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RESUMO

O objetivo do presente trabalho foi o de estudar as oscilagoes de alguns wormholes na ten-
tativa de se encontrar candidatos que apresentassem solugoes exatas para modos quase nor-
mais. Apresentamos uma nova classe de wormholes estaticos que generaliza os wormholes de
Morris-Thorne pela inclusao de dois parametros adicionais a fim de distorcer a simetria esfé-
rica e alcancar equagoes de perturbacao onde o potencial pode ser dissociado das respectivas
auto-frequéncias. A nova métrica provou ser muito geral no sentido de que a maioria das
geometrias de wormhole estudadas atualmente na literatura podem ser expressas como casos
particulares dela. As equagoes de Teukolsky para esta métrica geral foram determinadas por
meio do formalismo de Newman-Penrose e, em consequéncia deste processo, obtivemos um
tipo de solugao com freqiiéncias de MQN exatas, a menos de uma equacao transcendental.
Esse tipo especial de solucao foi usado para aproximar potenciais de buracos negros de uma
forma semelhante as quadraturas. Estudamos também a propagacao de ondas eletromagné-
ticas ao longo das solugoes do tipo wormhole através do formalismo de Newman Penrose e,
seguindo certos critérios, obtivemos certos tipos de geometrias de wormhole que sao capazes
de modelar barreiras de Coulomb ou Morse. Esses resultados podem indicar que wormholes
poderiam ser usados no futuro como modelos para sistemas fisicos, como as supercordas sao
usadas atualmente, e também como guia nos chamados modelos analogos de grativacao. Fi-
nalmente, estudamos outros tipos de solugoes do tipo “estrelas exoticas", as chamadas dobras
espaciais. Esperamos que as equagoes, e especialmente os principios, apresentados neste tra-
balho ajudem futuros pesquisadores a procurar wormholes susceptiveis a fornecer fontes para
uma descricao exata das ondas gravitacionais e uma percep¢ao mais profunda do problema

das singularidades na Relatividade Geral e na Mecanica Quéantica.



ABSTRACT

The aim of the present work was to study the oscillations of certain wormholes in an attempt
to find candidates for exact solutions of quasinormal modes. We presented a new class
of static wormholes which generalizes Morris-Thorne wormholes by adding two additional
parameters in order to distort spherical symmetry and achieve perturbation equations where
the potential may be decoupled from the frequency. The new metric proved to be very general
in the sense that most of the current wormhole geometries studied in the literature can be
expressed as particular cases of it. The Teukolsky equations for this class of wormholes were
determined via Newman-Penrose formalism and, as a result of this procedure, we constructed
one special solution with exact QNM frequencies except for a transcendental equation. This
special type of solution is used to approximate black hole potentials in a similar manner than
quadratures. We also studied the propagation of electromagnetic waves in wormhole solutions
through Newman-Penrose formalism and, following a set of criteria, we obtained certain types
of wormhole geometries that are capable of modeling Coulomb or Morse scatterers. These
results may indicate that wormholes could be used in the future as models for physical
systems just as superstrings are used today. Finally, we studied other kinds of exotic stars,
the warp drives. We hope that the equations, and specially the principles, presented in this
work will help future researchers to search for wormholes which could provide sources for
exact description of gravitational waves and a deeper insight into the problem of singularities

in both General Relativity and Quantum Mechanics.
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Introducao

A Teoria Geral da Relatividade é uma das teorias fisicas mais exaustivamente testada e
comprovada de nossa época. Seu alcance de previsoes se estende desde o limite dos campos
gravitacionais fracos do sistema solar até buracos negros e estrelas de néutrons. Todas essas
solugbes foram obtidas considerando primeiramente uma distribuigao normal de matéria (es-
pecificada pelo tensor de energia-momento), e através da equagao de Einstein, a métrica de
espago-tempo da geometria é determinada. No entanto, pode-se resolver a equagao de Eins-
tein na direcao inversa, ou seja, nés primeiro consideramos uma métrica de espago-tempo
interessante e exotica, e em seguida, determinamos o tensor de energia-momento responsavel
pela respectiva geometria. Desta forma, verificou-se que algumas dessas solugoes poderiam
possuir uma propriedade peculiar, denominada “matéria exética", envolvendo um tensor de
energia-momento que viola certas condicoes de energia. Wormholes? sao uma tal espécie de
solucgao.

Estrelas sao feitas de matéria, buracos negros, em seu exterior, nao sao nada mais do que
vacuo e wormholes sao mais facilmente descritos como “estrelas exoticas", possiveis objetos
astrofisicos constituidos por uma espécie de matéria que nao interage com campos de matéria
ordinaria de qualquer forma. Um wormhole é definido como qualquer regiao compacta do
espaco-tempo com uma fronteira topologicamente simples, mas um interior topologicamente
nao trivial [1], que captura a ideia de um tinel que une dois espagos-tempo ou duas regioes
do mesmo universo. A histéria dos wormholes pode ser dividida em trés fases: o trabalho
inicial de Einstein e Rosen em 1935 que tentou modelar os elétrons, denominado Ponte
de Einstein-Rosen|2[; a interpretacao dos wormholes de Reissner-Nordstrom ou Kerr como
objetos da “espuma quéantica"devido a Wheeler|3] na década de 1950; e o momento atual de
interesse apods o artigo classico de Morris e Thorne[4] em 1988. Inicialmente wormholes nao
eram transitaveis em principio, mas depois do artigo de Morris e Thorne, varios pesquisadores
passaram a estudar solucoes das equagoes de Einstein com uma boca ao invés de um horizonte

de eventos, uma garganta no lugar de uma singularidade e forcas de maré extremamente

2 Este termo néo possui uma traduacao satisfatoria para a lingua portuguesa. Buracos de minhoca e buracos
de vermes sao empregados em alguns textos. Manteremos, aqui, a expressao inglesa.



2 Introducao

pequenas através da garganta para permitir uma viagem humana. Revisoes completas sobre
essas solugdes encontram-se no livro de Visser|[1] e no artigo de Lobo[5].

A existéncia dos wormholes esta no centro da discussao entre gravitagao classica e quantica
porque eles violam a condi¢ao de energia nula assim como alguns sistemas quanticos. Neste
contexto podemos pensar que uma andalise de estabilidade se faz necessaria para atingir
confianca sobre a existéncia de wormholes na Natureza. Para analisar a estabilidade dos
wormholes temos de responder a pergunta: se tal objeto existe espontaneamente no universo,
ou ¢ construido por alguma eventual civilizagao extremamente avancada, serd possivel sua
permanéncia na Natureza? Cada objeto astrofisico oscila por influéncias externas e ao fazé-lo,
ele emite radiacao determinada principalmente pelo fendémeno que causou essa oscilagao; no
entanto, podemos esperar que qualquer perturbagao, durante seus ultimos estagios, decaia de
uma maneira caracteristica do objeto e independente da causa original, da mesma forma que
um sino soando suas ultimas notas [6]. O conceito de modos quase-normais (MQN) baseia-se
nestas consideragoes e matematicamente representa a solucao das equagoes de perturbagao
para frequéncias complexas, onde a parte real representa a frequéncia de oscilagao e a parte
imaginaria corresponde a taxa de amortecimento. Esta situagao é compativel com o fato
de que um wormhole deve ser visto como uma membrana infinita, em vez de um sistema
oscilante fechado, como uma corda de violao. Para uma boa revisao em MQN, ha os trabalhos
de Kokkotas|7|, Nollert|8], Martin|9] e Dadam[10].

No que diz respeito a teoria de perturbacao linear em solucoes de wormhole, algumas
das obras mais importantes foram feitas por Frolov & Novikov [11], Kar et al[12], Perez &
Hiberd[13|, Kim|[14] e Moreno & Garcia-Salcedo[15]. No entanto, nenhum desses trabalhos
conseguiu obter frequéncias quase-normais exatas para os sistemas estudados. Este trabalho
pode ser visto como uma generalizagao destes estudos, tanto do ponto de vista do objeto
estudado (solugdes generalizadas de wormholes), como do ponto de vista do ferramental
matematico (formalismo de Newman-Penrose). De fato, o objetivo principal desse trabalho
é o de se tentar determinar solucoes exatas de MQN por meio da anélise das perturbacoes
de certas métricas através da teoria de perturbacao, mas utilizando-se do formalismo de
Newman-Penrose, mais precisamente baseando-se nas tétrades de vetores de tipo luz e vetores
complexos desenvolvidas por Geroch, Held e Penrose [20] numa tentativa de se introduzir o
formalismo espinorial na Relatividade Geral de uma forma mais natural, a semelhanca das
tétrades de Cartan. O Capitulo 1 fornece a base matemaética necessaria ao estudo que seré
feito no decorrer do texto. Neste primeiro capitulo, o espaco-tempo caracteristico de um
wormhole ¢é definido, apresentamos as equacoes fundamentais do formalismo de Newman-

Penrose que serao utilizadas na sequéncia e, finalmente, o problema dos modos quase-normais



(MQN), resultado final da teoria de perturbagao, é formalizado matematicamente.

O Capitulo 2 faz o estudo das perturbagoes de um tipo simplificado de wormhole e seus
resultados servem de base de comparagao para os capitulos seguintes. No Capitulo 3, o
mesmo estudo ¢ feito sobre os wormholes de Morris-Thorne, em seu caso geral. O Capitulo 4
apresenta uma métrica suficientemente geral para os propositos do trabalho. Em seguida, tal
métrica é perturbada e as equacoes de perturbacao sao resolvidas na tentativa de se achar uma
solucao exata para o problema dos modos quase-normais. No Capitulo 5 é feita uma analise
da propagacao de ondas eletromagnéticas ao longo dessa mesma geometria e no Capitulo 6, o
problema da determinacao dos MQN de buracos negros é analisado sob uma nova perspectiva
em que uso é feito de uma solucao de certa forma especial. O Capitulo discute um caso
particular de wormholes com quantidades minimas de matéria ex6tica. Finalmente, tratamos
das dobras espaciais no Capitulo 8 as quais também sao solugoes exdticas das Equagoes de
Finstein.

Constituem material inédito neste trabalho a aplicacao do formalismo de Newmam-Penrose
para os estudos de perturbacoes, propagacao de campos de teste e modos quase-normais

apresentados nos cap. 4, 5 e 6, e as analises das solugoes apresentadas nos cap. 7 e 8.



Capitulo 1

PRELIMINARES

O objetivo desse capitulo é fornecer a base matemaética necesséaria ao completo entendimento
da sequéncia do texto. O espago-tempo € identificado com uma variedade pseudo-riemanniana
e as Equacoes de Einstein sao postuladas como uma condicao a ser obedecida pela métrica
em tal variedade e interpretadas como a acao da energia-momento sobre a geometria do
espago-tempo, cuja consequéncia se conhece como gravitagao. Wormholes sao definidos como
solugoes especiais dessas equacoes que nao possuem horizonte de eventos nem singularidades
nuas. Em seguida, o formalismo de Newman-Penrose é apresentado em toda sua extensao,
pois é através dele que sera feita a anélise de estabilidade das solu¢oes nos capitulos seguintes,
primeiramente descrevendo o espaco-tempo em tal formalismo e depois perturbando os veto-
res da base tétrade que o fundamenta. Finalmente, sera feita a formulagao matematica dos
modos quase-normais como solucoes da equacao de onda, obtida ao fim da perturbacao do
espago-tempo, para frequéncias complexas, e satisfazendo condigoes de fronteira apropriadas

para uma resposta extrema do wormhole a perturbacoes externas.



6 1. PRELIMINARES

1.1 Solucoes do tipo Wormholes

Definicao 1.1 Um espago-tempo consiste numa variedade quadridimensional conexa, orien-
tada no espago e no tempo, com uma métrica Lorentziana (pseudo-riemanniana) de assina-

tura —2, juntamente com uma conexao de Levi-Civita [18].

Espacgos-tempo que possuam entre si uma isometria que preserve as orientagoes necessarias
representam fisicamente a mesma situacao. Os espacos-tempo de significado em Fisica sao
todos modelos da historia do universo (ou de uma parte dela). A dimensao de um espago-
tempo é intuitivamente determinada pelas trés dimensoes espaciais do universo conhecido e
uma dimensao temporal extra. Como espacos-tempo modelam historias, “desconexo” signifi-

caria “sempre foi, é, e sempre seré desconexo”. Portanto, assume-se uma variedade conexa.

Quanto & orientacgao, o requisito de ser orientavel no tempo provém do conhecimento atual
dos processos termodinamicos na Terra, pois a segunda lei da termodindmica implica que é
possivel distinguir o passado do futuro pela medi¢ao do aumento na entropia. A orientacao
espacial da variedade também ¢é uma condigao plausivel de se impor porque a nao conservagao
da paridade esta agora estabelecida para uma ampla classe de experimentos (as chamadas
“Interagoes fracas”) de modo que podemos distinguir entre sistemas dextrogiros e levogiros
no espaco tridimensional ordinario. Assim, o espago-tempo pode ao menos ser orientado
rigorosamente na regiao que circunda a Terra, no momento presente, da seguinte forma: em
cada sistema de coordenadas, a forma volume sqrt—gdz! A da® A da® A dz* sera consistente
com a orientagao se, e somente se, cada dx!, dr?, dz® for de tipo-espago! e {dx', dz?, da3}
for dual a uma base espacial dextrogira do espaco tangente de cada ponto, e ainda dx* for
de tipo-tempo e com diregao futura.

Finalmente, resta falar a respeito da classe de diferenciabilidade da variedade identificada
como espago-tempo. Assume-se que tal variedade seja C'*°, pois tal requerimento soa como o
mais 6bvio e mais aceitavel de todos. Entretanto, as contradi¢oes da presente teoria quantica
de campos sao severas. Essas contradi¢oes podem forgar a aceitagao de um mundo quantico
ao invés de uma variedade C'*°. Tais contradi¢oes também levam a sistemas quanticos que
nao satisfazem certas leis de conservacao; em particular, a existéncia de tal possibilidade
é o que enfatiza a necessidade de um estudo mais profundo de wormholes porque eles sao

originados e mantidos por tais sistemas.

!'Dada a métrica do espaco-tempo na forma g= g"¥dz* ®dx" ,com assinatura -2, um vetor V é de tipo-espaco
se g(V,V) < 0, de tipo-luz se g(V,V) = 0 e de tipo-tempo se g(V, V) > 0.



1.1. Solugdes do tipo Wormholes 7

A conexao de Levi-Civita a que se refere a Definicao 1.1 é aquela obtida da métrica

(03 1 (e 7o
5y = 59 (9opr + 9o, = Ipvo): (1.1)

Notagao: A métrica inversa, g"”, ¢ a matriz inversa da métrica g,,. Virgulas denotam
X,
ozv *

sobrescrito seguido por um subscrito idéntico, ou vice-versa, em uma expressao corresponde

derivadas parciais: X,, = 0,X, = A convengao de Einstein (na qual um indice

a uma soma) serd usada ao longo de todo o texto.
A partir de uma conexao numa variedade, podemos definir o tensor de curvatura de Rie-
mann. Existem definicoes mais gerais, mas para os propoésitos do texto a defini¢ao a seguir,

que é valida num sistema de coordenadas local,é suficiente.

Definigao 1.2 O tensor de curvatura de Riemann é definido em termos de suas componentes

numa base local de coordenadas por

Ry 5 = 0,10 — 515, + T% I — T . (1.2)

g

A partir de contracoes do tensor de Riemann, obtemos o tensor e o escalar de Ricci, que

também auxiliam na anélise da curvatura do espago-tempo e em suas singularidades.

Definicao 1.3 Numa base local de coordenadas definem-se o tensor de Ricci por
Ry = Roysug (13)
e o escalar de Ricci (também denominado curvatura escalar) por
R = Raggo‘ﬁ = ng,,go‘ﬁg“" (1.4)

Definicao 1.4 Numa base local de coordenadas, define-se o tensor de Weyl pela formula

1 1
Caprs = Rapys — §(ng55 + 986 Rory — 9y Ros — gos Rpy) + g(gowgﬁa — gsr9as)R - (1.5)

Finalmente, o tensor e o escalar de Ricci determinam o tensor de Einstein

1

G =R, — 5

Ry, (1.6)

E postulado que todo espaco-tempo deve obedecer as Equacoes de Einstein que relacionam

a curvatura do espago-tempo (como descrita pelo tensor de Einsten G,,) & distribuicao de
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matéria e energia (como descrita pelo tensor energia-momento 7),,). Explicitamente, tem-se
G,ul/ = 87TTp,V (17)

onde foram adotadas unidades geométricas G = ¢ = 1.

Contraindo (1.7) com a métrica inversa, obtém-se

1 14
R, =8n(T,, — §9WT)a (T'=g"T,), (1.8)
de forma que no véacuo (regides do espaco-tempo em que 7),, = 0), as Equagoes de Einstein
se reduzem a

R, = 0. (1.9)

Estrelas, poeira e outros aglomerados de matéria comum constituem-se em solugoes das
Equacoes de Einstein para tensores energia-momento que apresentem densidades de energia
positiva em todos os pontos. A condi¢do de energia fraca (WEC) assume que a densidade
local de energia ¢ nao-negativa e estabelece que T, U*U" > 0, para todos os vetores de tipo-
tempo U*. A condicao de energia nula (NEC),T},,k*k” > 0, onde k* é um vetor de tipo-luz,
é consequéncia da WEC e consiste na mais fraca das condi¢oes de energia de modo que sua
violagao constitui-se na violagao das demais condigoes. Apesar de se acreditar que formas
classicas de matéria devam obedecer essas condi¢oes de energia, é um fato bem conhecido
que elas sao violadas por certos fendmenos quéanticos, como o efeito Casimir e a evaporacao
de Hawking.

Os buracos negros de possivel existéncia na Natureza em sua forma macroscopica consistem
numa classe de solugoes das Equagoes de Einstein no vicuo, cuja métrica obedece a certas
restrigoes. A principal delas consiste na existéncia de um horizonte de eventos. Segundo [10],

temos a seguinte definicao matemaética para tal estrutura.

Definicao 1.5 Um horizonte de eventos consiste numa subvariedade diferencidvel bidimen-
stonal do espaco-tempo, de tipo-luz, gerada por um vetor de Killing de tipo-tempo e outro
de tipo-espacgo, onde entende-se por vetor de Killing numa variedade um campo K tal que

Lixg =0 sendo g a métrica e L o operador derivada de Lie?.

2A derivada de Lie de um campo tensorial é um tensor de mesmo tipo que satisfaz as seguintes regras:
(i) atua sobre um campo escalar como o gradiente; (ii) atua sobre um vetor do espaco tangente como
o comutador; (iii) opera linearmente sobre campos tensoriais; e (iv) satisfaz a regra de Leibnitz quando
atua sobre produtos tensoriais.
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Na préatica, para situgoes estacionarias e esfericamente simétricas, assume-se a existéncia de
um horizonte de eventos quando a componente da métrica g;; torna-se nula em algum ponto
ou regiao do espago-tempo.

Ao contrario das estrelas ordinéarias, buracos negros sao singularidades do espaco-tempo,
pontos ou regioes no qual a métrica diverge; mais precisamente, indicadores como geodésicas
ou contragoes do tensor de curvatura encontram descontinuidades ou tornam-se infinitos,
respectivamente.

Wormbholes e demais estrelas exéticas basicamente diferem das estrelas comuns porque
existe uma distribuicao de matéria que os suporta, mas que em algum ponto apresenta
densidade de energia negativa. Wormholes também diferem dos buracos negros porque nao

apresentam qualquer tipo de singularidade nem horizonte de eventos. Segundo a defini¢ao

de Visser [1]:

Definicao 1.6 Wormholes sao objetos com uma fronteira topologicamente simples, mas com

um interior topologicamente nao trivial.

Ainda segundo Visser [1], encontramos a seguinte definigdo de um wormhole, mais rigorosa

porém mais restritiva.

Definicao 1.7 Se um espaco-tempo de Minkowski contém uma regiao compacta €2 e se a
topologia de 2 é da forma R x X onde ¥ € uma variedade tridimensional de topologia nao
trivial, cuja fronteira tem topologia da forma S? e, se além disso, as hipersuperficies ¥ sao

todas de tipo-espago, entao a regiao 2 contém um wormhole.

Uma defini¢ao geométrica de wormhole é uma regiao do espago-tempo contendo um “tubo
universal”(a evolu¢ao temporal de uma superficie fechada) que ndo pode ser continuamente
deformada a uma “linha universal”(a evolugao temporal de um ponto).

Essas defini¢oes tentam captar a idéia daquilo que chamamos de wormhole transitdvel, um
tinel entre dois universos ou duas regioes do mesmo universo, com uma boca ao invés de
um horizonte de eventos, uma garganta em lugar de uma singularidade essencial e capaz
de apresentar forcas de maré suficientemente pequenas para permitir viagens humanas ou
transferéncia de informacao, em principio.

As variedades de wormholes que foram encontradas na literatura até 1988 sao todas pro-
blematicas: a ponte de Einstein-Rosen apresentava horizonte de eventos microscopicos nao
condizentes com as previsoes teodricas; os wormholes de Wheeler sao simplesmente pequenos

demais para terem algum de seus efeitos calculados; as singularidades nuas possuem forcas
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de maré que as tornam intransitdveis e nao podem ser tomadas como verdadeiras se assu-
mirmos a conjectura do censor cosmico de Penrose [6]. A grande aposta de Morris e Thorne
em seu artigo classico de 1988 foi perceber a possibilidade de construir espacos-tempo de
wormholes que fossem em principio transitaveis e, para tanto, admitiram dois requerimentos:

a inexisténcia de horizonte de eventos e de singularidades nuas.

Restringir a atencao a solugoes das Equagoes de Einstein que nao possuam singularidades
é uma tarefa nada facil. O método tradicional seria tomar um tensor energia-momento que
supostamente suporta o espago-tempo de um wormhole, resolver as Equacoes de Einstein e
por fim, checar a presenca de singularidades na curvatura da solucao assim obtida. Todas as
tentativas em seguir este processo falharam. A idéia seminal de Morris e Thorne foi efetuar
um raciocinio inverso ao descrito acima, a saber, assumir a existéncia de uma geometria inte-
ressante e bem comportada, depois calcular o tensor de Riemann associado a essa geometria
e usar as Equagoes de Einstein para deduzir qual a distribui¢ao de energia-momento precisa
existir. O grande problema foi que, ao fazer isso, Moris e Thorne perceberam que a distri-
buicao de energia-momento nas vizinhancas da garganta do wormhole era um tanto peculiar
e incompativel com a Fisica (macroscopica) conhecida e aceita atualmente. Sem muito rigor,
basicamente o que ocorre proximo da garganta de um wormbhole é que em algum lugar e em
algum momento, alguém sera capaz de encontrar densidade de energia negativa. De acordo

com Visser [1]

Nao fosse o fato de que experimentos revelaram alguns efeitos qudnticos que
violam certas leis de conservacao da energia, o trabalho de Morris e Thorne seria
interpretado como um estdgio inicial de um teorema de inexisténcia de wormholes

na Natureza.

