
J
H
E
P
1
0
(
2
0
2
2
)
1
9
3

Published for SISSA by Springer

Received: April 5, 2022
Revised: September 13, 2022
Accepted: October 19, 2022
Published: October 31, 2022

Celestial holography meets twisted holography:
4d amplitudes from chiral correlators

Kevin Costelloa and Natalie M. Paquetteb
aPerimeter Institute for Theoretical Physics,
Waterloo, ON, Canada

bDepartment of Physics, University of Washington,
Seattle, U.S.A.

E-mail: kcostello@perimeterinstitute.ca, npaquett@uw.edu

Abstract: We propose a new program for computing a certain integrand of scattering
amplitudes of four-dimensional gauge theories which we call the form factor integrand,
starting from 6d holomorphic theories on twistor space. We show that the form factor
integrands can be expressed as sums of products of 1.) correlators of a 2d chiral algebra,
related to the algebra of asymptotic symmetries uncovered recently in the celestial holography
program, and 2.) OPE coefficients of a 4d non-unitary CFT. We prove that conformal blocks
of the chiral algebras are in one-to-one correspondence with local operators in 4d. We use
this bijection to recover the Parke-Taylor formula, the CSW formula, and certain one-loop
scattering amplitudes. Along the way, we explain and derive various aspects of celestial
holography, incorporating techniques from the twisted holography program such as Koszul
duality. This perspective allows us to easily and efficiently recover the infinite-dimensional
chiral algebras of asymptotic symmetries recently extracted from scattering amplitudes of
massless gluons and gravitons in the celestial basis. We also compute some simple one-loop
corrections to the chiral algebras and derive the three-dimensional bulk theories for which
these 2d algebras furnish an algebra of boundary local operators.

Keywords: Anomalies in Field and String Theories, Conformal and W Symmetry, Scat-
tering Amplitudes

ArXiv ePrint: 2201.02595

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP10(2022)193

mailto:kcostello@perimeterinstitute.ca
mailto:npaquett@uw.edu
https://arxiv.org/abs/2201.02595
https://doi.org/10.1007/JHEP10(2022)193


J
H
E
P
1
0
(
2
0
2
2
)
1
9
3

Contents

1 Introduction 1
1.1 The 4d CFT 2
1.2 The chiral algebra 3
1.3 Formula for form factors 4
1.4 The Parke-Taylor formula 6
1.5 Cachazo-Svrcek-Witten formula 7
1.6 One loop amplitudes 8
1.7 WZW correlators as scattering amplitudes in the presence of an axion 11
1.8 Connections to celestial holography 12
1.9 Outline 14

2 Recollections on the twistor correspondence 15
2.1 The free scalar field theory 15
2.2 Self-dual Yang-Mills theory 16
2.3 The non-linear graviton construction 17

3 Anomalies on twistor space 18

4 Celestial symmetry algebras are gauge transformations on twistor space 20
4.1 Chiral algebra for gauge theory 20
4.2 Gravitational celestial symmetries 22
4.3 Including the axion 24

5 States from the point of view of twistor space 26
5.1 Preliminaries 27
5.2 States on twistor space 27
5.3 States of positive conformal dimension 28

6 Celestial chiral algebras as boundary algebras 30
6.1 Description of the bulk theory 31
6.2 Including Kaluza-Klein modes 32
6.3 KK reduction of the non-linear graviton construction 34
6.4 The boundary algebra for KK modes 36
6.5 Gravitational theory 37

7 The chiral algebra by Koszul duality 37
7.1 States and generators of the Koszul dual algebra 40
7.2 The axion from Koszul duality 40
7.3 Quantum corrections to the Koszul dual algebra 43

– i –



J
H
E
P
1
0
(
2
0
2
2
)
1
9
3

8 Conformal blocks and local operators 44
8.1 Defining conformal blocks axiomatically 46
8.2 Explicitly matching conformal blocks with local operators 46
8.3 Conformal blocks as Lie algebra cohomology 48
8.4 Conformal blocks from a Čech picture 49
8.5 Conformal blocks after quantizing and factorization algebras 51
8.6 Form factors and correlators 52

9 Correlation functions for the operator B2 and the Parke-Taylor formula 54

10 CSW rules 56

11 One-loop amplitudes by axion exchange 58
11.1 Calculating the conformal block associated to 4ρ 61

12 Tree-level scattering amplitudes in the presence of an axion 61

13 Discussion & conclusions 63

1 Introduction

A great deal of progress has been made in recent years on the structure of scattering
amplitudes for supersymmetric gauge theory on flat space. In one direction, inspired by
twistor string theory [1], exact loop-level results have been obtained for the integrand of
N = 4 Yang-Mills scattering amplitudes.

In a different direction, there has been a surge of recent work on the asymptotic
symmetries of scattering amplitudes in flat space (see e.g. [2]). Perhaps the greatest success
in this direction has been the realization [3–5] that there are beautiful chiral algebras
and infinite-dimensional Lie algebras emerging from the study of conformally-soft gluons
and gravitons.

These developments are not completely unrelated, although the precise connection has
been somewhat mysterious. A starting point for Witten’s twistor-string theory work was
Nair’s observation [6], relating tree-level amplitudes for N = 4 gauge theory to correlators of
a super Kac-Moody algebra, which appears to be related to the chiral algebras of celestial
holography. However, Nair’s algebra has a non-zero Kac-Moody level, unlike the Kac-Moody
algebras found in celestial holography. Further, Nair’s identity only holds after discarding
multi-trace terms in the Kac-Moody correlators.

In this work, we provide a general method for understanding form factors of certain
non-supersymmetric gauge theories as correlators of chiral algebras of the type studied
in [3]; such form factors are, in turn, related to certain scattering amplitudes in QCD. Our
main result is a formula for a certain integrand, which we dub the form factor integrand,
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that computes scattering amplitudes in the presence of a local operator insertion (i.e. a
form factor), as a sum of products of two quantities:

1. Correlators of a chiral algebra closely related to that appearing from the study of soft
gluons [3], and in particular containing a level 0 Kac-Moody algebra;

2. OPE coefficients of a four-dimensional non-unitary CFT.

We explicitly check our formulae against known results for certain tree-level and one-loop
amplitudes.

Both quantities in our formula are very tightly constrained by associativity or crossing
symmetry, in dimensions 2 and 4 respectively. This suggests that one can use this method
to bootstrap the integrand for scattering amplitudes at loop level.

1.1 The 4d CFT

The starting point for our analysis is a class of 4d CFTs considered in [7]. These are theories
that come from local holomorphic field theories on twistor space. At the classical level,
any self-dual gauge theory can be described in this way. For non-supersymmetric theories,
this can be spoiled at the quantum level by anomalies [7]. Fortunately, in many cases, the
anomaly can be cancelled by an unusual Green-Schwarz mechanism which requires the
introduction of an axion field.

This cancellation works with gauge group SU(2), SU(3), SO(8) or an exceptional group.
In these cases the Lagrangian is∫

tr(BF (A)−)− 1
2

∫
(∆ρ)2 −

√
10h∨

8π
√

3
√

dim g + 2

∫
ρ tr(F (A)2), (1.1)

where h∨ is the dual Coxeter number. (The constants come from the coefficients of a trace
identity, and the coefficients of a Feynman diagram on twistor space).

In this expression, ρ is a scalar field and B is an adjoint-valued ASD1 2-form. (One
can also take the gauge group to be SU(2), SO(8) or an exceptional group. If we introduce
matter, we could take SU(Nc) with Nf = Nc. In each case the axion coupling needs to be
tuned to cancel the anomaly).

The fact that the theory arises from an anomaly free theory on twistor space implies
that all correlation functions, and OPE coefficients, are rational functions.

We are interested in deforming this theory by g2
YM tr(B2). As is well known, once we

add tr(B2) to the Lagrangian we get a theory that is perturbatively equivalent to ordinary
Yang-Mills theory, plus an axion field. Thus, one can compute quantities in ordinary
Yang-Mills theory at order 2n in the coupling constant gYM by placing the operators tr(B2)
at points x1, . . . , xn ∈ R4 and then integrating over their position.

The quantity of interest in this paper is what we shall refer to as the form factor
integrand: the scattering amplitudes of the gauge theory in the presence of the operator

1Here we use the opposite conventions to those in [7] in order to match the “mostly +” conventions of
the scattering amplitudes literature.
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Generator Spin Weight SU(2)+ representation Field Dimension
J [m,n], m,n ≥ 0 1− (m+ n)/2 (m− n)/2 (m+ n)/2 A −m− n
J̃ [m,n], m,n ≥ 0 −1− (m+ n)/2 (m− n)/2 (m+ n)/2 B −m− n− 2
E[m,n], m+ n > 0 −(m+ n)/2 (m− n)/2 (m+ n)/2 ρ −m− n
F [m,n], m,n ≥ 0 −(m+ n)/2 (m− n)/2 (m+ n)/2 ρ −m− n− 2

Table 1. The generators of our 2d chiral algebra and their quantum numbers. Dimension refers to
the charge under scaling of R4.

tr(B2) at points x1, . . . , xn. The name is chosen to emphasize that amplitude is computed
in the presence of an operator.2

We should emphasize that the form-factor integrand is not the same as what other
authors call the integrand, although it is related. Our form-factor integrand is closely
related to natural quantities appearing in twistor-string theory [1], where amplitudes are
expressed as integrals over spaces of curves in twistor space. The connection is given by
noting that each point xi ∈ R4 gives rise to a curve CP1

xi in twistor space.
As mentioned, we will present a formula for the form factor integrand which is a sum

of products of the OPE coefficients of this CFT, together with the correlation functions of
a chiral algebra that we will now discuss.

1.2 The chiral algebra

The chiral algebra we use is very closely related to that studied in the celestial holography
literature [3]. Here we will write down the generators of the chiral algebra and their OPEs
explicitly. They are derived in the bulk of the paper by starting with the twistor space
description of the theory and using the method of Koszul duality [11, 12]. We work in
Euclidean signature here, although since our integrand is an entire analytic function, we
can readily move to other signatures. We write Spin(4) as SU(2)+ × SU(2)−. The chiral
algebra lives on a CP1 with coordinate z, which is rotated by SU(2)−.

The chiral algebra has four towers of states, each living in an infinite sum of finite-
dimensional representation of SU(2)+. A state in the chiral algebra has a spin, in the usual
sense of chiral algebras; a weight under the Cartan of SU(2)+; and also a lives in a SU(2)+
representation of some heighest weight. The generators, and the 4d fields to which they
couple (as described in more detail in the main text and below), are listed in table 1.

At tree level, the OPEs for the J , J̃ currents are

Ja[r, s](0)Jb[t, u](z) ∼ 1
z
fabc J

c[r + t, s+ u](0)

Ja[r, s](0)J̃b[t, u](z) ∼ 1
z
fabc J̃

c[r + t, s+ u](0)
(1.2)

This OPE is subject to loop corrections. The method of Koszul duality gives a well-defined
prescription for computing these, but we have not yet fully analyzed all loop corrections.

2There is a large literature on the computation of form factors, especially in N = 4 SYM; see e.g. [8, 9]
for some loop-level results and [10] for a review with further references.
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At one loop we do know there is an additional term in the OPE

Ja[1, 0](0)Jb[0, 1](z) ∼ C

z
Kfef caef

d
bf (J̃c[0, 0]Jd[0, 0] + Jc[0, 0]J̃d[0, 0])

Ja[1, 0](0)J̃b[0, 1](z) ∼ C

z
Kfef caef

d
bf J̃c[0, 0]J̃d[0, 0]

(1.3)

Here we have only written the relation in the case the indices a, b are such that [ta, tb] = 0;
and C is a constant we have not determined.

To write the OPEs involving the E,F towers, it is convenient to introduce a constant
λg so that

Tr(X4) = λ2
g tr(X2)2 (1.4)

where on the right hand side we take trace in the fundamental, and on the left in the adjoint.
This trace identity only holds for the gauge groups we consider. Explicitly [] we have

λg =
√

10h∨√
dim g + 2

(1.5)

where h∨ is the dual Coxeter number. Then we set

λ̂g = λg

(2πi)3/2
√

12
. (1.6)

The constant arises from the coupling constant on twistor space required to cancel the
anomaly [7]. Then, we have the additional OPEs

Ja[r, s](0)E[t, u](z) ∼ λ̂g
z

(ts− ur)
t+ u

J̃a[t+ r − 1, s+ u− 1](0)

Ja[r, s](0)F [t, u](z) ∼ − λ̂g
z
∂zJ̃

a[r + t, s+ u](0)− λ̂g
z2

(
1 + r + s

t+ u+ 2

)
J̃a[r + t, s+ u](0)

Ja[r, s](0)Jb[t, u](z) ∼ λ̂g
z
Kab(ru− st)F [r + t− 1, s+ u− 1](0)

− λ̂g
z
Kab(t+ u)∂zE[r + t, s+ u](0)

− 1
z2K

ab(r + s+ t+ u)E[r + t, s+ u](0).
(1.7)

(It can also be natural to include the coefficient of the coupling between the axion and the
gauge field in these expressions explicitly, but this can be removed by a redefinition of the
generators E,F, J̃ .)

1.3 Formula for form factors

We can now put the 4d and 2d pieces together to obtain the advertised expression for the
form factor integrand, which are related to certain integrands of scattering amplitudes by
the previous discussion. To explain our formula for form factors, we need to first state some
properties of the relation between the chiral algebra and the four-dimensional CFT.

1. The generators of the vertex algebra, as listed above, are in bijection with single-
particle conformal primary states of the four-dimensional theory in the sense of [13],
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of mostly negative conformal dimension (the conformal dimension is the spin of the
field in table 1). The generators Ja[r, s] correspond to gluons of positive helicity, and
J̃a[r, s] to gluons of negative helicity.

2. Conformal blocks of our vertex algebra are in bijection with local operators in the
4d theory.

For our purposes, a conformal block is a way of defining correlation functions of the vertex
algebra compatible with the OPEs.

Thus, given any local operator O of the 4d theory, we can define the correlation functions
of the vertex algebra by using the conformal block corresponding to O. Such correlation
functions will be denoted by

〈O | V1(z1) . . . Vn(zn)〉 (1.8)

where Vi are elements of the vacuum module of the vertex algebra placed at points zi. (We
lose no generality by taking the Vi to be single-particle conformal primary states such as
J [r, s], J̃ [r, s]).

Our first result is:

Proposition 1.3.1. The following two quantities are equal:

1. Scattering amplitudes of the 4d theory in the presence of our chosen local operator at
fixed position (these quantities are known as form factors).

2. Correlation functions of the chiral algebra defined using the corresponding conformal
block.

We have stated that conformal primary generators of the chiral algebra are the same
as single-particle states of the 4d theory in the conformal basis. To translate to standard
formulae for scattering amplitudes, we should express states in the momentum basis in
terms of the chiral algebra. A null momentum pαα̇ can be expressed as a pair of spinors, λα
and µα̇. The momentum eigenstates of positive and negative helicity corresponding to the
pair of spinors λ, µ are obtained by taking λ = (1, z), and looking at the generating function

J(µ, z) =
∑ (µ1̇)r(µ2̇)s

r!s! J [r, s].

J̃(µ, z) =
∑ (µ1̇)r(µ2̇)s

r!s! J̃ [r, s].
(1.9)

The expansion in powers of µ is an expansion of a momentum eigenstate in soft modes,
where the energy has been absorbed into the scale of µ.

Correlators of the chiral algebra will then be expressed in terms of

〈ij〉 = zi − zj

[ij] = εα̇β̇µ
α̇
i µ

β̇
j .

(1.10)
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Our theorem relating correlators and form factors is best implemented using these generating
functions. Suppose we have a Lorentz invariant local operator O. Lorentz invariance tells
us that 〈

O
∣∣∣Ja1(µ1, z1) . . . J̃an(µn, zn)

〉
(1.11)

is expressed as a (finite) sum involving only [ij], 〈ij〉, and contractions of the colour
indices ai. These expressions can then be identified with standard expressions in the
amplitudes literature.

In this work, we will focus on the scattering amplitudes in the presence of the operator
tr(B2) placed at points x1, . . . , xn. This is the quantity we called the form factor integrand.

There is an operator product expansion

tr(B2)(0) tr(B2)(x1) . . . tr(B2)(xn−1) ∼
∑

F i(x1, . . . , xn−1)Oi(0) (1.12)

where Oi runs over a basis of local operators in the 4d CFT, and if Oi has dimension d then
F is a rational function of the xi of degree d− 2n. It is important to note that all CFTs
that come from local theories on twistor space do not have anomalous dimensions of local
operators, so that d is an integer.

Our formula is:

Theorem 1.3.2. The form factor integrand for scattering amplitudes of n positive helicity
and m negative helicity conformal primary states has an expansion∑

F i(x1, . . . , xn−1)
〈
Oi(0)

∣∣∣ Ja1(µ1, z1) . . . Jan(µn, zn)

J̃b1(µ′1, z′1) . . . J̃bm(µ′m, z′m)
〉
.

(1.13)

We note that on the right hand side of the formula we find a sum of products of the
OPE coefficients F i and of correlation functions of the chiral algebra.

1.4 The Parke-Taylor formula

In the body of the paper we will prove this result carefully. Here, we will give some examples,
starting with the case n = 1. Then, we are studying the scattering amplitudes of self-dual
gauge theory in the presence of the operator tr(B2) at the origin. At tree level, these are
the same as MHV amplitudes, given by the Parke-Taylor formula.

We will check that our formula at tree level reproduces the Parke-Taylor formula. Since
we work at tree level we do not need to concern ourselves with the axion field.

First, we find the conformal block corresponding to the operator tr(B2). By considering
how conformal blocks transform under the Lorentz group, we find (as we will explain in
more detail later) 〈

tr(B2)
∣∣∣J̃a[0, 0](z1)J̃b[0, 0](z2)

〉
= Kab(z1 − z2)2. (1.14)

In this conformal block, insertions of any operator J [i, j] or J̃ [i, j] with i+ j > 0 give zero,
as do insertions of three or more J̃ . The non-zero correlation functions are those involving
two J̃ [0, 0]’s and n J [0, 0], and they are completely determined by the OPEs (1.2).

– 6 –
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In this calculation, we will not have any dependence on the spinors µi in the generating
functions J(µi, zi). Thus, we will write J , J̃ for J [0, 0] and J̃ [0, 0].

The three-point correlation function is〈
tr(B2)

∣∣∣J̃a(z1)J̃b(z2)Jc(z3)
〉

= f cbd
1
z23

〈
tr(B2)

∣∣∣J̃a(z1)J̃d(z2)
〉

+ f cad
1
z13

〈
tr(B2)

∣∣∣J̃d(z1)J̃b(z2)
〉

= z3
12

z13z23
fabc

(1.15)

which matches the Parke-Taylor formula. Proceeding by induction, it is not difficult to
show that the colour-ordered3 correlation function in the chiral algebra is

〈
tr(B2)

∣∣∣Ja1(z1) . . . J̃ai(zi) . . . J̃aj (zj) . . . Jan(zn)
〉

=
z4
ij

z12z23 . . . zn1
(1.16)

again matching the Parke-Taylor amplitude (without the momentum conserving delta
function, as we discuss later).

It is important to note that there are no multi-trace terms in our correlator, just as
there are no multi-trace terms in the tree-level amplitude. All terms in our correlator are
permutations of the Parke-Taylor amplitude. This tells us that our amplitude matches
exactly with the tree-level MHV gauge theory amplitude. This would not be the case, for
instance, if we had a non-zero Kac-Moody level for the J currents, which would lead to
multi-trace terms.

