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“Ao meu herói”
Quem passou pela vida em brancas nuvens

E em plácido repouso adormeceu
Quem não sentiu o frio da desgraça

Quem na vida não sofreu
Foi espectro de homem, não foi homem

Só passou pela vida, não viveu
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RESUMO

O objetivo do presente trabalho foi o de estudar as oscilações de alguns wormholes na ten-
tativa de se encontrar candidatos que apresentassem soluções exatas para modos quase nor-
mais. Apresentamos uma nova classe de wormholes estáticos que generaliza os wormholes de
Morris-Thorne pela inclusão de dois parâmetros adicionais a fim de distorcer a simetria esfé-
rica e alcançar equações de perturbação onde o potencial pode ser dissociado das respectivas
auto-frequências. A nova métrica provou ser muito geral no sentido de que a maioria das
geometrias de wormhole estudadas atualmente na literatura podem ser expressas como casos
particulares dela. As equações de Teukolsky para esta métrica geral foram determinadas por
meio do formalismo de Newman-Penrose e, em consequência deste processo, obtivemos um
tipo de solução com freqüências de MQN exatas, a menos de uma equação transcendental.
Esse tipo especial de solução foi usado para aproximar potenciais de buracos negros de uma
forma semelhante às quadraturas. Estudamos também a propagação de ondas eletromagné-
ticas ao longo das soluções do tipo wormhole através do formalismo de Newman Penrose e,
seguindo certos critérios, obtivemos certos tipos de geometrias de wormhole que são capazes
de modelar barreiras de Coulomb ou Morse. Esses resultados podem indicar que wormholes
poderiam ser usados no futuro como modelos para sistemas físicos, como as supercordas são
usadas atualmente, e também como guia nos chamados modelos análogos de grativação. Fi-
nalmente, estudamos outros tipos de soluções do tipo ”estrelas exóticas", as chamadas dobras
espaciais. Esperamos que as equações, e especialmente os princípios, apresentados neste tra-
balho ajudem futuros pesquisadores a procurar wormholes susceptíveis a fornecer fontes para
uma descrição exata das ondas gravitacionais e uma percepção mais profunda do problema
das singularidades na Relatividade Geral e na Mecânica Quântica.
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ABSTRACT

The aim of the present work was to study the oscillations of certain wormholes in an attempt
to find candidates for exact solutions of quasinormal modes. We presented a new class
of static wormholes which generalizes Morris-Thorne wormholes by adding two additional
parameters in order to distort spherical symmetry and achieve perturbation equations where
the potential may be decoupled from the frequency. The new metric proved to be very general
in the sense that most of the current wormhole geometries studied in the literature can be
expressed as particular cases of it. The Teukolsky equations for this class of wormholes were
determined via Newman-Penrose formalism and, as a result of this procedure, we constructed
one special solution with exact QNM frequencies except for a transcendental equation. This
special type of solution is used to approximate black hole potentials in a similar manner than
quadratures. We also studied the propagation of electromagnetic waves in wormhole solutions
through Newman-Penrose formalism and, following a set of criteria, we obtained certain types
of wormhole geometries that are capable of modeling Coulomb or Morse scatterers. These
results may indicate that wormholes could be used in the future as models for physical
systems just as superstrings are used today. Finally, we studied other kinds of exotic stars,
the warp drives. We hope that the equations, and specially the principles, presented in this
work will help future researchers to search for wormholes which could provide sources for
exact description of gravitational waves and a deeper insight into the problem of singularities
in both General Relativity and Quantum Mechanics.
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Introdução

A Teoria Geral da Relatividade é uma das teorias físicas mais exaustivamente testada e
comprovada de nossa época. Seu alcance de previsões se estende desde o limite dos campos
gravitacionais fracos do sistema solar até buracos negros e estrelas de nêutrons. Todas essas
soluções foram obtidas considerando primeiramente uma distribuição normal de matéria (es-
pecificada pelo tensor de energia-momento), e através da equação de Einstein, a métrica de
espaço-tempo da geometria é determinada. No entanto, pode-se resolver a equação de Eins-
tein na direção inversa, ou seja, nós primeiro consideramos uma métrica de espaço-tempo
interessante e exótica, e em seguida, determinamos o tensor de energia-momento responsável
pela respectiva geometria. Desta forma, verificou-se que algumas dessas soluções poderiam
possuir uma propriedade peculiar, denominada “matéria exótica", envolvendo um tensor de
energia-momento que viola certas condições de energia. Wormholes2 são uma tal espécie de
solução.

Estrelas são feitas de matéria, buracos negros, em seu exterior, não são nada mais do que
vácuo e wormholes são mais facilmente descritos como “estrelas exóticas", possíveis objetos
astrofísicos constituídos por uma espécie de matéria que não interage com campos de matéria
ordinária de qualquer forma. Um wormhole é definido como qualquer região compacta do
espaço-tempo com uma fronteira topologicamente simples, mas um interior topologicamente
não trivial [1], que captura a ideia de um túnel que une dois espaços-tempo ou duas regiões
do mesmo universo. A história dos wormholes pode ser dividida em três fases: o trabalho
inicial de Einstein e Rosen em 1935 que tentou modelar os elétrons, denominado Ponte
de Einstein-Rosen[2]; a interpretação dos wormholes de Reissner-Nordström ou Kerr como
objetos da “espuma quântica"devido a Wheeler[3] na década de 1950; e o momento atual de
interesse após o artigo clássico de Morris e Thorne[4] em 1988. Inicialmente wormholes não
eram transitáveis em princípio, mas depois do artigo de Morris e Thorne, vários pesquisadores
passaram a estudar soluções das equações de Einstein com uma boca ao invés de um horizonte
de eventos, uma garganta no lugar de uma singularidade e forças de maré extremamente

2 Este termo não possui uma traduação satisfatória para a língua portuguesa. Buracos de minhoca e buracos
de vermes são empregados em alguns textos. Manteremos, aqui, a expressão inglesa.
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2 Introdução

pequenas através da garganta para permitir uma viagem humana. Revisões completas sobre
essas soluções encontram-se no livro de Visser[1] e no artigo de Lobo[5].
A existência dos wormholes está no centro da discussão entre gravitação clássica e quântica

porque eles violam a condição de energia nula assim como alguns sistemas quânticos. Neste
contexto podemos pensar que uma análise de estabilidade se faz necessária para atingir
confiança sobre a existência de wormholes na Natureza. Para analisar a estabilidade dos
wormholes temos de responder à pergunta: se tal objeto existe espontaneamente no universo,
ou é construído por alguma eventual civilização extremamente avançada, será possível sua
permanência na Natureza? Cada objeto astrofísico oscila por influências externas e ao fazê-lo,
ele emite radiação determinada principalmente pelo fenômeno que causou essa oscilação; no
entanto, podemos esperar que qualquer perturbação, durante seus últimos estágios, decaia de
uma maneira característica do objeto e independente da causa original, da mesma forma que
um sino soando suas últimas notas [6]. O conceito de modos quase-normais (MQN) baseia-se
nestas considerações e matematicamente representa a solução das equações de perturbação
para frequências complexas, onde a parte real representa a frequência de oscilação e a parte
imaginária corresponde à taxa de amortecimento. Esta situação é compatível com o fato
de que um wormhole deve ser visto como uma membrana infinita, em vez de um sistema
oscilante fechado, como uma corda de violão. Para uma boa revisão em MQN, há os trabalhos
de Kokkotas[7], Nollert[8], Martin[9] e Dadam[10].
No que diz respeito à teoria de perturbação linear em soluções de wormhole, algumas

das obras mais importantes foram feitas por Frolov & Novikov [11], Kar et al[12], Perez &
Hiberd[13], Kim[14] e Moreno & Garcia-Salcedo[15]. No entanto, nenhum desses trabalhos
conseguiu obter frequências quase-normais exatas para os sistemas estudados. Este trabalho
pode ser visto como uma generalização destes estudos, tanto do ponto de vista do objeto
estudado (soluções generalizadas de wormholes), como do ponto de vista do ferramental
matemático (formalismo de Newman-Penrose). De fato, o objetivo principal desse trabalho
é o de se tentar determinar soluções exatas de MQN por meio da análise das perturbações
de certas métricas através da teoria de perturbação, mas utilizando-se do formalismo de
Newman-Penrose, mais precisamente baseando-se nas tétrades de vetores de tipo luz e vetores
complexos desenvolvidas por Geroch, Held e Penrose [20] numa tentativa de se introduzir o
formalismo espinorial na Relatividade Geral de uma forma mais natural, à semelhança das
tétrades de Cartan. O Capítulo 1 fornece a base matemática necessária ao estudo que será
feito no decorrer do texto. Neste primeiro capítulo, o espaço-tempo característico de um
wormhole é definido, apresentamos as equações fundamentais do formalismo de Newman-
Penrose que serão utilizadas na sequência e, finalmente, o problema dos modos quase-normais
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(MQN), resultado final da teoria de perturbação, é formalizado matematicamente.
O Capítulo 2 faz o estudo das perturbações de um tipo simplificado de wormhole e seus

resultados servem de base de comparação para os capítulos seguintes. No Capítulo 3, o
mesmo estudo é feito sobre os wormholes de Morris-Thorne, em seu caso geral. O Capítulo 4
apresenta uma métrica suficientemente geral para os propósitos do trabalho. Em seguida, tal
métrica é perturbada e as equações de perturbação são resolvidas na tentativa de se achar uma
solução exata para o problema dos modos quase-normais. No Capítulo 5 é feita uma análise
da propagação de ondas eletromagnéticas ao longo dessa mesma geometria e no Capítulo 6, o
problema da determinação dos MQN de buracos negros é analisado sob uma nova perspectiva
em que uso é feito de uma solução de certa forma especial. O Capítulo discute um caso
particular de wormholes com quantidades minimas de matéria exótica. Finalmente, tratamos
das dobras espaciais no Capítulo 8 as quais também são soluções exóticas das Equações de
Einstein.

Constituem material inédito neste trabalho a aplicação do formalismo de Newmam-Penrose
para os estudos de perturbações, propagação de campos de teste e modos quase-normais
apresentados nos cap. 4, 5 e 6, e as análises das soluções apresentadas nos cap. 7 e 8.



Capítulo 1

PRELIMINARES

O objetivo desse capítulo é fornecer a base matemática necessária ao completo entendimento
da sequência do texto. O espaço-tempo é identificado com uma variedade pseudo-riemanniana
e as Equações de Einstein são postuladas como uma condição a ser obedecida pela métrica
em tal variedade e interpretadas como a ação da energia-momento sobre a geometria do
espaço-tempo, cuja consequência se conhece como gravitação. Wormholes são definidos como
soluções especiais dessas equações que não possuem horizonte de eventos nem singularidades
nuas. Em seguida, o formalismo de Newman-Penrose é apresentado em toda sua extensão,
pois é através dele que será feita a análise de estabilidade das soluções nos capítulos seguintes,
primeiramente descrevendo o espaço-tempo em tal formalismo e depois perturbando os veto-
res da base tétrade que o fundamenta. Finalmente, será feita a formulação matemática dos
modos quase-normais como soluções da equação de onda, obtida ao fim da perturbação do
espaço-tempo, para frequências complexas, e satisfazendo condições de fronteira apropriadas
para uma resposta extrema do wormhole a perturbações externas.

5



6 1. PRELIMINARES

1.1 Soluções do tipo Wormholes

Definição 1.1 Um espaço-tempo consiste numa variedade quadridimensional conexa, orien-
tada no espaço e no tempo, com uma métrica Lorentziana (pseudo-riemanniana) de assina-
tura −2, juntamente com uma conexão de Levi-Civita [18].

Espaços-tempo que possuam entre si uma isometria que preserve as orientações necessárias
representam fisicamente a mesma situação. Os espaços-tempo de significado em Física são
todos modelos da história do universo (ou de uma parte dela). A dimensão de um espaço-
tempo é intuitivamente determinada pelas três dimensões espaciais do universo conhecido e
uma dimensão temporal extra. Como espaços-tempo modelam histórias, “desconexo” signifi-
caria “sempre foi, é, e sempre será desconexo”. Portanto, assume-se uma variedade conexa.

Quanto à orientação, o requisito de ser orientável no tempo provém do conhecimento atual
dos processos termodinâmicos na Terra, pois a segunda lei da termodinâmica implica que é
possível distinguir o passado do futuro pela medição do aumento na entropia. A orientação
espacial da variedade também é uma condição plausível de se impor porque a não conservação
da paridade está agora estabelecida para uma ampla classe de experimentos (as chamadas
“interações fracas”) de modo que podemos distinguir entre sistemas dextrógiros e levógiros
no espaço tridimensional ordinário. Assim, o espaço-tempo pode ao menos ser orientado
rigorosamente na região que circunda a Terra, no momento presente, da seguinte forma: em
cada sistema de coordenadas, a forma volume sqrt−gdx1 ∧ dx2 ∧ dx3 ∧ dx4 será consistente
com a orientação se, e somente se, cada dx1, dx2, dx3 for de tipo-espaço1 e {dx1, dx2, dx3}
for dual a uma base espacial dextrógira do espaço tangente de cada ponto, e ainda dx4 for
de tipo-tempo e com direção futura.

Finalmente, resta falar a respeito da classe de diferenciabilidade da variedade identificada
como espaço-tempo. Assume-se que tal variedade seja C∞, pois tal requerimento soa como o
mais óbvio e mais aceitável de todos. Entretanto, as contradições da presente teoria quântica
de campos são severas. Essas contradições podem forçar à aceitação de um mundo quântico
ao invés de uma variedade C∞. Tais contradições também levam a sistemas quânticos que
não satisfazem certas leis de conservação; em particular, a existência de tal possibilidade
é o que enfatiza a necessidade de um estudo mais profundo de wormholes porque eles são
originados e mantidos por tais sistemas.

1Dada a métrica do espaço-tempo na forma g= gµνdxµ⊗dxν ,com assinatura -2, um vetor V é de tipo-espaço
se g(V, V ) < 0, de tipo-luz se g(V, V ) = 0 e de tipo-tempo se g(V, V ) > 0.



1.1. Soluções do tipo Wormholes 7

A conexão de Levi-Civita a que se refere a Definição 1.1 é aquela obtida da métrica

Γαβγ =
1

2
gασ(gσβ,γ + gσγ,β − gβγ,σ). (1.1)

Notação: A métrica inversa, gµν , é a matriz inversa da métrica gµν . Vírgulas denotam
derivadas parciais: Xµ,ν ≡ ∂νXµ ≡ ∂Xµ

∂xν
. A convenção de Einstein (na qual um índice

sobrescrito seguido por um subscrito idêntico, ou vice-versa, em uma expressão corresponde
a uma soma) será usada ao longo de todo o texto.

A partir de uma conexão numa variedade, podemos definir o tensor de curvatura de Rie-
mann. Existem definições mais gerais, mas para os propósitos do texto a definição a seguir,
que é válida num sistema de coordenadas local,é suficiente.

Definição 1.2 O tensor de curvatura de Riemann é definido em termos de suas componentes
numa base local de coordenadas por

Rα
βγδ = ∂γΓ

α
βδ − ∂δΓαβγ + ΓασγΓ

σ
βδ − ΓασδΓ

σ
βγ. (1.2)

A partir de contrações do tensor de Riemann, obtemos o tensor e o escalar de Ricci, que
também auxiliam na análise da curvatura do espaço-tempo e em suas singularidades.

Definição 1.3 Numa base local de coordenadas definem-se o tensor de Ricci por

Rµν = Rαµβνg
αβ (1.3)

e o escalar de Ricci (também denominado curvatura escalar) por

R = Rαβg
αβ = Rαµβνg

αβgµν (1.4)

Definição 1.4 Numa base local de coordenadas, define-se o tensor de Weyl pela fórmula

Cαβγδ = Rαβγδ −
1

2
(gαγRβδ + gβδRαγ − gβγRαδ − gαδRβγ) +

1

6
(gαγgβδ − gβγgαδ)R (1.5)

Finalmente, o tensor e o escalar de Ricci determinam o tensor de Einstein

Gµν = Rµν −
1

2
Rgµν . (1.6)

É postulado que todo espaço-tempo deve obedecer às Equações de Einstein que relacionam
a curvatura do espaço-tempo (como descrita pelo tensor de Einsten Gµν) à distribuição de
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matéria e energia (como descrita pelo tensor energia-momento Tµν). Explicitamente, tem-se

Gµν = 8πTµν (1.7)

onde foram adotadas unidades geométricas G = c = 1.

Contraindo (1.7) com a métrica inversa, obtém-se

Rµν = 8π(Tµν −
1

2
gµνT ), (T = gµνTµν), (1.8)

de forma que no vácuo (regiões do espaço-tempo em que Tµν = 0), as Equações de Einstein
se reduzem a

Rµν = 0. (1.9)

Estrelas, poeira e outros aglomerados de matéria comum constituem-se em soluções das
Equações de Einstein para tensores energia-momento que apresentem densidades de energia
positiva em todos os pontos. A condição de energia fraca (WEC) assume que a densidade
local de energia é não-negativa e estabelece que TµνUµUν ≥ 0, para todos os vetores de tipo-
tempo Uµ. A condição de energia nula (NEC),Tµνkµkν ≥ 0, onde kµ é um vetor de tipo-luz,
é consequência da WEC e consiste na mais fraca das condições de energia de modo que sua
violação constitui-se na violação das demais condições. Apesar de se acreditar que formas
clássicas de matéria devam obedecer essas condições de energia, é um fato bem conhecido
que elas são violadas por certos fenômenos quânticos, como o efeito Casimir e a evaporação
de Hawking.

Os buracos negros de possível existência na Natureza em sua forma macroscópica consistem
numa classe de soluções das Equações de Einstein no vácuo, cuja métrica obedece a certas
restrições. A principal delas consiste na existência de um horizonte de eventos. Segundo [10],
temos a seguinte definição matemática para tal estrutura.

Definição 1.5 Um horizonte de eventos consiste numa subvariedade diferenciável bidimen-
sional do espaço-tempo, de tipo-luz, gerada por um vetor de Killing de tipo-tempo e outro
de tipo-espaço, onde entende-se por vetor de Killing numa variedade um campo K tal que
LKg = 0 sendo g a métrica e L o operador derivada de Lie2.

2A derivada de Lie de um campo tensorial é um tensor de mesmo tipo que satisfaz as seguintes regras:
(i) atua sobre um campo escalar como o gradiente; (ii) atua sobre um vetor do espaço tangente como
o comutador; (iii) opera linearmente sobre campos tensoriais; e (iv) satisfaz a regra de Leibnitz quando
atua sobre produtos tensoriais.
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Na prática, para situções estacionárias e esfericamente simétricas, assume-se a existência de
um horizonte de eventos quando a componente da métrica gtt torna-se nula em algum ponto
ou região do espaço-tempo.

Ao contrário das estrelas ordinárias, buracos negros são singularidades do espaço-tempo,
pontos ou regiões no qual a métrica diverge; mais precisamente, indicadores como geodésicas
ou contrações do tensor de curvatura encontram descontinuidades ou tornam-se infinitos,
respectivamente.

Wormholes e demais estrelas exóticas basicamente diferem das estrelas comuns porque
existe uma distribuição de matéria que os suporta, mas que em algum ponto apresenta
densidade de energia negativa. Wormholes também diferem dos buracos negros porque não
apresentam qualquer tipo de singularidade nem horizonte de eventos. Segundo a definição
de Visser [1]:

Definição 1.6 Wormholes são objetos com uma fronteira topologicamente simples, mas com
um interior topologicamente não trivial.

Ainda segundo Visser [1], encontramos a seguinte definição de um wormhole, mais rigorosa
porém mais restritiva.

Definição 1.7 Se um espaço-tempo de Minkowski contém uma região compacta Ω e se a
topologia de Ω é da forma R × Σ onde Σ é uma variedade tridimensional de topologia não
trivial, cuja fronteira tem topologia da forma S2 e, se além disso, as hipersuperfícies Σ são
todas de tipo-espaço, então a região Ω contém um wormhole.

Uma definição geométrica de wormhole é uma região do espaço-tempo contendo um “tubo
universal”(a evolução temporal de uma superfície fechada) que não pode ser continuamente
deformada a uma “linha universal”(a evolução temporal de um ponto).

Essas definições tentam captar a idéia daquilo que chamamos de wormhole transitável, um
túnel entre dois universos ou duas regiões do mesmo universo, com uma boca ao invés de
um horizonte de eventos, uma garganta em lugar de uma singularidade essencial e capaz
de apresentar forças de maré suficientemente pequenas para permitir viagens humanas ou
transferência de informação, em princípio.

As variedades de wormholes que foram encontradas na literatura até 1988 são todas pro-
blemáticas: a ponte de Einstein-Rosen apresentava horizonte de eventos microscópicos não
condizentes com as previsões teóricas; os wormholes de Wheeler são simplesmente pequenos
demais para terem algum de seus efeitos calculados; as singularidades nuas possuem forças
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de maré que as tornam intransitáveis e não podem ser tomadas como verdadeiras se assu-
mirmos a conjectura do censor cósmico de Penrose [6]. A grande aposta de Morris e Thorne
em seu artigo clássico de 1988 foi perceber a possibilidade de construir espaços-tempo de
wormholes que fossem em princípio transitáveis e, para tanto, admitiram dois requerimentos:
a inexistência de horizonte de eventos e de singularidades nuas.

Restringir a atenção a soluções das Equações de Einstein que não possuam singularidades
é uma tarefa nada fácil. O método tradicional seria tomar um tensor energia-momento que
supostamente suporta o espaço-tempo de um wormhole, resolver as Equações de Einstein e
por fim, checar a presença de singularidades na curvatura da solução assim obtida. Todas as
tentativas em seguir este processo falharam. A idéia seminal de Morris e Thorne foi efetuar
um raciocínio inverso ao descrito acima, a saber, assumir a existência de uma geometria inte-
ressante e bem comportada, depois calcular o tensor de Riemann associado a essa geometria
e usar as Equações de Einstein para deduzir qual a distribuição de energia-momento precisa
existir. O grande problema foi que, ao fazer isso, Moris e Thorne perceberam que a distri-
buição de energia-momento nas vizinhanças da garganta do wormhole era um tanto peculiar
e incompatível com a Física (macroscópica) conhecida e aceita atualmente. Sem muito rigor,
basicamente o que ocorre próximo da garganta de um wormhole é que em algum lugar e em
algum momento, alguém será capaz de encontrar densidade de energia negativa. De acordo
com Visser [1]

... Não fosse o fato de que experimentos revelaram alguns efeitos quânticos que
violam certas leis de conservação da energia, o trabalho de Morris e Thorne seria
interpretado como um estágio inicial de um teorema de inexistência de wormholes
na Natureza.

1.1.1 Wormholes de Morris-Thorne

A fim de manter a análise mais facilmente tratável, Morris e Thorne assumiram que seus
wormholes transitáveis eram independentes do tempo, sem rotação, e formavam pontes esfe-
ricamente simétricas entre dois universos. A variedade de interesse era portanto um espaço-
tempo estático esfericamente simétrico possuindo duas regiões assintoticamente planas e, sem
perda de generalidade, a métrica adotada tomou a forma

ds2 = −e2φdt2 +
dr2

1− b
r

+ r2dθ2 + r2 sin2 θdϕ2 (1.10)
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As coordenadas t, θ e ϕ representam tempo, e latitude e longitude em uma esfera de raio
r, respectivamente. A coordenada radial é igual à coordenada radial do espaço de mergulho
(Ver Fig. 1). Como resultado, r não é monotônica, decrescendo de +∞ a um valor mínimo

Figura 1.1: Típico mergulho da geometria do Wormhole de Morris-Thorne (1.10) em R3, veja
Eq. (1.14). Mais detalhes, em [1].

em r0 6= 0, a garganta transitável, e aumentando novamente até +∞ no outro universo (ou
em uma outra região do mesmo universo). De acordo com a situação, é necessário limitar-se
o alcance de r para esta solução a um intervalo I = (r0, a0) unindo-na a uma nova solução
de a0 a +∞.
A inexistência de um horizonte de eventos está garantida por

gtt = −e2φ(r) 6= 0 ∀r ∈ I (1.11)
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e φ, tomada como finita em todo lugar, é denominada função desvio para o vermelho porque
quando gtt = 0 a luz é completamente desviada para o vermelho (e forma-se um buraco
negro). A função b = b(r) adquire uma interpretação simples como uma função de forma
porque ela determina a forma espacial do wormhole. De fato, tomando-se uma fatia do
wormhole (1.10) em um momento definido no tempo (dt = 0) e no plano equatorial (θ = π

2
),

ds2 =

(
1− b

r

)−1

dr2 + r2dϕ2, (1.12)

e mergulhando-a em um espaço euclidiano tridimensional,

ds2 = dz2 + dr2 + r2dϕ2 =

[
1 +

(
dz

dr

)2
]
dr2 + r2dϕ2, (1.13)

vê-se que as equações (1.12) e (1.13) representam o mesmo elemento de comprimento se
identificarmos as coordenadas (r, ϕ) do espaço de mergulho com as (r, ϕ) do espaço-tempo de
wormhole, e se for imposto que a função z = z(r), a qual descreve a superfície de mergulho,
satisfaça

dz

dr
= ±

[
r

b(r)
− 1

]− 1
2

. (1.14)

Uma análise dessa expressão mostra que a garganta do wormhole é um ponto fixo de b e, nesse
ponto, a curvatura diverge (isto é, curvas na superfície terão tangentes que serão verticais no
espaço).

