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In this study, we address static spherically symmetric realistic neutron stars as well as slowly
rotating ones in Scalar-Tensor Theories (STT) of gravity. We consider several realistic Equa-
tions Of State (EOS) with the values of the scalar field coupling constants constrained by
current observations. We already know that in addition to the solutions of General Relativity
(GR) with a trivial scalar field, STT can allow for solutions with a nontrivial scalar field,
which are energetically more favorable. Our numerical results show the existence of neutron
star models with a nontrivial scalar field also in the case of alternative scalar field coupling
functions. We further compute the moments of inertia of neutron stars in STT which are
slowly rotating. We present various results to illustrate the deviation of our models from GR.

1 Introduction

The properties of neutron stars as obtained in GR with realistic EOS have been tested success-
fully by observations in diverse astrophysical scenarios. However, there are various reasons to
expect that GR will be superseded by a generalized theory of gravity. 1 STT are one of the most
natural extensions of GR. In these theories a scalar field is included as an additional mediator of
the gravitational interaction besides the metric tensor mediator of GR. Some of the alternative
theories of GR like STT are indistinguishable from GR in the weak field regime but can differ
significantly for strong fields. Neutron stars are good examples of the strong field regime because
of their high densities and compactness. Therefore they provide an ideal laboratory for testing
gravity.

The study of neutron stars in STT revealed an interesting phenomenon called spontaneous
scalarization.2,3 When a scalar field is nonminimally coupled to gravity, a nontrivial configuration
of the scalar field can appear, because the scalar field nonlinearities can intensify the attractive
nature of the scalar field interactions. Then it can become energetically favorable to generate
more scalar-field energy without any external source. This clearly leads to neutron star models
which can possess significantly different properties than their GR counterparts as shown in
the static and slowly rotating case by Damour and Esposito-Farese 2,3 and for rapidly rotating
neutron stars by Doneva et al. 4 Here we address the effect of alternative scalar field coupling



functions in STT on static spherically symmetric and slowly rotating neutron stars for several
realistic EOS.

2 Basic Equations and Numerical Method

We consider the gravitational action in the Einstein frame

S =
1

16πG∗

∫
d4x
√
−g [R− 2gµν∂µϕ∂νϕ− 4V (ϕ)] + Sm[Ψm;A2(ϕ)gµν ], (1)

where G∗ is the gravitational constant, and the Ricci scalar curvature R is defined with respect to
the metric in Einstein frame gµν . The matter action involves the non-minimal coupling function
A(ϕ) to the scalar field ϕ. We here assume a vanishing scalar potential V (ϕ) = 0, and set
G∗ = 1 and c = 1. The Einstein-matter equations then read

Rµν −
1

2
gµνR = 8πTµν + 2∂µϕ∂νϕ− gµνgαβ∂αϕ∂βϕ, (2)

∇µ∇µϕ = −4πk(ϕ)T, (3)

where k(ϕ) = d ln(A(ϕ))
dϕ . The energy momentum tensor is given by Tµν = (ε + p)uµuν + pgµν ,

where ε, p and uµ are the energy density, the pressure and the four-velocity in the Einstein
frame, which are related to the corresponding quantities in the Jordan frame by ε = A4(ϕ)ε̃,
p = A4(ϕ)p̃, and uµ = A−1(ϕ)ũµ. From the Bianchi identities the conservation law for the
Einstein frame energy-momentum tensor ∇µTµν = k(ϕ)T∂νϕ is obtained.

In our study we have considered two STT with the following coupling functions

1. A(ϕ) = exp(1
2β1ϕ

2),

2. A(ϕ) = 1
cosh(β2ϕ) ,

where the first coupling function has been investigated before, 2,3,4 whereas the second coupling
function is new. There are observational constraints on the possible values of β, that should

be taken into account. 5 Considering d2 ln(A(ϕ))
dϕ2 |ϕ=0 > −4.8, we have employed β1 = -4.5 and

-4.8 for the exponential coupling function, while we have used β2 =
√

4.8 and
√

4.5 for the new
coupling function.