1.5 Cachazo-Svrcek-Witten formula

Next, let us consider what happens when we have two copies of tr(B2), still working at tree
level. One of the terms in the tree-level OPE is

tr(B2)(0) tr(B2)(x) ∼ 1
‖x‖2

Ba
α1β1B

b
α2β2B

c
α3β3fabcε

β1α2εβ2α3εβ3α1 . (1.17)

We write tr(B3) as short hand for the operator on the right hand side, with the understanding
that the spinor indices of Bαβ are contracted in the unique Lorentz invariant way. The
operator on the right hand side corresponds to the conformal block characterized by〈

tr(B3)
∣∣∣J̃a(z1)J̃b(z2)J̃c(z3)

〉
= fabcz12z13z23. (1.18)

The non-zero correlators are those with three J̃ insertions and n J insertions. They are
determined from the correlator (1.18) by the poles in the OPEs.

We find that these correlators reproduce an un-integrated veresion of the Cachazo-
Svrcek-Witten [14] formula for NMHV amplitudes. In the CSW formula, one builds NMHV
amplitudes by treating the MHV amplitudes as a vertex in a Feynman diagram, and then
connecting these vertices by a propagator.

3Here we mean that we consider the term where the colour indices are contracted by tr(ta1 . . . tan ).
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Our prescription with the OPE has a similar description. For example, we have the
following formula. If Vi(zi) denote the n chiral algebra insertions, states, 3 of which are J̃
and n− 3 are J , we have〈

tr(B3)
∣∣∣V1(z1) . . . Vn(zn)

〉
= −1

6
∑〈

tr(B2)
∣∣∣Vi1(zi1) . . . Vik(zik)J̃a(z)

〉〈
tr(B2)

∣∣∣Ja(z)Vj1(zj1) . . . Vjn−k(zjn−k)
〉

(1.19)

where z is arbitrary. The sum on the right hand side is over all ways of distributing the
chiral algebra insertions among the correlators.

Clearly this formula is reminiscent of the CSW formula, as it expresses an NMHV
correlator by gluing together MHV correlators. It may seem at first sight that the CSW
propagator (which is a propagator for a scalar field) is missing. To see this propagator, we
should recall that tr(B3) appears as the coefficient of ‖x‖−2 in the OPE of two copies of
tr(B2). Correlators with respect to the conformal block tr(B3), when multiplied by ‖x‖−2,
thus contribute to the NMHV integrand. Since ‖x‖−2 is the propagator of a scalar field,
equation (1.19) is a close match with the CSW prescription.

Equation (1.19) is proved in the bulk of the paper by an inductive method. The initial
case is when n = 3, and is the identity

−3
〈

tr(B3)
∣∣∣J̃a1(z1)J̃a2(z2)J̃a3(z3)

〉
=
〈

tr(B2)
∣∣∣J̃a1(z1)J̃b(z)

〉〈
tr(B2)

∣∣∣Jb(z)J̃a2(z2)J̃a3(z3)
〉

+
〈

tr(B2)
∣∣∣J̃a2(z2)J̃b(z)

〉〈
tr(B2)

∣∣∣Jb(z)J̃a3(z3)J̃a1(z1)
〉

+
〈

tr(B2)
∣∣∣J̃a3(z3)J̃b(z)

〉〈
tr(B2)

∣∣∣Jb(z)J̃a1(z1)J̃a2(z2)
〉
,

which is entirely elementary using the definitions for the OPEs and correlators given above.
We expect that at tree level, our formula for amplitudes is equivalent to an integrand

version of the CSW prescription. Our formula works equally well at loop level, as long as
one understands loop corrections in both the chiral algebra and the OPEs in the 4d CFT.

1.6 One loop amplitudes

Our 4d CFT by itself does not have any non-trivial amplitudes; this is true of any local field
theory on twistor space. However, self-dual gauge theory does have non-trivial one-loop
amplitudes. The simplest of these is the one-loop 4-point amplitude with all particles of
positive helicity:

〈1234〉 = [12][34]
〈12〉 〈34〉 tr(ta1ta2ta3ta4) + permutations , (1.20)

up to a prefactor which we are not concerned with.
In the 4d CFT we consider, these amplitudes are not present. Therefore, as suggested

by Lionel Mason and Atul Sharma, they must be cancelled by an axion exchange. Because

– 8 –



J
H
E
P
1
0
(
2
0
2
2
)
1
9
3

p1

p2 p3

p4

q

p1

p2 p3

p4

Figure 1. On the left we have the tree-level axion exchange, which by a Green-Schwarz mechanism
matches the one-loop four-point amplitude on the right.

the axion is part of a Green-Schwarz mechanism, this should be a tree-level exchange
of axions.

Working directly with the Lagrangian (1.1), we can see the 4-point one-loop amplitude
as follows. In figure 1 we depict the exchange of an axion. The axion propagator is 1

q4 ,
because the Lagrangian (1.1) has a fourth-order kinetic term for the axion. The axion
couples to the gauge field by F (A)2, which on-shell is the same as F (A)2

+. In spinor-helicity
notation, the coupling of the axion to the gauge field can be written [i, j]2.

Therefore, the amplitude for the diagram 1 is

[12]2[34]2
q4 . (1.21)

Momentum conservation at the vertices, together with the fact that the incoming particles
are massless, tells us that q2 = 2p1 · p2 = 2p3 · p4. Therefore the amplitude (including the
colour factors) is

[12][34]
〈12〉 〈34〉 tr(ta1ta2) tr(ta3ta4). (1.22)

The expression [12][34]
〈12〉〈34〉 is totally symmetric.4 The Green-Schwarz mechanism on twistor

space works precisely when the

tr(t(a1ta2) tr(ta3ta4)) = λ2
g Tr(t(a1ta2ta3ta4)) (1.23)

where on both sides we have symmetrized the colour indices. We conclude that the amplitude
for the diagram 1 is proportional to

[12][34]
〈12〉 〈34〉 Tr(ta1ta2ta3ta4) (1.24)

which is the correct one-loop amplitude.
How can we see this from the chiral algebra perspective? The chiral algebra construction

only works in the presence of the axion field, as it requires the theory on twistor space to
be anomaly free. However, we are free to add local operators to the 4d theory, as we did

4This is a consequence of conservation of momentum, which in spinor-helicity notation takes the
form

∑
j
〈ij〉 [jk] = 0. With four particles, this means [12] 〈13〉 = [42] 〈43〉, so that [12][34] 〈13〉 〈24〉 =

[13][24] 〈12〉 〈34〉.
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when moving from self-dual gauge theory to the integrand for Yang-Mills theory by adding
on tr(B2).

To see the one-loop all + scattering amplitudes we will need to add a local operator
which has the effect of decoupling the axion field. A first guess might be to try to add
ρF (A)2. This doesn’t work, however, as only the derivatives of ρ — and not ρ itself — are
really part of the 4d theory (ρ is a periodic scalar).

What does work is to introduce the operator (4ρ)2. If we add this term to the
Lagrangian, then with the appropriate coefficient it will cancel the kinetic term of the axion
field. Introducing it as a local operator will have much the same effect: scattering processes
in the presence of the operator (4ρ)2 will cancel those processes which have a single axion
exchange, as long as the sum of the external momenta vanishes.

We conclude that the one-loop all + scattering amplitudes should be chiral algebra
correlators using the conformal block corresponding to (4ρ)2. To determine this conformal
block, we will first find the conformal block corresponding to 4ρ. This is a Lorentz invariant
conformal block which involves one axion field and no other fields. It must pair with an
operator in the chiral algebra which is of spin 0, dimension −2, and invariant under SU(2)+.
Looking at table 1, we see that the only such operator is F [0, 0], so that

〈4ρ|F [0, 0](z)〉 = C (1.25)

for some non-zero constant C. (As usual, other correlation functions in the presence of this
conformal block are determined from this identity by the OPE). Since in this section we
are only computing the amplitude up to an overall prefactor, we will set C = 1.

Similarly, we must have〈
(4ρ)2

∣∣∣F [0, 0](z1)F [0, 0](z2)
〉

= 1. (1.26)

Let us now use the OPEs in (1.7) to derive the amplitude. Since we are interested in the
four-point all + amplitude, we need to consider OPEs where four J ’s become two F [0, 0]’s.
The only relevant OPE is

Ja[1, 0](z1)Jb[0, 1](z2) = 1
z12

F [0, 0] tr(tatb). (1.27)

J [1, 0], J [0, 1] form a doublet under SU(2)+.
It is convenient to arrange them into a generating function in terms of an auxiliary

spinor µ, as in equation (1.9):

J [1](z, µ) = J [1, 0](z)µ1̇ + J [0, 1](z)µ2̇. (1.28)

We then identify [ij] = εα̇β̇µ
α̇
i v

β̇
j , and as before 〈ij〉 = zi − zj .

In this notation, we find

Ja[1](z1, µ1)Jb[1](z2, µ2) = [12]
〈12〉F [0, 0] tr(tatb)λ̂g (1.29)

From this, it is immediate that〈
(4ρ)2 | Ja1 [1](z1, v

α
1 )Ja2 [1](z2, v

α
2 )Ja3 [1](z3, v

α
3 )Ja4 [1](z4, v

α
4 )
〉

= (λ̂g)2 [12][34]
〈12〉 〈34〉 tr(ta1ta2) tr(ta3ta4) + permutations . (1.30)
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Since [12][34]/ 〈12〉 〈34〉 is totally symmetric, using equation (1.23), we can rewrite
this as〈

(4ρ)2 | Ja1 [1](z1, z1)Ja2 [1](z2, z2)Ja3 [1](z3, z3)Ja4 [1](z4, z4)
〉

= 1
(2πi)312

[12][34]
〈12〉 〈34〉 Tr(t(a1 . . . ta4)) (1.31)

which is the correct amplitude, up to normalization.
More generally, in section 11, we show that one loop amplitudes for n positive helicity

gluons match5 chiral algebra correlators. For this, we use the generating function of
equation (1.9),

J(µ, z) =
∑ (µ1̇)r(µ2̇)s

r!s! J [r, s](z) (1.32)

We have〈
(4ρ)2 | Ja1(µ1, z1) · · · Jan(µn, zn)

〉
= 1
n

∑
σ∈Sn

∑
1≤i1<i2<i3<i4≤n 〈σi1σi2〉 [σi2σi3 ] 〈σi3σi4〉 [σi4σi1 ]

〈σ1σ2〉 〈σ2σ3〉 . . . 〈σnσ1〉
Tr(taσ1

. . . taσn ) (1.33)

matching, up to normalization, the one-loop amplitudes computed in [15] and [16].

1.7 WZW correlators as scattering amplitudes in the presence of an axion

We have expressed many amplitudes of gauge theory in terms of correlators of a chiral
algebra which includes the Kac-Moody algebra at level zero. One can ask, is it possible to
modify the gauge theory so that the Kac-Moody algebra acquires a level?

We will see that we can do this by consider gauge theory in the presence of an axion
field with a logarithmic profile. This means we add the term∫

log ‖x‖k F (A)2 (1.34)

to the Yang-Mills Lagrangian.
We study the tree-level scattering amplitudes where all incoming particles are of positive

helicity. Without the axion, this amplitude vanishes. However, in the presence of the axion,
we find it is non-zero and is equal to the correlators of the currents in chiral WZW model
at level k:

〈Ja1(z1) . . . Jan(zn)〉WZWk
= scattering amplitudes of n gluons (1.35)

As in the Parke-Taylor formula, we can rewrite the left hand side using the spinor-helicity
formalism. We trivialize the canonical bundle of CP1 using the meromorphic 1-form dz.
This allows us to view the left hand side of (1.35) as a rational function in the n variables zi.
Since it is invariant under an overall translation, it can be rewritten as an expression
in 〈ij〉 = zij .

5We do not attempt to match the overall normalization, which can be factored into the normalization of
the conformal block (4ρ)2.
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For instance, the colour-ordered single-trace WZWk correlators are given by the Parke-
Taylor denominator

〈Ja1(z1) . . . Jan(zn)〉WZWk
= −k tr(ta1 . . . tan) 1

z12z23 . . . z(n−1)nzn1
+ . . . (1.36)

where . . . indicates terms with a different colour ordering, as well as terms of order k2 and
higher that are not single-trace.

In our identity (1.35) we include all terms on the right hand side, including multi-
trace terms. Multi-trace terms can appear in the gauge theory scattering amplitude from
diagrams where the background axion field appears several times, in disconnected tree-level
diagrams. (In our identification between amplitudes and correlators, it is most natural to
include disconnected diagrams; it just so happened that these did not play a role in our
other computations).

We also expect, but do not prove, that scattering amplitudes of k states of positive
conformal dimension with n states of negative conformal dimension are given by WZW
correlators in the presence of k modules.

1.8 Connections to celestial holography

As advertised, our program has many natural connections to the celestial holography
program. As we work towards derivations of our main result Thm 1.3.2, we explain these
connections from the point of view of 6d holomorphic theories on twistor space. Each such
6d theory can be viewed as the parent theory of both the 4d CFTs described above and,
via Koszul duality, the 2d chiral algebra.

Let us briefly recall the appearance of 2d chiral algebras in celestial holography. The
chiral algebras in that context capture asymptotic symmetries in flat spacetime. Although
the story of asymptotic symmetries begins in the usual momentum space basis (see e.g. [2]),
we will be largely interested in amplitudes of massless states expressed in the celestial, or
conformal, basis. To pass to the conformal basis from the momentum basis, one performs a
Mellin transform for massless6 momentum eigenstates Oi. From this procedure, one can
obtain a normalizable basis of 2d conformal primaries in which the dilatation operator
is diagonal. Restricting to the principle series for massless operators ∆ ∈ 1 + iλ, λ ∈ R
guarantees that the operators are invertible and normalizable with respect to the Klein-
Gordon inner product [13]. The 4d scattering amplitudes expressed in terms of the
Mellin-transformed variables which diagonalize boosts are referred to as celestial amplitudes.
Recent reviews on aspects on celestial amplitudes include [17, 18].

Recall that the Mellin transform and its inverse for massless states are

Ô±(∆, z, z̄) =
∫ ∞

0
dωω∆−1O(±ω, z, z̄) (1.37)

O(±|ω|, z, z̄) =
∫ 1+i∞

1−i∞

d∆
2πi |ω|

−∆Ô±(∆, z, z̄) (1.38)

6There is also a transform for massive states, which we will not consider further in the present paper.

– 12 –



J
H
E
P
1
0
(
2
0
2
2
)
1
9
3

where the signs ± denote in, respectively out, states. We will parameterize in/out null
momenta in the usual celestial presentation via

p(z, z̄,±ω) = ±ω(1 + |z|2, 2Re(z), 2Im(z), 1− |z|2) (1.39)

where z, z̄ are coordinates on the celestial sphere.7
The Mellin transformed scattering amplitude transforms as a 2d conformal correlation

function, and the Mellin transformed operators correspond to insertions of local operators
(for massless states). The Lorentz symmetry can be interpreted in this basis, for example,
as a global conformal symmetry SL(2,C).

We will be most interested in the “conformally soft” symmetries of celestial amplitudes,
given by currents satisfying h → 0 (for negative helicity states) or h̄ → 0 (for positive
helicity states). In the momentum space basis, soft theorems are associated to conservation
laws corresponding to large gauge symmetries. One can check by direct computation that
the ∆→ 1,8 limit of a Mellin operator of positive helicity coincides with the ω → 0 limit
of the momentum space operator. Similar limits can be taken to extract the subleading
soft factors, assuming the insertion of the operator in the amplitude falls off sufficiently
fast with energy; for example the subleading soft photon in the celestial basis corresponds
to a ∆ → 0 limit. Taking similar ∆ → −n limits for all n = −1, 1, 0, . . . in an expansion
O+ = ∑

k ω
kO+

k of the positive helicity states leads to an infinite tower of conformally soft
currents, which yield conformally soft constraints on amplitudes [19].

It is the algebra of this infinite tower of currents [3–5] that we revisit from a twisted
holography point of view, and compute using Koszul duality. It is not obvious that there
should be a chiral algebra hidden in scattering amplitudes of massless particles. For self-dual
theories, as we will see, this is neatly explained by twistor theory. However, the symmetries
are known to persist beyond the self-dual limit, at least at tree-level and for certain one-loop
amplitudes [20].

Let us recall the celestial holography results on 2-to-1 scattering processes of positive-
helicity massless particles at tree-level, which possess a beautiful chiral algebra structure.
Consider the situation where z, z̄ are independent real coordinates, so that four dimensional
spacetime becomes signature (2, 2) and the Lorentz group becomes SL(2,R)L × SL(2,R)R.
The OPEs of celestial operators at tree-level were studied in [19], where it was shown that
poles in the OPEs of operators (say, for z12 → 0, z̄12 fixed) on the celestial sphere are the
Mellin transforms of collinear limits9 of momentum space operators, and hence can be
computed using Feynman diagrammatics. Alternatively, taking an ansatz for the form
of an OPE in a holomorphic collinear expansion, [19] showed that the OPE coefficients
can also be fixed by application of leading and sub(sub)leading soft theorems and global

7We also remind the reader, as in the previous subsection, that null momenta can be determined by a
choice of two-component complex spinor up to scale by pαα̇ = µα̇λα, so that the direction of null vector
is given by λ, µ up to scale, or equivalently a point z on the celestial sphere CP1. In affine coordinates,
λ = (1, z), 〈λ1λ2〉 = z1 − z2, and so on.

8We recall that h = 1
2 (∆ + J), h̄ = 1

2 (∆− J) in terms of the conformal dimension and spin.
9For massless particles that couple via a three-point vertex, collinear limits arise when the particles’

momenta become parallel, giving a 1
p1·p2

pole.
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conformal (i.e. Lorentz) invariance. A generalization of these OPE computations, whose
results we will reinterpret in a twistorial language, was developed in [3], and reorganized
in [4]. There, the SL(2,R)R (which acts on the z̄ coordinates) descendants of the primary
operators in the OPE were resummed using an OPE block. The infinite tower of conformally
soft operators were further expanded in powers of z̄. Studying the algebra of holomorphic
modes resulting from this expansion (i.e. the holomorphic residues of the resulting z̄-Laurent
series) naturally produces the Kac-Moody algebra of area-preserving symmetries of the
plane, i.e. the loop algebra of w1+∞. Restricting to those modes which form representations
of SL(2,R)R produces the corresponding wedge subalgebra.

We will study these chiral algebras (more precisely, enlargements of them which include
axion contributions and states of both helicities) from a twistorial point of view. It is not a
surprise that twistor theory places a role in such symmetries. In Penrose’s [21] non-linear
graviton construction, it was found that solutions to the self-dual Einstein equation can
be built on twistor space by a gluing construction, where the gluing data is an element
of precisely the same Lie algebra as found in the recent work [4]. For gauge theory, the
same thing holds [22] but where the gluing data in the Penrose-Ward correspondence is
the Lie algebra of celestial symmetries for gluons found in [3]. As shown in Proposition
3.5 of [23] and recently emphasized, and given an ambitwistor string interpretation, in [24],
twistor space makes manifest that the gravitational celestial algebra studied in [3, 4] is the
loop algebra Lw1+∞ of Poisson diffeomorphisms of the plane (with similar results for gauge
theory). Indeed, twistor space neatly and geometrically captures, via the usual Penrose-Ward
correspondence, the physics of the self-dual sectors of gauge theory and gravity.

As we discussed already, our main result is a derivation of form factors and scattering
amplitudes from chiral algebra correlators. We also attempt to address some other questions
in celestial holography. We use a twistor construction to build a bulk 3d theory, whose
boundary algebra is the celestial chiral algebra. We also discuss how the Koszul duality
perscription suggests that the chiral algebras must be quantized, although we do not fully
understand the quantization.

