
2472 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 10, OCTOBER 2021

Readout Firmware of the Vertex Locator for LHCb
Run 3 and Beyond

Karol Hennessy , Antonio Fernández Prieto , Pablo Vázquez Regueiro , Jan Buytaert, Martin Van Beuzekom ,

Edgar Lemos Cid , Lars Eklund , Kristof de Bruyn, Sneha Naik, Manuel Schiller, Dónal Murray ,

Alexander Leflat, Giovanni Bassi , Giovanni Punzi , Federico Lazzari , Michael J. Morello ,
Oscar Boente García, Abraham Gallas Torreira, Beatriz García Plana, Themis Bowcock , Francesco Dettori,

Karlis Dreimanis, Vinicius Franco Lima, David Hutchcroft , Kurt Rinnert, Tara Shears, Oscar Augusto,
Victor Coco, Paula Collins, Tim Evans, Massi Ferro-Luzzi, Heinrich Schindler, Kazu Akiba, Elena Dall’ Occo,

Cristina Sanchez Graz, Wouter Hulsbergen, Daniel Hynds, Igor Kostiuk, Marcel Merk, Aleksandra Snoch,
Dana Seman Bobulska, Silvia Borghi, Stefano de Capua, Deepanwita Dutta, Marco Gersabeck,

Chris Parkes, Peter Svihra , Mark Williams, Galina Bogdanova, Vladimir Volkov, Pawel Kopciewicz ,
Maciej Majewski, Agnieszka Oblakowska-Mucha, Bartlomej Rachwal, Tomasz Szumlak,

Lucas Meyer Garcia , Franciole Marinho, Larissa Helena Mendes, Irina Nasteva, Juan Otalora,
Gabriel Rodrigues, Jaap Velthuis, Pawel Jalocha, Malcolm John, Nathan Jurik,

Luke Scantlebury-Smead, John Back, Tim Gershon, Tom Latham, and Andrew Morris

Abstract— The new LHCb Vertex Locator (VELO) for LHCb,
comprising a new pixel detector and readout electronics, will
be installed in 2021 for data taking in Run 3 at the LHC. The
electronics centers around the “VeloPix” ASIC at the front-end
operating in a trigger-less readout at 40 MHz. A custom serializer,
called gigabit wireline transmitter (GWT), and associated custom
protocol have been designed for the VeloPix. The GWT data are
sent from the serializers of the VeloPix at a line rate of 5.12 Gb/s,
reaching a total data rate of 2–3 Tb/s for the full VELO detector.
Data are sent over 300-m optic-fiber links to the control and
readout electronics cards for deserialization and processing in
Intel Arria 10 FPGAs. Because of the VeloPix trigger-less
design, latency variances up to 12 µs can occur between adjacent
datagrams. It is therefore essential to buffer and synchronize the
data in firmware prior to onward propagation or suffer a huge
CPU-processing penalty. This article will describe the architec-
ture of the readout firmware in detail with focus given to the
resynchronization mechanism and techniques for cauterization.
Issues found during readout commissioning, and scaling resource
utilization, along with the their solutions, will be illustrated.
The latest results of the firmware data-processing chain can
be presented as well as the verification procedures employed in
simulation. Challenges for the next generation of the detector will
also be presented with ideas for a readout processing solution.

Manuscript received November 9, 2020; revised February 15, 2021 and
March 29, 2021; accepted May 23, 2021. Date of publication May 31, 2021;
date of current version October 18, 2021. This work was supported in part
by CERN and the National Agencies: CAPES, CNPq, FAPERJ, and FINEP
(Brazil); in part by INFN (Italy); in part by NWO (Netherlands); in part by
MEiN and NCN (Poland) under Grant UMO-2018/31/B/ST2/03998; in part
by MSHE (Russia); in part by MICINN (Spain); and in part by STFC (U.K.).

Please see the Acknowledgment section of this article for the author
affiliations.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNS.2021.3085018.

Digital Object Identifier 10.1109/TNS.2021.3085018

Index Terms— DAQ, firmware, LHCb, readout, vertex locator
(VELO).

I. INTRODUCTION

THIS article describes the readout architecture of the
LHCb vertex locator (VELO) [1]–[3] currently being

constructed and commissioned for operation for LHC Run
3 in 2022. The VELO is a silicon hybrid pixel detector
operating in vacuum and very close to the LHC beams
(5.1 mm), and therefore must cope with a very high radi-
ation environment (the maximum fluence is expected to be
8 × 1015 · 1 MeV · neq/cm2). Furthermore, LHCb will have
no hardware trigger, and so the ASICs must readout every
bunch crossing at the full LHC machine rate. A new front-end
ASIC, VeloPix [4], was designed to meet these requirements.
The VeloPix and its supporting readout electronics will be
described. Some of the challenges to commission the full
VELO high-speed readout system and the solutions developed
are presented.

