
py = —0.38, see (5.26), is far away from the value where the solution appears. Thus
we conclude that the absence of a minimum in the background potential in our full pure
gravity computation is rather stable with respect to changes in the truncation.

Dependence on matter

Matter can potentially have a significant influence on the properties of the UV fixed
point, this will be detailed in the subsequent chapters of this dissertation. In this chapter
matter influences the existence of a minimum in the background potential in two ways:
On the one hand it has an influence on the fixed point values of the fluctuation couplings,
where in particular the influence on pg(r) is important. On the other hand it has a
direct influence on the background potential via the background matter loops. Both these
effects will studied in this dissertation in a fluctuation computation on a flat background,
see Chapter 6 for scalars and fermions and Chapter 7 for gauge bosons. Consequently we
adapt the analysis to curved backgrounds under the assumption that the effective graviton
mass parameter fg(7) remains a almost curvature independent in these extended systems,
similar to the results displayed in Sec.5.4.1. Combining the results of the two upcoming
chapters for Standard Model matter content (N, = 4, Ny = 22.5, and N, = 12) gives a
UV fixed point at

(96+ 3.0, u;;)SM = (0.17, 0.15, —0.71) . (5.40)

For the present analysis only the value g, is important since we now use pig(r) = 14 o\
as an input for the background potential. The matter content seemingly pushes p}g in
the wrong direction, cf. Fig.5.3. However, the matter content has also a huge influence on
the background equations. The combined result is displayed in Fig.5.4. Indeed we find a
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Figure 5.5.: Shown is the fixed point function f;(r) for different constant input values of
tag(r). The zeros in these functions correspond to solutions to the quantum
equations of motion (5.4). Our best result pg(r) = p5 = —0.38 has a solution
at negative curvature, ro = —1.0.

minimum in the background potential at small curvature, ro = 0.11. Also in the Einstein-
Hilbert approximation, i.e. pu*(r) = pg gy, we find a minimum at 7oy = 0.05. With
Standard Model matter content the full solution and the Einstein-Hilbert approximation
are very similar. This comes as a surprise as the difference was rather significant without
matter content, cf. Fig. 5.2.

5.4.3. Quantum equation of motion

In this section we evaluate the graviton one-point function and thus look for solutions to
the quantum EoM (5.4). As discussed in Sec. 5.2.1 the solution to this equation leads to
self-consistent backgrounds that improve the convergence of the Taylor series. Moreover,
it has been also argued there that the quantum EoM in the limit £ — oo should be seen as
an estimate for the solution of the UV EoM in the physical limit k¥ — 0 where background
and quantum EoM agree due to background independence.

Within the present setup the only invariant linear in the fluctuation field is given by
fi(r)h'" with some function f; that is determined by the fluctuation couplings. An in-
variant linear in the transverse traceless mode does not exist due to our restriction to a
spherical background and thus the absence of terms like 7#*h;,. Consequently we evaluate
(5.4) with a projection on the trace mode of the graviton.

In straight analogy to the background EoM (5.32) we parameterise the one-point func-
tion by

38472
kr?

r()(g, 0] = / d'z/gE f1(R/K?) = fi(r). (5.41)

We denote again the right-hand side by Fi(r, u(r)). This time, however, we obtain at a
different differential equation for fi due to the different mass-dimensions of g and k. Thus
f1 obeys the fixed point equation

7T2
B BR0) 2 () = Falrat () (5.42)
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Figure 5.6.: Visualisation of the existence of a solution to the background and quantum
equation of motion in dependence on the parameter peg. Solutions at positive
curvature (r > 0) and negative curvature (r < 0) are distinguished.

We solve this equation with the initial condition that f; () is finite at r = 0. Consequently
we combine a heat kernel expansion around 7 = 0 up to the order r® with a spectral sum
evaluation for large, positive curvature. For results at negative curvature we rely on the
heat kernel expansion, but from a comparison of the heat kernel results with the spectral
sum at positive curvature we can estimate the radius of convergence of the heat kernel.
We estimate the latter by the range where the relative change is in the sub percent regime.
We find that the radius of convergence is approximately given by rcony & 1. The radius
of convergence increases for larger p1%g(r).

The resulting fixed point functions f;(r) are shown in Fig. 5.5. For our best result
pig(r) = p = —0.38, fi(r) has a root at negative curvature, g = —1.0, which corresponds
to a solution to the quantum EoM. The result lies within the radius of convergence of the
heat-kernel expansion and thus we consider it trustworthy.

We again check the stability of the solution by treating j’s(r) as a constant free input
parameter. For more positive values, ulg > g, the root of fi(r) moves towards larger
curvature, but always remains negative. In the limit p’z — oo the root is located at
ro = —0.42. For more negative values, ;¢ < g the root of fi(r) moves towards smaller
curvature and eventually the root disappears at plg = —0.62, cf. Fig.5.5. This result has
to be taken very careful since at pjg = —0.62 the root is located at ro = —2.2 and thus
lies outside of the radius of convergence of heat kernel. At ulz = —0.71 a new solution
appears at positive curvature, rg = 2.7. This root remains also for more negative values
of pig until the pole at p’g = —1. The roots at positive curvature are obtained with the
spectral sum and thus do not rely on the radius of convergence of the heat kernel.

We have visualised the existence of a solution to the background and quantum EoM
in Fig. 5.6. The quantum EoM has almost always a solution, only in the range —0.71 <
pig < —0.62 no solution exists. This range may even disappear with better truncations or
an improved computation at large negative curvature. The background EoM on the other
hand only allows for a solution for u%; > 0.26, and thus in a region that is very unusual
for pure gravity computations.

5.5. Summary

In this chapter we have developed an approach to asymptotically safe gravity with non-
trivial backgrounds. As a first application of the novel approach we computed the f(R)-
potential and discussed solutions of the equations of motion.

We have also given a discussion of functional approaches to quantum gravity that take
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into account the necessary background independence of the theory. We have discussed,
for the first time in quantum gravity, that background independence and diffeomorphism
invariance can be achieved iteratively in any approximation scheme, based on a similar
argument in non-Abelian gauge theories, see Sec. 5.2.2. We have also emphasised the
relevance of aiming for solutions that satisfy all functional relations. We have argued that
this is tightly bound to the question of unitarity.

The approach is based on a vertex expansion of the effective action about non-trivial
backgrounds, which at present are restricted to constantly-curved backgrounds. Our ex-
plicit results are based on a truncation that includes the flow of the graviton two- and
three-point function and thus the couplings g, A3 and u. The construction of an ap-
proximate momentum space, cf. (5.14), allowed us to evaluate these couplings without a
derivative expansion in momentum p or curvature r. In this chapter we focused on the
curvature dependence and thus all couplings are functions of the curvature, g(r), As(r) and
p(r). The flow equations for these coupling functions were obtained with spectral sums on
a sphere. The results are smoothly connected to known results at vanishing background
curvature with heat-kernel methods.

As one main result we found UV fixed point functions that confirm the asymptotic safety
of the present system. Interestingly, the effective fixed point couplings, A 4(r) and pZg(r),
cf. (5.28), turned out to be almost curvature independent over the investigated range: the
couplings counterbalance the explicit curvature dependence of the n-point functions.

We have also discussed the background and the quantum equation of motion, (5.3) and
(5.4), in Sec. 5.2. At k = 0, their solutions agree due to background independence. In
turn, at finite k£ the solutions to background and quantum equations of motion differ due
to a regulator contribution to the modified Nielsen identity. This signals the breaking of
background independence in the presence of the cutoff. We have argued in this chapter
that at finite cutoff it is the solution of the quantum equation of motion that relates
directly to the physical solution of the equation of motion at vanishing cutoff.

We explicitly evaluated both equations of motion with the UV fixed point functions and
indeed found different solutions: The background equation of motion does not feature a
solution. Only with Standard Model matter content a solution at small positive curvature
is present. The quantum equation of motion exhibits already a solution at negative cur-
vature without any matter content. We have checked the stability of these statements by
scanning for solutions in the parameter p’g. The background equation of motion without
matter features a solution only for very large values of p’g, far away from most values
observed in pure quantum gravity truncations. On the other hand the quantum equation
of motion has a solution for almost all y%g. This indicates that the existence of a solution
is robust to changes in the truncation. We have visualised this in Fig. 5.6.

The discussion of the equation of motion leads us directly to a specific observable: the
effective action, evaluated on the equation of motion. In standard quantum field theories
this is the free energy, and it is gauge and parameterisation independent. For the present
approach this is discussed in Sec. 5.2.1. We therefore expect only a mild dependence on
these choices within sensible approximations to the full effective action. Indeed, this has
been observed in the background field approximation [258, 412]. It would be interesting
to see whether this property is also holds in the present approach that goes beyond the
background field approximation. At finite cutoff this investigation can be done by studying
the gauge and parameterisation independence of the effective action evaluated on the
quantum equation of motion.
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6. Towards combining the Standard Model
with quantum gravity

6.1. Introduction

It is not sufficient to have a theory of quantum gravity, it must also incorporate all other
degrees of freedom: the matter content of the universe, i.e. the Standard Model matter
content and possible extensions of it. This medal has two sides: we know that gravity
fluctuations become important beyond the Planck scale and thus it is of interest how
the gravity contributions alter the running of the Standard Model couplings, for instance
if it removes the Landau poles of the hypercharge and the quartic Higgs coupling large
energies. But also matter fluctuations can influence the quantum gravity theory and one
might hope to constrain the space of allowed matter theories by asking to which matter
theory a viable quantum gravity theory can be constructed. This is can be seen in analogy
to QCD with many quark flavours where asymptotic freedom is lost. One can even consider
the possibility that a pure quantum gravity theory does not exist, only upon the inclusion
of matter the theory becomes viable.

The inclusion of matter degrees of freedom poses different kinds of problems for different
kind of quantum gravity theories. For example loop quantum gravity or spin foams are
fundamentally discrete and thus the inclusion of fermions is a priori challenging. The
asymptotic safety scenario has here the advantage of using standard QFT methods and
consequently the treatment of matter is well understood. Nonetheless one faces technical
challenges for example large tensor structures that need to be contracted, a large amount
of diagrams per flow equation and, last but not least, that the pure quantum gravity sector
is not yet under full control.

There has already been a plethora of results and developments in gravity-matter systems
in asymptotically safe quantum gravity, see [120-122, 151, 152, 295, 376, 387, 413-440).
For a review of asymptotic safety on matter aspects see [441]. Most of the above works
utilised the background field approximation and partially observed severe restrictions on
the space of matter theories that are compatible with asymptotic safety see e.g. [416]
or [424, 425] with a mixed approach, where the background field approximation for the
couplings is augmented with dynamical anomalous dimensions. In these approximation it
seemed that supersymmetric models are not compatible with asymptotic safety, while the
Standard Model is compatible. Consequently this direction of research was dubbed with
the catchy title ‘'matter matters’. These results have, however, be taken with care due to
the background field approximation as we will show in upcoming chapters.

Concerning the other side of the medal, the influence of gravity fluctuation on the
matter couplings, a lot of progress has been made recently. The impact of gravity can be
parameterised via the graviton propagator and if the fluctuations become too strong, they
trigger new divergences in the matter sector. This gives rise to a bound, called the weak
gravity bound [387, 420, 432, 433]. Thus it is of great interest to get a quantitative handle
on the strength of the graviton propagator.
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Figure 6.1.: Flow equation for the scale dependent effective action I'y in diagrammatic
representation. The double, dotted, solid and dashed lines correspond to the
graviton, ghost, fermion and scalar propagators, respectively. The crossed
circles denote the respective regulator insertions.

N | =

In the upcoming chapters of this dissertation we investigate the impact of matter fluctu-
ations on the quantum gravity fixed point. The main difference compared to earlier works
is that we go beyond the background field approximation and disentangle contributions
from the fluctuation and the background field. We saw already in the previous chapters
that the difference between these fields is potentially of qualitative nature. Indeed we
will show that matter increases this qualitative difference and we find that large classes
of matter models are compatible with asymptotically safe gravity. Thus we dubbed our
research 'matter matters but gravity rules’.

In this chapter we analyse the influence of scalar and fermionic matter on the non-trivial
UV fixed point of quantum gravity in the dynamical FRG setup put forward in Chapter 3.
The matter contributions to the quantum gravity system are extracted, for the first time,
from the higher-order dynamical correlation functions. We analyse a system of vertex
flows evaluated at flat Euclidean background. We also introduce a validity bound on
the generic class of regulators used here, based on the size of the anomalous dimensions.
This regime includes an arbitrary numbers of fermions, whereas it restricts the number
of allowed scalars that can be discussed with the present generic class of regulators to a
maximum < 20. Within this regime of validity we find that the UV-fixed point persists and
remains UV stable. We also find that the UV fixed points for the dynamical couplings are
significantly different from those of their associated background counterparts, once matter
fields are included. In summary, the asymptotic safety scenario does not put constraints
on the matter content of the theory within the validity bounds for the chosen generic class
of regulators.

6.2. Functional renormalisation group

As in the previous chapter we use the functional renormalisation group approach. In the
pure gravity context we detailed this setup in Sec. 3.3. Here we focus on the additional
terms that arise due to the matter contributions. The basic object is the scale-dependent
effective action I'g[g, ¢], where the fluctuation superfield ¢ contains now the fields

@b = (huuv Cus 6}“ ¢i7 q/jja @l) . (61)

The fermion fields (1, 1;), carrying the flavour indices 4,5 € 1... Ny, and the real scalars
p; of flavour [ = 1... N, constitute the matter contributions to ¢. The flow of the scale
dependent action now also includes contributions from the matter fields, to wit

1 1
oy, = 5 Tr [GkatRk]hh —Tr [GkatRk]Ec —Tr [Gké?tRk]w + 5 Tr [GkatRk]¢¢ . (6.2)
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Fig. 6.1 depicts equation (6.2) in terms of diagrams. We are again expanding the full
scale-dependent effective action in powers of the fluctuation fields according to

1

1 cc)r— _
3'F,E:hhh) [9,0]h3 + §I‘§€ )[g, O]cc

1
Telg. 9] = Tilg, 0] + T} [g, 01k + ST} g, 0° +

1 - 1 _
+ 50013010 v + 505, 000% + . (6.3)

I';[g, ¢ is expanded about an, a priori, arbitrary fixed metric background g,,, but as in
Chapter 3 and Chapter 4 we choose a flat Euclidean background, i.e. g,, = d,,. In (6.3),

the zero-point function I'y[g,0] and the one-point function F,gh) [g,0] are non-dynamical
(background-) quantities that do not feed back into the flow of the dynamical n-point
functions. Therefore we first focus on the computation of the latter ones and afterwards,
in Sec. 6.5, use the solution of the dynamical couplings for a self-consistent computation
of the background couplings. Since the right hand side of the flow equation (6.2) contains
second variations of the fields, the flows for the respective n-point functions contain n-point
vertices up to order n + 2.

In straight analogy to Sec. 3.4.1 we generate an ansatz for the vertices from a classical
action and dress them according to (3.16). In this chapter the classical action S is given
by the gauge-fixed Einstein-Hilbert action, see also Sec. 3.3, added by covariant fermion
and scalar kinetic terms according to

_ 1
S = Spu + /d%\/@/}ﬁwz‘ +3 /d4x\/§gpwau§0lay§0la (6.4)

where we used the conventional slash-notation for the contraction of the spin-covariant
derivative V#* with gamma matrices. The covariant kinetic terms for the matter fields in
(6.4) lead to minimal coupling between gravity and matter in the present truncation. In
Fig. 6.2 we show all dressed three-point vertices used in this chapter. For the formulation
of fermions in curved spacetime we use the spin-base invariance formalism introduced in
[442-444]. This allows to circumvent possible ambiguities arising in the vielbein formalism
and relies on spacetime dependent y-matrices and the spin-connection T'*. As a result, Y
reads

V = guu’)/(x)uvy = guu’)/(x)u(ay + P(x)y) ’ (65>

if it acts on a spinor as in (6.4). In the following, we drop the explicit spacetime dependence
of the latter quantities for a more convenient notation.

The vertex flows, that are derived by taking field derivatives from (6.2), carry spacetime
and momentum indices. In order to obtain scalar flow equations for the couplings the
appropriate projection of the flows is a crucial part of the present truncation and goes
along the same lines as in Chapter 3. It can be summed up in a three step procedure:

(i) We decompose 7). where ny, is the number of variations with respect to h, into
its momentum dependent and momentum independent part according to

T("h)(p; Ap,) = T(nh)(p; 0) + AnhT(nh)(O; 1). (6.6)

In (6.6), the first term on the right-hand side is quadratic in the external graviton
momenta p for the current truncation. The second term is momentum independent.
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Figure 6.2.: Vertex dressing of all three-point vertices used in this chapter. The vertex
dressing consist of the respective wave function renormalisations, couplings
and tensor structures. The first line in the figure depicts all pure gravity
three-point vertices while the second line shows the ones with gravity-matter-
interactions.

(ii) From (6.6) we take the dimensionless tensors 7 () (p;0)/p? and T)(0;1) and
separately multiply all spacetime-index pairs of both tensors with transverse-traceless
projection operators Ily. This leaves us with the two tensors ﬂinh)(p;O) /p? and
’Einh)(O; 1), each of them carries 2n; spacetime indices.

(iii) We contract the left and the right hand side of the vertex flow with these two tensors,
in order to obtain Lorentz-scalar expressions. Hereby, the tensors 7;&”’1) (p;0)/p? and

ﬁinh)((); 1) are used to project the tensorial flow onto the scalar flows of G,, and
Ay, , respectively.

The projection operators are also detailed in Sec. 3.4.3. In addition to the spacetime
indices, the vertex flows carry spinor, flavour and colour indices. These however, can be
trivially traced out after multiplying appropriately with v and 1-matrices. After having
traced out all discrete indices the resulting flow still depends on the external field momenta
p. As in Sec. 3.4.2 we choose the maximally symmetric configuration for the graviton
three-point function.

Summarising the present truncation, we consider the renormalisation group flow for
the m-point correlation functions in a system of minimally-coupled gravity and matter.
To this end, we employ a vertex expansion of the scale dependent effective action about
a flat metric background to derive flow equations for the n-point correlators up to or-
der three. We derive the flows of the momentum-independent couplings G, Ay and Aj
as well as the momentum-dependent anomalous dimensions 1, (p?), n.(p?), ny(p*) and
7730(}02) The couplings G and A3 are computed from the transverse-traceless part of the
graviton three-point function in the symmetric momentum configuration. Diffeomorphism
invariant background couplings are computed on the solution of the dynamical couplings.
Altogether, the present truncation yields the flow of the scale dependent parameters,

G? ]\7 Ga A?a A37 nh(pQ)v 77c(p2), 771/;(]92)a n@(pQ) . (67)

6.3. Flows of correlation functions

The properties of the given theory are completely determined by the flows of the respective
correlation functions. Thus, the latter parameterise the non-trivial interplay between
gravity and matter. Matter is known to have a significant impact on the UV-behaviour of
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Figure 6.3.: Diagrammatic representation of the matter induced flow of the graviton two-
and three-point function. Double, single and dashed lines represent gravi-
ton, fermion and scalar propagators, respectively, filled circles denote dressed
vertices. Crossed circles are regulator insertions.

quantum gravity. On the other hand, graviton fluctuations can lead to strong correlations
among matter fields. The resulting mutual dependencies play a crucial role for the flow of
the complete system and are discussed separately in the following sections.

6.3.1. Matter contributions to gravity flows

For the present analysis of quantum gravity, the gravity flows are extracted from the
dynamical graviton two-point and three-point functions. The impact of matter manifests
itself by matter loops in the diagrammatic representation of the flow. Fig.6.3 depicts these
contributions. The trace over the colour and flavour indices leads to weight factors of N
and Ny for scalar and fermion loops, respectively. The matter contributions to Flow"")
and Flow"") are thus proportional to N or Ny.

From the transverse-traceless part of Flow™) we extract the flow of the graviton mass
parameter defined as M? := —2A, and the graviton anomalous dimension 7, just as in
Sec. 3.4. The flow equation has the shape

Flowghh) (p?) = L

o (0:M? — i (p*) (p* + M?)) . (6.8)

(hh

The matter contribution to Flowy, )(p2) are precisely the ones in Fig.6.3. This equation is
evaluated at two different momentum scales p?. Subtracting these two equations from each
other allows for an unambiguous extraction of 9;M? and n,(p?). We call this procedure
bilocal momentum projection.

The matter contributions to the flow for the graviton three-point function parameterise
the impact of matter on the dynamical gravitational couplings g and A3. The flow for G and
A3 is extracted from the flow of the transverse-traceless three-graviton vertex, projected
on the classical tensor structures as described in (6.6) and evaluated at the momentum
symmetric point as described in (3.22). This yields equations of the type

2
ﬁ Flowgﬁ?h) =2M,; 0 A3 — [77(; + 377h(p2)] (M P>+ M; As) ; (6.9)

with ¢ = G, A, for the projection on the tensor structures of G and Aj, respectively, and
ng = —0¢InG. The factors N; and M; arise from the tensor projection and they depend
on the kinematic configuration. Note, that (6.9) is structurally very similar to (6.8). For
the extraction of the flows for the couplings G and A3 we apply the bilocal momentum
projection discussed before. Thus, we evaluate the flow of G at p> = k? as well as at
p? = 0 and subtract both equations from each other. For the flow of As it is then sufficient
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Figure 6.4.: Diagrammatic representation of the gravitationally induced flows of the
matter-two-point-functions. Double, single and dashed lines represent gravi-
ton, fermion and scalar propagators respectively, filled circles denote dressed
vertices. Crossed circles are regulator insertions.

to evaluate (6.9) (with i = A) at vanishing external momentum p? = 0. This prescription
identical to the one in Chapter 3 and the resulting flows with matter contributions are
given in App. D.1.

6.3.2. Gravity contributions to matter flows

In the matter sector, we consider the flows of the matter two-point functions. Since we
do not admit matter self-interactions within the given truncation, these flows are driven
solely by gravity-matter interactions. Furthermore, the matter fields are treated as mass-
less, which is a good approximation for studies of the UV-behaviour of the theory. Conse-
quently, the only quantities that are extracted here, are the matter anomalous dimensions.
The effective action constructed from (6.4) is diagonal in both the colour and the flavour
indices, ¢ and k, respectively. We treat all scalars and all fermions on equal footing, pro-
viding them with one anomalous dimension for each of the field species, 7,,(p?) and 1 (p?),
respectively. This allows for an extraction of the matter anomalous dimension from one
representative field, since Flow(#s@1) = 5MF10W(‘PW’“) and Flow(#i¥3) = (5,‘]‘F10W(wiwi). Con-
sequently, we drop the colour and flavour indices in the flows of the scalar and fermion
two-point functions.

Fig. 6.4 depicts the flows of the matter two-point functions in diagrammatic representa-
tion, which constitute the respective right-hand sides of flow equation. From these flows
we extract the matter anomalous dimensions. For the scalar fields the left-hand side is
given by

Flow(¥#) (p*) = —pn,(p°) , (6.10)
in complete analogy to the equation for the transverse-traceless graviton two-point func-
tion, (6.8). For the fermions we have the additional spinor structure that needs to be

eliminated in order to obtain a Lorentz-scalar expression. The flow for the fermion two-
point function reads

Flow) (p%) = —ipn,(p?) . (6.11)
By multiplying this expression with p and taking the trace over the spinor indices we
obtain an expression, which is identical to (6.8) and (6.10) up to prefactors, to wit

Tr pFlow(ql_’w)(ﬁ) = —dip*ny(p®). (6.12)

Here d is the dimension of spinor space, which we set to d = 4 throughout. Since (6.8),
(6.10) and (6.12) are of the same form, we apply the same bilocal momentum projection
for the extraction of the respective momentum dependent anomalous dimensions. This
crucial procedure is discussed in more detail in the next section.
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6.3.3. Anomalous dimensions

Each of the field species is equipped with an anomalous dimension 7y, (p®). The latter
are extracted from the flow of the respective field’s two point function. In the context of
heat-kernel methods, the anomalous dimensions are often referred to as ‘RG improvement’
[253, 254, 326, 424]. In this dissertation, they arise naturally from the truncation and we
keep an approximated momentum dependence of the anomalous dimension.

The expressions (6.8), (6.10) and (6.12), together with the bilocal momentum projection
lead to a coupled system of Fredholm integral equations for the anomalous dimensions
Mo = (M, Ne, My, Ny )- It can be written as

"7¢(p2) = E(pQ, G’ M27A3) + B(p2, Ga M27 A3)[ﬁ¢] ) (6'13)

where A and B are momentum-integral expressions. As the square brackets suggest, B
is a functional of 7j,(¢?). Equation (6.13) can be solved iteratively which is, however,
computationally very expensive since it is a coupled system of four equations. In order
to get a handle on the solution of (6.13), we evaluate the anomalous dimension in B at
k% and move 17¢(k2) in front of the integrals. This is a good approximation because all
integrals of this type are sharply peaked around ¢ = k. This feature arises due to the
factor of ¢> from the integral measure in d = 4 dimensional spherical coordinates. Since
B is linear in 175, We can now write it as a matrix C' multiplying the vector 7j,(k?). Hence,
(6.13) simplifies to

Ts(P?) = A(p®, G, M?, A3) + C(p*, G, M?, A3) 7y(K?) . (6.14)

We now evaluate the latter equation at p? = k? in order to obtain an expression for
i75(k?). The result 7j,(k?) is substituted back into the momentum-dependent equation
(6.14). This way, we obtain anomalous dimensions with an approximated momentum de-
pendence. Note, that the latter approximation is considerably better than the assumption
of momentum-independent anomalous dimensions, since we evaluate the functional depen-
dence on 7j; at the peak position of the integrals. In particular, this procedure allows for
a distinction of 7j,(k?) and 74(0), which is important since they both appear explicitly in
the flow equations (D.1), due to the bilocal momentum projection. We show in Sec. 6.4.1
that our approximation is justified for the case without matter via comparison with the
results from Chapter 3.

As an interesting fact, the scalar anomalous dimension m,(pZ) vanishes for the given
gauge-fixing choice in the gravity sector. Generally, the scalar anomalous dimension com-
prises a term that is proportional to the scalar mass and one mass-independent term.
The latter vanishes for the used harmonic gauge. The former term vanishes for massless
scalars, which we consider here, leaving us with a vanishing scalar anomalous dimension
n,(p?) = 0. Note that this is only the case for the scalar anomalous dimension for the
gauge fixing choice 8 = 1 and a = 0, for all other gauges 7, (p?) is not equal to zero.

6.3.4. Anomalous dimensions and bounds for the generic class of regulators

As part of the truncation, we choose a generic class of regulators R,‘i’, that are proportional
to the corresponding two-point function, i.e.

R{(p?) =T (0P (p?) (6.15)
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in momentum space, where r,f(pQ) is the regulator shape function. Since the effective

graviton mass M? is the only mass parameter in the present truncation the above definition

implies that I’](CW) (p?)| pr2—o is either the full two-point function T ](€¢¢) (p?)

graviton field, its momentum-dependent part, i.e. I‘](ght}é) (P?) | pr2—o = (3270) 71 Z3,(p?)p?, see
(6.8). This generic class covers the regulator choices in the literature, and implements the
correct renormalisation group scaling of the effective action as discussed in [188, 327, 445].
It provides a RG-covariant infrared regularisation of the spectral values of the two-point
function, and is hence called RG- or spectrally adjusted, [188, 445, 446]. It implies in
particular, that the regulator is proportional to the corresponding field’s wavefunction
renormalisation via the dependence of Rf on the two-point function. Thus, the present
choice leads to closed equations in terms of the anomalous dimensions. However, for large
n¢ the choice (6.15) leads to a peculiar RG-scaling of Ri in the UV. From the path integral
point of view one expects a UV scaling with

, or, in case of the

lim RE(p?) ~ lim Zgk' — oo, (6.16)
for all momenta p?. In (6.16) we have i = 1 for fermions and i = 2 for all other fields.
Equation (6.16) entails that the regulator diverges in the UV, and the related momentum
modes in the path integral are suppressed. Since the wavefunction renormalisation behaves
like Zy ~ k"% for large k, equation (6.16) is violated if the anomalous dimensions exceed
the constraints

ny < 2, Ne < 2, N <2, my <1. (6.17)

Hence, if one of the bounds in (6.17) is violated, the respective regulator vanishes in
the UV. In the spirit of the above path integral picture this may imply a decrease of
the effective cutoff scale for the respective field, and hence a flow towards the IR. Note
however, that this is far from being clear from the flow equation itself. For example,
with the regulator (6.15) the transverse-traceless component of the graviton propagator is
proportional to

1 1
Zn(p?) (p*(1 +1y) + M?2)’

(6.18)

which implies a spectral, RG-covariant regularisation of the momentum modes of the full
propagator, as discussed above. We conclude that if the bounds in (6.17) are exceeded,
the regulator may not suppress field modes in the UV properly. Indeed, if the anomalous
dimension are large enough, this does not only lead to a decreasing regulator, but also
(‘)tRi turns negative. This can be seen from the schematic expression

BiRY (D7) ~ Zg(Br L (0?) — nsrd (7)) - (6.19)

The second term in equation (6.19) exceeds the first one for p?/k? — 0 exactly at the
critical values given in (6.17). Still, this is not sufficient to change the sign of the respective
diagrams, which involves an integration over all momenta. However, for an even larger
anomalous dimensions, 7., > 2, the sign of the respective diagrams changes. In the path
integral interpretation introduced above this change of sign signals the global change from
a UV-flow to an IR-flow for the respective diagram. Naturally, this bound depends on
the shape function of the regulator. For the present approximation, the first diagrams
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switch sign at 7., = 4. This is already visible in the analytic, reduced, approximation
derived later, see (D.1). Note also, that the sign of diagrams does not change for Zj-
independent regulators. Accordingly, for 1, > 7... We have a regulator-dependence of the
sign of diagrams, which has a qualitative impact on the physics under discussion. Hence,
for np, > N the present approximation breaks down completely. In this dissertation,
however, we resort to the stricter, shape-function-independent bound (6.17).

In summary, it is clear that if the bounds (6.17) are violated, additional investigations
of the regulator-dependence, and hence of the reliability of the present approximation
are required. Note however, that small anomalous dimensions, that obey (6.17), do by
no means guarantee the convergence of the results with respect to an extension of the
truncation. Such a convergence study requires the inclusion of higher order operators and
detailed regulator studies and is deferred to future work.

6.4. Results

In this section, the results of the above presented setups are displayed. As a main result,
within the validity bounds for the chosen generic class of regulators, we do not find an up-
per limit for the numbers of scalars and fermions that are compatible with the asymptotic
safety scenario.

For the analysis we employ regulators of the type given in (6.15) and use a Litim-
type shape function [372] that is, /ar(z) = (1 — \/z)0(1 — z) for fermions and xr(z) =
(1 —2)0(1 — x) for all other fields. We close the flow equations with the identification
As = Ay = Ag as well as G5 = G4 = G3 = G. We work with the dimensionless quantities

g:=Gk*, pi= M?*E2, A3 = Azk™2. (6.20)

6.4.1. Pure gravity

In order to study the UV behaviour of quantum gravity interacting with matter, we start
from the UV fixed point of pure quantum gravity found in Chapter 3 and study the
deformation of this particular fixed point by the matter content. To that end, we rederive
the results for the pure gravity case with the approximated momentum dependence of the
anomalous dimensions discussed in Sec.6.3.3. We compare these findings with the results
in Chapter 3, where the full momentum dependence of the latter was considered. The
fixed point values for the pure-gravity system in the present approximation read

(g%, 1*, A3) = (0.62, —0.57, 0.095) , (6.21a)
with the critical exponents 61, 2 and 03 given by
(01,2, 03) = (1.3 £4.1i, —12). (6.21b)

These fixed point values are in agreement with (3.30) within an error of 6% (15% for
the critical exponents). This justifies the approximations described in Sec. 6.3.3. The
deformation of the fixed point (6.21) is calculated while successively increasing the number
of scalars and fermions, Ny and Ny, respectively. This way, we analytically continue the
fixed point of the pure gravity system towards a theory of quantum gravity and matter,
which contains Ny scalars and Ny fermions. Although Ny and Ny are (half-)integers in the
physical sense, we treat them as continuous deformation parameters for this analysis. With
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this procedure we simulate the generic effect of gravity-matter interactions on gravity-
theories. First, we analyse the influence of scalars and fermions separately before we
briefly discuss combined system of both matter types.

6.4.2. Scalars

We first consider the case Ny = 0, Ny > 0, thus a theory of Ny scalars minimally coupled
to gravity. Note again, that in the present approach, we neglect the influence of scalar self-
interactions in the action (6.4). Detailed analyses of the potential impact of matter-matter
couplings can be found in e.g. [121, 420, 423].

Before analysing the full numerical flow equations we try to anticipate the result from
the analytic flow equations (D.1) without anomalous dimensions. For Ny =0, N, > 0 and
¢ = 0 the latter equations read

43

09 =+ 29 + Byyraviey — mg Ng,
1
8t,u = - 2/'L + IBMgravity + ﬁgNS )
1 43
815)\3 = — 2)\3 + /8)\3,gravity — 60771' 1— TgAg gNS . (622)

In this set of equation we have split the running of the dimensionless couplings into the
canonical running, the contribution from graviton and ghost loops, and the contribution
from scalar loops, in this ordering. In the following, we analyse whether the respective
signs of the contributions potentially stabilise or destabilise the UV fixed point. A matter
contribution to a given flow equation potentially destabilises the UV fixed point of the
pure gravity system if it has the same sign as the canonical running. In this case, the
contributions from graviton and ghost loops need to increase in to order to compensate
for the matter contribution and, thus, allow for a gravity-matter fixed point. Conversely,
if the canonical running and the matter contributions have the opposite sign we consider
the matter contributions to potentially stabilise the fixed point. Further, we argue that
the matter contribution to the running of p has the largest impact on the flow compared
to the other equations of the system (6.22).

