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I. INTRODUCTION

The cumulative beam breakup (BBU) problem in a pe-
riodic linear accelerator (linac) excited by the resonance
wake is well understood [1–4]. However, there are no
systematic studies for the corresponding problem excited
by the resistive-wall impedance. This paper is a partial
attempt to fill this gap. In a cylindrical circular metal
pipe, if it is transversely offset, an electron beam will
induce both asymmetric image charges and asymmetric
image current in the metal wall. The electric field in-
duced by this asymmetric image charge will attract the
beam even closer to the metal wall, though the magnetic
field induced by the asymmetric image current will push
the beam back to the axis. The Lorentz force due to the
electric field and the magnetic field will partially can-
cel each other and result in a force which will attract the
beam closer to the metal wall. The magnitude of this net
force is proportional to 1/γ2, with γ to be the Lorentz
relativistic energy factor. Hence for an ultrarelativistic
electron beam, the instantaneous net force is negligible.
However, the magnetic field will diffuse in the metal wall;
therefore the magnetic force will decrease with time. On
the other hand, since the electric field will not decay, the
resulting net effect is a long-range wakefield [5]. In this
paper, we study the BBU problem due to this long-range
resistive-wall wakefield.

This study of the resistive-wall BBU problem is neces-
sitated by the recently proposed Photoinjected Energy
Recovering Linac (PERL) project [6]. For PERL, the
light source consists of 12 undulators, each 12 m long,
totaling 144 m. The beam is shielded from the environ-
ment by circular copper pipes with a very small radius
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b = 3 mm. The proposed injection cycle is 12 h. It is cru-
cial to know if the PERL beam can survive the BBU. We
also investigate some other projects: the Linac Coherent
Light Source (LCLS) project [7], the existing vacuum-
ultraviolet (VUV) free-electron laser (FEL) at the Tera-
electron-volt Energy Superconducting Linear Accelerator
(TESLA) Test Facility (TTF) [8], the final focusing sys-
tem (FFS) of the Next Linear Collider (NLC) [9] and the
FFS of the TESLA [10]. For these cases, we study how
the resistive-wall wake will dilute the beam.

The problem is formulated as follows: An electron
bunch train consisting of a series of identical point like
bunches passes through a cylindrical circular pipe of ra-
dius b and conductivity σc. The entrance to the pipe is
located at z = 0, and the M -th bunch, M = 0, 1, 2...,
moves in the z direction according to z = c t − M cτB,
where τB is the bunch separation in units of seconds. In-
side the pipe, the equation of motion for a particle in the
bunch M is

Ô yM ≡ y′′M(z) + k2
yyM(z) =

M−1∑

N=0

S(M −N)yN(z) , (1)

where yM(z) is the transverse displace of the Mth bunch
at location z, the prime stands for d/dz, and ky is the
external focusing. The right-hand side of Eq. (1) repre-
sents the effects of the wake force. So far, we have not
specified the wake yet; hence Eq. (1) is applicable to ar-
bitrary wake for a beam with constant energy. In this
paper, we will focus on the resistive-wall wake, which is
[11]

S(M) = a/
√

M , (2)

with

a = 4
IB

IA

1
b3

δskin , (3)

where IB = eNB/τB, eNB = bunch charge, IA ≡
4 π ε0 mc3γ/e = γ IAlfvèn with IAlfvèn ≈ 17000 Amp, m
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is the electron mass, c is the speed of light in vacuum,
ε0 = 8.854 × 10−12 C2 N−1 m−2 is the vacuum permit-
tivity, and δskin =

√
2/µ0σcωB = the skin depth corre-

sponding to the bunch frequency fB = ωB/2π = 1/τB

with µ0 = 4π × 10−7 H m−1, the vacuum permeability.
We ignore the effects of the wake force of a bunch on it-
self; as a consequence, the upper limit of the sum in Eq.
(1) is M − 1 instead of M . The single-bunch resistive-
wall effect is studied separately [12, 13]. The thickness
of the beam pipe is assumed to be ∞ for convenience.
Also notice that the bunch N is in front of the bunch
M if M > N . In writing the above equations, we as-
sumed the linac to be uniformly filled. For such a case,
the locally averaged current Iaverage = IB. For the case of
non-uniform filling, an example of that will be discussed
in Section V, Eq. (1) has to be modified.

The paper is organized as follows: In Sec. II, we set
up the related eigenvalue problem of Eq. (1). Physi-
cally, the eigenfunction so obtained describe the beam
coherent-oscillation of an “extended problem” [14]. In
Sec. III, we give a formal solution for the initial value
problem. The solution consists of an integral represen-
tation for the transverse position of the Mth bunch at
a longitudinal position z in terms of the eigenfunctions
obtained in the previous section [14]. The asymptotic
limit, M →∞, of the transient solution is then obtained
in Sec. IV for two extreme cases: the no focusing (NF)
case and the strong focusing (SF) case. In Secs. II, III,
IV, and V, we treat the case where only one bunch is
offset initially. While in Secs. II, III, and IV, we treat
the case where every bucket of the linac is filled by the
same amount of charge, we treat in Sec. V the case where
the filling pattern is such that the beam has periodically
unfilled gaps. The results of Sec. V are compared to the
results of the preceding sections. The conclusion we draw
from the comparison is that the asymptotic resistive-wall
cumulative BBU is a locally averaged current problem.
In Sec. VI we go back to the problem where each bucket
is uniformly filled. The difference between this section
and Sec. IV is that here we treat the case where ini-
tially the transverse position of every bunch is offset by
the same amount – injection error. By comparing the
results of Sec. VI with those of Sec. IV, we observe
screening effect for the injection error case. The ana-
lytical asymptotic solutions are checked against directly
numerical solution in Sec. VII. Good agreement between
the asymptotic analytical expression and the direct nu-
merical solution is found. We then apply the analytical
results to PERL project, the final undulator of LCLS
and TTF VUV FEL, and also the FFS of the NLC and
TESLA in Sec. VIII. Discussion and conclusion are also
presented there.

