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ABSTRACT OF THE DISSERTATION

Studies of Statistical-Mechanical Models Related to Quantum Codes
by
Yi Jiang

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, March 2021
Dr. Leonid P. Pryadko, Chairperson

As the beginning of the age of quantum supremacy comes closer, researches have been
focusing on how to harness the full power of quantum computation. Quantum states that
serve as the computational basis, known as qubits, are fragile. The interaction between
them and the environment may result in errors, a process named decoherence. In the
classical world, redundancy is the easiest way to protect information. But unlike classical
information, it’s impossible to clone an arbitrary quantum state. Fortunately, it has been
shown that a small number of logical qubits can be encoded into a large number of physical
ones, a technique known as quantum error correcting codes (QECCs). In the study of
stabilizer codes, an important family of QECCs which shares some similarities with classical
linear codes, it was discovered that the probability distribution of the decoding result can
be mapped to the partition functions of spin models on graphs, a concept in statistical
mechanics. Here we will explore the properties of certain families of QECCs and their
corresponding statistical-mechanical models.

One of the most famous examples of stabilizer codes, the toric code, has the lim-
itation that it only encodes 2 qubits regardless of how many physical qubits are used. To
overcome this limitation, hyperbolic codes were proposed, where the physical qubits are
placed on the edges of a quotient graph of a hyperbolic tessellation. Here we study the

corresponding Ising models on such graphs with theoretical and numerical methods, and



explore their relationship to the quantum codes.

Instead of limiting ourselves to binary codes, we also consider g-ary codes where
the computational basis is formed by qudits, a generalization of qubits to g-state quantum
systems. We study the properties of qudit stabilizer codes not only in the cases where ¢
is prime, which forms a Galois field, but also where ¢ is composite, which forms a ring
of integers modulo q. We find that their corresponding statistical-mechanical models are
the Potts models, a g-ary generalization to Ising models. We explore the construction and
parameters of such g-ary codes, and extend the known results on qubit stabilizer codes to

qudit codes.
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Chapter 1

Introduction

1.1 Prologue

Quantum information and quantum computation have been studied extensively based on the
idea that quantum computers have the potential to be much more efficient than classical
computers on certain kinds of problems, and several examples of quantum computation
algorithms that outperform the best classical algorithms known so far have been discovered
[1, 2]. To build a large-scale quantum computer, on the other hand, has a number of
technical challenges, and one of the greatest ones is decoherence, which would result in
errors in the computations. To overcome this obstacle, quantum error correction techniques
are developed to protect quantum information by encoding them with a quantum error
correcting code (QECC) and recover the information after decoding [3]. As long as the rate
of physical qubit errors is below a certain threshold, the quantum error correction process
will suppress the errors in the result, and the information can be preserved indefinitely.

A number of QECCs has been proposed, and one of the most important class of
them is the CSS codes, named after the inventors, Robert Calderbank, Peter Shor and
Andrew Steane [4, 5]. The decoding transition for such codes can be mapped to certain

statistical-mechanics models, such correspondence helps the study of both research areas

[6].



In some of the QECCs, qubits can be placed on the vertices or edges of a planar
graph or a graph that tiles certain two-dimensional manifold. The most famous example
is the toric code, which has the qubits placed on the surface of a torus [7]. The toric code
has unlimited distance if given enough physical qubits, yet it can only encode 2 qubits.
To explore QECCs with better code parameters, we studied quantum code constructions
that locally have a lay-out of hyperbolic tessellation, which has a negative curvature. The
number of logical qubits that can be encoded in such hyperbolic codes increases linearly as
the number of physical qubits, so they have a finite code rate [8].

On the other hand, physics on curved space also attracts interest. For example,
the AdS/CFT correspondence relates quantum gravity on curved space-time with quantum
field theories [9, 10, 11, 12, 13, 14, 15]. In statistical mechanics and condensed matter
physics, curvature can serve as an additional parameter to drive the criticality, or as a way
to introduce geometrical frustration in toy models of amorphous solids, supercooled liquids,
and metallic glasses [16, 17, 18, 19, 20, 21, 22, 23]. Models like percolation on more general
expander graphs and various random graph ensembles are also common in network theory,
e.g., such models occurred in relation to internet stability and spread of infectious diseases
[24, 25, 26, 27, 28, 29, 30]. Understanding the relation between the decoding transition of
QECCs and the phase transition of thermodynamic models on hyperbolic planes helps us
to understand deeper in both areas.

Other than the QECCs on graphs, there are also QECCs that have non-local
operators. One important example is the hypergraph-product code based on classical LDPC
(low density parity check) codes. Such codes are also related to statistical mechanical
models, but with multi-particle interactions [6, 31, 32].

While most of the QECCs are based on qubits, there are also generalizations to
g-ary algebras [33]. Most often the codes are defined on Galois fields F;, where ¢ is a prime
or a prime power. In this work, we study qudit codes defined on modular integers Z,, and
their correspondence with Potts model is also explored. A challenge of the generalization

from binary to g-ary algebra in QECCs is that the complicated structure of modules over



the ring of modular integers requires more careful treatment than linear spaces over Galois
fields, and the results could be much different. Also in statistical mechanics there are some
fundamental differences, for example, the Ising model on a 2D lattice has second order phase
transition, while the Potts model with ¢ > 4 on the same lattice has first order transition
[34]. More questions may be asked such as what are the differences when they are on a
hyperbolic plane, or with multi-spin interactions. Generalizations of these studies from

binary cases to g-ary cases is another topic in this thesis.

1.2 Outline

In Chapter 2 we will introduce the background on QECCs and the correspondence between
CSS codes and Random Bond Ising Model (RBIM).

In Chapter 3 we introduce hyperbolic tessellations and their properties, then the
construction of closed hyperbolic surfaces. Analytical and numerical results for Ising models
on such graphs are given next, which are related to the hyperbolic surface codes.

In Chapter 4 we study the generalization from binary QECC to g-ary QECC and
their correspondence to Potts gauge glass model, and the construction and properties of
g-ary hyperbolic surface codes, hypergraph-product codes and more general LDPC codes.

The last is Chapter 5 which we end with a conclusion and discuss some open

questions for future research.



Chapter 2

Preliminaries

2.1 Background

Modern computers utilize digital circuits to perform certain computation tasks. These
circuits are large assemblies of logic gates, which implement Boolean functions on binary
inputs called bits. A bit can be either in the state 0 or 1.

In quantum computation, the basic unit of information is qubit. Each qubit is
a two state quantum system that has a basis {|0),|1)} which is called the computational
basis. Unlike classical bits, which can only be in one of the two states, a qubit can be in a
state that is a superposition of the computational basis, |¢)) = a|0) 4+ 3 |1), where o and 8
are complex numbers that satisfy the normalization condition |a|? + |3|> = 1. Such a state
is called a pure state. In the presence of interactions and decoherence, a qubit may turn
into a mixed state, which is a statistical combination of pure states.

The state of multiple qubits is a superposition of their product basis states. A
system of n qubits spans a 2"-dimensional Hilbert space.

A quantum gate is a unitary operator that rotates the state vector. A sequence of
quantum operations, including quantum gates and measurements, on a set of qubits, which

are visualized as wires, is a quantum circuit.



2.2 Quantum error correction

In a quantum computation, quantum states may be affected by undesired interactions with
their environment. Such quantum noise may result in errors. Unlike classical information,
which one can make copies of, it is impossible to copy an arbitrary quantum state [35]. To
overcome this obstacle, quantum error correction codes (QECCs) are developed to protect

quantum information.

2.2.1 Stabilizer codes

Stabilizer codes are an important family of QECCs, which are similar to classical linear
codes. The set of n qubit states forms a Hilbert space V,,, and the Pauli operators form a
Pauli group &, acting in that space. If S is a subgroup of &, and V; is a subspace of V,,
such that every element of V; is unchanged under the action of any element in S, S is called
a stabilizer of V.

The Pauli Group on one qubit &7 is generated by the Pauli matrices
X:O'1: s YZO'QZ , Z:0'3: (21)

The products of the matrices and the factors -1 and 44 gives the group:
Py ={%l,+il,+ X, +iX, Y, +iY, + 7, +i7} (2.2)

The n qubit Pauli group is generated by the tensor products of the operators on each qubit.

The stabilizer group is a subgroup of the n-qubit Pauli group which acts in an
n-qubit Hilbert space. The operators that are the elements of the group must commute
with each other so that the measurements on the stabilizer generators don’t change the
state of the code. A quantum stabilizer code Q [[n, k,d]], which encodes k logical qubits
into n physical qubits that has distance d, is a 2¥-dimensional subspace of H2®", a common
+1 eigenspace of all operators in the code’s stabilizer, an abelian group . C &2, such that

I¢



We can write the stabilizer generators as rows of a generator matrix,

G=(9x,92)
where the commutativity of the stabilizers requires that
GxG} +G2G% = 0 (mod 2).
The errors of stabilizer codes is a product of Pauli operators
E=i"X{ X5, Xzt 25

which can be mapped to a length 2n binary vector e = (ej,es3...e€2,) up to a phase.

An error is detectable iff it anticommutes with any of the stabilizer generators.
An error that is in the stabilizer group is not detectable and doesn’t need to be corrected,
since it doesn’t change the logical quantum state. Errors that are different by a stabilizer
operator are called degenerate, since they act identically on the code.

An operator that commutes with the stabilizer generators and changes the logical
quantum state is a codeword, represented by a length 2n vector c.

Degenerate errors are those that are different by a linear combination of rows of
g, € = e+ ag, where « is an arbitrary vector.

Vectors of codewords are those that satisfy the commutativity requirement with
all the rows in the generator matrix, but cannot be written as a linear combination of rows
of the generator matrix. Two codewords are equivalent if they differ by a linear combination

of the rows of the generator matrix.

2.2.2 CSS codes

An important subclass of stabilizer codes is C'S'S codes, which is named after the initials
of the inventors: Robert Calderbank, Peter Shor and Andrew Steane [4, 5]. CSS codes can
be constructed from classical linear codes.

An [n, k,d] classical linear code C is a k-dimensional subspace of the vector space

of all binary strings of length n, F7. The code distance d is the minimal weight of any



non-zero string in the code space, a code with distance d detects any error with weight up
to d—1 and corrects any error with weight up to [ (d—1)/2|. The generator matrix G of the
code has k rows which are the k basis vectors, and the parity check matrix H is the exact
dual to G, H = G*, that is, the vector space of H is orthogonal to that of G, HGT = 0,
and also, rank H + rank G = n.

A quantum CSS code can be constructed from two generator matrices Gx and
Gz, where each of the matrices has n columns and they satisfy the orthogonal condition
G XGE = 0. The code dimension k = n — rank Gx — rank Gz. The rows of Gx correspond
to stabilizer generators that are tensor products of X operators, so they can detect Z type
errors, which anti-commute with X. When applying the stabilizer generators to the qubits
that have an error e, the result is called a syndrome s; = Gxe’. An error may have a
zero syndrome. One possibility is that it is in the stabilizer group of the operators of the
same type, for example an X error that is in the X stabilizer cannot be detected by Z
stabilizer generators. Such errors would not change the code, and need not to be corrected.
The other possibility is that the undetectable error is not in the stabilizer group, in this
case it is a codeword, which changes the information to a different meaning after decoding.
Two errors may have the same syndrome. If the difference between them is in the stabilizer
group, they are equivalent in the code and there is no need to distinguish them, these errors
are called degenerate. Otherwise, they are different by a codeword. The minimal weight of

a codeword is the distance of the code.

2.2.3 Maximum likelihood decoding

The goal of error correction is to correct any error(s) that happened. To this end, the degen-
eracy class of the error that happened degeneracy must be recovered. Given a syndrome s,
mazimum likelihood decoding is to find the most likely degeneracy class by summing up the
probabilities of all the errors that are degenerate to an error that matches a syndrome, and
compare such sums for different error degeneracy classes (such errors differ by non-trivial

logical operators).



In the case of independent identically distributed (i.i.d) errors where any single X

or Z error happens with probability p, the probability of an error e = (v, u) is

Ny
Ple)=[]pr (1 -p) =p (1 -p)™ (2.3)
i=1

where v and u are both length n vectors corresponding to X errors and Z errors respectively,
Ny = 2n, w = wgt(e) = wgt(v) + wgt(u) is the Hamming weight of the vector.
Since degenerate errors are equivalent, with maximum likelihood decoding one

may sum up the probabilities of all the errors that are equivalent to e, which is

1
Pole) = 5n, > (- p)M T, w = wet(e + ), (2.4)

where G is the generator matrix that has dimensions Ny X Ny, Ny, = Ng — rank§ is the
number of linear dependent rows in G, o runs through all binary vectors of length 2n.

As for the probability of all errors that are equivalent to e+c¢ where ¢ is a codeword,
we define

P.(e) = Py(e + ¢), (2.5)

so the total probability of all errors that result in a syndrome s is

Pioi(s) = Pele). (2.6)

where the summation should be done over all inequivalent codewords.

From all the codewords, we denote the one that maximizes P.(e) by

Phax(s) = max Pe(e). (2.7)

(¢

For the decoding to return the correct codeword, Py(e) needs to be the maximum in P.(e)
for all ¢, and in the limit of large n, it needs to dominate the probability distribution

Piot(se) so that the decoding would success with probability one,
[Po(e)/ Pros(s6)] "= 1, (2.8)

where the brackets denote averaging over all the errors e.



2.3 Mapping to Random Bond Ising Models (RBIM)

The relation between spin models and binary codes is well known [36, 37]. We define a

partition function of an Ising model as the following [31]:

my €Xp(Kp(—1)% Ryp)
Zem K, b , 2.
(0, {K}) = {SEijl}}IlR 7 cosh B (2.9)

where S, € £1 are the spins of the Ising model, r =1,..., Ny, Ry =[], S?T’b are the bond
interactions, © is the incidence matrix of the graph that the Ising spins are defined on,
Ky = BJp where  is the inverse temperature and Jp is the bond strength. The vectors e, m
represent electric and magnetic disorder respectively.

On the other hand, we may rewrite the probability of equivalent errors as the

following:
1 P wgt(e+oG) N
Po(e) = oN, > <1_> (I—p)™ (2.10)
p p
1 Ny P eb+2., 0rGrb
PN I RIS (2.11)

{o,} b=1
By replacing p/(1 — p) with e 2K we can see that this quantity has the same form

as the partition function. Define a simplified partition function:

Zo(e, B) = Ze,0(9,{Kp = B}), (2.12)

the probability is found to be the same of the partition function on the Nishimori line[36]

for the random bond Ising model:

Py(e) = Zo(e, Bp) (2.13)

where 3, satisfies e=2%» = p/(1 — p) is the definition of the Nishimori line.
For any other temperatures not on the Nishimori line 5 # 3,, the assumed proba-

bility of a 1-qubit X or Z error doesn’t match the actual one, in which case it corresponds to



sub-optimal decoding, with the decoder given incorrect information about error probability
distribution.

In the case of CSS codes, the partition function is the product of those of the two
models, corresponding to the generating matrices Gx and Gz, so we may consider G as

either of them since they work likewise.

2.3.1 Toric code

Toric code is one of the most famous QECCs, where the physical qubits are located on the
edges of a square lattice with periodic boundary conditions, which forms a torus, hence the
name. The X and Z stabilizer operators are on the vertices and faces respectively, and
the logical operators are on the non-trivial cycles. The corresponding statistical mechanics

model is RBIM on 2D square lattices [6].

10



Chapter 3

Hyperbolic Codes and the Ising
Model

Toric code is a great example of a QECC that’s on a 2D plane and has a finite
threshold. Yet it has the disadvantage that as the distance increases, the code rate ap-
proaches 0 asymptotically. Many finite rate QECCs have been studied, and one family of
such codes are analogs of the toric code on locally planar graphs which look locally like a
regular tiling of a hyperbolic plane.

To have a finite code rate, the code dimension must grow linearly with the block
length. Based on toric code, an intuitive approach is to increase the number of holes on the
torus, resulting in a surface with genus g that grows linearly with n so that k = 2¢g x n.
But how do we find a symmetric graph on such a surface? For surfaces with g > 1, the
curvature is negative, so we may find such tilings on a hyperbolic plane instead of a 2D
Euclidean plane.

Similar to the toric code, to construct hyperbolic codes the qubits are placed on
the edges of a graph, and one type of stabilizer checks are placed on vertices and the other
on faces, except that the graph is a quotient of an infinite hyperbolic tiling, instead of a

square lattice.

11



3.1 Hyperbolic tilings

Hyperbolic geometry is a non-Euclidean geometry, where the axiom about parallel lines
is replaced so that more than one non-intersecting lines exist for any point that is not
on the line [38]. A hyperbolic plane has negative Gaussian curvature everywhere. For a
hyperbolic plane with constant Gaussian curvature K, denote R = %K, then for a circle
of radius r the circumference is 2 Rsinh ; and the area is 27 R?(cosh # — 1), which both
grow exponentially with r asymptotically in the large r limit.

To visualize and study geometry on hyperbolic planes more easily, many models
that represent hyperbolic planes on other 2D planes are used. Here we use the Poincaré disk

model for showing the hyperbolic tilings. In this model the hyperbolic plane are mapped

to a disk with radius 1, and the distance between two points on the disk is

T = cosh™! 2||:L‘—y|’2
d(x,y) = cosh (1+(1|:c||2)(1||y|’2)> .

On an Euclidean plane there are only three regular tilings: the equilateral triangles,
the squares and the regular hexagons, which are denoted by {3,6}, {4,4} and {6,3} in Schldfli
symbol respectively. The symbol {p, ¢} represents a tessellation that has ¢ regular p-sided
polygon faces around each vertex. A {p,q} tessellation on 2D Euclidean plane must obey
the constraint 1/p + 1/q = 1/2, which originates from the fact that the angles around a
vertex must sum to 27 on an Euclidean plane.

In the case of 1/p+1/q > 1/2, the tessellation is on a sphere. There are 5 possible
solutions, where {p, ¢} can be {3,3}, {3,4}, {4,3}, {3,5} or {5,3}. They correspond to the five
Platonic solids, namely the tetrahedron, octahedron, cube, icosahedron and dodecahedron.

When 1/p 4+ 1/q < 1/2, the tessellation is on a hyperbolic plane, and there are
infinitely many solutions for this condition, each of them forms a regular hyperbolic tessel-

lation.
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3.1.1 Tilings with open boundary

For uniform tilings on 2D Euclidean plane inside a circle of radius r, it is easy to see that
the number of vertices or edges or faces along the circumference grows linearly with r, and

the number of them inside the area grows as 72

. While for hyperbolic tessellations, they
grow exponentially with r in the large r limit, with some base ¢ : n x ¢".
When creating such graphs with a computer, the memory may soon be used up
as the radius increases. To estimate the order and the size of a graph of {p, ¢} tiling with a
given distance from the origin to the boundary, it is necessary to determine the base ¢(p, q).
Consider a {p,q} tiling on a hyperbolic plane with constant Gaussian curvature

-1, where the length of an edge is a. The base of the exponential growth of the number of

vertices or edges or faces inside a circle of radius ar is given by

) 52

which can be calculated from the area of the circle, Area = 4w sinh?(r’/2) ~ me” , where

cos(T)
In(Cgeo) = 2cosh™ (sin(f:)
q

r’ can be converted to r, which is in the unit of the length of the edges a, v’ = ar, so
Cgeo = €%. The length of the edges is easily calculated from the trigonometry of right
triangles, cosh(3) = cos(7)/sin(7).

However, to create a hyperbolic graph in a computer, it is more convenient to do
it layer by layer. Thus, we also consider the growth of the size of the graph with another
two definitions of radius and distance. The first one is the distance in graph theory, which
is the number of edges in the shortest path between two vertices. On a square lattice, the
analog is Manhattan distance, corresponding to von Neumann neighborhood, where each
new layer consists of the faces that share at least one edge with the previous layer. The
second definition of the distance is analogous to the Chebyshev distance on a square lattice,
where the distance between two vertices is the minimum number of faces on any path of

vertex-face pairs that are incident to each other. This construction corresponds to Moore

neighborhood, where each new layer consists of the faces that share at least one vertex with

13



the previous layer.

It is easy to prove that the tiling graph inside a circle of geometric radius r from
a vertex at the center is always larger than the one that has r layers with Von Neumann
neighborhood for any {p, ¢}, and always smaller than the one that has r layers with Moore
neighborhood for any p > 4. The former is true because the graph distance between any
vertex and the center vertex must be less than or equal to r, so their geometric distance
must be less than or equal to r. The latter is true because, if we draw a circle of radius 1
at any point on the boundary of the (r — 1)th layer, the circle will be fully covered by the
(r — 1)th and rth layer of the faces if p > 4.

The base of the exponential growth of the graph size with radius analogous to
Chebyshev distance is easier to calculate, so let us start from this one and then go back to
the one with graph distance.

Suppose there is a {p, ¢} tiling with p > 4, ¢ > 3 of radius r in Chebyshev distance,
and we want to find the number of vertices on the boundary. It is easy to see that the vertices
on the boundary either have degree 3 or 2, which we denote by type a and b respectively,
as shown in Fig 3.1. Denote the number of vertices of type a on the boundary of the tiling

of radius n with a, and those of type b with b,,, we find the recurrence relation:

an = (q—3)an—1+ (¢ — 2)bp—1

(3.3)
b= ((p—3)(g—3) = Dap—1+ ((p = 3)(¢ = 2) — )by
By solving the equation a,, + b, = c¢(an—1 + xb,—1) for ¢, we see that it must satisfy
A —((p—2)(g—2)—2)c+1=0 (3.4)

When (p — 2)(g — 2) < 4, there is no real solutions for ¢. When (p —2)(¢ —2) =4, c = 1.
When (p — 2)(q — 2) > 4, there are 2 positive solutions which have product 1, and at large
radius limit the contribution from the smaller solution can be ignored, and the number of
vertices grows as ¢". These are the cases corresponding to spherical tiling, Euclidean plane

tiling and hyperbolic plane tiling respectively.
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Figure 3.1: Constructing the next layer with Moore neighborhood for p > 4.

The recurrence equations above don’t work for p = 3, so we must calculate it

separately. The situation for p = 3 is similar, where the recurrence relation becomes:

ap = (q - 5)6Ln,1 + (q - 6)bnfl
(3.5)

bp = an—1+bp-1
And c satisfies

A —(qg—4)c+1=0 (3.6)

which is the same as the previous case with p = 3.

The calculation for the case where radius is the graph distance is more complicated,
since each time we add a layer of edges instead of faces, which means the new layer depends
on many layers backwards. So instead of 2 recurrence equations, there will be p/2 of them
if p is even or p — 1 of them if p is odd.

To find the recurrence equations, we may partition the polygon layer by layer into
triangles and quadrilaterals. When p is even, we name these pieces of a face A1, Ao, ..., Ag

where k = p/2, A; and Ay, are triangles and the rest are quadrilaterals. When p is odd, we
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(a) p is even

Figure 3.2: Constructing the graph with von Neumann neighborhood for ¢ = 5 as an
example.

must also include the polygon of the opposite direction, so we have Ay, Ao, ..., Ak, Agt1,
o.y Aok, where k = (p — 1)/2, Ay and Ay are triangles and the rest are quadrilaterals.

In the case that p is even, if we label each layer with a string, e.g. the first layer
q of Ay

—_——~
is A1Aq ... Ay, the next layer can be found by the substitution rules:
4 q—2
—
A1 —>A2A1...A1
q—2
—
AQ —>A3A1...A1

(3.7)

-2
r—q’%
Ak—l —>Ak_2 Al - Al

Ak—>—A1
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as shown in Fig 3.2a.Then we define the number of each pieces on layer n to be a1y, azn, - - ., G n,

the recurrence equations are
(
a1 =(q = 2)a1n + (¢ — 2)agn + -+ + (¢ — 2)ag—1,, — a

a2 n+1 =01n

A3 n+1 =Aa2n

(3.8)
Ok—1,n+1 =Ak—2n
Ak n4+1 =0k—1,n
solving these equations for the base c gives
&F—(g—2)F = (¢-2)F 22— —(¢—2)c+1=0 (3.9)

We may re-arrange the equation to be (c—(¢—1))(cF ' +cF2 4. 4 c+1)4+¢ =0
and notice that as k — 400 the solution approaches ¢ — 1, which is expected since the graph
becomes a regular tree of degree q asymptotically.