Using the above notion, the scalar contribution to d;g potentially stabilises the fixed
point, since the canonical running of g is positive and the Ns-dependent term has a negative
sign. The positive sign of the N,-term in Oy potentially destabilises the fixed point, since
we have found p* < 0 in the pure gravity case (see (6.21a)). Moreover, the contribution
to Oy A3 is potentially destabilising, since we consider a positive and small A3 as in (6.21a).
The behaviour is opposite for Az > i—g and for A3 < 0.

We note that the flow equation for p has the largest impact on the complete system
(6.22). For one, that is because p is the effective mass parameter of the graviton and,
consequently, appears in all diagrams with graviton contributions in the loops. The second
reason is that the fixed point value p* for the pure gravity system is close to —1. The
p-contributions to the flow equations generally take the form (1 + p)~™ with n > 1.
Perturbations of u are therefore strongly amplified if u is close to —1. To see this we
expand the general form of the u-contributions around —%, namely p = —% + €, which is
approximately the fixed point value of the pure gravity system (see (6.21a)). The general
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Figure 6.5.: Fixed point values (left), real parts of the critical exponents (middle), and
the anomalous dimensions evaluated at p = k and p = 0 (right) as functions
of the number of scalars, Ny, respectively. The grey-shaded area in the left
panel indicates where the regulator lies outside the reliability bounds defined
in Sec. 6.3.4 due to a large graviton anomalous dimension (see right panel).
The corresponding limiting number or scalars is given by Ng,,.... The hatched
regions in all three panels correspond to the Ns-regime where the UV fixed
point does not exist. The green and red areas in the middle panel denote the
region where the fixed point exhibits UV-attractive direction and the region
where it is fully repulsive, respectively. N, is the corresponding critical
number. The colours of the curves in the middle panel indicate with which
coupling of the left panel the corresponding eigenvector has the largest overlap.
The anomalous dimension of the scalar 7, (right panel) is zero due to the given
graviton gauge.

form of the p-contributions is now given by

1 on
- ~ 2™(1 — 2ne) 6.23
Qe Qg 2= (6.23)

which suggests that small perturbations of u around —% are amplified by a factor of 2n
compared to contributions of order one that appear linearly in the numerators. Using a
Litim-type regulator we obtain terms of the latter type in 0;g up to n = 5. For these
terms perturbations of y around —% are amplified by 10 compared to the linear quantities
of order one. The impact of p on the flow (6.22) becomes even larger, the closer y is
driven towards —1. For J; A3 this argument is additionally supported by the smaller scalar
contribution to d; A3 compared to the respective contributions to dyg and O;u. This also
compensates for the fact that the fixed point value in the pure gravity case is A\ ~ %0
and therefore not of order one. For these reasons, the scalar contributions in the flow of
p have the largest impact on the system (6.22).

In summary, we anticipate that the inclusion of scalar degrees of freedom potentially
destabilises the UV fixed point. Hence, the gravity contributions in (6.22) must increase in
order to compensate the destabilising Ng-contributions. This suggests that the couplings
g* and A5 must increase with increasing V.

We now turn to the discussion of the UV fixed point for a varying number of scalars
Ny in the full truncation. The left panel in Fig. 6.5 shows the fixed point values of
the dynamical quantities of the system as a function of N,. All fixed point values are
continuous functions of the number of scalars in the regime 0 < N; < 66.4 =: N,

Smax *

Outside this regime (hatched area), the fixed point disappears, thus, spoiling asymptotic
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safety of the corresponding theory. Below N . , the fixed point value of g increases with
increasing Ny, as conjectured from the analytic equations (6.22). Both, A5 and u* remain
almost constant, exhibiting only minor variations close to Ny, . The grey-shaded area
in the left panel indicates where the regulator lies outside the reliability bounds defined
in Sec. 6.3.4 due to a large graviton anomalous dimension. The corresponding limiting
number or scalars is given by Ng ...

The middle panel in Fig. 6.5 depicts the real parts of the critical exponents of the fixed
point as functions of Ng. The colours of the curves are chosen such that the corresponding
eigenvectors have the largest overlap with the coupling of the same colour in the left panel.
All critical exponents decrease with increasing Ng. The real part of the complex conjugate
pair of eigenvalues changes sign at N, ., = 42.6. Consequently, the green and red areas
correspond to Ng-regimes where the fixed point exhibits attractive directions and regimes
where it is fully UV repulsive, respectively. Furthermore, we observe that 03 takes large
values for large Ny, which we see as further evidence for the insufficiency of the truncation
in this regime [281, 282].

The right panel in Fig. 6.5 shows the anomalous dimensions of all involved fields eval-
uated at the fixed point and at the peak of the loop integrals, p?> = k2, as well as at
vanishing momentum, p?> = 0. As discussed in Sec. 6.3.3, the scalar anomalous dimen-
sion nw(pZ) is zero for all p? within the chosen gravity-gauge. The graviton anomalous
dimension increases with increasing Ns due to the increase of g*. At Nj,, ... = 21.5, n,(0)
exceeds the critical value of n,_,, = 2, discussed in Sec. 6.3.3. Consequently, in the regime
Ngione < Ny < Ny the graviton anomalous dimension has exceeded the reliability
bounds of the generic regulator class used here and we lose control over the suppression
of graviton field modes by the regulator.

In summary, we draw the conclusion that within our truncation the inclusion of up
to Ng ~ 21 scalars is consistent with the asymptotic safety scenario of quantum gravity.
We also find that beyond this limit, our truncation exhibits a large graviton anomalous
dimension beyond the critical value defined in (6.17). This suggests that the truncation
should be improved in order to draw definite conclusions about the regime Ng > N, .
Therefore, the limits N, and N, . found above, should be treated with caution as they
could be artefacts of the present truncation.

The Ng-dependence of the couplings shown in Fig. 6.5 is qualitatively different from
that in [416, 424, 425]. This qualitative difference is also present in the fermion system
discussed in the next section. A detailed comparison and evaluation of the reliability of
the corresponding approximations is deferred to Sec. 6.5.

max ?

6.4.3. Fermions

In this section we discuss the effect of minimally coupled fermions, thus Ny > 0 and
Ng =0 in our notation. As before, matter-self interactions are neglected.

Again, we first analyse the generic behaviour of the system of analytic flow equations
(see App. D.1) with the simplification 75 = 0. To that end, we again divide the flow
into canonical running, gravity- and ghost-loop contributions, and matter-loop terms.
Consequently, the latter equations read

3599
8tg = + 29 + /BQgravity - 114007Tg2 f ’
815/“[/ = — 2:“ + /B}Lgravity - gng ’
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Figure 6.6.: Fixed point values (left), real parts of the critical exponents (middle), and the
anomalous dimensions evaluated at p? = k? and p? = 0 (right) as functions
of the number of fermions, Ny, respectively. The colours of the curves in the
middle panel indicate with which coupling of the left panel the corresponding
eigenvector has the largest overlap. All quantities remain well-behaved for
any number of fermions. In particular, the fixed point stays attractive (middle
panel) and the anomalous dimensions remain small (right panel).

1 /47 3599
Othg = — 2A3 + /BAS,gravity + 2077_[_ <7 + 1140)\3> ng . (624)

Using the notion introduced in the last section, we conclude that the fermionic contribu-
tions to drg and O potentially stabilise the UV fixed point since they have signs opposite
to the respective canonical running. The fermionic contribution to 0;A3, by contrast, is
potentially destabilising. As we argued in the last section, the matter contribution to O;u
is the most relevant one. Therefore, we expect that the fermion-gravity system remains
stable under the increase of Ny.

We turn now to the full numerical equations with momentum dependent anomalous
dimensions. The left panel in Fig. 6.6 shows the fixed point values of the dynamical
quantities as functions of the number of fermions Ny. The fixed point value of g decreases
with increasing Ny and approaches g* — 0 asymptotically. At the same time, ;/* decreases
with increasing Ny and approaches p* — pip01le = —1 for Ny — oo. The fixed point value
of A3 increases slightly with Ny and is driven towards an asymptotic value of A3 ~ i. It
is important to note that the crucial negative sign of the fermionic contribution to Opu,
which is the same as in the analytic equations (6.24), gives rise to an interesting stabilising
effect: Since we start with a negative u* for Ny = 0 the negative fermionic contribution in
Oyt drives p* towards more negative p and therefore closer towards the propagator pole at
tpole = —1. This increases the contributions from graviton loops that have the opposite
sign compared to the fermionic terms to dypu. Thus, the latter contributions cancel each
other and the system settles at small values of g*.

The middle panel in Fig. 6.6 depicts the real parts of the critical exponents of the fixed
point as functions of Ny. The colours are chosen such that the corresponding eigenvectors
have the largest overlap with the coupling of the same colour in the left panel. The
critical exponent of the repulsive direction 3 first increases slightly and then decreases to
large values. The other two critical exponents 61 2 form a complex conjugate pair with an
increasing real part until they reach Ny = 65.5. For Ny > 65.5 all critical exponents are
real. In this regime, 61 increases to larger values, while 5 remains almost constant. The
large absolute values of the critical exponents 1 and 3 indicate, similar to the scalar case,
the necessity to extend the given truncation. Large critical exponents appear in particular
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Figure 6.7.: Fixed point value g* as a function of N, for Ny = 0, 5,10, 15. The vertical lines
denote the numbers of scalars for which the graviton anomalous dimension
exceeds its critical value in the UV, for the respective number of fermions.

for large numbers of fermions.

The right panel in Fig. 6.6 shows the anomalous dimensions evaluated at the fixed point
and at the momentum scales p?> = 0 and p?> = k2. Each anomalous dimension decreases at
first and later increases slowly with increasing Ny. Nevertheless, all anomalous dimensions
remain small. In particular, the graviton anomalous dimension stays below its critical value
Mh < My = 2.

In summary, we find an attractive UV fixed point for all numbers of fermions. Thus,
all numbers of fermions are compatible with the asymptotic safety scenario. We also note
that, in contradistinction to the scalar case, the anomalous dimensions stay sufficiently
small even for a large number of fermions. However, the appearance of large critical
exponents is seen as an indicator for the necessity to improve the truncation.

As in the scalar case we find that the /Ny-dependence of the couplings shown in Fig.6.6 is
qualitatively different from that in [416, 424, 425]. A detailed comparison and evaluation
of the reliability of the corresponding approximations is deferred to Sec. 6.5.

6.4.4. Mixed scalar-fermion systems

In this section, we consider the fixed point behaviour of mixed systems of scalars and
fermions. The gravity-fermion system is stable for all N in the present approximation.
In turn, the gravity-scalar system exceeds the bounds (6.17) far before the fixed point
first becomes unstable and finally disappears. Thus, it is interesting to study the effect
of a fixed number of fermions on the Nj-regime of validity. As discussed in Sec. 6.4.2,
there exists a finite number of scalars Ny, for which 7, exceeds its critical value. In
Sec. 6.4.3 we observed that the inclusion of fermions leads to a decrease of g*, which results
in smaller anomalous dimensions. Therefore, we expect that the Ny-regime of validity is
extended if we increase N.

In Fig. 6.7 the fixed point value ¢g* is plotted as a function of Ny for different numbers
of Ny. The vertical lines denote the numbers of scalars for which the graviton anomalous
dimension exceeds its critical value in the UV. As displayed in the figure, the expected
behaviour for the combined systems is indeed realised. Thus, the increase of Ny lowers
the fixed point value g* and extends the N -regime of validity. For Ny = 0, 5, 10 and 15
the corresponding critical values N, N5, Ns 10 and Ny 15 are given by 21.5, 57.9, 93.8

trunc?
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and 129.6, respectively. The maximum number of scalars that defines the validity of the
truncation increases almost linearly with Ny. Thus, every additional fermion stabilises
the combined system such that ~ 7.1 additional scalars are admitted. The ratio between
these numbers suggests that fermions have a significantly stronger impact on the system
than scalars. This is true for the complete truncation analysed here and can also be
verified in the analytic equations by comparing the numerical values of the respective
contributions (compare (6.22) and (6.24)). This imbalance between scalars and fermions
was also observed in [424]. The increase of Ny also shifts the values of Ny . and N,
to larger values and extends the N,-regime where a fixed point is found considerably. In
summary, the inclusion of fermions stabilises the system and extends the Ng-regime of

validity for the given truncation significantly.

6.4.5. Independence on the approximation in the gravity sector

We close this section with a brief discussion of the impact of the approximation in the
pure gravity sector on our results. Interestingly, the results agree qualitatively for all
approximations in the pure gravity sector used in the literature. This includes the standard
ones in the background field approximation which are discussed in the next section. We
also note that the fixed point for our truncated system is also present, if all anomalous
dimension are set to zero. It is interesting to note, however, that for Ny, > 0, Ny = 0
the fixed point vanishes already for Ny =~ 45 and therefore earlier than with anomalous
dimensions. Thus, the anomalous dimensions stabilise the UV-behaviour of the system.
In order to combine the present matter contributions with the pure gravity systems in
the geometrical framework [336], and with [327], we have to identify A3 = Ao = —p/2.
We find that the matter-contributions admit UV fixed points. Furthermore, we observe
the same generic effect of scalars and fermions on the UV fixed point that was found for
the present truncation. Hence, scalars drive the fixed point to larger values of g*. while
fermions lead to a decrease of ¢g* and p*, where u* approaches —1. In summary, our
qualitative results are insensitive to the approximation in the pure gravity sector.

6.5. Background couplings and background field approximation

It is left to study the stability of the results under a change of the approximation scheme
in the matter sector. This is even more important as the Ny- and Ny-dependencies of the
couplings shown in Fig. 6.5 and Fig. 6.6 are qualitatively different from those in [416, 424,
425]. The latter works use the background field approximation for the computation of
the flows for the couplings, which are augmented with dynamical anomalous dimensions
in [424, 425]. Hence, we compare the present system of dynamical couplings with the
standard flows in the background field approximation.

In perturbatively renormalisable quantum field theories, like the Standard Model, the
gauge invariant background couplings in the limit £ — 0 directly enter S-matrix computa-
tions. For k — 0 the regulator, which typically depends on the background field, vanishes.
For these reasons, these couplings are observables of the theory. In direct analogy, we call
the diffeomorphism-invariant background couplings of quantum gravity also observables
in the limit £ — 0. Note that these quantities have a clear physical interpretation only
in the limit & — 0. For £ > 0, on the other hand, the background couplings depend
inherently on the background-field content via the non-vanishing regulator. In this case,
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the couplings lose their clear physical meaning and their relation to observable quantities
becomes unclear.

In this section we use the notation (g, A2, A3) for the dynamical couplings, where we
reintroduced Ay = —1/2 . We also give a brief summary of the discussion in [188, 336,
337, 347, 352, 355, 356, 376, 447] on dynamical and background flows and the impact on the
background field approximation: Standard approaches based on diffeomorphism invariant
truncations use the background-field formalism for the definition of the truncated effective
action. The corresponding flow equation, however, is not closed since it depends on the
dynamical propagator. This is expressed schematically as

(6.25)

atrk[g7 h] =F |: Sh2

where the separate dependence on g stems from the regulator. In order to close (6.25) the
background-field approach amounts to the identification of the propagators of fluctuating
and background-fields, i.e.,

52Fk[§7 h’] ~ 62Fk[§7 h]
e 5%

(6.26)

The latter identification in known to pose severe problems in QCD, for more details see
[327, 376]. However, at least for pure quantum gravity the approximation (6.26) seems to
work rather well, leading to a reliable UV-behaviour of the theory. In the more elaborate
geometrical-effective action approach [448, 449], the differences between fluctuating and
background propagators are encoded in the (modified) Nielsen-Identities [188, 347]. In
[336] the latter identities together with a minimally consistent extension to the Einstein-
Hilbert truncation were used to derive flow equations for the dynamical couplings (g, \)
and the background couplings (g, A) in the absence of matter. In the geometrical approach
the flow equations for the background couplings read schematically
k2 Ak

O <g> :FRl(gaA;N&Nf)? O <g) :FRO(gv)\;N&Nf)v (627)
for a theory with N; scalars and Ny fermions. Note, that the right hand side of the latter
equation only contains dynamical couplings. The dimensionful functions Fr1 and Fgro cor-
respond to the R! and R%-terms of the required heat-kernel expansion, respectively. With
the identification of background and dynamical couplings (g, \) = (g, A), one retains the
background-field approximation from the geometrical approach. Applying the derivatives
in (6.27) leads us to

X N 0.
-4+ —=—-—) = )\'h&h ) 6.28
g < by g > fRO(gv ) f) ( )

1 8t§>
— 2_f :f ga)‘;NS’N )
2 (2-29) = 9

where fri := Fpi k2072 is dimensionless. The equations (6.28) are now used to compare
our flows for the dynamical couplings (g, A2, A3) with the standard background-field flows.
Since both the standard background-field approximation and the geometrical effective ac-
tion approach are based on diffeomorphism invariant truncations, they do not distinguish
between the couplings of different-order graviton vertices. Hence, for the present analysis
we set A3 = A2 and identify the remaining couplings (g, A2) with the running dynam-
ical gravitational coupling and the dynamical cosmological constant in the geometrical
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approach, (g, \) = (g, \2). We extract the expressions for fr1 and fro from the flow equa-
tions in [274, 424] reversing the identification of background and dynamical couplings.
Explicit expressions for fr: are given in App. D.2.

In order to determine the fixed points of the flows (6.28), we set 9;g = O\ = 0 and
evaluate fp: at our fixed point values for the dynamical couplings, (¢g*, A3). This way, we
arrive at simple fixed point equations for the background couplings, to wit

g* _ 2 5\* _ fRO(g*7A§7NS7Nf)
fri(g% A3; Ns, Ng) 2fr1(g* A5; Ns, Ny)

The fixed points provided by the latter equations are compared to the results from flows
in the standard background-field approximation [274, 424].

First of all, we note that the matter-terms in the flows of the dynamical couplings (g, \2)
have opposite signs relative to the respective contributions to the flows of background
couplings. This can be seen most easily in the analytic equations with 7j; = 0 where the
matter contributions to (g, A2) can be written as

(6.29)

43 3599 1 4
Oyg ~ —— ?N, — 2 Ay ~ ———gNy + —gNy . 6.30
9 75079 T 1140077 12~ T 9N g 9Ny (6.30)

In [274, 424] the contributions to the flows of the background couplings § and A read

1 1 < 1 - 1 _
g ~+ —7 Ne+ -=G°Ny, O\ ~ +m(3 + 2XA)gNs — 3?(3 —A)gNy.  (6.31)

67 37
For A < 3 every single term in (6.30) and (6.31) carries the respective opposite sign.
Still, the signs of the matter contributions for the background flows are trivially the
same. Accordingly, we expect the explicit Ns, Ny scalings in the flows of the background
couplings to dominate the qualitative behaviour of the background fixed points. The
implicit dependence of the fixed points (¢g*, A5) on Ny, Ny is expected to be sub-leading,
resulting in a similar behaviour of the fixed points of our background quantities and those
from studies in background-field approximation.

6.5.1. Background fixed points in the full system
The left panel in Fig. 6.8 shows the fixed point for the dynamical quantities (g, A2) (solid

lines) and that of their corresponding background counterparts (g, A) (dashed lines) calcu-
lated from (6.29) as a function of Ns. The fixed point values of the background couplings
have similar values compare to the fixed points for the dynamical couplings at Ny = 0.
However, both quantities evolve very differently under the inclusion of scalars. In particu-
lar, g and ) increase quickly with increasing N,. At N, Spole — 25.8, \ crosses the propagator
pole, which is impossible in the background-field approximation. Here, however, we do
not identify background and dynamical couplings, i.e. A # A9, and in consequence crossing
of the pole does not pose a problem. The background couplings diverge for Ny = 60.8,
resulting in an invalid fixed point for Ny > 60.8 (dotted area) . The latter divergence,
however, is not present for the dynamical couplings. It merely results from the fact, that
fr1 becomes zero at this point, leading to divergent expressions for (g, A) in (6.29). Conse-
quently, the fixed point for the background couplings does in fact exist beyond Ny = 60.8
until the dynamical fixed point is lost (hatched area). Since fr1 has, however, changed

sign in this regime g* is negative and, therefore, clearly unphysical.
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Figure 6.8.: Fixed point values of the dynamical couplings (g, A2) (solid lines) in compari-
son with their corresponding background counterparts (g, A) (dashed lines) as
functions of the number of scalars Ny (left panel) and the number of fermions
Ny (right panel). The fixed point values of the background couplings diverge
for Ny = 60.8 (left panel) and Ny = 68.6 (right panel). The dotted regions
denote the regimes beyond the latter divergences. N . denotes the number
of scalars at which A would run into the propagator pole, if the identification

Ao = A, common in the background approximation, is applied.

The right panel in Fig. 6.8 compares the fixed points for the dynamical couplings and
the background couplings as a function of Ny. Starting at similar values at Ny = 0, the
fixed point for the background couplings again exhibits a very different behaviour from
that of the corresponding dynamical fixed points under the inclusion of fermions. While g*
decreases with increasing Ny, g increases strongly. Similarly, M\* is quickly driven to large
negative values, changing sign at Ny = 3.7, whereas the dynamical A3 remains almost
constant. The fixed point for the background quantities diverges for Ny = 68.6. The
dotted region denotes the regime where the background fixed point is invalid. Again, the
divergence appears only for the background quantities. The dynamical couplings remain
well behaved for all Ny.

In summary, the fixed points for the background couplings behave very differently from
their dynamical counterparts under the inclusion of matter fields. In particular, the latter
exhibit divergences which are not present for the dynamical couplings. The dynamical
couplings calculated in this chapter are the ones which are relevant for probing the con-
sistency of gravity as a quantum field theory in the UV. Thus, the above analysis suggests
that divergences or the disappearance of fixed points for the background couplings do
not reflect actual divergences of the dynamical couplings. It is therefore indispensable,
to distinguish between background and dynamical couplings in order to study the UV
behaviour of quantum gravity, once matter fields are included.

6.5.2. Comparison to background fixed points in the literature

We now compare the fixed points for the background quantities, that we obtained from
the equations (6.29), with the ones obtained from a background-field approximation as
reported in [424]. In our analysis, we disregard the use of different regulators in the
different approaches. Hence, we assume that the generic behaviour of the approaches is
independent of this choice.

The left panel in Fig. 6.9 depicts fixed points for background couplings as functions
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Figure 6.9.: Logarithmic plot of the fixed point values of the background field couplings
(g, A\) as a function of the number of scalars N, (left) and as a function of
the number of fermions Ny (right) in comparison with results in background-
field approximation from [424] (DEP). Our background couplings behave very
similarly to the couplings in [424]. The grey and black-shaded area denote the
regimes, where the fixed point for the couplings in [424] and for our couplings

is lost, respectively.

of Ns;. The dotted curves represent fixed points of flows determined in background-field
approximation in [424] (DEP) and the dashed curves denote our background couplings,
which are calculated from the dynamical couplings (identical to the respective curves in
Fig.6.8). The fixed point value for the gravitational coupling g} ... increases with increasing
Ng and eventually diverges at Ng = 27. For Ng > 27 no UV fixed point exists, which is
indicated by the grey dotted area in the plot. Note, that due to the identification of
background and dynamical couplings the graviton-propagator pole is located at A = 0.5.
This limit cannot be intersected by A% .. In consequence, !, first increases but exhibits
a characteristic kink at Ny &~ 16 and then decreases again until the fixed point ceases to

exist at Ns =~ 27.

For small numbers of Ng, the fixed points from the background-field approximation
(G%5ps Abgp) show a behaviour, which is similar to that of our background couplings
(g*,\*). For larger values of N the value of \f ., is driven closer to the propagator
pole and the flow equations receive growing contributions from the graviton loops, which
is not the case for our background couplings. Here, the implicit dependence of the fixed
point on Ny is large and we observe large deviations between our background couplings
and those in [424] in the regime Ny 2 10.

The right panel in Fig.6.9 depicts the fixed points for background couplings as functions
of Ny. The notation for the curves in the right panel is the same as in the left one described
above. The fixed point value g, strongly increases with increasing Ny and runs into a
divergence for Ny ~ 10. For N; > 10 the fixed point does not exist anymore, which is
indicated by the grey dotted area in the plot. The value for A}, starts at small negative
values and decreases quickly with increasing Ny until the fixed point ceases to exist at

For small numbers of Ny, our background couplings (§*, A\*) show again a similar be-
haviour to the fixed points in the background-field approximation. For larger Ny, we
observe large deviations, though the generic behaviour of the fixed points is the same. An
important common feature is the existence of a singularity for the fixed point for a finite
number of fermions. As discussed in the previous section, this divergence has no influence
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on the asymptotic safety of the theory since it is clearly independent from the physical
dynamical couplings. Again, the divergence of the background fixed point is due to the
fact that fp1 in (6.29) passes zero. Beyond this divergence the background fixed point
still exists but has changed sign. This can be observed for g* in the lower right corner of
the right panel of Fig. 6.9.

In summary, for sufficiently small Ny, Ny < 10 the couplings in the background-field
approximation (DEP) behave similarly to the background-field couplings of the full dy-
namical system computed here. Note, that both computations show divergences in the
background coupling for a finite number of scalars and fermions. These divergences are
not reflected in the dynamical couplings and the current analysis strongly suggests their
absence at k = 0. We conclude that the background-field approximation provides an
adequate qualitative picture of the behaviour of the physical background couplings for
Ny, Ns < 10. The relevant quantities for studies of the UV behaviour of quantum gravity
are, however, the dynamical couplings. In turn, for Ny, Ny 2 10 the background field

~

approximation fails, and it is necessary to compute dynamical flows and couplings.

6.6. Summary

We have presented the first genuine calculation of dynamical gravitational couplings based
on a vertex flow in gravity-matter systems with an arbitrary number of scalars and
fermions. We have calculated the matter contributions to the dynamical graviton two-
and three-point functions and included momentum-dependent gravity and matter anoma-
lous dimensions. The UV behaviour of the resulting theory has been analysed under the
influence of NN, scalars and Ny fermions.

In the scalar sector the increase of Ny leads to an increasing Newton’s coupling at the
UV fixed point and thus to a strengthening of graviton fluctuations at high energies. For
large numbers of scalars Ng; > 21.5 the present generic class of regulators violates the
bounds (6.17) due to a large graviton anomalous dimension, i.e. 7, > 2 in this regime.
Deep in this regime the UV fixed point first becomes repulsive and finally is lost, which
requires further investigation.

In the fermion sector the UV fixed point exists and is stable for all Ny. Also, all fixed
point values remain small, and the anomalous dimensions stay below the bounds (6.17),
i.e. NpyNe,ny < 2 and 1y < 1, for all Ny. Similar to the scalar case the increase of Ny
enhances graviton fluctuations. Here however, the enhancement is due to the shift of the
graviton-mass parameter towards the propagator pole.

In summary, we always find an attractive UV fixed point in the presence of a general
number of scalars and fermions within the validity bounds for the generic class of regulators
used here. Finally we have discussed and embedded previous results in the literature within
our extended setting. In particular we have also compared the present results within the
full dynamical system to results that partially rely on the background field approximation.
Interestingly, we find the signs of the matter contributions to the flows of our dynamical
couplings to be opposite to those of flows in background-field approximation. This is in
sharp contrast to the pure gravity flows whose signs agree in all approximations. We
have also computed the fixed points of the background couplings in the present approach.
We have shown that the latter agree qualitatively with the fixed point couplings in in the
background-field approximation for Ny, Ny < 10. In turn, for Ny, Ny 2 10 the background

~

field approximation fails, and it is necessary to compute dynamical flows and couplings.
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7. UV dominance of gravity over matter
fluctuations

7.1. Introduction

In the last chapter we have started to couple Standard Model matter content to asymp-
totically safe quantum gravity. We found in the scalar sector inconclusive results on
how many scalar fields are compatible with asymptotic safety and further saw qualitative
differences between results with and without background field approximation. We now
turn to Yang-Mills theories coupled to quantum gravity. The impact of quantised gravity
on gauge theories has already been investigated within perturbation theory [450-455] by
treating gravity as an effective field theory [456], and within the asymptotic safety scenario
[376, 419, 457]. Modulo gauge and scheme dependences, all studies find the same negative
sign for the Yang-Mills beta function (8 < 0) in support of asymptotic freedom. The rea-
son for this was uncovered in [376, 457]: Due to an important kinematical identity, related
to diffeomorphism- and gauge invariance, § < 0 follows automatically, and irrespective of
the gauge or regularisation. We will comment on this in more detail later in this chapter.

In this chapter we want to understand the prospect for asymptotic safety of quantum
gravity coupled to matter. To that end, we combine general, formal considerations with
detailed and explicit studies in the framework of the systematic vertex expansion of the
functional renormalisation group. A main new addition is a formal line of reasoning,
which explains why and how gravitons dominate the high-energy behaviour, largely inde-
pendently of the matter fields as long as these remain sufficiently weakly coupled. This
argument is based on successively integrating out first the matter fields and then gravity,
which is well controlled due to the weak coupling of the matter fields. The argument
fully applies in the absence of marginal couplings, and covers the results in the literature.
However, the marginal couplings, being related to R? and wa, play a special role as they
carry the only direct dependence on the number of matter fields. This number of matter
field is henceforth called flavour in a slight abuse of notation.

For the explicit computation we work on the example of SU(N.) Yang-Mills-theory
coupled to gravity. In an expansion about a flat Euclidean backgrounds, explicit re-
sults for beta functions, fixed points, universal exponents, and scaling solutions are given.
Systematic approximations exploiting running propagators, the three-graviton- and the
graviton-gauge-vertices are performed up to including independent couplings for gauge-
gravity and pure gravity interactions, and for the background couplings. Care is taken to
distinguish fluctuating and background fields. Invariably, we find that the gauge coupling
becomes asymptotically free while the gravitational sector becomes asymptotically safe.
The dependence on matter field multiplicities is weak. We also investigate the scheme de-
pendence, which is found to more pronounced, and explain how it can be handled without
changing the physics. This allows us to offer a new interpretation of many earlier results
and to lift some of the tensions amongst previous findings.
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7.2. From asymptotic freedom to asymptotic safety

In this section, we provide our main line of reasoning for why matter fields, which are
free or sufficiently weakly coupled in the UV — such as in asymptotic freedom — entail
asymptotic safety in the full theory including gravity. Throughout, Yang-Mills theory
serves as the principle example.

7.2.1. Yang-Mills coupled to gravity: the setup

Any correlation function computation to gravity works within an expansion of the the-
ory about some generic metric. The necessity of gauge fixing forces the introduction a
background metric into the approach. Hence, we use a background field approach in the
gauge sector, giving us a setting with a combined background g,, and flz. Background
independence is then ensured with the help of Nielsen or split Ward identities and the
accompanying Slavnov-Taylor identities (STIs) for both the metric fluctuations and the
gauge field fluctuations. The superfield ¢ comprises all fluctuations or quantum fields with

A,u = A,u"‘a;u Guv :guu+\/§huya o= (huuacuaéuaamQé) ) (7.1)

with the dynamical fluctuation graviton h,, and gauge field a,. In (7.1), ¢, and c are
the gravity and Yang-Mills ghosts, respectively. Note that throughout this chapter we
use a slightly different notation for the split of the metric. We now explicitly display the
prefactor v/G in front of the fluctuation field hjw. In the previous and in the next chapters
we included this prefactor via the vertex dressing, see (3.16). The notation here puts more
emphasis on the fact that the fluctuation field has the mass dimension one.

The classical Euclidean action of the Yang-Mills—gravity system is given by the sum of
the gauge-fixed Yang-Mills and Einstein-Hilbert actions,

SCl[g7 A? ¢] - Sgauge[g7 A? ¢] + Sgravity[g? Aﬂ ¢] I (72)

where the two terms Sguuge = S4 + S + Saen and Sgraviey = Sun + Sg et + Sgen are the
fully gauge fixed actions of Yang-Mills theory and gravity respectively. The Yang-Mills
action reads

1 '
Salg, Al = 2/d4:v\/§g““ 9" tr Fyy By, (7.3)
where the trace in (7.3) is taken in the fundamental representation, and
' 1
Fu = —[D,,D,], D, = 0, — ig. Ay, tretth = - (7.4)
Gs

The classical Yang-Mills action (7.3) only depends on the full fields g,,,, and A, and induces
gauge-field—graviton interactions via the determinant of the metric as well as the Lorentz
contractions and derivatives. The gauge fixing is done in the background Lorentz gauge
Dya, =0 with D = D, (A). The gauge fixing and ghost terms read

1 _ _
Saer = % / d*zv/g (" Dyay)?, Saen = / d*z\/g g" eD, D, c, (7.5)
where we take the limit £ — 0. The gauge fixing and ghost terms only depend on the

background metric and hence do not couple to the dynamical graviton h,,. The gauge-
fixed Einstein-Hilbert action is identical to Sec. 3.3.
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7.2.2. Asymptotic freedom in Yang-Mills with gravity

Gauge theories with gauge group U(N) or SU(N) describe the electroweak and the strong
interactions, and form the basis of the Standard Model of particle physics. A striking
feature of non-Abelian gauge theories is asymptotic freedom, meaning that the theory is
governed by a Gaussian fixed point in the UV, which implies that gluon interactions weaken
for high energies and that perturbation theory is applicable. In fact, the great success of
the Standard Model is possible only due to the presence of such a Gaussian fixed point,
which allows us to neglect higher order operators in the high energy limit. The weakening
of interactions is encoded in the energy dependence of the Yang-Mills coupling, which in
turn is signalled by a strictly negative sign of the beta function. However, it is well known
that fermions contribute with a positive sign to the running of the Yang-Mills coupling,

el L (2 )

5 —
Qg

_Hau oz 4n

(7.6)

where we have displayed only the one-loop contributions with N. and Ny denoting the
number of colours and fermion flavours, and as = g2/(47). One can see that there is a
critical number of fermion flavours N}m = %Nc above which the one-loop beta function
changes sign. This implies that asymptotic freedom is lost. It has been noted recently
that gauge theories with matter and without gravity may very well become asymptotically
safe in their own right [146, 147, 458-461].

