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Abstract: This review begins with the standard Lie symmetry theory for nonlinear PDEs and explores

extensions of symmetry analysis. First, it introduces three key symmetry reduction methods: the

classical symmetry method, conditional symmetries, and the CK direct method. Next, it presents two

finite symmetry transformation group methods—one related to Lax pairs and one independent of

them. The fourth section reviews four nonlocal symmetry methods based on conserved forms, con-

formal invariants, Darboux transformations, and Lax pairs. The final section covers supersymmetry

theory and supersymmetric dark equations. Each method is illustrated with examples and references.

Keywords: classical Lie symmetry approach; partial differential equation; finite symmetry

transformation group; supersymmetric equation; supersymmetric dark equation

1. Introduction

Symmetries of nonlinear partial differential equations (PDEs) and ordinary differential
equations (ODEs) refer to transformations that map certain solutions to new solutions.
The fundamental theory of the symmetries of nonlinear PDEs was constructed by Marius
Sophus Lie and the basic idea is to use infinitesimal generators to describe the continu-
ous symmetry group [1]. Noether extended infinitesimals to any finite-order dependent
variables [2]. Noether’s theorem demonstrated the relation between Lie symmetries and
conservation law.

Nonlinear PDEs are widely used to model nonlinear scientific phenomena, represent-
ing smooth variations in space and time. Symmetry groups, along with their associated
similarity solutions and reductions, have several key applications in PDEs:

(1). Reducing the number of independent and dependent variables, potentially transform-
ing a PDE with two variables into a one-variable ODE.

(2). Linking conservation laws to symmetry properties.
(3). Classifying PDEs into equivalence classes and identifying simpler representations.
(4). Generating new solutions from existing ones.

This paper reviews various methods in the symmetry group theory of nonlinear PDEs
and highlights recent advancements. The structure is as follows: Section 2 introduces
three fundamental methods, while Section 4 focuses on four nonlocal symmetry methods.
Section 3 explores finite symmetry transformation groups. Supersymmetric and supersym-
metric dark equations are covered in Section 5, with a summary and discussion provided
in Section 6.

2. Basic Methods of Symmetry Analysis

A Lie symmetry group analysis of a PDE includes the following steps [3–5]:

(1): Identify classical Lie point symmetries for the suggested model.

Symmetry 2024, 16, 1591. https://doi.org/10.3390/sym16121591 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16121591
https://doi.org/10.3390/sym16121591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3534-8827
https://orcid.org/0000-0002-9208-3450
https://doi.org/10.3390/sym16121591
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16121591?type=check_update&version=1


Symmetry 2024, 16, 1591 2 of 28

(2): Construct an algebra based on the identified symmetries.
(3): Determine similarity variables corresponding to each symmetry.
(4): Utilize the obtained symmetries to reduce the PDE to a lower-order PDE or ODE.
(5): Obtain solutions from the ODE.

In this section, we will review three basic methods of symmetry reductions.

2.1. Classical Lie Group Method

Many studies in the literature have commented on classical methods [3,4,6]. Con-
sider w as a dependent variable, t and x are two dependent variables, and w(l) means
partial derivatives of order l of w. One PDE with the function w(t, x) as an independent
variable reads

S = S(t, x, w, w(l)(t, x), . . . , w(n)(t, x)) = 0. (1)

Now, assume that system (1) admits the transformations including an infinitesimal
parameter ϵ in the form of

t̄ = t + ϵT(t, x, w) + O(ϵ2) , (2)

x̄ = x + ϵX(t, x, w) + O(ϵ2) , (3)

w̄ = w + ϵW(t, x, w) + O(ϵ2) . (4)

Under these transformations for Equation (1), a set of overdetermined equations for T,
X, and W can be obtained. The corresponding vector fields of Lie algebra reads

Ṽ = T(t, x, w)
∂

∂t
+ X(t, x, w)

∂

∂x
+ W(t, x, w)

∂

∂w
. (5)

We will apply the famous Boussinesq equation as an instance to demonstrate this
traditional group method in this subsection.

Example 1. Classical Lie group for the Boussinesq equation [6–8].

The Boussinesq equation reads

S ≡ wtt + wwxx + w2
x + wxxxx = 0. (6)

The solution of (6) should be unchanged under the traditional Lie group transforma-
tion (4). Then, the fourth prolongation of (5) pr(4)Ṽ should satisfy

pr(4)Ṽ(S)|S=0 = 0, (7)

where pr(4)Ṽ is given by

pr(4)Ṽ = Ṽ + Wx ∂

∂wx
+ Wxx ∂

∂wxx
+ Wtt ∂

∂wtt
+ Wxxxx ∂

∂wxxxx
, (8)

where Wx, Wxx, Wtt and Wxxxx are represented explicitly by X, T, and W [3,4].
Then, one obtains twelve determining equations [6]. Solving these determining equa-

tions, we then obtain the following solution for X, T, and W:

T = 2 δ t + ψ, X = δ x + θ, W = −2 δ w, (9)

where δ, θ, and ψ are arbitrary constants. Correspondingly, Ṽ turns into

Ṽ = (2 δ t + ψ)
∂

∂t
+ (δ x + θ)

∂

∂x
− 2 δw

∂

∂w

= δ

(
2 t

∂

∂t
+ x

∂

∂x
− 2 w

∂

∂w

)
+ ψ

∂

∂t
+ θ

∂

∂x
. (10)
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The generators Ṽ1 = 2t ∂
∂t + x ∂

∂x − 2w ∂
∂w , Ṽ2 = ∂

∂t , and Ṽ3 = ∂
∂x , which correspond

to the invariance of scale transformation and spatiotemporal translation.
The following characteristic equations can derive the similarity variables:

dw

W
=

dt

T
=

dx

X
. (11)

Based on whether δ is equal to zero or not, one can obtain two different types of simi-
larity variables: similarity solutions and reduction equations [6–8]. The final results read

w =
W(ζ)

2δt + ψ
, ζ =

δx + θ√
2δt + ψ

,

δ2Wζζζζ + (ζ2 + W)Wζζ + W2
ζ + 7ζWζ + 8W = 0 , (12)

for δ ̸= 0 and

w = W(η), η = ψx − θt,

ψ4Wηηηη + θ2Wηη + ψ2(WWηη + W2
η ) = 0, (13)

for δ = 0.
The classical Lie group method is widely applied in various PDEs [9–12].

2.2. Conditional Symmetry Method

The concept of partially invariant solutions was developed in 1962 [13,14]. In 1969,
the nonclassical Lie group method of group-invariant solutions was proposed [15]. The
nonclassical Lie group symmetries are also known as conditional symmetries [16–18] and
partial symmetries [19,20].

In order to obtain symmetries using the nonclassical Lie group method, we should
add an auxiliary first-order equation to Equation (1), namely [18]

Φ ≡ T(t, x, w)wt + X(t, x, w)wx − W(t, x, w) = 0. (14)

The auxiliary equation is related to Formula (5).
In the nonclassical Lie group method, both (1) and (14) should be invariant under the

transformation (4). Then, the system for T(t, x, w), X(t, x, w), and W(t, x, w) can be obtained.
Next, we can use the classical method to seek the symmetry group for Formulas (1) and (14).
The prolongation for (5) should satisfy

pr(1)Ṽ(Φ)|S=0,Φ=0 = 0, (15)

pr(n)Ṽ(S)|S=0,Φ=0 = 0. (16)

Formula (16) is trivial and no restriction on T, X, and W is imposed. The same as
for the classical method, we will also apply the Boussinesq equation to demonstrate the
conditional symmetry method.

Example 2. Conditional symmetry group of the Boussinesq Equation (6) [6,18].

For the (2+1)-dimensional Boussinesq Equation (6), two nontrival conditions should
be considered. The first condition is T ̸= 0 and the second condition is {T = 0, X ̸= 0}.