II. THE EIGENVALUE PROBLEM

In this section, let us formulate the eigenvalue problem
of Eq. (1). The right-hand side of Eq. (1) is a convolu-

tion sum, therefore, it can be diagonalized by a Fourier
transform. Define

F (θ) =
∞∑

M=1

1√
M

eiM θ , (4)

and

ξ(θ, z) =
∞∑

M=0

yM(z)eiM θ , (5)

then

yM(z) =
1
2π

∫ π

−π

dθ e−iMθξ(θ, z) , (6)

and

ξ′′(θ, z) + k2
yξ(θ, z) = aF (θ)ξ(θ, z) . (7)

The last equation is an eigenvalue equation, with the
parameter θ playing the role of distinguishing different
eigenvalues. For the coherent mode θ, we see from Eq.
(5) that the parameter θ is the phase difference of the
adjacent bunches in this mode. Recall that in a storage
ring, a symmetric coupling bunch mode n is characterized
by the Courant-Sessler phase factor exp(i 2 π n/h) [15],
where h is the number of the bunches in the ring. We
can think of the phase exp(iθ) as the limit of the Courant-
Sessler factor when both n and h →∞ while 2πn/h = θ
remains finite. The eigenvalue for the mode θ is, from
Eq. (7),

kc(θ) =
√

k2
y − aF (θ) , (8)

and the corresponding eigenvetors are

cos[kc(θ)z], or sin[kc(θ)z] (9)

The function F (θ) can be written as [16]

F (θ) =

√
iπ

θ
+

∞∑
n=0

ζRiemann

(
1
2
− n

)
(iθ)n

n!

≈
√

iπ

θ
− 1.460− 0.208 i θ +O(θ2) , (10)

where ζRiemann(x) is the Riemann’s Zeta function. The
function F (θ) has a branch point at θ = 0, therefore,
through Eq. (7), ξ(θ, z) also has a singular point at the
same position. Since Eq. (6) is the inverse of Eq. (5)
and we look for yM with M > 0, causality requires this
singularity to lie below the contour of Eq. (6) on the θ
plane. In order to explain this point more clearly, let us
introduce

ζ ≡ eiθ . (11)

In term of this variable, Eqs. (4)−(7) become

F (ζ) =
∞∑

M=1

1√
M

ζM , (12)
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ξ(ζ, z) =
∞∑

M=0

yM(z)ζM , (13)

yM(z) =
1

2πi

∮
dζ ζ−(M+1)ξ(ζ, z) , (14)

and

ξ′′(ζ, z) + k2
yξ(ζ, z) = aF (ζ)ξ(ζ, z) . (15)

When expressing a function of θ, for example the function
F (θ), in terms of ζ, we write F (ζ) = F (θ) instead of cre-
ating a new symbol; this should not introduce any unnec-
essary confusion. We adopt this convention throughout
this paper. The singularity of F (θ) at θ = 0 corresponds
to a singularity of F (ζ) at ζ = 1. The singular part of
F (ζ) is

F (ζ) ∼=
√

π

1− ζ
for ζ → 1 . (16)

Equation (13) is a power series expansion of the func-
tion ξ in the variable ζ. The radius of the convergence
circle of this series is 1, since the closest singularity of ξ
is at ζ = 1, i.e., at θ = 0. From the residue theorem, Eq.
(14) is clearly the inverse of Eq. (13) provided that the
integration contour lies inside of the convergence circle,
and the contour encircles the origin ζ = 0 counterclock-
wise. The contour is shown in Fig. 1. It is convenient
to deform the contour to be the unit circle and place the
singularity at ζ = 1 + ε with a small and positive ε. On
the ζ plane, we make a cut on the real axis from ζ = 1+ε
to ζ = ∞, and make all the following calculations on the
first sheet of the Riemann surface. In terms of the θ vari-
able, the singularity is at θ = − i log(1 + ε) ≈ −iε, i.e.,
below the contour of Eq. (6). The cut on the θ plane is
at the lower half of the imaginary axis, i.e., θ from −iε
to −i∞.
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FIG. 1: The contour used for the definition in Eq. (14).

We solve in the next section the transient BBU prob-
lem by relating it to the coherent solutions given by Eqs.
(8) and (9).

III. INITIAL VALUE PROBLEM

One can carry out the BBU calculations in terms of
either the ζ or the θ variable. We choose to use the
variable ζ.

We show in this section that the transient solution to
the equation of motion (1) is

yM(z) = yM0 cos(kyz) + y′M0 sin(kyz) /ky

+
1

2πi

M−1∑

N=0

yN0

∮
dζ ζ−(M−N+1) cos[kc(ζ)z]

+
1

2πi

M−1∑

N=0

y′N0

∮
dζ ζ−(M−N+1) sin[kc(ζ)z]

kc(ζ)
,

(17)

where yM0 and y′M0 are, respectively, the initial values
(values at z = 0) of yM(z) and y′M(z).