Returning to gravity, it has been shown in [376, 419, 450-455, 457] that graviton fluc-
tuations lead to an additional negative term B, 5 in Ba, — Bay,a + Bas,n Where B, 4 is
the pure gauge theory contribution (7.6). The graviton contribution has a negative sign,

Bagh < 0. (7.7)

Due to the lack of perturbative renormalisability this term is gauge- and regularisation-
dependent. However, it has been shown that it is always negative semi-definite, [376, 457],
based on a kinematic identity related to diffeomorphism invariance. Hence, asymptotic
freedom in Yang-Mills theories is assisted by graviton fluctuations. In the case of U(1) they
even trigger it. This result allows us to already get some insight into the coupled Yang-
Mills—gravity system within a semi-analytic consideration in an effective theory spirit: In
this chapter we consider coupled Yang-Mills—gravity systems within an expansion of the
pure gravity part in powers of the curvature scalar as well as taking into account the
momentum dependence of correlation functions. In the Yang-Mills sub-sector we consider
an expansion in tr F™ and (trF?)", the lowest non-classical terms being

wo (trF2)2 , vgtr B (7.8)

Asymptotic freedom allows us to first integrate out the gauge field. This sub-system is well-
described by integrating out the gauge field in a saddle point expansion within a one-loop
approximation. Higher-loop orders are suppressed by higher powers in the asymptotically
free gauge-coupling. This leads us to the effective action

kUV
_ _ 1 1 a
F[g7 A7 ¢] — Sgravity[g; ¢] + Sgauge [§7 Aﬂ QS] - § Tr ln |:A15/,LV + <1 - g) V}LVU:| 9 (79)
kIR
where A represents the spin-one Laplacian and k., k7Y indicate diffeomorphism preserv-

ing IR and UV regularisations of the one-loop determinant. Most conveniently this is
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achieved by a proper-time regularisation, for a comprehensive analysis within the FRG
framework see [356, 462]. In any case both regularisations depend on the metric g,, and
the respective scales k., kY. The computation can be performed with standard heat-
kernel methods.

The IR sector of the theory is not relevant for the present discussion of the fate of
asymptotic safety in the UV. Note also that Yang-Mills theory exhibits an IR mass gap
with the scale Aqcp due to its confining dynamics. In covariant gauges as used in the
present dissertation this mass gap results in a mass gap in the gluon propagator, for a
treatment within the current FRG-approach see [368, 463] and references therein. This
dynamical gaping may be simulated by simply identifying the IR cutoff scale with Aqep.

Moreover, even though integrating out the gauge field generates higher order terms such
as (7.8) in the UV, they are suppressed by both, powers of the UV cutoff scale as well as
the asymptotically free coupling. Accordingly, we drop the higher terms in the expansion
of the Yang-Mills part of the effective action (7.9). Note that they are present in the full
system as they are also generated by integrating-out the graviton. This is discussed below.

It is left to discuss the pure gravity terms that are generated by UV gluon fluctuations in
(7.9). They can be expanded in powers and inverse powers of the UV-cutoff scale k, = k7.
This gives an expansion in powers of the Ricci scalar R and higher order invariants. From
the second line of (7.9) we are led to

N2 =1)|cpak? | d*oyg (2enak? — R QoG (B2 + zuli2,) In 1T
( c )Cgva a 1\/@(0)\’& a )+CR2,a x\/g( + Zq p,l/) HT

ro (). (7.10)

where we suppressed potential dependences on A4 and V,, in particular in the logarithmic
terms. The logarithm also could contain further curvature invariants such as wa. In
the spirit of the discussion of the confining IR physics we may substitute k* — Agcp
in a full non-perturbative analysis. In (7.10) the coefficients Cg.as Cha> CR2,q and 2, are
regularisation-dependent and lead to contributions to Newton’s coupling, the cosmological
constant, as well as generating an R2-term and potentially an wa term. In the present
Yang-Mills case ¢y, is positive for all regulators. For fermions and scalars the respective
coefficients ¢, 4, ¢4 ¢ are negative. In summary this leaves us with an asymptotically free
Yang-Mills action coupled to gravity with redefined couplings

G A, A

Gur = N 1)e, 3G G:f e (N2 — 1)egacaaks - (7.11)
The coupling parameters G and A should be seen as bare couplings of the Yang-Mills—
gravity system and chosen such, that the (renormalised) couplings G.z and A are kq-
independent. This corresponds to a standard renormalisation procedure (introducing the
standard RG scale ugre) and leads to G(IN., kq) and A(Ng, kq). Note that demanding k,-
independence of the effective couplings also eliminates their N.-running. For example for
the effective Newton’s coupling

(N2 = 1)O(n2—1)InGog = k)02 In G = 0, (7.12)

holds in a minimal subtraction scheme where the renormalisation scale pgre does not
introduce further N.-dependencies, most simply done with puge-independent couplings G
and A.
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We also have to include gp2 R? and g R2 VRZV terms in the classical gravity action in order
to renormalise also these couplings,

IR2
9R2 e = gR2 + (ch - 1)CR2,a In ﬁ )
a
) IR2
9R2,en = IRz, T (N = 1)cRr2 aZaln =5 (7.13)
a

Here, the minimal subtraction discussed above requires gp2(Ng, Ink,/k) as well as
9r2, (N¢, Inky/kY). This leaves us with a theory, which includes all UV quantum ef-
fects of the Yang-Mills theory. Accordingly, in the UV its effective action (7.9) resembles
the Einstein-Hilbert action coupled to the classical Yang-Mills action with appropriately
redefined couplings. It also has R?- and wa—terms. However, the latter terms are gener-
ated in any case by graviton fluctuations so there is no structural difference to standard
gravity with the Einstein-Hilbert action coupled to the classical Yang-Mills.

The only relevant N.-dependence originates in the logarithmic curvature dependence of
the marginal operators R? and wa leading e.g. to

R
(N2 —1) ch,a/d4:c\/§R2 In (1 - W) : (7.14)
a

These terms are typically generated by flows towards the IR, for a respective computation
in Yang-Mills theory see [464]. Such a running cannot be absorbed in the pure gravity
part without introducing a non-local classical action. From its structure the logarithmic
running in (7.13) resembles the one of the strong coupling in many flavour QCD: the role
of the gravity part here is taken by the gluon part in many flavour QCD and that of
the Yang-Mills part here is taken by the many flavours. Accordingly a fully conclusive
analysis has to take into account these induced interactions. This is left to future work,
here we concentrate on the Einstein-Hilbert part. The respective truncation to matter-
gravity systems have been studied at length in the literature, and the arguments presented
here fully apply. Note also that the current setup (and the results in the literature) can
be understood as a matter-gravity theory, where the respective terms are removed by an
appropriate classical gravity action that includes e.g. R?In R-terms. The discussion of
these theories is also linked to the question of unitary in asymptotically safe gravity.

If we do not re-adjust the effective couplings within the minimal subtraction discussed
above they show already the fixed point scaling to be expected in an asymptotically safe
theory of quantum gravity, see (7.11) and (7.13). This merely reflects the fact that Yang-
Mills theory has no explicit scales. If we only absorb the k, running of the couplings while
leaving open a general ure-dependence, the effective Newton’s coupling G.g scales with
1/N2, while the effective cosmological constant scales with NU.

In any case we have to use G for the gravity scale in the Yang-Mills—gravity system
instead of G. For example, the expansion of the full metric g,, in a background and a
fluctuation then reads

Guv = g,u,l/ + v Geg h,uu s (7.15)

with the dimension-one field %, in the d = 4 dimensional Yang-Mills-gravity system.
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7.2.3. Asymptotic safety in gravity with Yang-Mills

It is left to integrate out graviton fluctuations on the basis of the combined effective action
where the pure gravity part is of the Einstein-Hilbert type. The couplings of the pure
gravity sector, in particular Newton’s coupling and the cosmological constant only receive
quantum contributions from pure gravity diagrams, while pure gauge and gauge-graviton
couplings only receive contributions from diagrams that contain at least one graviton line.
This system is asymptotically safe in the pure gravity sector and assists asymptotic freedom
for the minimal gauge coupling, see (7.6) and (7.7), and leads to graviton-induced higher-
order coupling such as (7.8). In summary we conclude that Yang-Mills—gravity systems are
asymptotically safe. The flow of this system and its completeness is discussed in Sec. 7.7.

The present analysis is also important for the evaluation of general matter-gravity sys-
tems: we have argued that asymptotic freedom of the Yang-Mills theory allows us to
successively integrate out the degrees of freedom, starting first with the Yang-Mills sector.
Evidently, this is also true for matter-gravity systems with free matter such as treated
in the last chapter and in e.g. [424]. In [424] fermions and scalars were found to be
unstable for a large flavour numbers while in the last chapter fermions were shown to
be stable. For scalars the situation was inconclusive as the anomalous dimension of the
graviton was exceeding an upper bound, 7, < 2, beyond which a regulator of the form
Rk (p?) ZhRESI)g(pQ) with R,(B,)C(O) = k2 is no longer a regulator with the cutoff scale k:

Jlim Ry, (0) o (K12 50, for > 2. (7.16)
—00

While the differences in the stability analysis can be partially attributed to the different
approximations (see last chapter for a discussion), we come to conclude here, that both
(and all similar ones) analyses lack the structure discussed above. This calls for a careful
reassessment of the UV flows of matter-gravity systems also in the view of relative cutoff
scales. The latter is since long a well-known problem in quantum field theoretical applica-
tions of the FRG, in particular in boson-fermion systems. For example, in condensed mat-
ter systems it has been observed that exact results for the three-body scattering (STM),
see [465], can only be obtained within a consecutive integrating out of degrees of freedom
in local approximations. If identical cutoff scales are chosen, the three-body scattering
only is described approximately. For a recent analysis of relative cutoff scales in multiple
boson and boson-fermion systems see [466].

In summary the gravitationally coupled free-matter—gravity systems, Yang-Mills—gravity
systems or more generally asymptotically free gauge-matter—gravity systems are asymp-
totically safe, independent of the number of matter degrees of freedom if this holds for
one degree of freedom or more generally if this holds for the minimal number of degrees
of freedom that already has the most general interaction structure of the coupled the-
ory. Phrased differently: simple large N-scaling cannot destroy asymptotic safety, with V
being the number of gauge-matter degrees of freedom.

We emphasise that the analysis of such a minimal system as defined above is necessary.
It is not sufficient to rely on the fact that the matter or gauge part can be integrated
out first as gravity necessarily induces non-trivial matter and gauge self-interactions at an
asymptotically safe gravity fixed point [121, 122, 420, 432, 433]. If these self-interactions do
not destroy asymptotic safety, the systems achieve asymptotic safety for a general number
of matter or gauge fields by guaranteeing the UV dominance of graviton fluctuations.

It also suggest a natural scaling hierarchy for the cutoff scales kj, k, in the gravity and
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Yang-Mills sector respectively: while gravity feels the effective Newton’s coupling G4 and
hence graviton fluctuations and gravity scales should be measured in G.g, the Yang-Mills
field generates contributions to the (bare) Newton’s coupling G. This leads us to

G k? ~ G k2, (7.17)

for the respective cutoff scales k;, = k in the gravity subsystem and k, in the Yang-Mills—
subsystem. With this scale hierarchy the N.-dependence of the coupled system disappears
and, within an appropriate fine-tuning of the relation (7.17) the fixed point values of
Newton’s coupling and the cosmological constant show no N.-dependence at all. In short
such a rescaling always guarantees the dominance of graviton fluctuations over gauge or
matter fluctuations in the coupled system if the gauge-matter system is asymptotically
free. We close this section with some remarks:

(1) The naturalness of the rescaling (7.17) is finally decided by taking into account
momentum or spectral dependencies of the correlation functions. This is at the root
of the question of stability and instability of matter-gravity systems. It is here where
the marginal, logarithmically running, terms such as (7.14) come into play. They
are not affected by this rescaling, which also shows their direct physics relevance.

ithin the above rescaling the fixed point of the gravity-induced gauge couplings

2) Within the ab ling the fixed point of th ity-induced li
such as wo and vy, see (7.8), are of order g** of the pure gravity fixed point coupling
g*. Note however, that this value can be changed by re-adjusting the rescaling (7.17).

(3) Note that within the dynamical re-adjustment of the scales the fixed point Newton’s
coupling gets weak, g* oc 1/N2. In other words, gravity dominates by getting weak.
This is in line with the weak-gravity scenario advocated recently [387, 432, 433].
However, its physical foundation is different.

(4) For a sufficiently large truncation the theory should be insensitive to a relative rescal-
ing of the cutoff scales kg ayity and Kpaie: and to other changes of the regularisation
scheme. This is partially investigated in Sec. 7.7. Moreover in all of the following
renormalisation group computations we do not resort to the rescaling (7.17) but use
identical cutoff scales kyavity = Ematter-

In the following analysis we will refer to the present section for an evaluation of our results.

7.3. Functional renormalisation group in the gravity—Yang-Mills
system

In this section we quantise the Yang-Mills—gravity system within the functional renor-

malisation group approach. As in the previous chapters we use a vertex expansion of

the effective action and obtain flow equations for the correlation functions by functional

derivatives of the Wetterich equation. For the current field content (7.1) the Wetterich
equation is given by

_ 1 1
kg, A; 9] = 3 Tr [GkﬁtRk]hh + B Tr [GkﬁtRk]aa —Tr [GkatRk]éc . (7.18)

with the propagator G = (F,(f) + Ry)~! and where the éc-term includes graviton and
gauge ghosts. We compute the flow of the two- and three-point functions, 8,I'(@@) 9,T'(hh)
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9,1 9,1 (hhh) and 9,I(@eh) | For this we expand the effective action in vertex functionals
in straight analogy to the pure gravity case (3.10). The pure gravity vertices are the same
as in (3.10). For the Yang-Mills and the mixed Yang-Mills-gravity n-point functions we
expand according to

_ _ _ 1 _
Ilg. 4; ] =g, 4;0ja + T*M[g, 4;0],ah + S T"g, 4; 0)ah’

YM & mixed
1 3 1 - 1 -
+ 5T g, 4; 0ja? + ST g, A;0a”h + ST (g, A; 0]ah?

1 _
+ Erwahhh) 3, A;0)a*h3 + O (a®h,ah?) . (7.19)
As we consider also correlation functions of the background gluon, we need the expansion

of the fluctuation vertices in (7.19) in the background field, i.e.
r[g, 4;0] = TM[g,0;0] + T4 [g,0; 014 + O(4?), (7.20)

in an expansion about vanishing background gauge field. In the following we choose the
backgrounds § = 6 and A = 0 for the metric and the gauge field. In these backgrounds the
terms of the order O(ah, ah?®) do not enter the flow equations of the propagators nor that
of the three-point functions. This is the reason why they have not been displayed explicitly
in (7.19). Note that with this background choice the terms linear in a in (7.19) vanish.
We would like to emphasise two structures that facilitate the present computations:

(1) As we consider the flow equations for the two- and three-point functions, only the
terms quadratic in a, in (7.19) contribute to the graviton-gluon interactions in the
flow equations. The non-Abelian parts in the F?-term do not contribute since they
are of order three and higher. Hence, modulo trivial colour factors §%, the vertices
defined above are identical for SU(N) and U(1) gauge theories.

(2) In principle, the derivatives in F*¥ are covariant derivatives with respect to the Levi-
Civita connection. However, since F'*¥ is asymmetric, and the Christoffel-symbols
symmetric in the paired index, the latter cancel out and the covariant derivatives
can be replaced by partial derivatives.

We dress the classical n-point functions with wave function renormalisations and pro-
mote the classical couplings to level-n couplings in order to obtain a parameterisation for
the n-point function of the effective action. This is in straight analogy to (3.17) and for
the present chapter the classical action is given by the combined gauge-fixed Einstein-
Hilbert and Yang-Mills action. Each graviton n-point function, [(h1hn) - depends on the
dimensionless parameters

Gn = ghn = Gnk?, An = pn = Ay /K2, (7.21a)
and a mixed gauge-graviton (n + 2)-point function on
Gazpn = Gozpnk? . (7.21b)

In this chapter we are using mostly the uniform approximation with one Newton’s coupling.
We identify

1
gamhn = g3 =1 g, )\n>2 = )\3, )\2 = —5,[1/ . (722)
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R To R SRy

Figure 7.1.: Diagrammatic depiction of gravitational contributions to the flow of the Yang-
Mills propagator. The wiggly lines are gluon propagators, and the double line
represent graviton propagators.

Later in Sec. 7.7.2 we will also distinguish the Newton’s couplings from the three-graviton
vertex and the one from the graviton-gluon vertex. There we identify

1
Gamhr>0 = Ja , gn =93 =:9, An>2 = A3, Ao =——-p. (7.23)

2
In the end, we are interested in the gravitational corrections to the Yang-Mills beta
function, and the Yang-Mills contributions to the running in the gravity sector. The beta
functions of the pure gravity section have been discussed in great detail in the last chapters.
In the Yang-Mills sector, we make use of the fact that the wave function renormalisation
Z 4 of the background gluon is related to the background (minimal) coupling by

Zo, =741, (7.24)

which is derived from background gauge invariance of the theory. The latter can be
related to quantum gauge invariance with Nielsen identities, see [188, 336, 347, 355, 467]
in the present framework. This also relates the background minimal coupling to the
dynamical minimal coupling of the fluctuation field. Note that this relation is modified in
the presence of the regulator, in particular for momenta p? < k2. There the interpretation
of the background minimal coupling requires some care. The running of the background
coupling is then determined by

Orars = /Bocs =nNads, (7'25)
with the gluon anomalous dimension
Na:=—0kInZy. (7.26)

Note that in general all these relations carry a momentum-dependence as Z4(p?) carries
a momentum-dependence. This will become important in the next section for the physics
interpretation of the results.

7.4. Graviton contributions to Yang-Mills

In this section we compute the gravitational corrections to the running of the gauge cou-
pling. The key question is if graviton-gluon interactions destroy or preserve the property
of asymptotic freedom in the Yang-Mills sector. The running of the gauge coupling can be
calculated from the background gluon wave function renormalisation. Its flow equation is
derived from (7.18) with two functional derivatives w.r.t. A. Schematically it reads

o4 (p) = Flow () (p) + Flow "V (p) (7.27)
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where the first term contains only gluon fluctuations and the second term is induced by
graviton-gluon interactions. The diagrammatic form of the second term is displayed in
Fig.7.1. This split is reflected in a corresponding split of the anomalous dimension

naA(P?) = 1a,a(0*) + nan(p®) . (7.28)

Note that in the present approximation we have 145, = 7,,. This originates in the fact
that the fluctuation graviton only couples to gauge invariant operators.

Asymptotic freedom is signalled by a negative sign of the gluon anomalous dimension
as the beta function for the coupling is proportional to 4. We know that the pure gluon
contributions 74 4 are negative. Hence, the question whether asymptotic freedom is pre-
served in the Yang-Mills—gravity system boils down to the sign of the gravity contributions
NA,h, and we arrive at

nan <0 <= asymptotic freedom . (7.29)

The anomalous dimension in (7.29) depends on both, cutoff and momentum scales. For
small momentum scales p?/k? — 0 the regulator induces a breaking of quantum-gauge
and quantum-diffeomorphism invariance: the respective STIs of the fluctuation field cor-
relation functions are modified. This necessitates also a careful investigation of the back-
ground observables, which only carry physics due to the relation of background gauge-
and diffeomorphism invariance.

Note that asymptotic freedom as defined in (7.29) only applies to the minimal coupling.
Higher order fluctuation couplings are not necessarily vanishing. Indeed it has been shown
that the asymptotically safe fixed points of general matter and gauge fields coupled to
gravity can not be fully asymptotically free in the matter and gauge field sector, see
[122, 387, 420, 432, 433]. This leads to a*-vertices from higher order invariants such as
(Tr F2)? and Tr F** with fixed point values proportional to g2/(1 + p)? with g, = g in our
approximation. Moreover these vertices generate a tadpole diagram that contribute to the
gluon propagator. Apart from shifting the Gaussian fixed point of higher order operators
in the Yang-Mills sector to an interacting one, see [432] for the U(1)-case, it also deforms
the gluon contribution to the Yang-Mills beta function. Its qualitative properties will be
discussed later, as it is important for the large N, behaviour of the fixed point.

7.4.1. Background observables

The discussion of physics content of background observables and its relation to gauge-
and diffeomorphism invariance has been initiated for the Yang-Mills—gravity system in
[376, 457]. There it has been shown that 7, = 0 vanishes for

Ta 1 _ 0
l4+rgl+mr,

(7.30)

due to a non-trivial kinematic identity. This identity relates angular averages of one-
and two-graviton—two-gluon scattering vertices in the absence of a gluon regulator r,, see
Fig.7.2. In other words, for a combination of regulators that satisfy (7.30) the quantum-
gauge and quantum-diffeomorphism symmetry violating effects of the regulators do not
effect the kinematic identity that holds in the absence of the regulator.

This structure requires some care in the interpretation of the running of background
observables for £ — oco: while the physics properties of the dynamical fluctuation fields
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Figure 7.2.: Kinematic identity for the one- and two-graviton—two-gluon scattering vertices
for ro = 0 and T ~ §)| taken from [376, 457).

N

P

should not depend on the choice of the regulators, background observables do not nec-
essarily display physics in this limit. By now we know of many examples for the latter
deficiency ranging from the beta function of Yang-Mills theory, see [355], to the behaviour
of the background couplings in pure gravity, see the discussions in the previous chapters.
Moreover, we have already argued that the relation between the dynamical and the back-
ground minimal coupling only holds without modifications for sufficiently large momenta.

In summary this implies the following for the interpretation of background observables:
we either choose pairs of regulators that satisfy (7.30) or we evaluate background observ-
ables for momentum configurations that are not dominantly affected by the breaking of
quantum-gauge and diffeomorphism invariance. Here we pursue the latter option that
gives us more freedom in the choice of regulators. For the computation of the graviton
contribution to the running of the Yang-Mills background coupling this implies that we
have to evaluate the flow of the two-point function for sufficiently large external momenta,

P> > k2. (7.31)

For these momenta the three-point function diagrams effectively satisfy (7.30) and the
anomalous dimension 7, ,(p?) carries the information about the graviton contribution of
the beta function of the background coupling.

7.4.2. Gravity supports asymptotic freedom

The results of the discussion on background observables allow us to access the question
of asymptotic freedom of the minimal Yang-Mills coupling. With the construction of the
effective action (7.19), we obtain a flow equation for 9,T'@® which is projected with the
transverse projection operator IIt. The graviton-induced contributions to the resulting
flow equation take the form

I (p) 905 () = K*Flow™® (v?) (7:32)
=Z.(p*) g kz/ ((f(qQ) —0a(@®)r(d*)) fala, p, 1) + (#(q%) — mu(@®)r () fu(a, p, u)) :

where the terms on the right-hand side originate from diagrams with a regulator insertion
in the gluon and graviton propagator, respectively. The left-hand side is simply given by

I (p) 8,90 (p) = p*0,Za(p?) - (7.33)

Dividing by Z,(p?), one obtains an inhomogeneous Fredholm integral equation of the
second kind for the gluon anomalous dimension,

4
na(p®) = f(*) + 9/((21754 K(p. ¢, 1t,mm) 1a(q?) - (7.34)
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Figure 7.3.: Sign of the graviton contributions to the gluon anomalous dimension 7, ;, as a
function of 1y, i1, and p. The coloured region indicates sgnn,, < 0. At p =k
the whole displayed region supports asymptotic freedom.

This integral equation can be solved using the resolvent formalism by means of a Liouville-
Neumann series. In this chapter we approximate the full momentum dependence by eval-
uating the anomalous dimension in the integrand in (7.34) at ¢®> = k2. This is justified
since the integrand is peaked at ¢ ~ k due to the regulator. With this approximation
(7.34) can be evaluated numerically for all momenta. This approximation was already
used in the previous chapters and lead to results in good qualitative agreement with the
full momentum dependence. With the approximation to (7.34) we investigate the sign of
the graviton contributions to the gluon propagator. These contributions are functions of
the gravity couplings, which in turn depend on the truncation. It is therefore interesting
to evaluate 7, with a parametric dependence on the gravity couplings, in order to obtain
general conditions under which asymptotic freedom is guaranteed.

The gluon anomalous dimension is of the form 7,(p?, g, ;). In order to avoid the
unphysical regulator dependence potentially induced by the violation of the kinematical
identity (7.30) we choose the momentum p? = k? in order to satisfy (7.31). In summary
this provides us with a minimal coupling s,

O = /Bas = na(kz) Qg . (7.35)
As a main result in the present section we conclude that
Ba, <0 for p>—1 & mu(k*) <2. (7.36)

The restriction to 1, < 2 is also the bound on the anomalous dimension advocated in
[2]. To be more precise n, > 2 only changes the sign of the Yang-Mills beta function in
the limit © — —1. For other values of u very large values of n, are necessary in order to
destroy asymptotic freedom, e.g. for y = —0.4 the bound is i, ~ 50 . The precise bound
is displayed in Fig. 7.4, where the red region indicates ,, > 0.

Despite the necessary restriction to momenta p? > k2 for its relation to the physical
background coupling, we have also evaluated 7, for more general momentum configura-
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Figure 7.4.: Sign of the graviton contributions to the gluon anomalous dimension naﬁ(kzz)
as a function of 7, and p. The red region indicates sgnn, »(k*) > 0 and the
loss of asymptotic freedom. The dashed line marks 7, = 2.

tions and a range of gravity parameters p and ny: In Fig. 7.3 the sign of the graviton-
induced part of the gluon anomalous dimension 7, is plotted in the momentum range
0 < p? < k%. For small momenta 7, ), changes sign for y — —1. Again it can be shown
that this does not happen for regulators with (7.30).

In order to understand the patterns behind Fig. 7.3 and Fig. 7.4 it is illuminating to
examine 7, »(p? = 0) for flat regulators (E.1) with a p? derivative. It reads

g (8=Na 4—1m
A _ . 7.37
"la,h 87r<1+u (1+u)2> (7:37)

The first term on the right hand side stems from 0; R}, , and is positive for n, < 8. The
second stems from Oy Rj, ;. It is non-vanishing for 7, = 0 and hence already contributes
at one-loop order. Its very presence reflects the breaking of the non-trivial kinematical
identity depicted in Fig. 7.2 as it is proportional to it. The interpretation of 7, as
the graviton-induced running of the Yang-Mills background coupling crucially hinges on
physical quantum gauge invariance: it is important to realise that only with the relation
between the auxiliary background gauge invariance and quantum gauge invariance the
latter carries physics. In turn, in the momentum regime where the kinematical identity
is violated, physical gauge invariance is not guaranteed, and background gauge invariance
reduces to an auxiliary symmetry with no physical content. Accordingly, one either has
to evaluate na,h(pQ) for sufficiently large momenta p? > k2 or utilises regulators that keep
the kinematical identity Fig. 7.2 at least approximately for all momenta.

In summary, Fig. 7.3 and Fig. 7.4 entail that sgn(7,,) < 0 holds for physically relevant
momenta and values of the gravity couplings. Thus asymptotic freedom is preserved. We
have argued that (7.35) provides the correct definition for the beta function of the minimal
coupling of Yang-Mills theory with sgn(f,,) < 0. Hence we conclude that an UV fixed
point in the spirit of the asymptotic safety scenario is compatible with asymptotic freedom
of the minimal coupling in Yang-Mills theories.
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1
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Flow(*) — —% + 3:@2?% 3

Figure 7.5.: Diagrammatic depiction of the gluon contributions to the flow of the graviton
propagator and the graviton three-point function. The wiggly lines are gluon
propagators, and the double line represent graviton propagators.

7.5. Yang-Mills contributions to gravity

This section is concerned with the impact of gluon fluctuations on the gravity sector. The
fully coupled system is analysed subsequently in Sec. 7.6.

7.5.1. General structure

For the question of asymptotic safety we have to investigate the gluon contributions to
the graviton propagator as well as to the graviton three-point function. This allows us
to compute the corrections to the running of the gravity couplings (u, g, A3) due to gluon
fluctuations.

The gluon corrections to the graviton two- and three-point function split analogously
to the graviton corrections to Yang-Mills theory in the preceding section, since for any
graviton n-point function the structure is given by

Flow™ = Flow!" + Flow(" | (7.38)
(nh) (nh)

with graviton and gluon contributions denoted by Flow; ™ and Flow, "’ respectively. For
example, the gluon contributions to the flow of the graviton two- and three-point function
are depicted in Fig.7.5. All these diagrams contain a closed gluon loop and hence all the
factors in the above equations with an index a are proportional to N2 — 1.

7.5.2. Contributions to the graviton propagator

The gluon contribution to the graviton propagator has been studied in a derivative expan-
sion around p? = 0 in [457] where it was shown that this projection is insufficient due to
the non-trivial momentum-dependence of the flow. The latter is characterized by a peak
at p?> ~ k2. We have rederived the momentum dependence of Flow((fh) (p?), see the left
panel of Fig. 7.6.

For the projection at p? = 0 and flat regulators (E.1), we rederive the result of [457]
and obtain for the momentum-independent part

1
Flow(?" (p* = 0) = gZ,(N? - ) g5-"a (7.39)

Surprisingly, this contribution is proportional to 7,. This happens due to a cancellation
between both diagrams displayed in Fig. 7.5. Note that this cancellation only occurs for
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Figure 7.6.: The momentum dependence of F‘10\>\7((7L2h)/(NC2 —1) (left) and Flovvg?’h)/(]\fc2 —1)

(right) for g = 1 and 71, = 0 on the right-hand side of the flow.

the flat regulator. For other regulators the contribution can be either positive or negative.
This is discussed in App. E.2 and will play a crucial role in the later analysis.

For the computation of the graviton anomalous dimension we resort to a finite difference
projection, which is of the general form

Flow(" (p?) — Flow{™ (p2)

p} — P}

= gZp(NZ = 1)(a + Bna), (7.40)

where o and 8 depend only on p; and po. This is rooted in the fact that there are only
internal gluon propagators and graviton-gluon vertices and these do not depend on A3 and
w as discussed in the last section. For po = 0 and p; — po, i.e. a p’-derivative at p? = 0,
we obtain

a=f=——~—0027. (7.41)

For a finite difference with p? = k? and py = 0 we obtain
a~~—0.012, B~ —0.0033. (7.42)

(7.41) and (7.42) display the gluon contribution to —7, thus the gluon contribution to 7y, is
positive independent of the momentum projection scheme. Note however that (7.41) and
(7.42) display a qualitatively different behaviour, and (7.42) is the correct choice due to
the momentum-dependence of the flow. This has already been observed in the pure gravity
computations in [325, 327] and in the previous chapters and emphasises the importance
of the momentum-dependence. In this chapter we use a finite difference between p? = p?
and p3 = —uk? for the equation of ny,(p?).

7.5.3. Contributions to the three-point function

The contributions to the graviton three-point function enter the beta function of the
Newton’s coupling g and the beta function of A3. The diagrammatic representation of
these contributions is shown in Fig. 7.5. Here the contribution to 0,g is the momentum
dependent part and the contribution to d;A3 in the momentum independent part to the
graviton three-point function. For the projection on the couplings g and A3 we use precisely
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the same projection operators as in Sec.3.4.3. These are different projection operators for
g and A3 and we mark this with an index G and A in the following.

We have seen in the previous sections, that the momentum dependence of the flow plays
a crucial role, and key properties may be spoiled if non-trivial momentum-dependence is
not taken into account properly. Therefore we resolve the momentum dependence of the

contributions Flowg];) (p?), which is shown in the right panel of Fig. 7.6. Interestingly,

the contribution is peaked at p? = %kzz and is not well described by p? in the region
0 < p? < k%. Due to this non-trivial structure the contribution to d;g depends on the
momenta where it is evaluated. For general momenta p? and p2 we obtain

Flowg’fl) (p?) — Flowgz) (p3)

P —p3

3
2

= g2 Z} (N2 = 1)(y+07a) (7.43)

where « and § again only depend on p% and pg. Evaluated as derivatives, i.e. p% =0 and
p? — 0 we arrive at

1
~ —0.074, §=——— ~ —0.00056. (7.44)

== 5707

30m
With p? = k% and p3 = 0 they are given by
v~ —0.018, 0~ —0.0014. (7.45)

As in the case of the gluon propagator the sign of the derivative definition agrees with the
bi-local one but they differ strongly in their magnitude. We use (7.45). The contribution
to A3 is always evaluated at vanishing momentum. We obtain

(3h)

3 3—
Flow({?) (p? = 0) = g2 2 (N? — 1)2 1|

607

(7.46)

7.5.4. Mixed graviton-gluon coupling

So far we have only considered pure gluon and pure graviton correlation functions in
the coupled Yang-Mills—gravity system. Indeed, the results that will be presented in
Sec. 7.6 are based on precisely these correlation functions and other couplings are identified
according to (7.22). In Sec. 7.7 we discuss the stability of the results under extensions of
the truncation. In particular, we take a look at the inclusion of a flow equation for the
graviton—two-gluon—coupling g,.

The flow equation for g, is derived analogously to the g3 coupling from three-graviton
vertex: we build the projection operator from the classical tensor structure S(haa) with
a transverse traceless graviton and two transverse gluons. This projection operator is
contracted with both sides of the flow equation for this specific vertex. The equation is
further evaluated at the momentum symmetric point (3.22). The resulting p?-part gives
the flow equation for g,. We obtain an analytic flow equation for g, by a p?-derivative at
p? = 0. The resulting flow equation is given in App. E.4.

For the computations in Sec. 7.7 we use the preferred method of finite differences. In
particular we choose the evaluation points p? = k? and p? = 0. With this method we do not
obtain analytic flows but we take more non-trivial momentum dependences into account.
The computation is simplified by the fact that the present flow is actually vanishing at
p?> = 0. Consequently the finite difference equals to an evaluation at p? = k? and the
momentum derivative gives the same result as a 1/p>-division.
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7.5.5. Momentum locality

We close this section with a remark on the momentum locality introduced in Sec.3.5.1 as
a necessary condition for well-defined RG-flows. It was shown to be related to diffeomor-
phism invariance of the theory. It entails that flows should not change the leading order of
the large momentum behaviour of correlation functions. The asymptotics of the diagrams
for the graviton two-point function, ordered as displayed in Fig. 7.5, are

8 — g
127

(2h)

Diagy (p2 — o0) =—g (2h)

. 8_ a
Diag, (p2 —o0)=g 12;7 , (7.47)

while the asymptotics for the graviton three-point function, again ordered as displayed in
Fig. 7.5, are

. (3h), 2 — 3/28 —Na . (3h), 2 _ 3/2 4(8 —1a)
Diagy " (p” — 0) g on Diagy ™ (p* = o0) =g o
3(8 — g
Diag(g’h) (p? = 00) = —93/2(1977) ) (7.48)
s

Consequently we again have a highly non-trivial cancellation between different diagrams,
which leads to the property of momentum locality. In summary, we assert

O, (2h,3h) ()2
m 200 (7.49)
p2/k2—00 I'(2h,3h) (pQ)
in the transverse traceless mode. Hence, the full flows of the graviton two- and three-point
functions including Yang-Mills corrections are momentum local.