If p is odd, the construction goes similarly from A; to Agi except for Ax where it
becomes

q—3
—
Ak — _AlAk—H A1 . A1 (3.10)
since it is the end of the first face and is the neighbor of the next face as shown in Fig 3.2b,

which means that the coefficient of ay, ,, in the recurrence equation for a; ;41 is ¢ —4 instead

of ¢ — 2. The equation for ¢ becomes
(=2 (=) (=)~ = (g—2)c+1=0 (3.11)

We see that the equations for ¢ above are different from them of the Moore neigh-
borhood construction, except for p = 3.

On an Euclidean plane, the tiling grows polynomially, so ¢ must equal 1. Replacing
¢ with 1 in either of the equations for p even or odd gives the same constraint (p—2)(¢—2) =
4, which is also the same condition we found out for Moore neighborhood construction on

Euclidean plane.
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3.1.2 Compact tilings by group theory

A regular tiling can be constructed with Wythoff construction, which partition the polygons
into Schwarz triangles. E.g. if we connect the vertices of a regular polygon of p edges to
its center, we partition it into p isosceles triangles, and further we may partition it into
2p congruent right triangles. So start from a right triangle, we can construct the polygon
by reflection and rotation. The rest of the polygons in the tiling can be constructed by
rotation of the polygon with respect to the vertices. The infinite tiling can be constructed by
identifying a right triangle with identity element e and all the other triangles are generated
by rotation and reflection group operations in the triangle group.

To form a compact surface from an infinite tiling, we may pick a few pairs of
elements and identify the two elements in each pair. To make sure the transformation is
orientation-preserving, we may express the tiling with von Dyck group which is a subgroup
of the triangle group. Hence the infinite {p, ¢} tiling can be seen as the elements of the group
D(p,q,2) = {(a,bla?,b?, (ab)?), where a and b are group generators that act as a clockwise
rotation with respect to the center of the polygon or to the vertex respectively, and the
terms on the right hand side are relators that equal identity. By adding additional relators,
we may find a finite quotient group which corresponds to a tiling on a closed surface. With
this presentation, the faces, edges and vertices of the tiling correspond to the right cosets
with respect to the subgroups (a), (ab) and (b), respectively. More details can be found in
[39].

Similar to toric codes, the hyperbolic codes on such graphs have physical qubits

placed on edges and logical operators on non-trivial cycles, so the code rate R = % is

k29 2—x 2-|V|+|E|—|F| 2 2 2
=t= - —1---=4= 3.12
n =B 1B E] PR (3.12)

where g is the genus, x is the Euler characteristic. Since 1/p 4+ 1/q < 1/2 for hyperbolic
codes, the code rate approaches a positive constant asymptotically with large n.
To find additional relators that gives a finite group, we repeated creating a pseudo

random string of generators as the additional relator until a finite group is obtained. The
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vertex-edge and face-edge incidence matrices are obtained from the coset tables. Namely,
non-zero matrix elements are in positions where the corresponding pair of cosets share an
element.

Another way to find an additional relator is by traversing every element in the
graph and check if identifying it with identity results in a finite group. A traversal algorithm
can be found readily with the “layer by layer” recurrent construction we described in the
previous section. Either a breadth-first search or a deep-first search would work. The former
is straight-forward, since we can construct the graph layer by layer, but each time we have
to store the information of all the elements in one layer in memory. The latter is more
space-efficient. Noticing that by removing certain types of edges (e.g., the edges connecting
B and C type pieces and the left or right side edges that connect D and A type pieces in
Fig. 3.3), it is easy to create a spanning tree of the tiling graph. The resulting tree is a
tree of finite cone type, which retains the feature of recurrent construction [40]. Traversing
every edge in the tree and traverse the elements that are incident to it, every element can
be reached exactly once with this method.

Taking {5,5} tiling as an example, denoting the 4 pieces of face as A, B, C, D, the
first layer is AAAAA, and each edge is between AA pieces. To find the next layers of edges
in the spanning tree, take any edge and construct the next layer which is BAAAB, as Fig
3.3 shows on the top-left.

The other possibilities include AB/BA, AC/CA, AD/DA, which are also shown in
Fig 3.3. So if we know the pieces of faces that is incident to the edge, we can construct the
edges on the next layer. A depth-first search can be performed by recording the neighboring
pieces of the edges from the root to the current location, and the ordinal number of each
edge according to the vertex above it.

To traverse all the group elements on the graph up to a radius, we can do so by
traversing all the edges. Fach edge has 1 element on each side of it, as shown in Fig 3.4. We

may choose one of them as the moving element (gray-filled triangles), and the other element
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Figure 3.3: Constructing the next layer of the edges of a {5,5} tiling.

(blue-filled triangles) can be found by reflection operation. The change of the location of

the element can be expressed by multiplication of the rotation operations a and b.

3.2 Ising models on hyperbolic tilings

In section 2.3 we discussed the mapping from maximum likelihood decoding of QECCs to
random bond Ising models. Here we study the Ising models on the hyperbolic tiling graphs.
We consider pairs of few-body Ising models where each spin enters a bounded number of
interaction terms (bonds), such that each model can be obtained from the dual of the other
after freezing k spins on large-degree sites. Such a pair of Ising models can be interpreted as
a two-chain complex with k£ being the rank of the first homology group. Our focus is on the
case where k is extensive, that is, scales linearly with the number of bonds n. Flipping any
of these additional spins introduces a homologically non-trivial defect (generalized domain
wall). In the presence of bond disorder, we prove the existence of a low-temperature weak-
disorder region where additional summation over the defects have no effect on the free energy
density f(7T') in the thermodynamical limit, and of a high-temperature region where in the

ferromagnetic case an extensive homological defect does not affect f(7'). We also discuss
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Figure 3.4: Traversing every element on the {5,5} tiling graph.

the convergence of the high- and low-temperature series for the free energy density, prove
the analyticity of limiting f(7") at high and low temperatures, and construct inequalities
for the critical point(s) where analyticity is lost. As an application, we prove multiplicity of
the conventionally defined critical points for Ising models on all {f,d} tilings of the infinite
hyperbolic plane, where df /(d + f) > 2. Namely, for these infinite graphs, we show that
critical temperatures with free and wired boundary conditions differ, Tc(f) < TC(W). Most of

the results in this subsection are summarized in Ref.[8].

3.2.1 Introduction

Singular behavior associated with a phase transition may emerge only in the thermodynam-
ical limit, as the system size goes to infinity. One example are spin models on any finite-
dimensional lattice, where both the interaction strength and its range are finite. Then the
thermodynamical limit is well defined thanks to the fact that boundary contribution scales
sublinearly with the system size[41]. Respectively, e.g., in the case of an Ising model, the
same transition can be alternatively defined as the temperature where spontaneous magne-

tization appears, spin susceptibility diverges, spin correlations start to decay exponentially,
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domain wall tension is lost, or as a singular point of the free energy[42, 43, 44, 41].

Situation is different if we have a model on a non-amenable graph characterized by
a non-zero Cheeger constant, the lower bound on the perimeter to size ratio for all its finite
subgraphs[45, 46]. Examples include infinite transitive expander graphs like a degree-regular
tree, and regular {f,d} tilings of the hyperbolic plane, with (f —2)(d —2) > 2. Physically,
non-amenability of a graph implies that the boundary gives a finite contribution to any bulk
average, so that both the location of a transition and its properties may depend on both
the quantity being probed and the boundary conditions used to define the infinite-graph
limit.

A number of general results are known that relate properties of a statistical-
mechanical model to amenability /non-amenability of the underlying graph. In particular,
for a random walk on a bounded-degree graph, the return probability decays exponentially
with time iff the graph is non-amenable[47]. In the case of Bernoulli percolation, an infinite
cluster is necessarily unique on amenable graphs, but it is conjectured that on any tran-
sitive non-amenable graph there is necessarily an interval where multiple infinite clusters
coexist[48, 49, 50]. Among other cases, this conjecture has been verified for planar transi-
tive graphs with bounded-degree duals[51]. In the case of the Ising model, there is never a
phase transition with a finite coupling and a non-zero magnetic field on an amenable transi-
tive graph, while such a transition necessarily exists on any bounded-degree non-amenable
graph[52]. Further, phase transition points in Bernoulli percolation, Ising, and g-state Potts
models (these have the Fortuin-Kasteleyn random cluster representation with parameter 1,
2, and ¢, respectively[53, 54]) are known to depend on the boundary conditions when the
Cheeger constant is sufficiently large[55], and on planar non-amenable graphs with regular
duals when ¢ is large enough[56].

From physics perspective, non-amenable graphs are non-local, in the sense that
they cannot be embedded in a Euclidean space without infinitely stretching some edges.
Most natural geometry for such graphs is hyperbolic, with constant negative curvature.

Interest in quantum field theory models on curved space-time is motivated by quantum
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gravity and, in particular, the AdS/CFT correspondence[9, 10, 11, 12, 13, 14, 15]. There is
an independent interest in models on curved spaces in statistical mechanics and condensed
matter communities, e.g., since curvature can serve as an additional parameter to drive
the criticality, or as a way to introduce geometrical frustration in toy models of amorphous
solids, supercooled liquids, and metallic glasses[16, 17, 18, 19, 20, 21, 22, 23]. Models like
percolation on more general expander graphs and various random graph ensembles are also
common in network theory, e.g., such models occurred in relation to internet stability and
spread of infectious diseases[24, 25, 26, 27, 28, 29, 30]. Finally, the strongest motivation
to study non-local Ising models comes from their relation[6, 31, 32] to certain families of
finite-rate quantum error-correcting codes (QECCs).

The Ref.[32] studied pairs of weakly-dual few-body Ising models where each spin
enters a bounded number of interaction terms (bonds). Each model can be obtained from
the exact dual of the other after freezing k spins which enter a large number of bonds. For
the related QECC, k is the number of encoded qubits, and its ratio to the number of bonds,
R = k/n, is the code rate. One can also map such a pair of Ising models to a 2-chain
complex ¥, in which case k is the rank of the first homology group H;(X). In particular,
Ref. [32] introduced the homological difference AF > 0, the difference of the free energies of
two models with and without the additional summation over the homological defects, and
gave the sufficient conditions for the existence of a low-temperature low-disorder region on
the phase diagram where in the large-system limit AF = 0.

In this Chapter we study duality and phase transitions in general Ising models,
focusing on the case where the homology rank k scales linearly with the number of bonds n.
Our main tool is the specific homological difference scaled by the number of bonds, Af =
AF/n. Upon duality Af is mapped to RIn2— A f* where A f* is the homological difference
for the other model in the pair, at the dual temperature. Existence of a low-temperature
homological region where asymptotically Af = 0 implies that at high temperatures Af* =
RIn2; with R > 0 this implies the existence of at least two distinct points where A f is non-

analytic as a function of temperature. Combining with the analysis of convergence of the
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high-temperature series expansion for the free energy density, we obtain several bounds for
critical temperatures associated with the non-analyticity of the limiting free energy densities
of the two models. Main result is the inequality for the change of thus defined critical point
due to summation over the homological defects.

Second, we discuss applications of these general results to two-body Ising models
on transitive graphs, with the infinite graph G obtained as the weak limit of the sequence of
finite transitive graphs. Finite rate R implies that the corresponding infinite graph has to
be non-amenable. In particular, we prove multiplicity of the conventionally defined critical
points for Ising models on all {f,d} tilings of the hyperbolic plane with df/(d + f) > 2.
That is, we show that transition temperatures with wired and free boundary conditions
differ, TC(W) > Tc(f), which extends the results of Refs. [57, 55, 56].

The rest of this section is organized as follows. We introduce the notations and
review some known facts from theory of general Ising models and theory of QECCs in Sec.
3.2.2. Our results are given in Sec. 3.2.3, where we first discuss properties of the homological
difference A f, analyze the convergence and analyticity of free energy density for a sequence
of weakly-dual Ising model pairs, and finally apply the obtained results to Ising models on
{f,d} tilings of the hyperbolic plane, additionally illustrating the conclusions with numerical
simulations. We summarize the results and list some related open questions in Sec. 3.2.4.

Most of the proofs are given in the Appendices.

3.2.2 Notations and background

We consider general Ising models in Wegner’s form[58], which describes joint probability
distribution of r = |V| Ising spin variables, S, € {—1,1}, associated with elements of the

vertex set, V,
1 e
Probe[{S}; O; K, h] = E H GK(_I) bRy, H ehSm7 (313)
beB veY

where each bond Ry = [], ., 9%, b € B, |B| = n, is a product of the spin variables

veY Mu

corresponding to non-zero positions in the corresponding column of the r xn binary coupling
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matrix ©, the binary “error” vector e with components e, b € B, describes quenched
disorder, and the dimensionless coupling coefficients are K = 3.J and h = Bh/, where J is
the Ising exchange constant, b’ is the magnetic field, and § = 1/T the inverse temperature
in energy units. The normalization constant Z = Zo(0; K, h) in Eq. (3.13) is the partition

function,

Z=Z(0:;K.h)= > [[eFCVTE]] (3.14)

{S,=+1} beB veV

The partition function is commonly written in terms of the corresponding logarithm, the
free energy, F = —In Z, or the free energy density (per bond), f = F/n.

The binary coupling matrix © in Eq. (3.13) can be interpreted geometrically in
terms of a bipartite Tanner graph[59], or, equivalently, as the vertex-edge incidence matrix
for a hypergraph H = (V,B) with vertex set V and hyperedge (bond) set B, with each
hyperedge b € B a non-empty subset of the vertex set, b C V. In comparison, in a (simple
undirected) graph G = (V, £), each edge b € £ is an unordered pair of vertices, b = {i,j} C
V. The degree d, of a vertex v € V in a (hyper)graph is the number of edges that contain
v, it is equal to the number of non-zero entries in the v th row of the vertex-edge incidence
matrix ©. Similarly, the size of an edge in a hypergraph is called its degree, d, = [b|, b € B.
In a graph, all edges are pairs of vertices, and all columns of the incidence matrix © have
exactly two non-zero entries.

The probability distribution (3.13) can be characterized via the corresponding
marginals, the spin correlations

(Sa) = Z S 4 Probe({S};0; K, h), (3.15)
{Sy==%1}
where A C V is a set of vertices, S4 = [],c 4 Sv; by convention, Sy = 1. At h =0, on a
finite system and with e = 0, non-zero expectation is obtained for the sets (and only the
sets) that can be constructed as products of bonds[58],

Sa= [ Re=]]]]5"™ (3.16)
b

b:my#0 v
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where bonds in the product correspond to non-zero positions my # 0 in the binary vector
m € Fy of magnetic charges. A number of correlation inequalities for spin averages have
been constructed, see, e.g., Refs. [60, 61]. Particularly important for this work are Griffiths-
Kelly-Sherman (GKS) inequalities[62, 63],

(Sa) > 0, (3.17)

(SaSB) > (Sa)(Sg), (3.18)

valid in the ferromagnetic case, e = 0, for any A, B C V.
The second GKS inequality (3.18) can also be written[62, 63] in terms of the
derivative of (S4) with respect to Kp, the coupling constant corresponding to the product

of spins Sz,
d(Sa)
dKp

> 0. (3.19)

This implies the monotonicity of any average with respect to all coupling constants and, as
a consequence, the existence of two extremal Gibbs states describing (generally different)
thermodynamical limit(s) for the Ising model on an infinite hypergraph H = (V, B), with free
and wired boundary conditions, respectively. Namely, one considers an increasing sequence
Vi, t € N, of sets of vertices, V; C V11 C V which converges weakly to V = UienVy, and the
sequence of sub-hypergraphs H; = (V;, B;) induced by the sets V;. For each H;, consider also
the hypergraph H, = (V], B}), obtained from H by contracting all vertices outside V; into
one. Denote the vertex-edge incidence matrices of H; and H, as ©f and O, respectively.
Here “f” and “w” stand for “free” and “wired” boundary conditions in the Ising models
(3.13) defined with the help of these matrices. Clearly, H; can be obtained from H;y1 by
reducing some couplings to zero, while #H; can be obtained from #;, , by increasing some
couplings to infinity. This implies that for any set of vertices A C V, and t large enough
so that A C V, the averages (S4)l < (S4)J¥ are, respectively, non-decreasing and non-
increasing with ¢. They are also bounded, which proves the existence of the corresponding

pointwise limits, (S4)f < (S4)" at any K and h.
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The two limits are known to coincide [41] for degree-limited graphs embeddable
in D-dimensional space, e.g., the hypercubic lattice ZP. Indeed, the increasing sequence
of subgraphs G, = (V4, &) can be chosen so that the boundary grows sublinearly with the
total number of spins |V4|. Such a property is violated in the case of a non-amenable graph
G, which has a non-zero edge expansion (Cheeger) constant, t(G) > 0, defined as

|OEW)|
Lg(G) = sup )
©) Wev:Wi<oo I

(3.20)

where 0 (V) is the set of edges connecting W with its complement, V\WW. The dependence
of the critical temperatures (as seen by the magnetization) on the boundary conditions,
v > ch , where the superscripts stand for “wired” and “free” boundary conditions, respec-
tively, is called the “multiplicity” of critical points[57, 55, 56]. Examples are the infinite
d-regular trees Ty (in this case T = 0, TV = (d — 1)7, see, e.g., Ref. [45]), and the regular
{f,d} tilings H(f, d) of the infinite hyperbolic plane, df /(f +d) > 2, where in each vertex d
regular f-gons meet. In the latter case multiplicity of the critical points have been demon-
strated for self-dual graphs, d = f, and for graphs with large enough curvature [57, 55, 56].
In Sec. 3.2.3.3 we prove the multiplicity of critical points for all hyperbolic tilings H(f, d)
with df /(d + f) > 2.

Another important result for the Ising model (3.13) is the duality transformation[64,

58]. In particular, in the absence of bond disorder, e = 0, and at h = 0, one has
Zo(0; K) = Zo(©*; K*) 2" " (sinh K cosh K)™/? (3.21)

where K* is the Kramers-Wannier dual of K, namely tanh K* = e 2K the degeneracy
ng = r* —rank ©* (2"3 is the number of distinct ground-state spin configurations in the
dual representation), and ©* is a binary 7* x n matrix exactly dual to © (binary rank is

used),

0*07 =0, rank® +rank©* = n. (3.22)

Notice that in Eq. (3.21), and elsewhere in this work, we simplify the notations by

suppressing the argument corresponding to a zero magnetic field, h = 0.
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Exact duality also works in the presence of sign bond disorder, except the corre-
sponding bonds (“electric charges”) are mapped by duality to extra factors in front of the
exponent, “magnetic charges”. The resulting expression is not positive-definite and thus
cannot be interpreted as a probability measure; instead it is proportional to the average of
a product of the corresponding bonds. The duality in this case reads[58]

Ze(0; K) _ €p
Zo(0:K) <H K >@K | o

beB

where the average on the right is computed in the dual model with all bonds ferromagnetic,
cf. Eq. (3.16).

There is a natural notion of equivalence between defects e that produce identical
averages in Eq. (3.23). For the electric charges in the Lh.s., equivalent are any two defects
which differ by a linear combination of rows of ©, e ~ € = e + a0, where « is a length-
r binary vector. Such defects are related by Nishimori’s spin-glass gauge symmetry[36]
generated by local spin flips «, € Fo, v € V, and simultaneous update of the components

of e on the adjacent bonds,
Sy = (=1)*8,, e, —e,=ep+ E 0Oy (3.24)
v

For such a defect e, it is convenient to introduce an invariant distance de, the minimum

number of flipped bonds among all defects in the same equivalence class,
de = de(©) = min wgt(e + aO), (3.25)
(a2

where wgt(e) is the Hamming weight. An identical equivalence relation for the magnetic
charges which define the product of spins in the r.h.s. of Eq. (3.23) can be interpreted as a
result of introducing a product of (dual) bonds that form a cycle, i.e., does not change the
spins that actually enter the average.

For a finite system and a finite K > 0, both sides of Eq. (3.23) are strictly positive.
The logarithm of the Lh.s. is proportional to the free energy increment due to the addition
of the defect,

b6 = 66(0; K) = In Zo(0; K) — In Ze(0; K); (3.26)
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in turn, it is proportional to dimensionless defect tension
Te = Te(0; K) = 06(0; K) /de. (3.27)

Respectively, the scaling of the spin average in the r.h.s. of Eq. (3.23) with the minimum

number of bonds in the product is called the area-law exponent,

beB

e = (O K*) = —delln<H sz> . (3.28)
@*;K*
Second GKS inequality (3.18) implies subadditivity,
del+e2ae1+ez < delael + dezoéer (3'29)

Thus electric-magnetic duality (3.23) also implies an exact relation between the defect

tension and area-law exponent in a pair of dual models,
Te(0; K) = ae(0™; K). (3.30)
Combined with Eq. (3.29), this implies subadditivity for defect free energy cost
Oei+es < Oe; + Jey- (3.31)

In the special case of a model with two-body couplings defined on a graph G = (V, &), a

correlation decay exponent can be defined in terms of pair correlations,

a=a(G;K)= inf [—MZSJ)] , (3.32)
,JEV dij

where d;; is the graph distance between i and j. Subadditivity (3.29) implies that the value

of a corresponds to that for pairs with large d;;, although the decay rate is not necessarily

uniform for all pairs. In addition, on an infinite graph, we will also use

a = a(G; K) = limsup {_MSSJ] . (3.33)

The limit here exists since the expression in the square brackets is bounded by |In tanh K.

In particular, finite magnetization on a transitive graph, (S;) = m > 0, implies by the
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second GKS inequality (3.18), (S;S;) > m?, thus @ = 0, which is a stronger statement than
just a = 0.

We are interested in the Ising models (3.13) with few-body couplings. More specif-
ically, we consider weight-limited Ising models with vertex and bond degrees bounded by
some fixed ¢ and m, respectively, so that d, < m, v € V, and d, < £, b € B. With fixed ¢
and m, we call such a model (¢, m)-sparse. This refers to the sparsity of the corresponding
coupling matrix ©: £ and m, respectively, are the maximum weights of a column and of a
row of ©.

Further, we would like to consider models whose duals are in the same class of
weight-limited Ising models, with some maximum vertex, £*, and bond, m*, degrees. How-
ever, such a condition would be very restrictive if one insists on the exact duality (3.22). For
example, in the case of the square-lattice Ising model with periodic boundary conditions
on an L x L square (¢ = 2 and m = 4), the dual model can be chosen to have the same
vertex and bond degrees, £* = 2 and m* = 4, except for £k = 2 additional summations over
periodic/antiperiodic boundary conditions in each direction. These summations can be in-
troduced as additional spins entering d,, > L bonds, where the lower bound is the length of
the shortest domain wall on the L x L square-lattice tiling of a torus. The two additional
summations give no contribution to the asymptotic free energy density at L — oo, both in
the low- and high-temperature phases, and are often ignored.

Such a weak duality with additional defects for models on locally planar graphs
can be generalized by considering a pair of weight-limited binary matrices with n columns
each, G and H, such that their rows be mutually orthogonal, G H' = 0. Since we do not

require exact duality (3.22), there are exactly
k =n —rank G — rank H (3.34)

distinct defect vectors ¢; € Fy, i € {1,...,k}, which are orthogonal to rows of H and whose
non-trivial linear combinations are linearly-independent from rows of G.