Codition 1 is T ̸= 0 . T can be set as T = 1. The auxiliary first-order Equation (14)
shows that

wt = W − Xwx, (17)

wxt = Wx + Wwwx − (Xxwx + Xww2
x + Xwxx), (18)

wtt = Wt + Wwwt − Xtwx − Xwwxwt − Xwxt. (19)
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Then, eliminating utt in the Boussinesq Equation (6) yields

Wt + Ww(W − Xwx)− Xtwx − Xwwx(W − Xwx)

−X[Wx + Wwwx − (Xxwx + Xww2
x + Xwxx)] + wwxx + w2

x + wxxxx = 0. (20)

Equation (20) is an ODE, with w(x) as the variable. Applying the classical Lie group
method to Equation (20), and eliminating wxxxx with the help of (20), one then obtains a
system of determining equations. Solving the seven determining equations, the following
symmetry operator can be obtained:

Ṽ = [x f (t) + g(t)]∂x + ∂t + W∂w,

W = −
[
2 f (t)w + 2( f (t)ġ(t) + g(t) ḟ (t) + 4g(t) f (t)2)x

+2 f (t)x2( ḟ (t) + 2 f (t)2) + 2g(t)(ġ(t) + 2 f (t)g(t))
]
, (21)

where the constraint conditions are

g̈(t) + 2 f (t)ġ(t)− 4 f (t)2g(t) = 0, f̈ (t) + 2 f (t) ḟ (t)− 4 f (t)3 = 0, (22)

with dots denoting time derivatives.
We introduce J(t) and K(t), governed by

J̇ − Kg = 0, K̇ + f K = 0, K̈ + AK5 = 0, J̈ + AK4(J − X0) , (23)

where the constants X0 and A are free. Then, the nonclassical similarity solution related to
(21) turns into

w = W(z)K2 + (AK4 − K−2K̇2)x2 − 2[AK3(J − X0)− K−2K̇ J̇]x

+K2[A(J − X0)
2 + B]− K−2 J̇2, (24)

with the arbitrary constant B, while the function W = W(z) = W(Kx − J) satisfies the
reduction ODE

Wzzzz + [W + B + A(z + X0)
2]Wzz + W2

z + 3A(z + X0)Wz = 0 . (25)

This equation amounts to the Painlevé IV Formula [6,18].
Codition 2 is {T = 0, X ̸= 0}. One can suppose that X = 1, and Formula (14) is

simplified as

wx = W(t, x, w). (26)

Substituting Formula (26) into the Boussinesq Equation (6) yields

wtt + w(Wx + WWw) + W2 + Wxxx + WwWxx + 3WWxWww + 3WxWxw

+WxW2
w + W3Wwww + 3W2Wxww + 4W2WwWww + 3WWxxw + 5WWwWxw + WW3

w = 0, (27)

This equation is equivalent to an ODE with w(t) being the variable.
Applying the classical Lie group method to Equation (27), one obtains three determin-

ing equations. Solving the three determining equations, one obtains two solutions of W
and their corresponding similarity solutions of w in the forms of





w(t, x) = −12
x2 + w1(t)x2 ,

W =
2w

x + x0
+

48
(x + x0)3 ,

ẅ1(t) + 6w1(t)
2 = 0 ,

(28)
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and




w(t, x) = w2(t) + xφ1(t) + x2 φ2(t),

W = 2xφ2(t) + φ1(t),

φ̈1(t) + 6φ1(t)φ2(t) = 0, ẅ2(t) + 2w2(t)φ2(t) + φ1(t)
2 = 0, φ̈2(t) + 6φ2(t)

2 = 0,

(29)

where the functions {w1(t), w2(t), φ1(t), φ2(t)} are determined by the reduction equations.
Generally speaking, the results obtained from the conditional symmetry method are

more abundant than the results from the classical method. However, for some PDEs, such
as the KdV equation, the symmetries obtained by the conditional symmetry method are
same as those obtained by the classical Lie group method [6].

2.3. CK Direct Method

A common characteristic of the above two methods for symmetries for PDEs lies
in the application of group theory. In Ref. [21], Clarkson and Kruskal (CK) developed
the direct method of deriving similarity reductions for PDEs. The CK direct method can
obtain symmetry reduction without using symmetry groups. Ref. [18] provided the group
theoretical explanation for this method.

For a PDE in the form of

S(y1, y2, · · · , yp, w(y1, y2, · · · , yp)) = 0, (30)

its similarity reduction is generally written as [22]

w(y1, y2, · · · , yp) = W(y1, y2, · · · , yp, V(Y1, Y2, · · · , Yq)),

(Yi = Yi(y1, y2, · · · , yp), i = 1, 2, · · · , q < p). (31)

The basic idea for the CK direct method is to replace (31) with a simpler form [21]:

w(y1, y2, · · · , yp) = ϕ(y1, y2, · · · , yp) + ψ(y1, y2, · · · , yp)V(Y1, Y2, · · · , Yq). (32)

The combination of (30) and (31) will cause the result to be a PDE with a lower
dimension or an ODE, and then one can solve W [23]. For some PDEs, it is enough to
replace (31) with (32).

Example 3. Application of the CK direct method to the Boussinesq equation [6,21,24].

The Boussinesq equation is in the form of (6). Its general similarity reduction is

w(t, x) = W(t, x, V(Y(t, x)) . (33)

Plugging this formula into the Boussinesq Equation (6), we then demand the up-
dated equation to be an ODE with V(Y) as the dependent variable. For the Boussinesq
Equation (6), ref. [21] proved that (33) can be replaced by the simpler form

w(t, x) = ϕ(t, x) + ψ(t, x)V(Y(t, x)). (34)

Substituting Formula (34) into the Boussinesq equation and classifying coefficients of
of V and its derivatives, one obtains an equation concluding ϕ, ψ, V, and Y. The obtained
equation is required to be an ODE for V(Y) and the coefficients are supposed to related
to Y only. Solving the proportional relationship between these coefficients, one can obtain
the symmetry reductions. For the Boussinesq Equation (6), whether Yx is equal to 0 or not
should be considered. Ref. [21] discussed the case of Yx ̸= 0, and ref. [24] proposed the
discussions on Yx = 0.
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Condition 1 Yx ̸= 0. Substituting (34) into Formula (6) yields a system on V(Y) in the
form of

ψY4
x V

′′′′
+ ψ2Y2

x VV
′′
+ (ψ2

x + ψψxx)V
2 + (ϕtt + ϕϕxx + ϕ2

x + ϕxxxx) + G(V) = 0, (35)

where G(V) includes the terms of {V
′′′

, V
′′
, VV

′
, (V

′
)2, V

′
, V} with the superscript

′
indi-

cating a Y derivative.
The coefficients are supposed to be related to Y only, and the normalizing coefficient

can be arbitrarily selected. In ref. [21], the coefficient of V
′′′′

has been selected, and the pro-
portional coefficient is expressed as Γ(Y). Then, the following eight formulas are obtained:





ψY4
x Γ1(z) = ψ2Y2

x ,

ψY4
x Γ2(z) = ψ2

x + ψψxx,

ψY4
x Γ3(z) = ϕtt + ϕϕxx + ϕ2

x + ϕxxxx,

...

(36)

Solving (36), one can obtain the similarity solutions for the Boussinesq Formula (6):

w = K2[W + AY2 + 2AX0Y + B]− 1
K2

(
x

dK

dt
− dJ

dt

)2

, Y(t, x) = −J + K x, (37)

with the functions K(t) and J(t) satisfying the conditions

K̈ + AK5 = 0, J̈ + AK4(J − X0) = 0. (38)

It is not difficult to verify that (37) is the same as the result of the nonclassical symmetry
reduction solutions (24), when W(Y) and Y are rewritten as W(z) and z, respectively. Thus,
W = W(z) in (37) satisfies the reduction Equation (25).

Condition 2. Yx = 0. When Yx = 0, Formula (34) degenerates to

w(t, x) = ϕ(t, x) + ψ(t, x)V(Y(t)). (39)

Plugging Formula (39) with z = t into the Boussinesq Equation (6) yields

ψY
′′
+ 2ψtY

′
+ (ψtt + ψxxxx + 2ϕxψx + ϕψxx + ϕxxψ)Y

+(ψ2
x + ψψxx)Y

2 + (ϕxxxx + ϕtt + ϕϕxx + ϕ2
x) = 0, (40)

where the superscripts indicate t derivatives.
In ref. [24], ψ relating to Y

′′
was selected to be the comparison coefficient, and the

proportional coefficients are {Γi(t), i = 4, 5, 6, 7}. So,





ψΓ4(t) = 2ψt ,

ψΓ5(t) = ψtt + ψxxxx + 2ϕxψx + ϕψxx + ϕxxψ ,

ψΓ6(t) = ϕxxxx + ϕtt + ϕϕxx + ϕ2
x ,

ψΓ7(t) = ψ2
x + ψψxx .

(41)

There are two canonical types of reduction as follows:

w(t, x) = x2w1(t)−
12
x2 (42)
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and

w(t, x) = w2(t) + xϕ1(t) + x2ϕ2(t), (43)

which are the same as the solution of w in (28) and (29), respectively.