7.6. Asymptotic safety of Yang-Mills—gravity

In this section we provide a full analysis of the UV fixed point of the coupled Yang-Mills—
gravity system. It is characterised by the non-trivial fixed point of Newton’s coupling g,
the coupling of the momentum-independent part of the graviton three-point function As
and the graviton mass parameter p while the minimal gauge coupling vanishes, as; = 0.

7.6.1. Finite N,

The fully coupled fixed point shows some remarkable features. The fixed point values are
displayed in the left panel of Fig.7.7. The fixed point value of the graviton mass parameter
remains almost a constant as a function of N.. The Newton’s coupling is approaching zero,
while A5 becomes slowly smaller and crosses zero at N2 ~ 166. This behaviour can be
understood from the equations: the leading contribution from Yang-Mills to d:u cancels
out and only a term proportional to 7, remains, see (7.39). The latter is small at the
fixed point and hence the effect on J;p is strongly suppressed. The fall off of g* and Aj is
explained by the respective contribution in the flow equations, see (7.45) and (7.46).

The critical exponents of the fixed point, which are given by minus the eigenvalues of the
stability matrix, are displayed in the central panel of Fig.7.7. They remain stable over the
whole investigated range. Two critical exponents form a complex conjugated pair. The
real part of this pair is positive and thus corresponds to two UV attractive directions. The
third critical exponent is real and negative and corresponds to a UV repulsive direction.
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Figure 7.7.: Properties of the UV fixed point as a function of N2 — 1 in the uniform
approximation with one Newton’s coupling. Displayed are the fixed point
values (left panel), the critical exponents (central panel), and the anomalous
dimensions (right panel).

The eigenvector belonging to the latter exponent points approximately in the direction of
A3, which is in accordance with pure gravity results from Chapter 3.

In the right panel of Fig. 7.7 we show the anomalous dimensions at the fixed point, eval-
uated at p?> = 0 and p? = k2. The ghost and gluon anomalous dimensions tend towards
zero for increasing N.. Most importantly 7,(k?) is always negative, which is a necessary
condition for asymptotic freedom in the Yang-Mills sector. The graviton anomalous di-
mension does not tend towards zero. At p? = k? it is getting smaller with an increasing
N, despite the positive gluon contribution (7.42). The reason is that the anomalous di-
mension is also proportional to g*, which is decreasing and this effect dominates over the
gluon contribution. At p?> = 0 on the other hand the gluon contribution is also positive
but larger in value, see (7.41), and consequently dominates over the decrease in g*. n,(0)
is increasing, crosses the value 2 and starts to decrease again for large N.. As mentioned
in (7.16), n < 2 is a bound on regulators that are proportional to the respective wave
function renormalisation. In our case 7, (0) exceeds the value 2 just slightly, and remains
far from the strict bound, which is 7, < 4, see Sec. 6.3.4 for details.

The fixed point values of the background couplings are displayed in Fig. 7.8. The
equations for the pure gravity part are identical to the ones in Chapter 4 and the gluon
part is identical to the one in [421]. In this setting the background couplings behave very
similar to the dynamical ones. The background Newton’s coupling goes to zero with 1/N?2
while the background cosmological constant goes to a constant for large N.. Interestingly
the background coupling reach their asymptotic behaviour much faster than the dynamical
ones.

7.6.2. Large N, scaling

In the limit N, — oo the couplings approach the fixed point values

89 8.0-10% . 3.3 - 102 2.4-103
ey oy — 045 - 22— Ao =071+ 25
TNzt TN H NZ 3 TNz
(7.50)

As expected the 't Hooft coupling ¢g*N? is going to a constant in the large N-limit. This
behaviour is also displayed in Fig. 7.8 for finite N.. Remarkably, ©* and A3 remain finite.
In the A3 equation this originates from a balancing of the gluon contribution with the

122



7. UV DOMINANCE OF GRAVITY 7.6. ASYMPTOTIC SAFETY

100 :
—g*N?
80|{--- g*NZ .

60 |- .

40 |- y

20 y

0 | | T " - - 0 l l l l l l l
0 200 400 600 ) 800 1,000 1,200 1,400 0 200 400 600 ) 800 1,000 1,200 1,400
1 1

Figure 7.8.: Displayed are the background couplings g* and \* (left) as well as the 't Hooft
couplings ¢* N2 and g*N? as a function of N? — 1 evaluated at the UV fixed
point displayed in Fig. 7.7. The coupling g* is going to zero with N%Z and

M\* goes to the constant 0.38, see (7.52). The 't Hooft couplings reach the

asymptotic values g* N2 — 89 and g*N2 — 9.4, see (7.50) and (7.52).

canonical term. In the p equation on the other hand all contributions go to zero in leading
order and the fixed point value of p follows from the second order contributions. The
asymptotic anomalous dimensions follow as

2.7-103 2.9 -10?
0) =2+ —5— k%) — 0.36 + ————
m(0) = 24+ =5 (k) = 036+ =
1.3-10? 9 1.5- 102
nc(O)%—TCQ, nc(k)%—Tg,
8.7 22
77(1(0) — 7@, na(ij) — 7@, (751)
(& (&

which satisfy the bounds 7; < 2 necessary for the consistency of the regulators that are
proportional to Zy, Z., Z,. Note that only the graviton anomalous dimension is non-
vanishing in this limit. Importantly the gluon anomalous dimension approaches zero from
the negative direction, which means that it supports asymptotic freedom in the Yang-
Mills sector. The asymptotic value 7,(0) = 2 follows directly from the demand that all
contributions in the u equation have to go to zero in leading order, as discussed in the last
paragraph. The critical exponents are given by

(1.1 F5.6i) - 103 14 - 103
03 - —2.3 —
N?Z ’ 5 N?

Oro0—12£21i+ (7.52)
The fixed point hat two attractive and one repulsive direction for all colours. Remark-
ably the values of the critical exponents remain of order one. The background couplings
approach the values

94 1.3-102 - 1.4

Again, the background 't Hooft coupling g*N? remains finite in the large N -limit, which
is also displayed in Fig.7.8.
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Figure 7.9.: Diagrammatic depiction of the graviton induced higher order gluon interac-
tions. The wiggly lines are gluon propagators, and the double line represent
graviton propagators.

In summary we have found a stable UV fixed point with two attractive directions.
The fixed point values, the critical exponents and the anomalous dimensions are of order
one. In Fig. 7.7 we display this behaviour up to N? = 1500 and in this section we have
augmented this with a solution for N, — co. Consequently we conclude that the system is
asymptotically safe in the gravity sector and asymptotically free in the Yang-Mills sector
for all N..

7.6.3. Decoupling of gravity-induced gluon self-interactions

It has been advocated in [420] that interacting matter-gravity systems necessarily contain
self-interacting matter fixed points. This has been investigated in scalar, fermionic and
Yukawa systems in e.g. [122, 387, 433].

Recently, also a Yang-Mills—gravity system with an Abelian U(1) gauge group has been
investigated [432]. It was found that that the coupling of the fourth power of the field
strength, F4, takes a finite fixed point value, while the minimal coupling that enters the
covariant derivative can be asymptotically free. As already mentioned before in Sec. 7.4,
the same happens in Yang-Mills—gravity systems. In particular we are led to

w3 (trFi,,)2 + vy trF;fV ) (7.54)
with w3 # 0 and v} # 0 without non-trivial cancellations. A quantitative computations
of these fixed point couplings is deferred to future work. Here we simply discuss their
qualitative behaviour: even if not present in the theory, the couplings we and vy are
generated by diagrams with the exchange of two gravitons, see Fig. 7.9. In leading order
these diagrams are proportional to

g 1

— 0 7.55
T w1 0 (7.55)

and vanish in the large N, scaling of (7.50). It is simple to show that the further diagrams
in the fixed point equations of ws, ve proportional to ws, vy decay even faster when using
(7.55) for the diagrams.

Finally, we get additional gluon tadpole contributions proportional to w3 and v} for
the running of the Yang-Mills beta function. In leading order these contributions are
proportional to N2 due to a closed gluon loop. Together with the fixed point scaling of w3
and v} in (7.55) this leads to a 1/N2-decay of these contributions. They have the same
large N.-scaling as the pure gravity contributions but also share the same negative sign
supporting asymptotic freedom, see [432] for a study in U(1)-theories.

We close this section with a qualitative discussion of the stability for the interacting fixed
point: As wo and vs do not couple into the pure gravity subsystem, the stability matrix is
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skew-symmetric, and the eigenvalues are computed in the respective sub-systems. Both,
the gravity as well as the we and v4 sub-systems are stable in the limit g — 0.

This concludes our analysis of the large N.-behaviour of quantum gravity with the
flat regulator and the identification (7.22). As expected, Newton’s coupling ¢g shows the
1/N2-behaviour discussed in Sec. 7.2.

7.7. UV dominance of gravity

7.7.1. Dynamical scale fixing

In Sec. 7.6 we used the identifications of all Newton’s couplings (7.22). In the present
section we discuss the general case without this identification. We provide a comprehensive
summary of results and the underlying structure, more details can be found in App. E.3.
While we have argued in Sec. 7.2 that the present Yang-Mills—gravity system, as well as all
free-matter—gravity systems are asymptotically safe, the interesting question is how and if
at all in the present approximation this is dynamically observed.

Within the iterative procedure in Sec. 7.2 we arrived at a fixed point action that is
identical to that of the pure gravity sector with fixed point values for g;, Ay, and p*.
We also have g, = g3 due to the expansion of the metric g, = g + v/ Zpg3 k hy with
k = ky. Note also that in such a two-scale setting with k; and k, the latter rather is to
be identified with k7Y and not with k. As the effect of the latter has been absorbed in a
renormalisation of Newton’s coupling prior to the integrating-out of graviton fluctuations
(or rather their suppression with k;, — o00), this sets the graviton cutoff scale k;, = k as
the largest scale in the system. This leads to (7.17) that effectively induces

k? o~ N2k2, (7.56)
in the large N, limit. Note that with a rescaling of our unique cutoff scale in Sec. 7.6 with
N2 we already arrive at the N.-independent fixed point values (7.50). The large values
come from dropping the N.-independent prefactor in the ratio G/G.s. The latter fact
signals the unphysical nature of fixed point values, which within this two-scale setting also
extends to the product g*A*, typically used in the literature as a potentially rescaling-
invariant observable.

Despite (7.17) being a natural relative scale setting, without any approximation the full
system of flow equations with k;, = k, should adjust itself dynamically to this situation
with g* ~ g ~ g* and with g* oc 1/N2 in the large N,-limit. In the present approximation
this can happen via two mechanisms that both elevate the graviton fluctuations to the
same N.-strength as the gluon fluctuations: the graviton propagator acquires a N.-scaling
1 1 9

NZ, (7.57)

k2 2_0)= ———

after an appropriate rescaling of the couplings, for more details see App. E.3. We proceed
by discussing the two dynamical options that the system has to generate the N.-scaling
in (7.57):

(1) Evidently, (7.57) can be achieved via

p* o< —1+c, /N2, (7.58)
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Figure 7.10.: Schematic picture of the dynamical scale re-adjustment mechanisms as a
function of the coefficient ¢, o (Ry).

with a positive constant c;. Note that (7.58) is not present in the fixed point results
in Sec. 7.6. Accordingly adding the fixed point equation for g, has to trigger this
running. Below we shall investigate this possibility in more detail.

(2) The N,-scaling can also be stored in 1/Zj. As we have chosen regulators that are
proportional to Zj this leads to an effective elimination of Z; from the system,
its only remnant is the anomalous dimension 7 in the cutoff derivative. Since
1/Z), o< (k?)™/2=1 the anomalous dimension 7, has to grow large and positive in
order to effectively describe the N,-scaling in (7.57):

NMh —> 00. (7.59)

In the present setting with Ry, j oc Zp, this option cannot be investigated as (7.59)
violates the bound

Rh,k x Zp, = np < 2, (7.60)

for the regulator. For 7, > 2 the regulators of type (7.60) cannot be shown to
suppress UV degrees of freedom anymore in the limit & — oo as limg_,oo Rg (p2) —
0 for np > 2. This bound was introduced in Sec. 6.3.4, where 7, grows beyond
this bound for a large number of scalars. It was stated there that the stability of
the scalar-gravity system could not be investigated conclusively since the regulator
cannot be trusted anymore. In the light of the present results and discussion we know
that the free-matter system is asymptotically safe. Then, the growing 7, signals that
the system wants to accommodate (7.57) with a growing 1/Zj,.

We emphasise that the physics of both options, (1) and (2), is captured by (7.57) and is
identical. Which part of the scaling of the propagator is captured by p and which one by
Zy, is determined by the projection procedure. Note that the latter is also approximation
dependent.

In summary the coupled Yang-Mills—gravity system approaches the large N, limit via
(7.57). Whether or not this is seen in the current approximation with the cutoff choice
(7.60) is a technical issue. If the approximation admits option (1) then the fixed point
can be approached, if (2) or a mixture of (1) and (2) is taken then the fixed point cannot
be seen due to the regulator bound in our setup. We emphasise again that this does not
entail the non-existence of the fixed point, which is guaranteed by the analysis of Sec. 7.2.
The analysis here evaluates the capability of the approximation to capture this fixed point.
The understanding of this structure and guaranteeing this capability of the approxima-
tion is of chief importance when evaluating the stability of more complex matter-gravity
systems with genuine matter self-interaction: No conclusion concerning the stability of
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Figure 7.11.: Properties of the UV fixed point as a function of N2 — 1 in the uniform
approximation with one Newton’s coupling and with ¢, , = ﬁ ~ 0.0133.
Displayed are the fixed point values (left panel), the critical exponents (cen-
tral panel), and the anomalous dimensions (right panel).
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Figure 7.12.: Properties of the UV fixed point as a function of N2 —1 in the approximation
with two Newton’s couplings and with the flat regulator, ¢, , = 0. Displayed
are the fixed point values (left panel), the critical exponents (central panel),
and the anomalous dimensions (right panel).
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Figure 7.13.: Properties of the UV fixed point as a function of N2 —1 in the approximation
with two Newton’s couplings and with ¢, , = ﬁ =~ 0.08. Displayed are the
fixed point values (left panel), the critical exponents (central panel), and the
anomalous dimensions (right panel).

these systems can be drawn if the capability problem for the free-matter—gravity systems
is not resolved. Moreover, even if the fixed points exist, their physics may be qualitatively
biased by this problem.
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7.7.2. Results in the extended approximation

In the following analysis we concentrate on the g, fixed point equation and keep g. = g.
Before we extend the approximation to this case, let us re-evaluate the results with g, = ¢
in the light of the last Sec.7.7.1. There it has been deduced that a consistent N.-scaling
requires g* oc 1/N2 and either (7.58) or (7.59), or both. Fig.7.7 shows the consistent large
Nc-scaling for Newton’s coupling but neither (7.58) nor (7.59). This comes as a surprise
as the system is asymptotically safe and the large N -limit in the approximation g = g,
is seemingly stable. To investigate this stability we examine the regulator-dependence of
the coefficients of the flow equations. To that end we notice that the coefficients in the p
equation (and the g3, go-equations) are of crucial importance for the stability of the system.
The coefficient ¢, o = —1/(607)n, of the Yang-Mills contribution to the graviton mass
parameter is proportional to the gluon anomalous dimension 7,: the leading coefficient
vanishes, see (E.10) and (E.16). Indeed, choosing other regulators, the leading order term
is non-vanishing with

0.2 S cua(Ri) S 0.2, (7.61)

see App. E.2. Typically, it supersedes the 7,-dependent term, and the flat regulator
appears to be a very special choice. If ¢, , 2 0.013 we indeed find a solution, which is
consistent with (7.58), see Fig. 7.11 for ¢, , = ﬁ ~ 0.0133. In turn, for ¢, , < —0.005
we find solutions with growing 7, hence in the class (7.59). Accordingly, this solution
is not trustworthy with 7, beyond the bound (7.60). Its failure simply is one of the
approximation (within this choice of regulator) rather than that of asymptotic safety.

In summary this leads us to a classification of the regulators according to the large
N-limit: they either induce the dynamical re-adjustment of the scales via (7.58) or via
(7.59) or they fall in between such as the flat cutoff. Within the current approximation it
is required that the re-adjustment happens via (7.58).

Now we are in the position to discuss the general case with g, # ¢g. An optimal scenario
would be that the inclusion of the g, equation already stabilises the system such that
it enforces the dynamical re-adjustment via (7.58) for all regulators proportional to Z.
However, as we shall see, the general scheme from the uniform approximation persists with
this upgrade of the approximation.

No apparent N -scaling for p and np,

In the uniform approximation with one Newton’s coupling (7.22) this scenario was taken
with regulators with —0.005 < ¢, S 0.013. A typical regulator in this class is the flat
regulator used in this chapter. This scenario does not enhance the graviton propagator and
hence does not fulfil (7.57). The stability of the results in the large N,-limit in the uniform
approximation must thus rather be considered a mere coincidence. Indeed in the extended
truncation with g # g, the enhancement of the graviton propagator is not triggered by the
included g, equation and consequently the flat regulator does not have a stable large N.-
limit anymore. The fixed point values, critical exponents and the anomalous dimensions
in this approximation are shown in Fig. 7.12. The fixed point values show a marginal
N.-dependence up to the point where the fixed point vanishes into the complex plane at
N2 =~ 13.5, which is signalled by one of the critical exponents going towards zero. The
vanishing critical exponent can be associated with g,. Typically this is interpreted as
a sign for the failure of asymptotic safety. Here it is evident that the truncation cannot
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accommodate the dynamical re-adjustment of the scales that takes place in the full system.
This could also signal an over-complete system: g and g, are related by diffeomorphism
invariance. In any case the failure of the approximation can either lead to the divergence
of the couplings (related to (7.59)), or in complex parts of the fixed point values. For the
flat regulator the latter scenario is taken.

Scenario with 1 + p o< 1/N?

This scenario requires regulators with c; < ¢,4 < Cpax- A typical regulator in this class
is the sharp regulator, see (E.2) and Fig. 7.10. Here we do not present a full analysis
of this case but only change the coefficient ¢, , accordingly. This is justified in terms
of linear small perturbations of the system: ¢, , is the only leading order coefficient in
the system that exhibits a qualitative change when changing the regulator away from the
flat regulator. Note however, that this change ceases to be small for large N. as c,q
is multiplied by N2. If accompanied by a respective change of the relative cutoff scales
kp/kq this factor could be compensated. Then, however, we are directly in the stable
regulator choice with (7.17). Here we are more interested in the dynamical stabilisation
and we refrain from the rescaling. The system exhibits the 1/N2-scaling in the Newton’s
couplings, g* and g,, as well as the mass parameter p*, see Fig. 7.13 for ¢, , ~ 0.08.
However, with this choice the critical exponents of the fixed point become rather large.
We determined the constant cy ~ 0.07.

Scenario with 7, growing large

This scenario requires regulators with —c,;, < ¢, < —c—. A typical regulator in this
class is the exponential regulator, see (E.2) and Fig.7.10. For this class of regulators both
couplings grow large and we have the scenario with (7.59) bound to fail to provide fixed
point solutions beyond a maximal N. due to the failure of the approximation scheme.

7.7.3. Resumé: Signatures of asymptotic safety of Yang-Mills—gravity
systems

In summary with the choice of the regulator we can dial the different scenarios that all
entail the same physics: the dynamical re-adjustment of the respective scales in the gauge
and gravity subsystems and the asymptotic safety of the combined system. The two
different scenarios are described in Sec. 7.7.2 and Sec. 7.7.2. Both scenarios entail the
same physics mechanism: the enhancement of the graviton propagator, see (7.57). This
triggers the dominance of gravity in the UV, which is clearly visible in the consecutive
integrating-out of degrees of freedom discussed in Sec. 7.2. The crucial property for the
validity of this structure is the asymptotic freedom of the Yang-Mills system, and hence
the existence of the gauge system in a given background. This property is trivially present
in systems with free matter coupled to gravity, and hence the present analysis extends to
these cases.

This leaves us with the question of how to re-evaluate the existing results on matter-
gravity system in the light of the present findings. We first notice that the helpful pecu-
liarity of the Yang-Mills—gravity system that allowed us to easily access all the different
scenarios, is the possibility to choose the sign of ¢, , with the choice of the regulator.
Clearly, the gauge contribution to the running of the graviton mass parameter plays a
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pivotal réle for how the enhancement of the graviton propagator in (7.57) is technically
achieved. In the other matter-gravity system this parameter has a definite sign, which
is why one sees a specific scenario for typical regulators. Collecting all the results and
restricting ourselves to truncations that resolve the difference between fluctuation and
background fields we find:

(1) Fermion-gravity systems: they fall into the class Sec.7.7.2, and the asymptotic safety
of the system can be accessed in the approximation. The required large flavour Ny
pattern with (7.58) is visible in the results.

(2) Scalar-gravity systems: they fall into the class Sec.7.7.2, and for large enough number
of scalars Ny the fixed point seemingly disappears due to the fixed point coupling ¢*
and anomalous dimension 7, growing too large.

(3) Vector-gravity /Yang-Mills—gravity systems: this system has been discussed here and
it falls into all classes, Sec.7.7.2, Sec.7.7.2 and Sec.7.7.2. This also includes the U(1)-
system.

(4) Self-interacting gauge-matter—gravity systems: these systems only fall into the pat-
tern described in Sec. 7.7.2, Sec. 7.7.2 and Sec. 7.7.2 if the gauge-matter system is
itself UV stable. For example, one flavour QED exhibits a UV-Landau pole and is
stabilised by gravity, which makes the combined system asymptotically safe, for a
comprehensive analysis see [432, 435]. Adding more flavours potentially destabilises
the system, however such an analysis has to avoid the interpretation of the seem-
ing failure of asymptotic safety described here. One possibility to take this into
account is the scale-adjustment (7.17). This discussion also carries over to general
gauge-matter—gravity systems including the Standard Model and its extensions.

In summary this explains the results obtained in gravitationally interacting gauge-
matter—gravity systems, which are the basis of general gauge-matter—gravity system.
While it suggests the use of relative cutoff scales such as (7.17) it still leaves us with the
task of devising approximations that are capable of capturing the dynamical re-adjustment
of scales that happens in gravitationally interacting gauge-matter—gravity systems. In par-
ticular, the marginal operator R? In(14 R/kR?), cf. (7.14), has to be included as discussed
in Sec.7.2.2.

Besides this task the present analysis also requires a careful re-analysis of phenomeno-
logical bounds on UV fixed point couplings. It is well-known that the values of the latter
are subject to re-scalings and only dimensionless products of couplings such as g*A* pos-
sibly have a direct physical interpretation. We have argued here that the dynamically
adjusted or explicitly adjusted relative cutoff scales ask for a reassessment also of these
dimensionless products.

7.8. Summary

We have investigated the prospect for asymptotic safety of gravity in the presence of
general matter fields. A main new addition are general arguments, which state that if
matter remains sufficiently weakly coupled in the UV, or is even asymptotically free, then
asymptotic safety for the combined matter-gauge-gravity theory follows, in essence, from
asymptotic safety of pure gravity, cf. Sec.7.2. Ultimately, the UV dominance of gravitons
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relates to the fact that integrating out UV free matter fields only generates local counter
terms in the gravitational sector. This argument assumes the absence of marginal terms
in the full theory such as R?In R, in line with assumptions commonly used in the study
of matter-gauge-gravity systems. Interestingly, this setup can now be understood as a
consistent matter-gauge-gravity theory, which does contain marginal terms in the classical
gravity action. It is the renormalisation of the latter that removes the flavour dependence.

Our reasoning has been tested comprehensively for Yang-Mills theory coupled to gravity.
Using identical cutoffs for gravity and matter, we invariably find that asymptotic safety
arises at a partially interacting fixed point with asymptotic freedom in the Yang-Mills and
asymptotic safety in the gravity sector. Fluctuations of the gravitons dominate over those
by matter fields including in the asymptotic limit N, — co, where we were able to provide
explicit results, see Sec. 7.6.2. Interestingly, the UV dominance of gravity can materialise
itself in different manners, see Fig. 7.11, 7.12 and 7.13, strongly depending on technical
parameters of the theory such as the gauge, the regularisation, and the momentum cutoff.
We have visualised this in Fig. 7.10. The overall physics, the UV dominance of gravity
fluctuations, is not affected. This pattern is reminiscent of how confinement arises in
gauge-fixed continuum formulations of QCD. It is also worth noting that the observed
N.-independence with identical cutoffs follows automatically, if, instead, ”relative cutoff
scales” for matter- and gravity-fluctuations are adopted, following (7.17). This may prove
useful for practical studies of gravity-matter systems in set approximations. The necessity
for "relative cutoff scales” is well-understood in condensed matter systems, albeit for other
reasons [465, 466].

There are several points that would benefit from further study in the future. While
we explained in general terms how findings extend to more general matter sectors, see
Sec. 7.7, it would seem useful to further substantiate this in explicit studies. Also, our
study highlighted the appearance of logarithmic terms such as R?In R, and similar, see
Sec. 7.2. These classically marginal terms are of relevance for the question of unitarity of
asymptotically safe gravity. It remains to be seen whether they affect the observed N.-
independence of gravity-matter fixed points in any significant manner, see Sec.7.7. Finally,
our findings offer a natural reinterpretation of earlier results, as the ones from the previous
chapter. It is important to confirm whether this is sufficient to remove a tension amongst
previous findings based on different implementations of the renormalisation group, namely
with and without background field approximation.
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8. Effective universality in quantum gravity

8.1. Introduction

The discussions and the results from the last chapters have put emphasis on the fact
that disentangling background and fluctuation field is a necessary task. This is related to
keeping track of diffeomorphism invariance and background independence. In the present
chapter we address two questions that are ultimately linked to these key properties:

The first question concerns the dynamical couplings of gravity-matter systems. Gauge
theories feature different avatars of the gauge coupling, a prominent example being the
different avatars of the running gauge couplings in the Standard Model. For instance, in
QED the running electric coupling can be extracted from the wave function of the photon
or from the running of the electron-photon vertex. This relation can be derived from the
Ward identities in QED. In QCD the running of the gauge coupling can be extracted from
different combinations of vertex and propagator scalings including, e.g., the three-gluon
vertex and the quark-gluon vertex. Again this can be derived from the identities following
from the gauge symmetry, in this case the Slavnov-Taylor identities.

In these examples the respective couplings are marginal and exhibit two-loop univer-
sality. This facilitates the identification. In gravity the above universality holds for the
(marginal) R? and R/2w couplings. However, the couplings in the classical Einstein-Hilbert
action and the minimal couplings to matter are dimensionful and universality is not ex-
pected anymore on the quantum level. Still, the multi-graviton couplings related to Taylor
expansions of the terms in the classical action, e.g. /g R and /g A agree on the classical
level and are related by Slavnov-Taylor identities in quantum gravity. It is an intriguing
physics question and of paramount technical importance, whether for all practical purposes
these relations nevertheless facilitate an identification, for example, between all avatars of
the minimal coupling in gravity, the Newton’s coupling G . We call this scenario effective
universality, which is detailed in the next section. In this chapter we investigate this ques-
tion focusing on the dynamical pure gravity coupling and the dynamical gravity-scalar
coupling. We stress that due to the dimensionful nature of the couplings, different avatars
of the Newton’s coupling could agree if evaluated within the same scheme, but depend of
course e.g. on the choice of regulator in the context of an FRG setup. Here, universality
is not to be understood in the sense of scheme-independence at the two-loop level.

Indeed, we find that the fixed point values and the leading coefficients of the above
two couplings agree on a semi-quantitative level as a function of the number of minimally
coupled scalars. These computations of dynamical couplings in a vertex expansion about
a flat background extend the works of the previous chapters, in particular Chapter 6.

The second question concerns the couplings of the background metric. These couplings
are related via Ward-identities. Additionally, they are related to the dynamical couplings
discussed above via Nielsen identities or split Ward identities. Importantly, these identities
also carry the background independence of quantum gravity. In this chapter we also
investigate the question to what extent the awvatars of the background couplings can be
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identified with that of the fluctuation couplings. We emphasise that this identification is
at the root of the background field approximation whose background independence stands
or falls with the validity of this identification.

In this chapter we do not only critically compare the avatars of the background Newton’s
coupling to that of the fluctuation coupling, we also further improve the background
coupling to a level-one coupling with the explicit use of a Nielsen identity. We find that
the effective universality, that exists between the dynamical couplings, is not present for
the background and the level-one couplings. However, general qualitative features of the
flow equations, such as as the sign of the scalar contribution, are preserved for all couplings
but the background cosmological constant in comparison to the graviton mass parameter.

8.2. Avatars of couplings and effective universality

In this section we explain the origin of different avatars of couplings in the effective action
of matter-gravity systems. We further discuss their relation via the modified symmetry
relations, STIs and Nielsen-identities, that are derived from the underlying diffeomorphism
invariance and its breaking in the presence of cutoff terms. In short, effective universality
is the notion that these complicated symmetry identities are well approximated by Ward-
identities, that is a diffeomorphism-invariant approximation of the effective action, for
more details see Sec. 8.2.2.

8.2.1. Avatars of couplings in matter-gravity systems

Asymptotically safe matter-gravity systems and their physics can be described in terms
of the effective action I'[g,¢]. In Sec. 3.3.2 we have expanded this effective action in
correlation n-point functions. Each of these n-point vertices is equipped with a coupling
G5, where the vector 7 consists of the numbers of the different dynamical fields, in the
present scalar-gravity setting ¢ = (hW, Cusr Py -+ .), that take part in the process,

—

it = (nh, Ney N, -+ ) - (8.1)

The couplings G are avatars of the gravitational self-coupling G . In the present study
we focus on gravity-scalar couplings. This leaves us with couplings labelled by two indices

Gapny) - (8.2)

In this chapter we denote dimensionless versions of Newton’s coupling by capital letters,
e.g. as above G(y, n,), and dimensionful versions with an additional over-bar, such as
G (npn,)- The fluctuation couplings Gy, ) defined in (8.2) are related to the expansion
coefficients in an expansion in powers of hy, and ¢, the couplings G, ) are related to
those in an expansion in powers of g, and ¢. The respective vertices are given by

"ML g, b, @]
" (p1, .. 0N (o piy e )OPH( e Prmtt)

F(n’m’l) (p17 v >pn+m+l) = 5 ) (83)

where we suppress the indices on g,,, and hy,, for brevity of notation. The couplings (8.2)
can now be defined by (8.3) at selected kinematic configurations. In this chapter, we focus
on Gy and G( ) defined at the momentum symmetric point. The former coupling
relates to the scattering of three gravitons, and is derived from the pure gravity part of

134



8. EFFECTIVE UNIVERSALITY 8.2. AVATARS OF COUPLINGS

the effective action. The coupling G 7) relates to the scattering of one graviton and two
scalars, and is derived from the kinetic term of the scalars. This coupling is also present in
the free -no self-interaction- scalar theory and can be considered the fundamental coupling
of scalar fields to gravity.

Evidently these couplings cannot be defined uniquely and depend on the given kinemat-
ical limit. Note that this even holds for dimensionless couplings beyond one loop, despite
their universal RG running. Accordingly, the evaluation of, e.g., scattering processes with
different momentum configurations requires an analysis of the corresponding n-point ver-
tex as a function of all its independent momenta, i.e., a simple function of one momentum
cannot capture the full dynamics adequately. If dealing with an approximation to the the-
ory at hand that does not maintain the full momentum-dependence of vertices, a typical
choice is the symmetric point, for higher-order vertices a symmetric point. Using these
momentum configurations can lead to semi-quantitative agreement with the full results
even in strongly-correlated systems, see Chapter 3 and for a resent work in QCD see [463].
For a related interesting discussion in the effective field theory approach to gravity see
[468]. Keeping this caveat in mind, we proceed with our evaluation whether avatars of
the Newton’s coupling, defined using the symmetric momentum configuration of various
three-point vertices, show semi-quantitative agreement.

With the dynamical vertices (8.3) and the dynamical propagators we can compute the
background vertices, that is the S-matrix elements. This leads to further avatars of the
Newton’s coupling, this time being directly related to S-matrix elements for the selected
momentum configuration. In this chapter we consider the avatar of the Newton’s coupling
of the background curvature term in the action. It is distinguished from the Gz by two
properties: first it is the prefactor of a diffeomorphism invariant term in the action. Second,
as a pure background quantity it does not drive the RG flow of the system, which is driven
by the fluctuation field and its couplings. In this chapter, we refer to its dimensionless
version as G and the dimensionful version as Gy.

8.2.2. Effective universality

Already one diffeomorphism-invariant operator at the classical level, for example the cur-
vature scalar /g R leads to infinitely many different couplings at the quantum level: These
are obtained by taking the nth h,,-derivative of \/g R and projecting r) (given a com-
plete basis) on this tensor structure. While still being related by STIs they do not agree.
In the presence of the regularisation these STIs turn into mSTIs.

The situation is slightly different for the nth order background couplings: they even
agree at the full quantum level as they are related by Ward identities due to background
diffeomorphism invariance. This property even survives the introduction of the regular-
isation. However, the computation of their beta functions requires the knowledge of the
fluctuation vertices. They are related to the background vertices by the Nielsen or split
Ward identities, which turns the Ward identities into the STIs. In the presence of the
regularisation we have modified NIs as we have mSTIs.

