FERMILAB-PUB-24-0409-STUDENT

A Graph Neural Network Surrogate Model for hls4ml

Dennis Plotnikov! 2, Benjamin Hawks', and Nhan V. Tran!

L Fermi National Accelerator Laboratory, Kirk € Pine St., Batavia, IL 60510, USA
2Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles
St., Baltimore, MD 21218, USA

July 2024

Abstract

Recent advancements in use of machine learning (ML) techniques on field-programmable gate arrays
(FPGAs) have allowed for the implementation of embedded neural networks with extremely low latency.
This is invaluable for particle detectors at the Large Hadron Collider, where latency and used area
are strictly bounded. The hlsdml framework is a procedure that converts trained ML model software
to a synthesis result to can be used on an FPGA. However, running the pipeline is a time-consuming
procedure, and there is a strong risk of failure. In particular, it may not be possible to successfully convert
a model into a synthesis result, or the resource consumption of the model may exceed the resources of
the target FPGA. To aid with this development, we introduce wa-hls4dml, a surrogate model using a
graph neural network to emulate the structure of the source models. The goal is to estimate the chance
of success and resource consumption of a given model when passed through the hlsdml pipeline, without

needing to run the pipeline.

1 Background

Physicists have been attempting to probe the
smallest length scales, to attempt to make new funda-
mental discoveries about the universe. Experiments
on this frontier require extreme data processing ca-
pabilities. In particular, at the Large Hadron Col-
lider (LHC), the most powerful particle collider in
the world, the rate of bunches of protons passing de-
tectors is ~ 40 MHz [1]. Storing data at this rate
would be intractable, meaning that a vast majority
of the data must be thrown out at the level of the
detector.

Both the ATLAS and CMS detectors at the LHC
are designed with a multilevel trigger system which
only stores events containing interesting physical phe-
nomena. The trigger system reduces the data volume
down from 40 MHz to ~ 1 kHz. The first step is
a Level 1 (L1) trigger, which must reduce the data
rate to ~ 100 kHz. This L1 trigger is followed by

the High-level trigger (HLT), which further reduces
the data stream down another two orders of magni-
tude [1][2]. Both of these trigger layers choose which
events should be discarded in real time. The HLT
is able to make use of sophisticated and relatively
long-running algorithms, whereas the L1 trigger has
much stronger constraints on its algorithms. Since
the throughput is stepped down so strongly in the
L1 step, it is necessary to have a system that can
effectively make a correct decision about the impor-
tance of an event, all in about 10 nanoseconds. This
strong upper bound on potential latency of the trig-
ger algorithm limits the sort of triggering decisions
that can be made from a real time embedded system.
Such algorithms, however, may not necessarily suc-
ceed in their task, and may either fail to discard an
event containing only background (which slows down
the final data analysis steps), or wrongly discard an
event containing interesting physical data.

Machine learning (ML) has been widely applica-

FERMILAB-PUB-24-0409-STUDENT

ble for LHC event reconstruction [3] [4]. ML tech-
niques are well-suited to performing analyses post-
hoc, where the large time requirement of sophisti-
cated models is not an issue. However, it is much
more challenging to implement such a model for use
in the L1 trigger. To achieve this, one can convert
the ML model into a form that can be synthesized to
hardware level, either with field-programmable gate
arrays (FPGAs), or with application-specific inte-
grated circuits (ASICs). This is achievable by train-
ing an ML model in the standard way, and then con-
verting it to a hardware description language through
the hls4ml process [5]. The hlsdml process is a
pipeline which can convert a machine learning model
to high-level synthesis (HLS) code, which can then be
converted into a hardware description language like
VHDL [6].

Using hls4ml, various kinds of ML models that
can be converted onto FPGAs [7] [8] have been im-
plemented. Additionally, the prototype “smart pixel”
system uses the hls4dml pipeline to create designs for
ASICs that can be embedded in the detector pixel
itself, allowing for extremely space efficient and low-
latency triggering, while also retaining the power of
an ML-based solution [9)].