Several key features drive the design of the data-acquisition
architecture. Foremost is the data rate-the expected data rates
during nominal LHC conditions are summarized in Table I.
Each VeloPix is equipped with up to four readout links
enabled, running at a line-rate of 5.12 Gb/s. The particle
hit rate for the VeloPix chips closest to the beam line is
almost an order of magnitude greater than those at the exterior.
Therefore, fewer links are enabled for those exterior chips,
as the bandwidth requirements are less. A VELO module has
twelve VeloPix chips and totals twenty readout links in the
configuration (4,2,1,1,1,1,4,2,1,1,1,1).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1529-8087
https://orcid.org/0000-0003-1984-6367
https://orcid.org/0000-0002-0767-9736
https://orcid.org/0000-0002-2145-3805
https://orcid.org/0000-0002-8346-9052
https://orcid.org/0000-0002-3151-3453
https://orcid.org/0000-0003-4190-1078
https://orcid.org/0000-0002-5729-8675
https://orcid.org/0000-0002-0500-1286
https://orcid.org/0000-0003-3001-6268
https://orcid.org/0000-0002-2014-3864
https://orcid.org/0000-0002-3505-6915
https://orcid.org/0000-0002-4174-6509
https://orcid.org/0000-0002-7811-2147
https://orcid.org/0000-0001-9092-3527
https://orcid.org/0000-0002-2622-8551

HENNESSY et al.: READOUT FIRMWARE OF THE VELO FOR LHCb RUN 3 AND BEYOND 2473

TABLE I

PEAK DATA RATES CORRESPONDING TO THE VELOPIX ASIC
WITH THE HIGHEST EXPECTED OCCUPANCY, AND

THE RESULTANT BANDWIDTHS

Fig. 1. (a) Photograph of three VELO Modules with the reflective sensor
tiles seen to the left and the data tapes (in green) to the right. (b) Schematic
showing the items relevant to the data acquisition.

Fig. 1(a) shows three prototype VELO modules and
Fig. 1(b) shows a schematic of the components driving the
data acquisition. The VELO modules operate in vacuum,
and significant effort has been made to limit the amount of
material in each module. This is done to minimize multiple
scattering interactions that occur in the detector, which degrade
the overall tracking and vertexing performance. Given the
aforementioned bandwidth requirements, the end result is a
thin detector producing a lot of heat with little place to
go. CO2 microchannel cooling [5] has been employed to
extract the heat from the module. The VeloPix uses a custom
transceiver, gigabit wireline transmitter (GWT) [6], which has
been designed for low power to limit the heat budget used by
the ASIC. GWT uses a custom protocol for data transmission.
The VeloPix sends binary hit information (i.e., no measure

of signal amplitude) in a data-driven mode. This means that
hits above a configurable threshold produce data packets to
be transmitted (and those below threshold are suppressed and
yield no data). The chip is designed with a columnar readout
path, where data fragments traverse the length of the column
from their origin, are subsequently assembled at the end-
of-column logic, and routed toward the center for transmission.
This means that data fragments produced at the top and bottom
of the pixel matrix will have significantly different readout
latencies. Data fragments are timestamped such that they can
be reordered in time at a later stage. Simulation studies [7]
performed early in the design of the VeloPix showed that
the bandwidth requirements of the chip could be reduced by
approximately 30% by aggregating the data into groups of
pixels (2 × 4) called SuperPixels. If one or more pixels fire
in the group, the binary hit information for the eight pixels is
sent.

The high data rate, the custom GWT protocol, the time
reordering of the data and the processing of the SuperPixels are
the driving factors for real-time processing of the data using
an FPGA. The platform used for LHCb is the PCIe40 [8].
A description of the readout board and the VELO firmware
running therein, which is designed to meet these requirements
using the PCIe40 architecture, is described in Section II.

II. DESCRIPTION OF THE VELO DAQ ARCHITECTURE

The VELO detector consists of two sets of 26 VELO
modules arranged horizontally around the LHC beam line.
In terms of the data acquisition for the detector, it is suffi-
cient to describe a readout slice comprising a single VELO
module and its supporting hardware and firmware. Data from
a VELO module are sent over flexible readout tapes to
an optopower board on the exterior of the VELO vacuum
tank. There, the data are converted to optical signals using
CERN’s versatile link modules [9]. The signals are sent
over 300-m optical fiber to the PCIe40 readout board for
processing. The processed data fragment is then sent to the
LHCb event-building farm to be combined with data fragments
from the other VELO modules and data fragments of all other
detectors of LHCb to create complete events. These events are
examined in software in the high-level trigger farm to search
for interesting physics signatures.

The PCIe40, shown in Fig. 2, is (as the name suggests) a
PCIe Gen3 card developed by the “Centre de Physique des
Particules de Marseille” for LHCb. It is a single control and
readout board for the entire experiment. The FPGA used is an
Intel® Arria 10 (10AX115), and it has 48 bidirectional optical
links and a PCIe bandwidth of approximately 100 Gb/s [10].
It can be used for timing, slow control, DAQ or all three
at once-making it an excellent tool for lab use, obfuscating
the need for multiple devices. The PCIe40 firmware [11]
defines the functions of the device. The device is given a
different moniker for each of its functions, depending on
whether it is slow control, data acquisition, or timing and
fast control (TFC). For the purposes of this article, only
the data-acquisition variant (known as “TELL40”) will be
described, and that term will be used for both the firmware
and the card itself.

