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ABSTRACT

Halo assembly bias is a phenomenon whereby the clustering of dark matter haloes is dependent on halo properties, such as age,
at fixed mass. Understanding the origin of assembly bias is important for interpreting the clustering of galaxies and constraining
cosmological models. One proposed explanation for the origin of assembly bias is the truncation of mass accretion in low-mass
haloes in the presence of more massive haloes, called ‘arrested development’. Haloes undergoing arrested development would
have older measured ages and exhibit stronger clustering than equal mass haloes that have not undergone arrested development.
We propose a new method to test the validity of this explanation for assembly bias and correct for it in cosmological N-body
simulations. The method is based on the idea that the early mass accretion history of a halo, before arrested development takes
effect, can be used to predict the late-time evolution of the halo in the absence of arrested development. We implement this idea
by fitting a model to the early portion of halo accretion histories and extrapolating to late times. We then calculate ‘corrected’
masses and ages for haloes based on this extrapolation and investigate how this impacts the assembly bias signal. We find that
correcting for arrested development this way leads to a factor of two reduction in the strength of the assembly bias signal across a
range of low-halo masses. This result provides new evidence that arrested development is a cause of assembly bias and validates
our approach to mitigating the effect.

Key words: methods: numerical — galaxies: formation— galaxies: haloes—dark matter —large-scale structure of Universe —

cosmology: theory.

1 INTRODUCTION

Halo assembly bias is a phenomenon observed in simulations of
large-scale structure in which the clustering of dark matter haloes
depends on the properties of their assembly histories in addition
to their masses (Croton, Gao & White 2007; Wechsler & Tinker
2018). Assembly bias has been found using many secondary halo
properties, notably age (Sheth & Tormen 2004; Gao, Springel &
White 2005; Wechsler et al. 2006; Wang, Mo & Jing 2007; Li, Mo &
Gao 2008), concentration (Wechsler et al. 2006; Gao & White 2007,
Faltenbacher & White 2010; Lazeyras, Musso & Schmidt 2017;
Villarreal et al. 2017), and spin (Gao & White 2007; Faltenbacher &
White 2010; Lacerna & Padilla 2012; Lazeyras et al. 2017; Villarreal
etal. 2017; Johnson et al. 2019), among others. Halo assembly bias is
important to understand because it challenges a basic assumption that
most statistical models of the galaxy—halo connection are founded
upon — the assumption that the clustering of dark matter haloes
depends only on halo mass. Thus, understanding assembly bias has
important implications for accurately modelling galaxy clustering in
simulations, modelling galaxy clustering empirically, explaining ob-
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served galaxy clustering, and constraining cosmological parameters
(Wechsler & Tinker 2018).

After assembly bias was discovered for multiple secondary
properties in multiple simulations, many works have attempted to
explain its physical origins and uncover the subsequent implications
for hierarchical clustering models and models of the galaxy—halo
connection. It is currently believed that multiple concurrent factors
contribute to assembly bias. In their article investigating causes of as-
sembly bias, Mansfield & Kravtsov (2020) pinpoint four concurrent
sources of assembly bias. One cause, random Gaussian field statistics,
impacts the high halo mass regime (Dalal et al. 2008). Three causes
impact the low-mass regime: splashback radius definition (Sunayama
et al. 2016; Diemer 2021), gravitational heating, and halo arrested
development (Dalal et al. 2008; Hahn et al. 2009; Salcedo et al. 2018).

Though Mansfield & Kravtsov (2020) present three causes of low-
mass assembly bias in low-mass haloes, each manifests from the same
underlying cause — arrested development. Arrested development is
the truncation or slow-down of mass growth in some lower mass
haloes due to tidal forces induced by the presence of a more
massive neighbour (or a denser overall halo environment) (Dalal
et al. 2008; Hahn et al. 2009; Salcedo et al. 2018). Splashback haloes
(or flyby haloes) pass within the inner regions of more massive
haloes, which causes the truncation of mass accretion, and even mass
stripping, due to this encounter (e.g. Sinha & Holley-Bockelmann
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2012; Wetzel et al. 2014). Gravitational heating occurs when a low-
mass halo cannot accrete particles in its vicinity because they are too
energetic. Those particles are more energetic because a more massive
neighbouring halo accelerates them. Thus, a method that addresses
arrested development as a truncation of mass accretion due to a
nearby more massive neighbour or neighbours addresses all three of
these proposed causes of low-mass assemble bias simultaneously.

This work investigates arrested development as the primary cause
of halo assembly bias. Hahn et al. (2009) first tested the hypothesis
of arrested development as a cause of assembly bias using an N-
body simulation and analysing the correlation between halo assembly
history and environment, in this case defined not by a density field
in the form of a two-point correlation function, but instead by
a tidal/shear field. They argued that these tidal effects do indeed
suppress halo growth. Though they did not go so far as to conclude
that arrested development is the cause of assembly bias, they did
conclude that it is an important factor contributing to its emergence
in simulation data.

Another work lending evidence to arrested development as a
source of halo assembly bias is Hearin, Behroozi & Van Den Bosch
(2016). They analysed halo mass accretion rates of pairs of haloes
as functions of the individual pair masses, pair separation, and pair
environment. They found mass accretion conformity out to many
times the haloes’ virial radii. Halo pairs in overall denser regions
have less mass accretion, and the lower the haloes’ masses, the more
pronounced this conformity. They state that this conformity finding
caused by the halo tidal environment is an alternative quantification
of other assembly bias findings.

A more recent and more direct investigation of sources of as-
sembly bias is presented by Salcedo et al. (2018), who analysed a
multitude of halo properties to disentangle which properties have
the strongest effects on assembly bias. One of their main analyses
studied halo properties as a function of distance to a halo’s nearest
more massive neighbour. Importantly, they found that, if one controls
for ‘neighbour bias’, then bins haloes by mass and splits by age or
concentration, the assembly bias signal is mostly removed. However,
they used several different halo properties as both primary and
secondary properties to bin and split haloes and found that controlling
for neighbour bias does not successfully remove assembly bias in all
cases, complicating their ability to discern a simple cause.