3. Finite Symmetry Transformation Groups

Generally speaking, one should first research symmetry algebras and the correspond-
ing symmetry groups to study symmetries of PDEs. The CK direct method shows that one
can directly obtain symmetry reductions of PDEs without using symmetry groups. Inspired
by the method, two finite symmetry transformation group methods were brought up. One
method is based on Lax pairs of the PDEs, which can only be applied to Lax integrable
models. The other method is independent of a Lax pair of the PDEs, which is known as the
modified CK (MCK) direct method. In this section, we will introduce the progress of the
finite symmetry transformation group methods.

3.1. MCK Direct Method

In ref. [23], the main idea of the MCK method was proposed, and the calculation
process was displayed by using the Kadomtsev–Petviashvili (KP) equation as an exam-
ple. The results include the traditional Lie symmetry groups and some non-Lie symme-
try groups.

The basic idea of the MCK method is that the PDE (30) is required to be invariant
under the transformation {w, y1, y2, · · · , yn} → {V, Y1, Y2, · · · , Yp}, which means that U
satisfies the PDE when

w(y1, y2, · · · , yp) = W(y1, y2, · · · , yp, V(Y1, Y2, · · · , Yp)),

(Yi = Yi(y1, y2, · · · , yp), i = 1, 2, · · · , p) (44)

is substituted into Equation (30).
The same as the CK direct method, the group transformation (44) is assumed that it

can be replaced by a simpler form, as follows:

w(y1, y2, · · · , yp) = ϕ(y1, y2, · · · , yp) + ψ(y1, y2, · · · , yp)V(Y1, Y2, · · · , Yp) (45)

for some PDEs.
The difference between the CK and MCK methods lie in the fact that the number of

variables Yi is different. The number of variables Yi in (31) and (32) is q, which is less than
p. However, the number of the variables Xi in (44) and (45) is p. So, the symmetry group
can be obtained while the variables of the reduced equation remain the same as those of
the original PDE using the MCK method. We will use the KP system as an example to
demonstrate this method.

Example 4. Transformation group for the KP equation by the MCK method [23].

The KP equation reads

wxt + 3wyy + wxxxx − 6(wwx)x = 0. (46)

Firstly, we should prove that the assumption of the group transformation

w = ϕ(t, y, x) + ψ(t, y, x)V(T, Y, X) (47)

is enough to replace
w = W(t, y, x, V(T, Y, X)) (48)

for Equation (46), where V(T, Y, X) also satisfies Equation (46).
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Plugging Formula (48) into Equation (46) and classifying coefficients for {VY4 , VX10 , VTT},
one can obtain

Yx = 0, Ty = 0, Tx = 0, (49)

where VXn ≡ ∂nV
∂Xn . Then,

Y ≡ Y(t, y), (50)

T ≡ T(t). (51)

The combinations of (46), (48), (50) and (51) leads to

WVV X4
xV2

XX + H1(t, y, x, V, VX)VXX + H2(t, y, x, V, VX , VX3 , VX4 , VY, VYY, VT , VXY) = 0, (52)

with {H1, H2} being two specific functions. The coefficient of the the first term V2
XX is

WVV X4
x. When Xx = 0, only a trivial transformation can be obtained, then one concludes

that Xx ̸= 0. Furthermore, the formula WVV = 0 is naturally obtained, which shows the
effectiveness of Formual (47) in replacing Formula (48).

The combination of (46), (47), (50) and (51) leads to

X = C1T1/3
t x − 1

18
C1T−2/3

t Ttty
2 − γY0ty

6C1T1/3
t

+ X0, (53)

Y = γC2
1 T2/3

t y + Y0 , (54)

ϕ =
1
18

(ln Tt)tx − (3TtTttt − 4τ2
tt)y

2

324τ2
t

− C1γyT1/3
t

36

(
Y0t

Tt

)

t

+
C2

1(Y
2
0t + 12X0tTt)

72T4/3
t

, (55)

ψ = C2
1 T2/3

t , (56)

where γ and C1 are governed by

γ = ±1, C3
1 = 1, (57)

and {X0 = X0(t), Y0 = Y0(t), T = T(t)} are arbitrary functions. Then, the following
theorem can be concluded [23].

Theorem 1. Provided that V(t, y, x) is a solution for Equation (46), then

w =
1
18

(ln Tt)tx − (3TtTttt − 4τ2
tt)y

2

324τ2
t

− C1γyT1/3
t

36

(
Y0t

Tt

)

t

+
C2

1(Y
2
0t + 12X0tTt)

72T4/3
t

+ C2
1 T2/3

t V(T, Y, X), (58)

is also a solution for Equation (46), where the parameters satisfy (51), (53), (54), and (57).

To obtain the equivalent form by traditional methods from Theorem 1, one sets

γ = C1 = 1, X0 = ϵg, Y0 = ϵh, T = ϵ f + t, (59)

where the parameter ϵ is infinitesimal, and { f , g, h} are functions of t. Formula (58)
turns into
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w = V + ϵσ(V) + O(ϵ2),

σ(V) =

(
h − y

6
gt +

x

3
ft −

y2

18
ftt

)
Vx +

(
g +

2
3

fty

)
Vy +

2
3

ftV

+ f Vt +
y

36
gtt(t)−

x

18
ftt −

1
6

ht +
y2

108
fttt. (60)

The corresponding symmetry vector reads

Ṽ =

(
h − y

6
gt +

x

3
ft −

y2

18
ftt

)
∂

∂x
+

(
g +

2
3

fty

)
∂

∂y
+ f

∂

∂t

+

(
x

18
ftt −

y2

108
fttt −

2
3

ftV − y

36
gtt +

1
6

ht

)
∂

∂V
, (61)

which is equivalent to the traditional result [25].

3.2. Lax Pair-Assisted Finite Symmetry Transformation Group

Lax pair is one very valuable concept for integrable PDEs, and Lax integrable is one of
the most important integrals for integrable models. When we research infinite symmetries,
Lax pairs have been proven to be very helpful. In Refs. [26,27], Lax pairs are also proven to
be useful in deriving finite symmetries. We will still take the KP equation as an example to
display the method.

Example 5. Lax pair-assisted finite symmetry transformation groups of the KP equation [26,27].

The KP equation reads

(
wt +

1
4

wxxx +
3
2

wwx

)

x

+
3
4

σwyy = 0, (σ = ±1), (62)

which can map into (46) by some simple scale transformations. Its Lax pair is in the form of

Φxx + w′Φ +
√

σΦy = 0, (63)

Φt + Φxxx +
3
2

w′Φx −
3
4

(
w′

x −
√

σ
∫

w′
ydx

)
Φ = 0, (64)

with w′ being a solution of Equation (62).
Set

Φ = GΨ(T, Y, X), (65)

where Ψ also satisfies Formulas (63) and (64), and {T, Y, X, G} are functions related to
{t, y, x}. Then,

ΨXX + w(T, Y, X)Ψ +
√

σΨY = 0, (66)

ΨT + ΨXXX +
3
2

w(T, Y, X)ΨX − 3
4

[
wX(T, Y, X)−

√
σ
∫

wY(T, Y, X)dX

]
Ψ = 0. (67)

Substituting (65), (66) and (67) into (63) and (64), and classifying the coefficients for Ψ

and its derivatives, we obtain

X = T
1
3

t x − 2
9

y2Ttt

σT
2
3

t

− 2
3

θty

σT
1
3

t

+ γ, Y = T
2
3

t y + θ, T = T(t), (68)

w′ = −2
9

xTtt

Tt
+ T

2
3

t w − 4τtt
2y2

81σT2
t

− 4τttθty

27σT5/3
t

− θt
2

9σT4/3
−

√
σG0y

G0
. (69)
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where θ, γ, and T are arbitrary functions of t. Then, the following theorem can be con-
cluded [26].

Theorem 2. Provided that w = w(t, y, x) is a solution for Equation (62), then

w′ = T
2
3

t w(T, Y, X)− 16
81

(Ttty)2

σT2
t

− 4
9

Tttyθt

σT
5
3

t

− 2
9

θ2
t

σT
4
3

t

−2
9

xTtt

Tt
+

4
27

y2Tttt

σTt
+

4
9

yθtt

σT
2
3

t

− 2
3

γt

T
1
3

t

(70)

is also a solution of Equation (62), where T, Y, and X are governed by (68).

