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1 Introduction

Despite its enormous success in accounting for almost all experimental data to date, the
Standard Model (SM) of particle physics still has no explanation for a number of other key
observations, such as neutrino masses, the baryon asymmetry of the universe, dark matter,
etc. For this reason, it is widely believed that there must exist physics beyond the SM.
And since the LHC has not discovered any new particles up to a scale of O(TeV), this new
physics (NP) is likely to be very massive.

When the NP is integrated out, one obtains an effective field theory (EFT), of which it
is now generally believed that the SM is simply the leading part. This EFT must obey the
SM gauge symmetry SU(3)C × SU(2)L × U(1)Y . Since the discovery of the Higgs boson,
the default assumption is that this symmetry is realized linearly, i.e., the symmetry is
broken via the Higgs mechanism, resulting in the Standard Model EFT, or SMEFT (see,
e.g., refs. [1]1). The SMEFT has been studied extensively: a complete and non-redundant
list of dimension-6 operators is given in ref. [3], the dimension-7 operators can be found in
refs. [4, 5], and the dimension-8 operators are tabulated in refs. [6, 7].

The LEFT (low-energy effective field theory) describes the physics below the W mass,
and is produced when the heavy SM particles (W , Z, t, H) are also integrated out. (This is
also called the WET (weak effective field theory).) In ref. [8], Jenkins, Manohar and Stoffer
(JMS) present a complete and non-redundant basis of LEFT operators up to dimension 6,
including those that violate B and L, and also give the matching to dimension-6 SMEFT
operators at tree level.

At one loop, there are two additional types of contributions to the matching. First,
there are the renormalization-group running effects which are enhanced by log (µNP/µEW).
Second, we have the threshold corrections, or one-loop matching at the electroweak scale,
which are a part of the next-to-leading-log effects. Naively, the former contributions ap-
pear to dominate. However, for certain processes, the latter can be comparable [9]. The
anomalous-dimension matrices for the renormalization-group running and the one-loop
matching effects for the full SMEFT and LEFT bases have been computed in refs. [10]

1For a review see ref. [2].
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and [11], respectively. (Note that, in order it to consistently include the threshold correc-
tions at the electroweak scale, it is essential to have two-loop anomalous dimensions of the
LEFT operators [12, 13].)

With this information, if a discrepancy with the SM is observed in a process that uses a
particular LEFT operator, we will know which dimension-6 SMEFT operators are involved.

However, this is not always sufficient. Information about the contributions from higher-
dimension operators may be important if the process in question is suppressed in the SM
and/or is very precisely measured. Examples of observables for which such contributions
must be taken into account include electroweak precision data from LEP [14], lepton-
flavour-violating processes [15, 16], meson-antimeson mixing (∆F = 2) [9, 17], and electric
dipole moments [18]. (Dimension-8 SMEFT operators have also been discussed in the
context of high-energy processes, see refs. [19–26].)

We have the matching conditions of dimension-6 LEFT operators to dimension-6
SMEFT operators. A first step is therefore to extend this matching to include the (subdom-
inant) dimension-8 SMEFT operators. But there is a complication: dimension-8 SMEFT
operators will also produce dimension-8 LEFT operators. (A complete set of dimension-
8 LEFT operators can be found in ref. [27].) Thus, additional LEFT operators must in
principle also be considered.

Note that a distinction can be made between the various contributions. Consider
four-fermion operators. These dimension-6 LEFT operators have no derivatives, and are
therefore momentum-independent (MI). On the other hand, the dimension-8 extensions of
four-fermion operators do contain derivatives, i.e., they are momentum-dependent (MD).
As a consequence, their tree-level matching conditions to dimension-8 SMEFT operators
are also MD.2 Of course, the MD contributions can be at the same level in power counting
as the MI contributions. Depending on the scale of the NP (Λ) and the masses of the
fermions involved in the process under consideration, they can be numerically comparable
to, or even larger than, the MI contributions. Thus, a full computation of the contributions
from higher-dimension operators to low-energy processes must include both dimension-6
and dimension-8 LEFT operators and their MI and MD matching conditions to dimension-8
SMEFT operators. This is an enormous undertaking.

Fortunately, the MI and MD tree-level matching conditions can be separated. In
the present paper, we focus only on the MI matching conditions. MD matching condi-
tions will be presented elsewhere. Note that a complete analysis of the relationship be-
tween LEFT operators and dimension-8 SMEFT operators must also take into account the
renormalization-group running of SMEFT operators from the NP scale down to low energy,
as well as the threshold corrections at the electroweak scale. For bosonic SMEFT operators
up to dimension 8, the anomalous dimensions have been calculated in refs. [29, 30].

In our analysis, we follow closely the approach of ref. [8], and extend it to include
dimension-8 SMEFT operators. Below, we often refer to this paper simply by the initials
of its authors, as JMS.

2In a similar vein, one can find MD contributions to dimension-7 LEFT operators due to dimension-6
and 7 SMEFT operators, see ref. [28].
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We begin in section 2 with some preliminary remarks comparing our analysis with that
of JMS, and discuss in general terms how matching conditions are computed. In section 3,
we present the setup, showing how the presence of dimension-8 SMEFT operators affects
the symmetry breaking, the generation of masses, and the couplings of the gauge and Higgs
bosons to fermions. The computations required to derive the complete matching conditions
are described in section 4. Although we do not compute the MD matching conditions, the
various sources of such contributions are outlined here. We conclude in section 5. The
results are presented in appendix D. Appendices A, B, C give a variety of information
relevant to the details of the analysis.

2 Preliminaries

In ref. [8], JMS compute the tree-level SMEFTmatching conditions for the LEFT operators.
The matching conditions for operators that conserve both B and L involve only even-
dimension SMEFT operators, and are given up to dimension 6. For operators that violate
B and/or L, the matching conditions can involve even- or odd-dimension SMEFT operators
(but not both), depending on the operator, and are computed to dimension 6 or dimension
5. In the present paper, we extend this analysis: we compute these matching conditions
up to dimension 8 (dimension 7) if even-dimension (odd-dimension) SMEFT operators
are involved. (In this paper, when we refer to “computing the matching conditions up to
dimension 8,” both of these possibilities are understood.) If one eliminates the dimension-8
or dimension-7 contributions, the results of JMS are reproduced. This makes it easy to
compare the results. Also, we present the elements of our analysis in much the same order
as JMS.

In the LEFT Lagrangian, we consider only operators up to dimension 6 (like JMS):

LLEFT = LNeutrino mass
LEFT + LQCD+QED +

6∑
n=5

∑
O∈dimn

CO
Λn−4 O . (2.1)

For the SMEFT, all operators up to dimension 8 are included:

LSMEFT = LSM +
8∑

n=5

∑
Q∈dimn

CQ
Λn−4 Q . (2.2)

(Note that using the same suppression scale Λ for both LEFT and SMEFT is just a matter
of convention.)

Still, there are two differences in our notation:

• Our convention is to have dimensionless Wilson coefficients (WCs). For instance, for
the dimension-6 SMEFT lagrangian, we write

L(6)
SMEFT =

∑
Q∈dim 6

CQ
Λ2 Q . (2.3)

This convention is different from that of JMS, which uses dimensionful WCs.
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• In the unbroken phase, the SM lagrangian is

LSM = −1
4G

A
µνG

Aµν − 1
4W

I
µνW

Iµν − 1
4BµνB

µν

+
∑

ψ=q,u,d,l,e
ψi /Dψ + (DµH)†(DµH)− λ

(
H†H − 1

2v
2
)2

−
[
lper(Ye)prH + qpur(Yu)prH̃ + qpdr(Yd)prH + h.c.

]
+ θ3g

2
s

32π2G
A
µνG̃

Aµν + θ2g
2

32π2W
I
µνW̃

Iµν + θ1g
′2

32π2BµνB̃
µν . (2.4)

This uses the same notation as JMS, with one exception: our Yukawa matrices (the
Y s) are the hermitian conjugates of those of JMS.

In eq. (2.4), the fields qr and lr are (left-handed) SU(2)L doublets, while ur, dr and
er are (right-handed) SU(2)L singlets, where r = 1, 2, 3 is a generation (weak-eigenstate)
index. The physical (mass-eigenstate) states are the same for the charged leptons, the left-
and right-handed u-type quarks, and the right-handed d-type quarks. For the left-handed
d-type quarks, the relation between the weak and mass eigenstates is

dLr = VrddL + VrssL + VrbbL ≡ VrxdLx , (2.5)

where the left-hand side is a weak eigenstate, and the right-hand side is a linear combi-
nation of mass eigenstates. The Vrx are elements of the unitary mixing matrix, which is
the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the SM. Note: as in JMS, our LEFT
matching conditions are given in the weak eigenstate basis. They can be written in terms
of the physical states by using the above relation.

In our analysis, we make reference to several different sets of operators. The LEFT
operators are taken from JMS [8], the dimension-6 SMEFT operators are found in ref. [3],
and we use ref. [7] for the dimension-8 SMEFT operators. In all cases, we use the same
notation for the operators and their WCs as is used in the references. For the dimension-7
SMEFT operators, we use a basis that is equivalent that of ref. [4], but with a different
notation. For convenience, in the appendices, we present tables of all the operators used
in this paper. These include LEFT operators (appendix A), along with dimension-5 to 8
SMEFT operators (appendix B).

It is useful to give an example that illustrates the various issues involved in deriving
matching conditions. Consider the charged-current four-fermion operator

OV,LLνedu = (ν̄LpγµeLr)(d̄LsγµuLt) + h.c., coefficient : 1
Λ2C

V,LL
νedu
prst

. (2.6)

We begin by examining the matching to the SM. That is, OV,LLνedu is taken to be an operator
of the Fermi theory, whose coefficient has magnitude 4GF /

√
2. The SM Lagrangian consists

only of operators of at most dimension 4. This four-fermion operator can be generated in
the SM when a W is exchanged between the two fermion currents, and the W is integrated
out. The SM matching condition is then

1
Λ2C

V,LL
νedu
prst

= − g2

2M2
W

[Wl]pr[Wq]∗ts . (2.7)
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Here, Wl and Wq are the couplings of the W to the lepton and quark pair, respectively.
In the weak-eigenstate basis of the SM, [Wl]pr = δpr and [Wq]ts = δts. Knowing that the
coefficient has magnitude 4GF /

√
2, this leads to the well-known relation

GF√
2

= g2

8M2
W

. (2.8)

The matching to SMEFT at dimension 6 was computed by JMS. It is

1
Λ2C

V,LL
νedu
prst

+ h.c. = 2
Λ2C

(3)
lq
prst

− g2

2M2
W

[Wl]effpr [Wq]effts
∗ + c.c. (2.9)

Since the SMEFT includes dimension-6 terms, it contains the four-fermion operator. That
is, there is a direct contribution to the matching conditions, C(3)

lq
prst

. As was the case in

the SM, CV,LLνedu
prst

can also be generated by the exchange of a W between the two fermion

currents. This is represented by the second term above. Although this resembles the term
in eq. (2.7), there are several differences:

1. In the presence of dimension-6 SMEFT operators, the coupling constant is modified:
g → ḡ. This is due to the fact that, when one adds dimension-6 corrections to the
kinetic terms of the gauge bosons, these fields and the coupling constants must be
redefined in order to ensure that the kinetic term is properly normalized.

2. In the SM, the W coupling to fermions is fixed by the fermion kinetic term, ψ̄ /Dψ. In
SMEFT, there are dimension-6 corrections, such as H†iDµHψ̄γ

µψ. These will change
the magnitudes of the couplings, and permit inter-generational couplings, hence the
‘eff’ superscript on Wl and Wq.

The bottom line is that many dimension-6 SMEFT operators are implicitly present in the
second term of eq. (2.9) above. Collectively, these operators form the indirect contributions.
They must be carefully taken into account in the matching conditions. (Note that, if one
expands the effective parameters appearing in the matching conditions, many terms will
appear; those that are of higher order than dimension 8 are to be ignored.)

3 Setup

The Lagrangian for the SM in the unbroken phase is given in eq. (2.4). When the Higgs field
acquires a vacuum expectation value (vev), given by the minimum of the Higgs potential,
the symmetry is broken, and masses are generated for the W±, the Z0 and the fermions.
One can easily compute the masses of the physical gauge bosons, as well as their couplings
to the physical fermions, in terms of the parameters of LSM, in particular g, g′ and v.