However, this pipeline is not guaranteed to suc-
ceed. In particular, there are two modes of failure
in which the pipeline cannot effectively be deployed
onto an FPGA (or ASIC). Firstly, it is possible for the
HLS synthesis step to fail, meaning that no meaning-
ful hardware description code is produced. Secondly,
even if HLS synthesis succeeds, the model may con-
sume more resources than are available on the FPGA,
or may violate a constraint necessary for the use case
that the FPGA is being developed for. This raises
an issue, as the time to train a model is significantly
shorter than the time it takes to run the HLS syn-
thesis, which in turn is a smaller time sink than the
time required to perform the actual hardware synthe-
sis. Thus, it would be advantageous to have a rela-
tively fast estimation procedure to predict the success
chance and resource consumption of a given model,
without actually running the full hls4dml pipeline.

2 General Task and Framework

Our goal is to create a system, by which a given
model can be fed in as input, and reasonable esti-
mates of the synthesis resource usages can be given

within a much shorter time than actually running the
synthesis procedure. The creation of such “surrogate
models” is common in fields of systems and industrial
modeling. [10] In our case, the creation of a surrogate
model largely involves finding a hidden transfer func-
tion which takes certain parameters of a model, and
outputs the success chance and required resources of
the resulting FPGA. The output does not have to be
precise, and is only required to be a sufficiently close
estimate. As can be seen, this is a good candidate
problem for machine learning. ML techniques have
been successful for surrogate models in general. [11]
Additionally, ML techniques have been effectively ap-
plied to tasks within hardware-level design problems,
such as PCB routing. [12] We have therefore imple-
mented a neural network, named “wa-hls4ml”, for the
purpose of creating a fast and effective procedure for
estimating the above parameters.

While a traditional multi-layer perceptron (MLP)
neural network is a good approach for dealing with
models of one type, there is a challenge when at-
tempting to estimate models with varying numbers
of layers, and varying connections between layers. It
would be unfeasible to attempt to have individual
MLP input features for every conceivable input type
(in our case, any conceivable network shape) [13].
One solution is to use a graph neural network (GNN).
A graph neural network takes input features not in
the form of a simple n-dimensional vector, but as
a graph representing the actual underlying structure
of the data [14]. Graph neural networks have been
widely used in the fields of social network analysis
and chemical modeling, and have also seen great suc-
cess in modeling systems in high-energy physics [15]
[16]. In these domains, data of varying shapes and
dimensions are common and must be robustly han-
dled. The success of GNNs in these fields prompts
us to consider them the best single solution to repre-
senting the varying structures of our input models.

The GNN framework allows us to accurately map
a given neural network model into a representation
compatible with ML. In particular, we create a graph,
with nodes in the graph representing layers of the net-
work, and edges representing feedforward connections
between them. This allows the network to represent
every different type of graph structure in a way that
allows the different shapes of networks to correspond
one-to-one with the differences in input data.

2.1 GNN Theoretical Advantages

FERMILAB-PUB-24-0409-STUDENT

Hidden 2

Hidden 1

28

Figure 1: A simple two-hidden-layer feedforward neu-
ral network, represented as a three node directed
graph.

2.1 GNN Theoretical Advantages

A GNN is expected to outperform a traditional
MLP in two ways. In the first, a graph neural net-
work, when trained on a sufficiently large and diverse
dataset, is able to provide estimates on model shapes
that it has not seen before (i.e. a particular graph
structure that was not in its training set). In con-
trast, an MLP is necessarily unable to do this, as its
input feature vector would have to be modified to
account for the structure change, and would thus re-
quire retraining the entire model to account for this
new data.

Secondly, the GNN should outcompete an MLP
in terms of successful prediction on strongly hetero-
geneous data. Specifically, data sets which include
a diverse selection of layer numbers and connections
will be modeled effectively in a GNN arbitrary graph
input. An MLP would need to instead have a feature
vector accommodating the largest such graph, with
entries of the vector being masked out if the data-
point does not contain as many layers as the largest
model in the dataset. This is expected to contribute
negatively to the predictive power of such a model,
since it would effectively have to learn the relation
between layers differently for any given pair of lay-
ers. A GNN would naturally have this represented in

the data structure, allowing the connections between
layers to act as inductive bias, and would not have to
waste power in learning that relation.