Though multiple explanations for assembly bias have been pro-
posed, none alone has satisfactorily explained the phenomenon.
Mansfield & Kravtsov (2020) attempted to assign a relative impor-
tance and a cohesive model for all three of the low-mass causes of
assembly bias. They used a single set of simulations with multiple
prescriptions and proxies for calculating splashback radii. They
measured tidal strength from both the largest nearby halo and the
general strength of the aggregate tidal field and measured tidal
heating. From this, they determined the relative contributions of each
factor by finding the percentage of haloes that need to be removed
for a given proxy to eliminate the assembly bias signal. The results of
Mansfield & Kravtsov (2020) support the connection between halo
tidal forces halo assembly bias in agreement with the conclusions of
Hahn et al. (2009), Hearin et al. (2016), and Salcedo et al. (2018),
but they express a caveat that assembly bias is likely not an effect
that can be approximated from the tidal force of a halo’s single most
massive neighbour alone.

We propose a new approach to investigate arrested development as
a cause of assembly bias. The idea is to identify arrested development
in haloes and predict the growth they would have had if they had
not undergone a slow-down or truncation of mass accretion. Since
arrested development mostly occurs at late times, when massive
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neighbours have collapsed and produced strong tidal fields, we can
attempt to extrapolate from the early part of a halo’s history to
predict its late evolution. To perform this extrapolation, we adopt
prior work in using a functional form to fit mass accretion histories.
Having removed the effects of arrested development from halo mass
accretion histories, we can investigate to what extent the assembly
bias signal is reduced.

This new approach offers more than an investigation of the cause
of halo assemble bias; it also may offer a straightforward way of
removing the halo assembly bias signal in simulations consistent
with its underlying physical cause. Though prior work has been well
motivated in addressing physical causes of assembly bias, the low-
mass causes of assembly bias propose challenges for strategies to mit-
igate this bias. Because our proposed method attempts to correct the
underlying cause of assembly bias — arrested development — it could
be a useful tool that can be applied to any simulation, with practical
applications, such as producing assembly bias-free mock catalogs.

Section 2 provides an overview of the simulation and how we
extract mass accretion histories. Section 3 describes our procedure
for fitting mass accretion histories and correcting for arrested
development. Section 4 shows how we calculate the halo assembly
bias signal via their two-point correlation function. Section 5 shows
our main results from attempting to mitigate arrested development
and investigating how this impacts the halo assembly bias signal.
Section 6 discusses limitations and implications for future assembly
bias investigations.

2 DATA

2.1 The Vishnu simulation

Vishnu is a large-scale cosmological high-resolution N-body sim-
ulation. The simulation contains 1000 snapshots of particles from
z = 99 to 0 and was evolved using the GADGET-2 N-body TreeSPH
algorithm (Springel 2005) in a ACDM cosmology with & = 0.70,
Qn = 0.25, Q5 = 0.75, and oy = 0.8. The initial power spectrum of
Vishnu was calculated using CAMB, a PYTHON code for cosmologi-
cal calculations (Lewis, Challinor & Lasenby 2000). Initial positions
and velocities were determined using the 2LPT code (Scoccimarro
1998) at z = 99. Vishnu has a boxsize of 130 A~! Mpc and a particle
mass of 3.2151 x 10" A~! Mg (Johnson et al. 2019). Haloes were
identified using the ROCKSTAR algorithm (Behroozi, Wechsler & Wu
2012a) with the virial overdensity set to Ay (Bryan & Norman
1998). Halo mergertrees were constructed with the Consistent-Trees
algorithm of Behroozi et al. (2012b).

The Vishnu simulation offers a high mass and temporal resolution
compared to most other cosmological N-body simulations while
still maintaining a large enough volume to measure the large-scale
clustering of haloes. This makes it an ideal simulation for studying
the connection between halo mass accretion histories and assembly
bias. Since this analysis only uses the total mass of haloes and their
clustering, and is not concerned with internal properties like density
profiles, we are confident in using haloes with a fairly small number
of particles. However, since the focus of this work is to analyse mass
accretion histories, not just haloes in the present, we require haloes to
be resolved at very early times when they were much less massive.
This means that our final z = 0 mass threshold should be much
higher than the minimum mass we can resolve. We adopt a final halo
mass threshold for our analysis of 10'° 2~! M, which corresponds
to about 300 particles. This allows us to resolve halo histories over
the period where they have grown by at least an order of magnitude.
If, for example, a present-day halo of mass 10'° h~! Mg, has a half-
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mass age at scale factor @ = 0.5, then the halo at this earlier point
would have roughly 150 particles, still enough for the analysis in this
work and enough that we can probe its accretion history back to even
earlier times.

The main idea in this paper is to fit the early portion of the mass
accretion history (MAH) of haloes before arrested development has
taken effect, and extrapolate the fit to predict how the haloes would
have grown in the absence of arrested development. We thus need to
adopt a truncation point in time from which to extrapolate. This point
should be at a time that is early enough that arrested development
has not yet taken place, but late enough that the halo is well resolved
in a sufficient number of previous time-steps to give us confidence
in the early accretion history fit. The earliest truncation point that we
adopt in this analysis is a = 0.5, which satisfies these requirements.
We expect that haloes that experience arrested development will have
extrapolated final masses that are higher than their actual final masses
in the simulation. Therefore, in order to have a complete sample
of haloes with extrapolated final masses greater than 10'° 2~ M,
we must perform fits on haloes with actual final masses that are
lower than that so that arrested development haloes are included
in the sample. To satisfy this requirement, we create a sample of
all haloes in the simulation with final z = 0 masses greater than
10%3 h~! Mg, which provides enough of a buffer to ensure a complete
sample above 10'° 4~ M. Additionally, we adopt a high mass cut-
off of 10'16 p~! Mg because, above this threshold, there are too
few haloes per mass bin to calculate accurate clustering statistics.
Finally, only haloes classified as central haloes at z = 0 are used in
this analysis (i.e. not subhaloes). These conditions result in a sample
of roughly 1.2 x 10° haloes from the Vishnu simulation that we fit
for the analysis.

2.2 Extracting the mass accretion histories

The Consistent-Trees algorithm of Behroozi et al. (2012b) creates
halo merger trees in Vishnu, which include every branch of every
progenitor halo that results in a current halo. Since every halo at
every time-step in the simulation is given a unique ID number, the
Consistent-Trees algorithm records the descendent halo IDs for every
halo. From this, the mass accretion histories of every halo at a = 1
are extracted by moving backwards in time and finding progenitor
halo IDs and selecting the progenitor with the most mass. One branch
is randomly chosen in the rare event that multiple progenitor haloes
have the same mass. This process is repeated until a halo with no
progenitor halo is reached. We refer to the scale factor at which the
halo with no progenitor is reached as the ‘epoch of appearance’ of
that halo. We note that this does not mean that the halo did not exist
at earlier times, but that it had too few particles to be registered by the
ROCKSTAR halo finder algorithm. Fig. 1 shows six randomly selected
mass accretion histories from Vishnu. The haloes exhibit a large
variety in their detailed histories. For example, the halo represented
by the purple line exhibits sudden mass loss at around a = 0.75.
However, all of these example haloes share roughly the same overall
form. In their early histories, the haloes accrete at a rapid fractional
rate, while later in their histories, the mass accretion histories level
out.