1.1.1 Wormholes de Morris-Thorne

A fim de manter a anélise mais facilmente tratavel, Morris e Thorne assumiram que seus
wormholes transitaveis eram independentes do tempo, sem rotacao, e formavam pontes esfe-
ricamente simétricas entre dois universos. A variedade de interesse era portanto um espaco-
tempo estatico esfericamente simétrico possuindo duas regioes assintoticamente planas e, sem
perda de generalidade, a métrica adotada tomou a forma

dr?

ds® = —e*?dt? + 5+ r?df* + r? sin? 0dp* (1.10)
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As coordenadas t, 6 e ¢ representam tempo, e latitude e longitude em uma esfera de raio
r, respectivamente. A coordenada radial é igual & coordenada radial do espaco de mergulho

(Ver Fig. 1). Como resultado, r ndo ¢ monotodnica, decrescendo de +o0o a um valor minimo

Figura 1.1: Tipico mergulho da geometria do Wormhole de Morris-Thorne (1.10) em R3, veja
Eq. (1.14). Mais detalhes, em [1].

em ry # 0, a garganta transitavel, e aumentando novamente até +oo no outro universo (ou
em uma outra regiao do mesmo universo). De acordo com a situagao, é necessario limitar-se
o alcance de r para esta solu¢do a um intervalo I = (rg, ap) unindo-na a uma nova solugao
de ag a +o00.

A inexisténcia de um horizonte de eventos esta garantida por

Ju = —e29(7) #0 Vrel (1.11)
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e ¢, tomada como finita em todo lugar, é denominada funcao desvio para o vermelho porque
quando gy = 0 a luz é completamente desviada para o vermelho (e forma-se um buraco
negro). A fungdo b = b(r) adquire uma interpretagao simples como uma fun¢ao de forma
porque ela determina a forma espacial do wormhole. De fato, tomando-se uma fatia do

wormhole (1.10) em um momento definido no tempo (dt = 0) e no plano equatorial (6 = 7),

b -1
ds® = (1 — —) dr® + r2dy?, (1.12)

r

e mergulhando-a em um espaco euclidiano tridimensional,

dz\?
1 haiad
()

vé-se que as equagoes (1.12) e (1.13) representam o mesmo elemento de comprimento se

ds® = dz? + dr? + r’dy?* = dr? + rde?, (1.13)

identificarmos as coordenadas (r, ¢) do espago de mergulho com as (7, ¢) do espago-tempo de
wormhole, e se for imposto que a fun¢ao z = z(r), a qual descreve a superficie de mergulho,
satisfaca
1

dz r 2

—=x|—-1 . 1.14

=% _—
Uma analise dessa expressao mostra que a garganta do wormhole é um ponto fixo de b e, nesse

ponto, a curvatura diverge (isto é, curvas na superficie terdo tangentes que serao verticais no

espago).

Resta falar que as fungdes ¢ = ¢(r) e b = b(r) s@o aceitas como sendo de classe C°(R).
Uma métrica estdtica e esfericamente simétrica corresponde a existéncia de um vetor de
Killing de tipo-tempo ortogonal a uma familia de hipersuperficies (no caso, as esferas de raio
r); na pratica, isto se manifesta no carater ortogonal da métrica e na independéncia temporal
de suas componentes. Dizer que uma métrica é assintoticamente plana consiste em dizer que,
efetuando-se uma transformagao conforme sobre a variedade a fim de se estender a métrica
continuamente para se anexar uma fronteira J ao espago-tempo, este infinito J seré idéntico
aquele do Espaco de Minkowski da Relatividade Especial; na pratica, no entanto, adota-se
como critério para que um wormhole seja assintoticamente plano a condicao de que ambos

os limites

lim 27 (1.15)

r—4+oco 7T
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lim ¢(r) (1.16)

r—+00
sejam zero.
O exemplo mais simples e também o mais estudado wormhole na literatura é o wormhole
ultraestdtico o qual corresponde a um caso particular de um wormhole de Morris-Thorne com
forca de maré nula, dada por ¢ = 0 e fungao de forma b = @ que satisfazem uma relacao

simples entre as distancias radial e de luminosidade, a saber r? = [? + 2.

1.1.2 Wormholes Inflacionarios

Uma simples generalizacao das métricas de wormhole originalmente desenvolvidas por Morris
e Thorne, caracterizadas pela equagao (1.10), é aquela conhecida como wormhole de Roman

e que corresponde a um espago-tempo inflacionario dependente do tempo:

dr?

ds? = —e20dt? 4 2xt -+ r2df* + r*sin® 0dy? | . (1.17)

Aqui a parte espacial da métrica (1.10) foi multiplicada pelo fator e*' de uma escala de

A
3

escolhidas de modo a terem a mesma interpretagao geométrica que antes. Em particular,

deSitter, onde xy = e A é a constante cosmologica [16]. As coordenadas r,0, ¢ foram
circulos de r constante estao centrados na garganta do wormhole, localizada no ponto fixo
minimo e nao nulo da fungao de forma b = b(r). Para ¢(r) = b(r) = 0, a métrica de Roman
se reduz a um espaco deSitter plano, enquanto que para xy = 0, ela retorna a forma original
de Morris-Thorne.

Da mesma forma que para os wormholes de Morris-Thorne, pode-se adotar ¢(r) — 0, g —0
quando r — +00, de modo que o espaco-tempo seja assintoticamente deSitter, ou pode-se
optar por fazer ¢ e b irem a zero em algum valor finito de r, além do qual o espago-tempo
seja deSitter, correspondendo ao corte de energia a uma distancia finita.

No Capitulo 2, descreveremos sucintamente o desenvolvimento feito por Claudia Moreno e
Ricardo Garcia-Salcedo [15], que analisaram o caso particular de um wormhole ultraestatico
a luz do formalismo de Newman-Penrose e cujo artigo serve de comparagao para os resultados
que serao aqui obtidos. Nos Capitulos 3 e 5 estenderemos essa analise para o caso de um
wormhole de Morris-Thorne genérico, estudando as perturbacoes gravitacionais e eletromag-
néticas. No Capitulo 4, procuraremos generalizar a classe de wormholes de Morris-Thorne

vista acima e efetuar a teoria de perturbacao sobre uma métrica suficientemente geral atra-
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vés do formalismo de Newman-Penrose; formalismo esse que é o assunto da préxima secao.
O mesmo procedimento pode ser levado adiante para os wormholes de Roman, mas como
resultado obtivemos uma equacao de onda dependente do tempo muito complexa e que nao
seré explicitada nesse texto por fugir ao objetivo principal do trabalho que é a busca por

solucoes de MQN exatas.

1.2 Formalismo de Newman-Penrose

Nessa secao seréd introduzida a base matematica para o estudo das perturbagoes das métricas
descritas na se¢ao anterior e suas generalizagoes. Sabe-se [10] que o estudo completo das
perturbagoes em buracos negros s6 foi possivel gracas a uma abordagem diferenciada das
Equagoes de Einstein via formalismo de Newman-Penrose. Tratado mediante tal formalismo,
o problema adquire um carater algébrico e - o que é mais importante - as equagoes sao
extremamente simplificadas para o caso dos buracos negros. Esse fato leva a crer que o uso
de tal formalismo possa ampliar a visao que se tem das perturbagoes de wormholes. Esta é
nossa principal motivagao.

Inicialmente serao introduzidas as nogoes de base de tétrades e coeficientes de rotacao,
juntamente com as equacoes fundamentais da teoria. O formalismo de Newman-Penrose é
entao definido como aquele em que as tétrades sao vetores de tipo-luz que obedecem certas
condi¢oes. Também serao apresentadas as quantidades fundamentais do formalismo - a saber,
os escalares de Weyl, Ricci, Maxwell e os coeficientes de spin - bem como as transformacoes

possiveis nessas quantidades.

Definicao 1.8 Uma tétrade consiste numa base ortonormal de vetores tangentes definida em

um aberto do espaco-tempo, ou seja,

g(e@): e®) = 9ii€lwely = Na)o): (1.18)

onde g € a métrica do espago-tempo e nNyp) € uma matriz simétrica diagonal com *1 na
diagonal. Da mesma forma, pode-se definir uma base dual de tétrades em cada ponto do

espaco co-tangente, dada por
62@)6@ =3 e 6@)‘3('&) = 0. (1.19)

A métrica 1)) possui o mesmo comportamento que a métrica curva g;;, isto é, podemos

levantar e abaixar indices tétrades com 7, @) € n@® da mesma forma que fazemos com o



1.2. Formalismo de Newman-Penrose 15

tensor métrico. Mais que isso, dado qualquer tensor, basta projeta-lo no referencial tétrade,
a semelhanga da equagdo (1.18), a fim de encontrar suas componentes tétrades. Baseado

nesse processo, é possivel estabelecer diferenciacao no formalismo tétrade.

Definigao 1.9 A derivada direcional de um vetor A, com componentes tétrades Ay, na

dire¢ao e, € dada por
;0
Aw,o) = €y g A (1.20)

Defini¢ao 1.10 A derivada intrinseca de um vetor A, com componentes tétrades Ay, na
diregao e, € dada por
Aty = €(a)Aisg€ly): (1.21)

em que ponto e virgula correspondem ¢ derivada covariante®.

Proposicao 1.1 Sejam A, as componentes tétrades de um vetor A na base tétrade. Entdao

Ay ) = €y Ajsi€ln) + Ve A (1.22)
e
A@i®) = Aw.e = 1™ @) Am): (1.23)
onde
N @B = €loe@hic( (1.24)
sao demominados coeficientes de rotacao de Ricci.
Demonstracgao.
De (1.20) segue
A i el 4 = el 1A = elplel A+ Agel,
(a),(0) = €(b) i [e(a) il = e Vo [e(a) il = €(v) [e(a) ji + ke(a);i]a (1.25)

onde foram utilizadas as propriedades da derivada covariante [6]. Utilizando-se o tensor

métrico, chegamos ao resultado

eaiAl = €, A;. (1.26)

3Define-se a derivada covariante, VY, de um campo vetorial Y, como sendo um campo tensorial de tipo (1,1)
que mapeia o campo vetorial contravariante X em VY, onde VxY é linear em ambos os argumentos,
obedece a regra de Leibnitz para o produto tensorial e coincide com a derivada direcional quando atua
sobre funcoes.
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Substituindo (1.26) em (1.25),obtemos
Ao ) = €y Ajii€ley T E(aykiclp €y A (1.27)

onde uso foi feito do fato de que levantamento e abaixamento de indices tensoriais permutam
com a operacao de diferenciagao covariante ([6],p.36). A equagao (1.22) resulta de (1.27) e
(1.24).

A equagao (1.23) corresponde a equagao (1.22) reescrita com o auxilio da defini¢ao (1.21).

Proposicao 1.2 Os coeficientes de rotagao de Ricci podem ser determinados através da

exTpPressao
1
Yo = 5o e + Aowe — Aw el (1.28)
onde
Moo = lewii — ewilea - (1.29)
Demonstracao.

Pela Definigao 1.8, tem-se
0 =Ny = €@)yii€p) T @€y (1.30)

Utilizando-se (1.30) e (1.26) na definicao (1.24), resulta que os coeficientes de rotacao sao

anti-simétricos no primeiro par de indices

V) (@®) T V@ew =0 (1.31)

Em uma conexao simétrica, podemos substituir as derivadas ordinarias em (1.29) pelas cor-

respondentes derivadas covariantes (|6],p.38) e escrever

A@®)(e) = Na)B)e) — V) ®)(a)- (1.32)

onde uso foi feito da definigao (1.24).
Das equagoes (1.31) e (1.32), segue que (1.28) esta bem definida. |
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A proposicao acima garante que, uma vez estabelecida a base de tétrades, toda a analise
do espaco-tempo pode ser feita independentemente de um conhecimento prévio da conexao

riemanniana.

Proposicao 1.3 As equacoes fundamentais do formalismo tétrade sao:

(i) as relagéoes de comutagao

(©) (o)
ey ew)] =7 ®)@) 7 (a)b) (1.33)

(ii) a identidade de Ricci

Ra))(e)(d) = ~V@)®)(0).(d) + V@)®)(d). ()

(1.34)
() 0 0 0
Y0 @DV @~ Yy @ TIH@O V) @ — YH@D V) (o)
(iii) a identidade de Bianchi*
R = ‘Z (@ L H@OE@ ) 1 D@y Rimy @0 @)
(1.35)
Ym0 () B@my©@ + Y ) Bao @ + Ym@ e B e om]}-
Demonstragao.
As identidades de Ricci,
R Zi = Zjgg — Ziug, 2 € Ty (M), (1.36)
e de Bianchi,
1
Rij[kl;m} = g(Rijkl;m + Rijlm;k: + Rijmk‘;l) = 07 (137)

sao identidades diferenciais obedecidas pelo tensor de curvatura em uma conexao riemanni-
ana. As expressoes (ii) e (iii) da proposi¢cao podem ser verificadas diretamente mediante a
projegao sobre a base tétrade das identidades (1.36) e (1.37), respectivamente, e substitui-

¢ao das derivadas covariantes dos vetores da base pelos coeficientes de rotacao, dados pela

4Agrupar um conjunto de indices entre colchetes significa que a quantidade em questdo estd sob a acdo do
operador de anti-simetrizagdo A: AT (X1, ..., Xs) = % Y6 891(0)T(Xp(1), oy Xo(s))-
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equagao (1.24). A expressao (i) resulta da agao do comutador® sobre um campo escalar

arbitrario, expressa em termos dos coeficientes de rotacao. |

Devido a anti-simetria dos coeficientes de rotacao no primeiro par de indices, decorrente
da expressao (1.30), segue que existem 24 coeficientes de rotacao de Ricci. Além disso, pela
forma como sao construidas as equagoes da Proposicao 1.4, conclui-se que existem 24 relagoes
de comutacao, 36 identidades de Ricci e 20 identidades de Bianchi independentes ([6], p.39).

Defini¢ao 1.11 A base de Newman-Penrose (I,n,m,m) consiste em uma base tétrade for-
mada por vetores de tipo-luz, sendo dois reais (I,n) e dois conjugados-complezos® (m,m), de

forma que a matriz ng)e) € dada por

0 1 0
10 0
oy = @O — 1.38
Ma)®) =1 0 0 . (1.38)
00 —1 0

Os vetores da base, considerados como derivadas direcionais, sao denotados por simbolos

especiais:

a) e, =e*=D;
b) e; =€l = A;
c) es=—¢e'=94;¢e

d) e, = —¢*=6".

(1.39)

>0 comutador dos campos vetoriais X e Y é dado por [X,Y]f = X (Y f) — Y (X f), para cada funcao f sobre
a variedade.

6A base de Newman-Penrose resulta da parametrizacdo complexa do cone de luz - conjunto de vetores de
tipo-luz - em um ponto do Espago de Minkowski, que d4 origem ao conceito de espinor. Ela é induzida
por uma base normalizada do espago de espinores de ordem 1 (ou vetores-spin). Uma exposigdo completa
do assunto pode ser encontrada em [19].
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Os varios coeficientes de rotacao de Ricci, agora denominados coeficientes de spin, sao

representados pelos simbolos:

K=7311 A="u14 pP=7314 T="712 €= %(7211 +9341) o= %(7214 + Y344)
(1.40)

0 =733 V="7242 H="7243 T =74 7= %(7212 +342) B = %(7213 + Y343)

Deve ficar claro que o conjugado-complexo de qualquer quantidade no formalismo de Newman-
Penrose pode ser obtido pela substituicao do indice 3, onde quer que ele ocorra, pelo indice
4, e vice-versa.

Decorre das simetrias do tensor de Riemann em uma conexao riemanniana numa variedade
quadridimensional que os tensores de Weyl e Ricci possuem dez componentes independentes
cada (|6], pp.42-43).

Definicao 1.12 No formalismo de Newman-Penrose, as dez componentes independentes do

tensor de Weyl sao representadas pelos cinco escalares complexos,

Uy = —Ciz13 = —CpgrslPmIl™m?,

U = —Cioz = _Cpqrslpnqlrms7

\112 = —01342 = —Cpqrslpmquns, (141)
Vg = —Clog9 = —CpgrslPnim™n?,

Uy = —Coyoq = —CpyrsnPmin™m?,

denominados escalares de Weyl.

Definicao 1.13 No formalismo de Newman-Penrose, as dez componentes independentes do

tensor de Ricci sao representadas pelos quatro escalares reais e pelos trés complexos:

1 1 1 1
Dgy = —§R11, Dyy = —5322, gy = —§R33, Oy = —5344
1 1 1
¢y = —Z(Rm + Rag),  Por = —§R13, Py = —5323, (1.42)
1 1 1 1
A= ﬂR = E(Ru — Ray), P10 = —§R14, Oy = —5324-

onde
Rab = RMVSZGZ (143)
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e Ry, € dado pela Definicao 1.4. As quantidades acima sao denominadas escalares de Ricci.

Definicao 1.14 As Equagoes de Mazxwell livres de fonte, as quais descrevem o campo ele-
tromagnético, sao
Fijn =0 e ¢%F; =0 (1.44)

ou, em um referencial tétrade”,
onde Fj; denota o tensor de Mazwell.

Definicao 1.15 No formalismo de Newman-Penrose, o tensor de Mazwell F;;, anti-simétrico

de tipo (0,2), € substituido pelos trés escalares complexos

o = I3 = Ejlimj
61 = 3(Fio + Fig) = 3 (' + m'm/) (1.46)

¢y = Fyp = Fyym'n/
denominados escalares de Mazwell.

Definicao 1.16 Uma congruéncia de tipo-luz consiste numa familia de curvas integrais de
um campo vetorial | de tipo-luz. Quando as curvas sao geodésicas de tipo-luz, diz-se que a

congruéncia € geodésica (ou de raios).

Proposicao 1.4 Os campos vetoriais | da base de Newman-Penrose num aberto U do espaco-
tempo formam uma congruéncia de geodésicas de tipo-luz se, e somente se, k = 0. Além disso,

as geodésicas estarao parametrizadas por pardmetros afins se, e somente se, Re(e) = 0.

Demonstragao.

A demonstragao que segue foi extraida da referéncia [6]. Da definicdo de coeficientes de
rotacao de Ricci na Proposicao 1.1, segue que a variacao infinitesimal sofrida pelo vetor da
base e(,) na diregao & &

)

] b c ] b c
Seqyi = e@iy€’ = e V@ ©e e = —Tweee €, (1.47)

"As equacdes (1.45) podem ser verificadas a partir da projecdo sobre a base tétrade das equacgoes (1.44) e
substitui¢do das derivadas covariantes dos vetores da base pelos coeficientes de rotacao (1.24).
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em que foi feito uso da anti-simetria dos coeficientes 7(4)) () N0 primeiro par de indices.

Portanto, a mudanca de(q)(c) em e(,, por unidade de deslocamento ao longo da direcao c,

¢ dada por
(58(@(6) = —V(Q)(b)(c)e(b). (148)

Em particular, para a mudancga em 1, por unidade de deslocamento ao longo de 1, nés temos

A1) = —igyre®
= —71216(2) - 71319(3) - 71416(4)
= —71211 + 71311?1 + Y1411M (149)
Utilizando-se os resultados (1.40), obtém-se
li;jlj = (5 + 6*)11 — KMm; — Ii*mi. (150)

As afirmagdes da proposigao decorrem da comparacdo entre (1.50) e a equagao da geodésica

d?xd j dzt dxF

arar _ 1.51
dt2+”“dt dt 0, (1.51)

J — dal
coml—dt. [ |

Pela Definicao 1.11, tem-se que [ é o vetor tangente a um raio de luz N e m é um vetor
complexo ortogonal a [, de modo que em um ponto p € N, a parte real de m gera com [
um plano. Considerando um circulo nesse plano e seguindo os raios da congruéncia [ que
interceptam o circulo, na dire¢ao-futuro (parametro crescente), observa-se possivel contrac¢ao
(ou expansao), rotacao e distor¢ao do circulo (em uma elipse). A contragao (ou expansao), a
rotagao e a distorgao sao medidas, respectivamente, por —Re(p), Im(p) e o (|6], pp. 56-58).
Além disso, k = 0 implica que os raios da congruéncia sao geodésicas, como demonstrado na

Proposicao 1.5.

Dentre as congruéncias do vetor [, aquelas responsaveis por uma maior simplificacao das
quantidades e equacoes fundamentais sao as congruéncias geodésicas sem distor¢cao, para as
quais kK = 0 = 0. Se, além disso, as congruéncias de n também forem geodésicas e sem
distorgao, obtemos A = v = 0; nesse caso, o tnico escalar de Weyl nao nulo serd Wo(Esses
resultados decorrem do Teorema de Goldberg-Sachs; [6], pp.62-63). O principal problema do

formalismo de Newman-Penrose esta em se encontrar uma base para a qual as congruéncias
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de [ e n sejam geodésicas sem distorc¢ao.

O formalismo tétrade foi desenvolvido por Cartan e é equivalente ao formalismo tensorial da
geometria riemanniana, mas enquanto esse ultimo concentra as propriedades do espago-tempo
nas componentes do tensor métrico, a abordagem tétrade focaliza a anélise na geometria
dos vetores da base, através dos coeficientes de rotacao. Dessa forma, pode-se explorar
as simetrias presentes em certo espaco-tempo e escolher bases tétrades que se adaptem ao

problema.

Outro conceito introduzido por Cartan, e desenvolvido por Penrose, é o de espinor{19], o
qual surge no processo de parametrizacao complexa do cone de luz, definido como o conjunto
de vetores de tipo-luz em um ponto do Espaco de Minkowski. Nesse sentido, uma base de

Newman-Penrose corresponde a utilizacao das congruéncias de raios de luz como referenciais.