2474 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 10, OCTOBER 2021

Fig. 2. Diagram of the PCIe40 board and its primary pathways. The
Arria 10 FPGA is located in the center of the card with MiniPod optical
modules driving the I/O to/from the detector. Eight MPO-12 connectors are
used for the fibers. Two PCIe Gen3 x8 lanes are used for data output. Two
dedicated SFP+ modules are used for the timing interface.

Fig. 3. Schematics of the TELL40 firmware. (a) Input data flow from the
front-end and is fed to two independent data streams, where it is decoded (1),
processed (2), formatted (3), and finally sent to the PCIe output. (b) Processing
is subdivided into four parts. The detail of each is described in the text.

A schematic overview of the TELL40 firmware for LHCb
is shown in Fig. 3. For reasons of bandwidth optimization
of the PCIe bus, the firmware is divided into two discrete
and identical PCIe lanes, with input data links split between
the two. Ten optical links from the VELO module are sent
to each data stream. The split is fixed such that the overall
data bandwidth to each stream is the same (this is achieved

Fig. 4. GWT data frame. The most significant bits arrive at the transceiver
first, with the four header bits (HDR) leading, following by four parity bits
(PAR), and the four 30-bit SPPs. The SPPs are scrambled for transmission to
ensure bit balancing on the wire.

Fig. 5. SuperPixel data format. The most significant bits represent the address
of the SuperPixel in the VeloPix matrix, in column, row order. Next is the
9-bit timestamp, followed by the pixel hit-map. A high bit signifies that pixel
was “hit.”

by exploiting detector geometry and expected number of hits
per link). Shown in orange are several low-level interface
functions of the firmware, such as the transceiver interfaces
for the optical links and PCIe bus, the slow controls memory
interface for communicating with the registers in the firmware,
and the interface to the TFC system. These components are
common to the experiment. The central “Data Processing”
component (in gray) is custom for each detector of LHCb,
tailored to the front-end data coming from said detector. For
VELO, the first component “Decoding and Deserialization”
is also custom, in order to handle the custom GWT data
protocol. More detail is given in Section II-A. For the other
detectors, a generic component is used. The last component
(in blue) formats the data into LHCb event fragments, adding
a header with an event ID (a monotonically increasing number
with accepted events), a source ID (unique per TELL40 data
stream), a fragment size in bytes, and format version number.
This header information is used to assemble individual data
fragments from all TELL40s into complete events in the LHCb
event-building software.

The introduction outlines the set of requirements of the
VELO firmware, namely, 1) handling the VeloPix custom
GWT protocol; 2) reordering of the data fragments in time;
and 3) processing the SuperPixel data content. Each of these
will be described in detail in Section II-A–II-C.

A. GWT Deserialization and Decoding
Figs. 4 and 5 describe the VeloPix data. The former,

shows the GWT data frame of 128 bits, with header, parity
information, and four SuperPixel Packets (SPPs). The SPPs
come in two variants: data and special. A data SPP is expanded
in Fig. 5. A special SPP is denoted by an empty pixel
hitmap (i.e., 0 × 00). Although the VeloPix performs zero
suppression, the GWT transmitter maintains an active link,
constantly sending SPPs. Because four SPPs need to be sent
every clock cycle, special idle SPPs are used to fill the gaps
in the absence of data SPPs. Other special SPPs are sent in
response to control signals received by the VeloPix. The upper
bits [29:26] of the special SPP are used to distinguish the
different special types.

The GWT data arrive at the TELL40 receivers as a serial
stream. It is converted to a series of 32-bit words and a search
is performed for the 4-bit 0xA header pattern. This is achieved

HENNESSY et al.: READOUT FIRMWARE OF THE VELO FOR LHCb RUN 3 AND BEYOND 2475

with a bit-slip operation until the header is in the right location
(“HDR” in the figure). Then a lock is asserted signifying
that the GWT data frame has been found and aligned. The
lock can be lost if the 0xA header pattern has not been seen
for a number of clock cycles. Both the lock assertion and
deassertion times can be configured. At this point the data are
considered “word aligned.”

After word alignment, the four parity bits of the GWT
frame can be used to check for the presence of errors in the
frame. This is insufficient to support error recovery, however,
a significant number of parity errors in the data stream can
indicate a degradation of the link quality. Frames with parity
errors are marked as invalid, and such frames are dropped.
A threshold for an acceptable error rate has yet to be defined,
however, a high rate would raise a TELL40 error, thereby
halting data taking. Continuous monitoring of the parity error
counts throguh registers will be employed to signal early
warnings of poor signal integrity. User-issued VeloPix reset
signals can be issued to attempt recovery of a failed link.
Should the problem persist, the link can be excluded from data
taking. Error detection is followed by descrambling of the four
SPPs—each 30-bit wide, expanded in Fig. 5. The scrambling
algorithm is implemented as a linear-feedback shift register
described by the feedback polynomial in (1), where the power
of x represents the bits that are tapped in the feedback circuit

x30 + x16 + x15 + x + 1. (1)

The output of the VELO “Deserialization and Decod-
ing” block is a fully descrambled GWT frame sent to the
data-processing component.