When one includes higher-order SMEFT operators of dimension 6, 8, etc., this whole
process must be recalculated in order to take into account these new operators. One must
make field redefinitions so that the kinetic terms are properly normalized, the minimum of
the Higgs potential (i.e., the Higgs vev) must be recomputed, corrections to sin θW must be

– 5 –
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taken into account, etc. One sees the effects of these additional operators in the redefinitions
of the coupling constants, the couplings of gauge bosons to fermions, and other quantities
that appear in both the direct and indirect contributions to the matching conditions.

In this section, we present the main effects of including SMEFT operators up to di-
mension 8. We emphasize those results that are important for the matching conditions.
These results are in agreement with the predictions of the geometric formulation of the
SMEFT [31].

3.1 Higgs sector

After the Higgs acquires a vev, we redefine the Higgs field as follows:

H → 1√
2

 0
[1 + cH,kin]h+ vT

 . (3.1)

Here, vT and cH,kin are respectively determined by minimizing the Higgs potential and by
normalizing the Higgs kinetic term.

3.1.1 Higgs vev

In the presence of SMEFT operators up to dimension 8, the Higgs potential is

V (H) = λ

(
H2 − 1

2v
2
)2
− 1

Λ2CHH
6 − 1

Λ4CH8H8 , (3.2)

where only the real part of the second component of the Higgs doublet, H, is taken to be
nonzero. We define the physical Higgs vev, vT , to be vT ≡

√
2Hmin, where Hmin minimizes

the Higgs potential. This implies that

vT = v

(
1 + 3v2

8λΛ2 CH + v4

4λΛ4

[ 63
32λ [CH ]2 + CH8

])
. (3.3)

vT is the physical parameter that appears in the matching relations, and whose value can
in principle be determined by a fit to the data.

3.1.2 Higgs kinetic term

Including SMEFT contributions up to dimension 8, the Higgs kinetic term is

LHiggs kineticSMEFT = 1
2

[
1+ 2v2

T

Λ2

(1
4CHD−CH�

)
+ v4

T

4Λ4

(
C

(1)
H6 +C

(2)
H6

)]
(1+cH,kin)2(∂µh)(∂µh) .

(3.4)
In order for this term to be properly normalized, one must have

cH,kin = v2
T

Λ2

(
CH� −

1
4CHD

)
− v4

T

8Λ4

(
C

(1)
H6 + C

(2)
H6

)
+ 3v4

T

2Λ4

(
CH� −

1
4CHD

)2
. (3.5)

This is essentially a redefinition of the normalization of the Higgs field.

– 6 –
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3.1.3 Higgs mass

Taking into account the SMEFT contributions up to dimension 8, the Higgs boson mass
term is

LHiggs mass
SMEFT = 1

2

[
λv2 − 3λv2

T + 15v4
T

4Λ2 CH + 7v6
T

2Λ4 CH8

]
(1 + cH,kin)2h2 . (3.6)

This gives the following expression for the Higgs boson mass:

mh
2 = (1 + cH,kin)2v2

T

[
2λ− 3v2

T

Λ2 CH −
3v4
T

Λ4 CH8

]
. (3.7)

3.2 Fermion mass matrices & Yukawa couplings

Before symmetry breaking, the SMEFT Lagrangian up to dimension 8 contains the follow-
ing terms for charged leptons and quarks:

− (Yψ)pr χ̄pψrH + 1
Λ2CψH

pr
χ̄pψrH(H†H) + 1

Λ4CχψH5
pr

χ̄pψrH(H†H)2 + h.c. , (3.8)

where ψ ∈ {e, u, d} (right-handed SU(2)L singlets), χ ∈ {l, q} (left-handed SU(2)L dou-
blets), H = H if ψ ∈ {e, d} and H = H̃ if ψ ∈ {u}. Here, the first term (dimension 4)
belongs to the SM and the last two terms are SMEFT operators (respectively dimension 6
and 8). Lepton-number-violating terms are also present:

1
ΛC 5

pr
εijεkl(lTipClkr)HjHl + 1

Λ3Cl2H4
pr

εijεkl(lTipClkr)HjHl(H†H) + h.c. . (3.9)

When the Higgs gets a vev, both mass matrices and Yukawa coupling terms are generated.

3.2.1 Fermion mass matrices

The SMEFT mass terms for charged leptons and quarks up to dimension 8 are

LFermion mass
SM = − vT√

2

[
(Ye)preLpeRr + (Yu)pruLpuRr + (Yd)prdLpdRr

]
+ h.c.,

LFermion mass
SMEFT,6 = v3

T

2
√

2 Λ2

[
CeH
pr
eLpeRr + CuH

pr
uLpuRr + CdH

pr
dLpdRr

]
+ h.c., (3.10)

LFermion mass
SMEFT,8 = v5

T

4
√

2 Λ4

[
CleH5

pr
eLpeRr + CquH5

pr
uLpuRr + CqdH5

pr
dLpdRr

]
+ h.c.

This gives the following mass matrices:

[Mψ]pr = vT√
2

[
(Yψ)pr −

v2
T

2Λ2 CψH
pr
− v4

T

4Λ4 CχψH5
pr

]
. (3.11)

The SMEFT neutrino mass terms are

LNeutrino mass
SMEFT = vT

2

2Λ

[
C 5
pr

+ vT
2

2Λ2Cl2H4
pr

]
νTLpCνLr + h.c. . (3.12)

This gives the following mass matrices:

[Mν ]pr = −vT
2

Λ

[
C 5
pr

+ vT
2

2Λ2Cl2H4
pr

]
. (3.13)

– 7 –
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3.2.2 Yukawa couplings

The SM, dimension-6 and dimension-8 SMEFT Yukawa coupling terms for charged leptons
and quarks are

LYukawaSM = −(1 + cH,kin)√
2

[
(Ye)preLpeRrh+ (Yu)pruLpuRrh+ (Yd)prdLpdRrh

]
+ h.c.,

LYukawaSMEFT,6 = 3(1 + cH,kin)v2
T

2
√

2 Λ2

[
CeH
pr
eLpeRrh+ CuH

pr
uLpuRrh+ CdH

pr
dLpdRrh

]
+ h.c., (3.14)

LYukawaSMEFT,8 = 5(1 + cH,kin)v4
T

4
√

2 Λ4

[
CleH5

pr
eLpeRrh+ CquH5

pr
uLpuRrh+ CqdH5

pr
dLpdRrh

]
+ h.c.

This gives the following Yukawa couplings (up to dimension 8):

(Yψ)effpr = 1 + cH,kin√
2

[√
2

vT
[Mψ]pr −

v2
T

Λ2 CψH
pr
− v4

T

Λ4 CχψH5
pr

]
. (3.15)

There are also momentum-dependent Yukawa couplings (i.e., ordinary Yukawa couplings
with additional derivatives acting on the Higgs field) occurring at dimension 6 in SMEFT.
However, as discussed in the introduction, MD contributions to the matching conditions
are not included in the present work (though they are briefly discussed in section 4.3).

The SMEFT Yukawa coupling terms for neutrinos are

LNeutrino Yukawa
SMEFT = vT

Λ (1 + cH,kin)
[
C 5
pr

+ vT
2

Λ2 Cl2H4
pr

]
h νTLpCνLr + h.c. . (3.16)

This gives the following Yukawa couplings:

(Yν)effpr = (1 + cH,kin)
[

1
vT

[Mν ]pr −
vT

3

2Λ3Cl2H4
pr

]
. (3.17)

These Yukawa couplings enter the matching conditions of certain four-fermion operators
in LEFT.

3.3 Electroweak gauge boson masses & mixing and coupling constants

3.3.1 Kinetic terms

Including the SMEFT contributions up to dimension 8, the kinetic terms of the electroweak
gauge bosons after symmetry breaking are

LElectroweak kin
SMEFT = −1

4



[
1− 2v2

T

Λ2 CHW −
v4
T

Λ4 C
(1)
W 2H4

]
W I
µνW

Iµν

− v4
T

Λ4 C
(3)
W 2H4 W

3
µνW

3µν

+
[
1− 2v2

T

Λ2 CHB −
v4
T

Λ4 C
(1)
B2H4

]
BµνB

µν

+
[

2v2
T

Λ2 CHWB + v4
T

Λ4 C
(1)
WBH4

]
W 3
µνB

µν



. (3.18)
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Here there are two issues that must be resolved. First, the kinetic terms must be properly
normalized. Second, the W 3

µνB
µν mixing term must be removed.

Proper normalization of the kinetic terms can be achieved by redefining the coupling
constants and the normalization of the gauge fields:

g =
[
1 + v2

T

Λ2 CHW + v4
T

2Λ4 C
(1)
W 2H4 + 3v4

T

2Λ4 [CHW ]2
]
g ,

g′ =
[
1 + v2

T

Λ2 CHB + v4
T

2Λ4 C
(1)
B2H4 + 3v4

T

2Λ4 [CHB]2
]
g′ , (3.19)

W I
µ =

[
1 + v2

T

Λ2 CHW + v4
T

2Λ4 C
(1)
W 2H4 + 3v4

T

2Λ4 [CHW ]2
]
WI
µ ,

Bµ =
[
1 + v2

T

Λ2 CHB + v4
T

2Λ4 C
(1)
B2H4 + 3v4

T

2Λ4 [CHB]2
]
Bµ . (3.20)

At this stage, there is still a W3
µνBµν mixing term, as well as a separate W 3

µνW
3µν

term. These can both be removed by defining

W3
µ

Bµ

 =



1 + vT
4

2Λ4 C
(3)
W 2H4 + 3vT 4

8Λ4 [CHWB]2 − vT
2

2Λ2


CHWB + vT

2

2Λ2 C
(1)
WBH4

+ vT
2

Λ2 CHWBCHW

+ vT
2

Λ2 CHWBCHB



− vT
2

2Λ2


CHWB + vT

2

2Λ2 C
(1)
WBH4

+ vT
2

Λ2 CHWBCHW

+ vT
2

Λ2 CHWBCHB


1 + 3vT 4

8Λ4 [CHWB]2



W3
µ

Bµ

 .

(3.21)
With this, we have

LElectroweak kin
SMEFT = −1

2W
+
µνW−µν −

1
4W

3
µνW

3µν − 1
4BµνB

µν
, (3.22)

where W±µν ≡ ∂µW±ν − ∂νW±µ , W±µ ≡
1√
2

(W1
µ ∓ iW2

µ), W3
µν ≡ ∂µW

3
ν − ∂νW

3
µ, Bµν ≡

∂µBν − ∂νBµ, and we have dropped the cubic and quartic self-coupling terms of the gauge
bosons.