1.9 Outline

Our plan for the rest of this paper is as follows. In section 2 we will review some basic
aspects of the twistor correspondence. In section 3 we will review the appearance of one-loop
anomalies in holomorphic theories on twistor space, their cancellation in certain theories,
and briefly discuss the ramifications for chiral algebras. In section 4 we will explain how the
celestial symmetry algebras are realized as gauge transformations of certain holomorphic
theories on twistor space. In section 5, we illustrate how to obtain the 4d states of negative
conformal dimension, which correspond to chiral algebra generators, from twistor space
using the free scalar field theory as an example. In section 6, we present an alternative
way to understand the 2d chiral algebra, as the boundary of a 3d theory holomorphic-
topologically twisted theory. We discuss various features of this bulk-boundary system. In
section 7, we explain an alternative, efficient way to obtain the celestial chiral algebras
using inspiration from twisted holography, via Koszul duality. In section 8 we derive our
main result, Theorem 1.3.2, and illustrate it by reproducing the Parke-Taylor formula for
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tree-level MHV amplitudes. In section 10 we derive the formula for the (unintegrated)
CSW formula in terms of chiral algebra data. In section 11, we derive the all-plus one-loop
amplitudes. In section 12, we derive the result that tree-level amplitudes in gauge theory in
the presence of an axion field with nontrivial profile are captured by Kac-Moody correlators.
We conclude with brief discussions of works in progress and open questions in section 13.

2 Recollections on the twistor correspondence

Twistor space PT is the total space of the bundle O(1)⊕O(1) over CP1. Since the pioneering
work of Penrose [25] (see [26] for a pedagogical review), it has been known that holomorphic
field theories on twistor space become massless field theories on real space, either Euclidean
or Lorentzian.10

Here we will recall some aspects of the twistor correspondence. Let us give twistor
space coordinates z, v1, v2 where z is a coordinate on CP1, and vi are coordinates on the
O(1) fibres. We choose our coordinates so that vi have poles at z =∞.

Twistor space is closely connected with analytically-continued space-time C4. Let us
give C4 complex coordinates ui with complex metric ∑du2

i . There is a bijection between
C4 and complex lines CP1 ⊂ PT (which are embedded linearly).

A point (u1, . . . , u4) ∈ C4 corresponds to the complex line in PT cut out by the equations

v1 = u1 + iu2 + z(u3 − iu4)
v2 = u3 + iu4 − z(u1 − iu2).

(2.1)

We refer to this curve as CP1
u.

Two curves CP1
x, CP1

y for x, y ∈ C4 intersect if and only if x, y are null-separated, that
is, ‖x− y‖2 = 0. In particular, if we work in Euclidean signature by taking all the ui to be
real, then the curves CP1

u are all disjoint. The curves CP1
u, for u ∈ R4, foliate PT, giving an

isomorphism of real manifolds
PT ∼= R4 × CP1. (2.2)

2.1 The free scalar field theory

The very simplest example of the twistor correspondence relates the free scalar field theory
on R4 with an Abelian gauge theory on twistor space. The field of the gauge theory is11

A ∈ Ω0,1(PT,O(−2)). (2.3)

The Lagrangian is ∫
PT

A∂A (2.4)

10Twistor space is signature-agnostic, and gives rise to theories which can be analytically continued to
any signature.

11In general, the Penrose transform is a bijection between zero rest mass fields of helicity h on analytically
continued spacetime, and the Dolbeault cohomology group H0,1(PT,O(2h− 2)). Here, 2h− 2 can be viewed
as the weight of the field under the homogeneous scaling symmetry of twistor space, viewed as an open
subset of CP3. So, we are studying (0, 1)-forms on twistor space with fixed weights.
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which makes sense because the canonical line bundle KPT = O(−4). This field is subject to
gauge transformations

A 7→ A + ∂χ (2.5)

where
χ ∈ Ω0,0(PT,O(−2)). (2.6)

Gauge-equivalence classes of on-shell fields on twistor space are the Dolbeault cohomology
group

H1(PT,O(−2)). (2.7)

Penrose [25] shows that this cohomology group is isomorphic to the space of entire analytic
functions

φ : C4 → C (2.8)

which are harmonic:
∂xi∂xiφ = 0. (2.9)

Such a φ of course restricts to a solution of the free-field equations in any signature.
We build the field φ from the gauge-field A on twistor space by

φ(x) =
∫
CP1

x

A. (2.10)

The expression on the right hand side makes sense, as A is twisted by O(−2) which is the
canonical bundle of CP1

x. This measurement of A is gauge invariant.

2.2 Self-dual Yang-Mills theory

The next example of the twistor correspondence is the Penrose-Ward correspondence. This
relates self-dual Yang-Mills on R4 with holomorphic BF theory on twistor space.

Fix a simple Lie algebra g. Self-dual Yang-Mills theory has fields

A ∈ Ω1(R4, g)
B ∈ Ω2

−(R4, g)
(2.11)

with the Chalmers-Siegel action [27]∫
Tr(B ∧ F (A)−). (2.12)

If we add on the term
gYM

∫
Tr(B2), (2.13)

the theory becomes ordinary Yang-Mills theory in the first-order formulation.12

Self-dual Yang-Mills theory on twistor space [28, 29] is represented by the gauge theory
with fields

A ∈ Ω0,1(PT, g)
B ∈ Ω3,1(PT, g)

(2.14)

12With a certain value of the θ-angle.
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with Lagrangian ∫
PT

Tr(BF 0,2(A)). (2.15)

The fields A,B are subject to two kinds of gauge transformations, with generators

χ ∈ Ω0,0(PT, g)
ν ∈ Ω3,0(PT, g)

(2.16)

where

δA = ∂χ+ [A, χ]
δB = ∂ν + [B, χ].

(2.17)

2.3 The non-linear graviton construction

Finally, we will discuss a more complicated twistor transform, which relates the self-dual
limit of Einstein gravity with a certain BF theory on twistor space [30, 31].

Let us introduce the holomorphic Poisson tensor

π = ∂v1∂v2 (2.18)

on twistor space. This vanishes to order 2 at z =∞, and so can be thought of as a Poisson
tensor twisted by O(−2).

The fields of self-dual gravity on twistor space consist of a field

H ∈ Ω0,1(PT,O(2)) (2.19)

and a Lagrange multiplier field

β ∈ Ω3,1(PT,O(−2)). (2.20)

We can think of H has having a pole of order 2 at z =∞, and β as being a (3, 1) form with
a zero of order two at z =∞.

The Lagrangian is ∫
β∂H + 1

2β{H,H}

=
∫
β∂H + 1

2βεij∂viH∂vjH.
(2.21)

The integrand in both terms is a (3, 3) form with no poles. For the kinetic term, the order
two zero in β cancels the order two pole in H, and for the interaction, the order four pole
coming from the two copies of H is canceled by the order 2 zero from β and the order two
zero from the Poisson tensor ∂v1∂v2 .

Just like holomorphic BF theory, this theory has two kinds of gauge transformations,
generated by

χ ∈ Ω0,0(PT,O(2))
ν ∈ Ω3,0(PT,O(−2))

(2.22)
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Figure 2. The anomaly in holomorphic BF theory.

where

δH = ∂χ+ εij∂viH∂vjχ

δβ = ∂ν + εij∂viβ∂vjχ
(2.23)

The gauge transformations commute as

[χ1, χ2] = εij∂viχ1∂vjχ2

[χ, ν] = εij∂viχ∂vjν

[ν1, ν2] = 0.
(2.24)

3 Anomalies on twistor space

Before we proceed, we should remark that holomorphic field theories on twistor space tend
to suffer from anomalies [7, 32]. One can not build the chiral algebra at the quantum level
(at least using our methods) unless the theory is anomaly free.

The anomalies for the Poisson BF theory related to self-dual gravity are currently
not understood. For the holomorphic BF theory giving self-dual Yang-Mills, the twistor
anomaly is well understood and in fact easy to calculate using the index theorem. There is
an anomaly associated to the box diagram in figure 2. In [7] it is shown that this anomaly
can be canceled by a Green-Schwartz mechanism in certain cases. For this to work, we need
the gauge Lie algebra g to be sl2, sl3, so(8) or one of the exceptional algebras. (We can
also include matter and cancel the anomaly for so(Nc) with Nf = Nc − 8, or sl(Nc) with
Nf = Nc, though we will not discuss these cases in this paper).

In these cases, we introduce a new field on twistor space

η ∈ Ω2,1(PT) (3.1)

constrained so that ∂η = 0, and subject to gauge transformations η 7→ η + ∂γ for γ ∈
Ω2,0(PT). The Lagrangian for η is the free limit of the Kodaira-Spencer Lagrangian [33]:

1
2

∫
∂η∂−1η. (3.2)

This is then coupled to the gauge field A by

λg

4(2πi)3/2
√

3

∫
ηA∂A (3.3)
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where λg is a constant such that

Tr(X4) = λ2
g tr(X2)2 (3.4)

where Tr means the trace in the adjoint and tr that in the fundamental.
In four dimensions, the field η introduces a new axion field ρ, which couples to self-dual

Yang-Mills by
1
2

∫
(4ρ)2 + λg

1
8π
√

3

∫
dρCS(A) (3.5)

where CS(A) is the Chern-Simons three-form. The field ρ is related to η by

ρ(x) = i√
8πi

∫
CP1

x

∂−1η (3.6)

where we are integrating over the CP1 corresponding to x ∈ R4.
It is best to understand the coupling between η and A in the BV formalism, where A

gets extended to a field in Ω0,∗(PT, g)[1], and η to one in Ω2,∗(PT, g)[1]. The symbol [1]
indicates a shift in ghost number, so that fields in Dolbeault degree i are in ghost number
1− i. Then, the interaction takes the same form,

λg

4(2πi)3/2
√

3

∫
ηA∂A (3.7)

where η and A refer to the fields including all Dolbeault degrees. By decomposing this
action into components, we can read off the non-linear terms in the gauge transformations.
These come from components where one of the fields is in Dolbeault degree zero, one in
Dolbeault degree 1, and one in Dolbeault degree 2 (and so is an anti-field). Noting that the
Dolbeault degree 2 component of A is the anti-field to B, we find the following extra gauge
transformations:

δχη = λg

2(2πi)3/2
√

3
∂χ∂A

δγB = λg

2(2πi)3/2
√

3
γ∂A.

(3.8)

Finally, from the term in equation (3.7) where two fields are in Dolbeault degree 0 and
one is in Dolbeault degree 3, we find two extra terms in the commutators of the gauge
transformations. The first is where a γ ∈ Ω2,0 and a χ ∈ Ω0,0 commute to become a ν ∈ Ω3,0:

[γ, χ] = λg

2(2πi)3/2
√

3
γ∂χ ∈ Ω3,0 (3.9)

The second is where two χ’s commute to become a γ:

[χ1, χ2] = λg

2(2πi)3/2
√

3
∂χ1 ∧ ∂χ2 ∈ Ω2,0. (3.10)
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4 Celestial symmetry algebras are gauge transformations on twistor space

As we have reviewed above, the twistor transform relates self-dual gauge theory on R4

with holomorphic BF theory on twistor space, and self-dual gravity on R4 with a certain
Poisson BF theory on twistor space. In this section, we will see that gauge transformations
of the theories on twistor space match the Lie algebra of modes of the chiral algebras found
in [3, 4].

4.1 Chiral algebra for gauge theory

Let us first recall the chiral algebra of positive helicity gluons in [3]. As briefly reviewed in
the introduction, one considers the holomorphic collinear OPE, reorganized to incorporate
SL(2,R)R descendants of any given primary:

Oa∆1(z1, z̄1)Ob∆2(z2, z̄2) ∼ −if
ab
c

z12

∞∑
n=0

B(∆1 − 1 + n,∆2 − 1) z̄
n
12
n! ∂̄

nOc∆1+∆2−1(z2, z̄2). (4.1)

The (closed) subalgebra of asymptotic symmetries come from studying conformally soft
operators, given by ∆1,∆2 ∈ {1, 0,−1,−2, . . .}. The authors then consider the following
expansion of these operators in the conformally soft limit:

limε→0εO
a
k+ε(z, z̄) = limε→0

1−k
2∑

n= k−1
2

εOak+ε,n(z)
z̄n+(k−1)/2 (4.2)

with k ∈ Z≤1. As explained in [3], outside the given range of n, the SL(2,R)R invariant
norm vanishes (up to possible contact terms).

One then defines the holomorphic modes Rak,n(z) := limε→0O
a
k+ε,n(z), which naturally

furnish (2− k)-dimensional SL(2,R)-representations, (k − 1)/2 ≤ n ≤ (1− k)/2.13

To sum up, the chiral algebra can be written in terms of a sequence of conformal
primaries

Rak,n(z) (4.3)

where a is a Lie algebra index, k is an integer telling us the spin of the SU(2),14 representation
the operator lives in, and n indicates the weight of a vector in this representation. These
operators satisfy the algebra

[Rak,n, Rbl,m] = −ifabc

(
k′ − n+ l′ −m

k′ − n

)(
k′ + n+ l′ +m

k′ + n

)
Rck+l−1,m+n, (4.4)

where we have introduced the shorthand j′ := (1− j)/2. Following [4], it is more convenient
to define the generators via

R̂ak′,m = (k′ −m)!(k′ +m)!Rak,m, (4.5)
13There is an equivalent approach to obtaining holomorphic currents from the light transform [5]. The

latter has been interpreted as a half-Fourier transform on twistor space in [34], which may be more natural
for our purposes.

14Here we refer to SU(2) rather than SL(2,R)R, hoping that it will not cause confusion. Twistor space is
signature-agnostic, and the two choices differ by a choice of real form on SO(4,C) that will not be important
for us.
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where we relabel the first argument by k′ = (1 − k)/2 = 0, 1/2, 1, . . . instead of k =
1, 0,−1, . . .. These generators obey

[R̂ak′,m, R̂bl′,n] = −ifabc R̂ck′+l′,m+n. (4.6)

Finally, we will define the generators

Ja[m,n] = R̂am′+n′,m−n. (4.7)

(Altogether, the generators Ja[k, l] are related to the currents Spm of [4], via p = 1 + (k +
l)/2,m = (k − l)/2).

Using our definition of m′ + n′, we can see that these are conformal primaries of spin
1−m/2−n/2. This is because vi have charge −1

2 under rotation of z. They satisfy the OPE

Ja[m,n](z)Jb[r, s](z′) = 1
z − z′

fabc J
c(z)[m+ r, n+ s] (4.8)

This OPE implies that the Lie algebra of modes

Ja[m,n, k] =
∮
Ja[m,n]zkdz (4.9)

satisfies the simple commutation relation

[Ja[m,n, k], Jb[r, s, l]] = fabc J
c[m+ r, n+ s, k + l]. (4.10)

This Lie algebra appears naturally on twistor space.
Consider the open subset of twistor space where z is not 0 or ∞. On this open subset

we have holomorphic coordinates v1, v2, z, z
−1. We can consider the infinitesimal gauge

transformations of the field A which preserve the vacuum field configuration A = 0, B = 0.
Such gauge transformations are holomorphic maps

C× C× C× → g. (4.11)

This is the sub-algebra of the triple loop algebra of g that we can write as

g[v1, v2, z, z
−1]. (4.12)

This is identified with the Lie algebra of modes of the celestial chiral algebra, by

Ja[m,n, k] = tavm1 vn2 zk. (4.13)

Note that vi transform, under coordinate transformations of the z plane, as (dz)1/2. This
explains why Ja[m,n, k] has spin −k −m− n.

The full Lie algebra of gauge transformations of holomorphic BF theory also includes
the transformations of B. On the same patch of twistor space, these are indexed by

J̃a[m,n, k] (4.14)
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with the commutators

[J̃a[m,n, k], J̃b[r, s, l]] = 0
[Ja[m,n, k], J̃b[r, s, l]] = fabc J̃

c[m+ r, n+ s, k + l]].
(4.15)

These can be obtained by enlarging the chiral algebra with OPE (4.8) by adjoining additional
primary operators J̃a[m,n] of spin −1−m− n with the OPE

Ja[m,n](z)J̃b[r, s](z′) = 1
z − z′

fabc J̃
c(z)[m+ r, n+ s]. (4.16)

These additional conformal primaries correspond to states of negative helicity.
As explained in [35–37] in the energetically soft basis, one does not expect two in-

dependent copies (holomorphic and anti-holomorphic) of the same chiral algebra when
considering both positive and negative helicity particles. This is due to order-of-limits
ambiguities when multiple particles of opposite helicity become soft. Indeed, here the
negative helicity states transform under the adjoint representation of the algebra generated
by the holomorphic states.

A priori, we do not expect the simple OPE (4.16) to correspond to a celestial chiral
algebra of full Yang-Mills theory: only of the self-dual limit at tree level.

4.2 Gravitational celestial symmetries

For gravity, a similar analysis holds. In [3], it was shown that the celestial symmetries for
gravity are given by the Kac-Moody algebra built from a certain infinite-dimensional Lie
algebra, described in [4] as the wedge algebra of the Kac-Moody algebra of w1+∞.

The Lie algebra w1+∞ is the Lie algebra of polynomial functions on a cylinder C×C×,
with coordinates v1, v2:

w1+∞ = C[v1, v2, v
−1
2 ]. (4.17)

The Lie bracket is the Poisson bracket with respect to the Poisson tensor ∂v1∂v2 . Inside
this Lie algebra is a copy of sl2 with basis v2

1, v1v2, v2
2.

The wedge algebra of w1+∞ is the subalgebra consisting of vectors which transform in
finite-dimensional representations of this sl2. Recall that in the celestial holography picture,
this was the Lie algebra of SL(2,R)R.15 It is easy to see that the wedge algebra ∧w1+∞ is
the subalgebra consisting of polynomials regular at v1 = 0:

∧ w1+∞ = C[v1, v2] (4.18)

under the Poisson bracket. In other words, it is the Lie algebra of Hamiltonian vector fields
on the plane C2.

As such, we will use the more standard notation

Ham(C2) = ∧w1+∞ (4.19)

denoting the algebra of Hamiltonian vector fields on C2.
15We will later see, from the geometry of twistor space, that it is natural and expected that

SL(2,R)L, SL(2,R)R play very different roles when deriving the chiral algebra.
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In [4], it is shown that the celestial chiral algebra at tree-level is the Kac-Moody
algebra for Ham(C2) at level zero. This can be obtained analogously to the gauge theory
case. Namely, we study the conformally soft limits of positive helicity graviton operators,
wk(z, z̄) := limε→0Gk+ε((z, z̄) in the mode expansion

wk(z, z̄) =
2−k

2∑
n= k−2

2

wk,n(z)
z̄n+ k−2

2
. (4.20)

We change the normalization of the generators in the same way as the gauge theory case,
to absorb some pesky factorials as well as an additional factor of 1√

32πG . Similarly, we will
relabel the generators by their highest weight under SL(2,R) to define the generators of the
chiral algebra

w[m,n] (4.21)

of spin 2 − m/2 − n/2, corresponding to vm1 v
n
2 ∈ Ham(C2). (These are related to the

generators denoted by wpm in [4] using the relations p− 1 = k+l
2 ,m = k−l

2 , as with the gauge
theory re-indexing).

These have OPEs

w[m,n](0)w[r, s](z) = 1
z

(ms− nr)w[r +m− 1, n+ s− 1]. (4.22)

Notice that these OPEs are not those of the W∞ chiral algebra (see, e.g., [38] and references
therein for the latter).16

We will identify the mode algebra of this Kac-Moody algebra with the gauge symmetries
of Poisson BF theory on twistor space.

The mode algebra of this Kac-Moody algebra is the loop algebra of Ham(C2), which is

Ham(C2)[z, z−1] = C[v1, v2, z, z
−1] (4.23)

under the Poisson bracket using the Poisson tensor ∂v1∂v2 . A basis of this Lie algebra is
given by the expressions

w[m,n, k] = vm1 v
n
2 z

k, (4.24)

and these have the commutation relations

[w[m,n, k], w[r, s, l]] = (ms− nr)w[m+ n− 1, r + s− 1, k + l]. (4.25)

Let us compare to this to what we find from Poisson BF theory. There, we are
interested in the gauge transformations on a patch C× × C2 which preserve the vacuum
field configuration H = 0, β = 0.

The infinitesimal gauge transformations of H are precisely the Lie algebra (4.23).
There are also the gauge transformations associated to the field β, which form the vector

space C[v1, v2, z, z
−1]. These commute with each other and live in the adjoint representation

of Ham(C2)[z, z−1].
16See also [39] for a discussion of the quantum deformations of the algebra in the presence of non-minimal

couplings, and how the deformations differ from W∞.
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In sum, the Lie algebra of gauge transformations consists of the mode algebra of
the chiral algebra found in [4], together with a copy of its adjoint representation. As in
the gauge theory case, additional elements in our Lie algebra correspond to states of the
opposite helicity.