B. Time Ordering of SPPs
The “data-processing” component represents the dominant

workload of the VELO firmware and consumes the most
significant fraction of the Arria 10 resources. Current estimates
show that data processing consumes approximately 80% of
both the logic resources and the block memory resources.
However, the firmware is not in its final incarnation, and
these numbers are expected to change. The data processing
[Fig. 3(b)] can be subdivided into several subcomponents:
1) SuperPixel extraction; 2) timestamp sorting; 3) time align-
ment; and 4) clustering. The last of these, 4), is dealt with in
Section II-B1 on processing the SuperPixel content.

1) SuperPixel Extraction: The GWT frames arrive at the
input of the data processing subsequent to their deserializa-
tion and decoding/descrambling. The four SuperPixels are
extracted from the frame and retimed from their 40-MHz input
rate (driven by the LHC bunch crossing rate) to 160 MHz.
By doing so, the SPPs can be dealt with individually rather
than in the groups of four that arrive. Empty SPPs are indicated
by an empty pixel hit-map (i.e., all eight pixels in the SPP are
zero) and are discarded. Next, the timestamps of the remaining
valid data are converted from Gray code (used to minimize
digital switching in the VeloPix) to binary.

Ten input links are processed in parallel in the Super-
Pixel Extraction block. The input link mapping is fixed at
compile time. However, in the blocks following (described
in Section II-B2), the fixed ordering of input links is lost.

Fig. 6. Dataflow through the Timestamp Sorting component. Detailed
explanation is given in the text.

Therefore, in order to keep track of which SPPs come from
which VeloPix chips, a chip identifier (3 bits) is prepended to
the data, extending the size from 30 to 33 bits. Each data
stream processes half of the VELO module, or six chips.
To map an SPP to its originating chip, the 3 bits of the chip
ID are combined with the data stream number (identified as 0
or 1 in the output data) giving 4 bits, which are sufficient to
uniquely identify the 12 chips on the full VELO module.

2) Timestamp Sorting: The SPPs have a 9-bit timestamp
(known as a bunch-crossing ID in LHC parlance) and therefore
can represent 512 time ticks of the LHC 40-MHz clock cycle
domain before wrapping around to zero. In fact, the LHC
timestamp is 12 bits, and only the lower 9 bits are sent from
VeloPix. The completion of the full timestamp is dealt with in
the next section. The consequence of this is that the latency
of the data coming from the VeloPix to the TELL40 must
not exceed 512 clock cycles. Otherwise, for example, it is
impossible to identify if a particle hit happened 100 clock
cycles ago or 512 + 100 clock cycles ago. Monte-Carlo studies
of LHCb simulation data [7] show that the 9-bit timestamp
should be sufficient at the expected particle rates at LHCb.
However, it is also required that the firmware does not add
a significant amount of latency to the incoming data. Simply
using multiplexers to sort the timestamped data was found to
be too complex for the firmware compilation.

Fig. 6 shows a schematic overview of the timestamp sorting
component. A switching router was employed to sort the four
most significant bits of the timestamp into sixteen timestamp
ranges. Sorted SPPs are stored in RAMs. Multiplexers are
employed to use the five least significant bits to define
32 address ranges in RAM at which the SPP is stored. SPP
counts are tracked in a separate “event count RAM” for all
512 time bins. These counts are used to define the final address

2476 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 10, OCTOBER 2021

within the RAM address range. The switching router works as
follows: SPPs from ten input links are sorted 1 bit per column
for the first 4 MSBs. Eight switching blocks are used in each
column, with two inputs and outputs at each stage, with FIFOs
on both sides to deal with congestion. Because there are only
ten input links, six of the switching blocks in the first column
require only one input. As the SPPs get sorted, their timestamp
bits are removed, because at end of the sorting, the address
in RAM corresponds to the timestamp of the original data.
An example “1010” (10 in decimal) for the 4 MSBs is given
in pink in the figure. Zeroes go to the upper output of each
block and ones down. The SPP correctly arrives at RAM 10.

As a bandwidth optimization, the RAMs are split into two,
such that reading and writing can be performed simultane-
ously. Data are written to the RAMs for 512 clock cycles (to
accommodate the variable latency of the incoming data); after
which the read and write locations are swapped, and previously
written data are read out. In total, there are two data streams
with 16 RAMs of 2 times 32 time bins of 512 SPPs of 24 bits
each, resulting in 25 Mbit of RAM usage, representing almost
half of the available RAM in the FPGA.

3) Aligning to the LHCb Timing System: Once the data are
sorted in time, they need to be aligned to the timing system
of LHCb-known as the TFC system [11]. The TFC provides
a global clock to the experiment along with the current
timestamp, and metadata associated with that timestamp. Such
metadata can be a fast reset signal, a synchronization flag,
or a data veto. The first stage of time alignment involves
extending the 9-bit VELO timestamp to the full 12-bit LHC
timestamp. This is done using synchronization commands
from the TFC to both the VeloPix and the TELL40. The
VeloPix sends special SPPs with the full 12-bit timestamp
when it sees these commands. The special packets received
in the TELL40 are stored and used to complete the 9-bit
timestamps of the subsequent SPPs. Prior to synchronization,
data are not considered valid.