Just as for the spin glasses on locally planar graphs, the matrix H can be used
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to define frustration, s = e H', a gauge-invariant characteristic of bond disorder. As
common in spin-glass theory[36], we will consider independent identically-distributed (i.i.d.)
components of the quenched disorder vector e, such that e, = 1 with probability p. The
corresponding averages are denoted with square brackets, [-],,.
In theory of quantum error correcting codes[65, 66, 3, 67], a pair of binary matrices
with orthogonal rows, G HT = 0, can be used to define a Calderbank-Shor-Steane[4, 68]
(CSS) stabilizer code Q(G, H) which encodes k qubits in n, see Eq. (3.34). Such a quantum
code has a convenient representation in terms of classical binary codes. Given a matrix G
with n columns, one defines the classical code Cg C F3, a linear space of dimension rank G
generated by the rows of G. One also defines the corresponding dual code Cé‘ of all vectors
in F5 orthogonal to rows of G; such a code is generated by the corresponding dual matrix
(3.22), Cé = Cq+. By orthogonality, we necessarily have Cy C C(L; and Cg C Cﬁ, where
equality is achieved when the two matrices are exact dual of each other, in which case k = 0.
The defect vectors ¢ are non-zero CSS codewords of G type, ¢ € Cﬁ \ Cg; there are exactly
2% — 1 inequivalent (mutually non-degenerate[66]) vectors of this type. Similarly, there are
also 2% — 1 inequivalent H-type vectors b in Cé \ Cx, where equivalence is defined in terms
of rows of H, b’ ~ b iff b’ = b+ o’ H. For any quantum code, important parameters are
its rate, R = k/n, and the distance, d = min(dg, dg),
dg= min wgt(c), dg= min wgt(b). (3.35)
ceCH\Ca beCi\Cu
As yet another interpretation of the algebraic structure in the pair of weakly-dual
Ising models with vertex-bond incidence matrices G and H of dimensions r X n and ' X n,

respectively, consider a two-chain complex ¥ = ¥(G, H),
S:G=F B0 =% 0y =T, (3.36)

where the modules Cj, j € {0, 1,2} are the linear spaces of binary vectors with dimensions
r, n, and r’, respectively, and the boundary operators 9, and s are two linear maps defined

by the matrices G and HT. The required composition property, 9; o 92 = 0, is guaranteed
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by the orthogonality between the rows of G and H. The number of independent defect

vectors (3.34) is exactly the rank of the first homology group H; ().

3.2.3 Results

3.2.3.1 Properties of specific homological difference

We first quantify the effect of homological defects on the properties of general Ising models.
To this end, given a pair of binary matrices G and H with n columns each and mutually

orthogonal rows, GH” = 0, consider the specific homological difference [32] (per bond),

Afe = Afe(G,H;K)

— %{ane(H*;K) —InZo(G; K)Y}, (3.37)

where, to fix the normalization, the dual matrix H* [see Eq. (3.22)] is constructed from G
by adding exactly k row vectors', linearly-independent inequivalent codewords ¢ € Cﬁ \Caq.

This quantity satisfies the inequalities[32]

0 < AfO(G’HaK) < Afe(GvHaK)a
(3.38)
Afo(G,H; K) < RIn2,

where R = k/n, and k is the homology rank given by Eq. (3.34). The lower and the
upper bounds are saturated, respectively, in the limits of zero and infinite temperatures. In
addition, in the absence of disorder, the specific homological difference is a non-increasing

function of K (and non-decreasing function of 7' = J/K),

d
— LK) <0. :
Jrc Do(G H; K) < 0 (3.39)

Our starting point is the following Theorem (related to Theorem 2 in Ref. [32]),

proved in Appendix A.1:

Notice that any other construction of the dual matrix would at most change the partition function
multiplicatively by a power of two.
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Theorem 3.1 Consider a sequence of pairs of weakly dual Ising models defined by pairs of
finite binary matrices with mutually orthogonal rows, GiH} = 0, t € N, where row weights
of each Hy do not exceed o fired m. In addition, assume that the sequence of the CSS
distances dg, 1is increasing. Then the sequence Afy = [Afe(Gy, Hy; K)p, t € N, converges
to zero in the region

(m—1)[e 251 —p) +e*p] < 1. (3.40)

REMARKS: 3.1-1. The bound in Theorem 3.1 guarantees the existence of a homological
region where Af; converges to zero. Generally, such a region may be wider than what is
granted by the sufficient condition (3.40). We will denote K;,(G, H;p) the smallest K > 0
such that the series A f; converges to zero at any K’ > K. The corresponding temperature,
Tw(G,H;p) = J/K,(G, H;p), is the upper boundary for the homological region at this p.
Eq. (3.40) implies, in particular, that K,(G, H;0) > In(m —1)/2.

3.1-2. In the homological region, the sequence of the average free energy densities [ fe (G, K)|p

converges iff the sequence [fe(H}, K)], converges, and the corresponding limits coincide.
3.1-3. In analogy with Eq. (3.27), we introduce the defect tension in the presence of disorder,

roo = Too(Gi K) = di (Fare(G: K) — Fo(G: K}, (3.41)

C

where de > dg is the minimum weight of the codeword equivalent to ¢ € qu \ Cq. While

the tension (3.41) is not necessarily positive, it satisfies the inequalities
‘Tc,e‘ < Teo < 2K. (3.42)

We also define the weighted average defect tension,

ZC¢O de [TC,e]p
Zcf_O dc 7

where the average is over disorder and the 2F — 1 non-trivial defect classes. This quantity

(3.43)

TpE

satisfies the following bound in terms of the average homological difference,

¢7 > RIn2 — [Afely, (3.44)
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where the dimensionless constant { < 1/2, see Eq. (A.3) in the Appendix. In the homological
phase this gives 7, > 2RIn2. (A related bound was previously obtained for the boundary
of decodable phase in Ref. [31].)

In the absence of disorder, e = 0, the specific homological difference is self-dual[32],

up to an exchange of the matrices G and H, and an additive constant,
Afo(G,H; K)=RIn2 — Afo(H,G; K™). (3.45)

Comparing with the general inequalities (3.38), one sees that a point close to the lower
bound is mapped to a point close to the corresponding upper bound. This implies a version

of Theorem 3.1 applicable for high temperatures:

Theorem 3.2 Consider a sequence of pairs of weakly dual Ising models defined by pairs
of finite binary matrices with mutually orthogonal rows, GiH! = 0, t € N, where row
weights of each Gy do not exceed a fized m, CSS distances dg, are increasing with t, and
the sequence of CSS rates Ry = ky/ny converges, limy Ry = R. Then, for any K > 0 such
that (m — 1) tanh K < 1, the sequence Afy = [Afe(Gy, Hy; K)]p, t € N, converges to Rln2.

Remarks: 3.2-1. Since duality is used in the proof, we had to switch the conditions on the
matrices Gy and Hy. Similarly, the bound for tanh K is the Kramers-Wannier dual of that
in Eq. (3.40) at p = 0.
3.2-2. We will call the temperature region where the sequence A f; in Theorem 3.2 converges
to RIn2 the dual homological region. Given that the homological region in the absence of
disorder extends throughout the interval K > K} (G, H), the corresponding interval for the
dual homological region is K < Kj(H,G), where K* denotes the Kramers-Wannier dual,
see Eq. (3.21). Respectively, Ty (H,G) = J/K}(H,G) is the low temperature boundary of
the dual homological region at p = 0.
3.2-3. In the dual homological region, the sequence of the free energy densities fo(H;, K)
converges iff the sequence fo(G¢, K) converges, and the corresponding limits fg+(K) and
fa(K) satisty

fe(K) = fu+(K)+ Rln2. (3.46)
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Notice that when both sets of matrices H; and G, t € N, have bounded row
weights, the same sequence A fo(Gy, Hy; K) converges to zero in the homological region,
K > Kjp(G,H), and to RIn2 in the dual homological region, K < Kj(H,G). Since the
magnitude of the derivative of the free energy density with respect to K (proportional to
the energy per bond) is bounded, for any R > 0 this implies the existence of a minimum
gap between the boundaries of the homological and the dual homological regions. We have
the inequality

Kn(G,H) - K;(H,G) > RIn2. (3.47)

3.2.3.2 Free energy analyticity and convergence

The end points, Tj,(G, H) and T} (H,G) of the two flat regions in the temperature depen-
dence of the homological difference Afqy are clearly the points of singularity. What is the
relation between these points and the singular points of the limiting free energy density in
individual models, which are usually associated with phase transitions?

To establish such a relation, let us analyze the convergence of free energy density
and the analyticity of the corresponding limit as a function of parameters. To this end,
consider the high-temperature series (HTS) expansion of the free energy density (3.14),

«(0; K, h) Z @Jhﬁ (3.48)

where both parameters are scaled with the inverse temperature, K = 3J and h = gh/. The
coefficient in front of 3° is proportional to an order-s cumulant of energy; it is a homogeneous
polynomial of the variables b’ and J of degree s. A general bound on high-order cumulants

from Ref. [69] gives the following

Statement 3.3 Consider any model in the form (3.13), with an (€, m)-sparse rxn coupling

matriz ©. The coefficients of the HTS expansion of the free energy density satisfy

k(0 7, 1)) < 251552 C (A + 1)1 A°, (3.49)
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where A = max(|J|,|h'|) and (a) with J and h' both non-zero, A = ¢m and C = r/n + 1,
while (b) with ' =0, A= ({ —1)m and C = 1.

Such a bound implies the absolute convergence of the HTS in a finite circle in the
complex plane of 5 and, thus, the analyticity of fe(©; K, h) and all of its derivatives as a
function of both variables in a finite region with |K| and |h| small enough, in any finite
(¢,m)-sparse Ising model, at any given configuration of flipped bonds e. The same is true
for the average free energy [fe(©;J, 1')]p.

In this region, at p = 0, convergence and analyticity of the limiting free energy
density for models defined by a sequence of binary matrices ©;, t € N, is equivalent to
existence of the (pointwise) limit lim, ngs) (Gy; J, b') for the individual coefficients (remember,
each of them is a homogeneous two-variate polynomial of degree s). With the help of the
cluster theorem for the HTS coefficients, the existence of the limit can be guaranteed by the
Benjamini-Schramm convergence[70] of the corresponding Tanner graphs, see Refs. [71, 72]
for the corresponding discussion for general models with up to two-body couplings. For our

present purposes, the following subsequence construction at h = 0 is sufficient:

Corollary 3.4 Any infinite sequence of (£,m)-sparse Ising models, specified in terms of
the matrices ©j, j € N, has an infinite subsequence © ), t € N, where j : N — N is strictly
increasing, such that (a) for each s, the sequence of the coefficients Ii(()s)(@t; J,0) converges
with t, and (b) the sequence of free energy densities f(0;4); K) has a limit, oo (K), which
is an analytic function of K in the interior of the circle |K| < {2e[({ — 1)m + 1]}~. Here

e s the base of natural logarithm.

Remarks: 3.4-1. Similar analyticity bounds apply to a very general class of (¢, m)-sparse
models with up to f-body interactions, where each variable is included in up to m inter-
action terms, and magnitudes of different interaction terms are uniformly bounded: the
dependency graph used in the proof can be used in application to all such models. Ex-
amples include a variety of discrete models, e.g., Potts and clock models with few-body

couplings, as well as compact continuous models with various symmetry groups, Abelian
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and non-Abelian, where interaction terms are constructed as traces of products of unitary
matrices. This is a generalization of the “right” convergence established for models with
two-body couplings (¢ = 2) in Refs. [71, 72].

3.4-2. The subsequence construction is not necessary in the special case where the Tanner
graphs defined by the bipartite matrices ©; are transitive, with weak infinite-graph limit ©
and a center 0 € V(0), such that a ball of radius p; in ©; is isomorphic to the ball of the
same radius centered around 0 in ©; here the sequence of the radii is increasing, ps4+1 > py,
t € N. In this case the cluster theorem[73] guarantees that the coefficients x4(0;) do not
depend on t for p; > s.

To make precise statements applicable outside of the convergence radius of the
high-temperature series, we need to ensure that a sequence of free energy densities converges.
The question of convergence for a general sequence of Ising models being far outside the
scope of this work, we will assume the use of yet another subsequence construction to
guarantee the existence of the thermodynamical limit for the free energy density. This is

based on the following Lemma proved in Appendix A.6.

Lemma 3.5 Consider a sequence of ry X ny binary matrices O, where 0 < ry < ny, and
t € N. For any M > 0, define a closed interval Ip;y = [0, M]. (a) There exists a subsequence
©ys), @ € N, where the function t : N — N is strictly increasing, t(i + 1) > t(i) for all
1 € N, such that the sequence of Ising free energy densities converges for any K € Iy,
[i(K) = fo(Oy4); K) = f(K). (b) The limit f(K) is a continuous non-increasing concave

function with left and right derivatives uniformly bounded,
1< fi(K) < fL(K) <0, (3.50)
for all K € Iy;.

Let us now assume that we have a sequence of pairs of weakly-dual weight-limited
Ising models which (a) satisfy the conditions of Theorems 3.1 and 3.2 with the asymptotic
rate R, (b) such that the coefficients of the corresponding HTSs converge, so that the se-

quences of free energy densities f(Gy; K) and f(Hy; K) both converge to analytic functions,
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ve(K) and @p(K) respectively, at |K| sufficiently small (Corollary 3.4), and, in addition,
(c) the sequences of free energy densities both converge on an interval of real axis Is, with
M > In(m —1)/2.

The interval in (c) is such that Theorems 3.1 and 3.2 can be used to extend the
convergence to the entire real axis; we denote the corresponding limits fg(K) and fr(K).
The continuity of the functions fg(K) and fg(K) (and the corresponding duals), along
with the inequality (3.39) which also survives the limit, guarantee that in the range of
temperatures between the homological and the dual homological regions, T}, (G, H) < T <
Ty (H,G), the specific homological difference Af(K) = fq(K) — fu+(K) satisfies the strict
inequality

0<Af(K)< RlIn2. (3.51)

Notice that the existence of the limit on the real axis does not guarantee analyticity
which is only guaranteed by condition (b) in a finite vicinity of K = 0. Hereafter, we will
assume that fg(K) is analytic on the interval 0 < K < K.(G). That is, for any € > 0, there
exists a simply-connected open complex region €2, € C which includes the union of the circle
of convergence of HTS for ¢ (K) from Corollary 3.4 and the interval Ip;, M = K.(G) — ¢,
such that the sum of HT'S series p(K) can be analytically continued to 2, and the result
coincides with the limit f(K) on the real axis, K € Ij;. Further, we will assume that
K.(G) is the largest value at which this is possible. Such a threshold may arise either (i)
because K.(G) is a singular point of pg(K), e.g., the intersection of the natural boundary
of pa(K) with the real axis, or (ii) the limit on the real axis, fo(K), starts to deviate from
the result of the analytic continuation. In either case, this guarantees that the limit on the
real axis, fo(K), has a singular point of some sort at K.(G).

According to this definition, T,.(G) = J/K.(G) is the highest-temperature point of
non-analyticity of the limiting free energy density fq(K); fa(J/T) is analytic for T' > T.(G).
By duality and Theorem 3.1, fg(K) is also analytic at low temperatures. We denote

T!(G) < T.(G) the lowest-temperature singular point of fa(J/T).
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We make similar assumptions about the properties of the limiting free energy
density fg(K), and use similar definitions of the critical temperatures T.(H) < T.(H) for
fu(J/T). We will also use the dual functions, fg+(K) and fg+(K), which coincide with
fa(K*) and fg(K™*) up to an addition of analytic functions of K, see Eq. (3.21). The
corresponding lowest- and highest-temperature singular points are exchanged by duality,
e.g., T/(H*) = TX(H), T/(H) = T(H*). Convergence of Af(Gy, H; K) to zero implies
that fo(K) = fu~(K) for K > K,(G, H), thus fg(K) is an analytic function in a complex

vicinity of any K > max (K} (H), Kx(G, H)). Equivalently,

T)(G) > min (T} (H) = T,(H"), T,(G, H)) . (3.52)

C

Once we are assured of convergence of the homological difference, the first obser-
vation is that the limit, Af(K), is necessarily a strictly convex function at 7} (G, H), and
a strictly concave function at Ty (H,G), the singular points which are also the boundaries
of the region separating the dual homological region at small K and the homological region
at large K. On the other hand, both fg(K) and fg+(K) are concave functions. Therefore,
the convexity at 7}, (G, H) must originate from fy-(G, H).

Unfortunately, this does not guarantee that Ty, (G, H) be a singular point of fz«(K).
A higher-order phase transition, with a continuous specific heat but discontinuity or diver-
gence in its first or higher derivative, cannot be eliminated on the basis of the general ther-
modynamical considerations alone. Therefore, we formulate Theorem 3.6 below (proved in

Appendix A.7) with a list of independently-sufficient conditions.
Theorem 3.6 Let us assume that any one of the following Conditions is true:
1. The transition at T.(G) is discontinuous or has a divergent specific heat;

2. The derivative of Af(K) = fa(K) — fu-(K) is discontinuous at Ky = Ky(G, H), or

the derivative of Af(K) is continuous at Kp,, but its second derivative diverges at Ky

3. Summation over homological defects does not increase the critical temperature, T.(G*) <

T.(H).
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Then the Kramers-Wannier dual of the critical temperatures T.(H) satisfies

T*(H) < Ty(G, H). (3.53)

C

REMARKS: 3.6-1. We are making the same assumptions about the properties of fr(K),

which gives T} (G) < T},(H, G). Combining with Eq. (3.47), we have
K.(H") — K.(G) > RIn2. (3.54)

This implies a strict inequality, T.(G) > T.(H*), when the homological rank scales ex-
tensively, R > 0, which is superficially similar to the multiplicity of critical points on
nonamenable infinite graphs[57, 55, 56], see Sec. 3.2.2. The difference is that our critical
temperatures correspond to points of non-analyticity of the limiting free energy density in

zero magnetic field; we do not have a direct connection to magnetic transitions.

3.6-2. It is known that stabilizer codes with generators local in Z” and divergent distances
have asymptotically zero rates[74, 75]. This is perfectly consistent with the known fact that
weight-limited models local in ZP have well-defined thermodynamical limits, independent
of the boundary conditions[41]. For example, inequality (3.54) with R = 0 is saturated in
the case of planar self-dual Ising models, where the transition is in the self-duality point,

which is the only non-analyticity point of the free energy density.

3.6-3. Most important application of Theorem 3.6 and Eq. (3.54) are few-body Ising models
that correspond to finite-rate quantum LDPC codes with distances scaling as a power of
the code length n, d > An® with A,a > 0. Examples are quantum hypergraph-product
(QHP) and related codes[76, 77], and higher-dimensional hyperbolic codes[78]. Because of
higher-order couplings, generic mean-field theory gives a discontinuous transition, which is
the case of Condition 1 in Theorem 3.6. The discontinuous nature of the transition has

been verified numerically for one class of QHP codes|[32].

3.6-4. Ising models on expander graphs are known to have mean-field criticality[79, 55]. A

combination of an analytic fy-(K) and a finite specific heat jump in fq(K) at Ky(G, H)
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is not eliminated by the Conditions 1 or 2. We discuss the important case of Ising models
on hyperbolic graphs in the next subsection.

3.6-5. GKS inequalities imply that any spin average satisfies (Sa)g:x > (SA) =K. Physi-
cally, this ought to be sufficient to guarantee Condition 3, but we are not aware of a general

proof.

3.2.3.3 Application to models on hyperbolic graphs
3.2.3.3.1 Bounds for infinite-graph transition temperatures

While the inequalities (3.47) are (3.54) are certainly important results, they address un-
conventionally defined critical points. Both the homological critical point, T} (G, H), and
the end points of the interval of possible non-analyticity, T.(G) < T.(G), are defined for
sequences of Ising models without boundaries. They are not immediately related to the crit-
ical temperatures T\ < TV defined on related infinite systems in terms of extremal Gibbs
states with free/wired boundary conditions.

To bound these critical temperatures, consider a sequence of pairs of weakly dual
Ising models which satisfy the conditions of Theorems 3.1 and 3.2 with the asymptotic rate
R > 0, with an additional assumption that matrices GG; and H; are incidence matrices of
graphs, that is, they have uniform column weights ¢ = ¢* = 2. In addition we assume that
the graph sequences converge weakly to a pair of infinite transitive graphs, which we denote
G=W,€) and H = (F,E), where F is the set of faces in G. Weak convergence is defined
as follows: for some chosen vertex 0 € V, there is an increasing sequence p; € N such that
a ball B(0, p;) C G of radius p; centered at 0, is isomorphic to a ball in G;.

These conditions necessarily imply that matrices Gy and H; describe mutually-dual
locally-planar graphs, and also that the graphs G and H are mutually dual.

Examples of such a sequence are given by sequences of finite hyperbolic graphs
constructed[80, 19] as finite quotients of the regular { f, d} tilings of the infinite hyperbolic

plane, H(f,d), with df /(d + f) > 2. A graph in such a sequence gives a tiling of certain
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surface, with d regular f-gons meeting in each vertex. Hyperbolic graphs have been ex-
tensively discussed in relation to quantum error correcting codes[81, 82, 83, 84, 85, 86, 39).
Given such a finite locally-planar transitive graph with n edges, the quantum CSS code is
a surface code[87, 6]; it is constructed from the vertex-edge and plaquette-edge incidence
matrices, G and H respectively. Here H is also a vertex-edge incidence matrix of a dual
graph, which corresponds to the dual tiling {d, f} of the same surface. Such a code has the
minimal distance scaling logarithmically with n, and it encodes k = 2g = 2 + nR qubits

into n, where g is the genus of the surface and R =1 —2/d — 2/ f is the asymptotic rate.
An extremal Gibbs ensemble on any infinite locally planar transitive graph can be
characterized by the average magnetization m, the asymptotic correlation decay exponents
a [Eq. (3.32)] and & > « [Eq. (3.33)], and similarly defined asymptotic domain wall tensions
T=7(G;K)= inf 7.;j, T=7(G;K)=limsupre;;, (3.55)

{igrcF dij—o0

where e(i,7) is a defect that connects a pair of frustrated plaquettes ¢ and j. Generally,
@ = a = 0 whenever spontaneous magnetization m is non-zero. A non-zero magnetization
on a locally planar transitive graph also implies 7 > 0. [This is a generalization of the result

from Ref. [44], see Appendix A.8.] Respectively, electro-magnetic duality (3.30) implies

Statement 3.7 Let G and H be a pair of infinite mutually dual locally-planar transitive
graphs. Denote T(G) and T (H) the critical temperatures of the extremal Gibbs ensembles
for Ising models on G and H with free and wired boundary conditions, respectively. Then

these temperature are Kramers-Wannier duals of each other,
TAG) = [T (H)]". (3.56)

For each model, in the ordered phase, T < T., & = 0 and 7 > 0, while in the disordered

phase, T >T., a >0 and T = 0.

We can now prove the following:
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Theorem 3.8 For any regular {f,d} tiling of an infinite hyperbolic plane, fd/(f +d) > 2,
the critical temperatures of the Ising model with free and wired boundary conditions, T\ =

/KL and TY = 1/KY, satisfy
Ki—KY¥>RIn2, R=1-2/f-2/d. (3.57)

Proof. For any regular {f,d} tiling G = H(f, d) of the hyperbolic plane, consider a sequence
of finite mutually dual locally planar transitive graphs G; and H;, where the sequence G
weakly converges to G. The corresponding sequence of incidence matrices satisfies the
conditions of Theorems 3.1 and 3.2 with the asymptotic rate R > 0. Transitivity implies
that the free energy density converges in a finite circle around K = 0, see Remark 3.4-2.
While we are not sure of convergence for larger K, Lemma 3.5 guarantees the existence
of a subsequence of graphs, and corresponding pairs of incidence matrices Gy, Hy, t € N,
such that the sequences of free energy densities f(Gy; K) and f(Hy; K) converge. For
such a sequence, the specific homological difference Af(Gy, Hy; K) also converges, which
guarantees Af < RIn2 outside of the dual homological phase, K > K;(H,G). Such an
inequality implies the existence of an € > 0 such that Af(Gy, H;; K) < RIn2 — ¢/2 at all
sufficiently large t. In turn, Eq. (3.44) implies that the average defect tension is bounded
away from zero, 7o(Gt) > e.

While defects that contribute to the average 7y(G) have large weights, we notice
that the free energy increment (3.26) associated with an arbitrary defect is subadditive, see
Eq. (3.31). Thus, a large-weight defect can be separated into smaller pieces; subadditivity
(3.31) ensures that max(7e,, Te,) > Te;+e, a5 long as de, e, = de, + de,. Thus, if we start
with a homological defect with the tension 7. > € > 0, at each division we can select a
piece with the tension not smaller than e. Moreover, since homological defects are cycles
on the dual graph, we can first separate ¢ into simple cycles of weight not smaller than the
corresponding CSS distance which increases with ¢, and then cut such a cycle into pieces to
obtain a defect compatible with the definition (3.55).