We can build a chiral algebra whose mode algebra is this enlarged (by the copy of the
adjoint) Lie algebra, just as before. It consists of conformal primaries

w[r, s], w̃[r, s] (4.26)

where w[r, s] has spin 2− r/2− s/2, w̃[r, s] has spin −2− r/2− s/2, and they satisfy the
OPEs

w[m,n](0)w[r, s](z) ∼ 1
z

(ms− nr)w[m+ r − 1, n+ s− 1](0)

w[m,n](0)w̃[r, s](z) ∼ 1
z

(ms− nr)w̃[r, s](0)

w̃(0)w̃[r, s](z) ∼ 0.

(4.27)

We will explain how to derive these OPEs directly from twistor space in section 7.

4.3 Including the axion

As we have seen, to cancel the anomaly on twistor space we need to introduce an axion
field. Here we show how to enlarge the gauge theory symmetry algebra by including the
axion contribution.

On twistor space, the gauge symmetry for the axion is given by a closed holomorphic
two-form. Working as above on a patch of the form C2×C×, with coordinates vi, z, we can
write a basis for the space of closed two-forms as

E[r, s, k] = 1
r + s

zkdzd(vr1vs2)

F [r, s, k] = d
(
zk

1
r + s+ 2(vr+1

1 vs2dv2 − vr1vs+1
2 dv1)

) (4.28)

As before, for fixed r + s, these transform in the representation of spin (r + s)/2 of sl2.
We can read the Lie brackets between the gauge theory symmetries and the axion

symmetries from the term
∫

tr(A∂A)η. To do this, we should interpret all fields in the
BV formalism, so that A ∈ Ω0,∗(PT, g). The generator of gauge symmetry for A is the
component in Ω0,0, and the anti-field to the generator for the gauge symmetry of B is the
component in Ω0,3. Using standard BV machinery, we determine that there are terms in
the Lie bracket whereby:

1. The commutator of a J with a J becomes the closed two-form symmetry, by

[J, J ] = (∂J ∧ ∂J) (4.29)

Here the colour indices are contracted with the Killing form, and we are viewing J
as a holomorphic function on C2 × C×. The right hand side is a closed two-form on
this space.
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The fact that there are two copies of ∂ on the right hand side is because the BV
anti-bracket for the η field involves a ∂, see for instance [32].

2. The commutator of a 2-form with a J yields a J̃ , by

[E, J ] = E ∧ ∂J
[F, J ] = F ∧ ∂J

(4.30)

where the right hand side is interpreted as in the J̃ part of the Lie algebra, which
consists of 3-form on C2 × C×.

In all of these expressions, we will find a factor of

λ̂g = λg

(2πi)3/2
√

12
. (4.31)

We can if we like absorb this factor into a redefinition of E,F and J̃ . In this section we
will keep it.

Let us now write the brackets out in components.
We find that

1
λ̂g

[Ja[r, s, k], Jb[t, u, l]] = Kabd(vr1vs2zk)d(vt1vu2 zl)

= Kabzk+l−1dz(tk − rl)vr+t−1
1 vs+u2 dv1

+Kabzk+l−1dz(uk − sl)vr+t1 vs+u−1
2 dv2

+Kabzk+l(ru− st)vr+t−1
1 vu+s−1

2 dv1dv2

= Kab(k(u+ t)− l(r + s))E[r + t, s+ u, k + l − 1]
+Kab(ru− st)F [r + t− 1, s+ u− 1, k + l]

(4.32)

Similarly, the commutator between J and E is given by
1
λ̂g

[Ja[r, s, k], E[t, u, l]] = 1
t+ u

zldzd(vt1vu2 )d(vr1vs2zk)

= 1
t+ u

zk+ldz(ts− ur)vt+r−1
1 vs+u−1

2 dv1dv2

= 1
t+ u

(ts− ur)J̃a[t+ r − 1, s+ u− 1, k + l].

(4.33)

Finally, the commutator between J and F is given by

1
λ̂g

[Ja[r, s, k], F [t, u, l]] = d
(
zl

1
t+ u+ 2(vt1vu2 εijvidvj)

)
d(vr1vs2zk)

= zk+l−1vr+t1 vs+u2 dzdv1dv2
k(t+ u+ 2)− l(r + s)

t+ u+ 2

= J̃a[r + t, u+ s, k + l − 1]k(t+ u+ 2)− l(r + s)
t+ u+ 2 .

(4.34)

From these commutators one can read off the OPEs. Our conventions are that the
modes Ja[r, s, k] are obtained as the modes 1

2πi
∮
zkdzJa[r, s] of the state Ja[r, s] in the
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chiral algebra, and similarly for the towers J̃ , E, F . From this we find that the term in the
JJ OPE which include the axion fields is the following:

1
λ̂g
Ja[r, s](0)Jb[t, u](z) = 1

z
Kab(ru− st)F [r + t− 1, s+ u− 1](0)

− 1
z
Kab(t+ u)∂zE[r + t, s+ u](0)

− 1
z2K

ab(r + s+ t+ u)E[r + t, s+ u](0).

(4.35)

To check that this gives the correct commutator, we compute the commutator[ 1
2πi

∮
z1

dz1z
k
1J

a[r, s], 1
2πi

∮
z2
zl2dz2J

b[t, u]
]
. (4.36)

This is computed by moving one contour past each other, as usual, leaving us with

1
2πi

∮
z1

dz1

∮
|w|=ε

dwzk1 (z1 + w)lJa[r, s](z1)Jb[r, s](z1 + w). (4.37)

Expanding the right hand side using the OPE and performing the contour integral over w
gives the desired commutator.

Similarly, the JE → J̃ and JF → J̃ OPEs are given by

1
λ̂g
Ja[r, s](0)E[t, u](z) = 1

z

(ts− ur)
t+ u

J̃a[t+ r − 1, s+ u− 1](0)

1
λ̂g
Ja[r, s](0)F [t, u](z) = −1

z
∂zJ̃

a[r + t, s+ u](0)− 1
z2

(
1 + r + s

t+ u+ 2

)
J̃a[r + t, s+ u](0)

(4.38)

We should emphasize that there is a tree level anomaly in the field theory on twistor
space coming from axion exchange, which cancels a one loop anomaly in the gauge theory
via a Green-Schwarz mechanism. This tells us that we should not expect a fully consistent
chiral algebra where we include the axion but do not quantum-correct the OPEs from the
gauge theory sector. The quantum chiral algebra is not fully understood. However, we
describe some corrections to the JJ and JJ̃ OPEs in section 7.3.

5 States from the point of view of twistor space

We complete our survey of basic aspects of the celestial/twistor correspondence by describing
how certain states on twistor space give rise bijectively to the states of negative conformal
dimension in 4d which generate conformal primary states of the form studied in [40].
We emphasize that our states capture the conformally soft modes of mostly-negative
integral conformal weights, rather than the principal series of [40].17 We will illustrate
this in the simplest example, though the relationship extends to the more general massless
4d/holomorphic twistor theories we are interested in.

17See [41] for a discussion of the relationships between these two bases.
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5.1 Preliminaries

Recall that we use holomorphic coordinates vi, z on twistor space. These are related to
coordinates xi on R4 by

v1 = x1 + ix2 + z(x3 − ix4)
v2 = x3 + ix4 − z(x1 − ix2).

(5.1)

If we fix z, then vi(z) are holomorphic functions on R4 in the complex structure determined
by z. They are also null and orthogonal, 〈vi(z), vj(z)〉 = 0.

In the celestial holography literature, an important role is played by a parameterization
of the space of complexified null momenta by a triple of complex numbers (ω, z, z). As
in [3, 19] we will treat z, z as independent, i.e. not require that z is the complex conjugate
of z. When we want to use real momenta in various signatures, we need to impose reality
conditions on ω, z, z.

We identify momenta (living in the dual R4) with vectors in R4 using the inner product.
Then, the formula for the null momentum p(ω, z, z) is

p(ω, z, z) = εω(−i− izz, 1− zz,−z − z,−i(z − z))
= ωεi (−v1(z) + v2(z)z)

(5.2)

where ε = ±1 indicates whether the particle is incoming or outgoing.
From this, we see that the parameter z used in the celestial holography literature is the

same as the coordinate z on the twistor CP1. From the point of view of twistor space, the
coordinate z has a quite different interpretation. The fibre over z ∈ CP1 in PT is a copy of
C2, and z is coordinate on the projectivization of this C2, i.e. a coordinate on a different
CP1. That is, z can be understood as v2/v1.

Thus, from the twistor perspective, treating the parameters called z and z in the
celestial holography literature as complex conjugate is very unnatural. To avoid confusion,
in this section in what follows we will tend not to use the symbol z, and instead use λ:

λ := z. (5.3)

In celestial holography, one considers states which are conformal primaries under the
SL2 rotating the celestial sphere. These are obtained as a Mellin transform of the usual
basis of states. For a scalar field theory [40], a state of dimension ∆ is an expression of
the form

〈p(z, λ), x〉−∆ = (−v1(z) + v2(z)λ)−∆ . (5.4)

5.2 States on twistor space

We would like to explain how the basis of states described in [40] appears in a natural way
by writing states in terms of twistor space. To explain this point, we will work with the
very simplest example of the twistor correspondence: a free scalar field theory φ on R4.

As reviewed in section 2, this corresponds on twistor space to a free holomorphic
Chern-Simons theory. The fundamental field is

A ∈ Ω0,1(PT,O(−2)) (5.5)
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i.e. an Abelian holomorphic Chern-Simons gauge field twisted by O(−2). The Lagrangian is∫
A∂A (5.6)

(which makes sense, because A∂A is a (0, 3) form with values in O(−4), and O(−4) is the
canonical bundle of twistor space). A is subject to gauge transformations A 7→ A + ∂χ,
where χ is a section of O(−2).

The space of solutions to the equations of motion of this theory, modulo gauge, are

H1
∂
(PT,O(−2)). (5.7)

As we reviewed, this is the space of harmonic functions φ on R4 which are entire analytic
functions of x1, . . . , x4.

A single-particle on-shell state is a solution to the equations of motion, and so can
be represented by a ∂ closed (0, 1) form on PT, twisted by O(−2). We can build states
localized along the complex surface z = z0 in PT by the expression

dzδz=z0(v1 + λv2)n. (5.8)

(We include dz to emphasize that this is a section of O(−2)).
When we translate this into states of a free scalar field, by integrating over the z0 plane,

we simply get
(v1(z0) + λv2(z0))n. (5.9)

These states are precisely the standard basis of conformal primary states!
The states on twistor space have a natural action of the Virasoro algebra, coming from

holomorphic vector fields on the z plane. Under these transformations, vi transform as
(dz)1/2. Explicitly,

Lk = −zk+1∂z −
k + 1

2 zkvi∂vi . (5.10)

The states on twistor space (5.8) are conformal primaries: after shifting z to z − z0 they
are annihilated by Lk for k > 0, and are of conformal dimension −n/2.

In sum:

Proposition 5.2.1. There is a bijection between

1. Conformal primary states of conformal dimension n ≤ 0, at z = z0.

2. Conformal primary states on twistor space of conformal dimension n/2.

5.3 States of positive conformal dimension

We can also elucidate the twistor space origin for states of positive conformal dimension.
Let us start by considering the states of conformal dimension 1. These are of the form

1
v1(z0) + λv2(z0) + ε

(5.11)
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where ε is a regulating parameter, introduced to ensure that this expression satisfies the
Klein-Gordon equation without a source term.

On twistor space, these states are represented by
1

v1 + λv2 + ε
dzδz=z0 . (5.12)

This expression does not satisfy the equations of motion, but it instead satisfies

∂
1

v1 + λv2 + ε
dzδz=z0 = dzδz=z0δv1+λv2=−ε. (5.13)

This field is therefore the field sourced by the operator∫
z=z0,v1=−λv2−ε

A, (5.14)

which is of course an Abelian holomorphic Wilson line.
One can ask why the field sourced by such a surface defect can be thought of as a state.

This is a rather delicate question, and depends on the signature. To understand this point,
we need to understand how the Penrose correspondence relating cohomology groups and
harmonic functions depends on the signature.

The standard formulation of the result is in terms of harmonic functions that extend
to all of C4:

H1(PT,O(−2)) = Harmonic functions on Euclidean space that analytically extend to C4.

(5.15)
In Euclidean signature, all harmonic functions extend analytically to all of C4. However,
in other signatures, there are harmonic functions which do not extend to all of C4. For
example, if we use Euclidean coordinates xi, so that t = ix1, then the expression

1
x1 + ix2 + ε

(5.16)

for ε real, is a harmonic function that extends meromorphically to C4. The pole in this
expression does not intersect the Lorentzian R3,1 where x1 is imaginary and x2, x3, x4 are
real. In Lorentzian signature, therefore, this expression satisfies the Klein-Gordan equation
without a source term. We can therefore think of it as a state. In Euclidean signature, by
contrast, there is a source term.

What this shows us is that a carefully chosen surface defect on twistor space can give
rise to a state in Lorentzian (or (2, 2)) signature but not in Euclidean signature. This will
happen if the location of the defect in PT does not intersect any of the CP1’s in PT which
correspond to points in Lorentzian R3,1 ⊂ C4.

Returning to the example of the state sourced by a holomorphic Wilson line at z = z0,
v1 + λv2 + ε = 0, the singular locus of the state it sources is the subset of C4 defined by

x1 + ix2 + z0(x3 − ix4) + λ(x3 + ix4)− λz0(x1 − ix2) + ε = 0. (5.17)

This will not intersect the Lorentzian locus where x1 is imaginary and x2, x3, x4 are real as
long as λ = −z0 and ε is real and non-zero.
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In sum, states of positive conformal dimension correspond to surface defects on PT,
where the surface defect lives on a non-compact surface C ⊂ PT whose parameters (λ, z0, ε)
satisfy these conditions.

These states furnish modules for the chiral algebra generated by the states of negative
conformal dimension, which correspond to the algebra generators. It would be interesting
to have a more complete understand of chiral algebra modules in terms of defects on
twistor space.

6 Celestial chiral algebras as boundary algebras

We have so far discussed celestial operators and states from a twistorial point of view,
leveraging the Penrose-Ward correspondence. In particular, we reproduced certain chiral
algebras on the celestial sphere, recently discovered from flat space scattering amplitudes in
the conformal basis, in terms of gauge symmetries of holomorphic theories on twistor space.
We would like to better understand some physical features of this 2d chiral algebra.

In the standard AdS/CFT correspondence, the chiral algebra of a two-dimensional
CFT is part of the algebra of operators living at the boundary of AdS3. Here we will explain
how to derive a similar picture for the celestial chiral algebras studied in [3, 4].

We will show that the celestial chiral algebras live at the boundary of a 3d theory on

R>0 × CP1. (6.1)

This theory is built by compactifying the field theory on the open subset

PT \ CP1 (6.2)

of twistor space to three dimensions. Locally, this open subset is (C2 \ 0) × C, with
coordinates vi, z where v1, v2 are not both zero. We can write this as

(C2 \ 0)× C = S3 × R>0 × C. (6.3)

We can then compactify to a theory on R× C along the unit three-sphere18

|v1|2 + |v2|2 = 1 (6.4)

to obtain our 3d theory.
It is very important to note, however, that even when we compactify the twistor

representation of self-dual gravity to three dimensions, we do not find a gravitational theory
on R>0 × CP1. In the non-linear graviton construction, the allowed diffeomorphisms on
twistor space preserve the coordinate z, and the fields in the theory do not include a
Beltrami differential varying the complex structure in the z direction.

Similarly, the celestial chiral algebra does not contain a stress tensor, which is a hallmark
of having a gravitational theory in the bulk. From this perspective, therefore, we cannot say

18We could also compactify along the unit three-sphere on R4, which in these coordinates is given by
|v1|2 + |v2|2 = (1 + |z|2)−1. This does not change anything essential in our analysis.
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that the celestial chiral algebra fits into a standard holographic dictionary. One may view
this bulk/boundary system as rather analogous to the Chern-Simons/WZW correspondence.

However, our three dimensional bulk theory is not topological. Rather, it is topological
in the radial direction R>0 and holomorphic in the CP1 direction. Such theories were
studied in [11, 42], and arise from supersymmetric localization of 3d N = 2 theories. When
the bulk theory is not topological, it implies that the boundary algebra does not have a
stress tensor: see [11] for details.

Because this theory is not topological, it is not correct to say that the celestial chiral
algebra is part of a two-dimensional CFT. It is the algebra of boundary operators of a
three-dimensional theory. This is a much more general class of chiral algebras, and includes
such degenerate chiral algebras as those with only non-singular OPEs.

6.1 Description of the bulk theory

Let us now describe the bulk 3-dimensional theory, whose boundary algebra is given by the
celestial chiral algebra. We will start with the theory for gauge theory, and then include
gravity. We will work on a patch in the z-plane, excluding z =∞.

We will start by describing the zero-modes of the theory obtained by reduction of
holomorphic BF theory from S3 × R>0 × C to R× C, and then incorporate the KK modes.
Because we are describing the zero modes we are only interested in the fields which are
invariant under the SU(2) rotating S3. We will prove the following result.

Proposition 6.1.1. The three dimensional theory arising from the zero modes of holomor-
phic BF theory on twistor space is the holomorphic topological theory of [11, 42], associated
to the supersymmetric localization of 3d N = 2 theory with Chern-Simons level 0 and
adjoint-valued matter.

To prove this, we will analyze field configurations on a patch of PT which are invariant
under the SU(2) under which the vi coordinates transform as a doublet. The coordinates
r = ‖v‖ and z, z are SU(2) invariant.

For each Lie algebra index a, the (0, 1) form field Aa on PT has three components. The
most general SU(2) invariant forms these three components can take are

Ara(z, z, r)∂r
Aza(z, z, r)dz

φa(z, z, r)
εijvidvj
r4 .

(6.5)

There is a single (adjoint valued) gauge parameter χ(z, z, r) which is invariant under
SU(2). Under this transformation, φS3

a transforms as a scalar in the adjoint representation,
and Ara, Aza transform as a partial connection:

δAra = ∂rχa + f bca χbA
r
c

δAza = ∂zχa + f bca χbA
z
c

δφa = f bca χbφc.

(6.6)

Under the SO(2) rotating the z plane, Aza transforms as a (0, 1) form and Ara as a scalar.
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However, φa does not transform as a scalar, as one might at first expect. This is because
vi transforms as (dz)1/2, so that vi transforms as (dz)−1/2: we find that φa has spin −1.

In a similar way, we can compute the zero modes of B. We will identify the canonical
bundle of twistor space with the bundle of quadratic differentials on the z-plane. Then, we
find that the zero modes of the field Ba ∈ Ω3,1(PT) are

ηra(z, z, r)(dz)2∂r

ηza(z, z, r)(dz)2dz

Ba(z, z, r)
εij(dz)2vidvj

r4

(6.7)

From this, we see that Ba transforms as an adjoint valued scalar of spin 1, and that η
defines a partial connection in the bundle of quadratic differentials.

Under the gauge transformation with parameter χ, the fields ηra, χza, Ba are all adjoint
valued scalars. There is an additional gauge symmetry, where the gauge parameter ψ is
adjoint valued and of spin 2, under which the fields transform as

δηra = ∂rψa

δηza = ∂zψa

δBa = 0.
(6.8)

To write the Lagrangian, we combine Ar, Az into a partial connection

A = Ardr +Azdz, (6.9)

and combine ηr, ηz into
η = ηrdr + ηzdz. (6.10)

The Lagrangian for holomorphic BF theory, when restricted to these zero modes,
becomes ∫

dzTr (BF (A) + ηdAφ) . (6.11)

This is precisely the field content, Lagrangian, and symmetries described in [11, 42] for the
supersymmetric localization of 3d N = 2 gauge theory with adjoint matter.