To re-derive the traditional symmetries from Formula (70), the variables in For-
mula (68) can be set as follows:

T = t + ϵ f , θ = ϵg, γ = ϵh(t), (71)

where the parameter ϵ is infinitesimal, and { f , g, h} are functions of t. Furthermore,
Formual (70) turns into

w′ = w + ϵσ(w) + O(ϵ2), (72)

σ(w) = f wt +

(
h − 2y

3
σgt +

x

3
ft −

2y2

9
σ ftt

)
wx +

(
2y

3
ft + g

)
wy

+
2w

3
ft −

2x

9
ftt +

4y2

27
σ fttt +

4y

9
gtt +

2
3

ht. (73)

It is obvious that (73) is equivalent to the result by the standard Lie approach [25].
The method of deriving finite symmetry transformation groups from its Lax pair has

been extended to study other Lax integrable models, such as the sine-Gordon equation, the
Csmassa–Holm equation, and some other PDEs [26].

4. Nonlocal Symmetries

Initially, the symmetry analysis of PDEs showed local symmetries. A infinitesimal of
local symmetry is related to local variables only. Nonlocal symmetries were first studied
by Krasil’shchik and Vinogradov [28–30]. Ref. [28] extensively discussed the definition of
nonlocal symmetries and pointed out that a generating function for nonlocal symmetry is a
differential-integro-type operator [28]. Since then, many nonlocal symmetry methods have
been proposed. In this section, we select four typical nonlocal symmetry methods from the
literature to introduce the progress of the nonlocal symmetry theory.

4.1. Nonlocal Symmetries Derived from Conserved Form

For a given PDE S, Bluman et al. presented many methods to systematically find
nonlocal symmetries [31–34]. They introduce auxiliary potential variables to research non-
local symmetries, where the auxiliary variables are related to conservation laws [35]. They
demonstrate that 2q − 1 nonlocal equations can be derived from an equation possessing q
local conservation laws.

There are many methods to transform PDEs that are not in conservative forms into
conservative forms. A q-order conservative form of PDE S reads [31]

p

∑
i=1

∂

∂yi
Fi(y1, y2, · · · , yp, w, w(l)(y), · · · , w(q−1)(y)) = 0, (74)
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where w(l) denotes partial derivatives of order l of w, with one dependent variable w, and
p ≥ 2 independent variables y = (y1, y2, · · · , yp). For Equation (74), there is an determined
system T

G1 =
∂ψ1

∂y2
, (75)

Gj = (−1)(j−1)

(
∂ψj−1

∂yj−1
+

∂ψj

∂yj+1

)
, (76)

Gp = (−1)p+1 ∂ψp−1

∂yp−1
, (77)

where 1 < j < p.
When p = 4, let G1, G2, G3, G4, y1, y2, y3, and y4 equal to A, B, C, E, x, y, z, and t, respec-

tively. Then, Equation (74) turns into

∂A

∂x
+

∂B

∂y
+

∂C

∂z
+

∂E

∂t
= 0. (78)

Its determined system T is

∂ψ1

∂y
= A(x, y, z, t, w, w(1), · · · , w(q−1)), (79)

−
(

∂ψ2

∂z
+

∂ψ1

∂x

)
= B(x, y, z, t, w, w(1), · · · , w(q−1)), (80)

∂ψ3

∂t
+

∂ψ2

∂y
= C(x, y, z, t, w, w(1), · · · , w(q−1)), (81)

−∂ψ3

∂z
= E(x, y, z, t, w, w(1), · · · , w(q−1)). (82)

Assume that there exists the following symmetry transformations for the system T:

y∗ = y + λ ξT(y, w, ψ) + O(λ2), (83)

w∗ = w + λ ηT(y, w, ψ) + O(λ2), (84)

ψ∗ = ψ + λ ζT(y, w, ψ) + O(λ2). (85)

with λ as the infinitesimal parameter for symmetries.
When ξT and ηT are actually related to ψ, Formulas (83) and (84) are new symmetry

transformations. Due to the existence of ψ, Formulas (83)–(85) are neither Lie–Bäcklund
transformations nor Lie point symmetry transformations. In Formulas (75)–(77), ψ is
defined as the derivative form, which leads symmetry transformations (83)–(85) to be
nonlocal symmetries. Next, we will demonstrate the potential nonlocal symmetry method
with the help of the nonlinear diffusion equation.

Example 6. Potential nonlocal symmetries for the diffusion equation [31].

The diffusion system S is in the form of

∂

∂x

[
K(w)

∂w

∂x

]
− ∂w

∂t
= 0. (86)

Equation (86) is already in a conserved form:

∂A

∂x
− ∂B

∂t
= 0, (87)
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where

A = K(w)
∂w

∂x
, (88)

B = w . (89)

The corresponding system T is

∂ψ

∂t
= K(w)

∂w

∂x
, (90)

∂ψ

∂x
= w . (91)

Solving the symmetries of System (86) and System (90) and (91) by the classical Lie
algorithm, one finds that their symmetry groups depend on the form of K(w). The group
Gs of (86) was listed in Refs. [14,22]. The group GT of (90) and (91) was firstly presented in
ref. [31]. The most special condition is

K(w) =
e

(
c3
∫ dw

c2+w2+c1w

)

c2 + w2 + c1w
, (92)

where the parameters {c1, c2, c3} do not satisfy the following relationships:

(1) c3 = ±2, c1
2 − 4c2 > 0, (93)

(2) c3 = 0, c1
2 − 4c2 = 0. (94)

In this case, the symmetry group GT of System (90) and (91) is

L0 =
∂

∂ψ
, L1 =

∂

∂x
, L2 =

∂

∂t
, L3 = x

∂

∂x
+ 2t

∂

∂t
+ ψ

∂

∂ψ
,

L4 = ψ
∂

∂x
+ (c3 − c1)t

∂

∂t
− (w2 + c1u + c2)

∂

∂w
− (c2x + c1ϕ)

∂

∂ ψ
. (95)

Comparing Gs and GT, expressed by (95), we can see that new symmetries for Equation (86)
can be derived from GT. The new symmetries are related to nonlocal symmetries.

Due to the fact that a given PDE can have different conserved forms, a PDE could
have multiple nonlocal symmetries [31].

4.2. Nonlocal Symmetries Derived from the Conformal Invariant Form and Residual Symmetry

For a PDE with one independent variable ψ, its Möbious transformation is

ψ −→ a1 + a2ψ

a3 + a4ψ
, (a1a4 ̸= a2a3), (96)

which is also called conformal transformation. A PDE in its Schwartzian form (conformal
invariant form) can remain unchanged under Transformation (96). With the help of the
Painlevé expansion or other transformations, most integrable PDEs can be transformed
into their Schwartzian forms.

Ref. [36] pointed out that one can obtain infinitely many nonlocal symmetries. The well-
known KP and the KdV equation were selected as examples to demonstrate the effectiveness
of nonlocal symmetries derived from their Schwartzian forms [36,37]. In this review paper,
the KdV equation is selected to demonstrate this nonlocal symmetry method.

Example 7. Nonlocal symmetry of the KdV equation deriving from its Schwartzian form [36].
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The KdV equation is written as

wt − wxxx − 6wwx = 0. (97)

Under the transformation

w = γ − 1
2

(
ψxx

ψx

)

x

− 1
4

(
ψxx

ψx

)2

, (98)

Equation (97) transforms into the Schwartzian KdV equation

ψt

ψx
= 6γ + {ψ; x} , (99)

where

{ψ; x} =

(
ψxxx

ψx

)
− 3

2

(
ψxx

ψx

)2

(100)

denotes a Schwartz derivative. Formula (99) can remain unchanged when it is imposed by
Transformation (96). A type of parameter combination is {a1 = 0, a2 = 1, a3 = 1, a4 = ϵ},
where ϵ is a infinitesimal parameter. In this condition, Transformation (96) turns into a
symmetry form:

ψ −→ ψ − ϵψ2. (101)

So −ψ2 is one symmetry σψ for Schwartzian Formula (99).
Formula (98) leads to the relationship of symmetry σw and symmetry σψ is gov-

erned by

σw = −1
2

∂x

(
∂2

x

ψx
− ψxx

ψ2
x

∂x

)
σψ − 1

2

(
ψxx

ψx

)(
∂2

x

ψx
− ψxx

ψ2
x

∂x

)
σψ . (102)

The substitution of σψ = −ψ2 into Formula (102) leads to a nonlocal symmetry σw in
the form of

σw = 2ψxx , (103)

where ψ satisfies the Schwartzian KdV Equation (99).
It should be noted that the method of deriving a nonlocal symmetry from the confor-

mal invariant form was developed into a residual symmetry in 2013 [38].The residue in a
truncated Painlevé expansion for a Painlevé integrable model is found to be a nonlocal sym-
metry, so the nonlocal symmetry is called the residual symmetry. For ease of comparison,
we still take the KdV Equation (97) as an example to demonstrate residual symmetry [38].