First, we find the transient solution of Eq. (15). This
equation yields

ξ̃(ζ, s) =
s ξ(ζ, 0) + ξ′(ζ, 0)
s2 + k2

y − aF (ζ)
, (18)

where

ξ̃(ζ, s) ≡
∫ ∞

0

dz ξ(ζ, z) e−sz. (19)

After carrying out the inverse Laplace transform of (19),
using (18), we obtain

ξ(ζ, z) = ξ(ζ, 0) cos[kc(ζ)z] + ξ′(ζ, 0)
sin[kc(ζ)z]

kc(ζ)
. (20)

In order to obtain (17), we substitute the above result
(20) into (14) and then use ξ(ζ, 0) =

∑∞
M=0 yM,0ζ

M and
ξ′(ζ, 0) =

∑∞
M=0 y′M,0ζ

M . The result is (17). We shall
now apply the solution (17) to some specific cases in the
next section.

IV. INITIAL SINGLE-BUNCH OFFSET

We study in this section Eq. (17) for the case where
only the first bunch M = 0 is initially offset transversely
from the center of the chamber, yM0 = y00δM,0, and
y′M0 = 0, ∀M . Then, Eq. (17) becomes, for M 6= 0,

yM(z) =
1

2πi
y00

∮
dζζ−(M+1) cos[kc(ζ)z]

≡ y00

4π

[
η
(+)
M (z) + η

(−)
M (z)

]
, (21)

where

η
(±)
M (z) ≡ 1

i

∮
dζ exp

{
Ψ(±)

M (ζ)
}

, (22)
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with

Ψ(±)
M (ζ) = ±ikc(ζ)z − (M + 1) log(ζ) . (23)

We wish to find the asymptotic behavior of yM as given
by Eq. (21) when M →∞; we shall use the well-known
saddle point method for this purpose.

The asymptotic behavior of the integral (21) is de-
termined by the behavior of cos[kc(ζ)z] near ζ = 1 or
θ = 0, where the phase difference between adjacent
bunches approaches zero. In other words, the saddle
point ζsaddle → 1, or equivalently, θsaddle → 0 in the
limit of M →∞. The behavior of cos[kc(ζ)z] near ζ = 1
is, from Eq. (8), controlled by the behavior of F (ζ) in the
same neighborhood. We shall use the approximation Eq.
(16) for F (ζ) throughout the rest of this paper. Com-
bining the expression (16) with Eqs. (8) and (15), we
have

kc(ζ) =
√

k2
y − a

√
π/(1− ζ) , (24)

and

ξ′′(ζ, z) + k2
yξ(ζ, z) = a

√
π

1− ζ
ξ(ζ, z) . (25)

The last equation together with Eq. (14) make up the
basis for the remainder of this section.

We shall carry out below the asymptotic analysis of
the following two cases:

First case: This is the case where either ky = 0, or M is
so large that the a

√
π/(1− ζ) term dominates over k2

y in
Eq. (24). As a consequence, we can use the approximate
expression

kc(ζ) = a1i(1− ζ)−1/4 (26)

where a1 =
√

a
√

π. This case will be referred to as the
no focusing case. Clearly, in order for this approximation
to be valid, the condition |a1(1− ζNF)−1/4| À ky, has to
be satisfied, where ζNF is the saddle point.

Second case: This is the case where M is so large that
Eq. (16) is valid, and yet k2

y in Eq. (24) dominates over
the a

√
π/(1− ζ) term. As a consequence,

kc(ζ) ∼= ky − 2a2(1− ζ)−1/2 , (27)

where a2 = a
√

π/(4ky). We shall refer to this case as the
strong focusing case. The condition for the validity of
this approximation is ky À |a1(1− ζSF)−1/4|, where ζSF

is the saddle point.
The remainder of this section is devoted to detailed

treatment of these two cases. Some of the results in this
section have been briefly reported in Ref. [17].

A. No focusing case

We wish to carry out the saddle point analysis to the
integrals (21) and (22) with

Ψ(±)
M (ζ) = (M + 1)[∓4α1(1− ζ)−1/4 − log(ζ)] , (28)
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FIG. 2: The contour used for the saddle point calculation.
The dashed curve indicates that the contour is closed at |ζ| →
∞.

Ψ̇(±)
M (ζ) = (M + 1)[±α1(1− ζ)−5/4 − 1/ζ] , (29)

and

Ψ̈(±)
M (ζ) = (M + 1)[∓(5/4)α1(1− ζ)−9/4 + 1/ζ2] , (30)

where “·” stands for d/dζ, and α1 ≡ a1z/[4(M +1)]. The
function Ψ(±)

M (ζ) has branch points at ζ = 0 and ζ = 1.
Let us draw cuts in the ζ plane from ζ = −∞ to 0, and
from ζ = 1 to ∞. The integral (21) is performed on the
first sheet of Ψ(±)

M (ζ) which is defined to be the sheet
where Ψ(±)

M (ζ) = real for 0 < ζ < 1. The contour of the
saddle point integral is shown in Fig. 2.

The saddle point ζNF satisfies Ψ̇(±)
M (ζNF) = 0, or

(1− ζNF)5/4 = ±α1ζNF . (31)

This equation can not be solved algebraically. However
noting that α1 = O(1/M) is small in the limit of M →
∞, we solve the equation by perturbation. In terms of
the variable ζ̃ ≡ 1 − ζ, Eq. (31) becomes, to the lowest
order in α1

ζ̃
5/4
NF = ∓α1 . (32)

Taking the fourth power of this equation, we have

ζ̃5
NF = α4

1 , (33)

yielding the solutions

ζNF = (1−α
4/5
1 , 1−α

4/5
1 e±i2π/5, 1−α

4/5
1 e±i4π/5) , (34)

where we write the five solutions of Eq. (33) as a compact
row matrix. The condition (33) is a necessary but not a
sufficient condition for saddle points. [We took the fourth
power of Eq. (32) in order to obtain Eq. (33); we might in
doing so have introduced spurious solutions.] Each of the
solutions (34) has yet to be verified to be a relevant saddle
point. It is straightforward to verify that ζ

(−)
NF = 1−α

4/5
1
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is the only saddle point of η(−) and ζ
(+)
NF = 1−α

4/5
1 e±i4π/5

are the only saddle points of η(+) we have to consider.
These saddle points are also indicated on Fig. 2.