Resta falar que as funções φ = φ(r) e b = b(r) são aceitas como sendo de classe C∞I (R).
Uma métrica estática e esfericamente simétrica corresponde a existência de um vetor de
Killing de tipo-tempo ortogonal a uma família de hipersuperfícies (no caso, as esferas de raio
r); na prática, isto se manifesta no caráter ortogonal da métrica e na independência temporal
de suas componentes. Dizer que uma métrica é assintoticamente plana consiste em dizer que,
efetuando-se uma transformação conforme sobre a variedade a fim de se estender a métrica
continuamente para se anexar uma fronteira I ao espaço-tempo, este infinito I será idêntico
àquele do Espaço de Minkowski da Relatividade Especial; na prática, no entanto, adota-se
como critério para que um wormhole seja assintoticamente plano a condição de que ambos
os limites

lim
r→+∞

b(r)

r
(1.15)
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e
lim

r→+∞
φ(r) (1.16)

sejam zero.
O exemplo mais simples e também o mais estudado wormhole na literatura é o wormhole

ultraestático o qual corresponde a um caso particular de um wormhole de Morris-Thorne com
força de maré nula, dada por φ = 0 e função de forma b =

r20
r

que satisfazem uma relação
simples entre as distâncias radial e de luminosidade, a saber r2 = l2 + r2

0.

1.1.2 Wormholes Inflacionários

Uma simples generalização das métricas de wormhole originalmente desenvolvidas por Morris
e Thorne, caracterizadas pela equação (1.10), é aquela conhecida como wormhole de Roman
e que corresponde a um espaço-tempo inflacionário dependente do tempo:

ds2 = −e2φdt2 + e2χt

[
dr2

1− b
r

+ r2dθ2 + r2 sin2 θdϕ2

]
. (1.17)

Aqui a parte espacial da métrica (1.10) foi multiplicada pelo fator e2χt de uma escala de
deSitter, onde χ =

√
Λ
3
e Λ é a constante cosmológica [16]. As coordenadas r, θ, ϕ foram

escolhidas de modo a terem a mesma interpretação geométrica que antes. Em particular,
círculos de r constante estão centrados na garganta do wormhole, localizada no ponto fixo
mínimo e não nulo da função de forma b = b(r). Para φ(r) = b(r) = 0, a métrica de Roman
se reduz a um espaço deSitter plano, enquanto que para χ = 0, ela retorna à forma original
de Morris-Thorne.

Da mesma forma que para os wormholes de Morris-Thorne, pode-se adotar φ(r)→ 0, b
r
→ 0

quando r → +∞, de modo que o espaço-tempo seja assintoticamente deSitter, ou pode-se
optar por fazer φ e b irem a zero em algum valor finito de r, além do qual o espaço-tempo
seja deSitter, correspondendo ao corte de energia a uma distância finita.

No Capítulo 2, descreveremos sucintamente o desenvolvimento feito por Claudia Moreno e
Ricardo García-Salcedo [15], que analisaram o caso particular de um wormhole ultraestático
à luz do formalismo de Newman-Penrose e cujo artigo serve de comparação para os resultados
que serão aqui obtidos. Nos Capítulos 3 e 5 estenderemos essa análise para o caso de um
wormhole de Morris-Thorne genérico, estudando as perturbações gravitacionais e eletromag-
néticas. No Capítulo 4, procuraremos generalizar a classe de wormholes de Morris-Thorne
vista acima e efetuar a teoria de perturbação sobre uma métrica suficientemente geral atra-



14 1. PRELIMINARES

vés do formalismo de Newman-Penrose; formalismo esse que é o assunto da próxima seção.
O mesmo procedimento pode ser levado adiante para os wormholes de Roman, mas como
resultado obtivemos uma equação de onda dependente do tempo muito complexa e que não
será explicitada nesse texto por fugir ao objetivo principal do trabalho que é a busca por
soluções de MQN exatas.

1.2 Formalismo de Newman-Penrose

Nessa seção será introduzida a base matemática para o estudo das perturbações das métricas
descritas na seção anterior e suas generalizações. Sabe-se [10] que o estudo completo das
perturbações em buracos negros só foi possível graças a uma abordagem diferenciada das
Equações de Einstein via formalismo de Newman-Penrose. Tratado mediante tal formalismo,
o problema adquire um caráter algébrico e - o que é mais importante - as equações são
extremamente simplificadas para o caso dos buracos negros. Esse fato leva a crer que o uso
de tal formalismo possa ampliar a visão que se tem das perturbações de wormholes. Esta é
nossa principal motivação.
Inicialmente serão introduzidas as noções de base de tétrades e coeficientes de rotação,

juntamente com as equações fundamentais da teoria. O formalismo de Newman-Penrose é
então definido como aquele em que as tétrades são vetores de tipo-luz que obedecem certas
condições. Também serão apresentadas as quantidades fundamentais do formalismo - a saber,
os escalares de Weyl, Ricci, Maxwell e os coeficientes de spin - bem como as transformações
possíveis nessas quantidades.

Definição 1.8 Uma tétrade consiste numa base ortonormal de vetores tangentes definida em
um aberto do espaço-tempo, ou seja,

g(e(a), e(b)) = gije
i
(a)e

j
(b) = η(a)(b), (1.18)

onde g é a métrica do espaço-tempo e η(a)(b) é uma matriz simétrica diagonal com ±1 na
diagonal. Da mesma forma, pode-se definir uma base dual de tétrades em cada ponto do
espaço co-tangente, dada por

ei(a)e
(b)
i = δ

(b)
(a) e ei(a)e

(a)
j = δij. (1.19)

A métrica η(a)(b) possui o mesmo comportamento que a métrica curva gij, isto é, podemos
levantar e abaixar índices tétrades com η(a)(b) e η(a)(b) da mesma forma que fazemos com o
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tensor métrico. Mais que isso, dado qualquer tensor, basta projetá-lo no referencial tétrade,
à semelhança da equação (1.18), a fim de encontrar suas componentes tétrades. Baseado
nesse processo, é possível estabelecer diferenciação no formalismo tétrade.

Definição 1.9 A derivada direcional de um vetor A, com componentes tétrades A(a), na
direção e(b), é dada por

A(a),(b) = ei(b)
∂

∂xi
A(a). (1.20)

Definição 1.10 A derivada intrínseca de um vetor A, com componentes tétrades A(a), na
direção e(b), é dada por

A(a)|(b) = ei(a)Ai;je
j
(b), (1.21)

em que ponto e vírgula correspondem à derivada covariante3.

Proposição 1.1 Sejam A(a) as componentes tétrades de um vetor A na base tétrade. Então

A(a),(b) = ej(a)Aj;ie
i
(b) + γ(c)(a)(b)A

(c) (1.22)

e
A(a)|(b) = A(a),(b) − η(n)(m)γ(n)(a)(b)A(m), (1.23)

onde
γ(c)(a)(b) = ek(c)e(a)k;ie

i
(b) (1.24)

são denominados coeficientes de rotação de Ricci.

Demonstração.

De (1.20) segue

A(a),(b) = ei(b)
∂

∂xi
[ej(a)Aj] = ei(b)∇∂i [e

j
(a)Aj] = ei(b)[e

j
(a)Aj;i + Ake

k
(a);i], (1.25)

onde foram utilizadas as propriedades da derivada covariante [6]. Utilizando-se o tensor
métrico, chegamos ao resultado

e(a)jA
j = ej(a)Aj. (1.26)

3Define-se a derivada covariante,∇Y , de um campo vetorial Y , como sendo um campo tensorial de tipo (1,1)
que mapeia o campo vetorial contravariante X em ∇XY , onde ∇XY é linear em ambos os argumentos,
obedece a regra de Leibnitz para o produto tensorial e coincide com a derivada direcional quando atua
sobre funções.
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Substituindo (1.26) em (1.25),obtemos

A(a),(b) = ej(a)Aj;ie
i
(b) + e(a)k;ie

i
(b)e

k
(c)A

(c) (1.27)

onde uso foi feito do fato de que levantamento e abaixamento de índices tensoriais permutam
com a operação de diferenciação covariante ([6],p.36). A equação (1.22) resulta de (1.27) e
(1.24).
A equação (1.23) corresponde à equação (1.22) reescrita com o auxílio da definição (1.21).

Proposição 1.2 Os coeficientes de rotação de Ricci podem ser determinados através da
expressão

γ(a)(b)(c) =
1

2
[λ(a)(b)(c) + λ(c)(a)(b) − λ(b)(c)(a)], (1.28)

onde
λ(a)(b)(c) = [e(b)i,j − e(b)j,i]e

i
(a)e

j
(c). (1.29)

Demonstração.

Pela Definição 1.8, tem-se

0 = η(a)(b);i = e(a)j;ie
j
(b) + e(a)je

j
(b);i. (1.30)

Utilizando-se (1.30) e (1.26) na definição (1.24), resulta que os coeficientes de rotação são
anti-simétricos no primeiro par de índices

γ(c)(a)(b) + γ(a)(c)(b) = 0 (1.31)

Em uma conexão simétrica, podemos substituir as derivadas ordinárias em (1.29) pelas cor-
respondentes derivadas covariantes ([6],p.38) e escrever

λ(a)(b)(c) = γ(a)(b)(c) − γ(c)(b)(a). (1.32)

onde uso foi feito da definição (1.24).
Das equações (1.31) e (1.32), segue que (1.28) está bem definida.
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A proposição acima garante que, uma vez estabelecida a base de tétrades, toda a análise
do espaço-tempo pode ser feita independentemente de um conhecimento prévio da conexão
riemanniana.

Proposição 1.3 As equações fundamentais do formalismo tétrade são:

(i) as relações de comutação
[e(a), e(b)] = γ

(c)
(b)(a) − γ

(c)
(a)(b), (1.33)

(ii) a identidade de Ricci

R(a)(b)(c)(d) = −γ(a)(b)(c),(d) + γ(a)(b)(d),(c)

+γ(b)(a)(f)[γ
(f)

(c) (d) − γ
(f)

(d) (c)] + γ(f)(a)(c)γ
(f)

(b) (d) − γ(f)(a)(d)γ
(f)

(b) (c),

(1.34)

(iii) a identidade de Bianchi4

R(a)(b)[(c)(d)|(f)] =
1

6

∑
[(c)(d)(f)]

{R(a)(b)(c)(d),(f) − η(n)(m)[γ(n)(a)(f)R(m)(b)(c)(d)

+γ(n)(b)(f)R(a)(m)(c)(d) + γ(n)(c)(f)R(a)(b)(m)(d) + γ(n)(d)(f)R(a)(b)(c)(m)]}.

(1.35)

Demonstração.

As identidades de Ricci,

Ri
jklZi = Zj;k;l − Zj;l;k, Z ∈ T 1

0 (M), (1.36)

e de Bianchi,

Rij[kl;m] =
1

3
(Rijkl;m +Rijlm;k +Rijmk;l) = 0, (1.37)

são identidades diferenciais obedecidas pelo tensor de curvatura em uma conexão riemanni-
ana. As expressões (ii) e (iii) da proposição podem ser verificadas diretamente mediante a
projeção sobre a base tétrade das identidades (1.36) e (1.37), respectivamente, e substitui-
ção das derivadas covariantes dos vetores da base pelos coeficientes de rotação, dados pela

4Agrupar um conjunto de índices entre colchetes significa que a quantidade em questão está sob a ação do
operador de anti-simetrização A:AT (X1, ..., Xs) = 1

s!

∑
σ sgn(σ)T (Xσ(1), ..., Xσ(s)).
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equação (1.24). A expressão (i) resulta da ação do comutador5 sobre um campo escalar
arbitrário, expressa em termos dos coeficientes de rotação.

Devido à anti-simetria dos coeficientes de rotação no primeiro par de índices, decorrente
da expressão (1.30), segue que existem 24 coeficientes de rotação de Ricci. Além disso, pela
forma como são construídas as equações da Proposição 1.4, conclui-se que existem 24 relações
de comutação, 36 identidades de Ricci e 20 identidades de Bianchi independentes ([6], p.39).

Definição 1.11 A base de Newman-Penrose (l, n,m, m̄) consiste em uma base tétrade for-
mada por vetores de tipo-luz, sendo dois reais (l, n) e dois conjugados-complexos6 (m, m̄), de
forma que a matriz η(a)(b) é dada por

η(a)(b) = η(a)(b) =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 . (1.38)

Os vetores da base, considerados como derivadas direcionais, são denotados por símbolos
especiais:

a) e1 = e2 = D;

b) e2 = e1 = ∆̄;

c) e3 = −e4 = δ; e

d) e4 = −e3 = δ∗.

(1.39)

5O comutador dos campos vetoriais X e Y é dado por [X,Y ]f = X(Y f)−Y (Xf), para cada função f sobre
a variedade.

6A base de Newman-Penrose resulta da parametrização complexa do cone de luz - conjunto de vetores de
tipo-luz - em um ponto do Espaço de Minkowski, que dá origem ao conceito de espinor. Ela é induzida
por uma base normalizada do espaço de espinores de ordem 1 (ou vetores-spin). Uma exposição completa
do assunto pode ser encontrada em [19].
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Os vários coeficientes de rotação de Ricci, agora denominados coeficientes de spin, são
representados pelos símbolos:

κ = γ311 λ = γ244 ρ = γ314 τ = γ312 ε = 1
2
(γ211 + γ341) α = 1

2
(γ214 + γ344)

σ = γ313 ν = γ242 µ = γ243 π = γ241 γ = 1
2
(γ212 + γ342) β = 1

2
(γ213 + γ343)

(1.40)

Deve ficar claro que o conjugado-complexo de qualquer quantidade no formalismo de Newman-
Penrose pode ser obtido pela substituição do índice 3, onde quer que ele ocorra, pelo índice
4, e vice-versa.

Decorre das simetrias do tensor de Riemann em uma conexão riemanniana numa variedade
quadridimensional que os tensores de Weyl e Ricci possuem dez componentes independentes
cada ([6], pp.42-43).

Definição 1.12 No formalismo de Newman-Penrose, as dez componentes independentes do
tensor de Weyl são representadas pelos cinco escalares complexos,

Ψ0 = −C1313 = −Cpqrslpmqlrms,

Ψ1 = −C1213 = −Cpqrslpnqlrms,

Ψ2 = −C1342 = −Cpqrslpmqm̄rns,

Ψ3 = −C1242 = −Cpqrslpnqm̄rns,

Ψ4 = −C2424 = −Cpqrsnpm̄qnrm̄s,

(1.41)

denominados escalares de Weyl.

Definição 1.13 No formalismo de Newman-Penrose, as dez componentes independentes do
tensor de Ricci são representadas pelos quatro escalares reais e pelos três complexos:

Φ00 = −1

2
R11, Φ22 = −1

2
R22, Φ02 = −1

2
R33, Φ20 = −1

2
R44;

Φ11 = −1

4
(R12 +R34), Φ01 = −1

2
R13, Φ12 = −1

2
R23,

Λ =
1

24
R =

1

12
(R12 −R34), Φ10 = −1

2
R14, Φ21 = −1

2
R24.

(1.42)

onde
Rab = Rµνe

µ
ae
ν
b (1.43)
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e Rµν é dado pela Definição 1.4. As quantidades acima são denominadas escalares de Ricci.

Definição 1.14 As Equações de Maxwell livres de fonte, as quais descrevem o campo ele-
tromagnético, são

F[ij;k] = 0 e gikFij;k = 0 (1.44)

ou, em um referencial tétrade7,

F[(a)(b)|(c)] = 0 e η(n)(m)F(a)(n)|(m) = 0, (1.45)

onde Fij denota o tensor de Maxwell.

Definição 1.15 No formalismo de Newman-Penrose, o tensor de Maxwell Fij, anti-simétrico
de tipo (0, 2), é substituído pelos três escalares complexos

φ0 = F13 = Fijl
imj

φ1 = 1
2
(F12 + F43) = 1

2
Fij(l

inj + m̄imj)

φ2 = F42 = Fijm̄
inj

(1.46)

denominados escalares de Maxwell.

Definição 1.16 Uma congruência de tipo-luz consiste numa família de curvas integrais de
um campo vetorial l de tipo-luz. Quando as curvas são geodésicas de tipo-luz, diz-se que a
congruência é geodésica (ou de raios).

Proposição 1.4 Os campos vetoriais l da base de Newman-Penrose num aberto U do espaço-
tempo formam uma congruência de geodésicas de tipo-luz se, e somente se, κ = 0. Além disso,
as geodésicas estarão parametrizadas por parâmetros afins se, e somente se, Re(ε) = 0.

Demonstração.

A demonstração que segue foi extraída da referência [6]. Da definição de coeficientes de
rotação de Ricci na Proposição 1.1, segue que a variação infinitesimal sofrida pelo vetor da
base e(a) na direção ξ é

δe(a)i = e(a)i;jξ
j = e

(b)
i γ(b)(a)(c)e

(c)
j ξ

j = −γ(a)(b)(c)e
(b)
i ξ

(c), (1.47)

7As equações (1.45) podem ser verificadas a partir da projeção sobre a base tétrade das equações (1.44) e
substituição das derivadas covariantes dos vetores da base pelos coeficientes de rotação (1.24).
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em que foi feito uso da anti-simetria dos coeficientes γ(a)(b)(c) no primeiro par de índices.

Portanto, a mudança δe(a)(c) em e(a), por unidade de deslocamento ao longo da direção c,
é dada por

δe(a)(c) = −γ(a)(b)(c)e
(b). (1.48)

Em particular, para a mudança em l, por unidade de deslocamento ao longo de l, nós temos

δl(1) = −γ1(b)1e
(b)

= −γ121e
(2) − γ131e

(3) − γ141e
(4)

= −γ121l + γ131m̄ + γ141m (1.49)

Utilizando-se os resultados (1.40), obtém-se

li;jl
j = (ε+ ε∗)li − κm̄i − κ∗mi. (1.50)

As afirmações da proposição decorrem da comparação entre (1.50) e a equação da geodésica

d2xj

dt2
+ Γjlk

dxl

dt

dxk

dt
= 0, (1.51)

com lj = dxj

dt
.

Pela Definição 1.11, tem-se que l é o vetor tangente a um raio de luz N e m é um vetor
complexo ortogonal a l, de modo que em um ponto p ∈ N , a parte real de m gera com l

um plano. Considerando um círculo nesse plano e seguindo os raios da congruência l que
interceptam o círculo, na direção-futuro (parâmetro crescente), observa-se possível contração
(ou expansão), rotação e distorção do círculo (em uma elipse). A contração (ou expansão), a
rotação e a distorção são medidas, respectivamente, por −Re(ρ), Im(ρ) e σ ([6], pp. 56-58).
Além disso, κ = 0 implica que os raios da congruência são geodésicas, como demonstrado na
Proposição 1.5.

Dentre as congruências do vetor l, aquelas responsáveis por uma maior simplificação das
quantidades e equações fundamentais são as congruências geodésicas sem distorção, para as
quais κ = σ = 0. Se, além disso, as congruências de n também forem geodésicas e sem
distorção, obtemos λ = ν = 0; nesse caso, o único escalar de Weyl não nulo será Ψ2(Esses
resultados decorrem do Teorema de Goldberg-Sachs; [6], pp.62-63). O principal problema do
formalismo de Newman-Penrose está em se encontrar uma base para a qual as congruências
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de l e n sejam geodésicas sem distorção.

O formalismo tétrade foi desenvolvido por Cartan e é equivalente ao formalismo tensorial da
geometria riemanniana, mas enquanto esse último concentra as propriedades do espaço-tempo
nas componentes do tensor métrico, a abordagem tétrade focaliza a análise na geometria
dos vetores da base, através dos coeficientes de rotação. Dessa forma, pode-se explorar
as simetrias presentes em certo espaço-tempo e escolher bases tétrades que se adaptem ao
problema.

Outro conceito introduzido por Cartan, e desenvolvido por Penrose, é o de espinor[19], o
qual surge no processo de parametrização complexa do cone de luz, definido como o conjunto
de vetores de tipo-luz em um ponto do Espaço de Minkowski. Nesse sentido, uma base de
Newman-Penrose corresponde à utilização das congruências de raios de luz como referenciais.

O formalismo de Newman-Penrose foi construído de modo a descrever o espaço-tempo por
meio da geometria (coeficientes de spin) dos cones de luz. Isso decorre da forte crença de
Roger Penrose de que o elemento essencial de um espaço-tempo é sua estrutura de cone de luz.
Além do caráter algébrico que a teoria adquire, com a possível classificação dos espaços-tempo
de acordo com a forma do tensor de Weyl ([6], pp.58-62), é nas soluções representativas dos
buracos negros e inclusive wormholes que a estrutura do cone de luz se mostra mais efetiva.
Nos capítulos seguintes, a adaptabilidade do formalismo de Newman-Penrose às soluções de
wormholes se tornará evidente, na medida em que permitirá o estudo das perturbações dos
mesmos através da separabilidade, e consequente resolução, das equações fundamentais da
teoria.

1.3 Modos Quase-Normais

Uma perturbação genérica de um sistema oscilante fechado tem sua evolução governada pela
superposição de modos normais

R(r)S(θ)ei(ωt+mϕ), (1.52)

em que a parte angular S(θ) satisfaz equações dependentes da geometria e do campo de
ondas, enquanto que a parte radial R(r) obedece a uma equação de onda

Λ2Z(s) = V Z(s)

(
Λ2 =

d2

dl∗2
+ ω2

)
(1.53)
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onde Z = Z(R(r), ω) e as frequências ω (reais e positivas) obedecem às seguintes condições
de contorno[26]

Z(l∗) = Aeiωl
∗

+Be−iωl
∗
, l∗ → +∞

Z(l∗) = Ceiωl
∗
, l∗ → −∞ (1.54)

Tais condições de fronteira correspondem a uma onda incidente e outra refletida em um
lado da barreira de potencial V e a uma onda transmitida do outro lado8.

Como foi dito anteriormente, um wormhole precisa ser visto como uma membrana infinita,
e assim, ele deve ser tratado como um sistema aberto. A consequência desse raciocínio
é a de que as ondas emitidas por um wormhole aparecerão como oscilações amortecidas;
este amortecimento é melhor expresso pela parte imaginária de uma frequência complexa.
Também se faz importante procurar por radiação que carregue “impressões gravitacionais”
do objeto astronômico sob estudo. Por essas razões a definição de modos quase-normais é a
que segue.

Definição 1.17 Modos quase-normais são as soluções Z(l∗, ω) das equações de perturbação
correspondentes a freqüências complexas ω e satisfazendo as condições de fronteira

Z −→ B(ω)e−iωl∗ (l∗→+∞),

−→ C(ω)e+iωl∗ (l∗→−∞),

(1.55)

onde a distância de luminosidade l∗ será definida em termos da coordenada radial r futura-
mente, de acordo com o caso estudado.

Por comparação com (1.54), conclui-se que (1.55) aponta para uma onda de incidência
zero sendo puramente refletida no infinito e puramente absorvida na garganta do wormhole
(ou no horizonte do buraco negro). A razão entre as intensidades da onda refletida e da onda
incidente denomina-se coeficiente de reflexão R. Da mesma forma, define-se o coeficiente de
transmissão T a partir das intensidades da onda transmitida e da onda incidente. A lei de
conservação de energia é expressa por

R + T = 1. (1.56)

8No Capítulo 3, será estudado o caso de uma barreira de potencial unidimensional quadrada; em casos como
esse, o lado não é importante já que o potencial é uma função par.
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O processo para se encontrar as frequências de MQN dos wormholes a serem estudados
seguirá a propriedade de que os modos quase-normais podem ser vistos como ressonâncias da
amplitude de reflexão no plano complexo. Esta asserção baseia-se na seguinte proposição.

Proposição 1.5 Sejam R(ω) e T(ω) os coeficientes de reflexão e transmissão de uma onda
(gravitacional ou eletromagnética) incidente num wormhole. Então os MQN correspondem
aos pólos da extensão analítica de R(ω) ao plano das freqüências complexas tais que Re(ω) 6= 0

e T(ω)
R(ω)

é regular (e não-nulo).

Demonstração.