Example 8. Residual symmetry of the KdV equation [38].

Equation (97) could pass the Painlevé integrable test with the help of the Painlevé
expansion:

w =
w0

ψ2 +
w1

ψ
+ w2 + w3ψ + w4ψ2 + · · · , (104)

where

w0 = −2ψ2
x , w1 = 2ψxx , w2 =

1
6

ψ−2
x (3ψ2

xx + ψxψt − 4ψxψxxx) . (105)
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In particular, w1 = 2ψxx is the residue in the Laurent-like series (104). According to
the application of the standard truncated Painlevé expansion, a type of exact solution for
Equation (97) can be written as

w =
w0

ψ2 +
w1

ψ
+ w2 , (106)

where the functions w0, w1, and w2 are expressed by (105).
Substituting (105) and (106) into the KdV Equation (97) and collecting the coefficient of

ψ−2, we can obtain the Schwartzian KdV Equation (99). Formula (103) indicates that 2ψxx

is one symmetry for Equation (97), and Formula (105) indicates that 2ψxx is the residue in
the truncated Painlevé expansion for Equation (97). Thus, this type of symmetry is called
the residual symmetry [38].

The localization of a nonlocal symmetry is presented in detail in ref. [38]. Regarding
why residual symmetry is nonlocal, ref. [39] provides a proof with the help of the mKdV
equation. As a result of the simplicity of the truncated Painlevé expansion, nonlocal symme-
tries on the (2+1)-dimensional Chaffee–Infante equation [40], a new (3+1)-dimensional gen-
eralized KP equation [41], the Whitham–Broer–Kaup equation [42], the (3+1)-dimensional
shallow water wave equation [43], the Davey–Stewartson III equation [44], and some other
equations are researched using the residual symmetry method.

4.3. Nonlocal Symmetries Derived from Darboux Transformations

Using Darboux transformations, we can usually derive new solutions from an old solu-
tion. To find nonlocal symmetries, ref. [45] provides a method to find nonlocal symmetries
by Darboux transformations. The invariance of PDEs caused by Darboux transformations
can be used to derive nonlocal symmetries of PDEs, such as the KP equation, the KdV
equation, and some other equations [37,45]. We will apply the KdV equation as an instance
to demonstrate this method.

Example 9. Nonlocal symmetry of the KdV equation deriving from Darboux transformations [45].

The KdV equation is written as [45]

wt + wxxx − 6wwx = 0. (107)

Transformations t → −t and w → −w can transform Equation (107) into Equation (97).
The Lax pair of Equation (107) reads

ψt = −wx ψ + (2w + 4γ)ψx , (108)

ψxx = (w − γ)ψ . (109)

where the spectral function ψ is an arbitrary function of {t, x, γ}, and γ is an arbitrary constant.
Setting γ = γ0, then ψ(t, x, γ) = ψ(t, x, γ0), where γ0 is an arbitrary constant.

ψ(t, x, γ0) can be set as ψ(t, x, γ0) = f (t, x). For the KdV Equation (107), there exists
a Darboux transformation [46,47]

w̃(t, x) = w − 2(ln f )xx, (110)

Φ(t, x, γ) = ψx(t, x, γ)− fx

f
ψ(t, x, γ) (111)

with w̃(t, x) as the solution for Equation (107), and Φ(t, x, γ) as the spectral function
corresponding to w̃(t, x).

We should notice that both of γ and γ0 are arbitrary constants; thus, (110) indicates that

w̃(t, x, γ) = w(t, x)− 2 ln ψxx(t, x, γ) (112)
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is also a solution for Equation (107). When γ = 0, (112) degenerates to

w̃(t, x, 0) = w(t, x)− 2 ln ψxx(t, x, 0). (113)

We may set

W(t, x) = w̃(t, x, 0) = w(t, x)− 2 ln ψxx(t, x, 0). (114)

Then, W(t, x) is also a solution for Equation (107). We can then expand Formula (112)
to

w̃(t, x, γ) = w(t, x)− 2 ln ψxx(t, x, 0) + γ

[(
−2

∂2

∂x2 ln ψ

)

γ

∣∣∣∣
γ=0

]
+ O(γ2)

= W(t, x) + γ

[(
−2

∂2

∂x2 ln ψ

)

γ

∣∣∣∣
γ=0

]
+ O(γ2). (115)

So,
(
−2 ∂2

∂x2 ln ψ
)

γ

∣∣∣
γ=0

is a symmetry for Equation (107) corresponding to W.

We set

φ(t, x) = ψ(t, x, 0), (116)

φ̃(t, x) = ψγ(t, x, 0). (117)

Then, Formula (114) turns into

w = W(t, x) + 2 ln ψxx(t, x, 0) = W(t, x) + 2 ln φxx . (118)

When γ tends to zero, ψ(t, x, γ) can be expanded into

ψ(t, x, γ) = ψ(t, x, 0) + γψγ(t, x, 0) + O(γ2)

= φ(t, x) + γφ̃(t, x) + O(γ2)

= φ(t, x) + γφ̃(t, x). (119)

The symmetry
(
−2 ∂2

∂x2 ln ψ
)

γ

∣∣∣
γ=0

turns into

σw = −2[(ln ψ)xx]γ

∣∣∣
γ=0

= −2
{

∂2

∂x2 ln[φ(t, x) + γφ̃(t, x)]

}

γ

∣∣∣∣∣
γ=0

= −2
(

φ̃

φ

)

xx

. (120)

Let us discuss the constraints on φ and φ̃. When γ = 0, substituting (116)–(118) into
the Lax pair (108) and (109) and replacing W by w, we obtain

φt + φ(2(ln φ)xxx + wx)− φx(4(ln φ)xx + 2w) = 0 , (121)

φxx − φ(2(ln φ)xx + w) = 0 . (122)

When λ tends to zero, substituting (118), (119), (121) and (122) into the the Lax pair
(108) and (109) and replacing W by w, one can obtain

φ̃t + φ̃(2(ln φ)xxx + wx)− φ̃x(4(ln φ)xx + 2w) = 4φx , (123)

φ̃xx − φ̃(2(ln φ̃)xx + w) = −φ . (124)

In summary, the following theorem holds [45].

Theorem 3. When φ(t, x) and φ̃(t, x) are constrained by (121)–(124),
(

φ̃
φ

)
xx

is a symmetry for

Equation (107).
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Ref. [45] provides further explanation on the relationship between φ(t, x) and φ̃(t, x),
and proves the nonlocality of the symmetry derived from Darboux transformations.

4.4. Nonlocal Symmetries Derived from Lax Pair

Taking the mKdV equation as an example, ref. [48] proposes a method of finding a
nonlocal symmetry by the Lax pair. This subsection will present some important details
from ref. [48].

Example 10. Nonlocal symmetry of the mKdV equation from a Lax pair [48].

The mKdV equation reads

wt = wxxx − 6w2wx . (125)

The Lax pair of Equation (125) is known as [49]

ϕxx = −2wϕx, ϕt = −2(wx + w2)ϕx , (126)

where ϕ = ϕ(x, t) is the spectral parameter.
The linearized equation for Equation (125) is

σt − σxxx + 6w2σx + 12wσwx = 0, (127)

where σ is a symmetry of Equation (125) and it is supposed to be written as

σ = ξ(t, x, w, ϕ, ϕx)wx + τ(t, x, w, ϕ, ϕx)wt − W(t, x, w, ϕ, ϕx). (128)

Due to the existence of auxiliary functions ϕ and ϕx, the symmetry σ differs from
traditional Lie symmetries and Lie–Bäcklund symmetries.

Plugging Formula (128) into Formula (127), removing wt, ϕxx, and ϕt with the help of
Formulas (125) and (126), one obtains the determining equations of the functions ξ, τ, and
W. The calculation of ξ, τ, and W lead to the solution of σ in the following form:

σ =
(

c6 − 6 c5 t +
c1x

3

)
wx + (c1t + c2)wt − 3c3 ϕx +

c1w

3
− c5ϕ + c4

ϕx
. (129)

where σ contains two parts:

σ1 = −6 c5 t wx − 3c3 ϕx −
c5ϕ + c4

ϕx
, (130)

σ2 =
(

c6 +
c1x

3

)
wx + (c1t + c2)wt +

c1w

3
. (131)

σ1 is related to a nonlocal symmetry and σ2 corresponds to the traditional Lie group sym-
metry.