O formalismo de Newman-Penrose foi construido de modo a descrever o espago-tempo por
meio da geometria (coeficientes de spin) dos cones de luz. Isso decorre da forte crenga de
Roger Penrose de que o elemento essencial de um espago-tempo ¢é sua estrutura de cone de luz.
Além do carater algébrico que a teoria adquire, com a possivel classificagao dos espagos-tempo
de acordo com a forma do tensor de Weyl ([6], pp.58-62), é nas solugoes representativas dos
buracos negros e inclusive wormholes que a estrutura do cone de luz se mostra mais efetiva.
Nos capitulos seguintes, a adaptabilidade do formalismo de Newman-Penrose as solugoes de
wormholes se tornara evidente, na medida em que permitira o estudo das perturbacoes dos
mesmos através da separabilidade, e consequente resolucao, das equagoes fundamentais da

teoria.

1.3 Modos Quase-Normais

Uma perturbagao genérica de um sistema oscilante fechado tem sua evolugao governada pela

superposicao de modos normazis
R(r)S(0)e“+me), (1.52)

em que a parte angular S(0) satisfaz equagoes dependentes da geometria e do campo de

ondas, enquanto que a parte radial R(r) obedece a uma equagao de onda

2
A2Z(S) — VZ(S) <A2 = dcli*2 —+ w2> (153)



1.3. Modos Quase-Normais 23

onde Z = Z(R(r),w) e as frequéncias w (reais e positivas) obedecem as seguintes condigoes

de contorno|26]

Z(l*) = Ae®Y + Be ™ " 5 400
Z(I") = Ce™", 1" - —o0 (1.54)

Tais condi¢oes de fronteira correspondem a uma onda incidente e outra refletida em um
lado da barreira de potencial V e a uma onda transmitida do outro lado®.

Como foi dito anteriormente, um wormhole precisa ser visto como uma membrana infinita,
e assim, ele deve ser tratado como um sistema aberto. A consequéncia desse raciocinio
¢ a de que as ondas emitidas por um wormhole aparecerao como oscilagoes amortecidas;
este amortecimento é melhor expresso pela parte imaginaria de uma frequéncia complexa.
Também se faz importante procurar por radiagao que carregue “impressoes gravitacionais”
do objeto astronémico sob estudo. Por essas razoes a definicao de modos quase-normais é a

que segue.

Definicao 1.17 Modos quase-normais sao as solugoes Z(l.,w) das equagoes de perturbacao

correspondentes a freqiiéncias complexas w e satisfazendo as condigoes de fronteira

7 — B(w)e b (l,— + o),
(1.55)
— C(w)et™b (I,— — 00),

onde a distdncia de luminosidade [, serd definida em termos da coordenada radial v futura-

mente, de acordo com o caso estudado.

Por comparagdo com (1.54), conclui-se que (1.55) aponta para uma onda de incidéncia
zero sendo puramente refletida no infinito e puramente absorvida na garganta do wormhole
(ou no horizonte do buraco negro). A razao entre as intensidades da onda refletida e da onda
incidente denomina-se coeficiente de reflexao R. Da mesma forma, define-se o coeficiente de
transmissao T a partir das intensidades da onda transmitida e da onda incidente. A lei de

conservagao de energia é expressa por

R+T=1. (1.56)

8No Capitulo 3, serd estudado o caso de uma barreira de potencial unidimensional quadrada; em casos como
esse, o lado ndo é importante ja que o potencial é uma funcgao par.
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O processo para se encontrar as frequéncias de MQN dos wormholes a serem estudados
seguiré a propriedade de que os modos quase-normais podem ser vistos como ressonancias da

amplitude de reflexao no plano complexo. Esta assercao baseia-se na seguinte proposicao.

Proposicao 1.5 Sejam R(w) e T(w) os coeficientes de reflexio e transmissao de uma onda

(gravitacional ou eletromagnética) incidente num wormhole. Entao os MQN correspondem

aos pdlos da extensao analitica de R(w) ao plano das freqiiéncias complexas tais que Re(w) # 0
T(w)

€ 7y € regular (e nao-nulo).

Demonstracgao.

No caso real, a defini¢ao (1.54) fornece, para as solugoes da equagao de onda (1.53),

APy
R = 100 = wwr + (O (1.57)

que consiste na resposta apropriada a uma ressonancia em um oscilador harmonico amorte-
cido, onde wy corresponde & freqiiéncia de ressonancia e g determina a taxa de amortecimento
do oscilador [27]. Estendendo a fungao R(w) ao plano das frequéncias complexas, obtém-se
r
Aw) 2

= - (1.58)

C(W) W — wy + Z§

Impondo as condigoes de fronteira (1.55) & expressao (1.58), segue o resultado. Os vinculos,

Re(w) #0 e % regular nao-nulo, servem para assegurar o cumprimento das condigoes de

fronteira [28]. |

A teoria da perturbagao que seré desenvolvida nos capitulos seguintes forneceréd como re-
sultado final uma equagao do tipo (1.53). Tal procedimento sera generalizado para englobar
frequéncias complexas ao espectro de radiacao dos wormholes. Esse problema foi inicial-
mente proposto por Vishweshwara [32] no contexto da anéalise da estabilidade dos espagos-
tempo gerados por buracos negros. Atualmente, o estudo de certas solugoes para frequéncias
complexas, os modos quase-normais, € de grande importancia em Astrofisica na tentativa
de se detectar diretamente a presenca de buracos negros e wormholes no universo. Isso se
deve ao fato de que os modos quase-normais sao definidos de forma a representar radiacao
gravitacional que independe do processo de perturbacao, ou seja, depende exclusivamente

das caracteristicas que definem a geometria do objeto astronémico.



Capitulo 2

WORMHOLE ULTRAESTATICO

Dentre todas as geometrias de wormhole encontradas na literatura, indubitavelmente a mais
estudada é aquela correspondente ao wormhole ultraestdtico, o qual corresponde ao caso
mais simples desse tipo de estrutura. O wormhole ultraestatico apresenta duas caracteris-
ticas importantes, a saber: forcas de maré nulas, o que permite transitabilidade através da
garganta, e uma fungao de forma previamente escolhida de modo a se obter uma relagao sim-
ples entre a coordenada radial e a distancia de luminosidade. Neste capitulo, o formalismo
de Newman-Penrose serda usado para se analisar as perturbagoes gravitacionais na geome-
tria de um wormbhole ultraestatico. A propagacao de campos gravitacionais sera estudada
mostrando-se que a parte radial das perturbagoes pode ser expressa em termos de uma equa-
¢ao de Schrodinger unidimensional. A exposicao que segue é uma discussao aprimorada do

artigo de Claudia Moreno e Ricardo Garcia-Salcedo [15].
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2.1 Descricao do Espaco-Tempo

Uma solugao das Equacgoes de Einstein representativa de um espago-tempo estatico e esferica-
mente simétrico possuindo duas regioes assintoticamente planas ¢ um wormhole Lorentziano,
cuja métrica tem a forma

ds? = > qe? — — r2(d6? + sin® Odp?), (2.1)

onde, como vimos, ®(r) é usualmente chamada func¢ao desvio para o vermelho, porque esté
relacionada com o processo gravitacional do desvio para o vermelho. A fungao b(r) esta
relacionada a forma do wormhole por meio de diagramas de mergulho. Elas satisfazem as
condigoes:i)r — oo, @ — 0;il)r — oo, ®(r) — 0:iii)®(r) ¢ sempre finita. A coordenada
radial tem um alcance que aumenta de um valor minimo em ry (em que b(rg) = r9), cor-
respondente a garganta do wormhole, até o infinito. Na medida em que r — oo, b(r) se
aproxima de 2M que é definida como a massa do wormhole.

As Equagoes de Einstein implicam que tal métrica existe se e somente se a densidade
de energia e a pressao radial no referencial de um observador estatico' satisfazem a relacao
p+p <0 (p denota a densidade de energia e p denota a pressao radial), correspondente & lei
de conservagao WEC [5].

A fim de manter as forgas de maré nulas é suficiente impor ®(r) = 0 [4]. Neste caso,
tomamos uma funcao de forma particular que satisfaz os requisitos de wormhole b(r) = é,
onde ry é uma constante. Portanto, a métrica que iremos analisar é a seguinte

dr?

ds* = dt* — — 72(df* + sin® Odp?). (2.2)

A distdancia radial propria ou distdncia de luminosidade é definida por

" d
I(r) = :I:/ I — (2.3)
To /] — M
A métrica (2.2) pode ser escrita em termos da distancia radial propria como
ds® = dt* — dI* — r*(1)(d6? + sin® 0dp?), (2.4)

!Para uma definigdo rigorosa de observador estatico, consultar a referéncia [18].
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onde r?(1) = I> + r2. A distancia propria decresce de | = +00 no universo superior, a [ = 0

na garganta, e entao de zero a [ = —oo no universo inferior.
Para uma descri¢ao da solugao de wormhole (2.4) no formalismo de Newman-Penrose, a
métrica ¢ descrita por [6]
G = 2[l )y — mumyy)), (2.5)
onde a barra denota conjugagao complexa e os parénteses indicam simetrizagdo. A tétrade
de tipo-luz [, n, m e m esta determinada pela Definicao 1.11 do Capitulo 1.

Assim, precisamos primeiro definir uma tétrade de tipo-luz [19] de acordo com a métrica

de wormbhole, a qual é satisfeita por

1
"= —_(1,1,0,0),
511,00
1
nt = —(1,-1,0,0),
(1,-1,0,0)
mt = ;1(0,0,1,2'0509),
V2(12 +12)2
1
mlt = ———(0,0,1, —icsch),

V2(12 +13)3
(2.6)

ou, equivalentemente, podemos definir os seguintes campos vetoriais, também chamados

derivadas direcionais,

1
Dzl“@u - ﬁ(@g—l—&),
1
A:n“f}’u == E(at—gl),
1 .
§=mho, = m(ag +1cschi,),
6 =m'd, = ;(89 —1csc0,).

V2(12 +13)3
(2.7)

Fazendo uso das equagoes (2.4), (2.5) e (2.6), podemos obter os escalares de Weyl através

da Definigao 1.12 do Capitulo 1. O tnico escalar de Weyl nao nulo no espago-tempo original
é
2
T
Uy=——Y9 2.8
2T 3R+ (2:8)
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o que significa que a solu¢do de wormhole (2.2) é de tipo D na classificacdo de Petrov [6], ou

seja, possui 0 mesmo carater que as solugoes de buracos negros [10].

Na métrica de wormhole, os coeficientes de spin associados a essa geometria sao dados por

% = O’:[{:)\ZGZ’YZT:WZO’

{
1Y M__\/é(ZQ—{—Tg),
5 = —a cot 6

T2V 413

em que foi feito uso das equagoes (1.28), (1.29), (1.40) e (2.6).

Os tnicos escalares de Ricci nao nulos sao determinados com o auxilio da Defini¢ao 1.13

, (2.9)

aplicada a base de Newman-Penrose (2.6):

T
@ _ 0
00 2+ )2
2
r
d _ 0
2
r
q) _ 0
2 2+ )2
_ 7
A = . (2.10)

Assim encerramos a descrigao do espago-tempo de wormhole (2.2) no formalismo de Newman-
Penrose. Na proxima secao, iremos usar as Equacoes de Einstein perturbadas a fim de obter
a Equacao de Teukolsky que permite analisar a estabilidade da solugao de wormhole através

de uma equacao radial e de seu potencial.

2.2 Perturbacoes Gravitacionais

No formalismo de Newman-Penrose ha seis equacoes - quatro identidades de Bianchi e duas
identidades de Ricci (ver Proposigao 1.4) - as quais s@o lineares e homogéneas nas quantidades

que se anulam identicamente no espago-tempo nao perturbado. Sao elas:

(6 —da+ 7))y — (D — 2e — 4p)¥; — (3Uy — 201 )k =
= (5 + 7T — 20— 25)@00 - (D — 2¢ — 2,5)@01 — Rq)og + 20'(1310, (211)
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(A — 4’7 + /L)\Ifo - (5 — 25 - 47’)\111 - (3‘1’2 + 2@11)0’ =
= (5 + 27 — 26)@01 - (D - ﬁ — 2€ + 2@)(1)02 - 2:‘{(1)12 - 5\@00, (212)

(D + de — p)Uy — (6 + 47 + 2a) V3 + (3Uy + 2P\ =
= (0 + 20 — 27) Doy — (A + [i + 2y — 29) Doy + 20Dy + 7Poy, (2.13)

(6+48 — 1)Uy — (A +dp+ 29) U5 + (3T, — 20 )v =

= (5—77'4-20{%—26)(1)22— (A+2ﬂ+2’7)@21 —17(1)20—2)\<D12, (214)
Ug+(0—30—a—7+7)k—(D—3e+e—p—p)o=0, (2.15)
U+ (A+pu+a+3y—IA\—(0+3a+[+7—7)r=0. (2.16)

Essas equacgoes estao linearizadas no sentido de que os escalares de Weyl Wy, Wy, U3, Uy
e os coeficientes de spin k, o, A, v como perturbagoes, sao tomados somente em primeira
ordem. Chegaremos a equagoes que dizem respeito a Wy e WU, somente, pois estes sao os

componentes mais significantes na radiagao gravitacional, conforme afirma Teukolsky [17].

Como a métrica de wormhole ultraestatico é de tipo D, entao as quantidades nao-perturbadas

Uy, Uy, U3, Uy,k, 0, A e v se anulam, de modo que temos das equagoes (2.11)-(2.16),

(6 —4a)VUF — (D — 4p)UP — (3V, — 20, )K" =
= —(D —2p)®8 + (0 — 2a — 2B)0E + (6 — 2a — 28)P Dy, (2.17)

(A + p)UF — (6 —28)UP — (30, +2d,)0” =
= (6 = 208)®5) — (D — p)®g, — AP0, (2.18)
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(6 +20)WF — (D = p) U7 — (305 + 201)A" =
= (A + 1) oy — (0 + 20) Py — 57 Do, (2.19)

(A +4p) 05 — (5 +48)TF — (305 — 201,)v" =
= (A +20)0F — (6 + 20+ 2B)P5, — (6 + 2a + 23)P Dyy. (2.20)

Nas equagoes acima usou-se (2.9); o sobrescrito B denota quantidades perturbadas.

A perturbagao das equagoes de Ricci (2.15) e (2.16) resulta em

(D —4p — p)Wyo® — (6 — 38 — a)Ver? — UEW, = [2p®1; — (A + )Py — 2DA]c?  (2.21)

(6 + 3+ B)Wor® — (A +4p+ f) VNP — UEW, = [2ud ) + (D — p)Pay + 2AANE, (2.22)

onde foram usadas as equagoes (321(b)) e (321(g)) de [6].

Operamos (6 — 3 — @) na equagao (2.17) e (D — 4p — p) na equagao (2.18), e subtraimos

uma equagao da outra. Finalmente, usamos a relagao (2.21), e a identidade
(D —4p—p)(6 —20) = (6 =36+ a)(D —4p)] =0 (2.23)
a fim de anular os termos em WP obtendo a Equacio de Teukolsky para WZ:
(D —4p —p) (A — 4y +p) — (0 — 38 —a)(6 — 4a) — 3V, | U5 = Tj) + Ty, (2.24)
onde

Ty = (6-38-a)(D—2p)Pg — (6 —2a —28)0F] +
+ (D —4p— D)6 —2B)0F — (D — p)®y, (2.25)
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e 0 termo extra

T()a = [2(D —p— ﬁ)q)n - 3(A + ﬂ)@oo - 6DA]O'B + [2(5 - 36 - O_é)q)ll]liB -
— (D —=4p—p)Po]A” — (5 = 35 — @) (0 — 2a — 26)" Py, (2:26)

representa a fonte quando o operador diferencial perturbado § e os coeficientes de spin per-

turbados o, k, A, a, B sao nao nulos.

A semelhanca de ¥¥, obtemos a Equagdo de Teukolsky para W usando a relagdo (2.22) e
a identidade
(A +4p+ i) (0 +20) — (6 4+ B +3a)(A+4p)] =0 (2.27)

a fim de eliminar ¥# resultando em
(A +dp+ @) (D — p) = (0 + B+ 3a) (8 +4B) + 3|0y = Ty + T, (2.28)
onde

T, = (6+F43a)[(A—2u)P8 — (6 +2a +26)08)] +

+ (A +4p+ )0 = 20) 5 — (A — p) i), (2.29)
e 0 termo extra
Tio = [3(A—=p)Pas — 2(A + pi+ i) P11 + 6AANT — 2(5 + B + 3a)Py10” +
+ (A +4p+ ) Py5® — (0 4+ B+ 3a)(6 + 2a + 25)P Doy, (2.30)

representa a fonte quando o operador diferencial perturbado ¢ e os coeficientes de spin per-

turbados A, v, o, a, f sao nao nulos.

Note que as projecoes nao nulas sao funcoes de r e t somente. Assim, substituindo as
projegoes no lado direito das equagoes (2.24) e (2.28), os tnicos termos de Ricci que restam
sao Dy, P11 e Pyy. Contudo, esses operadores sao agora operadores puramente angulares,
e como as projecoes sao fungoes de (t,r), o resultado é zero. As expressoes para Ty e Ty se
anulam. Do mesmo modo, pode-se mostrar [15] que as expressoes para Ty, e Ty, sao também
zero. Desta maneira, concluimos que poeira penetrando radialmente no wormhole nao produz

perturbagdes nos escalares de Weyl perturbados U e W%,

Atuando sobre p~*U¥ e usando as relagdes de comutacao entre as derivadas direcionais,

e a acao desses operadores sobre os coeficientes de spin, as equagoes de perturbacao para



32 2. WORMHOLE ULTRAESTATICO

0 4 _ . L. .
é) = \IIOB e wé) = p~ WP podem ser escritas como uma tnica equagdo mestre

{AD — 65+ puD — (25 + 1) — (25 +1)30 + 2580 — s(25 + 1)Uy +

+25(8) + 4s(s + 1)88 + 2(2s + 1)A}pEY = 0. (2.31)
Fazendo a substituicao
wg‘)) = e7Z‘thv(—2)jm(97 @)X(O) (l) (232>
e
¢g) = eiithv(Q)jm(ea @)X(4)(l)> (233)

substituindo os valores para as derivadas direcionais (2.7), para o escalar de Weyl (2.8) e para
os coeficientes de spin (2.9) na equacio (2.31), concluimos que as fungoes X© (1) e XW(1)

precisam obedecer & equacao radial de Schrodinger dada por

242 (2422 2+

(A2 L 2iwls (P44 (G420 - 1)) Z@9(1) = 0, (2.34)

onde usamos as defini¢oes

A:t = %j:iw,
A = ALA _E L
ar
X)) = 2012+ D)z, (2.35)

A equacdo (2.34), juntamente com as equagoes (2.32) e (2.33), fornece a expressdo para
as perturbagbes gravitacionais na geometria do wormhole ultraestatico (2.2). Perceba que
encontrar uma expressao analitica para a solugao de (2.34) nao é tarefa facil, pois o potencial
estd acoplado com a frequéncia de uma maneira nao trivial. Na verdade, tal potencial se
assemelha ao potencial do buraco negro de Kerr [10], semelhancga essa marcada pela presenca
do termo em iw, e até hoje nao foi possivel achar solucao analitica para as perturbacoes
gravitacionais do buraco negro de Kerr. Portanto, conclui-se do desenvolvimento apresentado
nesse capitulo que a determinacgao de solugoes exatas para MQN de wormholes deve ser tao
ou mais dificil que resolver o mesmo problema para buracos negros, ja que o mais simples
dos wormholes apresenta potenciais com elevada complexidade. O ponto a favor do estudo
de wormbholes é que eles sao objetos exoticos e, portanto, temos certo grau de liberdade para

criarmos novas geometrias a serem estudadas. No proximo capitulo, vamos efetuar o mesmo
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estudo feito aqui para um wormhole de Morris-Thorne genérico tentando com isso encontrar

alguma geometria que desacople a frequéncia do potencial de uma maneira elementar.
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Capitulo 3

WORMHOLES DE
MORRIS-THORNE

Neste capitulo, estendemos o desenvolvimento feito no capitulo anterior a uma geometria de
wormhole de Morris-Thorne genérica. Inicialmente, iremos apresentar as principais caracte-
risticas de um wormhole de Morris-Thorne, em particular a nao conservacao da energia, e
apoés, partiremos para a descricao desse espaco-tempo no formalismo de Newman-Penrose,
explicitando uma base bem como os coeficientes de spin e escalares de Ricci e Weyl deri-
vados dela. Em seguida, essas quantidades serao perutrbadas e obteremos as Equacoes de
Teukolsky a semelhanca do que foi feito para o wormhole ultraestatico. Uma equagao de
onda de tipo Schrédinger seré entao obtida para a parte radial da radiagao gravitacional e
emergird uma geometria capaz de desacoplar frequéncia e potencial de uma forma natural,
proporcionando uma solugao exata para as frequéncias de modos quase-normais a menos de

uma equacao transcendental.
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3.1 Descricao do Espaco-Tempo

Relembrando o que foi visto no Capitulo 1, o wormhole de Morris-Thorne consiste numa
classe de wormholes estaticos e esfericamente simétricos, governada por dois parametros, a

saber:

e Funcdo de desvio para o vermelho ® = ®(r), a qual esta relacionada com as forgas de

maré na garganta do wormhole; e

e Funcao de forma b = b(r), que esta associada ao formato do wormhole e a densidade

de energia da matéria que suporta o wormhole.

A métrica de um wormhole de Morris-Thorne genérico possui a forma

d 2
ds® = —e¥dt* + 1% +7r2df? + r?sin’ dyp* (3.1)

3.1.1 Matéria Exética

Para wormbholes estaticos com simetria esférica, resultam as equagoes da referéncia [4] para os
valores da densidade e da tensao radial da matéria que suporta cada wormhole. A densidade

¢

b/
_ 3.2
p 2 (3:2)
e a tensao radial é b— 2 b)d
_ 3.3
T 8mr3 33

revelando que b’ esta diretamente conectado com a densidade do material e ¢’ com sua tensao
radial. Como b’ < 0 porque a matéria precisa se anular a uma certa distancia da garganta, nao
é dificil ver que a equagao (3.2) aponta para uma energia negativa, e assim, para a viola¢ao
das condicoes de energia. Essa propriedade do tensor energia-momento esta presente em
praticamente todos os wormholes estudados na literatura e ganhou interpretagao fisica de
uma matéria exdtica presente na garganta, formando e mantendo o wormhole. A matéria
exoOtica, até onde se sabe, é um mero artificio de imaginacao de modo que se supoe que
ela nao interage com nenhum tipo de matéria ordinaria nao sendo passivel de deteccao. No
entanto, a presenca de um wormhole na Natureza seria uma confirmacao de sua existéncia.