Further, GKS inequalities imply that tension 7 is monotonously non-decreasing
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when individual bonds’ coupling is increased. Thus, for the same defect e = e(i,j) con-
necting frustrated plaquettes ¢ and j on G; and on the corresponding planar subgraph with
wired boundary conditions, Te(; j)(G}'; K) > Te(i ) (Gi; K) > €. Subadditivity construction
in the previous paragraph guarantees the existence of such pairs for any ¢, and that pairs
separated by arbitrarily large dual-graph distances d;; can be chosen with ¢ sufficiently large.
Definition (3.55) then gives 7 > € > 0 for the Ising model with wired boundary conditions
on the infinite graph G, at temperatures below the dual homological point, K > K} (H,G).
Necessarily, KY(G) < K} (H,G).

Duality (3.56) also ensures that Kf(H) > K}, (G, H); inequality (3.47) gives Eq.
(3.57). m

REMARKS: 3.8-1. An interesting fact about systems with finite rates R > 0 is that
electro-magnetic duality (3.30) does not guarantee that area-law exponent oy, (G; K) be zero
at low temperatures. While “area” is the defect distance dy,, the smallest number of bonds
in an equivalent defect, the “perimeter” is the number of spins involved in the product, the
syndrome weight wgts, where s = mG?. Standard area/perimeter law argument assumes
that perimeter can be parametrically smaller than the area; this is not necessarily true for
systems with non-amenable Tanner graphs.
3.8-2. Even in the case of a pair of locally planar graphs, a linear domain wall e connecting
a pair of frustrated plaquettes may have a large perimeter in the dual model, because of the
additional spins corresponding to the homological defects. Any such defect that crosses the
domain wall (changes the sign of the corresponding spin average) increases the perimeter
in the dual model. Such additional defects are absent with free boundary conditions as

considered in Theorem 3.8.

3.2.3.3.2 Numerical results

In addition to analytical bounds presented above, we also analyzed numerically Ising models
on several finite transitive hyperbolic graphs constructed[80, 19] as finite quotients of the

regular {5,5} tilings of the infinite hyperbolic plane. We used canonical ensemble simula-
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tions with both local Metropolis updates[88] and Wolff cluster algorithm|[89], to compute
the average magnetization m = (M)/N, susceptibility x = ((M?) — (M)?)/NT, average
energy per bond ¢ = (E)/n, specific heat C' = ((E?) — (E)?)/nT?, and the fourth Binder
cumulant[90] Uy = 1 — (5%)/(3(S%)?). Here M = |, S;| is the (magnitude of the) total
magnetization, £ = — ) (i5) S;S; is the total energy, N and n respectively denote the num-
ber of spins and bonds, and (-) denotes the ensemble average. For Metropolis simulations,
each run consisted of 128 cooling-heating cycles, with 1024 full graph sweeps at each tem-
perature, with additional averaging over 64 independent runs of the program. The number
of sweeps at each temperature was sufficient to make any hysteresis unnoticeable. For Wolff
algorithm simulations, each run consisted of 16 cooling-heating cycles, with 4096 cluster
updates at each temperature, and additional averaging over 64 independent runs of the
program. The resulting averages are shown in Figs. 3.5 to 3.8, where lines (dots) show the
data obtained with cluster (local Metropolis) updates, respectively. The results obtained
using the two methods are very close.

The parameters of the graphs used in the simulations are listed in Tab. 3.1. The
first three graphs we obtained from N. P. Breuckmann[39]. We generated the remaining
graphs with a custom gap[91] program, which constructs coset tables of freely presented
groups obtained from the infinite von Dyck group D(5,5,2) = (a, bla®,b°, (ab)?) [here a and
b are group generators, while the remaining arguments are relators which corresponds to
imposed conditions, a® = v = (ab)?> = 1] by adding one or more relator obtained as a
pseudo random string of generators, until a finite group is obtained. Given such a finite
group D, the vertices, edges, and faces are enumerated by the right cosets with respect
to the subgroups (a), (ab), and (b), respectively. The vertex-edge and face-edge incidence
matrices G and H are obtained from the coset tables. Namely, non-zero matrix elements are
in positions where the corresponding pair of cosets share an element. Finally, the distance

d of the CSS code Q(G, H) was computed using the random window algorithm, which has
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Figure 3.5: (Color online) Average magnetization (top) and Binder’s fourth cumulant (bot-
tom) as a function of temperature, for transitive graphs listed in Tab. 3.1 with minimal
distances as indicated. Dashed lines show the data for the larger d = 10 graph. Lines show
the data obtained using cluster updates; points show the data from simulations using local
Metropolis updates. Vertical line shows the critical temperature T,.(C) extrapolated from
the positions of the specific heat maxima, see Fig. 3.9. While both sets of data do cross
near T.(C'), there is significant drift with increased graph size. In addition, the curves are
near parallel which makes reliable extraction of the critical temperature difficult.
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Figure 3.6: (Color online). Solid lines: energy per bond from Wolff cluster calculations as a
function of temperature, as in Fig. 3.5. These data are converted with the help of the exact
duality (3.21) to give energies in the dual model (long dashes). With increasing graph sizes,
the difference between the original and dual energies decreases above the empirically found

T.(C) (Fig. 3.9) and below the corresponding Kramers-Wannier dual, 7;7(C). Inset: close
up of the plots near T.(C).
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Figure 3.7: (Color online). As in Fig. 3.5 but for the specific heat. Inset: fitting for maxima.
Data points in the inset are from the Wolff cluster calculations, while the lines are obtained
using non-linear fits with general quartic polynomials of the form y = y, + as(x — ,,)% +
...+ a4(z —x,)?%, which give the coordinates of the maximum (2, ¥, ) nearly independent
from the rest of the coefficients.
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Figure 3.8: (Color online). As in Fig. 3.5 but for the susceptibility x(7), plotted in semi
logarithmic scale. The vertical line shows the critical temperature extrapolated from the
susceptibility maxima, see Fig. 3.9.

the advantage of being extremely fast when distance is small[92, 93]. With the exception

of the graph with n = 7440, the graphs used have the smallest size for the given distance.

vertices r | edges n | homology rank k& | CSS distance d
32 80 18 5
60 150 32 6
360 900 182 8
1920 4800 962 10
2976 7440 1490 10
8640 21600 4322 11
12180 30450 6092 12

Table 3.1: Parameters of the graphs used in the simulations.

The obtained plots of magnetization and Binder’s fourth cumulant are shown in
Fig. 3.5; the corresponding curves on largest graphs are nearly indistinguishable, consistent
with convergence at large n. We note that the crossing point in the Binder’s fourth cumulant
show a significant drift with the system size, see lower plot on Fig. 3.5. This is not surprising,
given that the original scaling analysis[90] only applies to locally flat systems, whereas the
hyperbolic graphs have a uniform negative curvature. On both plots, the curves for larger
system sizes are near parallel to each other, which makes the identification of the phase

transition point from the corresponding crossing points difficult.
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Fig. 3.6 shows energy per bond as a function of temperature. To illustrate the
properties of the specific homological difference, see Theorems 3.1 and 3.2, we also plot the
energy per bond of the exact dual models obtained from the same data using £*(K*) =
—sinh(2K) e(K) — cosh(2K), derived from Eq. (3.21). The plot shows that as the size
of the graph increases, the difference between the energies ¢*(T') and ¢(T') decreases with
increasing graph size both above T.(C) and below the corresponding Kramers-Wannier
dual, T7(C), while a finite difference remains for the intermediate temperatures. This is
consistent with the identification T) = T.(C). The area between the 2 curves converges to
In 2/5 asymptotically, which supports the result in Theorem 2.

The plots for specific heat C(T') (Fig. 3.7) and magnetic susceptibility x(7") (Fig. 3.8)
show well developed maxima which become sharper and higher with increasing system sises.
Notice that a unique point of divergence of the specific heat necessarily coincides with the
dual homological temperature 7.

We obtained the positions of the specific heat and magnetic susceptibility maxima
by fitting the data in the vicinity of the corresponding maxima with quartic polynomials
as explained in the caption of Fig. 3.7. The resulting positions of the maxima are plotted
in Fig. 3.9 as a function of = 1/n'/2. The error bars of the positions of the maxima
have errors in the third digit; the observed minor scattering of the data is a feature of the
corresponding graphs.

While the size dependence is not monotonic in the case of susceptibility maxima,
the data points for larger graphs show approximately linear dependence on x. Linear
extrapolation to infinite size (x = 0) gives T, ~ 3.872 4+ 0.003 for both sets of data. This
value is consistent with the lower bound (3.54) for the infinite graph with wired boundary
conditions, which gives in the present case T, > 2.668. In comparison, the transition for a
square-lattice Ising model is in the self-dual point, T 4. = 2/In(1 + v/2) ~ 2.269.

We note that even though we expect Ising model on hyperbolic graphs to have

mean field criticality, conventional finite size scaling theory does not apply here. In partic-
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Figure 3.9: (Color online). Extrapolation of the specific heat and susceptibility maxima
to infinite system size. Red squares (blue circles) show the positions of the specific heat
(susceptibility) maxima extracted from the data on Figs. 3.7 and 3.8, respectively for graphs
of different size, plotted as a function of 1 /nl/ 2 where n is the number of edges in the
corresponding graphs, see Tab. 3.1. Solid (dashed) lines are obtained as linear (quadratic)
fits to the data, where only the four leftmost points were used for the linear fits. This results
in the extrapolated critical temperature values as indicated.

ular, this is seen from the absence of the well defined crossing point in the data for Binder’s
fourth cumulant, see the lower plot on Fig. 3.5. Therefore, we had to experiment on how to
extrapolate the positions of the maxima to estimate the critical temperature. The scaling
with x =1/ n'/2 was chosen since it gives near identical estimates for the critical temper-
atures from the maxima of C(T) and x(T'), cut off at different maximum sizes (we tried
dmax = 8 and above).

This kind of scaling of the critical region size with the system size n can be obtained
from the mean-field critical exponent for the correlation length vyp = 1/2 and the value of
the critical dimension D, = 4. Namely, in dimension D > D., above the critical dimension,
the system size L no longer serves as the cut-off parameter; it is replaced with the system
volume n. With the crossover at the critical dimension, we write n'/Pe ~ L ~ AT, which
gives for the width of the critical region AT ~ n'/(PevMr) | with the exponent 1/(Devyr) =
1/2. In the case of percolation where the critical dimension is six, the same argument gives
the exponent of 1/3, which recovers the correct scaling for percolation on large random

graphs and transitive hyperbolic graphs[94, 95, 96, 97].
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We also note that the data shows good convergence with increased system size,

without the need for the subsequence construction described in Sec. 3.2.3.2.

3.2.4 Discussion

3.2.4.1 Summary of the results

We considered pairs of weakly dual Ising models with few-body couplings, defined via
sequences of degree-limited bipartite coupling graphs, with the focus on the case where the
rank k of the first homology group of the corresponding two-chain complex scales extensively
with the system size. This construction is needed to avoid introducing the boundaries,
which are known to affect the position of the critical point in non-amenable graphs, and
also to connect to applications, e.g., in quantum information theory, where results for large
but finite systems are of interest. Here, extensive scaling of k corresponds to quantum
error correcting codes with finite rates R > 0. Important examples include two-body Ising
models on families of finite transitive hyperbolic graphs which weakly converge to regular
{f,d}-tilings of the hyperbolic plane with df /(d + f) > 2; the corresponding limiting rates
R=1-2/d—2/f are non-zero.

Our main technical result is Theorem 3.1, which guarantees the existence of a
low-temperature, low-disorder region where homological defects are frozen out—in the ther-
modynamical limit they have no effect on the free energy density. Duality guarantees the
existence of a high-temperature phase where extensive homological defects have near zero
free energy cost, see Theorem 3.2. At all temperatures below this phase, the average defect
tension is non-zero, see Eq. (3.44).

With the help of duality and a known bound on high-order cumulants, we estab-
lished the absolute convergence of both the high- and low-temperature series expansions of
the free energy density in finite regions which include vicinities of the real temperature axis
around the zero and infinite temperatures, respectively. We used a subsequence construc-

tion to ensure the convergence of free energy density at all temperatures, and defined the
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critical temperatures as the real-axis points of non-analyticity of the limiting free energy
density. For these critical temperatures, we derived several inequalities, in particular, an
analog of multiplicity of the critical points, which guarantees that with R > 0, critical point
of the free energy density is affected by the summation over the topological defects.

As an application of obtained bounds, we proved the multiplicity of phase transi-
tions on all regular tilings H(f, d) of the infinite hyperbolic plane, df /(d + f) > 2.

We also simulated the phase transition on a sequence of self-dual {5,5} transi-
tive hyperbolic graphs without boundaries, with up to nmax = 30450 bonds numerically.
Our data shows good convergence with increasing system sizes, with a single specific heat
maximum which sharpens with the increasing system size. If the corresponding position
T.(C) =~ 3.872£0.003 is the only singularity of the free energy, then necessarily it coincides

with the dual homological point, T; = T,(C).

3.2.4.2 Open questions

1. The rightmost point of the homological region established in Theorem 3.1 on the p-T
plane has the same value pyax as can be also obtained using the energy-based arguments[98],
which apply at T = 0. Either of these results also implies[36, 31] that the portion of the
Nishimori line at p < pmax is in the homological region. It should be possible to establish
the existence of a homological region in the intermediate temperature points, but we could
not find the corresponding arguments.

2. The proof of Statement 3.3 is based on overly generic bounds[69] for cumulants of a
sum of random variables with a given dependency graph. In the case of the Ising model,
it should be possible to construct a stronger lower bound for absolute convergence of the
HTS. We expect that the same bound as in Theorem 3.2 should apply. Such a bound would
be consistent with that from high-temperature series expansions for spin correlations[99],
and it would also be consistent with the analysis of the higher-order derivatives of free
energy[100], as well as the naive expectation that T.(G) = Ty (H, G).

3. In addition to the case in Remark 3.4-2, the infinite subsequence construction of Corollary
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3.4 is also not needed when the sequence of Tanner graphs has a well defined distributional
limit (Benjamini-Schramm or “left” convergence[70, 71, 72]). Important examples are given
by the Tanner graphs of hypergraph-product and related codes|[76, 77| based on specific
families of sparse random matrices. For such sequences, it would be nice to establish the
conditions for convergence of the free energy density or spin averages for all K > 0, to

supercede the subsequence construction of Lemma 3.5.

3.3 Combinatorial solution for Ising models on hyperbolic

plane

First introduced by Kac and Ward [101], the combinatorial method for solving Ising models
on a planar graph is well known [102]. We generalized this method to RBIM on hyper-
bolic lattices with open boundary condition to find the partition functions and correlation
functions.

Given a finite planar graph G with set of vertices V(G) and edges F(G), the
partition function of a spin glass Ising model without external field on this graph is defined

as

Z= Y ]S (3.58)

{Sy==%1} e€E

where 3 is the inverse temperature, e; and ey denote the two vertices of the edge e, J. is

-1 for flipped bonds and 1 for other bonds. The spin correlation of two spins A and B is

defined as
Z
(SaSp) = % (3.59)
where Z4p is defined to be
Zap= Y SaSp ] e’5r5 (3.60)
{Sy==%1} eck

To calculate the partition function and the correlation function on the hyperbolic

graphs, we start with finding the coordinates of the vertices on the Poincare disk model and
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the direction of each oriented edge e(u,v). Denote o(e) = u and t(e) = v to be the origin
and the terminal vertex of e respectively. A 2|E| by 2|E| matrix T, where columns or rows

correspond to oriented edges, is defined as

tanh(f), case 1

T(e,e) = itanh(B),  case 2 (3.61)
—itanh(B), case 3
0, otherwise

where in cases 1,2,3, they all require that t(e) = o(€’) and e # €/, where ¢’ is the reverse of
€/. The differences are: Case 1: e and €’ are on different sides of the horizontal line that
passes through their common vertex, Case 2: e and €’ are on the same side and it makes a
counter-clockwise rotation, Case 3: e and €’ are on the same side and it makes a clockwise
rotation. They are illustrated in Fig. 3.10. In the case one of the edges or both of them
are horizontal, we may assume that the horizontal line is rotated counter-clockwise by an
infinitesimal angle, so that it belongs to one of the 3 cases.

Notice that this is different from the convention that the elements T'(e,e’) =
e3w(ee) tanh(f8), where w(e,e’) is the counterclockwise rotation angle between the two
vectors [102]. But it retains the feature that any closed loop without self-intersection gives
a product of -1, which is the reason this method works. In numeric calculations, as the
number of edges in the loops becomes large, the errors in calculating the angles may ac-
cumulate, which may affect the accuracy of the result. Our convention has the advantage
that there is no need to calculate the angles, which may help increasing the accuracy of the
numerical calculation.

Define matrix

T, = I.TL (3.62)

where [, is a diagonal matrix that has element i for the edges of both orientations that
correspond to the flipped bonds (J. = —1) and element 1 elsewhere on the diagonal.

Finally, the matrix K, is defined as
K.=UJ(I-T.) (3.63)
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Figure 3.10: Different cases for the elements in the matrix 7.
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where I is the identity matrix, J(e,e’) = d(e,€’), U is diagonal and U(e,e) = —1 if e has
an angle € (0, 7] with respect to horizontal +z direction and 1 otherwise. It turns out that
K. is an anti-symmetric matrix, and the Pfaffian of K. is related to the partition function
as the following:

Z = (21 cosh Pl (8)) (£Pf(K,)) (3.64)

where the sign before Pf(K.) is chosen to guarantee that Z is positive.
To find the correlation function of two spins S4 and Sp, first we need to find a
path connecting them, all paths are equivalent in the result. The correlation function is

given by
x Pf(Kem)

(5455) = (1) By

(3.65)

where Kepy = UJ(I — Tenn), Tem = 11T Ie, Iy, is a diagonal matrix depending on the
path:

I, (e e) =

{tanh_1 B if e or € is on the path (3.66)

0 otherwise

and z is the number of flipped bonds on that path.

It has been shown that the complexity of computing the Pfaffian of an n x n matrix
scales with n3/3 [103]. While the Monte Carlo simulations of RBIMs suffer from the rugged
energy landscapes, where the configuration can be trapped in many local minima for a long
time, the combinatorial solution is an alternative method which gives the free energy and
correlation function directly.

In the case of hyperbolic lattices on a closed surface, this method requires summa-
tion over all the spin structures [102], which are the non-trivial cycles in this case. Since the
spin structures grows exponentially with the size of the lattice, it is impractical to perform

the calculation on large hyperbolic graphs, thus other approaches are needed.
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Chapter 4

Qudit Quantum Error Correcting

Codes and the Potts Model

4.1 Introduction

4.1.1 Classical g-ary code

A g-ary classical error correcting code (n,X,d), is a collection of K strings of length n,
using an alphabet with ¢ symbols. Each string (called a codeword) represents a different
message. Any two different codewords must have at least d symbols different, where d is
the distance of the code. Such a code can detect up to d — 1 errors in any message, and

correct up to |(d — 1)/2] errors.

4.1.2 Linear codes over F,

In a linear code, a linear combination of any codewords is also a codeword. Such property
requires that the alphabet forms an algebraic structure closed under addition and multipli-
cation. When ¢ is a power of a prime, the elements can form a Galois field F,, where there
is an identity element “1” and each element a has a unique multiplicative inverse a~! such

that a * ! = 1. The vector space of a length-n linear code is a subset of Fy. A generator

57



matriz G is a matrix whose rows are the basis of the code. The number of codewords that
G can encode is ¢¥, where k = rank(G). The distance of the code, d, is the minimum
Hamming weight of the codewords. Such a code is called a [n, k,d], linear code. A parity

check matrix H is the exact dual of the generator matrix G,
GHT =0, rank(G) + rank(H) = n.

In the presence of errors, the received vector  may be different from its original value. By
multiplying the check matrix, the result is called a syndrome, s = Ha'. A codeword or a
non-detectable error will result in a zero syndrome, while other errors result in a non-zero

syndrome.

4.1.3 Linear codes over Z,

For a composite ¢, here we consider codes over commutative ring Z,, where addition and
multiplication are defined mod ¢. Such a code (denoted by C) is a subset of Zq. The
dimension of C is the number of rows in the minimal generating set forming the generator
matrix G (the number of rows after removing the rows in G that can be written as linear
combinations of the other rows, where the rows left are not necessarily linear independent).
Then, any linear combination of rows of GG is a codeword in C. The distance of the code is
the minimum weight of a non-zero codeword.

A check matrix H of a linear code C is a generator matrix of the dual code

C+={zeZ}|(x,¢c)=0Vce C}, where (,) is the inner product of the two vectors in Z.

4.1.4 Smith normal form

The Smith normal form of a matrix is a unique diagonal matrix which can be obtained
by multiplying invertible matrices on the left and right of the original matrix [104]. In
most cases the entries of the matrices are defined in a principal ideal domain (PID), but
the concept can be generalized to any principal ideal ring (PIR) [105, Theorem 15.9]. For

example, a code C over Z, is a free module over a PIR, so the generator matrix G has a
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Smith normal form G = VDU, where det V = 41 and det U = £1 and D has the form:

d; 0 ... 0]... 0
0 dg ... 0|... 0
D=0 0 ... d 0
0 0 ... 0 0
0 0 ... 0... 0]

where d; are integers called the invariants and 0 < dy < dy < --- < dj < q, each d; is a

factor of d;y1, and dj divides q. The number of codewords K = % : % ----- i.

4.1.5 Dual matrix over Z,

The dual matriz G of a matrix G is a matrix such that any vector v that satisfies Gv? = 0
is a linear combination of the rows of G. If we write the generator matrix G in Smith normal

form G = VDU, we find the dual of D to be

0 ... 0 4% 0 ... 0[]0 ... 0
1+1
0 ... 0 0 7%= ... 0[]0 ... 0
142
0 0 0 4 0
k
50 0 0 0|1 0
0 0 0 0|0 1
0 0
0 oo i e o

assuming di,...,d; =1 and dj4q,...,d; # 1.
Since DDT = 0 and U is invertible, we find that the dual matrix of G has the

form G = MD(U~1)T, where M is an arbitrary matrix that is invertible over Z,.

4.1.6 g-ary LDPC codes

In classical binary error correcting codes, low-density parity-check (LDPC) codes are known

for their reliability and high performance [106]. They are defined as to have a sparse check
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matrix. A number of ensembles of random LDPC codes have been proposed [107], where
the row weight and/or column weight are upper bounded. An (I, m)-regular LDPC code
has a check matrix with column weight [ and row weight m.

Similarly, a LDPC code can be defined over Z,;. The code dimension depends on
its Smith normal form. We performed numeric experiments of finding the Smith normal
form of random (I, m)-regular matrices of dimension r by n, where r/n < 1. Numerical
results show that with high likelihood their Smith normal form invariants are all 1 for a

large n.

4.1.7 Distance distributions of g-ary LDPC codes

The following result on the code distance function N(I) of an (n, j, k) ensemble of (0,1)

check matrices over Z, is given by Gallager:

Theorem 4.1 (Theorem 5.1 of Ref.[106]) Define the ensemble of (n,j, k) codes as the
ensemble resulting from random permutations of the columns of each of the bottom j — 1
submatrices of a (n,j, k) parity-check matriz with equal probability assigned to each permu-
tation.

For each code in an (n,j, k) ensemble with alphabet size q, the number Ny(l) of
sequences of weight | that satisfies any one of the j blocks of n/k checks is bounded by

n

Nt |ZHy(s)| < exp lug(s) = spty(s) + (k= 1) Ing]

where s is an arbitrary parameter and py(s) is defined by

pa(s) = g™ {[1+ (g = D) + (g = (1 =)}

g(s) = d“;is)

where an (n,j, k) parity-check matrix is a matrix of n columns that has j ones in each
column, k ones in each row, and zeros elsewhere.
Following this result, it can be shown that the minimum distance typical of most

codes in the ensemble increases linearly with n. See [106, p.51,17-18] for details.
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For LDPC codes over [y, consider an ensemble of matrices in the following, which

is the g-ary generalization of ensemble C in Ref [107],

Definition 4.2 Ensemble: Matrix H is chosen with uniform probability from the ensemble

of m x n Fgq-matrices with column Hamming weights equal .