3 FITTING THE MASS ACCRETION
HISTORIES

A search for a generalized mass accretion history function that can
be derived from an analytic foundation and verified by simulations
is ongoing. It has been recognized that, in general, most haloes
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fractionally accrete much of their mass early, then experience a period
of gradually slower fractional accretion (Ludlow et al. 2013) (see Fig.
1), with this effect being more or less pronounced depending on other
halo properties (notably overall halo mass) (Wechsler et al. 2002;
Tasitsiomi et al. 2004; Mcbride, Fakhouri & Ma 2009). Early work
attempted to derive a generalized halo mass accretion history profile
from mass assembly histories (e.g. Ryden & Gunn 1987; Avila-
Reese, Firmani & Hernandez 1998). In a seminal paper, Wechsler
et al. (2002) extracted and analysed structural merger trees of haloes
from simulation data. Prior work by Bullock et al. (2001) had used
a simulation to study the density profiles of dark matter haloes, and
Wechsler et al. (2002) attempted to find a correlation between these
density profiles and the assembly history of the haloes. In doing
so, they proposed an exponential fitting function for mass accretion
histories of the form:

M(a) = Mpe™ ™, (D

where M (a) is the mass of the halo at some scale factor a, M is the
final mass of the halo, z is the redshift, which is related to the scale
factor as a = (1 4+ z)~', and « is a free parameter. Fig. 2 shows this
functional form, fit to one of our Vishnu haloes. Wechsler et al. (2002)
notably restricted fitting this function to haloes above 10'2 h~! My
at z = 0 to have reliable fits for most haloes. This choice created a
better set of halo fits for their analysis, but it raises doubt on this
function’s appropriateness for fitting haloes of lower masses.

Though this functional fit for mass accretion histories is simple
and powerful, subsequent researchers recognized its limitations and
suggested improved functional forms. For example, van den Bosch
(2002) suggested a two-parameter function and Tasitsiomi et al.
(2004) proposed a two-parameter, more general function of:

M(a) = af exp (a(l— i)), 2
a

in which M(a) = Mﬂo, a = -, and Mo and ay are the virial mass and
the scale factor of the halo at the time (or epoch) of observation, and
p and « are free parameters. This parametrization allows haloes to
be fit with a functional form that is a combination of an exponential
of % and a power law of base d. For cases in which p = 0, this
function for fitting mass accretion histories simplifies to the one-
parameter exponential function of Wechsler et al. (2002). Tasitsiomi
et al. (2004) proposed and applied this form to 14 haloes for analysis.
Mcbride et al. (2009) then tested this form over a much larger sample
of approximately 500000 haloes from the Millennium Simulation
and found it to be ‘a reasonable fit’. They rewrote the function

identically as:
M(z) = My(1 + z)*e* 3)

with « and B as free parameters, which is the form used for this
analysis, though we convert redshift z to scale factor a for this
work. Some sources using this two-parameter functional form have
a negative exponential term, though this is just a sign convention
choice. Furthermore, Mcbride et al. (2009) suggest a four-tiered clas-
sification system based on the fitted values of the two free parameters
to classify halo types. This classification scheme refers to haloes with
o < 0.35 as ‘good exponential’ haloes, haloes with @ — 8 < —0.45
as ‘steep late growth’ haloes, haloes with —0.45 <o — 8 <0 as
‘shallow late growth’ haloes, and haloes with o« — 8 > 0 as ‘late
plateau/decline’ haloes. Though this categorization is not used
explicitly in this analysis, it is a consideration for future work.

This specific two-parameter functional fit was further investigated
by Wong & Taylor (2012), who noted a concern that for most fits
and B are correlated and exhibit some degeneracy (meaning multiple
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Figure 1. Six mass accretion histories from the Vishnu simulation. Each line shows mass as a function of scale factor, a, for a particular randomly chosen halo.
The haloes exhibit a large variety in their histories. For example, the halo represented in purple shows a mass loss in its later history (@ ~ 0.75). Most show a

levelling off of mass accretion in their late histories.
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Figure 2. Example of a mass accretion history, always following the most
massive progenitor back in time, for a halo from the Vishnu simulation (black),
fit with an exponential function of the form M(a) = Moe=*? (solid blue).
This exponential fit is a simple parametrization that fits many haloes well.

value combinations of « and § can produce the same functional fit).
They further proposed a model where the primary free parameter is
(B — a). Correa et al. (2015) explained this correlation and provided
a more comprehensive justification for this functional form by fitting
to an analytic mass history model based on the EPS formalism and
connecting « and S to the initial power spectrum. Though continued
work investigates the best functional fit for mass accretion histories,
this is currently the most well-researched and tested function for this
purpose.

We use the parametrization of Mcbride et al. (2009) (equation
(3)) to functionally model all the mass accretion histories in our
simulation: once over the entire history and again over a portion of
the early history out to specified truncation points. The fit over the
entire history checks how well the function models the mass accretion
over the entire history of the haloes and serves as a comparison to the
functional fit over the early histories of the haloes. The equation being
fit is equation (3), where My, o, and B are free parameters. Since the
independent time variable is in units of scale factor instead of redshift,
the function is converted to be a function of scale factor a instead of
redshift z. Though this function is identical to the functional form of
mass accretion histories used by Correa et al. (2015) and prior works,
one difference is that we add a third free parameter, the final halo
mass. In past works, the final mass M, was assumed to be known and
fixed to the final mass of the halo in the simulation data. However,
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in this analysis, we assume that the final halo mass, had the halo not
undergone arrested development, is not known from the simulation
itself but can be inferred from extrapolating the early halo accretion
data. Thus, this is the first investigation into halo accretion that allows
M, to be a free parameter when fitting haloes.