The saddle point contribution to η(±) satisfies

η
(±)
M ∝ exp

[
Ψ(±)

(
ζ
(±)
NF

)]
. (35)

Routine calculation gives the following results for the ex-
ponents:

Ψ(−)
M

(
ζ
(−)
NF

)
= 5(M + 1)α4/5

1 , (36)

and

Ψ(+)
M

(
ζ
(+)
NF

)
= 5(M + 1)α4/5

1 exp(±i4π/5) . (37)

Notice that the real part of Ψ(+)
M above is negative; there-

fore, η
(+)
M → 0 in the limit of M → ∞. We shall ignore

the η
(+)
M term in Eq (21).

In order to perform the saddle point integral for η
(−)
M

we need, in addition to (36), the following expression:

Ψ̈(−)
M

(
ζ
(−)
NF

)
=

5(M + 1)

4α
4/5
1

. (38)

We notice that Ψ̈(−)
M

[
ζ
(−)
NF

]
∝ α

−9/5
1 ∝ M9/5 → ∞

rapidly, as M → ∞. Such sharp dependence of the in-
tegrand of (22) in the neighborhood of the saddle point
validates the saddle point approximation.

From the above discussion, the equation

yM(z) =
y00

4π
η
(−)
M (z) ∝ exp

[
Ψ(−)

M

(
ζ
(−)
NF

)]
(39)

together with Eqs. (36) and (38) are all we need for the
saddle point estimate of the present BBU problem. How-
ever, before stating the results, let us have a discussion
on the growth time tNF of the mode under discussion.

The Mth bunch reaches the linac at time t = MτB.
The quantity α1 in the expression (36) can be written in
terms of M and a. If we replace M or M +1 (recall that
M À1) in the resulting Ψ(−)

M by t/τB, we obtain

Ψ(−)
M

(
ζ
(−)
NF

)
=

(
t

tNF

)1/5

, (40)

where the growth time

tNF =
τB

4π

(
4
5

)5 1
z4

1
a2

, (41)

and the result of the saddle point integral is

yM(z) =
y00

4π
η
(−)
M (z)

=
y00

5
√

2π

(
tNF

t

)9/10
τB

tNF
exp

{(
t

tNF

)1/5
}

.(42)

So far we have been dealing with the case of a uniformly
filled linac. If the filling is not uniform (some buckets not
filled) the above results do not hold. In Sec. V, we shall
treat an example of such nonuniform case. In order to
facilitate later comparison, let us write Eq. (41) for tNF

in another form. Using Eq. (3), Eq. (41) becomes

tNF =
τB

π

16
55

b6

z4

1
δ2
skin

I2
A

I2
B

. (43)

For the case of uniform filling, the IB = eNB/τB above
equals the locally averaged current Iaverage. Therefore
the above equation can be expressed as

tNF =
τB

π

16
55

b6

z4

1
δ2
skin

I2
A

I2
average

. (44)

We shall compare later the above expressions (43) and
(44) with the corresponding results for a nonuniformly
filled beam.

B. Strong focusing case

The treatment of this case is similar to the NF case.
Having given all the calculation details for the NF case,
here we present the results directly. The asymptotic re-
sult for the displacement of the M -th bunch is

yM(z) =
2y00

3
√

2π

(
tSF

t

)5/6
τB

tSF
exp

{(
t

tSF

)1/3
}

× cos

[√
3

(
t

tSF

)1/3

− kyz +
π

6

]
, (45)

where the growth time for this mode is

tSF ≡ τB

(
2
3

)3 1
a2
2z

2
, (46)

and again t = (M + 1)τB, or MτB since M is large.
For readers who are interested in the calculation details,
please refer to Appendix A.

V. BEAM WITH PERIODIC GAPS

The bunch filling pattern considered in this section is
as follows: The beam is made of repetitive identical se-
quences where each sequence consists of p adjacent filled
buckets followed by q empty buckets; there are in total
r = p + q buckets in a sequence.

A. Equations of motion

If all the buckets are filled, then the equation of motion
is given by Eq. (1), i.e.,

Ô yM ≡
(

d2

dz2
+ k2

y

)
yM =

M−1∑

N=1

S(M −N) yN ,
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where S(M) is the wake function given in Sec. I; S(M) =
0 for M ≤ 0, and S(M − N) = a/

√
M −N for M >

0. The parameter a is given by Eq. (3). Note that
we have made here a slight change of convention. We
designated the bunches as M = 1, 2, 3, ... above instead
of M = 0, 1, 2, ... as was done in Sec. I. We adopt this
new convention throughout this section.

We have to generalize the above equation to include
the case of a beam with periodic empty buckets. Let us
use the notation u = 1, 2, 3... for the sequence number,
and m = 1, 2....p for the bunch number in a sequence. It
is convenient to define, corresponding to each u, a p× p
matrix S(u) with its elements given by

S(u)
m,n = S(u)

m−n = S[ur + (m− n)] , (47)

where the range of u for S(u) is u = 0, 1, 2, · · · . Corre-
sponding to the above matrix, we define 1 × p column
vector

Y (u) ≡




yu,1

yu,2

...
yu,p


 (48)

where yu,m is the transverse displacement of the mth
bunch in the uth sequence.

The equation of motion for a beam with periodic gaps
can now be written in a compact form similar to Eq. (1),

ÔY (u) =
u∑

v=1

S(u−v)Y (v) . (49)

We solve this equation in the next subsection.