No caso real, a definição (1.54) fornece, para as soluções da equação de onda (1.53),

R(ω) =
|A(ω)|2

|C(ω)|2
=

(Γ
2
)2

(ω − ω0)2 + (Γ
2
)2
, (1.57)

que consiste na resposta apropriada a uma ressonância em um oscilador harmônico amorte-
cido, onde ω0 corresponde à freqüência de ressonância e Γ

2
determina a taxa de amortecimento

do oscilador [27]. Estendendo a função R(ω) ao plano das frequências complexas, obtém-se

A(ω)

C(ω)
=

Γ
2

ω − ω0 + iΓ
2

. (1.58)

Impondo as condições de fronteira (1.55) à expressão (1.58), segue o resultado. Os vínculos,
Re(ω) 6= 0 e T(ω)

R(ω)
regular não-nulo, servem para assegurar o cumprimento das condições de

fronteira [28].

A teoria da perturbação que será desenvolvida nos capítulos seguintes fornecerá como re-
sultado final uma equação do tipo (1.53). Tal procedimento será generalizado para englobar
frequências complexas ao espectro de radiação dos wormholes. Esse problema foi inicial-
mente proposto por Vishweshwara [32] no contexto da análise da estabilidade dos espaços-
tempo gerados por buracos negros. Atualmente, o estudo de certas soluções para frequências
complexas, os modos quase-normais, é de grande importância em Astrofísica na tentativa
de se detectar diretamente a presença de buracos negros e wormholes no universo. Isso se
deve ao fato de que os modos quase-normais são definidos de forma a representar radiação
gravitacional que independe do processo de perturbação, ou seja, depende exclusivamente
das características que definem a geometria do objeto astronômico.



Capítulo 2

WORMHOLE ULTRAESTÁTICO

Dentre todas as geometrias de wormhole encontradas na literatura, indubitavelmente a mais
estudada é aquela correspondente ao wormhole ultraestático, o qual corresponde ao caso
mais simples desse tipo de estrutura. O wormhole ultraestático apresenta duas caracterís-
ticas importantes, a saber: forças de maré nulas, o que permite transitabilidade através da
garganta, e uma função de forma previamente escolhida de modo a se obter uma relação sim-
ples entre a coordenada radial e a distância de luminosidade. Neste capítulo, o formalismo
de Newman-Penrose será usado para se analisar as perturbações gravitacionais na geome-
tria de um wormhole ultraestático. A propagação de campos gravitacionais será estudada
mostrando-se que a parte radial das perturbações pode ser expressa em termos de uma equa-
ção de Schrödinger unidimensional. A exposição que segue é uma discussão aprimorada do
artigo de Claudia Moreno e Ricardo García-Salcedo [15].

25
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2.1 Descrição do Espaço-Tempo

Uma solução das Equações de Einstein representativa de um espaço-tempo estático e esferica-
mente simétrico possuindo duas regiões assintoticamente planas é um wormhole Lorentziano,
cuja métrica tem a forma

ds2 = e2Φ(r)dt2 − dr2

1− b(r)

r

− r2(dθ2 + sin2 θdϕ2), (2.1)

onde, como vimos, Φ(r) é usualmente chamada função desvio para o vermelho, porque está
relacionada com o processo gravitacional do desvio para o vermelho. A função b(r) está
relacionada à forma do wormhole por meio de diagramas de mergulho. Elas satisfazem as
condições:i)r → ∞, b(r)

r
→ 0;ii)r → ∞,Φ(r) → 0;iii)Φ(r) é sempre finita. A coordenada

radial tem um alcance que aumenta de um valor mínimo em r0 (em que b(r0) = r0), cor-
respondente à garganta do wormhole, até o infinito. Na medida em que r → ∞, b(r) se
aproxima de 2M que é definida como a massa do wormhole.
As Equações de Einstein implicam que tal métrica existe se e somente se a densidade

de energia e a pressão radial no referencial de um observador estático1 satisfazem a relação
ρ+ p < 0 (ρ denota a densidade de energia e p denota a pressão radial), correspondente à lei
de conservação WEC [5].
A fim de manter as forças de maré nulas é suficiente impor Φ(r) = 0 [4]. Neste caso,

tomamos uma função de forma particular que satisfaz os requisitos de wormhole b(r) =
r20
r
,

onde r0 é uma constante. Portanto, a métrica que iremos analisar é a seguinte

ds2 = dt2 − dr2

1− r2
0

r2

− r2(dθ2 + sin2 θdϕ2). (2.2)

A distância radial própria ou distância de luminosidade é definida por

l(r) = ±
∫ r

r0

dr√
1− b(r)

r

. (2.3)

A métrica (2.2) pode ser escrita em termos da distância radial própria como

ds2 = dt2 − dl2 − r2(l)(dθ2 + sin2 θdϕ2), (2.4)

1Para uma definição rigorosa de observador estático, consultar a referência [18].
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onde r2(l) = l2 + r2
0. A distância própria decresce de l = +∞ no universo superior, a l = 0

na garganta, e então de zero a l = −∞ no universo inferior.

Para uma descrição da solução de wormhole (2.4) no formalismo de Newman-Penrose, a
métrica é descrita por [6]

gµν = 2[l(µnν) −mµm̄ν)], (2.5)

onde a barra denota conjugação complexa e os parênteses indicam simetrização. A tétrade
de tipo-luz l, n, m e m̄ está determinada pela Definição 1.11 do Capítulo 1.

Assim, precisamos primeiro definir uma tétrade de tipo-luz [19] de acordo com a métrica
de wormhole, a qual é satisfeita por

lµ =
1√
2

(1, 1, 0, 0),

nµ =
1√
2

(1,−1, 0, 0),

mµ =
1

√
2(l2 + r2

0)
1
2

(0, 0, 1, i csc θ),

m̄µ =
1

√
2(l2 + r2

0)
1
2

(0, 0, 1,−i csc θ),

(2.6)

ou, equivalentemente, podemos definir os seguintes campos vetoriais, também chamados
derivadas direcionais,

D = lµ∂µ =
1√
2

(∂t + ∂l),

∆ = nµ∂µ =
1√
2

(∂t − ∂l),

δ = mµ∂µ =
1

√
2(l2 + r2

0)
1
2

(∂θ + i csc θ∂ϕ),

δ̄ = m̄µ∂µ =
1

√
2(l2 + r2

0)
1
2

(∂θ − i csc θ∂ϕ).

(2.7)

Fazendo uso das equações (2.4), (2.5) e (2.6), podemos obter os escalares de Weyl através
da Definição 1.12 do Capítulo 1. O único escalar de Weyl não nulo no espaço-tempo original
é

Ψ2 = − r2
0

3(l2 + r2
0)2

, (2.8)
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o que significa que a solução de wormhole (2.2) é de tipo D na classificação de Petrov [6], ou
seja, possui o mesmo caráter que as soluções de buracos negros [10].

Na métrica de wormhole, os coeficientes de spin associados a essa geometria são dados por

ν = σ = κ = λ = ε = γ = τ = π = 0,

ρ = µ = − l√
2(l2 + r2

0)
,

β = −α =
cot θ

2
√

2(l2 + r2
0)

1
2

, (2.9)

em que foi feito uso das equações (1.28), (1.29), (1.40) e (2.6).

Os únicos escalares de Ricci não nulos são determinados com o auxílio da Definição 1.13
aplicada à base de Newman-Penrose (2.6):

Φ00 = − r2
0

2(l2 + r2
0)2

,

Φ11 =
r2

0

2(l2 + r2
0)2

,

Φ22 = − r2
0

2(l2 + r2
0)2

,

Λ = − r2
0

12(l2 + r2
0)2

. (2.10)

Assim encerramos a descrição do espaço-tempo de wormhole (2.2) no formalismo de Newman-
Penrose. Na próxima seção, iremos usar as Equações de Einstein perturbadas a fim de obter
a Equação de Teukolsky que permite analisar a estabilidade da solução de wormhole através
de uma equação radial e de seu potencial.

2.2 Perturbações Gravitacionais

No formalismo de Newman-Penrose há seis equações - quatro identidades de Bianchi e duas
identidades de Ricci (ver Proposição 1.4) - as quais são lineares e homogêneas nas quantidades
que se anulam identicamente no espaço-tempo não perturbado. São elas:

(δ̄ − 4α + π)Ψ0 − (D − 2ε− 4ρ)Ψ1 − (3Ψ2 − 2Φ11)κ =

= (δ + π̄ − 2ᾱ− 2β)Φ00 − (D − 2ε− 2ρ̄)Φ01 − κ̄Φ02 + 2σΦ10, (2.11)
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(∆− 4γ + µ)Ψ0 − (δ − 2β − 4τ)Ψ1 − (3Ψ2 + 2Φ11)σ =

= (δ + 2π̄ − 2β)Φ01 − (D − ρ̄− 2ε+ 2ε̄)Φ02 − 2κΦ12 − λ̄Φ00, (2.12)

(D + 4ε− ρ)Ψ4 − (δ̄ + 4π + 2α)Ψ3 + (3Ψ2 + 2Φ11)λ =

= (δ̄ + 2α− 2τ̄)Φ21 − (∆ + µ̄+ 2γ − 2γ̄)Φ20 + 2νΦ10 + σ̄Φ22, (2.13)

(δ + 4β − τ)Ψ4 − (∆ + 4µ+ 2γ)Ψ3 + (3Ψ2 − 2Φ11)ν =

= (δ̄ − τ̄ + 2α + 2β̄)Φ22 − (∆ + 2µ̄+ 2γ)Φ21 − ν̄Φ20 − 2λΦ12, (2.14)

Ψ0 + (δ − 3β − ᾱ− τ + π̄)κ− (D − 3ε+ ε̄− ρ− ρ̄)σ = 0, (2.15)

Ψ4 + (∆ + µ+ µ̄+ 3γ − γ̄)λ− (δ̄ + 3α + β̄ + π − τ̄)ν = 0. (2.16)

Essas equações estão linearizadas no sentido de que os escalares de Weyl Ψ0, Ψ1, Ψ3, Ψ4

e os coeficientes de spin κ, σ, λ, ν como perturbações, são tomados somente em primeira
ordem. Chegaremos a equações que dizem respeito a Ψ0 e Ψ4 somente, pois estes são os
componentes mais significantes na radiação gravitacional, conforme afirma Teukolsky [17].

Como a métrica de wormhole ultraestático é de tipo D, então as quantidades não-perturbadas
Ψ0, Ψ1, Ψ3, Ψ4,κ, σ, λ e ν se anulam, de modo que temos das equações (2.11)-(2.16),

(δ̄ − 4α)ΨB
0 − (D − 4ρ)ΨB

1 − (3Ψ2 − 2Φ11)κB =

= −(D − 2ρ̄)ΦB
01 + (δ − 2ᾱ− 2β)ΦB

00 + (δ − 2ᾱ− 2β)BΦ00, (2.17)

(∆ + µ)ΨB
0 − (δ − 2β)ΨB

1 − (3Ψ2 + 2Φ11)σB =

= (δ − 2β)ΦB
01 − (D − ρ̄)ΦB

02 − λ̄BΦ00, (2.18)
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(δ̄ + 2α)ΨB
3 − (D − ρ)ΨB

4 − (3Ψ2 + 2Φ11)λB =

= (∆ + µ̄)ΦB
20 − (δ̄ + 2α)ΦB

21 − σ̄BΦ22, (2.19)

(∆ + 4µ)ΨB
3 − (δ + 4β)ΨB

4 − (3Ψ2 − 2Φ11)νB =

= (∆ + 2µ̄)ΦB
21 − (δ̄ + 2α + 2β̄)ΦB

22 − (δ̄ + 2α + 2β̄)BΦ22. (2.20)

Nas equações acima usou-se (2.9); o sobrescrito B denota quantidades perturbadas.

A perturbação das equações de Ricci (2.15) e (2.16) resulta em

(D − 4ρ− ρ̄)Ψ2σ
B − (δ − 3β − ᾱ)Ψ2κ

B −ΨB
0 Ψ2 = [2ρΦ11 − (∆ + µ̄)Φ00 − 2DΛ]σB (2.21)

e

(δ̄ + 3α + β̄)Ψ2ν
B − (∆ + 4µ+ µ̄)Ψ2λ

B −ΨB
4 Ψ2 = [2µΦ11 + (D − ρ̄)Φ22 + 2∆Λ]λB, (2.22)

onde foram usadas as equações (321(b)) e (321(g)) de [6].

Operamos (δ − 3β − ᾱ) na equação (2.17) e (D − 4ρ− ρ̄) na equação (2.18), e subtraímos
uma equação da outra. Finalmente, usamos a relação (2.21), e a identidade

[(D − 4ρ− ρ̄)(δ − 2β)− (δ − 3β + ᾱ)(D − 4ρ)] = 0 (2.23)

a fim de anular os termos em ΨB
1 , obtendo a Equação de Teukolsky para ΨB

0 :

[(D − 4ρ− ρ̄)(∆− 4γ + µ)− (δ − 3β − ᾱ)(δ̄ − 4α)− 3Ψ2]ΨB
0 = T0 + T0a, (2.24)

onde

T0 = (δ − 3β − ᾱ)[(D − 2ρ̄)ΦB
01 − (δ − 2ᾱ− 2β)ΦB

00] +

+ (D − 4ρ− ρ̄)[(δ − 2β)ΦB
01 − (D − ρ̄)ΦB

02], (2.25)
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e o termo extra

T0a = [2(D − ρ− ρ̄)Φ11 − 3(∆ + µ̄)Φ00 − 6DΛ]σB + [2(δ − 3β − ᾱ)Φ11]κB −

− [(D − 4ρ− ρ̄)Φ00]λ̄B − (δ − 3β − ᾱ)(δ − 2ᾱ− 2β)BΦ00, (2.26)

representa a fonte quando o operador diferencial perturbado δ e os coeficientes de spin per-
turbados σ, κ, λ, α, β são não nulos.

À semelhança de ΨB
0 , obtemos a Equação de Teukolsky para ΨB

4 usando a relação (2.22) e
a identidade

[(∆ + 4µ+ µ̄)(δ̄ + 2α)− (δ̄ + β̄ + 3α)(∆ + 4µ)] = 0 (2.27)

a fim de eliminar ΨB
3 , resultando em

[(∆ + 4µ+ µ̄)(D − ρ)− (δ̄ + β̄ + 3α)(δ + 4β) + 3Ψ2]ΨB
4 = T4 + T4a, (2.28)

onde

T4 = (δ̄ + β̄ + 3α)[(∆− 2µ)ΦB
21 − (δ̄ + 2α + 2β̄)ΦB

22] +

+ (∆ + 4µ+ µ̄)[(δ̄ − 2α)ΦB
21 − (∆− µ)ΦB

20], (2.29)

e o termo extra

T4a = [3(∆− ρ)Φ22 − 2(∆ + µ+ µ̄)Φ11 + 6∆Λ]λB − 2(δ̄ + β̄ + 3α)Φ11ν
B +

+ (∆ + 4µ+ µ̄)Φ22σ̄
B − (δ̄ + β̄ + 3α)(δ + 2α + 2β̄)BΦ22, (2.30)

representa a fonte quando o operador diferencial perturbado δ e os coeficientes de spin per-
turbados λ, ν, σ, α, β são não nulos.

Note que as projeções não nulas são funções de r e t somente. Assim, substituindo as
projeções no lado direito das equações (2.24) e (2.28), os únicos termos de Ricci que restam
são Φ00, Φ11 e Φ22. Contudo, esses operadores são agora operadores puramente angulares,
e como as projeções são funções de (t,r), o resultado é zero. As expressões para T0 e T4 se
anulam. Do mesmo modo, pode-se mostrar [15] que as expressões para T0a e T4a são também
zero. Desta maneira, concluímos que poeira penetrando radialmente no wormhole não produz
perturbações nos escalares de Weyl perturbados ΨB

0 e ΨB
4 .

Atuando sobre ρ−4ΨB
4 e usando as relações de comutação entre as derivadas direcionais,

e a ação desses operadores sobre os coeficientes de spin, as equações de perturbação para
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ψ
(0)
G = ΨB

0 e ψ(4)
G = ρ−4ΨB

4 podem ser escritas como uma única equação mestre

{∆D − δ̄δ + µD − (2s+ 1)µ∆− (2s+ 1)β̄δ + 2sβδ̄ − s(2s+ 1)Ψ2 +

+2s(δ̄β) + 4s(s+ 1)ββ̄ + 2(2s+ 1)Λ}ψ(2s)
G = 0. (2.31)

Fazendo a substituição
ψ

(0)
G = e−iωtY(−2)jm(θ, ϕ)X(0)(l) (2.32)

e
ψ

(4)
G = e−iωtY(2)jm(θ, ϕ)X(4)(l), (2.33)

substituindo os valores para as derivadas direcionais (2.7), para o escalar de Weyl (2.8) e para
os coeficientes de spin (2.9) na equação (2.31), concluimos que as funções X(0)(l) e X(4)(l)

precisam obedecer à equação radial de Schrödinger dada por(
Λ2 +

2iωls

l2 + r2
0

− (2l2 + 4r2
0)

(l2 + r2
0)2
− (j + 2)(j − 1)

l2 + r2
0

)
Z(2s)(l) = 0, (2.34)

onde usamos as definições

Λ± =
d

dl
± iω,

Λ2 = Λ+Λ− =
d2

dl2
+ ω2,

X(2s)(l) = Z(2s)(l)(l2 + r2
0)

1
2 . (2.35)

A equação (2.34), juntamente com as equações (2.32) e (2.33), fornece a expressão para
as perturbações gravitacionais na geometria do wormhole ultraestático (2.2). Perceba que
encontrar uma expressão analítica para a solução de (2.34) não é tarefa fácil, pois o potencial
está acoplado com a frequência de uma maneira não trivial. Na verdade, tal potencial se
assemelha ao potencial do buraco negro de Kerr [10], semelhança essa marcada pela presença
do termo em iω, e até hoje não foi possível achar solução analítica para as perturbações
gravitacionais do buraco negro de Kerr. Portanto, conclui-se do desenvolvimento apresentado
nesse capítulo que a determinação de soluções exatas para MQN de wormholes deve ser tão
ou mais difícil que resolver o mesmo problema para buracos negros, já que o mais simples
dos wormholes apresenta potenciais com elevada complexidade. O ponto a favor do estudo
de wormholes é que eles são objetos exóticos e, portanto, temos certo grau de liberdade para
criarmos novas geometrias a serem estudadas. No próximo capítulo, vamos efetuar o mesmo
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estudo feito aqui para um wormhole de Morris-Thorne genérico tentando com isso encontrar
alguma geometria que desacople a frequência do potencial de uma maneira elementar.
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Capítulo 3

WORMHOLES DE
MORRIS-THORNE

Neste capítulo, estendemos o desenvolvimento feito no capítulo anterior a uma geometria de
wormhole de Morris-Thorne genérica. Inicialmente, iremos apresentar as principais caracte-
rísticas de um wormhole de Morris-Thorne, em particular a não conservação da energia, e
após, partiremos para a descrição desse espaço-tempo no formalismo de Newman-Penrose,
explicitando uma base bem como os coeficientes de spin e escalares de Ricci e Weyl deri-
vados dela. Em seguida, essas quantidades serão perutrbadas e obteremos as Equações de
Teukolsky à semelhança do que foi feito para o wormhole ultraestático. Uma equação de
onda de tipo Schrödinger será então obtida para a parte radial da radiação gravitacional e
emergirá uma geometria capaz de desacoplar frequência e potencial de uma forma natural,
proporcionando uma solução exata para as frequências de modos quase-normais a menos de
uma equação transcendental.
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3.1 Descrição do Espaço-Tempo

Relembrando o que foi visto no Capítulo 1, o wormhole de Morris-Thorne consiste numa
classe de wormholes estáticos e esfericamente simétricos, governada por dois parâmetros, a
saber:

• Função de desvio para o vermelho Φ = Φ(r), a qual está relacionada com as forças de
maré na garganta do wormhole; e

• Função de forma b = b(r), que está associada ao formato do wormhole e à densidade
de energia da matéria que suporta o wormhole.

A métrica de um wormhole de Morris-Thorne genérico possui a forma

ds2 = −e2φdt2 +
dr2

1− b
r

+ r2dθ2 + r2 sin2 θdϕ2 (3.1)

3.1.1 Matéria Exótica

Para wormholes estáticos com simetria esférica, resultam as equações da referência [4] para os
valores da densidade e da tensão radial da matéria que suporta cada wormhole. A densidade
é

ρ =
b′

8πr2
(3.2)

e a tensão radial é
τ =

b− 2r(r − b)φ′

8πr3
, (3.3)

revelando que b′ está diretamente conectado com a densidade do material e φ′ com sua tensão
radial. Como b′ < 0 porque a matéria precisa se anular a uma certa distância da garganta, não
é difícil ver que a equação (3.2) aponta para uma energia negativa, e assim, para a violação
das condições de energia. Essa propriedade do tensor energia-momento está presente em
praticamente todos os wormholes estudados na literatura e ganhou interpretação física de
uma matéria exótica presente na garganta, formando e mantendo o wormhole. A matéria
exótica, até onde se sabe, é um mero artifício de imaginação de modo que se supõe que
ela não interage com nenhum tipo de matéria ordinária não sendo passível de detecção. No
entanto, a presença de um wormhole na Natureza seria uma confirmação de sua existência.

Quanto às forças de maré, sabe-se que elas precisam obedecer ao seguinte vínculo a fim de
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permitir viagem humana (para mais detalhes sobre os cálculos, ver [4])1:

|R2̄1̄2̄1̄| = |
(

1− b

r

)(
−φ′′ + b′r − b

2r(r − b)
φ′ − φ′2

)
| ≤ g

ξ
∼= 4, 9 (3.4)

Da expressão acima, segue que a condição Φ = 0 proporciona forças de maré nulas na gar-
ganta do wormhole. Veremos mais adiante que wormholes com essa condição não permitem
uma solução analítica simples da equação radial da perturbação gravitacional.

3.1.2 Cones de Luz

Como vimos, a distância radial própria é definida por

dr

dl
=

√(
1− b

r

)
=⇒ l(r) = ±

∫ r

r0

dr√(
1− b

r

) . (3.5)

de modo que ela decresce de l = +∞ no universo superior, para l = 0 na garganta, e então de
zero para −∞ no universo inferior. Esta distância precisa ser bem comportada ao longo de
todo o espaço-tempo e representa uma “distância de luminosidade”, a distância real medida
por um observador estático ao longo do caminho da viagem. Nessa nova coordenada, a
métrica (3.1) se torna

ds2 = e2φdt2 − dl2 − r2dθ2 − r2 sin2 θdϕ2 (3.6)

onde a troca de assinatura da métrica foi feita para efeito de comparações com resultados da
literatura.

Para a métrica acima, as componentes do tensor de energia-momento Tij no “referencial
geométrico” (via isomorfismo)

et = dt er = dr eθ = dθ eϕ = dϕ. (3.7)

são dadas por

Tij =
1

8π

(
Rij −

1

2
Rgij

)
, (3.8)

em que as componentes da métrica gij estão explicitadas em (3.6), e Rij e R são como na

1Nesta expressão, g = 9, 8m/s2 é a “aceleração da gravidade da Terra” e ξ = 2m é a altura aproximada de
um astronauta.
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Definição 1.4.