In order to obtain a symmetry reduction corresponding to the nonlocal symmetry,
the authors of ref. [48] assumed that the symmetry is in the form of

σw = ξ(t, x, w, ϕ, ϕ1)wx + τ(t, x, w, ϕ, ϕ1)wt − W(t, x, w, ϕ, ϕ1), (132)

σϕ = ξ(t, x, w, ϕ, ϕ1)ϕx + τ(t, x, w, ϕ, ϕ1)ϕt − Φ(t, x, w, ϕ, ϕ1), (133)

σϕ1 = ξ(t, x, w, ϕ, ϕ1)ϕ1x + τ(t, x, w, ϕ, ϕ1)ϕ1t − Φ1(t, x, w, ϕ, ϕ1), (134)

where

ϕ1 = ϕx. (135)
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Applying symmetry conponents (132)–(134) to Equations (125), (126), and (135), one
can obtain the solution of ξ, τ, W, Φ, and Φ1, which are govened by

τ = c2 + c1t, ξ = c4 +
c1x

3
, W = c3ϕ1 −

c1u

3
,

Φ = −c3Φ2 + c5Φ + c6, Φ1 = −2c3 Φ Φ1 + c5Φ1 −
c1Φ1

3
. (136)

From Formula (136), the following six operators can be obtained:

V1 =
x

3
∂

∂x
+ t

∂

∂t
− w

3
∂

∂w
− Φ1

3
∂

∂Φ1
, V2 =

∂

∂t
, V3 = Φ1

∂

∂w
− Φ2 ∂

∂Φ
− 2ΦΦ1

∂

∂Φ1
,

V4 =
∂

∂x
, V5 = Φ

∂

∂Φ
+ Φ1

∂

∂Φ1
, V6 =

∂

∂Φ
. (137)

Applying commutator operators [Vk, Vj] = VkVj − VjVk, one can list the corresponding
Lie bracket presented in Table 1, where the (k, j)-th entry denotes [Vk, Vj].

Table 1. Lie bracket [48].

Lie V1 V2 V3 V4 V5 V6

V1 0 −V2 0 − 1
3 V4 0 0

V2 V2 0 0 0 0 0
V3 0 0 0 0 −V3 2V5
V4

1
3 V4 0 0 0 0 0

V5 0 0 V3 0 0 −V6
V6 0 0 −2V5 0 V6 0

Applying Table 1 and the Lie series in the form of

Ad(exp(εVk))Vj = Vj − ε[Vk, Vj] +
1
2

ε2[Vk, [Vk, Vj]]− , · · · (138)

one can obtain the adjoint representation present in Table 2, where the (k, j)-th entry denotes
Ad(exp(εVk))Vj.

Table 2. Adjoint representation [48].

Lie V1 V2 V3 V4 V5 V6

V1 V1 eεV2 V3 e
1
3 εV4 V5 V6

V2 V1 − εV2 V2 V3 V4 V5 V6
V3 V1 V2 V3 V4 V5 + εV3 V6 − 2εV5 − ε2V3
V4 V1 − 1

3 εV4 V2 V3 V4 V5 V6
V5 V1 V2 e−εV3 V4 V5 εV6
V6 V1 V2 V3 + 2εV5 − ε2V6 V4 V5 − εV6 V6

4.5. Localization of Nonlocal Symmetries

In this subsection, we will take the MKdV Equation (125) as the instance to demonstrate
the localization method of nonlocal symmetries. The content of this subsection is firstly
reported in this review.

Example 11. Localization method of nonlocal symmetries for the MKdV Equation (125).

From Equation (126), ϕ can be solved with the final result:

ϕ = a1

∫
exp(2v)dx + a0, vx = w, vt = wxx − 2w3 = vxxx − 2v3

x. (139)
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Using the relation (139), the symmetry (129) can be rewritten as

σ = a1(3twt + xwx + w) + a2wx + a3wt + a4v1x + a5v2x + a6(v1v2x − 6twx), (140)

with arbitrary constants a1, a2, . . . , a6 while v1 and v2 are related to v by {v1; x} ≡
v1xxx
v1x

− 3
2

v2
1xx

v2
1x

,

v2x = exp(−2v), v2t = −2 exp(−2v)
(
v2xx + v2

2x

)
= {v2; x}v2x, (141)

v1x = exp(2v), v1t = 2 exp(2v)
(
v1xx − v2

1x

)
= {v1; x}v1x. (142)

In the symmetry expression (140), the a1 part is related to the scaling invariance. It
is interesting that to find exact solutions via nonlocal symmetries, the a2 and a3 parts are
related to the space and time translation invariance, the a4 and a5 parts are the Darboux
transformation-related nonlocal symmetries, while the a6 part corresponds to the nonlocal
Galileo transformation invariance.

In order to find some invariant solutions related to the nonlocal symmetries, one has
to use the localization method [38]. In this subsection, we take a5 = a6 = 0 in (140) for
simplicity. In this special case, the nonlocal symmetry of w can be rewritten as

σ = a1(3twt + xwx + w) + a2wx + a3wt + a4 exp(2v), (143)

with
vx = w, vt = wxx − 2w3 = vxxx − 2v3

x . (144)

The nonlocal symmetry (143) cannot be directly used to find invariant solutions.
The first step in the nonlocalization procedure is to find a related symmetry transformation
of v, v → v + ϵσ1, from (144). The result reads

σ1 = a1(3tvt + xvx) + a2vx + a3vt + a4v1 , (145)

with

v1x = exp(2v), v1t = 2 exp(2v)
(
v1xx − v2

1x

)
. (146)

The next step is to find the related symmetry transformation of v1, v1 → v1 + ϵσ2,
from (146), with the result

σ2 = a1(3tv1t + xv1x − v1) + a2v1x + a3v1t + a4v2
1 , (147)

even though the symmetry (140) is nonlocal for the modified KdV equation (125). However,
the symmetries (140), (145), and (147), i.e.,

Σ =




σ
σ1
σ2


 =




a1(3tut + xux + u) + a2ux + a3ut + a4 exp(2v)
a1(3tvt + xvx) + a2vx + a3vt + a4v1
a1(3tv1t + xv1x − v1) + a2v1x + a3v1t + a4v2

1


, (148)

are local symmetries for the prolonged system of {(125), (144), and (146) }. Now, it is
standard to find invariant solutions of {(125), (144), and (146) } by solving Σ = 0 from (148)
with two important special cases:

Case 1. a1 = 1, a2 = a3 = 0, a4 = c. In this case, the symmetry invariant solution reads
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



v1 =
1

c + t−1/3V(xt−1/3)
,

v =
1
2

ln(v1x),

w =
1
2
[ln(v1x)]x,

(149)

while V(xt−1/3) ≡ V(ξ) is determined by the reduction equation

{V, ξ}+ 1
3
(ξV)ξ = 0. (150)

Case 2. a1 = 0, a2 = b, a3 = 1, a4 = c. In this situation, the symmetry invariant solution
possesses the form





v1 =
1

ct + W(η)
, η = x − bt,

v =
1
2

ln[−Wη(ct + W)−2],

w =
Wηη

2Wη
− Wη

W + ct
.

(151)

The invariant function W ≡ W(η) = W(x − bt) is a solution of the ODE

{W, η}+ bWη − c = 0, (152)

which can be solved by elliptic integration:

U ≡ Wη ,
∫ U dz√

Cz3 + 2bz2 − cz
= η − η0, (153)

with two arbitrary constants C and η0.
In addition to the four methods of finding nonlocal symmetries and the above lo-

calization method, many other methods are proposed in the literature. Due to the space
limitations of this paper, we will not review them one by one.