Quanto as forcas de maré, sabe-se que elas precisam obedecer ao seguinte vinculo a fim de
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permitir viagem humana (para mais detalhes sobre os calculos, ver [4])!:

o AV br—b , 9~
ol =1 (1) (-0 4 gy ") 1< £ =09 5.4)

Da expressao acima, segue que a condicao ® = 0 proporciona forcas de maré nulas na gar-
ganta do wormhole. Veremos mais adiante que wormholes com essa condi¢ao nao permitem

uma solucao analitica simples da equagao radial da perturbacao gravitacional.

3.1.2 Cones de Luz

Como vimos, a distancia radial propria é definida por

1— 2=

- < ff):w(r):i/r:—(TdT_%).

(3.5)

de modo que ela decresce de [ = +00 no universo superior, para [ = 0 na garganta, e entao de
zero para —oo no universo inferior. Esta distancia precisa ser bem comportada ao longo de
todo o espago-tempo e representa uma “distancia de luminosidade”, a distancia real medida
por um observador estatico ao longo do caminho da viagem. Nessa nova coordenada, a

métrica (3.1) se torna
ds* = e*dt* — dI* — r*df* — r? sin® 0dp? (3.6)

onde a troca de assinatura da métrica foi feita para efeito de comparacoes com resultados da

literatura.
Para a métrica acima, as componentes do tensor de energia-momento 7;; no “referencial

geométrico” (via isomorfismo)
ep=dt e, =dr eg=df e, =dp. (3.7)

sao dadas por
1 1
Ty = — (Ry— >Ry ). .
87T<Rﬂ 2Rgg) (3.8)

em que as componentes da métrica g;; estdo explicitadas em (3.6), e R;; e R sdo como na

Nesta expressio, g = 9,8m/s? é a “aceleragao da gravidade da Terra” e £ = 2m é a altura aproximada de
um astronauta.
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Definicao 1.4.

Efetuando-se a transformagcao (3.5), o referencial ortonormal de um observador estético,

isto é, a tétrade de Cartan para (3.6), se reduz a

€y = e %e ey = e®ey

6(2) = € 6(2)1- = —€
€(s) = 10 e@) = —Tep
ey = ccbe, e’@) = —rsinfe,
(3.9)
1 0 0 0
l 0 -1 0 0
Cla)Cb)i = ~H(a)(b) = 0 0 —1 0
0 O 0 -1

Para uma descrigdo da solu¢ao de espago-tempo de wormhole (3.6) no formalismo de

Newman-Penrose se faz necessario usar as relagoes [21]

l=e = Zlew +e@ n=e=gleq —ep)

o)

(3.10)

m =e3 = \%[6(3) + 26(4)] m=e4 = %[6(3) — i€(4)],

onde a barra denota conjugacao complexa. Esta relagao corresponde a uma parametrizacao

complexa do cone de luz e que fornece a seguinte base tétrade fundamental, a qual sera usada
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de agora em diante:

_ (e 1 i_ [e? 1
ni= (%500  n=(%5-%.00)
m; = <070’ —_;7 —ii/s%n0> mi — (070’ T\l/? i:scj)
(3.11)
= —r irsinf ~i __ 1 —icsch
m; = <0707_27 V2 > m = <0707 2 2 )
01
; 10 b
€. Chi = Nap — =
S VI (R
0 0 -1 0
As derivadas direcionais correspondentes sao
— iy = < 1
D = [0 = ﬁ8t+ ﬁﬁl
— i — %59 _ L
A = n@l = \/5(9,5 \/ial
(3.12)
_ i _ 1 icsch
= o = i,

Conhecida uma base de Newman-Penrose, a descricao do espago-tempo consiste em expli-
citar os coeficientes de spin, responséveis por indicar como o cone de luz muda ao se mover
através do espago-tempo, e dos escalares de Ricci e Weyl, que contém a informacao que se
precisa sobre a curvatura e sobre a matéria existente. Utilizando-se as equagoes (1.28), (1.29)

e (1.40) aplicadas a base de Newman-Penrose (3.11), encontram-se os coeficientes de spin
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Y311 =

Y313

= 7244 =

o O o O

R > 9Q =

= 7242 =

Y243 = _T\/ﬁ( —;)

R
He (3.13)
= 7312

= Yom =0

1
= %(7211-1”7341) = 2\/5( —;)2
= ceR

3(V213 +3a3) = 22
= —feR

3 39 ™ T
|

S ™= ™
|

Os escalares de Weyl podem ser calculados diretamente pela Definicao 1.12 ou através das
identidades de Ricci (1.34). Para o wormhole em questao, todos os escalares de Weyl se

anulam a excecao de W — 2 que pode ser determinado com o auxilio da identidade

1 1
§(R1234 — Ray34) — 5(31212 — R3uz) + Riza, (3.14)

obtendo-se ap6s um pouco de manipula¢do e substituigao dos coeficientes de spin (3.13) e

das derivadas direcionais (3.12),

1 b 1 ¢ ¢ (¢)? 1 |t —b
\112——m+(1—;) {m—aﬁ-g—i—T}‘f‘{;—(ﬁ}(lzﬁ)- (3.15)

Da mesma maneira, os escalares de Ricci sao determinados com o auxilio das identidades
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de Ricci entre colchetes:

1
[Ri314] Poo = Eaz,u — i —2pue
[Ri312] ®o1 =0

1 1 1
—(Rss4a — R D1g = ———=0,0 — —=0pe +
[2( 3414 1214] P10 /5 )3 ) e + uf

1 2
[5(31212 — Rau1a] $11 = Eazé +4e? — Uy + A

R2441] (I)QO =0

1

5(31232 — Rauzp] @1 = —Pyp

Rizz] @ =0

1 1

5(31234 — Rayzq — §(R1212 — R3a12 — 2Ri304]

1 b 1 20 ¢ (¢)? 1L ][y —b
A_12r2 (1 r) {127~2+12r+12jL o] T 12r2 )7

(3.16)

onde as expressoes para os coeficientes de spin 3, p e £ sao dadas por (3.13).

Com as expressoes para a base tétrade de tipo-luz, as derivadas direcionais, os coeficientes

de spin, os escalares de Weyl e Ricci, completa-se a descricao do wormhole de Morris-Thorne
2

no formalismo de Newman-Penrose. No limite ¢/ = 0 e b = 7"70’ recupera-se as formulas

analogas para o wormhole ultraestdtico do Capitulo 2, equagoes (2.8), (2.9) e (2.10).

3.2 Perturbacao do Espaco-Tempo

O objetivo desta se¢ao é determinar as perturbagoes nos escalares de Weyl ¥y e Wy, porque
essas componentes possuem toda a informacao necessaria sobre a onda gravitacional emitida
pelo wormhole [15]. Todas as refréncias nessa se¢do podem ser obtidas nos trabalhos de
Teukolsky [17], Moreno & Nunez [22| e Moreno & Garcia-Salcedo [15].
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3.2.1 Equacoes de Teukolsky

Ha quatro identidades de Bianchi e duas identidades de Ricci (ver Segoes 1.2 e 2.2) as quais
sao lineares e homogéneas nas quantidades que se anulam no espaco-tempo nao perturbado

(a saber, os coeficientes k, o, A\, v e os escalares Wo, Wy, U3 e Uy):

Identidade de Bianchi R334 = 0 :

(5 — 4o + W)‘If() — (D — 4p — 2€)\Ifl - (3\1’2 — 2(1)11)/1 =
(647 — 26 — 28)Pgo — (D — 2 — 2p) Doy — FPgs + 20P1g (3.17)

Identidade de Bianchi R332 = 0 :

(A —dy 4 )Ty — (6 — 41 — 28)T; — (3V, + 2dy,)0 =
(6 + 27 —2B8)Pgy — (D — p — 2e + 28)Dy — 26P15 — APy (3.18)

Identidade de Bianchi Ryzp114) = 0 :

(D +4e — p)Wy — (0 + 47 + 22) U3 + (3Uy + 2011)\ =
(6420 — 27) Py — (A + fi + 27 — 27) Dy + 20P 1 + 5Py (3.19)

Identidade de Bianchi Ryous3j2) = 0 :

(0448 — 1)Uy — (A + 2y +4p)W3 + (3Vy — 209 ) =
(6 — 7+ 2a +28)Pgs — (A + 2[i + 27) Doy + 7Pyg — 2015 (3.20)

Identidade de Ricci para Ri313 :

Uo+(0—-3—a—717+T)k—(D—3c+é—p—po=0 (3.21)
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Identidade de Ricci para Royyo :

U+ (A+pu+pa+3y—)A—=(0+3a+B+m—1)v=0 (3.22)

A fim de se efetuar teoria de perturbagao no espago-tempo, é o bastante especificar a

geometria perturbada por

= 1"+10°

n = n?+nP

m = m*+mP

m = m*+mP (3.23)

onde A denota o valor no espago néo perturbado e B, a perturbagao (todas as quantidades de
Newman-Penrose podem ser escritas dessa forma). Primeiramente, elimina-se os coeficientes
de spin, os escalares de Ricci e os escalares de Weyl nao perturbados que se anulam no
espago-tempo original, e faz-se algumas simplificagbes com a ajuda das equagoes (3.13) e
(3.16), obtendo o conjunto de equagoes (3.17)*-(3.22)* governando as perturbagoes sofridas
pelo modelo de espago-tempo especifico, a métrica de wormhole (3.6). Em segundo lugar,
procede-se a reducao desse sistema da seguinte maneira:

i.Multiplique (3.18)* por (D — 5y — 3¢ + &), obtendo (3.18)**;

ii.Multiplique (3.17)* por (0 — 23), obtendo (3.17)**;
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iii.Subtraia (3.17)** de (3.18)** e use (3.21)* para obter a seguinte equagao?:

(D —5u—3e+ &) (A + pu—48) — (6 — 2B)(6 +4B) — 3Wy| V5 = Ty + Ty,
onde

Ty = (8 = 2B)[(D — 2p — 26) g, — 6D] +

(D —5u—3c+28)[(0 —28)8F — (D — pp — 2¢ +28)9F,

Too = [2(D — 211 — 3e 4+ 38) P11 — 3(A + p — 26 — 28)Pygg

—6DA —2(6 — 2B) P19 + 2011 D — 20150]0” +

[2(6 — 2B)®y — 2(D — 5 — 3 + &)Dyy — 36V, + 20,6 — 20, D]k

—(D — 5 — 3¢ + &) Do\

—(§ = 2B)[6 + (6 + 7 — 2a — 28)7]| Py (3.24)

Como ¢ explicado em [17], o conjunto completo das equagoes de Newman-Penrose ¢ invari-
ante sob a troca [ <+ n,m <> m e esta simetria nao é destruida em um espaco-tempo de Tipo
D, como é o caso do wormhole de Morris-Thorne. Pode-se, portanto, derivar® uma equacao

para UP pela aplicacio dessa transformagao a equagao? (3.24):

(A4 5u+38—e)(D—p+4e) — (0 —2B)(6 +48) — 3W,| U5 = T, + T,
onde

Ty = (6 —2B)[(A + 2u +28) @5, — 0BL] + (A + 5u+ 32 — &)[(6 — 28)DY

—(A + p+ 22 — 26) 0%

Tiao = [3(D — pp+ 26 + 28) Doy — 2(A + 2+ 38 — )Py +

6AA +2(5 — 26) Dy — 281, D + 201,007 +

[—2(5 — 2B8)®1; + 2(A + 5+ 38 — )Py +

30Wy — 20110 4 2010 AJv? + (A + 5 + 32 — £)Pgoi? +

—(60—2B8)[0 + (6 — 7 + 2a + 23) 7] Py (3.25)

20 sobrescrito nas quantidades nao perturbadas foi suprimido, por simplicidade.

3Ha uma maneira mais direta, semelhante ao processo de desenvolvimento da equacdo (3.24), o qual é
explicado em [15].

4Aqui o sobrescrito nas quantidades ndo perturbadas também foi suprimido.
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Pelo mesmo raciocinio feito em [22], pode-se mostrar que o lado direito nas equagoes (3.24)
e (3.25) se anula para o caso de um wormhole estatico e esfericamente simétrico. Feito isso,

obtemos as Fquagoes de Teukolsky para um wormhole de Morris-Thorne:

(D —5p—3e+&)(A+p—48) — (6 —28)(0 +4B) — 3U,|¥F =0 (3.26)

(D +5u+3c —&)(A — pu+48) — (6 — 28)(6 +43) — 3U,|¥F =0 (3.27)

Nas equagoes acima, os coeficientes de spin sao dados pelas expressoes (3.13).

3.2.2 Equacoes de Onda

O objetivo dessa se¢ao é o de encontrar uma equagao de onda que governe a radiagao gravi-
tacional a partir das Equagoes de Teukolsky (3.26) e (3.27) derivadas na se¢ao anterior. Para
tanto, devemos utilizar as relagoes de comutagao (1.33) entre as derivadas direcionais (3.12),
e a acao desses operadores sobre os coeficientes de spin (3.13), a fim de que as equagdes de
perturbacdo para ¢ = UF e (2 = p1WE equacdes (3.26) e (3.27), possam ser escritas
como uma unica equa¢do mestre em termos do parametro s (o qual assume os valores 2 ou

—2):

{AD — 65+ [ — (25 + 1) — €] D — [(2s + 1) + 2s¢] A +
—2(s+1)B6 + 2880 + s(2s + 1)[2(p + £)g — W] — 2s[(Ae)
—(08) + pe — &%) +4s(s + 1)BB +2(2s + DA} =0 (3.28)

A fim de transformar a equagao mestre numa forma de tipo-onda, é preciso seguir o seguinte
roteiro:
i. Substituir em (3.28) todos os valores para os coeficientes de spin (3.13), o escalar de Weyl
(3.15) e os escalares de Ricci (3.16);

ii. Fazer a substituicao

U(t,1,0,¢) = e ™emeR(1, 0), (3.29)
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para um modelo de fungao de onda, onde m é o nimero de onda (real), w ¢é a frequéncia (que
pode ser real ou complexa) e X([,6) ¢ a amplitude;
iii.Finalmente usar o fato de que ¥ # 0, para todo (¢,1, 0, ¢), obtendo-se

0?N 0?N ON ON

W—l—Bw+CE+D%+{(Ew2+Fiw)+(Gm2+Hm)+I}N:O,

onde
A =r*sind
B =sinf
C={2(s+ 1)rsinf + ¢'r’sinf} /1 — g
D = cosf
E =e¢ %r?sing
F=2se{rsinf — r*sinf¢'} /1 — g
G = —cscl
H = —2scotd
I=(1- g) {(2327—1—1)[702 sin 0]¢" — L?)_D[r2 sin 0](]5/2} -
+(1 - g) { (47 + 282 ) [ sin 6]¢’ + —(4823_ b sin 9} —
b 252 — 35 — 2
—(1— ;) {% sin@} +
+(b ;Tgb/> {(282; 2 [r?sin 0]¢' — s _58 - 2)rsin9} _
_(232%1) csc —
— ("~ 1) cot  cos 0 (3.30)

Esta é a equacao de onda que precisa ser obedecida por toda a radiacao gravitacional
emitida por um wormhole de Morris-Thorne. Perceba que F(r,¢,b) # 0 implica num aco-
plamento indesejavel entre frequéncia e potencial. Na proxima secao, vamos determinar con-
digoes sobre os parametros do wormhole de Morris-Thorne para que ocorra desacoplamento

e consequente solugao analitica da equacao.
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3.3 Frequéncias de MQN

Dividindo por —(r%sin®6) e somando —(2s* + 3s + 1)/3 a ambos os membros da equagio

de onda (3.30), atinge-se a separagao de variéveis, isto é, X([,6) = R(l)S(#) onde a equagao

angular é
WqLcot@@%—( m*csc” 0 — 2smceotfescl — s“cot*0+ s+ K)S =0 (3.31)

A equacao (3.31) juntamente com as condigoes de fronteira de regularidade em 6 = 0 e T,
constitui-se num problema de autovalor de Sturm-Liouville para a constante de separacao K.
Para s e m fixados, os autovalores serao indexados por j. O menor autovalor tem indice j =
max(|m|,|s|). Da teoria de Sturm-Liouville, segue que as autofungoes completas e ortogonais
sao os harmonicos esféricos de peso-spin Ysj, = Ssjm(0)e™?, e K = (j — s)(j + s+ 1). Para

mais detalhes, consultar [17].

Desde que a constante de separagao foi determinada, toda a informagao fisica é encontrada
na equacao radial que pode ser transformada em uma equac¢ao de Schrodinger através das
seguintes mudancas de variaveis:

dl 8

R(S)(l) — r*(8+1)Z(S)(l) e e e (3.32)

Assim, a equagao de onda mestre para a radiacao gravitacional emitida por um wormhole

de Morris-Thorne geral é

2
A2Z() — 70 (A2 _ 4 + w2> (3.33)

em que o potencial é dado por

V(I*) = —2siw [1 - qb'] e®4 /1 — L
r r

-5 (48 —1) 1—s% 5 (282+1)
1 _ / / /!
r 37“2 + 3r o+ 3 o+ ¢ ]} +

% —rb’ 2s +1)¢,_(232_+1)]}

272 3 3r
1 1-—

G+ 1)1} (3:34)
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Note que
T €—¢
I / " a (3.35)
0 /1 — g

Escolhendo ¢ = 0,b = (r2)/r, e substituindo em (3.33)encontra-se

2iwsl 2r2 j(j+1)
A? - 0 — ZE(1*) =0 3.36
( " (43 2+ P+ rg)) () (3.36)

que estéa em perfeito acordo com a equacgao (42) da referéncia [15] para o wormhole de Morris-
Thorne ultraestatico sem forca de maré (ver Capitulo 2). E imediato que o potencial tem a
mesma estrutura que o potencial do buraco negro de Kerr, que nao possui solucoes exatas
de modos quase-normais! Assim como este caso, muitos outros wormholes nao possuem uma

relacao elementar entre potencial e frequéncia de oscilagao.

Proceder-se-4 agora a busca por uma solugao exata procurando por algum tipo de wormhole
que nao possua a frequéncia acoplada com o potencial na equagao radial (3.33) com potencial

dado por (3.34). Essa condi¢do é expressa por

2siwe? (|1 — g[% —¢]=0 (3.37)

e vincula a fungao da métrica ¢ = ¢(r) a ser

¢ = % = ¢ =¢1 +Inr (¢ = constante) (3.38)

O que (3.38) sugere é que uma vez que vocé possa resolver a equagao angular (3.31)
exatamente para a constante de separacao, vocé serd capaz de determinar exatamente a
solucdo analitica da parte radial dada por (3.33) e (3.34), simplesmente como um problema

de espalhamento por uma barreira de potencial em Mecéanica Quantica [26].

Observagao: Apesar de ¢ em (3.38) satisfazer o vinculo de forga de maré (3.4) permitindo
transitabilidade, ele fornece um comportamento indesejavel para a solucao resultante porque
a componente g, da métrica nao mais sera assintoticamente plana. Para consertar isso, ¢é

suficiente fazer um corte de energia a uma distancia r = ag:

¢ =Inr —lInag, 0 <r < ag
¢=0, r>a (3.39)
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Como foi visto, para o caso de um wormhole de Morris-Thorne, a constante de separacao é
dada por K = (j — s)(j + s+ 1), onde j refere-se a0 momento angular do modo de vibragao.
Assim, a seguinte solugao,

2
2T

ds” = 2 dt* — dI* — r*(d6” + sin® 0dp?), 0 < r < ag

ds® = dt* — dI* — r*(df* + sin® 0dp?), r > aq (3.40)

a0 mesmo tempo, separa as variaveis na equacgao de perturbacao e desacopla frequéncia e
potencial na parte radial. A informagao fisica da onda gravitacional emitida por esta solucao

esta contida nas equagoes (3.33) e (3.34) que agora adquirem a forma mais simples

d*Z

72 +w?’Z =0, | = —00, | = 400 (3.41)
d2Z 2 * * *
a2 4+ wZ = %Z, —1 ((lo) S [ S [ (CL()) (342)

que revela um problema de espalhamento por uma barreira de potencial unidimensional
quadrada de altura Vj e largura a = 2{*(ag). Em (3.42), a altura da barreira esta expressa

em termos do momento angular do modo por

ji+1)+1
a? '

Vo= (3.43)

Baseado no que foi visto no Capitulo 1, Segao 1.3, inicialmente as equagoes (3.41)-(3.42)
serao tratadas como um problema de modos normais e entao buscaremos singularidades nos

coeficientes de reflexao obtidos. As solucoes fora da barreira sao

Z(l*) — Be—iwl*’ I* S _g

Z(I") = Ce™", I > (3.44)

N

e, para Vy < w?, pode-se definir o ntimero de propagacao dentro da barreira

- 7 (3.45)
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de modo que a solucao interna seja

Z(I") = Fe"" + Ge™", (3.46)

A continuidade de Z e dZ/dl* nos extremos da barreira, requisitada pelas condi¢oes de
fronteira, providencia quatro relagoes entre os cinco coeficientes. Elimina-se F' e G e resolve-
se para as razoes B/A e C'/A. Os quadrados dos valores absolutos dessas razoes sdo os

coeficientes de espalhamento (reflexdo e transmissao)|26]

| B 2 Vi sin? aa
A 4w?a? + V@ sin? aa
C 4w*a?

- (3.47)

J— 2 —
| A | 4w?a? + Vi sin® aa

Facilmente verifica-se que |B/A|? + |C/A|> = 1, como seria esperado para modos normais.
Para modos quase-normais, deverao haver ressonancias no plano complexo. As extensoes

analiticas dos coeficientes de espalhamento (3.47) sao

B Vo sin aa
A 2wa+iVysinaa
C 2wa

i 3.48
A 2wa +iVysinaa ( )

e uma ressonancia (A = 0) é atingida pelas frequéncias que obedecem & equagao

224/ 22 4+ Vg = —Vpisinaz (3.49)

onde

z=yw?=VyeC (3.50)

Portanto, a equagao (3.49) é uma equagao transcendental complexa que fornece as frequén-
cias quase-normais da solugao (3.40).

A tarefa esta agora completa: as solugdes de MQN de (3.40) sao dadas pelo conjunto de

equacoes

Z(I*) = Be ™" I - —c0
Z(I*) = Ce™", I = 400 (3.51)
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com as frequéncias determinadas por (3.49)-(3.50).