Note that we still have the freedom to perform the following rotation:W3
µ

Bµ

 =

 cos θW sin θW
− sin θW cos θW

Zµ
Aµ

 , (3.23)

where Zµ and Aµ are the physical Z-boson and photon fields. In terms of these fields, we
have

LElectroweak kin
SMEFT = −1

2W
+
µνW−µν −

1
4ZµνZ

µν − 1
4FµνF

µν . (3.24)
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For completeness, we also present the results for gluons. Including the SMEFT con-
tributions up to dimension 8, the gluon kinetic term is

LGluons kin
SMEFT = −1

4

[
1− 2v2

T

Λ2 CHG −
v4
T

Λ4 C
(1)
G2H4

]
GAµνG

Aµν . (3.25)

In order to properly normalize this kinetic term, we make redefinitions similar to those in
eqs. (3.19) and (3.20):

gs =
[
1 + v2

T

Λ2 CHG + v4
T

2Λ4 C
(1)
G2H4 + 3v4

T

2Λ4 [CHG]2
]
gs , (3.26)

GAµ =
[
1 + v2

T

Λ2 CHG + v4
T

2Λ4 C
(1)
G2H4 + 3v4

T

2Λ4 [CHG]2
]
GAµ . (3.27)

3.3.2 Mass terms

The SMEFT contributions up to dimension 8 to the mass terms of the electroweak gauge
bosons after symmetry breaking are

LElectroweak mass
SMEFT = v2

T

8



[
1 + v4

T

4Λ4

(
C

(1)
H6 − C(2)

H6

)]
g2(W 1

µW
1µ +W 2

µW
2µ)

1 + v2
T

2Λ2 CHD

+ v4
T

4Λ4

(
C

(1)
H6 + C

(2)
H6

)
 (gW 3

µ − g′Bµ)(gW 3µ − g′Bµ)


. (3.28)

We can write W I
µ and Bµ in terms of W±µ , Zµ and Aµ using the transformations described

in section 3.3.1. The mixing angle θW of eq. (3.23) satisfies

cosθW = 1√
g2 +g′2


g+ gv4

T

8Λ4
(6g2g′2−g4−5g′4)

(g2 +g′2)2 [CHWB]2 + v4
T

2Λ4
gg′2

g2 +g′2
C

(3)
W 2H4

− g
′v2
T

2Λ2
g2−g′2

g2 +g′2

(
CHWB+ v2

T

2Λ2 C
(1)
WBH4 + v2

T

Λ2 CHWB[CHW +CHB]
)


sinθW = 1√
g2 +g′2


g′+ g′v4

T

8Λ4
(6g2g′2−g′4−5g4)

(g2 +g′2)2 [CHWB]2− v4
T

2Λ4
g2g′

g2 +g′2
C

(3)
W 2H4

+ gv2
T

2Λ2
g2−g′2

g2 +g′2

(
CHWB+ v2

T

2Λ2 C
(1)
WBH4 + v2

T

Λ2 CHWB[CHW +CHB]
)


(3.29)

up to dimension 8.
Note that, while in the SM we have sin θW = g′/

√
g2 + g′2 and cos θW = g/

√
g2 + g′2,

these relations no longer hold in the presence of SMEFT operators. Similarly, in the SM,
e = gg′/

√
g2 + g′2. Including SMEFT operators, this becomes

e = gg′√
g2 + g′2


1− gg′v2

TCHWB

(g2 + g′2)Λ2 −
gg′v4

TC
(1)
WBH4

2(g2 + g′2)Λ4 +
g′2v4

TC
(3)
W 2H4

2(g2 + g′2)Λ4

− gg′v4
TCHWB(CHW + CHB)

(g2 + g′2)Λ4 + 3g2g′2v4
T [CHWB]2

2(g2 + g′2)2Λ4

 . (3.30)
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The masses of the W and Z are given by

M2
W = g2v2

T

4

[
1 + v4

T

4Λ4

(
C

(1)
H6 − C(2)

H6

)]
, (3.31)

M2
Z = gZ

2v2
T

4

[
1 + v2

T

2Λ2 CHD + v4
T

4Λ4

(
C

(1)
H6 + C

(2)
H6

)]
, (3.32)

where

gZ =
√
g2 + g′2

1 + gg′v2
TCHWB

(g2 + g′2)Λ2 +
gg′v4

TC
(1)
WBH4

2(g2 + g′2)Λ4 +
g2v4

TC
(3)
W 2H4

2(g2 + g′2)Λ4 (3.33)

+ gg′v4
TCHWB(CHW + CHB)

(g2 + g′2)Λ4 +
(

1− g2g′2

(g2 + g′2)2

)
[CHWB]2

2Λ4

]
.

In the SM, the “charge” to which the Z0 couples is I3L−Qem sin2 θW . When one adds
SMEFT operators up to dimension 6, the mixing angle is changed, θW → θ̄W , but the
Z0 coupling still has the same form: it couples to I3L − Qem sin2 θ̄W [8]. However, when
SMEFT operators up to dimension 8 are included, this no longer holds. Instead, the Z0

couples to I3L −Qem sin2 θ̄Z , where

sin2 θZ = sin2 θW + v4
T

4Λ4 [CHWB]2(sin2 θW − cos2 θW ) . (3.34)

(This was also noted in ref. [20].)

3.4 Couplings of electroweak gauge bosons to fermions

As shown in eq. (3.24), the physical electroweak gauge bosons are Aµ, W±µ and Zµ. Their
effective couplings to fermions, as well as those of the gluon GAµ , take the following form:

L = −gsGAµ j
Aµ
G − eAµj

µ
A −

g√
2
{W+

µ j
+µ
W +W−µ j

−µ
W } − gZZµj

µ
Z , (3.35)

in which the corresponding currents are

jAµG = uLpγ
µTAuLr+dLpγ

µTAdLr+uRpγ
µTAuRr+dRpγ

µTAdRr ,

jµA = −eLpγµeLr+ 2
3uLpγ

µuLr−
1
3dLpγ

µdLr−eRpγµeRr+ 2
3uRpγ

µuRr−
1
3dRpγ

µdRr ,

j+µ
W = [Wl]effprνLpγµeLr+[Wq]effpruLpγµdLr+[WR]effpruRpγµdRr+[W /L

l ]effpr(νTLpCγµeRr) , (3.36)

j−µW = [Wl]effrp
∗
eLpγ

µνLr+[Wq]effrp
∗
dLpγ

µuLr+[WR]effrp
∗
dRpγ

µuRr+[W /L
l ]effrp

∗
(νLpγµCeTRr) ,

jµZ =
[
[ZνL ]effprνLpγµνLr+[ZeL ]effpreLpγµeLr+[ZuL ]effpruLpγµuLr+[ZdL

]effprdLpγµdLr
+[ZeR ]effpreRpγµeRr+[ZuR ]effpruRpγµuRr+[ZdR

]effprdRpγµdRr

]
.

Since SU(3)C × U(1)em remains unbroken, the currents involving gluons and photons
are fully determined by QCD and QED. This is not the case for the W±µ and Zµ gauge
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bosons: the fermion currents to which the W±µ and Zµ couple are given by the following
(up to dimension 8):

[Wl]effpr = δpr + v2
T

Λ2 C
(3)
Hl
pr

+ v4
T

2Λ4

(
C

(2)
l2H4D
pr

− iC(3)
l2H4D
pr

)
,

[Wq]effpr = δpr + v2
T

Λ2 C
(3)
Hq
pr

+ v4
T

2Λ4

(
C

(2)
q2H4D
pr

− iC(3)
q2H4D
pr

)
,

[WR]effpr = v2
T

2Λ2 C
(3)
Hud
pr

+ v4
T

4Λ4 CudH4D
pr

,

[W /L
l ]effpr = − vT

3

2
√

2 Λ3CleH3D
pr

,

[ZνL ]effpr = 1
2δpr −

v2
T

2Λ2

(
C

(1)
Hl
pr

− C(3)
Hl
pr

)
− v4

T

4Λ4

(
C

(1)
l2H4D
pr

− 2C(2)
l2H4D
pr

)
,

[ZeL ]effpr = 1
2g

e
Lδpr −

v2
T

2Λ2

(
C

(1)
Hl
pr

+ C
(3)
Hl
pr

)
− v4

T

4Λ4

(
C

(1)
l2H4D
pr

+ 2C(2)
l2H4D
pr

)
,

[ZuL ]effpr = 1
2g

u
Lδpr −

v2
T

2Λ2

(
C

(1)
Hq
pr

− C(3)
Hq
pr

)
− v4

T

4Λ4

(
C

(1)
q2H4D
pr

− 2C(2)
q2H4D
pr

)
,

[ZdL
]effpr = 1

2g
d
Lδpr −

v2
T

2Λ2

(
C

(1)
Hq
pr

+ C
(3)
Hq
pr

)
− v4

T

4Λ4

(
C

(1)
q2H4D
pr

+ 2C(2)
q2H4D
pr

)
,

[ZeR ]effpr = 1
2g

e
Rδpr −

v2
T

2Λ2 CHe
pr
− v4

T

4Λ4 C
(1)
e2H4D
pr

,

[ZuR ]effpr = 1
2g

u
Rδpr −

v2

2Λ2 CHu
pr
− v4

T

4Λ4 C
(1)
u2H4D
pr

,

[ZdR
]effpr = 1

2g
d
Rδpr −

v2

2Λ2 CHd
pr
− v4

T

4Λ4 C
(1)
d2H4D
pr

.

(3.37)

Here, we have defined geL ≡ −1 + 2 sin2 θZ , guL ≡ 1 − 4
3 sin2 θZ , gdL ≡ −1 + 2

3 sin2 θZ ,

geR ≡ 2 sin2 θZ , guR ≡ −
4
3 sin2 θZ , and gdR ≡

2
3 sin2 θZ , where sin2 θZ is defined in eq. (3.34).

4 Matching conditions

There are four classes of LEFT operators up to dimension 6: (i) four-fermion operators,
(ii) magnetic dipole moment operators, (iii) three-gluon operators, and (iv) neutrino mass
terms. The matching conditions for operators that conserve both B and L involve only
even-dimension SMEFT operators, and are given up to dimension 6 in JMS. For operators
that violate B and/or L, the matching conditions involve either even- or odd-dimension
SMEFT operators, depending on the operator; these are given to dimension 6 or dimension
5 in JMS.

In general, there are three types of contributions to the matching conditions of LEFT
operators to SMEFT operators up to dimension-8: (a) direct contributions, (b) indirect
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contributions, and (c) momentum-dependent contributions. The classes (ii)-(iv) of LEFT
operators receive only direct contributions. In the following subsections, we describe in
detail the direct and indirect contributions to four-fermion operators and their origin within
the SMEFT up to the dimension-8 level. We also briefly summarize the sources of the MD
contributions.

4.1 Direct contributions

The dimension-6 SMEFT direct contribution is the LEFT operator itself, in which all
left- and right-handed particles are replaced by the left-handed SU(2)L doublets and right-
handed SU(2)L singlets to which they respectively belong. The dimension-8 contributions
involve the dimension-6 SMEFT operator multiplied by a pair of Higgs fields. When the
Higgs gets a vev, this generates the four-fermion LEFT operator.

The details of the computation are best illustrated with an example. Consider the
LEFT operator

OV,LLνν
prst

≡ (νLpγµνLr)(νLsγµνLt) . (4.1)

It is generated by the dimension-6 SMEFT operator Q ll
prst
≡ (lpγµlr)(lsγµlt). This can be

seen by separating the SMEFT operator into components:

1
Λ2C ll

prst
Q ll
prst
→ 1

Λ2C ll
prst

[
(νLpγµνLr)(νLsγµνLt) + (νLpγµνLr)(eLsγµeLt)
+ (eLpγµeLr)(νLsγµνLt) + (eLpγµeLr)(eLsγµeLt)

]
. (4.2)

The first term is OV,LLνν
prst

.

One dimension-8 SMEFT operator that is among the matching conditions is Q(1)
l4H2
prst

≡

(lpγµlr)(lsγµlt)(H†H). Because the SU(2)L doublets l and H are involved, there
are two additional dimension-8 SMEFT operators that must be included: Q

(2)
l4H2
prst

≡

(lpγµlr)(lsγµτ I lt)(H†τ IH) and Q(2)
l4H2
stpr

≡ (lpγµτ I lr)(lsγµlt)(H†τ IH). When the Higgs gets

a vev, these three operators can also generate OV,LLνν
prst

:

1
Λ4C

(1)
l4H2
prst

Q
(1)
l4H2
prst

→ v2
T

2Λ4C
(1)
l4H2
prst

[
(νLpγµνLr)(νLsγµνLt)+(νLpγµνLr)(eLsγµeLt)
+(eLpγµeLr)(νLsγµνLt)+(eLpγµeLr)(eLsγµeLt)

]
,

1
Λ4C

(2)
l4H2
prst

Q
(2)
l4H2
prst

→ v2
T

2Λ4C
(2)
l4H2
prst

[
−(νLpγµνLr)(νLsγµνLt)+(νLpγµνLr)(eLsγµeLt)
−(eLpγµeLr)(νLsγµνLt)+(eLpγµeLr)(eLsγµeLt)

]
,

1
Λ4C

(2)
l4H2
stpr

Q
(2)
l4H2
stpr

→ v2
T

2Λ4C
(2)
l4H2
stpr

[
−(νLpγµνLr)(νLsγµνLt)−(νLpγµνLr)(eLsγµeLt)
+(eLpγµeLr)(νLsγµνLt)+(eLpγµeLr)(eLsγµeLt)

]
. (4.3)

We therefore see that the direct contribution to the matching condition of the LEFT
operator 1

Λ2O
V,LL
νν
prst

, up to dimension 8, is

1
Λ2

[
C ll
prst

+ v2
T

2Λ2

(
C

(1)
l4H2
prst

− C(2)
l4H2
prst

− C(2)
l4H2
stpr

)]
. (4.4)
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Figure 1. Z-exchange contributions to OV,LLνν with flavour indices prst.

