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Abstract: The crust region is a tiny fraction of neutron stars, but it has a variety of physical properties
and plays an important role in astronomical observations. One of the properties characterizing
the crust is elasticity. In this review, with the approach of asteroseismology, we systematically
examine neutron star oscillations excited by crust elasticity, adopting the Cowling approximation.
In particular, by identifying the quasi-periodic oscillations observed in magnetar flares with the
torsional oscillations, we make a constraint on the nuclear saturation parameters. In addition, we
also discuss how the shear and interface modes depend on the neutron star properties. Once one
detects an additional signal associated with neutron star oscillations, one can obtain a more severe
constraint on the saturation parameters and/or neutron star properties, which must be a qualitatively
different constraint obtained from terrestrial experiments and help us to complementarily understand
astrophysics and nuclear physics.

Keywords: neutron stars; equation of state; asteroseismology

1. Introduction

Neutron stars produced through the core-collapse supernova at the last moment of the
massive star’s life can enter extreme states, which is quite difficult to realize on Earth. For
example, their density easily exceeds the standard nuclear density, ~ 0.16 fm 3, and the
gravitational and magnetic fields around/inside the star become much stronger than those
observed in our solar system [1]. Therefore, physics in such extreme states may inversely
be revealed through the observations of neutron stars and/or their phenomena.

The stellar structure depends on the equation of state (EOS) for neutron star matter,
which is under beta-equilibrium and charge neutrality. However, the determination of EOS
for neutron star matter from the experiments is still difficult. This is because the density
of nuclei is around the saturation density almost independently of nuclear species due to
the nature of nuclear saturation properties. Namely, the experimental data concentrate
around /below the saturation density, while the neutron star properties are mainly deter-
mined from the EOS for higher-density regions. The saturation parameters characterizing
the EOS in a lower-density region are gradually constrained through terrestrial experiments,
e.g., [2-10], which are strongly associated with low-mass (or low central density) neutron
star properties.

Meanwhile, it is better to note that experiments cannot directly measure the saturation
parameters, where one has to estimate them from a kind of empirical relations (or strong
correlations) between the saturation parameters and experimental data, suggested by theo-
retical studies, e.g., [11-15]. Thus, even if the experimental accuracy would be improved
well, because of the theoretical uncertainties in these relations, it is not always true that the
constraints on the saturation parameters improve [16-18]. In practice, the estimation of
the density-dependence of the nuclear symmetry energy, the so-called slope parameter L
(see Equation (1) for the definition), from the parity asymmetry of the polarized electron
scattering cross section of 2%8Pb strongly depends on the model [19,20]. This means that the
theoretical study must be vitally significant for deriving a technique to directly estimate
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the saturation parameters from the experimental data, although this is out of scope in this
review.

On the other hand, astronomical observations are important for constraining the EOS
in a higher-density region. For example, the discovery of massive neutron stars, whose
mass is ~ 2M, excluded soft EOSs, whose maximum mass does not reach the observed
mass [21-24]. The observation of gravitational waves from GW170817 [25] could restrict
the dimensionless tidal deformability of neutron stars, which leads to the constraint that
the 1.4M¢ neutron star radius should be less than 13.6 km [26]. In addition, through
the observation of the pulsar light curve, one may constrain the neutron star properties,
especially the stellar compactness, M /R, with stellar mass M and radius R, e.g., [27-32].
This is because the trajectory of the photon radiating from the neutron star’s surface
can bend due to the strong gravitational field induced by the neutron star, which is a
relativistic effect. In practice, the Neutron Star Interior Composition Explorer (NICER)
is now operating on the International Space Station, which successfully constrained the
neutron star mass and radius for PSR J0030-0451 [33,34] and PSR J0740-6620 [35,36].

In such a way, the neutron star mass and radius would be constrained more and more
in a higher-density region with astronomical observations and in a lower-density region
with terrestrial experiments, e.g., [37-39] (also see Figure 1). Then, as these constraints
from observations and experiments become more and more severe, one may eventually
constrain the EOS for neutron star matter.
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Figure 1. Several constraints on the neutron star mass and radius obtained from astronomical obser-
vations and terrestrial experiments. MSP J0740+6620 is one of the largest neutron stars discovered up
until now, whose mass is M/ M = 2.08 £ 0.07 [24], while the radius (and mass) of this object is con-
strained via NICER as well as PSR J0030-0451. The tidal deformability restricted from the GW170817
event tells us the upper limit of the radius of the 1.4M, neutron star, i.e., Ry 4 < 13.6 km [26]. The
observation of the X-ray bursts from neutron stars also provides us with the constraint on the neutron
star mass and radius, although they depend on the theoretical model [40]. In addition, one can theo-
retically exclude the top-left shaded region due to the causality [41]. On the other hand, the terrestrial
experiments, e.g., by PREX-II [19], SRIT [42], and at RCNP [43], provide us with the constraint on
the stellar models constructed with a lower central density (bottom-right region), adopting the mass
formula for low-mass neutron stars [44], where the constraints expected with the fiducial value of
the nuclear saturation parameters, i.e., L = 60 £20 MeV [3,7,10] and Ky = 240 £ 20 MeV [2], are
also shown (see Equation (1) for the definition of L and Kp). Furthermore, for reference, the mass
and radius relations constructed with several EOSs, i.e., SLy4 [45,46], SKa [47], SkI3 [48], SkMp [49],
DD2 [50], Shen [51], and Togashi [52], are plotted. Taken from [37].

In addition to the observations (or estimations) of the neutron star mass and radius,
oscillation signals (and also the gravitational waves) from neutron stars, if observed, are
another important piece of information used to extract neutron star properties. Since
the objects have their own specific oscillation frequencies, one may determine interior
information via the observation of their frequencies as an inverse problem. This technique
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is known as asteroseismology, which is similar to seismology on Earth and helioseismology
on the Sun. In fact, the neutron star has a lot of oscillation modes, where each mode can
be excited due to the corresponding physics [53]. For example, it is well-known that the
frequency of fundamental oscillations in a neutron star is strongly associated with the
square root of the stellar average density because the fundamental oscillations are acoustic
oscillations. The gravitational waves from neutron stars may be suitable astronomical
information to adopt asteroseismology; however, they have never been observed from
an isolated neutron star. Even so, neutron star mass, radius, and EOS can be suggested
by observing the gravitational waves from (cold) neutron stars, e.g., [54-64]. Moreover,
this technique is also adopted to extract information concerning protoneutron stars from
supernova gravitational waves, e.g., [65-71].

Instead of gravitational waves, quasi-periodic oscillations (QPOs) discovered in the
afterglow following magnetar giant flares [72-78] are also valuable for adopting astero-
seismology, where magnetars are strongly magnetized neutron stars. Here, the observed
QPO frequencies are in the range of tens of Hz to kHz (see Section 2 for details). Although
the emission mechanism of the flare activity in magnetar flares is still up for debate, the
observed QPOs are considered to be strongly associated with neutron star oscillations.
Taking into account the dynamical time of neutron stars, which is around 0.1 ms, it may be
more difficult to theoretically explain lower frequencies among the observed frequencies.
The possible candidates may be crustal torsional oscillations, magnetic oscillations, or
magneto-elastic oscillations if one assumes that the observed QPO frequencies come from
the neutron star oscillations. However, the magnetic oscillations strongly depend on the
magnetic field strength and its geometry inside the star, e.g., [79-81], while our understand-
ing of them is quite poor. Thus, here we discuss the crustal properties by identifying the
observed QPO frequencies with crustal torsional oscillations, neglecting magnetic effects
(see Section 2 for the magnetic effects on crustal torsional oscillations). In this way, the
crustal properties are constrained, e.g., [82-88].

Through the asteroseismology approach, it is shown that the observed QPO frequen-
cies can be identified with neutron star oscillations. On the other hand, there are still open
issues in magnetar QPOs. For instance, all the observed QPOs are not simultaneously
excited after magnetar flares, some of the QPOs are excited first, then others. This phe-
nomenon cannot be explained using linear analysis. To understand the time dependence
of QPO frequency excitation, one may have to look beyond linear analysis, for example,
nonlinear coupling. Moreover, to discuss crustal oscillations, one must estimate the crustal
elasticity, which is characterized by shear modulus. The details are shown in Section 4.

The oscillation frequencies in a spherically symmetric neutron star model can be
classified into two families with parity, i.e., axial and polar oscillations, where axial-type
oscillations can be excited independently of polar-type oscillations. The crustal torsional
oscillations belong to the axial type oscillations. Since axial type oscillations do not involve
density variation, they are relatively easily excited but less important in gravitational wave
observations. On the other hand, polar-type oscillations involve density variation and
stellar deformations, where various oscillation modes can exist.

Owing to crust elasticity, the shear and interface modes, which are polar-type os-
cillations, are also excited, as well as torsional oscillations, even though they are not so
discussed well compared to torsional oscillations. The interface modes, whose frequencies
are less than 100 Hz, may be excited in binary neutron stars by resonating with the orbital
frequency. In fact, the precursors have been observed just before the main flare activity
of a gamma-ray burst at a binary neutron star merger [89], which may be a result of the
resonant shattering of neutron star crusts induced by the binary orbital motion [90,91].
If so, one could extract the neutron star properties by carefully observing the precursors
and identifying them with neutron star oscillations [92-95]. To extract the properties from
the resonant shattering of neutron star crust, one must examine the shear and interface
modes systematically.
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In this review, which mainly focuses on the torsional oscillations excited in the neutron
star, we extract the neutron star properties by identifying the observed QPO frequencies us-
ing torsional oscillations. For this purpose, we simply assume the Cowling approximation
in this review, i.e., we only consider fluid oscillations with the (unperturbed) background
metric. The perturbation equations are derived from the linearized energy-momentum
conservation law. By imposing appropriate boundary conditions on the numerical bound-
ary, the problem to solve becomes an eigenvalue problem. The neutron star crust is mainly
composed of spherical nuclei, but the non-spherical nuclei may appear in the vicinity of
the boundary of crust and core, depending on the nuclear parameters (or EOS). First, we
begin by discussing the observed QPO frequencies with the crustal torsional oscillations
excited in the region only composed of spherical nuclei. Then, the discussion is extended
to the more realistic situation with the non-spherical nuclei. Through these attempts, we
successfully identify all the observed QPOs with crustal torsional oscillations, and finally,
derive the constraint on the slope parameter as L ~ 58-73 MeV. Furthermore, we also
discuss the identification of high-frequency QPOs observed in GRB 200415A with overtones
of crustal torsional oscillations. Through this identification, we make a constraint on the
neutron star mass and radius for GRB 200415A, adopting the fiducial values of nuclear
saturation parameters. In addition, we systematically examine the shear and interface
modes for various neutron star models, with which we determine the relation between the
frequencies and the neutron star properties independently of the stiffness of EOS for the
core region.

This manuscript is organized as follows. In Section 2, we briefly mention the observed
QPO frequencies in magnetar giant flares, which will be considered as evidence of neutron
star oscillations. In Section 3, we show the equilibrium neutron star models and the EOS
considered in this study. In Section 4, we briefly mention the shear modulus inside the
neutron star crust, which is an important property for considering crustal oscillations. In
Section 5, we extract the crustal information in practice by identifying the observed QPOs
with crustal torsional oscillations. In Section 6, we also show the behavior of the shear
and interface modes, specifically focusing on their association with neutron star properties.
Finally, we conclude in Section 7. Unless otherwise mentioned, we adopt the following
geometric units: ¢ = G = 1, where ¢ and G denote the speed of light and the gravitational
constant, respectively.