The TFC metadata is buffered in the TELL40 and must
be matched to the VELO data such that a consistent set of
data fragments corresponding to a given timestamp can be
combined downstream in the event builders. This matching
is performed by reading the next instance of timing metadata
from the TFC buffer and reading the corresponding timestamp
address from the VELO RAMs. The VELO data and TFC
metadata are then propagated forward synchronously through
the rest of the firmware.

C. Processing of SuperPixel Content

Pixel data need to be extracted from the SuperPixels in order
to reconstruct the most accurate x,y position of the ionizing
particle from which they originate. A single particle can “hit”
a cluster of pixels. Combining the individual pixels hits into
clusters is required to determine the geometric center of the
particle trajectory at the sensor, and perform accurate tracking.
One of the goals of the VELO firmware is to perform this
clustering on the FPGA and reduce the processing load on the
CPU farm.

Clustering starts with classification of the SuperPixels (see
Fig. 7). SuperPixels are classified into two types for the

Fig. 7. Diagrams outlining cluster creation from SuperPixels. The top
box shows the steps to produce clusters with the processing selection based
on whether the SP is isolated or not. The bottom box shows the more
complex treatment required for nonisolated SPs. A distribution line groups
SP neighbors, and a candidate check is performed on each pixel to match
condition A or B.

purposes of producing clusters-isolated SuperPixels and non-
isolated SuperPixels. The first stage of the clustering compo-
nent is a search for isolated SuperPixels. The incoming SPs
are buffered for an event, and then a search is performed for
neighbors in any of the eight adjacent locations around the
each SP. SPs with no neighbors are tagged as isolated, and,
as such, the final cluster will be produced from the SuperPixel
itself. Once the SuperPixel has been classified, the outcome
is used to decide the next stage of processing-isolated or
nonisolated clustering.

For isolated clustering, a lookup table is used to determine
the final cluster from the 255 possible arrangements of hits in
the eight pixel bits, and this form of clustering is complete.

For nonisolated clustering, more complex processing is
required. First, a cluster candidate search is performed on the
SPs. Forty clustering matrices are employed to perform the
task per data stream. Each matrix can hold up to 3 × 5 SPs
(or 12 × 10 pixels). Cluster candidates identify 3 × 3 pixels.
SuperPixels are delivered to these matrices along a distribution
line. Empty matrices have no predefined geometrical position
on the VELO module. Their position is initialized when the
first SP is added, and it is added to the central matrix position.
Subsequent SPs are checked against the initialized matrix to
determine whether they can be placed. If not, they continue
along the distribution line until a match or an uninitialized
matrix is found.

HENNESSY et al.: READOUT FIRMWARE OF THE VELO FOR LHCb RUN 3 AND BEYOND 2477

TABLE II

CURRENT VELO TELL40 RESOURCE USAGE

Operating in parallel to the distribution, the search for
candidates is performed. In the bottom of Fig. 7, the two
conditions (A or B) for candidate flagging are shown. In a
matrix of 120 pixels, each pixel is verified (in parallel) to
determine whether it is a “checking pixel” (highlighted in
blue). It matches condition A if it has empty pixels south and
west of it (the “zero L pattern”), and an active pixel within.
It matches condition B if it has a “zero L pattern,” and an
active pixel both north and east of it.

The search patterns A and B have been studied with
smaller and larger “zero L patterns” with different active
pixel positions. Performances were studied as a function of
number of clusters produced, cluster splitting, clusters not
found, tracking efficiencies, and FPGA resource utilization.
From these studies, the patterns shown in Fig. 7 were chosen.

If a match is found, a 3 × 3 cluster candidate is formed
(the green square in the figure). The cluster candidate can
be defined as self-contained (all pixels are contained within
the 3 × 3 matrix) or not self-contained, indicating that some
pixel information is lost. The “checking pixel” used to seed
the candidate is marked as done, so double-counting does
not occur. When there are no more checking pixels left in
the matrix, the process stops and the matrix is reset to its
initial “free” state. The last stage produces clusters from the
candidates. This is performed using a lookup table (similar to
the isolated SPs). The resultant cluster is defined by a pixel
position in VeloPix row, column coordinates, and a row and
column fraction (in one-eighth steps). The VELO Sensor ID
is included from the SPs, and some extra information flags to
show whether the cluster is isolated, self-contained, or at the
matrix edge. The final cluster definition is still under review
at the time of writing.

On the whole, the clustering algorithm leverages the par-
allelism of the FPGA by performing matrix distribution,
candidate search, and cluster formation simultaneously, and
sufficient throughput can be achieved. The total resource usage
is summarized in Table II. The values should be taken as
approximate, as the firmware is still in development. Addi-
tional monitoring is needed, and resource optimization has not
been performed. A reduced firmware without clustering will
be considered if resources are insufficient for full functionality
(downstream GPU-based clustering will be performed in that
case).