3 Data

The datapoints used for the wa-hlsdml system are
the models which can be put through the hlsdml
pipeline. About 35000 models were created with
varying parameters. Each of these were preinitialized
with random weights, to simulate the structure of an
actual neural network with that architecture. Since
the particular weights themselves are not relevant to
the hlsdml pipeline, this is sufficient to simulate ac-
tual models. For our sample dataset, the input neural
networks contained either 1 hidden layer or 2 hidden
layers each.

The models were then put into the hlsdml system,
converting them through the HLS synthesis step. If
the step succeeded, estimates for the resource con-
sumption of the synthesis result (as produced by the
HLS synthesis step) were then extracted. In the case
of the synthesis failing, the resource estimates were
all assigned a value of —1. The key parameters of the
input and output of the process were then formatted
into a CSV file to use for model training.

3.1 Parameters Modeled

For each layer of neural network in the input
model, the number of nodes in that layer is saved as
an input feature. A graph is then constructed from
this data. Each node of the resultant graph is one of
the layers (as previously mentioned), and is labeled
with a node-level feature indicating the dimensional-
ity of that layer in the input model. Since the output
of the model is always a single feature, the output
layer is not modeled.

A number of global/context features are used
at the overall graph level, to indicate traits of the
model’s synthesis process as a whole. Specifically,
the reuse factor of the model when put through syn-
thesis, as well as the fixed-point precision are saved
as these features. Additionally, the optimization
strategy (resource-optimizing or latency-optimizing)
is saved as a 1-hot encoded categorical feature.

The input data is generated by iterating over each
of these features, and creating corresponding models

FERMILAB-PUB-24-0409-STUDENT

to allow the input data to effectively cover the search
space. Models are generated for each number of di-
mensions between 32 and 256, in increments of 32.
For each number of dimensions, every combination of
fixed-point precision (from 2 to 16 in increments of 2)
and reuse factor (increments vary based on the kind
of model being checked). The type of synthesis strat-
egy is not subject to this search space covering in the
same way, since batches must be run separately for a
different strategy choice.

For the corresponding output datapoints, the fea-
tures used are estimates for the latency of the output,
the interval between parallel steps, the number of flip-
flops (FFs) used, number of lookup tables (LUTs)
used, the consumption of the BRAM, and the num-
ber of DSP modules required. Additionally, the suc-
cess or failure of the synthesis is saved as a binary
1/0 feature.

Input Output
Node-level | Nodes per layer
Edge-level Adjacency list
Latency
Interval
Strategy FFs
Graph-level Reuse factor LUTs
Precision BRAM
DSP
Synth success

Table 1: All parameters currently modeled for this
analysis.

4 Methods

In order to test the learning effectiveness of a
GNN solution to this learning task, we have imple-
mented a standard feedforward MLP to also attempt
to model this problem. For the cases modeled, the
MLP does not account for the graph structure of the
data, and instead has a standard flattened feature
vector. This feature vector has a separate feature for
each dimension possible in the model. In our case,
since we tested models with either one or two hidden
layers, the feature vector has three rows correspond-

ing to the three layer dimensions of the model.

Two activation functions are used in our neural
networks. The first is the Leaky ReLU (LReLU) func-
tion, as follows: [17]

x x>0

1
—0.0lx <0 (1)

LReLU(z) = {

This allows us to utilize the experimentally vali-
dated approach of ReLU activation, while also avoid-
ing the “dying ReLU” problem of vanishing gradi-
ents in standard ReLU. This activation is also used
internally in attention computation. Similarly, we
also make use of the Exponential Linear Unit (ELU),
which is as follows: [18] [17]

x z>0
exp(z) —1 <0

ELU(z) = { 2)

ELU, just as with LReLU, retains much of the
benefit of the ReLLU function, while not being subject
to the vanishing gradient issue. Furthermore, since it
tends towards a plateau in the x — —oo limit, and ex-
hibits stronger nonlinearity, ELU activation can allow
for a stronger convergence over only using LReLU.