B. Solutions

The mth component of the equation of motion (49) is

Ôyu,m =
u∑

v=1

p∑
n=1

S(u−v)
m−n yv,n . (50)

The following generalization of Eqs. (12) and (13) is
convenient:

ξm(ζ) =
∞∑

u=1

ζuyu,m , (51)

∆m(ζ) =
∞∑

u=0

S(u)
m ζu . (52)

Then the above three Eqs. (50)−(52) lead to

Ôξm(ζ) =
p∑

n=1

∆m−n(ζ)ξn(ζ) . (53)

Once the solution of the last equation is found, the dis-
placement of the individual bunch is found by substitut-
ing the solution into the inverse of (51), namely,

yu,m =
1

2πi

∮
dζ ζ−(u+1)ξm(ζ) . (54)

The method we use to solve Eq. (53) is a generalization
of the method of Section IV. Note that for u → ∞,
the contribution to the integral (54) is dominated by the
behavior of the integrand near ζ = 1. Therefore we shall,
in analogy to what we did in Section IV, approximate
∆m by its singular part near ζ = 1. The singular part is
from [16]

∆m(ζ) ∼= a√
r

√
π

1− ζ
∀ m , (55)

and the corresponding approximation to Eq. (53) is

Ô ξm(ζ) ∼= ap√
r

√
π

1− ζ
ξm(ζ) , ∀ m . (56)

This equation together with Eq. (54) gives us the asymp-
totic behavior, u →∞, of yu,m.

Observe the similarity of Eqs. (54) and (56) above to
the following equations we obtained earlier for the uni-
form filling case, i.e., Eqs. (14) and (25),

Ôξ(ζ, z) = a

√
π

1− ζ
ξ(ζ, z) ,

yM(z) =
1

2πi

∮
dζ ζ−(M+1)ξ(ζ, z) .

The variable m appears as a passive parameter in Eqs.
(54) and (56). Also, these equations can be obtained
from Eqs. (14) and (25) by the following substitutions:

M, or (M + 1) → u , (57)
a → ap/

√
r . (58)

Therefore, we can obtain the results for Eqs. (54) and
(56) from the corresponding results for the uniform filling
case. We treat here the NF case corresponding to the Sec.
IVA. We specifically consider the growth time tgap

NF for
the beam with periodic gaps. The SF case can be treated
in a similar way.

We start from the exponent Ψ(−)
M as given by (36).

Expressing α1 in terms of a, this equation is equivalent
to

Ψ(−)
M

(
ζ
(−)
NF

)
= 5π1/5(M + 1)1/5(z/4)4/5a2/5 . (59)

Now applying the substitution rules (57) and (58) to Eq.
(59), we obtain

Ψ(−)
gap,u

(
ζ
(−)
NF

)
=

(
u

uNF

)1/5

, (60)
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where

uNF =
1
4π

(
4
5

)5 1
z4

r

a2p2
(61)

is the growth time in units of sequences.
We have to translate u into time t. The bunch (u,m)

reaches the linac at t = (ur + m)τB
∼= urτB. Therefore

we should set u → t/rτB and

tgapNF = rτBuNF (62)

=
τB

4π

(
4
5

)5 1
z4

1
a2

r2

p2
(63)

=
τB

π

16
55

b6

z4

1
δ2
skin

I2
A

I2
B

r2

p2
. (64)

This expression differs from Eq. (41) or (43) by a factor
of r2/p2. However, this difference is superficial. Let us
calculate the average current of a sequence. It is clearly

Iaverage =
p

r
IB . (65)

In terms of Iaverage, the growth time becomes

tgapNF =
τB

π

16
55

b6

z4

1
δ2
skin

I2
A

I2
average

. (66)

This is identical to Eq. (44). We therefore conclude that
the cumulative resistive-wall BBU is a locally averaged
current effect.

VI. INJECTION ERROR AND SCREENING
EFFECT

In this section, we study Eq. (17) for the case where
BBU is started up by an injection error, i.e., all the
bunches are initially offset by the same amount, yM0 =
y00, and y′M0 = 0,∀M ≥ 0. Then, Eq. (17) becomes

yM(z) = y00 cos(kyz)− 1
2πi

y00

∮
dζζ−1(1− ζ)−1 cos [kc(ζ)z] +

1
2πi

y00

∮
dζζ−(M+1)(1− ζ)−1 cos [kc(ζ)z]

= y00 cos(kyz)− y00 cos [kc(0)z] +
y00

4π

[
η
(+)
M (z) + η

(−)
M (z)

]
, (67)

where η
(±)
M (z) is given by Eq. (22) with

Ψ(±)
M (ζ) = ±ikc(ζ)z− (M + 1) log(ζ)− log(1− ζ) . (68)

Compared with Eq. (23), Eq. (68) has an additional term
− log(1−ζ) on the right-hand side. We shall see presently
that this term does not change the eigensolutions as given
in Secs II, III, IV, and V, but it will change the transient
solutions. We shall also see that this term leads to an
interesting screening effect. From kc(0) = ky, Eq. (67)
simplifies to

yM(z) =
y00

4π

[
η
(+)
M (z) + η

(−)
M (z)

]
,

which is the same decomposition as in Eq. (21). Let us
discuss as before two extreme cases: the NF case and the
SF case.