This leaves us with the technical challenge of computing all these coupling avatars
related to a given operator, in the present example the avatars of the Newton’s coupling.
Specifically, the challenge lies in the need to close a given system of flow equations for
correlation functions that depend on the higher-order correlation functions. To that end
one has to provide an ansatz for higher-order couplings for which the flow is not computed.
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The canonical choice is their classical value. For standard QFTs this leads to vanishing
higher- order couplings. In quantum gravity this canonical choice leads to an identification
of all higher-order couplings derived from a given operator with the lowest order one,
effectively restoring diffeomorphism invariance. This we call effective universality.

For example, let us assume for a moment that we only compute the flow of one avatar
of the Newton’s coupling. Then the canonical choice leads to the identification of all
higher-order Newton’s couplings with the lowest order one. If we apply this concept to
the dynamical system, effective universality can be summarised by

Glanng) ® G nh,np €N, (8.4)

with a unique Newton’s coupling for a suitably chosen momentum configuration. One of
the main aims of this chapter is to compare the scale dependence of these couplings under
the impact of quantum fluctuations of the metric and of Ny scalar fields.

In its maximal version for both, background couplings and fluctuation couplings it can
be summarised in a concise form of the effective action,

(G by, 0] = LaialGuw + P, 0] + AT gavge[Gpuvs Pyws @] - (8.5)

with a diffeomorphism-invariant action I'4s[g] and

AFgauge[gylla h/,LLV’ (70] ~ ng[g/ﬂ/) h;w] + Sgh [gpllv h,uzn CH] Y (86)

with gauge fixing and ghost action, S, and S,,, respectively, see [99, 469]. Furthermore,
only the regulator terms would carry the breaking of background independence. This ap-
proximation is called the background field approximation, which has been predominantly
used in the RG approach to quantum gravity as well as being paramount to effective field
theory applications in quantum gravity.

In summary the quest for effective universality is directly related to the task of finding an
efficient (rapidly convergent) expansion of the quantum effective action of matter-gravity
systems in diffeomorphism-invariant operators. While this task is seemingly a technical
one it is -in disguise- the quest for the dominating physics and phenomena that govern
quantum gravity systems.

8.3. RG for scalar-gravity systems

We aim to shed light on the above issues and specifically explore in which settings effective
universality may emerge in simple approximations. To that end we compare two avatars
of the dynamical Newton’s coupling. The first is defined from the three-graviton vertex,
as in Chapter 3, and its dimensionless version is called G(3). The second one is defined
from the graviton-two-scalar vertex as in [429, 436], and is called G12)-

The computation of the flow equations is in analogy to the previous chapters. The
classical action is given by the gauge-fixed Einstein-Hilbert action (3.4) and a kinetic part
for the scalars,

N,
1 - v ) 7
S = Sen+ 5 ;/d‘lx V9" 0,00, . (8.7)

From this action we generate the ansatz for the n-point functions according to (3.16).
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We compute flows up to the third order in the fluctuation field. In total we evaluate
the coupled flow equations of the scale dependent dimensionless quantities

5" 67 1y A3, G(3,0)7 G(1,2)7 Uh(Pz)a ns&(p2)7 TZc(pQ) (88)

The background couplings A and G do not enter the flow and thus do not affect the
fluctuation couplings. Their flow equations are analytic and derived using the York-
decomposition [81, 470] with field redefinitions [247, 413]. The explicit pure gravity flow
equation for our gauge is displayed in [262] and App. B.2. The N,-dependent part is
gauge independent and thus equal to, e.g. [424] and App. D.2. The flow equations for p
and A3 are also analytic and are given in App. B.6 and D.1 (the coupling G(1,2) has to
be disentangled from G 3 ) in the appropriate terms). The momentum dependence of the
Newton’s couplings, G(30) and G(q ), and the anomalous dimensions is of importance,
see App. B.4, and thus, it is preferable to evaluate these at finite momentum, which does
not allow for analytic equations. Nevertheless the analytic version of these flows leads to
qualitatively reliable results. The analytic and momentum dependent versions of G(3 ),
N, and 7, agrees with the ones in Chapter 6. Again G(; ) has to be distinguished from
G (3,0)- The analytic version of Gy 9) is the same as in [436] while the momentum dependent
version is derived here for the first time.
The p-function prescriptions for the Newton’s couplings are given by

24
B = (2+3m(k*)) Gs0) — 9 (mn(k*) = 1r(0)) A3 G(3.0)
64 172 hhh hhh
+ (32m) e (Flowgw(;m (k) - Flowe) | (0)) ,
8 h
Benas = (2+mm(k?) +2n,(k?)) G o) + 3 G}{?Z) Flowgté‘ffyz) (k?) . (8.9)

The notation is just as in (3.23). We used a bilocal projection for both couplings, but note

that due to the shift symmetry in the scalar sector, Flowgl “2(03 » (0) =0.

8.4. Effective universality for the dynamical couplings

To address our first key question, we compare the beta functions and fixed point results for
the dynamical system including G (39), G(1,2), ¢ and A3. Note however that the A, and in
particular p = —2)\o take a special role due to the convexity of the effective action. To see
this consider the effective action for classical gravity. It is the double Legendre transform
of the classical action. Accordingly, for positive cosmological constant it only agrees with
the classical action for large enough curvature. Thus, even for a diffeomorphism-invariant
action the )\, are not necessarily the same. In summary, in the reduced system under
investigation effective universality may only hold directly for G 3 ) and Gy 2y even in case
it is fully present. This leaves us with the two avatars of the Newton’s coupling while p
and A3 should be evaluated in dependence of G(3) and G(1 ) on a given trajectory.
Note also that effective universality is necessarily broken at a finite cutoff scale as the
regulators break diffeomorphism invariance. Accordingly it cannot hold quantitatively for
all cutoff scales. It may hold at £k — 0, and potentially at k& — oco. While the former
physical case is evident, the latter case deserves some explanation: in the physics limit at
k = 0 and for momentum scales p > Mp, we are in the scaling regime about the UV fixed
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-1
0

Figure 8.1.: Fixed-point values for the fluctuation couplings as a function of Ng. The
vertical lines at Ny ~ 17.5 and N, ~ 44.6 show where 1;,(0) and 7, (k?) exceed
the value two, respectively.

point. If effective universality holds for k = 0, we have in particular G 3 ) (p?) ~ G2 (p?).
If we now increase the cutoff scale, the scaling couplings are only changed for p? ~ k2.
Moreover, self-similarity in the scaling regime entails that k-scaling and p-scaling agree.
Hence, physical effective universality at k = 0 translates into effective universality of the
cutoff-dependent couplings in the scaling regime.

We shall see that G(3) and G(; 2) indeed feature a quantitative effective universality
on scaling trajectories close to the fixed point.

8.4.1. Effective universality at the fixed point

We solve the flow equations of the fully coupled fluctuation system, G 3), G(1,2), 4 and
A3 identifying all higher-order gravity couplings with G,>30) = G30) and Ap>3 = A,
and all graviton-scalar couplings with G, ;n>2) = G(1,2)- The p-functions of the Newton’s
couplings are given schematically in (8.9).

The resulting fixed point values are shown in Fig. 8.1. We observe that both Newton’s
couplings have similar fixed point values that increase with N;. The couplings u and
A3 remain approximately constant as a function of N,. This already shows a qualitative
effective universality for G3) and G(; o) that supports the reliability of computations
where this property is used. The similar behaviour of the two avatars of the Newton’s
coupling for all Ns; and the Ng-independence of p and A3 suggests to first perform a
detailed analysis at a fixed N5 and then a subsequent one of the N;-dependence. For the
first part of the analysis we choose Ny = 0. This is in complete analogy of the quenched
approximation in QCD, where one drops all closed quark loops. In the present case it
amounts to dropping all closed scalar loops.

8.4.2. Quenched quantum gravity

In the quenched limit with Ny = 0, a quantitative self-consistency analysis reveals an even
more interesting property than the mere similarity observed in Fig. 8.1. To that end we
remind ourselves that the bilocal projection used in the present fixed point computation
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is based on observations in the pure gravity system in Sec.4.2.2 for G(3) and G4 ). It
was shown that the momentum dependence of the flow of the coupling G(3) and G40
related to the curvature term R is quantitatively given by a linear p?>-dependence. The four-
graviton vertex has an additional p*-dependence related to the R?-term, no higher order
momentum-dependence is present. These properties are based on non-trivial cancellations
between diagrams based on diffeomorphism invariance. It also hints already at effective
universality. This situation suggests the following self-consistency analysis of effective
universality for G 3y and G(; 2): assume for the moment that effective universality works
quantitatively at the fixed point, that is

for all avatars of the Newton’s coupling. The self-consistency of (8.10) is tested quantita-
tively by evaluating the momentum-dependent S-functions 66‘(3,0) and BG(Lz) on (8.10) and
the approximately Ns-independent fixed point values pu* and A3. Solving the momentum-
dependent SB-functions for the momentum-dependent couplings on the bilocal fixed point
G*, p* and A3 leads us to

64 Flow®9 (p?) — Flow®%)(0)
G 2) ~ ——(327)?

)

G* " N3

Flow:?) (p?)
1+ nn(p?) + 20, (p?)

8
G(1,2)(p?) ~ —3 (8.11)

G* u*, A5

Note that nga(pQ) = 0 in the chosen gauge § = 1 and o = 0. The momentum-dependent
fixed-point couplings are shown in Fig. 8.2. In the left panel we have shifted G(Lz)(p2)
by its value at p?> = k? in order to make the quantitatively coinciding linear dependence
for p? > 0.2k% apparent. This coincidence is a non-trivial consequence of the different
contributions of p and A3 to both S-functions. It entails effective universality on the
quantitative level. The deviation from effective universality at small momenta may have
two different sources: first we expect that the regulator-induced breaking of effective
universality is maximal at low momenta in comparison to the cutoff scale. A second
source of the deviation may be the graviton mass scale in the graviton propagators, and
could be related to the convexity-enforcement at work in the effective action.

The highly non-trivial result in Fig. 8.2 of quantitative effective universality also sug-
gests to discuss different analytic schemes based on local and bilocal approximations that
accommodate the momentum dependence of the couplings and reflect effective universality.

Quantitative bilocal schemes

The full momentum dependence of the couplings is approximated best in bilocal approx-
imations by using the bilocal result for the three-graviton coupling, Gy, (3,0, also for the
scalar-graviton coupling with an additional analytic interpolating piece,

\/W Gbl + k; AG(LQ) (p2) , (812&)
\/AG(LQ) (p2 Z 02 k2) = G(LQ) (kQ) - \/CJ(ijoa
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1 T

J— p? Gl(’g’o)
08ll--- p? G(g,n)(pz) |
-.-..pz\/G(l’z)(p2)+k2\/AG(1,2)(k2) ",w.
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0 0.2 0.4 0.6

08 oy 1
Figure 8.2.: Momentum dependent Newton’s couplings and approximations to it, evalu-
ated on the bilocal fixed point using effective universality for the momentum-

independent couplings, (8.10). Left: pzw/G(g,’O)(p?) and pg,/G(LQ)(pQ) -

k2, [AG(1,2)(k?), see (8.12). The black line guides the eye and corresponds to

the bilocal approximation to the flow. Right: Local and bilocal approxima-

tions of p?, /G (1,2)(p?)

and AG(j g (p?) interpolates between these two values in the interval 0 < p? < 0.2 k2,
see Fig.8.2. Note that the accurate determination of this interpolation at small momenta
p? < 0.2k? is numerically irrelevant as these momenta are suppressed in loops due to the
p3-factor from the measure.

We can make maximal use of the numerical irrelevance of the low momentum regime
with p? < 0.2k2 and drop the non-linear piece altogether. This amounts to

\/AG(LQ) (p2) = \/G(172) (kQ) — 4/ (1?3:’0) 5 (813)

see also Fig. 8.2. In this approximation of the vertex p? G(Lg)(p2) does not vanish at

p? = 0, which breaks shift symmetry. However, the approximation scheme never uses this
information, which effectively restores shift symmetry.

Qualitative bilocal schemes

An even simpler approximation is dropping AG ; oy completely, AG(; 5y = 0. With (8.12a)
this leads to

G&fgl) =G30)> (8.14)

for the respective coupling see Fig.8.2. This leads to explicit shift symmetry in (8.12) but
also triggers up to a ~ 20% deviations in the results for the respective loops proportional
to G(LQ)'

The final variant of the bilocal scheme is the standard bilocal approximation for Gy 9).

= 0, we are led to
p?=0

Using shift symmetry with p?,/G(1 2)(p?)

Gl = Gay (), (8.15)
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for the respective coupling see Fig. 8.2. It is up to ~ 20% bigger than G(LQ)(p?) in the
numerically relevant regime with p? > 0.2k2. Accordingly, it has a quantitative error of
about this size but maintains explicit shift symmetry. Note also that it is ~ 20% smaller

than the slope of p?, /G (1,2) (p?) for p? > 0.2 k? where effective universality takes place.

This approximation has been used with AG(,, ,,,) = 0 for all n,m in (8.12) in matter-
gravity systems in the last two chapters, and the respective results there are now sustained
further by effective universality in the scalar-gravity system. We also use it here, and a
more quantitative analysis is provided in Sec. 8.4.4.

Derivative expansions

A derivative expansion is a local expansion in momenta. The expansion point is either
chosen for analytic and numerical convenience or in order to optimise the convergence
with the full result. Analytic convenience singles out p? = 0 as this allows for analytic
flow equations for specific regulators such as the flat or Litim regulator, [372, 373] or the
sharp cutoff.

Best convergence is achieved for an expansion at the momentum value at which the
integrands in the flow peak. This typically is a momentum close to the cutoff scale,

p? ~ k2, leading to
8, /G (1 2)
VG =/ Gaa k) + : (8.16)

p2=k?2

In the present case this has the additional benefit that it also includes a good estimate
of the linear piece of the G ) avatar of the Newton’s coupling, see Fig.8.2. From its
quantitative nature it is in the same ballpark as the quantitative bilocal approximation
with (8.13) described in Sec. 8.4.2.

It is left to discuss the standard derivative expansion with the expansion point p? = 0

G(1r2) G(1,2)(0). (8.17)

We note that the non-trivial momentum dependence of the vertex p? G1,2)(p?) at small

momenta p> — 0 casts some further doubt on the naive use of derivative expansions
in quantum gravity. Moreover, the analysis of the momentum space expansion about
p? = 0 also applies to curvature expansions as used in the background field approximation.
Hence the current reliability discussion translates one to one to computations within the
background field approximation.

Clearly, approximating G (; 2y by the derivative of p? G(1,2) (p?) at p?> = 0 leads to a
significant deviation (factor ~ 20) of the resulting coupling from the correct result in the
numerically relevant regime for p? > 0.2 k2. This issue is also discussed in App. B.4 for
pure quantum gravity, where the deviation is smaller. This is already visible from the
full momentum-dependence of G 3 in Fig.8.2. Still this scheme captures all qualitative
aspects of the current systems.

8.4.3. Unquenching quantum gravity

The quantitative self-consistency analysis in Sec. 8.4.2 above was done at Ny; = 0. Now
we study the Ng-derivative at Ny = 0. This gives us a sum of the different terms that

141



8. EFFECTIVE UNIVERSALITY 8.4. DYNAMICAL COUPLINGS

show up with a linear N-dependence that comes from a closed scalar loop. If this sum
again shows a behaviour as seen in Fig. 8.2 this indicates the persistence of quantitative
effective universality for all Ns. A global analysis for large N is hampered by the strongly
rising Newton’s couplings: we hit the reliability bounds of the approximation before the
Ng-effects become dominant. In conclusion the current local analysis is as good as it gets
in the approximation used here.

The N;-derivative of the vertices evaluated on the fixed point read for the three-graviton
coupling

Flow®9 (p2) — Flow 9 (0) D) 2
I/ G3.0)(p?) = p*y /G [ 3 Onm”) |
NP 3,0)(P?) = (30)(P { Flow® o)( 2) — Flow®:0) (0) 2+ 30, (p?)

(8.18a)

and for the minimal scalar-graviton coupling

G | 2 Flow"? (p?) O, (p?)
8 2 G 2 S — i s 818b
NP/ (1,2)(P ) = (1 2 { Flow(1:2) (p2) 2 + 1, (p?) ( )

where the respective second terms on the right-hand sides of (8.18a) and (8.18b) take care
of the Z™/? dressing of the n-point vertices. The terms in the respective flow contributions
from Ay, Flow™™ read

30N.G
2 G

On, Flow = Flow + [On, 11 (k?)] Oy, Flow + =

G777h

Flow . (8.19)

ON,

The first term on the right-hand side of (8.19) simply counts the number of scalars in closed
scalar loops, which rises linear with Ns. This term vanishes for G(; oy as its flow has no
diagram with a closed scalar loop. The second term takes into account the Ny-dependence
of the graviton propagator as well as that of the wave function renormalisations in the
vertices. With the present RG-adjusted graviton regulator that is proportional to Zj this
dependence is stored solely in the n,-dependence of the scale derivative of the regulator.
The anomalous dimension 7, has a linear Ns-dependence proportional to the closed scalar
loop for the graviton propagator. Together with the closed scalar loop for G3) is gives
the Ns-dependence on one-loop. For universal couplings such as the gauge couplings in
the Standard Model these terms provide the universal Ns-dependence of the couplings.

The additional terms arrange for the typical resummations present in FRG compu-
tations: the Oy, nn derivative takes into account the N;-dependence of the anomalous
dimension and the third term takes into account the N-dependence of the fixed point
coupling from the prefactor G32 in all the diagrams. Further terms are present that take
into account the Ny -dependence of p and A3, which are dropped in the present analysis as
they are approximately Ng-independent at the fixed point, see Fig. 8.1.

If we simply evaluate the Ns-dependence of the flow for given Ng-independent cou-
plings, these additional resummation term from Oy, G is missing. This is displayed in
the left panel of Fig. 8.3. We see a qualitatively similar momentum-dependence of both,

3NSP2\/W‘G {G

absolute values are one/two orders of magnitude smaller than in the quenched system in
Fig. 8.2. Accordingly, scalars can only change the system qualitatively for Ny > 10 — 102.

~

This is seen in Fig. 8.1: the system is basically unchanged for Ny < 20. From there on

~

and Oy, p%,/G 1,2) (P evaluated at the fixed point. Moreover, their
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Figure 8.3.: Ng-derivative of the momentum-dependent Newton’s  couplings
ON.p*\/G(3,0)(p?) and On,p*/G12)(p?).  Left/right: without/with re-
summing the Ng-dependence of G*. The fits are given in (8.20).

the approximation violates reliability bounds for the regulator with 7, < 2 and should be
taken with a grain of salt.

In the left panel of Fig.8.3 we see that the contributions are negative, and hence the part
of 3the fixed point equations for the two avatars of Gy under consideration proportional to
G2 decreases. This results in an increase of G*. This increase should be visible if taking
into account the Ns-dependences of the fixed point value of G* in (8.18). This leads us to
the right panel of Fig.8.3, which displays the full Ns-derivative of the fixed point couplings
P*y/Cs) and p*\/Ca ).

This momentum dependence encodes a very interesting structure. First of all the quan-
titative effective universality present in Fig. 8.2 is not found. Still, the Ns;-dependences
have the same size, which explains the similar growth in Fig.8.1. Note that this similarity
is even better for the momentum regime relevant in the loop integrals with p? ~ k2, so
fully momentum-dependent or bilocal approximations take account of this fact. Nonethe-
less the momentum-dependence in Fig. 8.3 is not covered well by a linear function in p?.
This suggests that higher-order terms are triggered by the unquenching terms. We have
applied polynomial fits to the results, leading to

On, P*/G o)~ 107° (3.0p* — 2.5p" +0.86p°) |
N, P*\/G12) = 107° (—0.34p” + 3.4p" — 1.6p°) | (8.20)

see also Fig.8.3. Now we relate the momentum dependences with diffeomorphism-invariant
terms in the action as suggested by effective universality. Then the p?-terms stand for the
curvature scalar /gR and kinetic term ,/gpAgp respectively. The p*-terms relate to Ri,j,
and /gR,, ¢V, V¢ terms. This observation is very much in line with the observation
that within asymptotically safe gravity the fixed-point action necessarily features shift-
symmetric higher-order interactions [420]. For a recent study of the /gR,, ©V,V,¢-
coupling see [436]. Note also that our projection has no overlap with R?, as discussed in
Sec. 3.4.1. For the same reasoning, there is no overlap with ,/gR oA . We emphasise
that the R,QW coupling triggered by the Einstein-Hilbert truncation is compatible with
zero, see also Fig.8.2. The present finding suggest that the unquenching effects due to the
closed scalar loops do trigger corrections to the G(3) coupling as well as the generation
wa coupling of a comparable size. The latter is very interesting as it is not generated

143



8. EFFECTIVE UNIVERSALITY 8.4. DYNAMICAL COUPLINGS

in a quenched scalar-gravity system. In turn, no contribution to G o) is triggered by
the unquenching effects: the coefficient of the p*-term in (8.20) is an order of magnitude
smaller than the other terms and thus might be well covered by the systematic error
of our approximation. In contrast, the coefficients of the higher-order terms in (8.20)
have both the same order of magnitude, which matches the size of the coefficients for the
N;-dependence of G 3.

This is also very interesting in the light of the results in the last chapter. While it should
be possible to absorb the Ny dependence of G(3 ) and 7y, in an appropriate redefinition of
G (3,0), this does not hold for that of the marginal couplings. Note that after re-normalising
G (3,0), there is no potential N,-dependence left in G(j 9) as its flow does not feature closed
scalar loops. We argued in the last chapter that in a sufficiently rich approximation this
renormalisation should occur dynamically. In this context we remark that in general this
would also require a re-normalisation of p and A3. It is highly non-trivial that neither
of them shows an Ns-dependence, which can be understood as part of such a potential
dynamical mechanism. The suppression of the N;-dependence of G(; 3) adds some further
non-trivial evidence for such a dynamical mechanism.

In summary this offers the exciting possibility of a dynamical stabilisation of scalar-
gravity systems for all N;. We rush to add that far more work is required to solidify this,
the next step being an analysis with R?, wa, VIReAp, \/9R, oV, V@ terms.

8.4.4. Effective universality beyond the fixed point

The intriguing result displayed in Fig. 8.2 has shown that effective universality holds quan-
titatively at the fixed point within the Ng-range of validity of the current approximation.
As argued in the beginning of Sec. 8.4, we expect effective universality to only hold in the
vicinity of the fixed point, that is on given trajectories for k — oo, and, if present, for all
momenta at k — 0.

Such a scenario suggests an approximation that utilises effective universality also for
finite cutoffs as the related error disappears at k = 0 and k — oco. Here we investigate the
question how it fares away from the fixed point. For the sake of simplicity we do not resort
to the quantitative bilocal scheme described in Sec. 8.4.2, but to the qualitative bilocal
scheme described in Sec. 8.4.2 with (8.15). If evaluating the S-functions on (8.10) and on
the fixed point values of p and A3 we obtain

L = 2G = (34 - 0.013N;) G? 4+ 0(G?),
A3

Bés.0

.. =2G = (27— 0.0085N;) G? + 0(G?). (8.21)
HAS

Bé

We have simply used the fixed-point values of  and A3 at Ng = 0, as they are almost Ng-
independent (cf. Fig. 8.1). The coefficients of the S-functions in (8.21) are not universal.
This is caused by the missing offset in (8.12) at momenta p? > 0.2 k? required for the
quantitative agreement, as explained in Sec. 8.4.1.

As our further investigation of effective universality is based on the S-functions in (8.21)
we confirm here that the qualitative nature of the present approximation scheme discussed
in Sec.8.4.2 below (8.15) already explains all the deviations in (8.21). The N;-independent
terms should be subject to underestimating the slope of p? G(1,2) in the regime p? > 0.2k
where effective universality takes place, see Fig.8.2. Accordingly, this part of ﬁG(m) should
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Figure 8.4.: The regions in which € < % (e< 3 e< 3) is marked in dark (light, dashed
contour; lighter, dotted contour) colours for Ny = 1 and G — 0. The green
(red) colour indicates Afg < 0 (ABe > 0). The two green regions are cen-
tred around thin bands where ¢ < 735 (white). The UV fixed point value is
indicated by the white dot. The area is almost N, independent, as are the
fixed point values of p and A3z (cf. Fig.8.1).
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be ~ 20% smaller than that of B¢, , and their ratio should be ~ 0.8. From (8.21) we get
2.7/3.4 = 0.79. For the Ns-dependent terms the situation is not that clear.

In summary (8.21) fully reflects the quantitative universality in the given bilocal ap-
proximation precisely by its semi-quantitative or qualitative pattern. This has to be kept
in mind if evaluating deviations from effective universality within this approximation.

Now we proceed with this evaluation by devising a measure of the breaking of effective
universality. It is a property of the anomalous part AgS of the S-functions,

ABe,,, = Ba, —2G. (8.22)

As a measure of effective universality we use the relative error between the scaling of two
avatars of the coupling evaluated under the assumption of universality, that is Gz = G for
the avatars of the Newton’s coupling. In the present case this reads

AIBG<370) - A/BG(LQ)

e(G, u, A3, Ng) =
(G, i, A3, Ns) A + Moy

(8.23)

G7=G

In the simplest case of effective universality e is zero. Note however, that in the present
non-trivial realisation we have a breaking pattern for small momenta, see again Fig. 8.2.
In the presence of such a breaking ¢ = 0 does indeed indicate a small violation of effective
universality. Further patterns are, that for ¢ < 1 the anomalous parts of the beta functions
have the same sign, and € > 1 for different signs. In the limit G — 0 we precisely compare
the G2-terms as displayed in (8.21). The definition (8.23) also allows to separately compare
the gravity and scalar contributions by taking the limits Ny — 0 and Ny — oo, respectively.
It does, however, not distinguish between anomalous parts of a S-function that allow for
a UV fixed point (AB < 0) and that do not (AS > 0).
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Figure 8.5.: Displayed are the fixed-point values for three Newton’s couplings: the back-
ground coupling (red continuous line), the three-graviton coupling (blue dot-
dashed line) and the graviton-scalar-coupling (light blue dotted line).

In Fig.8.4 we show the regions in the (i, A3)-plane where effective universality is realised
for the coupling G309y and G(; 9). In particular we display the regions in which € < % and
€< % for Ny = 1 and G — 0. We further distinguish between regions that allow for a
UV fixed point (AfS < 0, green colour) and regions that don’t (AS > 0, red colour). We
observe that effective universality and a UV fixed point is only allowed in two regions: this
first is for negative p and small A3 ~ 0.1. In fact fixed point values for u and A3 lie in this
region of effective universality. In Fig. 8.4 it is marked with a star. The other region is at
positive p and large A3 > 0.5. At positive u and negative A3 there is another region that
allows for effective universality but not for a UV fixed point. Fig. 8.4 highlights that the
common realisation of effective universality and a UV fixed point is highly non-trivial.

8.5. Effective universality for the background-fluctuation system

8.5.1. Effective universality for the background Newton’s coupling

We now address our second key question and explore whether effective universality is also
present on the level of the background Newton’s coupling.

The flow of G and A is driven exclusively by the fluctuation couplings and thus we can
simply evaluate their flow equation on the computed fixed point values of the fluctuation
couplings, displayed in Fig.8.1. We observe that the fixed point values of G* track those
of the fluctuation system at the qualitative level, cf. Fig.8.5. A similar conclusion can be
drawn by comparing the S-function for G that reads

Ba = 2G — (3.64 — 0.057 N,) G, (8.24)

again evaluated on the fixed point for Ny = 1, thereby neglecting an additional N;-
dependence of these coefficients. The pure-gravity coefficient differs by 6% in comparison
to /BG(?,,O) , cf. (8.21), and the Ns-dependent coefficient by a factor 4.4. Both signs agree with
those in the fluctuation system. The substantial deviation of the Ny-dependent coefficient
leads to a larger gap between the fluctuation and the background avatars at large Ng.
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Figure 8.6.: Displayed are the fixed-point values for A, ¢ and A3 as a function of N,. We
use the fluctuation system as input on the right-hand side of the Wetterich
equation.

Nevertheless, the Ng-dependent fixed point values for all avatars of the Newton’s coupling
agree on the qualitative level.

8.5.2. The fate of effective universality in commonly used approximations
Background field approximation

While it is the fluctuation-field propagator that drives the flow, we are ultimately interested
in the background effective action I'y—0[Gu = guv, b = 0] to read off the physics. A

commonly used approximation thus consists in inserting F,(f’o) (9 = 9w, hyw = 0] on the
right-hand side of the Wetterich equation and thereby letting the background couplings
drive the flow. In a system with fully intact symmetries, this approximation would of
course be exact. Although this leads to a semi-quantitative agreement with the full results
at N; = 0, the approximation fails to capture even the qualitative Ny dependence correctly.
While this might in principle improve in extended approximations, it casts some doubt on
the use of the background field approximation for gravity-matter systems at least in the
case of scalar matter.

For the background Newton’s coupling, the flow equation in the background field ap-

proximation, i.e., at n, = —2, evaluated at A\ = 0 reads
_ (79 G2 =
Ba =2G — T N, o 2G — (1.05 — 0.053N;) G2, (8.25)

where the signs of the coefficients still agree with those of the fluctuation system. The
failure of the background field approximation to correctly capture the Ny dependence is
a consequence of the difference between p and A. While p* stays approximately con-
stant with increasing N,, A* is driven towards larger values, thereby enhancing gravity
fluctuations and suppressing the effect of scalar-matter fluctuations. The background cos-
mological constant in the full system is displayed in Fig. 8.6, together with the fluctuation
couplings 1 and A3. It is worth to note that —u/2 cannot cross the value 1/2 as this
is the pole of the graviton propagator. The couplings A and A3 on the other hand can
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Figure 8.7.: Fixed-point values of the background Newton’s coupling for a type-I and a
type-II regulator with the background field approximation (n, = —2, red
lines), and in hybrid cases with 7, = 2 (blue lines) and 7, = 5 (green lines).

cross this value and for A this indeed happens for large N,. In summary this results high-
lights the necessity that at least the coupling p needs to be computed from a fluctuation
computation, at least at the present level of approximation.

Hybrid scheme for 7,

In a hybrid scheme, put forward in [326] and employed in the analysis of gravity-matter
systems in [424], the graviton anomalous dimension is distinguished from the anomalous
dimension of the background Newton’s coupling. While 7, is evaluated as a function of the
background couplings G and A in this hybrid, it can deviate from the background-value
np, = —2, and thereby partially account for the non-trivial anomalous dimension of the
graviton.

Within such a hybrid setup, a behaviour qualitatively closer to that of the full fluc-
tuation system was observed, [424], i.e. the fixed-point value for Newton’s coupling rose
as a function of N,. This can be traced back to a growth of the anomalous dimension,
cf. Fig.8.7. A strong growth of the anomalous dimension has to be considered carefully:
the usual choice of regulators is Ry ~ Zp, implying a bound on the anomalous dimensions
n < 2 (for bosonic fields), see Sec. 6.3.4. As Zj ~ k™" in the fixed-point regime, 7, > 2
destroys the UV behaviour of the regulator that should suppress all modes in the limit
k — oo. For ny, > 4 signs of diagrams in beta functions start to flip. Furthermore a large
anomalous dimension can be interpreted as a hint at large relative cutoff scales between
the different fields of the theory, see the discussions in the last chapter.

We demonstrate the transition between the N, dependence of G* in the strict back-
ground field approximation and the hybrid scheme by setting the anomalous dimension to
fixed successively increasing values, cf. Fig. 8.7. We investigate type-I and type-II regula-
tors [274]. Indeed the background Newton’s coupling with a type-II regulator rises as soon
as np > 4 and the diagrams in the beta function have flipped. For the type-I regulator
this happens at n, > 6, as it features higher powers of (1 —2)\) in the denominator, which
flip their sign only at 7, > 6.
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Figure 8.8.: We plot the effective gravitational couplings G7; ) /(1 + p*) and G0 /(14
©*)?. The former/latter stems from propagators without/with the regulator

insertion 0;Ry. The factor G* stems from adjoint vertices.

8.5.3. Effective gravitational coupling

Ultimately, we are interested in the strength of the metric propagator, as this is a crucial
quantity to determine the quantum-gravity effects on matter [120, 152, 433, 441].

(nm) __

. . . . G
Metric fluctuations enter the diagrams with a propagator of the form — T = Yeff 1

G nm)
(1)
first /second is the effective coupling associated to a graviton propagator without/with an

insertion of 9; R. For the flow of matter vertices, these are the two dominant combinations
of G(,,m) and p that enter the flow — a higher power of the denominator can appear due
to a derivative expansion.

and

= eff,2, Which we define as the two effective gravitational couplings. The

Effective universality allows us to use G(3) exclusively. In our fully coupled system,
cf. Fig. 8.1, u stays approximately constant, while all Newton’s couplings were increasing
as a function of N;. Consequently we find that geg, /2 increase as well, cf. Fig. 8.8.

In summary we observe an enhancement of the graviton propagator when we increase
the number of scalar flavours. This is in line with the arguments in the last chapter that
such systems as minimally coupled scalars should be dominated by gravity in the UV via
an enhancement of the propagator if the marginal terms as R? and wa are neglected as
they are in this dissertation. Here we find an enhancement of the graviton propagator via
the wave function renormalisation and consequently the graviton anomalous dimension
crosses the regulator bound 7, < 2 at Ny ~ 17. Accordingly, we are still unable to
observe the dynamical readjustment mechanism that according to the last chapter should
take place in the present scalar-gravity system within the approximation used (no R?-
and Rlzw—terms). This mechanism makes all flavour numbers of minimally coupled scalars
compatible with asymptotically safe gravity.

It is of great interest to determine whether the graviton propagator grows with the
number of scalar flavours, in view of indications for a weak-gravity bound in asymptotic
safety [120, 387, 432, 441], where gravity fluctuations trigger new divergences in the matter
sector if they are too strong. In this chapter we have used a parameterisation where the
graviton propagator is indeed enhanced. Yet, within the current truncation (no R?- and
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Riy—terms) there is at least one regularisation scheme where the graviton propagator is
independent of the number of scalar flavours. Thus a final assessment of the strength of
the graviton propagator requires a full coupling of the matter interactions with the present
system and the inclusion of the marginal couplings R? and RIQW. A study of such a system

appears to be highly worthwhile and we defer it to future work.