4.1 Graph Neural Network Structure

The GNN structure chosen allows for arbitrary di-
rected graph input, with each node and edge having
some fixed number of features. For the purposes of
our current tests, no edge features were given (besides
the implicit edge feature of the adjacency list). We
handle global (per-graph) features by incorporating
them directly into the node features. During pre-
processing, the global features are concatenated onto
every per-node feature vector of the corresponding
graph. This allows the global features to influence
the entire rest of the GNN training.

Each of these independent feature vectors is
passed through a shallow (one hidden layer) MLP
layer, to translate each feature of the graph into a
higher-dimensional embedding.

The per-node and per-edge feature vectors are
then fed into a Graph Attention Network (GAT)
layer. Specifically, the network used is a GATv2 layer.

4.1 Graph Neural Network Structure

FERMILAB-PUB-24-0409-STUDENT

This is a modified version of a graph attention proce-
dure, in which an attention mechanism is applied dur-
ing training, in order to weight edges which are more
or less important to the results [19]. Since our in-
put models may have layers that matter significantly
more or less than others in terms of resource con-
sumption (e.g. skip-layer connections), the attention
mechanism will be able to handle this incongruity by
learning on which edges are more or less valuable to
the end result. The layer applies the following oper-
ator: [19] [20]

r_
xX; = g

JEN (Ui}

3)

@i, @X;

Where ©; are trainable parameters, and «; ; are
the attention weights, calculated with

exp (a"LReLU (©,%; + ©,x; + O.e;;))

Pken(iyuiiy ©xXP (aTLReLU (0,x; + ©:x); + Oce; 1]))

(4)

The GATv2 layer produces a new set of per-node
embeddings, which are fed into the next layer. As
a consequence of its operation, the GATv2 layer also
produces an attention weight per-edge. As mentioned
above, this value has great relevance for ensuring that
potentially less relevant connections between layers
are properly accounted for. These weights are thus
extracted, and used meaningfully in further parts of
the model.

The newly created per-node feature vector is then
inputted into a graph convolution layer. This layer
performs a non-trainable message-passing procedure,
followed by a trainable single-layer linear transfor-

mation, on the input graph, producing a new set of
per-node feature vectors.

The procedure is repeated again, with a second
GATv2 layer. The edge attentions generated by the
previous layer are fed into this layer as per-edge fea-
tures, to allow the earlier attention information to in-
form the second layer. The node features are passed
through this layer, and the resulting features are
passed through a second non-trainable graph convo-
lution layer. The resultant vector is normalized per-
graph, which has been shown to be an effective means
of improving convergence time and accuracy in GNNs
[21].

The edge attentions produced by this second layer
are concatenated onto the per-edge feature vector,
essentially adding the attention output as an edge
feature. The per-edge features are passed through a
shallow MLP.

The node features outputted from the message-
passing layer are then passed through a global pool-
ing layer, using a combination of sum-pooling and
multiplicative pooling. This reduces these features
to a single global feature vector representing all node
features. The same is done independently with the
edge features with additive pooling, producing a sin-
gle edge feature vector. The node feature vector and
edge feature vector are then concatenated into a sin-
gle large vector. This vector is then passed through
another shallow MLP layer to produce a final out-
put value. For the regression tasks, this value is used
as-is. For the binary classification task (i.e. the syn-
thesis success chance), the resultant value is treated
as a logit and is passed through a sigmoid function.