III. TESTING THE VELO FIRMWARE

The LHCb firmware is built with the Intel Quartus software
(v18.1 SE) and simulated using Mentor Graphics QuestaSim
(v10.6c). CERN’s gitlab is used as code repository for the

Fig. 8. Quartus Chip Planner software showing the routing congestion
in a compiled firmware. The color shows the level of routing congestion
with pink areas over 95% congested. (a) Firmware with a data bypass. The
GWT deserialization and decoding component shows the highest degree of
congestion. (b) Using smaller data sizes and a faster clock, along with some
reduced code complexity, the compiler is able to significantly reduce the
congestion.

firmware and an automatic “simulate, build, test” chain has
been developed. This allows every new release of the firmware
to be adequately tested and changes to be easily tracked.

A simulation checker has been developed using this frame-
work. LHCb Monte-Carlo simulation data have been used
as test input for the firmware. The simulation tests both
VELO and TFC functionality, requiring correct matching of
the VELO data to the TFC metadata. The data output of the
firmware simulation is cross-checked against the input using
the simulation checker. Missing or corrupted data will cause
the checks to fail and indicate the disparity in the source and
output data files. Current tests of several thousand events pass
the checker indicating good performance of the firmware logic.
Unit tests are implemented to ensure full test coverage of the
firmware.

The Questasim simulation is a behavioral check of the
firmware and does not check the performance after placement
and routing of the firmware on-chip. The same type of tests
can be performed in the Arria 10 to test the performance after
full compilation. The LHCb firmware has a feature to inject
files into the memory of the firmware in a similar manner to
the simulation, and the output files can be checked against the
source too. This has not yet been performed as the compilation
shows a degree of routing congestion that must be resolved
first. The routing congestion results in failure to achieve
timing closure of the firmware. This is typical of a large
firmware project and is a task to be completed in the coming
months. An example of this congestion in the deserialization
and decoding component can be seen in Fig. 8(a) and the
reduction after study and optimization in Fig. 8(b). This
technique will be applied throughout the firmware code where
necessary.

2478 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 10, OCTOBER 2021

Fig. 9. Quartus Transceiver Toolkit showing the PRBS tests of the input
links. The number of bits tested and bit error rate (BER) are shown. VELO
links are required to have a BER of less than 10−12.

Fig. 10. Example eye diagram produced with VeloPix GWT data. An “open
eye” (the region in the center where no transitions can be seen) signifies that
sufficient distinction can be made between the “0” and “1” bit levels to recover
the data encoded in the incoming stream.

In lieu of a fully working firmware, an interim solution
was developed to allow adequate testing of the VeloPix and
supporting hardware. A bypass component was created as an
alternative to the full data-processing component. This simply
buffers the GWT input data and passes it directly to the PCIe
output stream. Load balancing is performed among the ten
input links to the output. The data content is untouched. The
data are time sorted offline. This also provides an essential test
of the VELO deserialization and decoding block. This deseri-
alization cannot be adequately tested in simulation because of
the analog nature of the optical input stream. A known number
and pattern of test signals are injected into the VeloPix, and
these are checked in the output data. Several problems can
occur to cause this test to fail: poor signal integrity on the opti-
cal links; incorrect clocking in the deserialization and decoding
component; overflowing buffers in the firmware; etc. Readback
and counter registers used in the firmware are exposed to
show the loss of signal lock, parity error counts. Link quality
is determined using pseudorandom bit stream (PRBS) tests
(an example is shown in Fig. 9). The VeloPix has a special
PRBS mode for this kind of link test. It does not test the
GWT protocol, but it does signify that reliable analog settings
have been set on the transmission (VeloPix) and receiving
(the TELL40 transceivers) ends of the data link. Eye diagrams
can be made for each link to test with the GWT protocol-an
example is as shown in Fig. 10. Successful test signal patterns
have been injected into VeloPix and reconstructed using the
bypassed output data.

TABLE III

COMPARISON OF FPGA RESOURCES FOR THE CURRENT VELO AND A
CANDIDATE FOR ITS NEXT UPGRADE

IV. NEXT-GENERATION DATA-ACQUISITION PLANNING

The high-luminosity phase of the LHC, due to start
in 2028, will provide approximately 7.5 times the luminosity
at LHCb [12]. The number of tracks and hits is expected to
increase a similar amount. This poses a significant challenge
for the tracking software for a detector such as VELO, as the
number of combinations of hits increases exponentially. One
proposed solution is to use more precise timing to separate
the proton-proton interactions that occur. By breaking up the
event into smaller time quanta, there are fewer hits to process
and the combinatorics become more manageable. Integrated,
there is no escaping the fact that more bandwidth is required
for more data. In fact, the extra bits required to store a
more precise timestamp, and an expected increase in spatial
precision (2×–4×), coupled with the luminosity increase,
result in a minimum expected bandwidth of ∼ 200 Gb/s to
be required from a VeloPix-like ASIC. Ignoring the rather
formidable challenge of producing such a front-end ASIC
and supporting electronics, one can take this future VELO
as a test case to study the requirements for a cutting-edge
data-acquisition system for the HL-LHC era of detectors.
Given the time frames required to prototype and produce a
readout board such as the PCIe40 (est. 6+ years), one can
look at the latest FPGA technology available today, and expect
not more than one new generation advance in the technology
by the time production is necessary.