Let Af{a stand for the ensemble of such matrices, where & = m/n, and let Ai;og represent
the ensemble of matrices that is orthogonal to a codeword of weight w, where § = w/n. Let
l7
_ B

bho =
A

Lo _

Theorem 4.3 The distance distribution of the ensemble of matrices (Definition 4.2) is

given by

Iim —Inp’), = —alng+ max aH, Ing+6lln(1—- ——
Jim —Inp, TF e a(1) g 1

and the mazximum is at the only solution for n of
1 1- 0l
(1— —n) <lnn+ln(q—1)> =—
q n Q@
where Hy(x) is the g-ary entropy function,
Hy(z) = xlog, (¢ — 1) — zlog,x — (1 — x)log,(1 — z).

The proof is given in Appendix B.1.

4.2 g-ary quantum codes and the Potts gauge glass model

4.2.1 Qudit and error correction

A qudit is an isolated quantum system that has ¢ different states available, described

as vectors in a g-dimensional Hilbert space H,. Denote the orthonormal basis states as

[0),1),]2),...
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,]g —1). The generalization of X and Z Pauli operators for such a system can be defined
as:

Zljy=¢€"91j),X|j)=j+1 (mod q)),j=0,1,...,¢—1 (4.1)

which are given the names “clock” and “shift” operators.

To simplify the notation, we will omit the “mod ¢” in the following, since all
arithmetic on the quantum states or on the spin values of the corresponding statistical
mechanical models are over Z,.

Qudits can be used as the basic unit of quantum computations just like qubits,
except that they have ¢ quantum states instead of 2.

Due to random noise and interactions with the environment, the quantum state of
a single qudit may change randomly, and the information will be lost. Qudit error correction
is to encode a small number of logical qudits into a large number of physical qudits, and
to use quantum circuits to attempt to return the quantum state of the system, which went
through a noisy channel, back to the original logical state, thus correcting the error. If the
system is in a different logical quantum state afterwards, a logical error happens and the

error correction fails.

4.2.2 Stabilizer codes and CSS codes on qudits

The space of n qudit quantum states is the product of their Hilbert spaces, H?”. The
n-qudit Pauli operators are tensor products of single-qudit clock Z; and shift X; operators
in different powers, i € {1,2,...,n}; they form an n-qudit Pauli group &,. Let V; be a
subspace of H?". If & is a subgroup of &, such that every element of V; is unchanged
under the action of any element in &2, &2 is called a stabilizer of V.

In the stabilizer group, the operators must commute with each other so that the
measurements don’t change the state of codewords, which are the common eigenstates of

all of the operators.
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An error of stabilizer codes is a Pauli operator
_ . mvyel eo e €n+1 €2
E=w"X" X2 X2

where w = i%’r. It can be mapped to a length 2n vector e = (e, ez ...ea,) up to a phase.

An error is detectable iff it anticommutes with any of the stabilizer generators.
An error that is in the stabilizer group is not detectable and doesn’t need to be corrected,
since it doesn’t change the logical quantum state. Errors that are different by a stabilizer
operator are called degenerate, since they act identically on the code.

An operator that commutes with the stabilizer generators and changes the logical
quantum state is a codeword, represented by a length 2n vector c.

An n-qudit quantum stabilizer code Q ((n, K, d)), is a K-dimensional subspace of
H?", a common +1 eigenspace of all operators in the code’s stabilizer, an Abelian group
& C Py, such that w?! ¢ & for j € {1,...,q—1}. When q is prime, it is an [[n, k, d]], code

where k is the number of logical qudits it encodes, K = ¢*. For general g,

K = ’%‘ (4.2)

where |.7] is the size of the stabilizer group .& [108].

The distance of the code, d, is the minimum of the weights of the undetectable
errors outside of the stabilizer group. Any non-trivial error of weight up to d — 1 can be
detected, and those that have weights up to |(d — 1)/2] can be corrected.

The generator matrix G consists of rows that correspond to stabilizer generators.
For any operator on an n-qudit system O(a, b) = XM X352 .. Xonzb1 702 700 e see that
O(a,b)0(c,d) = w?¢~*90(c,d)O(a,b). So two operators O(a,b) and O(c,d) commute

iff b-c—a-d=0. We may separate the parts of Pauli X and Z operators in G and write

G =(9x,Gz2)

where the commutativity condition requires that G ng -G ZQ)ZC— =0.
Degenerate errors are those that are different by a linear combination of rows of

g, € = e+ ag, where « is an arbitrary vector.
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Vectors of codewords are those that satisfy the commutativity requirement with
all the rows in the generator matrix, but cannot be written as a linear combination of rows
of the generator matrix. Two codewords are equivalent if they differ by a linear combination
of the rows of the generator matrix.

A subclass of the stabilizer codes, the qudit C'S'S codes, have the property that
the stabilizer operators only contain powers of Pauli X operators or powers of Pauli Z
operators, in which case we can treat X and Z errors separately. Thus in C'S\S codes, we
use a length n vector to represent an error e or a codeword ¢, and the generator matrix G

has the form

g = diag(GX, Gz)

Since the stabilizer generators consist of only X or Z operators, the commutativity require-
ment can be simplified, namely, Ox(a) and Oz(b) commute iff @ - b = 0. So the generator
matrices satisfy GxG% = 0.

In the following sections, we only consider C'SS codes, so X errors and Z errors
can be treated separately, and we use G to represent GGx or Gz since they work in the
same fashion. We specifically concentrate on the cases where matrices Gx and Gz have
all Smith normal form invariants equal to one. The advantage is that in this case the code
contains an integer number k of logical qudits. Indeed, with all SNF invariants equal to
one, the matrices Gx and Gz have well defined ranks equal to the numbers of non-zero
invariants. Denoting the ranks as rx and ryz, respectively, Eq.(4.2) gives K = ¢""xX7"2,

thus k=n—rx —ryz.

4.2.3 Families of quantum LDPC codes over Z,

Quantum LDPC codes for qubits have also been studied extensively, since the low weight of
the stabilizer generators are important for low complexity and high performance of quantum
error correction [109]. Here we study g-ary generalizations of such codes. Some examples

include:
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e Quantum codes on a quotient of G(4) graph, which is a square lattice on a plane with
periodic boundary condition, known as the toric code [87]. The dimension of the code

is k=2,n= L% d= L, where L is the side length of the square lattice.

e Quantum codes on a quotient of G(5) graph, which is a graph of pentagon tiling that
has 5 pentagons around each vertex with proper boundary conditions. In general,
we denote G(m) as a regular graph of m-side polygon tiling that has m polygons
around each vertex. For m > 5, the graph G(m) is on a hyperbolic plane. Codes with

dimension k = (1 —4/m)n + 2 exist on such quotient graphs [81].

e Quantum hypergraph-product (QHP) codes [76], which is a CSS code generated by
generator matrices G, = (I ® Hy, Hy ® I) and G, = (H{ ® I,—I ® HT), where H;

and H are sparse check matrices over Z,.

e Higher-dimensional quantum hypergraph-product codes [110], a generalization of the

QHP codes and all families of toric codes on m-dimensional hypercubic lattices.

4.2.3.1 Qudit toric and surface code

Similar to the construction of binary toric code, we can construct a g-ary toric code. The
qudits are placed on the edges, and the stabilizer operators are located on each vertex and
plaquette,
A= ] x¢ IT X (4.3)
ie{v+} ie{v—}

B,wy=[[ 2 I[ z° (4.4)

ic{pt+} ie{p—}
for some non-zero a and b in Z4, where v runs through all vertices and p runs through all
plaquettes, {v+} includes the qudits to the right or up of vertex v, {v—} includes those to
the left or down of v; {p+} includes the qudits to the right or below plaquette p, and {p—}

includes those to the left or above p.
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Figure 4.1: Example of surface code construction on any orientable surface.

This construction of stabilizer operators can be generalized to any graph on an
orientable surface by assigning an arbitrary orientation on each edge, where {v+} includes
the subset of the neighboring qudits such that the direction of it in relative to v is parallel
with the orientation of the edge, and {v—} includes those that are anti-parallel; {p+}
includes the qudits that are on the edges whose orientation is parallel to the counter-
clockwise direction in relative to p, and {p—} includes those that are anti-parallel, as shown
in Fig. 4.1. That is because any plaquette and any vertex have zero or two overlapping
edges. If there are two, the direction relative to the plaquette and the direction relative to
the vertex must be the same on one edge and different on the other. So on one edge, they
are both parallel or anti-parallel to the orientation of the graph, while on the other edge,
one is parallel and the other is anti-parallel. So that a -b = ab+ (—ab) = 0, A, and B,

commute.
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In the case ¢ is prime, the dimension of a quantum code on such a graph is k = 2g,
where ¢ is the genus of the surface. The X and Z distances of the code are the minimum
length of a non-trivial cycle on the graph and on the dual graph, respectively [111].

The same applies if we take the stabilizer group with all vertex and plaquette
generators with ¢ = b = 1. In this case it is easy to check that all non-zero Smith normal
form invariants of the stabilizer generator matrices Gx and Gz are equal to one, so that
both the dimension k and the distances (dx,dz) of the code over Z4 coincides with those

of the conventionally defined qubit code.

4.2.3.2 Qudit hypergraph-product codes

In the binary case, a finite rate hypergraph-product code can be constructed with generator
matrices G, = (I ® Ho, Hy ®1) and G, = (H{ ® I, I ® HI), where H; is an r; by n; binary
matrix and Hs is an 79 by no matrix. Denote the distances of the binary codes with parity
check matrices Hy and Hs as d; and ds, and of the binary codes with the same parity check
matrices transposed as dy and do, respectively. The distance of this C'S'S code is bounded

as following [76]:

e The upper bound of the distance of the code is d < d; when ks # 0 and d < do when

k1 # 0; similarly, d < (il when /;2 #0and d < CZQ when 1271 #0.

e The lower bound is d > min(d;,ds) and d > min(d}, CZQ)

When H; = H{‘F, this code has parameters n = n% +(n1 —k1)?, k= k%, d=d.

In the g-ary case, we can use a similar construction G, = (I ® Hy, H} ® I) and

G,=(H{ ®I,—I ® HI'). We can prove the lower bound:

Theorem 4.4 Given that the distances of the codes C’fh and C’IJ;Q are di and dy respectively
and the corresponding codes with transposed matrices are di and dy respectively, the lower

bound of the distance d of the code C is d > min(dy,ds) and d > min(dy, dy).
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Moreover, as mentioned in Sec.4.1.6, sparse rectangular matrices with random 0,1
entries with high likelihood have all non-zero Smith normal form invariants equal to one.
It is easy to check that the same will be true for the generators of the qudit hypergraph-
product codes. In this case, also the upper bound on the distance can be proved. Details
can be found in Appendix B.7. From above we can construct a code with parameters
n= n% +(n1 — k1)2, k= k%, d = dy. Since there exist classical LDPC codes with k& o« n and
d x n (Theorem 4.1 and 4.3), we can construct a quantum code with dimension k o n and

distance d o< y/n.

4.2.3.3 Qudit higher-dimensional QHP codes

The QHP codes can be generalized to higher dimensions, which form a m dimensional chain

complez, as shown in Ref. [110]. The distance of such a code has the following lower bound,
Theorem 4.5 (Theorem 1 from Ref. [110]) Consider m-complex A:
A0} & A A AL A4, O o),

and assume that homological groups H;(A) have distances dj, 0 < j < m. Given an 1 X ¢

binary matriz P of rank u, construct matrices C; with:

Aj+1 ® E, (—1)jEnj ® P

Cip1 =
‘ Aj ® E.

Denote 6 the minimum distance of a binary code with the parity check matriz P; by our

convention, § = oo if u = c. The minimum distance d; = d;(C) of the homology group

H(C},Cj41), 0 < j <m+1, satisfies the following lower bounds:
1. ifr > u, dj > min(d;, dj—19), otherwise,
2. Z'fT =u, d; > dj_lé.

We formulate this theorem in application to chain complexes over Z, without a proof. The

proof for the binary case was given in Ref. [110], and in the case of Fy, with ¢ a power
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of a prime in Ref. [112]. Again, most interesting case from the practical point of view
corresponds to torsion-free complexes such that all matrices have Smith normal forms with

non-zero invariants equal to one.

4.2.4 Distances verification complexity

The following result is an improvement of the results in Ref. [93].

Theorem 4.6 A codeword of weight dn in any q-ary (I, m)-limited quantum or classical

LDPC code can be found with complexity 2™, where
F' = §logy(ym(m — 1)),

Ym € (1,7s0) grows monotonically with m and is upper bounded as the following:
If all entries of the parity check matriz are coprime with q, v, s upper bounded by

q—2 1
(m=1((g=1)7T =1) g7 1

Ym < min

(4.5)

More generally, with some entries in the parity check matriz that are not coprime with q,

Ym 1S upper bounded by

— 2
Y < 1 .

(m=1)((8 - )77~ 1)

The upper bound of +,, is improved from the value in the original paper for codes on Fy,

and an upper bound for Z, is also given. Details can be found in Appendix B.5.

4.2.5 Minimum energy decoding on LDPC codes

Minimum energy decoding is to find the codeword correcting the most likely error for a
given syndrome, ignoring any degenerate errors. This corresponds to maximum likelihood
decoding at zero temperature (f = 400), where only the codewords that have minimum
Hamming distance to the error are important. Without the summation of probabilities

of all possible errors for each codeword, the minimum energy decoding is less complicated
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than maximum likelihood decoding, but usually it has a lower error threshold since it is
sub-optimal decoding.

For a regular quantum CSS LDPC code with row weight m, we discovered the
lower bound of the decodable threshold of error probabilities on physical qudits as a function

of ¢ and m, based on irreducible cluster method [98]:

Theorem 4.7 Any sequence of g-ary CSS codes whose distances scale with n at least log-
arithmically (d > Dlnn, D > 0) with generator weights not exceeding myx, my can be
decoded with vanishing error probabilities if channel probabilities (px,pz) for independent
X/Z errors satisfy

(mx — 1) Yess(pz) < e VP
(4.6)

(mz —1)Yoss(px) < e /P
where Toss(v) = (VITB+v/ola - 1))2 Y

The proof is given in Appendix B.4.

Notice that Ycogs(p) o« /p, limp — 0, so the inequality must have positive
solutions, showing that there is a positive minimum energy decoding threshold for p.

As an example, for the {5,5} hyperbolic quotient graphs listed in Table 3.1, a linear
fit of d vs Inn shows that d = 0.8541nn. Eq. (4.6) gives the minimum energy decoding
threshold

2.078 2155  \/4.644 — 8.954¢ + 4.310¢
q q> q> '

PME{5,5} =

4.2.6 Maximum likelihood decoding

Maximum likelihood (ML) decoding requires us to find the most probable codeword from
the K codewords by comparing the probabilities of inequivalent errors. Given an error e
corresponding to the syndrome s, we need to choose the largest of the probabilities Peyc(S)
for each inequivalent codeword, where Pe(s) is given by the sum of probabilities of all errors
equivalent to e that will result in the syndrome s for each codeword, Peyc(s). Since X and

Z error corrections are independent in C'S'S codes, let us take X errors as an example.
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We only consider i.i.d errors where any operator X/ acts on any qudit with the
same probablhty 7 for any j € {1,...,¢ — 1}. The probability of an X error described

by a length n g-ary vector e is
Np
Ple) = [T E) 01— p)t (e = (Eqystela - pyMomvstel ()

where N, = n is the number of physical qudits and wgt(e) is the Hamming weight of the
erTor.

Degenerate errors are the errors that are equivalent in the code, the difference
between them is a linear combination of the rows of the generator matrix. Consider all the
degenerate errors that have the same effect as e, the probability of that is given by

1 p _ _ _
= Ple) = _ wgt(e—o Q) 1— Ny—wegt(e—oG)
S - e X e

_. d;
e'~e 1 lae{O,...,qfl}Ns q

(4.8)
where N is the number of stabilizer generators, d; are the invariants of G in Smith normal
form, r is the number of the invariants, G is the generator matrix which has dimensions
N X Ny,

Expanding the weight wgt(e —oG) =, (1 —d(ep — >, 0sGsp,0)), where 6(z,y)
denotes the discrete Kronecker delta function which is equal to one whenever x = y and

zero otherwise. We have

1 176(65725 USG5b7O)
Pole) = ——t (1 —p)™ ( ) 19
(&) g™ iy di ZH q—l) (49)
If we substitute % with eX?, we can simplify the expression as
d(ep—>_4 05Gsp,0)
P 4.10
o(e) = PEAT A THZ L d; ZH er+q—1 (4.10)

o
The sum can be interpreted as the partition function of the Potts model with disorder, at
the inverse Potts temperature K. In fact, here K, is related to the error probability p;
this is an analog of the Nishimori line for the g-state Potts model, which we define in the

following section.
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4.2.7 Potts gauge glass model

To study the qudit code, we may relate it with another physics model. Because of Eq.(4.9),
A natural choice is the Potts model [34]. Potts model is a generalization of the Ising model.
It is defined on a set of spins, where each spin can take any number from {0,1,2,...,q—1}.

The standard Potts model has the Hamiltonian
H== J6(si,s;) — > hd(s:,0) (4.11)
(i,9) i

where J is the interaction energy on each bond, h is the external field, the first summation
runs over all the nearest neighbor site pairs and the second summation runs over all the
sites, and 0() is the Kronecker delta function.

It is well known that the qubit error correcting codes can be mapped to the +J
Ising spin glass model [6], where the external field is absent, h = 0, and the interaction
energy takes the value —J or J with probability p and 1 — p respectively. Because of the
symmetry in the system, a gauge transformation can be applied on spins and interactions

to solve for important physical quantities of the system. For example, the internal energy

2J/kBTp _ _p

can be solved exactly on the Nishimori line [36], which is defined as e T

In the case of qudit code with i.i.d. X or Z errors, the corresponding model is the
Potts gauge glass model [113], where the external field is absent and the interaction energy
takes the values —J0(s;, sj + €;5), where e;; = 0 with probability 1 —p and e;; =1,..,g — 1
each with probability p/(¢ — 1).

The standard Potts model can be generalized to include multi-spin couplings with
interaction energy —Jd(> ; 0;0;p,0) (all arithmetic are in mod ¢), where ©;, is the incidence
matrix whose rows correspond to spins, and columns to bonds. When each column of ©
has exactly two non-zero entries equal 1 and —1, it can be interpreted as a vertex-edge
incidence matrix of a directed graph, in which case Eq. (4.10) is recovered. More generally,
each bond may include multi-spin interactions, in which case the model is defined on a

hypergraph. Introducing flipped bonds results in a Potts gauge glass model, which has the
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partition function

Zpows = 3 exp (Z B.J6(3" 0i0 — e, o>> (4.12)
{O'i} b 7
where
=0, with probability (1 — p)
€h
=je{l,...,q— 1}, each with probability p/(q — 1)

The Nishimori line of Potts gauge glass model is given by [114]

(1 -p)(g— 1)]

1

Using gauge transformation, the internal energy on the Nishimori line can be solved exactly

ks Np(BpJ)2e’r’ (q—1)

E — NgJ _ NpJePv!
(ePr! +4-1)2

z i and the specific heat is upper bounded: C <

The probability of degenerate errors Py(e) can be mapped onto the partition func-

tion of Potts gauge glass model up to a multiplicative factor,

B3 0sGsp—ep,0)

1
Zo(e,ﬁ):mzn P (4.13)

o b

so the probability of errors Py(e) coincides with the partition function on the Nishimori line

Py(e) = Zo(e, Bp) (4.14)

where 8, = K, /J.

We define Z.(e, §) = Zp(e+c, B), where cis a codeword. The maximum of Z,.(e, /3)
over all codewords ¢ for a given syndrome is Znax(s, 3) = Ze,,.. (e, 8); it depends only on
the syndrome but not on the chosen representative error e. We also denote Ziq(e,3) =
> Zc(e, B) the sum of the partition functions over all inequivalent codewords; this quantity
also depends only on the syndrome s and can be interpreted as the probability of all the

errors that give the same syndrome as e.

4.2.8 Finite-T decoding threshold and homological difference conver-

gence

The overall probability of successful ML decoding can be written as [Zmnax/Ztot]e, Where

[]e denotes the averaging over binary error vectors with probability (4.7). For a decodable
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region on the p — T diagram, the successful decoding probability must converge to 1 as

d — 0.

Theorem 4.8 Consider a sequence of quantum CSS codes Q(Gy, Hy), t € N, of increasing
lengths ng, where row weights of each Gy and H; do not exceed a fixed m, and the code
distances dy > Dlnng, with some D > 0. Then the sequence AF; = [AFe(Gy, Hy; K))p,

t € N, converges to zero in the region
(m—1) (1 —p)(g— Ve X +pef + (g —2)p) < e VP (4.15)

This is the g-ary generalization of Theorem 2 of [32].

Notice that this lower bound on error rate threshold p is the same as the one with
minimum energy decoding (Eq 4.6).

The corresponding Potts model has converging free energy density homological

difference in a larger region [8]:

Theorem 4.9 Consider a sequence of pairs of weakly dual Potts models defined by pairs of
finite q-ary matrices with mutually orthogonal rows, GyH} = 0, t € N, where row weights of
each Hy do not exceed a fired m. In addition, assume that the sequence of the CSS distances
dg, is increasing. Then the sequence Afy = [Afe(Gy, Hy; K)lp, t € N, converges to zero in
the region

(m—1)((1—p)(g—1e ™ +pe’ + (¢ —2)p) < 1. (4.16)

The proofs are given in Appendix B.6.

4.2.9 Duality of Potts gauge glass model

In 2-D Ising model, a high temperature system is related to a low temperature system
on the dual graph via Kramers—Wannier duality [64], from which we can find the critical
temperature T, on an infinite square lattice which is self-dual. The critical temperature of

Ising model on a square lattice is given by sinh (%) = 1. Similar duality relationship can
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be found in standard Potts model. Here we generalize the duality transform to Potts gauge
glass model, following the formalization in [31].
We introduce the magnetic disorder m, which enters the partition function of

Potts gauge glass model as

1
Zem(0,K) = - wZi si@ibmbeK(s(Zi 5:0;p—ep,0) 4.17
9 ( ) qstr(Hi:1 dl)(eK + q _ 1)Nb ; ]g ( )

where K = J/kpT, e is the electric charge error and m is the magnetic charge error.

Applying discrete Fourier transform, we find the duality relationship to be

1 Ny * 1 Ny
di\? Vel -1 di\ [ VeET —1 ) .
- ( | Zem(©.) = (H“ﬁ ) | T e (07, K7)
(4.18)
where m* = e, e* = —m, K* = In(1 + #5), and ©* is the exact dual of © (details in

Appendix B.2).
In the case of K* = K, we find the self-dual inverse temperature to be K4 =

In(y/q + 1), which asymptotically approaches lan in the limit of large q.

4.2.10 Spin correlations and Griffiths inequalities

Here we introduce the spin correlations similar to Eq.(3.15) and Eq.(3.16)

(Sa)e = ZSA Probe({5}; ©; K) (4.19)
{si}

Sa = [JweooOrm (4.20)

where the probability of a certain configuration Probe({S}; ©; K) is defined according to

the partition function (4.13)

Hb KO3, siOip—ep,0)

Z{s} Hb eKJ(Zi 5i0;p—ep,0)
Similar to Eq.(3.23), the duality relationship (4.18) in this case reads

Zeo(0,K) .
— = R 4.22
ZO,O(@7K) <H ’ >0 O K* ( )

Probe({S};0; K) = (4.21)

b
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where we define

Rb = wzv SuOub

From the partition function (4.17), by changing the order of the summation s; —
—s;, it is easy to see that

Zewn = Z—er—m (4.23)

and when there is no flipped bond: e = 0, we have
ZO,m = ZO,—m

Noticing that the rhs is the complex conjugate of the lhs, which implies that in the clean
model where there is no flipped bonds, the correlation must be real: (S4)¢ € R, and we may
replace the complex function with only the real part, i.e. replacing S4 = w2 22 S Oumy
with Sy = cos(%’r Y w2 SuOupmyp).