The direct contributions to the matching conditions of the other LEFT four-fermion
operators are calculated similarly.

4.2 Indirect contributions

A four-fermion operator can also be generated when a boson is exchanged between two
fermion currents and this boson is integrated out. This produces an indirect contribution
[e.g., see eq. (2.7)].

Consider once again the LEFT operator OV,LLνν
prst

of eq. (4.1). The indirect contributions

arise from the Z-exchange diagrams of figure 1, when the Z0 is integrated out. We note
that (i) there is a relative minus sign between the two diagrams, and (ii) when one Fierz
transforms (see appendix C) the amplitude of the second diagram, one obtains the ampli-
tude of the first diagram, but with an exchange of generation indices r ↔ t. The indirect
contribution to the matching condition of this operator, up to dimension 8, is

− g2
Z

4M2
Z

(
[ZνL ]effpr [ZνL ]effst + [ZνL ]effpt [ZνL ]effsr

)
, (4.5)

where gZ and [ZνL ]effpr are defined in eqs. (3.33) and (3.37), respectively.
Another example is the LEFT operator OV,LLνe

prst
≡ (νLpγµνLr)(eLsγµeLt). Here the

indirect contributions arise from the Z- and W -exchange diagrams of Fig, 2, when the
heavy gauge bosons are integrated out. The indirect contribution to the matching condition
of this operator, up to dimension 8, is

− g2
Z

M2
Z

[ZνL ]effpr [ZeL ]effst −
g2

2M2
W

[Wl]effpr [Wl]effst
∗
, (4.6)

where g and [Wl]effpr are defined in eqs. (3.19) and (3.37), respectively.
The indirect contributions from gauge-boson exchange to the matching conditions

of the other LEFT four-fermion operators are calculated similarly. Most such operators
can be generated via diagrams with the exchange of a Z0. A small subset of these also
involve W -exchange diagrams. And a few LEFT operators can be generated only via the
exchange of a W .
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Figure 2. Z- and W -exchange contributions to OV,LLνe with flavour indices prst.

Figure 3. Z- and h-exchange contributions to OV,LLνe with flavour indices prst.

Finally, the matching conditions of certain LEFT operators receive indirect con-
tributions from Higgs exchange. As an example, consider the operator OV,LRee

prst
≡

(eLpγµeLr)(eRsγµeRt).
The indirect contributions come from the diagrams of figure 3. The Z- and h-exchange

contributions are computed similarly to the previous examples. The indirect contribution
to the matching condition is

− gZ
2

MZ
2 [ZeL ]effpr [ZeR ]effst −

1
2mh

2 (Ye)effpt (Ye)effrs
∗
. (4.7)

The Yukawa coupling is [eq. (3.15), repeated for convenience]

(Ye)effpr = 1 + cH,kin√
2

[√
2

vT
[Me]pr −

v2
T

Λ2 CeH
pr
− v4

T

Λ4 CχeH5
pr

]
.

The first term is ∼ me/vT and is negligible. For this reason, JMS, which works only to
dimension 6, argues that the h-exchange indirect contributions to the matching conditions
are unimportant. However, when one works to dimension 8, there is a non-negligible
contribution resulting from the square of the second term.

4.3 Momentum-dependent contributions

In the introduction, we noted that (i) the matching conditions can be separated into two
types, momentum-independent and momentum-dependent, and (ii) in this paper, we focus
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only on the MI type. Indeed, in the above subsections, the direct and indirect contributions
give rise to MI matching conditions. Still, it is a useful exercise to explore which types
of SMEFT operators can produce MD matching conditions. The various sources of MD
contributions are outlined below.

We first consider dimension-8 SMEFT operators. Those belonging to the ψ4D2 class
contribute directly to four-fermion operators and give rise to MD contributions that scale
as p2/Λ4. There are also MD operators in the ψ2H4D class. These contribute to four-
fermion operators via Higgs exchange; the net effect scales as vp/Λ4. However, the MI
contributions scale as v2/Λ4. Since the momentum transfer p in low-energy processes is
much smaller than v, one can safely neglect these types of MD contributions.

On the other hand, there are also MD contributions from dimension-6 SMEFT oper-
ators. Those in the ψ2H2D and ψ2XH classes contribute to four-fermion operators via
the exchange of a Higgs boson or a W/Z boson, respectively. These contributions scale as
(m/v)(1/v2)(pv/Λ2) ∼ (p2/v2)/Λ2 and (1/v2)(pv/Λ2) ∼ (p/v)/Λ2, respectively. Clearly,
depending on the values of Λ and p ∼ m, these can be comparable to the MI dimension-8
SMEFT contributions, which scale as v2/Λ4.

In addition, the second-order term in the expansion of the propagator can give rise to
contributions of the same order, (p2/v4)(v2/Λ2) ∼ (p2/v2)/Λ2 . In this case, the momentum
dependence arises from the propagator, in contrast to the above contributions, where it
is in the vertex. (Note that, with dimension-8 operators, this type of effect is suppressed
since it scales as (p2/v4)(v2/Λ4) ∼ (p2/v2)/Λ4, which can be neglected.

4.4 Results

For all four-fermion LEFT operators, the MI matching conditions up to dimension 8 in
SMEFT are determined using the techniques described above for computing the direct
and indirect contributions. For the LEFT magnetic dipole moment operators, three-gluon
operators and neutrino mass terms, the calculations are straightforward, as there are no
indirect contributions. The matching conditions are given in the tables in appendix D.

In the literature, the matching conditions of LEFT operators to dimension-7 SMEFT
operators have been calculated in ref. [32]. The results obtained there are in agreement
with ours. The matching conditions of LEFT operators to dimension-8 SMEFT operators
has only been performed in refs. [15, 16], where the focus was on LEFT operators that
lead to lepton flavour violation. Our results agree with this analysis. Matching conditions
to dimension-8 SMEFT operators have also been computed in ref. [25], but in the context
of high-energy processes. Although LEFT operators were not involved, there is still some
overlap, and we agree here as well. Finally, the contributions of dimension-8 SMEFT
operators to the SM parameters, as described in section 3, was also examined in ref. [15],
and we are in agreement.

5 Conclusions

The modern thinking is that the Standard Model is the leading part of an effective field
theory, produced when the heavy new physics is integrated out. This EFT is usually
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assumed to be the SMEFT, which includes the Higgs boson. The SMEFT has been well-
studied — all operators up to dimension 8 have been worked out.

When the heavy particles of the SM (W±, Z0, H, t) are also integrated out, one obtains
the LEFT (low-energy EFT), applicable at scales � MW . In order to establish how low-
energy measurements are affected by the underlying NP, it is necessary to determine how
the LEFT operators depend on the SMEFT operators (the matching conditions).

In ref. [8], Jenkins, Manohar and Stoffer (JMS) present a complete and non-redundant
basis of LEFT operators up to dimension 6, and compute the matching to SMEFT operators
up to dimension 6. However, if the low-energy observable in question is suppressed in the
SM and/or is very precisely measured, this may not be sufficient. Indeed, it has been
pointed out that dimension-8 SMEFT contributions may be important for electroweak
precision data from LEP, lepton-flavour-violating processes, meson-antimeson mixing, and
electric dipole moments.

In this paper, we extend the analysis of JMS: for all LEFT operators, we work out
the complete tree-level momentum-independent matching conditions to SMEFT operators
up to dimension 8. The momentum-dependent contributions will be presented elsewhere.
There are direct contributions to these matching conditions for all LEFT operators, and
four-fermion operators also receive indirect contributions due to the exchange of a W±, Z0

and/or H.
Should the analysis of a LEFT observable require information about dimension-8

SMEFT tree-level contributions, much of that information can be found here.
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A LEFT operators up to dimension 6

The following two tables are taken from ref. [8].

B SMEFT operators used in this paper

B.1 Even-dimensional operators

These tables list the dimension-6 [3] and dimension-8 [7] SMEFT operators that contribute
to the matching conditions, separated into various categories.
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νν + h.c.

Oν (νTLpCνLr)

(νν)X + h.c.

Oνγ (νTLpCσµννLr)Fµν

(LR)X + h.c.

Oeγ ēLpσ
µνeRr Fµν

Ouγ ūLpσ
µνuRr Fµν

Odγ d̄Lpσ
µνdRr Fµν

OuG ūLpσ
µνTAuRr G

A
µν

OdG d̄Lpσ
µνTAdRr G

A
µν

X3

OG fABCGAνµ GBρν GCµρ

O
G̃
fABCG̃Aνµ GBρν GCµρ

(LL)(LL)

OV,LLνν (ν̄LpγµνLr)(ν̄LsγµνLt)

OV,LLee (ēLpγµeLr)(ēLsγµeLt)

OV,LLνe (ν̄LpγµνLr)(ēLsγµeLt)

OV,LLνu (ν̄LpγµνLr)(ūLsγµuLt)

OV,LLνd (ν̄LpγµνLr)(d̄LsγµdLt)

OV,LLeu (ēLpγµeLr)(ūLsγµuLt)

OV,LLed (ēLpγµeLr)(d̄LsγµdLt)

OV,LLνedu (ν̄LpγµeLr)(d̄LsγµuLt) + h.c.

OV,LLuu (ūLpγµuLr)(ūLsγµuLt)

OV,LLdd (d̄LpγµdLr)(d̄LsγµdLt)

OV 1,LL
ud (ūLpγµuLr)(d̄LsγµdLt)

OV 8,LL
ud (ūLpγµTAuLr)(d̄LsγµTAdLt)

(RR)(RR)

OV,RRee (ēRpγµeRr)(ēRsγµeRt)

OV,RReu (ēRpγµeRr)(ūRsγµuRt)

OV,RRed (ēRpγµeRr)(d̄RsγµdRt)

OV,RRuu (ūRpγµuRr)(ūRsγµuRt)

OV,RRdd (d̄RpγµdRr)(d̄RsγµdRt)

OV 1,RR
ud (ūRpγµuRr)(d̄RsγµdRt)

OV 8,RR
ud (ūRpγµTAuRr)(d̄RsγµTAdRt)

(LL)(RR)

OV,LRνe (ν̄LpγµνLr)(ēRsγµeRt)

OV,LRee (ēLpγµeLr)(ēRsγµeRt)

OV,LRνu (ν̄LpγµνLr)(ūRsγµuRt)

OV,LRνd (ν̄LpγµνLr)(d̄RsγµdRt)

OV,LReu (ēLpγµeLr)(ūRsγµuRt)

OV,LRed (ēLpγµeLr)(d̄RsγµdRt)

OV,LRue (ūLpγµuLr)(ēRsγµeRt)

OV,LRde (d̄LpγµdLr)(ēRsγµeRt)

OV,LRνedu (ν̄LpγµeLr)(d̄RsγµuRt) + h.c.

OV 1,LR
uu (ūLpγµuLr)(ūRsγµuRt)

OV 8,LR
uu (ūLpγµTAuLr)(ūRsγµTAuRt)

OV 1,LR
ud (ūLpγµuLr)(d̄RsγµdRt)

OV 8,LR
ud (ūLpγµTAuLr)(d̄RsγµTAdRt)

OV 1,LR
du (d̄LpγµdLr)(ūRsγµuRt)

OV 8,LR
du (d̄LpγµTAdLr)(ūRsγµTAuRt)

OV 1,LR
dd (d̄LpγµdLr)(d̄RsγµdRt)

OV 8,LR
dd (d̄LpγµTAdLr)(d̄RsγµTAdRt)

OV 1,LR
uddu (ūLpγµdLr)(d̄RsγµuRt) + h.c.

OV 8,LR
uddu (ūLpγµTAdLr)(d̄RsγµTAuRt) + h.c.

(LR)(LR) + h.c.