A. No focusing case

Similar to what was done in Sec. IV, the asymptotic
result for the NF case is

yM(z) = GNF
y00

5
√

2π

(
tNF

t

)9/10
τB

tNF
exp

{(
t

tNF

)1/5
}

,

(69)

where t = MτB; the growth time is the same as what was
given by Eq. (41), i.e.,

tNF =
τB

4π

(
4
5

)5 1
z4

1
a2

,

and

GNF ≡ 5
(

t

τB

)4/5 (
tNF

τB

)1/5

= 4
(

1
4πa2

)1/5 (
M

z

)4/5

. (70)

The calculation details could be found in Appendix B.
It is very interesting to compare the above result (69)
to the result (42) of the initial single-bunch offset case.
We find the following: (i) The growth time tNF is the
same for both cases, as it should be, since tNF should
depend only on the eigensolutions; (ii) the only difference
between the transient solutions is the factor GNF which is
proportional to M4/5 instead of to M (recall that t ∝ M).
This is surprising: Since θsaddle

∼= 0, we would expect
all the bunches preceding the bunch M to excite this
bunch by the same amount leading to GNF ∝ M . Clearly,
the preceding bunches are screening each other. (It can
actually be shown that for large but not too large M , the
function GNF ∝ M .)
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B. Strong Focusing (SF) case

Similar to those of Secs. IV and VIA, we find the
asymptotic result for the SF case as

yM(z) = GSF
2y00

3
√

2π

(
tSF

t

)5/6
τB

tSF
exp

{(
t

tSF

)1/3
}

× cos

[√
3

(
t

tSF

)1/3

− kyz − π

6

]
, (71)

where t = MτB, the growth time is again the same as
what was given in Eq. (46), i.e.,

tSF ≡ τB

(
2
3

)3 1
a2
2z

2
,

and

GSF ≡ 3
2

(
t

τB

)2/3 (
tSF

τB

)1/3

=

(
16k2

y

πa2

)1/3 (
M

z

)2/3

.

It is worth noting that, besides the overall factor GSF,
there is also an overall phase shift of −π/3 between the
above solution in Eq. (71) and that given by Eq. (45).

VII. COMPARISON WITH NUMERICAL
RESULTS

To check the analytical results, we compare them with
direct numerical results. As what we comment after Eq.
(66), the results for beams with periodic gaps in Sec. V
can be obtained by proper variables transformation given
in Eqs. (57) and (58), we will check only the results for
the case of the initial single-bunch offset in Sec. IV and
the case of injection error in Sec. VI.

A. Initial single-bunch offset

The general solution is given in Eq. (21), i.e., for M 6=
0,

yM(z) =
1

2πi
y00

∮
dζζ−(M+1) cos[kc(ζ)z]

≡ y00

4π

[
η
(+)
M (z) + η

(−)
M (z)

]
.

This time we write,

η
(±)
M (z) ≡ 1

i

∮
dζζ−(M+1) exp {±ikc(ζ)z} , (72)

where the contour is shown in Fig. 1, as the unit circle in
the ζ plane and the singularity to be located at ζ = 1+ ε

with a small positive ε. In so doing, the integral is just
the residue at ζ = 0. To be more explicit, since ζ = 0 is
a pole of order (M + 1), we have

η
(±)
M (z) =

2π

M !

[
dM

dζM
exp {±ikc (ζ) z}

]∣∣∣∣
ζ=0

=
2π(−1)M

M !

[
dM

dζM
1

exp {±ikc (ζ1) z}
]∣∣∣∣

ζ1=1

,(73)

where we have introduced ζ1 = 1−ζ, since kc(ζ) is indeed
a function of 1− ζ.

B. Injection error

For the case of injection error, the general solution is
given in Eq. (67), i.e., for M 6= 0,

yM(z) =
1

2πi
y00

∮
dζζ−(M+1)(1− ζ)−1 cos {kc(ζ)z}

≡ y00

4π

[
η
(+)
M (z) + η

(−)
M (z)

]
.

Similarly, this time we write

η
(±)
M (z) ≡ 1

i

∮
dζζ−(M+1)(1− ζ)−1 exp {±ikc(ζ)z} ,

=
2π

M !

{
dM

dζM

[
exp {±ikc (ζ) z}

1− ζ

]}∣∣∣∣
ζ=0

=
2π(−1)M

M !

{
dM

dζM
1

[
ζ−1
1 exp {±ikc (ζ1) z}]

}∣∣∣∣
ζ1=1

.

(74)

Eqs. (73) and (74) are now ready for direct numerical
calculation, and the results could be used to check the
analytical expression in Eqs. (42), (45), (69), and (71).

Before we go into detail of calculation, let us make
some comments. First, according to the general solu-
tion in Eq. (17), and the focusing strength in the NF
limit given in Eq. (26), we conclude that the solution is
a universal function of a1z, hence, the result stays the
same as long as the product a1z stays constant. In the
SF limit, then according to Eq. (17) and the focusing
strength in Eq. (27), the independent variables are kyz
and a2z. Second, according to the solutions given in Eqs.
(42), (45), (69), and (71), the results depend only on the
ratio of t/tNF and t/tSF. We know that these are the
long-time asymptotic behavior, hence, in the numerical
calculation, we only need calculate once according to the
universal variable t/tNF or t/tSF, and then rescale var-
ious cases according to their own tNF and tSF. So, in
the following, we will do calculation for some arbitrary
chosen parameters, but the conclusion drawn from these
examples is universal, based on the above analysis.

In our calculation for the NF limit, we choose a = 0.5
m−2, z = 1.8 m, this yields tNF/τB ≈ 0.01 for the case
of only a single bunch is initially offset. While for the
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injection error case, we choose a = 0.05 m−2, z = 1.8
m, this yields tNF/τB ≈ 1.0. We further introduce the
relative error as

δM(z) ≡ yNum
M (z)− yAsy

M (z)
yNum
M (z)

, (75)

where yNum
M (z) is the numerical result given by Eq. (73)

or Eq. (74), and yAsy
M (z) is the asymptotic result given

by Eq. (42) or Eq. (69) for the case of single-bunch offset
or the injection error, respectively.
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FIG. 3: The relative error defined in Eq. (75) as a function
of the bunch number M = t/τB. The solid curve stands for
the case of single-bunch offset, and the dashed curve for the
case of an injection error.