For the sake of comparison, the Intel Agilex I-Series is at
the top end of Intel’s current catalog. Table III summarizes
a comparison of the current Arria 10 (AX115) used in the
PCIe40 and the Agilex I-Series AGI-027. With the process
change from 20 to 10 nm, nominally one would expect to
run at twice the clock frequency (this is an oversimplification,
but not too ambitious given the frequencies currently used in
most of the firmware are 160 MHz and below). Combining
this with the increase of logic elements (2.3×) gives almost
a factor of 5× increase in processing bandwidth, whereas
our requirement of 200 Gb/s is 10× the current generation,
leaving a 2× shortfall. The same calculation can be done
for the amount of M20k memory, with a similar result. The
outlier in the change of resources is the increase in digital
signal processors (DSPs) (mostly used for mathematical cal-
culation), which increase by a factor of 11.2×. This significant
DSP upgrade can easily be explained by the current market
trend for FPGAs as tools for machine/deep-learning networks,
which rely heavily on DSP use. The downside of this is that
DSPs are a significantly underused resource in the current
generation of FPGA algorithms used for data processing.
Therefore, if the same approach is taken for the next generation
of LHCb, the resource wastage becomes significantly worse
(and a cheaper no-DSP FPGA does not seem to be an option
offered by the main vendors).

HENNESSY et al.: READOUT FIRMWARE OF THE VELO FOR LHCb RUN 3 AND BEYOND 2479

The increased processing required in the online
data-acquisition system is easily matched in the processing
required to reconstruct the physics events. Reconstructing the
tracks in the VELO is typically a CPU-intensive task. Any
pattern recognition preprocessing that can be performed to
produce tracks or partial tracks will reduce the CPU load in
the computing farms. LHCb’s Real-Time Analysis group is
exploring the use of compute accelerators (GPUs and FPGAs)
to perform this pre-processing task. A new approach currently
under study in LHCb employs machine-learning techniques
on FPGAs to perform VELO tracking. The research could
capitalize on the DSPs currently underutilized in the data
acquisition. Further study is required to determine how to
marry the different FPGA use cases for the experiment.

V. CONCLUSION

The readout firmware for the LHCb VELO is currently
under active development. Reception and data recovery from
the custom GWT protocol designed for the VeloPix has been
demonstrated in the lab, with an error rate below the require-
ments of the experiment. Time ordering and alignment of the
data from the VeloPix has been demonstrated in firmware
simulation. Clusterization has also been tested to work in
simulation. Congestion and timing closure mark the current
challenges to complete the full compilation for a working
on-chip firmware. These challenges will be met utilizing
the techniques employed for the GWT deserialization and
decoding, in time for data taking in 2022.

The VELO has been taken as an example case of how to
prepare for the High Luminosity Phase of the LHC (due to
start in 2028). A significant increase in the online processing
requirement is foreseen. The addition of more precise timing
to the data is under study to both improve the detector
performance and lighten the compute load. To the same end,
VELO tracking using FPGAs is also under study to make
better use of online processing resources. Adequate planning
is required at the design stage of data-intensive experiments
to best manage computational resources required for the next
generation of physics discovery.

ACKNOWLEDGMENT

Karol Hennessy, Themis Bowcock, Francesco Dettori, Karlis Dreimanis,
Vinicius Franco Lima, David Hutchcroft, Kurt Rinnert, and Tara Shears are
with the Department of Physics, Liverpool University, Liverpool L69 7ZE,
U.K. (e-mail: karol.hennessy@cern.ch).

Antonio Fernández Prieto, Pablo Vázquez Regueiro, Edgar Lemos Cid,
Oscar Boente García, Abraham Gallas Torreira, and Beatriz García Plana are
with the Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade
de Santiago de Compostela, E-15782 Santiago de Compostela, Spain (e-mail:
antonio.fernandez.prieto@cern.ch).

Jan Buytaert, Oscar Augusto, Victor Coco, Paula Collins, Tim Evans,
Massi Ferro-Luzzi, and Heinrich Schindler are with European Organization
for Nuclear Research (CERN), 1211 Geneva, Switzerland.

Martin Van Beuzekom, Kristof de Bruyn, Kazu Akiba, Elena Dall’ Occo,
Cristina Sanchez Graz, Wouter Hulsbergen, Daniel Hynds, Igor Kostiuk,
Marcel Merk, and Aleksandra Snoch are with the National Institute for
Subatomic Physics (Nikhef), 1009 DB Amsterdam, The Netherlands.

Lars Eklund, Sneha Naik, Manuel Schiller, and Dana Seman Bobulska
are with the Department of Physics and Astronomy, University of Glasgow,
Glasgow G12 8QQ, U.K.