OS,RRee (ēLpeRr)(ēLseRt)

OS,RReu (ēLpeRr)(ūLsuRt)

OT,RReu (ēLpσµνeRr)(ūLsσµνuRt)

OS,RRed (ēLpeRr)(d̄LsdRt)

OT,RRed (ēLpσµνeRr)(d̄LsσµνdRt)

OS,RRνedu (ν̄LpeRr)(d̄LsuRt)

OT,RRνedu (ν̄LpσµνeRr)(d̄LsσµνuRt)

OS1,RR
uu (ūLpuRr)(ūLsuRt)

OS8,RR
uu (ūLpTAuRr)(ūLsTAuRt)

OS1,RR
ud (ūLpuRr)(d̄LsdRt)

OS8,RR
ud (ūLpTAuRr)(d̄LsTAdRt)

OS1,RR
dd (d̄LpdRr)(d̄LsdRt)

OS8,RR
dd (d̄LpTAdRr)(d̄LsTAdRt)

OS1,RR
uddu (ūLpdRr)(d̄LsuRt)

OS8,RR
uddu (ūLpTAdRr)(d̄LsTAuRt)

(LR)(RL) + h.c.

OS,RLeu (ēLpeRr)(ūRsuLt)

OS,RLed (ēLpeRr)(d̄RsdLt)

OS,RLνedu (ν̄LpeRr)(d̄RsuLt)

Table 1. The non-four-fermions LEFT operators up to dimension 6 and the dimension-6 four-
fermion LEFT operators conserving B and L.

B.2 Odd-dimensional operators

There is only one dimension-5 SMEFT operator: εijεkl(lTipClkr)HjHl. The basis for the
dimension-7 operators used here is equivalent to those given in refs. [4, 5].
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∆L = 4 + h.c.

OS,LLνν (νTLpCνLr)(νTLsCνLt)

∆L = 2 + h.c.

OS,LLνe (νTLpCνLr)(ēRseLt)

OT,LLνe (νTLpCσµννLr)(ēRsσµνeLt)

OS,LRνe (νTLpCνLr)(ēLseRt)

OS,LLνu (νTLpCνLr)(ūRsuLt)

OT,LLνu (νTLpCσµννLr)(ūRsσµνuLt)

OS,LRνu (νTLpCνLr)(ūLsuRt)

OS,LLνd (νTLpCνLr)(d̄RsdLt)

OT,LLνd (νTLpCσµννLr)(d̄RsσµνdLt)

OS,LRνd (νTLpCνLr)(d̄LsdRt)

OS,LLνedu (νTLpCeLr)(d̄RsuLt)

OT,LLνedu (νTLpCσµνeLr)(d̄RsσµνuLt)

OS,LRνedu (νTLpCeLr)(d̄LsuRt)

OV,RLνedu (νTLpCγµeRr)(d̄LsγµuLt)

OV,RRνedu (νTLpCγµeRr)(d̄RsγµuRt)

∆B = ∆L = 1 + h.c.

OS,LLudd εαβγ(uαTLpCd
β
Lr)(d

γT
LsCνLt)

OS,LLduu εαβγ(dαTLpCu
β
Lr)(u

γT
LsCeLt)

OS,LRuud εαβγ(uαTLpCu
β
Lr)(d

γT
RsCeRt)

OS,LRduu εαβγ(dαTLpCu
β
Lr)(u

γT
RsCeRt)

OS,RLuud εαβγ(uαTRpCu
β
Rr)(d

γT
LsCeLt)

OS,RLduu εαβγ(dαTRpCu
β
Rr)(u

γT
LsCeLt)

OS,RLdud εαβγ(dαTRpCu
β
Rr)(d

γT
LsCνLt)

OS,RLddu εαβγ(dαTRpCd
β
Rr)(u

γT
LsCνLt)

OS,RRduu εαβγ(dαTRpCu
β
Rr)(u

γT
RsCeRt)

∆B = −∆L = 1 + h.c.

OS,LLddd εαβγ(dαTLpCd
β
Lr)(ēRsd

γ
Lt)

OS,LRudd εαβγ(uαTLpCd
β
Lr)(ν̄Lsd

γ
Rt)

OS,LRddu εαβγ(dαTLpCd
β
Lr)(ν̄Lsu

γ
Rt)

OS,LRddd εαβγ(dαTLpCd
β
Lr)(ēLsd

γ
Rt)

OS,RLddd εαβγ(dαTRpCd
β
Rr)(ēRsd

γ
Lt)

OS,RRudd εαβγ(uαTRpCd
β
Rr)(ν̄Lsd

γ
Rt)

OS,RRddd εαβγ(dαTRpCd
β
Rr)(ēLsd

γ
Rt)

Table 2. The dimension-6 four-fermion LEFT operators violating B and/or L.

C Useful Fierz identities

The following Fierz identities are needed to derive the matching conditions given in this
paper.

C.1 For (LL)(LL) and (RR)(RR) operators

In the case of a four-lepton operator, the identities take the form

(νLpγµeLt)(eLsγµνLr) = (νLpγµνLr)(eLsγµeLt). (C.1)

In the case of a four-quark operator, color has to be taken into consideration. This is done
through the identity δαλδκβ = 2TAαβTAκλ + 1

3δαβδκλ. The identities are (for instance)

(uLpγµdLt)(dLsγµuLr) = 2(uLpγµTAuLr)(dLsγµTAdLt) + 1
3(uLpγµuLr)(dLsγµdLt). (C.2)
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Classes Hn and HnD2

Operator WC

(H†H)3 1
Λ2CH

(H†H)4 1
Λ4CH8

(H†H)�(H†H) 1
Λ2CH�

(H†DµH)∗(H†DµH) 1
Λ2CHD

(H†H)2(DµH
†DµH) 1

Λ4C
(1)
H6

(H†H)(H†τ IH)(DµH
†τ IDµH) 1

Λ4C
(2)
H6

Classes X3Hn

Operator WC

fABCGAνµ GBρν GCµρ
1

Λ2CG

fABCG̃Aνµ GBρν GCµρ
1

Λ2CG̃

fABC(H†H)GAνµ GBρν GCµρ
1

Λ2C
(1)
G3H2

fABC(H†H)G̃Aνµ GBρν GCµρ
1

Λ2C
(2)
G3H2

Classes ψ2Hn

Operator WC

(H†H)(lperH) 1
Λ2CeHpr

(H†H)(qpurH) 1
Λ2CuHpr

(H†H)(qpdrH) 1
Λ2CdHpr

(H†H)2(lperH) 1
Λ4CleH5

pr

(H†H)2(qpurH) 1
Λ4CquH5

pr

(H†H)2(qpdrH) 1
Λ4CqdH5

pr

Classes X2Hn

Operator WC

(H†H)(GAµνGAµν) 1
Λ2CHG

(H†H)(W I
µνW

Iµν) 1
Λ2CHW

(H†H)(BµνBµν) 1
Λ2CHB

(H†τ IH)(W I
µνB

µν) 1
Λ2CHWB

(H†H)2GAµνG
Aµν 1

Λ4C
(1)
G2H4

(H†H)2W I
µνW

Iµν 1
Λ4C

(1)
W 2H4

(H†τ IH)(H†τJH)W I
µνW

Jµν 1
Λ4C

(3)
W 2H4

(H†H)(H†τ IH)W I
µνB

µν 1
Λ4C

(1)
WBH4

(H†H)2BµνB
µν 1

Λ4C
(1)
B2H4

Classes ψ2XHn

Operator WC

(lpσµνer)τ IHW I
µν

1
Λ2CeWpr

(lpσµνer)HBµν
1

Λ2CeBpr

(qpσµνTAur)H̃GAµν
1

Λ2CuGpr

(qpσµνur)τ IH̃W I
µν

1
Λ2CuWpr

(qpσµνur)H̃Bµν
1

Λ2CuBpr

(qpσµνTAdr)HGAµν
1

Λ2CdGpr

(qpσµνdr)τ IHW I
µν

1
Λ2CdWpr

(qpσµνdr)HBµν
1

Λ2CdBpr

(lpσµνer)τ IH(H†H)W I
µν

1
Λ4C

(1)
leWH3

pr

(lpσµνer)H(H†τ IH)W I
µν

1
Λ4C

(2)
leWH3

pr

(lpσµνer)H(H†H)Bµν
1

Λ4CleBH3

pr

(qpσµνTAur)H̃(H†H)GAµν
1

Λ4CquGH3

pr

(qpσµνur)τ IH̃(H†H)W I
µν

1
Λ4C

(1)
quWH3

pr

(qpσµνur)H̃(H†τ IH)W I
µν

1
Λ4C

(2)
quWH3

pr

(qpσµνur)H̃(H†H)Bµν
1

Λ4CquBH3

pr

(qpσµνTAdr)H(H†H)GAµν
1

Λ4CqdGH3

pr

(qpσµνdr)τ IH(H†H)W I
µν

1
Λ4C

(1)
qdWH3

pr

(qpσµνdr)H(H†τ IH)W I
µν

1
Λ4C

(2)
qdWH3

pr

(qpσµνdr)H(H†H)Bµν
1

Λ4CqdBH3

pr

Classes ψ2HnD

Operator WC

(H†i←→D µH)(lpγµlr)
1

Λ2C
(1)
Hl
pr

(H†i←→D I
µH)(lpτ Iγµlr)

1
Λ2C

(3)
Hl
pr

(H†i←→D µH)(epγµer)
1

Λ2CHepr

(H†i←→D µH)(qpγµqr)
1

Λ2C
(1)
Hq
pr

(H†i←→D I
µH)(qpτ Iγµqr)

1
Λ2C

(3)
Hq
pr

(H†i←→D µH)(upγµur)
1

Λ2CHupr

(H†i←→D µH)(dpγµdr)
1

Λ2CHdpr

i(H̃†DµH)(upγµdr)
1

Λ2CHudpr

i(lpγµlr)(H†
←→
D µH)(H†H) 1

Λ4C
(1)
l2H4D
pr

i(lpγµτ I lr)[(H†
←→
D I
µH)(H†H) + (H†←→D µH)(H†τ IH)] 1

Λ4C
(2)
l2H4D
pr

iεIJK(lpγµτ I lr)(H†
←→
D J
µH)(H†τKH) 1

Λ4C
(3)
l2H4D
pr

i(epγµer)(H†
←→
D µH)(H†H) 1

Λ4Ce2H4D
pr

i(qpγµqr)(H†
←→
D µH)(H†H) 1

Λ4C
(1)
q2H4D
pr

i(qpγµτ Iqr)[(H†
←→
D I
µH)(H†H) + (H†←→D µH)(H†τ IH)] 1

Λ4C
(2)
q2H4D
pr

iεIJK(qpγµτ Iqr)(H†
←→
D J
µH)(H†τKH) 1

Λ4C
(3)
q2H4D
pr

i(upγµur)(H†
←→
D µH)(H†H) 1

Λ4Cu2H4D
pr

i(dpγµdr)(H†
←→
D µH)(H†H) 1

Λ4Cd2H4D
pr

i(upγµdr)(H̃†
←→
D µH)(H†H) 1

Λ4CudH4D
pr

Table 3. The even-dimensional non-four-fermion SMEFT operators appearing in this paper.
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Classes (LL)(LL)Hn