The fit is performed using the optimize subpackage of the SCIPY
package. For each halo fit, boundary conditions are imposed on
the free parameters. Specifically, the parameter M,, being a mass,
is constrained to be positive, and both « and B are constrained to
only be negative. In the case of §, this constraint arises from the
functional form. A positive 8 would cause the function to have
an asymptote at positive infinity as it approaches scale factor zero
regardless of the values of the other two parameters, representing an
unphysical halo with infinite mass at the beginning of the Universe.
The o parameter has no physical motivation for imposing a boundary
condition; however, a negative value of « imposes a restriction against
mass loss for the halo. Importantly, for some halo history forms,
a range of positive values for o can also result in mass accretion
histories that do not exhibit mass loss, but the specific value of « for
which the halo mass function has a ‘turnover point’ and exhibits mass
loss is itself dependent on the value of . For this work, a boundary
condition is imposed that « be negative, preventing all halo fits from
exhibiting mass loss. We restrict the possibility of mass loss when
fitting haloes because it more accurately accounts for the arrested
development hypothesis, which states that assembly bias is caused by
haloes not accreting mass as they would without tidal forces. Whether
a halo undergoing arrested development gains mass more slowly than
it otherwise would or whether it actually loses mass, in the absence
of the tidal forces that result in arrested development, haloes can only
gain mass. Thus, we expect that, whether the halo itself loses mass or
not, the ‘corrected’ mass history from our functional fit should only
increase in mass.

Once the optimal values of the three parameters of My, «, and
are calculated using Scipy’s curve fit module, a model halo’s fitted
mass history can be calculated from the function and parameters.
From the model mass accretion history, the model half mass age is
calculated as the scale factor of the model halo when it has acquired
half its final mass. Fig. 3 shows the results of this fit for two example
haloes from the Vishnu simulation, one ‘normal’ halo (top panel) and
one arrested development halo (bottom panel). The solid black lines
show the actual mass accretion histories of the haloes as extracted
from the simulation. The dot—dashed orange curves show the best-fit
model accretion histories, using the fitting function in equation (3),
when the fit is performed over the entire mass accretion histories.
The half-mass ages, estimated from the actual and fitted histories,
are denoted by the red circle and orange X symbols, respectively. In
both cases, the fitted history tracks the overall shape of the actual
history fairly well and has a similar final mass and half-mass age.

Next, mass accretion histories are fit using only the early portion
of their histories. This results in a best-fit analytic history with new
best-fit values of My, o, and . The later part of the halo’s history can
be extrapolated from the fit to the earlier portion of the history. In this
work, we refer to the latest epoch that is used in the fit as the ‘projected
scale factor’. We begin with a projected scale factor of @ = 0.5. This
value was chosen because it is early enough in most halo histories
to allow the extrapolation to correct for arrested development but
late enough that haloes are resolved in a sufficient number of earlier
epochs of the simulation in order for a trustworthy fit to be made.
The blue curves in Fig. 3 show halo fits using a projected scale factor
of 0.5 for the examples of ‘normal’ and arrested development haloes.
The corresponding half-mass ages from these fits are denoted by
the blue diamond symbols. The figure shows that in the case of the
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‘normal’ halo, this new fit matches the previous fit well, meaning that
the late-time extrapolation of the mass accretion history represents
the true history well even though it is only based on the early history
of the halo. In the case of the arrested development halo, however, the
extrapolated accretion history overpredicts the late-term mass of the
halo by a large factor, with a z = 0 mass that is more than two times
higher than the actual mass of the halo. Likewise, the half-mass scale
factor of the ‘corrected’ history is ~50 per cent larger (i.e. younger)
than the original age. Our interpretation of these differences is that the
early history of the halo is not affected by arrested development, and
so the extrapolation of the fit to this early history is predicting how
the halo would have grown in the absence of arrested development.

We can use Fig. 3 to demonstrate the importance of the chosen
projected scale factor. As the projected scale factor (represented
in Fig. 3 by the black arrows) is set to earlier times, the number
of simulation time-steps over which to fit the halo between its
appearance in the simulation and its truncation point decreases.
Conversely, as the projected scale factor moves to later time-steps, the
truncated halo fit (the blue curve) naturally moves closer to the model
halo fit (the orange curve). In this case, the projected halo converges
to the model halo fit, undermining the goal of accounting for arrested
development in the halo. In addition to a projected scale factor of
a = 0.5, we also analyse projected scale factors of a = 0.6, 0.7, 0.8,
and 0.9. We fit each halo from its scale factor of first appearance in
the simulation to the projected scale factor. Haloes that formed after
the projected scale factor are excluded from the analysis.

Fig. 4 demonstrates the appropriateness of our chosen projected
scale factor of a = 0.5. In choosing a projected scale factor, we
strive to ensure two criteria. First, most haloes in the simulation
should have an epoch of appearance before the projected scale factor.
Clearly, haloes whose oldest resolved progenitor haloes appear after
our chosen projected scale factor cannot be fit. Such haloes would
be excluded by our analysis, potentially biasing the result. The left-
hand panel of Fig. 4 shows the distribution of epoch of appearance
for all haloes with final masses above 10°>A~! M, in the Vishnu
simulation. The overwhelming majority of haloes appeared before
a = 0.5, with most appearing just before a = 0.2. Thus, we are
confident that our choice in the projected scale factor of a = 0.5
does not entail a significant source of bias due to excluded haloes.
Second, we look at the data in each mass accretion history, focusing
on how many of the simulation time-steps fall before the projected
scale factor. If there are too few time-steps between the halo’s epoch
of appearance and the projected scale factor, we risk extrapolating
the halo’s late history from too brief a period in the halo’s history,
yielding unreliable results. Conversely, if most of the time-steps
are between the halo’s epoch of appearance and the projected scale
factor, then there is little to extrapolate. In this case, the truncated
halo will yield the same result as the model fit. The right-hand panel
of Fig. 4 shows the distribution of the fraction of the time-steps
between the epoch of appearance of the halo and the projected scale
factor of a = 0.5. To help understand this, consider the sharp peak
at roughly 0.6. This signifies that for a large number of haloes, about
60 per cent of the time-steps in the simulation fall between the halo’s
epoch of appearance and the projected scale factor of a = 0.5, while
40 per cent of the time-steps fall between @ = 0.5 and 1. For most
haloes, the truncated fits hit the optimal middle ground in which we
are not extrapolating over too little or not extrapolating at all.