6.2 Including Kaluza-Klein modes

So far, we have only described the zero modes. When we include all the KK modes we get
an infinite tower of fields of the same type.

Let us describe the result. Including all KK modes, the three dimensional topological-
holomorphic theory associated to holomorphic BF theory on twistor space has fields

Aa[k, l] = Ara[k, l]dr +Aza[k, l]dz
ηa[k, l] = ηra[k, l]dr + ηza[k, l]dz
Ja[k, l] := Ba[k, l]
J̃a[k, l] := φa[k, l]

(6.12)
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(In anticipation of their identification with familiar chiral algebra generators, we have
renamed the Ba, φa fields, though one should keep in mind their identifications with
3d fields).

Here k, l are integers ≥ 0. Under the SU(2) which rotates S3, these expressions live in
a representation of spin (k + l)/2 and are weight vectors of weight (k − l)/2. Under the
SO(2) rotating the coordinate z, Aa[k, l] is of spin (k + l)/2, Ja[k, l] is of spin 1− (k + l)/2,
ηa[k, l] is of spin 2 + (k + l)/2, J̃a[k, l] is of spin −1− (k + l)/2.

Explicitly, we can expand certain six-dimensional field configurations in terms of these
fields as

Aa(v1, v2, r, z) =
∑

Aa[k, l]vk1vl2

+ J̃a[k, l]
1
k!

1
l!∂

k
v2∂

l
v1

εijvidvj
r4

B6d
a (v1, v2, r, z) =

∑
ηa[k, l]vk1vl2

+ Ja[k, l]
1
k!

1
l!∂

k
v2∂

l
v1

εijvidvj
r4 .

(6.13)

There are other fields in six dimensions. However, they are massive and do not propagate
in three dimensions and as such can be integrated out.

A detailed calculation of the KK reduction of holomorphic theories along spheres was
performed in [43]; we refer to that work for more details.

It is convenient to organize the KK modes into generating functions

Aa(v1, v2) =
∑
k,l≥0

vk1v
l
2Aa[k, l]

ηa(v1, v2) =
∑
k,l≥0

vk1v
l
2ηa[k, l]

Ja(v1, v2) =
∑
k,l≥0

v−l1 v−k2 Ja[k, l]

J̃a(v1, v2) =
∑
k,l≥0

v−l1 v−k2 J̃a[k, l].

(6.14)

where v1, v2 are an SU(2) doublet of spin 1/2. Note that Aa(v1, v2) defines a partial
connection on R>0 × C for the infinite-dimensional Lie algebra g[v1, v2]. We can view
J as living in the adjoint representation of g[v1, v2], and η, J̃ as living in the co-adjoint
representation, using the residue pairing against v−1

1 v−1
2 dv1dv2 to identify g[v−1

1 , v−1
2 ] with

the dual of g[v1, v2].
As before, there are two kinds of gauge transformations which we can also arrange into

generating functions:

χa(v1, v2) =
∑

vk1v
l
2χa[k, l]

ψa(v1, v2) =
∑

vk1v
l
2ψa[k, l].

(6.15)
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The gauge transformations are

δχAa(v1, v2) = dr∂rχa(v1, v2) + dz∂zχa(v1, v2) + f bca χb(v1, v2)Ac(v1, v2)
δχJ̃a(v1, v2) = f bca χb(v1, v2)J̃c(v1, v2)
δχηa(v1, v2) = f bca χb(v1, v2)ηc(v1, v2)
δχJa(v1, v2) = f bca χb(v1, v2)Jc(v1, v2)
δψηa(v1, v2) = dr∂rψa(v1, v2) + dz∂zψa(v1, v2).

(6.16)

In these expressions, when we multiply a polynomial in v1, v2 by a polynomial in v−1
1 , v−1

2
we drop any terms which involve any positive powers of either v1 or v2.

The Lagrangian is∫
r,z

∮
v1,v2

v−1
1 v−1

2 dv1dv2dz
[
Tr(J(v1, v2)F (A(v1, v2))) + Tr(J̃(v1, v2)dA(v1,v2)η(v1, v2))

]
.

(6.17)
We can expand this out terms of the components. We will write the terms components
involving J and A explicitly:∫

r,z
dz
(
δk=s,l=rJa[k, l]dAa[r, s] + fabcδk=n+s,l=m+rJa[k, l]Ab[m,n]Ac[r, s]

)
(6.18)

This theory is simply the holomorphic-topological theory of [11, 42], with gauge
symmetry given by the infinite dimensional Lie algebra g[v1, v2] and matter in the co-adjoint
representation g[v−1

1 , v−1
2 ].

Of course, as with all theories with an infinite number of fields, loop-level computations
can really only be done in the original six-dimensional context.

It is important to point out (as K. Zeng has explained to us) that this Lagrangian
acquires corrections coming from exchanges of the massive fields we have integrated out.
These corrections should be the bulk version of the quantum corrections to the chiral algebra
presented in section 7.3.

6.3 KK reduction of the non-linear graviton construction

Recall that Poisson BF theory on twistor space corresponds to self-dual gravity on R4.
Poisson BF theory is obtained by adding an interaction term to Abelian holomorphic
Chern-Simons theory, where the gauge field is twisted by O(2). Therefore the field content
of the theory on R>0×C is the same as that obtained from Abelian holomorphic BF theory,
except that some of the spins have been changed.

The fields are the following. From the field H on twistor space we get the fields

Ht[k, l] Hz[k, l] w̃[k, l] (6.19)

The fields Ht[k, l] and Hz[k, l] combine into partial connection on R×C of spin (k+ l)/2−1
under rotation of the z plane. The field w̃[k, l] is of spin −2− (k + l)/2.

From the field β on twistor space, we get towers of fields

βt[k, l] βz[k, l] w[k, l] (6.20)
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As before, βt[k, l] and βz[k, l] combine into a partial connection of spin (k + l)/2 + 3. The
field w[k, l] is of spin 2− (k + l)/2.

We can combine all these fields into generating functions, as before. We let Ham(C2)
be the Lie algebra of Hamiltonian vector fields on C2, under the Poisson bracket. Then, we
can view

H =
∑

vk1v
l
2H[k, l] (6.21)

as a partial connection on R × C for the Lie algebra Ham(C2). Note that Ham(C2) is a
graded Lie algebra, where the function vk1v

l
2 has charge (k + l)/2 − 1. The spin of the

components of the connection are given by this grading.
Similarly, we can view the fields β[k, l] as a partial connection with values in Ham(C2),

where the spin is shifted by 4 from that coming from the grading on Ham(C2).
Let Ham(C2)∨ be the linear dual of Ham(C2). Using the residue pairing we can write

an element of Ham(C2)∨ as a series in v−1
1 , v−1

2 :

Ham(C2)∨ = v−1
1 v−1

2 dv1dv2C[v−1
1 , v−1

2 ]. (6.22)

In this way, we can arrange the fields w̃[k, l] into a field valued in Ham(C2)∨, where the
spin is given by the natural grading on Ham(C2)∨, shifted by −3. The fields w[k, l] arrange
into a field valued in Ham(C2)∨, where the spin is shifted by 1 from that induced from the
grading on Ham(C2)∨.

Putting all this together, we find that the Lagrangian is∫
R>0×C

dz
〈
w, dH + 1

2εij∂viH∂vjH
〉

+
∫
R>0×C

dz 〈w̃, dβ〉+ 〈w̃, εij∂iH∂jβ〉 . (6.23)

There are, as before, two kinds of gauge transformations, with parameters χ and ψ, and
gauge transformations

δχH(v1, v2) = dr∂rχ(v1, v2) + dz∂zχ(v1, v2) + εij∂viχ(v1, v2)∂vjH(v1, v2)
δχw̃(v1, v2) = εij∂viχ(v1, v2)∂vj w̃(v1, v2)
δχβ(v1, v2) = εij∂viχ(v1, v2)∂vjβ(v1, v2)
δχw(v1, v2) = εij∂viχ(v1, v2)∂vjw(v1, v2)
δψη(v1, v2) = dr∂rψa(v1, v2) + dz∂zψ(v1, v2).

(6.24)

This Lagrangian, and these gauge transformations, are those for the partially-topological
theories of [11, 42] where the gauge group is the infinite dimensional Lie algebra Ham(C2)
and the matter lives in the co-adjoint representation Ham(C2)∨.

It can be convenient to write the Lagrangian in components:∫
R>0×C

dzw[k, l]dH[l, k] +
∫
R>0×C

dz 1
2(ms− nr)w[n+ s− 1,m+ r − 1]H[m,n]H[r, s]

+
∫
R>0×C

dzw̃[k, l]dβ[l, k] +
∫
R>0×C

dz(ms− nr)w̃[n+ s− 1,m+ r − 1]H[m,n]β[r, s].
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6.4 The boundary algebra for KK modes

Boundary algebras for holomorphic-topological theories were studied in [11]. Here we will
review these methods, and apply them to the partially topological theories described above.
We will find that it is an enlargement of the chiral algebra studied in celestial holography [3].

Since this is a first-order Lagrangian, the boundary conditions involve setting half the
fields to zero. In the 3d theory coming from holomorphic BF theory on twistor space, we
will ask that

ηa[k, l] = 0
Aa[k, l] = 0

(6.25)

at the boundary r =∞.
The remaining boundary operators, as studied in [11], are functions of the fields J̃a[k, l]

and Ja[k, l]. The generators of the chiral algebras are thus elements of the vector space
g[v1, v2]⊕ g[v1, v2].

In [11, 44] the boundary OPEs were computed, at tree level. We will reproduce the
calculation here. We will change coordinates and let s = 1/r, so that the boundary is
at s = 0. The bulk-boundary propagator for field theories of this type is discussed in
equations (5.42), (5.7) of [11].19 From these, we find that the field sourced by the operator
Ja[k, l] placed at s = 0, z = 0 is

Aa[l, k] = 3
16πi

zds− 1
2sdz

(‖z‖2 + s2)3/2
. (6.26)

All other field components are zero. Thus, the OPE can be computed by the Feynman
diagram with one external line labeled by the J-field:

Jb[k, l](0,0)Jc[m,n](z,0) = fabc

∫
z′,s

Ja[m+k,n+l](z′,s)dz′
(z′ds− 1

2sdz′)((z′−z)ds− 1
2sdz′)

(‖z′‖2+s2)3/2(‖z−z′‖2+s2)3/2

= fabc

∫
z′,s

Ja[m+k,n+l](z′,s)dz′
1
2zsdsdz′

(‖z′‖2+s2)3/2(‖z−z′‖2+s2)3/2

= 1
2f

a
bcz

∫
z′,s

Ja[m+k,n+l](z′,s) dzdsdz′

(‖z′‖2+s2)3/2(‖z−z′‖2+s2)3/2

(6.27)

(We have absorbed factors of π into normalization of the operators). To perform the integral
on the last line, we Taylor expand J [m+ k, n+ l](z′, s) as a series in z′, z′, s. It is easy to
check for all terms except the constant term, the integral has no singularities as z → 0.
Therefore, the OPE is computed by replacing Ja[m+ k, n+ l](z′, s) by Ja[m+ k, n+ l](0, 0),
giving

1
2f

a
bczJa[m+ k, n+ l](0, 0)

∫
z′,s

dsdz′

(‖z′‖2 + s2)3/2(‖z − z′‖2 + s2)3/2
(6.28)

19Actually, there is a small typo in the expression for the propagator which we correct.
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It remains to compute the integral∫
z′,s

sdsdzdz′

(‖z′‖2 + s2)3/2(‖z − z′‖2 + s2)3/2
(6.29)

which one can see by dimensional reasons is a non-zero multiple of 1
‖z‖2 . The precise constant

is unimportant, as it can be absorbed into a redefinition of the operators Ja[m,n]. We have
thus found that

Jb[k, l](0)Jc[m,n](z) ∼ 1
z
fabcJa[k +m, l + n]. (6.30)

This matches the OPE for celestial symmetries of gauge theory computed in [3].
In a similar way, we get the OPE

J̃b[k, l](0)Jc[m,n](z) ∼ 1
z
fabcJ̃a[k +m,n+ l](0). (6.31)

6.5 Gravitational theory

For the gravitational theory, the computation is almost identical, except that the derivatives
with respect to vi change the result slightly. Recall that (in components) the interaction
term is ∫

R>0×C
dz 1

2(ms− nr)w[n+ s− 1,m+ r − 1]H[m,n]H[r, s] (6.32)

This leads to the OPE

w[m,n](0)w[r, s](z) ' 1
z

(ms− nr)w[m+ r − 1, s+ n− 1](0). (6.33)

This is the Kac-Moody algebra for the Lie algebra of Hamiltonian vector fields on the plane,
as found in [4].

Similarly, the interaction∫
R>0×C

dz(ms− nr)w̃[n+ s− 1,m+ r − 1]H[m,n]β[r, s] (6.34)

leads to the OPE

w̃[m,n](0)w[r, s](z) ' 1
z

(ms− nr)w̃[m+ r − 1, n+ s− 1]. (6.35)

7 The chiral algebra by Koszul duality

We have shown how gauge symmetries of theories on twistor space lead naturally to the
celestial chiral algebras of [3, 4]. In this section, we will explain how to reproduce these
chiral algebras using an alternative and calculationally efficient method.

The underlying idea is very simple. Consider a situation where one is trying to couple
two systems together along a common lower-dimensional submanifold in spacetime. One can
determine constraints on the space of possible couplings imposed by the requirement that
the coupling is gauge invariant. At the classical level, gauge transformations will take the
form of Hamiltonian symplectomorphisms, so it is perhaps unsurprising that there are many
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ways to recover algebras such as the loop algebra of w1+∞. In holographic contexts, one
starts with a coupled “bulk/defect” system of closed strings or supergravity, and branes. The
program of twisted holography leverages this setup, as well as the cohomological properties
of twisted theories, to deduce results about the AdS/CFT dual pairs that result from
top-down string theory models [11, 45]. Very loosely speaking, we think of the bulk/defect
system in a holographic setup as a bulk/boundary dual pair.20 Ultimately, we conjecture
that twisted holography in twistor space provides the origin for the aspects of the celestial
holography program governed by universal, asymptotic symmetries. Following [11], this
point of view then has an immediate connection to Koszul duality. In this section, we will
simply review the computation of [11] that produces Ham(C2) and remark on a twisted
holography interpretation in section 13.

One proceeds in this approach order-by-order in perturbation theory (holographically,
in a 1/N -expansion) to compute the constraints imposed by gauge-invariance: one must
evaluate the BRST variation of Feynman diagrams representing the bulk/defect coupling
at a given order and demand that the total BRST variation vanish. For a given bulk
theory, this imposes nontrivial constraints on a putative defect operator product. Quantum
mechanical effects will in general deform the classic gauge algebras; see [46] for the result
when coupling 4d Chern-Simons theory to a topological line defect.

As explained in [11, 47], the algebras resulting from these constraints can be encapsulated
mathematically by the notion of Koszul duality. We refer to [12] for a recent exposition
and more details on this point of view.

Let us now review the setup and computations of [11]. The celestial symmetry algebra
for gauge theory will come about when considering the coupling of 6d holomorphic Chern-
Simons theory to a 2d holomorphic21 defect, while the symmetry algebra for gravity will
come about when coupling 6d Poisson BF theory to a 2d holomorphic defect. Because the
computations are so similar, we will consider them in parallel. In both cases, we will work
at tree-level to start.

Consider holomorphic Chern-Simons theory (the worldvolume theory of Euclidean
D-branes in the B-twist) with Lie algebra g on C× C2. The Lagrangian can be expressed
in terms of a partial connection A ∈ Ω0,1(C3, g), with equations of motion F 0,2(A) = 0.

We consider a defect along a holomorphic plane Cz ⊂ C3
z,v1,v2 , which we will endow with

holomorphic coordinate z. Our analysis is purely local, so this copy of C should be viewed
as an open subset of the twistor fiber CP1

z in PT; for this local analysis, considering flat
spacetimes suffices. Next, as argued in [11], one can consider the most general bulk/defect
coupling ∑

k1,k2≥0

∫
Cz

1
k1!k2!∂

k1
v1 ∂

k2
v2A

a
z̄Ja[k1, k2] (7.1)

in terms of some general defect operators Ja[k1, k2].
20In examples of the AdS/CFT correspondence, one must incorporate into this setup backreaction of the

D-branes on the closed string modes, done in the twisted context in [11, 45], but to recover the celestial
algebras pertinent to flat space holography, we can avoid this complication.

21A 2d defect on C is holomorphic if antiholomorphic translations ∂z̄ are trivial in the cohomology of the
(twisted) BRST-differential.
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J

J

Az

Az

J

Az

Az

Figure 3. Cancellation of the gauge anomaly of these two diagrams leads to the OPEs of the
currents J [k1, k2].

The tree-level chiral algebras come from requiring that the BRST variation of the
Feynman diagrams in figure 3 for gauge theory (we refer the reader to [11] for the details).

The resulting algebra is

Jb[r, s](0)Jc[k, l](z) ∼ 1
z
fabcJa[r + k, s+ l](z) (7.2)

which is nothing but the algebra of holomorphic maps into g.
One of the nice things about the Koszul duality point of view is that, even at tree-level,

this perspective automatically places in the chiral algebra generators in the basis that makes
manifest the large symmetry algebra they generate.

We have stated the result for holomorphic Chern-Simons theory. The same analysis for
holomorphic BF theory gives us a second set of generators, J̃ [k, l], which couple the field B.
The OPEs can be read from the requirement of gauge invariance, as above. We find the
familiar OPEs

Jb[r, s](0)Jc[k, l](z) ∼ 1
z
fabcJa[r + k, s+ l](0)

Jb[r, s](0)J̃c[k, l](z) ∼ 1
z
fabcJ̃a[r + k, s+ l](0).

(7.3)

For Poisson BF theory, which is the twistor space uplift of self-dual gravity, we
find something very similar. As before, we describe the fields of Poisson BF theory as
H ∈ Ω0,1(PT,O(2)) and β ∈ Ω3,1(PT,O(−2)). If we consider the universal one-dimensional
holomorphic theory that can couple to Poisson BF theory, we have operators w[r, s] that
couple to the normal derivatives of H, and w̃[r, s] that couple to the normal derivatives of β.

The OPEs, which can again be read off from gauge invariance, are

w[r, s](0)w[k, l](z) ∼ 1
z

(rl − ks)w[r + k − 1, s+ l − 1](0)

w[r, s](0)w̃[k, l](z) ∼ 1
z

(rl − ks)w̃[r + k − 1, s+ l − 1](0)
(7.4)

These OPEs can be computed by a small variant of the computations of [11], section 7.3
(see in particular Theorem 7.3.1).
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7.1 States and generators of the Koszul dual algebra

For any holomorphic field theory on twistor space, there is a natural bijection

Single particle conformal primary states ←→ Conformal primary generators of the chiral
algebra

We can see this by considering equation (7.1), describing the universal chiral algebra we
can couple along a CP1 in twistor space. We get a state in the vacuum module of this
chiral algebra by studying the chiral algebra in the presence of an on-shell background field
which is localized at z = 0. Such a background field is a single-particle state in the celestial
CFT, as we saw in section 5. If this state is a conformal primary, then so is the state in the
chiral algebra.

In this way, we find there is a natural map from single-particle conformal primary states
to the generators of the chiral algebra. It is easy to see that this is a bijection. Perhaps this
is best illustrated with the example of holomorphic Chern-Simons theory. There, conformal
primary states are expressions like

A = δz=0v
k1
1 v

k2
2 ta. (7.5)

These get sent to the generators Ja[k1, k2] of the algebra.
These twistor representatives were also recently employed in [48, 49] to obtain the

celestial OPEs from a worldsheet computation in the ambitwistor string. It would be
desirable to understand the relationship between these two perspectives in four dimensions.