Operator WC

(lpγµlr)(lsγµlt)
1

Λ2C ll
prst

(qpγµqr)(qsγµqt)
1

Λ2C
(1)
qq
prst

(qpγµτ Iqr)(qsγµτ Iqt)
1

Λ2C
(3)
qq
prst

(lpγµlr)(qsγµqt)
1

Λ2C
(1)
lq
prst

(lpγµτ I lr)(qsγµτ Iqt)
1

Λ2C
(3)
lq
prst

(lpγµlr)(lsγµlt)(H†H) 1
Λ4C

(1)
l4H2

prst

(lpγµlr)(lsγµτ I lt)(H†τ IH) 1
Λ4C

(2)
l4H2

prst

(qpγµqr)(qsγµqt)(H†H) 1
Λ4C

(1)
q4H2

prst

(qpγµqr)(qsγµτ Iqt)(H†τ IH) 1
Λ4C

(2)
q4H2

prst

(qpγµτ Iqr)(qsγµτ Iqt)(H†H) 1
Λ4C

(3)
q4H2

prst

εIJK(qpγµτ Iqr)(qsγµτJqt)(H†τKH) 1
Λ4C

(5)
q4H2

prst

(lpγµlr)(qsγµqt)(H†H) 1
Λ4C

(1)
l2q2H2

prst

(lpγµτ I lr)(qsγµqt)(H†τ IH) 1
Λ4C

(2)
l2q2H2

prst

(lpγµτ I lr)(qsγµτ Iqt)(H†H) 1
Λ4C

(3)
l2q2H2

prst

(lpγµlr)(qsγµτ Iqt)(H†τ IH) 1
Λ4C

(4)
l2q2H2

prst

εIJK(lpγµτ I lr)(qsγµτJqt)(H†τKH) 1
Λ4C

(5)
l2q2H2

prst

Classes (RR)(RR)Hn

Operator WC

(epγµer)(esγµet)
1

Λ2C ee
prst

(upγµur)(usγµut)
1

Λ2C uu
prst

(dpγµdr)(dsγµdt)
1

Λ2C dd
prst

(epγµer)(usγµut)
1

Λ2C eu
prst

(epγµer)(dsγµdt)
1

Λ2C ed
prst

(upγµur)(dsγµdt)
1

Λ2C
(1)
ud
prst

(upγµTAur)(dsγµTAdt)
1

Λ2C
(8)
ud
prst

(epγµer)(esγµet)(H†H) 1
Λ4Ce4H2

prst

(upγµur)(usγµut)(H†H) 1
Λ4Cu4H2

prst

(dpγµdr)(dsγµdt)(H†H) 1
Λ4Cd4H2

prst

(epγµer)(usγµut)(H†H) 1
Λ4Ce2u2H2

prst

(epγµer)(dsγµdt)(H†H) 1
Λ4Ce2d2H2

prst

(upγµur)(dsγµdt)(H†H) 1
Λ4C

(1)
u2d2H2

prst

(upγµTAur)(dsγµTAdt)(H†H) 1
Λ4C

(2)
u2d2H2

prst

Classes (LR)(LR)Hn

Operator WC

(qjpur)εjk(qksdt)
1

Λ2C
(1)
quqd
prst

(qjpTAur)εjk(qksTAdt)
1

Λ2C
(8)
quqd
prst

(ljper)εjk(qksut)
1

Λ2C
(1)
lequ
prst

(ljpσµνer)εjk(qksσµνut)
1

Λ2C
(3)
lequ
prst

(qjpur)εjk(qksdt)(H†H) 1
Λ4C

(1)
q2udH2

prst

(qjpur)(τ Iε)jk(qksdt)(H†τ IH) 1
Λ4C

(2)
q2udH2

prst

(qjpTAur)εjk(qksTAdt)(H†H) 1
Λ4C

(3)
q2udH2

prst

(qjpTAur)(τ Iε)jk(qksTAdt)(H†τ IH) 1
Λ4C

(4)
q2udH2

prst

(ljper)εjk(qksut)(H†H) 1
Λ4C

(1)
lequH2

prst

(ljper)(τ Iε)jk(qksut)(H†τ IH) 1
Λ4C

(2)
lequH2

prst

(ljpσµνer)εjk(qksσµνut)(H†H) 1
Λ4C

(3)
lequH2

prst

(ljpσµνer)(τ Iε)jk(qksσµνut)(H†τ IH) 1
Λ4C

(4)
lequH2

prst

(lperH)(lsetH) 1
Λ4C

(3)
l2e2H2

prst

(lperH)(qsdtH) 1
Λ4C

(3)
leqdH2

prst

(lpσµνerH)(qsσµνdtH) 1
Λ4C

(4)
leqdH2

prst

(qpurH̃)(qsutH̃) 1
Λ4C

(5)
q2u2H2

prst

(qpTAurH̃)(qsTAutH̃) 1
Λ4C

(6)
q2u2H2

prst

(qpdrH)(qsdtH) 1
Λ4C

(5)
q2d2H2

prst

(qpTAdrH)(qsTAdtH) 1
Λ4C

(6)
q2d2H2

prst

Classes ( /B)ψ4Hn

Operator WC

εαβγεjk(dαTp Cuβr )(qγTjs Clkt)
1

Λ2Cduq
prst

εαβγεjk(qαTjp Cq
β
kr)(uγTs Cet)

1
Λ2C qqu

prst

εαβγεjnεkm(qαTjp Cq
β
kr)(qγTmsClnt)

1
Λ2C qqq

prst

εαβγ(dαTp Cuβr )(uγTs Cet)
1

Λ2Cduuprst

εαβγεjk(dαTp Cuβr )(qγTjs Clkt)(H†H) 1
Λ4C

(1)
lqudH2

prst

εαβγ(ετ I)jk(dαTp Cuβr )(qγTjs Clkt)(H†τ IH) 1
Λ4C

(2)
lqudH2

prst

εαβγεjk(qαTjp Cqβmr)(uγTs Cet)(Hm†Hk) 1
Λ4Ceq2uH2

prst

εαβγεjkεmn(qαTmpCq
β
jr)(q

γT
ks Clnt)(H†H) 1

Λ4C
(1)
lq3H2

prst

εαβγεjk(ετ I)mn(qαTmpCq
β
jr)(q

γT
ks Clnt)(H†τ IH) 1

Λ4C
(2)
lq3H2

prst

εαβγ(ετ I)jkεmn(qαTmpCq
β
jr)(q

γT
ks Clnt)(H†τ IH) 1

Λ4C
(3)
lq3H2

prst

εαβγ(dαTp Cuβr )(uγTs Cet)(H†H) 1
Λ4Ceu2dH2

prst

εαβγεjkεmn(lTjpCqαmr)(uβTs Cuγt )H̃kH̃n
1

Λ4Clqu2H2

prst

εαβγεjkεmn(lTjpCqαmr)(dβTs Cdγt )HkHn
1

Λ4Clqd2H2

prst

εαβγεjkεmn(eTp Cdαr )(qβTjs Cq
γ
mt)HkHn

1
Λ4Ceq2dH2

prst

Classes (LL)(RR)Hn

Operator WC

(lpγµlr)(esγµet)
1

Λ2C le
prst

(lpγµlr)(usγµut)
1

Λ2C lu
prst

(lpγµlr)(dsγµdt)
1

Λ2C ld
prst

(qpγµqr)(esγµet)
1

Λ2C qe
prst

(qpγµqr)(usγµut)
1

Λ2C
(1)
qu
prst

(qpγµTAqr)(usγµTAut)
1

Λ2C
(8)
qu
prst

(qpγµqr)(dsγµdt)
1

Λ2C
(1)
qd
prst

(qpγµTAqr)(dsγµTAdt)
1

Λ2C
(8)
qd
prst

(lpγµlr)(esγµet)(H†H) 1
Λ4C

(1)
l2e2H2

prst

(lpγµτ I lr)(esγµet)(H†τ IH) 1
Λ4C

(2)
l2e2H2

prst

(lpγµlr)(usγµut)(H†H) 1
Λ4C

(1)
l2u2H2

prst

(lpγµτ I lr)(usγµut)(H†τ IH) 1
Λ4C

(2)
l2u2H2

prst

(lpγµlr)(dsγµdt)(H†H) 1
Λ4C

(1)
l2d2H2

prst

(lpγµτ I lr)(dsγµdt)(H†τ IH) 1
Λ4C

(2)
l2d2H2

prst

(qpγµqr)(esγµet)(H†H) 1
Λ4C

(1)
q2e2H2

prst

(qpγµτ Iqr)(esγµet)(H†τ IH) 1
Λ4C

(2)
q2e2H2

prst

(qpγµqr)(usγµut)(H†H) 1
Λ4C

(1)
q2u2H2

prst

(qpγµτ Iqr)(usγµut)(H†τ IH) 1
Λ4C

(2)
q2u2H2

prst

(qpγµTAqr)(usγµTAut)(H†H) 1
Λ4C

(3)
q2u2H2

prst

(qpγµτ ITAqr)(usγµTAut)(H†τ IH) 1
Λ4C

(4)
q2u2H2

prst

(qpγµqr)(dsγµdt)(H†H) 1
Λ4C

(1)
q2d2H2

prst

(qpγµτ Iqr)(dsγµdt)(H†τ IH) 1
Λ4C

(2)
q2d2H2

prst

(qpγµTAqr)(dsγµTAdt)(H†H) 1
Λ4C

(3)
q2d2H2

prst

(qpγµτ ITAqr)(dsγµTAdt)(H†τ IH) 1
Λ4C

(4)
q2d2H2

prst

Classes (LR)(RL)Hn

Operator WC

(ljper)(dsq
j
t )

1
Λ2Cledq

prst

(ljper)(dsq
j
t )(H†H) 1

Λ4C
(1)
leqdH2

prst

(lper)τ I(dsqt)(H†τ IH) 1
Λ4C

(2)
leqdH2

prst

(lpdrH)(H̃†uslt)
1

Λ4Cl2udH2

prst

(lperH)(H̃†usqt)
1

Λ4C
(5)
lequH2

prst

(qpdrH)(H̃†usqt)
1

Λ4C
(5)
q2udH2

prst

(qpTAdrH)(H̃†usTAqt)
1

Λ4C
(6)
q2udH2

prst

Table 4. The even-dimensional four-fermion SMEFT operators appearing in this paper.
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Classes ψ2Hn

Operator WC

εijεkl(lTipClkr)HjHl
1
ΛC 5

pr

εijεkl(lTipClkr)HjHl(H†H) 1
Λ3Cl2H4

pr

Class ψ2H3D

Operator WC

iεijεkl(lTipCγµer)HjHk(DµH)l
1

Λ3CleH3D
pr

Class ψ2H2X

Operator WC

εijεkl(lTipCσµν lkr)HjHlB
µν 1

Λ3Cl2H2B
pr

εij(ετ I)kl(lTipCσµν lkr)HjHlW
Iµν 1

Λ3Cl2H2W
pr

Class ψ4H

Operator WC

εijεkl(lTipClkr)(esljt)Hl
1

Λ3Cl3eH
prst

εijεkl(lTipClkr)(dsqlt)Hj
1

Λ3C
(1)
l2dqH
prst

εijεkl(lTipCσµν lkr)(dsσµνqlt)Hj
1

Λ3C
(2)
l2dqH
prst

εij(lTipClkr)(qksut)Hj
1

Λ3Cl2quH
prst

εαβγεij(qαTkp Cq
β
ir)(l

k

sd
γ
t )H̃j

1
Λ3Cq2ldH

prst

εαβγ(dαTp Cdβr )(lsdγt )H 1
Λ3Cd3lH

prst

εαβγ(uαTp Cdβr )(lsdγt )H̃ 1
Λ3Cud2lH

prst

εij(lTipCγµer)(dsγµut)Hj
1

Λ3CleduHprst

εαβγεij(dαTp Cdβr )(esqγit)H̃j
1

Λ3Ceqd2H
prst

Table 5. The odd-dimensional SMEFT operators appearing in this paper.

C.2 For (LL)(RR) operators

In the case of a four-lepton operator or a two-lepton and two-quark operator, the Fierz
identities take the form

(νLpeRt)(eRsνLr) = −1
2(νLpγµνLr)(eRsγµeRt) . (C.3)

In the case of a four-quark operator, the identities take the following forms:

(uLpdRt)(dRsuLr) = −(uLpγµTAuLr)(dRsγµTAdRt)

− 1
6(uLpγµuLr)(dRsγµdRt) , (C.4)

(uLpTAdRt)(dRsTAuLr) = −2
9(uLpγµuLr)(dRsγµdRt)

+ 1
6(uLpγµTAuLr)(dRsγµTAdRt) . (C.5)
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C.3 For fermion-number-violating operators

The needed identities take the form

(νTLrCνLr)(eRseLt) = −1
2(νTLpCeLt)(eRsνLr)−

1
8(νTLpCσµνeLt)(eRsσµννLr) , (C.6)

(νTLrCνLr)(eLseRt) = −1
2(νTLpCγµeRt)(eRsγµνRr) , (C.7)

(νTLrCνLr)(eTLsCeLt) = −1
2(νTLpCeLt)(eTLsCνLr)−

1
8(νTLpCσµνeLt)(eTLsCσµννLr) . (C.8)

D Matching conditions

D.1 νν+ h.c. operator

LEFT WC Matching

ΛC ν
pr

vT
2

2Λ

[
C 5
pr

+ vT
2

2Λ2Cl2H4
pr

]

D.2 (νν)X+ h.c. and (LR)X+ h.c. operators

LEFT WC (+ c.c.) Matching (+ c.c.)
1

Λ2Cνγpr

vT
2

2gZΛ3

[
gCl2H2B

pr
− g′

2

(
Cl2H2W

pr
− Cl2H2W

rp

)]