The results are given in Fig. 3. As we find, the asymp-
totic result agrees with the numerical result within 20
% for bunch number M > 5 and M > 1 for the case
of single-bunch offset and injection error, respectively.
Recall that, we set tNF/τB ≈ 0.01 and 1 for the case
of single-bunch offset and injection error, respectively.
Hence, the general conclusion will be the following: our
asymptotic results given in Eqs. (42) and (69) agree with
the numerical solution within 20 %, when t > 500 tNF

and t > tNF for the case of single-bunch offset and in-
jection error, respectively. Shown in Fig. 3, the relative
error is only a few percents when M > 80 (i.e., t > 8000
tNF) and M > 2 (i.e., t > 2 tNF) for the single-bunch
offset and the injection error case, and monotonically de-
creasing beyond that. This gives the general conclusion
of how good the agreement is between the asymptotic an-
alytical expression and the direct numerical solution. In
real projects, a and z will vary from case to case, which
result in various tNF, but the statement stays true with
respect to tNF.

For the SF limit, we choose a = 1.46 m−2, z = 10
m, and ky = 12 m−1, and we have tSF/τB ≈ 1. Since
the results are oscillatory solutions, a relative error as

in Eq. (75) is not very instructive. Everytime when
yAsy
M (z) = 0, we would get 100 % relative error which is

really misleading. Hence, we instead plot yM(z)/y00 as a
function of bunch number M = t/τB.

0 100 200 300 400 500
Bunch number (M)

1

0

1

2

3

y M
(z 

 )
 / 

y
00

FIG. 4: The ratio yM(z)/y00 for the case of single-bunch offset
as a function of the bunch number M = t/τB. The solid curve
stands for the result obtained numerically from Eq. (73), and
the dashed curve for the asymptotic result from Eq. (45).
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FIG. 5: The ratio yM(z)/y00 for the case of injection error as
a function of the bunch number M = t/τB. The solid curve
stands for the result obtained numerically from Eq. (74), and
the dashed curve for the asymptotic result from Eq. (71).

The results are given in Figs. 4 and 5 for the case of
single-bunch offset and injection error, respectively. As
we find, as long as t > tSF, the asymptotic results in
Eqs. (45) and (71) agree well with the numerical results
obtained from Eqs. (73) and (74). Recall that in our
calculation, we have set tSF ≈ τB. In Fig. 4, there exists
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discrepancy between the result of the asymptotic analyt-
ical expression and that of the direct numerical solution
around the turning points of the two curves at M ∼ 190
(i.e., t ∼ 190 tSF) and M ∼ 450 (i.e., t ∼ 450 tSF).
However, the relative error decreases with M (i.e., t/tSF)
increases. Again, this general statement stays true with
respect to tSF, though in real projects, a, z, and ky will
vary from case to case, which result in various tSF.

VIII. APPLICATION AND DISCUSSION

Now let us study the projects we mentioned in Section
I. For the PERL project, we hope to know whether the
PERL beam can survive the entire injection period of 12
h. A preliminary parameters list of PERL beam is given
in Table I. For simplicity, we assume that there are no
gaps between the insertion devices; in other words, we
approximate the twelve insertion devices with gaps in
between by a continuous pipe of 144 m. The parameters
of the other projects are also given in Table I.

For convenience, let us introduce

χNF ≡
∣∣∣a

√
π/(1− ζNF)

∣∣∣ /k2
y, (76)

and

χSF ≡ k2
y/

∣∣∣a
√

π/(1− ζSF)
∣∣∣ , (77)

where ζNF and ζSF are the saddle points given in Eqs.
(34) and (A5), respectively. For the NF limit to be appli-
cable, we require χNF À 1, and for the SF limit, χSF À 1.

For the PERL project, if we use a conventional planar
wiggler, then there is no horizontal focusing. Hence, the
NF limit is applied. Given the parameters in Table I but
ky = 0, we get tNF ≈ 17 ns, and the operation period of
12 h is much larger than 500 tNF. Hence, according to
the analysis in Sec. VII, we could safely use the asymp-
totic expressions in Eqs. (42) and (69). In case of a
single-bunch offset, we already get yM(z)/y00 ∼ 1× 1069,
so without focusing, the beam will not survive the en-
tire injection period. We therefore assume that we add
strong focusing in the horizontal plane to have ky = 3
m−1. Given this, we find tSF ≈ 2 s, and the injection pe-
riod of 12 h is much larger than tSF. So according to the
analysis in Sec. VII, the asymptotic expression is applica-
ble. Next, χNF ≈ 0.1 and χSF ≈ 6, hence the SF limit is
marginally applicable. We then apply the SF limit to get
yM(z)/y00 ∼ 1 for the single-bunch offset case. While for
the case of injection error, we have yM(z)/y00 ∼ 2×1011.
Hence a feedback system is necessary, and should be easy
to implement, since the growth time tSF ≈ 2 s is large
enough. For the LCLS parameter, calculation shows that
the beam can safely survive an assumed 12 h injection
period, even with injection error. The very reason is the
low rep rate, though other parameters are similar to the
PERL project. Similar conclusion is found for the ex-
isting TTF VUV FEL. Because of the very low rep rate,

even if the undulator is up to kilometers long, the effect is
still negligible. For the NLC project, in the final focusing
section, the averaged β function is about 50 km, which
introduces negligible betatron phase advance during the
300 m long section, hence we take the NF limit. We in-
vestigate a train of 192 bunches with bunch separation of
1.4 ns. Calculation shows that the cumulative resistive-
wall effect is small. This time, it is because of the large
beam pipe radius, since both tNF and tSF ∝ b6. Also,
this is only a single pass train of 192 bunches. Similar
results are obtained for the FFS of TESLA, where we in-
vestigate a train of 2820 bunches with bunch separation
of 337 ns. The results are summarized in Table I.