8.6. Level-one improvement

It is desirable to find a simple approximation of the system that ideally does not require the
separate calculation of both background and fluctuation flows. Therefore we study whether
the background field approximation can qualitatively or even quantitatively reproduce the
behaviour of the full system if upgraded to a level-one system by using the modified split
Ward identity.

8.6.1. Nielsen or split Ward identity and its applications

We exploit the Nielsen identity (NI) or split Ward identity (sWI) to improve upon the
background field approximation. Related derivations and applications in the present con-
text can be found in [188, 336, 347, 355, 356, 471]. Split Ward identities have also been
discussed in [333-335, 337343, 352, 472, 473].

With the introduction of a background field, the effective action becomes a functional
of both the dynamical fluctuation field ® and the auxiliary background field ®

[y = [y[®, ). (8.26)
In the present case of a scalar-gravity system the background and fluctuation fields read

i) = (gul/aoaoa(g) bl q) = (hMV7Cu7EM7S0) 9 (827)

respectively, where the full metric and scalar fields are given by

Juv = Guv + h;w ) ¢ = Q_S +p. (8'28)

In scalar theories there is no need to choose the cutoff to depend on the background field.
Thus the flowing action is only a function of the full field ¢ = ¢ + ¢. For purposes of
illustration, we introduce a dependence of the cutoff on ¢ artificially. The effective action
at k = 0 is a functional of the full field ¢ = ¢ + ¢ only. This is due to the fact that the
classical action has this property, Sq[¢, ] = S.[¢ + ¢]. The shift symmetry is broken by

the cutoff term Ry = Ry[¢]. The resulting difference in the dependence on the two fields
is sourced only by the cutoff term and expressed by the NI/sWI, [355]

ofy oy 1 ORk[9] , (-
(%_&02%[ 5 Gk[¢,so]] ~

(8.29)

This equation is derived in straight analogy to the flow equation itself, which is reflected
in the structural similarities [355]. We again use the shorthand Gy for the regularised
propagator of the fluctuation field. For flows towards the infrared where the regulator
vanishes, (8.29) suggests to use the background field approximation

L[, ] ~ Tild + ¢, = 0], (8.30)
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which is exact for k = 0 in the present example of scalar theories. However, for flows
towards the UV (k — o0) the background field approximation is spoiled by power-counting
leading terms in the effective action. This is a consequence of the mass-like nature of
the cutoff, which makes it UV relevant. In the following, we do not include the scalar
background field into the regulator, thus the right-hand side of (8.29) is zero and we focus
on the NI for the graviton.

In gravity, and gauge theories in general, the situation is even more complicated. In
this case there are two sources for the background dependence of the effective action.
In addition to the regulator term, the second source of background dependence comes
from the gauge fixing sector Sgauee = Sa + Sen. Both the gauge fixing term S, and the
ghost term S, have to depend on the background field if background gauge invariance is
demanded. Thus the motivation for introducing the background field, namely background
gauge invariance, leads to a genuine background dependence of the effective action. For
our gravity-matter system the NI (8.29) turns into

4S

r T 1 1 gR|g g g
5 k 5 k _ 'I‘I' |: 5\/§;Rk[g] Gk[g, h}:| + < gaufe[g7 h] o 5Sgauge[gv h} > ’ (831)
\/§ 59/1,1/ 69#1/ 5h;w

where the regulator Ry is now a matrix in field space. The second line in (8.31) originates
from the background field dependence of the gauge fixing sector, and it survives in the
limit £ — 0 if the effective action is evaluated off-shell, but vanishes on the solution of the
equations of motion [365]. Here we approximate (8.31) and use

o (e 00w Lo [ 0VAR] o
1 a e 32
ki)rgo (59,11,1/ 5h‘MV> 2 r l:\/§ 5.?“” Gk[gyh] ) (8 3 )

where the have dropped the second line with the gauge fixing contributions. Two ar-
guments underlie our choice to focus on the cutoff term: First at the present level of
truncation it is actually possible to effectively subsume changes in the gauge fixing un-
der changes of the regulator: Specifically we concentrate on momenta p?> < k? and a
given gauge fixing ng(pQ). In this regime we can utilise the generality of the regulator to
effectively re-adjust it

Ry — Ry, — Sg2f(p2) T(p2/k‘2) + S?,f,diﬁ'(pz) T(pQ/k2) ) (8.33)

8w Shuw 2

where Sgﬁ 4 18 a general gauge fixing term. Hence, with (8.33) we have effectively changed
the gauge fixing term for momenta p? < k2. If applying this procedure to the ghost, it is
only possible to change its propagator and the interaction of the ghost with the background
graviton GW, but not that with the dynamical graviton h,,. As the ghost terms do not
take a leading role in the flows this is negligible. In the background field approximation,
and using the standard expansion in powers of the curvature, the above mapping strictly
holds. In summary, for the study of different gauge fixing terms it suffices in the present
approximation to study the regulator-dependence of the flow for momenta p? < k2. Note
however, that here we refrain from exploiting this freedom in practice.

Second if one compares the contributions of the cutoff term and the gauge fixing sector
to the UV flow, a counting argument suggests that the cutoff term dominates. This is
because it couples to all fluctuation modes of the graviton, while the contributions of the
gauge fixing sector couple directly only to the longitudinal modes. Hence the transverse-
traceless approximation, which focuses on the spin-2 mode of the graviton, is only affected
by the regulator term (8.32).
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Finally we are interested in the relation between background and fluctuation field two-
point functions. To that end we apply (8/0G,s + 6/0h,s) to (8.32), which yields

5T, 5°T, 1 < ) 5 ) [ 1 5\ka[ ] ]
Gw0Tps =5 \s5.. " Tr Grlg, ]| - 8.34
0Gu0Gps 0Py 0hpo 0Gps  Ohpo NI kg, 1] ( )

In the example of Yang-Mills theory [355, 356], the analogous fluctuation field derivative
of the term in the square brackets on the right-hand side of (8.34) gives sub-leading
contributions. We test a similar assumption and thereby arrive at the final approximation
for the fluctuation two-point function, which we use in order to close the flow equation,

T, 6Ty 1.6 ™ [ 1 §v/gRx
(5h,uu5hpa 5gm/5gpa 2 6gpa \[ 69#1/
This approximation has been used in gravity in [336, 471]. Apart from the standard

background two-point function it contains a second, regulator-induced term. Specifically,
this tests the assumption that the effective action as written in (8.5) simplifies to

(;k} . (8.35)

Lr[g, b, 0] = Traialg, ] + ATk gaugeld] (8.36)

where ATy ... does only depend on the background field. This would be the simplest
case for the background-field dependence. The effective universality that we observe for
the fluctuation system motivates us to test a simple structure as in (8.36). For this form,
(8.35) becomes an equality. If the deviation from a diffeomorphism invariant action in
(8.36) contains further terms that depend on h,, separately, we will see indications of
this as (8.35) will not yield a level-two propagator in agreement with the fluctuation
propagator.

The computation of the trace-term in (8.35) is the challenging part. For this we first
expand the propagator in orders of background curvature

Tr [15VﬁRkG] ;g“iYUQGd+fH[6RkGMR::M}

V3 0Guw 0Guv
+RE[M%GU% ﬂ+0w%. (8.37)
0Guw
For the terms in the second line we use that
SRp(A) ,  ~ = JA ORy(D) ., < -
69/“/ k( Y ) 6.@”” aA k'( Y )
0 8Rk( " .
_ 6QW/ G, R=0), (8.38)
and define the latter integral as
Fro(z) = / a2 o R0, (8.39)
0 8£U

where we have restricted ourselves to IR-finite regulators. We manipulate the trace term
with G’ in (8.37) in straight analogy. However these terms only contribute at order R?
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Figure 8.9.: We show the fixed point values as a function of Ng in the background field
approximation (red continuous lines), in the level-one approximation (green
dashed lines) and for the fluctuation system (blue dot-dashed and light blue
dotted lines).

and are thus not relevant for the present work. More details and the flow equations for
the level-one couplings can be found in App. F.2 and F.3.

Consequently (8.37) can straightforwardly be computed with heat-kernel methods. For
UV flows, power counting suggests that the cutoff terms yield leading contributions to rel-
evant operators such as the two-, three-, and four-point functions. In terms of diffeomor-
phism invariant objects this relates to the running of cosmological constant A, curvature
scalar R, curvature scalar squared R? and Ricci-tensor squared R,,, R*, superpositions of
which form the presumably minimal set of three relevant operators in asymptotically safe
quantum gravity [276].

8.6.2. Fixed-point results for level-one couplings

Our procedure provides us with a set of beta functions for the dimensionless level-one
couplings, G1 and A;, which are displayed in App. F.2 while the technical details of the
computation are given in App. F.3. We now analyse whether the level-one improvement
leads to a system that reproduces the fluctuation results more closely than the background
field approximation.

In Fig. 8.9 we display the fixed-point values of the fluctuation, the level-one, and the
background system. The input on the right-hand side of the Wetterich equation is fluc-
tuation, level-one, and background couplings, respectively. In Fig. 8.10 we present the
corresponding real parts of the relevant critical exponents. The background and the level-
one system each contain exactly two couplings. Both of them are relevant and their
associated critical exponents form a complex conjugated pair. The fluctuation system
has four dynamical couplings and four non-dynamical background couplings (background
and level-one couplings). Of the four dynamical couplings three are relevant and one is
irrelevant. Two relevant critical exponents form a complex conjugated pair and their real
part is displayed in Fig.8.10 since one can associate them with the couplings p and G 3 )
by means of the largest overlap of the corresponding eigenvector. Finally in Fig. 8.11 we
display the fixed-point values of the background, level-one, and fluctuation couplings with
the full fluctuation system as input on the right-hand side of the Wetterich equation.

We observe that in pure gravity, the level-one improvement leads to critical exponents
that agree better with the fluctuation results than the background field approximation,
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Figure 8.10.: We show the real part of the relevant critical exponents as a function of N
in the background field approximation (red continuous line), in the level-
one approximation (green dashed line) and for the fluctuation system (blue
dot-dashed and light blue dotted lines).

cf. Fig.8.10. As a function of Ny the fluctuation results shows a qualitatively different be-
haviour than the background and the level-one results. The real parts of critical exponents
of the latter are increasing as a function of Ng while they are decreasing in the fluctuation
case and even become irrelevant at Ng =~ 31. Nevertheless the level-one critical exponents
are growing slower that the background ones and thus we observe a slight improvement.
For the fixed-point values of the Newton’s couplings the level-one approximation tracks
the background-approximation in its qualitative dependence on Ny: they are both decreas-
ing as a function of Ny while the fluctuation Newton’s couplings are increasing. However
the quantitative difference between Gzﬂs,o) and G% is smaller than the quantitative differ-

ence between G?s,o) and G*, cf. Fig. 8.9. In the sector of the cosmological constants or
momentum-independent parts of the n-point functions, the level-one improvement is more
clearly visible. While the background cosmological constant increases strongly and ap-
proaches the pole at A = %, the level-one coupling remains almost constant and increases
only slightly. The fluctuation coupling —pu/2 also remains almost constant but decreases
slightly with N.

In summary the level-one approximation might be considered a slight improvement on
the background field approximation. We have observed slight improvements in the critical
exponents and in the fixed point values of the Newton’s couplings and the cosmological
constants. Considering however its failure to adequately capture the fluctuation results,
a level-one approximation seems hardly justified in view of the significantly increased
computational effort—at least based on the results in our truncation.

Last but not least we consider the fixed-point results when all couplings, including the
background and the level-one coupling, are evaluated with the fluctuation couplings on
the right-hand side of the Wetterich equation, cf. Fig.8.11. We observe that the level-one
approximation even appears to break the effective universality that was observed for New-
ton’s coupling: the qualitative and quantitative dependence of G* on Ny does not match
that of the other couplings as it fist decreases with Vs and then strongly increases. For the
‘cosmological constants’, we make the opposite observation: while the background cosmo-
logical constant deviates strongly from the Ns-dependence of the graviton mass parameter,
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Figure 8.11.: Comparison of different level-n gravitational couplings (left panel) and ’cos-
mological constants’ (right panel). All couplings were evaluated with the
input of the full fluctuation system on the right-hand side. While the gravi-
tational couplings behave qualitatively similar, the level-n ’cosmological con-
stants’ display significant differences in their behaviour.

the level-one cosmological constant approaches it towards larger N5. For the canonically
most relevant coupling in the truncation, the step from the background coupling to the
level-one coupling is therefore a significant step towards effective universality.

8.7. Summary

Universality guarantees the uniqueness of the one- and two-loop coefficients of the run-
ning of the marginal couplings in perturbatively renormalisable gauge theories irrespective
from which vertex the running is read off. We investigated an analogous concept for non-
marginal couplings such as the Newton’s coupling in gravity-matter systems. For such
couplings not even the one-loop coefficient is universal and breaking of diffeomorphism
invariance and background independence due to the regularisation scheme further compli-
cate computational tasks. Nonetheless an effective form of universality would be highly
desirable, in particular with regard to the closure of the flow equations: all applications
to asymptotically safe gravity need to close the flow equations in a truncation. For in-
stance an effective universality in the Newton’s coupling would be a key step towards a
quantitative reliable closure of the system of flow equations for the n-point functions.

In this chapter we have critically discussed this effective universality of couplings in
asymptotically safe gravity. This is of paramount importance, as it is at the root of all
systematic expansion schemes used in the approach. We have critically examined and
compared several common approximations based on effective universality, namely the sin-
gle metric background field approximation, the level-one approximation to the fluctuation
computation. In the latter effective universality is only used for the highest-order cou-
plings. We focus on systems in the presence of Ng minimally coupled scalar fields, and
include the effect of their quantum fluctuations.

Indeed we found an effective universality between the two Newton’s couplings G 3¢y and
G(1,2) in the scaling regime of the UV fixed point. This effective universality was semi-
quantitative in quenched quantum gravity with the bilocal projection scheme that we used
throughout this dissertation. If we took into account the full momentum dependence, see
Fig. 8.2, we even found a quantitative effective universality in the relevant momentum
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range p® > 0.2k2.

In the unquenched system we saw a violation of the effective universality, see Fig. 8.3.
While the bilocal momentum projections actually give almost the same Ng dependence of
the Newton’s couplings, the actual full momentum dependence behaves differently: the
p?-parts of the flows have different signs and the higher-order momentum dependences are
non-negligible, which is in strong contrast to the situation in the quenched system. This
hints at the fact that higher-order scalar-gravity operators need to be included, such as
VIRM oV, V¢ [436].

We investigated how the semi-quantitative effective universality of the bilocal approx-
imation persists away from the UV fixed point by studying the size of the one-loop co-
efficients in the (u, Az)-plane, cf. Fig. 8.4. Indeed we observed there that the effective
universality is only fulfilled in a very small region of the parameter space. The UV fixed
point lies in this small region, underlining that the occurrence of effective universality is
highly non-trivial.

We searched for suitable simple truncations that imitate the behaviour of the fluctua-
tion system. For this we used the Nielsen identity or split Ward-identity to upgrade the
background couplings to level-one couplings. We thereby aim at deriving an upgrade to
the single-metric approximation so that the improved background system can be derived
without the need to separately evaluate the fluctuation system and insert it on the right-
hand side of the Wetterich equation. This specifically tests if we can write the effective
action as a diffeomorphism invariant and a gauge part, where the latter is independent
of the fluctuation field, cf. (8.36). This would be the easiest case of possible dependences
for the gauge part and it is motivated by the non-trivial effective universality that we
observed. Unfortunately, our results of the level-one couplings do not sustain such an ease
functional dependence. We saw a slight improvement of the level-one couplings towards
the fluctuation system compared to the background system. We saw however still a dis-
crepancy and in conclusion the improvement does not justify the increased computational
effort. Nonetheless the non-trivial effective universality hints strongly towards a simple
form of the effective action.

In summary this chapter provided first non-trivial hints that different avatars of the
Newton’s coupling show an effective universality in the scaling regime around the UV fixed
point. This result is a cornerstone for future truncations and the quest for a consistent
closure of the flow equation.
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In this dissertation we went on a journey from low to high energy scales in search of a UV
completion of the Standard Model of particle physics. The topics ranged from electroweak
baryogenesis at small energy scales of the order of TeV to asymptotically safe quantum
gravity at energy scales beyond the Planck scale. A further focus was put on the couplings
of quantum gravity to the Standard Model, which is the basis of a possible UV completion.

In Chapter 2 we investigated measurable consequences of electroweak baryogenesis. In
the Standard Model the electroweak phase transition is of second order and electroweak
baryogenesis is not possible. It can be triggered with appropriate beyond the Standard
Model physics. In these cases the electroweak phase transition becomes a strong first-
order phase transition. Here we parameterised wide classes of beyond the Standard Model
physics via polynomial and non-polynomial modifications of the Higgs potential. Impor-
tantly, the non-polynomial modifications cannot be Taylor expanded around a vanishing
field value. We determined that the typical energy scale of these modifications should be in
the TeV range such that they can influence the order of the electroweak phase transition.
Next, we clearly identified three different regimes in which the measured value of the Higgs
self-couplings can fall into. If the cubic Higgs self-coupling is too small (Agys/Ags g < 1.5)
electroweak baryogenesis is not possible within the limits of the presented setup. If the cu-
bic Higgs self-coupling is big enough (Ags/Apys o > 2) we have strong hint that electroweak
baryogenesis can take place. In the intermediate range (1.5 < Ags/Ags o < 2) the results
are not conclusive and a study of the underlying microscopic model would be necessary.
Importantly the cubic Higgs self-coupling will be measured precisely enough in the planned
high-luminosity run of the LHC. We determined analogous regimes for the quartic Higgs
self-coupling. A quantitative measurement of the quartic Higgs self-coupling is however
only in the far future possible. These results allow for a search for beyond Standard Model
physics guided by the phenomenology of the baryon asymmetry.

In Chapter 3 we significantly increased the energy scale to beyond Planck scale energies
and presented the asymptotic safety approach to quantum gravity. We presented the
minimal setup that contains a genuine fluctuation Newton’s coupling: the setup that
includes the flow of the graviton two- and three-point function. With this truncation we
have shown that Wilsonian RG is well defined in the sense that all computed correlation
functions are momentum-local due to non-trivial cancellations between different diagrams.
We further confirmed the existence of the interacting UV fixed point in this truncation
that renders the high energy behaviour of all couplings finite. This UV fixed point had two
relevant directions corresponding to the diffeomorphism invariant operators /g and /g R.
From this basic setup we expanded in the subsequent chapters in different directions.

The first improvement of the minimal setup is described in Chapter 4, where we tried to
go towards quantitative precision or even towards apparent convergence by extending the
setup to higher-order vertex functions. In particular we extended the setup to the graviton
four-point function. This setup included two genuine fluctuation Newton’s couplings,
which also allowed for comparisons and extensive studies of different closures of the flow
equations. We found an UV fixed point with three relevant directions in this extended
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truncation. We made further observations: With the inclusion of the graviton four-point
function we found for the first time a non-vanishing p*-contribution in the flow of a graviton
n-point function. Such contributions come from R? or RIQW tensor structures. We were
able to determine, that the RZV tensor structures are non-trivially suppressed while the R?
tensor structures are dynamically generated and are responsible for the p*-contribution.
Due to this overlap we associated the third relevant directions of the UV fixed point with
R?. Considering the convergence of the system we indeed observed that the existence of
the fixed point and the values of the critical exponents became less sensitive with respect
to changes of the closure of the flow equations compared to the previous truncation.

The next improvement, also based on the minimal setup is the inclusion of background
curvature dependence. In an idealistic setup one would like to keep a generic curved back-
ground and expand in the fluctuation field about this generic background. Due to technical
limitations this is unfeasible and in most chapters of this dissertation we expanded about
the flat background. In Chapter 5 we constructed an approximate momentum space that
allowed for the evaluation of vertex flows on constantly curved backgrounds. The fixed
point couplings turned into functions of the background curvature. We confirmed the
existence of these fixed point functions, which provided further evidence in favour of the
asymptotic safety scenario. The setup further allowed to set up the equations of motion
and find solutions to them. Solutions to the equations of motion are of great interest
as they provide self-consistent backgrounds and an expansion around these backgrounds
potentially improves the convergence properties of the expansion. For the first time we
were able to distinguish between the background and the quantum equation of motion.
The former stems from a derivative with respect to the background field while the latter
stems from a derivative with respect to the fluctuation field. In the full quantum effective
action with vanishing regulator, these two equation yield compatible solutions, but in the
usual asymptotic safety regime (k — oo) they are manifestly different. We argued that
in this case the quantum equation of motion is the relevant one. In the literature mainly
the background equation of motion was investigated and in agreement with the litera-
ture we found that it did non yield a solution in the pure quantum gravity setup. Only
with Standard Model matter content a solution at small positive curvature appeared. For
the more important quantum equation of motion we found a solution at negative back-
ground curvature. We checked that our results were stable with respect to changes of the
truncation.

In the remaining chapters of this dissertation we focused on the inclusion of Standard
Model matter content into the asymptotic safety scenario. This task is of particular im-
portance as any theory of quantum gravity must be able to connect to the full Standard
Model in the IR, including all its measurements. We started with the inclusion of Nj
minimally coupled scalars and Ny minimally coupled fermions in Chapter 6. We inves-
tigated the UV fixed point as a function of Ny and Ny. We observed that fermions are
generally stabilising the UV fixed point and we found compatibility with asymptotic safety
for all Ny. For scalars we couldn’t draw any final conclusion. The reason for this was a
validity bound on commonly used regulators that we introduced: if one chooses the regu-
lator proportional the two-point function and thus also proportional to the wave function
renormalisation, then one finds that the anomalous dimension should stay below a certain
value, for the graviton anomalous dimension 7, < 2. In the scalar sector this bound was
violated at Ny ~ 21 scalars. We further found significant qualitative differences between
our results and results using the background field approximation [424]. This emphasised
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the importance of going beyond the background field approximation in gravity-matter
systems.

In Chapter 7 we coupled Yang-Mills theory to quantum gravity. We manifested and con-
firmed previous results that the gravity contribution to Yang-Mills theory can only support
asymptotic freedom in the minimal coupling of the gauge sector. More importantly we
carefully reassessed the physics of all gravitationally coupled gravity-matter systems. This
includes the scalar-fermion-gravity systems from Chapter 6 and also asymptotically free
gauge-matter-gravity systems. We provided a formal argument that a successive inte-
gration of first the matter and gauge degrees of freedom and then the gravity degrees of
freedom provides a well controlled environment where the resulting asymptotically safe UV
fixed point does not have any dependence on the number of matter or gauge fields as long
as R? and Riu terms are neglected. The latter terms were neglected in all gravity-matter-
gauge computations within asymptotically safe quantum gravity so far. In consequence,
in all truncations considered so far, the existence of the UV fixed point should not depend
on the number of matter or gauge fields. If it does, as in the scalar case of Chapter 6,
it is just an artefact of the truncation. In the remaining parts of Chapter 7 we explicitly
tested the Yang-Mills—gravity system with respect to these findings. We indeed found that
SU(N,) Yang-Mills theory is compatible with asymptotic safety for all N, and we could
provide explicit results in the limit N, — co. We found a strong scheme dependence, but
the underlying physics remained unchanged. The gravity system had two possibilities to
dynamically adjust itself to the presence of the gauge fields: Either the graviton mass pa-
rameter moved towards its pole (u — —1) or the wave function renormalisation increased.
Both possibilities increased the graviton propagator and thus counterbalanced the impact
of the gauge fields. Which choice was taken depended on the choice of regulator shape
function. This is a unique situation for Yang-Mills theory, because fermions always move
the graviton mass parameter towards its pole while scalars always fall in the category
of increasing wave function renormalisation. The latter remained inaccessible due to the
above mentioned regulator bound, n, < 2. In summary this chapter classified different
matter fields according to their impact on the graviton propagator and showed that the
underlying physics is just identical. Furthermore it pointed out that the inclusion R? and
Riy tensor structures is necessary in order to obtain a true dependence of the UV fixed
point on the number of matter or gauge fields.

In Chapter 8 we investigated the concept of effective universality for gravity-matter
systems. This concept is analogous to two-loop universality for marginal couplings of
perturbatively renormalisable theories. In gravity, for instance, not even the one-loop co-
efficient of the flow for Newton’s coupling is unique. Nonetheless we revealed an effective
universality in the scaling regime of the UV fixed point for the fluctuation couplings. Ef-
fective universality means that different avatars of the Newton’s coupling are quantitative
similar, irrespective from which vertices they are read off. This effective universality only
seems to hold in the IR for vanishing regulator and in the scaling regime of the UV fixed
point. This result is thus a key stone for further truncation as it provides a guiding prin-
ciple for the closure of flow equations. Motivated by these surprising results we advocated
a simple form for the effective action: a diffeomorphism invariant part and a gauge part
that is independent of the fluctuation field. We tested this scenario by upgrading a flow
from the background field approximation with the use of a Nielsen identity to a level-one
flow. We found, however, that the level-one flow is not in agreement with the fluctuation
results and thus this simple form of the effective action is a too strong approximation.
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Nonetheless the non-trivial effective universality hints strongly towards a simple form of
the effective action.

There are many possible improvements of the work in dissertation:

In the area of electroweak baryogenesis it would be interesting to check the influence
of a full inclusion of the weak Standard Model sector. In this work the weak sector
was mimicked by a fiducial coupling, which work well over larger orders of magnitudes
at vanishing temperature compared to the full running in the Standard Model [74]. A
huge deviation is thus not to be expected but is still necessary for improved quantitative
precision. Furthermore we have restricted ourselves to a certain set of modifications of
the Higgs potential, namely polynomial, logarithmic and exponential modifications where
the latter are not Taylor-expandable about vanishing field value. These are all standard
choices for modifications and one can ask what would happen if we all kinds of numerical
modifications are allowed. Maybe this would increase the range of values for the Higgs
self-couplings that are compatible with electroweak baryogenesis. In some sense we have
so far investigated natural choices of modifications. Straight forward connected to this
question is the link between the different modifications and the underlying microscopic
new physics. We have so far not investigated from which new degrees of freedom the
presented modifications can arise. In general, a stronger link between beyond the Standard
Model physics and Higgs potential modifications could provide a guideline for restricting
the space of possible modifications and thus in the end provide a stronger bound on the
Higgs self-couplings that are compatible with electroweak baryogenesis.

In the pure gravity sector an obvious improvement would be the inclusion of higher
n-point functions. However, the computational effort for flows of higher n-point functions
grows factorially and thus such extensions of the truncation become soon not worth the
effort. It would be much more worthwhile to broaden the lower n-point functions to larger
tensor structures. For example the R? and the RIQW tensor structures have already been
included in the graviton two-point function in [294]. This work also raised the question of
one-loop universality of classically marginal couplings in gravity fluctuation computations:
it did not obtain the usual universal one-loop coefficient of the beta-functions of the
marginal R? and Ril, couplings. A combination of the increased tensor space with a high-
order vertex computation thus appears to be highly worthwhile in order to clarify this
question. It can shed further light on the number of relevant operators in asymptotically
safe quantum gravity. Recently there has been no full agreement [3, 293-295] and the
number of relevant operators ranges from two to four, with a slight preference for three.
In most computation /g, /g R and /g R? are the relevant operators and N{ R,QW is
irrelevant.

Throughout this dissertation we have worked with the linear split of the metric g, =
Guv + hyw. Other splits of the metric are possible, such as the exponential split g,, =
Gup(eM)! [259, 262, 349-351, 426]. Such a choice of split influences the vertices generated
from the underlying classical action and consequently also directly the flow equation of
the couplings, if one works in a truncation. Changing the split can thus provide a tool
to check the stability of a truncation. Similarly varying the gauge fixing parameters can
provide such a tool. Here in particular the dependence on the gauge fixing parameter 5
is interesting, since the Landau gauge a = 0 is clearly preferred due to the fixed point of
the RG flow [366] and since it maximally disentangles physical modes and gauge modes
[474]. Such investigations have been performed so far on the level of the background field
approximation [245, 262, 263] but hardly at the level of fluctuation computations [328].
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The caveat is of course that keeping the general dependence on the split and on the gauge
parameters further complicates the computation and thus one will not be able to perform
a high-order computation compared to a setup with fixed split and gauge parameters.

In the gravity-matter sector the next important step inevitably involves the inclusion
of R? and wa tensor structures. According to Chapter 7 the running the corresponding
couplings are the only ones that can generate a dependence of the fixed point values on
the number of matter or gauge fields that is not scheme dependent. With the inclusion
of such operators one will be able to asses whether the graviton propagator grows or
shrinks with the number of matter or gauge fields. This in particular interesting in view
of indications for a weak-gravity bound in asymptotic safety [120, 387, 432, 441], where
gravity fluctuations trigger new divergences in the matter sector if they are too strong.

The quantitative precision that this dissertation has aimed at is also inherently nec-
essary for postdictions of the Standard Model. Recently for instance the top mass was
approximately postdicted with a background field approximation in the quantum grav-
ity sector [120]. It will be intriguing to see how this postdiction persists in an extended
truncation that includes a dependence on the number of matter or gauge fields of the
graviton propagator that is not scheme dependent due to the inclusion of R? and RZV
tensor structures.

In overall summary this dissertation provides valuable contributions to the UV-comple-
tion of the Standard Model. Electroweak baryogenesis is soon to be tested with the
measurement of the Higgs self-coupling at the LHC, which will serve a guidance for the
search of beyond the Standard Model physics. In quantum gravity we have provided many
conceptual advancements that aim towards apparent convergence, quantitative precision
and background independence of the approach. The results contribute to the significant
evidence for the existence of the UV fixed point and thus the non-perturbative renormal-
isability of quantum gravity. We further have laid down the basis for future computation
of gravity-matter-gauge systems by establishing the compatibility of weakly coupled mat-
ter with the asymptotic safety scenario and by revealing an effective universality between
different avatars of Newton’s coupling.
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A. Electroweak baryogenesis

This Appendix belongs to Chapter 2.

A.1. Flow equations

The set of couplings in our setup consists of the SU(3) coupling g3, a fiducial coupling gp
that simulates the SU(2) and the U(1) sector, the top-Yukawa coupling y;, and the full
Higgs potential V' (¢) [74]. For the SU(3) coupling it suffices to consider one-loop running,
since higher-order or threshold corrections have little impact on the phase transition. The
one-loop beta function is given by

3

o = =i (1100 (A1)

with ny = 6. We fix the SU(3) coupling through g3(1 TeV) = 1.06, so the scale-dependent
SU(3) coupling is known analytically. We approximate its temperature dependence by

replacing k — Vk2 + 7 T2,

(A.2)
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The logarithmic running of the U(1) and SU(2) couplings is sufficiently slow to be neg-
ligible for our purpose [74]. We model it as a fiducial coupling g that is a constant as
a function of the RG scale and thus also a constant as a function of the temperature.
At finite temperature, this simplified treatment must be ameliorated by a thermal mass
generated by fluctuations from the electroweak sector. According to the high-T" expansion
of the one-loop thermal potential it is given by

1
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T2 2
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where g = 0.65 and ¢’ = 0.36 are the SU(2) and U(1) gauge couplings, respectively.

To derive beta functions for the Higgs potential and the top-Yukawa coupling we intro-
duce the renormalised dimensionless field p and the dimensionless potential u

¢ _ V(e(p)
T %27, ) = = (4-4)

p
The wave function renormalizations of the fields appear in the beta functions only via
their anomalous dimension
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A. ELECTROWEAK BARYOGENESIS A.1. FLOW EQUATIONS

Written in terms of threshold functions, the beta function for the top Yukawa coupling
agrees with that from [74, 180-182], see e.g. Eq.(C8) of [74]. However, we use a spatial
regulator as described below and temperature-dependent threshold functions. The spatial
regulator changes some prefactors, which is compensated by the different definition of the
threshold functions. The beta function is given by
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where ¢, = 97/30 and N, = 3. It depends on the position of the renormalised dimen-
sionless minimum ~ of the potential, the anomalous dimensions of the fields, as well as
on regulator-dependent threshold functions specified below. Here, we have employed the
same projection scheme onto the Yukawa flow as in [74] for reasons of comparison. In
principle, there exists an improved scheme [240] more adequately capturing higher-order
contributions to the Yukawa flow for the present model [242], possibly improving the fixing
of initial conditions on the 5% level. In either case, working in the symmetric regime with
x = 0 and neglecting the additional 1 dependence in the threshold functions reproduces
the universal one-loop beta functions, as it should.

The beta function for the Higgs potential at vanishing temperature has been computed
in [74, 180-182], see e.g. Eq.(E1) of [74]. As for the beta function of the Yukawa coupling,
the present finite temperature beta function for the Higgs potential agrees with the T'=0
one in terms of the threshold functions

(A.6)
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where ¢; = 9/16 and again N, = 3.

Finally, we need expressions for the anomalous dimensions of the Higgs field and the top-
quark: the first two terms in (A.6) are integral parts of the universal one-loop contribution.
In terms of the threshold functions the anomalous dimension of the top quark agrees with
the T'= 0 one in Eq.(C8) of [74], and the anomalous dimension of the scalar field has the
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same form as in Eq.(16) of [180-182]. With the thermal threshold functions of the present
work this means
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The beta functions found above are expressed in terms of regulator-dependent and temper-
ature-dependent threshold functions. Here we provide explicit analytic results for these
threshold functions for one specific regulator. The analyticity of the threshold function is
rooted in the use of a Litim-type regulator [373] that only regularises the spatial momenta.
The dimensionless bosonic and fermionic propagators are regularised as

= = = —1
Go(wp, 0% m3) = (wi + 92 /K*(L+ rp(p® k%) + md) |
iR iR iR —1
Gy(vp, 0% m3) = (vp + 52 /K (L+rp(p k%) + mi,) (A.9)

with the bosonic Matsubara frequency w, = 27nT/k and the fermionic Matsubara fre-
quency vy, = 2m(n+ %)T /k. Note that my and m,, are dimensionless mass-like arguments.
The bosonic and fermionic regulator shape functions read [373]

rp(z) = (7' —1)O(1 —2), rr(z) = (xil/z — 1) Ol —x), (A.10)

where z = §2 /k%. In the following, we express the threshold functions in terms of the
bosonic and fermionic distribution functions,
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The set of threshold functions we need in our calculation includes
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All threshold functions are expressed in terms of
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At finite temperature for the flat regulators in (A.10) they are given by
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/ 2
1+mw

1 1
B(l)(mi;T) = — ( +nB(mi,T)) ,

WW((”Jrl—(”T/kJF\/m)z)l
2 fremg W\ |
9\ —1
+<m?p+1_<i7rT/k_m)> )

-1

~7:B(1,1)(m12¢7m35;T) =

% - nF(min T)

+ ENTa ((mi +1— (inT/k+ m>2>
R m))) ] |

(A.14)
They obey the relations
OF(n) OBy
ﬁmf/) = _nf(n+1) ’ 6m3) - _nB(n-‘rl) ’
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OFB(mn OF B(imn
Y P(mn) _ —m]:B(erl,n) ’ # - _n}—B(m,n—i-l) . (A.15)
o

8mi
The notation and the threshold functions agree with [240]. Note, that the T — 0 limit
of the threshold functions does not agree with the ones given in [180-182], since we use
a spatial regulator while [180-182] uses a covariant regulator. This concludes the list of
threshold functions and relations necessary in order to numerically evaluate the previously
given beta functions.