4.2 Comparison MLP Structure

FERMILAB-PUB-24-0409-STUDENT

/
Jf Global Add to every node N\
/ [Message Passing Layer #2
/ / Node . A
/ / Graph (MultiAggregation with

J\ Linear layer J\
Node Node

with

Features || eakyRelLU | Features
“/ activation “/

Node \.| Message Passing Layer #2

Graph (MultiAggregation with

Attention

Data Processing

A | Fealures | addiive and multplicative) Features /| qditive and multiplicative)
Network Network
LS (GATV2) (GATV2)
(élLrsjiddip I?yerv Layer #1 Layer #2 {}
Nodes activation) Edge Attention
/7 Linear layer
B with
LeakyReLU
’J: activation
/ J\ NN Layer NN
/ (1 hidden layer, Edge Features Layer Edge Attention
| Edges M ELU activati 4
/ / B
L /
/ {} MultiAggregation Graph
, '— Poolingwith | ——— Normalization
Linear layer Additivge el \17
Multiplicative
Global Additive
D Trainable Layers Pooling
D Non-Trainable Layers
D i/ NN Layer

(1 hidden

Pooled Features layer, ELU

Figure 2: The overall structure of the GNN, with two GATv2 layers.

4.2 Comparison MLP Structure

The MLP used for comparison is a standard feed-
forward neural network. The MLP has 5 hidden lay-
ers, which can be seen to approximately match the
number of hidden layers in the GNN structure. The
layers have a 20% dropout applied to them, to at-
tempt to reduce overfitting, and especially to prevent
overfitting to one or another structure of input model.

4.3 Losses and Activations

For classification training, the binary cross-
entropy function is used. The output value, as de-
scribed above, is passed through a sigmoid function,
allowing the result value to be used as a confidence
percentage of the synthesis succeeding.

The loss function used for regression training is
the log cosh loss. Empirical testing showed that the
L? norm produced effective results for some of the
features, but failed to be effective for the BRAM and
DSP parameters, so for the purposes of the compar-
isons here, all features were trained with the log cosh
loss.

4.4 Implementation

The machine learning methods were implemented
using the Pytorch library of machine learning tools.
All GNN implementation components utilize the Py-
torch Geometric library [20]. Data is read in from
CSV files containing information about the graph
structure, as well as all node values and global feature
values.

For the GNN, the data are then converted into a
graph format. For each data point, we create a node
tensor, an edge tensor, and a global features vector.
The node feature tensor is of the form N x Fy, with
N being the number of nodes in the data point (i.e.
the number of layers in the input model), and Fy
being the number of per-node features (for our tests
here, this is just 1). The edge tensor is of the form
E x (Fg +2), with E being the number of edges (i.e.
layer connections in the input model), and Fg be-
ing the number of edge features. The extra 2 comes
from the representation of the graph, in the form of
an adjacency-list, with the indices of the source and
destination nodes being stored per-edge.

During preprocessing, the global feature vector is
concatenated onto each node tensor, creating a tensor

FERMILAB-PUB-24-0409-STUDENT

of the form N x (Fy + Fg), where Fg is the number
of global features. The adjacency list of the edge ten-
sor is broken off, and self-loops are adding, creating
tensors of 2 x E and (E+ N) x F, respectively. These
tensors are fed into the GNN layers.

For the GAT v2 model, we use the prebuilt Py-
Torch Geometric implementation, called GATv2Conv.
The standard graph convolution layer which fol-
lows is implemented using the SimpleConv module,
which is an implementation of a generalized non-
trainable message-passing layer. We use the builtin
MultiAggregation module for both message passing
and to pool node features, combining multiplicative
MulAggregation with mean SumAggregation. The
two aggregations are combined via the 'proj' com-
bination method, which uses a trainable linear pro-
jection to combine the two into one feature vector.
The global_pool_add built-in function was used to
pool edge features.

The graph normalization layer is implemented
with the prebuilt GraphNorm implementation [21].
This allows for accelerated training, and in testing
appeared to additionally stabilize the final conver-
gences.