7.2 The axion from Koszul duality

We have already computed the contribution of the axion fields to the chiral algebra by
considering gauge transformations. Here we will redo the computation at tree level by
considering Koszul duality. As we have seen, the axion field contributes two towers E[r, s]
and F [r, s]. Here we will derive these operators and their OPEs from the point of view of
Koszul duality.

The derivation in this case is a little more complicated than that for gauge theory
because the fundamental field is a constrained field: it is a (2, 1)-form η constrained to
satisfy ∂η = 0. Perhaps the simplest way to proceed is to work instead with a (1, 1) form α

with ∂α = η. This (1, 1) form is subject to the usual (1, 0)-form gauge symmetries, where
the gauge variation is given by the ∂ operator. In addition, we have a gauge variation by a
(0, 1) form, so that the gauge invariant quantity is η = ∂α.

We let αi, αz be the three (0, 1)-form components of α. Throughout, we will use
the notation Dr,s = 1

r!s!∂
r
v1∂

s
v2 . The most general coupling invariant under the ∂ gauge

transformations is ∫
z
Dr,sαie

i[r, s] +Dr,sαzez[r, s]. (7.6)

This must be invariant under the (0, 1) form gauge transformation α 7→ ∂γ, for γ ∈ Ω0,1(PT).
This only happens if∫

z
Dr,s∂v1γe

1[r, s] +Dr,s∂v2γe
2[r, s] +Dr,s∂zγez[r, s] = 0. (7.7)
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The last term can be integrated by parts. Inserting γ = δz=z0v
r
1v
s
2, we find the identity

re1[r − 1, s] + se2[r, s− 1] = ∂zez[r, s] (7.8)

Thus, the operators ei[r, s] are not independent, a linear combination of them can be
expressed as a descendent of ez[r, s].

Let us find the linear combination of these operators that match with the notation in
section 4.3. There, we defined E[r, s] and F [r, s] by certain explicit closed 2-forms, which
were presented as the de Rham operator applied to ∂ closed (1, 1)-forms:

E[r, s] = −∂
( 1
r + s

dzδz=0(vr1vs2)
)

F [r, s] = ∂

(
δz=0

1
r + s+ 2(vr+1

1 vs2dv2 − vr1vs+1
2 dv1)

) (7.9)

The corresponding operators are those obtained by replacing α by these (1, 1)-forms in
equation (7.6). We find

E[r, s] = − 1
r + s

ez[r, s]

F [r, s] = 1
r + s+ 2 (e2[r + 1, s]− e1[r, s+ 1]) .

(7.10)

The linear relation (7.8) tells us that these form a basis for the generators of the Koszul
dual algebra; except that we miss ez[0, 0] (because E[r, s] is only defined for r + s > 0).

The relation (7.8) tells us that ez[0, 0] is a topological operator, and so it must have
trivial OPE with all other operators. The algebra does not change in a significant way if we
include or remove ez[0, 0], and in fact it is most natural to remove it. This is because it is
the operator coming by coupling to the bulk theory in the background where the (1, 1)-form
is dzδz=0. This (1, 1) form is closed, so we do not see it if we view the (2, 1) form as our
fundamental field.

One can reproduce the OPEs found in section 4.3 by studying the BRST variation of
these couplings directly. It is automatic that the Koszul duality approach will give the same
answer, because at tree level the mode algebra of the Koszul dual algebra always reproduces
the Lie algebra of gauge transformations that preserve the vacuum field configuration.

Let us illustrate this with a particularly simple example, in which we supress the factor
of λg

2(2πi)3/2 present in the axion coupling
Let us consider the BRST variation of the coupling∑

m,n

∫
z′′
J̃a[m,n](z′′)Dm,nB

a(z′′) (7.11)

in the presence of an axion. One of the terms in the BRST variation of B is

δBRSTB
a ∼ εij(∂iχa)ηjz + εij(∂iAa)γjz

εij∂iχ
a∂jαz + εij∂iA

a∂jθz.
(7.12)

where γ ∈ Ω2,0 is the gauge transformation which shifts η by ∂γ, and θ ∈ Ω1,0 is the gauge
transformation shifting α by ∂θ.
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We can insert this into the path integral, giving∑
m,n

∫
z′′
J̃a[m,n](z′′)Dm,n (εij∂iχa∂jαz + εij∂iA

a∂jθz) . (7.13)

This expression involves the ghost field χ, which shifts A by ∂χ, and the ghost θ, shifting α
by ∂θ.

As such, this can be cancelled by the linearized BRST variation of the bi-local expression
involving the coupling of the gauge field A and the (1, 1)-form α:∑

r,s

∑
k,l

∫
z,z′

Ja[r, s](z)Dr,sA
a
z̄(z)ez[k, l](z′)Dk,lαz(z′), (7.14)

using equations (7.6) and (7.10). As usual, requiring that the BSRT variation (7.14) cancels
with that of (7.12) will constrain the OPEs between the E and Ja towers.

The linearized BRST variation of equation (7.14) replaces Aa by ∂χa, or α by ∂θ.
Inserting this gives∑

r,s

∑
k,l

∫
z,z′

Ja[r, s](z)ez[k, l](z′)
(
Dr,sA

a
z̄(z)Dk,l∂θz(z′) +Dr,s∂χDk,lαz(z′)

)
(7.15)

Integrating by parts then gives the required equality for BRST invariance:

∑
r,s

∑
k,l

∫
z,z′

∂̄z̄′(Ja[r, s](z)ez[k, l](z′))Dr,sχ
a(z)Dk,lαz(z′)

=
∑
m,n

∫
z′′
J̃a[m,n](z′′)Dm,n(εij∂iχa∂jαz)(z′′), (7.16)

which must hold for general field configurations χ, αz.
To constrain the OPE we can therefore insert test functions (suppressing the Lie algebra

data for ease of notation)

χ = G(z, z̄)vr1vs2 (7.17)
αz = H(z, z̄)vk1vl2 (7.18)

where G,H are both arbitrary functions on the defect. Inserting the test functions into (7.16)
for arbitrary G,H yields the following equality on integrands:

∂̄z̄′(Ja[r, s](z)ez[k, l](z′)) (7.19)
= δz=z′,z̄=z̄′(lr − ks)J̃a[k + r − 1, l + s− 1](z) (7.20)

which, translating from ez[k, l] to E[k, l] and re-introducing the factor of λ̂g gives exactly
the desired OPE:

Ja[r, s](0)E[k, l](z) = λ̂g
1
z

(lr − ks)
k + l

J̃a[k + r − 1, l + s− 1](0). (7.21)

The other axion contributions to the OPEs can be extracted analogously.
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J

J

Az

Az

Figure 4. This diagram has a gauge anomaly leading to a quantum correction of the chiral algebra.

7.3 Quantum corrections to the Koszul dual algebra

The Koszul duality point of view can also be used to readily obtain loop-level corrections to
OPEs. Of course, any attempt to quantum-correct the Koszul dual algebra will run into
difficulties if the theory is anomalous on twistor space. For anomalous theories, we can still
perform leading-order quantum corrections to the algebra. However, we do not expect that
this persists to all orders.22

For 5-dimensional cousins of Chern-Simons theory, this was studied in [50]. A related
analysis appears in the forthcoming work of [51]. We state the result in [11]. We find that
the diagram in figure 4 is not invariant under gauge transformations.

The gauge anomaly is proportional to

~
∫
w1=w2=0

εij (∂wiAaz) (∂wj cb)Kfef caef
d
bfJcJd + . . . (7.22)

where the ellipses indicate terms with more than two derivatives applied to the bulk fields
and Kfe is the Killing form on g. We would like this anomaly to be canceled by the first
Feynman diagram in figure 3. A necessary condition for this to happen is that the classical
OPE of the operators J [1, 0] and J [0, 1] acquires a quantum correction:

Ja[1, 0](0)Jb[0, 1](z) ' 1
z
f cabJc[1, 1] + ~

1
z
Kfef caef

d
bfJc[0, 0]Jd[0, 0]. (7.23)

If we have such a quantum-corrected OPE, then the gauge variation of the expression∫
z1,z2

Ja[1, 0](z1)∂w1A
a
z(z1)Jb[0, 1](z2) (7.24)

22More formally, only for anomaly free theories do we expect these quantum corrections to define a flat
family of vertex algebras. “Flat” means that the family of vertex algebras does not jump in size when we
quantize. We expect that in the anomalous cases, the quantum-corrected OPEs will force some states to
vanish that do not vanish in the classical limit.
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J̃

J

Az

Az

J̃

J̃

Az

Bz

Figure 5. These diagrams quantum correct the chiral algebra for holomorphic BF theory.

gives us, at order ~,

~
∫
w1=w2=0

εij (∂wiAaz) (∂wj cb)Kfef caef
d
bfJcJd (7.25)

which cancels the anomaly from the diagram in figure 4.
This relation is particularly powerful in the case that the indices a, b correspond to

commuting elements of g. Then, classically, Ja[1, 0], Jb[0, 1] has a non-singular OPE, but it
acquires polar part at the quantum level.

In the case of holomorphic BF theory, the relation coming from this diagram is different.
This is because the propagator connects A with B. The corresponding diagrams are shown
in figure 5.

Let us assume that the Lie algebra elements ta, tb corresponding to the external lines
commute with one another. Then, these diagrams give rise to quantum corrections

Ja[1, 0](0)Jb[0, 1](z) ' C 1
z
Kfef caef

d
bf (J̃c[0, 0]Jd[0, 0] + J̃d[0, 0]Jc[0, 0])

Ja[1, 0](0)J̃b[0, 1](z) ' C 1
z
Kfef caef

d
bf J̃c[0, 0]J̃d[0, 0]

(7.26)

Here C is a constant we have not determined.
Computing the analogous corrections for the gravitational theory should be quite

interesting; in that setting, one must contend with the anomaly of Poisson BF theory which
is not yet understood.

It will also be interesting to compute higher-loop corrections to the gauge theory chiral
algebra, including the axion field. We plan to pursue this in future work.

8 Conformal blocks and local operators

So far, we have constructed a chiral algebra associated to any local holomorphic QFT on
twistor space. In this section, we will show how the vector space of conformal blocks of
the chiral algebra is isomorphic to the space of local operators of the 4d theory. We will
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consider a local operator inserted at the origin of R4 and subsequently suppress the position
dependence of the operator O := O(0) and its corresponding conformal block 〈O|. We
discuss infinitesimal translations of the local operator below.

Since the term conformal blocks is somewhat overloaded (with slightly different meanings
in the math and physics literature), let us explain precisely what we mean. Let C be any
vertex algebra, which we do not assume has a stress-energy tensor. We will assume that the
algebra C is the algebra of local operators at the boundary of a three-dimensional partially
holomorphic theory, on R>0 × C, with coordinates r and z. We will assume that the bulk
3d theory has a stress-energy tensor, but that the boundary algebra may not; this means
that C has an action of the Virasoro algebra but that it does not come from a Virasoro
current. As we have seen, this is the case for the algebras relevant to celestial holography.
We will assume the algebra C lives at r =∞.

We will define the conformal blocks of C to be the Hilbert space of the 3d theory on
R>0 × S2, at r = 0. If ψ is a conformal block (with this definition) then, for any collection
Oi of local operators in the algebra C, we can define

〈ψ | O1(z1) . . .On(zn)〉 . (8.1)

This is a correlator in the bulk-boundary system on [0,∞]× CP1, where at 0 we place the
state ψ, at ∞ we have the boundary condition giving rise to the algebra C, and we insert
the operator Oi(zi) at points zi ∈ ∞× CP1.

Let us explain how conformal blocks of the Koszul dual vertex algebra can be matched
with local operators of the 4d theory. Consider any holomorphic theory on twistor space.
Let PT′ denote the complement of the CP1 at the origin in PT. We have a double fibration

R4 \ 0 = R>0 × S3 ←− PT′ = S3 × CP1 × R>0 −→ R>0 × CP1 (8.2)

The left-hand arrow is the standard CP1 fibration of twistor theory, and the right-hand
arrow is the S3 fibration we used to build our 3d theory.

We are starting with a field theory on PT′, and performing KK reduction (including all
KK modes, if they are present) along the left or right arrows. When we do this, the Hilbert
space of the lower-dimensional theory is the same as that of the theory on PT′, since we
have not really changed anything:

H(S3 × CP1) = H(S3) = H(CP1). (8.3)

In each case, this is the Hilbert space at the locus where the radial direction r is zero,
working in radial quantization.

The Hilbert space H(CP1) of the 3d theory is, by definition, the space of conformal
blocks. The Hilbert space H(S3) is the space of local operators in the theory on R4, since it
is obtained by radial quantization. It is important to note here that compactifying from PT
to R4 does not introduce KK modes, so we find the space of local operators of an ordinary
4d theory.

In this way, by considering compactification of the theory on twistor space in two
different ways, we have identified conformal blocks with local operators.

For the rest of the section we will give several different perspectives on this result.
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8.1 Defining conformal blocks axiomatically

At a more abstract level, following Beilinson and Drinfeld [52], we can define the vector
space of conformal blocks in an axiomatic way. We say that a conformal block ψ is the
data needed to define correlation functions for elements of the algebra C. Let C to mean
the vacuum module of the vertex algebra, and let Cz be this module placed at z ∈ CP1 (the
vacuum module naturally forms a bundle on CP1). Beilinson-Drinfeld’s definition takes a
conformal block to be the data of a linear map

ψ : Cz1 ⊗ · · · ⊗ Czn → C
O1 ⊗ · · · ⊗ On 7→ 〈ψ | O1(z1) . . .On(zn)〉

(8.4)

These linear maps must satisfy all the properties expected for correlation functions:

1. First, 〈ψ | O1(z1) . . .On(zn)〉 must be rational functions of zi.

2. Secondly, as zi approaches zj , we can replace Oi(zi)Oj(zj) by the OPE

Oi(zi)Oj(zj) ∼
∑
k>0

(zi − zj)−kO′ij,k(zi) (8.5)

in the correlator. We write the expression for i = 1, j = 2 for simplicity:

〈ψ | O1(z1) . . .On(zn)〉 =
∑
k>0

(z1 − z2)−k
〈
ψ | O′12,k(z1)O3(z3) . . .On(zn)

〉
+ expressions regular in z1 − z2

(8.6)

3. Finally, differentiating the correlator with respect to zi is the same as replacing the
operator Oi by L−1Oi.

This definition is the linear dual of Beilinson-Drinfeld’s factorization homology. Factorization
homology23 is the universal vector space in which correlation functions can take values. An
element of its linear dual gives a set of correlation functions valued in C.

8.2 Explicitly matching conformal blocks with local operators

To indicate how this axiomatic definition works in practice, let us consider a very simple
example: a free scalar field theory on R4. The corresponding theory on PT is an Abelian
holomorphic Chern-Simons theory, where the gauge field lives is A ∈ Ω0,1(PT,O(−2)). We
will identify sections of the bundle O(−2) with functions which vanish to order 2 at z =∞.
If we do this, then the Lagrangian on twistor space is∫

A∂Adv1dv2dz (8.7)

where, as before, vi are linear functions on the O(1) fibres on twistor space, that have a
first order pole at z =∞.

23It is important in some cases that Beilinson-Drinfeld’s theory is homological in nature, and so produces
a graded vector space. We have described H0 of their construction. The (linear duals of) parts of this vector
space in other degrees will correspond to operators in the 4d theory of non-zero ghost number.
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In this situation, the Koszul dual chiral algebra is Abelian, generated by conformal
primaries J [k, l] with trivial OPEs. Because J couples to A by∫

AdzJ [0, 0] (8.8)

the zero of order 2 in A at ∞ cancels the pole in dz. Therefore, the correlation functions of
J [0, 0](z) only have poles at the location of the other operators, and not at z =∞. More
generally, the correlation functions of J [k, l](z) can have a pole of order k + l at ∞.

Under the correspondence between local operators and conformal blocks, the operator
O with O(φ) = φ(0) corresponds to the conformal block where

〈O | J(z)〉 = 1. (8.9)

To understand how to relate other operators to conformal blocks, we need to know how
to differentiate conformal blocks with respect to the space-time coordinates ui, ui (where
ui are holomorphic with respect to the complex structure associated to z = 0, and ui with
respect to the complex structure associated to z =∞).

Differentiation of conformal blocks comes from a symmetry of the vertex algebra
associated with the action of the translation symmetry C4 on twistor space. The vector
fields ∂ui , ∂ui on R4 become the vector fields

∂u1 = ∂v1

∂u2 = ∂v2

∂u1 = −z∂v2

∂u2 = z∂v1

(8.10)

(where on the right hand side, we have dropped anti-holomorphic vector fields whose action
on everything is BRST exact; see (5.2.3) of [7] for the complete expressions).

From the equation for how the fields B, A on twistor space couple to the generators
J [k, l], J̃ [k, l] of the Koszul dual algebra, we find that

∂v1J [k, l] = −kJ [k − 1, l]
∂v2J [k, l] = −lJ [k, l − 1].

(8.11)

This means that, if O as above is the operator which measures φ(0), the operators measuring
the derivatives of φ give rise to the correlation functions

〈∂u1O | J [1, 0]〉 = 1
〈∂u2O | J [0, 1]〉 = 1
〈∂u1O | J [0, 1]〉 = −z
〈∂u2O | J [1, 0]〉 = z.

(8.12)

Continuing in this vein, we note that this prescription is compatible with the equations of
motion, since

〈∂u1∂u1 | J [1, 1]〉 = −z
〈∂u2∂u2 | J [1, 1]〉 = z.

(8.13)
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8.3 Conformal blocks as Lie algebra cohomology

In this subsection we will use a result of Beilinson-Drinfeld [52] to give a mathematical
proof that conformal blocks of the chiral algebra match local operators of the corresponding
4d theory, at the classical level.

The argument is quite general, but we will illustrate the result for gauge theory without
the axion field, where our chiral algebra is built from J and J̃ . This chiral algebra is a
Kac-Moody vertex algebra built from a holomorphic bundle of Lie algebras on CP1, which
we now describe.

Give g⊕ g∨ its natural Lie bracket, where g∨ transforms in the coadjoint representation
of g and the bracket between two elements of g∨ vanishes. In the same way, we can make
g⊗ O ⊕ g∨ ⊗ O(−4) into a holomorphic bundle of Lie algebras on twistor space PT. There
is a natural map π : PT→ CP1, and we can push forward this bundle of Lie algebras to get
a sheaf L of Lie algebras on CP1:

L = π∗(g⊗ O ⊕ g⊗ O(−4)). (8.14)

As a sheaf on CP1, we have

L = (g⊗ O ⊕ g∨ ⊗ O(−4))⊗O Sym∗ (O(−1)⊕ O(−1)) . (8.15)

The chiral algebra built from J and J̃ is described in terms of L by a construction that
Beilinson-Drinfeld call the chiral envelope; it is a vertex algebra version of the universal
enveloping algebra of a Lie algebra. Concretely, this means the chiral algebra is a kind of
Kac-Moody algebra built from L, so that:

1. The mode algebra of the vertex algebra is the universal enveloping algebra UL(C×)
of sections of L on the punctured complex line C×.

2. The vacuum module of the vertex algebra is the induced module for the trivial module
of UL(C).

Beilinson-Drinfeld prove a general result about the cochain complex of (derived) con-
formal blocks in this context. To state the theorem, let us consider the Čech cohomology

H∗(CP1,L) (8.16)

of CP1 with coefficients in L. This is a graded Lie algebra.
Beilinson-Drinfeld show that24

conformal blocks = H∗Lie(H∗(CP1,L)) (8.17)

On the right hand side we have the Lie algebra cohomology of the graded Lie algebra
H∗(CP1,L).

24More precisely, there is a spectral sequence starting at the right hand side of the equation and converging
to conformal blocks, but in this case it degenerates.
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We would like to identify this with the space of local operators of self-dual gauge theory.
To do this, we will compute the cohomology groups H∗(CP1,L). Because L is built as a
sheaf push-forward from PT, we have

H∗(CP1,L) = H∗(PT, g⊗ O ⊕ g⊗ O(−4)). (8.18)

It is easy to see that
H0(PT, g⊗ O ⊕ g⊗ O(−4)) = g. (8.19)

Further, by the Penrose-Ward correspondence, we have

H1(PT,O) = {F ∈ Ω2
+(R4) | dF = 0}

H1(PT,O(−4)) = {B ∈ Ω2
−(R4) | dB = 0}.