Efetuando-se a transformação (3.5), o referencial ortonormal de um observador estático,
isto é, a tétrade de Cartan para (3.6), se reduz a

ei(1) = e−φet e(1)i = eφet

ei(2) = el e(2)i = −el
ei(3) = 1

r
eθ e(3)i = −reθ

ei(4) = csc θ
r
eϕ ei(4) = −r sin θeϕ

ei(a)e(b)i = −µ(a)(b) =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



(3.9)

Para uma descrição da solução de espaço-tempo de wormhole (3.6) no formalismo de
Newman-Penrose se faz necessário usar as relações [21]

l = e1 = 1√
2
[e(1) + e(2)] n = e2 = 1√

2
[e(1) − e(2)]

m = e3 = 1√
2
[e(3) + ie(4)] m̄ = e4 = 1√

2
[e(3) − ie(4)],

(3.10)

onde a barra denota conjugação complexa. Esta relação corresponde a uma parametrização
complexa do cone de luz e que fornece a seguinte base tétrade fundamental, a qual será usada
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de agora em diante:

li =
(
eφ√

2
,− 1√

2
, 0, 0

)
li =

(
e−φ√

2
, 1√

2
, 0, 0

)
ni =

(
eφ√

2
, 1√

2
, 0, 0

)
ni =

(
e−φ√

2
,− 1√

2
, 0, 0

)
mi =

(
0, 0, −r√

2
, −ir sin θ√

2

)
mi =

(
0, 0, 1

r
√

2
, i csc θ
r
√

2

)
m̄i =

(
0, 0, −r√

2
, ir sin θ√

2

)
m̄i =

(
0, 0, 1

r
√

2
, −i csc θ

r
√

2

)

eiaebi = ηab =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 = ηab

(3.11)

As derivadas direcionais correspondentes são

D = li∂i = e−φ√
2
∂t + 1√

2
∂l

∆ = ni∂i = e−φ√
2
∂t − 1√

2
∂l

δ = mi∂i = 1
r
√

2
∂θ + i csc θ

r
√

2
∂ϕ

δ̄ = m̄i∂i = 1
r
√

2
∂θ + −i csc θ

r
√

2
∂ϕ

(3.12)

Conhecida uma base de Newman-Penrose, a descrição do espaço-tempo consiste em expli-
citar os coeficientes de spin, responsáveis por indicar como o cone de luz muda ao se mover
através do espaço-tempo, e dos escalares de Ricci e Weyl, que contém a informação que se
precisa sobre a curvatura e sobre a matéria existente. Utilizando-se as equações (1.28), (1.29)
e (1.40) aplicadas à base de Newman-Penrose (3.11), encontram-se os coeficientes de spin
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κ = γ311 = 0

σ = γ313 = 0

λ = γ244 = 0

ν = γ242 = 0

µ = γ243 = − 1
r
√

2

(
1− b

r

) 1
2

ρ = µεR
τ = γ312 = 0

π = γ241 = 0

ε = 1
2
(γ211 + γ341) = φ′

2
√

2

(
1− b

r

) 1
2

γ = εεR
β = 1

2
(γ213 + γ343) = cot θ

2r
√

2

α = −βεR

(3.13)

Os escalares de Weyl podem ser calculados diretamente pela Definição 1.12 ou através das
identidades de Ricci (1.34). Para o wormhole em questão, todos os escalares de Weyl se
anulam à exceção de Ψ− 2 que pode ser determinado com o auxílio da identidade

1

2
(R1234 −R3434)− 1

2
(R1212 −R3412) +R1324, (3.14)

obtendo-se após um pouco de manipulação e substituição dos coeficientes de spin (3.13) e
das derivadas direcionais (3.12),

Ψ2 = − 1

6r2
+

(
1− b

r

)[
1

6r2
− φ′

6r
+
φ′′

6
+

(φ′)2

6

]
+

[
1

r
− φ′

](
rb′ − b
12r2

)
. (3.15)

Da mesma maneira, os escalares de Ricci são determinados com o auxílio das identidades



3.2. Perturbação do Espaço-Tempo 41

de Ricci entre colchetes:

[R1314] Φ00 =
1√
2
∂lµ− µ2 − 2µε

[R1312] Φ01 = 0

[
1

2
(R3414 −R1214] Φ10 = − 1√

2
∂lβ −

1

r
√

2
∂θε+ µβ

[
1

2
(R1212 −R3412] Φ11 =

2√
2
∂lε+ 4ε2 −Ψ2 + Λ

[R2441] Φ20 = 0

[R2421] Φ21 = 0

[R2423] Φ22 = Φ00

[
1

2
(R1232 −R3432] Φ12 = −Φ10

[R1332] Φ02 = 0

[
1

2
(R1234 −R3434 −

1

2
(R1212 −R3412 − 2R1324]

Λ =
1

12r2
−
(

1− b

r

)[
1

12r2
+

2φ′

12r
+
φ′′

12
+

(φ′)2

12

]
+

[
1

r
+ φ′

](
rb′ − b
12r2

)
,

(3.16)

onde as expressões para os coeficientes de spin β, µ e ε são dadas por (3.13).

Com as expressões para a base tétrade de tipo-luz, as derivadas direcionais, os coeficientes
de spin, os escalares de Weyl e Ricci, completa-se a descrição do wormhole de Morris-Thorne
no formalismo de Newman-Penrose. No limite φ′ = 0 e b =

r20
r
, recupera-se as fórmulas

análogas para o wormhole ultraestático do Capítulo 2, equações (2.8), (2.9) e (2.10).

3.2 Perturbação do Espaço-Tempo

O objetivo desta seção é determinar as perturbações nos escalares de Weyl Ψ0 e Ψ4, porque
essas componentes possuem toda a informação necessária sobre a onda gravitacional emitida
pelo wormhole [15]. Todas as refrências nessa seção podem ser obtidas nos trabalhos de
Teukolsky [17], Moreno & Nuñez [22] e Moreno & Garcia-Salcedo [15].
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3.2.1 Equações de Teukolsky

Há quatro identidades de Bianchi e duas identidades de Ricci (ver Seções 1.2 e 2.2) as quais
são lineares e homogêneas nas quantidades que se anulam no espaço-tempo não perturbado
(a saber, os coeficientes κ, σ, λ, ν e os escalares Ψ0, Ψ1, Ψ3 e Ψ4):

Identidade de Bianchi R13[13|4] = 0 :

(δ̄ − 4α + π)Ψ0 − (D − 4ρ− 2ε)Ψ1 − (3Ψ2 − 2Φ11)κ =

(δ + π̄ − 2ᾱ− 2β)Φ00 − (D − 2ε− 2ρ̄)Φ01 − κ̄Φ02 + 2σΦ10 (3.17)

Identidade de Bianchi R13[13|2] = 0 :

(∆− 4γ + µ)Ψ0 − (δ − 4τ − 2β)Ψ1 − (3Ψ2 + 2Φ11)σ =

(δ + 2π̄ − 2β)Φ01 − (D − ρ̄− 2ε+ 2ε̄)Φ2 − 2κΦ12 − λ̄Φ00 (3.18)

Identidade de Bianchi R42[21|4] = 0 :

(D + 4ε− ρ)Ψ4 − (δ̄ + 4π + 2α)Ψ3 + (3Ψ2 + 2Φ11)λ =

(δ̄ + 2α− 2τ̄)Φ21 − (∆ + µ̄+ 2γ − 2γ̄)Φ20 + 2νΦ10 + σ̄Φ22 (3.19)

Identidade de Bianchi R42[43|2] = 0 :

(δ + 4β − τ)Ψ4 − (∆ + 2γ + 4µ)Ψ3 + (3Ψ2 − 2Φ11)ν =

(δ̄ − τ̄ + 2α + 2β̄)Φ22 − (∆ + 2µ̄+ 2γ)Φ21 + ν̄Φ20 − 2λΦ12 (3.20)

e

Identidade de Ricci para R1313 :

Ψ0 + (δ − 3β − ᾱ− τ + π̄)κ− (D − 3ε+ ε̄− ρ− ρ̄)σ = 0 (3.21)
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Identidade de Ricci para R2442 :

Ψ4 + (∆ + µ+ µ̄+ 3γ − γ̄)λ− (δ̄ + 3α + β̄ + π − τ)ν = 0 (3.22)

A fim de se efetuar teoria de perturbação no espaço-tempo, é o bastante especificar a
geometria perturbada por

l = lA + lB

n = nA + nB

m = mA +mB

m̄ = m̄A + m̄B (3.23)

onde A denota o valor no espaço não perturbado e B, a perturbação (todas as quantidades de
Newman-Penrose podem ser escritas dessa forma). Primeiramente, elimina-se os coeficientes
de spin, os escalares de Ricci e os escalares de Weyl não perturbados que se anulam no
espaço-tempo original, e faz-se algumas simplificações com a ajuda das equações (3.13) e
(3.16), obtendo o conjunto de equações (3.17)*-(3.22)* governando as perturbações sofridas
pelo modelo de espaço-tempo específico, a métrica de wormhole (3.6). Em segundo lugar,
procede-se à redução desse sistema da seguinte maneira:
i.Multiplique (3.18)* por (D − 5µ− 3ε+ ε̄), obtendo (3.18)**;
ii.Multiplique (3.17)* por (δ − 2β), obtendo (3.17)**;
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iii.Subtraia (3.17)** de (3.18)** e use (3.21)* para obter a seguinte equação2:

[(D − 5µ− 3ε+ ε̄)(∆ + µ− 4ε̄)− (δ − 2β)(δ̄ + 4β̄)− 3Ψ2]Ψ2
0 = T0 + T0a,

onde

T0 = (δ − 2β)[(D − 2µ− 2ε)ΦB
01 − δΦB

00] +

(D − 5µ− 3ε+ ε̄)[(δ − 2β)ΦB
01 − (D − µ− 2ε+ 2ε̄)ΦB

02

e

T0a = [2(D − 2µ− 3ε+ 3ε̄)Φ11 − 3(∆ + µ− 2ε− 2ε̄)Φ00

−6DΛ− 2(δ − 2β)Φ10 + 2Φ11D − 2Φ10δ]σ
B +

[2(δ − 2β)Φ11 − 2(D − 5µ− 3ε+ ε̄)Φ12 − 3δΨ2 + 2Φ11δ − 2Φ12D]κB

−(D − 5µ− 3ε+ ε̄)Φ00λ̄
B

−(δ − 2β)[δ + (δ + π̄ − 2ᾱ− 2β)B]Φ00 (3.24)

Como é explicado em [17], o conjunto completo das equações de Newman-Penrose é invari-
ante sob a troca l↔ n,m↔ m̄ e esta simetria não é destruída em um espaço-tempo de Tipo
D, como é o caso do wormhole de Morris-Thorne. Pode-se, portanto, derivar3 uma equação
para ΨB

4 pela aplicação dessa transformação à equação4 (3.24):

[(∆ + 5µ+ 3ε̄− ε)(D − µ+ 4ε)− (δ̄ − 2β̄)(δ + 4β)− 3Ψ2]ΨB
4 = T4 + T4a,

onde

T4 = (δ̄ − 2β̄)[(∆ + 2µ+ 2ε̄)ΦB
21 − δ̄ΦB

22] + (∆ + 5µ+ 3ε̄− ε)[(δ̄ − 2β̄)ΦB
21

−(∆ + µ+ 2ε̄− 2ε)ΦB
20]

e

T4a = [3(D − µ+ 2ε+ 2ε̄)Φ22 − 2(∆ + 2µ+ 3ε̄− ε)Φ11 +

6∆Λ + 2(δ̄ − 2β̄)Φ12 − 2Φ11D + 2Φ12δ̄]λ
B +

[−2(δ̄ − 2β̄)Φ11 + 2(∆ + 5µ+ 3ε̄− ε)Φ10 +

3δ̄Ψ2 − 2Φ11δ̄ + 2Φ10∆]νB + (∆ + 5ν + 3ε̄− ε)Φ22σ̄
B +

−(δ − 2β)[δ̄ + (δ̄ − τ̄ + 2α + 2β̄)B]Φ22 (3.25)

2O sobrescrito nas quantidades não perturbadas foi suprimido, por simplicidade.
3Há uma maneira mais direta, semelhante ao processo de desenvolvimento da equação (3.24), o qual é
explicado em [15].

4Aqui o sobrescrito nas quantidades não perturbadas também foi suprimido.
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Pelo mesmo raciocínio feito em [22], pode-se mostrar que o lado direito nas equações (3.24)
e (3.25) se anula para o caso de um wormhole estático e esfericamente simétrico. Feito isso,
obtemos as Equações de Teukolsky para um wormhole de Morris-Thorne:

[(D − 5µ− 3ε+ ε̄)(∆ + µ− 4ε̄)− (δ − 2β)(δ̄ + 4β̄)− 3Ψ2]ΨB
0 = 0 (3.26)

e

[(D + 5µ+ 3ε− ε̄)(∆− µ+ 4ε̄)− (δ − 2β)(δ̄ + 4β̄)− 3Ψ2]ΨB
4 = 0 (3.27)

Nas equações acima, os coeficientes de spin são dados pelas expressões (3.13).

3.2.2 Equações de Onda

O objetivo dessa seção é o de encontrar uma equação de onda que governe a radiação gravi-
tacional a partir das Equações de Teukolsky (3.26) e (3.27) derivadas na seção anterior. Para
tanto, devemos utilizar as relações de comutação (1.33) entre as derivadas direcionais (3.12),
e a ação desses operadores sobre os coeficientes de spin (3.13), a fim de que as equações de
perturbação para ψ(2) = ΨB

0 e ψ(−2) = r4ΨB
4 , equações (3.26) e (3.27), possam ser escritas

como uma única equação mestre em termos do parâmetro s (o qual assume os valores 2 ou
−2):

{∆D − δ̄δ + [µ− (2s+ 1)ε̄− ε]D − [(2s+ 1)µ+ 2sε]∆ +

−2(s+ 1)β̄δ + 2sβδ̄ + s(2s+ 1)[2(µ+ ε)ε̄−Ψ2]− 2s[(∆ε)

−(δ̄β) + µε− ε2] + 4s(s+ 1)ββ̄ + 2(2s+ 1)Λ}ψ(s) = 0 (3.28)

A fim de transformar a equação mestre numa forma de tipo-onda, é preciso seguir o seguinte
roteiro:
i. Substituir em (3.28) todos os valores para os coeficientes de spin (3.13), o escalar de Weyl
(3.15) e os escalares de Ricci (3.16);
ii. Fazer a substituição

Ψ(t, l, θ, ϕ) = e−iwteimϕℵ(l, θ), (3.29)
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para um modelo de função de onda, onde m é o número de onda (real), ω é a frequência (que
pode ser real ou complexa) e ℵ(l, θ) é a amplitude;
iii.Finalmente usar o fato de que ψ 6= 0, para todo (t, l, θ, ϕ), obtendo-se

A
∂2ℵ
∂l2

+B
∂2ℵ
∂θ2

+ C
∂ℵ
∂l

+D
∂ℵ
∂θ

+
{

(Eω2 + Fiω) + (Gm2 +Hm) + I
}
ℵ = 0,

onde

A = r2 sin θ

B = sin θ

C =
{

2(s+ 1)r sin θ + φ′r2 sin θ
}√

1− b

r
D = cos θ

E = e−2φr2 sin θ

F = 2se−2φ
{
r sin θ − r2 sin θφ′

}√
1− b

r
G = − csc θ

H = −2s cot θ

I = (1− b

r
)

{
(2s2 + 1)

3
[r2 sin θ]φ′′ − (s2 − 1)

3
[r2 sin θ]φ

′2

}
+

+(1− b

r
)

{
(4s2 + 3s2 + 2)

3
[r sin θ]φ′ +

(4s2 − 1)

3
sin θ

}
−

−(1− b

r
)

{
(2s2 − 3s− 2)

3
sin θ

}
+

+(
b− rb′

2r2
)

{
(2s2 + 1)

3
[r2 sin θ]φ′ − (2s2 − 3s− 2)

3
r sin θ

}
−

−(2s2 + 1)

3
csc θ −

−(s2 − 1)

3
cot θ cos θ (3.30)

Esta é a equação de onda que precisa ser obedecida por toda a radiação gravitacional
emitida por um wormhole de Morris-Thorne. Perceba que F (r, φ, b) 6= 0 implica num aco-
plamento indesejável entre frequência e potencial. Na próxima seção, vamos determinar con-
dições sobre os parâmetros do wormhole de Morris-Thorne para que ocorra desacoplamento
e consequente solução analítica da equação.
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3.3 Frequências de MQN

Dividindo por −(r2 sin2 θ) e somando −(2s2 + 3s + 1)/3 a ambos os membros da equação
de onda (3.30), atinge-se a separação de variáveis, isto é, ℵ(l, θ) = R(l)S(θ) onde a equação
angular é

d2S

dθ2
+ cot θ

dS

dθ
+ (−m2 csc2 θ − 2sm cot θ csc θ − s2 cot2 θ + s+K)S = 0 (3.31)

A equação (3.31) juntamente com as condições de fronteira de regularidade em θ = 0 e π,
constitui-se num problema de autovalor de Sturm-Liouville para a constante de separação K.
Para s e m fixados, os autovalores serão indexados por j. O menor autovalor tem índice j =

max(|m|, |s|). Da teoria de Sturm-Liouville, segue que as autofunções completas e ortogonais
são os harmônicos esféricos de peso-spin Ysjm = Ssjm(θ)eimϕ, e K = (j − s)(j + s+ 1). Para
mais detalhes, consultar [17].

Desde que a constante de separação foi determinada, toda a informação física é encontrada
na equação radial que pode ser transformada em uma equação de Schrödinger através das
seguintes mudanças de variáveis:

R(s)(l) = r−(s+1)Z(s)(l) e
dl

dl∗
= eφ (3.32)

Assim, a equação de onda mestre para a radiação gravitacional emitida por um wormhole
de Morris-Thorne geral é

Λ2Z(s) = V Z(s)

(
Λ2 =

d2

dl∗2
+ ω2

)
(3.33)

em que o potencial é dado por

V (l∗) = −2siω

[
1

r
− φ′

]
eφ
√

1− b

r
−

−e2φ

{
(1− b

r
)[

1− s2

3r2
+

(4s2 − 1)

3r
φ′ +

1− s2

3
φ′

2
+

(2s2 + 1)

3
φ′′]

}
+

−e2φ

{
(
b− rb′

2r2
)[

(2s2 + 1)

3
φ′ − (2s2 + 1)

3r
]

}
−e2φ

{
− 1

r2
[
1− s2

3
+ j(j + 1)]

}
(3.34)
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Note que

l∗ = ±
∫ r

r0

e−φ√
1− b

r

dr. (3.35)

Escolhendo φ = 0, b = (r2
0)/r, e substituindo em (3.33)encontra-se(

Λ2 +
2iωsl

(l2 + r2
0)
− 2r2

0

(l2 + r2
0)2
− j(j + 1)

(l2 + r2
0)

)
Z(s)(l∗) = 0 (3.36)

que está em perfeito acordo com a equação (42) da referência [15] para o wormhole de Morris-
Thorne ultraestático sem força de maré (ver Capítulo 2). É imediato que o potencial tem a
mesma estrutura que o potencial do buraco negro de Kerr, que não possui soluções exatas
de modos quase-normais! Assim como este caso, muitos outros wormholes não possuem uma
relação elementar entre potencial e frequência de oscilação.

Proceder-se-á agora à busca por uma solução exata procurando por algum tipo de wormhole
que não possua a frequência acoplada com o potencial na equação radial (3.33) com potencial
dado por (3.34). Essa condição é expressa por

2siωeφ
√

1− b

r
[
1

r
− φ′] = 0 (3.37)

e vincula a função da métrica φ = φ(r) a ser

φ′ =
1

r
⇒ φ = φ1 + ln r (φ1 = constante) (3.38)

O que (3.38) sugere é que uma vez que você possa resolver a equação angular (3.31)
exatamente para a constante de separação, você será capaz de determinar exatamente a
solução analítica da parte radial dada por (3.33) e (3.34), simplesmente como um problema
de espalhamento por uma barreira de potencial em Mecânica Quântica [26].

Observação: Apesar de φ em (3.38) satisfazer o vínculo de força de maré (3.4) permitindo
transitabilidade, ele fornece um comportamento indesejável para a solução resultante porque
a componente gtt da métrica não mais será assintoticamente plana. Para consertar isso, é
suficiente fazer um corte de energia a uma distância r = a0:

φ = lnr − lna0, 0 < r ≤ a0

φ = 0, r ≥ a0 (3.39)
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Como foi visto, para o caso de um wormhole de Morris-Thorne, a constante de separação é
dada por K = (j − s)(j + s+ 1), onde j refere-se ao momento angular do modo de vibração.
Assim, a seguinte solução,

ds2 =
r2

a2
0

dt2 − dl2 − r2(dθ2 + sin2 θdϕ2), 0 < r ≤ a0

ds2 = dt2 − dl2 − r2(dθ2 + sin2 θdϕ2), r ≥ a0 (3.40)

ao mesmo tempo, separa as variáveis na equação de perturbação e desacopla frequência e
potencial na parte radial. A informação física da onda gravitacional emitida por esta solução
está contida nas equações (3.33) e (3.34) que agora adquirem a forma mais simples

d2Z

dl∗2
+ ω2Z = 0, l → −∞, l→ +∞ (3.41)

d2Z

dl∗2
+ ω2Z = V0Z, −l∗(a0) ≤ l∗ ≤ l∗(a0) (3.42)

que revela um problema de espalhamento por uma barreira de potencial unidimensional
quadrada de altura V0 e largura a = 2l∗(a0). Em (3.42), a altura da barreira está expressa
em termos do momento angular do modo por

V0 =
j(j + 1) + 1

a2
0

. (3.43)

Baseado no que foi visto no Capítulo 1, Seção 1.3, inicialmente as equações (3.41)-(3.42)
serão tratadas como um problema de modos normais e então buscaremos singularidades nos
coeficientes de reflexão obtidos. As soluções fora da barreira são

Z(l∗) = Be−iωl
∗
, l∗ ≤ −a

2

Z(l∗) = Ceiωl
∗
, l∗ ≥ a

2
(3.44)

e, para V0 ≤ ω2, pode-se definir o número de propagação dentro da barreira

α =
√
ω2 − V0 (3.45)
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de modo que a solução interna seja

Z(l∗) = Feiαl
∗

+Ge−iαl
∗
. (3.46)

A continuidade de Z e dZ/dl∗ nos extremos da barreira, requisitada pelas condições de
fronteira, providencia quatro relações entre os cinco coeficientes. Elimina-se F e G e resolve-
se para as razões B/A e C/A. Os quadrados dos valores absolutos dessas razões são os
coeficientes de espalhamento (reflexão e transmissão)[26]

|B
A
|2 =

V 2
0 sin2 αa

4ω2α2 + V 2
0 sin2 αa

|C
A
|2 =

4ω2α2

4ω2α2 + V 2
0 sin2 αa

(3.47)

Facilmente verifica-se que |B/A|2 + |C/A|2 = 1, como seria esperado para modos normais.
Para modos quase-normais, deverão haver ressonâncias no plano complexo. As extensões
analíticas dos coeficientes de espalhamento (3.47) são

B

A
=

V0 sinαa

2ωα + iV0 sinαa
C

A
=

2ωα

2ωα + iV0 sinαa
(3.48)

e uma ressonância (A = 0) é atingida pelas frequências que obedecem à equação

2z
√
z2 + V0 = −V0i sin az (3.49)

onde
z =

√
ω2 − V0 ε C (3.50)

Portanto, a equação (3.49) é uma equação transcendental complexa que fornece as frequên-
cias quase-normais da solução (3.40).

A tarefa está agora completa: as soluções de MQN de (3.40) são dadas pelo conjunto de
equações

Z(l∗) = Be−iωl
∗
, l∗ → −∞

Z(l∗) = Ceiωl
∗
, l∗ → +∞ (3.51)
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com as frequências determinadas por (3.49)-(3.50).
Observação. É importante perceber que a solução (3.40) não constitui um wormhole em si,

pois o vínculo (3.38) sobre a função da métrica φ torna tal função infinita em r = 0 e, segundo
os argumentos de Morris e Thorne, tal função precisa ser finita em todo lugar. No entanto,
segundo a referência [35], a solução especial (3.40) pode ser considerada um fluido perfeito,
estático e esfericamente simétrico, que é solução ordinária (não exótica) das Equações de
Einstein. Isso é verdade se tomarmos b = r

2
de modo a obtermos uma solução da forma

ds2 = e2ν(r)dt2 − e2λ(r)dr2 − r2dΩ2 (3.52)

com

ν ′′ + ν
′2 − ν ′λ′ − (ν ′ + λ′)

r
+
e2λ−1

r2
= 0. (3.53)

Vimos que não foi possível encontrar uma solução exata para MQN na classe de wormholes
de Morris-Thorne. Encontramos, no entanto, uma solução semi-analítica através de (3.40) o
que já representa um avanço. No próximo capítulo, faremos uma nova tentativa através de
uma generalização da métrica do wormhole de Morris-Thorne.



Capítulo 4

UMA MÉTRICA
SUFICIENTEMENTE GERAL

O objetivo deste capítulo é apresentar uma métrica que engloba as principais geometrias
de wormhole encontradas na literatura e generaliza os wormholes esfericamente simétricos
de Morris-Thorne pela inclusão de dois parâmetros adicionais a fim de atingir equações de
perturbação (ou de Teukolsky) onde o potencial pode ser desacoplado da frequência. As
Equações de Teukolsky para essa classe de wormholes foram determinadas via formalismo
de Newman-Penrose e conjectura-se que podem haver wormholes com essa característica
de desacoplamento. A nova métrica provou-se muito geral no sentido de que a maioria das
geometrias de wormholes estudadas na literatura podem ser expressas como casos particulares
desta.

53
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4.1 Descrição do Espaço-Tempo

A métrica a ser estudada nesse capítulo tem a forma

ds2 = −e2φdt2 +
dr2

1− b
r

+ (c2 + r2)dθ2 + (d2 + r2 sin2 θ)dϕ2 − 2r(d+ c sin θ)dθdϕ (4.1)

e será denominada wormhole distorcido1 porque ela diverge da simetria esférica pela inclusão
de dois parâmetros c e d; quando c = d = 0 a conhecida fórmula de Morris-Thorne (1.10) do
Capítulo 1 é recuperada.