The metric describing a slowly rotating neutron star can be chosen as

ds2 = −ef(r)dt2 +
1

n(r)
dr2 + r2dθ2 + r2 sin2 θ(dφ+ ω(r)dt)2, (4)

where the metric function ω(r) vanishes in the static case. With the metric ansatz Eq. (4) and
the scalar field ϕ = ϕ(r), the pressure p = p(r), and the energy density ε = ε(r), the Einstein
field equations for static neutron stars reduce to the following system of ordinary differential
equations to be solved numerically

dn

dr
= −1

r

[
8πr2A4(ϕ)ε̃+ nr2

(
dϕ

dr

)2

+ n− 1

]
, (5)

df

dr
=

1

nr

[
8πr2A4(ϕ)p̃+ nr2

(
dϕ

dr

)2

− n+ 1

]
, (6)

d2ϕ

dr2
=

4πrA4(ϕ)

nr

[
r

(
dϕ

dr

)
(ε̃− p̃) + k(ϕ)(ε̃− 3p̃)

]
−
(
dϕ

dr

)
(n+ 1)

nr
, (7)

dp̃

dr
= −(ε̃+ p̃)

[
4πrA4(ϕ)p̃

n
+
r

2

(
dϕ

dr

)2

+ k(ϕ)

(
dϕ

dr

)
− n− 1

2nr

]
. (8)
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Figure 1 – Mass M vs radius R for different EOS

We have first solved these equations to obtain the spherically symmetric neutron stars (static
case). Then we have considered the first order perturbation equation for the slowly rotating case

d2ω

dr2
=

4πrA4(ϕ)

n
(ε̃+ p̃)

[(
dω

dr

)
+

4ω

r

]
+

(
dω

dr

)[
r

(
dϕ

dr

)2

− 4

r

]
. (9)

In solving these ODEs numerically, we have used the COLSYS (COLlocation for SYStems)
code. For the static solutions we have chosen the boundary conditions n(∞) = 1, f(∞) = 0,

p̃(0) = p̃c, ϕ(∞) = 0,
(
dϕ
dr

)
(0) = 0, and we have assumed slow rigid rotation with ω(0) = ωc

and ω(∞) = 0.

3 Equations of State

For the static and slowly rotating neutron stars in STT we have studied a polytropic EOS and
several realistic ones. In a polytropic EOS the pressure p̃ and the baryonic mass density ρ̃ are

related according to ε̃ = K ρ̃Γ

Γ−1 + ρ̃, p̃ = Kρ̃Γ, where we have chosen for the polytropic constant

K = 1186.0, and for the adiabatic index Γ = 1 + 1
N the polytropic index N = 0.7463.

We have also used various realistic EOS. But due to lack of space we here present only some
examples of our results, which have been obtained using SLy 6 for nuclear matter, ALF2 7 for
quark matter, and BS4 8 for hybrid quark-nuclear matter.

4 Results

Let us now discuss some of our results obtained in the study of static and slowly rotating neutron
stars in STT with the two coupling functions A(ϕ) = exp(1

2β1ϕ
2) and A(ϕ) = 1/ cosh(β2ϕ),

using realistic EOS. Fig. 1 illustrates the effects of the spontaneous scalarization on the mass–
radius relationship of static neutron stars. Here the mass M/M� is shown versus the radius
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Figure 2 – Moment of inertia I vs central density ρc for two EOS

R for a polytropic EOS and for three realistic ones. For comparison the GR results are also
exhibited. Also, both coupling functions are used, where the respective values of the coupling
constants are chosen to obtain the same quadratic expansion coefficients of A(ϕ). Then the
scalarization arises for both coupling functions at the same GR configurations, independent of
the EOS. Clearly, since the exponential coupling function is smaller for larger ϕ than the new
coupling function, the effects concerning the scalarization are larger for the exponential coupling.
Thus the results for the new coupling function are closer to the GR results. We observe that
for larger values of |βi| the maximum mass is reached at a larger radius. For smaller values of
|βi| the maximum mass is reached only close to the upper bifurcation point for the polytropic
EOS and ALF2. For Sly the maximum mass is smaller than in GR. Fig. 2 shows the moment
of inertia I versus the central density ρc for two EOS, the polytropic EOS and the Sly EOS, to
present also an example for a realistic EOS (see also Staykov et al. 9).

In further studies we might consider rapidly rotating neutron stars with realistic EOS in
STT with new coupling functions. It would also be interesting to study a massive scalar field
for new coupling functions. Indeed, Yazadjiev et al. 5,10 have studied a massive scalar field for
slowly and rapidly rotating neutron stars and shown that the inclusion of a mass term for the
scalar field leads to very interesting new results.
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