Observacdo. E importante perceber que a solucdo (3.40) ndo constitui um wormhole em si,
pois o vinculo (3.38) sobre a fungao da métrica ¢ torna tal fungao infinita em r = 0 e, segundo
os argumentos de Morris e Thorne, tal fun¢ao precisa ser finita em todo lugar. No entanto,
segundo a referéncia [35], a solugao especial (3.40) pode ser considerada um fluido perfeito,
estatico e esfericamente simétrico, que é solu¢ao ordinaria (nao exotica) das Equagoes de

Einstein. Isso ¢ verdade se tomarmos b = £ de modo a obtermos uma solugio da forma
ds? = M a2 — 2 gr? — 12402 (3.52)
com

(l// + )\/) N 62/\71
r T

’
V”"’VZ_V/)\/_

= 0. (3.53)

Vimos que nao foi possivel encontrar uma solugao exata para MQN na classe de wormholes
de Morris-Thorne. Encontramos, no entanto, uma solu¢ao semi-analitica através de (3.40) o
que ja representa um avango. No proximo capitulo, faremos uma nova tentativa através de

uma generalizacao da métrica do wormhole de Morris-Thorne.



Capitulo 4

UMA METRICA
SUFICIENTEMENTE GERAL

O objetivo deste capitulo é apresentar uma métrica que engloba as principais geometrias
de wormhole encontradas na literatura e generaliza os wormholes esfericamente simétricos
de Morris-Thorne pela inclusao de dois parametros adicionais a fim de atingir equacoes de
perturbagdo (ou de Teukolsky) onde o potencial pode ser desacoplado da frequéncia. As
Equagoes de Teukolsky para essa classe de wormholes foram determinadas via formalismo
de Newman-Penrose e conjectura-se que podem haver wormholes com essa caracteristica
de desacoplamento. A nova métrica provou-se muito geral no sentido de que a maioria das
geometrias de wormholes estudadas na literatura podem ser expressas como casos particulares

desta.
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4.1 Descricao do Espaco-Tempo

A meétrica a ser estudada nesse capitulo tem a forma

2

d
ds® = —e*dt* + 1% + (¢ +rH)dO* + (d* + r*sin? 0)dp* — 2r(d + csin0)dOdy — (4.1)

e sera denominada wormhole distorcido® porque ela diverge da simetria esférica pela inclusao
de dois parametros ¢ e d; quando ¢ = d = 0 a conhecida formula de Morris-Thorne (1.10) do

Capitulo 1 é recuperada.

4.1.1 Matéria Exética

Foi dito que wormholes surgem a partir de um “raciocinio inverso” na resolucao das equacoes
de Einstein, isto é, tomando uma métrica com algumas propriedades desejaveis como (4.1) e
encontrando o tensor energia-momento que a suporta. As equagoes de Einstein em unidades

geométricas (G = ¢ =1) sao
1
Gij = Rij — §Rgm = Sﬂﬂj (42)

ou, equivalentemente,
1 1
Ty =3, (Rij - §Rgz‘j) ; (4.3)

onde T;; é o tensor energia-momento no “referencial geométrico” (via isomorfismo)

ee=dt e, =dr ey=df e,=dp. (4.4)

!Estamos aqui adotando uma definicio de wormhole mais abrangente, permitindo auséncia de simetria
esférica. O importante é considerar essa métrica como uma classe de métricas que engloba uma série de
geometrias de wormhole de acordo com os valores dos parametros ¢, b, ¢ e d.
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Das equacoes

—e2¢ 0 0 0
o oaeyt o :
9 0 0 (r? + %) —7(d + csinf)
0 0 —r(d+ csinf) (d* + r*sinf)
(4.5)
—e™% 0 0 0
b
gij = 8 (1 0 r) (d%r? sin? 6) r(dgr?sin 0) Qikgkj = 5;
(Zsinf—cd)?  (r2sin0—cd)?
0 0 IR e
&m—F%J—ﬁMﬂJ%ﬂ%—F%ﬂ}mMeF%—%ﬂ(?ﬁ+€%§—%ﬁ) (4.6)

R = g" Ry, (4.7)
obtém-se as componentes da energia-momento no sistema de coordenadas (t, 7,0, ¢).

Para atingir uma interpretacao fisica simples das componentes da energia-momento, base-
ada em medigoes que observadores estaticos poderiam fazer, é preciso projetar os T;; em um

sistema de referéncia ortonormal, o qual é dado por

eél) = e % 1 ey = —e%e 1
iy =(1—7)e ei=(1-7) e
e’@ = i€ T mmg—ate €@ =Teo — de,
€la) = Tamga + Tamg e Cla) = —Ceo +rsinbe,
(4.8)
-1 0 0 0
i 1 00
€a)€0) = Ha)b) = 010
0 01

2Determinar a curvatura escalar R no sistema (¢,7, 6, ©) é computacionalmente dificil por meio das férmulas
acima. Como um escalar tem o mesmo valor em qualquer sistema, pode-se usar a tétrade de campos
vetoriais de tipo luz (4.15) e a equagdo (1.42) para o escalar de Ricci A a fim de se obter R = 24A [6].
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Um observador estético situado no wormhole (4.1) medira a seguinte densidade p (matéria

e energia por volume)?:

p=Tun = 6%1)6{1)717' = m (1 - %) {A + sianBch)Q(rfb) + 1= siSchd)} y
onde

A= (2rsin€ —cd — dd) [2:1(’;:%)} +d"d+2dd + ¢d’ — 2sin6

B = (r?cos — cd")(r?sinf cos  + ddt) + (r?sinf — cd)(d”* — dd't — 72 cos 26)

C = (2rsing — cd — dd)* — (cd — dd)* — (d+ csinf)? — (d' + ¢ sin 0)?r?

+2r(d + csin0)(d' + ¢ sin 6)

(4.9)

Outro individuo estatico no mesmo lugar ird observar uma tensao 7 por unidade de area

na diregao radial (negativo da pressao radial), determinada pela féormula:

T = —Te = —cuey Ty =
B b C
= A¢ 1- 2
o 327 (r?sin @ — cd)? ( r) N 8m(r2sinf — cd)?

1 b
— 1——-){DE+F
167(r2sin @ — cd)* ( r) {DE+FGY},

(4.10)

onde

3Uma adaga 1 ird sempre significar diferenciacio com respeito a variavel 6.
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~ —(2rsinf — cd' — dd) 1 b
8 (r2sinf — cd) r
B = (2rsind —cd —dd)?* — (cd — dd)? — (d + csin)? — (d' + ¢ sin 6)*r?

+2r(d + csinf)(d' + ¢ sin )

C = (r*cos — cd')(r?sinfcosf + dd") + (r?sin — cd)(d"* — dd' — r?* cos 20)

D = 2cdd® — d*r — 2cdrsing — dd'r? — *rsin6* — (cd' + ¢d)r*sin 0 + cc'r*sin 6
+2r3sin 6°

E = 27dd — d*r — 2cdrsin§ + dd'r* + *rsin 6> — (cd + Jd)r?sin @ — ed/r?sin 6
+2r3sin 6

F = & —ddr+cd®sinf + (dd? — 2cdd)rsin @ — dr?sin 0 — cr?sin 6° + d'rsin 6
+'r3sin 6°

G = —cd+ (2cdd—Ad)r —Psinf + dr® 4 *drsinf — d'r® — /rPsin 0

No limite da simetria esférica (¢ = d = 0), resultam as equagoes da referéncia [4] para os

wormholes de Morris-Thorne.

4.1.2 Cones de Luz

Até aqui trabalhamos com diferentes sistemas de referéncia, representando visoes distintas do
mesmo espago-tempo (4.1), um baseado em coordenadas curvilineas (¢, 7,6, ¢) com interpre-
tagao fisica e geométrica direta, outros baseados em bases ortonormais, denominadas tétrades
de Cartan. Entretanto existe também um tipo de “raciocinio reverso” para esta situacao: for-
necer a parametrizagao dos cones de luz e construir um espago-tempo a partir dela; esta
visao originou o conceito de espinor e foi inicialmente proposta por Penrose e desenvolvida
por Newman (para mergulhar nesse assunto fascinante, veja por exemplo [19]). Nesta secao,
seguiremos o desenvolvimento presente no livro de Chandrasekhar [6], onde o tratamento do
espago-tempo via formalismo de Newman-Penrose é adaptado para o formalismo tétrade de
Cartan, ao se representar o cone de luz por uma tétrade de vetores de tipo-luz em que dois
vetores sao reais e dois sao “complexos conjugados”, & semelhanga do desenvolvimento feito
por Geroch, Held e Penrose [20] na tentativa de incluir de maneira natural o formalismo

espinorial na Relatividade Geral.
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A semelhanca do desenvolvimento do Capitulo 3, a distancia radial propria é definida por

R R S

de modo que ela decresce de | = 400 no universo superior, para [ = 0 na garganta, e
entao de zero para —oo no universo inferior. Como vimos, esta distancia precisa ser bem
comportada ao longo de todo o espaco-tempo e representa uma “distancia de luminosidade”,
a distancia real medida por um observador estatico ao longo do caminho da viagem. Nessa

nova coordenada, a métrica (4.1) se torna
ds* = *dt* — dI* — (¢ + r?)df* — (d® + r*sin® 0)dp? + 2r(d + csin 0)dfdyp (4.12)

onde a troca de assinatura da métrica foi feita para efeito de comparacoes com resultados da

literatura. Efetuando-se a transformacao (4.11), a tétrade de Cartan para (4.12), se reduz a

ey =€ ‘e ey = e
o) = @ @)y = —€
6Z(A?)) 2 Ziiirelfcd@ + = sincefcd% ey = —req + dey,
61@) - sinde—cd69 + et 624) = ceg — rsinfe,
(4.13)
10 0 0
i 0 -1 0 0
€(a)€(b)i = ~H(a)(b) = 0 o
0 0 -1

Para uma descrigao da solugao de espago-tempo de wormhole (4.12) no formalismo de

Newman-Penrose se faz necessario usar as relagoes [21]

l=e = Zlew +e@ n=e=gleq —ep)

o)

(4.14)

m =e3 = \%[6(3) + 26(4)] m=e4 = %[6(3) — i€(4)],

onde a barra denota conjugacao complexa. Esta relagao corresponde a uma parametrizacao

complexa do cone de luz e que fornece a seguinte base tétrade fundamental, a qual sera usada
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de agora em diante*:

_ (e 1 i [e? 1
li_ <7§a_7§7070) I"= <W’7§’O’O)
_ (e 1 i_ [e? 1
n; = <7§77§7070) n = (%7_757070)
o —r+ic d—irsinf i_ r sin 0+id ctir
m; = <07 0, V2 \/% > m-= <O’ 0, \/5(7“82 sinf—cd)’ /2(r? sintcd)>
(4.15)
= —r—ic d+irsinf —i rsin §—id c—ir
m; = (0, 0, 73 —\/§ ) mt = (0, 0, ﬁ(TQ sinO—cd)’ \/§(r2 sin f—cd)
01
i 10 ab
e e i = a = =
atb Nab 0 0 1 n
00 —1 0
As derivadas direcionais correspondentes sao®
_ qi _ e? 1
_ 7 _ e® 1
A = n 82 = Wﬁt - 7581
(4.16)
_ i r sin 0+id ctir
o = m az T V2(r?sinf—cd) 80 + V2(r2 sin —cd) a<p
< 19 rsin §—id c—ir
0 = m 8’ T V2(r?sinf—cd) 80 + V2(r2 sin §—cd) 6¢,

Repetindo o que ja foi dito, a filosofia por tras do formalismo de Newman-Penrose é a
convicgao de que a estrutura do cone de luz faz parte da esséncia da gravidade e trabalhar

nesse referencial simplifica as equagoes. Dito isso, o problema agora consiste em substituir

4Na verdade, a generalizacio da métrica de Morris-Thorne comegou pelo acréscimo dos parametros c e d
como feito na tétrade de luz abaixo; tomamos o desenvolvimento inverso do raciocinio por nos parecer
mais didatico

50, é a derivada parcial na direcdo do vetor da base e,.
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as componentes da métrica pelos coeficientes de spin

K = 71

o = 7313

A= You

Vo= 242

H = 7243

p = peR

T V312

T = T4

€ = %(7211 + ¥341)
Yy = &

g = %(7213 + Y343)
a = —f

0

2V2(r2 sliancd) (1=2)2{(cd' — d) —i[(d + csinf) — (d' + ¢ sinO)r]}

T
0
1

(T s —cd) sline—cd) (1 — g) 2 {ed + dd — 2rsin b}
0

0

b\s [ ¢ - (d—csin®)—(d'— sin0)r
(1=7) {Wi T T VR sin —cd) }
r cos O+id!

24/2(r2 sin f—cd)

(4.17)

os quais determinam como que o cone de luz muda & medida em que ele se move através

do espago-tempo. As expressoes em (4.17) foram determinadas com o auxilio das equagoes
(1.28), (1.29) e (1.40) aplicadas a base de Newman-Penrose (4.15).

Um espacgo-tempo é denominado algebricamente especial de Tipo D se o tinico escalar de

Weyl nao nulo for ¥y. Essa geometria possui os cones de luz mais simples de todos, por-

que ha um teorema garantindo congruéncias geodésicas e sem distor¢ao formadas pelas duas

direcoes nulas principais, [ e n, assim como no caso do espaco Euclidiano onde um cone é

formado por congruéncias de linhas retas.

Teorema de Goldberg-Sachs [6]: Dado um espago-tempo de Tipo D, tem-se:

Vo=V, =0k =0=0, e as congruéncias de | sao geodésicas e sem distor¢ao;

Us =V, =0 v=A=0, e as congruéncias de n sao geodésicas e sem distor¢ao.

Exemplos de espagos-tempo de Tipo D sao wormholes e buracos negros, e em vista do te-

orema acima, pode-se analisar a equagao (4.17) a fim de se estabelecer o primeiro vinculo

sobre os parametros de distorcao c e d:



4.1. Descricao do Espaco-Tempo 61

Condigao de Tipo D:

cd —dd=0;

d+csinf — (d +sinf)r =0

Esta condigao ¢ satisfeita pela solugao geral

d(r,0) =rf(0) — c(r)siné, (4.18)

onde ¢ = ¢(r) é qualquer fungao radial se f(6) = 0 e é ¢ = kr, keC, no caso de f(0) # 0
desde que f(0) # (k + +)sin.

O escalar de Weyl W, pode ser calculado diretamente pela Defini¢cao 1.11 ou através das
identidades de Ricci (1.34). Com o auxilio da identidade

1 1
§(R1234 — R3y34) — 5(31212 — R3nz) + Rz (4.19)

e (4.18), obtém-se apés um pouco de manipula¢do e substituicdo dos coeficientes de spin
(4.17) e das derivadas direcionais (4.16),

_ _A B ,
V= 6[(r2+¢2) sin 6—cr f]? + 12[(r2+4c?) sin —cr f]2 (1 o 7_") +

C b 2(r+cc’) sin 0— f(c+c'r) b’ —b 1 b
+12[(T2+02)sin9—crf} (1 o ;) + |: 2(r24+c2)sin0—2crf ¢/] ( 1272 ) + E[¢/, + <¢/)2] (1 B ;)

onde

A=7r2ffTcos®+ crfi(r? + c?)sin fcos O+

+[2r2f2 — 2 f12(r2 4 ) — r2f fTT(r? 4+ 2¢%)]sin 0 + cr(r? + &) [f1T — 2f]sin? 6+
+(r? + )%sin® O + or® f2 £

B=1[2(r+cd)sinf — f(c+r))?

C=drf+2df—2sin0(1+c?+cc”) —[2(r +ccd)sind — flc+ cr)]¢’
(4.20)

Da mesma maneira, os escalares de Ricci sao determinados com o auxilio das identidades
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de Ricci entre colchetes:

1
[Rizia] Poo = —=0ipu — pi° — p(e + &)

V2

[Ri312] ®o1 =0
1
Rizia] oo = —=0u — pi* — ple + &
[ 1314] 00 \/§ o — M( )
[Ri312] ®o1 =0
1 1 .- rsinf +i(csing — rf) _ -
—(R — R byg = ——=0,8 — Ope+ (n+e—c¢
[2( 3414 1214] 10 \/§ 153 \/§(r2+02)sin9—\/§crf 0 (N )5
1 1
—(Ry212 — R Py = —=0(e+&)+(e+8)? -V + A
[2( 1212 3a12) P11 ) i ( )+ ( ) 2
Royq1] ®o0 =0
Rosa1] ®21 =0

Rosa3] Pag = Doy
(Rizse — Rauza] P12 = —Pyg
1332] Po2 =0

[
[
[
[
[
[ <R1234 - R3434 - %(R1212 - R3412 - 2R1324]

NI ol NI

-
I

A B . b
12[(r2 4 ¢?)sin @ — cr f3 + 48[(r? + ¢2) sin O — er f]? ( B ;> *
C ( b)+ [2(T+cc’)sin(9—f(c+c’r)_Hb,}

* 12[(r2 + 2)sinf —crf] \© 1 2(r2 + ) sinf — 2er f

()~ g5l w1 (1-2), 2)

onde A, B e C estao definidos em (4.20).

Na féormula acima, as expressoes para os coeficientes de spin 3, u e € sao

_rcos+i(rft —ccos0)
F= 2v/2[(r2 + ¢2) sin @ — crf]
fle+dcr)—2(r+cd)siné (1 B é)é
2v/2[(r2 + ¢2) sin @ — crf]

r

=

¢ , (¢ —r)siné b

o {2\/5 TRl ) sind crf]} ( i) (422)

Com as expressoes para a base tétrade de tipo-luz, as derivadas direcionais, os coeficientes

de spin, os escalares de Weyl e Ricci, completa-se a descrigao do wormhole distorcido no
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2
formalismo de Newman-Penrose. No limite ¢’ =c=d=0e b= TTO, recupera-se as formulas

analogas para o wormhole ultraestdtico da referéncia [15]:

S ERNG TIERa
cot
f=—a=_—
2V2(1% +13)2
7’2
Uy =———"

3+ )
Dy = Pip = Doy = Pyg = Py = Py =0

Doy = By = i
2
T
d 0
LT 422
73
A=— (4.23)

4.2 Perturbacao do Espaco-Tempo

Esta secao segue um raciocinio idéntico ao da Secao 3.2.

O objetivo desta se¢ao é determinar as perturbacoes nos escalares de Weyl ¥ e Wy, porque
essas componentes possuem toda a informacao necesséria sobre a onda gravitacional emitida

pelo wormhole [15]. Todas as referéncias nessa segdo podem ser obtidas nos trabalhos de

Teukolsky [17], Moreno & Nuiez [22| e Moreno & Garcia-Salcedo [15].

4.2.1 Equacoes de Teukolsky

H& quatro identidades de Bianchi e duas identidades de Ricci (ver Segao 1.2) as quais s@o
lineares e homogéneas nas quantidades que se anulam no espago-tempo nao perturbado (de

acordo com o Teorema de Goldberg-Sachs):

Identidade de Bianchi R334 = 0 :
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(6 —4a+m)Wo— (D —4p — 26)¥; — (3Uy — 201;)k =
(0+ 7 —2a —208)Po — (D — 2 —2p) Doy — RPpa + 20Dy (4.24)

Identidade de Bianchi R332 = 0 :

(A —dry 4+ )Ty — (5 — 41 — 28)T; — (3Vy + 2dy,)0 =
(5 + 27 — 25)@01 — (D — p — 2+ 2{::)@2 — 2:‘{,@12 — 5\(13()0 (425)

Identidade de Bianchi Ryspp114) = 0 :

(D +4e — p)Wy — (0 + 47 + 22) U3 + (3Uy + 2011)\ =
(5 + 2a0 — 2’7’)@21 - (A + ﬂ + 2’}/ - 2”3/)@20 + 21/(1310 + 5‘(1)22 (426)

Identidade de Bianchi Ryp32) = 0 :

(6 +48 —7)Uy — (A + 27+ 4p) Vs + (30, — 20, )v =
(6 — 7+ 20+ 2B) Doy — (A + 20 + 27)Pgy + 7Pog — 2APo (4.27)

Identidade de Ricci para Ry313 :

Uo+(0—-3—a—17+m)k—(D—-3c+é—p—plo=0 (4.28)

Identidade de Ricci para Rogyo :
U+ (A+p+pa+3y—9A—- (0 +3a+B+7—T)r=0 (4.29)

Equagoes (4.24)-(4.29) sao validas para todo espago-tempo genérico de Tipo D que nao esteja
perturbado.

A fim de se efetuar teoria de perturbacao no espago-tempo, é o bastante especificar a
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geometria perturbada por

L= 1"+07

n = nt4+nP

m = m*+mP

m = m*+mP (4.30)

onde A denota o valor no espago nao perturbado e B, a perturbagao (todas as quantidades de
Newman-Penrose podem ser escritas dessa forma). Primeiramente, elimina-se os coeficientes
de spin, os escalares de Ricci e os escalares de Weyl nao perturbados que se anulam no
espago-tempo original, e faz-se algumas simplificagdes com a ajuda das equagoes (4.17) e
(4.21), obtendo o conjunto de equagoes (4.24)*-(4.29)* governando as perturbagoes sofridas
pelo modelo de espago-tempo especifico, a métrica de wormhole (4.12). Em segundo lugar,
procede-se a reducao desse sistema da seguinte maneira:

i.Multiplique (4.25)* por (D — 5u — 3¢ + &), obtendo (4.25)**;

ii.Multiplique (4.24)* por (0 — 23), obtendo (4.24)**;

iii.Subtraia (4.24)** de (4.25)** e use (4.28)* para obter a seguinte equagao®:

(D —5u—3e+&)(A+pu—48) — (6 —2B)(6 +4B) — 3W,) V5 = Ty + Ty,
onde

Ty = (8 = 2B)[(D — 2p — 26)®g; — 605] +

(D —5p— 3¢ +28)[(6 — 2B)®5, — (D — pu — 2e + 28)®},

Toa = [2(D — 21 — 3¢ + 38) P11 — 3(A + p — 2e — 28)Dyg

—6DA — 2(5 — 2B)®1g + 281, D — 28,96]0” +

[2(6 — 2B)®11 — 2(D — 5 — 3¢ + &) P19 — 36Uy + 201,5 — 201, D]k”

—(D — 5 — 3¢ + &) Do \?