2. Magnetar QPOs and Magneitc Effects on Crustal Oscillations

Compared to usual pulsars whose surface magnetic field strength is ~ 1012103 G, the
existence of neutron stars with strong magnetic fields, such as ~ 104-10'° G, is observation-
ally known. This strongly magnetized neutron star is known as a magnetar. In a rotating
neutron star, the magnetic stress induced by the stellar rotation gradually accumulates in
the crust, which is usually supported by crustal elasticity. But, once the magnetic stress
becomes significantly strong and the crust elasticity cannot support it, the crust eventually
breaks out, and the magnetic energy is released through flare activities [96,97], where star
quakes may also occur. This scenario could be the origin of the QPOs observed in the
afterglow following magnetar giant flares.

In practice, QPOs have been discovered in giant flares observed in soft-gamma re-
peaters (SGRs). There have been three events detected up until now in which QPOs are
found, i.e., SGR 0526-66 in 1979 [98,99], SGR 1900+14 in 1998 [100], and SGR 1806-20 in
2004 [101,102]. In particular, in the events concerning SGR 1900+14 and SGR 1806-20,
several QPOs were found [72-74], i.e., 28, 54, 84, and 155 Hz in SGR 1900+14, and 18, 26, 29
(or 30), 92.5, 150, 626.5, and 1837 Hz in SGR 1806-20. Using Bayesian analysis, the existence
of additional QPOs was also reported in SGR 1806-20 [77]. Moreover, even without giant
flares, QPOs have been found from less energetic recurrent bursts, i.e., 93 and 127 Hz in
SGR J1550-5418 [75] and 57 Hz in SGR 1806-20 [76]. In addition to the QPOs observed in
SGRs, several high QPO frequencies have been found in GRB 2004154, i.e., 836, 1444, 2132,
and 4250 Hz [78].
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Assuming that these QPOs derive from neutron star oscillations, one may identify the
higher QPO frequencies with polar-type oscillations of neutron stars, e.g., Figure 25, but
the lower frequencies are more difficult to identify with neutron star oscillations. Maybe
the possible candidates are only the crustal torsional oscillations or magnetic oscillations
(or magneto-elastic oscillations). Meanwhile, the magnetic oscillations definitely depend
on the geometry and strength of magnetic fields, which are not understood well yet. In
addition, it is pointed out that crustal torsional oscillations can be excited in the vicinity of
the neutron star surface, while magnetic oscillations are confined only to the core region if
magnetic fields are not so strong. This is because the shear velocity is higher than the Alfvén
velocity, v4 = B/+/4mp, with the magnetic field strength, B, and density, p, at the basis of
the crust, which leads to the oscillations being controlled by shear properties. In general,
the critical field strength, above which magnetic oscillations become dominant, depends on
the EOS (or crust properties), which is considered around a few times 10™ G [79,81,103].
Therefore, to avoid uncertainty in the magnetic geometry and profile, assuming that the
field strength is not so strong, we focus on only crustal oscillations without magnetic effects
in this review.

As an advantage, without the magnetic effect, crustal torsional oscillations are com-
pletely confined inside the crust since axial-type oscillations do not involve radial variations.
That is, one can avoid large uncertainties in EOSs of the core region and directly discuss the
crust properties by comparing the observed frequencies to the crustal torsional oscillations.
On the other hand, if one takes into account the magnetic effects, even torsional oscillations
can be coupled with the core region through the magnetic fields, where oscillations are
easily damped out via magnetic coupling if the magnetic fields are relatively large [104,105].
We note that one has to consider polar-type oscillations in the whole region of a neutron
star, even if the magnetic effects are neglected because polar-type oscillations involve
radial variations.

We only focus on neutron star oscillations associated with crust elasticity in this review;
however, we briefly mention the magnetic oscillations in the neutron star here. Since the
existence of magnetic fields inside the star breaks a spherically symmetric configuration,
one cannot examine magnetic oscillations (and also magneto-elastic oscillations) in the same
way as spherically symmetric objects (as mentioned in the following sections). Assuming a
specific distribution of magnetic fields, one may study them by decomposing perturbative
variables with spherical harmonic function, where /-th order perturbation equations are
generally coupled with /-th order equations of other values [79,106]. Alternatively, one
may solve a time evolution of two-dimensional perturbation equations and determine
frequencies via FFT.

With the latter approach, it has been shown that axial-type magnetic oscillations
are on a continuous spectrum compared to discrete ones [107-109]. This is because the
frequencies of magnetic oscillations are characterized by the propagation time determined
with the magnetic field length inside the star and Alfvén velocity, while the magnetic
field length inside the star continuously changes from the axis to the position related to
the closed field line close to the equatorial plane [108]. This phenomenon may also be
understood with a toy model suggested in [110,111]. In any case, taking into account
coupling with the crust, i.e., magneto-elastic oscillations, one may identify the observed
QPO frequencies [80,105,112,113]. Furthermore, one may constrain the magnetic geometry
from the QPO frequencies and estimated field strength of magnetic fields, i.e., the case that
the magnetic fields are confined in the crust due to the type I superconductor in the core
region can be excluded [114].

Compared to extensive studies on axial-type magnetic oscillations, the study of polar-
type magnetic oscillations is relatively poor. Even so, unlike axial-type oscillations, polar-
type magnetic oscillations seem to be on a discrete spectrum [115], and they definitely play
an important role in gravitational wave radiations [116,117].
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3. Crustal Equilibrium

Although the details of a neutron star structure depend on the EOS for neutron star
matter, its conceptual structure is generally accepted. Under the thin envelope of the
atmosphere and/or ocean, the matter forms a Coulomb lattice, which behaves as a solid.
This region corresponds to the neutron star crust. Most of the crust region is composed of
spherical nuclei with a body-centered cubic (bcc) lattice, while the shape of stable nuclei
changes into cylindrical, slablike, cylindrical hole, and spherical hole, and eventually
becomes uniform matter as density increases [118,119]. The region composed of non-
spherical nuclei is the so-called pasta phase, which behaves as a liquid crystal. Meanwhile,
the region whose density is higher than the transition density from the non-uniform to the
uniform matter is the neutron star core. This transition density depends on the neutron star
EOS, which becomes ~ (1/3-1/2) of the nuclear saturation density. The transition density
where the nuclear shape changes inside the crust also depends on the EOS, especially on the
density dependence of the symmetry energy, L, in Equation (1) [120-122]. In addition, the
crust thickness is at most 10% of the stellar radius, which depends on stellar compactness,
M/R, and nuclear saturation parameters [119,123] (see Figure 2 for an example of the
concrete stellar model). In general, the ratio of crust thickness to stellar radius decreases as
the stellar compactness and L increases. In particular, for L 2> 100 MeV, the pasta phase
disappears, where the crust is composed of only spherical nuclei and directly transitions
into uniform matter [120-122] (also see Table 1).
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Figure 2. Example of the energy density profile inside the neutron star with 1.4M¢ and 12.4 km
constructed with a specific EOS with L = 73.4 MeV and Ky = 230 MeV, where L and Kj are the
nuclear saturation parameters provided by Equation (1). The bottom panel is an enlarged view of the
above panel. Taken from [124].

The EOS for neutron star matter generally depends on the adopted nuclear interaction,
nuclear models, and compositions. But for any EOSs, the bulk energy per baryon for the
zero-temperature nuclear matter can be expanded in the vicinity of the saturation density,
ny ~ 0.16 fm 3, of symmetric nuclear matter as a function of the baryon number density,
ny, and neutron excess, «, via the following [125]:

E K
~ =wo+ 2+ 0() + [50+Lu+(’)(u2)}zx2+(’)(0¢3), )
where u = (n, — ng)/(3ny), while n, and « are provided by n, = n, +n, and a =
(n, —n p) /np using the neutron and proton number density, 1, and n,. We note that the
matter with & = 0 corresponds to a symmetric nuclear matter, i.e., n, = np, while that
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with & = 1 is a pure neutron matter, i.e., n, = n,. The coefficients in this expansion are
the nuclear saturation parameters, which characterize each EOS, and the term inside the
brackets in front of a2 corresponds to the nuclear symmetry energy. In particular, wy and
Ky are the binding energy and incompressibility of symmetric nuclear matter at n;, = ny,
while Sy is the symmetry energy at n,, = ny.

Owing to the nature of nuclear saturation properties, ng, wp, and Sy are well determined
via experiments, i.e., ng ~ 0.15-0.16 fm=3, wy ~ —15.8 MeV [9], and Sy ~ 31.6 2.7 MeV [10].
In contrast, Ky and L are more difficult to determine experimentally because they are a
density derivative at n,, = ny, i.e., one needs to know the nuclear information in a somewhat
wide density range around the saturation point. Nevertheless, the constraints on these
two parameters are improved, where their fiducial values are Ky = 230 £ 40 MeV [2,4]
and L ~ 60 £ 20 MeV [3,7,10]. We note that the constraint on L still seems to have large
uncertainties, e.g., L = 106 & 37 MeV with PREX-II carried out by the Thomas Jefferson
National Accelerator Facility in Virginia [19], or 42 < L < 117 MeV with SnRIT by the
Radioactive Isotope Beam Factory at RIKEN in Japan [42].

In this review, to systematically discuss the dependence of crustal oscillations on
nuclear saturation parameters, we adopt a phenomenological EOS proposed by Oyamatsu
and Iida [120,121] (hereafter referred to as OI-EOS). For given values of Ky and L, the
OI-EOS family is constructed by optimizing the values of ng, wp, and Sy to reproduce
experimental data for masses and charge radii of stable nuclei in such a way that the bulk
energy reduces to Equation (1) in the limit of n, — ng and @ — 0, adopting the extended
Thomas—Fermi theory. The EOS parameters adopted in this review are listed in Table 1.
We note that some of the EOS parameter sets are out of the range of fiducial values for
Koy and L, but we adopt such a wide range to systematically discuss the dependence on
saturation parameters.

Table 1. The EOS parameters for the OI-EOS family adopted in this review, where y is defined as
y = —KoSo/(3ngL). SP-C, C-S, S-CH, CH-SH, and SH-U denote the transition densities for each
EOS parameter set. The asterisk at the value of Ky denotes the EOS model with which some pasta
phases are not predicted to appear, i.e., the values with x1, ¥2, and *3 denote the transition densities
from cylindrical nuclei to uniform matter, from cylindrical-hole nuclei to uniform matter, and from
spherical nuclei to uniform matter, respectively.