(8.20)

Now let us compute the Lie algebra cohomology of H∗(CP1,L). This graded Lie
algebra is concentrated in degrees 0 and 1, and in degree 0 it is g. Therefore the Lie algebra
cohomology is

H∗(g, Sym∗(H1(CP1,L )∨). (8.21)

For any representation R of a simple Lie algebra g, the Lie algebra cohomology of g with
coefficients in R is

H∗(g, R) = RG ⊗H∗(g) (8.22)

where RG is the G-invariants. In particular,

H∗
(
g, Sym∗(H1(CP1,L )∨)

)
=
(
Sym∗(H1(CP1,L )∨

)G
⊗H∗(g). (8.23)

It follows from equation (8.20) that the symmetric algebra of the dual of H1(PT,L ) is
polynomials in the value of F aαβ , Ba

α̇β̇
and their derivatives, modulo the linearized equation

of motion:

Sym∗H1(PT,L )∨ = C[F a
α̇β̇
, ∂iF

a
α̇β̇
, . . . , Ba

αβ , ∂iB
a
αβ , . . . ]/

〈
Γαα̇i ∂iF

a
α̇β̇
,Γαα̇i ∂iB

a
αβ

〉
(8.24)

The right hand side consists of local operators, without imposing gauge invariance.
Gauge invariance here is equivalent to being invariant under the constant gauge

transformations G (as all expressions are gauge-covariant, if derivatives are taken to
be covariant).

Equation (8.23) tells us that the Lie algebra cohomology is, in ghost number zero,
the G-invariants of (8.24). This completes the proof that the Lie algebra cohomology of
H∗(CP1,L) is isomorphic to gauge-invariant local operators of self-dual gauge theory, in
ghost number zero.

8.4 Conformal blocks from a Čech picture

Next, let us discuss a Čech picture for conformal blocks, which connects closely with
Ward’s [22] description of self-dual gauge fields. We will use the sheaf L of Lie algebras on
CP1 introduced in the previous subsection.
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The Lie algebra L(C×) is the gluing data for solutions of self-dual gauge theory. More
precisely, let exp(L(C×)) be the group exponentiating L(C×). (It is isomorphic to the group
of holomorphic maps C2 × C× → G). Similarly, we can define exp(L(C0)) and exp(L(C∞))
as the groups associated to 0 and ∞.

The Penrose-Ward correspondence tells us that the space of complexified solutions to
the equations of motion of self-dual gauge theory on R4 is an open subset of the double
quotient

exp(L(C0))\ exp(L(C×))/ exp(L(C∞)). (8.25)

It is an open subset as we are exluding the locus corresponding to holomorphically non-trivial
bundles on CP1.

The space of local operators of the theory can be written as functions on the solutions
to the equations of motion. Since we are working perturbatively, we will replace the
space of solutions to the EOM by a formal neighbourhood of the trivial solution. To
do this, we will replace the group exp(L(C×)) by the formal group êxp(L(C×)), i.e. the
formal neighbourhood of the identity in the group. We will do the same for exp(L(C0)),
exp(L(C∞)). Then, the formal moduli space of solutions to the equations of motion is the
double quotient

ÊOM = êxp(L(C0))\êxp(L(C×))/êxp(L(C∞)). (8.26)

The vector space of local operators is then functions on this:

local operators = O(ÊOM). (8.27)

(To be precise, we should look at functions which are finite sums of functions which are
eigenvalues under the scaling action of C× on ÊOM. This corresponds to looking at
operators which involve only finitely many derivatives).

We would like to identify this with conformal blocks. To do this, we will introduce a
Čech description of conformal blocks, which might be familiar to some readers from the
study of conformal blocks of the WZW model. The algebra of operators on the theory C×

is the universal enveloping algebra U(L(C×)). The vacuum modules at zero and infinity
are the induced module

Vac0 = IndU(L(C×)
U(L(C)0) C

Vac∞ = IndU(L(C×)
U(L(C)∞) C

(8.28)

The conformal blocks are then

Hom(Vac0⊗U(L(C0))U(L(C×))⊗U(L(C∞) Vac∞,C). (8.29)

This is the same as
Hom(U(L(C×)),C)L(C0)⊕L(C∞) (8.30)

i.e. the linear maps from U(L(C×)) to C which are invariant under the action of L(C0),
acting on the left, and L(C∞), acting on the right.

The connection of this to correlation function definition of conformal blocks is as follows.
The algebra U(L(C×)) is the mode algebra of the vertex algebra, generated by the modes
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∮
J [r, s]zkdz,

∮
J̃ [r, s]zkdz. Suppose we have a set of correlation functions denoted by 〈. . .〉.

Then, expressions like∮
|z|1<···<|zk|

〈
J [r1, s1](z1) . . . J̃ [rk, sk](zk)

〉
zn1

1 . . . znkk dz1 . . . dzk (8.31)

give a linear functional
U(L(C×))→ C. (8.32)

This linear functional is invariant under left multiplication by an element of L(C0) and
right multiplication by L(C∞), because these are the modes that preserve the vacuum at 0
and ∞.

Now let us connect the Čech definition of conformal blocks to local operators. The first
point we will need is that — as is well-known by algebraists — we can identify the linear
dual of U(L(C×)) with functions on the formal group:

Hom(U(L(C×)),C) = O(êxp(L(C×))). (8.33)

Now, conformal blocks are the invariants of the left hand side with respect to L(C0)⊕L(C∞),
and so can be identified with functions on the double quotient:

Hom(U(L(C×)),C)L(C0)⊕L(C∞) = O
(
êxp(L(C0))\êxp(L(C×))/êxp(L(C∞))

)
= O(ÊOM).

(8.34)

In this way, conformal blocks (classically) are identified in a canonical way with (classical)
local operators.

8.5 Conformal blocks after quantizing and factorization algebras

We have presented several perspetives for why conformal blocks are the same as local
operators: by thinking about different dimensional reductions of the 6d theory, or by using
more-or-less standard computations of conformal blocks of Kac-Moody type algebras.

Here, let us describe briefly another rather abstract perspective, based on the theory of
factorization algebras [53]. The argument is quite general. We start with any holomorphic
quantum field theory on twistor space, whose factorization algebra of quantum observables
is Obsq6d. Restricted to the CP1 over 0 ∈ R4, Obsq6d can be viewed as a dg vertex algebra.

For self-dual gauge theory, at the classical level, this factorization algebra sends U ∈ CP1

to
Obscl6d(U) = C∗(L(U)). (8.35)

Let us consider the Koszul dual (Obsq6d)!. The general theory of Koszul duality of
vertex algebras has not been fully developed; here we will assume that it works in a similar
way to Koszul duality for associative algebras.

Self-dual gauge theory on R4, with the axion field, comes from dimensional reduction
of the theory on twistor space. The factorization-algebra way to perform dimensional
reduction is the push forward [53], also known as factorization homology. In the case of
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chiral theories on a curve coincides with Beilinson-Drinfeld’s chiral homology [52]. Therefore,
4d observables are

Obsq4d = π∗Obsq6d (8.36)

where π∗ is the push-forward along the map from CP1 to a point.
Factorization homology (or push-forward) is the linear dual of conformal blocks of

Obsq6d. In the context of topological factorization algebras, it is known [54] that factorization
homology sends Koszul duality to linear duality. If we assume that this result holds in the
vertex algebra context, then we deduce that(

π∗(Obsq6d)
!
)∨

= π∗Obsq6d = Obsq4d (8.37)

The left hand side of this equation is the conformal blocks of the Koszul dual vertex algebra,
which we have identified with the right hand side, local operators of the 4d theory.

8.6 Form factors and correlators

We have seen that conformal blocks of the vertex algebra are in bijection with local operators
in the 4d CFT. We also know that generators of the chiral algebra are single-particle
conformal primary states of the 4d theory, in the language of celestial holography.

It is essentially a formal consequence of this that correlators of the chiral algebra using
a particular conformal block, are the same as scattering amplitudes in the presence of an
insertion of the corresponding local operator, i.e. form factors. More precisely, to obtain the
complete form factor from our form factor integrand, one must integrate over the positions
of the operator insertions; while one can do this by hand, the chiral algebra formulation
most naturally computes the integrand, namely with fixed positions of operator insertions,
so in what follows “form factor” should be understood to mean “form factor integrand.”

It is perhaps easiest to understand the form factor/correlation function correspondence
by thinking about a conformal block which arises by introducing some new degrees of
freedom along the CP1 in twistor space living over 0 ∈ R4.

Suppose we can couple, in some gauge invariant way, some 2d chiral CFT to the bulk
system along this CP1, given by some collection of chiral fermions ψi. We will not be
explicit about the nature of the coupling or how many fermions we have, as our goal is
to give an inuitive understanding of the relationship between scattering amplitudes and
correlation functions.

Let C is the algebra of operators of the 2d free fermion system we couple. By the
definition of Koszul duality, we have a homomorphism from the Koszul dual algebra to C.
This means that we have states

J [k, l], J̃ [k, l], E[k, l], F [k, l] (8.38)

in C. These could be written schematically, in Lagrangian terms,∑
Dk,lAJ [k, l](ψ) + . . . (8.39)

where Dk,l = 1
k!l!∂

k
v1∂

l
v2 , and J [k, l] is some even polynomial in the fermionic fields and their

derivatives.
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Since our 2d system is a system of free fermions, it has only one conformal block.
Then, it gives rise to a conformal block for the Koszul dual chiral algebra, defined by
the correlation functions of the operators J [k, l], . . . in the 2d system. These have a path
integral representation〈

J [k, l](z1) . . . J̃ [r, s](zn)
〉

=
∫
ψ
e
∫
CP1 ψ∂ψJ [k, l](z1) . . . J̃ [r, s](zn) (8.40)

This conformal block corresponds to a local operator in the 4d CFT, which is of course that
obtained by integrating out the fermionic degrees of freedom.

The operators J [k, l], . . . in the 2d CFT are obtained by coupling to background bulk
fields which are conformal primary state corresponding to soft modes. To compute form
factors, we typically resum those soft modes as in (1.9) to obtain standard momentum
eigenstates. These serve as the asymptotic states in the explicit form factor computations
that follow.

Our claim is that this correlator is the same as the form factor integrand of the 4d
CFT, with the corresponding choice of local operator insertion. Since the 4d system with a
local operator arises from the 6d system with a defect by dimensional reduction, we can
compute scattering in the 6d + defect system.

In 6d, scattering in the presence of the defect is given by a path integral just like (8.40),
but where we also need to perform a path integral over the 6d fields A, B, . . . The key point
is that the exchange of 6d fields can not contribute to the form factor.

This is because, working in 6d, we can choose an axial gauge25 where fields propagate
only in the v1, v2 plane, and not in the z direction. If we do this, the conformal primary
states at different values of z do not talk to each other in the bulk, and any scattering
process is entirely mediated by the exchange fermions.

This kind of reasoning generalizes to apply to any conformal block of the Koszul dual
chiral algebra, not just one that arises by coupling to a free fermion system.

This argument also implies our Theorem 1.3.2. This result gives an expansion for the
integrand of form factors, in terms of the operator product expansion

tr(B2)(0) tr(B2)(x1) . . . tr(B2)(xn−1) ∼
∑

F i(x1, . . . , xn−1)Oi(0) (8.41)

where Oi runs over a basis of local operators in the 4d CFT. The statement is that scattering
amplitudes in the presence of the operators tr(B2)(0) tr(B2)(x1) . . . tr(B2)(xn−1) also have
an expansion∑

F i(x1, . . . , xn−1)
〈
Oi(0)

∣∣∣ Ja1 [r1, s1](z1) . . . Jan [r1, s1](zn)

J̃b1 [t1, u1](z′1) . . . J̃bm [tm, um](z′m)
〉
.

(8.42)

This is a consequence of what we already know: the form factors for ∏ tr(B2)(xi) are
equivalent to the form factors in the presence of the OPE of those operators.

25Axial gauges are often too singular to work at the quantum level, but we can make it a little less singular
by allowing the field to propagate a very small amount in the z direction.
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9 Correlation functions for the operator B2 and the Parke-Taylor for-
mula

In this section, we will show that the correlation functions of our vertex algebra, built from
the conformal block corresponding to B2, give the Parke-Taylor formula for the color-ordered
tree-level MHV scattering of n gluons:

An = 〈λiλj〉4

〈λ1λ2〉〈λ2λ3〉 . . . 〈λnλ1〉
, (9.1)

where we have omitted the standard group theory factor. Here, we have expressed the
amplitude in terms of the standard homogeneous coordinates λα, α = 0, 1 on the twistor
base CP1. In affine coordinates, λi,α = (1, zi), and we can re-express the brackets as, e.g.,
〈λiλj〉 = zi − zj .

Let us explain why we should expect this to be true (in fact, this computation has a lot
in common with the computation by Lionel Mason in [55]). Self-dual Yang-Mills deformed
by the operator B2 is equivalent to ordinary Yang-Mills. We will view the B2 term as a
bi-valent vertex added to self-dual Yang-Mills. Tree-level scattering processes which involve
only one B2 vertex are the MHV amplitudes, with two negative helicity particles and an
arbitrary number of positive helicity.

If we have only one B2 vertex, we get essentially the same answer if we view it as an
operator, placed at the origin, or if we integrate over the position of the operator. The only
difference is whether we include the conservation of momentum δ-function in the amplitude.
Our chiral algebra formulation naturally connects to scattering of self-dual Yang-Mills in
the presence of an operator, corresponding to the choice of conformal block.

Now let us turn to the computation. For self-dual gauge theory, our field A on twistor
space is a (0, 1) form valued in g. The coupling∫

CP1
AdzJ [0, 0](z) (9.2)

makes sense as long as J [0, 0](z) vanishes to order 2 at ∞. Similarly, the coupling∫
CP1

1
k!

1
l!∂

k
v1∂

l
v2AdzJ [k, l](z) (9.3)

makes sense if J [k, l] vanishes to order 2− k − l at z =∞.
Since B is a section of O(−4), which is the square of the canonical bundle on CP1, we

can build a (1, 1) form on CP1 by contracting B with the vector field ∂z, which vanishes to
order 2 at z =∞. Thus, ∫

CP1

1
k!

1
l!∂

k
v1∂

l
v2ι∂zBdzJ̃ [k, l](z) (9.4)

makes sense as long as J̃ [k, l] has a pole of order at most 2 + k + l at z =∞.
Next, we need to identify the operator corresponding to B2. Clearly, since B comes

from the field B on twistor space, and B couples to the elements J̃ [k, l] of our chiral algebra,
the corresponding conformal block must give an expectation value to J̃ [0, 0](z1)J̃ [0, 0](z2):〈

tr(B2) | J̃a[0, 0](z1)J̃b[0, 0](z2)
〉

= F (z1, z2) tr(tatb) (9.5)
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where the constraints on the behaviour of the operators J̃ at z =∞ tell us that F (z1, z2) is
at most quadratic in each variable.

We can fix F (z1, z2) by symmetry. As in the discussion above, it is most natural to view
F (z1, z2)∂z1∂z2 as a bivector on CP1 × CP1, and then we can ask that it is invariant under
the action of the SU(2) rotating CP1. This invariance corresponds to the fact that tr(B2)
is SO(4) invariant, and hence in particular SU(2) invariant. There is only one bivector on
CP1 × CP1 invariant under SU(2), namely (z1 − z2)2∂z1∂z2 .

We conclude that, up to a constant,〈
tr(B2) | J̃a[0, 0](z1)J̃b[0, 0](z2)

〉
= z2

12 tr(tatb). (9.6)

Further, correlation functions containing the operators J [k, l] or J̃ [k, l] for k + l > 0 must
vanish (using the tree-level chiral algebra). This is because the operator tr(B2) does not
have any derivatives. Correlation functions also vanish unless there is an insertion of exactly
2 J̃ operators.

It turns out that this identity essentially fixes the conformal block corresponding
to tr(B2).

Lemma 9.0.1. There is a unique conformal block in our chiral algebra (at tree level)
satisfying the properties listed above.

Proof. The operators J [k, l], J̃ [k, l] for k + l > 0 form an ideal in the chiral algebra, so it
is consistent to define a conformal block where the correlation functions involving these
operators all vanish. Further, the chiral algebra has a grading by the number of J̃ ’s we
have. This means it is consistent to define a conformal block by saying that the correlation
functions vanish unless we have exactly two J̃ insertions.

Correlation functions of the form〈
tr(B2) | J̃a1 [0, 0](z1)J̃a2 [0, 0](z2)Ja3 [0, 0](z3) . . . Jan [0, 0](zn)

〉
(9.7)

are uniquely determined by the correlation function with no J insertions by the poles
coming from the OPEs and the fact that we must have a second order zero at zk = ∞,
k = 3 . . . n. These constraints are somewhat over-determined, but can be solved precisely
because the two-point correlator is invariant under the G symmetry.

Finally, we will show the following:

Proposition 9.0.2. In the case the gauge group is U(n), the colour-ordered correlator in
our chiral algebra is

〈
tr(B2) | Ja1(z1) . . . J̃ai(zi) . . . J̃aj (zj) . . . Jan(zn)

〉
=

z4
ij

z12z23 . . . zn1
tr(ta1 . . . tan). (9.8)

Here, we simply write J, J̃ instead of J [0, 0], J̃ [0, 0]. By the colour-ordered correlator
we mean the same thing as is meant in the Parke-Taylor formula: the full correlator is a
sum over terms where the colour indices have been contracted using a single trace. We are
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focusing on the term where the order in the trace is the same as the order in which we
wrote our operators in the correlation function. Since the full correlator does not care which
order we write our operators, there is no loss of generality: the full correlator function is
simply a sum over permutations of the colour-ordered correlator.

Proof. We prove this by induction. It is true for n = 2. Let us assume it is true with n
operators, and prove the case with n + 1 operators. Without loss of generality we can
assume that the n+ 1st operator is a J , not a J̃ . Consider the correlator〈

tr(B2) | Ja1(z1) . . . J̃ai(zi) . . . J̃aj (zj) . . . Jan(zn)Jan+1(zn+1)
〉

(9.9)

There are poles in this expression when zn+1 = zi. The residue at these poles is a correlator
with n insertions, where we have removed Jan+1(zn+1) and replaced Jai(zi) by f baian+1Jb(zi).

When we do this, the colour indices are contracted in an order in which n+1 is adjacent
to i; it can be before or after i, and the two possibilities have opposite signs.

This cannot contribute to the colour-ordered correlator, however, unless i = n or i = 1.
We conclude that, in the colour-ordered correlator,〈

tr(B2) | Ja1(z1) . . . J̃ai(zi) . . . J̃aj (zj) . . . Jan(zn)Jan+1(zn+1)
〉

=
( 1
zn+1 − z1

− 1
zn+1 − zn

)〈
tr(B2) | Ja1(z1) . . . J̃ai(zi) . . . J̃aj (zj) . . . Jan(zn)

〉
= zn1
zn,n+1zn+1,1

〈
tr(B2) | Ja1(z1) . . . J̃ai(zi) . . . J̃aj (zj) . . . Jan(zn).

〉 (9.10)

Thus, the formula is proved by induction.

10 CSW rules

In the introduction, we stated that our method of writing the form factor integrand also
allows one to understand part of the structure of the unintegrated NMHV amplitude. Let
us explain how this works in more detail.