—(6=28)[6 + (6 + 7 — 2a — 28)"|®go (4.31)

Como ¢é explicado em [15], o termo extra Tp, representa a fonte quando o operador dife-
rencial perturbado ¢ e os coeficientes de spin perturbados o, k, A, a, 5 sao nao nulos. Como

é explicado em [17], o conjunto completo das equagoes de Newman-Penrose é invariante sob

60 sobrescrito nas quantidades ndo perturbadas foi suprimido, por simplicidade.
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a troca [ <> n,m <> m e esta simetria nao é destruida pela condicao de Tipo D. Pode-

7

se, portanto, derivar” uma equacgao para U pela aplicacdo dessa transformacao a equagao®

(4.31):

[(A+5p+35—e) (D — pu+4e) — (6 —2B)(6 +4B) — 3W,| WP =T + Ty,
onde

Ty = (0 —28)[(A +2u +28)®5 — 5] + (A +5u+ 35 —2)[(6 — 26)D)

—(A + p+ 22 — 26)0F)

Tio = [3(D — pp+ 26 + 28) Doy — 2(A + 21+ 32 — )Py +

6AN +2(5 — 2B8)®1p — 281, D + 20150\ +

[—2(0 — 2B)®11 + 2(A + 5y + 32 — )Py +

30Wy — 20110 4 2010AJv? + (A + 5 + 32 — £)Pgd” +

—(6 =2B8)[0 + (6 — 7 + 2a + 2/3) 5] Py, (4.32)

As equagoes (4.31) e (4.32) sao nao homogeéneas. Ha vérios modos de escolher uma per-
turbagdo que cause o anulamento dos lados direitos de tais equagoes. Em [22], o tensor
energia-momento é puramente radial de modo que as projecoes nao nulas sao fungoes de r
e t somente. O carater angular dos operadores nesse caso garante a homogeneidade. Para o
wormhole em estudo nesse trabalho, tal escolha nao funciona mas o conjunto de condigoes

abaixo possibilita o anulamento desejado dos termos Ty, To,, T4, Tha:

Of = 0f, =5 =05 =0

Py = Pyy = f(1,1)

P =P =X =18 =0

(6 +7 —2a —28)Bdgy = —0Pgg

(6 — 7 + 20+ 2B)PDgy = —6Dyy (4.33)

Aplicando as condigoes de homogeneidade acima, finalmente as Equacoes de Teukolsky sao

atingidas, as quais governam as perturbagoes, presentes nos escalares de Weyl U e WP da

"Ha uma maneira mais direta, semelhante ao processo de desenvolvimento da equacdo (4.31), o qual é
explicado em [15].
8 Aqui o sobrescrito nas quantidades ndo perturbadas também foi suprimido.
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classe de wormholes distorcidos, estaticos e de Tipo D:

(D —5pu—3c+8)(A+p—48) — (6 —28)(0 +48) — 3U,|¥F =0 (4.34)

(D4 5+ 32 — 8)(A — p +48) — (0 — 2B)(6 +43) — 3W,)¥F =0 (4.35)

Na proxima secao, essas equagoes serao reduzidas a uma equacao de onda.

4.2.2 Equacao de Onda

Atuando sobre Y¥2 onde

X = 1212 1 ) sin 6 — cr f]?,
crfT— (r? + ¢*) cos 6
(r2+¢?)sinf —crf

A=\0) = (4.36)
e usando as relagoes de comutagao entre as derivadas direcionais, e a acao desses operadores
sobre os coeficientes de spin, as equacdes de perturbacio para 1?) = UF e (=2 = \UE
equagoes (4.34) e (4.35), podem ser escritas como uma tnica equa¢do mestre em termos do

parametro s (o qual assume os valores 2 ou —2):

{AD — 66 + [ — (25 + 1) — ] D — [(25 + 1)1 + 2s¢] A +
—2(s+1)86 + 2585 + s(2s + 1)[2(u + €)& — Wy — 2s[(Ae)
—(68) + pe — €2 + 4s(s + 1)BB +2(2s + 1A} =0 (4.37)

Nao é dificil ver que o comentario apds a Condic¢ao de Tipo D (4.18) garante que a funcao
A = A(f) no integrando de (4.36) acima esta bem definida. Para um buraco negro, A =0 e
tem-se xy = r* de modo que a equagao (4.37) coincide com a equagao (13) em [22].

A fim de transformar a equacao mestre numa forma de tipo-onda, é preciso fazer o seguinte
roteiro:

i. Substituir em (4.37)todos os valores para os coeficientes de spin (4.17), o escalar de Weyl
(4.20) e os escalares de Ricci (4.21);
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ii. Fazer a substituicao
U(t,1,0,p) =e ™e™N(I,0), (4.38)

para um modelo de fungao de onda, onde m é o nimero de onda (real), w ¢é a frequéncia (que
pode ser real ou complexa) e X([, ) é a amplitude;

iii.Finalmente usar a condi¢ao de Tipo D (4.18), o fato de que ¥ # 0, para todo (t,1,6,¢), e
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apo6s muito trabalho, consegue-se

RN RN o 8N
A— B— - (E F L H IVR =
BT + 702 Caz 89+{ w? + iw) + (Gm* 4+ Hm) + } 0,
onde

A= (r*+c*)sind —crf
rf(r — csinf)
(r2 + c?)sinf —erf

B =sinf +

C={2(s+1)[(r+cd)sind — cf] + [(r* + ¢*) sinf — cr f]¢ + 2si(c'r — ¢)sinf} /1 — g
(Ar2 4+ ) sin? 0 — 2cr(f + f1)sin@ + 72 f(f + 2f7)
(r2+c2)sinf — crf
[sr(rfT — ccos®)sin@ — mrf]
(r2 4 ¢?)sinf —crf
E=e2[(r* 4+ *)sinf — crf]

D =2cosf +

-2

F=2se{[(r+cd)sinf — cf] = [(r*+ ¢*)sinf — cr fl¢'} /1 — 2
B (r* + ¢2)

¢= (P24 ) sind —crf

H— 2 [er fT — (r? 4 %) cos 0] y r2(\f — f1)

(r2+c?)sinf —crf Z(r2+c2)sin9—crf

s2—1)

I=(1- b) {(28 +1)[(7" +c*)sinf — crf]¢” — ( 3 [(r2+c2)sin6’—crf]gb/2} +

(45 +3s +2) o ;. (48* = 1) [(r + cc)sing — cf]?
[(r—i—cc)sm&—cf]gb +— (r2+c2)sin0—crf}

s(2s+1)  (dr—c)sind
4 (r?+c?)sinf —corf

r
b
r
—3s—2) /
_ _é{ s* 38 (1+02+cc")sin0—c’f]+
,
é s 2sin% 6
r 2 7“2+02 sm@—crf
)

{ (25" + 1 [(r* 4 c )Sinﬁ—crf]gb'—W[(T—kcc')sm@—cﬂ}—
(ersin® — r2f)(fIT + Af1)

(r2+¢?)sinf —crf }_

(r? 4 %) cos® O — 2cr fT cos O + r2 f12 b—rbt
{ (r2 4+ ¢?)sinf —erf } i 2r2

(sinf — Acosf) +

27“2
23 +
s —1

)s(c'r —¢)sinf —

(b—rb’) [f(sin® — Xcos@) + (fTT+ AfT)sin6] b, , .
_ (21 B sind—orf +i(1— ;)sc rsinf +

1
(dr —c)sinf[2¢’ — (T2+62)Sin0—crf]} +

[(r+ cd)sinf — cf](cdr —¢) sin9}

(2s —1)
(r2+c?)sinf — crf

(4.39)

gt
-

ﬁl@ ﬂl@
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Esta é a equacao de onda que precisa ser obedecida por toda a radiacao gravitacional

emitida por um wormhole distorcido.

4.3 Solucoes de MQN

A métrica (4.1) mostrou um poder de unifica¢do muito grande na medida em que quase todos
os wormholes (e incluindo buracos negros) mais comumente encontrados na literatura podem

ser vistos como casos especiais dessa classe. Uma lista com alguns exemplos poderia ser:

i.Wormbhole Ultraestatico [15]
¢=0,b=(r2)/r,c=0,d=0

ii. Wormhole de Morris-Thorne com Densidade Zero [1]
¢ =0,b=2GM,c=0,d=0

iii.Wormhole Proximal de Schwarzschild [1]
¢ =1/2In(1 —2GM/r +¢/r*),b=2GM,c=0,d =0
iv.“Foil” de Schwarzschild [23] (buraco negro para A = 0)
¢ =1/2n(1 —2GM/r + N?),b=2GM,c=0,d =0

v.Wormhole Cosmologico [24]

¢ =m/lparctg(l/ly) = u,b=r(1 — e*u),

c=+/(e2(P+ 1) —r?),d=—/(e (> + 1) — r?) sin b
vi.“Punch-through" Wormbhole [25|
¢ = 1/2In(((GZM? — 4r%)% + 1602r2) /((GM + 2r)* + 167%r?)),

b= (GMr +2r* —16r°)/(GM + 2r)

c =/ ((GM + 2r)* — 16r4) /4r,
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d=—+/((GM + 2r)* — 16r4) /4rsind
vii.“Timehole"|25]

¢ = 1/2n(1 — 2GM//X2+ 2)),b = /(N + [2)/2GMl,c = \,d = —Asinf

Todos esses wormholes irdo emitir radiagao gravitacional baseada na equacdo (4.39). No
entanto, é interessante notar que em todos os casos a equacgao se apresenta muito dificil de se
resolver devido a duas caracteristicas principais: o acoplamento da frequéncia com o potencial
(F # 0) de um modo semelhante ao que acontece com o buraco negro de Kerr, como pode
ser visto pelo potencial (3.7) da referéncia [34], cuja forma geral é dada por
dG

G?+ — 4.40
2 + + d'/’* ) ( )

2rA = (r=1)(r* +a*) AA

= w2 -2
Q= 1o (r2 4+ a?)? (r2 + a?)

e a separagao de variaveis que nem sempre é possivel. Como ja foi dito no comego, esse
trabalho visa encontrar uma solu¢do exata para a equagao (4.39). Para tentar encontré-la
serao analisados alguns casos baseados na equacao de desacoplamento, dada por F' = 0, ou
seja,

(r+cd)sinf —cf = [(r* + c*)sinf — cr fl¢/ (4.41)

Caso 1: Forcas de maré nulas

Esse caso consiste em se impor a condigao de que ¢ = 0 na equagao de desacoplamento

(4.41). Fazendo isso, obtemos a condigao (pois ¢ # 0)

/
fo) = (7”—1——006) sin 0 (4.42)
que equivale a condi¢ao
/
(rted) (4.43)
c

onde « é uma constante.

Substituindo esses valores na equagdo de onda (4.39), percebe-se que a separagao de varié-

14+k2
k

contradigao com o comentario apos a condi¢ao de Tipo D (4.18), pois f nao pode assumir

veis s6 ocorre se tivermos ¢ = kr e, portanto, a = . Infelizmente, essa situacao entra em
tal valor. Assim, wormholes com forcas de maré nulas até podem desacoplar a frequén-
cia do potencial, mas nao produzem separacao eficiente das variaveis na equacao de onda,

impossibilitando desse jeito uma resolucao analitica do problema.



72 4. UMA METRICA SUFICIENTEMENTE GERAL

Caso 2: Simetria esférica

Atingimos simetria esférica tomando o parametro f como zero. A equagao de desacopla-
mento (4.41) entao nos fornece
, T4
= — 4.44
¢ 7‘2 + C2 ( )
Novamente, a separacao de variaveis na equacao de onda aponta para a solucao ¢ = kr e

isso, por sua vez, nos da

1
o= (4.45)

que é o mesmo resultado que obtivemos no Capitulo 3 para o wormhole de Morris-Thorne
(k=0).

Caso 3: Separacgao de variaveis

Inicialmente, assuma apenas que o candidato tem um parametro ¢ = kr, e substitua-o na

equagao de perturbagao (4.39). A fim de se obter a separa¢ao de varidveis, é preciso ter

f(0) = asin® (« = constante) (4.46)

Agora divide-se a equagao resultante por sin f e soma-se a ambos os membros —(2s% + 3s +

1)/3, obtendo a equagdo angular

(v — k) d*S 1 2ak  2a® (a —k)*] dS
[1 + i cossect = (2 A + i )cotgh + i a Tt

ak —«
U

(28?2 + 1)
3

2 _ 2 2
- { ("~ 1) 1+ (@ — k) |cotgBcossech) — 25 +35+1) + K} S =0,

1 2 i
+ {—( —i(—]k >mQCossec20 —2(s + %)mcotg@cossec@ - [1— )]COSSGCQ_}

3 U 3
U=1+k —ak (4.47)
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e a equagao radial

d*Z b 1
—— +Ww?Z + 2siwe’\ |1 — —[- — ¢/]Z +
dl=? rr

2 2 2 2
+€2¢{(1_§)[1 s +(45 1)¢,+1 5¢,2+(23 +1)¢//]}

3r? 3r 3 3
o [ o= (282 + 1), (282 + 1)
v f oy - B
_€2¢{U1r2[(282+§8+1)+K]}Z:0 (U=1+k—ak) (4.48)

Uma simples analise das possibilidades para k e « a fim de simplificar as equacoes e torna-

las resolviveis de forma exata, leva a escolha especial
a=k (4.49)

Com essa escolha, a equacao (4.47) é resolvivel e, mais interessante ainda, tem-se que a
equagao (4.48) é idéntica aquela do caso Morris-Thorne de modo que ela também pode ser
transformada na equagao de onda padrao pelo mesmo procedimento ilustrado no Capitulo 3.
Tomando-se k = 0, obtemos a solugao (3.40). Para k # 0 obtém-se resultados similares, mas
a constante de separacao K na equagao angular sera diferente. No proximo caso, frequéncias
de MQN serao determinadas para um wormhole com parametros de distor¢cao nao nulos,

baseando-se num esquema de aproximacao.
Caso 4: “Modelo brinquedo”

Substituindo f = 0 nas equagoes (4.18) e (4.39), obtém-se uma equagao de bernoulli para
a condicao de desacoplamento
r+cd = (r* + )¢ (4.50)

que tem a solugao geral
2 = Ae? 4 20 e rldr (4.51)

De acordo com a equagao (3.4), tomando-se ¢ = 0, consegue-se um wormhole perfeitamente
transitavel porque nao haverd nenhuma for¢a de maré. Inserindo esse valor em (4.51), conclui-

se que o desacoplamento da frequéncia e do potencial neste caso é determinado por ¢ =

VC? —r2ed=—+/C? —r2¢inf, onde r vai de ry na garganta até r = C.
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Pode-se conseguir separagao de variaveis na equagao (4.39) se for considerado o esquema
de aproximacgao b < r < C. Neste caso, a equacao angular fica

d*S

dS
T + (1 + 2cotgh) —— — [m>cossec?d + 2smcossecfcotgh) + s*cotg?d —s — KC?|S = 0 (4.52)

dé

e a equagao radial se reduz a

R, s+6
il — — K+
B +w'R=] 5 +isr|R
d b
[ =1"e(—00, +00) d—qln =4/1— " (4.53)

Uma vez determinada a constante de separacao K, com o uso da equacao angular, a solucao

radial é alcancada fazendo-se a transformacao

1dR
J=——=— 4.54
R dl (454)
resultando na equacao de riccati
A 2
O;—l I B S Gl ) By (4.55)

Tomando-se b = (r2)/r e aproximando em segunda ordem a raiz quadrada r = /I? + r?
pela série [29]

=2_(=3) 4.
V=2 ) (4.56)
obtém-se a solugao exata
L 1 dw
T wdl
onde
6 6
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As frequéncias de MQN sao entao obtidas a partir dos zeros das func¢oes de Bessel, porque

havera divergéncia (ou ressonancia) nesses pontos:

1 b
wK:E V(z2+b2+a+i89\r/lé) Va2 +b?—a

(4.58)

Note que este wormhole nao apresenta modos de vibracao para s = 2, porque neste valor,
as partes imaginarias das frequéncias em (4.58) sdo positivas, e assim o que se obtém sao
“modos crescentes” (ndo amortecidos), que nao tem significado fisico.

Embora todas as tentativas a respeito tenham fracassado, conjectura-se que existam wormho-
les satisfazendo a condi¢do de desacoplamento (4.41) e que permitam simultaneamente a

separagao de variaveis na equagao de onda (4.39).



Capitulo 5

PROPAGACAO DE ONDAS
ELETROMAGNETICAS

O objetivo desse capitulo é mostrar que é possivel encontrar wormholes que tenham barrei-
ras de potencial idénticas a outros sistemas fisicos na Natureza, tais como um elétron ou
uma molécula de hidrogénio. Essa idéia vai de encontro ao raciocinio de Einstein, Rosen e
Wheeler em eliminar as singularidades (particulas quanticas e até buracos negros) por meio
de alguma estrutura unificadora. Na secao 5.1, a propagacao das ondas eletromagnéticas no
espago-tempo descrito no capitulo anterior é estudada mediante a perturbacao das equacoes
de Maxwell via formalismo de Newman-Penrose, assim como feita para os buracos negros
[17]. Na secao 5.2, buscaremos um candidato simples, significando simples uma métrica or-
togonal que satisfaga o Teorema de Birkhoff, separe as partes angular e radial da equagao
de perturbacgao obtida na Secao 5.1 e, finalmente, seja capaz de desacoplar a frequéncia de
oscilacao do potencial na equacgao de onda. Como resultado desse processo, felizmente seré
encontrada um tipo de geometria que preenche tais critérios e cuja barreira de potencial pode
ser modelada por sua funcao de forma. Na Secao 5.3, mostraremos que tal geometria pode
representar uma barreira de Coulomb pela simples resolu¢ao de uma equacao diferencial ordi-
naria na fungao de forma b. Um exemplo ilustrativo é dado e é mostrado que outras barreiras

de potencial podem ser modeladas pelo mesmo procedimento.

7
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5.1 Perturbacao das Equacoes de Maxwell

O objetivo desta se¢ao é determinar as perturbagdes nos escalares de Maxwell ¢y e ¢ (ver
Capitulo 1, Secdo 1.2), porque esses componentes contém toda a informagcao necessaria a
respeito das interagoes entre as ondas eletromagnéticas e a geometria de wormhole de fundo.
Como ¢é dito em! [17]: Como a amplitude da energia-momento eletromagnética é de sequnda
ordem no campo eletromagnético, a mudanca na geometria de base causada pela perturbagao
eletromagnética € também de sequnda ordem. Assim, nas equacoes de Mazwell, esta mudanca

na geometria pode ser negligenciada a apenas primeira ordem.

Em um espaco-tempo de Tipo D, as equagoes de Maxwell sao

(D = 2p)dr — (6 + 7 — 2a) o = 2,

(6 —27)d1 — (A4 p = 29)do = 21y,

(D — p+2¢)py — (6 + 2m) ¢y = 27,

(6 — 7+ 2B) s — (A + 2u) 1 = 27, (5.1)

em que os escalares ¢ sao campos de teste de primeira ordem e J; = J,l*, etc., com J, a
densidade de 4-corrente.

A fim de reduzir o sistema (5.1), basta tomar os seguintes passos:
i. Opere (0 — f — & — 27 + 7) na primeira equagao de Maxwell e —(D — e+ & — 2p — p) na
segunda;
ii. Some ambas as equacoes e elimine ¢, utilizando a identidade
[D—ec+e—=2p—pl(6 =27)=[0 - B —a—27+7|(D — 2p).

A equacao resultante sera

{(D-—e+e=2p-p)(A+pu—27)—(6—B—a—27+7)(6+7 —2a)} ¢po = 27y,
com

Jo=0—-0F—a—-214+7) S, —(D—ec+E—2p—p)Jpm. (5.2)

Como explicado em [17], o conjunto completo das equagoes de Newman-Penrose é invari-
ante sob a transformagao [ <> n,m <> m e esta simetria nao é destruida pela condi¢ao de

Tipo D. Pode-se portanto derivar uma equacao para ¢, pela aplicacao dessa transformacao

1O leitor interessado pode encontrar toda a base para o desenvolvimento feito nesta secio nas referéncias
[17], [6] e [22].
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a equagao (5.2):

{(A+y—F+2u+m)(D—p+2)—(0+a+B+2r—7)(6 —7+28)} ¢o = 21,
com

Jo=(A+y—F+2u+ @) Jm — (0 +a+ B +21 —7)J,. (5.3)

Escolhendo a densidade de 4-corrente nas diregoes de [ e n torna Jy e Jy iguais a zero
nas equacgoes acima, a homogeneidade sendo garantida pelo carater angular dos operadores
relevantes. Desta forma atingem-se as Equacoes de Teukolsky, que governam as perturbacoes

nos escalares de Maxwell ¢ e ¢, da classe de wormholes distorcidos estaticos e de Tipo D:

{(D—c+e=2p—-p)(A+p—27)—(6—B—-a—-2r+7)0+7—2a)}do=0 (5.4)

{(A+y=7+2u+pm)(D—p+2)— (+a+S+2r—7) 0 —74+26)} g2 =0 (55)

Agindo sobre x¢,, onde

x = e/ AP + ) sin b — erf],
crfT — (r? + ¢%) cos @
(r2 —c?)sinf —crf

A= A\0) =

(5.6)

e usando as relacoes de comutacao? entre as derivadas direcionais e a acao destes operadores
nos coeficientes de spin (4.17) da métrica do Capitulo 4, as equagoes de perturbagao para
Y = ¢y e P =y, equacdes (5.4) e (5.5), podem ser escritas como uma tinica equa¢do

mestre em termos do parametro s (o qual assume os valores 1 ou —1):

{AD — 65+ [ — (25 + 1) — €] D — [(25 + 1) + 2s¢] A +
—2(s +1)B5 + 2880 + 25 + 2(s + 2)eg — (s — 1)pe + 2(s + 2)ué +
+4(s + 1)8B — 2s[(Ae) — (38)] — (s 4 2) ¥y + 2(25 + D)A}® =0
(5.7)

Nao ¢ dificil ver que o comentario apos a condigao de Tipo D (4.18) garante que a funcado

2Consulte o Capitulo 1 de [6] para essas definicoes.
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A = A(0) no integrando de (5.6) acima esté bem definida.