Dónal Murray, Silvia Borghi, Stefano de Capua, Deepanwita Dutta, Marco
Gersabeck, Chris Parkes, Peter Svihra, and Mark Williams are with the Depart-
ment of Physics and Astronomy, The University of Manchester, Manchester
M13 9PL, U.K.

Alexander Leflat, Galina Bogdanova, and Vladimir Volkov are with the
Skobeltsyn Institute of Nuclear Physics, Moscow State University (MSU),
119991 Moscow, Russia.

Giovanni Bassi and Michael J. Morello are with the Scuola Normale
Superiore, 56126 Pisa, Italy, and also with the INFN Sezione di Pisa,
56127 Pisa, Italy.

Giovanni Punzi is with the Department of Physics, University of Pisa,
56126 Pisa, Italy, and also with the INFN Sezione di Pisa, 56127 Pisa, Italy.

Federico Lazzari is with the Department of Physical Sciences, Earth and
Environment, University of Siena, 53100 Siena, Italy, and also with the INFN
Sezione di Pisa, 56127 Pisa, Italy.

Pawel Kopciewicz, Maciej Majewski, Agnieszka Oblakowska-Mucha,
Bartlomej Rachwal, and Tomasz Szumlak are with the Department of Particle
Interactions and Detection Techniques, AGH University of Science and
Technology, PL-30059 Kraków, Poland.

Lucas Meyer Garcia, Franciole Marinho, Larissa Helena Mendes, Irina
Nasteva, Juan Otalora, and Gabriel Rodrigues are with the Instituto de Fisica,
Universidade Federal do Rio de Janeiro (UFRJ), 21941-972 Rio de Janeiro,
Brazil.

Jaap Velthuis is with the School of Physics, University of Bristol, Bristol
BS8 1TL, U.K.

Pawel Jalocha, Malcolm John, Nathan Jurik, and Luke Scantlebury-Smead
are with the Department of Physics, University of Oxford, Oxford OX1 3PU,
U.K.

John Back, Tim Gershon, Tom Latham, and Andrew Morris are with the
Department of Physics, University of Warwick, Coventry CV4 7AL, U.K.

REFERENCES

[1] The LHCb Collaboration et al., “The LHCb Detector at the LHC,”
J. Instrum., vol. 3, Aug. 2008, Art. no. S08005.

[2] The LHCb Collaboration, “LHCb VELO upgrade technical design
report,” CERN, Meyrin, Switzerland, Tech. Rep. CERN-LHCC-2013-
021, 2013. [Online]. Available: https://cds.cern.ch/record/1624070

[3] A. F. Prieto et al., “Phase I upgrade of the readout system of the vertex
detector at the LHCb experiment,” IEEE Trans. Nucl. Sci., vol. 67, no. 4,
pp. 732–739, Apr. 2020, doi: 10.1109/TNS.2020.2970534.

[4] T. Poikela et al., “VeloPix: The pixel ASIC for the LHCb upgrade,”
J. Instrum., vol. 10, no. 1, Jan. 2015, Art. no. C01057.

[5] O. A. de Aguiar Francisco et al., “Evaporative CO2 microchannel
cooling for the LHCb VELO pixel upgrade,” J. Instrum., vol. 10, no. 5,
2015, Art. no. C01014.

[6] V. Gromov et al., “Development of a low power 5.12 Gbps data serializer
and wireline transmitter circuit for the VeloPix chip,” J. Instrum., vol. 10,
no. 1, 2015, Art. no. C01054.

[7] T. Poikela, “Readout architecture for hybrid pixel readout chips,” CERN,
Meyrin, Switzerland, Tech. Rep. CERN-THESIS-2015-111, 2015,
p. 140. [Online]. Available: https://cds.cern.ch/record/2042198/files/
CERN-THESIS-2015-111.pdf

[8] M. Bellato et al., “A PCIe Gen3 based readout for the LHCb upgrade,”
J. Phys., Conf. Ser., vol. 513, no. 1, Jun. 2014, Art. no. 012023.

[9] F. Vasey et al. Versatile Link Specifications. Accessed: Oct. 1, 2020.
[Online]. Available: https://edms.cern.ch/project/CERN-0000090391

[10] P. Durante, N. Neufeld, R. Schwemmer, G. Balbi, and U. Marconi,
“100 Gbps PCI-express readout for the LHCb upgrade,” J. Instrum.,
vol. 10, no. 4, Apr. 2015, Art. no. C04018.

[11] The LHCb Collaboration, “LHCb upgrade trigger and online technical
design report,” CERN, Meyrin, Switzerland, Tech. Rep. CERN-LHCC-
2014-016, 2016. [Online]. Available: https://cds.cern.ch/record/1701361/
files/LHCB-TDR-016.pdf

[12] The LHCb Collaboration, “Physics case for an LHCb upgrade
II—Opportunities in flavour physics, and beyond, in the HL-LHC era,”
CERN, Meyrin, Switzerland, Tech. Rep. CERN-LHCC-2018-027, 2018.
[Online]. Available: https://cds.cern.ch/record/2636441

http://dx.doi.org/10.1109/TNS.2020.2970534

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