After haloes are fitted, we return the final halo mass from the
simulation, the model final mass (the best-fit parameter M, fitted over
the entire halo), and a projected final mass (the best-fit parameter
M, fitted over only the halo’s early history). Only haloes above
10! =" Mg, are analysed for each of the three mass categories.
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Figure 3. Two fits for a randomly chosen ‘regular’ halo (top panel) and arrested development halo (bottom panel) in the Vishnu simulation. The solid black
curves are the actual mass accretion histories of the haloes as extracted from the simulation. The orange (dot—dashed) curves show the best-fit model accretion
histories, using the fitting function in equation (3), when the fit is performed over the entire mass accretion histories. The blue (dashed) curves show the fit
results when the fit is only performed over the earlier portion of the histories, up to scale factor a = 0.5. This scale factor is denoted by the black arrows. The
blue curves at later times thus represent an extrapolation from the earlier history fits. The large points show the scale factors corresponding to the half-mass ages
of the three histories. Fitting these haloes through both methods results in nearly identical fits with similar final predicted masses and ages for the’regular’ halo
(top panel), but very different fits for the arrested development halo (bottom panel). In this latter case, the fitting function accurately predicts the final halo mass
and age when fit over the entire history, but it predicts a higher final halo mass and a younger age when fit over only the early history.
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Figure 4. Tests to check whether haloes have enough of their history in place before the projected scale factor of @ = 0.5, in order to robustly fit this early
history and extrapolate halo growth to late times. Left-hand panel: the distribution of halo ‘epochs of appearance’, which is the earliest scale factor when the
progenitor of a present-day halo was first resolved in the Vishnu simulation (following the main, most massive, trunk of the merger tree back in time). The
distribution shows that the vast majority of haloes first appear well before a = 0.5, meaning that we are not excluding a significant number of haloes from our
analysis due to them not existing before our chosen projected scale factor. Right-hand panel: the distribution of the fraction of time steps in Vishnu halo histories
that occur before a = 0.5. The distribution shows that, for almost all haloes, a large fraction of their resolved history occurs before our chosen projected scale
factor (with a peak near 60 per cent). This means that our fits to the early histories of haloes are based on a large enough number of epochs to be robust. The

results in both panels apply to all haloes above 107> /! Mo.

However, we fit all haloes down to final masses of 10° 2! Mg, to
allow for the haloes that have actual masses below 10'° 4~! M, but
may have model and/or projected masses above 10'°2~! Mg to be
included in the analysis, as not including these haloes would bias
the model and projected halo mass data. The 10°3 2~! My mass
cut threshold was chosen to provide a wide enough mass range
to reasonably include most haloes that fall into this category but
without compromising the reliability of the halo fits from low-mass
limits on halo resolution. We support this choice by noting that only
roughly 5 percent of the model haloes with a final mass greater
than 10'° 2~! M, were fitted from haloes with an original final mass
between 10°3 and 10'° 4~! M, and only 0.3 per cent of model haloes
with a mass greater than 10'° 4~! Mg, had original halo masses less
than 10°% h=! Mg,

We define half-mass age separately for each of the three mass
accretion history types. The half-mass age of the halo is the point
at which, following the most massive progenitor along the halo’s
merger tree, the halo reaches half its present mass. The model half-
mass age is the point at which the function fitted over the entire halo
reaches half the final fitted mass, and the projected half-mass age is
the point at which the projected function, fitted over the early portion
of the mass accretion history, reaches half its final projected mass.
All half-mass ages are given as scale factors, which means that larger
values correspond to younger ages.

4 MEASURING THE ASSEMBLY BIAS SIGNAL

Following most previous works, we measure the halo assembly bias
signal by comparing the clustering of old versus young haloes at fixed
mass. To effectively fix mass, clustering statistics must be calculated
in bins of halo mass that are narrow enough so that there is no residual
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dependence of clustering on mass within the bin. At the same time,
mass bins should be wide enough to contain a large enough number
of haloes for calculating robust clustering statistics. This is especially
pertinent given that we will make additional cuts on halo age within
the mass bins, thus further reducing the halo sample size. In this work,
we adopt eight logarithmic bins of mass from 10'° to 10" =1 M,
with each bin having a width of 0.2 dex. Within each bin, we rank
haloes by their half-mass age and construct ‘old’ and ‘young’ samples
that contain the 25 per cent oldest and 25 per cent youngest haloes.
We find that this choice of binning strikes a good balance between the
competing needs to control for mass while also having large enough
samples of haloes for robust measurements of clustering. The age
samples in our largest mass bin contain 152 966 haloes.

We use all three definitions of halo mass in this analysis, described
in the previous section: the actual simulation mass, the model mass
that results from the fit to the entire mass accretion history, and the
projected mass that is extrapolated from the fit to the early portion
of the halo’s history. Each definition of mass is accompanied by its
own definition of half-mass age, as described in the previous section.
For each definition of mass, we construct one sample containing all
haloes in a mass bin, as well as the 25 per cent oldest and 25 per cent
youngest samples. Thus, for each mass bin, we have nine sets of
haloes for which to measure clustering.

To measure the clustering of a given halo sample, we calculate the
two-point correlation function, &(r), which is the excess probability
of finding a pair of haloes separated by a physical distance r, over
what would be expected for a random distribution. To calculate & (),
we use the equation

__ DD(r) _

RR(r) L @

£(r)
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where DD(r) is the number of halo pairs at separation distance r in
the data, and RR(r) is the number of pairs at separation distance r in
a random set of data of equivalent size and volume. We use the Cor-
rFunc package (Sinha & Garrison 2020), a suite of highly optimized
and robustly tested codes for calculating clustering statistics. Since
the Vishnu volume is a periodic cube, RR is calculated analytically.!

To facilitate the interpretation of our results, we compute relative
bias factors for old and young haloes in each mass bin. First, we divide
&(r) for old haloes by that for all haloes and take the square root of
that ratio to obtain a relative bias as a function of scale, b(r). Since
assembly bias is a large-scale effect and bias functions become scale
independent at scales larger than a few Mpc (Scherrer & Weinberg
1998; Narayanan, Berlind & Weinberg 2000), we average the values
of bias in all bins corresponding to physical separations in the range
r: 5-30 h~! Mpc. This yields a single relative bias factor b for the 25
per cent oldest haloes in a mass bin. We then do the same thing for
the young haloes and for all our mass bins. The end result is a bias
for old and young haloes as a function of halo mass, and for each age
definition. An assembly bias signal corresponds to a value of b that
is different from unity. Specifically, » > 1 for old haloes and b < 1
for young haloes (e.g. Salcedo et al. 2018).

To obtain uncertainties for our measurements, we assume that the
main source of noise in the correlation function is Poisson noise
from the DD term (since RR is calculated analytically). The Poisson
uncertainty in the pair counts is ~/DD. We then propagate this error
all the way to our final bias measurements.