A.2. Grid approach and benchmarking

We solve the functional differential equation for the Higgs potential, (A.7), using a grid
code. This means that the potential u(p) and its derivative u'(p) are discretised on a
grid in the field invariant p. The discretisation converts the partial differential equation
for u(p) into a large set of coupled ordinary differential equations. The grid code has
to manage a numerical integration from k = A, where we initialise the flow, down to
k = kr =~ 100 GeV. At this IR value all physical relevant quantities are frozen out and
only convexity-generating processes take place.

The grid code also has to cover a large range of values in the scalar field 0 < ¢ < cA,
where we typically choose ¢ = O(1...10). To resolve both, large field values and the
minimum of the potential at small field values, we employ an exponential distribution of
the grid points p; = ¢Z2/2 with ¢ € 0,..., N — 1 according to

pi = pa+ e:;(E{“]j)l))lpb, (A.16)

Corid

where N is the number of grid points, cgiq a grid parameter that governs the distributions
of the grid points, and p, and pp, the smallest and largest included field value, respectively.

We introduce a grid for the potential u(p;) as well as for the derivative of the potential
u'(p;), and we match the second and third derivative of the potential in between the grid
points [475]. This is augmented by a differential equation for the top-Yukawa coupling,
while the SU(3) coupling is already integrated out and the fiducial coupling for SU(2) and
U(1) remains constant. Consequently, we obtain a system of 2N + 1 coupled differential
equations for a grid consisting of N points, which is solved with an iterative Runge-Kutta-
Fehlberg method with an adaptive step size.

At the IR scale and at vanishing temperature, we match the output of the grid code
with the physically known observables, see (2.12). This is implemented on the level of
the variables of the grid code and in particular we demand that the errors fulfil Appn <
20 GeV?, A)\s < 0.002 and Ay; < 0.0014. Expressed in the quantities of (2.12) these errors
correspond to Av < 0.08 GeV, Amy < 0.28 GeV, and Am; < 0.23 GeV. It is important to
determine the vacuum expectation value more precisely since its error directly influences
the error on the Higgs and the top mass.

To achieve this precision we tune the parameters p, A4 and y; at the UV scale, which
is done by a secant method in 4 and a two-dimensional bisection method in Ay and y; .
The grid code might exhibit other systematic errors and in particular the measurement of
the Higgs mass is challenging since it is related to the second derivative of the potential.
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Figure A.1.: Modification of the self-couplings Ags/Ays o (left) and Agya/Apa o (right) as
a function of ¢./T, for polynomial and logarithmic modifications of the UV
potentials, cf. (2.11). We compare results for N = 70 and N = 90 grid points.

Hence we conservatively estimate the total accuracy of the IR values with
Av < 0.2 GeV, Ampg < 1.5 GeV, Am; < 0.5 GeV. (A.17)

The tuning process is performed at vanishing temperature and the tuned initial values
are subsequently used as initial values for all finite-temperature computations. For each
temperature we initialise the flow in this way and determine the position of the minimum
at the IR scale kir. The critical temperature is obtained with a bisection method where
we demand an accuracy of AT, < 0.2 MeV. This high accuracy is necessary for a precise
value of ¢., which is in turn given by the position of the minimum at the temperature
just below T,. From the grid code, it is difficult to get a clear signature distinguishing
between second-order phase transitions and weak first-order phase transitions. Within our
numerical accuracy, a reliable distinguishing signature is not available for ¢, < 20 GeV.
For finite temperature computations we slightly increase the number of grid points, since
the exponential functions in the bosonic and fermionic distribution functions make these
computations technically more challenging.

We test our numerical results by first comparing the observables for two different num-
bers of grid points. The necessary number varies with our choice of cutoff and the mod-
ification of the Higgs potential. For example, more grid points are necessary for the
exponential modifications of the potential. For polynomial and logarithmic modifications
and a cutoff A = 2 TeV, we use typically N = 90 grid points, while for exponential modifi-
cations with the same cutoff we use N = 150 grid points. In Fig. A.1 we display results for
polynomial and logarithmic modifications. In particular we show the correlation between
the strength of first-order phase transition and the Higgs-self couplings. In Fig. A.2 we
show the same correlation but for exponential modifications and for N = 130 and for
N = 150 grid points. The results for N = 90 and for N = 150 are identical with those
displayed in Fig.2.7.

To make our analysis more quantitative we also display the relative change of the cor-
relation for polynomial and logarithmic modifications in Fig. A.3. The results do not
change significantly when we increase the number of grid points. In case of polynomial
and logarithmic modifications the amount of wiggles in the region of a weak first-order
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Figure A.2.: Modification of the self-couplings Agys/Agys (left) and Aga/Agao (right)
as a function of ¢./T. for exponential modifications of the UV potentials,
cf. (2.11). We compare results for N = 130 and N = 150 grid points.

phase transition, which originates from numerical uncertainties, is further reduced. In the
region of a weak first-order phase transition we have a relative change of less than 2%,
while in the region of a strong first-order phase transition we have a relative change of
less than 0.5%. This is sufficient for our analysis, since we are only interested in the latter
case. In case of the exponential modifications the change is hardly visible. The relative
change is globally less than 0.02%. These results illustrate that our findings are indeed
numerically stable.

Finally, we can compare our functional renormalization group results to other methods,
for instance to the mean-field-like methods of [52]. To perform a meaningful comparison,
we have to take into account the slightly different setup: while we modify the microscopic
potential, [52] implements the modifications directly at the level of the effective potential.
This means that in our setup a ¢% modification of the microscopic potential generates
finite higher-order modifications through quantum fluctuations, which in the weak coupling
regime are similar to the one-loop determinant. These additional terms do not appear in
[52].

For our comparison we therefore adjust the parameter Ag such that the T' = 0 effective
potentials of both setups agree. Due to the impact of quantum fluctuations, different
values of A require slightly different initial conditions for Ag in our setup. With a cutoff
A =1 TeV it turns out that this is the case for Ag ~ 0.21, while for a cutoff A = 0.6 TeV
we find Ag ~ 0.19. The difference in values of A\g is accounted for by the RG flow between
the two choices of cutoff scale. With these values we can then compare T, and ¢./T,. As
expected, we indeed find good qualitative agreement. For instance, for A = 0.6 TeV we find
¢c/T. = 2.7 and T, = 83 GeV vs ¢./T. = 2.8 and T, = 75 GeV from [52]. We emphasize
that a more precise agreement cannot be expected: the modification of the microscopic and
the effective Higgs potential are necessarily different, as our setup accounts for quantum
fluctuations, in particular affecting Ag between the microscopic scale and the IR.
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Figure A.3.: Relative change of Ays/Apys o with different numbers of grid points as a func-
tion of ¢./T. for polynomial and logarithmic modifications of the UV poten-
tials, cf. (2.11). In the regime of interest of ¢./T. > 1, the relative difference
between N = 70 and N = 90 is in the sub-percent regime, < 0.5%.

A.3. Finite temperature mean-field approximation

In this Appendix we display the computation of the effective Higgs potential with a mean-
field approximation. The mean-field analysis is numerically by far less demanding that
the grid code but still gives global information of the potential as long as the system is
weakly coupled. However, as displayed in Fig. 2.2 this approximation is only sufficient for
polynomial modifications of the Higgs potential.

The mean-field approximation entails that only the fermion determinant drives the flow
of the potential: neither Higgs fluctuations nor gauge boson fluctuations do contribute to
the flow. Furthermore the top-Yukawa coupling does not flow at all. The potential at
scale k is thus given by

VAP (8) = Viea(9) — o Indet A (idl + —=310), (A.18)
\f
where 2 denotes the spacetime volume. This results for our truncation in
1 + Rpg)® +y;0%/2
VAF (6) = Viea (@) — 3 Trin Bl 20107/ (A.19)

2 (p+ Rra)? +yi¢?/2

Again we regularise only the spatial directions and thus, after performing the angular
integration

214 rpp)? + 2k 4 yi¢?/2
o (0) = Vi=a(o Z pp*in P2(1+7pn)? + v2k2 + 4242/2° (420

with the fermionic Matsubara frequencies v, = 27(n + %)T/ k. In order to evaluate the
Matsubara sums we use the identities

w?/T? 462 5 o
In(1 2 1
02+(2n+1)27r2+n( +(TL+ )ﬂ-)a

In((2n + 1)27'('2 + w2/T2) = /
1
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1 1/1 1
- (= _ A.21
%(2n+1)2w2+92 9(2 e9+1>’ ( )
from [476]. Consequently we get the expression
(P?(14rp )2 +y7 92 /2)/T? do?
Vi (9) = Viea (¢ /dpp /
k ( ) Z (14+r50)2 44202 /2) /T2 92 (2n+ 1)2772
_v /d /(P 1+rr )2 +y7e?/2)/T? 462 ( 1 >
= Vi=a(9) — = PP > \s5 " 9+
1+7"F‘A 2+yt ¢2/2)/T2 0 2 60 + 1
T NGRS e PP(1+rew)? + yfe?/2
= Vi=a(9) — 2/dpp2 (2111(1 +e T ) — \/
s T
NN I \/p2(1 +7EA)? + yid?/2
—2In(l1+e T )+ T > .
(A.22)
For k = 0 this reduces to
T A p2+y?e2/2 2 242 /9
V() = Viea(9)— 5 [ dpp? (2ma(14 ) - VLIS
7T 0 T
A2+4y242/2 A2 2 12 9
—2In(1 + R ) + \/JFTW> . (A.23)

All but the first integral can be performed analytically. The result is

Vel (8) = Vi=a(9)

4 2
+871r2(f‘<y3¢2/2—§f\2)¢m+w ( VP2 ))

A2+ 22 /2 + A
2T A2 +y2¢2/2 A \/P2+y2e2/2
+—= < A3In <e T +1> —/ dpp?In <1+e —r >> . (A.24)
T 0

It is possible to improve this by adding a thermal mass term to the potential. This however
doesn’t change the qualitative behaviour.
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B. Towards apparent convergence

This Appendix belongs to Chapter 3 and Chapter 4.

B.1. Approximations of the stability matrix

The stability matrix B is defined as the Jacobi matrix of the flow equations for all couplings
«;. It is given by

Bi]’ == 80@ 8tozi . (Bl)

The critical exponents of a fixed point are defined as minus the eigenvalues of the sta-
bility matrix evaluated at this fixed point. In our setup, the stability matrix is infinite
dimensional since it is spanned by all couplings A, and g,(p?). Note that one momentum
dependent coupling alone is enough to render the stability matrix infinite dimensional.

In this dissertation, only couplings up to order six appear in the flow. We furthermore
do not resolve the full momentum dependence of the couplings. Thus, we have already
rendered the stability matrix finite. Nevertheless, the full stability matrix is not known
since the flows of the fifth- and sixth order couplings are unknown and depend itself
on further higher couplings. In consequence, we have to make an approximation of the
stability matrix to obtain the critical exponents. Note that we also have to make an
approximation of the flow itself to close it. Naturally, these approximations are related.

We next present two different approximations of the stability matrix. We further argue
that these approximations should give approximately the same values for the most relevant
critical exponents if the expansion scheme is well converged. In almost all chapters of this
dissertation we use the first approximation. In Chapter 4 we compare both methods.

The approximation of the flow is related to its closure and describes how the higher-order
couplings are identified with the lower ones. We call this process identification scheme and
denote it by |iq.. The two different approximations of the stability matrix are distinguished
by the sequence of taking the derivatives and applying this identification scheme. In the
first approximation, the identification is performed before taking the derivatives:

Bij = 6aj (8tai]id,) . (B.2)

The critical exponents that correspond to this approximation represent the critical expo-
nents that belong to the computed phase diagram of the theory.
In the second approximation, the identification is performed after taking the derivatives

Bij = (Oa,; 0rai)|iq. - (B.3)

This approximation is more closely related to the full stability matrix in the sense that it
respects the fact that the higher couplings in the full system do not coincide with the lower
ones. Note that these two different approximations only differ if we choose a non-trivial
identification scheme, i.e. if the higher-order couplings are functions of the lower ones.
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Identification scheme w A3 A ga ga @
0;
In>4 = §3, An>4 — A3 —0.48 0.092 0.0077 0.62 0.53 50 1.3+£34i -3.7 —10
4.2 —0.62+1.8i —4.7 —9.3
In>4 — G4y An>4 — A3 —0.45 0.12 0.028 0.83 0.57 4.7 20+3.1i -29 -8.0
50 0.37+2.41 —-5.6 —7.9
In>4 = G4, Ap>a —> A physical UV fixed point not found

Gn>4 = G4, A = Aa, As = A3 —0.49 0.086 0.027 0.64 0.56 8.7 14+£37i —-43 —-11
5.0 —0.46 £2.0i —5.5 —11

Table B.1.: Properties of the UV fixed point for different identification schemes, i.e. dif-
ferent closures of the flow equations, see App. B.3. The flow equations are
computed with momentum dependent anomalous dimensions 74, and bilocally
projected Newton’s couplings g,(k?). The critical exponents 6; and 6; stem
from two approximation of the stability matrix, see App. B.1. An attractive
UV fixed point is found in most identification schemes with mildly varying
fixed point values. In the first approximation of the stability matrix we always
find three attractive directions, while in the second approximation of the sta-
bility matrix we find one or three attractive directions, since the real part of
one complex pair of eigenvalues is quite close to zero. These results suggest
that the present system is rather stable under change of the closure of the flow
equations. In the case of the single identification without a physical UV fixed
point we found that it had in fact just vanished in the complex plane.

If the expansion scheme is well converged, then the contributions of the higher couplings
to the flow of the lower couplings are small, e.g. (Ox,, . >Anmax)|[FP = 0. In this case,
the most relevant eigenvalues of the stability matrices B and B coincide approximately.
The stabilisation of the most relevant eigenvalues was also observed in an expansion in
R™ in [281]. In consequence, a huge deviation in the most relevant eigenvalues of both
approximations would clearly indicate a lack of convergence. For this reason, we use the
comparison of the different approximations as a first check of convergence.

B.2. Background couplings

In this Appendix we present the flow equations for the background couplings g and .
They are in particular interesting in the limit k& — 0 where they become observables. In
this limit, the regulator term vanishes by construction and diffeomorphism invariance is
restored, which implies that these couplings can be interpreted as physical observables
only for vanishing k.

For notational convenience we reintroduce the coupling Ao = —u/2. Following [262], we
compute the flow of the background couplings with a curvature expansion on an Einstein
space. We use a York-decomposition [81, 470] and field redefinitions [247, 413] to cancel
the non-trivial Jacobians. The resulting flow equations are given by

 9a
g =29 — g frs (A1 M), O\ = —4X + )\ég + g ro(X25mg) (B.4)
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Figure B.1.: Fit of a local momentum projection at p? = 0 to the momentum dependence
of the flow of the graviton three-point function (left) and the graviton four-
point function (right) divided by (—%n,(p?) — n + 2) as defined in (4.3).
The flows are evaluated at (u, A3, A4, 93,94) = (—0.4,0.1,—0.1,0.7,0.5) and
A¢ = A5 = Az as well as gg = g5 = g4, i.e. the same values as in Fig. 4.1 where
a non-local momentum projection was used. In comparison to the non-local
momentum projection, the local momentum projection does not capture the
correct momentum dependence in the whole momentum range 0 < p? <
k? since it is sensitive to local momentum fluctuations. Furthermore, it is
technically very challenging to project on the p-term due to IR singularities.
Note again that the constant parts of the flows are irrelevant for the beta
functions since they are extracted from a different tensor projection.

where the functions fro and fr1 read

1 10 — 8X\2) (6 — mp, (k2

Fio(asmo) = 5 (< )0 =D g nc(kQ))> , (B.5)
1 (934 204\ — 30072 — np, (k2) (17 + 36Xy — 6072

Friaing) = 5~ ( - - ?3(1 ih;)\;)Q( T 2) +10(5 - ﬁc(kZ))> :

In consequence the fixed point equations for the background couplings are given by

= 2 co  Sro(A3mp)
Fre(As,m5) 2fri(A5,m5)

Note that the background couplings are non-dynamical, i.e. they do not influence any
other coupling. Furthermore, the background couplings only depend on the couplings of
the two-point function. Hence only the graviton mass parameter p (or equivalently Az)
and the anomalous dimensions 7y, and 7, directly affect them.

(B.6)

B.3. Dependence on the identification scheme

The flow of each n-point function depends on the couplings of the (n 4+ 1)-point function
and the (n+2)-point function, see also Fig.3.1. For the highest couplings, we consequently
do not have a flow equation at hand. In our setup, these are the couplings of the five- and
six-point function, i.e. A5, Ag, g5, and gg. In order to close the flow of our system, we need
to make an ansatz for these higher order couplings. A natural choice is one that is close
to diffeomorphism invariance, i.e. to identify these couplings with a lower order coupling.
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In our setup, there are two lower order couplings that correspond to a (partly) diffeo-
morphism invariant identification scheme, e.g. A5 can be identified with A3 or A4. In a
well converged expansion scheme, the details of the identification should not matter and
lead to similar results. In this section, we compare the results for different identification
schemes in order to evaluate the stability of our expansion scheme.

The properties of the non-trivial UV fixed point for different identifications schemes are
displayed in Tab.B.1. In all identification schemes except for the identification g,~4 — g4
and A,>4 — Ag we find an attractive UV fixed point. In this case we can see that the
fixed point has just vanished in the complex plane. For all other identifications we observe
that the fixed point values and the critical exponents vary mildly. Especially the number
of attractive directions is consistently three with the first approximation to the stability
matrix, c.f. App. B.1. With the second approximation the number of attractive directions
varies from one to three since the real part of one complex conjugated pair is close to zero.

In conclusion, this analysis suggests that our system is rather stable with respect to
different identification schemes. Only one particular identification scheme has led to the
disappearance of the attractive UV fixed point. This constitutes further support for our
results in Sec.4.3.2, where we found that our full system is very stable with respect to the
identification of g5 and gg.

B.4. Possible issues of a local momentum projection

In this section we want to point out some possible issues of a local momentum projec-
tion. A local momentum projection is for example a derivative expansion about a certain
momentum, usually p = 0.

The full solution of a flow equation includes a full resolution of the momentum de-
pendence of all vertex flows. For higher n-point functions this task is computationally
extremely challenging due to the high number of momentum variables. We have al-
ready argued in Sec. 3.4.2 that this task can be tremendously simplified with a sym-
metric momentum configuration. We have further shown in Sec. 4.2.2 that the quantity
Flow(c?) / (—%nh(p2) —n + 2) is polynomial in p?, at least for n = 3,4. Thus it is possi-
ble to consistently project on each coefficient of this polynomial in the whole momentum
range 0 < p? < k? by employing a non-local momentum projection. In contrast, a local
momentum projection scheme does not capture the correct momentum dependence over
the whole momentum range 0 < p? < k? in general since it is sensitive to local momen-
tum fluctuations. Furthermore, it is very challenging to project on the p* coefficient or
even higher momentum order coefficients due to IR singularities. All these statements are
explicitly exemplified in Fig. B.1.

On the other hand, the local momentum projection at p = 0 has the advantage that it
allows for analytic flow equations, as discussed in App. B.6. Analytic flow equations are
more easily evaluated in the whole theory space, but, as the discussion above suggests,
one should be be mindful of the fact that they easily introduce a large error.

We use the analytic flow equations in Sec. 4.4 precisely for the reason that they can
easily be evaluated in the whole theory space. Thus we show now that the fixed point
properties in this analytic system are qualitatively similar to the full system, despite the
error that is introduced by the analytic equations.

The properties of the UV fixed point for different approximations are displayed in
Tab. B.2. Truncation 1 corresponds to our full system, i.e. with momentum dependent
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B.5. DERIVATION OF FLOW EQUATIONS

Trunc. w* A3 A4 93 gi @
0;
1 —0.45 0.12 0.028 0.83  0.57 4.7 2.0£3.11 -29 -=8.0
5.0 0.37+ 241 -56 -79
2 —0.41 0.076 0.0055 0.71 0.53 4.0 1.5+3.61 -3.1 —6.0
39  0.38+44i 23 6.6
3 —-0.37 0.049 0.0065 1.1  0.83 7.3 1.7+2.11 -3.0 —6.8
72 —-032+271 —-47 —6.8
4 —-0.23 —-0.060 —0.11 0.64 0.55 3.0 1.9+ 1.6i1 -1.7 =34
2.2 0.50+1.71 —1.54+0.881
Table B.2.: Properties of the UV fixed points for different approximations. In the trun-

cations 3 and 4, we set 7y, = 0, while in the truncations 1 and 2 we use
momentum dependent anomalous dimensions. In truncations 2 and 4, the
couplings g3 4 are computed via a derivative expansion at p? = 0, while in the
truncations 1 and 3 the couplings g3 4(k?) are evaluated with a bilocal pro-
jection between p? = 0 and p? = k2. The quality of the truncation decreases
from 1 to 4. The fixed point values are obtained with the identification scheme
Ansa = A3 and gps4 = gs4. The critical exponents ; and 51 stem from two
approximation of the stability matrix see App. B.1. The fixed point properties
from different approximations are qualitatively very similar. In particular, all
fixed points exhibit three relevant directions when the first approximation of
the stability matrix is used. Using the second approximation of the stability
matrix also results in three relevant directions in three out of four cases.

anomalous dimensions and bilocally evaluated gravitational couplings. Truncation 4 cor-
responds to the system used in Sec.4.4, i.e. without anomalous dimensions and with grav-
itational couplings from a derivative expansion. Truncation 2 and 3 are in between those
truncations, i.e. with anomalous dimension but gravitational couplings from a derivative
expansion and without anomalous dimensions but with bilocally evaluated gravitational
couplings, respectively.

We observe that the UV fixed point exists in all truncations, and that the properties of
this fixed point vary mildly. The fixed point values are all located within a small region,
with the exception of our simplest truncation. There, the couplings A3 and A4 have a
different sign compared to the other truncations. Considering the critical exponents we
always find three attractive directions with the first approximation of the stability matrix
and in three out of four cases with the second approximation of the stability matrix. These
results suggest that it is an acceptable approximation to use the analytic flow equations
if one is only interested in the qualitative behaviour of the system.

B.5. Derivation of flow equations

We obtain the flow equations for the individual coupling constants by projecting onto the
flow of the graviton n-point functions, as explained in Sec. 3.4.3.

The equations for the graviton mass parameter p and for the graviton anomalous di-
mension 7, are extracted from the transverse-traceless part of the flow of the graviton
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two-point function. For p? = 0, we obtain the flow of the graviton mass parameter

32
Oupr = (1 (0) = 2) p + =~ Flowy" (0) (B.7)

We obtain an equation for the graviton anomalous dimension by evaluating the flow of
the graviton two-point function bilocally at p? and —puk?

327 hh (hh)
=" (Flow!"™ (—uk?) — FI 2>. B.8
M (p”) 5(p2+,uk2)< owy " (—pk?) oy (p°) (B-8)
The ghost anomalous dimension is obtained from the transverse ghost two-point function
Flow!™ p?
n.(p?) = _3“]‘32( ) ) (B.9)

In case of the higher order couplings, we employ the projection operators described in
Sec. 3.4.2. For the couplings A, this leads to

2
o, = (5O + -0 =3280 L 8 o), (B10)
2 2 gn n n
where the projection dependent constant is defined via C*» = IIy, oII% o 7 (0;1). Here,
o denotes the pairwise contraction of indices.

As discussed in Sec. 3.4.3, the gravitational couplings g, (p?) are momentum dependent.
In order to simplify the computation we make an approximation of the full momentum
dependence. This approximation exploits the fact that the flows are peaked at p? = k?
and consequently we set the feed back on the right-hand side of the flow equation to
gn(p?) = gn(k?). This closes the flow equation for g, (k%) and thus we only solve this
equation. The easiest way to obtain the flow equation for g,(k?) is a bilocal projection at
p? =0 and p? = k2. For g4(k?) we obtain

9r94(k*) = 294(K*) + 20 (k*) g4 (k*) — Caga(k*)Aa(nu(k*) — ni(0))
+ 0% (Flowl) (k) — Flow{(0)) . (B.11)

The derivation of this equation is based on the assumption that A4 is small.

In Sec. 4.2.5 we have laid out a strategy to disentangle contributions from different
tensor structures, in particular those of R and R?. The flow equations for the g, are
obtained by a projection onto the p? part of Flow(c?) divided by (—%nh (p2) —n+ 2), see
Sec. 4.2.2 and Sec. 4.2.5. The graviton three-point function is at most quadratic in the
external momentum, and consequently it is again enough to use a bilocal projection at
p? = 0 and p? = k2. Consequently, the flow equation for g3 is quantitatively equivalent to
the previous one if A3 is small. The graviton four-point function, on the other hand, has
p* as its highest momentum power, and thus we use a trilocal momentum projection at
p? =0, p? = k%/2, and p? = k2. The flow equations of g3 and g4 are then given by

1 1
1+m3) Orgs = 293 — 293C3 (Op A3 + 273 -
( )% (0 ) Son(k?) +1  3npa(0) +1

2 <F1ow§>(k2) Flowg’)(o)) (B.12)

+ — -
C3 /g5 \ smm(k?) +1 S (0) +1
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B. TOWARDS APPARENT CONVERGENCE B.5. DERIVATION OF FLOW EQUATIONS

1 4 3
L4 10) Brgs = 291 — 9aCa (9ha +20) [ — + -
(1 +14) Orga = 294 — 9aCs (04 4)( (k) + 1 nu(k2/2) +1 77h(0)+1>

1 [ Flow'd(k?) . Flow'y (k2/2) _ Flow’ (0)
CpG24 nn(k?) +1 nn(k?/2) + 1 m(0) +1 )7

(B.13)

~ C3h3 — Smu(K?) C3)3

sk +1 Gup(0) +17

—3Ci\s Cudg — dnp(K?/2) - Gy — 1 (K?)
nn(0) +1 nn(k?/2) +1 nn(k?) + 1

13

N4 =

The constants C' are implicitly defined via I, o ITf o T (p?; A,,) = Cf::An + CfQ"p2,

and we use the abbreviation C,, = C’f: / CPGQ". Note that the constants 7, are chosen in
such a way that 7, = 0 for vanishing anomalous dimensions.

Analogously, we can obtain a flow equation for the R? coupling of the graviton four-
point function wy by using a trilocal momentum projection, as explained in Sec. 4.2.5.
We evaluate the flows at the same momenta as for the trilocal flow equation of g4. The
equation for w4 then reads

(14n,)0 2 CAGf(aA +2)4) ! . P
TR T e M T ) 1 (k272 11 g (0) + 1

Qg (ORI O+ Ctwn O+ 5053 + 106 ws Oy
94 mn(k?) +1 mn(k?/2) +1 M (0) + 1

1 (Flowe (k%) _Flowy (k2/2)  Flow(0)
CSrga \ m(E) +1 “op(k2/2)+1 ° mp(0) +1 )7

o m(k?/2)  2gu(K)
TR R 1 (R L

(B.14)

The constants C' are again defined via the contraction Ig, o [T, o T (p%; A,,) = C’f: A+
C’;’;”p2 + Cg: Qup*. Again, 7, is defined with 7, = 0 for vanishing anomalous dimensions.

In the previous paragraphs we introduced abbreviations for constants that arise from
the projection scheme. The explicit values of these constants are:

A, D oM _ 371881 oG _ 96203921
192727 671846472 Q47 1632586752712
(Ga _ 222485 (Ga _ 6815761 o = CYt 2002365
At T 6046617672 P* T 54419558472 17 0;4 "~ 6815761
9 171 G 8
Gz _ Gs _ _ A ©
CXy = ~Z096:2 G0’ = 3a768m2 Cs 19° (B.15)

= Gs

For analytic flow equations for the gravitational couplings g,,, which are significantly less
accurate, see App. B.4, we have to apply a partial derivative with respect to p? and
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B. TOWARDS APPARENT CONVERGENCE B.6. ANALYTIC FLOW EQUATIONS

evaluate the result at p?> = 0. The resulting equations are given by

>3

2 gn
n—2 C’pGQn

/
O = 29n + —2" (04 (0) + CrAn1fh (0)) Flow'? (0) (B.16)

n
n—2

where / denotes the dimensionless derivative with respect to p?. These equations remain
completely analytic if we use a Litim-shaped regulator [372] and approximate the anoma-
lous dimensions as constant, 7 (q2) ~ const.

B.6. Analytic flow equations
All analytic flow equations are derived at p? = 0 (see e.g. (B.16)) and with a Litim-shaped

regulator [372]. The anomalous dimensions in the momentum integrals are approximated
as constant, i.e. 1y, (q%) ~ 1y, (k?). The analytic flow equations are then given by

Bupp = (n(0) — 2+ —— I (3(y, — 8) — Sa(in — 6))

127 (14 p)?

N (21(nn, — 10) — 120A3(np, — 8) + 320A3(n, — 6)) + 3 (n. — 10)
1807 (1 + p)3 3 5
3 1893 1 g3~ 2gs%

Ay == —1-= Sk — —8) — 4\ -
O\ (ﬂam 293)3 5 (g7 (=) = 435 (m —6)
1 ga g3

. - —-8)—1 —-6))— 2 (n.—1

67 (1 n H)g (3)‘4(77h 8) 6)‘3)‘4(77h 6)) 107 (77c 2)

1 g3 N 5
—————— (11(nn — 12) — 72): -1 120\ —8) — 80\ _

0t 94
ga

1 1 2 —1
Oy = <2nh(0) - ) M+ < 96 91 (—4472787(nn — 8) + 16390046 (ns — 6))

133877167 \ 2 (1 + )

94

— 5066361 (n, — 10) — 22517160 — 8) + 28317436014 (1, — 6
15 1+ p)® ( (n ) a(nn —8) + 47 (nn — 6))
3

2 g3 -1
2 I3RI5RIN (3940503 (1, — 10) — 60(187643 )5 — 13032865) (1 — 8)

15 (14 p)?
+417051520A3A5(np, — 6))
2 g3
+ = —1313501 —12 3377574(2)\ A — 10

—15011440( A3 + 2X\0) Az (175, — 8) + 45442920032 A4 (1, — 6))

1 2, —1
+z (913 f‘; E (2874147 (ny, — 14) — 208798163 (s, — 12) + 36027456752 (1, — 10)

88161840733 (1, — 8) — 248160672X3° (1), — 6))

10426288 g5>
- (p,—14
T— (n )

: —(nn —6) + 95~ (53(n. — 10) + 480)

8
Oug = (24 301(0) = TR 03 ) o +
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TS (4500 = )+ 8 (305 = 59) (m — 6) + 36O~ 4)
9394 2g3° 2 3
16 (1 — 3X3) Ay — —————— (229 — 17803 + 36405 — 2336A:
Pl 0 A g s 360X —2856%)
2
_ 80(1937+u)4 (147 (1, — 10) — 1860X3(s — 8) + 3380A2 (11, — 6) + 25920A3 (1, — 4)) )

2002365 |
6815761nh(0))\4) 94+
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2125764 962 32830375
68157617 \ (1 4 )2 25509168
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. g4
76527504(1 + p)

- (11305705(n, — 8) + 612082764 (11, — 6) + 30879396072 (y, — 4))

4942

~ STsa0a6(1 7 )7 (10061481 + 8 (5355218) — 5610604) A4)
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2
+ ﬁ (6783386859(m —10) — (12157310900A3 + 457106270\4) (1 — 8)

— (813590101403 + 111943091120A4) As(ns — 6) — 502725688080A2\4 (15 — 4))

9394 (
—BI (394709295 — 661068650\ + 40 (91735671, — 34781816) A
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— 8(731880777\, — 220800215) Ag)
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- ?)(lgjiu)(j (112533531 — 8555769925 + 36832599685 — 79470081283 + 6385327072A§)

23005837
e
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C. Curvature dependence

This Appendix belongs to Chapter 5.