The correlation of spins in the clean model satisfies the Griffiths—Kelly—Sherman

(GKS) inequalities [62, 63, 115, 116]:

(Sa)o > 0, (4.24)

(SaSs)o > (Sa)o(SB)o, (4.25)

The derivative of (S4) with respect to Kp gives

d(Sa)
dKpg

= (S4dp) — (Sa)(0B) (4.26)

where we denote dg = §(>_, 5,0 — €,0). Here we may expand the Kronecker delta as
a summation of cosine functions, d(x,0) = %Z?;é cos(%7T jx). In the case e = 0, with this

substitution, we can write dg as a summation of S; = cos(%’r > 0 SvOupmyp).

Then from the GKS inequality (4.25), we find that this quantity is non-negative

in the clean model

d{Sa)o
dKp

>0 (4.27)
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Next we may introduce the invariant distance for a defect e,
de = de(©) = min wgt(e + aO) (4.28)
(87

The free energy increment due to the addition of the defect can be found by taking
the logarithm of the lhs of (4.22),

0e =0e(0; K)=InZy(0; K) —In Ze(0; K) (4.29)
and the defect tension is defined to be
Te = Te(0; K) = 06(0; K) /de (4.30)

Respectively, if we assume that the rhs of Eq.(4.22) scales exponentially with the
defect weight (this is generally expected at large temperatures), we can define the area-law

exponent

b

Qe = (O K*) = —d ' In <H RZ”> (4.31)
0,0%;K*
The second GKS inequality (4.25) implies subadditivity,
d€1+82a81+62 < delael + d€2a62 (4'32)

The duality (4.25) also implies the relation between the defect tension and area-law
exponent,

7e(0; K) = ae(0"; K™) (4.33)
Together with (4.32), we get subadditivity for defect free energy cost

6e1+€2 < 561 + 562 (4'34)

4.3 Other results

Most of the results of binary QECCs can be generalized to g-ary codes straightforwardly,
but some of them require special treatment. The results are followed by the proof when nec-
essary, and the rest of the results are restated without repeating the proof. The definitions

can be found in the corresponding publications.
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4.3.1 Results on g-ary CSS codes in general

This section presents generalizations of some results from Ref.[31].

First we generalize the definition of fixed-defect phase and defect-free phase:

Definition 4.10 (Generalization of Definition 1 from Ref. [31]) A fized-defect phase
of the Potts gauge glass model 4.13 corresponding to an infinite family of q-ary CSS codes
has

[Zo(e, B)/Ziot(Se, B)] = 1, n — 0. (4.35)

Definition 4.11 (Generalization of Definition 1 from Ref. [31]) A defect-free phase
of the Potts gauge glass model 4.13 corresponding to an infinite family of q-ary CSS codes

has

[Zmaac(seaﬁ)/ztot(saﬁ)] — 1, n— oo. (4.36)

The following theorems hold,

Theorem 4.12 (Generalization of Theorem 1 from Ref. [31]) For an infinite fam-
ily of g-ary quantum stabilizer codes successful decoding with probability one implies that on
the Nishimori line the corresponding Potts glass model is in the defect-free phase, i.e., in

any likely configuration e of flipped bonds the largest Z.(e; B,) corresponds to cpmaz(€) = 0.

Theorem 4.13 (Generalization of Theorem 2 from Ref. [31]) For an infinite fam-
ily of Potts glass models (4.13), in a fixed-defect phase the averaged over the disorder free
energy increment for an additional defect corresponding to a non-trivial codeword ¢ # 0

diverges at large n, [AFT"**(se; B)] — oo.

Theorem 4.14 (Generalization of Theorem 3 from Ref. [31]) Define the defect ten-

sion of a codeword ¢ to be T = [BES(se)l  yphere AF%(5e) = logM. For
de ¢ ZCrrlax(6)+C(e)

Potts glass models (4.13) corresponding to an infinite family of q-ary quantum codes with

asymptotic rate R = log, K/n, in a fived-defect phase, the defect tension averaged over all

non-trivial defect classes at largen, 7= (K —1)1 Zc;éO Te, satisfy the inequality T > %.
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Theorem 4.15 (Generalization of Theorem 4 from Ref. [31]) Defect-free phase can-

not exist at any B for p exceeding that at the decoding transition, p > pe.

Proof. The proof goes similar to the one in the reference, except that now it is possible
that the correlation functions are complex numbers, so we must prove that the averaged
values are real numbers first.

Consider spin correlation functions defined as the following;:

m _ Zem(G".B)
Qtot(e7 5) - Ze’(](é*, ,3) (437)

We find that the following equality holds for any m:

Qi (e, B)] = [Qioi (e, B)Quot (€5 Bp)] (4.38)

where [f(e)] =), P(e)f(e) is the expectation of f(e) over probability distribution P(e).

And the inequality

[Qisi(e, B) < Qi (e, Bp)] (4.39)

is true for any m (proved in Appendix B.3).
Since there may be additional linear-independent rows in G*, we can expand the
partition function in terms of codewords c:

Ze,m(é*w@) = ch.mZE-&-C,m(Gaﬁ) (4.40)

c

and so we have
cm ZC(67 B)an<ev ﬂ)
Ztot(367 5)

Applying this to the inequality of correlation functions and summing over all the

Qm(e.8) =S w (4.41)

[+

magnetic charges that equals to a dual codeword m = ¢, we find that

m o g2 < i | Zele:Bp)
Z Qi (e, B)]" <K [Ztot(se, 6]3)} (4.42)

m=¢
This shows that the boundary of the decodable phase for g-ary code is either

vertical or re-entrant as a function of temperature below the Nishimori line. m
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4.3.2 Free energy analyticity bounds of Potts models with extensive ho-
mology rank

The following results includes the generalization of the theorems in Ref [8]. The coefficient

% on inverse temperature K is due to the difference between the interaction energy of Ising

models and Potts models, where the former is —J for low energy spin alignment and J for

high energy spin alignment and the latter is —J for low energy alignment and 0 for high

energy alignment.

Theorem 4.16 Consider a sequence of pairs of weakly dual Potts models defined by pairs of
finite q-ary matrices with mutually orthogonal rows, GyH] = 0,t € N, where row weights of
each Gy do not exceed a fired m, CSS distances dp, are increasing with t, and the sequence
of CSS rates Ry = log, Ki/n; converges, limy Ry = R. Then, for any K > 0 such that

(m — 1) tanh % < 1, the sequence Af; = [Afe(Gy, Hi; K))p, t € N, converges to RIng.

Theorem 4.17 Let us assume that any one of the following Conditions is true:

1. The transition at T.(G) is discontinuous or has a divergent specific heat;

2. The derivative of Af(K) = fa(K) — fu-(K) is discontinuous at Ky = Ky(G, H), or

the derivative of Af(K) is continuous at Kp,, but its second derivative diverges at Ky;

3. Summation over homological defects does not increase the critical temperature, T.(G*) <

T.(H).
Then the Kramers-Wannier dual of the critical temperatures T.(H) satisfies

T (H) < Tw(G, H)

C

Theorem 4.18 For any regular { f,d} tiling of an infinite hyperbolic plane, fd/(f+d) > 2,
the critical temperatures of the Potts model with free and wired boundary conditions, T =

1/Kg and T = 1/KY, satisfy
K/ - KY>2RIng, R=1-2/f—2/d. (4.43)
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The subadditivity for defect free energy cost is given in Section 4.2.10.

4.3.3 Summary phase diagrams and bounds

We summarize the results on a p — T diagram in Fig. 4.2, and show the plot of the
corresponding bounds for Potts models with ¢ = 2 and ¢ = 3 on the {5,5} graphs in the
thermodynamic limit in Fig. 4.3. The plot is obtained by setting m = 5, D = 0.854 and
R =1/5 in equations (4.6), (4.15) and (4.43).

T
Tgp Bethe-Peierls style bound from HTS
e 1BP

s.d upper bound from extensive homology rank
.d.

g - 11ne
. o gl 1 nn
Peier]s’- Nxs\\\mo

style i %

bound

idecodable l
e p
Min-energy decoding bound

Figure 4.2: (Color online) A schematic summary phase diagram, which shows the minimum
energy decoding bound (Theorem 4.7), the Peierls’ style bound (Theorem 4.8) and the
upper bound from extensive homology rank (Theorem 4.18).

4.4 Potts clock model formalization of multivariate proba-

bility distribution

The following formalization of multivariate probability distribution is a g-ary generalization

of “multivariate Bernoulli distribution” [117].
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15 Green: =2
T Blue: q=3

Dual T' of upper bound from ex-
tensive homology rank

1.0}

Upper bound from extensive
homology rank

0.5 Peierls’-style

bound

Nishimori line

0.001 0.002 0.003 p

Figure 4.3: (Color online) A plot of the bounds indicated in Fig.4.2 for the Potts models
with ¢ = 2 (Green) and ¢ = 3 (Blue) on the {5,5} graphs in the thermodynamic limit.
The minimum energy decoding bound is given in Eq. (4.6), the Peierls’ style bound in Eq.
(4.15), and the extensive homology rank bound in Eq. (4.43). Tpp is too large to fit in, it
is omitted in this plot.
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4.4.1 Single variable distribution

4.4.1.1 Complex coefficients

Given any discrete probability distribution p(x) = pg(x’o)pf(x’l) e pg(fl’qfl), we may rewrite

the Kronecker delta function as the summation of powers of the root of unity d(x,a) =
27

1
1Zq wI@=) where w = e’ .

We may rewrite p(x) in an exponential form:

1 g—1 A q—1 A g—1 A
7=0 7=0 7=0

Regroup the terms and it becomes:

p(z) = exp[Ko + K1w® + Kow® +...]

where the constants w™7% in w’(@=a)

are absorbed in the coeflicients K,,.
The expression can be transformed between exponential and polynomial form:

For each term in the exponential function,

€ = |
m—0 m:
Km m
= > =+ ) —uw+
m! !
m=0 mod g m=1 mod q

The exponential can then be expanded,
p(z) = exp[Ko + K1w® + Kow®® +...]
=t (fO(Kl) + flK)w® +- fq—l(Kl)W(qil)x) (fo(E2) + fi(2)w™ + ...
o (B waD9)) (fo< g1) K )WV 4 f (Kl
= Ko+ Kw® 4 -4 K, wl@ Ve

and the result is in a polynomial form.
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The inverse transform is given by

p(gj) — KO + _f{lwr + 4 inlw(q_l)x

1+W‘K+..A+W(CI*1)Z - ~ 1+ww*1+m+w(Q*1)<w*1>

= (f{o—i_"'—i_f(q—l) 4 (KO"‘KlW'f‘“'—I-Kq_lwq_l) q

5 1tw®(@a=D . 4, (¢=1)(z—(q—1))

(Ko + Kt o Kyl 4

—_

= ex [ (lnSo(l + w4 - +w(q1)x)+1n51(1+w‘”1+---+w(q1)(z1))+...)]

Q

= exp |:K0 + Klwx 4+ 4+ Kq_lw(q_l)x}

4.4.1.2 Real coefficients

Instead of complex numbers, we may only take the real part and rewrite the Kronecker

delta function as a series of cosine functions, 6(x,a) = 1 ZJ 0 cos( j(x —a)).

p(x) = exp [;(lnpo(l + cos(%;rw) + 008(2:255) +-+ COS(Qq (¢ —1)x))+

2 2 27
Inpy(1+ COS(%(J} -1))+ cos(%Q(az —1))) 4+ cos(— . (g—D(x—=1))+...)
1 2 2
= exp [q ((lnpo +lnpi+...)+ cos(?ﬂ:c)(lnpo + cos g Inpy +...)+
2 2
sin(—ﬂx)(sin—ﬁlnpl +...0)+... )]
q q
2m 2m
=exp | Ko+ K4 cos(?x —) + Ky COS(;Q.% —ag)+ -+

2
Ky o5 g = D = 1) )

Here we won’t be able to absorb the constants a; into the coefficients K like in the case of

complex numbers, so we have to include the sine functions:

27 27 27 27
p(x) = exp | Ko + K] cos(—z) + K7 51n(—x) + K, cos(—Qx) + KY s1n(—2:6) +.
q q q q
27 ” 27
+K, 1cos(q(q—1))+K 1sm(q(q—l))

To expand the exponential function, although cos™(z) is not equivalent to cos(nz),
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we can still expand it as a summation of cosine functions. Notice that
1
cos(azx) cos(bx) = 5 (cos((a + b)z) + cos((a —b)x))

we can always expand cos”(z) as a summation 7, C; cos(jz), where C; are constants.

As for the power of sine functions, notice that
. 9 1
sin®(x) = 5(1 — cos(2z))

sin(z) cos(az) = %(Sm((a +1)z) — sin((a — 1))

An even power of sine functions can be expanded to a summation of cosine functions, and
an odd power of sine functions becomes a summation of sine functions.

For each term of the exponential,

= foo(K) + faan (K) sin(Q;TJ:) F ot fag (K sin<2;<q ~1)a)
+ fse1(K) cos(ijm) + -+ foeq—1(K) 608(2;((] —1)x)

After the multiplication, we can use the trigonometric identities again to convert

each term into summation of sine or cosine functions. Eventually we can get
2 2 2 2
p(z) = exp | Ko + K] cos(—ﬂm) + KY sin(—ﬂx) + K cos(—ﬂ2x) + KY sin(—-2z) + ...
q q q q
, 27 y . 2T
1 cos(Z(q = Do) + Ky sin(= (g = 1))
- ~ 2 ~ 2 - 2 ~ 2
= Ko + K| cos(—ﬂx) + KY sin(—ﬂx) + K} cos(—WQx) + KY sin(12x) +...
q q q q

- 2 ~ 2
+ K, 4 cos(?ﬂ(q - 1z) + K, 4 sin(?ﬂ-(q —1)x)
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The inverse transform is similar to the case of complex numbers. First, we let x go
through 1,...,q — 1 and write the polynomial as a product of constants raised to a power
of delta function. Then we may expand the delta function as a series of cosine functions.

Finally, convert it into exponential form, we are back to

- - 2 ~ 2 . 2 ~ 2
p(z) = Ko + K} cos(ix) + K sin(—ﬂm) + K}, cos(—WQx) + KY sin(—WQx) + ...

q q q q

~ 2T ~ . 2w

sy cos(2 (g - ) + Ky s (g - 1)
2 2
=exp | Ko+ Kj cos(—z — a1) + Ko cos(—2z — ag) + . ..
q q

2
+K,1 COS(?((] — 1z — aq_1)>

4.4.2 Two variables distribution

Given a two variables distribution, first rewrite the distribution as

1 2 2 1 2 2
=5 [14cos(Ex1)+... [[14cos(Lx2)+...] —=5[l+cos(ZExq)+...][1+cos(ZE (z2—1))+...]
p2(x) = pg o ’ ' Po ’ ' e

Notice that cos(%”axl) Cos(%’rbxg) = %(cos(%”cml + bxa) + cos(%”axl — bxy)), we

may rewrite the distribution as

¢°-1

() = Cexp | 3 Kioos (2ol - o)

b=1
where C' is a constant and © is a matrix with columns consisting of all possible

non-zero length 2 g-ary vectors,
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4.4.3 Multiple variables distribution and Potts clock model

The case of multiple variables distribution goes similarly as the 2 variables case. For an

s-variables distribution,

1 2 2 2
=5 [14cos(ZE (z1—v1))+... ][1+cos(ZE (z2—v2))+... ... [1+cos(ZE (s —vs ) ) +... |
ps(m)= > P ’ ’ ’
ve{0,...,q—1}*
By converting the products of cosine functions into summations, again we may rewrite the
distribution as

ps(x) = Cexp

qsz_le cos <2q”[m@]b - ab)]

b=1

where C' is a constant and © is a matrix with columns consisting of all non-zero length s
g-ary vectors.

This resembles the probability distribution of Potts clock models with multi-spin
interactions, where there is an interaction for any subset of the set of spins, thus for m spins
there are ¢° interaction terms. Each non-zero coefficient, K3, can be viewed as a particular
form of correlation; in many cases high-order correlations may be ignored, thus the number

of non-zero coefficients K} is going to be much smaller.

4.4.4 Standard Potts model

Standard Potts model considers single site and pairwise interactions, the probability distri-
bution can be written as functions of §(x; — a,0) and §(x; — x;,0), which can be expanded
into cosine functions, and we may write it in exponential form with linear combinations

inside cosine functions, thus converting it into the generalized Potts clock model.

4.4.5 Duality transform

Define a partition function of a Potts clock model on a hypergraph specified with a g-ary

incidence matrix © with s spins and n interactions that has the symmetry p(x) = p(—x),
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such that

z@0)= Y -y ew [Z Ky cos ( 26, )

we{l,...,qfl}s

27
eK cos(7x)

For each term g(z) = , we may expand it as

g(x) = KCOS T = fo(K) + f1(K) cos(Z(;Tx) + ot fee1(K) cos(2;r(q —1)x)

The discrete Fourier transform of g(z) gives

7)== (Ao13000) + LG 601 + g = 1)+
8 50, 1)+ 5017
o FLUE) + fya () 1K) + 1K)
- == (st + MO s 0y S A 1)

We may expand each of the Kronecker delta as a summation of cosine functions, then use the
polynomial-exponential conversion to get the exponential form. Notice that f*(y) = f*(—y),

the exponent of the resulting cosine functions must have constants all 0,
27 2 27
9" (y) = K5 + K7 COS(?y) + K3 COS(?2y) -+ Ky cos(— . (¢—1y)
% F % 2m T 2 ~ 27
=exp |K§ + K; cos(?y) + K3 cos(?2y) + -+ Ky cos(— . (g —1)y)
The inverse transform gives

1 ~ ~ 2 - 2 - 27
gla) = = > e i+ K7 cos ) + Ry cos ) 44 Ky cos(E (g~ 1)
Yy

Apply the inverse transform to each term in the partition function,

Z(0) =

L
m\z‘ Q

n ~
Z H E w (@O Kb o+ Ky cos(Eryp)++ Ky cos(2T(g—1)yp)
2e{l,...q—1}* b=1 \vp=1

i1 K
_ u Z 2—”m®y H( K cos fyb)-I- +Kbq 1cos(7"(q 1)%))
2

q
ze{l,...,¢g—1}°

ye{177q_1}7’b
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Notice that the summation over = implies that ©y” = 0. Thus, the only none-zero terms
have y = o© for some arbitrary vector o, where © is the exact dual matrix. Let d; be the

non-zero invariants of the Smith normal form of @ r* be the number of d¥, and s* be the

7

number of rows in ©. Denote C* = Cle2=b=1 Kb’o,

20) =i Y b (K g cos(Zrun) 4K,y cos(% (a=1)w))
ye{c6}

_ C*qS_%_S*-‘rr* Z Eb 1( blcos(%(o’@)b)—‘r +Kbq 1005(777((] 1)( e)b))

[1-,d
i=1"" oc{l,...,qg—1}*"

To simplify the notation, let us define a new matrix © = (0[20]...](g — 1)©).
Thus the summation in the exponent becomes Z Kb cos(2”(0'@) ). The identical
columns in the expanded matrix can be combined by summing up their coefficients K. b SO
we may replace © with a smaller matrix ©* that has the number of columns n* < (¢ — 1)n,
2(0) = C*qsf’i”* Yy S Reee)
[Tiz1 &; oe{l,..q—1}"
If for all subsets of spins there is a non-zero interaction, so that © consists of all

g-ary vectors, then identity matrix is a submatrix of ©, thus the invariants of Smith normal

form of © and ©* must all be 1.

4.5 First order transition on non-amenable graphs

The order of phase transition of Potts model in Euclidean space depends on the parameter ¢
and also the dimension [34]. For example, when ¢ < 4 the 2D Potts model has a second order
phase transition, while for ¢ > 4 the transition is first order. The Monte Carlo simulation
of the first order transition is challenging because of the free energy barrier between the
two phases that it has to cross. With single-site algorithm like Metropolis or heat-bath
algorithm, the relaxation time is very long on large graphs, which results in hysteresis.
The cluster algorithms, e.g. Swendsen—Wang algorithm[118] and Wolff algorithm[89], are

helpful in reducing the relaxation time, even though the correlation length is finite in first
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order transitions so that the acceleration is not as great as in second order transitions,
they can accelerate the simulation substantially comparing to single site flip algorithms
like Metropolis or heat bath algorithm. The simulations can reach thermal equilibrium in
practical time with the help of cluster algorithms.

On the contrary, in the case of first order transition of Potts model on hyperbolic
lattices, the hysteresis remains even with cluster algorithm. One possible reason is the
interface tension. In a first-order phase transition in equilibrium, the phase that has the
minimum free energy density changes from one to another at the transition point. But for
the transition to happen, a bubble of the stable phase must grow large enough to take over
the metastable phase. During the growth of the bubble, the free energy would be decreased
by an amount proportional to the volume of the bubble, but there is also an increase of
interface tension by an amount proportional to the size of the interface.

Consider the free energy of a first order transition between two phases given by

F=f(B)Vi+ f(B)(V - W) +a(B)A,

where f1 and f> are the free energy density of the first and second phase respectively, V;
is the volume of the first phase, o is the interfacial tension, A is the area of the interface.
In d-dimensional Euclidean space, for a bubble of radius r, its volume grows as r¢, while

d=1 8o, at any temperature, eventually the free energy

the size of the interface grows as r
would be lower with a stable phase bubble if the bubble grows to a size large enough. As a
result, no matter how large the system is, a large enough critical bubble would eventually
form, driving the system of any size to the equilibrium phase at any T' < T, no matter how
close to the phase transition.

In contrast, in a hyperbolic space, the volume and the interface both grow ex-
ponentially with r, and they are proportional to each other by a constant. If the ratio
between interfacial tension and free energy density difference, o/|f1 — f2|, is larger than

the ratio between volume and interface area, then a bubble of the “true stable” phase with

smaller free energy surrounded by “metastable” phase would only increase the total free
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energy regardless of how large the bubble is. Thus, there is a possibility that in hyperbolic
space, in a range of the physical quantity that drives the first-order phase transition (e.g.
temperature), the actual phase could be the stable or the metastable phase depending on
the history, since the mechanism that drives the system from one phase to the other may
no longer work, and instead of a single phase transition point, there could be two points
marking the ends of the range of the physical quantity.

In application to numerical simulations on expander graphs like finite hyperbolic
graphs, as the size of the system grows, in certain temperature range, the probability of
switching to the phase with a lower-free energy may grow exponentially with the system
size. When this is the case, it may be extremely difficult to locate the true thermodynamical
phase transition temperature.

While the discussed algorithms may fail to find the transition point separating
the stable phases in equilibrium, other methods may be helpful in solving the problem,
such as Wang-Landau algorithm [119], which is a non-Markovian stochastic process that
go through the free energy barriers and sample density of states directly. More research
is needed to construct efficient simulation algorithms capable of dealing with this super-

stability of overheated/overcooled phases in hyperbolic space.
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Chapter 5

Conclusions And Outlook

In this dissertation, we have studied the quantum error correcting codes on closed
hyperbolic surfaces and their corresponding Ising models, and we explored the generalization
of binary quantum stabilizer codes to g-ary codes and their corresponding Potts models.

Chapter 3 started with the construction and the properties of hyperbolic tessella-
tions, and also the construction of the quotient graphs. Next, we studied the quantum error
correcting codes on such hyperbolic quotient graphs and their corresponding weakly-dual
Ising models. The extensive homology rank of the graphs results in a non-zero homological
difference of the free energy in a range of temperatures. We gave several bounds of the
threshold, and we performed numerical simulations to support our results. Several open
questions were listed in Section 3.2.4.2. Another possible future research direction is to
find the p — T phase diagram for the RBIMs on hyperbolic quotient graphs, possibly with
Monte—Carlo simulation. The combinatorial method is a good option for calculating the free
energy and spin correlation of RBIMs on finite subgraphs of hyperbolic graphs with open
or wired boundary conditions, but it is unknown whether there is an efficient algorithm for
calculating these quantities for spin models on the quotient graphs.

In Chapter 4 we discussed the construction and parameters of qudit quantum error
correcting codes. We provided several examples of qudit LDPC codes and bounds on their

parameters. An improvement of the upper bound of distances verification complexity index
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is also given. We showed the mapping of the probability distributions to the partition func-
tions of Potts gauge glass models, and many of the results on qubit codes were generalized
to qudit codes. Further study of the generalized Potts clock model formalization of mul-
tivariate probability distribution may lead to some insight into the decoding properties of
g-ary LDPC codes with correlated errors, including the correlations that necessarily occur
in any circuit used for measurements. Another possible future research direction is numeri-
cal simulation of Potts models on the graphs or hypergraphs with extensive homology rank,
but the first order phase transition is an obstacle, since the hysteresis makes it difficult to

locate the phase transition point.