5 RESULTS

Fig. 5 shows the resulting masses and ages from our fits compared to
the actual masses and ages from the simulation, for all haloes in our
analysis. Specifically, the figure shows the bivariate distribution of the
fractional difference in age (fitted half-mass scale factor minus actual
half-mass scale factor) on the x-axis versus the fractional difference
in mass (fitted mass minus actual mass) on the y-axis. Each panel
shows results for fits done using a different fit truncation point from
a = 0.5 in the top-left-hand panel to a = 1 in the bottom-right-hand
panel. Haloes for which fits produce masses and ages that match
their actual masses and ages (for example, the ‘normal’ halo shown
in the top panel of Fig. 3) appear in the middle of each panel, close
to (0, 0). On the other hand, arrested development haloes for which
fits should produce masses that are larger and ages that are younger
than their actual masses and ages (like the halo shown in the bottom
panel of Fig. 3), appear in the top-right quadrant of each panel.

Fig. 5 shows several interesting features. First, we can see that the
distributions of mass and age differences have a significant amount of
scatter, meaning that haloes exhibit a large range of behaviours when
we fit their mass accretion histories. However, some clear trends can
be seen. Looking at the top left-hand panel where fits are preformed
using a truncation scale of a = 0.5, we see that most haloes lie in on
a sequence running from the lower-left to the upper-right. Haloes on
the upper part of this sequence have extrapolated fitted masses that are
larger than their actual simulation masses, and ages that are younger
(i.e. larger half-mass scale factors) than their actual simulation ages.
These haloes have likely experienced arrested development, and our
fits to their early histories are possibly estimating what their growth
would have been without this effect. Correcting these haloes is the
main goal of this study. However, there is also a significant population

IFor more information, see: https://corrfunc.readthedocs.io/en/master/
modules/rr_autocorrelations.html#rr-autocorrelations
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of haloes that live in the lower-left part of the sequence. These haloes
have extrapolated fitted masses that are smaller and ages than are
older than their actual simulation masses and ages. One likely cause
for this effect may be an inability of the fitting function to account
for a major merger late in the halo’s history. A sudden mass spike
at late times would cause the extrapolated fit to underestimate the
final mass and overestimate the age. The sequence that we see in
the figure thus represents different types of late-time mass growth,
with haloes that experience late-time mergers on the bottom-left, and
arrested development haloes on the top-right.

We now look at how fit results change as we shift the truncation
scale to later times. From the different panels in Fig. 5, we see that
the scatter is reduced for both mass and age, and the strong sequence
we see for a truncation scale of a = 0.5 gradually disappears. For
truncation scales close to a = 1, most haloes have fitted ‘model’
masses and ages that are close to their actual values from the
simulation. This behaviour is expected since the fits in these cases
take the haloes’ late-time evolution into account. Of particular note
is that even for the case of the full model fit (the bottom right-hand
panel of figure 5), in which haloes are fit over their entire history, most
haloes have fractional mass and age differences that skew slightly
positive. This means that our fitting function overpredicts the final
mass of haloes by ~5 per cent, and overpredicts the half-mass scale
factor of haloes by ~10 per cent. This could be a failure of our simple
fitting function to properly describe the global shape of halo mass
accretion histories, or it could be a systematic effect in the fits caused
by small-scale variability in the accretion histories. Either way, we
need to make sure that this small systematic effect does not impact
our assembly bias analysis.

The primary result of this work is shown in Fig. 6, where we
investigate how the assembly bias signal changes after ‘correcting’
halo masses and ages. The dashed and solid lines in Fig. 6 show
the relative halo bias as a function of halo mass for the 25 per cent
oldest and 25 per cent youngest haloes, respectively. The difference
in clustering between old and young haloes at fixed mass is the
assembly bias signal. Blue lines show results using the actual halo
masses and ages from the simulation. This shows what previous
authors have found (e.g. Salcedo et al. 2018), though our results
extend to significantly lower halo masses. We find that the oldest
25 percent haloes have a large-scale clustering bias that is ~1.65
times greater than that of all haloes, while the 25 per cent youngest
haloes have a large-scale clustering bias that is ~0.6 times that of all
haloes, at the smallest masses we study. The effect decreases slightly
in higher mass bins.

The other sets of lines in Fig. 6 show results when we use halo
masses and ages from our accretion history fits. The yellow lines
show results for fits that are made over the entire accretion history
(i.e. the ‘model’ fits). We note that using these model masses and
ages does not alter the assembly bias signal, as is evidenced by the
fact that the yellow and blue lines are in agreement. This is important
because it demonstrates that the small systematic shifting of masses
and ages that we observed in Fig. 5 does not introduce a significant
change to the assembly bias signal. Consequently, any reduction
of this signal from fitting to the early part of haloes’ histories and
extrapolating to a = 1 can be explained by our correcting for arrested
development, rather than systematic errors in the fitting process itself.
The remaining sets of lines in Fig. 6 show results when we use masses
and ages from fits to the early parts of halo histories. The lines show
results for progressively earlier fit truncation scales, with brown, red,
and cyan lines corresponding to truncation scales of a = 0.9, 0.7,
and 0.5, respectively. The figure shows clearly that the assembly bias
signal is substantially reduced when we predict halo growth from

MNRAS 535, 1426-1438 (2024)

G202 UDJBIN 80 U0 15aNB Aq 986/18./9211/2/SES/PI0IME/SEIUW/WO0d"dNO"dlWapeo.//:Sd)y WOy PapEojumoq


https://corrfunc.readthedocs.io/en/master/modules/rr_autocorrelations.html#rr-autocorrelations

1434  W. J. Smith, A. A. Berlind and M. Sinha

truncation at a = 0.5 truncation at a = 0.6

<
~

e
b

o
o

|
©
o

fractional difference in mass

|
<
~

-0.5 0.0 0.5 -0.5 0.0 0.5

2 04
<
g
=
é 0.2
=
(0]
%3 0.0
S
£-02
=
9
£ 04
—-0.5 0.0 0.5 —-0.5 0.0 0.5
truncation at a = 0.9 full halo model fit

o
~

I
b

o
o

|
©
o

fractional difference in mass

—-0.4 |
05 00 05 —05 0.0 0.5
fractional difference in age fractional difference in age