Ko (MeV) —y (MeV fm®) L (MeV) SP-C(fm~3) C-S(fm~3%) S-CH(m—% CH-SH (fm—% SH-U (fm~3)

180 1800 5.7 0.06000 0.08665 0.12039 0.12925 0.13489
180 600 17.5 0.05849 0.07986 0.09811 0.10206 0.10321
180 350 31.0 0.05887 0.07629 0.08739 0.09000 0.09068
180 220 522 0.06000 0.07186 0.07733 0.07885 0.07899
230 1800 7.6 0.05816 0.08355 0.11440 0.12364 0.12736
230 600 237 0.05957 0.07997 0.09515 0.09817 0.09866
230 350 426 0.06238 0.07671 0.08411 0.08604 0.08637
230 220 734 0.06421 0.07099 0.07284 0.07344 0.07345
280 1800 9.6 0.05747 0.08224 0.11106 0.11793 0.12286
280 600 30.1 0.06218 0.08108 0.09371 0.09577 0.09623
280 350 54.9 0.06638 0.07743 0.08187 0.08314 0.08331
*280 220 97.5 0.06678 — — — 0.06887 *1
360 1800 12.8 0.05777 0.08217 0.10892 0.11477 0.11812
360 600 409 0.06743 0.08318 0.09197 0.09379 0.09414
*360 350 76.4 0.07239 0.07797 0.07890 — 0.07918 *2
*360 220 146.1 — — — — 0.06680 *3

As an equilibrium crust model (or a neutron star model), we simply consider a non-
rotating, strain-free, and spherically symmetric neutron star model in this review. The
metric describing such a stellar model is provided by the following equation:

ds*> = —e*Pdt* + e dr? 4 r?(d6? + sin” 0dp?), @)

where ® and A are the metric functions depending on only the radial coordinate, . A
is directly associated with the mass function, m(r), which corresponds to the enclosed
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gravitational mass inside position 7, i.e., e ?* = 1 — 2m/r. Adopting an appropriate EOS,
e.g., the OI-EOS family in this review, one can construct the stellar model by integrating
the Tolman—-Oppenheimer—Volkoff (TOV) equation. In general, to construct a stellar model,
one integrates the TOV equation outward from the center to the surface, assuming a central
density, i.e., the neutron star models become one parameter family for each EOS. In fact,
we construct the stellar model in this way to discuss the shear and interface modes in
Section 6 because these modes are polar-type oscillations, which are excited not only in
the crust region but also inside the core. On the other hand, the torsional oscillations
discussed in Section 5, which are axial-type oscillations, are confined inside the crust
(elastic) region. Therefore, to remove the uncertainties of the core EOS, we construct only
the crust equilibrium to discuss torsional oscillations, where we integrate TOV equations
inward from the stellar surface to the base of the crust, assuming the stellar mass and radius
as a boundary condition at the stellar surface.

4. Shear Modulus

The elasticity inside the crust can be characterized by the shear modulus, y. The shear
modulus, ysp, in a phase of spherical nuclei with a bec lattice is approximately described in
the limit of zero-temperature as follows:

n;(Ze)?

Psp = 0.11947, 3)
where n;, Z, and a are the ion number density, charge number of the ion, and Wigner—
Seitz cell radius, ie., 4wa®/3 = 1/n; [126]. This expression is derived by averaging
the overall direction, assuming that each nucleus is only a point particle [127]. The
shear modulus in the phase of spherical nuclei has been discussed more by including the
phonon contribution [128], the electron-screening effect [129-132], the effect of polycrystal
properties [133], and effects of finite size of atomic nuclei [134], which can modify the shear
modulus more or less. However, in this review, we simply adopt ys, given by Equation (3)
as the shear modulus in the phase of spherical nuclei.

Compared to the shear modulus in the phase of spherical nuclei, the discussion for
the shear modulus in the pasta phases is very poor. Nevertheless, according to [135], the
shear modulus, jicy, in the phase of cylindrical nuclei can be estimated as follows:

2 _
Hey = gECoul X 102'1(3”2 0'3)/ 4)
where Ecqy and w; denote the Coulomb energy per volume of a Wigner—Seitz cell and the
volume fraction of cylindrical nuclei, while the shear modulus, g, in the phase of slablike
nuclei is as follows:

Hs =0, ®)

i.e., the matter composed of slablike nuclei behaves as a fluid within the linear response.
This is because the deformation energy in slablike nuclei becomes of higher order with
respect to displacement [135]. So, in this review, we simply adopt Equations (4) and (5) as
the shear modulus in the phases of cylindrical and slablike nuclei. But, it has also been
suggested that the elastic constant in the poly-crystalline lasagna (which corresponds to
slablike nuclei) may become a (nonzero) tiny value [136,137]. If one considers the nonzero
shear modulus inside the slablike nuclei, the results shown in this review may be changed.

Furthermore, the shear modulus in the phase of cylindrical-hole, y.;, and spherical-
hole nuclei, yg,, may be considered in a similar way to that in the phase of cylindrical and
spherical nuclei. This is because liquid crystalline structures in the phase of cylindrical-
hole and spherical-hole nuclei are basically the same as in the phase of cylindrical and
spherical nuclei. Thus, we adopt Equations (4) and (3) for u., and g, by appropriately
replacing the quantities in the formulae [88,138]. That is, w, in Equation (4) is replaced
by the volume fraction of gas of dripped neutron for y.,, while n; and Z in Equation (3)
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are replaced by the number density of spherical-holes (bubbles) and the effective charge
number, Zg,, of spherical-hole nuclei for p;,, where Zg, is estimated as Z,, = ngVj;, with
the effective charge number density of the spherical-hole nuclei, g, and the volume of the
spherical-hole nuclei, V;,. ng is given by the difference of the charge number density inside
the spherical-hole from that outside the spherical-hole, i.e., ng = —n, — (n p— M) = —nyp,
using the proton number density outside the spherical-hole nuclei, 7,, and the number
density of uniform electron gas, 7.

In Figure 3, we show an example of the distribution of shear modulus inside the crust
for the stellar model shown in Figure 2, where the right panel is an enlarged view of the
shaded region in the left panel.

100 ' ' IR T sHl
N Iy\'" S~ \neutron drip E 1030 _@A:/SHE i
1077 N P P :
£ Y o 7
5 1028.. SIE N E.E) 4 N 1 7
< S N GiZ 2
£ il SR CH
S R
T, ol L=T34MeV Vo] /islab!
b=V = 1 |},[‘: 1
e PTG s S B I == . .
090 092 094 096 098 100 0.918 0.920 0.922
r/IR /R

Figure 3. Shear modulus inside the neutron star model provided in Figure 2, where Sp, Cy, CH,
and SH, respectively, denote the phases composed of spherical, cylindrical, cylindrical-hole, and
spherical-hole nuclei. The right panel is an enlarged view of the shaded region in the left panel. Taken
from [124].

5. Crustal Torsional Oscillations

Concerning the crustal equilibrium models mentioned in the previous section, we
carry out a linear perturbation analysis to determine the specific frequencies of crustal
torsional oscillations. In this review, we examine the oscillation frequencies within the
relativistic framework, which has also been discussed within the Newtonian framework,
e.g., [126,139,140]. To derive the perturbation equations, we simply adopt the Cowling
approximation, where the metric perturbation is neglected during fluid oscillations. We
note that one can expect to accurately determine the frequencies of axial-type oscillations
even with the Cowling approximation because axial-type oscillations do not involve density
variations, i.e., metric perturbations (corresponding to the perturbations of gravitational po-
tential) should be too small. The perturbation equation can be derived from the linearized
energy—-momentum conservation law. In practice, when introducing the ¢ component
of Lagrangian displacement, & = ))(r)e/“’!dyPy(cos 0) / sin 8, where P;(cos 8) denotes the
¢-th order Legendre polynomial, and the perturbation equation is as follows [79,141]:

l & —
y//+ |:(4+CD/A/> +]’l:|yl+ [HWZE—ZQMZ(ZU esz:O, (6)
r M 14 r

where the dash denotes the derivative with r, and H denotes the effective enthalpy con-
tributing to oscillations.

N N,
H=(1-—/"|H 7
(1-%) @)
for spherical or cylindrical nuclei [85,142], while

for cylindrical-hole or spherical-hole nuclei [88].
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In the expression of effective enthalpy, H denotes the local enthalpy provided by
H = e+ p with the energy density, ¢, and pressure, p, while A is the baryon number density
inside a Wingner—Seitz cell, N; is the number of neutrons inside a Wingner—Seitz cell that
do not commove with protons in the nuclei, N; is the number of neutrons inside cylindrical-
hole or spherical-hole nuclei, and R is a parameter characterizing a participant ratio in the
oscillations, i.e., the ratio of nucleons outside cylindrical-hole or spherical-hole nucleu that
commove non-dissipatively. That is, all the nucleons inside a Wingner—Seitz cell contribute
to the effective enthalpy with R = 1 (maximum enthalpy), while no nucleons outside the
cylindrical-hole or spherical-hole nuclei do so with R = 0 (minimum enthalpy). We note
that, R in a phase of spherical-hole nuclei, is predicted as ~ 0.34-0.38 at n;, = 0.08 fm 3
using band calculations [143]. Meanwhile, assuming that Ny comes only from a part of
the dripped neutrons inside a Wingner—Seitz cell, Ny, the parameter N;/N; can control
the fraction of neutrons contributing to oscillations, i.e., Ns/ Ny = 0 corresponds to the
situation that all dripped neutrons commove with protons (maximum enthalpy), while
Ns/N; = 1 denotes that all dripped neutrons behave as a superfluid and do not contribute
to oscillations (minimum enthalpy).

To determine the frequencies, one must impose appropriate boundary conditions in
the perturbation Equation (6) at the basis of the crust (the boundary between the core and
crust) and the surface of the crust (or the boundary between the crust and envelope). Both
boundaries are essentially equivalent to the boundary between the elastic and fluid region,
where we impose the condition that the traction force vanishes [79,141], which reduces to
Y’ = 0. On the other hand, at the interface between elastic regions with different shapes
of nuclei, e.g., between spherical and cylindrical nuclei, we impose a continuous traction
condition, i.e., )’ should be continuous at such an interface. Then, the problem to solve
becomes an eigenvalue problem with respect to the eigenvalue, w. The resultant value of w
provides us the frequency, f, via f = w/27 for each value of £. In this review, we use the
notation of ,f, for expressing the eigenfrequencies of torsional oscillations with the angular
index ¢ and the nodal number in the eigenfunction (although the notation is different from
the usual one, such as yt,).

5.1. Torsional Oscillations Excited in Spherical Nuclei

Even though the crust is not only composed of the spherical nuclei as mentioned
above, to determine the dependence of frequencies of the torsional oscillations on the
EOS parameters and stellar properties, we first consider the torsional oscillations excited
in the elastic region composed of only spherical nuclei. As a first step, we examine the
frequencies without neutron superfluidity, i.e.,, Ns/N; = 0 (or H = H). As mentioned
in Section 3, to construct the equilibrium model, we select two parameters for EOS, i.e.,
Ko and L, and two for stellar models, M and R. In the left panel of Figure 4, we show
the fundamental frequencies of ¢ = 2 torsional oscillations for a neutron star model with
1.4Mg and 12 km, using the EOSs with some parameter sets listed in Table 1 (see Ref. [86]
for the concrete parameter sets adopted here) as a function of L. From this figure, one can
observe that the frequencies are less sensitive to Ky. Thus, we will discuss the dependence
of the fundamental frequency as a function of L through the fitting formula by assuming
the polynomial form as follows:

0 1 2
ot = Cg ) + Cé )Lmo + Cé )L%OO/ 9)

where cg) with i = 0,1,2 are the adjustable parameters depending on M and R (and
Ns/Ny), while Ly is the value of L normalized by 100 MeV. Using this fitting formula,
one can estimate the frequency of ¢f; with less than ~ 5% accuracy for a neutron star
model with 1.4M¢ and 12 km (Table 2 in [86]). In the left panel of Figure 4, we also show
the expected frequencies with the fitting formula provided by Equation (9) by the thick,
solid line.
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One may be able to understand the dependence of of; on L as follows. As the value of
L increases, the nuclear symmetry energy conversely decreases at the sub-nuclear density,
considering the density dependence of the bulk energy provided by Equation (1). As
a result, protons easily turn into neutrons, which leads to the situation that the charge
number of nuclei becomes smaller. This means that 5, decreases using Equation (3). On
the other hand, the fundamental frequency of ¢-th torsional oscillations, ¢t,, are estimated
as ot; ~ [£(£ +1)]Y/%vs/R with the shear velocity, vs = (u/H)'/? [139]. Thus, one can
expect that oty decreases with L.