For the MLP comparison model, the node features
are instead just represented as individual numeric fea-
tures in one flattened global feature vector per-event.
In our testing case, this means that three dimensions
of the feature vector are devoted to layer dimensions.
Since some models do not have the same shape as oth-

GNN:

ers, nodes/hidden layers which are “missing” in some
models are simply masked out with a value of -1. In
particular, the middle dimension is masked out for
all 1-layer models. This is then used as input for a 5
hidden layer MLP model. Both the Leaky ReLU and
ELU functions are used as activation functions, with
ELU being used as the first and last activations, and
LReLU being used for the rest. This closely matches
the use of losses in the training of the GNN;, especially
since the attention network structure makes use of the
LReLU function internally.

5 Results

The model is tested using an 70-20-10 train-test-
validation split. The random seed is consistant be-
tween the two model types, such that a direct com-
parison can be made.

5.1 Classification

For the binary classification, the confusion matrix
is calculated, using a 50% result from the model as a
threshold for a “success” classification.

For the classification task on our testing data, the
precision of the GNN is about 99.71%, and the re-
call is 100% with respect to successes. For the MLP,
the precision is about 99.69%, and the recall is again
100%. The confusion matrices are as follows:

MLP:

Pred. Failure

Pred. Success

Pred. Failure

Pred. Success

GT Failure

346

20

GT Failure

345

21

GT Success

0

6823

GT Success

0

6823

Table 2: Comparison of the confusion matrices for the binary classification task, i.e. synthesis success or

failure

5.2 Regression

The root-mean squared error (RMSE) is calcu-
lated for all regression values, as a means of assess-
ing error rate. This result is calculated, as men-
tioned above, by first passing data points through the

trained classification model, taking only those that
score above 50% confidence in synthesis success, and
performing the regression model on those data. The
residuals for the output features are distributed as
follows:

5.2 Regression FERMILAB-PUB-24-0409-STUDENT

Log Residual of WorstLatency_hls

MLP (RMSE = 722.910)
s GNN (RMSE = 727.707)

—4000 —3000 —2000 —1000 0 1000 2000 3000
Error of WorstLatency_hls

Figure 3: Comparison of residuals for the latency feature

Log Residual of IntervalMax_hls

MLP (RMSE = 523.316)
s GNN (RMSE = 516.190)

Number

—2000 —1500 —1000 -500 0 500 1000 1500
Error of IntervalMax_hls

Figure 4: Comparison of residuals for the interval feature

5.2 Regression FERMILAB-PUB-24-0409-STUDENT

Log Residual of FF_hls

MLP (RMSE = 417.658)
== GNN (RMSE = 472.794)
103 4
3 1074
€
=3
=2
101 4
100 4
~6000 ~4000 ~2000 0 2000 4000
Error of FF_hls
Figure 5: Comparison of residuals for the flip-flops feature
. Log Residual of LUT_hls
10° 1

MLP (RMSE = 1501.095)
mmm GNN (RMSE = 1489.892)

—10000 0 10000 20000 30000 40000 50000 60000
Error of LUT_hls

Figure 6: Comparison of residuals for the lookup tables feature

5.2 Regression FERMILAB-PUB-24-0409-STUDENT

Log Residual of BRAM_18K_hls

MLP (RMSE = 0.966)
s GNN (RMSE = 0.971)

-5 0 5 10 15 20 25 30
Error of BRAM_18K_hls

Figure 7: Comparison of residuals for the BRAM feature

Log Residual of DSP_hls

104 4
MLP (RMSE = 54.213)
s GNN (RMSE = 15.746)
103 4
@
o 102 A
2 10
3
=
10! 4
100 4

—1750 —-1500 —-1250 —1000 -750 -500 -250 0
Error of DSP_hls

Figure 8: Comparison of residuals for the DSP feature

10

FERMILAB-PUB-24-0409-STUDENT

6 Discussion

The effectiveness of the GNN model evidently
varies by parameter. The DSP, LUTs, and inter-
val parameters were more effectively modeled by the
GNN. The latency, flip-flops, and BRAM were pre-
dicted somewhat worse by the GNN compared to the
control MLP.

The latency, interval, LUTs, and BRAM features
were modeled only negligibly differently between the
two models, with the differences in their RMS error
being within ~ 1%. This difference can largely be
attributed to the specifics of the data, and are not
likely to reflect any meaningful differences between
the predictive power of the models. The DSP and
flip-flops parameters showed bigger differences, indi-
cating actual structural differences.