Figure 5. Bivariate distributions of fractional age and fractional mass differences between fitted and actual haloes. Each panel shows fits for different projected
scale factor from a = 0.5 (top left) to @ = 1 (‘model fit’, bottom right). Each panel shows the bivariate distribution of the fractional difference in the age (x-axis)
versus fractional difference in mass (y-axis). Fractional differences are defined by taking the mass (or half-mass scale factor) from the fit minus the actual mass
(or half-mass scale factor) from the simulation. Arrested development haloes are thus expected to appear in the top-right quadrant of each panel, since their
fitted masses and half-mass scale factors should be larger than their actual values (see the example in Fig. 3). As expected, the fractional differences in mass and
age decrease for most haloes when fits are done adopting later truncation times.
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Figure 6. Relative bias of halo populations (y-axis) as a function of final halo mass (x-axis). Dashed lines show the large-scale clustering bias of the oldest 25
per cent haloes in a set of eight mass bins divided by the bias of all haloes in the same bins. Solid lines show the same, but for the 25 per cent youngest haloes
in each mass bin. The difference between the relative bias of old and young haloes at fixed mass represents the halo assembly bias signal. Blue lines show
results for when actual simulation halo masses and ages are used, while the other lines show results for when halo masses and ages come from fits to the haloes’
mass accretion histories. Yellow lines show results for fits to haloes’ entire histories, while brown, red, and cyan lines show results for fits out to progressively
earlier truncation scales, but extrapolated to @ = 1. This represents our attempt to correct for arrested development. The cyan lines show results for the earliest
truncation scale of a = 0.5. There is a significant reduction in the assembly bias signal when haloes’ masses and ages are predicted from their early histories.

its early history. In the case of the earliest fit truncation scale that
we consider, a = 0.5, the signal for old haloes is reduced by about
a half, while the signal for young haloes is reduced by a bit more
than a third. The reduction in the assembly bias signal is less for fit
truncation scales larger than a = 0.5, as expected. These results are
consistent with our hypothesis that arrested development is at least
partially responsible for the assembly bias of low-mass haloes and
that we can mitigate this effect by fitting the early growth of haloes
and extrapolating to predict what the late-time growth would have
been in the absence of arrested development.

It is worth thinking about how our arrested development correc-
tions are causing a reduction in the assembly bias signal. It is not
immediately obvious how changing the masses and ages of haloes
will affect their clustering within age quartiles because it depends on
several factors, such as (i) how the change in haloes’ masses and ages
depends on their larger environment, (ii) how the relative change in
mass and age changes a halo’s location in the mass—age relation,
and (ii) how the clustering of the overall halo population depends on
mass.

Let us start by considering how our arrested development cor-
rections depend on the environment. As we discussed in Section 1,
several previous authors have demonstrated that assembly bias for
low-mass haloes is caused by their tidal field environment (e.g. Hahn
et al. 2009; Mansfield & Kravtsov 2020). It is thus interesting to
investigate the tidal fields of haloes as a function of the degree of
arrested development that they exhibit. To study the tidal field, we
use the ‘tidal force’ quantity provided by the ROCKSTAR halo finding
algorithm. For each halo, the algorithm calculates the tidal force
from all its neighbours and finds the one that exerts the maximum
tidal force on the halo, which is typically its closest more massive
neighbour. ROCKSTAR then outputs the value of Ry, /ruin, Where
Ry is the radius of the halo and ry;; is the Hill radius due to the
massive neighbour, which is defined as the distance from the halo
at which the gravitational influence of the neighbour exceeds that of
the halo. Small values of Rpao/rmin thus correspond to weak tidal
fields while large values correspond to strong tidal fields. Haloes
that have a ratio larger than unity live in such strong tidal fields
that matter in their own outskirts is more bound to the massive
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Figure 7. Distributions of tidal field strength for haloes with different
degrees of arrested development. The shaded histograms show the normalized
distributions of tidal field strength, where the strength of the tidal field
affecting each halo is defined as the ratio of the halo’s radius over the Hill
radius due to the nearest massive neighbour. The three histograms show
distributions for haloes that have experienced low, moderate, and high degrees
of arrested development in their mass accretion histories. Haloes that have
experienced a high degree of arrested development tend to live in regions
containing strong tidal fields.

neighbour than to themselves. These haloes are likely in the process
of being tidally stripped. To study how this tidal parameter depends
on arrested development, we consider the mass accretion history fits
using a projected scale factor of 0.5 and select subsamples of haloes
based on the fractional difference in mass and age that they have
between these extrapolated fits and their original histories (the top-
left-hand panel of Fig. 5). We first make a sample where the fractional
difference in mass and age is between —0.1 and 0.1. These haloes
exhibit little to no arrested development. We then make a ‘moderate’
sample by selecting all haloes whose fractional difference in mass and
age is between 0.4 and 0.6. Finally, we make a ‘high’ sample where
the fractional difference in mass and age is greater than 1. Fig. 7
shows the normalized distributions of tidal field strength (Rpaio/7min)
for these three samples. The figure shows a dramatic difference
between the samples. Haloes that exhibit a high degree of arrested
development tend to live in very strong tidal field environments,
while most haloes with little to no arrested development live in much
weaker tidal fields. Since strong tidal fields are caused by massive
neighbours, it is safe to assume that haloes in strong tidal fields live
in highly clustered regions because they inherit the strong clustering
of their massive neighbours.

Let us now examine how our mass and age corrections change
the location of a halo in the mass—age relation. Fig. 8 shows the
masses and ages (half-mass scale factors) of all our haloes (grey
points), as well as the median, 25th and 75th percentiles of age as a
function of mass (solid and dotted black lines, respectively). The plot
shows the well-known mass—age relation for haloes whereby more
massive haloes tend to be younger (i.e. have assembled their mass
more recently) than less massive haloes. The red X symbol on the
plot shows the original location of the example halo whose history is
shown in the bottom panel of Fig. 3. This halo’s age places it in the
oldest age quartile for its mass. The fact that this halo likely lives in
a strong tidal field and is thus in a highly clustered region perfectly
demonstrates the assembly bias effect: old haloes are more clustered
than young haloes at fixed mass. Now we consider the mass and
age corrections that we apply with the intention of ‘erasing’ arrested
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Figure 8. Illustration of the effect of our arrested development correction
on the mass and age of a halo relative to the full halo population. Grey dots
show the masses and ages (half-mass scale factors) of a random subset of all
haloes in our sample. The median age as a function of mass is shown by the
solid black line, while the 25th and 75th percentiles are shown by the dotted
lines. The red X symbol shows the original mass and age of the example
halo whose mass accretion history is shown in the bottom panel of Fig. 3.
The red circle shows the adjusted mass and age of this halo after applying
our arrested development corrections, and the arrows illustrate the mass and
age corrections separately. Correcting for arrested development results in the
halo having a higher mass and younger age, such that it ends up if a different
age quartile for its mass.