93



Appendix A

Appendix of Chapter 3

A.1 Proof of Theorem 3.1

Theorem 3.1 Consider a sequence of pairs of weakly dual Ising models defined by pairs of
finite binary matrices with mutually orthogonal rows, GiH} = 0, t € N, where row weights
of each Hy do not exceed a fixed m. In addition, assume that the sequence of the CSS
distances dg, 1is increasing. Then the sequence Afy = [Afe(Gy, Hy; K)lp, t € N, converges
to zero in the region

(m—1D)[e 251 —p) + Kp] < 1. (3.40)

The statement of the theorem immediately follows from the following technical

Lemma, see the proof in Ref. [32]

Lemma A.1 Consider a pair of Ising models defined in terms of weight-limited matrices G
and H with orthogonal rows, such that the matrix H has a maximum row weight m. Let dg
denote the CSS distance (3.35), the minimum weight of a frustration-free homologically non-
trivial defect ¢ € C; \ C:. Denote S = e 2K (1 —p) + e*Kp, and assume that (m —1) S < 1.

Then, the average homological difference (3.37) satisfies

(m — 1)dce gda+1
1—-(m-1)8 ~

[Af(G,H;K)], < (A.1)
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A.2 Proof of inequalities in Sec. 3.2.3.1

(i) The proof of the monotonicity of the homological difference (in the absence of flipped

bonds),
d

— ; < .
dKAfO(G7H7K)_07 (3 39)7

is similar to the proof[120] of the monotonicity of the tension. We combine the logarithms
in Eq. (3.37), decompose Z¢(H*; K) as a sum of Z.(G; K) over non-equivalent codewords

c, and write
d Zo(GK) _ Z(G; K)

dK Zo(G;K) ~ Zo(G:K) bEZB ((Rp)e = (Ry)o) < 0.

The desired inequality (3.39) follows from the monotonicity of the logarithm.
(ii) The first inequality in

‘Tc,e’ < Tc,0 <2K (342)

follows from the second GKS inequality[62, 63] applied in the dual system [where, according
to electric-magnetic duality, the defect becomes an average of the corresponding product
of spins, see Eq. (3.23)]. Depending on the sign of 7¢ e, duality gives (Rcte) > (Re)(Rc)
or (Re) > (Rc){Retc), where Re is the product of bonds corresponding to non-zero bits in
the binary vector e. The second inequality, in a more general form, 7¢ = 7¢0 < 2K, follows
from the Gibbs inequality
Fo(G;K) — Fo(G; K) < 2K > (Ry)aix < 2K wet(e),
biep#0
if we take a minimal-weight vector equivalent to e, in which case wgt(e) = de.

(iii) To prove the lower bound on the average tension,
(Tp = RIn2 — [Afe]y, (3.44)

we first define the constant ¢ as the average minimum weight of all 2 codewords divided

by the code length n,
¢=02)""> de. (A.2)
(¢
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An upper bound on ¢ can be obtained if we take the codewords c as linear combinations
of k inequivalent codewords c¢;, i € {1,...,k} (it is likely that smaller-weight equivalent
codewords can be found). In this case the codewords form a binary code, and the average
weight is exactly a half of the length n’ of the code[121], where n’ = |U¥_, I(c;)| is the weight
of the union of the supports of the basis codewords. Clearly, n’ < n, which gives ( < 1/2.
Combining with a lower bound on the weight of non-trivial codewords, d. > dg, ¢ % 0, we

obtain

(A.3)

We now proceed with deriving the inequality (3.44). Start by expanding Ze(H*; K) =
> Zete(G; K), where the summation is over all 2¥ mutually inequivalent codewords c.

Each of the terms with ¢ % 0 can be written in terms of the corresponding tension (3.41),
Zoto(G K) = e Tee(G)de 7 (G K).

Convexity of the exponent gives

Zo(H*; K)

7(G K 1+ Z exp(—Teedc)

c%0

> ok exp (—Q_k Z Tc’edc> ,
C

where for the trivial codeword ¢ ~ 0 we set 79 ¢dp = 0. Taking the logarithm and rewriting
the sum over codewords in terms of the weighted average, with the help of Eq. (A.2) we

obtain

Zcfﬁo dC
Eq. (3.44) trivially follows after averaging over disorder and dividing by n.

AFe(G,H;K) > kln2 —(n

(iv) The inequality
Kn(G,H)— K;(H,G) > RIn2 (3.47)

is based on the standard inequality for the derivative of the free energy density, which is

just the average energy per bond. For the case of homological difference we obtain, instead,
d 1

— A HK)== e K. A4

TR CHE) = 55 (R = (i) (A.4)
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The second term can be obtained from the first by freezing the spins corresponding to

homologically non-trivial defects; with the help of GKS inequalities we obtain
1> (Ry)a.x > (Rp)m+x >0,

which guarantees the derivative (A.4) to be between —1 and 0. Integration gives the in-
equality
Afi(K2) — Afi(Kq) < Ky — Ko,

where Afi(K) = Af(Gt, H; K). We now take K1 = K (G, H) and Ky = K} (H,G), so
that in the limit of the sequence, lim; Afi(K;) = 0 and lim; Afi(K2) = RIn2. Eq. (3.47)

trivially follows.

A.3 Proof of Theorem 3.2

Theorem 3.2 Consider a sequence of pairs of weakly dual Ising models defined by pairs
of finite binary matrices with mutually orthogonal rows, GiH! = 0, t € N, where row
weights of each Gy do not exceed a fired m, CSS distances dg, are increasing with t, and
the sequence of CSS rates Ry = ky/ny converges, limy Ry = R. Then, for any K > 0 such
that (m — 1) tanh K < 1, the sequence Afy = [Afe(Gy, Hy; K)]p, t € N, converges to RIn2.

Proof. The proof is based on the special case of Theorem 3.1 in the absence of
disorder, p = 0, and the duality relation (3.45), applied for each pair of matrices, G} and
H;, with Ry = ki/ns, and K replaced with its Kramers-Wannier dual, K*. The condition
on K in Theorem 3.1 (with G; and H; interchanged) becomes simply (m — 1) tanh K < 1.
Convergence of sequences A fo(Hy, Gy; K*) to 0 and Ry to R implies that of the sequence
Afo(Gt, Hi; K) to RIn2. =
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A.4 Proof of Statement 3.3

The proof is based on Theorem 9.1.7 from Ref. [69], which bounds cumulants of a random
variable X,

r

d
re(X) = < InE ()| , re{o0,1,...}, (A.5)
t=0

where X =3 sY, is a sum of random variables with a given dependency graph:

Definition A.2 A graph D with vertex set S is called a dependency graph for the set of
random variables {Yy, o € S} if for any two disjoint subsets S1 and Sa of S, such that there
are no edges in D connecting an element of S1 and an element of Sa, the sets of random

variables {Yy acs, and {Yy}acs, are independent.
The corresponding bound reads as follows:

Lemma A.3 (Theorem 9.1.7 from Ref. [69]) Let {Y,}acs be a family of random vari-
ables with dependency graph D. Denote N = |S| the number of vertices of D and A the
mazximal degree of D. Assume that the variables Y, are uniformly bounded by a constant A.

Then, for the sum X = > s Yy, and for any s € {0,1,...}, one has

a€eS

ke(X)| < 2571 2N (A 4+ 1)571 45 (A.6)

Statement 3.3 Consider any model in the form (3.13), with an (£, m)-sparse r xn coupling

matriz ©. The coefficients of the HTS expansion of the free energy density satisfy
k(0 1) < 2571552 C (A +1)7 1 4%, (3.49)

where A = max(|J|,|h'|) and (a) with J and h' both non-zero, A = ¢m and C = r/n + 1,
while (b) with ' =0, A= ({ —1)m and C = 1.

Proof of Statement 3.3. The s-th coefficient of the HTS for the free energy
F(©; K, h) is the scaled cumulant —r,(X)/s!, where X = J >, s Ry +h' > ), Sy. Define

the set of random variables Y, as the union of the set of (scaled) spins hS, and bonds K Ry,
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then |Y,| < A = max(|h/[,|J|). The corresponding dependency graph D can be obtained
from the bipartite graph defined by the matrix © by connecting any pair of nodes for bonds
which share the same spin. In the original bipartite graph, each spin node has up to ¢
neighboring bond nodes, and each bond node has up to m neighboring spin nodes. In the
modified graph, each bond node also connects with up to (¢ —1)m bond nodes with common
spins, which gives the total maximum degree of A = ¢m. We also have N = |V|+|E| = r+n,
dividing by n as appropriate for the free energy density we obtain the bound in part (a).
With h = 0, we can drop the spin nodes from the dependency graph. In this case the
maximum degree is A’ = (¢ — 1)m, which gives the result in part (b). Notice that in this

case N = n, and the factor C = (r/n + 1) is replaced with C’' =1. m

A.5 Proof of Corollary 3.4.

Corollary A.4 Any infinite sequence of (¢, m)-sparse Ising models, specified in terms of
the matrices O, j € N, has an infinite subsequence ©;;y, t € N, where j : N — N is strictly
increasing, such that (a) for each s, the sequence of the coefficients /@E,S)(Gt; J,0) converges
with t, and (b) the sequence of free energy densities f(©;); K) has a limit, po(K), which
is an analytic function of K in the interior of the circle |K| < {2e[({ — 1)m + 1]}~. Here

e is the base of natural logarithm.

Proof. The result in Statement 3.3(b) gives a uniform in ¢ bound on the coeffi-
cients of the HT'S,
ma(©)] _ 22 A )L
s! - (27ms)1/2(s/e)s
1 [2e] (A +1)]°

T Brat1  s2 (A7)

where A = (¢ — 1)m and we used the lower bound by Stirling, r! > (277)"/2(r/e)". The

bound (A.7) is uniform in the sequence index j € N. Thus one can select an infinite
subsequence of O, O/, t € N, where the function 4"+ N — N is strictly increasing, so that

the coefficients #,,(0;/(;)) for m = 1 converge with ¢. Selecting an infinite subsequence of the
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one obtained previously to ensure the convergence of the coefficients x,, for m = 2,3, ..., at
each step we obtain an infinite subsequence such that all coefficients «s with s < m converge
with ¢. The statement in part (a) is obtained in the limit of m — oco. The uniform bound
(A.7) also applies to the cumulants after we take the limit of the obtained subsequence,
which implies absolute convergence (and thus analyticity of the limit) of the HTS for free
energy density in the circle |K| = |8|J < {2¢[({—1)m+1]}~!, which is exactly the statement

in part (b). =

A.6 Proof of Lemma 3.5

Lemma A.5 Consider a sequence of 4 X n; binary matrices O, where 0 < 1y < ng, and
t € N. For any M > 0, define a closed interval Ipy = [0, M]. (a) There exists a subsequence
©ys), @ € N, where the function t : N — N is strictly increasing, t(i + 1) > t(i) for all
i € N, such that the sequence of Ising free energy densities converges for any K € Iy,
filK) = fo(Oy4); K) — f(K). (b) The limit f(K) is a continuous non-increasing concave

function with left and right derivatives uniformly bounded,
—1< fi(K) < fL(K) <0, (3.50)
for all K € Iy;.

Proof. For any t, the free energy density fi(K) = —n; ' In Zo(Gy, K) is bounded

from both sides,
—M <riln2/ny — K < fi(K) <r¢yln2/ny + K <In2+ M.

Therefore, we can use a subsequence construction to ensure convergence in any point K €
Iy;. Since the set of rational numbers @ is countable, we can repeat this construction
sequentially on all rational points in Ij;. The resulting infinite sequence f;(K) converges
in any rational point K € Iy N Q. Further, the derivative of f;(K) is uniformly bounded,

—1 < f/(K) < 0. Since the sequence converges on a dense subset of Iy, this guarantees
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the existence and the continuity of the limit in the entire interval. Finally, each of f;(K)
is concave and non-increasing; these properties survive the limit, although the resulting
function may not necessarily be strictly concave. Concavity guarantees the existence of
one-sided derivatives. The lower and upper bounds on these derivatives are inherited from

those for f/(K). m

A.7 Proof of Theorem 3.6

Theorem 3.6 Let us assume that any one of the following Conditions is true:
1. The transition at T.(G) is discontinuous or has a divergent specific heat;

2. The derivative of Af(K) = fa(K) — fug+(K) is discontinuous at K, = K,(G,H), or

the derivative of Af(K) is continuous at Kp,, but its second derivative diverges at Ky ;

3. Summation over homological defects does not increase the critical temperature, T.(G*) <

T.(H).
Then the Kramers-Wannier dual of the critical temperatures T.(H) satisfies
T;(H) < Th(G, H). (3.53)

Proof. There are three mutually exclusive possibilities: (a) T.(G) < Th(G, H),
(b) TU(G) > Th(G, H), and (c) T(G) = Ty,(G, H). In the case (a), T (H) = T.(G), since the
functions fg(K) and fg+(K) coincide in the homological region, i.e., for K > K(G, H);
Eq. (3.53) is satisfied. In the case (b), T)(H) = T3(G, H), in order to recover the non-
analyticity point for the homological difference; Eq. (3.53) is saturated. The goal of the
Conditions is to deal with the case (c¢) which implies T (H) > T,(G, H); a strict inequality
would violate Eq. (3.53). In the following we assume (c).

Condition 1 implies that the (negative) curvature of fg(K) must diverge at Kj =
K!(G), which must be compensated by a divergent curvature of fy+(K) in order to make

Af(K) strictly convex in this point. In this case T (H) = T/(G); Eq. (3.53) is saturated.
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Condition 2 does the same, since divergent positive curvature of Af(K) at K}, can
only come from fp+(K).
Condition 3 is equivalent by duality to T).(G) > T (H), which again gives Eq. (3.53)

since we assumed (c). ®

A.8 Proof of the lower bound for tension

On an infinite locally planar transitive graph G, we would like to prove the following bound
for the asymptotic defect tension (3.55),

dr(K)

e = 2Am(K)P, (A.8)

the same inequality as has been previously proved on Z” in Ref. [44]. This inequality is a
trivial consequence of the following Lemma, which gives a version of Eq. (7) from Ref. [44]

suitable to constructing a bound for the defect tension defined by Eq. (3.27).

Lemma A.6 Let G = (V,&) be a finite transitive graph, and G the corresponding vertex-
edge incidence matriz with n = |E| columns. Take a binary vector e € FY selecting a set
of edges E& C E of size |Ee| = wegt(e), and a set of vertices A C V of twice the size,
|A| = 2wgt(e), such that the graph contains edge-disjoint paths connecting each edge to
exactly two vertices in A. Then for the Ising model defined on the same graph, at any
K,h >0, the free energy increment 0e(K) = Fo(G; K, h) — Fo(G; K, h) associated with the

defect e satisfies

Sk (500 3 (S:be (A9)

where the average (Sy)e is calculated in the presence of the defect e; by transitivity (S;)o is

independent of i € V.

Proof. The proof is based on two inequalities,

(SaSB)o £ (5458)e 2 [(S4)0(SB)e £ (Sa)e(SB)ol (A.10)
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where A C V and B C V are sets of vertices. The inequality with the lower (negative) signs
is the Lebowitz comparison inequality[42], while the inequality with the upper signs can be
proved using the same technique. In the case of an Ising model on a graph G = (V, ), we
have

Pell) 5™ 88500 — (-1 (5:5)e].

ij=bes

Applying Eq. (A.10) for each term separately, with the help of transitivity, (S;)o = mgo > 0,

1 €V, one gets

K
Pell) > my 3 it~ (-1, (A1)
b=ije&

where m; = (S;)e. The statement of the Lemma is obtained by noticing that for a path

connecting 1 and f,
miy = ma| 4 |my —my| 4.4 mlpy —my| > mG—m),

which allows to trade wgt(e) terms with + signs in the r.h.s. of Eq. (A.11) for the sum of

magnetizations m,, on the 2 wgt(e) vertices from A. m
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Appendix B
Appendix of Chapter 4

B.1 Proof of Theorem 4.3

Theorem 4.3 The distance distribution of the ensemble of matrices (Definition 4.2) is

given by

. 1 l.o q
lim —Inp’) = —alng+ max {aH Ing+ 60l1n <1 - )}
Jim —np, T a(n)Ing 1"

and the mazimum is at the only solution for n of

<1—;—n> (ln1;n+ln(q—1)> :%

where Hy(z) is the q-ary entropy function,

Hy(z) = xlog, (¢ — 1) — zlog,x — (1 — ) log,(1 — x).

Proof. For any codeword of weight w, because of symmetry we can move all the
non-zero elements to the first w positions, and only consider these w columns in the matrix.
We collect all the vectors that is orthogonal to it. Then we write the generating function
g(z) where each term represents one vector in the set. Thus ¢" (x) will generate all matrices

1.1

of m rows that consist of those vectors. The coefficient of the term z{2} ...z is the number

of matrices that has column weight .
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The number of vectors that is orthogonal to a given vector of full row weight w in
IF, is listed below, the proof is given in Appendix B.5:
weight 1: 0
weight 2: (¢ —1)

weight 3: (¢ —1)% — (¢ —1)

weight u: ((¢ — 1)*~ !+ (=1)%)(1 — %)

The generating function is given by

{Zu}
— 1
= Z (g — D"z 2y - - - 21, —i—z 1 “(ziy Ziy - - - Ziy)
{zu} {zu}
1
fH (q—1)z) +TH(1+(_1)Z”

Raise g(x) to mth power,

1 <~ /m m J
0= 53 (7) (1}(1 - 1>zz->) (<q -nJfo- >>
1 &K (m . » .
=W;(J.)(q—lv]:[(lﬂq—m%)m (-

1 < /m
w2 (3)a v (S o)

where K7"(z) = Y21 (—=1)i(q — 1)} ($) (/=) is the g-ary Kravchuk polynomial.

(2

l

The coefficient of z{z} ... 2! is

m

53 (M) o)

i

The total number of matrices orthogonal to the codeword is

= 2 (Ma- e | ((Ta-v)
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while the total number of matrices is

et = ((T)a-)

Next, we need to estimate pi;oé as n — oo

l,«
o ‘ n,0

RTINS
(X7 () (a = DIET())
((¢=DHT))"

=0 (l _Z)'
l
= @ 0 (el
1 1
—(q—l)lﬁ(m—x—ﬁ )

j=0 ¢— 1
1 <& /m q J lw
~ — 1Y |1-—=

w2 (7)o (- 57)

Substitute with m = an, w = 6n, we find that

1
lim — lnpffé = —alng+ max {qu(n) Ing + 60l 1n <1 — qn)}
nsen refort] g1
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and the maximum is at the only solution for 7 of

(1—1—77)(1111_

q

n 0l
1 —-1)) =—
+ In(q )) "

B.2 Duality of Partition Function (4.18)

Define g-ary discrete Fourier transform (DFT) of f,, a function of a g-ary variable «, to

2mi kp—abB
be fi =Y, 1 wob. fa7 where w = e ¢« . The reverse transform is given by Zﬁ T3 =
%Zﬁw a'g(zj' Wil f;) = %Zj 28 wmetDBf; — %Zj 76(j, ) fj = fa-

Va
For the simplicity of notation, we introduce a reduced partition function Z,, which

is the partition function (4.17) without the constant in the front:

1 1 No
Z: N.— I <K > ZT7
g Lz di N +q—1

Z, = Z szi 5i©@ipmp K S(32; 51O —ep,0)

{si} 0

Take ap, = ), 50, — e, as a variable, and apply the reverse Fourier transform to the

function f,, = ef0(2,0),

—(32;5i9—ep) B

et

{si} ® By
= q /2 Z H Z f;bw(zi 51O (mp—Ps))+evBp
{si} b B
g /2 Z Z H fﬁb i 8iOip(my—Bp))+en By
{si} {B} b
— q—Nb/2 Z Z(H f;b)wzb(zi 5193 (my—Bs))+ebBo
{sit {Bp} b
g Ne/? Z H ) szb 5 5iO9ip(my—Pp))+en By
{Be} b {si}
— q*Nb/2 Z(H fgb)wzb epBp Z sti > 5 (Oip(mp—05))
{Be} b {si} @
= q /2 Z(H fgb)wzb evBp H Zwsi 26 (Oi(my—pp))
{Bv} b i S
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All the terms that have ), ©;,(my — ) # 0 will be zero, so all the non zero terms must
satisfy >, ©u(my — Bp) = 0. We can rewrite 3, = my — Y, 0,0}, where O} is the exact
dual matrix of ©;, which can be found through Smith normal form. So we have

7, = q*Nb/2 Z (H f;b)qNstb ebBp

{Bp=mp—0;0%} b

_ qNs—Nb/2 Z (H fgb)wzb ebBp

{Bp=mp—0:07,} b
For any vector o, if vO* =0, 0©* = (o + v)©O*. The total number of vectors v such that
vO* =01is ¢Vs " H d;, where d; are the non-zero invariants of the Smith normal form

i=1 "

of ©* and r* is the number of them.

Z, = <qNs *—N*-H“ H ) ZHfmb .0 Wweb(mp=>2,0i0%,)
=1 z

{ci} b
[ N BN .0
) (q Cm 1d?> EEEEDI) | EAT e
{o:} b
Next we evaluate fj explicitly. Given that f, = efo(@0) — (K — 1)§(a,0) + 1
=L B K(a0)

a=0 \/a
= H'EK, when =0
Kq , when 8 # 0

L 15(5,0) + 1}

HE

\/(j
:< v ) e *—1)5(5,0)“]

In the last equality we define K*, the dual of K, by the equation e —1 = eK%’fl. So the

self-dual temperature is at Kyq = In(1 + /).
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Apply the duality transform to the full partition function,

1 1 No
R N -
gV iy di \eX +q—1

1 1 No
TN ds <6K+q— 1>

No— Db s 1 e —1 (o 2b €6 i 0O ep K" 5(mp—0:07,,0)
qg > 2 ® H d* \/a ’ ZHW O3 o

i=1" {o:} b

_ * N, N,
" Hz 1 z (eK +aq- 1) b qNs_%_N;“FT* 1 (eK _ 1> b WZbebme*
NS THi:l i \ef+g-1 Hz 14} Vi

T (eK +q—1> b(eK—1> e

H;:l di EK +q— 1 \/a
where Z* is the partition function of the dual model, defined as
1 *
7% = w2 Si @mebeK 332, 5107, —e;,0)
gV (T, d) (X" + g = 1) ;H

Apply the following identities:

K
K* q qe
1= _
e +gq K_l—i—q oK —1
K*
K qe
1=
¢ ta ek —1
Vi = /(K — 1)K — 1)
qNb_ q qr*
Hl 1d Hz 1 z
One can see that
T r* K K*
7 = () () (M (Y VT e g,
[Timdi” "TIZ, d; e —1 e

so the duality reads

T odi1 VeK —1 df 1 VeK -1 .
My VR0 0, 10) = (Tt YTy, 10
(B.1)
where m* =e, e* = —m, K* =In(1 + % 1) and ©* is the exact dual of ©
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B.3 Proof of Correlation Function Equality (4.38) and In-

equality (4.39)

The correlation function is defined as

m | Zem (G B) | Zeam (G, B)
[Qtot(euB)] = Ze,()(é*;ﬂ) o ; (P(e) Ze’O(G*HB) )
where N
b BpJ6(ep,0)
_ P \6(ei,0) 1 \1—6(ei0) _ €
Pl =G0 -p) —lgleﬁmq_1

B3 0sOsp—ep,0)

Ze,m(e),ﬁ) ]\[S THZ_ ZHW O.S 6T 66J+q—1

o

Define the gauge transformation (G.T.) of a partition function on a graph with an incidence

matrix © to be:

=Y f(0O,e) arT. q}1Vs YN fe+ )0, e+ ad) o~ Zze+a@ (B.2)

(o7 o

Here we introduced an extra set of spins « that runs through all possible combinations of
length N, g-ary vectors, just like o. For each term inside the summation, the transformation
goes as 05 — 05+ as and e — e + a©. Notice the identity > f((0 + )0, e + aB®) =
Y o f(0O, e+ a0), since for any a, o + a runs through all vectors just like o alone, thus
we have the equality after the gauge transformation.