4.1.1 Matéria Exótica

Foi dito que wormholes surgem a partir de um “raciocínio inverso” na resolução das equações
de Einstein, isto é, tomando uma métrica com algumas propriedades desejáveis como (4.1) e
encontrando o tensor energia-momento que a suporta. As equações de Einstein em unidades
geométricas (G = c = 1) são

Gij = Rij −
1

2
Rgij = 8πTij (4.2)

ou, equivalentemente,

Tij =
1

8π

(
Rij −

1

2
Rgij

)
, (4.3)

onde Tij é o tensor energia-momento no “referencial geométrico” (via isomorfismo)

et = dt er = dr eθ = dθ eϕ = dϕ. (4.4)

1Estamos aqui adotando uma definição de wormhole mais abrangente, permitindo ausência de simetria
esférica. O importante é considerar essa métrica como uma classe de métricas que engloba uma série de
geometrias de wormhole de acordo com os valores dos parâmetros φ, b, c e d.
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Das equações

gij =


−e2φ 0 0 0

0
(
1− b

r

)−1
0 0

0 0 (r2 + c2) −r(d+ c sin θ)

0 0 −r(d+ c sin θ) (d2 + r2 sin θ)



gij =


−e−2φ 0 0 0

0
(
1− b

r

)
0 0

0 0 (d2+r2 sin2 θ)
(r2 sin θ−cd)2

r(d+c sin θ)
(r2 sin θ−cd)2

0 0 r(d+c sin θ)
(r2 sin θ−cd)2

(r2+c2)
(r2 sin θ−cd)2

 gikgkj = δij

(4.5)

Rlm = Γjlm,j − Γjlj,m + ΓjkjΓ
k
lm − ΓjkmΓklj, onde Γijk =

1

2
gil
(
∂glj
∂xk

+
∂glk
∂xj
− ∂gjk

∂xl

)
(4.6)

e2

R = gijRij, (4.7)

obtém-se as componentes da energia-momento no sistema de coordenadas (t, r, θ, ϕ).

Para atingir uma interpretação física simples das componentes da energia-momento, base-
ada em medições que observadores estáticos poderiam fazer, é preciso projetar os Tij em um
sistema de referência ortonormal, o qual é dado por

ei(1) = e−φet e(1)i = −eφet
ei(2) =

(
1− b

r

) 1
2 er e(2)i =

(
1− b

r

)− 1
2 er

ei(3) = r sin θ
r2 sin θ−cdeθ + c

r2 sin θ−cdeϕ e(3)i = reθ − deϕ
ei(4) = d

r2 sin θ−cdeθ + r
r2 sin θ−cdeϕ ei(4) = −ceθ + r sin θeϕ

ei(a)e(b)i = µ(a)(b) =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



(4.8)

2Determinar a curvatura escalar R no sistema (t, r, θ, ϕ) é computacionalmente difícil por meio das fórmulas
acima. Como um escalar tem o mesmo valor em qualquer sistema, pode-se usar a tétrade de campos
vetoriais de tipo luz (4.15) e a equação (1.42) para o escalar de Ricci Λ a fim de se obter R = 24Λ [6].
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Um observador estático situado no wormhole (4.1) medirá a seguinte densidade ρ (matéria
e energia por volume)3:

ρ = T(1)(1) = ei(1)e
j
(1)Tij = 1

8π(r2 sin θ−cd)

(
1− b

r

){
A+ Br

(r2 sin θ−cd)2(r−b) + C
4(r2 sin θ−cd)

}
,

onde

A = (2r sin θ − cd′ − c′d)
[

rb′−b
2r(r−b)

]
+ c′′d+ 2c′d′ + cd′′ − 2 sin θ

B = (r2 cos θ − cd†)(r2 sin θ cos θ + dd†) + (r2 sin θ − cd)(d†
2 − dd†† − r2 cos 2θ)

C = (2r sin θ − cd′ − c′d)2 − (cd′ − c′d)2 − (d+ c sin θ)2 − (d′ + c′ sin θ)2r2

+2r(d+ c sin θ)(d′ + c′ sin θ)

(4.9)

Outro indivíduo estático no mesmo lugar irá observar uma tensão τ por unidade de área
na direção radial (negativo da pressão radial), determinada pela fórmula:

τ = −T(2)(2) = −ei(2)e
j
(2)Tij =

= Aφ′ +
B

32π(r2 sin θ − cd)2

(
1− b

r

)
+

C

8π(r2 sin θ − cd)3

− 1

16π(r2 sin θ − cd)4

(
1− b

r

)
{DE + FG} ,

(4.10)

onde

3Uma adaga † irá sempre significar diferenciação com respeito à variável θ.
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A =
−(2r sin θ − cd′ − c′d)

8π(r2 sin θ − cd)

(
1− b

r

)
B = (2r sin θ − cd′ − c′d)2 − (cd′ − c′d)2 − (d+ c sin θ)2 − (d′ + c′ sin θ)2r2

+2r(d+ c sin θ)(d′ + c′ sin θ)

C = (r2 cos θ − cd†)(r2 sin θ cos θ + dd†) + (r2 sin θ − cd)(d†2 − dd†† − r2 cos 2θ)

D = 2cc′d2 − d2r − 2cdr sin θ − dd′r2 − c2rsin θ2 − (cd′ + c′d)r2 sin θ + cc′r2sin θ2

+2r3sin θ2

E = 2c2dd′ − d2r − 2cdr sin θ + dd′r2 + c2rsin θ2 − (cd′ + c′d)r2 sin θ − cc′r2sin θ2

+2r3sin θ2

F = d3 − d2d′r + cd2sin θ + (c′d2 − 2cdd′)rsin θ − dr2sin θ2 − cr2sin θ3 + d′r3sin θ2

+c′r3sin θ3

G = −c2d+ (2cc′d− c2d′)r − c3sin θ + dr2 + c2c′rsin θ − d′r3 − c′r3sin θ

No limite da simetria esférica (c = d = 0), resultam as equações da referência [4] para os
wormholes de Morris-Thorne.

4.1.2 Cones de Luz

Até aqui trabalhamos com diferentes sistemas de referência, representando visões distintas do
mesmo espaço-tempo (4.1), um baseado em coordenadas curvilíneas (t, r, θ, ϕ) com interpre-
tação física e geométrica direta, outros baseados em bases ortonormais, denominadas tétrades
de Cartan. Entretanto existe também um tipo de “raciocínio reverso” para esta situação: for-
necer a parametrização dos cones de luz e construir um espaço-tempo a partir dela; esta
visão originou o conceito de espinor e foi inicialmente proposta por Penrose e desenvolvida
por Newman (para mergulhar nesse assunto fascinante, veja por exemplo [19]). Nesta seção,
seguiremos o desenvolvimento presente no livro de Chandrasekhar [6], onde o tratamento do
espaço-tempo via formalismo de Newman-Penrose é adaptado para o formalismo tétrade de
Cartan, ao se representar o cone de luz por uma tétrade de vetores de tipo-luz em que dois
vetores são reais e dois são “complexos conjugados”, à semelhança do desenvolvimento feito
por Geroch, Held e Penrose [20] na tentativa de incluir de maneira natural o formalismo
espinorial na Relatividade Geral.
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À semelhança do desenvolvimento do Capítulo 3, a distância radial própria é definida por

dr

dl
=

√(
1− b

r

)
=⇒ l(r) = ±

∫ r

r0

dr√(
1− b

r

) . (4.11)

de modo que ela decresce de l = +∞ no universo superior, para l = 0 na garganta, e
então de zero para −∞ no universo inferior. Como vimos, esta distância precisa ser bem
comportada ao longo de todo o espaço-tempo e representa uma “distância de luminosidade”,
a distância real medida por um observador estático ao longo do caminho da viagem. Nessa
nova coordenada, a métrica (4.1) se torna

ds2 = e2φdt2 − dl2 − (c2 + r2)dθ2 − (d2 + r2 sin2 θ)dϕ2 + 2r(d+ c sin θ)dθdϕ (4.12)

onde a troca de assinatura da métrica foi feita para efeito de comparações com resultados da
literatura. Efetuando-se a transformação (4.11), a tétrade de Cartan para (4.12), se reduz a

ei(1) = e−φet e(1)i = eφet

ei(2) = el e(2)i = −el
ei(3) = r sin θ

r2 sin θ−cdeθ + c
r2 sin θ−cdeϕ e(3)i = −reθ + deϕ

ei(4) = d
r2 sin θ−cdeθ + r

r2 sin θ−cdeϕ ei(4) = ceθ − r sin θeϕ

ei(a)e(b)i = −µ(a)(b) =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



(4.13)

Para uma descrição da solução de espaço-tempo de wormhole (4.12) no formalismo de
Newman-Penrose se faz necessário usar as relações [21]

l = e1 = 1√
2
[e(1) + e(2)] n = e2 = 1√

2
[e(1) − e(2)]

m = e3 = 1√
2
[e(3) + ie(4)] m̄ = e4 = 1√

2
[e(3) − ie(4)],

(4.14)

onde a barra denota conjugação complexa. Esta relação corresponde a uma parametrização
complexa do cone de luz e que fornece a seguinte base tétrade fundamental, a qual será usada
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de agora em diante4:

li =
(
eφ√

2
,− 1√

2
, 0, 0

)
li =

(
e−φ√

2
, 1√

2
, 0, 0

)
ni =

(
eφ√

2
, 1√

2
, 0, 0

)
ni =

(
e−φ√

2
,− 1√

2
, 0, 0

)
mi =

(
0, 0, −r+ic√

2
, d−ir sin θ√

2

)
mi =

(
0, 0, r sin θ+id√

2(r2 sin θ−cd)
, c+ir√

2(r2 sin θ−cd)

)
m̄i =

(
0, 0, −r−ic√

2
, d+ir sin θ√

2

)
m̄i =

(
0, 0, r sin θ−id√

2(r2 sin θ−cd)
, c−ir√

2(r2 sin θ−cd)

)

eiaebi = ηab =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 = ηab

(4.15)

As derivadas direcionais correspondentes são5

D = li∂i = e−φ√
2
∂t + 1√

2
∂l

∆ = ni∂i = e−φ√
2
∂t − 1√

2
∂l

δ = mi∂i = r sin θ+id√
2(r2 sin θ−cd)

∂θ + c+ir√
2(r2 sin θ−cd)

∂ϕ

δ̄ = m̄i∂i = r sin θ−id√
2(r2 sin θ−cd)

∂θ + c−ir√
2(r2 sin θ−cd)

∂ϕ

(4.16)

Repetindo o que já foi dito, a filosofia por trás do formalismo de Newman-Penrose é a
convicção de que a estrutura do cone de luz faz parte da essência da gravidade e trabalhar
nesse referencial simplifica as equações. Dito isso, o problema agora consiste em substituir

4Na verdade, a generalização da métrica de Morris-Thorne começou pelo acréscimo dos parâmetros c e d
como feito na tétrade de luz abaixo; tomamos o desenvolvimento inverso do raciocínio por nos parecer
mais didático

5∂x é a derivada parcial na direção do vetor da base ex.
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as componentes da métrica pelos coeficientes de spin

κ = γ311 = 0

σ = γ313 = 1
2
√

2(r2 sin θ−cd)

(
1− b

r

) 1
2 {(cd′ − c′d)− i[(d+ c sin θ)− (d′ + c′ sin θ)r]}

λ = γ244 = σ̄

ν = γ242 = 0

µ = γ243 = 1
2
√

2(r2 sin θ−cd)

(
1− b

r

) 1
2 {cd′ + c′d− 2r sin θ}

ρ = µεR
τ = γ312 = 0

π = γ241 = 0

ε = 1
2
(γ211 + γ341) =

(
1− b

r

) 1
2

{
φ′

2
√

2
− i (d−c sin θ)−(d′−c′ sin θ)r

4
√

2(r2 sin θ−cd)

}
γ = ε̄

β = 1
2
(γ213 + γ343) = r cos θ+id†

2
√

2(r2 sin θ−cd)

α = −β̄
(4.17)

os quais determinam como que o cone de luz muda à medida em que ele se move através
do espaço-tempo. As expressões em (4.17) foram determinadas com o auxílio das equações
(1.28), (1.29) e (1.40) aplicadas à base de Newman-Penrose (4.15).

Um espaço-tempo é denominado algebricamente especial de Tipo D se o único escalar de
Weyl não nulo for Ψ2. Essa geometria possui os cones de luz mais simples de todos, por-
que há um teorema garantindo congruências geodésicas e sem distorção formadas pelas duas
direções nulas principais, l e n, assim como no caso do espaço Euclidiano onde um cone é
formado por congruências de linhas retas.

Teorema de Goldberg-Sachs [6]: Dado um espaço-tempo de Tipo D, tem-se:
Ψ0 = Ψ1 = 0⇔ κ = σ = 0, e as congruências de l são geodésicas e sem distorção;
Ψ3 = Ψ4 = 0⇔ ν = λ = 0, e as congruências de n são geodésicas e sem distorção.

Exemplos de espaços-tempo de Tipo D são wormholes e buracos negros, e em vista do te-
orema acima, pode-se analisar a equação (4.17) a fim de se estabelecer o primeiro vínculo
sobre os parâmetros de distorção c e d:
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Condição de Tipo D:
cd′ − c′d = 0;

d+ c sin θ − (d′ + c′ sin θ)r = 0

Esta condição é satisfeita pela solução geral

d(r, θ) = rf(θ)− c(r) sin θ, (4.18)

onde c = c(r) é qualquer função radial se f(θ) = 0 e é c = kr, kεC, no caso de f(θ) 6= 0

desde que f(θ) 6= (k + 1
k
) sin θ.

O escalar de Weyl Ψ2 pode ser calculado diretamente pela Definição 1.11 ou através das
identidades de Ricci (1.34). Com o auxílio da identidade

1

2
(R1234 −R3434)− 1

2
(R1212 −R3412) +R1324 (4.19)

e (4.18), obtém-se após um pouco de manipulação e substituição dos coeficientes de spin
(4.17) e das derivadas direcionais (4.16),

Ψ2 = −A
6[(r2+c2) sin θ−crf ]3

+ B
12[(r2+c2) sin θ−crf ]2

(
1− b

r

)
+

+ C
12[(r2+c2) sin θ−crf ]

(
1− b

r

)
+
[

2(r+cc′) sin θ−f(c+c′r)
2(r2+c2) sin θ−2crf

− φ′
] (

rb′−b
12r2

)
+ 1

6
[φ′′ + (φ′)2]

(
1− b

r

)
onde

A = r2ff † cos θ + crf †(r2 + c2)sin θcos θ+

+[c2r2f 2 − r2f †2(r2 + c2)− r2ff ††(r2 + 2c2)] sin θ + cr(r2 + c2)[f †† − 2f ]sin2 θ+

+(r2 + c2)2sin3 θ + cr3f 2f ††

B = [2(r + cc′) sin θ − f(c+ c′r)]2

C = c′′rf + 2c′f − 2 sin θ(1 + c
′2 + cc′′)− [2(r + cc′) sin θ − f(c+ c′r)]φ′

(4.20)

Da mesma maneira, os escalares de Ricci são determinados com o auxílio das identidades
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de Ricci entre colchetes:

[R1314] Φ00 =
1√
2
∂lµ− µ2 − µ(ε+ ε̄)

[R1312] Φ01 = 0

[R1314] Φ00 =
1√
2
∂lµ− µ2 − µ(ε+ ε̄)

[R1312] Φ01 = 0

[
1

2
(R3414 −R1214] Φ10 = − 1√

2
∂lβ̄ −

[
r sin θ + i(c sin θ − rf)√
2(r2 + c2) sin θ −

√
2crf

]
∂θε+ (µ+ ε̄− ε)β̄

[
1

2
(R1212 −R3412] Φ11 =

1√
2
∂l(ε+ ε̄) + (ε+ ε̄)2 −Ψ2 + Λ

[R2441] Φ20 = 0

[R2421] Φ21 = 0

[R2423] Φ22 = Φ00

[
1

2
(R1232 −R3432] Φ12 = −Φ̄10

[R1332] Φ02 = 0

[
1

2
(R1234 −R3434 −

1

2
(R1212 −R3412 − 2R1324]

Λ =
A

12[(r2 + c2) sin θ − crf ]3
+

B

48[(r2 + c2) sin θ − crf ]2

(
1− b

r

)
+

+
C

12[(r2 + c2) sin θ − crf ]

(
1− b

r

)
+

[
2(r + cc′) sin θ − f(c+ c′r)

2(r2 + c2) sin θ − 2crf
+ φ′

]
(
rb′ − b
12r2

)
− 1

12
[φ′′ + (φ′)2]

(
1− b

r

)
, (4.21)

onde A, B e C estão definidos em (4.20).

Na fórmula acima, as expressões para os coeficientes de spin β, µ e ε são

β =
r cos θ + i(rf † − c cos θ)

2
√

2[(r2 + c2) sin θ − crf ]

µ =
f(c+ c′r)− 2(r + cc′) sin θ

2
√

2[(r2 + c2) sin θ − crf ]

(
1− b

r

) 1
2

ε =

{
φ′

2
√

2
+ i

(c− c′r) sin θ

2
√

2[(r2 + c2) sin θ − crf ]

}(
1− b

r

) 1
2

(4.22)

Com as expressões para a base tétrade de tipo-luz, as derivadas direcionais, os coeficientes
de spin, os escalares de Weyl e Ricci, completa-se a descrição do wormhole distorcido no
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formalismo de Newman-Penrose. No limite φ′ = c = d = 0 e b =
r20
r
, recupera-se as fórmulas

análogas para o wormhole ultraestático da referência [15]:

ν = σ = κ = λ = ε = γ = τ = π = 0

ρ = µ = − l√
2(l2 + r2

0)

β = −α =
cot θ

2
√

2(l2 + r2
0)

1
2

Ψ2 = − r2
0

3(l2 + r2
0)2

Φ01 = Φ10 = Φ02 = Φ20 = Φ12 = Φ21 = 0

Φ00 = Φ22 = − r2
0

2(l2 + r2
0)2

Φ11 =
r2

0

4(l2 + r2
0)2

Λ = − r2
0

12(l2 + r2
0)2

(4.23)

4.2 Perturbação do Espaço-Tempo

Esta seção segue um raciocínio idêntico ao da Seção 3.2.

O objetivo desta seção é determinar as perturbações nos escalares de Weyl Ψ0 e Ψ4, porque
essas componentes possuem toda a informação necessária sobre a onda gravitacional emitida
pelo wormhole [15]. Todas as referências nessa seção podem ser obtidas nos trabalhos de
Teukolsky [17], Moreno & Nuñez [22] e Moreno & Garcia-Salcedo [15].

4.2.1 Equações de Teukolsky

Há quatro identidades de Bianchi e duas identidades de Ricci (ver Seção 1.2) as quais são
lineares e homogêneas nas quantidades que se anulam no espaço-tempo não perturbado (de
acordo com o Teorema de Goldberg-Sachs):

Identidade de Bianchi R13[13|4] = 0 :
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(δ̄ − 4α + π)Ψ0 − (D − 4ρ− 2ε)Ψ1 − (3Ψ2 − 2Φ11)κ =

(δ + π̄ − 2ᾱ− 2β)Φ00 − (D − 2ε− 2ρ̄)Φ01 − κ̄Φ02 + 2σΦ10 (4.24)

Identidade de Bianchi R13[13|2] = 0 :

(∆− 4γ + µ)Ψ0 − (δ − 4τ − 2β)Ψ1 − (3Ψ2 + 2Φ11)σ =

(δ + 2π̄ − 2β)Φ01 − (D − ρ̄− 2ε+ 2ε̄)Φ2 − 2κΦ12 − λ̄Φ00 (4.25)

Identidade de Bianchi R42[21|4] = 0 :

(D + 4ε− ρ)Ψ4 − (δ̄ + 4π + 2α)Ψ3 + (3Ψ2 + 2Φ11)λ =

(δ̄ + 2α− 2τ̄)Φ21 − (∆ + µ̄+ 2γ − 2γ̄)Φ20 + 2νΦ10 + σ̄Φ22 (4.26)

Identidade de Bianchi R42[43|2] = 0 :

(δ + 4β − τ)Ψ4 − (∆ + 2γ + 4µ)Ψ3 + (3Ψ2 − 2Φ11)ν =

(δ̄ − τ̄ + 2α + 2β̄)Φ22 − (∆ + 2µ̄+ 2γ)Φ21 + ν̄Φ20 − 2λΦ12 (4.27)

e

Identidade de Ricci para R1313 :

Ψ0 + (δ − 3β − ᾱ− τ + π̄)κ− (D − 3ε+ ε̄− ρ− ρ̄)σ = 0 (4.28)

Identidade de Ricci para R2442 :

Ψ4 + (∆ + µ+ µ̄+ 3γ − γ̄)λ− (δ̄ + 3α + β̄ + π − τ)ν = 0 (4.29)

Equações (4.24)-(4.29) são válidas para todo espaço-tempo genérico de Tipo D que não esteja
perturbado.

A fim de se efetuar teoria de perturbação no espaço-tempo, é o bastante especificar a
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geometria perturbada por

l = lA + lB

n = nA + nB

m = mA +mB

m̄ = m̄A + m̄B (4.30)

onde A denota o valor no espaço não perturbado e B, a perturbação (todas as quantidades de
Newman-Penrose podem ser escritas dessa forma). Primeiramente, elimina-se os coeficientes
de spin, os escalares de Ricci e os escalares de Weyl não perturbados que se anulam no
espaço-tempo original, e faz-se algumas simplificações com a ajuda das equações (4.17) e
(4.21), obtendo o conjunto de equações (4.24)*-(4.29)* governando as perturbações sofridas
pelo modelo de espaço-tempo específico, a métrica de wormhole (4.12). Em segundo lugar,
procede-se à redução desse sistema da seguinte maneira:
i.Multiplique (4.25)* por (D − 5µ− 3ε+ ε̄), obtendo (4.25)**;
ii.Multiplique (4.24)* por (δ − 2β), obtendo (4.24)**;
iii.Subtraia (4.24)** de (4.25)** e use (4.28)* para obter a seguinte equação6:

[(D − 5µ− 3ε+ ε̄)(∆ + µ− 4ε̄)− (δ − 2β)(δ̄ + 4β̄)− 3Ψ2]Ψ2
0 = T0 + T0a,

onde

T0 = (δ − 2β)[(D − 2µ− 2ε)ΦB
01 − δΦB

00] +

(D − 5µ− 3ε+ ε̄)[(δ − 2β)ΦB
01 − (D − µ− 2ε+ 2ε̄)ΦB

02

e

T0a = [2(D − 2µ− 3ε+ 3ε̄)Φ11 − 3(∆ + µ− 2ε− 2ε̄)Φ00

−6DΛ− 2(δ − 2β)Φ10 + 2Φ11D − 2Φ10δ]σ
B +

[2(δ − 2β)Φ11 − 2(D − 5µ− 3ε+ ε̄)Φ12 − 3δΨ2 + 2Φ11δ − 2Φ12D]κB

−(D − 5µ− 3ε+ ε̄)Φ00λ̄
B

−(δ − 2β)[δ + (δ + π̄ − 2ᾱ− 2β)B]Φ00 (4.31)

Como é explicado em [15], o termo extra T0a representa a fonte quando o operador dife-
rencial perturbado δ e os coeficientes de spin perturbados σ, κ, λ, α, β são não nulos. Como
é explicado em [17], o conjunto completo das equações de Newman-Penrose é invariante sob

6O sobrescrito nas quantidades não perturbadas foi suprimido, por simplicidade.
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a troca l ↔ n,m ↔ m̄ e esta simetria não é destruída pela condição de Tipo D. Pode-
se, portanto, derivar7 uma equação para ΨB

4 pela aplicação dessa transformação à equação8

(4.31):

[(∆ + 5µ+ 3ε̄− ε)(D − µ+ 4ε)− (δ̄ − 2β̄)(δ + 4β)− 3Ψ2]ΨB
4 = T4 + T4a,

onde

T4 = (δ̄ − 2β̄)[(∆ + 2µ+ 2ε̄)ΦB
21 − δ̄ΦB

22] + (∆ + 5µ+ 3ε̄− ε)[(δ̄ − 2β̄)ΦB
21

−(∆ + µ+ 2ε̄− 2ε)ΦB
20]

e

T4a = [3(D − µ+ 2ε+ 2ε̄)Φ22 − 2(∆ + 2µ+ 3ε̄− ε)Φ11 +

6∆Λ + 2(δ̄ − 2β̄)Φ12 − 2Φ11D + 2Φ12δ̄]λ
B +

[−2(δ̄ − 2β̄)Φ11 + 2(∆ + 5µ+ 3ε̄− ε)Φ10 +

3δ̄Ψ2 − 2Φ11δ̄ + 2Φ10∆]νB + (∆ + 5ν + 3ε̄− ε)Φ22σ̄
B +

−(δ − 2β)[δ̄ + (δ̄ − τ̄ + 2α + 2β̄)B]Φ22 (4.32)

As equações (4.31) e (4.32) são não homogêneas. Há vários modos de escolher uma per-
turbação que cause o anulamento dos lados direitos de tais equações. Em [22], o tensor
energia-momento é puramente radial de modo que as projeções não nulas são funções de r
e t somente. O caráter angular dos operadores nesse caso garante a homogeneidade. Para o
wormhole em estudo nesse trabalho, tal escolha não funciona mas o conjunto de condições
abaixo possibilita o anulamento desejado dos termos T0, T0a, T4, T4a:

ΦB
01 = ΦB

02 = ΦB
21 = ΦB

20 = 0

ΦB
00 = ΦB

22 = f(r, t)

σB = κB = λB = νB = 0

(δ + π̄ − 2ᾱ− 2β)BΦ00 = −δΦ00

(δ − τ̄ + 2α + 2β̄)BΦ22 = −δ̄Φ22 (4.33)

Aplicando as condições de homogeneidade acima, finalmente as Equações de Teukolsky são
atingidas, as quais governam as perturbações, presentes nos escalares de Weyl ΨB

0 e ΨB
4 , da

7Há uma maneira mais direta, semelhante ao processo de desenvolvimento da equação (4.31), o qual é
explicado em [15].