1
Λ2Ceγpr

vT√
2 gZ Λ2


(
gCeB

pr
− g′CeW

pr

)
+ vT

2

2Λ2

(
gCleBH3

pr
− g′C(1)

leWH3
pr

− g′C(2)
leWH3
pr

)


1
Λ2Cuγpr

vT√
2 gZ Λ2


(
gCuB

pr
+ g′CuW

pr

)
+ vT

2

2Λ2

(
gCquBH3

pr
+ g′C

(1)
quWH3
pr

− g′C(2)
quWH3
pr

)


1
Λ2Cdγ

pr

vT√
2 gZ Λ2


(
gCdB

pr
− g′CdW

pr

)
+ vT

2

2Λ2

(
gCqdBH3

pr
− g′C(1)

qdWH3
pr

− g′C(2)
qdWH3
pr

)


1
Λ2CuG

pr

vT√
2 Λ2

[
CuG
pr

+ vT
2

2Λ2CquGH3
pr

]
1

Λ2CdG
pr

vT√
2 Λ2

[
CdG
pr

+ vT
2

2Λ2CqdGH3
pr

]
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The non-physical ratios g/gZ and g′/gZ appearing here can be expressed in terms of the
corrected coupling constants g and g′ and the SMEFT WC’s, using the following equations:

g

gZ
= g√

g2 + g′2



1 + g′2vT
2

(g2 + g′2)Λ2 (CHB − CHW )

+ g′2vT
4

2(g2 + g′2)Λ4 (C(1)
B2H4 − C(1)

W 2H4)

+ vT
4

2(g2 + g′2)2Λ4

(
3g′4 [CHB]2 − g′2[4g2 + g′2] [CHW ]2

+ 2g′2[2g2 − g′2]CHW CHB

)


, (D.1)

g′

gZ
= g′√

g2 + g′2



1 + g2vT
2

(g2 + g′2)Λ2 (CHW − CHB)

+ g2vT
4

2(g2 + g′2)Λ4 (C(1)
W 2H4 − C(1)

B2H4)

+ vT
4

2(g2 + g′2)2Λ4

(
3g4 [CHW ]2 − g2[4g′2 + g2] [CHB]2

+ 2g2[2g′2 − g2]CHW CHB

)


. (D.2)

D.3 X3 operators

LEFT WC Matching
1

Λ2CG
1

Λ2

[
CG + vT

2

2Λ2C
(1)
G3H2

]
1

Λ2CG̃
1

Λ2

[
CG̃ + vT

2

2Λ2C
(2)
G3H2

]
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D.4 (LL)(LL) operators

LEFT WC Matching
1

Λ2C
V,LL
νν
prst

1
Λ2

[
C ll
prst

+ vT
2

2Λ2

(
C

(1)
l4H2
prst

− C(2)
l4H2
prst

− C(2)
l4H2
stpr

)]

− gZ
2

4MZ
2

(
[ZνL ]effpr [ZνL ]effst + [ZνL ]effpt [ZνL ]effsr

)
1

Λ2C
V,LL
ee
prst

1
Λ2

[
C ll
prst

+ vT
2

2Λ2

(
C

(1)
l4H2
prst

+ C
(2)
l4H2
prst

+ C
(2)
l4H2
stpr

)]

− gZ
2

4MZ
2

(
[ZeL ]effpr [ZeL ]effst + [ZeL ]effpt [ZeL ]effsr

)
1

Λ2C
V,LL
νe
prst

1
Λ2

[(
C ll
prst

+ C ll
stpr

)
+ vT

2

2Λ2

(
C

(1)
l4H2
prst

+ C
(1)
l4H2
stpr

+ C
(2)
l4H2
prst

− C(2)
l4H2
stpr

)]

− gZ
2

MZ
2 [ZνL ]effpr [ZeL ]effst −

g2

2MW
2 [Wl]effpt [Wl]effrs

∗

1
Λ2C

V,LL
uu
prst

1
Λ2

[(
C

(1)
qq
prst

+ C
(3)
qq
prst

)
+ vT

2

2Λ2

(
C

(1)
q4H2

prst

− C(2)
q4H2

prst

− C(2)
q4H2

stpr

+ C
(3)
q4H2

prst

)]

− gZ
2

2MZ
2 [ZuL ]effpr [ZuL ]effst

1
Λ2C

V,LL
dd
prst

1
Λ2

[(
C

(1)
qq
prst

+ C
(3)
qq
prst

)
+ vT

2

2Λ2

(
C

(1)
q4H2

prst

+ C
(2)
q4H2

prst

+ C
(2)
q4H2

stpr

+ C
(3)
q4H2

prst

)]

− gZ
2

2MZ
2 [ZdL

]effpr [ZdL
]effst
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LEFT WC Matching

1
Λ2C

V 1,LL
ud
prst

1
Λ2



(
C

(1)
qq
prst

+C
(1)
qq
stpr
−C(3)

qq
prst
−C(3)

qq
stpr

+ 2
3C

(3)
qq
ptsr

+ 2
3C

(3)
qq
srpt

)

+ vT
2

2Λ2


C

(1)
q4H2

prst

+C
(1)
q4H2

stpr

+C
(2)
q4H2

prst

−C(2)
q4H2

stpr

−C(3)
q4H2

prst

−C(3)
q4H2

stpr

+ 2
3C

(3)
q4H2

ptsr

+ 2
3C

(3)
q4H2

srpt

+ 2i
3 C

(5)
q4H2

ptsr

− 2i
3 C

(5)
q4H2

srpt




− gZ

2

MZ
2 [ZuL ]effpr [ZdL

]effst −
g2

6MW
2 [Wq]effpt [Wq]effrs

∗

1
Λ2C

V 8,LL
ud
prst

4
Λ2

[(
C

(3)
qq
ptsr

+C
(3)
qq
srpt

)
+ vT

2

2Λ2

(
C

(3)
q4H2

ptsr

+C
(3)
q4H2

srpt

− iC(5)
q4H2

prst

+ iC
(5)
q4H2

stpr

)]

− g2

MW
2 [Wq]effpt [Wq]effrs

∗

1
Λ2C

V,LL
νu
prst

1
Λ2

[(
C

(1)
lq
prst

+C
(3)
lq
prst

)
+ vT

2

2Λ2

(
C

(1)
l2q2H2

prst

−C(2)
l2q2H2

prst

+C
(3)
l2q2H2

prst

−C(4)
l2q2H2

prst

)]

− gZ
2

MZ
2 [ZνL ]effpr [ZuL ]effst

1
Λ2C

V,LL
νd
prst

1
Λ2

[(
C

(1)
lq
prst

−C(3)
lq
prst

)
+ vT

2

2Λ2

(
C

(1)
l2q2H2

prst

−C(2)
l2q2H2

prst

−C(3)
l2q2H2

prst

+C
(4)
l2q2H2

prst

)]

− gZ
2

MZ
2 [ZνL ]effpr [ZdL

]effst

1
Λ2C

V,LL
eu
prst

1
Λ2

[(
C

(1)
lq
prst

−C(3)
lq
prst

)
+ vT

2

2Λ2

(
C

(1)
l2q2H2

prst

+C
(2)
l2q2H2

prst

−C(3)
l2q2H2

prst

−C(4)
l2q2H2

prst

)]

− gZ
2

MZ
2 [ZeL ]effpr [ZuL ]effst

1
Λ2C

V,LL
ed
prst

1
Λ2

[(
C

(1)
lq
prst

+C
(3)
lq
prst

)
+ vT

2

2Λ2

(
C

(1)
l2q2H2

prst

+C
(2)
l2q2H2

prst

+C
(3)
l2q2H2

prst

+C
(4)
l2q2H2

prst

)]

− gZ
2

MZ
2 [ZeL ]effpr [ZdL

]effst

1
Λ2C

V,LL
νedu
prst

+ h.c. 2
Λ2

[
C

(3)
lq
prst

+ vT
2

2Λ2

(
C

(3)
l2q2H2

prst

− iC(5)
l2q2H2

prst

)]
− g2

2MW
2 [Wl]effpr [Wq]effts

∗+c.c.
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D.5 (RR)(RR) operators

LEFT WC Matching
1

Λ2C
V,RR
ee
prst

1
Λ2

[
C ee
prst

+ vT
2

2Λ2Ce4H2
prst

]
− gZ

2

4MZ
2

(
[ZeR ]effpr [ZeR ]effst + [ZeR ]effpt [ZeR ]effsr

)
1

Λ2C
V,RR
eu
prst

1
Λ2

[
C eu
prst

+ vT
2

2Λ2Ce2u2H2
prst

]
− gZ

2

MZ
2 [ZeR ]effpr [ZuR ]effst

1
Λ2C

V,RR
ed
prst

1
Λ2

[
C ed
prst

+ vT
2

2Λ2Ce2d2H2
prst

]
− gZ

2

MZ
2 [ZeR ]effpr [ZdR

]effst

1
Λ2C

V,RR
uu
prst

1
Λ2

[
C uu
prst

+ vT
2

2Λ2Cu4H2
prst

]
− gZ

2

2MZ
2 [ZuR ]effpr [ZuR ]effst

1
Λ2C

V,RR
dd
prst

1
Λ2

[
C dd
prst

+ vT
2

2Λ2Cd4H2
prst

]
− gZ

2

2MZ
2 [ZdR

]effpr [ZdR
]effst

1
Λ2C

V 1,RR
ud
prst

1
Λ2

[
C

(1)
ud
prst

+ vT
2

2Λ2C
(1)
u2d2H2
prst

]
− gZ

2

MZ
2 [ZuR ]effpr [ZdR

]effst −
g2

6MW
2 [WR]effpt [WR]effrs

∗

1
Λ2C

V 8,RR
ud
prst

1
Λ2

[
C

(8)
ud
prst

+ vT
2

2Λ2C
(2)
u2d2H2
prst

]
− g2

MW
2 [WR]effpt [WR]effrs

∗

D.6 (LL)(RR) operators

LEFT WC Matching
1

Λ2C
V,LR
νe
prst

1
Λ2

[
C le
prst

+ vT
2

2Λ2

(
C

(1)
l2e2H2
prst

− C(2)
l2e2H2
prst

)]
− gZ

2

MZ
2 [ZνL ]effpr [ZeR ]effst

1
Λ2C

V,LR
ee
prst

1
Λ2

[
C le
prst

+ vT
2

2Λ2

(
C

(1)
l2e2H2
prst

+ C
(2)
l2e2H2
prst

)]

− gZ
2

MZ
2 [ZeL ]effpr [ZeR ]effst −

1
2mh

2 (Ye)effpt (Ye)effrs
∗

1
Λ2C

V,LR
νu
prst

1
Λ2

[
C lu
prst

+ vT
2

2Λ2

(
C

(1)
l2u2H2
prst

− C(2)
l2u2H2
prst

)]
− gZ

2

MZ
2 [ZνL ]effpr [ZuR ]effst

1
Λ2C

V,LR
eu
prst

1
Λ2

[
C lu
prst

+ vT
2

2Λ2

(
C

(1)
l2u2H2
prst

+ C
(2)
l2u2H2
prst

)]
− gZ

2

MZ
2 [ZeL ]effpr [ZuR ]effst

1
Λ2C

V,LR
νd
prst

1
Λ2

[
C ld
prst

+ vT
2

2Λ2

(
C

(1)
l2d2H2
prst

− C(2)
l2d2H2
prst

)]
− gZ

2

MZ
2 [ZνL ]effpr [ZdR

]effst

1
Λ2C

V,LR
ed
prst

1
Λ2

[
C ld
prst

+ vT
2

2Λ2

(
C

(1)
l2d2H2
prst

+ C
(2)
l2d2H2
prst

)]
− gZ

2

MZ
2 [ZeL ]effpr [ZdR

]effst

1
Λ2C

V,LR
ue
prst

1
Λ2

[
C qe
prst

+ vT
2

2Λ2

(
C

(1)
q2e2H2

prst

− C(2)
q2e2H2

prst

)]
− gZ

2

MZ
2 [ZuL ]effpr [ZeR ]effst

1
Λ2C

V,LR
de
prst

1
Λ2

[
C qe
prst

+ vT
2

2Λ2

(
C

(1)
q2e2H2

prst

+ C
(2)
q2e2H2

prst

)]
− gZ

2

MZ
2 [ZdL

]effpr [ZeR ]effst
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LEFT WC Matching
1