On this dataset, the DSP feature, which failed
to be meaningfully predicted by the MLP even after
hyperparameter optimization, was predicted by the
GNN, with a fourfold decrease in RMS error. This
shows that the more sophisticated GNN representa-
tion can succeed against a simpler MLP. This fail-
ure to converge is expected to improve with a larger
dataset, as this effect may be caused by the MLP
failing to escape from a local minimum.

The flip-flops appear to be estimated relatively
weakly by the GNN, compared to the control MLP.
This may be the result of those parameters correlat-
ing strongly between a global feature (e.g. precision)
and the node-level feature, or in relation to their de-
pendence on bit operations, an input feature we did
not use for this analysis.

The classification task seems to have performed
very well on both models, and differences between
their performance appear to be no bigger than noise.
However, this cannot necessarily be generalized, since
the amount of failures in the dataset is dwarfed by
the number of successes. In particular, the 100% re-
call for success may be caused by insufficiently many
failure samples to test on. More data is needed to
confirm the effectiveness of the models in the failure
regime.

With the current limited set of data (only 1-
hidden-layer and 2-hidden-layer models), the advan-
tages of the graph representation are limited. More
groundtruth data is required to achieve a larger
breadth of model types. In particular, deep mod-

11

els and models with unusual connections could allow
the GNN to learn much deeper information about the
effects of different edges themselves.

The GNN is able to meet or exceed the perfor-
mance of a traditional MLP in 5 out of the 6 tested
regression tasks, which indicates promise on its abil-
ity to generalize model structure. However, the cur-
rent data is insufficient, both in quantity and breadth,
for making larger claims about the effectiveness of
the GNN as a means of providing effective estimates
for a generic input model. More testing needs to be
performed to make certain that the success of this
model on the testing dataset can be extrapolated to
deeper and more complex architectures than in train-
ing data.

Further improvements on the GNN architecture,
such as making global features represented in the
message-passing layers themselves beyond simply be-
ing treated as node features, could potentially allow
the model to more effectively understand the struc-
ture of input models as a whole.

7 Conclusion

We have introduced a machine-learning based sur-
rogate model for hls4ml. The model is equipped with
graph neural network architecture, to accurately em-
ulate the structure of the input data, which them-
selves are neural network models. This model can
be used to significantly decrease the turnaround time
of an hls4ml production, by providing insight into
which trained models will and will not be useable
on a target FPGA/ASIC, rather than requiring the
time-consuming synthesis process to be run to gain
that same information. While the accuracy of the
GNN model is still lacking in certain areas, this rep-
resents a distinct improvement in the effectiveness of
hls4ml for design requiring fast turnaround, such as
in the case of automated parameter testing. The use
of a graph neural network architecture to accurately
represent input neural networks could see utilization
in other situations where the structure of machine
learning models needs to be analyzed.

8 Code and Data Availability

The version of the code that was used for the
present analysis, as well as graphing code for the

FERMILAB-PUB-24-0409-STUDENT

histograms (used to generate all of figures 3-8), can
be found at https://github.com/Dendendelen/
wa-hls4ml-report-july2024.The current version of
the model (potentially updated since the version
used for this analysis) can be found at https:
//github.com/Dendendelen/wa-hls4ml. The data
(input models) used in this analysis are not yet pub-
licly available while we work to refine the dataset.

9 Acknowledgements

This manuscript has been authored by Fermi Re-
search Alliance, LLC under Contract No. DE-AC02-
07CH11359 with the U.S. Department of Energy, Of-
fice of Science, Office of High Energy Physics.

This work was supported in part by the U.S.
Department of Energy, Office of Science, Office of
Workforce Development for Teachers and Scientists
(WDTS) under the Science Undergraduate Labora-
tory Internships Program (SULI).