8Aqui o sobrescrito nas quantidades não perturbadas também foi suprimido.
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classe de wormholes distorcidos, estáticos e de Tipo D:

[(D − 5µ− 3ε+ ε̄)(∆ + µ− 4ε̄)− (δ − 2β)(δ̄ + 4β̄)− 3Ψ2]ΨB
0 = 0 (4.34)

e

[(D + 5µ+ 3ε− ε̄)(∆− µ+ 4ε̄)− (δ − 2β)(δ̄ + 4β̄)− 3Ψ2]ΨB
4 = 0 (4.35)

Na próxima seção, essas equações serão reduzidas à uma equação de onda.

4.2.2 Equação de Onda

Atuando sobre χΨB
4 , onde

χ = e2
∫
λdθ[(r2 + c2) sin θ − crf ]2,

λ = λ(θ) =
crf † − (r2 + c2) cos θ

(r2 + c2) sin θ − crf
(4.36)

e usando as relações de comutação entre as derivadas direcionais, e a ação desses operadores
sobre os coeficientes de spin, as equações de perturbação para ψ(2) = ΨB

0 e ψ(−2) = χΨB
4 ,

equações (4.34) e (4.35), podem ser escritas como uma única equação mestre em termos do
parâmetro s (o qual assume os valores 2 ou −2):

{∆D − δ̄δ + [µ− (2s+ 1)ε̄− ε]D − [(2s+ 1)µ+ 2sε]∆ +

−2(s+ 1)β̄δ + 2sβδ̄ + s(2s+ 1)[2(µ+ ε)ε̄−Ψ2]− 2s[(∆ε)

−(δ̄β) + µε− ε2] + 4s(s+ 1)ββ̄ + 2(2s+ 1)Λ}ψ(s) = 0 (4.37)

Não é difícil ver que o comentário após a Condição de Tipo D (4.18) garante que a função
λ = λ(θ) no integrando de (4.36) acima está bem definida. Para um buraco negro, Λ = 0 e
tem-se χ = r4 de modo que a equação (4.37) coincide com a equação (13) em [22].

A fim de transformar a equação mestre numa forma de tipo-onda, é preciso fazer o seguinte
roteiro:
i. Substituir em (4.37)todos os valores para os coeficientes de spin (4.17), o escalar de Weyl
(4.20) e os escalares de Ricci (4.21);
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ii. Fazer a substituição

Ψ(t, l, θ, ϕ) = e−iwteimϕℵ(l, θ), (4.38)

para um modelo de função de onda, onde m é o número de onda (real), ω é a frequência (que
pode ser real ou complexa) e ℵ(l, θ) é a amplitude;
iii.Finalmente usar a condição de Tipo D (4.18), o fato de que ψ 6= 0, para todo (t, l, θ, ϕ), e
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após muito trabalho, consegue-se

A
∂2ℵ
∂l2

+B
∂2ℵ
∂θ2

+ C
∂ℵ
∂l

+D
∂ℵ
∂θ

+
{

(Eω2 + Fiω) + (Gm2 +Hm) + I
}
ℵ = 0,

onde

A = (r2 + c2) sin θ − crf

B = sin θ +
rf(r − c sin θ)

(r2 + c2) sin θ − crf

C =
{

2(s+ 1)[(r + cc′) sin θ − cf ] + [(r2 + c2) sin θ − crf ]φ′ + 2si(c′r − c) sin θ
}√

1− b

r

D = 2 cos θ +
(λr2 + c2) sin2 θ − 2cr(f + f †) sin θ + r2f(f + 2f †)

(r2 + c2) sin θ − crf

−2i
[sr(rf † − c cos θ) sin θ −mr2f ]

(r2 + c2) sin θ − crf
E = e−2φ[(r2 + c2) sin θ − crf ]

F = 2se−2φ
{

[(r + cc′) sin θ − cf ]− [(r2 + c2) sin θ − crf ]φ′
}√

1− b

r

G = − (r2 + c2)

(r2 + c2) sin θ − crf

H = 2s
[crf † − (r2 + c2) cos θ]

(r2 + c2) sin θ − crf
+ i

r2(λf − f †)
(r2 + c2) sin θ − crf

I = (1− b

r
)

{
(2s2 + 1)

3
[(r2 + c2) sin θ − crf ]φ′′ − (s2 − 1)

3
[(r2 + c2) sin θ − crf ]φ

′2

}
+

+(1− b

r
)

{
(4s2 + 3s2 + 2)

3
[(r + cc′) sin θ − cf ]φ′ +

(4s2 − 1)

3

[(r + cc′) sin θ − cf ]2

(r2 + c2) sin θ − crf

}
+

−(1− b

r
)

{
(2s2 − 3s− 2)

3
[(1 + c

′2 + cc′′) sin θ − c′f ] +
s(2s+ 1)

4

(c′r − c) sin θ

(r2 + c2) sin θ − crf

}
+

+(1− b

r
)

{
s

2

(c′r − c)2 sin2 θ

(r2 + c2) sin θ − crf

}
+

+(
b− rb′

2r2
)

{
(2s2 + 1)

3
[(r2 + c2) sin θ − crf ]φ′ − (2s2 − 3s− 2)

3
[(r + cc′) sin θ − cf ]

}
−

−(2s2 + 1)

3

{
(sin θ − λ cos θ) +

(cr sin θ − r2f)(f †† + λf †)

(r2 + c2) sin θ − crf

}
−

−(s2 − 1)

3

{
(r2 + c2) cos2 θ − 2crf † cos θ + r2f †2

(r2 + c2) sin θ − crf

}
+ i(

b− rb′

2r2
)s(c′r − c) sin θ −

−is(b− rb
′)

2

[f(sin θ − λ cos θ) + (f †† + λf †) sin θ]

(r2 + c2) sin θ − crf
+ i(1− b

r
)sc′′r sin θ +

+i(1− b

r
)

{
s

2
(c′r − c) sin θ[2φ′ − 1

(r2 + c2) sin θ − crf
]

}
+

+i(1− b

r
)

{
s(2s− 1)

[(r + cc′) sin θ − cf ](c′r − c) sin θ

(r2 + c2) sin θ − crf

}
(4.39)
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Esta é a equação de onda que precisa ser obedecida por toda a radiação gravitacional
emitida por um wormhole distorcido.

4.3 Soluções de MQN

A métrica (4.1) mostrou um poder de unificação muito grande na medida em que quase todos
os wormholes (e incluindo buracos negros) mais comumente encontrados na literatura podem
ser vistos como casos especiais dessa classe. Uma lista com alguns exemplos poderia ser:

i.Wormhole Ultraestático [15]

φ = 0, b = (r2
0)/r, c = 0, d = 0

ii.Wormhole de Morris-Thorne com Densidade Zero [1]

φ = 0, b = 2GM, c = 0, d = 0

iii.Wormhole Proximal de Schwarzschild [1]

φ = 1/2ln(1− 2GM/r + ε/r2), b = 2GM, c = 0, d = 0

iv.“Foil” de Schwarzschild [23] (buraco negro para λ = 0)

φ = 1/2ln(1− 2GM/r + λ2), b = 2GM, c = 0, d = 0

v.Wormhole Cosmológico [24]

φ = m/l0arctg(l/l0) = u, b = r(1− e2u),

c =
√

(e−2u(l2 + l20)− r2), d = −
√

(e−2u(l2 + l20)− r2) sin θ

vi.“Punch-through"Wormhole [25]

φ = 1/2ln(((G2M2 − 4r2)2 + 16λ2r2)/((GM + 2r)4 + 16λ2r2)),

b = (GMr + 2r2 − 16r5)/(GM + 2r)

c =
√

((GM + 2r)4 − 16r4)/4r,
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d = −
√

((GM + 2r)4 − 16r4)/4rsinθ

vii.“Timehole"[25]

φ = 1/2ln(1− 2GM/
√
λ2 + l2)), b =

√
(λ2 + l2)/2GMl, c = λ, d = −λsinθ

Todos esses wormholes irão emitir radiação gravitacional baseada na equação (4.39). No
entanto, é interessante notar que em todos os casos a equação se apresenta muito difícil de se
resolver devido a duas características principais: o acoplamento da frequência com o potencial
(F 6= 0) de um modo semelhante ao que acontece com o buraco negro de Kerr, como pode
ser visto pelo potencial (3.7) da referência [34], cuja forma geral é dada por

Q = ω2 − 2isω
2r∆− (r − 1)(r2 + α2)

(r2 + α2)2
−
[

λ∆

(r2 + α2)2
+G2 +

dG

dr∗

]
, (4.40)

e a separação de variáveis que nem sempre é possível. Como já foi dito no começo, esse
trabalho visa encontrar uma solução exata para a equação (4.39). Para tentar encontrá-la
serão analisados alguns casos baseados na equação de desacoplamento, dada por F = 0, ou
seja,

(r + cc′) sin θ − cf = [(r2 + c2) sin θ − crf ]φ′ (4.41)

Caso 1: Forças de maré nulas

Esse caso consiste em se impor a condição de que φ = 0 na equação de desacoplamento
(4.41). Fazendo isso, obtemos a condição (pois c 6= 0)

f(θ) =
(r + cc′)

c
sin θ (4.42)

que equivale à condição
(r + cc′)

c
= α (4.43)

onde α é uma constante.
Substituindo esses valores na equação de onda (4.39), percebe-se que a separação de variá-

veis só ocorre se tivermos c = kr e, portanto, α = 1+k2

k
. Infelizmente, essa situação entra em

contradição com o comentário após a condição de Tipo D (4.18), pois f não pode assumir
tal valor. Assim, wormholes com forças de maré nulas até podem desacoplar a frequên-
cia do potencial, mas não produzem separação eficiente das variáveis na equação de onda,
impossibilitando desse jeito uma resolução analítica do problema.
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Caso 2: Simetria esférica

Atingimos simetria esférica tomando o parâmetro f como zero. A equação de desacopla-
mento (4.41) então nos fornece

φ′ =
r + cc′

r2 + c2
(4.44)

Novamente, a separação de variáveis na equação de onda aponta para a solução c = kr e
isso, por sua vez, nos dá

φ′ =
1

r
(4.45)

que é o mesmo resultado que obtivemos no Capítulo 3 para o wormhole de Morris-Thorne
(k = 0).

Caso 3: Separação de variáveis

Inicialmente, assuma apenas que o candidato tem um parâmetro c = kr, e substitua-o na
equação de perturbação (4.39). A fim de se obter a separação de variáveis, é preciso ter

f(θ) = α sin θ (α = constante) (4.46)

Agora divide-se a equação resultante por sin θ e soma-se a ambos os membros −(2s2 +3s+

1)/3, obtendo a equação angular[
1 +

(α− k)

U
cossecθ

]
d2S

dθ2
+

[
(2− 1

U
− 2αk

U
+

2α2

U
)cotgθ +

(α− k)2

U

]
dS

dθ
+

+

{
−(1 + k2)

U
m2cossec2θ − 2(s +

iα

U
)mcotgθcossecθ − (2s2 + 1)

3
[1− α(k− α)

U
]cossecθ−

}
−
{

(s2 − 1)

3
[1 +

(α− k)2

U
]cotgθcossecθ − (2s2 + 3s + 1)

3
+ K

}
S = 0,

U = 1 + k2 − αk (4.47)
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e a equação radial

d2Z

dl∗2
+ ω2Z + 2siωeφ

√
1− b

r
[
1

r
− φ′]Z +

+e2φ

{
(1− b

r
)[

1− s2

3r2
+

(4s2 − 1)

3r
φ′ +

1− s2

3
φ′

2
+

(2s2 + 1)

3
φ′′]

}
+e2φ

{
(
b− rb′

2r2
)[

(2s2 + 1)

3
φ′ − (2s2 + 1)

3r
]

}
−

−e2φ

{
1

Ur2
[
(2s2 + 3s+ 1)

3
+K]

}
Z = 0 (U = 1 + k2 − αk) (4.48)

Uma simples análise das possibilidades para k e α a fim de simplificar as equações e torná-
las resolvíveis de forma exata, leva à escolha especial

α = k (4.49)

Com essa escolha, a equação (4.47) é resolvível e, mais interessante ainda, tem-se que a
equação (4.48) é idêntica àquela do caso Morris-Thorne de modo que ela também pode ser
transformada na equação de onda padrão pelo mesmo procedimento ilustrado no Capítulo 3.
Tomando-se k = 0, obtemos a solução (3.40). Para k 6= 0 obtém-se resultados similares, mas
a constante de separação K na equação angular será diferente. No próximo caso, frequências
de MQN serão determinadas para um wormhole com parâmetros de distorção não nulos,
baseando-se num esquema de aproximação.

Caso 4: “Modelo brinquedo”

Substituindo f = 0 nas equações (4.18) e (4.39), obtém-se uma equação de bernoulli para
a condição de desacoplamento

r + cc′ = (r2 + c2)φ′ (4.50)

que tem a solução geral

c2 = Ae2φ + e2φ
∫
e−2φ[φ′r2−r]dr (4.51)

De acordo com a equação (3.4), tomando-se φ = 0, consegue-se um wormhole perfeitamente
transitável porque não haverá nenhuma força de maré. Inserindo esse valor em (4.51), conclui-
se que o desacoplamento da frequência e do potencial neste caso é determinado por c =√
C2 − r2 e d = −

√
C2 − r2 sin θ, onde r vai de r0 na garganta até r = C.
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Pode-se conseguir separação de variáveis na equação (4.39) se for considerado o esquema
de aproximação b� r � C. Neste caso, a equação angular fica

d2S

dθ2
+ (1 + 2cotgθ)

dS

dθ
− [m2cossec2θ + 2smcossecθcotgθ + s2cotg2θ − s−KC2]S = 0 (4.52)

e a equação radial se reduz a

d2R

dl2
+ ω2R = [

s+ 6

2
−K + isr]R

l = l∗ε(−∞,+∞)
dr

dl
=

√
1− b

r
(4.53)

Uma vez determinada a constante de separaçãoK, com o uso da equação angular, a solução
radial é alcançada fazendo-se a transformação

Z = − 1

R

dR

dl
(4.54)

resultando na equação de riccati

dZ

dl
= Z2 + [ω2 +K − (s+ 2)

6
− isr(l)] (4.55)

Tomando-se b = (r2
0)/r e aproximando em segunda ordem a raiz quadrada r =

√
l2 + r2

0

pela série [29]
√
x =

∞∑
n=0

(−1

2
)n

(1− l2 − r2
0)n

n!
(4.56)

obtém-se a solução exata

Z = − 1

w

dw

dl
onde

w(l) =
√
l

[
C1J 1

2
(

√
ω2 +K − (s+ 6)

2
− is

2
l) + C2Y 1

2

]
(

√
ω2 +K − (s+ 6)

2
− is

2
l)]

(4.57)
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As frequências de MQN são então obtidas a partir dos zeros das funções de Bessel, porque
haverá divergência (ou ressonância) nesses pontos:

ωK =
1√
2

√√
a2 + b2 + a+ i

sgn(b)√
2

√√
a2 + b2 − a

a =
(s+ 6)

2
−K

b =
s

2
(4.58)

Note que este wormhole não apresenta modos de vibração para s = 2, porque neste valor,
as partes imaginárias das frequências em (4.58) são positivas, e assim o que se obtém são
“modos crescentes” (não amortecidos), que não tem significado físico.

Embora todas as tentativas a respeito tenham fracassado, conjectura-se que existam wormho-
les satisfazendo a condição de desacoplamento (4.41) e que permitam simultaneamente a
separação de variáveis na equação de onda (4.39).



Capítulo 5

PROPAGAÇÃO DE ONDAS
ELETROMAGNÉTICAS

O objetivo desse capítulo é mostrar que é possível encontrar wormholes que tenham barrei-
ras de potencial idênticas a outros sistemas físicos na Natureza, tais como um elétron ou
uma molécula de hidrogênio. Essa idéia vai de encontro ao raciocínio de Einstein, Rosen e
Wheeler em eliminar as singularidades (partículas quânticas e até buracos negros) por meio
de alguma estrutura unificadora. Na seção 5.1, a propagação das ondas eletromagnéticas no
espaço-tempo descrito no capítulo anterior é estudada mediante a perturbação das equações
de Maxwell via formalismo de Newman-Penrose, assim como feita para os buracos negros
[17]. Na seção 5.2, buscaremos um candidato simples, significando simples uma métrica or-
togonal que satisfaça o Teorema de Birkhoff, separe as partes angular e radial da equação
de perturbação obtida na Seção 5.1 e, finalmente, seja capaz de desacoplar a frequência de
oscilação do potencial na equação de onda. Como resultado desse processo, felizmente será
encontrada um tipo de geometria que preenche tais critérios e cuja barreira de potencial pode
ser modelada por sua função de forma. Na Seção 5.3, mostraremos que tal geometria pode
representar uma barreira de Coulomb pela simples resolução de uma equação diferencial ordi-
nária na função de forma b. Um exemplo ilustrativo é dado e é mostrado que outras barreiras
de potencial podem ser modeladas pelo mesmo procedimento.

77
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5.1 Perturbação das Equações de Maxwell

O objetivo desta seção é determinar as perturbações nos escalares de Maxwell φ0 e φ2 (ver
Capítulo 1, Seção 1.2), porque esses componentes contêm toda a informação necessária a
respeito das interações entre as ondas eletromagnéticas e a geometria de wormhole de fundo.
Como é dito em1 [17]:Como a amplitude da energia-momento eletromagnética é de segunda
ordem no campo eletromagnético, a mudança na geometria de base causada pela perturbação
eletromagnética é também de segunda ordem. Assim, nas equações de Maxwell, esta mudança
na geometria pode ser negligenciada a apenas primeira ordem.

Em um espaço-tempo de Tipo D, as equações de Maxwell são

(D − 2ρ)φ1 − (δ̄ + π − 2α)φ0 = 2πJl

(δ − 2τ)φ1 − (∆ + µ− 2γ)φ0 = 2πJm

(D − ρ+ 2ε)φ2 − (δ̄ + 2π)φ1 = 2πJm̄

(δ − τ + 2β)φ2 − (∆ + 2µ)φ1 = 2πJn, (5.1)

em que os escalares φ são campos de teste de primeira ordem e Jl = Jµl
µ, etc., com Jµ a

densidade de 4-corrente.

A fim de reduzir o sistema (5.1), basta tomar os seguintes passos:
i. Opere (δ − β − ᾱ − 2τ + π̄) na primeira equação de Maxwell e −(D − ε + ε̄− 2ρ− ρ̄) na
segunda;
ii. Some ambas as equações e elimine φ1 utilizando a identidade
[D − ε+ ε̄− 2ρ− ρ̄](δ − 2τ) = [δ − β − ᾱ− 2τ + π̄](D − 2ρ).

A equação resultante será

{
(D − ε+ ε̄− 2ρ− ρ̄)(∆ + µ− 2γ)− (δ − β − ᾱ− 2τ + π̄)(δ̄ + π − 2α)

}
φ0 = 2πJ0,

com

J0 = (δ − β − ᾱ− 2τ + π̄)Jl − (D − ε+ ε̄− 2ρ− ρ̄)Jm. (5.2)

Como explicado em [17], o conjunto completo das equações de Newman-Penrose é invari-
ante sob a transformação l ↔ n,m ↔ m̄ e esta simetria não é destruída pela condição de
Tipo D. Pode-se portanto derivar uma equação para φ2 pela aplicação dessa transformação

1O leitor interessado pode encontrar toda a base para o desenvolvimento feito nesta seção nas referências
[17], [6] e [22].
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à equação (5.2):

{
(∆ + γ − γ̄ + 2µ+ µ̄)(D − ρ+ 2ε)− (δ̄ + α + β̄ + 2π − τ̄)(δ − τ + 2β)

}
φ2 = 2πJ2,

com

J2 = (∆ + γ − γ̄ + 2µ+ µ̄)Jm̄ − (δ̄ + α + β̄ + 2π − τ̄)Jn. (5.3)

Escolhendo a densidade de 4-corrente nas direções de l e n torna J0 e J2 iguais a zero
nas equações acima, a homogeneidade sendo garantida pelo caráter angular dos operadores
relevantes. Desta forma atingem-se as Equações de Teukolsky, que governam as perturbações
nos escalares de Maxwell φ0 e φ2, da classe de wormholes distorcidos estáticos e de Tipo D:

{
(D − ε+ ε̄− 2ρ− ρ̄)(∆ + µ− 2γ)− (δ − β − ᾱ− 2τ + π̄)(δ̄ + π − 2α)

}
φ0 = 0 (5.4)

e

{
(∆ + γ − γ̄ + 2µ+ µ̄)(D − ρ+ 2ε)− (δ̄ + α + β̄ + 2π − τ̄)(δ − τ + 2β)

}
φ2 = 0 (5.5)

Agindo sobre χφ2, onde

χ = e
∫
λdθ[(r2 + c2) sin θ − crf ],

λ = λ(θ) =
crf † − (r2 + c2) cos θ

(r2 − c2) sin θ − crf
(5.6)

e usando as relações de comutação2 entre as derivadas direcionais e a ação destes operadores
nos coeficientes de spin (4.17) da métrica do Capítulo 4, as equações de perturbação para
ψ(1) = φ0 e ψ(−1) = χφ2, equações (5.4) e (5.5), podem ser escritas como uma única equação
mestre em termos do parâmetro s (o qual assume os valores 1 ou −1):

{∆D − δ̄δ + [µ− (2s+ 1)ε̄− ε]D − [(2s+ 1)µ+ 2sε]∆ +

−2(s+ 1)β̄δ + 2sβδ̄ + 2sε2 + 2(s+ 2)εε̄− (s− 1)µε+ 2(s+ 2)µε̄+

+4(s+ 1)ββ̄ − 2s[(∆ε)− (δ̄β)]− (s+ 2)Ψ2 + 2(2s+ 1)Λ}ψ(s) = 0

(5.7)

Não é difícil ver que o comentário após a condição de Tipo D (4.18) garante que a função

2Consulte o Capítulo 1 de [6] para essas definições.
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λ = λ(θ) no integrando de (5.6) acima está bem definida.

Fazendo a substituição

Ψ(t, l, θ, ϕ) = e−iωteimϕℵ(l, θ), (5.8)

para um modelo de função de onda, em que m é o número de onda (real), ω é a frequência
(pode ser real ou complexa) e ℵ(l, θ) = R(l)S(θ) é a amplitude, e usando o fato de que ψ 6= 0,
para todo (t, l, θ, ϕ), transforma-se (5.7) em

− 1

2R

d2R

dl2
+

{
1√
2

[µ− ε− (2s+ 1)ε̄] +
1√
2

[(2s+ 1)µ+ 2sε]

}
1

R

dR

dl
−

−e
−2φ

2
ω2 −

−iω
{
e−φ√

2
[µ− ε− (2s+ 1)ε̄] +

e−φ√
2

[(2s+ 1)µ+ 2sε] +
e−φ√

2
2ε

}
+

+2sε2 + 2(s+ 2)εε̄− (s− 1)µε+ 2(s+ 2)µε̄− 2s(∆ε)− (s+ 2)Ψ2 + 2(2s+ 1)Λ

=
r2 sin2 θ + d2

2(r2 sin θ − cd)2

1

S

d2S

dθ2
+

+
1

S

dS

dθ

{
2imr(d+ c sin θ)

2(r2 sin θ − cd)2
+ 2(s+ 1)β̄

(r sin θ + id)√
2(r2 sin θ − cd)

}
−

+
1

S

dS

dθ

{
−2sβ

(r sin θ − id)√
2(r2 sin θ − cd)

+
(r sin θ − id)(d† sin θ − d cos θ)(c+ ir)r

2(r2 sin θ − cd)3

}
− (r2 + c2)

2(r2 sin θ − cd)2
m2 −

−im
{
−2(s+ 1)β̄

(c+ ir)√
2(r2 sin θ − cd)

+ 2sβ
(c− ir)√

2(r2 sin θ − cd)

}
−im

{
+

(r sin θ − id)(r2 cos θ − cd†)(c+ ir)

2(r2 sin θ − cd)3

}
−

−4(s+ 1)ββ̄ − 2s(δ̄β) (5.9)

As expressões para µ, ε, β,Ψ2 e Λ são obtidas nas equações (4.17), (4.20) e (4.21).