Now, assuming the neutron star mass and radius would be in the range of
14 < M/Mp < 1.8 and 10 km < R < 14 km, which are reasonable assumptions for
a neutron star model, the resultant fundamental frequency of ¢ = 2 torsional oscillations is
shifted, depending on stellar models. In the right panel of Figure 4, we show the expected
region of (f; for such neutron star models as a function of L. We note that ¢t; decreases
with R and M. So, the lower bound of the shaded region corresponds to the stellar model
with 1.8 M, and 14 km. On the other hand, the lowest QPO frequency observed in the SGR
1806-20, i.e., 18 Hz, is also shown in the right panel of Figure 4. Since ¢ = 2, fundamental
torsional oscillations are theoretically the lowest frequency among many eigenfrequencies
of torsional oscillations, ¢t should be equal to or even lower than the observed lowest
QPO frequency on the assumption that magnetar QPOs come from crustal torsional os-
cillations. Then, from the right panel of Figure 4, one can obtain the constraint on L as
L 2 47.4 MeV if the central object of SGR 1806-20 is a neutron star with M < 1.8M and
R <14 km [84,86]. Similarly, if the central object is a typical neutron star with 1.4M and
10 km, L is constrained as L ~ 76.2 MeV.

35 T T

—o— K(=180MeV
s - K=230MeV
E ~m K)=280MeV
- Mg, 7 Ko=360MeV

S 15F Vi, ]

. Y
Tty
5 1 1 1
0 50 100 150 0 50 100 150
L [MeV] L [MeV]

Figure 4. In the left panel, the fundamental frequencies of ¢ = 2 torsional oscillations for a neutron
star model with 1.4M and 12 km constructed with several EOS parameter sets are shown as a
function of L. The thick, solid line is the expected frequency using the fitting formula provided by
Equation (9). In the right panel, the expected fundamental frequency of ¢ = 2 torsional oscillations as
a function of L, assuming that the neutron star mass and radius are in the range of 1.4 < M/Mg < 1.8
and 10 km < R < 14 km, where for reference the lowest QPO frequency observed in SGR 1806-20,
i.e., 18 Hz, is also shown. The vertical solid and broken lines correspond to L = 47.4 and 76.2 MeV,
respectively. Taken from [86].

Next, we take into account neutron superfluidity in crustal torsional oscillations, i.e.,
N;/N; # 0. To see how the frequencies depend on N;/N;, we calculate gt,, assuming
that N5/ N; is constant inside the inner crust. We confirm that f, for a given neutron star
model can be well expressed as a function of L using Equation (9), even for Ns/N; # 0. In
Figure 5, we show the L dependence of ¢t for a neutron star model with 1.8M and 14 km
by varying the ratio of N;/ Ny with each 0.2 from 0 to 1 (the solid lines from bottom to top).
The tendency of why the frequency increases with Ns/N; can also be understood by the
dependence of frequency on the shear velocity. As mentioned above, the effective enthalpy,
H, decreases with Ns/N,;, which leads to an increase in the shear velocity. As a result, one
can expect that the frequency also increases since of;, ~ vs. We note that the neutron star
model discussed for the L dependence of ot; in Figure 5 corresponds to the stellar model,
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which provides the lower boundary of the shaded region in Figure 4. That is, assuming
that the central object in SGR 1806-20 is a neutron star with M < 1.8 M and R < 14 km,
and also assuming that the lowest QPO frequency observed in SGR 1806-20 comes from (t5,
one can obtain the constraint on L as L 2 L, with a lower limit of L,;,,, depending on
Ns /N4, where L, is determined as the intersection of the L dependence of ot; and 18 Hz
(dot-dashed line) in Figure 5, i.e., L,,;;, increases with N; /Ny [85].

In a realistic stellar model, Ns/N,; should depend on the density. According to the
band calculations in [143], the ratio of N;/Nj; is only of the order of 10-30 percent at
ny ~ 0.01 — 0.4np, even though the ratio of Ns/N; is still under debate, e.g., in [144-146].
The fundamental frequencies determined with this density dependence of Ns/N; are also
shown in Figure 5 with marks (and the dashed line for their fitting), which are close to the
results obtained with N;/N; = 0.2. Anyway, since the frequencies of torsional oscillations
strongly depend on the ratio of Ns/Nj, it is quite important to understand the ratio of
Ns/ Ny in a realistic situation.

50

o Ky=180 MeV
o Ky=230 MeV ]
m Kp=360 MeV ]

ol2 [HZ]

L [MeV]

Figure 5. For a neutron star model with 1.8M, and 14 km, the fundamental frequency of { = 2
torsional oscillations is plotted as a function of L, changing the ratio of N5/ N; with each 0.2 from 0 to
1, where N5/ N, is assumed to be constant inside the inner crust. Meanwhile, the marks denote the
frequencies, determined using the density-dependent N/ Ny derived in [143], and the dashed line is
their fitting with Equation (9). Taken from [85].

In a similar way to the fundamental frequencies of / = 2 torsional oscillations, one
can discuss the L dependence of {-th torsional oscillations. Actually, if one systematically
examines the frequencies, one can determine that f, is also well fitted as a function of L,
which weakly depends on Ky, as follow:

0 1 2
oty = C; ) + Cg )L100 + Cé )L%OOf (10)

where cél) with i = 0,1,2 are also the adjustable parameters depending on M and R
(and Ns/Nj;) [85]. Using this L dependence of (t;, we will discuss the QPO frequencies
observed in SGR 1806-20 and 1900+14, even though one should also consider the effect of
the existence of pasta (see Sections 5.2 and 5.3 and also [147,148]). In Figure 6, we show the
fundamental frequencies of torsional oscillations with specific values of ¢ for a neutron star
model with 1.4M, and 12 km, adopting the results in [143] for Ns/ N;. From the left panel,
one can observe that the 18, 26, 30, and 92.5 Hz QPOs in SGR 1806-20 are well identified
with ¢ = 3,4, 5,15 fundamental oscillations if L ~ 128.0 MeV; meanwhile, from the right
panel, one can observe that the 28, 54, and 84 Hz QPOs in SGR 1900+14 are have ¢ = 4, 8,13
fundamental oscillations if L ~ 113.5 MeV. We note that other low-lying QPO frequencies
discovered later can also be identified with torsional oscillations with different values of ¢
in the same framework [88,131,142] (also see Sections 5.2 and 5.3).
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Figure 6. The fundamental frequencies of torsional oscillations with several values of ¢ for a neutron
star model with 1.4M¢ and 12 km are shown as a function of L. The QPO frequencies observed in
SGR 1806-20 and SGR 1900+14 are compared with them in the left and right panels. Taken from [86].

Since the neutron star mass and radius in SGR 1806-20 and SGR 1900+14 are not
constrained, it may be better to consider the stellar models with a typical range of mass
and radius. In practice, if the stellar mass and radius are changed in a certain range, the
resultant L dependence of ¢, is shifted up and down in Figure 6 with the same combination
of /-th oscillations. As a result, the optimal value of L, with which the QPOs observed in
SGRs are well identified with torsional oscillations, is also shifted left and right. In the left
panel of Figure 7, the optimal values of L, with which the QPO frequencies observed in
SGR 1806-20 (with filled marks) and in SGR 1900+14 (with open marks) are well identified
as shown in Figure 6, are shown for various neutron star models. From this figure, one can
see that L should be in the range of 101.1 < L < 160.0 MeV for explaining SGR 1806-20
and 90.5 < L < 131.0 MeV for explaining SGR 1900+14 if the central objects of both SGRs
are neutron stars with 1.4 < M/Mg < 1.8 and 10 km < R < 14 km. Meanwhile, since
the value of L should be universal, i.e., independent of the astronomical events, one has to
simultaneously explain both events, SGR 1806-20 and SGR 1900+14, with the same value
of L. Thus, we get a more stringent constraint on L, i.e., 101.1 < L < 131.0 MeV [86],
which is shown in the left panel of Figure 7 with the shaded region. Furthermore, since
the symmetry energy at n, = ng, Sg is approximately estimated as a function of L [120]
through the following;:

Sp ~ 28 MeV + 0.075L, (11)

one can constrain Sy to explain the QPOs observed in the SGRs as 35.6 < S < 37.8 MeV.
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Figure 7. The values of L, with which the QPOs observed in SGR 1806-20 (SGR 1900+14) are well
identified by fundamental torsional oscillations, are shown with filled marks with solid lines (open
marks with dashed lines) for different neutron star models, i.e., circles, diamonds, and squares
correspond to the stellar models with a 10, 12, and 14 km radius. The left and right panels correspond
to the identification shown in Figures 6 and 8, respectively. The shaded region is the constraint on L,
with which the QPOs observed in both SGR 1806-20 and 1900+14 are simultaneously explained by
the torsional oscillations. Taken from [86].
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On the other hand, considering the constraints on L obtained from terrestrial exper-
iments whose fiducial value is L ~ 60 4 20 MeV [3,7,10], the resultant constraint on L
may be too large, although a larger value of L has also been reported [19,42]. So, if any,
it may be better to consider an alternative possible correspondence to explain the QPO
frequencies observed in SGRs with fundamental torsional oscillations. As an alternative
possible correspondence, we determine that the 18, 30, and 92.5 Hz QPOs in SGR 1806-20
are identified with ¢ = 2,3,10 fundamental torsional oscillations, while the 28, 54, and
84 Hz in SGR 1900+14 are determined with ¢ = 3, 6,9 oscillations, as shown in Figure 8 for
a neutron star model with 1.4M and 12 km, where the value of L should be L ~ 73.5 MeV
in SGR 1806-20 and L ~ 77.5 MeV in 1900+14. We note that the 26 Hz QPO in SGR 1806-20
cannot be identified with this correspondence (see Section 5.3 for this missing identifica-
tion). Considering a typical neutron star model with 1.4 < M/Mg <1.8and 10km < R <
14 km, one can obtain the optimal values of L as shown in the right panel of Figure 7. To
simultaneously explain the QPOs observed in the SGRs, we obtain the constraint on L as
58.0 < L < 85.3 MeV (shaded region in the right panel), assuming that the central object in
the SGR 1806-20 and SGR 1900+14 is a neutron star with 1.4 < M/ Mgy < 1.8 and 10 km
< R <14 km [86]. This constraint on L additionally provides us the constraint on Sy as
324 < Sp S 34.4 MeV, using Equation (11). We note that the fundamental frequencies of
{-th torsional oscillations excited inside the phase of spherical nuclei can be expressed as a
function of ¢, L, stellar mass, and radius [149].
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Figure 8. Alternative possible correspondence of the QPO frequencies observed in SGR 1806-20
(left panel) and SGR 1900+14 (right panel) with fundamental torsional oscillations for a neutron star
model with 1.4Mg and 12 km. Taken from [86].