The first step is to understand the OPE tr(B2)(0) tr(B2)(x). If we work at tree level,
it is easy to see that the result is an operator cubic in B. The coefficient of ‖x‖−2 must be
an operator of dimension 6. The only Lorentz invariant operator of this nature is

tr(B3) := Ba
α1β1B

b
α2β2B

c
α3β3fabcε

β1α2εβ2α3εβ3α1 (10.1)

Therefore, the tree-level OPE must be of the form

tr(B2)(0) tr(B2)(x) ∼ C ‖x‖−2 tr(B3) + . . . (10.2)

where . . . indicates terms which are less singular, and C is a constant. One might worry
that C is zero, but a simple explicit computation with the Feynman diagram in figure 6
tells us that it is not.

Since tr(B3) is a Lorenz invariant operator, symmetry considerations tell us that we
have 〈

tr(B3)
∣∣∣J̃a(z1)J̃b(z2)J̃c(z3)

〉
= z12z13z23fabc. (10.3)
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B2 B2

Figure 6. The Feynman diagram capturing the tr(B2) tr(B2) OPE.

We can compute the correlators with insertions of 3 J̃ ’s and n J ’s by the same method we
used to compute the MHV amplitudes. We want to show that these correlators factorize as
a product of MHV amplitudes, in the same way as the CSW rules.

Let Vi(zi) denote the n chiral algebra insertions, states, 3 of which are J̃ and n− 3 are
J . The precise formula we want to prove is that〈

tr(B3)
∣∣∣V1(z1) . . . Vn(zn)

〉
= −1

6
∑〈

tr(B2)
∣∣∣Vi1(zi1) . . . Vik(zik)J̃a(z)

〉〈
tr(B2)

∣∣∣Ja(z)Vj1(zj1) . . . Vjn−k(zjn−k)
〉

(10.4)

where z is arbitrary. The sum on the right hand side is over all ways of distributing the
chiral algebra insertions among the correlators.

We will prove this by induction on the number of J insertions. We first check that the
right hand side of equation (1.19) has the same structure of poles and zeroes as the left
hand side as we vary the position of the J insertions. That is, the function on the right
hand side should vanish to second order when a J insertion goes to z =∞, and have a pole
determined by the OPE when a J insertion hits a J or J̃ insertion. This is easily seen to
be the case. (To see this, it is important to note that given two insertions Ji(zi), Vj(zj),
where V is either a J or a J̃ , there are always terms in the sum on the right hand of (10.4)
where the insertions are placed in the same factor).

However, in principle, there are spurious poles when the insertion Jbi(zi) coincides with
the insertion of Ja(z) or J̃a(z). These cancel, as〈

· · · Jbi(zi)Ja(z)
〉〈
J̃a(z) · · ·

〉
=
〈
· · · 1

z − zi
f biacJc(z)

〉〈
J̃a(z) · · ·

〉
(10.5)〈

· · · Ja(z)
〉〈
J̃a(z)Jbi(zi) · · ·

〉
=
〈
· · · Ja(z)

〉〈
J̃c(z) 1

z − zi
f bica · · ·

〉
(10.6)

(We are freely lowering and raising indices here using the Killing form).
This allows us to reduce the proof of the equality (10.4) to the case that there are only

3 insertions on the left hand side, all of which are J̃ . That is, we need to show that

− 3
〈

tr(B3)
∣∣∣J̃a1(z1)J̃a2(z2)J̃a3(z3)

〉
=
〈

tr(B2)
∣∣∣J̃a1(z1)J̃b(z)

〉〈
tr(B2)

∣∣∣Jb(z)J̃a2(z2)J̃a3(z3)
〉

+
〈

tr(B2)
∣∣∣J̃a2(z2)J̃b(z)

〉〈
tr(B2)

∣∣∣Jb(z)J̃a3(z3)J̃a1(z1)
〉

+
〈

tr(B2)
∣∣∣J̃a3(z3)J̃b(z)

〉〈
tr(B2)

∣∣∣Jb(z)J̃a1(z1)J̃a2(z2)
〉
.

(10.7)
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The right hand side is

fa1a2a3

(
(z − z1)2z3

23
(z − z2)(z − z3) + (z − z2)2z3

31
(z − z3)(z − z1) + (z − z3)2z3

12
(z − z1)(z − z2)

)
(10.8)

whereas the left hand side is
− 3fa1a2a3z12z13z23. (10.9)

To complete the proof we need simply check that

− 3z12z13z23(z − z1)(z − z2)(z − z3) = (z − z1)3z3
23 + (z − z2)3z3

31 + (z − z3)3z3
12. (10.10)

This we obtain by cubing the identity

(z − z1)z23 + (z − z2)z31 + (z − z3)z12 = 0. (10.11)

In sum, we have demonstrated that our chiral algebra correlators result in a close
match to NMHV amplitudes obtained using the CSW rules. We emphasize that in our form
factor integrand, where we do not integrate over operator positions, the common operator
position in the factorized expression is undetermined; in the standard CSW prescription for
integrated amplitudes, it is fixed. It would be fascinating to find a more systematic match
between the CSW rules and our chiral algebra correlation functions, perhaps by deriving
the CSW rules as Feynman rules from our twistor space theories. We plan to pursue this,
as well as further connections between the two approaches at loop-level, and at the level of
integrated amplitudes, in future work.

11 One-loop amplitudes by axion exchange

In the introduction, we showed that in the conformal block associated to (4ρ)2, the four-
point all + amplitude matches the known one-loop all + amplitude of gauge theory. This
is to be expected, as the 4d theory by itself does not have any scattering amplitudes, so
that the known one-loop amplitude of self-dual gauge theory must be cancelled by the
axion exchange.

Here we will verify that this holds for the n-point all + amplitude. The formula for the
one-loop colour-ordered amplitude is [15, 16]〈

1+ . . . n+
〉

colour-ordered
= Hn

〈12〉 . . . 〈n1〉 (11.1)

where
Hn =

∑
1≤i1<i2<i3<i4≤n

〈i1i2〉 [i2i3] 〈i3i4〉 [i4i1] (11.2)

Let us thus write the full amplitude, up to normalization, and including the colour factors:
〈

1+ . . . n+
〉

= 1
n

∑
σ∈Sn

∑
1≤i1<i2<i3<i4≤n 〈σi1σi2〉 [σi2σi3 ] 〈σi3σi4〉 [σi4σi1 ]

〈σ1σ2〉 . . . 〈σnσ1〉
Tr(tσ1 . . . tσn)

(11.3)
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where we are summing over elements of the symmetric group Sn. The pre-factor of 1
n is

a symmetry factor, accounting for the fact that the colour-ordered amplitude has cyclic
group symmetry.

Our construction works with gauge group SU(2), SU(3), SO(8) and the exceptional
groups, with no matter. In these cases, Tr denotes the trace in the adjoint representation. If
we want to consider SU(Nc) gauge group, then we need to introduce matter with Nf = Nc.
In that case, we will have fermions in the loop, which will change the colour factor. In that
case, Tr means

Tr = tradj−Nc trfun−Nc trfun (11.4)

i.e. trace in the adjoint, minus Nc times trace in the fundamental and anti-fundamental.
To write this in terms of chiral algebra correlators, we will write a generating function

for the generators of the chiral algebra

J(µαi , zi) =
∑

J [r, s](zi)
1
r!s! (µ

1̇
i )r(µ2̇

i )s (11.5)

In this notation we will let
[ij] = εα̇β̇µ

α̇
i µ

β̇
j . (11.6)

Here µ is, as usual, an auxiliary spinor which together with λ = (1, z) specifies the momentum
of the external state.

Let us write a proposal for the correlator, which we will then check satisfies the
properties dictated by the OPE. Our proposed correlator is given by the same expression:

〈
(4ρ)2 | Ja1(µ1, z1) · · · Jan(µn, zn)

〉proposed

= 1
n

∑
σ∈Sn

∑
1≤i1<i2<i3<i4≤n 〈σi1σi2〉 [σi2σi3 ] 〈σi3σi4〉 [σi4σi1 ]

〈σ1σ2〉 〈σ2σ3〉 . . . 〈σnσ1〉
Tr(taσ1

. . . taσn ) (11.7)

It is clear that the proposed correlator reproduces the correct scattering amplitude.
Let us rewrite the correlator slightly in a way so that the indices that appear in the

numerator are 1, 2, 3, 4. For a given permutation σ, we order the elements 1, 2, 3, 4 according
to how they appear in the list σ1, . . . , σn. We let 1σ be the first element in the set {1, 2, 3, 4}
in this order, and similarly 2σ, 3σ, 4σ. Then, according to the formula (11.7) we have〈

(4ρ)2 | Ja1 [1](µ1, z1)Ja2 [1](µ2, z2)Ja3 [1](µ3, z3)Ja4 [1](µ4, z4)Ja5(z5) . . . Jan(zn)
〉

= 1
n

∑
σ∈Sn

Tr
(
taσ1

. . . taσn

) 〈1σ2σ〉 [2σ3σ] 〈3σ4σ〉 [4σ1σ]
〈σ1σ2〉 . . . 〈σnσ1〉

(11.8)

where J [1](zi) = J [1, 0](zi)µ1̇
i + J [0, 1](zi)µ2̇

i and J(zi) means J [0, 0](zi).
What we need to check is that our proposed correlator has the correct structure of

poles in z to be the actual chiral algebra correlator. The first thing to check is the poles
and zeroes at z =∞

The operator J [0, 0](zi) has a zero of order 2 at z = ∞, and J [1, 0](zi), J [0, 1](zi)
has a zero of order 1. Each index appears twice in the denominator of (11.7). Therefore,
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we have a zero of order 2 at zi = ∞ except for the four indices i, j, k, l appearing in the
numerator. These have a pole of order 1, because we have 〈ij〉 〈kl〉 in the numerator. For
these operators, we are taking a correlator of J [1, 0] or J [0, 1], because of the appearance of
[jk] and [li]. Thus, as required, for these indices we have a first order zero at z =∞.

Next, let us assume by induction that the expression in equation (11.8) is the correct
correlator when we have n − 1 insertions. To see that it is the correct correlator when
we have n insertions, let us consider what happens when zn approaches one of the other
points zi. There are two cases: i > 4, or i ≤ 4. In each term in the sum in (11.7), there
is a pole when zn approaches zi only if 〈in〉 appears in the denominator. This can only
happen if . . . taitan . . . or . . . tantai . . . appear in the trace, and these two terms appear with
opposite signs.

This means that the pole at zn = zi in the correlator (11.8) is given by the n− 1 point
correlator, where we make the replacement

Jai [0, 0](zi)Jan [0, 0](zn) 7→ f baianJb[0, 0](zi)
1

zn − zi
. (11.9)

Similarly, if i ≤ 4, the pole at zn = zi is the n− 1 point correlator where we have made the
replacement

Jai [1](vαi , zi)Jan [0, 0](zn) 7→ f baianJb[1](vαi , zi)
1

zn − zi
. (11.10)

In each case, the poles are determined by the OPEs in the chiral algebra.
As a function of zn, the correlator has a zero at zn =∞ of order 2 and n− 1 first-order

poles. Inductively, the residue at each pole is fixed, and this fixes the n-point correlator in
terms of the n− 1 point correlator.

This proves by induction that our proposed correlator (11.8) matches the actual chiral
algebra correlator, as long as we check the initial case which is n = 4. This we have already
done in the introduction, but let us repeat it here.

By induction, the proposed amplitude must equal the actual amplitude if they do when
n = 4. For the n = 4 case, we have〈

(4ρ)2 | Ja1 [1](vα1 , z1) · · · Ja4 [1](vα4 , z4)
〉proposed

=
∑
σ∈S4

Tr(taσ1
. . . taσ4

) 〈σ1σ2〉 [σ2σ3] 〈σ3σ4〉 [σ4σ1]
〈σ1σ2〉 〈σ2σ3〉 〈σ3σ4〉 〈σ4σ1〉

(11.11)

Recalling that conservation of momentum tells us that [12][34]
〈12〉〈34〉 is totally symmetric, we can

rewrite the right hand side as

4! Tr(t(a1 . . . ta4))
[12][34]
〈12〉 〈34〉 (11.12)

which, up to a factor, matches the correlator〈
(4ρ)2 | J [1](z1, v

α
1 ) . . . J [1](z4, v

α
4

〉
(11.13)

we have already determined in the introduction.
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In the introduction, we determined this using the OPE

Ja[1](z1, v
α
1 )Jb[1](z2, v

α
2 ) ∼ [12]

〈12〉 tr(tatb)F [0, 0] (11.14)

where F [0, 0] is an operator built from the twistor uplift of the axion field.

11.1 Calculating the conformal block associated to 4ρ

There is perhaps one more point we need to elaborate on, which is why the conformal block
for 4ρ gives a non-zero expectation value to the operator F [0, 0].

This can be seen by symmetry reasons, as we mentioned in the introduction. It is also
possible to check this explicitly, and we will do that now. The operator F [0, 0] is corresponds
to a field configuration on twistor space for the field η. It follows from equation (4.28) that

F [r, s] = 2πi∂
(
δz=z0

1
r + s+ 2(vr+1

1 vs2dv2 − vr1vs+1
2 dv1)

)
(11.15)

so that in particular,
F [0, 0] = 2πi∂

(
δz=z0ε

ijvidvj
)
. (11.16)

According to the analysis of [7], the value of the axion field ρ(x) is given by the integral of
∂−1η over the curve corresponding to x.

Let us work in the complex coordinates ui, ui on R4 = C2, using the complex structure
associated to z = 0.

We have
1

2πi 〈ρ(u, u) | F [0, 0](z0)〉 =
∫
v1=u1+zu2
v2=u2−zu1

δz=z0ε
ijvidvj

= −
∫
v1=u1+zu2
v2=u2−zu1

δz=z0(u1 + zu2)u1dz + (u2 − zu1)u2dz

= −‖u‖2 .

(11.17)

This means that
〈4ρ(u, u) | F [0, 0]〉 = −16πi. (11.18)

We can normalize the conformal block to make this 1.
This completes the proof that the all + one loop amplitudes in self-dual gauge theory as

computed in [15, 16] are the correlators of the chiral algebra with respect to the conformal
block associated to (4ρ)2, up to an overall normalization of the conformal block.

12 Tree-level scattering amplitudes in the presence of an axion

In this section we will prove that the tree-level, all + scattering amplitudes of Yang-Mills
theory, in the presence of an axion with a logarithmic pole, are given by Kac-Moody
correlation functions. The novelty here is that there is a non-zero level.

The axion field on R4 arises from the closed (2, 1)-form field η on twistor space. This
couples to gauge field on twistor space by

λg

4(2πi)3/2
√

3

∫
ηA∂A (12.1)

where λg is a constant tuned to cancel the anomaly (see section 3).
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Suppose we allow η to have a singularity so that the equations of motion are modified to

∂η = Cδv1=v2=0 (12.2)

(using the coordinates z, vi on a patch of twistor space as before). Here C is some non-zero
constant which we will find controls the Kac-Moody level. Such a modification is a disorder
defect in the η field; it can be realized as an order defect where we integrate ∂−1η over the
curve v1 = v2 = 0.

Consider, as before, coupling ∂rv1∂
s
v2A to some currents Ja[r, s] living in a chiral algebra

at v1 = v2 = 0. As before, we will determine the OPEs between these currents by requiring
that the coupled system is gauge invariant.

Applying the gauge variation δA = ∂χ+[χ,A] to the Lagrangian (12.1) and using (12.2)
gives us an extra term, which is

C
λg

4(2πi)3/2
√

3

∫
δv1=v2=0 tr(χ∂zA + A∂zχ). (12.3)

The gauge variation of ∫
Ja(z)Jb(z′)Aa(z)Ab(z′) (12.4)

cancels this, as long as the OPE between Ja(z) and Jb(z′) has a second-order pole

Ja(z)Jb(z′) = tr(tatb) 1
2πi

1
z2C

λg

4(2πi)3/2
√

3
(12.5)

In other words, we find that the (deformed) Koszul dual algebra is the Kac-Moody algebra
with a non-zero level.

When we pass to real space, the field η becomes the axion field. In [7], section 5.5, the
field ρ corresponding to an η with ∂η = Cδvi=0 was computed. This is

ρ = C

2πi log ‖x‖2 , (12.6)

in the normalization where ρ is the integral of ∂−1η over a CP1. In this normalization, the
coupling between ρ and the 4d gauge field A is

λg

8(2πi)3/2
√

3
ρF (A)2. (12.7)

We can absorb the factor of λg
4(2πi)3/2

√
3 that appears in the coupling of ρ to A and η to A

in a rescaling of both ρ and η. If we do this, an axion profile which couples to the gauge
field by

C

2πi log ‖x‖2 1
2F (A)2 (12.8)

gives rise to a Kac-Moody level of C
2πi .

This tells us that, as desired, the all − scattering amplitudes of tree-level gauge theory
in the presence of an axion coupled by

(log ‖x‖k)F (A)2 (12.9)

are the correlators of the Kac-Moody algebra at level k.
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13 Discussion & conclusions

In this note, we have explained the twistorial origin of various aspects of the celestial holog-
raphy program, including: how chiral algebras may be constructed from local holomorphic
theories on twistor space, why they coincide with (more precisely, enlarge) celestial chiral
algebras for certain theories that descend to self-dual limits of Yang-Mills and Einstein
gravity in four dimensions, and how their generators correspond to negative-dimension
conformal primary states in 4d. We further explored aspects of these correspondences
using inspiration and techniques from the twisted holography program, emphasizing the
role of Koszul duality in obtaining the chiral algebras and their deformations at loop-level
from tractable computations. Finally, we illustrated how correlation functions in the chiral
algebra can be used to reproduce certain scattering amplitudes in Yang-Mills theory.

In addition to the future directions mentioned in the main text, we are pursuing various
open questions suggested by this study; we preview some of them below.

• In work in progress with A. Sharma, we study additional gauge theory and gravity
amplitudes, at tree and loop-level, from correlation functions in our Koszul dual chiral
algebra. It will be fascinating to better understand which amplitudes are accessible
from our methods, and to which loop-order they are effectively computable.

• The twistorial perspective on celestial symmetries was also recently emphasized in [24],
which explored celestial holography from a worldsheet, ambitwistor string construction.
It would be interesting to connect this approach with ours more directly.

• Our approach to celestial holography has been inspired by the twisted holography
program [11, 45], which focuses on computable properties of holomorphic/partially
topological theories that arise from twists of supersymmetric string constructions. Our
proposal is that (at least, certain aspects of) celestial holography should be viewed
as an instance of twisted holography on twistor space. From this point of view, it
would be desirable to have a more concrete string theory embedding, and explore if
this enables one to access, e.g., aspects of massive states in the conformal basis. As
discussed in [7], a natural candidate for an anomaly-free example of a holomorphic
twistor space theory is a type I topological string [32], which is the result of twisting
the type IIB string in the presence of an O7−-plane and D7-branes, placed in an
Omega-background. It may be interesting to study this example along the lines
of [11, 45], incorporating backreaction from open string sectors in a large-N limit.

• We have explored the celestial chiral algebras from their realization as boundary
algebras of 3d holomorphic-topological theories. Such boundary conditions on 3d
N = 2 theories support nonperturbative boundary monopole operators [56], which
persist after twisting [57, 58]. What is the interpretation of these operators in 4d?
It would be interesting to explore this question by pushing/pulling along the double
fibration of twistor space discussed in section 8.

• The chiral algebras on the boundary of these 3d theories also enjoy higher products
arising from their interaction with bulk operators, as discussed in [57], and it would
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be interesting to interpret these operations from the celestial point of view. It
would also be interesting if the 3d picture sheds any light (pun intended) on the
role of shadow/light transforms which are often employed in the study of celestial
symmetry algebras.

• We explored how states of negative conformal dimension are in correspondence with
generators of the chiral algebra. We have also studied states of positive conformal
dimension, which correspond to algebra modules. Physically, these are defects sup-
ported on zeros of a polynomial, as described in section 5, and are sourced by certain
Wilson lines. It would be interesting to determine extensions of the chiral algebra by
(some subset of) such modules. Could such an extension provide a natural description
of the maximal asymptotic symmetry algebra of the corresponding 4d theory?26

We hope that these, and many other, questions will provide a fruitful bridge between
twisted and celestial holography.
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