In our calculation, we neglect the single-bunch effect,
which is treated separately [12, 13].
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APPENDIX A: DETAILS FOR DERIVING EQ.
(45)

For the SF case, the exponent of the integrand in Eq.
(22) is,

Ψ(±)
M (ζ) = ±ikyz

∓ i2a2z(1− ζ)−1/2 − (M + 1) log(ζ) .(A1)

This function has branch points at ζ = 0 and ζ = 1. We
cut the complex ζ plane from ζ = −∞ to 0, and from
ζ = 1 to ∞. The same contour is chosen as in Fig. 2.
The first two derivatives of Ψ(±)

M (ζ) are

Ψ̇(±)
M (ζ) = ∓ia2z(1− ζ)−3/2 − M + 1

ζ
, (A2)

and

Ψ̈(±)
M (ζ) = ∓i

3
2
a2z(1− ζ)−5/2 +

M + 1
ζ2

. (A3)

The saddle point condition Ψ̇(±)
M (ζSF) = 0 leads to

(1− ζSF)3/2 = ∓iα2ζSF , (A4)

with α2 ≡ a2z/(M + 1). Since α2 → 0, as M → ∞,
we could again find the saddle points by a perturbation
method. The result is, to the leading order of α2,

ζSF =
(
1− α

2/3
2 eiπ/3, 1 + α

2/3
2 , 1− α

2/3
2 e−iπ/3

)
, (A5)
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PERL LCLS TTF VUV FEL NLC TESLA
Rep rate fB (GHz) 1.3 1.2× 10−7 7× 10−8 0.714 2.97× 10−3

Pipe radius b (cm) 0.3 0.3 0.495 2 2
Pipe length (m) 144 150 13.5 300 700

Conductivity σc (107Ω−1m−1) 6 6 3.47 3.47 3.47
ky (m−1) 3 1/18 1 0 0

Beam energy (GeV) 3 14.35 0.24 250 250
Bunch charge (nC) 0.15 1 2.8 1.2 3.2

t = MτB 12 h 12 h 12 h 267.4 ns 0.95 ms
yM(z)/y00: single-bunch offset NG NG NG NG NG

yM(z)/y00: injection error 2× 1011 NG NG NG NG

TABLE I: Summary of the parameters and results for the PERL project, the LCLS project, the existing TTF VUV FEL, the
FFS of the NLC project and the FFS of the TESLA project. “NG” in the table stands for negligible growth.

where we write the solutions of Eq. (A4) as elements of
a 1× 3 row matrix.

The Eq. (A5) is a necessary but not a sufficient condi-
tion for the saddle points. Simple algebraic calculations
show that the first element of the matrix (A5) is a saddle
point of η

(−)
M , and that the third element is a saddle point

of η
(+)
M . The second element of (A5) which is > 1 and

lies on the branch cut is not accessible to the integration
contour.

We need to evaluate Ψ(±)
M and Ψ̈(±)

M at the appropriate
saddle points. They are

Ψ(+)
M (ζSF,3) = +ikyz + 3(M + 1)α2/3

2 exp
{
− iπ

3

}
,

Ψ̈(+)
M (ζSF,3) =

3(M + 1)

2α
2/3
2

exp
{

iπ

3

}
,

Ψ(−)
M (ζSF,1) = −ikyz + 3(M + 1)α2/3

2 exp
{

iπ

3

}
,

and

Ψ̈(−)
M (ζSF,1) =

3(M + 1)

2α
2/3
2

exp
{
− iπ

3

}
.

Using these results, we obtain the asymptotic expression
in Eq. (45)

APPENDIX B: DETAILS FOR DERIVING EQ.
(69)

We carry out the saddle point analysis to the integral
(22) with the exponent

Ψ(±)
M (ζ) = ∓a1z(1− ζ)−1/4− (M +1) log(ζ)− log(1− ζ) .

(B1)

The first two derivatives of the exponent are

Ψ̇(±)
M (ζ) = ∓1

4
a1z(1− ζ)−5/4 − M + 1

ζ
+

1
1− ζ

, (B2)

and

Ψ̈(±)
M (ζ) = ∓ 5

16
a1z(1−ζ)−9/4+

M + 1
ζ2

+
1

(1− ζ)2
. (B3)

The saddle points are determined by Ψ̇(±)
M (ζNF) = 0,

i.e.,

0 = ∓1
4
a1z(1− ζNF)−5/4 − M + 1

ζNF
+

1
1− ζNF

, (B4)

which cannot be solved algebraically. However, since the
saddle points ζsaddle → 1 in the limit of M → ∞, we
could solve Eq. (B4) by a perturbation method. In terms
of ζ̃ ≡ 1− ζ, Eq. (B4) becomes

∓1
4
a1zζ̃

−5/4
NF ± 1

4
a1zζ̃

−1/4
NF + ζ̃−1

NF − 1 = M + 1 . (B5)

Keeping the leading term in Eq. (B5), we get

∓1
4
a1zζ̃

−5/4
NF = M + 1 . (B6)

The last equation is identical to Eq. (32), and therefore
it yields the same first-order solution given in Eq. (34).
In other words, the positions of the saddle points are
independent of the initial condition. We select now the
relevant saddle points by repeating what we did before
following Eq. (34), and then carry out the saddle point
integral corresponding to the exponent (B1). We finally
reach the expression in Eq. (69).
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