Λ2C
V 1,LR
uu
prst

1
Λ2

[
C

(1)
qu
prst

+ vT
2

2Λ2

(
C

(1)
q2u2H2

prst

− C(2)
q2u2H2

prst

)]

− gZ
2

MZ
2 [ZuL ]effpr [ZuR ]effst −

1
6mh

2 (Yu)effpt (Yu)effrs
∗

1
Λ2C

V 1,LR
du
prst

1
Λ2

[
C

(1)
qu
prst

+ vT
2

2Λ2

(
C

(1)
q2u2H2

prst

+ C
(2)
q2u2H2

prst

)]
− gZ

2

MZ
2 [ZdL

]effpr [ZuR ]effst

1
Λ2C

V 8,LR
uu
prst

1
Λ2

[
C

(8)
qu
prst

+ vT
2

2Λ2

(
C

(3)
q2u2H2

prst

− C(4)
q2u2H2

prst

)]
− 1
mh

2 (Yu)effpt (Yu)effrs
∗

1
Λ2C

V 8,LR
du
prst

1
Λ2

[
C

(8)
qu
prst

+ vT
2

2Λ2

(
C

(3)
q2u2H2

prst

+ C
(4)
q2u2H2

prst

)]
1

Λ2C
V 1,LR
ud
prst

1
Λ2

[
C

(1)
qd
prst

+ vT
2

2Λ2

(
C

(1)
q2d2H2

prst

− C(2)
q2d2H2

prst

)]
− gZ

2

MZ
2 [ZuL ]effpr [ZdR

]effst

1
Λ2C

V 1,LR
dd
prst

1
Λ2

[
C

(1)
qd
prst

+ vT
2

2Λ2

(
C

(1)
q2d2H2

prst

+ C
(2)
q2d2H2

prst

)]

− gZ
2

MZ
2 [ZdL

]effpr [ZdR
]effst −

1
6mh

2 (Yd)effpt (Yd)effrs
∗

1
Λ2C

V 8,LR
ud
prst

1
Λ2

[
C

(8)
qd
prst

+ vT
2

2Λ2

(
C

(3)
q2d2H2

prst

− C(4)
q2d2H2

prst

)]
1

Λ2C
V 8,LR
dd
prst

1
Λ2

[
C

(8)
qd
prst

+ vT
2

2Λ2

(
C

(3)
q2d2H2

prst

+ C
(4)
q2d2H2

prst

)]
− 1
mh

2 (Yd)effpt (Yd)effrs
∗

1
Λ2C

V,LR
νedu
prst

+ h.c. vT
2

4Λ4 Cl2udH2
tprs

∗ − g2

2MW
2 [Wl]effpr [WR]effts

∗+ c.c.

1
Λ2C

V 1,LR
uddu
prst

+ h.c. vT
2

2Λ4

(
1
6C

(5)
q2udH2

tprs

∗
+ 2

9C
(6)
q2udH2

tprs

∗
)

− g2

2MW
2 [Wq]effpr [WR]effts

∗ − 1
6mh

2 (Yu)effpt (Yd)effrs
∗+ c.c.

1
Λ2C

V 8,LR
uddu
prst

+ h.c. vT
2

2Λ4

(
C

(5)
q2udH2

tprs

∗
− 1

6C
(6)
q2udH2

tprs

∗
)

− 1
mh

2 (Yu)effpt (Yd)effrs
∗+ c.c.
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D.7 (LR)(LR) operators

LEFT WC (+c.c.) Matching (+c.c.)
1

Λ2C
S,RR
ee
prst

vT
2

2Λ4 C
(3)
l2e2H2
prst

+ 1
2mh

2 (Ye)effpr(Ye)effst

1
Λ2C

S,RR
eu
prst

1
Λ2

[
−C(1)

lequ
prst

+ vT
2

2Λ2

(
−C(1)

lequH2

prst

− C(2)
lequH2

prst

)]
+ 1
mh

2 (Ye)effpr(Yu)effst

1
Λ2C

T,RR
eu
prst

1
Λ2

[
−C(3)

lequ
prst

+ vT
2

2Λ2

(
−C(3)

lequH2

prst

− C(4)
lequH2

prst

)]
1

Λ2C
S,RR
ed
prst

vT
2

2Λ4C
(3)
leqdH2

prst

+ 1
mh

2 (Ye)effpr(Yd)effst

1
Λ2C

T,RR
ed
prst

vT
2

2Λ4C
(4)
leqdH2

prst

1
Λ2C

S,RR
νedu
prst

1
Λ2

[
C

(1)
lequ
prst

+ vT
2

2Λ2

(
C

(1)
lequH2

prst

− C(2)
lequH2

prst

)]
1

Λ2C
T,RR
νedu
prst

1
Λ2

[
C

(3)
lequ
prst

+ vT
2

2Λ2

(
C

(3)
lequH2

prst

− C(4)
lequH2

prst

)]
1

Λ2C
S1,RR
uu
prst

vT
2

2Λ4 C
(5)
q2u2H2

prst

+ 1
2mh

2 (Yu)effpr(Yu)effst

1
Λ2C

S8,RR
uu
prst

vT
2

2Λ4 C
(6)
q2u2H2

prst

1
Λ2C

S1,RR
ud
prst

1
Λ2

[
C

(1)
quqd
prst

+ vT
2

2Λ2

(
C

(1)
q2udH2

prst

− C(2)
q2udH2

prst

)]
+ 1
mh

2 (Yu)effpr(Yd)effst

1
Λ2C

S8,RR
ud
prst

1
Λ2

[
C

(8)
quqd
prst

+ vT
2

2Λ2

(
C

(3)
q2udH2

prst

− C(4)
q2udH2

prst

)]
1

Λ2C
S1,RR
dd
prst

vT
2

2Λ4 C
(5)
q2d2H2

prst

+ 1
2mh

2 (Yd)effpr(Yd)effst

1
Λ2C

S8,RR
dd
prst

vT
2

2Λ4 C
(6)
q2d2H2

prst

1
Λ2C

S1,RR
uddu
prst

1
Λ2

[
−C(1)

quqd
stpr

+ vT
2

2Λ2

(
−C(1)

q2udH2

stpr

− C(2)
q2udH2

stpr

)]
1

Λ2C
S8,RR
uddu
prst

1
Λ2

[
−C(8)

quqd
prst

+ vT
2

2Λ2

(
−C(3)

q2udH2

stpr

− C(4)
q2udH2

stpr

)]
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D.8 (LR)(RL)+ h.c. operators

LEFT WC (+ c.c.) Matching (+ c.c.)
1

Λ2C
S,RL
eu
prst

vT
2

2Λ4 C
(5)
lequH2

prst

+ 1
mh

2 (Ye)effpr(Yu)effts
∗

1
Λ2C

S,RL
ed
prst

1
Λ2

[
Cledq
prst

+ vT
2

2Λ2

(
C

(1)
leqdH2

prst

+ C
(2)
leqdH2

prst

)]
+ 1
mh

2 (Ye)effpr(Yd)effts
∗

1
Λ2C

S,RL
νedu
prst

+ h.c. 1
Λ2

[
Cledq
prst

+ vT
2

2Λ2

(
C

(1)
leqdH2

prst

− C(2)
leqdH2

prst

)]

D.9 ∆L = 4+ h.c. operator

LEFT WC (+ c.c.) Matching (+ c.c.)
1

Λ2C
S,LL
νν
prst

0
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D.10 ∆L = 2+ h.c. operators

LEFT WC (+ c.c.) Matching (+ c.c.)
1

Λ2C
S,LL
νe
prst

vT

2
√

2 Λ3

[(
Cl3eH
prst

+ Cl3eH
rpst

)
+ 1

2

(
Cl3eH
tpsr

+ Cl3eH
trsp

)]
1

Λ2C
T,LL
νe
prst

vT

16
√

2 Λ3

(
Cl3eH
tpsr
− Cl3eH

trsp

)
1

Λ2C
S,LR
νe
prst

g2

2MW
2

(
[W /L

l ]effpt [Wl]effrs
∗ + [W /L

l ]effrt [Wl]effps
∗)

1
Λ2C

S,LL
νu
prst

0

1
Λ2C

T,LL
νu
prst

0

1
Λ2C

S,LR
νu
prst

vT

2
√

2 Λ3

(
Cl2quH

prst

+ Cl2quH
rpst

)
1

Λ2C
S,LL
νd
prst

vT

2
√

2 Λ3

(
C

(1)
l2dqH
prst

+ C
(1)
l2dqH
rpst

)
1

Λ2C
T,LL
νd
prst

vT

2
√

2 Λ3

(
C

(2)
l2dqH
prst

− C(2)
l2dqH
rpst

)
1

Λ2C
S,LR
νd
prst

0

1
Λ2C

S,LL
νedu
prst

− vT√
2 Λ3C

(1)
l2qdH
prst

1
Λ2C

T,LL
νedu
prst

− vT√
2 Λ3C

(2)
l2qdH
prst

1
Λ2C

S,LR
νedu
prst

vT√
2 Λ3Cl2quH

prst

1
Λ2C

V,RL
νedu
prst

− g2

2MW
2 [W /L

l ]effpr [Wq]effts
∗

1
Λ2C

V,RR
νedu
prst

vT√
2 Λ3CleduHprst
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D.11 ∆B = ∆L = 1+ h.c. operators

LEFT WC (+ c.c.) Matching (+ c.c.)

1
Λ2C

S,LL
udd
prst

1
Λ2



(
C qqq
rpst

+ C qqq
srpt
− C qqq

rspt

)

+ vT
2

2Λ2


C

(1)
lq3H2

rpst

+ C
(1)
lq3H2

srpt

− C(1)
lq3H2

rspt

+ C
(2)
lq3H2

rpst

+ C
(2)
lq3H2

srpt

− C(2)
lq3H2

rspt

− C(3)
lq3H2

rpst

− C(3)
lq3H2

srpt

+ C
(3)
lq3H2

rspt





1
Λ2C

S,LL
duu
prst

1
Λ2



(
C qqq
rpst

+ C qqq
srpt
− C qqq

rspt

)

+ vT
2

2Λ2


C

(1)
lq3H2

rpst

+ C
(1)
lq3H2

srpt

− C(1)
lq3H2

rspt

− C(2)
lq3H2

rpst

− C(2)
lq3H2

srpt

+ C
(2)
lq3H2

rspt

+ C
(3)
lq3H2

rpst

+ C
(3)
lq3H2

srpt

− C(3)
lq3H2

rspt




1

Λ2C
S,LR
uud
prst

vT
2

2Λ4Ceq2dH2

tspr

1
Λ2C

S,LR
duu
prst

− 1
Λ2

[(
C qqu
prst

+ C qqu
rpst

)
+ vT

2

2Λ2Ceq2uH2

rpst

]
1

Λ2C
S,RL
uud
prst

vT
2

2Λ4Clqu2H2

tspr

1
Λ2C

S,RL
duu
prst

1
Λ2

[
Cduq
prst

+ vT
2

2Λ2

(
C

(1)
lqudH2

prst

+ C
(2)
lqudH2

prst

)]
1

Λ2C
S,RL
dud
prst

1
Λ2

[
−Cduq

prst
+ vT

2

2Λ2C
(2)
lqudH2

prst

]
1

Λ2C
S,RL
ddu
prst

vT
2

2Λ4Clqd2H2

tspr

1
Λ2C

S,RR
duu
prst

1
Λ2

[
Cduu
prst

+ vT
2

2Λ2Ceu2dH2
prst

]
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D.12 ∆B = −∆L = 1+ h.c. operators

LEFT WC (+ c.c.) Matching (+ c.c.)
1

Λ2C
S,LL
ddd
prst

0

1
Λ2C

S,LR
udd
prst

− vT√
2 Λ3Cq2ldH

prst

1
Λ2C

S,LR
ddu
prst

0

1
Λ2C

S,LR
ddd
prst

− vT

2
√

2 Λ3

(
Cq2ldH

prst

− Cq2ldH
rpst

)
1

Λ2C
S,RL
ddd
prst

− vT√
2 Λ3Ceqd2H

prst

1
Λ2C

S,RR
udd
prst

vT√
2 Λ3Cud2lH

prst

1
Λ2C

S,RR
ddd
prst

vT√
2 Λ3Cd3lH

prst
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