Esta é a equação de onda que deve ser obedecida por toda radiação eletromagnética inci-
dente em um wormhole distorcido.
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5.2 Uma Solução Especial

Até aqui foi apresentada no Capítulo 4 uma métrica que generaliza a maior parte das métricas
de wormhole estudadas na literatura atual e na Seção 5.1, a equação que governa a propagação
eletromagnética ao longo desta geometria foi determinada. Deseja-se agora encontrar uma
solução simples pertencente a essa classe e que satisfaça certas propriedades especiais. É
imposto que a solução especial seja ortogonal, satisfaça o Teorema de Birkhoff 3, separe as
partes angular e radial da equação de onda e, finalmente, desacople a frequência de oscilação
da barreira de potencial4.
Analisando as possibilidades, conclui-se que

φ = φ1 + lnr b = b(r) c = kr d = −kr sin θ (5.10)

é uma métrica que satisfaz todos os requisitos. É imediato que tal escolha promove um com-
portamento indesejado na medida que a componente gtt da métrica não será assintoticamente
plana. Como foi visto no Capítulo 4, para se consertar essa situação, é necessário fazer um
corte de energia a uma distância r = a0:

φ = lnr − lna0, r0 ≤ r ≤ a0

φ = 0, r ≥ a0 (5.11)

No próximo capítulo, esta mesma geometria será usada na determinação dos modos quase-
normais de um buraco negro, e então a condição k 6= 0 será necessária. Entretanto, para
os propósitos desse capítulo, pode-se sem perda de generalidade tomar k = 0, obtendo a
seguinte solução

ds2 =
r2

a2
0

dt2 − dl2 − r2(dθ2 + sin2 θdϕ2), r0 ≤ r ≤ a0

ds2 = dt2 − dl2 − r2(dθ2 + sin2 θdϕ2), r ≥ a0 (5.12)

Substitutindo (5.10), com k = 0 em (5.9), e multiplicando por −2r2, atinge-se a separação
de variáveis, isto é, ℵ(l, θ) = R(l)S(θ) onde a equação angular é

d2S

dθ2
+cotgθ

dS

dθ
+(−m2cossec2θ−2smcotgθcossecθ−(s+1)cotg2θ+scossec2θ+C)S = 0 (5.13)

3Isto é, seja a única solução estática esfericamente simétrica da equação de Einstein.
4Ou seja, o coeficiente de iω em (5.9) precisa se anular.
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A equação (5.13) juntamente com condições de regularidade em θ = 0 e π, constitui-se
num problema de autovalor de Sturm-Liouville para a constante de separação C. Desde que
a constante de separação seja determinada, toda a informação física está contida na equação
radial que pode ser transformada em uma equação de Schrödinger através das seguintes
mudanças de variáveis

R(s)(l) = r−(s+1)Z(s)(l)
dl

dl∗
= eφ (5.14)

Assim, a equação de onda padrão para a radiação eletromagnética propagando-se através
da solução de wormhole especial (5.12) será

Λ2Z(s) = V Z(s)

(
Λ2 =

d2

dl∗2
+ ω2

)
(5.15)

onde o potencial é dado por

V (l∗) =
1

a2
0

{
(1− b

r
)[(s+ 1)2 − 5(s+ 1)

2
] + (

b− rb′

2
)[

3s+ 4

3r
− 5(s+ 1)

3
]− [C + s+ 1]

}
(5.16)

Note que

l∗ = ±
∫ r

r0

e−φ√
1− b

r

dr. (5.17)

Na próxima seção um método será apresentado a fim de se modelar sistemas físicos através
desta métrica por meio da escolha conveniente de funções de forma b na equação (5.16).

5.3 Barreiras de Potencial

O que foi visto até agora é que existe um tipo especial de métrica que possui um potencial
dependendo somente da função de forma b = b(r). Essa liberdade de escolha permite criar
um método para se interpretar vários sistemas físicos apenas pelo ajuste da função de forma
a fim de se atingir a barreira de potencial desejada. No que segue essa técnica será ilustrada
para uma barreira de Coulomb.

Seja [30]

V = −ε
2

r
+
j(j + 1)

r2
− ε4

4(j + 1)2
(5.18)

uma barreira de Coulomb, onde j é o momento angular e ε é a carga elétrica do elétron. O
desejo aqui é o de que a equação (5.15) represente esta barreira de modo que é preciso impor
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sobre (5.16),

1

a2
0

{
(1− b

r
)[(s+ 1)2 − 5(s+ 1)

2
] + (

b− rb′

2
)[

3s+ 4

3r
− 5(s+ 1)

3
]− [C + s+ 1]

}
=

= −ε
2

r
+
j(j + 1)

r2
− ε4

4(j + 1)2
, (5.19)

dando origem a uma equação diferencial ordinária de primeira ordem para b,

b′ + b

[
A

Ur
− 5(s+ 1)

U

]
=
B

U
− 6ε2

Ura2
0

+
6j(j + 1)

Ur2a2
0

,

A = (3s+ 4)− 6(s+ 1)2 + 15(s+ 1),

B = 6[C + s+ 1]− 6(s+ 1)2 + 15(s+ 1)− 3ε4

2a2
0(j + 1)2

,

U = 5(s+ 1)r − (3s+ 4), (5.20)

cuja solução geral5 é

b = Q[r−1U5(s+1)]−
A

3s+4U+[r−1U5(s+1)]−
A

3s+4U

∫ r

[t−1U5(s+1)]
A

3s+4U−1[
B

U
− 6ε2

Uta2
0

+
6j(j + 1)

Ut2a2
0

]dt

(5.21)

Para uma caso de estudo simples, tome Q = lna0 = 0 e s = −1, então

b =
3j(j + 1)

r
− [6j(j + 1)− 3ε4

2(j + 1)2
]rlnr − 6ε2 (5.22)

A garganta ocorre em r0 como solução da equação transcendental

r =
3j(j + 1)

r
− [6j(j + 1)− 3ε4

2(j + 1)2
]rlnr − 6ε2 (5.23)

Sua amplitude de espalhamento é, de acordo com a referência [30],

Sj(ω) =
Γ(j + 1− i ε2

2ω
)Γ(1 + i ε

2

2ω
)

Γ(j + 1 + i ε
2

2ω
)Γ(1− i ε2

2ω
)

(5.24)

As ressonâncias ocorrem nos pontos de divergência de Γ, que são os inteiros negativos, pois
não há zeros para a função gama no plano complexo [9]. Entretanto, para uma barreira de

5Q é uma constante.
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Coulomb há apenas modos puramente crescentes,

ωn =
iε2(n+ 1)

2
, (5.25)

ou puramente decrescentes (n > j − 1),

ωn = − iε2

(n+ 1)− j
. (5.26)

Também é relevante nesse exemplo simplificado que a função de forma para o modo de
vibração s = −1 tenha sido determinada. Isto poderia ter sido feito para o outro modo
também. Admitindo a forma (5.22), o potencial gerado por este wormhole no modo s = 1

será

V = Blnr + [
7B − 6

6
+ 10ε2 − j(j + 1)]− 5B

3
r − [ε2 + 10j(j + 1)]

r
+

10j(j + 1)

r2
,

B = 6j(j + 1)− 3ε4

2(j + 1)2
,

(5.27)

de maneira que, quando r → 0, ele também forma uma barreira de Coulomb.
O processo descrito acima pode ser estendido a outras barreiras de potencial [30], como as

de Morse, Poschl-Teller, Eckart, etc. Estas barreiras devem apresentar características mais
interessantes, como modos quase-normais oscilantes por exemplo.



Capítulo 6

FREQUÊNCIAS DE MQN PARA
BURACOS NEGROS

Este capítulo continua o desenvolvimento feito nos dois capítulos anteriores que estudaram
algumas das propriedades de uma classe de métricas. No que segue, uma solução especial,
pertencente a essa classe, será usada na tentativa de se aproximar potenciais de buracos
negros de forma similar às quadraturas. Com essa abordagem, será possível determinar uma
técnica semi-analítica e equações algébricas para as frequências de MQN dos buracos negros
de Schwarzschild e Kerr.
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6.1 O Problema

Buracos negros são a característica mais intrigante da Teoria da Relatividade Geral pois a
existência de um e completude do outro estão intrinsecamente ligadas. Entretanto, a métrica
de buraco negro é uma singularidade da teoria, uma estrela feita de vácuo e um lugar no
universo que claramente desafia todas as leis da mesma Física que o criou! Tal comportamento
à parte, parecem haver sinais da presença de buracos negros na Natureza, especialmente no
núcleo das galáxias, como a Via Láctea.

Após o trabalho pioneiro de Regge &Wheeler [31] nos anos 50, as perturbações das métricas
de buracos negros foram extensivamente estudadas a fim de se responder à questão da possível
estabilidade de tais objetos na Natureza. Vishweshwara [32] propôs em 1956 a necessidade
de se considerar o efeito das frequências complexas nas equações de perturbação, em que
a parte real representa a frequência de oscilação e a imaginária representa uma taxa de
amortecimento. As oscilações a partir desses tipos de frequências foram denominadas modos
quase-normais para distingui-las dos modos normais de um sistema fechado (ondas planas).
Mais que isso, a definição completa dos modos quase-normais implica que eles sirvam como
“digitais” do buraco negro no sentido de que, nos últimos estágios, eles carregam somente
informação a respeito da estrutura da métrica perturbada e não da perturbação que causou
o efeito. Revisões completas desses assuntos podem ser encontradas em [6] e [33].

Wormholes foram analisados do ponto de vista de seus modos quase-normais com os mes-
mos objetivos que aqueles dos buracos negros. Nesse capítulo, um candidato particular da
classe dos wormholes distorcidos estudada até então será escolhido por possuir um tipo espe-
cial de potencial. Munindo-se desses “blocos de construção”, procederemos a uma descrição
das barreiras de potencial de Schwarzschild e Kerr. Nessa seção, tal wormhole será deter-
minado e na seção seguinte, ele será usado para se propor um método de determinação das
frequências quase-normais para um buraco negro em geral preenchendo o espaço-tempo com
estruturas de wormhole específicas de uma maneira similar a uma partição que preenche um
domínio de integração com intervalos.

Escolhendo-se f = 0 e c = kr na equação (4.39), que deve ser obedecida por toda a radiação
gravitacional emitida por um wormhole distorcido, obtém-se após alguma manipulação a
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equação angular[
1 +
−k
U

cossecθ

]
d2S

dθ2
+

[
(2− 1

U
)cotgθ +

k2

U

]
dS

dθ
+

+

{
−m2cossec2θ − 2smcotgθcossecθ − (2s2 + 1)

3
cossecθ−

}
−
{

(s2 − 1)

3
[1 +

k2

U
]cotgθcossecθ − (2s2 + 3s + 1)

3
+ K

}
S = 0,

U = 1 + k2 (6.1)

e a equação radial

d2Z

dl∗2
+ ω2Z + 2siωeφ

√
1− b

r
[
1

r
− φ′]Z +

+e2φ

{
(1− b

r
)[

1− s2

3r2
+

(4s2 − 1)

3r
φ′ +

1− s2

3
φ′

2
+

(2s2 + 1)

3
φ′′]

}
+e2φ

{
(
b− rb′

2r2
)[

(2s2 + 1)

3
φ′ − (2s2 + 1)

3r
]

}
−

−e2φ

{
1

Ur2
[
(2s2 + 3s+ 1)

3
+K]

}
Z = 0 (U = 1 + k2) (6.2)

Procede-se agora, em analogia com o que foi feito no Capítulo 4, buscando-se algum tipo
de wormhole que não apresente a frequência acoplada com o potencial na equação radial
(6.2). Essa condição é expressa por

2siωeφ
√

1− b

r
[
1

r
− φ′] = 0 (6.3)

e o vínculo na função da métrica φ = φ(r) será

φ′ =
1

r
⇒ φ = φ1 + ln r (φ1 = constante) (6.4)

Novamente, o que (6.4) sugere é que uma vez que você possa resolver a equação angular
(6.1) exatamente para a constante de separação, você será capaz de determinar de maneira
exata a solução analítica da parte radial dada por (6.2). Assim como no caso estudado no
Capítulo 3, a componente da métrica φ em (6.4) exige a necessidade de um corte de energia
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a uma distância r = a0:

φ = lnr − lna0, 0 < r ≤ a0

φ = 0, r ≥ a0 (6.5)

Assim, a métrica procurada é

ds2 =
r2

a2
0

dt2 − dl2 − r2(1 + k2)(dθ2 + sin2 θdϕ2), 0 < r ≤ a0

ds2 = dt2 − dl2 − r2(dθ2 + sin2 θdϕ2), r ≥ a0 (6.6)

que possui a propriedade de ao mesmo tempo separar as variáveis na equação de perturbação
e desacoplar frequência e potencial na parte radial. A informação física da onda gravitacional
emitida por este wormhole está contida nas equações

d2Z

dl∗2
+ ω2Z = 0, l → −∞, l→ +∞ (6.7)

d2Z

dl∗2
+ ω2Z = V0Z, −l∗(a0) ≤ l∗ ≤ l∗(a0) (6.8)

as quais revelam um problema de espalhamento por uma barreira de potencial unidimensional
quadrada de altura V0, dada por

V0 =
K + s+ 3

a2
0(1 + k2)

. (6.9)

O processo de determinação das frequências de MQN para a métrica (6.6) segue a mesma
linha de raciocínio utilizada no Capítulo 3, Seção 3.3, com a diferença de que agora as alturas
das barreiras de potencial têm expressões diferentes. Formalmente, no entanto, o resultado
é o mesmo, a saber

ω2 = z2 + V0 (6.10)

em que vale a equação transcendental complexa

2z
√
z2 + V0 = −V0i sin az (6.11)
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6.2 O Método

O princípio do método que será descrito nessa seção é o mesmo que o antigo conceito de
quadratura. Em uma integral de Riemann, integra-se uma função tomando-se o limite de
uma aproximação que é feita por retângulos construídos a partir de uma partição do domínio
de integração. Os potenciais de buracos negros são funções da coordenada tartaruga r∗ com
diferentes formatos para diferentes casos e o potencial da solução especial de wormhole (6.6)
tem a forma de um retângulo com diferentes alturas (6.9) para diferentes valores de k.

Portanto, é possível se aproximar o potencial de um buraco negro por uma série de barreiras
de potencial de métricas especiais, e então chegar à fórmula∫ r0+nM

r0+2M

[σ2 − V ]
dr∗
dr
dr ' p

n∑
l=2

[ω2
l − Vl] (6.12)

Para se obter maior simplicidade computacional, pode-se tomar o passo como p = r0 de
modo que a distância entre o l-retângulo e o horizonte será modelada pela métrica

ds2 =
r2

l2r2
0

dt2 − dl2 − r2(1 + k2)(dθ2 + sin2 θdϕ2), (l − 1)r0 ≤ r ≤ lr0

ds2 = dt2 − dl2 − r2(dθ2 + sin2 θdϕ2), r ≤ (l − 1)r0, r ≥ lr0 (6.13)

a qual possui uma barreira de potencial quadrada dada por

V (lr0, σ) = Vl(lr0) =
K + s+ 3

l2r2
0(1 + k2)

(6.14)

para algum k convenientemente escolhido. As frequências quase-normais ωl são fornecidas
por meio da equação (6.11).

Assim a fórmula (6.12) resulta em

σ2[r∗(r0+nM)−r∗(r0+2M)]−r0

n∑
l=2

ω2
l '

∫ r0+nM

r0+2M

V (r, σ)
dr∗
dr
dr−r0

n∑
l=2

Vl(lr0) = ∆V (r0, n),

(6.15)
estando a aproximação garantida pela existência de k e sendo tanto melhor quanto menor
for o erro ∆V no potencial, isto é, r0 → 0 e n→∞.

Com a fórmula acima torna-se possível, a partir do conhecimento da forma do potencial de
buraco negro V , determinar frequências quase-normais aproximadas σ para ele, simplesmente
pela resolução de uma equação algébrica. Na sequência esses cálculos serão feitos para os
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buracos negros de Schwarzschild e Kerr.

6.2.1 Buraco Negro de Schwarzschild

A coordenada tartaruga1 está relacionada à coordenada radial por

dr∗
dr

=
r2

∆
∆ = r2 − 2Mr (6.16)

e o potencial de Regge-Wheeler é dado por

V (r) =
j(j + 1)

r2
− 2M

r3
[j(j + 1) + 3] +

12M2

r4
(6.17)

Assim, a fórmula (6.15) resulta em

Mσ2

{
(n− 2) + ln[1 +

(n− 2)M

r0

]2
}
− r0

n∑
l=2

ω2
l =

j(j + 1)[
1

r0 + 2M
− 1

r0 + nM
] + 3M [

1

(r0 + nM)2
− 1

(r0 + 2M)2
]− r0

n∑
l=2

Vl(lr0)

(6.18)

em que a existência de Vl(lr0) = V (lr0) está garantida pela escolha de k em cada passo.

É importante ressaltar que foi encontrada uma equação algébrica apenas de segundo grau
em σ!

6.2.2 Buraco Negro de Kerr

Como um exemplo ilustrativo, toma-se M = 1 e m = 0.

A coordenada tartaruga2 está relacionada à coordenada radial por

dr∗
dr

=
r2 + a2

∆
∆ = r2 + a2 − 2r (6.19)

1As fórmulas apresentadas aqui podem ser encontradas em [6] ou [10].
2As fórmulas apresentadas aqui podem ser encontradas em [34] ou [10].
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e o potencial de Kerr é definido por

V (r) = 2isσ[
2r∆− (r − 1)(r2 + a2)

(r2 + a2)2
] + [

λ∆

(r2 + a2)2
+G2 +

dG

dr∗
],

λ = Cja + a2σ2 + 2amσ − s(s+ 1),

G =
s(r − 1)

r2 + a2
+

r∆

(r2 + a2)2
(6.20)

Assim, a fórmula (6.15) fornece

σ2

∫ r0+n

r0+2

r2 + a2

∆
dr − r0

n∑
l=2

ω2
l = F (σ2, σ, r)|r0+n

r0+2 − r0

n∑
l=2

Vl(lr0) (6.21)

onde a função F tem no máximo grau 2 em σ. Novamente atinge-se uma equação algébrica
apenas de segundo grau em σ, mas dessa vez ela ocorre sobre o corpo complexo.



Capítulo 7

WORMHOLES LIMÍTROFES

Nesse capítulo, uma solução com a matéria exótica restrita a duas conchas infinitesimais
em torno da garganta do wormhole é introduzida como um limite especial de uma classe de
soluções pré-fixadas. A propagação de ondas gravitacionais e eletromagnéticas através de tal
geometria com conteúdo minimal de matéria exótica é investigada a partir dos resultados
anteriores.
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7.1 Introdução

À parte os problemas teóricos decorrentes da necessidade de existência de grandes montantes
de matéria exótica para sustentar wormholes macroscópicos os efeitos astrofísicos não tri-
viais provenientes da existência de um wormhole têm sido intensivamente investigados nos
últimos anos. O espalhamento de ondas escalares em uma classe de soluções de wormhole
foi investigado por Kar e Sahdev [36], e algumas ressonâncias devido a estados fundamentais
foram identificadas. Essas ressonâncias poderiam, em princípio, fornecer informações sobre
o tamanho e forma da garganta do wormhole. Novamente, o problema do espalhamento foi
tratado numericamente.
Aqui nós mostramos como obter, tomando-se um limite apropriado na classe de soluções

introduzida em [36],uma solução com a matéria exótica restrita a duas conchas infinitesimais
localizadas em torno da garganta do wormhole.
A classe de soluções de wormhole introduzida em [36] é dada por

ds2 = dt2 − dr2

1− b
r

− r2dθ2 − r2 sin2 θdϕ2 (7.1)

onde

b = r

{
1−

[
1−

(r0

r

)n]2− 2
n

}
(7.2)

ou seja, consiste basicamente em uma classe de wormholes de Morris-Thorne com forças de
maré nulas.
Assim temos −∞ < l < +∞ e

rn(l) = rn0 + ln (7.3)

com n par. O wormhole minimal surge no limite n → +∞. Neste caso, temos r(l) = r0 se
|l| ≤ r0, e r(l) = l se |l| > r0, de modo que o espaço-tempo é plano fora do wormhole.
Para esta geometria de wormhole, as componentes do tensor energia-momento diagonal

são [36]

ρ(l) =
1

(rn0 + ln)
2
n

− 2(n− 1)ln−2rn0 + l2n−2

(rn0 + ln)2
(7.4)

τ(l) =
l2n−2

(rn0 + ln)2
− 1

(rn0 + ln)
2
n

(7.5)
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p(l) =
(n− 1)ln−2rn0

(rn0 + ln)2
(7.6)

As condições de energia fraca, dadas por ρ ≥ 0, ρ+τ ≥ 0 e ρ+p ≥ 0, são violadas para todo
n. Entretanto, em nosso limite n → +∞,é fácil ver que toda a matéria exótica necessária
está confinada nas conchas infinitesimais |l| = r0 pois a solução é plana para |l| > r0 e, para
|l| < r0,temos ρ = −τ = 1

r20
e p = 0.

7.2 Ondas Gravitacionais

Vimos no Capítulo 3 que a equação de onda para a radiação gravitacional emitida por um
wormhole de Morris-Thorne geral é

Λ2Z(s) = V Z(s)

(
Λ2 =

d2

dl∗2
+ ω2

)
(7.7)

em que o potencial é dado por

V (l∗) = −2siω

[
1

r
− φ′

]
eφ
√

1− b

r
−

−e2φ

{
(1− b

r
)[

1− s2

3r2
+

(4s2 − 1)

3r
φ′ +

1− s2

3
φ′

2
+

(2s2 + 1)

3
φ′′]

}
+

−e2φ

{
(
b− rb′

2r2
)[

(2s2 + 1)

3
φ′ − (2s2 + 1)

3r
]

}
−e2φ

{
− 1

r2
[
1− s2

3
+ j(j + 1)]

}
(7.8)

O wormhole limítrofe é dado pelo limite de uma sequência de wormholes de Morris-Thorne.
Portanto, é razoável esperar que ele deva oscilar de acordo com essa equação. Substituindo
φ = 0 e (7.2) para o n-ésimo wormhole da sequência, teremos a equação (7.7) com potencial
(7.8) dado por
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Vn(l) = −2
siω

r

[
1−

(r0

r

)n]1− 1
n

+

+
1

r2

{[
1−

(r0

r

)n]2− 2
n

+ 3(n− 1)
(r0

r

)n [
1−

(r0

r

)n]1− 2
n

+ j(j + 1)− 1

}
(7.9)

O potencial resultante para o wormhole limítrofe consiste no limite de Vn quando n→ +∞.
Estes pontos estão agora sob investigação [40].