5.2. Torsional Oscillations Excited in Spherical and Cylindrical Nuclei

Since, in this review, we simply consider that the shear modulus inside the phase
of slablike nuclei is zero, as mentioned in Section 4, torsional oscillations in the region
composed of spherical and cylindrical nuclei can be excited independently from those
in the region composed of cylindrical-hole and spherical-hole nuclei. That is, torsional
oscillations are excited independently in two layers across the phase of slablike (lasagna)
nuclei as “a lasagna sandwich” [88]. In this subsection, we discuss the torsional oscillations
excited in the outer layer, i.e., the phase of spherical and cylindrical nuclei, while those
excited in the inner layer, i.e., the phase of cylindrical-hole and spherical-hole nuclei, will
be discussed in the next subsection (Section 5.3).

Unlike the phase of spherical nuclei, the understanding of the ratio of N;/N; in the
phase of cylindrical nuclei is poor. So, we simply consider the extreme case, i.e., Ns/N; = 0
and 1 in the phase of cylindrical nuclei. On the other hand, we adopt the result obtained
in [143] for N,/ Ny in the phase of spherical nuclei, as in the previous subsection. Then, one
can determine the frequencies of torsional oscillations by solving an eigenvalue problem.

To see how the frequency of torsional oscillation changes due to the existence of
cylindrical nuclei, in Figure 9, we show (f; as a function of L for a neutron star model
with 1.4M¢ and 12 km using EOSs with some parameter sets listed in Table 1 (see [142]
for the concrete parameter sets adopted here), where the left and right panels correspond
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to the results with N5/N; = 0 and 1, respectively, and the thick, solid line is the fitting
with Equation (9). For reference, we also show the L dependence of (t; excited in the
phase of only spherical nuclei discussed in Section 5.1 with the dashed line. From this
figure, one can observe that the modification in ¢f; due to the existence of cylindrical nuclei
appears only for a neutron star model with a lower value of L. This is because the phase of
cylindrical nuclei, as well as the other pasta phases, becomes narrower with L [120-122],
i.e., one can neglect the existence of cylindrical nuclei in the stellar model with larger L. In
any case, fundamental torsional oscillations hardly depend on Ky, and one can discuss the
L dependence through the fitting provided by Equation (10).
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Figure 9. The fundamental frequencies of ¢ = 2 torsional oscillations excited in the phase of spherical
and cylindrical nuclei for a neutron star model with 1.4M¢ and 12 km are shown with various marks.
The left and right panels are results with Ns/N; = 0 and 1, respectively. The thick-solid line denotes
fitting with Equation (9), while the dashed line denotes the L dependence of o, exited in the phase of
only spherical nuclei discussed in Section 5.1. Taken from [142].

Using the L dependence of ot;, with Ns/N; = 1 in the phase of cylindrical nuclei, in
Figure 10, we compare fundamental torsional oscillations with various ¢ for a neutron star
model with 1.4M and 12 km to the low-lying QPO frequencies observed in SGR 1806-20
(left panel) and SGR 1900+14 (right panel), where the horizontal dashed and dotted lines
denote the observed QPO frequencies and the solid lines denote the L dependence of ¢t,.
We note that we focus on only the correspondence of the observed low-lying QPOs except
for the 26 Hz QPO in SGR 1806-20 here because the optimal value of L becomes larger than
100 MeV to identify all the observed low-frequency QPOs in terms of the crustal torsional
oscillations, as discussed in Section 5.1, which may be inconsistent with the constraint in
existing nuclear experiments. We also note that the 57 Hz QPO additionally discovered
in [76] is taken into account this time. From this figure, one sees that the observed QPOs
(except for the 26 Hz QPO) in SGR 1806-20 can be identified if L ~ 73.4 MeV and those in
SGR 1900+14 can be identified if L ~ 76.1 MeV.
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Figure 10. Correspondence of the low-lying QPO frequencies (except for the 26 Hz QPO) observed in
SGR 1806-20 (left panel) and 1900+14 (right panel) with several fundamental torsional oscillations
for a neutron star model with 1.4M and 12 km, assuming that Ns/ Ny = 1 in the cylindrical phase.
Taken from [142].
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Similarly, one can determine the optimal value of L to identify the observed QPOs
with the same set of the fundamental torsional oscillations shown in Figure 10 for various
neutron star models with N;/N; = 0 and 1 in the phase of cylindrical nuclei. Assuming
that 1.4 < M/Ms < 1.8 and 10 km < R < 14 km as a typical neutron star model, the
optimal value of L for identifying the QPO frequencies observed in the SGRs with the
same correspondence, as shown in Figure 10, are plotted in Figure 11 for Ns/Ny; = 0 in
the left panel and Ns/N; = 1 in the right panel. In this figure, the filled marks with solid
lines correspond to the resultant values of L for SGR 1806-20, while the open marks with
dashed lines are for SGR 1900+14. Again, since the value of L should be independent of
astronomical events, one must simultaneously explain both events, SGR 1806-20 and SGR
1900+14, with a specific value of L. Thus, we can obtain the constrainton L as 53.9 S L S
83.6 MeV for Ns/N; = 0 and 58.1 < L < 85.1 MeV for Ns/N; = 1, assuming that the
central object of SGR 1806-20 and SGR 1900+14 is a neutron star with 1.4 < M/Mg < 1.8
and 10 km < R < 14 km. These constraints on L are shown in the shaded region in
Figure 11. Namely, the uncertainty in N;/N; in the phase of cylindrical nuclei makes
only a little difference in the constraint on L, where the allowed L lies in the range of
L =53.9-85.1 MeV, even if the uncertainty in Ns;/N; in the phase of cylindrical nuclei is
taken into account. This constraint on L provides us with the constraint of Sy as Sy =~
32.0-34.4 MeV, using the correlation between L and Sy provided by Equation (11).
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Figure 11. The optimal value of L for identifying the low-lying QPO frequencies (except for the 26 Hz
QPO) observed in SGR 1806-20 (filled marks with solid lines) and SGR 1900+14 (open marks with
dashed lines) for various neutron star models, where the left and right panels are the results with
N; /Ny = 0 and 1, respectively. Taken from [142].

On the other hand, since torsional oscillations are confined inside the phase of spherical
and cylindrical nuclei, we can also discuss the overtone(s) of torsional oscillations. The n-th
overtone frequency of /-th torsional oscillations, ,t, is theoretically estimated with the crust
thickness (or the thickness of elastic region), AR, as ,t; ~ vs/AR [139,150]. Meanwhile,
AR depends on EOS parameters L and Ky, mainly through the neutron chemical potential
at the crust-core boundary [123], when the neutron star mass and radius are fixed. Thus,
via the identification of the relatively high-frequency QPO observed in SGR 1806-20, i.e.,
626.5 Hz, as the first overtone of crustal torsional oscillations, one may obtain information
regarding the EOS parameters [84,142].

Since ,ty depends on Ky and L through AR, it is of great use to determine a parameter
constructed by a combination of Ky and L, which can characterize ,,¢,. To this end, assuming
the combination of (K} L/)!/ (i) with integer numbers i and j, we finally determine an
appropriate combination of Ky and L as follows:

¢ = (K3L)'?. (12)

In Figure 12, we show the first overtones of { = 2 torsional oscillations for a neutron
star model with 1.4M and 12 km constructed with various EOS parameters, where the
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thick, solid line denotes the fitting formula for the first overtones of torsional oscillations
provided by [103,142]
0 1 2
ate =d0) +dlle 4+ dl?e?, (13)
where dé;) fori = 0,1, 2 are the adjustable parameters depending on M, R, and N;/N; in
the phase of cylindrical nuclei. We will, hereafter, discuss the ¢ dependence of ,1,.

1000 @& o NJ/Ng=01 [0y . Ng/Ng =17
( ]
< . ¢
T g0l o Ky=180 1L e Ky=180 A\ ]
S e K=230 " o Ky=230 *
m K,=280 m K,=280
600F v Ko=360 v | v Ky=360 el
20 40 60 80 100 120 140 16020 40 60 80 100 120 140 160
¢ (MeV) ¢ (MeV)

Figure 12. The first overtones of £ = 2 torsional oscillations for a neutron star model with 1.4M, and
12 km constructed with various EOS parameters are shown as a function of ¢ defined by Equation (12),
where the left and right panels, respectively, denote the results with N5/ Ny = 0 and 1 in the phase of
cylindrical nuclei. The thick, solid line denotes the fitting formula provided by Equation (13). Taken
from [142].

It is well known that overtone frequencies of torsional oscillations weakly depend on
£, unlike the fundamental oscillations [139]. As an example, in the left panel of Figure 13,
we show the first overtones of £ = 2 (solid lines) and 10 (dashed lines) torsional oscillations
as a function of ¢ for neutron star models with (M, R) = (1.4Mg, 10 km), (1.6 M, 12 km),
and (1.8M¢, 14 km) with Ns/N; = 1 in the phase of cylindrical nuclei. From this figure,
one confirms that 1f, weakly depends on ¢, while one also determines that 1, strongly
depends on stellar models. Hereafter, we focus only on ,t; to discuss the ¢ dependence of
overtones. In addition, in the right panel of Figure 13, we show the ¢ dependence of ¢, for
1.4M; neutron star models with different radii with Ns/N; = 1 in the phase of cylindrical
nuclei together with the 626.5 Hz QPO observed in SGR 1806-20. From this figure, one can
observe that the optimal values of ¢ are 178.5, 149.7, and 107.1 MeV for 1.4M neutron
stars of R = 10, 12, and 14 km, respectively, if one identifies the 626.5 Hz QPO with the
first overtone.
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Figure 13. In the left panel, we show the first overtones of ¢ = 2 (solid lines) and 10 (dashed lines)
torsional oscillations as a function of ¢ for neutron star models with (M,R) = (1.4Mg, 10 km),
(1.6M,12 km), and (1.8M), 14 km) with N5/ Ny = 1 in the phase of cylindrical nuclei. In the right
panel, the ¢ dependence of the first overtone of ¢ = 2 torsional oscillations for 1.4Mg neutron star
models with R = 10 km (solid line), 12 km (dotted line), and 14 km (dashed line) with Ns/N; = 1 in
the phase of cylindrical nuclei is compared to the 626.5 Hz QPO observed in SGR 1806-20 (dot-dashed
line). Taken from [142].
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In a similar way, one can obtain the optimal values of g for various neutron star models.
In the left panel of Figure 14, the resultant optimal values of ¢ are plotted for neutron star
models with 1.4 < M/Mg < 1.8 and 10 km < R < 14 km for Ns/N; = 1 in the phase of
cylindrical nuclei. One can observe that for each R, the optimal ¢ increases with M. This
behavior comes from the fact that AR/R (or AR with fixed R) decreases with compactness,
M/ R [123], which leads to the increases in 1¢; (through 1¢, ~ vs/AR), meaning the optimal
value of ¢ increases.
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Figure 14. In the left panel, the optimal value of ¢ to identify the 626.5 Hz QPO observed in SGR
1806-20 with the first overtone of the ¢ = 2 torsional oscillations is plotted for various neutron star
models with 1.4 < M/Mgp < 1.8 and 10 km < R < 14 km for Ns/N; = 1 in the phase of cylindrical
nuclei. In the right panel, the constraint on K obtained by combining the optimal values of ¢ shown
in the left panel (and also those obtained with Ns/N; = 0) and the optimal values of L shown in
Figure 11 is plotted for each stellar model, where filled marks with solid lines (open marks with
dashed lines) denote the results for N;/N; = 1 (0) in the phase of cylindrical nuclei. Meanwhile, the
shaded region denotes the experimental constraint on Ky obtained in [4], i.e., Ky = 230 £ 40 MeV.
Taken from [142].