5. Supersymmetric Equation and Supersymmetric Dark Equation

To unify bosons and fermions in physics, the idea of supersymmetry was introduced
into physics [50,51]. In mathematics, on the basis of the standard commuting and bosonic
variables, the anticommuting and fermionic variables were increased to describe super-
symmetries [52]. By means of extending variables, many integrable PDEs were extended
to supersymmetric systems [53]. A supersymmetric KdV equation and the corresponding
Lax pair were proposed in ref. [54]. Unfortunately, the supersymmetric KdV equation
did not satisfy the supersymmetry invariant [55] even though it was a super-integrable
model. The KP hierarchy was extended to supersymmetric fields and the integrablility
was proposed in ref. [56]. Many branches of mathematics have been extended and their
super analogues have been constructed and studied; examples include super Lie algebra
and supermanifold [57,58]. From the supersymmetric equations, the concepts of dark
equations and supersymmetric dark equations have been proposed in the literature. In
this section, we will review the basic properties of supersymmetric equations and dark
equations, and select some typical methods from the literature to introduce the construc-
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tion of supersymmetric equations and supersymmetric dark equations, and introduce the
bosonization method of the supersymmetric integrable system.

5.1. Supersymmetric Equations

Time dependence is implicit everywhere, so only a space supersymmetric invariance
is considered. With the help of a Grassman variable θ, the classical spacetimes (t, x) are
generally extended into super-spacetimes (t, x, θ). The Grassman variable θ is fermionic
and anticommuting, and it satisfies θ2 = 0. Simultaneously, a super dependent variable
Φ(t, x, θ) was introduced to replace the dependent variable w(t, x) of a PDE. The super
dependent variable can be a fermionic variable or a bosonic variable.

Applying the Taylor expansion and θ2 = 0, the super dependent variable Φ(t, x, θ)
can be expanded to a simpler form. When Φ(t, x, θ) is a fermionic variable, it turns into

Φ(t, x, θ) = θw(t, x) + ξ(t, x), (154)

with ξ(t, x) being a anticommuting variable, and w(t, x) being a commuting variable. When
Φ(t, x, θ) is a bosonic variable, it expands into

Φ(t, x, θ) = θλ(t, x) + w(t, x), (155)

where λ(t, x) is an anticommuting variable.
The spatial covariant derivative D is an indispensable concept in supersymmetry

theory, which is governed by D ≡ θ∂x + ∂θ . It satisfies

D2Φ(t, x, θ) = (∂θ + θ∂x)(∂θ + θ∂x)(θw + ξ)

= (∂θ + θ∂x)(w + θξx)

= θwx + ξx

= ∂xΦ(t, x, θ), (156)

where w = w(t, x) and ξ = xi(t, x). So, D2 = ∂x. The spatial covariant derivative rules for
function products are

D(hk) =

{
(Dh) k − h (Dk), if h is a fermionic field,
(Dh) k + h(D k), if h is a bosonic field.

(157)

There have been many methods proposed for constructing supersymmetric systems,
among which the simplest one is the direct construction method. Now, we will use the KdV
equation to demonstrate the construction of supersymmetric equations using the direct
construction method.

Example 12. The construction of a supersymmetric KdV equation via the direct construction
method [59].

The KdV equation is written as

wt + wxxx − 6wwx = 0, (158)

where w is a commuting field. Firstly, we expand the potential function w(t, x) into a
superfield. There are two possible types of extension. One is fermionic extension:

Φ(t, x, θ) = ξ(t, x) + θw(t, x), (159)

and the other is bosonic extension in the form of

W(t, x, θ) = w(t, x) + θξ(t, x), (160)

where ξ and θ are the anticommuting variable and Grassman variable, respectively.
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For the sake of constructing a supersymmetric KdV equation, every term in Equa-
tion (158) is multiplied by the parameter θ and can be rewritten with the help of the symbol
D and a superfield. A superfield is usually represented by characters such as Φ, Ψ, etc.
In this review paper, we choose Ψ. In this way, the fermionic part of every term is equal to
the original term. The corresponding transformations are

θwt −→ Ψt , (161)

θwwx −→ (DΨ)Ψx or (DΨx)Ψ , (162)

θwxxx −→ Ψxxx , (163)

where Ψ(t, x, θ) = ξ(t, x) + θw(t, x).
The second term θ(wwx) corresponds to the fermionic parts of both (DΨ)Ψx and

(DΨx)Ψ, so they are linearly combined together. Then, the supersymmetric extension of
Equation (158) can be written as

Ψt − (6 − a)(DΨ)Ψx − a(DΨx)Ψ + Ψxxx = 0. (164)

This equation is called the sKdV-a equation. Its component forms read

{
wt − 6wwx + aξξxx + wxxx = 0 ,
ξt − (6 − a)ξxw − aξwx + ξxxx = 0 .

(165)

Among the various super symmetric extensions of Equation (158), Formula (164) is
the most general nontrivial case.

When a = 3, Formula (164) degenerates to the sKdV-3 equation

Ψt − 3(DΨ)Ψx − 3(DΨx)Ψ + Ψxxx = 0. (166)

Ref. [59] proved that the sKdV-3 equation is completely integrable. When a = 0,
Formula (164) turns into a trivial case.

In addition to a fermionic superfield, there is also a bosonic superfield governed by

W(t, x, θ) = w(t, x) + θξ(t, x). (167)

Equation (158) is correspondingly extended to

Wt + Wxxx − 6WWx = 0. (168)

Its component form is

wt + wxxx − 6wwx = 0 , (169)

ξt + ξxxx − 6(ξw)x = 0 . (170)

This type of superfield extension is also trivial. The triviality in sKdV-0 and the bosonic
superfield extension lies in that one component equation is just Equation (158).

5.2. Supersymmetric Dark Equation

In modern astrophysics, dark matter is crucial. Gravitational effects of dark matter
in cosmological environments provide evidence for dark matter [60,61]. There is a similar
concept of “dark energy”. The universe is accelerating its expansion, and the reason is
believed to be related to dark energy [62–64]. Dark energy has a repulsive force. In ref. [65],
the concept of “dark equations” was proposed and some dark equations in homogeneous
linear forms were demonstrated. In ref. [66], dark equations were promoted to nonlinear
forms and nonhomogeneous linear forms.
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A PDE S reads

wt = A(t, x, w, wx, wxx, . . . , wxq) ≡ A(w), w = (w1, w2, . . . , wq)
T . (171)

Here, T represents the transpose of the matrix, and q is an integer. Its higher-order
symmetry flow can be written as

wτ = B(t, x, w, wx, wxx, . . . , wxp) ≡ B(w), (172)

where p is an arbitrary integer and satisfies p > q. If Formulas (171) and (172) satisfy the
commutator relationship

wtτ − wτt = [A, B] = A′B − B′A = 0, (173)

with the superscript ′ denoting linearized operators and p being a suitable integer, then the
PDE S is called symmetry integrable [66,67].

Ref. [65] provides the definition of a dark system in a homogeneous linear form.
Homogeneous linear extensions of Formulas (171) and (172) can be written as

Wt =

(
w
v

)

t

= Ã(W) =

(
A(w)

C(w)v

)
, (174)

and

Wτ =

(
w
v

)

τ

= B̃(W) =

(
B(w)

E(w)v

)
, (175)

where W ≡ (w, v)T , v = (v1, v2, · · · , vp)T , and C(w) and E(w) are p × p matrix operators
independent of v. If Formulas (174) and (175) satisfy the commutator relationship

Wtτ − Wτt = 0 , (176)

then Formulas (174) and (175) are referred to as homogeneous linear dark equations for
Equations (171) and (172), where Wtτ − Wτt = [Ã, B̃] = Ã′ B̃ − B̃′ Ã.

Ref. [66] extends dark systems from homogeneous linear forms to nonhomogenous
linear forms. Nonhomogenous linear extensions of Formulas (171) and (172) can be writ-
ten as

Wt =

(
w
v

)

t

= Â(W) =

(
A(w)

C(w)v + C0(w)

)
, (177)

and

Wτ =

(
w
v

)

τ

= B̂(W) =

(
B(w)

E(w)v + E0(w)

)
, (178)

where C(w), E(w), C0(w) and E0(w) depend only on w . If Formulas (177) and (178) sat-
isfy the commutator relationship (176), then Formulas (177) and (178) are referred to as
nonhomogenous linear dark equations for Equations (171) and (172).

In ref. [66], not only are more forms of dark equations proposed, but dark equations
are also promoted to supersymmetric dark equations. We will demonstrate the construction
of supersymmetric dark equations with the help of the KdV equation.

Example 13. The construction of supersymmetric dark KdV systems [65,66].

The KdV equation is in the form of (158). For a symmetry integrable equation, there
should exist a high-order equation that satisfies the consistent commuting condition. For
the KdV Equation (158), its higher-order symmetry flow can be chosen as the fifth-order
KdV equation:

wτ = 10wwxxx + 20wxwxx − 30w2wx − wxxxxx . (179)
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Through direct calculation, we can find that Equations (158) and (179) satisfy the
compatibility condition (173); therefore, Equation (179) is a higher symmetry flow of
Equation (158).