7.3 Ondas Eletromagnéticas

Como vimos no Capítulo 5, a propagação de ondas eletromagnéticas é governada pela equação

− 1

2R

d2R

dl2
+

{
1√
2

[µ− ε− (2s+ 1)ε̄] +
1√
2

[(2s+ 1)µ+ 2sε]

}
1

R

dR

dl
−

−e
−2φ

2
ω2 −

−iω
{
e−φ√

2
[µ− ε− (2s+ 1)ε̄] +

e−φ√
2

[(2s+ 1)µ+ 2sε] +
e−φ√

2
2ε

}
+

+2sε2 + 2(s+ 2)εε̄− (s− 1)µε+ 2(s+ 2)µε̄− 2s(∆ε)− (s+ 2)Ψ2 + 2(2s+ 1)Λ

=
r2 sin2 θ + d2

2(r2 sin θ − cd)2

1

S

d2S

dθ2
+

+
1

S

dS

dθ

{
2imr(d+ c sin θ)

2(r2 sin θ − cd)2
+ 2(s+ 1)β̄

(r sin θ + id)√
2(r2 sin θ − cd)

}
−

+
1

S

dS

dθ

{
−2sβ

(r sin θ − id)√
2(r2 sin θ − cd)

+
(r sin θ − id)(d† sin θ − d cos θ)(c+ ir)r

2(r2 sin θ − cd)3

}
− (r2 + c2)

2(r2 sin θ − cd)2
m2 −

−im
{
−2(s+ 1)β̄

(c+ ir)√
2(r2 sin θ − cd)

+ 2sβ
(c− ir)√

2(r2 sin θ − cd)

}
−im

{
+

(r sin θ − id)(r2 cos θ − cd†)(c+ ir)

2(r2 sin θ − cd)3

}
−

−4(s+ 1)ββ̄ − 2s(δ̄β) (7.10)

Substituindo os valores φ = c = d = 0, correspondentes ao wormhole limítrofe, obtemos
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como resultado, após alguma manipulação, uma equação angular e uma equação radial, sendo
esta última dada por

d2Z

dl2
+ ω2Z = V Z (7.11)

com potencial

V (l) = 2iω
(s+ 1)

r

√
1− b

r
+

+
(s+ 2)

3r2
− (s+ 2)

3r2
(1− b

r
)− (s+ 2)

r
(
rb′ − b

6r2
) +

+
(2s+ 1)

3r2
− (2s+ 1)

3r2
(1− b

r
) +

(2s+ 1)

r
(
rb′ − b

3r2
)−

−2C − (s+ 1)(s+ 2)

r2

√
1− b

r
+

2(s+ 1)2

r2
(1− b

r
) +

(s+ 1)

r
(
b− rb′

2r2
)

(7.12)

em que C é a constante de separação determinada a partir da equação angular.
A equação (7.12) fornece o potencial para o wormhole limítrofe num processo de espalha-

mento de ondas eletromagnéticas desde que se saiba qual é o exato valor da função de forma
b, isto é, novamente é preciso resolver o problema de se determinar o limite no infinito para
a função b. Estes pontos estão agora sob investigação [40].



Capítulo 8

DOBRAS ESPACIAIS

Nesse último capítulo faremos um breve estudo das oscilações a serem apresentadas por
um tipo de solução exótica das Equações de Einstein denominada dobra espacial. Primei-
ramente, será introduzido o conceito de dobra espacial e será visto que tal espaço-tempo
produz violação das condições de energia, sendo necessário matéria exótica para mantê-lo.
Em seguida, o procedimento utilizado em capítulos anteriores será aplicado à métrica de do-
bra espacial de Alcubierre, considerada tão importante quanto é a métrica de Morris-Thorne
para os wormholes; será feita uma descrição do espaço-tempo em questão no formalismo de
Newman-Penrose e depois as quantidades relevantes serão perturbadas. Obtendo as Equa-
ções de Teukolsky para o caso considerado, serão definidas condições sobre os parâmetros da
métrica a fim de que se possa encontrar uma solução analítica para a equação de onda unidi-
mensional resultante. Infelizmente, o mais longe que nossa análise nos levou foi à construção
de um modelo de dobra espacial que apresenta frequências de MQN similares às da solução
especial derivada do wormhole de Morris-Thorne do Capítulo 3, isto é, a solução encontrada
pode ser considerada apenas como sendo semi-analítica.
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8.1 Apresentação

Em 1994, o físico mexicano Miguel Alcubierre propôs a existência da dobra espacial como
modelo matemático consistindo num método para se deformar o espaço em uma onda que
poderia em teoria contrair o espaço à frente de uma espaçonave e expandi-lo na parte pos-
terior. A nave então navegaria por essa onda dentro de uma região conhecida como bolha
de dobra, formada por espaço plano. Como a nave não se move dentro dessa bolha,mas é
carregada pela região pela qual a bolha se move, efeitos relativísticos convencionais não se
aplicam da maneira como aconteceria se a nave estivesse viajando através do espaço-tempo
plano com alta velocidade. Esse método de viagem também não envolve movimento mais
rápido que a luz em um sentido local, pois um feixe de luz dentro da bolha continuaria a se
mover mais rápido que a nave; ele é apenas mais rápido que a luz no sentido de que, graças
à contração do espaço na sua frente, a nave poderia alcançar seu destino mais rápido que um
feixe de luz restrito a viajar fora da bolha de dobra. Assim, a dobra espacial não contradiz
o fato de que a relatividade proíbe que objetos mais lentos que a luz possam acelerar até
velocidades superiores às da luz.

Para a dobra espacial de Alcubierre, a métrica de espaço-tempo é dada por

ds2 = dt2 − dx2 − dy2 − [dz − v(t)f(x, y, z)dt]2 (8.1)

A função de forma f(x, y, z) deve possuir a característica geral de ter o valor f = 0 no exterior
e f = 1 no interior da bolha de dobra. A classe geral de funções de forma escolhida por
Alcubierre foi a das funções esfericamente simétricas f(r) com r =

√
x2 + y2 + z2. Sempre

que um exemplo específico é solicitado, o modelo de função de forma mais utilizado na
literatura é

f(r) =
tanh[σ(r +R)]− tanh[σ(r −R)]

2 tanh(σR)
(8.2)

onde R > 0 e σ > 0 são dois parâmetros arbitrários. No que segue, entretanto, não iremos
impor nenhuma condição sobre a função de forma f ; o que iremos fazer é determinar quais
as expressões para v(t) e f(x, y, z) a fim de que possamos obter uma solução analítica para
as perturbações gravitacionais sofridas por uma dobra espacial.

Com a forma particular (8.1) da métrica, é possível demonstrar1 que a densidade de energia
medida por observadores cujas 4-velocidades são normais às hipersuperfícies t = constante é

1Conferir [5].
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dada por

ρ = − v2

32π
[(
∂f

∂x
)2 + (

∂f

∂y
)2] < 0. (8.3)

Portanto, como a densidade de energia é negativa, precisamos de matéria exótica para viajar
mais rápido que a velocidade da luz. Como vimos, fenômenos como o efeito Casimir e a
aceleração do universo dão suporte a uma possível existência de matéria exótica na Natureza.
Entretanto, gerar matéria exótica suficiente para produzir características como viajar além da
velocidade da luz ou manter aberta a garganta de um wormhole é por enquanto impraticável.
Acredita-se que assim como para os wormholes, não existe dobra espacial sem que haja
matéria exótica para sustentá-la e que uma teoria consistente da gravitação quântica irá
resolver tais problemas [5].

8.2 Descrição do Espaço-Tempo

A fim de descrever o espaço-tempo (8.1) no formalismo de Newman-Penrose, considere inici-
almente o seguinte referencial ortonormal:

e1i = (1, 0, 0, 0) ei1 = (1, 0, 0, vf)

e2i = (0,−1, 0, 0) ei2 = (0, 1, 0, 0)

e3i = (0, 0,−1, 0) ei3 = (0, 0, 1, 0)

e4i = (vf, 0, 0,−1) ei4 = (0, 0, 0, 1)

(8.4)

Através das relações [21]

l = e1 = 1√
2
[e(1) + e(2)] n = e2 = 1√

2
[e(1) − e(2)]

m = e3 = 1√
2
[e(3) + ie(4)] m̄ = e4 = 1√

2
[e(3) − ie(4)],

(8.5)

onde a barra denota conjugação complexa, obtemos a base tétrade fundamental, a qual será
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usada de agora em diante:

li =
(

1√
2
,− 1√

2
, 0, 0

)
li =

(
1√
2
, 1√

2
, 0, vf√

2

)
ni =

(
1√
2
, 1√

2
, 0, 0

)
ni =

(
1√
2
,− 1√

2
, 0, vf√

2

)
mi =

(
ivf√

2
, 0,− 1√

2
, −i√

2

)
mi =

(
0, 0, 1√

2
, i√

2

)
m̄i =

(
− ivf√

2
, 0,− 1√

2
, i√

2

)
m̄i =

(
0, 0, 1√

2
,− i√

2

)

eiaebi = ηab =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 = ηab

(8.6)

As derivadas direcionais correspondentes são

D = li∂i = 1√
2
∂t + 1√

2
∂x + vf√

2
∂z

∆ = ni∂i = 1√
2
∂t − 1√

2
∂x + vf√

2
∂z

δ = mi∂i = 1√
2
∂y + i√

2
∂z

δ̄ = m̄i∂i = 1√
2
∂y − i√

2
∂z

(8.7)

Utilizando-se as equações (1.28), (1.29) e (1.40) aplicadas à base de Newman-Penrose (8.6),
encontram-se os coeficientes de spin
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κ = γ311 = 0

σ = γ313 = − iv

2
√

2
[fy + ifz]

λ = γ244 = − iv

2
√

2
[fy − ifz]

ν = γ242 = 0

µ = γ243 =
vfz

2
√

2

ρ = γ314 = − vfz

2
√

2

τ = γ312 = − ivfx
2
√

2

π = γ241 = − ivfx
2
√

2

ε = 1
2
(γ211 + γ341) =

ivfy

4
√

2

γ = 1
2
(γ212 + γ342) =

ivfy

4
√

2

β = 1
2
(γ213 + γ343) =

ivfx

4
√

2

α = 1
2
(γ214 + γ344) = − ivfx

4
√

2

(8.8)

Nesse ponto, precisamos restringir nossa função de forma a fim de obtermos um espaço-
tempo de tipo D. Isso é necessário para que possamos usar as identidades de Teukolsky-
Starobinsky no desenvolvimento feito na próxima seção. Para tanto, precisamos nos limitar
a dobras espaciais que apresentem os coeficientes de spin κ, σ, λ e ν todos nulos, ou seja,
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precisamos lidar com funções de forma que satisfaçam as seguintes condições:

fy = fz = 0 (8.9)

isto é, devemos ter f(x, y, z) = f(x).

Com a condição de Tipo D acima satisfeita, os coeficientes de spin ficam

κ = σ = λ = ν = ρ = µ = ε = γ = 0

τ = π = 2α = −2β = − ivfx
2
√

2

(8.10)

Os escalares de Weyl podem ser calculados diretamente pela Definição 1.12 ou através das
identidades de Ricci (1.34). Para o espaço-tempo (8.1), obtemos os seguintes valores:

Ψ0 = Ψ2 = Ψ4 = 0

Ψ1 =
ivtfx

8
+
ivfxx

8

Ψ3 =
ivtfx

8
− ivfxx

8

(8.11)

A fim de obter maior simplificação das equações, vamos impor

vt = 0 fxx = 0 (8.12)

de modo que se tenha o anulamento de todos os escalares de Weyl. Com isso, nossa dobra
espacial possuirá uma velocidade de dobra uniforme, dada por v = v0 e uma função de forma
linear f = ax+ b.

Os escalares de Ricci são determinados com auxílio das identidades de Ricci entre colchetes
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(ver Capítulo 1):

[R1314] Φ00 = 0

[R1312] Φ01 = 0

[
1

2
(R3414 −R1214] Φ10 = 0

[
1

2
(R1212 −R3412] Φ11 =

v2f 2
x

16

[R2441] Φ20 =
v2f 2

x

8
[R2421] Φ21 = 0

[R2423] Φ22 = 0

[
1

2
(R1232 −R3432] Φ12 = 0

[R1332] Φ02 =
v2f 2

x

8

[
1

2
(R1234 −R3434 −

1

2
(R1212 −R3412 − 2R1324]

Λ = −v
2f 2
x

16
,

(8.13)

Até o momento podemos resumir a descrição do espaço-tempo de dobra espacial que esta-
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mos estudando no formalismo de Newman-Penrose pelas seguintes expressões:

ds2 = dt2 − dx2 − dy2 − [dz − v0(ax+ b)dt]2

D =
1√
2
∂t +

1√
2
∂x +

v0(ax+ b)√
2

∂z

∆ =
1√
2
∂t −

1√
2
∂x +

v0(ax+ b)√
2

∂z

δ =
1√
2
∂y +

i√
2
∂z

δ̄ =
1√
2
∂y −

i√
2
∂z

κ = σ = λ = ν = ρ = µ = ε = γ = 0

τ = π = 2α = −2β = − iv0a

2
√

2
Ψ0 = Ψ1 = Ψ2 = Ψ3 = Ψ4 = 0

Φ00 = Φ01 = Φ10 = Φ12 = Φ21 = Φ22 = 0

Φ02 = Φ20 = 2Φ11 = −2Λ =
v2

0a
2

8
(8.14)

8.3 Perturbação do Espaço-Tempo

Nessa seção, as equações que determinam a perturbação gravitacional sofrida por uma dobra
espacial serão determinadas. O desenvolvimento será feito em estreita analogia com a Seção
3.2 relativa ao wormhole de Morris-Thorne.

8.3.1 Equações de Teukolsky

Após efetuar a perturbação do conjunto de equações (3.17)-(3.20) e substituir os valores para
os coeficientes de spin e escalares de Ricci e Weyl presentes em (8.14), ficamos com o seguinte
sistema de equações:

(δ̄ − τ)ΨB
0 −DΨB

1 + 2Φ11κ
B = (δ + τ)ΦB

00 −DΦB
01 − Φ02κ̄

B (8.15)

∆ΨB
0 − (δ − 3τ)ΨB

1 − 2Φ11σ
B = (δ + 2τ̄ + τ)ΦB

01 − (D − ρ̄− 2ε+ 2ε̄)BΦ02 −DΦB
02 (8.16)
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DΨB
4 − (δ̄ + 5τ)ΨB

3 + 2Φ11λ
B = (δ̄ + τ − 2τ̄)ΦB

21 − (∆ + µ̄+ 2γ − 2γ̄)BΦ20 −∆ΦB
20 (8.17)

(δ − 3τ)ΨB
4 −∆ΨB

3 − 2Φ11ν
B = (δ̄ + τ − 2τ̄)ΦB

22 −∆ΦB
21 + Φ20ν̄

B (8.18)

Operando (δ− 3τ) em (8.15) e D em (8.16) e subtraindo as equações resultantes, obtemos

[D∆− (δ − 3τ)(δ̄ − τ)]ΨB
0 =

= 2DΦ11σ
B + 2(δ − 3τ)Φ11κ

B + (δ − 3τ)Φ02κ̄
B −D(D − ρ̄− 2ε+ 2ε̄)BΦ02 +

+[D(δ − τ) + (δ − 3τ)D]ΦB
01 − (δ − 3τ)(δ + τ)ΦB

00 −D2ΦB
02 (8.19)

onde uso foi feito da identidade (2.11) de [17] dada por
[D − (p+ 1)ε+ ε̄+ qρ− ρ̄](δ − pβ + qτ) = [δ − (p+ 1)β − ᾱ + π̄ + qτ ](D − pε+ qρ).

Da mesma forma, operando ∆ em (8.17) e (δ̄ + 5τ) em (8.18) e subtraindo as equações
resultantes, obtemos

[∆D − (δ̄ + 5τ)(δ − 3τ)]ΨB
4 =

= −2∆Φ11λ
B − 2(δ̄ + 5τ)Φ11ν

B − (δ̄ + 5τ)Φ20ν̄
B −∆(∆ + µ̄+ 2γ − 2γ̄)BΦ20 +

+∆(δ̄ + 3τ)ΦB
21 −∆2ΦB

20 − (δ̄ + 5τ)(δ̄ + 3τ)ΦB
22 + (δ̄ + 5τ)∆ΦB

21 (8.20)

onde uso foi feito da identidade (2.11) de [17] dada por
[∆ + (p+ 1)γ − γ̄ − qµ+ µ̄](δ̄ + pα− qπ) = [δ̄ + (p+ 1)α + β̄ − τ − qπ](∆ + pγ − qµ).

Impondo as condições de homogeneidade abaixo sobre a perturbação,

σB = κB = λB = νB = 0,

(D − ρ̄− 2ε+ 2ε̄)BΦ02,

(∆ + µ̄+ 2γ − 2γ̄)BΦ20,

ΦB
01 = ΦB

00 = ΦB
02 = ΦB

21 = ΦB
20 = ΦB

22 = 0, (8.21)

resultam de (8.19) e (8.20) as Equações de Teukolsky que governam as perturbações nos
escalares Ψ0 e Ψ4, os quais contêm as informações sobre a onda gravitacional [15]:
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[D∆− δδ̄ + 3τ δ̄ − 3τ 2]ΨB
0 = 0 (8.22)

e
[∆D − δ̄δ − 5τδ + 15τ 2]ΨB

4 = 0 (8.23)

8.3.2 Equação de Onda

Com procedimento análogo ao dos capítulos anteriores, obtivemos a partir das equações
(8.22) e (8.23), uma equação mestre

{∆D − δ̄δ +
5

4
(s− 2)τδ +

3

4
(s+ 2)τ δ̄ − 9

2
(s− 4

3
)τ 2}ψ(s) = 0 (8.24)

onde ψ(−2) = ΨB
0 e ψ(2) = ΨB

4 .

Adotando o modelo de onda

ψ(t, x, y, z) = e−iωtR(x, y, z) (8.25)

e substituindo na equação mestre os valores das derivadas direcionais e dos coeficientes de
spin, obtemos a equação na amplitude R, dada por

− ω2R

2
− 1

2

∂2R

∂x2
− 1

2

∂2R

∂y2
+ [−1

2
+
v2

0(ax+ b)2

2
]
∂2R

∂z2
−

−iωv0(ax+ b)
∂R

∂z
− i

16
(8s− 4)v0a

∂R

∂y
+ (2s− 24)

v0a

16

∂R

∂z
+

+
9

16
(s− 4

3
)v2

0a
2R = 0 (8.26)

Tomando-se R(x, y, z) = X(x)Y (y)Z(z) e a = 0, b = 1 na equação acima, resulta para a
equação em Z:

Z ′′ − 2
ω2

v2
0 − 1

Z − 2
iωv0

v2
0 − 1

Z ′ − 2k

v2
0 − 1

Z = 0 (8.27)

onde k é constante de separação que pode ser obtida das equações em X e Y .
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8.4 Frequências de MQN

Utilizando-se agora as mudanças de variáveis

Z = e
i
ωv0
v20−1

z
Q (8.28)

e
d

dz
= [

1

v2
0 − 1

(
1

v2
0 − 1

+ 1)]
1
2
d

dw
(8.29)

a equação (8.27) pode ser transformada na equação

Q′′ + ω2Q = V Q (8.30)

em que temos para o potencial V, os valores

V = V0 = k(
2v2

0 − 2

2− v2
0

) (8.31)

se f = 1 e V = 0 para f = 0.
Chegamos a um problema de espalhamento por uma barreira de potencial quadrada similar

ao encontrado no Capítulo 3, cuja solução é dada através da equação transcendental

2u
√
u2 + V0 = −V0i sin au (8.32)

onde
u =

√
ω2 − V0 ε C (8.33)

e V0 é dado pela equação (8.31).
Com isso obtemos uma solução semi-analítica para as frequências de MQN da dobra espa-

cial
ds2 = dt2 − dx2 − dy2 − [dz − v0fdt]

2 (8.34)

onde v0 corresponde a uma velocidade constante e f = 1 na bolha de dobra e f = 0 fora
dela.



Considerações Finais

Neste trabalho, tentou-se criar uma nova classe de wormholes a fim de simplificar as equações
de perturbação através do desacoplamento da frequência e do potencial. Na Seção 4.3 do
Capítulo 4, ficou claro porque os parâmetros de distorção c e d foram introduzidos; para
atingir a condição de desacoplamento “mais ampla possivel”, com mais liberdade de escolha do
que para os wormholes de Morris-Thorne. Infelizmente, mesmo fazendo tal mudança a solução
exata não apareceu a menos de equações transcendentais ou esquemas de aproximação. É
preciso enfatizar que no Caso 4 da Seção 4.3, o wormhole distorcido foi obtido pela resolução
de uma equação de Bernoulli; há alguma esperança de que outras soluções analíticas desta
equação possam dar origem a wormholes que se comportarão adequadamente, ou seja, darão
origem a potenciais desacoplados da frequência. Entretanto, todas as tentativas de se atingir
tal solução fracassaram.

No Capítulo 5, tomou-se a classe geral de métricas desenvolvida no Capítulo 4 e, dentro
dela, escolheu-se um candidato com a propriedade de se adequar a qualquer barreira de po-
tencial. Esse objetivo se encontra com o desejo de desaparecer com todas as singularidades
da Natureza. Se é possível achar wormholes que respondem às ondas eletromagnéticas da
mesma forma que outros sistemas, talvez este seja um sinal de que wormholes transitáveis
possam ser usados para modelar partículas elementares e até buracos negros, fazendo “res-
surgir” a antiga idéia de Einstein, Rosen e Wheeler. A forma como isso será feito ainda é
obscura aos olhos, mas a idéia de se introduzir novos parâmetros ou de trabalhar com métri-
cas axisimétricas, inflacionárias ou outros tipos de wormholes ao invés da classe simplificada
de Morris-Thorne poderia abrir portas para uma melhor descrição da Gravitação Quântica.

Sobre o desenvolvimento feito no Capítulo 6, é importante salientar que o método lá
apresentado de fato sugere que o espaço-tempo possa ser preenchido por wormholes, em
analogia com a construção da esponja quântica de Wheeler. Além disso, a solução especial
utilizada naquela ocasião tem a mesma barreira de potencial gravitacional independentemente
do parâmetro de forma b enquanto que, no caso eletromagnético, esse parâmetro é decisivo
para a descrição da barreira. Este comportamento aparentemente sem sentido pode ser
justificado pelo fato de que a gravitação não distingue a Lua da maçã, ela é universal enquanto
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que o eletromagnetismo não. Talvez o comportamento desta solução especial e de sua forma
seja um sinal da existência de um objeto unificador na Natureza.
Sobre o formalismo de Newman-Penrose, ressalta-se mais uma vez com esse trabalho a

sua validade em revelar características escondidas das singularidades do espaço-tempo, mos-
trando facetas da Relatividade Geral como o desacoplamento da frequência e do potencial,
somente percebidas na forma de onda da equação radial. Fora a sua trabalhosa complexidade
computacional, pôde-se chegar ao final a equações algébricas relativamente simples para as
frequências quase-normais de wormholes e buracos negros, em lugar de equações diferenciais
para as mesmas. Acredita-se que aumentar o leque de liberdade nos parâmetros da geometria
de wormhole irá permitir tratar de forma mais completa os potenciais complexos e até os
modos quase-normais do buraco negro de Kerr.
Em busca de generalizações dos desenvolvimentos feitos nesse trabalho, eis algumas suges-

tões para pesquisa futura na área:

1. Estudar espaços-tempo que não obedeçam a condição restritiva de Tipo D;

2. Estudar outros wormholes dependentes do tempo, além dos wormholes de Roman apre-
sentados no Capítulo 1; particularmente, acredita-se que essa abordagem possa abrir
opções para se criar modelos que desacoplem a frequência embora o preço que se deva
pagar por isso seja o de resolver uma equação de Schrödinger dependente do tempo;

3. Estudar uma combinação, muito geral e muito difícil, de wormholes não esféricos e
dependentes do tempo.

Para finalizar esse trabalho, algumas palavras a mais sobre a busca por soluções exatas de
MQN.
Pode-se expressar o problema de uma forma simples e separável no formalismo de Newman-

Penrose?
Esta questão aparece no trabalho de Damien Martin [9] no contexto de seus “buracos negros

sujos”, mas é perfeitamente aplicável à presente situação. A resposta é talvez. Acredita-se
na importância do formalismo de Newman-Penrose como uma abordagem alternativa ao
uso direto das equações de Einstein em sua forma tensorial; nesse sentido, tal técnica está
para a Relatividade Geral assim como os formalismos de Lagrange e Hamilton estão para
a Mecânica Newtoniana. Matematicamente, ele fornece um caráter algébrico para a teoria
na medida em que espaços-tempo de wormholes podem ser expressos por campos escalares
e classificados pela forma do tensor de Weyl (teorema de Goldberg-Sachs). Fisicamente,
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parece ser o caminho certo a seguir pois ele se baseia no conceito de espinor, obtido da
parametrização do cone de luz. Entretanto, um dos wormholes mais simples, estudado em
[15] via tal formalismo, apresenta uma equação de onda do mesmo grau de dificuldade que
a do buraco negro de Kerr! Concorda-se com Martin no que diz respeito aos adjetivos
“bagunça”, “frustrante” e “depressivo” que cercam esse assunto. Foi dito talvez como uma
resposta à pergunta acima porque acredita-se que talvez a tétrade complexa de tipo-luz
poderia não ser tão equivalente ao formalismo espinorial explícito como se pensa. Uma
abordagem mais direta baseada numa direta tradução de todas as equações para o formalismo
espinorial poderia abrir os olhos para algumas características obscurecidas por outros meios.
Entretanto, todas essas palavras possam apenas ser sonhos sem esperança. A Natureza
poderia estar simplesmente dando uma mensagem: vocês não têm acesso a certos fenômenos
assim como o princípio da incerteza estabelece. Se é assim, é possível modelar sistemas
quânticos por meio de wormholes? Este era um dos últimos sonhos de Einstein...
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