Fazendo a substituicao
U(E,1,0,) = et OR(1,6), (5.8)

para um modelo de fung¢ao de onda, em que m é o nimero de onda (real), w é a frequéncia
(pode ser real ou complexa) e R([,0) = R(1)S(0) é a amplitude, e usando o fato de que ¢ # 0,
para todo (t,1,0, ), transforma-se (5.7) em

1 d®R 1 1 1 dR
—— —p—e—(2s+ 1)+ —=[(2s+1 2 —— —
5B A2 +{\/§[u e—(2s+ )5]+\/§[( s+ 1)p+ se]}Rdl

O
2
67¢ e*‘i’ 67(1)
—W{;@W—ﬁ—@8+ﬂﬂ+;§WS+UM+%Q+;§%}+

+2se% 4+ 2(s + 2)eg — (s — Ve + 2(s + 2)ué — 25(Ac) — (s +2)¥y +2(25 + 1)A
r? sin? 6 + d? lsz n
2(r?sinf — cd)? S db?
1dS (2imr(d+ csinf) ~ (rsinf + id)
S df { 2(r?sinf — cd)? T2As+ 1>B\/§(7’2 sin @ — cd)
+lﬁ i (rsinf — id) (rsinf —id)(d'sin @ — dcos 0)(c + ir)r
S db \/§<7"2 sin @ — cd) 2(T2 sinf — Cd)g
2 | 2
_ (7"' +¢c) m2 —
2(r2sin @ — cd)?
, - (c+ir) (¢ —ir) }
—im{—2(s+1 +2
" { (s )B\/ﬁ(r2 sinf — cd) s V2(r?sin @ — cd)
. s 2 o -i- .
. +(7’s1n0 1d)(r'cosé’ cd)(c+ir)|
2(r2sinf — cd)?
—4(s +1)B8 —2s(3p) (5.9)

As expressoes para i, €, 3, Uy e A sdo obtidas nas equagoes (4.17), (4.20) e (4.21).

Esta é a equacao de onda que deve ser obedecida por toda radiagao eletromagnética inci-

dente em um wormhole distorcido.
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5.2 Uma Solucao Especial

Até aqui foi apresentada no Capitulo 4 uma métrica que generaliza a maior parte das métricas
de wormhole estudadas na literatura atual e na Secao 5.1, a equagao que governa a propagacao
eletromagnética ao longo desta geometria foi determinada. Deseja-se agora encontrar uma
solucdo simples pertencente a essa classe e que satisfaca certas propriedades especiais. E
imposto que a solucao especial seja ortogonal, satisfaca o Teorema de Birkhoff3, separe as
partes angular e radial da equacao de onda e, finalmente, desacople a frequéncia de oscilagao
da barreira de potencial®.

Analisando as possibilidades, conclui-se que
p=¢1+Inr b=>b(r) c=kr d=—krsinf (5.10)

é uma métrica que satisfaz todos os requisitos. E imediato que tal escolha promove um com-
portamento indesejado na medida que a componente g;; da métrica nao seré assintoticamente
plana. Como foi visto no Capitulo 4, para se consertar essa situacao, é necessario fazer um

corte de energia a uma distancia r = ag:

¢ =lInr —Inag, rg <r < ag

Qb:O, TZCLO (511)

No proximo capitulo, esta mesma geometria seré usada na determinacao dos modos quase-
normais de um buraco negro, e entao a condicao k # 0 serd necessaria. Entretanto, para
os propositos desse capitulo, pode-se sem perda de generalidade tomar k£ = 0, obtendo a

seguinte solucao

2
ds® = 7"_2 dt* — dI* — r*(d6* + sin® 0dp?), 1o <1 < ag
)
ds® = dt* — dI* — r*(df* + sin® 0dp?), r > aq (5.12)

Substitutindo (5.10), com k = 0 em (5.9), e multiplicando por —2r?, atinge-se a separacao
de variaveis, isto ¢, R([,0) = R(l)S(0) onde a equagao angular é
d*S

W%—Cotgﬁj—z+(—m2cossec29—ZSmcotgﬁcosseCQ—(S—I— 1)cotg?@+scossec’0+C)S = 0 (5.13)

3Isto ¢, seja a tnica solucdo estética esfericamente simétrica da equacao de Einstein.
40u seja, o coeficiente de iw em (5.9) precisa se anular.
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A equagao (5.13) juntamente com condigbes de regularidade em 6 = 0 e 7, constitui-se
num problema de autovalor de Sturm-Liouville para a constante de separacao C'. Desde que
a constante de separacao seja determinada, toda a informacao fisica esté contida na equacao
radial que pode ser transformada em uma equagao de Schrédinger através das seguintes

mudancas de varidveis

dl
i~

Assim, a equagao de onda padrao para a radiacao eletromagnética propagando-se através

RO(1) = r= D Z0)(]) e? (5.14)

da solugao de wormhole especial (5.12) sera

2
A2Z(S) — VZ(S) <A2 = dcli*Q —+ w2> (515)

onde o potencial é dado por

vy = o fa- D - Lt AoyB b Sty ey
(5.16)
Note que ,
==+ c dr. 5.17
| = (517

r

Na préxima se¢ao um método sera apresentado a fim de se modelar sistemas fisicos através

desta métrica por meio da escolha conveniente de fungoes de forma b na equagao (5.16).

5.3 Barreiras de Potencial

O que foi visto até agora é que existe um tipo especial de métrica que possui um potencial
dependendo somente da fungao de forma b = b(r). Essa liberdade de escolha permite criar
um método para se interpretar varios sistemas fisicos apenas pelo ajuste da funcao de forma
a fim de se atingir a barreira de potencial desejada. No que segue essa técnica sera ilustrada
para uma barreira de Coulomb.

Seja [30]

e jj+1) et
- — 1
r + r2 4(5 +1)2 (5.18)

uma barreira de Coulomb, onde j é o momento angular e € é a carga elétrica do elétron. O

desejo aqui é o de que a equagao (5.15) represente esta barreira de modo que é preciso impor
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sobre (5.16),

ai%{(l B g)[(3+1)2 B 5(3;— 1)] N (b—2rb’)[333—:4 B 5(5;1)] B [C’+s+1]} _
:_67+j(j7:; 1) _4(j11)2’ (5.19)

dando origem a uma equagao diferencial ordinaria de primeira ordem para b,

Vb A 5(s+1)] B 62 6i(j+1)
Ur U U Urd Ur2a} ’
A= (3s+4)—6(s+1)*+15(s + 1),
3et
B = 1] — 12 +1 ) s
6[C+s+1]—6(s+1)+15(s+1) 202G+ 1
U=5s+1)r—(3s+4), (5.20)

cuja solucao geral® é

A a7 4 B 668 6j(j+1)
b— —15(s+ D=5 [ 4 [ L 750+ D) _3SA4U/ LI R Er=y Jant i dt
Qlr ] +lr |7 [ ] [U Utad  Ut?ad ]
(5.21)
Para uma caso de estudo simples, tome ) = lnag =0 e s = —1, entao
37 +1) » 3¢t 5
b=———=—16j(j+1) — ——]|rinr — 6¢ 5.22
67 +1) 2(j+1>2] (5.22)
A garganta ocorre em 7y como solucao da equagao transcendental
37(j+1) o 3¢’ >
=———16 1) = ———=]rinr — 6 5.23
r . 65(7+1) 2(j+1)2]r nr — Ge (5.23)
Sua amplitude de espalhamento é, de acordo com a referéncia [30],
T(j+1—is)D(1+is
Sj(w) = g ‘;) U+ ig,) (5.24)

2
T(j+1+io)0(1—is)

w

As ressonéancias ocorrem nos pontos de divergéncia de I', que s@o os inteiros negativos, pois

nao ha zeros para a fungdo gama no plano complexo [9]. Entretanto, para uma barreira de

5@ é uma constante.
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Coulomb ha apenas modos puramente crescentes,

. 2 1
o = w (5.25)

ou puramente decrescentes (n > j — 1),

i€

R (5.26)

Wy = —
Também é relevante nesse exemplo simplificado que a funcao de forma para o modo de
vibragao s = —1 tenha sido determinada. Isto poderia ter sido feito para o outro modo

também. Admitindo a forma (5.22), o potencial gerado por este wormhole no modo s = 1

sera
7B — 6 5B 24105+ 1) 10j(j+1
V = Blnr + | 102 — j(j+1)] - 37’—[6 105G+ D] J(J2+ ),
r r
3et
B=6jj+1)— —x,
77+ 1) ITEE

(5.27)

de maneira que, quando r — 0, ele também forma uma barreira de Coulomb.
O processo descrito acima pode ser estendido a outras barreiras de potencial [30], como as
de Morse, Poschl-Teller, Eckart, etc. Estas barreiras devem apresentar caracteristicas mais

interessantes, como modos quase-normais oscilantes por exemplo.



Capitulo 6

FREQUENCIAS DE MQN PARA
BURACOS NEGROS

Este capitulo continua o desenvolvimento feito nos dois capitulos anteriores que estudaram
algumas das propriedades de uma classe de métricas. No que segue, uma solucao especial,
pertencente a essa classe, serd usada na tentativa de se aproximar potenciais de buracos
negros de forma similar as quadraturas. Com essa abordagem, seré possivel determinar uma
técnica semi-analitica e equacgoes algébricas para as frequéncias de MQN dos buracos negros
de Schwarzschild e Kerr.
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6.1 O Problema

Buracos negros sao a caracteristica mais intrigante da Teoria da Relatividade Geral pois a
existéncia de um e completude do outro estao intrinsecamente ligadas. Entretanto, a métrica
de buraco negro é uma singularidade da teoria, uma estrela feita de vdcuo e um lugar no
universo que claramente desafia todas as leis da mesma Fisica que o criou! Tal comportamento
a parte, parecem haver sinais da presenca de buracos negros na Natureza, especialmente no

nucleo das galaxias, como a Via Lactea.

Apos o trabalho pioneiro de Regge & Wheeler [31] nos anos 50, as perturbagoes das métricas
de buracos negros foram extensivamente estudadas a fim de se responder & questao da possivel
estabilidade de tais objetos na Natureza. Vishweshwara [32] propos em 1956 a necessidade
de se considerar o efeito das frequéncias complexas nas equacoes de perturbacao, em que
a parte real representa a frequéncia de oscilacdo e a imaginaria representa uma taxa de
amortecimento. As oscilagoes a partir desses tipos de frequéncias foram denominadas modos
quase-normais para distingui-las dos modos normais de um sistema fechado (ondas planas).
Mais que isso, a definicao completa dos modos quase-normais implica que eles sirvam como
“digitais” do buraco negro no sentido de que, nos ultimos estagios, eles carregam somente
informacao a respeito da estrutura da métrica perturbada e nao da perturbacao que causou

o efeito. Revisoes completas desses assuntos podem ser encontradas em [6] e [33].

Wormbholes foram analisados do ponto de vista de seus modos quase-normais com os mes-
mos objetivos que aqueles dos buracos negros. Nesse capitulo, um candidato particular da
classe dos wormholes distorcidos estudada até entao sera escolhido por possuir um tipo espe-
cial de potencial. Munindo-se desses “blocos de construcgao”, procederemos a uma descri¢ao
das barreiras de potencial de Schwarzschild e Kerr. Nessa se¢ao, tal wormhole sera deter-
minado e na se¢ao seguinte, ele serd usado para se propor um método de determinacao das
frequéncias quase-normais para um buraco negro em geral preenchendo o espago-tempo com
estruturas de wormhole especificas de uma maneira similar a uma particao que preenche um

dominio de integra¢dao com intervalos.

Escolhendo-se f = 0 e ¢ = kr na equagao (4.39), que deve ser obedecida por toda a radiagao

gravitacional emitida por um wormhole distorcido, obtém-se apds alguma manipulagao a
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equacao angular

—k d*S 1 k21 dS
[ SIS S e
[ + i cossec@} T + {( U)cotg9+ U] 70 +
252 + 1
%cossec@—}

21 k? 252 1
— {u 1 + —]cotgfcossech) — (S%?M)

3 [ i +K}S:O,
U=1+k (6.1)

+ {—mZCossec2(9 — 2smcotgfcossect —

e a equacao radial

2z 1
d +w2Z+23iwe¢\/1—9[——¢']Z+
dl+? rr

+€2¢{(1 ~ 2)[1 S Dy, 1= S2¢,2 L (st + 1)¢,,]}

3r2 3r 3 3
o2 {(b ;rgb/)[(2823+ 1)¢, B (23‘;: 1)]} B
_€2¢{U1r2[(232—|—338+1)+K]}Z:0 (U:1+]€2) (62)

Procede-se agora, em analogia com o que foi feito no Capitulo 4, buscando-se algum tipo
de wormhole que nao apresente a frequéncia acoplada com o potencial na equacao radial

(6.2). Essa condicao ¢ expressa por

2siwe®y[1 — 2[% —¢'1=0 (6.3)

e o vinculo na fungdo da métrica ¢ = ¢(r) sera

¢ = % = ¢=¢1+Inr (¢ = constante) (6.4)

Novamente, o que (6.4) sugere é que uma vez que vocé possa resolver a equacgao angular
(6.1) exatamente para a constante de separagao, vocé serd capaz de determinar de maneira
exata a solugao analitica da parte radial dada por (6.2). Assim como no caso estudado no

Capitulo 3, a componente da métrica ¢ em (6.4) exige a necessidade de um corte de energia
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a uma distancia r = ag:

¢ =Inr —lnag, 0 <r < ag
¢=0,12>a (6.5)

Assim, a métrica procurada é

2
ds? = Z—%dﬁ — dI2 — (1 + k?)(d6? + sin? 0d?), 0 < r < ag
ds® = dt* — dI* — r*(d6” + sin® 0dp?), r > aqg (6.6)

que possui a propriedade de ao mesmo tempo separar as variaveis na equacao de perturbagao
e desacoplar frequéncia e potencial na parte radial. A informacao fisica da onda gravitacional

emitida por este wormhole esta contida nas equacoes

&2z,
pTE +wZ2=0, |l - —o0, | = +00 (6.7)
—5 WL =z, —I(a) < U < T (a) (6.8)

as quais revelam um problema de espalhamento por uma barreira de potencial unidimensional

quadrada de altura 1}, dada por
 K+s+3

Yo= ad(l+k2)

(6.9)

O processo de determinagao das frequéncias de MQN para a métrica (6.6) segue a mesma
linha de raciocinio utilizada no Capitulo 3, Secao 3.3, com a diferenca de que agora as alturas
das barreiras de potencial tém expressoes diferentes. Formalmente, no entanto, o resultado
¢ 0 mesmo, a saber

W=+ V (6.10)

em que vale a equacao transcendental complexa

220/ 2% 4+ Vo = —Vpisinaz (6.11)
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6.2 O Método

O principio do método que serd descrito nessa segao é o mesmo que o antigo conceito de
quadratura. Em uma integral de Riemann, integra-se uma func¢do tomando-se o limite de
uma aproximacao que é feita por retingulos construidos a partir de uma particao do dominio
de integragao. Os potenciais de buracos negros sao fun¢oes da coordenada tartaruga r, com
diferentes formatos para diferentes casos e o potencial da solugao especial de wormhole (6.6)
tem a forma de um retdngulo com diferentes alturas (6.9) para diferentes valores de k.
Portanto, é possivel se aproximar o potencial de um buraco negro por uma série de barreiras

de potencial de métricas especiais, e entao chegar a formula

ro+nM ) d,,,,* n )
/ 0" V1T~ 3 e Vi (6.12)
T 1=2

o+2M

Para se obter maior simplicidade computacional, pode-se tomar o passo como p = ry de

modo que a distancia entre o [-retangulo e o horizonte serd modelada pela métrica

2
ds? = z;? A2 — di2 — r2(1 + k2)(d6? + sin? 0dg?), (I —1)ro <7 < lrg
0

ds® = dt* — dI* — r*(d6” + sin® 0dp?), r < (I — 1)ro, 7> Irg (6.13)

a qual possui uma barreira de potencial quadrada dada por

K+s+3
V(i =Vi(lrg) = 55+—5< 6.14
(r0.0) = Villro) = 5 01" (6.1
para algum k convenientemente escolhido. As frequéncias quase-normais w; sao fornecidas
por meio da equagao (6.11).

Assim a formula (6.12) resulta em

n ro+nM d n
o?[re(ro+nM)—r,(ro+2M)]—ro Zw? ~ / V(r,o) T dr—rg Z Vi(lrg) = AV (rg,n),
1=2 ro+2M dr 1=2

(6.15)
estando a aproximacao garantida pela existéncia de k e sendo tanto melhor quanto menor
for o erro AV no potencial, isto é, 1o — 0 e n — o0.

Com a férmula acima torna-se possivel, a partir do conhecimento da forma do potencial de
buraco negro V', determinar frequéncias quase-normais aproximadas o para ele, simplesmente

pela resolucao de uma equacao algébrica. Na sequéncia esses calculos serao feitos para os
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buracos negros de Schwarzschild e Kerr.

6.2.1 Buraco Negro de Schwarzschild

A coordenada tartaruga' esté relacionada a coordenada radial por

dr, 12

=— A=r>-2M 1
T A r r (6.16)
e o potencial de Regge-Wheeler é dado por
jG+1) 2M 12M7?
V(r) = = —7£UQ+U+$+ i (6.17)

Assim, a formula (6.15) resulta em

To

Mo? {(n—?) —I—ln[l—i—M]Q} —roiwf —

1 1 1
- M — — I
ro +2M r0+nM]+3 [(To+nM)2 (7"0+2M)2] To g Vi(lro)

3+ DI

em que a existéncia de V;(Irg) = V(lry) esta garantida pela escolha de k em cada passo.

E importante ressaltar que foi encontrada uma equacio algébrica apenas de segundo grau

em o/

6.2.2 Buraco Negro de Kerr

Como um exemplo ilustrativo, toma-se M =1 e m = 0.

A coordenada tartaruga? esté relacionada a coordenada radial por

d* 2 2
di =1 Z“ A=7r2+a®—2r (6.19)

! As féormulas apresentadas aqui podem ser encontradas em [6] ou [10].
2 As formulas apresentadas aqui podem ser encontradas em [34] ou [10].
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e o potencial de Kerr é definido por
. 2rA = (r=1)(r* +a?) AA , dG
Vir)=2 G
(r) = 2isol (1?2 4 a?)? I+ [(7“2 +a?)? e dr*]’
A= Cj,+ a’*0® + 2amo — s(s + 1),
s(r—1) rA
= 6.20
r2+a®  (r24a?)? (6:20)
Assim, a formula (6.15) fornece
ro+n r2 + a?
o / dT—TOZwl = F(c% 0,7) ,tgig—rOZV Iro) (6.21)

0+2

onde a fung¢ao F' tem no méaximo grau 2 em ¢. Novamente atinge-se uma equagao algébrica

apenas de segundo grau em o, mas dessa vez ela ocorre sobre o corpo complexo.



Capitulo 7

WORMHOLES LIMITROFES

Nesse capitulo, uma solucao com a matéria exotica restrita a duas conchas infinitesimais
em torno da garganta do wormhole é introduzida como um limite especial de uma classe de
solugoes pré-fixadas. A propagagao de ondas gravitacionais e eletromagnéticas através de tal

geometria com contetido minimal de matéria exdtica ¢ investigada a partir dos resultados

anteriores.
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7.1 Introducao

A parte os problemas teéricos decorrentes da necessidade de existéncia de grandes montantes
de matéria exoética para sustentar wormholes macroscopicos os efeitos astrofisicos nao tri-
viais provenientes da existéncia de um wormhole tém sido intensivamente investigados nos
ultimos anos. O espalhamento de ondas escalares em uma classe de solugoes de wormhole
foi investigado por Kar e Sahdev [36], e algumas ressonancias devido a estados fundamentais
foram identificadas. Essas ressonancias poderiam, em principio, fornecer informacgoes sobre
o tamanho e forma da garganta do wormhole. Novamente, o problema do espalhamento foi
tratado numericamente.

Aqui nés mostramos como obter, tomando-se um limite apropriado na classe de solugoes
introduzida em [36],uma solucdo com a matéria exética restrita a duas conchas infinitesimais
localizadas em torno da garganta do wormhole.

A classe de solugoes de wormbhole introduzida em [36] ¢ dada por

dr?

ds* = dt* — = — r’df® — r*sin® fdp? (7.1)

" o fam - (2)]) 2

ou seja, consiste basicamente em uma classe de wormholes de Morris-Thorne com forcas de
maré nulas.

Assim temos —oo < [ < +o00 e
() =rg + 1" (7.3)

com n par. O wormhole minimal surge no limite n — +o00. Neste caso, temos 7(l) = ry se
ll| <rg,er(l) =1sell] >y, de modo que o espago-tempo ¢ plano fora do wormhole.
Para esta geometria de wormhole, as componentes do tensor energia-momento diagonal
sao [36]
1 2(n — )" 2y + 1272

=i ey i
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(n — )" 2

p(l) = (rpy +1m)?2

(7.6)

As condigoes de energia fraca, dadas por p > 0, p+7 > 0 e p+p > 0, sdo violadas para todo
n. Entretanto, em nosso limite n — +00,é facil ver que toda a matéria exética necessaria
estd confinada nas conchas infinitesimais |I| = r¢ pois a solugao é plana para || > r( e, para

|| < ro,temos p = —7 = % ep=0.

7.2 Ondas Gravitacionais

Vimos no Capitulo 3 que a equagao de onda para a radiagao gravitacional emitida por um

wormhole de Morris-Thorne geral é

2
A2Z) = vz <A2 = dcliﬁ + w2> (7.7)

em que o potencial é dado por

_62¢{(1 _ g)[l?;j (453_ 1>¢/_'_ 1 35 ¢/2+ (25 3+ 1)¢//]}
2 {(b;r;“b’ﬂ(% 3—1— 1)¢, B (283:— 1)]}
—ee - LESE iG] (7.9

O wormbhole limitrofe é dado pelo limite de uma sequéncia de wormholes de Morris-Thorne.
Portanto, é razoavel esperar que ele deva oscilar de acordo com essa equacao. Substituindo

¢ =0 e (7.2) para o n-ésimo wormhole da sequéncia, teremos a equagao (7.7) com potencial
(7.8) dado por
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(7.9)

O potencial resultante para o wormhole limitrofe consiste no limite de V,, quando n — +oc.

Estes pontos estao agora sob investigacao [40].

7.3 Ondas Eletromagnéticas

Como vimos no Capitulo 5, a propagacao de ondas eletromagnéticas é governada pela equacao

1 @R 1 1 1 dR
O e (254 1)+ ——[(25 + 1)+ 2se] b =
57 A2 +{\/§[,u e—(2s+ )5]+\/§[( s+ 1)+ SE]}Rdl
are

2

e 25 + 1 € s+ 1)+ 2 e’y

Ciwd T — e — (25 + 1)8] + —=[(25 4+ 1)+ 2se] + —=2e b +
w{\@[u - (25 1)e] + 25+ D 254 ﬂ}

42562 + 2(s 4 2)eé — (5 — D)pe + 2(s + 2)pué — 25(Ae) — (s +2)¥y + 2(25 + 1)A
r?sin?f +d?> 1d*S N
2(r?sinf — cd)? S db?