development. First, the mass of this halo will increase, which is
shown by the horizontal arrow. The effect of this change on the
assembly bias signal is complicated. Due to the sloped mass—age
relation, this halo that lives in a highly clustered region is now even
older in the age ranking of haloes at fixed mass. This would make
the assembly bias signal even stronger than before. On the other
hand, the clustering of haloes increases with mass, which means
that, at this new mass, the halo’s clustering will not be as enhanced
relative to the total population as it was before. This would make
the assembly bias signal weaker than before. Since these two effects
work in opposite directions, the net effect on assembly bias depends
on how strongly halo clustering increases with mass. This has been
studied extensively by many past works, which find that the large-
scale clustering of haloes is fairly constant at low masses and starts to
increase exponentially at masses close to the non-linear mass M, (e.g.
Sheth & Tormen 1999; Seljak & Warren 2004; Tinker et al. 2010).
The low-halo masses that we are considering here are well below M.,
so the clustering of haloes is mostly independent of mass. As a result,
amass correction that moves highly clustered haloes to larger masses
should have a net effect of strengthening the assembly bias signal.
However, we also correct halo ages, which become correspondingly
younger as we increase their masses. The vertical arrow in Fig. 8
shows the age correction that we apply to our example halo, which
places it at a corrected location indicated by the red circle. The
halo is now in the youngest age quartile at fixed mass, which will
certainly contribute to a reduction of the assembly bias signal. This
occurs because the ratio of the age shift to the mass shift for this
halo exceeds the slope in the halo mass—age relation. The reduction
in the global assembly bias signal that we see in Fig. 6 takes place
because the arrested development corrections that we obtain from
our extrapolated mass accretion history fits behave in a qualitatively
similar way as in the case of the example halo we considered here.
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6 SUMMARY AND DISCUSSION

In this paper, we have tested a new method for probing halo arrested
development as a cause of halo assembly bias in the low mass regime.
Furthermore, our method provides a potential way to mitigate the
effects of assembly bias in N-body simulations. We define halo
arrested development as the late-time slow-down of mass accretion
in some low-mass haloes due to the tidal field of the surrounding
mass distribution. Arrested development thus results in haloes having
lower final masses and older measured ages than they would have had
in the absence of arrested development. These haloes live in dense
large-scale environments and are thus more clustered and older than
other haloes of the same final mass, leading to an assembly bias
signal. The new idea that we introduce and test is that we can use
the early part of a halo’s mass accretion history, before arrested
development has kicked in, to predict what the late-time growth of
the halo would have been in the absence of arrested development. We
do this by fitting an analytic function to the mass accretion history
at early times, for example before a = 0.5, and extrapolating the fit
to a = 1. We then calculate a ‘corrected’ mass and age for the halo
based on this fit. Using these corrected masses and ages of haloes, we
check to what extent the assembly bias signal is affected. Our results
show that this method leads to a substantial decrease in the assembly
bias signal. This supports the hypothesis that arrested development
is a major cause of assembly bias, in agreement with (Mansfield &
Kravtsov 2020), and validates our new approach to mitigating the
effect.

The mass accretion fitting method cuts the assembly bias signal
by a half for the 25 per cent oldest haloes and by a little more than
a third for the 25 per cent youngest haloes, in our lowest mass bins
of ~10'9 4~ Mg,. Though this result is promising, our method does
not yet produce the magnitude of reduction that would lend it useful
as a method of fully mitigating assembly bias in cosmological N-
body simulations. It is thus worth thinking about why the method
does not fully remove assembly bias. One possibility is that arrested
development is not solely responsible for low-mass assembly bias.
This is certainly possible, but before reaching this conclusion, we
must first gain confidence that our methodology is able to fully
remove the effects of arrested development and does not introduce
any additional spurious assembly bias signal.

There are several potential reasons why our fitting method may
not be fully accounting for and removing arrested development. One
possibility is that the effects of arrested development begin to impact
a halo at very early times, before the scale a = 0.5 that represents
the earliest fit truncation scale we adopt. Fig. 6 shows a decrease in
the assembly bias signal for old haloes when we shift the truncation
scale from a = 0.7 to 0.5 so perhaps the signal would further reduce
by restricting the fit to even earlier times. However, fits might start
to become unreliable if we restrict them to too small a portion of
the history. Also, the assembly bias signal for young haloes does
not change from a = 0.7 to 0.5, making it unlikely that pushing to
earlier times would affect young haloes. Another possibility is that
the early mass growth of a halo has limited power to predict its
late-time growth. The extrapolation of our fits to a = 0 may thus
contain a fair amount of stochasticity or even systematic effects that
fail to properly remove the effects of arrested development in many
haloes. Alternatively, it may be the case that the early growth of
haloes does indeed have predictive power, but that our choice of
fitting function is the limiting factor. A more sophisticated model
that takes into account a halo’s entire merger tree rather than just the
one-dimensional mass history following the most massive progenitor,
might be more successful in predicting late-time growth.
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A different possibility is that our fitting methodology is introducing
aspurious assembly bias signal. Fig. 5 revealed that many haloes have
‘corrected’ masses that are smaller than the original masses from the
simulation. These are likely haloes that experience fast growth at
late times, e.g. through a late major merger, which is the opposite
of arrested development. Applying our mass and age correction to
these systems might be inducing a fake assembly bias signal. An
investigation of ways to identify which haloes require a correction
deserves further study.

These are difficult issues to disentangle because arrested develop-
ment is not a simple binary process, where a halo either experiences
it or not. In that case, one could identify a set of ‘normal’ haloes
that do not experience arrested development and use it to validate
that a given correction method does not alter those haloes. However,
the reality is likely more complex, with every halo being exposed
to some degree of tidal field and having its mass accretion impacted
by its larger-scale environment to some extent. One could perhaps
approximately identify a sample of ‘normal’ haloes by selecting
haloes that do not have a nearby massive neighbour. This is worth
future study. For haloes that do experience arrested development, we
have no way of knowing how they would have evolved in the absence
of this effect, making it impossible to test how well our correction
method works on a halo-by-halo basis. We can only test this in the
aggregate by examining the assembly bias signal of all haloes — if
the assembly bias signal vanishes then our correction method must
be working. Of course, this only holds true under the assumption that
arrested development is the sole cause of assembly bias. The main
goal of this work was to test a new idea for probing and mitigating
the effect of assembly bias. Our preliminary results are encouraging
and thus warrant further study along the various lines discussed in
this section.
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