Furthermore, we also derive the constraint on Ky through the definition of ¢ provided
by Equation (12), i.e., Ky = (¢”/L%)!/4, using the optimal values of ¢ for identifying the
626.5 Hz QPO with the first overtone frequency shown in the left panel of Figure 14 and
the optimal values of L for identifying the low-lying QPO frequencies shown in Figure 11.
In the right panel of Figure 14, such constraints on Kj are plotted for various neutron star
models, where the filled marks with solid lines denote the results for N5/ N; = 1, while
the open marks with dashed lines denote the results for N;/N; = 0. In the same panel,
we also show the experimental constraint on Ky, i.e., Ko = 230 £ 40 MeV [4]. Adopting
this constraint on Kj as a typical one, although it may still be model dependent, e.g., [5],
from the right panel of Figure 14, one can observe that the neutron star models with M ~
1.4-1.5Mg for R = 14 km, and presumably, M ~ 1.2-1.4M, for R = 13 km are favored
by the QPOs observed in SGR 1806-20 up to 626.5 Hz (except for the 26 Hz QPO). That
is, a central object in SGR 1806-20 would have a relatively low mass and large radius. We
note in passing that a neutron star model with still lower mass and smaller radius than
that mentioned above might be acceptable from the right panel of Figure 14, but one must
assume a larger value of L to construct such a stellar model, which would be presumably
inconsistent with the systematic analysis of the mass-radius relation for low-mass neutron
stars [44].

Finally, adopting the resultant constraint on the neutron star model of SGR 1806-20,
ie, M ~14-15M; for R = 14 km and M ~ 1.2-1.4Mg, for R = 13 km, the constraints
on L shown in Figure 11 are dramatically improved. Namely, the optimal value of L
should be L ~ 62-73 MeV for Ns/N; = 1 and L ~ 58-70 MeV for N;/N; = 0 in the
phase of cylindrical nuclei. Therefore, we obtain the constraint on L as L ~ 58-73 MeV
independently of the uncertainty in N;/Nj; in the phase of cylindrical nuclei, which is
consistent with the existing constraint on L, e.g., [3,7,10]. Using the correlation between
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L and Sy (Equation (11)), one can estimate the corresponding value of Sy as Sp ~ 32.4—
33.5 MeV.

5.3. Torsional Oscillations Excited in Cylindrical-Hole and Spherical-Hole Nuclei

In Sections 5.1 and 5.2, we discussed that the QPO frequencies observed in SGR 1806-
20 and SGR 1900+14 are well identified with torsional oscillations excited in the phase of
spherical and cylindrical nuclei. In particular, by identifying the 626.5 Hz QPO with the
first overtone of torsional oscillations, we showed the possibility that a central object in
SGR 1806-20 would be a neutron star with a relatively low mass and large radius, and
determined the constraint on L as more severe. However, we still have a missing piece in
the identification of the observed QPO frequencies, i.e., the 26 Hz QPO observed in SGR
1806-20. In this subsection, we discuss the possibility of identifying the 26 Hz QPO (and
the QPOs additionally discovered in [77]) in SGR 1806-20 with torsional oscillations excited
in the phase of cylindrical-hole and spherical-hole nuclei, maintaining the consistency with
the identification discussed in Section 5.2.

To determine the frequencies of torsional oscillations excited in the phase of cylindrical-
hole and spherical-hole nuclei, one must know the value of R in Equation (8) in the phases
of cylindrical-hole and spherical-hole nuclei, but it is still quite uncertain. Here, we simply
consider extreme cases, i.e., R = 1 for maximum enthalpy and 0 for minimum enthalpy.
In Figure 15, we show the fundamental frequencies of ¢ = 2 torsional oscillations excited
in the phase of cylindrical-hole and spherical-hole nuclei for a neutron star model with
1.4Mg and 12 km, using the EOSs with some parameter sets listed in Table 1 (see [88] for
the concrete parameter sets adopted here), where the left and right panels correspond to
the results with R = 1 and 0 in the phase of cylindrical-hole and spherical-hole nuclei,
respectively. From this, we determine that the fundamental frequencies excited in the phase
of cylindrical-hole and spherical-hole nuclei weakly depend on Ky and the dependence on
L is well-fitted with the functional form provided by the following equation:

ote = &+ eVVL 4P, (14)
where Eéi) for i = 0,1, 2 are the adjustable parameters depending on M, R, and R in the
phase of cylindrical-hole and spherical-hole nuclei [88]. Using this L dependence of ot,

excited in the phase of cylindrical-hole and spherical-hole nuclei, we see the correspondence
of the observed QPOs.
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Figure 15. The fundamental frequencies of { = 2 torsional oscillations excited in the phase of
cylindrical-hole and spherical-hole nuclei for a neutron star model with 1.4M¢ and 12 km. The thick,
solid line corresponds to the fitting formula provided by Equation (14). The left and right panels,
respectively, correspond to the results with R = 1 (maximum enthalpy) and R = 0 (minimum
enthalpy). Taken from [88].

In the left panel of Figure 16, we show the identification of low-lying QPOs observed in
SGR 1806-20 with fundamental frequencies of torsional oscillations excited in the phase of
spherical and cylindrical nuclei and the phase of cylindrical-hole and spherical-hole nuclei
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for a neutron star model with 1.3M and 13 km. As shown in the left panel of Figure 10,
18,29, 57, and 92.5 Hz QPOs can be identified with the fundamental frequencies of ¢ = 2, 3,
6, 10 torsional oscillations excited in the phase of spherical and cylindrical nuclei. With this
correspondence, we determine the optimal values of L as L ~ 70.8 MeV for N;/N; = 1 and
L ~ 67.5MeV for N;/N; = 0 in the phase of cylindrical nuclei. We note that, in Figure 16,
the solid lines denote the fundamental frequencies of torsional oscillations excited in the
phase of spherical and cylindrical nuclei with Ns/N; = 1 in the phase of cylindrical nuclei.
On the other hand, we also show the fundamental frequencies of ¢ = 2,3,4 torsional
oscillations excited in the phase of cylindrical-hole and spherical-hole nuclei by the shaded
regions, assuming that 0 < R < 1. From this figure, one can observe that the 26 Hz QPO,
which cannot be identified with the torsional oscillations in the phase of spherical and
cylindrical nuclei, can be identified with ¢ = 4 fundamental torsional oscillations excited in
the phase of cylindrical-hole and spherical-hole nuclei consistently with the optimal value
of L given by the identification of other QPOs with torsional oscillations in the phase of
spherical and cylindrical nuclei.
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Figure 16. The correspondence of the QPO frequencies observed in SGR 1806-20 and the fundamental
frequencies of torsional oscillations with various values of ¢ excited in the phase of spherical and
cylindrical nuclei with Ns/N; = 1 in the cylindrical nuclei (solid lines) and the phase of cylindrical-
hole and spherical-hole nuclei for 0 < R < 1 (shaded regions) for a neutron star model with 1.3M¢
and 13 km. We focus on only low-lying QPOs in the left panel, while in the right panel, we also
consider the QPOs discovered in [77] together with the QPOs considered in the left panel. The vertical
lines denote the optimal values of L to identify the low-lying QPO frequencies observed in SGR
1806-20, except for the 26 Hz QPO with the torsional oscillations excited in the phase of spherical
and cylindrical nuclei discussed in Section 5.2, where the thick line (L ~ 70.8 MeV) and thin line
(L ~ 67.5 MeV), respectively, correspond to the optimal values of L with Ns/N; = 1 and 0 in the
phase of cylindrical nuclei. Taken from [88].

In addjition, using this double layer model (the lasagna sandwich model), we determine
that one can identify the QPOs originally discovered in SGR 1806-20 together with the
QPOs additionally discovered by the Bayesian procedure, e.g., 51.4, 97.3, and 157 Hz
QPOs [77], as shown in the right panel of Figure 16. That is, as shown in the left panel
of Figure 10, 18, 29, 57, 92.5, and 150 Hz QPOs can be identified with the fundamental
frequencies of ¢ = 2,3, 6,10, and 16 torsional oscillations excited in the phase of spherical
and cylindrical nuclei. In a similar way, the 157 Hz QPO can be identified with ¢ = 17
fundamental torsional oscillations in the phase of spherical and cylindrical nuclei, while
the 26, 51.4, and 97.3 Hz QPOs are the ¢ = 4,8, and 15 fundamental torsional oscillations in
the phase of cylindrical-hole and spherical-hole nuclei.

5.4. Constraint on a Neutron Star Model for GRB 200415A

So far, we considered the correspondence between crustal torsional oscillations and
QPO frequencies observed in giant flares. In addition to these observations, another
magnetar flare, GRB 200415A, was also detected in the direction of the NGC253 galaxy,
where several high-frequency QPOs with varying significance were found at 836, 1444,
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2132, and 4250 Hz [78]. We note that only high-frequency QPOs were detected from this
event due to the short observation interval. So, considering the dynamical time of neutron
stars, it may be possible to identify these observed QPOs with neutron star oscillations
other than torsional oscillations, such as the fundamental (f-), gravity (g;-), or shear (s;-)
modes (e.g., see Figure 25). Nevertheless, since these QPOs come from magnetar flares, here
we consider identification with crustal torsional oscillations, which is the same framework
as discussed in the case of QPOs observed in giant flares (Sections 5.1-5.3).

Since the observed QPOs are too high to identify fundamental torsional oscillations, we
consider identifying them with overtones of torsional oscillations, as in Section 5.2. Using
the fitting of the overtone frequencies provided by Equation (13), we plot the ¢ dependence
of ,tp in the left panel of Figure 17 for a neutron star model with 1.6 M and 12 km with
Ns/ Ny = 0 in the phase of cylindrical nuclei, where the horizontal shaded regions denote
the QPOs observed in GRB 200415A. We note that the overtone frequencies weakly depend
on the ratio of Ns/Nj; in the phase of cylindrical nuclei [103]. In this subsection, we only
consider the case with Ns/N; = 0 in the phase of cylindrical nuclei. From this figure, one
can observe that four QPOs can be identified well with the 1st, 2nd, 4th, and 10th overtones
of torsional oscillations, which tells us the optimal value of ¢ is 121.7 MeV.
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Figure 17. In the left panel, we show the identification of four QPO frequencies observed in GRB
200415A [78] (shaded horizontal regions) with several overtones of torsional oscillations excited
in the phase of spherical and cylindrical nuclei for a neutron star model with 1.6M¢ and 12 km
with Ns/N; = 0 in the phase of cylindrical nuclei, where ¢ = 121.7 is the optimal value with
this correspondence. In the right panel, we show the optimal values of ¢ to identify four QPOs in
GRB 200415A with the same combinations of overtones as in the left panel for various neutron star
models. The shaded region is the range of ¢ = 85.3-135.1 MeV estimated with the fiducial value
of L = 60 =20 MeV and Ky = 240 £ 20 MeV, while the region in the dashed lines is the range of
¢oro = 104.9-128.4 MeV with the optimal values of L discussed in Section 5.2, i.e., L = 58-73 MeV,
together with Ky = 240 &+ 20 MeV. The arrow in the right panel indicates the neutron star model
considered in the left panel. Taken from [103].