Supersymmetric dark equations are based on supersymmetric equations. The super-
symmetric KdV equations and the supersymmetric fifth-order KdV equations should be
constructed first.

From the previous subsection, we know that the most general nontrivial supersymmet-
ric extension of the KdV equation is in the form of (164). The sKdV-3 Equation (166) is the
most special one because of its complete integrability. By applying the direct construction
method, one can obtain the general nontrivial supersymmetric extension for Equation (179):

Ψτ = b Ψx(DΨxx) + (20 − b) (DΨx)Ψxx + c (DΨ)Ψxxx + (10 − c)Ψ (DΨxxx)

−2 d Ψ (DΨ) (DΨx)− (30 − 2d) (DΨ)2 Ψx − Ψxxxxx . (180)

Among them, the most special one is

Ψτ = 10 Ψx(DΨxx) + 10 (DΨx)Ψxx + 5 (DΨ)Ψxxx + 5 Ψ (DΨxxx)

−20 Ψ (DΨ) (DΨx)− 10(DΨ)2 Ψx − Ψxxxxx , (181)

which belongs to the supersymmetric KdV hierarchy and is integrable [55,68].
The above calculation shows that sKdV-3 Equation (166) and the supersymmetric

fifth-order system (181) actually satisfy the commutativity condition (173). Then, we focus
on constructing dark systems on Formulas (166) and (181).

The supersymmetric dark equations related to sKdV-3 Equation (166) are assumed
to be





Ψt = 3(DΨx)Ψ + 3(DΨ)Ψx − Ψxxx ,

Φt = −a1Φxxx + a2Ψ(DΦx) + a3(DΨx)Φ + a4Ψx(DΦ) + a5(DΨ)Φx ,
(182)

where Φ means the dark field, and a1, a2, a3, a4, a5 are undetermined coefficients. In For-
mula (182), all relevant terms are linearly combined together. By doing so, a general dark
extension for sKdV-3 Equation (166) can be constructed. Similarly, the supersymmetric dark
fifth-order KdV equation also has a general form with some undetermined coefficients.

Different parameter combinations of {a1, a2, a3, a4, a5} will lead to different dark exten-
sions. These different dark extensions correspond to different extensions for the supersym-
metric fifth-order KdV equations because they need to satisfy compatibility condition (176).
Sixteen types of nontrivial dark extensions of sKdV-3 Equation (166) are listed in ref. [66].
We only demonstrate the first type of the dark extensions here, written as





Ψt = 3(DΨx)Ψ + 3(DΨ)Ψx − Ψxxx ,

Φt = 3ΨDΦx − Φxxx .
(183)

Its corresponding higher-order symmetry flow system is





Ψτ = 10 Ψx(DΨxx) + 10 (DΨx)Ψxx + 5 (DΨ)Ψxxx + 5 Ψ (DΨxxx)
−20 Ψ (DΨ) (DΨx)− 10(DΨ)2 Ψx − Ψxxxxx ,

Φτ = 5Ψx(DΦxx) + 5Ψ(DΦxxx) + 5Ψxx(DΦx)− 10Ψ(DΨ)(DΦx)− Φxxxxx .

(184)

Formulas (183) and (184) meet compatibility condition (176); so, the supersymmetric
dark KdV system (183) is symmetry integrable. Conservation laws and the Lax integrability
of these supersymmetric dark KdV equations are discussed in ref. [66].
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5.3. Bosonization of Supersymmetric Integrable System

Because of the noncommutative property of the supersymmetric systems, to solve
supersymmetric models is very difficult. In ref. [38], a powerful method, the bosonization
approach, is proposed, and all the known solutions of the classical integrable systems
are extended to the supersymmetric ones. In this subsection, we apply the bosonization
approach to the KdV-a system (165).

Example 14. Bosonization of supersymmetric integrable KdV-a system (165).

If a special solution of the KdV-a system (165) possesses two Grassmmann parameters,
ζ1 and ζ2, then the solution can be written as

ξ = v1ζ1 + v2ζ2, w = w0 + w12ζ1ζ2, (185)

where v1, v2, w0, and w12 are four boson fields. These boson fields satisfy a special type of
dark equation:





w0t + w0xxx − 6w0w0x = 0,

v1t + v1xxx − (6 − a)w0v1x − aw0xv1 = 0,

v2t + v2xxx − (6 − a)w0v2x − aw0xv2 = 0,

w12t + w12xxx − 6w0w12x − 6w0xw12 + a(v1v2xx − v2v1xx) = 0.

(186)

The first equation of (186) is just the classical KdV equation with various known exact
solutions. For a fixed solution w0, the other three equations related to the boson fields
v1, v2, and w12 are only three graded linear equations. Some of the explicit examples are
given in ref. [69].

If n arbitrary Grassmann constants are included in a special solution of the supersym-
metric KdV system (165), there are 2n bosonic fields which satisfy some types of graded
dark equations. For instance, the related dark equation for n = 3 reads





w0t + w0xxx − 6w0w0x = 0,

vit + vixxx − (6 − a)w0vix − aw0xvi = 0, (i = 1, 2, 3),

v123t + v123xxx − (6 − a)(w0vv123x + w12v3x − w13v2x + w23v1x)
−a(w0xv123 + v1w23x − v2w13x + v3w12x) = 0,

wijt + wijxxx − 6(w0wij)x + a(vivjxx − vjvixx) = 0, (i < j = 1, 2, 3).

(187)

6. Conclusions and Discussion

Several symmetry group methods of PDEs, including basic symmetry group meth-
ods, finite symmetry transformation group methods, nonlocal symmetry methods, and
supersymmetric theory, are introduced in this review paper. We provide an example for
each method.

Three basic group methods are proposed, which are all illustrated using the Boussinesq
equation as an example. Compared to the conditional symmetry method, the standard
Lie symmetry method generates a greater number of determining equations. Therefore,
the conditional symmetry method for some PDEs can produce more results. For some
other PDEs, the symmetries deriving from the two methods are the same, such as the
KdV equation. We need to notice that the relevant vector fields related to the conditional
symmetry method do not form Lie algebras or vector spaces [6]. One should treat the
conditional symmetry method and the classical method equally in terms of symmetry
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reduction [18]. Compared to the above two symmetry methods, not using group theory
is an important characteristic of the CK direct method. For the Boussinesq equation,
the symmetry reduction results derived by means of the CK direct method can all be
derived by means of the conditional symmetry method [6]. For many PDEs, the conditional
symmetry method and the CK direct method are equivalent [24,70,71].

Two finite symmetry transformation group methods are introduced. One is the MCK
direct method, which is independent of Lax pairs. The other method is based on Lax pairs,
which can only be applied to Lax integrable models. By applying either of the two methods,
one can obtain finite transformation groups, and the corresponding reduced equations
have the same dimensions as the original PDEs. When the parameters chosen have some
special value, the finite symmetry transformation groups degenerate to the result by the
standard Lie approach.

Four methods for finding nonlocal symmetries and one localization method of nonlocal
symmetries are introduced. Nonlocal symmetries can be derived from conservative forms,
conformal transformations, Darboux transformations, and Lax pairs. The commonality
among these methods is that they all introduce auxiliary functions or auxiliary equations
on the basis of traditional symmetry. Auxiliary functions or functions in auxiliary equations
produce a nonlocality.

As an important branch of the symmetry group theory, supersymmetries are briefly
introduced. We briefly introduce some basic properties of supersymmetry and introduce
the direct construction method of supersymmetric equations by taking the KdV equation
as the instance. Supersymmetric dark equations were only proposed earlier this year,
and we report on them in this review paper. One bosonization method of supersymmetric
integrable system is also reported.

The symmetry methods can be applied not only to integer dimensional equations,
but also to fractional dimensional equations [72–74]. In recent years, the fractional equations
have attracted great attention. In 1998, E.Buckwar and Y. Luchko proposed the symmetry
groups of scaling transformations for some linear fractional PDEs [75]. In ref. [76,77], R.K.
Gazizov and A.A. Kasatkin et al. discussed the Lie point symmetries of some nonlinear
fractional PDEs. The symmetry methods can be used for both time fractional PDEs and space
fractional PDEs, and can be used for both single PDEs and coupled PDEs [78–83].
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