+l§ 2imr(d + csin6) L o(s+1)8 (rsinf + id) B
Sdf | 2(r?sinf — cd)? V2(r2sin§ — cd)
1dS (rsinf —id) (rsin@ —id)(d'sin @ — dcos 0)(c + ir)r
SRR o .
S db V2(r?sinf — cd) 2(r?sinf — cd)?
(r* +¢) 2

2(r2sinf — cd)?
: - (c+1ir) (¢ —1ir)
- {_2<S * 1)6\/5(7“2 sinf — cd) 250 V2(r2sinf — cd) }
, (rsin@ —id)(r? cos 0 — cd)(c + ir)
- {+ 2(r?sinf — cd)? } B
—4(s +1)B6 — 25(6p) (7.10)

Substituindo os valores ¢ = ¢ = d = 0, correspondentes ao wormhole limitrofe, obtemos
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como resultado, apos alguma manipulacao, uma equagao angular e uma equacao radial, sendo

esta ultima dada por

d*Z )
com potencial
V() = in(s—i__l) 1 _g
(s+2) (s+2) b, (s+2), 70 —0b
_ 12y —
+ 3r? 3r2 ( 7") r ( 612 )+
(2s+1) (2s+1) b, (2s+1) 70 —b
— 1— = —
+ 3r2 3r2 ( T)+ r ( 3r2 )
(s+1)(s+2) b 2(s+1)2 b, (s+1),b—rV
) Y Nl AN Mt Y RO B Sl M [
¢ r2 r+ r2 ( r)+ r ( 2r2 )

(7.12)

em que C' é a constante de separacao determinada a partir da equagao angular.

A equagao (7.12) fornece o potencial para o wormhole limitrofe num processo de espalha-
mento de ondas eletromagnéticas desde que se saiba qual é o exato valor da fun¢ao de forma
b, isto é, novamente é preciso resolver o problema de se determinar o limite no infinito para

a funcado b. Estes pontos estao agora sob investigagao [40].



Capitulo 8

DOBRAS ESPACIAIS

Nesse tltimo capitulo faremos um breve estudo das oscilagoes a serem apresentadas por
um tipo de solugao exotica das Equacoes de Einstein denominada dobra espacial. Primei-
ramente, serd introduzido o conceito de dobra espacial e serd visto que tal espago-tempo
produz violacao das condigoes de energia, sendo necessario matéria exotica para manté-lo.
Em seguida, o procedimento utilizado em capitulos anteriores sera aplicado & métrica de do-
bra espacial de Alcubierre, considerada tao importante quanto é a métrica de Morris-Thorne
para os wormholes; seré feita uma descricao do espago-tempo em questao no formalismo de
Newman-Penrose e depois as quantidades relevantes serao perturbadas. Obtendo as Equa-
¢oes de Teukolsky para o caso considerado, serao definidas condi¢oes sobre os parametros da
métrica a fim de que se possa encontrar uma solucao analitica para a equagao de onda unidi-
mensional resultante. Infelizmente, o mais longe que nossa analise nos levou foi & construcao
de um modelo de dobra espacial que apresenta frequéncias de MQN similares as da solucao
especial derivada do wormhole de Morris-Thorne do Capitulo 3, isto é, a solucao encontrada

pode ser considerada apenas como sendo semi-analitica.
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8.1 Apresentacao

Em 1994, o fisico mexicano Miguel Alcubierre propos a existéncia da dobra espacial como
modelo matemaético consistindo num método para se deformar o espaco em uma onda que
poderia em teoria contrair o espaco a frente de uma espagonave e expandi-lo na parte pos-
terior. A nave entao navegaria por essa onda dentro de uma regiao conhecida como bolha
de dobra, formada por espago plano. Como a nave nao se move dentro dessa bolha,mas é
carregada pela regiao pela qual a bolha se move, efeitos relativisticos convencionais nao se
aplicam da maneira como aconteceria se a nave estivesse viajando através do espago-tempo
plano com alta velocidade. Esse método de viagem também nao envolve movimento mais
rapido que a luz em um sentido local, pois um feixe de luz dentro da bolha continuaria a se
mover mais rapido que a nave; ele é apenas mais rdpido que a luz no sentido de que, gracas
a contracao do espaco na sua frente, a nave poderia alcancar seu destino mais rapido que um
feixe de luz restrito a viajar fora da bolha de dobra. Assim, a dobra espacial nao contradiz
o fato de que a relatividade proibe que objetos mais lentos que a luz possam acelerar até

velocidades superiores as da luz.

Para a dobra espacial de Alcubierre, a métrica de espago-tempo é dada por
ds® = dt* — dz* — dy® — [dz — v(t) f (v, y, 2)dt]? (8.1)

A fungao de forma f(x,y, z) deve possuir a caracteristica geral de ter o valor f = 0 no exterior
e f = 1 no interior da bolha de dobra. A classe geral de fungdes de forma escolhida por
Alcubierre foi a das fungoes esfericamente simétricas f(r) com r = \/m Sempre
que um exemplo especifico é solicitado, o modelo de funcao de forma mais utilizado na

literatura é
_ tanh[o(r + R)] — tanh[o(r — R)]

2tanh(cR)

f(r) (8.2)

onde R > 0 e o0 > 0 sao dois parametros arbitrarios. No que segue, entretanto, nao iremos
impor nenhuma condigao sobre a funcao de forma f; o que iremos fazer é determinar quais
as expressoes para v(t) e f(x,y,z) a fim de que possamos obter uma solugao analitica para

as perturbagoes gravitacionais sofridas por uma dobra espacial.

Com a forma particular (8.1) da métrica, ¢ possivel demonstrar! que a densidade de energia

medida por observadores cujas 4-velocidades sao normais as hipersuperficies ¢ = constante ¢é

LConlferir [5].
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dada por
v*  Of., Of
—%[(%) +<8_y

Portanto, como a densidade de energia é negativa, precisamos de matéria exoética para viajar

p= )’] < 0. (8.3)

mais réapido que a velocidade da luz. Como vimos, fenémenos como o efeito Casimir e a
aceleracao do universo dao suporte a uma possivel existéncia de matéria exética na Natureza.
Entretanto, gerar matéria exética suficiente para produzir caracteristicas como viajar além da
velocidade da luz ou manter aberta a garganta de um wormhole é por enquanto impraticével.
Acredita-se que assim como para os wormholes, nao existe dobra espacial sem que haja
matéria exdtica para sustenta-la e que uma teoria consistente da gravitacao quantica ira

resolver tais problemas [5].

8.2 Descricao do Espaco-Tempo

A fim de descrever o espago-tempo (8.1) no formalismo de Newman-Penrose, considere inici-

almente o seguinte referencial ortonormal:

e, = (1,0,0,0) el = (1,0,0,vf)
es; = (0,-1,0,0) e, = (0,1,0,0) (8.4)
esi = (0,0,—1,0) e, = (0,0,1,0) '
esi = (vf,0,0,—1) et = (0,0,0,1)
Através das relagoes [21]
l=e1=Jleq) +e@] n=e =l —e)
(8.5)

m=e3 = Zle +icw] m=es =l —iew),

onde a barra denota conjugagao complexa, obtemos a base tétrade fundamental, a qual sera
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usada de agora em diante:

_ 1 1 i 1 1 vf
b= (959000 F=(J 70 %)
_ (1 1 i (1 1 of
n; = (ﬁa%aoao) n = (757_75707_2>
_(wf g L =i i A i
mz_<\/§707 ﬂ7ﬁ> m _<070a\/§7\/§>
(8.6)
m:(_MO_LL> mi:<00L_L)
1 \/57 9 \/57 \/5 ? 7\/§’ 2
01 0 O
i 10 0 ab
€l ey = Nap = =
a€bi = Tab 00 q n
00 —1 0
As derivadas direcionais correspondentes sao
_ i _ 1 1 vf
D = ['0; = 758,5 + 7583; + 75@
_ % _ 1 1 vf
(8.7)
— oming 1 i
) = m (97, = 75@, + 7582
T mig 1 i

Utilizando-se as equagoes (1.28), (1.29) e (1.40) aplicadas & base de Newman-Penrose (8.6),

encontram-se os coeficientes de spin
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K = 7311
0 = 7313
A= You
V. = 7242
H = 7243
P = 7314
T = 7312
T = Ya
e = (711 +7sa1)
No= %(7212 + V342)

g = %(7213+’Y343)

o = %(7214‘1"7344)

vf,
2v/2

_of.
NG
i f, (8.8)
ot

_z'vfx
2v/2

W fy
442

W fy

42

1w fy

42

v,
42

Nesse ponto, precisamos restringir nossa funcao de forma a fim de obtermos um espaco-

tempo de tipo D. Isso é necessario para que possamos usar as identidades de Teukolsky-

Starobinsky no desenvolvimento feito na préxima secao. Para tanto, precisamos nos limitar

a dobras espaciais que apresentem os coeficientes de spin k, o, A e v todos nulos, ou seja,
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precisamos lidar com funcoes de forma que satisfacam as seguintes condigoes:

fy=1=0 (8.9)

isto é, devemos ter f(z,y,2) = f(x).

Com a condicao de Tipo D acima satisfeita, os coeficientes de spin ficam

T:T[':QCIZ—QB:—;Q% (8.10)

Os escalares de Weyl podem ser calculados diretamente pela Definigao 1.12 ou através das

identidades de Ricci (1.34). Para o espago-tempo (8.1), obtemos os seguintes valores:

\IJQ = \I’Q - \IJ4 - 0
Wefz  Wfee
Uy = ;f + g (8.11)

iUtf:c . vaa:a:
8 8

A fim de obter maior simplificacao das equagoes, vamos impor
ve=0 fow=0 (8.12)

de modo que se tenha o anulamento de todos os escalares de Weyl. Com isso, nossa dobra
espacial possuird uma velocidade de dobra uniforme, dada por v = vy e uma funcao de forma
linear f = ax + .

Os escalares de Ricci sao determinados com auxilio das identidades de Ricci entre colchetes
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(ver Capitulo 1):

[Ri314] ®oo =0

[R1312] (1)01 = O

1

[§<R3414 - R1214] q)IO = O

1 v f2?

- _ B, = Iz

[2 <R1212 R3412] 11 16

U2 2

[Roun] @ = =

[R2421] @21 = O

[R2423] (1)22 = O

1

[§<R1232 - R3432] q)12 = O

U2 2

[Rissa] o2 = éfx

1 1

[§<R1234 - R3434 - §(R1212 - R3412 - 2R1324]
N

16
(8.13)

Até o momento podemos resumir a descri¢ao do espago-tempo de dobra espacial que esta-
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mos estudando no formalismo de Newman-Penrose pelas seguintes expressoes:

ds* = dt* — da* — dy* — [dz — vo(az + b)dt])?
vo(azx +b)

1
D=—70+—=0, 0.
V2 V2 V2
1 1 vo(az +b)
A= —0——7=0, + —F—=0,
V2 V2 V2
1 i
0= —7=0, + —=0,
V2l V2
5:L3y_iaz

V2 V2
7':7T220z:—2ﬁ:——w0a

2V/2
\1102\1/1:\112:\1’3:\1/420

q)()() = cI)()l = q)l() =Dy =Py = Py =0
via®

K

Doy = Pyp = 201 = —2A =

(8.14)

8.3 Perturbacao do Espaco-Tempo

Nessa se¢ao, as equagoes que determinam a perturbagao gravitacional sofrida por uma dobra
espacial serao determinadas. O desenvolvimento seré feito em estreita analogia com a Secao

3.2 relativa ao wormhole de Morris-Thorne.

8.3.1 Equacoes de Teukolsky

Apos efetuar a perturbagao do conjunto de equagoes (3.17)-(3.20) e substituir os valores para
os coeficientes de spin e escalares de Ricci e Weyl presentes em (8.14), ficamos com o seguinte

sistema de equacgoes:

(6 —7)UF — DUP +20,,x% = (0 + )5 — DOJ — dpor” (8.15)

AVS — (6 = 37)UP —20,,0% = (0 4+ 27 + 7)BF — (D — p— 2e +25)P D, — DS, (8.16)
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DUE — (5 +57)UF 420, )\5 = (0 +7 —27)BF — (A + i + 2y — 27)Bdyy — ADE (8.17)

(6 —37)UF — AUE — 20,08 = (6 + 7 — 27)0F, — ADE 4 dyy” (8.18)

Operando (0 —37) em (8.15) e D em (8.16) e subtraindo as equagoes resultantes, obtemos

[DA — (6 —37)(6 — 7)]¥5 =
= 2D(I)110'B + 2(5 — 37’)(1311/{B + (5 — 37)(1302/%3 — D(D — ﬁ — 2+ QE)B@OQ +
+[D(§ — 7) + (6 — 37)D]®y — (6 — 37)(6 + 7)®f, — D*®F, (8.19)

onde uso foi feito da identidade (2.11) de [17| dada por
[D=(p+De+etap—pl(0 =pBf+qr)=[0—(p+1)—a+7+qr|(D—pe+ap).
Da mesma forma, operando A em (8.17) e (§ + 57) em (8.18) e subtraindo as equagdes

resultantes, obtemos

[AD — (6 +57)(0 — 37)|¥¥ =
= —QA(I)H)\B — 2(5 + 57’)(1)11VB — (5 -+ 5T)CI)2017B - A(A + ,EL + 2’)/ - 2’3/)BCI)20 +
+A(0 + 37)05 — A*®5 — (0 + 57)(8 + 37)P3, + (6 + 57)ADS) (8.20)

onde uso foi feito da identidade (2.11) de [17] dada por
[A+(p+1)y=7—au+pld+pa—qgr)=[0+ @+ DatB—7—qr](A+py—qp).

Impondo as condi¢oes de homogeneidade abaixo sobre a perturbacao,

o =kP =) =1 =0,

(D — p— 2¢ + 28)Pdqy,
(A + 1+ 2y — 27) PPy,
dF =08 = df, = 08 = df = 8 =0, (8.21)

resultam de (8.19) e (8.20) as Equagoes de Teukolsky que governam as perturbagdes nos

escalares Uy e Wy, os quais contém as informagoes sobre a onda gravitacional [15]:
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[DA — 66 + 376 — 372|¥g =0 (8.22)

[AD — 66 — 576 4+ 157%|¥5 = 0 (8.23)

8.3.2 Equacao de Onda

Com procedimento analogo ao dos capitulos anteriores, obtivemos a partir das equagoes

(8.22) e (8.23), uma equagao mestre

(AD — 55+ Z(s — o+ Z(s + )7 — g@ _ %)#}W 0 (8.24)
onde (72 = UF e @ = U5,
Adotando o modelo de onda
U(t,x,y,2) = e “R(x,y,2) (8.25)

e substituindo na equacao mestre os valores das derivadas direcionais e dos coeficientes de

spin, obtemos a equacao na amplitude R, dada por

_WwR 1R 1R 1 vi(ax +b)?.0°R

2 _§8x2_§8y2+[_§+ 2 ]822_
. OR i OR voa OR
—iwvg(az + b)a — E(&s — 4)v0aa—y + (25 — 24)10_65 +
9 4
105~ g)vgazR =0 (8.26)

Tomando-se R(x,y,2) = X(2)Y (y)Z(z) e a = 0,b = 1 na equagdo acima, resulta para a

equacao em /:

w? Wy 2k

zZ" -2 Z —2 AR
vE—1 v —1 v —1

Z=0 (8.27)

onde k é constante de separacao que pode ser obtida das equagoes em X e Y.
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8.4 Frequéncias de MQN

Utilizando-se agora as mudangas de variaveis

Z=e%1Q (8.28)
¢ d 1 d
1
— = 1)]z— 8.29
dz [08—1(v§—1+ ) dw (8.29)
a equagao (8.27) pode ser transformada na equagao
Q" +wQ=VQ (8.30)
em que temos para o potencial V, os valores
V= vy — k(20 =2) (8.31)
0T Mg 2 '

se f=1eV =0 para f =0.
Chegamos a um problema de espalhamento por uma barreira de potencial quadrada similar

ao encontrado no Capitulo 3, cuja solucao é dada através da equagao transcendental

2uy/u? + Vy = —Visinau (8.32)

onde

u=+vw?=VyeC (8.33)

e Vp é dado pela equagao (8.31).
Com isso obtemos uma solugao semi-analitica para as frequéncias de MQN da dobra espa-
cial
ds® = dt* — dz* — dy® — [dz — v fdt]? (8.34)

onde vy corresponde a uma velocidade constante e f = 1 na bolha de dobra e f = 0 fora
dela.



Consideracoes Finais

Neste trabalho, tentou-se criar uma nova classe de wormholes a fim de simplificar as equacoes
de perturbacao através do desacoplamento da frequéncia e do potencial. Na Secao 4.3 do
Capitulo 4, ficou claro porque os parametros de distorcao ¢ e d foram introduzidos; para
atingir a condi¢ao de desacoplamento “mais ampla possivel”, com mais liberdade de escolha do
que para os wormholes de Morris-Thorne. Infelizmente, mesmo fazendo tal mudanca a solugao
exata nao apareceu a menos de equacoes transcendentais ou esquemas de aproximacdo. E
preciso enfatizar que no Caso 4 da Secao 4.3, o wormhole distorcido foi obtido pela resolucao
de uma equacao de Bernoulli; h& alguma esperanca de que outras solucoes analiticas desta
equagao possam dar origem a wormholes que se comportarao adequadamente, ou seja, darao
origem a potenciais desacoplados da frequéncia. Entretanto, todas as tentativas de se atingir
tal solucao fracassaram.

No Capitulo 5, tomou-se a classe geral de métricas desenvolvida no Capitulo 4 e, dentro
dela, escolheu-se um candidato com a propriedade de se adequar a qualquer barreira de po-
tencial. Esse objetivo se encontra com o desejo de desaparecer com todas as singularidades
da Natureza. Se é possivel achar wormholes que respondem as ondas eletromagnéticas da
mesma forma que outros sistemas, talvez este seja um sinal de que wormholes transitaveis
possam ser usados para modelar particulas elementares e até buracos negros, fazendo “res-
surgir” a antiga idéia de Einstein, Rosen e Wheeler. A forma como isso sera feito ainda é
obscura aos olhos, mas a idéia de se introduzir novos parametros ou de trabalhar com métri-
cas axisimétricas, inflacionarias ou outros tipos de wormholes ao invés da classe simplificada
de Morris-Thorne poderia abrir portas para uma melhor descrigao da Gravitacao Quéantica.

Sobre o desenvolvimento feito no Capitulo 6, é importante salientar que o método 14
apresentado de fato sugere que o espacgo-tempo possa ser preenchido por wormholes, em
analogia com a construgao da esponja quantica de Wheeler. Além disso, a solug@o especial
utilizada naquela ocasiao tem a mesma barreira de potencial gravitacional independentemente
do parametro de forma b enquanto que, no caso eletromagnético, esse parametro é decisivo
para a descricao da barreira. Este comportamento aparentemente sem sentido pode ser

justificado pelo fato de que a gravitacao nao distingue a Lua da maca, ela é universal enquanto
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que o eletromagnetismo nao. Talvez o comportamento desta solugao especial e de sua forma
seja um sinal da existéncia de um objeto unificador na Natureza.

Sobre o formalismo de Newman-Penrose, ressalta-se mais uma vez com esse trabalho a
sua validade em revelar caracteristicas escondidas das singularidades do espaco-tempo, mos-
trando facetas da Relatividade Geral como o desacoplamento da frequéncia e do potencial,
somente percebidas na forma de onda da equacao radial. Fora a sua trabalhosa complexidade
computacional, pode-se chegar ao final a equacoes algébricas relativamente simples para as
frequéncias quase-normais de wormholes e buracos negros, em lugar de equagoes diferenciais
para as mesmas. Acredita-se que aumentar o leque de liberdade nos pardmetros da geometria
de wormbhole ir4 permitir tratar de forma mais completa os potenciais complexos e até os
modos quase-normais do buraco negro de Kerr.

Em busca de generalizagoes dos desenvolvimentos feitos nesse trabalho, eis algumas suges-

toes para pesquisa futura na area:

1. Estudar espagos-tempo que nao obedecam a condicao restritiva de Tipo D;

2. Estudar outros wormholes dependentes do tempo, além dos wormholes de Roman apre-
sentados no Capitulo 1; particularmente, acredita-se que essa abordagem possa abrir
opgoes para se criar modelos que desacoplem a frequéncia embora o preco que se deva

pagar por isso seja o de resolver uma equacgao de Schrodinger dependente do tempo;

3. Estudar uma combinac¢ao, muito geral e muito dificil, de wormholes nao esféricos e

dependentes do tempo.

Para finalizar esse trabalho, algumas palavras a mais sobre a busca por solugoes exatas de
MQN.

Pode-se expressar o problema de uma forma simples e separdvel no formalismo de Newman-
Penrose?

Esta questao aparece no trabalho de Damien Martin [9] no contexto de seus “buracos negros
sujos”, mas é perfeitamente aplicavel a presente situacao. A resposta € talvez. Acredita-se
na importancia do formalismo de Newman-Penrose como uma abordagem alternativa ao
uso direto das equagoes de Einstein em sua forma tensorial; nesse sentido, tal técnica esté
para a Relatividade Geral assim como os formalismos de Lagrange e Hamilton estao para
a Mecanica Newtoniana. Matematicamente, ele fornece um carater algébrico para a teoria
na medida em que espagos-tempo de wormholes podem ser expressos por campos escalares

e classificados pela forma do tensor de Weyl (teorema de Goldberg-Sachs). Fisicamente,



113

parece ser o caminho certo a seguir pois ele se baseia no conceito de espinor, obtido da
parametrizacao do cone de luz. Entretanto, um dos wormholes mais simples, estudado em
[15] via tal formalismo, apresenta uma equagao de onda do mesmo grau de dificuldade que
a do buraco negro de Kerr! Concorda-se com Martin no que diz respeito aos adjetivos
“bagunca”; “frustrante” e “depressivo” que cercam esse assunto. Foi dito talvez como uma
resposta & pergunta acima porque acredita-se que talvez a tétrade complexa de tipo-luz
poderia nao ser tao equivalente ao formalismo espinorial explicito como se pensa. Uma
abordagem mais direta baseada numa direta traducao de todas as equagoes para o formalismo
espinorial poderia abrir os olhos para algumas caracteristicas obscurecidas por outros meios.
Entretanto, todas essas palavras possam apenas ser sonhos sem esperanca. A Natureza
poderia estar simplesmente dando uma mensagem: vocés nao tém acesso a certos fenémenos
assim como o principio da incerteza estabelece. Se é assim, € possivel modelar sistemas

qudnticos por meio de wormholes? Este era um dos ultimos sonhos de Einstein...
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