In a similar way, one can determine the optimal values of ¢ for various neutron star
models. In practice, the optimal values of ¢ determined with the same combination of
the overtones as shown in the left panel of Figure 17 are plotted in the right panel of
Figure 17. In particular, the neutron star model considered in the left panel is indicated
with an arrow. Meanwhile, the value of ¢ is also estimated with the fiducial value of L and
Ko, i.e., ¢ = 83.5-135.1 MeV with L = 60 =20 MeV and Ky = 240 £ 20 MeV [2], or with
the optimal value of L obtained in Section 5.2 to identify the QPO frequencies observed
in the giant flares with the torsional oscillations, such as L = 58-73 MeV, with the fiducial
value of Ky, i.e., gopo = 104.9-128.4 MeV. These estimations of ¢ are also shown in the
right panel of Figure 17 with the shaded region and the enclosed region with the dashed
lines. That is, considering these estimations, the stellar model with 1.5M and 11 km can
be excluded. Consequently, we can obtain the constraint on the neutron star mass and
radius as shown in the left panel of Figure 18, where the shaded region corresponds to
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the results with ¢ = 83.5-135.1 MeV, while the bound region by solid lines is those with
Goro = 104.9-128.4 MeV.

2.5 T T T T
¢opo = 104.9 -128.4 MeV
20F
©
S
g 1.5F
¢=85.3-135.1 MeV
1.0 E 7n=70.6-118.5 R

1 1 0
10 11 12 13 14 15 10 11 12 13 14 15
R (km) R (km)

Figure 18. In the left panel, the constraint on the neutron star mass and radius for GRB 200415A
obtained from the optimal values of ¢ to identify the high-frequency QPOs with 1st, 2nd, 4th, and
10th overtones of torsional oscillations, adopting the range of ¢ = 85.3-135.1 MeV estimated with the
fiducial value of L and Ky (shaded region) or gopo = 104.9-128.4 MeV with the optimal value of L to
identify the magnetar QPOs (bound by solid lines). In the right panel, we show the constraint on the
neutron star mass and radius obtained from the QPOs in GRB 200415A (the same as the left panel)
together with those estimated with the mass formula for a low-mass neutron star as a function of
7= (Ko Lz)l/ 3 derived in [44] (the right-bottom region), assuming that the central density of neutron
stars should be less than twice the nuclear saturation density. Taken from [103].

One may make the constraint on the mass and radius of the neutron star model for
GRB 200415A more severe if one knows the EOSs (or mass-radius relations) corresponding
to the estimations of ¢. For this purpose, the mass formula for a low-mass neutron star [44]
must be crucial. The low-mass neutron star structures may strongly depend on the nuclear
saturation parameters because the central density for such an object is very low. In fact, the
mass and gravitational redshift, z, defined by z = 1/+/1 —2M/R — 1, can be expressed as
a function of the stellar central density and a new parameter provided by the following:

n = (KoL?)'3, (15)
such that

M/Mg = 0.371 — 0.820u, + 0.279u — (0.593 — 1.25u, + 0.235u2) 17100, (16)
z = 0.00859 — 0.06191, + 0.0255u2 — (0.0429 — 0.1081, + 0.012012)77100, 17)

where 1, is the central density of the neutron star normalized by the saturation density and
1100 is the value of 7 normalized by 100 MeV [44]. We note that these empirical formulae
are valid in the range of 0.9 < u. < 2.0. Since z is a combination of M and R, one can plot
the mass and radius relation once one selects the value of 7.

The values of ¢ and ¢opo, which are adopted to make a constraint on the mass
and radius of the neutron star shown in the left panel of Figure 18, are provided by
L = 60+£20MeV and L = 58-73 with Ky = 240 & 20 MeV, which correspond to the value
of 7 as 7 = 70.6-118.5 MeV and 17gpp = 90.5-111.5 MeV, respectively. Using this range of
1, one can estimate the stellar mass and radius, whose central density is less than twice the
saturation density, as in the right-bottom region in the right panel of Figure 18. Furthermore,
assuming that the radius of the neutron star whose central density is larger than twice the
saturation density would be almost constant as shown with the dashed lines corresponding
to R = 11.73, 12.41, 13.03, and 13.23 km for = 70.6, 90.5, 111.5, and 118.5 MeV, we
can obtain the overlap region with the constraint on the neutron star mass and radius
to identify the QPOs with the overtones of torsional oscillations shown in the left panel
of Figure 18. In such a way, we can obtain the neutron star mass and radius constraint
for GRB 200415A. The resultant mass and radius constraint is shown in Figure 19 with a
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double-parallelogram, together with the other constraints obtained from the astronomical
observations and experimental constraints.
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Figure 19. Mass and radius of GRB 200415A constrained by identifying the observed high-frequency
QPOs with the overtones of crustal torsional oscillations (double-parallelogram), adopting the fiducial
values of L and K (or the optimal value of L to identify the magnetar QPOs). For reference, the
other constraints obtained from the astronomical observations and experimental restrictions are also
shown. For astronomical observations, as well as those shown in Figure 1, we plot the constraints
of the 1.6 M, neutron star radius, i.e., R = 10.7 km [151], the 1.4M neutron star radius, i.e.,
Ry4 = 110707 km [152] or Ry 4 = 11.75705¢ km [153] obtained from the GW170817, and the massive
neutron star mass of PSR J0952-0607, i.e., M = 2.35+ 0.17M, [154]. Additionally, the mass and
radius relations for neutron stars constructed with several EOSs, as in Figure 1, are also plotted. Taken
from [103].

Finally, we comment on the alternative identification of QPOs observed in GRB
200415A with overtones of torsional oscillations. To obtain the neutron star mass and radius
constraint shown in Figure 19, we identify the lowest QPO observed in GRB 2004154, i.e.,
835.9 Hz QPO, with the first overtone of torsional oscillations, but it may be possible to
identify it with the second overtone. In the left panel of Figure 20, we compare the lowest
QPO observed in GRB 200415A with the first (dotted line) and second (solid line) overtones
for a neutron star model with 1.4M¢ and 14 km. In this figure, we also show the range of ¢
with the fiducial value of L and Ky (shaded region) and that with the optimal value of L
to identify the QPOs observed in the giant flares (the region between the vertical dashed
lines). From this figure, one can determine that the lowest QPO observed in GRB 200415A
cannot be identified with the second overtone at least with this stellar model, consistent
with the region of ¢ estimated with the fiducial value of saturation parameters. In practice,
one can identify four QPOs observed in GRB 200415A with the 2nd, 5th, 8th, and 16th
overtones if ¢ > 142 MeV, as shown in the right panel of Figure 20. Still, it is inconsistent
with the range of ¢ with the fiducial value of saturation parameters. We note that the
stellar model considered here is a little larger than the constraint from GW170817, i.e., the
1.4M neutron star radius should be less than 13.6 km. But, as shown in the right panel of
Figure 17, the optimal value of ¢ to identify the observed QPO frequencies becomes larger
as the stellar radius decreases with fixed mass. That is, if one considers the 1.4Mg neutron
star model with a radius smaller than 13.6 km, the optimal value of ¢ is more distant from
the estimation of ¢ using the fiducial values of Ky and L.



Universe 2024, 10, 231

24 of 34

5 T T T —
7 .
E 4F 6th 4
: 2 3 g=142.1MeV:
1 1 o I
I 1 5 ) 8th. 1
1 I 5 I 5th
1 G on
-------- O
L & 1 ! 2nd. 3
14M, 14km) ! ! Lo (1.4M, 14km)
200 L 1 o L N L L | L
40 80 120 160 200 40 80 120 160 200
¢ (MeV) ¢ (MeV)

Figure 20. An alternative possibility to identify the observed QPOs in GRB 200415A with the over-
tones of torsional oscillations, i.e., the lowest QPO frequency is identified with the 2nd overtone
instead of the 1st overtone. In the left panel, the lowest QPO frequency (shaded horizontal re-
gion) is compared with the 1st (dotted line) and 2nd (solid line) overtones as a function of ¢ for a
neutron star model with 1.4M and 12 km. The vertical shaded region corresponds to ¢ = 85.3—-
135.1 MeV with fiducial values of L and Ky, while the region between the vertical dashed lines is
copro = 104.9-128.4 MeV. In the right panel, the four observed QPOs are identified with the 2nd, 5th,
8th, and 16th overtones for a neutron star model with 1.4M and 14 km. The vertical dashed line
denotes the optimal value of ¢ with this correspondence. Taken from [103].

6. Shear and Interface Oscillations

Owing to the presence of crust elasticity, the shear (s-) and interface (i-) modes are
also excited, as are torsional oscillations. To determine the behavior of the s and i mode
frequencies, we consider the stellar model with pasta phases, where the elasticity in the
phase composed of slablike nuclei is assumed to be zero. Similar to torsional oscillations,
one must consider the effect of neutron superfluidity, i.e., N;/ Ny, to estimate the value of
N; in Equation (7) and R in Equation (8), but for simplicity, we consider only the situation
of the maximum enthalpy here, i.e., the dripped neutrons commove with the protons.

In this review, we simply adopt the Cowling approximation to examine s- and i-mode
oscillations. Therefore, the perturbation equations for the s and i modes are derived from
linearized energy-momentum conservation laws, which are completely the same as those
for the f, p;, and g; modes if one neglects the elasticity. One can find the concrete perturba-
tion equations in [124,155], even though they are not shown explicitly here. We note that
perturbation equations without the Cowling approximation are also found in [61], which
can be obtained from the linearized Einstein equations. We note that one can qualitatively
discuss the behavior of the frequencies determined with the Cowling approximation, but
the quantitative discussion may be problematic, at least for the f and p modes, which devi-
ate ~ 20% from those determined without the Cowling approximation [156]. On the other
hand, since the damping rate for the s and i modes is too small to calculate numerically, the
s and i modes might be determined relatively well, even with the Cowling approximation.
In fact, it has been shown that the g modes excited with density discontinuity, whose
damping rate is too low, are accurately determined with the Cowling approximation [56].
Anyway, one must discuss the accuracy of the s and i mode frequencies with the Cowling
approximation somewhere.