For a function of a summation of partition functions over e, the gauge transfor-

mation is

S RZeO) S F(ZesasO) = 1y 3 P (0 )0, e4a0) (B

Notice that for any «, as e runs through all possible vectors, e + a® runs through all
possible vectors as well, and the summation of o gives a factor of ¢, and the equality

follows.
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Proof of Eq. (4.38). Apply the gauge transformation to the correlation functions:

[Qiv: (e, B)] = & qN Z (ZP e+ aG*w DI IRAEN bmbem(G*’B)>

(G*, B)
sk * em(G*wB)
= “n* N - —em G ) Y AL AN
N;z( Hdz (6o (W))
I d Zem(G*, B)Z—e.m(G*, Bp)
— qr* g < Ze,O(G*uB) >

[Qg'%(ev B)Qt_o;n(ev ﬁp)] =

z&m(g?*, 8) Ze.-m (G, ﬁp>]
e0(G*,B)  Zeo(G*, )

7/8) e, m(é*wgp)
_Z< (G*,B) Zeo@*,ﬁp) )
G.T. (e + aG* (~ ,B) Ze,m(é*aﬁp)
T Z<ZP N Ze,o<é*,ﬁp>>

:Né‘z< Ne—r Hd*Z—eO(G*,IBp) em( *,B) 6,—m(~é*7ﬂp)>

i1 Zeo(G*,B)  Zeo(G*, By)
_ Hz 1d;k Z Z—e,O(Né*va) Ze,m(G*wB) Ne,—m( ,51?)
0" N\ Zeo(GY,Bp) (G*,8)

We can see that Ze,m(é'*,ﬂ) is unchanged under ¢ - —0,e - —e,Mm — —M, SO

we have Ze m(G*, ) = Z_e—m(G*, B). The equality [Q (e, B)] = [Q1% (e, B)Q;7 (e, 5p)]

follows. m
Proof of Eq. (4.39). Another identity [f(e)] = > (P(e)f(e)) = > (P(—e)f(—e)) =

. (P(e)f(—e)) = [f(—e)] shows that [QI (e, )] = [y (—e, )] = [ (e, B))- And we
also have Ze _m (0, 8) = Zem(0, B), where [ is the complex conjugate of f. Now we define
A= Qr(e.8), B = Qi(e,fy), we see that [4] = [4] = [AB] = [4B], [B] = [B) = [BB),
so they must be real.

For any real number ¢, the following inequality holds:
[(A+tB)(A+tB)] >0

so that

[AA] + [AB]t + [AB]t + [BBJt* > 0
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[AA] + 2[AB]t + [BB]t* > 0

which implies

thus

And the inequality [QI% (e, 3)]* < [QM (e, 3,)] follows. m

B.4 Proof of Theorem 4.7

Theorem 4.7 Any sequence of g-ary CSS codes whose distances scale with n at least log-
arithmically (d > Dlnn, D > 0) with generator weights not exceeding my, my can be
decoded with vanishing error probabilities if channel probabilities (px,pz) for independent
X/Z errors satisfy

(mx —1)Yess(pz) < e /P

(4.6)
(mz —1)Yess(px) < e /P

where Toss(v) = (VITD +v/ola - 1))2 Y

Proof. This is a generalization of Theorem 2 in [98] for g-ary code.
For any random qudit error e and a codeword ¢, the probability distribution of an

element in the error is:
Pe(e;=0)=1—-p
Pelei=c) =
Pe(e; #0,¢; # ¢;) = Z%?P
for any 1 <17 < n.

Denote the weight of the codeword to be w. For any error e, denote the number of

error positions corresponding to the second and third cases above to be a and b, respectively.
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To successfully decode by minimum energy decoding, it is required that P.(e) < P.(e + ¢)

for any ¢, where P.(e) and P.(e + ¢) are given by

Pele) = (1=p)" (29" <p)b

and

respectively. The ratio

Pc(e) B D 2a+b—w
Pele+c) ((q -1 —p)>

must be less than 1 for successful decoding.
Consider p < 1 — %, the decoding will fail whenever a + % > 9. Summing the

probability over all errors that would result in decoding failure for any codeword:

113



Pc,fail = Z Pc(e)

{e|a+%>%}

A
o
&

=
)
+
1)

{elany a,b}
=Y i )w_b (q - 2p)b
{elany a,b} ¢-1 ¢-1

Thus the probability of decoding failure is upper bounded:

0
Pfail < Z Pc,fail = Z Nch,fail
c w=d

where N,, is the number of irreducible codewords with weight w. We only need to consider
irreducible codewords because for a reducible codeword ¢ = ¢; + ¢ where ¢; and ¢y have
non-overlapping supports, any error that would result in decoding failure for ¢’ will also
result in failure for ¢; or c¢o, so we can exclude reducible codewords in the summation so
that we don’t count the same errors multiple times.

Next, we bound the number of irreducible codewords with weight w for a LDPC

code of row weight m: Ny, (m) < (¢—1)n((g—1)(m—1))*~1. The logic goes as the following:
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Suppose we want to construct an irreducible codeword. Starting from a zero vector,
first we assign a non-zero value to any position, there are (¢ —1)n choices. Then, some rows
in the generator matrix are not satisfied. The finished codeword must be orthogonal to all
the rows in the generator, so it must have at least one other non-zero element in the support
of any of the unsatisfied rows. We need to assign another non-zero value to a position in
the support of an unsatisfied row. There are m — 1 positions to choose from. The weight

w—1

of the codeword is w, so there are at most (¢ — 1)n((g — 1)(m — 1)) choices.

Thus the upper bound of the failure probability is:

Pfailgu:)dwﬁl<(q_1)(m_l) (1—< L - \/Zy))w
d

o (-0 (=5 via=1) 1))
ey (v Vi) 1)

m

For a code of which distance increases as lim,,— o % = D, the probability of

decoding failure converges to 0 if

(m—1) <(\/1—p—|—\/p(q—1))2—1> <UD (B.4)

In the case where lim, % = oo as in toric code or hypergraph-product code, the

condition is simply

(m—1) ((\/1—p+ \/p(q—l))2—1> <1

B.5 Proof of Theorem 4.6

Theorem 4.6 A codeword of weight dn in any q-ary (I, m)-limited quantum or classical

LDPC code can be found with complexity 2™, where

F = 0logy(ym(m — 1)),
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Ym € (1,700) grows monotonically with m and is upper bounded as the following:

If all entries of the parity check matrix are coprime with q, v s upper bounded by
q—2 1

(m—1((g =71 ~1) g71 -1

Ym < min

(4.5)

More generally, with some entries in the parity check matriz that are not coprime with q,

Ym %S upper bounded by

Tm < q-2 1 .
(m—1)((3~ H)=1 1)

Here we improve the upper bound on the complexity coefficient ~,, of distance

verification algorithm in the coprime case (explained below) by finding a better estimation
on Ny(q,b), defined in Section V of [93]. A different upper bound was found for codes in

general case.

B.5.1 Coprime case

Consider a vector b of which all elements are coprime with ¢g. Let N,(¢q) denote the number

of g-ary vectors c of length v that satisfy the restrictions
c-b=a

VIC{L,2,...,0}, ) cbi #0
el
where a is an arbitrary number in Z,;. The second inequality is the irreducible property,

which can only be satisfied for v < ¢ — 1.

We prove the following upper bound

(g —2)!
(¢g—v—1)!

Proof. If v = 1, Ny(q) is just 1. For any other v, the first element has ¢ — 2 choices, not 0

No(a) <(q—=2)(g—3)...(¢—v) = (B.5)

or a. And every time another element is selected, it will remove at least one possible value
from which the next element can be chosen.
Consider this sequence of summations: c¢1b1, c1b1+coba, c1b1+cobo+csbs, ..., c1b1+

-+ cyby. If any two of them are equal, the vector is reducible. So every time a new element
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is added, the list of summation of all combinations of subsets of the elements will increase
by at least one, which means the choices for the value of the next element will decrease by
at least one. And after the first v — 1 elements are determined, the last element doesn’t
have a choice, so the product has v — 1 terms. This gives the upper bound of N,(gq) above.
|

Next, we follow the proof in [93] except that we replace the upper bound on N, (q)
with the one given above. We look for the root of the polynomial of variable z,

S (")) =

v=1

and find better upper bounds on v, = 1/((m — 1)z).

Proof of the inequality 7, < —
gi—T-1

Ny(q) =0 for v > g — 1. As m — oo the equation becomes

q-1 v
> v 21

v=1
replace (m — 1)z with 'y%.o’
q—1
N, 1
v('Q) (7)v > 1
v=1 v oo

700217

gt —1
And since v, < Yoo, this also upper bounds v,,. =
q—2
T .
(m=1)((g—1)™-1-1)
The bound (B.5) can only be applied on v, and for =, there is no simple expres-

Proof of the inequality v, <

sion for the solution. So instead we may use a different bound for NV, (g), since from (B.5)

we can easily see that N,(q) < (¢ —2)""L.
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Then we can upper bound ~,, as the following:

S (") =

v=1
m—1 m—1
> -2t (") 2
v=1 v
1 m—1
q_—Q((l—i—(q—2)z) —-1)>1
1)mt —1
— m—1 —
L la—1)
> -
Replacing with z = m gives
-2
7m S q 1

(m—=1)((g—1)=1 = 1)

By combining the two upper bounds above, we proved that

Ym < min 1 )

for ¢ > 3. (In the case ¢ = 2, v, = 1.)

B.5.2 General case

If the non-zero elements of the rows of the stabilizer generator matrix are not necessarily
coprime with ¢, the bound (B.5) is no longer valid.

)=t Assume q = 6,

Counterezample: Consider the trivial upper bound N,(q) < (¢ — 1
v = 2, the check is (3,2), so we look for irreducible solutions of 3z; + 2z = 1, where
3z1 # 0 and 2x9 # 0. Solutions are {(z1,x2)|r; € {1,3,5} and z2 € {2,5}}. The number
of solutions N =6 > 5.

On the other hand, there is no solution for 3z 4+ 2z9 = a, with a € {2,3,4}. On

average, the number of solutions is 12/5, so there might be a way to use such a bound.

Unfortunately, so far we are not aware of the corresponding argument.
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That being said, a larger upper bound can still be found:

q—2
(m=-1)(3 -7 - 1)

Ym <

Proof. First we find an upper bound on N,(q) to be 4(q —2)*~*. For any x; that is not
coprime with ¢, the number of solutions of ¢;z; = 0 (mod ¢) for ¢; equals ged(z;, ¢), which
is at least two since z; and ¢ are not coprime. Thus, the requirement c¢;z; # 0 (mod q)
upper-bounds the number of choices for ¢; by ¢ — ged(x;,q) < ¢ — 2. And the solution
for the last number is at most %, which is the largest possible value of ged(z,,q) for any

2<z,<qg—1.

Applying this upper bound on z:

v=1
_é ml—l_l

Replacing with z = m gives the upper bound on 7,,. m

B.6 Proof of Theorem 4.8 and Theorem 4.9

Theorem 4.8 Consider a sequence of quantum CSS codes Q(Gy, Hy), t € N, of increasing
lengths n;, where row weights of each Gy and H; do not exceed a fixred m, and the code
distances dy > Dlnng, with some D > 0. Then the sequence AF; = [AFe(Gy, Hy; K))p,

t € N, converges to zero in the region
(m=1) ((1=p)(g— Ve ™ +pe" +(g—2)p) <e /P (4.15)

Theorem 4.9 Consider a sequence of pairs of weakly dual Potts models defined by pairs of
finite q-ary matrices with mutually orthogonal rows, G H} = 0, t € N, where row weights of

each Hy do not exceed a fired m. In addition, assume that the sequence of the CSS distances
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dg, is increasing. Then the sequence Afy = [Afe(Gy, Hy; K)lp, t € N, converges to zero in

the region

(m—1) (1 —p)(g— e ™ +peX + (¢ — 2)p) < 1. (4.16)

The proofs are similar, and follow the line of argument in the proof of Theorem 3.1.

Proof. Consider a g-ary quantum C'SS LDPC code with generator matrix G for X or Z

errors. The following upper bound on the ratio r(K,e) = ZZt;t((e';) =1 =2 w0 gg—gg are

proved for any fixed error e.

For any € = ¢+ P, consider an irreducible vector decomposition: € = &1 +eo+...,
where the support of g; don’t overlap, and they each satisfies the parity check GsiT = 0.
Take the sum of non-trivial codewords to be &’ 2 0 and the sum of trivial ones to be €” ~ 0,
we write € = €’ + €” where the support of €’ and €” don’t overlap. So the ratio r(K, e) can

be written as

Zsot (e)
Zo(e)

. Z E&.//NO e'Ne’’ =0 &

e—Kwgt(e+e”)

r(K,e) = -1

—Kwgt(e+e'+e")

e” 0

—Kwgt(e+e'+e’)

§ : Ze”NO e'ne’=0 €

Ze”~0 :e’Ne’’ =0

e~ Kwgt(e+e”)

where in the last equation, the summation in the denominator is restricted to vectors €” ~ 0
that don’t overlap with &’.

For each &', we can also decompose e = €'(¢) + e’ (¢’) + €’ (¢’). Here the support
of € is in the support of &’ and their corresponding elements add up to 0 (mod g), the
support of € is also in the support of & but their corresponding elements add up to
some non-zero value, which doesn’t change the weight. The support of e’ is the part
of the support of €' that doesn’t overlap with €. So the weight can be decomposed as:
wet(e! + e’ +e" +e +€") =wgt(e +€') +wgt(e” +€”), and wgt(e' + e’ +e" +€") =

wgt(e + €”) + wgt(e” 4+ €”). Thus the inequality becomes
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—ngt(e’+e”+e”’+e’+e”)

T(K, 6) < Z Ee”:D:e’ﬂe”:(D €
€/

— ! " " 17
zy’zO:e’ﬂe”:Q)e Kwgt(e'+e''+e'""+¢€')

—Kwgt(e'+&’
€ il : Ze”z():e’ﬁe”:@ €
e—Kwgt(e'+e'") E 0 e—Kwgt(e’+e')

—Kwgt(e'"+€")

el e’ ~0:e'Ne’
efKWgt(e’Jre’)

frn ; 467ngt(e/+e/”)

_ Z e—ngt(s’)+2ngt(e’)+ngt(e”’)

E’
-y s oo (—Kwat(ej,)+2K wat(e], )+ Kwgt(e]))

1>1 1<j1<jo<..j1<t
t
— . / "
=1+ H (1 +e ngt(c])+2ngt(ej)+ngt(ej ))

Jj=1
t
=—1+exp Z In <1 + eiKWgt(Cj)+2ngt(e;)+[(wgt(e;ﬁ)>
i=1
t
< —1l+exp Z o~ Kwet(c))+2Kwet(e]) +Kwgt(e])
j=1
where we have decomposed every €’ into t irreducible codewords e, e, ..., ¢, j; are the

indices in the list of irreducible codewords, and e; are the restriction of e to the support of
c¢j. The last inequality used the trivial inequality In(1 + z) < « for any > —1.
Denote error averaging with square brackets [f(e)] = >, P(e)f(e), the successful

decoding probability

ZO(e) :| |: 1 :| ! —Kwet(c.)+2K N+ K 1
P = = > lexp | — e gt(cj)+2Kwgt(e))+Kwgt(e]’)
e [Ztot(e) L+7r(K,e) P ;

>exp | — Z [eingt(Cj%FQngt(e;.)+ngt(e;_//)i|
j=1
: wgt(c;)
- p q—2
- _Z <(1_p)€ K+q—1eK+q—1p>
j=1

where we have used the convexity of the exponential function in the last inequality.
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Applying the upper bound on the number of irreducible codewords from Ap-
pendix B.4, we find

IP)succ 2 exXp ( q - 1 Z p)(q - ]-)eiK +p6K + (q - 2)p))w)

= eep [ g - 1 {0 = DO =)o = De 4 pe 4 (- 2)p)"
p | —nlq (m D) ((1—p)(qg—1e & +pek + (¢ — 2)p)

H

For a code of which distance increases as lim,,— o o ( y = = D, the probability of

decoding failure converges to 0 if

(m—1)((1=p)(g—1)e ™ +pef + (¢ —2)p) < e /P

In the case where lim,, % = 0o which is true in toric code or hypergraph-product

code, the condition is simply

(m—=1)((1=p)(g—De X +pe” +(¢—2)p) <1
The inverse temperature that maximizes Pgyc. is when

Ko jA=pla—1)
p

which is half of the inverse Nishimori temperature K, = In ((1—;;)}#) And the lower

bound on the error rate threshold at this temperature becomes

-1) ((\/1—p+\/p(q—1)>2—1> <e P

The free energy density homological difference, Af = L(In Zyo(e) — In Zg(e)), is

given by

Ztot(e) o i
Zo(e) ) - (q

) ((m—=1) ((1 = p)(g — Ve ™ +peX + (g —2)p))*

af =gl =m0 - p)(a—DeF +pek + (g 2)p)

which converges to 0 if

(m—=1) (1 =p)(a—1)e X +pef +(¢—2)p) < 1.

122



B.7 Proof of Theorem 4.4 and discussion on the upper bounds

for code distance

Theorem 4.4 Given that the distances of the codes Cﬁl and C’ﬁQ are di and dy respectively
and the corresponding codes with transposed matrices are di and do respectively, the lower

bound of the distance d of the code C is d > min(dy,ds) and d > min(dy, dy).

B.7.1 Code dimension

Given the generator matrices G, = (I® Ho, Hy®1) and G, = (H{ ® I, —I® HI) of a CSS
code C, write H; and Hy in Smith normal form: Hy; = V1P Uy, Hy = Vo PyUs, where V; and
U, are reversible matrices with determinant +1 and P} and P» are diagonal matrices with
diagonal elements {a;} and {b;}.

Let N, be the number of different vectors v = G, and N, be that of aG,, where
« is an arbitrary vector in Z,. First we find out N,

T1T2

q

N, =
{o : oG, = 0}

where 71, 72 are the ranks of H; and Hs, respectively. To calculate the number of solutions,

we can expand the product
0=0G,
=o(1 @ VaPyUs, V1 PU; ® I7)
=o(V1 @ W)L ®@P) (V' @Us),(PL® L) (U1 ® Vy )]
To simplify the symbols, let & = o (V1 ® V3). Then we may write
&(I, & Py) =0
o(PL®)=0
so that
{&}| =(1{1 : 51b1 = 0 and 1a1 = 0}])(|{&2 : Gaby = 0 and Goa; = 0}])

(’{6’3 :03b3 = 0 and 6301 = 0}’) ces
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Since (61b; = 0 and 1a; = 0) is equivalent to 61ged(a1, b1) = 0, we may rewrite

the number of solutions as:

o} = TI ecdlaby)- T ap=tze T oyt geetoeeta

1<i<t 1<i<t; 1<j<ts
155t

And we find the number
qt17‘2+t2r1*t1t2

D12D71"2—t2 Dgl —t1

T

where t; and ty are the ranks of P; and P, respectively, D1 = [], a;, D2 = Hj b; and
Dy =11, ; ged(ai, bj).

Similarly,
qtl na+toni —tits

= no—to Myni1—t1
D12 D> 2D

z

Thus the total number of codewords is

n
K=
N, N,

_ n+2tita—t1(ra+n2)—ta(ri+n1) N2 pyre+ne—2te pyri+ni1—2t
=q ( )=t Di,Dy D,

where n = nyrg + nary.
Let the number of solutions for Hic = 0 be K; = ¢™* " D; and the number
of solutions for Hoc = 0 be Ko = ¢™ 2Dy, and those for HlT and HQT be K1 and K
respectively.
To simplify the notations, let us define
k =log, K
k1 = logq Ki=ni—t+ logq Dy
ko = logq Ko =ng —tg + logq Do
/2:1 = logq 161 =ry—t+ logq Dy
12:2 = logq 162 =19 —to + logq Do
where we simply define k to be the logarithm of the number of codewords in base ¢, which

is not necessarily an integer. It is easy to see that
k = kika + kaky — 2log, D1 log, Dy + 2log, D1»
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B.7.2 Bounds on code distance

We find the lower bound of the distance as in the following statement:

Theorem B.1 Given that the distance of Hy and Hs is di and do respectively and the
distance of H{ and H is dy and dy respectively, the lower bound of the distance d of the

code C is d > min(dy,ds) and d > min(czl, CZQ)
Lemma B.2 If Ky =Ky =1, then K =1.

Proof of Lemma: Denote the invariants of the Smith normal form of H; and Hs by {a;}
and {b;} respectively, D1 = [[, a;, D2 = Hj bj and Dip = H” ged(ai, by). I IC =Ko =1,
Dy and Dy must be 1, so that a; = 1 and b; = 1 are true for all 4, j, so Di2 = 1, which
implies I = 1.

Proof. To prove the lower bound, suppose there is a vector v that satisfies Ggv? = 0 and
wt(v) < min(dy, d2) and we prove that it can be written as a linear combination of rows of
G, v =alG,.

In vector v, the non-zero elements multiply certain columns in G, and these
columns correspond to certain columns in H; and Hy. Now drop those columns in H; and
H, that don’t correspond to any non-zero element of v, and define the resulting matrices
to be H{ and H}, and the number of columns to be n) and nj. And also drop the elements
of v that correspond to the dropped columns in G, = (I ® Hj, H ® I), which results in a
shorter vector v'.

The number of columns of Hj is n] < di, which is the distance of Hi, so it must
be a full rank matrix with all diagonal elements to be 1 in Smith normal form, otherwise we
can find a vector ¢, with wt(¢}) < n/ that satisfies H]¢,” = 0, and by putting zeros in ¢}
we find an codeword of H; with weight less than d;, resulting in a contradiction. Similarly,
HY, must also be a full rank matrix with all diagonal elements to be 1.

From the lemma above, we can see that the QHP code based on matrices G.,, G,

contains only the trivial vector 0, so K’ = 1. Thus, the matrix G, = (H,” @ I, —I @ H}")
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also has dimension 1, which means that v’ can be written as linear combinations of rows of
G since GLv'" = 0 and G,G.T = 0. By expanding v’ back to length n, where we fill the
columns that was dropped when we created v’ from v with zeros, we recover v and show
that it can be written as linear combinations of rows of G, which completes the proof.

In the above we proved d > min(d;,ds). The second inequality, d > min(Jl, Jg),
is proved in a similar way. =

Let us now discuss the upper bounds on the distance. In the binary case, the
upper bound reads d < min(d,ds) if we set the distance of an empty code equal infinity.
However, the method to prove the upper bound of the distance of the code in the binary
case: “d < dy when kg # 0, and d < do when ki # 0; similarly d < czl when ]~€2 # 0, and
d < dy when k; # 07, is no longer valid in Z; when ¢ is composite, as shown in the following
argument:

In the case k1 # 0, to prove d < dy, we need to find an error e with wt(e) = da,
where Gpel = 0 and e can’t be written as any linear combination of rows of G,.

Take all the vectors {e} that can be written as e = (8 ® ¢},0) where 3 goes
through all the vectors that has an element 1 and other elements 0, co goes through all the
vectors that satisfies Hoco = 0 and wt(ez) = da. Suppose any e can be written as aG,.

Expand a in the basis a1 ® as:

Becy =3, aij(an © ag;)(H @ 1)
0=23", ;i ® agy) (I @ Hy)
which leads to
Becl = D aijo HE @ aua;
0=37;; aijo; Hy
In the case ¢ is prime, all a;; can be taken as 1, and as B goes through all the
vectors that has one position to be 1 and all the rest 0, we see that any vector that can be
written as linear combinations of rows of H{ and H{ must be full rank, which implies that
k1 must be 0. However in Z,, it is possible that the elements of ¢l have a common factor

which may also appear in «;; or H 1T , which causes this method to be inapplicable.
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Although the bounds on the code parameters defined on Z, are much more compli-
cated for general ¢, numeric evidence shows that a large random sparse matrix most likely
has its Smith normal form invariants all being 1, which simplifies the situation so that it is

similar to the algebra defined on fields, and the bounds are valid again.
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