C.1. Propagator

We use the standard York decomposition to invert the two-point functions. The York-
decomposition for the graviton is given by

1 _ N

and for the ghost by
Cyp = CE + ?un, (C.2)
and analogously for the anti ghost. With the field redefinitions according to [247, 262, 413|
1 1

g — —=¢", 0O — —F7———=0, n— in, (C.3)
A A2~ A A

=]
ol

we cancel the non-trivial Jacobians and achieve that all field modes have the same mass
dimension. We choose the gauge @ = 8 = 0 and choose the regulator proportional to the
two-point function

Ry =T® i (p?) (C.4)

A—0, R—0

Here and in the following in this Appendix, p? always refers to the dimensionless spec-
tral values of the scalar Laplacian. For the regulator shape function 7, we choose an
exponential regulator

Te(z) = : (C.5)

1
P2 (14rg(p?))+p+3r 0 0 0
2 0 0 0 0
¢= 3277T 0 0 —; 0]’ (©6)
g P (L) + 21
0 0 0 0

where the first entry is the transverse traceless mode and the third entry is the trace
mode. All other modes vanish due to Landau gauge, o = 0. Furthermore, we get the



C. CURVATURE DEPENDENCE C.2. FLOW EQUATIONS

following expressions for the background flow of the different graviton modes, where still
the spectral sum/integral or heat-kernel expansion has to be performed,

> p? Ok (p?) — e (P°))
76872 p2 (14 1y (p?)) +p+ 21

1
5 Tr [GatR] hiy —

P* (9w (p°) = mre (7))
,Tr[GﬁtR] 7687r p? (147 (p?) — Lr

p? (0eri (p?) — ke (P?))
768%2 P2 (L4715 (p?)) + 31
(

1
5 Tr [GatR] hir —

)

2

TGOR], = p? (0 (p*) — mnre (P?)) )
‘ 76872 p2 (141 (p?) —dr '
And for the ghosts
72 (&m (p*) — nerw ()
OO = i A T - T
2 2\ 2
— TY[GO;R), = —— P (O () — e (f’ )| (C.8)

38472 7 (e (1) + 1) — g

C.2. Flow equations

The flow equation for the transverse traceless part of the graviton two-point function is
given by

2
= (th2 (” N +3r>> = K2, Flow,"” (p*). (C.9)

Here we suppressed the dependences of the couplings on e.g. background curvature r
or spectral values p? to improve readability. All dependences are as in Sec. 5.3.2. The
expression Flow is used as in (3.23). From (C.9) we obtain the flow equation for the
transverse traceless graviton mass parameter

2
Oupr = — 2+ g + 20 + 327Flow(2" (p% = 0), (C.10)

where the ’ refers to a derivative with respect to r. The graviton three-point function
is projected in straight analogy to the flat computation [1]. We focus on the transverse
traceless part and define the two projection operators IIp and Ilg as

My =T o SOV (A=1,p2=0,r =0), Tg=I%0So)(A=0p>=1,r=0),
(C.11)

which we use for the projection on Az and g, respectively. The resulting flow equations
are

5 5 9
Z3/2 2 < - — 2Z3/2F1 (3h) /. 2
8t< W RVI 53007 T 102 d006” K2, Flowy ().
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C. CURVATURE DEPENDENCE C.3. CHECK OF APPROXIMATIONS

3 9 171 3/201 (3h)
(20K VG ( ~ o™ — Togc s + e = K2 Z2F1 %). C.12
t< w K9\ ~5102" ~ 1096 3+32768p p Flowg ™ (p7) (C.12)

The flow of )3 is extracted at vanishing spectral value p?> = 0, while the flow of g is
extracted with a derivative with respect to the dimensionless spectral value p® at p = 0.
The result is

3 129 — Og + 2rg 1
A3 = — 23 + 21\ = == ) [ A3+ =
O3 3+T3+<277h+2 p +12T

3 (32m)?
80 /gk

Flow\o" (p* = 0) (C.13)

1
) <>\3 + 7“) 9
p*=0 6

p*=0

24
g =29+ 2rg’ + 3nng — To Op21n

4
+ 9 (302 Gk, Flow"

= (C.14)

C.3. Check of approximations

In Sec. 5.3.1 we have explained that all vertices in a curved background contain uncon-
tracted covariant derivatives. We have circumvented this issue by using the approximation
displayed in (5.14). This problem reoccurs during the contraction of the diagrams, since the
usual York-decomposition projection operators II; are needed, with i € {tt,tr,...}. The
projection operators are functions of the background Laplacian and the background co-
variant derivative IT;(A, V), where the latter covariant derivatives are again approximated
by (5.13) and (5.14). This however causes us to mix up the different spin Laplacians,
spin-two Ao and spin-zero Ag. Other Laplacians do not occur since the graviton propa-
gator only has a non-vanishing transverse traceless and trace mode. In this dissertation
we choose to use the spin-zero Laplacian.

For the background flow this mixing of Laplacians does not occur since the propagator
is not a function of the covariant derivative. Hence we use the background flow to estimate
the error of our approximation. Here we focus on the transverse traceless and the trace
part since these are the relevant modes in the fluctuation computation. The exact result
with our regulator is given by

Lmax Lmax
Tr [GOR]y, ,, = ng (GOR)(D2(0)) + > mo(£)(GOR)w(Do(0)) (C.15)
=0

while we compare it to the approximations

emax

(C.15) 2 Y mo(£) (5(GOR) + (GAR)w) (Ao (1) (C.16)
=0

érnax

~ Z mo(£) (5(GOR)te + (GO R)1r) (Ao(l)) (C.17)

=3 ma(0)((GOR) + (GO ) (3a(0) (©18)
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C. CURVATURE DEPENDENCE C.4. INSENSITIVITY ON INITIAL CONDITIONS
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Figure C.1.: Comparison of the trace evaluation using different Laplacians and starting
with different eigenvalues. In particular we compare the spin-two Laplacian
Ao and the spin-zero Laplacian Ay and further we start once from the zero
mode and once start from the [ = 2 mode. In the left panel we display
the background flow Tr [GO;R] of the combined transverse traceless and trace
mode, where also the exact solution is computed. In the right panel we
display the self-energy diagram of the two-point function, which is the second
diagram in the graviton two-point flow in Fig.3.1. From these results we infer
that this particular approximation is qualitatively reliable in the range r < 2.

Here /.5 is chosen such that the trace is fully converged in the investigated curvature
range and the factors 5 and % appear due to the five transverse traceless modes compared
to the one trace mode.

The results are shown in Fig. C.1 in the left panel. For small background curvature r all
results agree qualitatively well. For large background curvature the difference is becoming
more significant. This can be easily understood: in the exact result (C.15) only the trace
mode is equipped with a zero mode, while in the first approximation (C.16) all modes are
equipped with a zero mode. In contrast in the second and third approximation, (C.17)
and (C.18), no mode is equipped with a zero mode. The zero modes dominate for large
curvature and thus it is clear that the approximation fails in this regime.

In other words, the symmetrised products of covariant derivatives in the projectors are
effectively commuting in our approximation. The transverse traceless projection basically
traces out the degrees of freedom of the transverse traceless mode and leaves us with a
scalar quantity. With this approximation, there is an ambiguity related to the Laplace op-
erator, which can be chosen as the spin-zero or spin-two Laplacian. As already mentioned
we choose to use the spin-zero Laplacian without zero modes, i.e. approximation (C.17).

In the right panel of Fig. C.1 we compare these different choices for one particular
diagram of the graviton two-point function, where the exact result is not available within
our truncation. We observe that the results are almost identical for small curvature,
i.e. 7 < 2. For r > 2 the results differ qualitatively due to the different treatment of the
zero modes. We conclude that the validity of our approximation is bound by r < 2.

C.4. Insensitivity on initial conditions
As explained in Sec.5.3.3 we have to give initial conditions to the beta function since they

are the first-order linear differential equations. In principle the initial condition has to
be given at vanishing curvature r = 0 since there are the divergences of the differential
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. = g*(r) from rgtart = 0.01 —_— ;L:H(T‘) from rstart = 0.01
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Figure C.2.: Comparison of fixed point functions with initial condition at different curva-
ture values rgtary € {0.01, 0.03, 0.05, 0.07}. In the left panel we compare the
fixed point functions of the Newton’s coupling g(r) and in the right panel
the effective graviton mass parameter peg(r) = p(r) + 3r. Both fixed point
functions show only a small dependence on the initial condition. All initial
conditions are determined by g} (start) = g;'i o + Tstart gz 1, where the zeroth
and linear order in r of the couplings are given by (5.26) and (5.30).

equations. However the spectral sum converges only point wise and the number of modes
that have to be included grows exponentially towards r — 0. Consequently we give the
initial conditions at some finite ¢t that should be close to = 0. The value there is
obtained by expanding the heat kernel expansion (5.23). One can then check that the
spectral sum and heat kernel agree in the small background curvature regime where both
methods converge [410, 411]. In this Appendix we discus the sensitivity of the fixed point
functions to the choice of rgtart.

The initial condition for some coupling g; is determined from the zero and first order
of the heat-kernel expansion around r = 0, i.e. by g/ (rstart) = 970 + Tstart 971 Where g7
and g7, are determined by the heat-kernel computation and the solutions are displayed in
(5.26) and (5.30). On the one hand the quality of this initial condition gets worse for large
Tstart Since this is a linear approximation of the curvature dependence of the couplings.
On the other hand the quality also gets worse for too small rg..¢ since we are too close
to the singularity at » = 0. Consequently we have to find a region in between where the
fixed point functions for the couplings are stable against small variations of rgsart.

From the chosen 7yt we integrate the differential equations upwards to large r. In-
tegrating down would quickly run into into the singularity at » = 0. In Fig. C.2 we
display the resulting fixed point functions for ¢*(r) and plg(r) for different choices of
rstart € {0.01, 0.03, 0.05, 0.07}. We observe that the fixed point functions for ¢g*(r) (left
panel of Fig. C.2) agree almost perfectly for all chosen start values. Only for rgay = 0.01
we observe a tiny deviation. For the fixed point functions of () (right panel of Fig. C.2)
we observe larger, but still small deviations. Again for 7.t = 0.01 the deviations are the
largest. We conclude that the this start value is too close to the singularity at » = 0. The
results in this dissertation were computed with 74, = 0.03.
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D. Scalars & fermions with gravity

This Appendix belongs to Chapter 6

D.1. Analytic flow equations

Throughout Chapter 6 we have used the full numerical flow equations to compute the UV
fixed points. Nevertheless, we derived analytic flow equations, which are, however, less
accurate in capturing the momentum dependence of the flow, see App. B.4. The pure
gravity contributions are the same as in (B.17) and the matter contributions are given by

g> (_521(6 —np(K*)  3(5—my(k?) 13 )

Og = /Bg,gravity + Nf

3 17100 152 380
Ouds = Bra gravity + Ny (8 _;’;;kQ) -1 Zg(k2) et ;Zg(kg))>
e (2 - B ),
01t = By + N (7— gqg(kQ) - 6—ng(k2)) o2 (W) o

D.2. Background quantities
The functions fr: in Sec. 6.5 are extracted from [424]. In our case they read
_ 1 (20(6 — na(k?)) 2
fRo()\,NS,Nf)— 487r( "o\ —16(6—770(]{ ))
206 — 1, ()N, = 8(6 ~ (), ).

_ 2
i O30 N7) = g (PRI o = n02)

94— (K2)N, — 4(4 Uw(k2)>Nf> . 02

In order to obtain the functions in equation (D.2), we reversed the identification of back-
ground and dynamical quantities and replaced 15 — 74(k?) in order to evaluate the anoma-
lous dimension at the values, where the integrals are peaked. Note, that the functions fz:
depend on the dynamical gravitational coupling g only via the anomalous dimensions.



E. UV dominance of gravity

This Appendix belongs to Chapter 7.

E.1. Regulators

In Chapter 7 we used mostly the optimised or flat regulator [372-375] for all field modes.
Specifically, the superfield regulator at g, = d,, and fl“ = 0 with flat Euclidean back-
ground metric is given by

Rﬁj(p) = 61 7)) (p) o ro; (D2 /K r(z)=(z7'=1)0(1 —2). (E.1)

Here, ¢* is the dual superfield with ¢* = (h., —¢u,cu, Ay, —¢,¢). The regulator (E.1)
is diagonal in field space keeping in mind the symplectic metric and allows for analytic
expressions of the flow [101]. For the general scaling analysis we also discuss more general
regulators, in particular we refer to the exponential and sharp regulator with

1 1

W , Tsharp(T) = ——— — 1. (E.2)

rep () = 6z —1)

These regulators can be used to scan the space of cutoff functions [477, 478].

E.2. Regulator dependence of the gluon contribution to the
graviton mass parameter

The coefficient ¢, 4, which parameterises the gluon contribution to the graviton mass
parameter, is given by

Flow( )(p =0) 1 dz x 7 (x) 4
wa=TTTUNZ 1) 3m /(1 + rp(x))2 <1 +rp(z) 3) : (E.3)

with x = Z—z, Ne = 0 on the right hand side, and where the angular integration was already
performed. We now use that

kogrp(k,x) = k:a

% Oprp(k,x) = =220, (K, ), (E.4)

and consequently we get

ona =g [0 (0 (e —2) 2 (rmw ) 9

where we added zeros in order to perform the partial integration without boundary terms.
The result after partial integration is

_ A [ g @) (@) — 1)
C’““_?m/ d (I +rp(2)? (E5)
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Regulator Cua
(%) = —0.21
r(z) = 1 exp(—12?) —0.027
r(x) = (% -1)0(1 —=x) 0
r(x) = %@(1 —x) 0.034
r(x) = %@(1 —x) 0.17
r(x):ﬁ—l 3%%0.21

Table E.1.: Gluon contribution to the graviton mass parameter for different regulators.
Remarkably the contribution does not only change in size but also its sign.

We have evaluate this integral for different types of regulator shape functions. The results
are displayed in Tab.E.1. The flat regulator evaluates this integral to zero, while exponen-
tial regulators give a positive sign and step-like or sharp regulators even give a negative
sign. The usual expectation is that the regulator changes the size of a contribution but
not it’s sign. In this case, however, two diagrams cancel each other approximately and by
changing the regulator we shift the weights between these two diagrams. Thus, any sign
of this contribution is possible.

E.3. Scaling equations

In this Appendix we augment the analysis from Sec. 7.7 by providing scaling equations
for all couplings. In particular we are lifting the identification (7.22). Here we extract
the fixed point scaling from a flat regulator choice and utilise a reparameterisation of
the flow equations that minimises the occurrence of factors of 1 + u. Moreover, in the
previous chapter we have utilised projections on gravitational couplings g, and g,, Wwithin
a finite difference construction. In the literature projections with derivatives at vanishing
momentum, p?> = 0, are often used. It has been argued in App. B.4 that this definition
has large ambiguities at p? = 0, which limits its applicability. Still, it has the charm of
providing analytic flows and fixed point equations and hence facilitating the access to the
current analysis.

The structure of the flow and fixed point equations is more apparent if we absorb
1/(1 + p)-factors in the gravitational couplings with

1 Tn 1 Ye 1 Ya
9n = gn <1+N) ) gechn = Jechm (W) s Ganhm = Janhm <1+N> )

(E.7a)

with the scaling coefficients

n

n_2, P)/a:’)/czlj (E?b)

Tn =

and p, A, are not rescaled. This removes all potentially singular factors 1/(1 + p)-factors
in the diagrams that stem from the respective powers of the graviton propagators in the
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loops. It still leaves us with contributions proportional to 1/(1+ u) due to the projection
procedure with derivatives at p?> = 0 and due to regulator insertions. The rescaling power
of 1/(1 + ) varies between 1/(1 + u)3 for the lowest coupling gz and 1/(1 + p) for gn e

In the following equations we identify blocks of gravitational couplings: as before all
gravitational self-couplings g, gzcp» are identified with gs and all A, are identified with
A3. Additionally, we identify all Yang-Mills—gravity interactions guopn With geqn. This
leads us to

gn=03=9, An>2 = A3, (E.8a)
for the pure gravity couplings and

Geehr = Je » Gaahn = Ja » (E.8b)

for the ghost-graviton and gluon-graviton couplings. We emphasise that (E.8) and (E.7a)
imply

Gn = 93(1 + 'u)'\/?)_"/n ) (Eg)

with 3 > 7,. (E.9) seemingly entails the irrelevance of the lower order couplings g, for
@ — —1. However, the lower order couplings contribute to diagrams with more graviton
propagators. In combination this leads to a uniform scaling of all diagrams as expected
in a scaling limit. Note that the scaling analysis can also be performed if removing the
approximation (E.8). It leads to an identical scaling g, ~ g3 and Ggann ~ Gaan- The
discussion of such a full analysis is deferred to future work.

Here we are only interested in the relative scaling between the pure gravity and Yang-
Mills gravity diagrams, and simply discuss the structure of these equations. To that end
we use the analytic pure gravity equations expressed with the rescaled couplings (E.7).
We also use the identification (E.8), and additionally we suppress the ghost contribution
for simplicity. The ghost contribution comes with the same power in 1 + p as the gluon
contribution. The analysis is facilitated by only using positive coefficients c¢;, d;, making
the relative signs of the different terms apparent. In general the sign of some of these
coeflicients depends on A3 and we define them such that they are positive at A3 = 0. The
explicit values for the coefficients is provided in App. E.5. Within this notation all factors
1/(1 + p) in the loops are absorbed in the couplings except the one, which comes from
external momentum derivatives of propagators, 9,2G, due to the projection procedure or
from regulator insertions. In summary we are led to

Ous = = 2= ms = e+ (14 V2~ i 2]

Ohg= (2+3m) 75— g°

3
Ch dg Ja \ 2
g,h + g,h . i (N02 _ 1)%7@ <gga> 7

L+p (1+p)
04 3 Ga \ 2
g _ _ | Cxs,h 2 9a \?
Odg= — (1+22 25 )| A sh (N2 Ja E.10
pa= = (1492 = Im) da g [ 20 4 >cA3,a<g)], (B.10)

for the pure gravity couplings. Here the term dg /(1 + w)? stems from the 0,2G contribu-
tions, and all coefficients ¢, d from graviton-loops depend on A3 with ¢(0),d(0) > 0. The
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ghost-graviton and the gauge-graviton coupling have the flows

1
d d; n g \2
OiGa = (24200 + ) Ga — 32 | —C5 fot el
t9a ( + 77a+77h)9a ga[ Cga7a+1+u+ €ga,h 1+M ga ’

dg. dg h g
Cgoe + 2=+ cgon + 2 ) [ =
gc,C ].+,LL ( Ge,h 1_’_”) <gc

Here the d-terms originate from the diagram with a regularised graviton propagator,
(G@tRkG)(hh). The coefficients ¢;;, and d;;, are A3-dependent as they receive contribu-
tions from the diagram with a three-graviton vertex. The signs are chosen such that
¢i,n(0),d; ,(0) > 0. The coefficients and the signs in the flow equation for g. were not
derived in this dissertation.

D=

OGe = (2+ 20c + 7Tn) Ge — G-

] . (E.10b)

The rescaled graviton anomalous dimension 7y, reads

_ _at[Zh(l + )]

n
- — E.11

which includes the scale dependence of the full dressing of the graviton propagator includ-
ing the mass parameter. The set of anomalous dimensions is given by

_ ) 2 g
T’h - g |:CT7}uh + 12 ILL + (NC - 1)077}“@5(1 ’
= dT]- h - dn h
= — — = — - E.12
Tlc g |:Cnc,h + 1 +H:| , Ta Ja [Cna,h 1+ 4 , ( )

and completes the set of flow equations. Again, the graviton contributions to 7, have a A3-
dependence with ¢;, 4(0),dy, »(0) > 0. All other coefficients do not carry a A3-dependence.
Note also that the dyu/(1+ p)-terms in the scaling terms on the right hand side of (E.10)
come from the normalisation of the g’s with powers of 1/(1+ ). In the g,-flows this term
isn/(n—2)0u/ (14 p) derived from the rescaling (E.7a). For the ghost-gravity and gauge
gravity couplings it is always the term Oyu/(1 + p) derived from (E.7).

E.4. Flow equations

Here we recall the results for the pure gravity flow for u, g3 and A3 derived in [1, 3], add
the derived gluon contributions, and formulate them in terms of the rescaled couplings

s N
9In = 9n 1+ 1 ) 9ec = Gc 1+ )

1 ft
_— ’ = N — —— E.13
a ga<1+u> =T T (E.13)

see App. E.3 and (E.7) for details. In order to show the interrelation of the different
couplings we keep all dependences on the higher couplings g,. The flow equations are
given by

Oupt = — (2= mn) o+ Jao= |21 (10 = my) — 120X (8 = ms) + 3203 (6 — )|
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I [3(8 ) — 8 (6 )] — (14 ) (10 — ) (14 ) (V2 1) S
o=~ (1492 - Zn ) x *93{+61771iu§§ (30 (8 = ) = 16350 (6 — )|
_ 1—|1-,u24107T [11.(12 = ) — 722 (10 = mp) + 120037 (8 = ) — 80X} (6 — )|

3 3
1 Je 2 1 2 Ja 2
— (%) q2- (N1 () 3

g2 1 2
0:gs = (2+3m) 93 — 93{ [229 — 1780\3 + 3640\3 — 2336)@}

197 | (1+p)215

1 1
— —— — 147 (10 — n) — 1860A3 (8 — A3 (6 — 2592073 (4 —
0 147 (10 = ) = 18605 (8 — ) + 3380XE (6 — ) + 2502033 (4 — )|

1 g4 1
——— == |45(8 — — 8(30A3 —59\y) (6 — — 36034 (4 —
o | 45 (8 = ) = 8(305 = 504) (6 — i) — 360Ass (4~ )
16 147 (g5\?

95

(=3 M|+ (2] (6

Ce s+ (2) 6-m)

(B o () 15

7 { 100 130, 13(5 — m)

0y = (2+2 i) Ga —
iJa = (24 214+ 71) Ga 307 5 P

i

( gg) 2 (330 — 640A3 — 1a (33 — 80X3)  —15 + 400A3 — 1 (803 — 6))
+ | = +
Ga 12 3(p+1)

(

E.14)

and the anomalous dimension read,

B gg<g4(6_n - 6(8 — 1) + 8(6 — mp)As — 36(4 — np) A2 17 + 8A3(9As — 8)

=g\ g h 9 3(1+ p)
Je 2 Ja 1+ 1q
- — + N _1 - )
9377C (N2 )93 3 )
Je 8_"7}1 Ja 4_77h
_ _ Jc ] — =22 (8—p, — . E.15
Tlc 97_‘_(1_’_#"" 770)> Na 87['< Na 1+M> ( )

The two terms in the flow equation for g3 proportional to 1/(1 + p)? and the term in 1,
proportional to 1/(1 + u) signal the derivative expansion at p? = 0. This is the price to
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pay for an analytic flow equation. On the other hand the terms proportional to 1/(1+ p)
in gq, 1, and 7. come from a regulator insertion in a graviton propagator compared to a
ghost or gluon propagator.

E.5. Coefficients in the scaling equations

The coefficients in the scaling equations in App. E.3 are given here in the approximation
(E.8). We assume that the anomalous dimensions satisfy |n| < 2: they should not dominate
the scaling of the regulator. While the upper bound n < 2 is a (weak) consistency bound
for the regulator, see Sec. 6.3.4, the lower one can be seen as a (weak) consistency bound
on the propagators. For n < —2 they cease to be well-defined as Fourier transforms of
space-time correlations functions (if they scale universally down to vanishing momenta).
For simplicity we display the coefficients with A3 = 0. Note that all coefficients are
defined such that they are always positive. All coefficients can be directly read off from
the equations (E.14) and (E.15). The coefficients ¢, 5 and ¢, 4 in the fixed point equation
of the mass parameter p are given by

17 2 1 1

—_— - = —— . E.1
wh = 6r " 15p T 5o Cma = TG0y e (E.16)

Note that the second coefficient is positive since 7, < 0. The coefficients ¢z and ¢z, in
the fixed point equation of the pure gravity coupling g read

47 53 37 598 B
570 1907 " 1907 oh = ogsx 9T 307 T B70x

ng,h = Ta » (E17)

while the coefficients cy, 5 and c), , in the fixed point equation of A3 are given by

33 19 1 3 1

29 . L E.18
20r 2407 " 1ox " 0= Gor ~ 60m (E.18)

Chs,h =

Furthermore the coefficient ¢z, in the fixed point equation for the two-gluon-graviton
coupling g, reads

5 13 . 13 13
Csh = — — —— = = — — ——
gt = 30T G0 1 Jast = 6 T 305
11 11 11
o _ di » = — — —— 1 . E.19
el = Tor T 12071 Goh = G T 1pg (E.19)

We also summarise the coefficients of the anomalous dimensions, to wit

1 1 1 17 1 1

- 4., = - T
“mh = 6x T 1op M T g le (N pw Cma = Tor T 1o5 e
8 1 8 1
Cnc—%_gn07 nc—g_gniu
11 11
C77a = ; — 877'('77(17 dnu = % — 877[_77h . (E20)
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This Appendix belongs to Chapter 8.

F.1. Background flow equations

In this Appendix we display the background flow equations. We use a type-I Litim regu-
lator and the gauge a = = 0. We further employ the York-decomposition [81, 470] with
field redefinitions [247, 413]. The result for the gravity part of the background flows agrees
with e.g. [262] and App. B.2 while the scalar part agrees with e.g. [424]. The details of the
computation are given in App. F.3. The flow of the background couplings are given by

3,[1 = (2 +’I7N)G,

_ - A _ _
OiA = —4A + éatG + 87GFlowg

)

V/g-terms
NN = 167rC_;7F10Wf , (F.1)
\/ﬁé—terms
where
VG [[5—8m  1—gm 2 4 L]
Flow= = —4— = - Ng(1 — = k
VP =\ |Toan — X 3t 3+ No(l = 5me)
11-4n, 101-4n 51-1n, 23 7 7 Ng . 7 e
: _ _2 2L z 21— ) |k’R
[31_@ 3(1-20)2 31-2\ 12 TR )
+ O(R?). (F.2)

Note that the quantities A, 7, 7., and 71, can be taken from the respective fluctuation
two-point functions. In this case the background couplings are non-dynamical spectators.
The usual background field approximation is obtained by setting A = A, n, = nn, 0. = 0,
and 7, = 0.

F.2. Level-1 flow equations

In this Appendix we display the level-one flow equations that are derived though a Nielsen
identity from the background flow equations, see Sec.8.6. We work with the approximation

0 ) 1 1 6v/gRy
— O ~ Ol — 0 [ =Tr |— G . F.3
5hW tlk 5%” tlk t (2 r [\/ﬁ 6?]“” k}) ( )
Consequently we are interested in evaluating
_ 1 1 6v/gRy :|
W =I1g" = -Tr |— G| F.4
7= | =G (.4
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which gives us, combined with the background flows, the flows for the level-one couplings.
The trace appearing in (F.4) can be evaluated using heat kernel techniques. Details of the
computation are presented in App. F.3. The result for [ is given by

81—\/‘6{{10 1 2 1 8 QNS o

e\ 31-20 T31-Ix 373

9 (1—2>\)2_§1—2/\+§1—§A_%

20 1 5 1 11 71 1 _ _
+ { - + 2]\75] kQR} + O(R?).

(F.5)

We display the result for 87, since the Nielsen identity enters precisely with this factor
in the flow equation for the /g-terms as well as the \/gR-terms. The reason for this is
that Z" enters with a 9; derivative, 0;\/gk? = 4,/gk* and 0;/gRk* = 2\/gRk?, while
Flowp enters with a d; derivative, §5/g = 3/gg"” and 6;4/gR = 2/gg"' R cf. (F.13).
Consequently in both cases they combine to the factor 8 as indicated above. Note that
TI* does not contribute to the flow equation for \/gR? since 0;\/gR*k" = 0. This is
expected since R? and Ril, are marginal couplings and thus their one-loop flow equations
are universal. Note furthermore that in the above discussion we have neglected terms like
OiA. Such terms do not change the fixed point values but they can influence the critical
exponents.

The flow equations for the level-one couplings can now be expressed by flow of the
background couplings plus the improvement from the Nielsen identity, to wit

oG1 = (2+nn1)G1,

_ _ A - _
My = —4A; + =-0,G1 + 871Gy (Flowgy — 81) ,
G v/g-terms

nn1 = 167Gy (Flowp — 81) . (F.6)
V/gR-terms

Again, the quantities X, 73, 7., and 7, can be taken from the respective fluctuation two-
point functions. Then the level-one couplings are non-dynamical spectators. Otherwise
we can close the equation at the level-one couplings by setting A\ = Ay, n, = nn,1 and
ne = 1, = 0. The latter is an improved background field approximation.

F.3. Evaluation of traces

In this Appendix we give a more detailed outline on the computation of the Nielsen identity,
see (8.37) and (F.4). We saw in Sec.8.6.1 that we can write the trace as

THY — Ig;u/ — ET‘I‘ |:1_ (5\/_§Rk Gk:|
2 NG

1 1 1) 1 -
=_g" T — Tr | — Fj - RT
17 r[Rka]—i-Q r[égw RG} +2R r[

_ F&}%o@?), (F.7)
0Gw

where we have defined

x /
Fioo () :/ dz’ ‘”?@Gk(x',z%: 0),
0 X
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x /
F¥@) = /0 ar’ 2 G0 =), (F.8)

In (F.7) we can pull the g-derivative out of the trace. Here we have defined the trace such
that we have to there is a factor /g involved. Thus we obtain

1 146 1
MY — gtV P ——g"
T = 29" Tr[GrRi) + . Tr [Fra] = 7 9" Tr [Fi]
1- 46 (1) 1 PIZES, (1) D2
+§R$Tr[FRG}—Zg R [F| +O(R?). (F.9)
n

We now specify these traces to their contributions in order in the background curvature.
For this we need to evaluate the background field derivative. Since S* is an Einstein
manifold, and in particular

- 1
R/“’:g

Applying a background field derivative, this gives

R . (F.10)

0R 1= O0R,p
R gy gesdl F.11
0Guw d 0w ( )
We further know that
SR, o _ TP
Jfﬂ:Ap L (F.12)
59;”/ 59#1/ 5g;w
are total derivatives and do not contribute. In summary we have
oG 1 -, 5VgR 1 _ . =
i v == YR. F.13
5 5V99" 5 1V99 (F.13)
Using this for (F.9) we obtain
1
I =-Tr [GkRk] s
v/g-terms V/g-terms
1 1
I = — | Tr [GxRi] — = Tr [Fre] . (F.14)
/gR-terms 4 2 /gR-terms

Remarkably the Frq-traces do not contribute to the /g-terms and the Fl;({é)—traces drop
out completely. The latter would contribute to the \/gR?-order. In summary we want to
compute the traces Tr [GyRg], Tr [Fre] and Tr [Gr0; Ri]. The latter we need for the flow
of the background couplings, which are also the basis for the level-one flow equations.

With the gauge choice 8 = 0 and o — 0, the product of Gi Ry is given by the sum of
the contributions of the four modes h'* , &*, A, and o. They are given by

p
_ re(x) 2R re(z) _
(CR)u = 0 —on 312 (o () —2ne T O
ri () 1R r(x) 52
(GR)e = x + 75 (2) + 4k2 (x + ()2 + O,
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TTT VT S
tr by 5 3 1

trby —2R R {R

=

Table F.1.: Heat kernel coefficients for transverse traceless tensors (TTT), transverse vec-
tors (VT) and scalars (S) on S%.

_ 7% ()
(GR)htr - £U+Tk($) _ %)\ 5
() 1R r(x) 52
(GR)r = @ T3 @@z T O (F.15)

where # = A/k? is the dimensionless background Laplacian. The vector and scalar ghost
modes, ¢ and 7, respectively, are given by

() 1R ri(z) —
(GR). = x + rg(x) + 452 (z + ()2 + O,
_ rg(@) 1R r(x) 52
(GR),, T+ () + 3K (o & i (2))? + O(R?). (F.16)

The generalisations to G0: Ry, and G0z Ry, are straightforward. We start with the eval-
uation of Tr [GR] and write

Tr G = 1y [ Bo(A)Qa(RAGi) + Ba(A)Q1 (ReGr)| + O(R?),
where
Qn[W] = 1“(1n) /dx "W (), B, = /ddx\/gtr b » (F.17)

and trb,(As) oc R? are the heat kernel coefficients. We can parameterise all graviton
and ghost modes from (F.15) and (F.16) with the function

()
Wi(x) = F.18
©) = @) +axp (E-18)
with constants a and b. This results in
1 62 1 A2
_ = =-__- . F.1
QW] =5 (1+a\P’ QW] =3 (1+a)P (F.19)

Furthermore on the sphere we have

Bo(AS) = \/§ tr bo s BQ(AS) == \/5 tr b2 5 (F20)

where the trace coefficients are given in Tab. F.1. By specialising the coefficients a and b
in the general expression above and evaluating the sum over all spin modes, we find

Tr[GkRk]:\/g{[E) Loyl b 2hape

1672 | [61—2\ " 61— 24X 3
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I T . IO T S
9(1—-2))2 121-2x 121-4x 18

]szl} +O(R?). (F.21)

We turn now to the evaluation of Tr [Fye] that can be evaluated in similar fashion, we
write

1 - _ _
Tt [Fro] = 10— Fro(=0,) [ Bo(B) 772 4+ Bo(A) 71| + O(R?), (F.22)
7=0
where we used
Tr f(A) = f(=8,) Tr e ™2 (F.23)
7=0
In particular, by utilising the identities
1 & 1 o
— = / de ze ™ , - = / dz e ™" ) (F.24)
T 0 =0 T 0 =0
one can evaluate the action of the differential operators, and we find
Ly 00 1 k672b
FRg(—aq-)T = /O dx J»'FRg(.fL') = —gm,
. 00 1 k472b
Fra(=07)77 = /0 dz Fre(z) = T2+ any (F.25)
where the last equality in each line holds for the general function
v e () x
F =/ d k =— for x < k? F.26
a(7) /0 Y srmly) +arkp — (Q4ary =T (F.26)

using the flat Litim-type cutoff as before. Specialising the coefficients a and b for the
various spin modes and summing the contributions we get

Tr[FRG]:\/g{[ 5 1 11 +;1]k4

16m2 || 31-22 31— %)
5 1 1 1 57,94, _2
[121—2A_121_§)\+241]kR}+0(R)- (F.27)

The evaluated traces (F.21) and (F.27) allow us to compute the corrections from the
Nielsen identity (F.14). The result is displayed in (F.5) where also the contribution from
the minimally coupled scalars is shown. The computation of the latter is the same as the
scalar graviton modes.

Last we evaluate Tr [G0; Ri]. which is done in straight analogy to the previous traces.
The heat-kernel functionals are now parameterised with

~ O k2 ri(T)

W(x) = . F.2
) = @ +aap (£-28)
With 0; k? rp(x) = 2k r(x) for the flat Litim-type cutoff, we find
_ |62 5 9 LA—20b
W= —+ W= ——. F.29
QQ[ ] (1—|—a)\)b’ Ql[ ] (1_'_&)\)1, ( )

where we have suppressed wavefunction renormalisations and anomalous dimensions for
readability. The result of summing over all spin modes is displayed in (F.2).
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