As the boundary conditions, one should impose the regularity condition at the center
and the condition that the Lagrangian perturbation of pressure should be zero at the
stellar surface. In addition, at the interface where the elasticity discontinuously becomes
zero, one has to impose junction conditions, such as the continuity of radial displacement,
radial and transverse tractions, and the Lagrangian perturbation of pressure [155,157].
In practice, with our stellar models, one has to impose junction conditions at the four
interfaces, i.e., between the fluid core and the phase of spherical-hole nuclei, between the
phase of cylindrical-hole nuclei and the phase of slablike nuclei, between the phase of
slablike nuclei and the phase of cylindrical nuclei, and between the surface of the outer
crust and envelope.
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The transition density at these interfaces becomes crucial for s- and i-mode oscillations.
The transition density where the nuclear shape would be changed is determined from
the EOS depending on the saturation parameters, e.g., [120-122]. On the other hand, the
transition density at the outer crust surface is more or less complicated. This is because
the density to determine such properties is too low to neglect the thermal effect, even
though the thermal effect on the neutron star structure is negligible when the density is
very high [158]. In this review, we simply consider that the transition density at the surface
of the outer crust is 10'° g/cm3. In addition, we set the surface density, ps, as 10° g/cm?3.

In Figure 21, as an example, we show the radial profile of the amplitude of the La-
grangian displacement for the 7; modes (i = 1-4) in the radial (W) and angular directions (V)
for a stellar model with 1.44 M, and 10.2 km constructed with the EOS with Ky = 230 MeV
and L = 42.6 MeV. The classification of the i mode is not uniquely fixed, but here we
identify that the i, mode is mainly excited at the interface between the crust surface and
envelope; the i1 mode is excited at the interface between the crust surface and envelope
and at the interface between the phase of slablike nuclei and the phase of cylindrical nuclei;
the i3 and i4 modes are mainly excited at the interface associated with the cylindrical-hole
and spherical-hole nuclei. Since the i modes are eigenmodes excited due to the existence
of the interface where the elasticity discontinuously becomes zero [159], the number of
the excited i modes is generally equivalent to the number of interfaces [124,160]. With our
classification, the order of the i modes generally becomes i4-, ir-, i1-, and 73, from the lowest
to highest, and typically, the frequencies are less than ~ 100 Hz. Moreover, in Figure 22,
we show how i-mode frequencies depend on the surface density, ps, by fixing the other
transition density. From this figure, one can observe that the i-mode frequencies hardly
depend on p;.
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Figure 21. The radial profile of the amplitude of the Lagrangian displacement for the i; modes in the
radial (W) and angular direction (V') for a stellar model with 1.44M, and 10.2 km constructed with
the EOS with Ky = 230 MeV and L = 42.6 MeV. The vertical dotted lines from left to right denote
the interface between the fluid core and the phase of spherical-hole nuclei, the interface between the
phase of cylindrical-hole and the phase of slablike nuclei, the interface between the phase of slablike
nuclei and the phase of cylindrical nuclei, and the interface between the surface of crust and envelope.
Taken from [160].
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Figure 22. Dependence of the i-mode frequencies on the surface density, ps, for a neutron star model
with M = 1.44M, constructed with Ky = 230 MeV and L = 42.6 MeV. The other transition density
between the phases with and without elasticity is fixed. Taken from [160].

On the other hand, in Figure 23, we show the radial profile of the amplitude of the
Lagrangian displacement for the s;- and s, modes in the radial (W) and angular directions
(V) for a neutron star model with 1.4M and 12.4 km constructed with the EOS with
Ky = 230 MeV and L = 73.4 MeV. Unlike the i modes, there are an infinite number of s
modes. As shown in Figure 23, s modes are excited almost only inside the elastic region.
Thus, in principle, one may find the s modes excited inside the phase of cylindrical-hole
and spherical-hole nuclei. Even so, we could not find them in the frequency range of less
than a few kHz. This situation could be understood as follows. Focusing on the angular
displacement, V, in Figure 23, one may see that the wavelength of the s; mode, A;, is roughly
estimated as follows:

Ai >~ 2AR/1, (18)

where AR denotes the thickness of the elastic region where the s mode is confined. Mean-
while, the s; mode frequency may be estimated as follows:

fsl- ~vs/Aj, 19)

using the shear velocity, vs, [61]. With this simple estimation, one can expect that, even if
the s modes are excited inside the phase of cylindrical-hole and spherical-hole nuclei, their
frequencies must become much higher than those excited in the phase of spherical and
cylindrical nuclei. Namely, AR for the phase of cylindrical-hole and spherical-hole nuclei,
ARcpsy, is much thinner than AR for the phase of spherical and cylindrical nuclei, AR SpCys
i.e, ARcHsH/ARspcy ~ 1/100, which leads to the estimation that the s-mode frequencies
excited in the phase of cylindrical-hole and spherical-hole nuclei must be ~100 times higher
than those excited in the phase of spherical and cylindrical nuclei.
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Figure 23. The radial profile of the amplitude of the Lagrangian displacement for the s; and s;
modes in the radial (W) and angular direction (V) for a neutron star model with 1.4M and 12.4 km
constructed with the EOS with Ky = 230 MeV and L = 73.4 MeV. Taken from [124].
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Since the crust thickness, AR, also depends on the stellar compactness [119,123], to
determine the dependence of the s and i mode frequencies on the neuron star properties,
we consider not only the neutron star models constructed with the original OI-EOSs but
also those constructed with the EOS, which is constructed in such a way that the OI-EOS
for a lower density region (¢ < ¢;) is connected to a one-parameter EOS provided by the
following equation:

p=uale—¢e)+p, (20)

for a higher density region (¢ > ¢;), where we especially adopt that ¢; is equivalent to twice
the saturation density [161]. In the one-parameter EOS, p; is given from the OI-EOS at
€ = g4, and « is related to the sound velocity, c;, as cg = . Thus, « is a kind of indicator for
expressing the stiffness of the core (or higher density) region. In this review, we focus on
1/3<a<1.

Through a systematical study, we determine empirical relations for the i; mode fre-
quency, f;, and the s; mode frequency, fs;. Thatis, f; M and f;;R can be expressed as a
function of the stellar compactness, x, given by x = M; 4/ R1p with M4 = M/1.4M and
Rip = R/12km, almost independently of the stiffness of the core region, i.e., the value of a:

fi,*M (kHZ/M@) = ag; +ayix + ﬂzixz, (21)
fsiR (kHz km) = by; + b1ix, (22)

where ag;, a1;, ay;, bo;, and by; are the adjusted coefficients depending on the crust prop-
erties [124]. As an example, in Figure 24, we show the results for the iy mode (left
panel) and the s; mode (right panel), where the solid lines denote the fitting given by
Equations (21) and (22). Thus, once one simultaneously observes the shear and interface
mode frequencies from a neutron star, one might extract the neutron star mass and radius
via the empirical relations given by Equations (21) and (22) with the help of the constraint
on the crust stiffness obtained from terrestrial experiments. Furthermore, the coefficients in
Equations (21) and (22) can be well fitted as a function of a suitable combination of Ky and
L [124]. Namely, f;; M and f;;R can be expressed as a function of M/R and a combination
of Ky and L. In practice, the s mode frequency for a canonical neutron star can be estimated
within ~1% accuracy.

In the end, we consider the possibility of applying the s mode frequency to identify
the QPO observations. As discussed in Section 5.4, one can identify the high-frequency
QPOs observed in GRB 200415A with the overtones of crustal torsional oscillations. Since
only high-frequency QPOs have been observed in this event, one may identify them with
other neutron star oscillations. In practice, as shown in Figure 25, where the f and s; mode
frequencies for the stellar models with (Ko, L) = (230,42.6) are shown as a function of
the stellar compactness, together with the QPO frequencies observed in GRB 200415A,
one can identify them with the s modes. Namely, the observed QPOs are identified
with the sy, 53, 54, and sg mode frequencies if M/R ~ 0.183 for &« = 1/3 (left panel) or
M/R ~0.195 for & = 0.6 (right panel). One could discuss the constraint on the saturation
parameters through the identification of QPOs with torsional oscillations in Section 5
because torsional oscillations are confined inside the elastic region. On the other hand,
since s-mode oscillations depend on not only the crust region (elastic region) but also
the (fluid) core region, it may be more difficult to discuss the crust properties via the
identification of QPOs with s modes. Anyway, to obtain a severe constraint on the neutron
star properties or to validate a theoretical model, we must wait for the next signals from a
neutron star.
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Figure 24. For various neutron star models, f; M and f, R are, respectively, plotted as a function
of M/R in the left and right panels, where the circles, diamonds, squares, and triangles denote the
results for stellar models constructed with the original OI-EOS, OI-EOS connected to the EOS with
a =1/3,0.6, and 1, respectively. The solid lines denote fitting by Equations (21) in the left panel and
(22) in the right panel, while the values of the EOS parameters (K, L) are also shown on each line.
Taken from [160].
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Figure 25. The f and s; mode (i = 1-10) frequencies are shown as a function of M/R for neutron
star models constructed with the EOS parameter of (Ko, L) = (230,42.6), where the left and right
panels correspond to the results for « = 1/3 and 0.6, respectively. The horizontal shaded regions
denote the QPO frequencies observed in GRB 200415A [78]. The vertical lines denote the optimal
value of M/R to identify the four observed QPOs with the s; modes, i.e., M/R ~ 0.183 fora = 1/3
and M/R ~ 0.195 for « = 0.6. Taken from [160].

7. Discussion and Conclusions

In this review, we discussed neutron star oscillations excited by crust elasticity, such
as torsional, interface, and shear oscillations, adopting the Cowling approximation. Since
torsional oscillations are axial-type oscillations, one can fully discuss them even with the
Cowling approximation. On the other hand, since interface and shear oscillations are polar-
type oscillations, one can qualitatively discuss them with the Cowling approximation, but
one may have to check the accuracy of the interface and shear mode frequencies by compar-
ing them to metric perturbations. In any case, through the identification of QPOs observed
in magnetar flares with torsional oscillations, we successfully obtained the constraint on the
nuclear saturation parameters, especially the density dependence of the nuclear symmetry
energy, L, as L ~ 58-73 MeV. On the other hand, via the systematical study of interface and
shear oscillations, we determined empirical relations almost independent of the stiffness of
the core region.
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To determine these frequencies, the effect of superfluidity is also important concerning
input physics, as well as the shear modulus. To deal with superfluidity, in this review, we
introduces a parameter, such as Ns/ N, or R, which is still quite uncertain. In addition, the
understanding of the shear modulus inside the pasta phases may still be poor, where one
has room for improvement. One may have to improve these properties to consider a more
realistic situation.

As shown in this review, the observed QPO frequencies can be identified with crustal
torsional oscillations; however, one must solve the time-dependence of QPO excitations.
For this purpose, one may have to examine crustal oscillations beyond linear analysis, e.g.,
taking into account nonlinear coupling, and discuss the energy transfer from specific modes
to other modes.

Moreovet, in this review, we only considered the oscillations excited due to the crust
elasticity. Meanwhile, the existence of quark matter inside the neutron star was theoretically
suggested. In such a situation, the hadronic matter would transition into quark matter,
and the mixed phase may appear at the transition region, where the structure becomes
similar to the pasta structure in the crust [162,163]. So, such a mixed phase behaves as a
liquid crystal, i.e., the elasticity becomes non-zero. That is, if such a phase exists, one can
expect that torsional oscillations and/or shear and interface oscillations are excited in the
hadron-quark mixed phase [164,165]. Through observations of these oscillation modes, one
may probe the properties of quark matter.
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