This work was supported in part by National
Science Foundation (NSF) awards CNS-1730158,
ACI-1540112, ACI-1541349, OAC-1826967, OAC-
2112167, CNS-2100237, CNS-2120019, the Univer-
sity of California Office of the President, and the
University of California San Diego’s California Insti-
tute for Telecommunications and Information Tech-
nology/Qualcomm Institute. Thanks to CENIC for
the 100Gbps networks.

References

[1] ATLAS Collaboration, Journal of Instrumenta-
tion 19, P06029 (2024), arXiv:2401.06630 [hep-

ex|.

[2] CMS Collaboration, Journal of Instrumentation
15, P10017 (2020), arXiv:2006.10165 [hep-ex,
physics:physics].
L.-G. Gagnon, Journal of Instrumentation 17,
02026 (2022).

M. J. Fenton et al.,
7, 139 (2024),
physics:hep-ph].

F. Fahim et al., (2021), arXiv: 2103.05579.

J. Duarte et al., Journal of Instrumentation
13, P07027 (2018), arXiv:1804.06913 [hep-ex,
physics:physics, stat].

Communications Physics
arXiv:2309.01886 [hep-ex,

12

[7] J. Campos et al., ACM Trans. Reconfigurable
Technol. Syst. 17, 36:1 (2024).

C. N. Coelho Jr. et al., Nature Machine Intelli-
gence 3, 675 (2021), arXiv:2006.10159 [hep-ex,
physics:physics].

B. Parpillon et al., (2024), arXiv: 2406.14860.

R. Alizadeh, J. K. Allen, and F. Mistree, Re-
search in Engineering Design 31, 275 (2020).

[8]

C. Angione, E. Silverman, and E. Yaneske,
PLOS ONE 17, 0263150 (2022).

A. Plot, B. Goral, and P. Besnier, Machine
Learning Techniques for Defining Routing Rules
for PCB Design, in 2023 IEEE 27th Workshop
on Signal and Power Integrity (SPI), pages 1-4,
2023, ISSN: 2835-0898.

D. P. N. Nataraja and B. Ramesh, Machine
Learning Algorithms for Heterogeneous Data: A
Comparative Study, 2020.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuch-
ner, and G. Monfardini, IEEE Transactions on
Neural Networks 20, 61 (2009).

J. Zhou et al., Graph Neural Networks: A
Review of Methods and Applications, 2021,
arXiv:1812.08434 [cs, stat].

H. Qu and L. Gouskos, Physical Review D
101, 056019 (2020), arXiv:1902.08570 [hep-ex,
physics:hep-ph].

[13]

[14]

A. Paszke et al., PyTorch: An Imperative Style,
High-Performance Deep Learning Library, 2019,
arXiv:1912.01703 [cs, stat].

D.-A. Clevert, T. Unterthiner, and S. Hochre-
iter, Fast and Accurate Deep Network Learn-
ing by Exponential Linear Units (ELUs), 2016,
arXiv:1511.07289 [cs].

S. Brody, U. Alon, and E. Yahav, How At-
tentive are Graph Attention Networks?, 2022,
arXiv:2105.14491 [cs).

[19]

[20] M. Fey and J. E. Lenssen, Fast Graph Represen-
tation Learning with PyTorch Geometric, 2019,

arXiv:1903.02428 [cs, stat].

T. Cai et al.,, GraphNorm: A Principled Ap-
proach to Accelerating Graph Neural Network
Training, 2021, arXiv:2009.03294 [cs, math,
stat].

[21]

https://github.com/Dendendelen/wa-hls4ml-report-july2024
https://github.com/Dendendelen/wa-hls4ml-report-july2024
https://github.com/Dendendelen/wa-hls4ml
https://github.com/Dendendelen/wa-hls4ml

	Background
	General Task and Framework
	GNN Theoretical Advantages

	Data
	Parameters Modeled

	Methods
	Graph Neural Network Structure
	Comparison MLP Structure
	Losses and Activations
	Implementation

	Results
	Classification
	Regression

	Discussion
	Conclusion
	Code and Data Availability
	Acknowledgements

